
When Do Bounds and Domain Propagation
Lead to the Same Search Space

Christian Schulte
Programming Systems Lab

Universität des Saarlandes, Germany

schulte@ps.uni-sb.de

Peter J. Stuckey
Dept. of Comp. Sci. & Soft. Eng.
University of Melbourne, Australia

pjs@cs.mu.oz.au

ABSTRACT
This paper explores the question of when two propagation-
based constraint systems have the same behaviour, in terms
of search space. We categorise the behaviour of domain and
bounds propagators for primitive constraints, and provide
theorems that allow us to determine propagation behaviours
for conjunctions of constraints. We then show how we can
use this to analyse CLP(FD) programs to determine when
we can safely replace domain propagators by more efficient
bounds propagators without increasing search space.

Keywords
Constraint (logic) programming, finite domain constraints,
bounds propagation, domain propagation, abstract interpre-
tation, program analysis

1. INTRODUCTION
In building a finite domain constraint programming solu-

tion to a combinatoric problem a tradeoff arises in the choice
of propagation that is used for each constraint: stronger
propagation methods are more expensive to execute but may
detect failure earlier; weaker propagation methods are (gen-
erally) cheaper to execute but may (exponentially) increase
the search space explored to find an answer. In this pa-
per we investigate the possibility of analysing finite domain
constraint systems, or constraint programs, and determining
whether the propagation methods used for some constraints
could be replaced by simpler, and more efficient alternatives
without increasing the size of the search space.

Consider the following example constraint:

[x1, x2, x3, x4] :: [0..10], x1 ≤ x2, 2x2 = 3x3 + 1, x3 ≤ x4

Each of the constraints could be implemented using domain
propagation or bounds propagation. Clearly if each con-
straint is implemented using domain propagation we have
stronger information, and the search space explored in or-
der to find all solutions for the problem will be no larger than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP 2001 Firenze, Italy
Copyright 2001 ACM 1-58113-3888-x/01/09 ...$5.00.

if we used bounds propagation. The question we ask is, can
we get the same search space with bounds propagation.

Domain propagation on the constraints x1 ≤ x2 and x3 ≤
x4 is equivalent to bounds propagation since the constraints
only place upper and lower bounds on their variables. This
is not the case for 2x2 = 3x3 + 1 where domain propagation
reduces the domains of x2 to {2, 5, 8} and x3 to {1, 3, 5},
while bounds propagation reduces x2 to [2 .. 8] and x3 to
[1 .. 5]. The question is: will execution require more search,
if we use bounds propagation for this constraint as well?

Suppose that we use a labelling strategy that either sets
a variable to its lower bound, or constrains it to be greater
than its lower bound. Then none of the constraints added
during search creates holes in the domains. (This is in con-
trast to a strategy where we set a variable to equal its middle
value, or to exclude its middle value.) Hence the only holes
in the domains of x2 and x3 will come from the constraint
2x2 = 3x3 + 1. We will show that if the domains of x2 and
x3 have no holes, domain propagation on 2x2 = 3x3 +1 fails
iff bounds propagation fails. Hence the search space is the
same for both bounds and domain propagation.

While for this simple example the advantage of bounds
propagation over domain propagation may not seem sig-
nificant, for more complex constraints there can be signifi-
cant differences in efficiency of domain and bounds propa-
gation. For example, domain propagation for alldifferent
on n variables is O(n2.5) [16], while bounds propagation is
O(n logn) [15] and even O(n) in common cases [13]. Sim-
ilarly, domain propagation for a linear equation on n vari-
ables is exponential while bounds propagation is O(n).

In this paper we investigate when bounds and domain
propagation will lead to the same search space.

The contributions of this paper are:

• We classify the behaviour of propagators for com-
mon primitive constraints, in particular introducing
the crucial notion of endpoint-relevant propagators.

• We give theorems that allow us to extend reasoning
about propagators for a single constraint to reasoning
about propagators for a conjunction of constraints.

• We define an analysis algorithm for CLP(FD) pro-
grams that determines where we can replace domain
propagators with bounds propagators without increas-
ing the search space.

• We show examples where our analysis detects search
space equivalent replacements and show the possible
performance benefits that arise.

Previous authors [13, 15] have noted the difference in
efficiency in bounds and domain propagation, for partic-
ular primitive constraints but not considered when differ-
ent propagators lead to the same search space. The closest
related work is that of Harvey and Stuckey [7], who con-
sider the relative propagation strengths of different equiva-
lent forms of constraints. Although they consider both do-
main and bounds propagation, they never compare bounds
propagation to domain propagation.

While there has been considerable success in optimizing
constraint programs over real linear constraints [8], there
has been little progress in optimizing finite domain CLP
programs. Much of this stems from the difficulty in effec-
tively analysing the behaviour of CLP(FD) solvers. In this
paper we have made a first step in this direction.

The remainder of the paper is organized as follows: in the
next section we introduce terminology and define domain
and bounds propagators. We then investigate properties of
propagators and sets of propagators that allow us to prove
search space equivalence. In Section 3, we define an analysis
of CLP(FD) programs to gather information about propa-
gation. We use this to define a program transformation that
annotates individual constraints with the form of propaga-
tion we should use for them. Finally in Section 4 we conclude
and give some directions for extending the work.

2. PROPAGATION BASED SOLVING

2.1 Basic Definitions
In this paper we consider integer constraint solving. A

primitive linear constraint c is an equality (=), inequality
(≤), or disequation (6=), which are written

∑n

i=1
aixi op d

where xi are integer variables, ai, d are integers, and op ∈
{=,≤, 6=}. A primitive nonlinear constraint is a multipli-
cation x1 = x2 × x3, a squaring x1 = x2 × x2, a posi-
tive squaring x1 = x2 × x2 ∧ x2 ≥ 0, an alldifferent con-
straint alldifferent([x1, . . . , xn]), or a default constraint
default([x1, . . . , xn]) (representing a nonlinear constraint
with no further information on its constraint propagation
available). A constraint is a conjunction of primitive con-
straints, which we will sometimes treat as a set of primitive
constraints.

We use the notation [x1, . . . , xn] :: [l .. u] as shorthand for
the conjunction of inequalities

x1 ≥ l, x1 ≤ u, . . . , xn ≥ l, xn ≤ u

An integer (real) valuation θ is a mapping of variables
to integer (resp. real) values, written {x1 7→ d1, . . . , xn 7→
dn}. We extend the valuation θ to map expressions and
constraints involving the variables in the natural way. Let
vars be the function that returns the set of (free) variables
appearing in a constraint or valuation. A valuation θ is an
integer (real) solution of a constraint c, if Z |=θ c (resp.
R |=θ c).

A domain D is a complete mapping from a fixed (count-
able) set of variables V to finite sets of integers. A false
domain D is a domain with D(x) = ∅ for some x. The
intersection of two domains D1 and D2, denoted D1 u D2,
is defined by the domain D3(x) = D1(x) ∩ D2(x) for all
x. A domain D1 is stronger than a domain D2, written
D1 v D2, if D1(x) ⊆ D2(x) for all variables x. A domain
D1 is stronger than (equal to) a domain D2 w.r.t. variables

V , denoted D1 vV D2 (resp. D1 =V D2), if D1(x) ⊆ D2(x)
(resp. D1(x) = D2(x)) for all x ∈ V .

In an abuse of notation, we define a valuation θ to be an
element of a domain D, written θ ∈ D, if θ(xi) ∈ D(xi)
for all xi ∈ vars(θ). We will be interested in determining
the infimums and supremums of expressions with respect
to some domain D. Define the infimum and supremum of
an expression e with respect to a domain D as infD e =
inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

A propagator f for variable x is a function mapping a do-
main D to a set of values representing the possible values
for x. A propagator only considers part of the domain cor-
responding to some subset of variables of interest which we
denote by vars(f).

We can extend propagators f for a variable x to map a
domain D to another domain D′. Let prop(f,D) denote
the extension of f to map domains to domains, defined by
D′(x′) = D(x′) for x′ 6= x, and D′(x) = D(x) ∩ f(D).

A propagator f is correct for a constraint c, iff

{θ ∈ D | Z |=θ c} = {θ ∈ prop(f,D) | Z |=θ c}

Example 2.1. For the constraint c ≡ x1 ≥ x2 + 1 the
function f(D) = {d ∈ D(x1) | d ≥ infD x2 + 1} is a correct
propagator for variable x1. Let D1(x1) = D1(x2) = {1, 5, 8},
then f(D1) = {5, 8} and prop(f,D1) = D2 where D2(x1) =
{5, 8} and D2(x2) = {1, 5, 8}.

A propagation solver for a set of propagators F and an ini-
tial domain D, solv(F,D), repeatedly applies all the propa-
gators in F starting from domain D until there is no further
change in resulting domain. In other words, solv(F,D) re-
turns a new domain defined by

iter(F,D) = u
f∈F

prop(f,D)

solv(F,D) = gfp(λd.iter(F, d))(D).

where gfp denotes the greatest fixpoint w.r.tv lifted to func-
tions.

A domain D is domain-consistent for a constraint c if D
is the least domain containing all integer solutions θ ∈ D of
c, i.e, there does not exist D′

< D such that θ ∈ D ∧ Z |=θ

c⇒ θ ∈ D′.
A set of propagators F maintains domain-consistency for

a constraint c, if solv(F,D) is always domain-consistent for
c.

Define the domain-consistency propagator for a constraint
c and a variable x, dom(c, x), as follows

dom(c, x)(D) = {θ(x) | θ ∈ D and θ is a solution of c}.

Example 2.2. Consider the constraint c ≡ x1 =
3x2 +5x3 and the domain D(x1) = {2, 3, 4, 5, 6, 7}, D(x2) =
{0, 1, 2}, and D(x3) = {−1, 0, 1, 2}. The solutions of c are
θ1 = {x1 7→ 3, x2 7→ 1, x3 7→ 0}, θ2 = {x1 7→ 5, x2 7→
0, x3 7→ 1}, and θ3 = {x1 7→ 6, x2 7→ 2, x3 7→ 0}. Hence,
iter({dom(c, x1), dom(c, x2), dom(c, x3)},D) gives a domain
D′ such that D′(x1) = {3, 5, 6}, D′(x2) = {0, 1, 2}, and
D′(x3) = {0, 1}. D′ is domain-consistent with respect to c,
hence also solv({dom(c, x1), dom(c, x2), dom(c, x3)},D) =
D′.

A range of integers [l .. u] is the set of integers {l, l +
1, . . . , u}, or ∅ if l > u. A domain is a range domain if
D(xi) is a range for all xi. Let D′ = range(D) be the

smallest range domain containing D, i.e. domain D ′(xi) =
[infD xi .. supD xi]. A domain D1 is bounds-stronger than

a domain D2, written D1

b

v D2, either D1 is a false domain
or range(D1) v range(D2). Two domains D1 and D2 are

bounds-equal, denoted D1

b≡ D2, if range(D1) = range(D2).
A domain D is bounds-consistent for a constraint c and

a variable xi with vars(c) = {x1, . . . , xn}, if for each di ∈
{infD xi, supD xi} there exist real numbers dj with infD xj ≤
dj ≤ supD xj , 1 ≤ j 6= i ≤ n such that {x1 7→ d1, . . . , xn 7→
dn} is a real solution of c. A domain D is bounds-consistent
for a constraint c, if it is bounds-consistent for c and each
x ∈ vars(c).

A set of propagators F maintains bounds-consistency for
a constraint c, if solv(F,D) is always bounds-consistent for
c.

Define the bounds-consistency propagator for a constraint
c and variable x, bnd(c, x), as in Figure 1.

Example 2.3. Consider the same constraint c and do-
main D as in Example 2.2. Calculation of

D′ = iter({bnd(c, x1), bnd(c, x2), bnd(c, x3)},D)

determines that

D′(x1) = [l1 .. u1] = [2 .. 7]

with l1 = sup
{⌈

0+3×0+5×−1

1

⌉

, 2
}

and u1 = inf
{⌊

0+3×2+5×2

1

⌋

, 7
}

and

D′(x3) = [l3 .. u3] = [0 .. 1]

with l3 = sup
{⌈

0−3×2+1×2

5

⌉

,−1
}

and u3 = inf
{⌊

0−3×0+1×7

5

⌋

, 2
}

While the domain of x3 is modified, the domains of x1 and
x2 remain unchanged. The resulting domain D′ is bounds-
consistent with the constraint c. Notice that bounds propa-
gation has determined less information than domain propa-
gation.

Note that common definitions for bounds propagators
for x1 = x2 × x3 (see for example [11]) do not main-
tain bounds-consistency. For the domain D(x1) = [4 .. 8],
D(x2) = [−1 .. 3], D(x3) = [−1 .. 3], the definition of [11]
gives no propagation, but x2 = −1 has no solution. It is
relatively straightforward to prove that the propagators de-
fined in Figure 1 maintain bounds-consistency.

Theorem 2.4. For all c, the set of propagators

{bnd(c, x) | x ∈ vars(c)}
defined in Figure 1 maintains bounds-consistency for c.

We conclude this section by briefly defining CLP(FD) pro-
grams. For more information see e.g. [11, 17].

An atom is of the form p(x1, . . . , xn) where p is a predicate
symbol and x1, . . . , xn are distinct variables in V. A literal
is an atom, labelling literal or primitive constraint. A goal is
a sequence of literals. A CLP(FD) program is a set of rules
A :- G where A is an atom, and G is a goal. Note that we
assume here a restricted form for programs, all atoms appear
with distinct variable arguments. It is easy to translate any
program to an equivalent program of this form.

A labelling literal is (for our purposes) one of

labelling([x1, . . . , xn])
labellingff([x1, . . . , xn])
labellingmid([x1, . . . , xn])

where x1, . . . , xn are distinct variables. The role of a la-
belling literal is to ensure that every variable involved
eventually takes a fixed value. There are many kinds of
labelling possible, but the three we use labelling (de-
fault), labellingff (first-fail labelling) and labellingmid

(middle-out value ordering) illustrate the three different
kinds of propagation behaviour. labelling, and other la-
bellings (such as labelling the variable with least minimum
value) only depend on the endpoints of a domain and only
add inequality constraints. labellingff calculates which
variable x to label using the size of the domain |D(x)|, hence
it depends on the entire domain, but it only adds inequal-
ity constraints. labellingmid and other labellings not only
depend on the entire domain but also add disequality con-
straints in the disjunction. See [11] for more details.

2.2 Categorising Propagators
In order to reason about the propagation behaviour of

propagators corresponding to primitive constraints, we need
to be able to categorise their behaviour. In order for bounds
propagation to be as powerful as domain propagation we
will need to understand how individual propagators relate
to bounds.

Definition 2.5. A propagator f is bounds-only, if f(D)
is a range for all domains D.

A propagator f is bounds-preserving, if for all domains
D such that D(x) is a range for all x ∈ vars(f), then f(D)
is a range.

Example 2.6. Clearly all bounds propagators are bounds-
only and thus also bounds-preserving.

Typically domain propagators are not bounds-preserving,
for example dom(x1 = 2x2, x1) is not bounds-preserving.
Some domain propagators are however bounds-preserving,
for example dom(x1 = 2x2, x2), or dom(x1 = x2 + 3, x1) as
well as dom(x1 = x2 + 3, x2).

Example 2.7. Note that propagation is highly dependent
on the nature of the constraints. For example, if c1 ≡ x1 ≥
3x2 and c2 ≡ x1 ≤ 3x2+1, then dom(c1, x1) and dom(c2, x1)
are both bounds-only. But domain propagation on x1 for the
combined constraint c1 ∧ c2 is not bounds-only. For exam-
ple, if D(x1) = D(x2) = [0 .. 8] and D′ = prop(dom(c1 ∧
c2, x1),D) we have that D′(x1) = {0, 1, 3, 4, 6, 7}.

In order to replace one set of propagators by another we
need to have notions of equivalence between sets of propa-
gators.

Definition 2.8. Two sets of propagators F1 and F2 are
equivalent, if for each domain D, solv(F1,D) = solv(F2, D).

Two sets of propagators F1, F2 are bounds-equivalent, iff

for each domain D, solv(F1,D)
b≡ solv(F2,D).

Equivalent sets of propagators of course can be used to
replace each other in any context. Clearly a bounds prop-
agator and a domain propagator will rarely be equivalent,
since the domain propagator will remove values from inside
domains. Hence we introduce bounds-equivalence.

The key to ensuring that two sets of propagators lead to
the same search space is the following obvious result.

• if c ≡∑n

i=1
aixi = d,

bnd(c, xj)(D) =

[⌈

inf
D

(

d−∑n

i=1,i6=j
aixi

aj

)⌉

..

⌊

sup
D

(

d−∑n

i=1,i6=j
aixi

aj

)⌋]

• if c ≡∑n

i=1
aixi ≤ d, aj > 0,

bnd(c, xj)(D) =

[

inf
D
xj ..

⌊

d−∑n

i=1,i6=j infD(aixi)

aj

⌋]

• if c ≡∑n

i=1
aixi ≤ d, aj < 0,

bnd(c, xj)(D) =

[⌈

d−∑n

i=1,i6=j
infD(aixi)

aj

⌉

.. sup
D

xj

]

• if c ≡∑n

i=1
aixi 6= d,

bnd(c, xj)(D) =

[infD xj + 1 .. supD xj] infD xj =
d−

∑n
i=1,i6=j aidi

aj
where D(xi) = {di}

[infD xj .. supD xj − 1] supD xj =
d−

∑n
i=1,i6=j aidi

aj
where D(xi) = {di}.

[infD xj .. supD xj] otherwise

• if c ≡ x1 = x2 × x3,

bnd(c, x1)(D) = [inf E .. supE]
where E = {infD x2 × infD x3, infD x2 × supD x3, supD x2 × infD x3, supD x2 × supD x3}

bnd(c, x2)(D) =

[infD x2 .. supD x2] infD x3 = supD x3 = 0 ∧ 0 ∈ [infD x1 .. supD x1]
∅ infD x3 = supD x3 = 0 ∧ 0 6∈ [infD x1 .. supD x1]
[dinf Ee .. bsupEc] infD x3 > 0 ∨ supD x3 < 0
[inf R .. supR] otherwise

where E = {infD x1/ infD x3, infD x1/ supD x3, supD x1/ infD x3, supD x1/ supD x3}
and D1(x1) = D(x1),D1(x2) = D(x2),D1(x3) = [1 .. supD x3]
D2(x1) = D(x1),D2(x2) = D(x2),D2(x3) = [0 .. 0]
D3(x1) = D(x1),D3(x2) = D(x2),D3(x3) = [infD x3 .. − 1]
R = ∪m∈{1,2,3}(bnd(c, x2)(Dm) ∩ [infD x2 .. supD x2])

The propagator for bnd(c, x3) is defined analogously to bnd(c, x2).

• if c ≡ x1 = x2 × x2,

bnd(c, x1)(D) =

[

(infD x2)
2 .. (supD x2)

2
]

infD x2 ≥ 0
[

(supD x2)
2 .. (infD x2)

2
]

supD x2 ≤ 0
[

0 .. sup{(infD x2)
2, (supD x2)

2}
]

otherwise

bnd(c, x2)(D) =

[

d
√

infD x1e .. b
√

supD x1c
]

infD x2 ≥ 0
[

d−
√

supD x1e .. b−
√

infD x1c
]

supD x2 ≤ 0

[inf R .. supR] otherwise
where D1(x1) = D(x1),D1(x2) = [0 .. supD x2]
D2(x1) = D(x1),D2(x2) = [infD x2 .. 0]
R = ∪m∈{1,2}(bnd(c, x2)(Dm) ∩ [infD x2 .. supD x2])

• if c ≡ x1 = x2 × x2 ∧ x2 ≥ 0, the propagators are defined as for c ≡ x1 = x2 × x2.

• if c ≡ alldifferent([x1, . . . , xn]) possible bounds propagators are given by Puget [15] and Mehlhorn and Thiel [13].

Figure 1: Definition of bounds-consistency propagators.

Proposition 2.9. Let F1 and F2 be two bounds-equival-
ent sets of propagators. For any domain D, then solv(F1,D)
is a false domain iff solv(F2, D) is a false domain.

With respect to search, this proposition can be interpreted
as follows. Bounds-equivalent sets of propagators lead to the
same failed nodes. As long as the labelling only considers
bound information and adds inequality constraints (as is
the case for labelling), the alternative constraints created
during labelling are the same for bounds-equivalent sets of
propagators. Taking both facts together, it becomes clear
that bounds-equivalent sets of propagators lead to the same
search space.

We are now in a position to examine the domain and
bounds propagators for individual primitive constraints and
determine relationships between them. The first lemma is
obvious, and more or less part of the folklore.

Lemma 2.10. Let c ≡ Σn
i=1aixi ≤ d, and x = xj for

some 1 ≤ j ≤ n. Then {dom(c, x)} and {bnd(c, x)} are
equivalent.

Unfortunately there is little further we can go with just the
concepts introduced. While it is clear that we can extend the
above theorem to any conjunction of inequalities since they
are equivalent, this is not possible with bounds-equivalent
sets of propagators.

In order to proceed we need to understand what prop-
agators will give the same behaviour when applied to
two bounds-equivalent domains. We introduce endpoint-
relevance which captures the idea of a set of propagators
in whose result the endpoints of the domain support each
other, hence the parts of the domain except the endpoints
are not relevant to the propagators bounds behaviour.

Definition 2.11. A set of propagators F is endpoint-
relevant if for all domains D, if D1 = solv(F,D) and

D2

b≡ D1 then solv(F,D2)
b≡ D1.

Note that, crucially, endpoint-relevant propagator sets
only have special properties at fixpoints of the set of prop-
agators. Otherwise the notion is too strong.

Example 2.12. The set {dom(x1 = 2x2, x2), dom(x1 =
2x2, x1)} is endpoint-relevant. Endpoint-relevance requires
that endpoints are supported only by other endpoints. Note
that {dom(x1 = 2x2, x2)} is not endpoint-relevant by itself,
consider D1(x1) = [1 .. 7] ,D1(x2) = [1 .. 3] and D2(x1) =
{1, 3, 4, 5, 7},D2(x2) = [1 .. 3].

Because disequalities have very weak propagators there is
a strong correspondence between their domain and bounds
propagators.

Lemma 2.13. Let c ≡ Σn
i=1aixi 6= d. Let x = xj for

some 1 ≤ j ≤ n. Then dom(c, x) and bnd(c, x) are bounds-
equivalent and endpoint-relevant.

Proof. Both f1 = dom(c, x) and f2 = bnd(c, x) only
depend on the endpoints of the input domain since they only
remove a value d when each variable in vars(c) − {x} has
a fixed value (in which case the bounds are equal). Hence
they are both endpoint-relevant.

The only difference between f1 and f2 is when the
non domain-consistent value d is neither a lower nor up-
per bound. In either case the resulting bounds do not
change.

Two variable equations are also endpoint-relevant because
they only involve two variables, and there is a one-to-one
correspondence between the values in any solution.

Lemma 2.14. Let c be a linear integer equation of the
form b1x1 + b2x2 = e. Then {dom(c, x1), dom(c, x2)} and
{bnd(c, x1), bnd(c, x2)} are bounds-equivalent and endpoint-
relevant.

Proof. Assume w.l.o.g. that b1 > 0. If this is not the
case we can replace x1 by new variable −x′1 and assume
D(x′1) = {−d | d ∈ D(x1)}. Similarly assume b2 > 0.

Let D1 = solv({dom(c, x1), dom(c, x2)},D) and D2 =
solv({bnd(c, x1), bnd(c, x2)},D). First by definition D1 =
iter({dom(c, x1), dom(c, x2)},D). Hence

d1 ∈ D1(x1) iff
e− b1d1

b2
∈ D(x2) (1)

d2 ∈ D1(x2) iff
e− b2d2

b1
∈ D(x1) (2)

Clearly also b1 infD1
x1 + b2 supD1

x2 = e and b1 supD1
x1 +

b2 infD1
x2 = e. By the definition of bounds propagation we

have that b1 infD2
x1 + b2 supD2

x2 = e and b1 supD2
x1 +

b2 infD2
x2 = e. This shows that both sets of propagators

are endpoint-relevant.
Now because the endpoints match the conditions of (1)

and (2) we have that {infD2
x1, supD2

x1} ⊆ D1(x1) and
similarly for x2.

Let D0
2 = D, D2i+1

2 = iter(bnd(c, x1),D
2i
2) and D2i+2

2 =
iter(bnd(c, x2),D

2i+1
2), i ≥ 0. We show by induction that

infDk
2
xj ≤ infD1

xj for j = 1, 2 and k ≥ 0 and supDk
2
xj ≥

supD1
xj for j = 1, 2 and k ≥ 0. The base case is straight-

forward. Suppose Dk+1
2 (xj) 6= Dk

2 (xj). We show that the
result still holds for Dk+1

2 . We consider the case when
the lower bound of x1 changes, the other cases are simi-

lar. The new lower bound is inf
D

k+1
2

x1 = d
e−b2 sup

Dk
2

x2

b1
e.

Now by induction hypothesis b2 supDk
2
x2 ≥ b2 supD1

x2 and

infD1
x1 =

e−b2 supD1
x2

b1
hence inf

D
k+1

2

x1 ≤ infD1
x1.

Finally there exists k > 0 s.t. Dk
2 = D2 by the definition

of D2.

Similarly, positive squaring constraints are endpoint-rele-
vant.

Lemma 2.15. Let c be of the form x1 = x2× x2 ∧ x2 ≥ 0.
Then {dom(c, x1), dom(c, x2)} and {bnd(c, x1), bnd(c, x2)}
are bounds-equivalent and endpoint-relevant.

Proof. Let D1 = solv({dom(c, x1), dom(c, x2)},D) and
D2 = solv({bnd(c, x1), bnd(c, x2)},D). First by definition
D1 = iter({dom(c, x1), dom(c, x2)},D). Hence

d1 ∈ D1(x1) iff
√
d1 ∈ D(x2) (3)

d2 ∈ D1(x2) iff d2 × d2 ∈ D(x1) (4)

Clearly also infD1
x1 = infD1

x2 × infD1
x2 and supD1

x1 =
supD1

x2 × supD1
x2. By the definition of bounds prop-

agation we have that infD2
x1 = infD2

x2 × infD2
x2 and

supD2
x1 = supD2

x2 × supD2
x2. This show that both sets

of propagators are endpoint-relevant.
Now because the endpoints match the conditions of (3)

and (4) we have that {infD2
x1, supD2

x1} ⊆ D1(x) and sim-
ilarly for x2.

Let D0
2 = D, D2i+1

2 = iter(bnd(c, x1),D
2i
2) and D2i+2

2 =
iter(bnd(c, x2),D

2i+1
2), i ≥ 0. We show by induction that

infDk
2
xj ≤ infD1

xj for j = 1, 2, k ≥ 0 and supDk
2
xj ≥

supD1
xj for j = 1, 2, k ≥ 0. The base case is straightfor-

ward. Suppose Dk+1
2 (xj) 6= Dk

2 (xj). We show that the
result still holds for Dk+1

2 . We consider the case when
the lower bound of x1 changes, the other cases are similar.
The new lower bound is inf

D
k+1
2

x1 = dinfD2
k
x2× infD2

k
x2e.

Now by induction infDk
2
x2 ≤ infD1

x2, hence inf
D

k+1

2

x1 ≤
infD1

x1.
Finally there exists k > 0 s.t. Dk

2 = D2 by the definition
of D2.

The above results for endpoint-relevance and bounds-equi-
valence extend straightforwardly to any two variable prim-
itive constraint describing a continuous bijection (over its
co-domain), for example x1 = x2 × x2 × x2, x1 = a × x2 ×
x2∧x2 ≥ 0, and x1 = −x4

2−x3
2−x2

2−x2−1∧x2 ≥ 1. Three
variable constraints are in general not endpoint-relevant.

Example 2.16. The linear equation x1 = 3x2 +5x3 from
Example 2.2 is not endpoint-relevant. The solutions θ1 =
{x1 7→ 3, x2 7→ 1, x3 7→ 0} and θ2 = {x1 7→ 5, x2 7→ 0, x3 7→
1} illustrate the non-endpoint relevance.

Note that even x1 + x2 = x3 is not endpoint-relevant.
Consider the domain-consistent domain D(x1) = {3, 5, 7, 8},
D(x2) = {4, 12, 15}, D(x3) = {9, 11, 15, 20} and the bounds-
equal D′(x1) = {3, 8}, D′(x2) = {4, 15}, D′(x3) = {9, 20}.

The importance of endpoint-relevance is that we can show
that conjoining sets of bounds-equivalent and endpoint-rele-
vant propagators maintains these properties.

Theorem 2.17. If F1 and F2 are bounds-equivalent and
endpoint-relevant and F ′

1 and F ′
2 are bounds-equivalent and

endpoint-relevant, then F1 ∪F ′
1 is bounds-equivalent to F2 ∪

F ′
2 and both F1 ∪ F ′

1 and F2 ∪ F ′
2 are endpoint-relevant.

Proof. The proof that Fj∪F ′
j is endpoint-relevant given

both Fj and F ′
j are endpoint-relevant is straightforward.

We construct a series of bounds-equivalent domains be-
ginning from an arbitrary domain D.

Define D0
1 = D, D0

2 = D and D0
3 = D. Define D2k+1

j =

solv(Fj , D
2k
3), k ≥ 0, for j = 1, 2. Define Di

4 to be the range

domain such that Di
4

b≡ Di
1. Define Di

3 = Di
3 u D. Define

D2k
j = solv(F ′

j , D
2k−1
3), k > 0, for j = 1, 2.

We show that Di
1

b≡ Di
2

b≡ Di
3, i ≥ 0. The base case is

trivial.

Now since F1 and F2 are bounds-equivalent then D2k+1
1

b≡
D2k+1

2 and clearly D2k+1
4

b≡ D2k+1
1 . By definition D2k+1

1 v
D2k

3 v D hence the endpoints of D2k+1
1 are in D. Thus

D2k+1
3

b≡ D2k+1
4

b≡ D2k+1
1 .

Similarly since F ′
1 and F ′

2 are bounds-equivalent the result
holds for i = 2k, k > 0.

We must finally reach an i such that Di+1
3 = Di

3. Let

D∗ = Di
3. Clearly then solv(F1∪F ′

1,D
∗)

b≡ D∗ since both F1

and F ′
1 are endpoint-relevant. Similarly solv(F2 ∪F ′

2,D
∗)

b≡
D∗.

It remains to show that solv(Fj ∪ F ′
j , D)

b≡ D∗, j = 1, 2.

Clearly sinceD∗ v D we have thatD∗ b≡ solv(Fj∪F ′
j ,D

∗) v

solv(Fj ∪F ′
j , D) by the monotonicity of solv . We now prove

that solv(Fj ∪ F ′
j ,D) v D∗

We consider the case when j = 1, the case when j = 2
is identical. We now consider the sequence Di

5 defined as
follows: D0

5 = D, D2k+1
5 = solv(F1,D

2k
5), k ≥ 0, and D2k

5 =
solv(F ′

1,D
2k−1
5), k > 0. We show that Di

5 v Di
3, i ≥ 0.

The base case is obvious. Clearly D2k+1
5 = solv(F1,D

2k
5) v

solv(F1,D
2k
3) = D2k+1

1 since solv is monotonic. Now by
definition D2k+1

1 v D2k+1
3 , hence the induction hypothesis

holds. The same reasoning applies toD2k
5 andD2k

3 for k > 0.
Now there exists i s.t. Di

5 = solv(Fj ∪ F ′
j ,D) v Di

3 =
D∗.

Example 2.18. We can now prove that domain propaga-
tion or bounds propagation on the example in the introduc-
tion

[x1, x2, x3, x4] :: [0..10], x1 ≤ x2, 2x2 = 3x3 + 1, x3 ≤ x4

is bounds-equivalent. The domain and bounds propagators
for 2x2 = 3x3 + 1 are bounds-equivalent and endpoint-
relevant by Lemma 2.14, and each of the propagators for
x1 ≤ x2 and x3 ≤ x4 are endpoint-relevant and equiva-
lent (domain versus bounds). Hence the conjunction is also
bounds-equivalent and endpoint-relevant by Theorem 2.17.

Typically domain propagation is not ever used for linear
equations with more than two variables. This results from
the fact that finding the solutions to a linear integer equation
is NP-hard. Under the assumption that all linear equations
involving more than 2 variables are handled using bounds
propagation, we already have enough to show a somewhat
surprising result. Using domain propagation (modulo the
above discussion) or bounds propagation on linear integer
constraints is bounds-equivalent.

Proposition 2.19. Let C be a conjunction of linear in-
teger constraints excluding linear equations with 3 or more
variables. Let C ′ be a conjunction of linear equations with
3 or more variables.

Then {dom(c, x) | c ∈ C, x ∈ vars(c)} ∪ {bnd(c, x) | c ∈
C ′, x ∈ vars(c)} is bounds-equivalent to {bnd(c, x) | c ∈
C ∪ C ′, x ∈ vars(c)}.

Example 2.20. How can we go beyond endpoint-
relevance. Consider this variation of the example from the
introduction

[x1, x2, x3, x4] :: [0..10], x1 ≤ x2, x2 + x3 = x4, x3 ≤ x4

The domain and bounds propagators for the constraint x2 +
x3 = x4 are not endpoint-relevant nor bounds-equivalent.
Yet clearly the only constraint that can generate holes in the
domains is x2 + x3 = x4. But these holes in the domains
are irrelevant to the other constraints. Hence domain prop-
agation or bounds propagation for this constraint should be
equivalent.

Similarly if we added the constraint x1 6= 3, then although
it generates a hole in the domain of x1, this is irrelevant to
the constraint x2 + x3 = x4. Again we should be able to use
bounds propagation rather than domain propagation.

Hence we introduce the notion of range-equivalence, which
ensures that the sets of propagators give bounds-equivalent
answers for range domains.

Definition 2.21. Two sets of propagators F1 and F2

are range-equivalent, iff for each range domain D,

solv(F1,D)
b≡ solv(F2, D).

Clearly range-equivalent propagators detect failure at the
same time for input range domains.

Proposition 2.22. Let F1 and F2 be two range-
equivalent sets of propagators. For any range domain D,
solv(F1,D) is a false domain, iff solv(F2,D) is a false
domain.

We will be interested in determining which sets of propa-
gators are range-equivalent.

Lemma 2.23. If c is a linear equation
∑n

i=1
aixi = d with

|ai| = 1, 1 ≤ i ≤ n, then {dom(c, xj)} and {bnd(c, xj)} are
bounds-preserving and range-equivalent.

Proof. Assume w.l.o.g. that aj = 1. Let [l .. u] =
bnd(c, xj)(D). By definition

l = d−
n
∑

i=1,i6=j

sup
D

(aixi)

u = d−
n
∑

i=1,i6=j

inf
D

(aixi)

We show that for each dj ∈ [l .. u] there is a solution θ ∈ D
of
∑n

i=1,i6=j
aixi = d − dj . This proves that dom(c, xj) is

bounds-preserving, and that dom(c, xj)(D) = bnd(c, xj)(D)
Clearly θ1 = {xi 7→ supD(aixi)} is a solution when dj = l,

and θ1 = {xi 7→ infD(aixi)} is a solution when dj = u by
their definition. Now

u− l = θ2(d−
n
∑

i=1,i6=j

aixi)− θ1(d−
n
∑

i=1,i6=j

aixi − d)

=
n
∑

i=1,i6=j

(sup
D

(aixi)− inf
D

(aixi))

Take l < dj < u then u − dj < u − l and hence there exist
ei ≤ supD(aixi)− infD(aixi) such that u−dj =

∑n

i=1,i6=j
ei

Now ei + infD(aixi) ∈ D(xi), since D(xi) is a range and
θ = {xi 7→ ei + infD(aixi)} is a solution of

∑n

i=1,i6=j
aixi =

d− dj by construction.

Clearly Examples 2.2 and 2.3 illustrate that the domain
and bounds propagators for linear integer equations with ar-
bitrary coefficients are not range-equivalent. Of more inter-
est is the fact that we can produce efficient range-equivalent
propagators for complex constraints like alldifferent.

Lemma 2.24. If c ≡ alldifferent([x1, . . . , xn]), then
the sets {dom(c, xi) | 1 ≤ i ≤ n} and {bnd(c, xi) | 1 ≤
i ≤ n} are range-equivalent.

Proof. See for example Puget [15].

Once we have established range-equivalence for primitive
constraints we can extend this to larger sets of constraints
using Theorem 2.26 below. There are some side conditions
about the interaction of variables that first require defini-
tion.

Definition 2.25. A variable x is bounds-only w.r.t a set
of propagators F , if each propagator f ∈ F for variable x is
bounds-only.

A set of propagators F is endpoint-relevant for variables

V , if for all domains D, if D1 = solv(F,D) and D2

b≡ D1

and D2 =V−V D1, then solv(F,D2)
b≡ D1.

Theorem 2.26. Let F1 and F2 be range-equivalent. Let
F ′

1 and F ′
2 be range-equivalent. Let F ′

1 and F ′
2 be endpoint-

relevant and bounds-only on variables V = vars(F1) ∪
vars(F2). Then F1 ∪ F ′

1 and F2 ∪ F ′
2 are range-equivalent.

Proof. We construct a series of bounds-equivalent do-
mains beginning from an arbitrary range domain D.

Define D0
1 = D, D0

2 = D and D0
3 = D. Define D2k+1

j =

solv(Fj ,D
2k
3), k ≥ 0, for j = 1, 2. Define Di

3 to be the range

domain such that Di
3

b≡ Di
1. Define D2k

j = solv(F ′
j ,D

2k−1
3),

k > 0, for j = 1, 2.

We show that Di
1

b≡ Di
2

b≡ Di
3, i ≥ 0. The base case is

trivial.

Now since F1 and F2 are range-equivalent, D2k+1
1

b≡
D2k+1

2 and clearly D2k+1
3

b≡ D2k+1
1 .

Similarly since F ′
1 and F ′

2 are range-equivalent the result
holds for i = 2k, k > 0.

We must finally reach an i such that Di+1
3 = Di

3. Let
D∗ = Di

3. Let Ej = solv(F ′
j , D

∗). Then Ej =V D∗ since
F ′

j is bounds-only on V and by the definition of D∗. Also

E1

b≡ E2 since F ′
1 and F ′

2 are range-equivalent. Let E′
j =

solv(Fj , Ej). Clearly E′
1

b≡ E′
2 since E1 =V D∗ =V E2 and

both F1 and F2 only depend on variables in V . And by the
definition of D∗, E′

j =V D∗.
In fact E′

j = solv(Fj ∪ F ′
j ,D). Since F ′

j is endpoint-
relevant and E′

j =V D∗ we have that solv(F ′
j , E

′
j) = E′

j .
Clearly E′

j is a fixpoint of λx.solv(Fj∪F ′
j , xuD), for j = 1, 2

and hence E′
j v solv(Fj ∪ F ′

j ,D). It remains to show that
solv(Fj ∪ F ′

j ,D) v E′
j .

We consider the case when j = 1, the case when j = 2
is identical. We now consider the sequence Di

5 defined as
follows: D0

5 = D, D2k+1
5 = solv(F1,D

2k
5), k ≥ 0, and D2k

5 =
solv(F ′

1,D
2k−1
5), k > 0. We show that Di

5 v Di
3, i ≥ 0.

The base case is obvious. Clearly D2k+1
5 = solv(F1,D

2k
5) v

solv(F1,D
2k
3) = D2k+1

1 since solv is monotonic. Now by
definition D2k+1

1 v D2k+1
3 , hence the induction hypothesis

holds. The same reasoning applies toD2k
5 andD2k

3 for k > 0.
Now there exists i s.t. Di

5 = solv(Fj ∪ F ′
j ,D) v Di

3 = D∗.
The final two steps follow from the definition of E ′

1.

Example 2.27. Consider two range-equivalent sets of
propagators for the constraint alldifferent([x1, x2, x3]),
one set, F1, based on domain propagation and the other,
F2, based on bounds propagation.

Let F ′
1 be domain propagators for x1 ≤ x3, 2x3 + x4 ≤

6, x2 + x5 ≤ 4, x4 = 2x5 − 1, and F ′
2 be domain propagators

for the same system. By Lemma 2.14 and Theorem 2.17
we have that F ′

1 and F ′
2 are bounds-equivalent and endpoint-

relevant. Clearly on the variables x1, x2 and x3 they are
bounds-only.

Consider the initial domain D(xi) = [1 .. 3] , 1 ≤ i ≤
5. Domain propagation of F ′

1 obtains D1
1(x1) = [1 .. 2],

D1
1(x2) = [1 .. 3], D1

1(x3) = [1 .. 2], D1
1(x4) = {1, 3}, and

D1
1(x5) = [1 .. 2]. Bounds propagation of F ′

2 obtains the

range domain D1
2 that is bounds-equivalent to D1

1. Note that
D1

1 ={x1,x2,x3} D
1
2.

Domain propagation on F1 then determines domain D2
1

which modifies D2
1(x2) = {3}. Similarly for F2 applies to

D1
2 obtaining D2

2.
Domain propagation of F ′

1 now obtains D3
1 which modifies

D3
1(x4) = {1} and D3

1(x5) = {1}. Similarly for F2 applies
to D2

2 obtaining D3
2. Now both fixpoints are reached and

D3
2 = D3

1.

Example 2.28. Consider the following well-known pro-
gram for SEND +MORE = MONEY .

smm(S,E,N,D,M,O,R,Y) :-
[S,E,N,D,M,O,R,Y] :: [0..9],
S >= 1, M >= 1,

1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y,
alldifferent([S,E,N,D,M,O,R,Y]),
labelling([S,E,N,D,M,O,R,Y]).

Assuming that bounds propagation is used for the linear
equations with more than 2 variables, then using either
bounds or domain propagation for alldifferent leads to
the same search space being traversed. The result holds us-
ing Lemma 2.24 and Theorem 2.26.

3. ANALYSING FD PROGRAMS
Now we are ready to devise a bottom-up analysis to dis-

cover weaker sets of propagators for a CLP(FD) program
that give equivalent search behaviour. We assume we are
given a pure CLP(FD) program and must choose for each
primitive constraint which set of propagators to use.

For simplicity, we only consider pure CLP(FD) programs
without data structures. We could extend the approach to
CLP(FD) programs with types defined by deterministic fi-
nite tree automata using the methodology of [9].

Analysis and “optimization” of the CLP(FD) program
proceeds in two phases.

Range and Endpoint In the first phase, a bottom-up
analysis determines which variables are guaranteed to
have a range domain, and which are guaranteed to only
appear in endpoint-relevant constraints.

Calling context In the next phase, we determine the call-
ing context (in terms of range and endpoint informa-
tion) for each literal, and replace it by the appropriate
propagation method.

We assume the reader is somewhat familiar with abstract
interpretation of CLP programs (see e.g. [5, 10]).

3.1 Range and Endpoint Descriptions
The first phase is a simple bottom-up abstract interpre-

tation where we determine which variables must have range
domains, and which variables are only involved in endpoint-
relevant constraints.

The bottom-up analysis determines for each user-defined
constraint p(x1, . . . , xn) two Boolean formulae1 describing

1For most of the primitive constraints we could simply re-
strict ourselves to conjunctions of positive literals (i.e. sets
of Boolean variables). We use the Boolean domain for gen-
erality.

Table 1: Range and endpoint descriptions for prim-

itive constraints.

Constraint αR αE

true true true
∑n

i=1
aixi ≤ d true true

x1 = d true true
a1x1 + a2x2 = d, |ai| = 1 x1 ↔ x2 true
a1x1 + a2x2 = d x1 ∧ x2 true
∑n

i=1
aixi = d, n > 22 ∧n

i=1xi ∧n
i=1xi

∑n

i=1
aixi = d, n > 2, |ai| = 1 ∧n

i=2(x1 ↔ xi) ∧n
i=1xi

∑n

i=1
aixi 6= d ∧n

i=1xi true
x1 = x2 × x3 ∧3

i=1xi ∧3
i=1xi

x1 = x2 × x2 ∧ x2 ≥ 0 x1 ∧ x2 true
x1 = x2 × x2 x1 ∧ x2 x1 ∧ x2

alldifferent([x1, . . . , xn]) ∧n
i=1xi ∧n

i=1xi

default([x1, . . . , xn]) ∧n
i=1xi ∧n

i=1xi

labelling([x1, . . . , xn]) true true
labellingff([x1, . . . , xn]) true ∧n

i=1xi

labellingmid([x1, . . . , xn]) ∧n
i=1xi ∧n

i=1xi

its (non-)range and (non-)endpoint behaviour. The intuition
is that the Boolean variable corresponding to a variable x is
true if the variable is not guaranteed to have a range domain
(resp. not guaranteed to appear in only endpoint-relevant
constraints).

Example 3.1. The (non-)range description of x1 ≤ x2 is
true since each of the variables appearing in it is guaranteed
to have a range domain. The (non-)range description of
x4 = 2x5−1 is x4∧x5 indicating that both x4 and x5 may not
have range domains. Its (non-)endpoint description is true
indicating that x4 and x5 only appear in endpoint-relevant
constraints.

Definition 3.2. The abstract domain A for both descrip-
tions used is a simple (inverted) domain of Boolean formulae
defined as follows:

φ1 vA φ2 iff φ2 → φ1. ⊥A = true, >A = false.
φ1 uA φ2 = φ1 ∨ φ2. φ1 tA φ2 = φ1 ∧ φ2.

Definition 3.3. The meaning of a range description φ is
defined by the concretization function γR:

γR(φ) = {C | ∀x s.t. (∀xφ) ↔ (∃xφ), ∀c ∈ C,
dom(c, x) is bounds-only}

The condition (∀xφ) ↔ (∃xφ) holds whenever φ does not
constrain x in any way.

The meaning of a Endpoint description φ is defined by the
concretization function γE :

γE(ψ) = { C |∀x s.t. (∀xφ) ↔ (∃xφ),∀c ∈ C, x ∈ vars(c),
{dom(c, y) | y ∈ vars(c)} is endpoint-relevant}

We can define the approximation function α for the range
and endpoint descriptions for each primitive constraint as
in Table 1. Here we treat labelling goals, which drive
the search for solution, as primitive constraints since their
implementation involves data-structure manipulation.

2We often apriori choose bounds propagation for these con-
straints in which case the description is (true, true).

Note that the only interesting Boolean formulae arise from
range descriptions for linear equations with unit coefficients,
since these constraints are bounds-preserving.

We can lift the analysis to conjunctions of constraints sim-
ply by conjoining the descriptions, so abstract conjunction
is defined as AconjR = AconjE = ∧. We can similarly (in-
accurately) handle disjunctions by conjunction so abstract
disjunction is defined as AdisjR = AdisjE = ∧. Projection of
descriptions onto a set of variables V is Boolean existential
quantification, AprojR(V, φ) = AprojE(V, φ) = ∃(V − V)φ.

For recursive programs we can find the least fixpoint in
the usual manner (see e.g. [10]). Note that since there are no
infinite ascending chains this process is finite. We can alter-
natively (and this is the approach taken in the implementa-
tion) use a constraint based fixpoint rule (as in Hindley-
Milner type inference, see e.g. [3]) which simply ensures
that recursive calls have the same descriptions as the head.
This is more inaccurate but sound. We assume a function
analyseR(G) for analysing a goal G using abstract domain A
(one of R or E). Hence analyseR(G) and analyseE(G) return
the range and endpoint descriptions for a goal G.

Example 3.4. Consider the following program:

g(x1, x2, x3, x4, x5) :- x5 6= 6, p(x1, x2, x3, x4, x5).
g(x1, x2, x3, x4, x5) :- x4 6= 3.
p(x1, x2, x3, x4, x5) :- alldifferent([x1, x2, x3]),

q(x1, x2, x3, x4, x5).
q(x1, x2, x3, x4, x5) :- x1 ≤ x6, x6 ≤ x2, 2x3 + x4 ≤ 6,

x2 + x5 ≤ 4, x4 = 2x5 − 1.

The (range,endpoint) answer descriptions for each literal of
the program is shown in the table below:

x1 ≤ x6 (true, true)
x6 ≤ x2 (true, true)
2x3 + x4 ≤ 6 (true, true)
x2 + x5 ≤ 4 (true, true)
x4 = 2x5 − 1 (x4 ∧ x5, true)
x4 6= 3 (x4, true)
x5 6= 6 (x5, true)
q(x1, x2, x3, x4, x5) (x4 ∧ x5, true)
alldifferent([x1 , x2, x3]) (x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3)
p(x1, x2, x3, x4, x5) (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5,

x1 ∧ x2 ∧ x3)
g(x1, x2, x3, x4, x5) (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5,

x1 ∧ x2 ∧ x3)

3.2 Determining Calling Contexts
Unlike many analysis-based optimizations, here we need

to understand for each primitive constraint, the effect of the
remainder of the program on the variables that it involves.
This is crucially important in determining whether domain
propagation for the constraint will be different to bounds
propagation. Even if a constraint can cause holes in the
domain of its variables this may be unimportant, if there
are no other constraints involving these variables that act
differently if holes are present.

Given a primitive constraint and a description of the
Range and Endpoint information from the other constraints
upon its variables, we can determine when it is safe to use
the bounds propagators for the constraint. Table 2 gives
the weakest allowable description for each component that

Table 2: Weakest possible descriptions to allow the

use of bounds propagators.

Constraint φR φE Lemma
∑n

i=1
aixi ≤ d false false 2.10

∑n

i=1
aixi 6= d false true 2.13

a1x1 + a2x2 = d false true 2.14
∑n

i=1
aixi = d, n > 2, |ai| = 1 true true 2.23

x1 = x2 × x2 ∧ x2 ≥ 0 false true 2.15
alldifferent([x1, . . . , xn]) true true 2.24
labellingff([x1, . . . , xn]) true true —

allows the bounds propagators to be used.3 Each of these
optimizations is justified by a lemma. The exception is
labellingff, which we can replace by a version which uses
the calculation supD x − infD x rather than |D(x)| to de-
termine the variable with the smallest domain, if all the
variables involved are guaranteed to have range domains.

The calling contexts for each literal in the program are de-
termined using a top-down analysis starting from an initial
entry point, say main. We can mimic multiple entry points
G1 to Gn by simply defining main as

main :- G1. . . . main :- Gn.

The analysis starts from the calling pattern main :
(true,true).

Given we are processing a calling pattern p(x1, . . . , xn) :
(CPR, CPE), we process each rule of the form

p(x1, . . . , xn) :- A1, . . . , Am

by determining the calling context for each literal Ai as the
conjunction of the analysis answers for Aj , 1 ≤ i 6= j ≤ m
with the calling description CP . The algorithm is formalized
in Figure 2. Initially it is called with an empty table of
previous optimizations (Table).

Example 3.5. Returning to the program of Example 3.4
and assuming an entry point g(x1, x2, x3, x4, x5), transfor-
mation determines calling contexts (ignoring inequalities):

g(x1, x2, x3, x4, x5) : (true, true)
p(x1, x2, x3, x4, x5) : (x5, true)
alldifferent([x1 , x2, x3]) : (true, true)

q(x1, x2, x3, x4, x5) :
(x1 ∧ x2 ∧ x3 ∧ x5,
x1 ∧ x2 ∧ x3)

x5 6= 6 : (x5, true)
x4 6= 3 : (true, true)
x4 = 2x5 − 1 : (x5, true)

Hence we replace the alldifferent constraint and the con-
straints x4 6= 3 and x4 = 2x5−1 by their bounds propagation
versions. The program output by the transformation is

g(x1, x2, x3, x4, x5) :- bnd(x5 6= 6), p(x1, x2, x3, x4, x5).
g(x1, x2, x3, x4, x5) :- bnd(x4 6= 3).
p(x1, x2, x3, x4, x5) :- bnd(alldifferent([x1, x2, x3])),

q(x1, x2, x3, x4, x5).
q(x1, x2, x3, x4, x5) :- bnd(x1 ≤ x6), bnd(x6 ≤ x2),

bnd(2x3 + x4 ≤ 6),
bnd(x2 + x5 ≤ 4),
bnd(x4 = 2x5 − 1).

3So false allows any description, while true requires that the
description is exactly true.

transform(L : (CPR, CPE), Table)
case L of

primitive constraint or labelling literal c:
if (CPR, CPE) satisfies conditions in Table 2

return bnd(c)
else return dom(c)

atom p(y1, . . . , yn):
if ∃L′ : (CP ′

R, CP
′
E) 7→ L′′ ∈ Table and renaming ρ such that ρ(L′ : (CP ′

R, CP
′
E)) = L : (CPR, CPE)

return ρ(L′′)
let p′ be a new predicate symbol not in Table
Table := Table ∪ {p(y1, . . . , yn) : (CPR, CPE) 7→ p′(y1, . . . , yn)}
foreach rule p(x1, . . . , xn) :- A1, . . . , Am

let ρ be the renaming {xi 7→ yi}
G := true
for i = m..1

CP ′
R := AprojR(vars(Ai), ρ(CPR) ∧∧{analyseR(Aj) | 1 ≤ j 6= i ≤ m})

CP ′
E := AprojE(vars(Ai), ρ(CPE) ∧∧{analyseE(Aj) | 1 ≤ j 6= i ≤ m})

Oi := transform(Ai : (CP ′
R, CP

′
E), Table)

G := (Oi, G)
output p′(x1, . . . , xn) :- G

return p′(y1, . . . , yn)

Figure 2: Algorithm for transforming calling pattern L : (CPR, CPE) given previous optimizations in Table.

Note that the optimization is multi-variant, that is it can
produce multiple specialized versions of the same predicate.
The result of the transformation is a new program with the
same search space.

Theorem 3.6. If P is a CLP(FD) program and P ′ is
the program output for transform(L : (true, true),∅) then the
search space explored executing goal L using P and P ′ is the
same.

Proof. (Sketch) The replacements made in P ′ are indi-
vidually justified by the Lemmas shown in Table 2 and The-
orems 2.17 and 2.26. This ensures that during execution
of the programs each conjunction of propagators collected
on an execution path is range-equivalent. Using Proposi-
tion 2.22, the propagators on identical paths detect failure
at the same time.

One has to be quite careful to go beyond the transforma-
tions allowed here, because interaction of propagators can
be subtle.

Example 3.7. Consider the goal

alldifferent([x1, x2, x3, x4, x5, x6]),
x6 = x1 + 3, x4 = x1 + 3.

Since the equations are bounds-preserving we might assume
that the alldifferent bounds and domain propagators will
be equivalent. This is not the case. Consider the domain
D(x1) = D(x3) = [1 .. 3], D(x2) = {2}, D(x4) = D(x5) =
D(x6) = [4 .. 6] then domain propagation and bounds prop-
agation are not the same. E.g. alldifferent domain
propagator gives D(x1) = D(x3) = {1, 3}, D(x2) = {2},
D(x4) = D(x5) = D(x6) = [4 .. 6] but then domain prop-
agation on the equalities gives D(x4) = D(x6) = {4, 6},
Subsequently, the alldifferent domain propagator gives
D(x5) = {5}. The alldifferent bounds propagator gives
D(x1) = D(x3) = [1 .. 3], D(x2) = {2}, D(x4) = D(x5) =
D(x6) = [4 .. 6] and there is no further propagation. The
results are not bounds-equal.

There are a number of obvious ways to improve this anal-
ysis. We can eliminate (non-)range information about vari-
ables with initial domain of the form [l .. l + 1] (most no-
tably Boolean variables [0 .. 1]) since they always have range
domains. We can use a preliminary groundness analysis to
determine which variables will always be fixed, and then use
this information to treat constraints in simpler forms, e.g.
the constraint x1 = x2×x3 becomes a two variable equation,
if x2 is always fixed by the time the constraint is reached.

3.3 Experimental Evaluation
We have constructed a prototype analyser and trans-

former for pure CLP(FD) programs. Here we give prelimi-
nary experiments to illustrate the effect of the transforma-
tion.

We illustrate the effect of the transformation on three
classes of benchmarks. The first class include NP-hard graph
problems and multi-knapsack problems with unit values.
The graph examples (for example, see [6]) are vertex cover
(vc-*) and independent sets (is-*) modeled in the natural
way using Boolean variables indicating which vertices are
in the selected set. The graphs used are random graphs of
20 and 40 nodes. The constraints are all inequalities ex-
cept the objective function which is defined using a large
linear equation with unit coefficients. The multi-knapsack
problems (mk-*) are similar and use integer variables for
the number of selected items. The multiple resource re-
strictions are expressed by linear inequality constraints, the
objective function is again a linear equality involving all vari-
ables with unit coefficients. Both instances are based on the
data set given in [18, Section 2.1.8]. Analysis shows that we
can replace domain propagation on the linear equation with
bounds propagation without affecting search space.

The second class includes well-known examples smm

(see Example 2.28), donald (DONALD + GERALD =
ROBERT), magic squares magic-5 and Golomb ruler prob-
lems (golomb-*). Here we assume bounds propagation is
used on linear equations of more than three variables. Anal-

Table 3: Comparison of executions for original and transformed versions of the programs

Original Transformed
Program Nodes DomChg Exec Time Nodes DomChg Exec Time Search
vc-20 126 767 490 25.6 = = = −73% best
vc-40 6 340 83 292 24 616 4 213.8 = = = −88% best
is-20 94 271 194 21.8 = = = −78% best
is-40 1 542 9 240 3 477 958.8 = = = −89% best
mk-1 135 582 1 650 536 1 584 948 25 988.3 = = = −55% best
mk-2 865 164 13 290 127 9 240 208 133 945.0 = = = −54% best
smm 5 33 26 0.6 = = = −36% all
donald 9 232 22 605 34 910 930.8 = −13% +16% −38% all
magic-5 6 822 95 841 111 208 1 413.8 = +19% +21% −40% first
golomb-8 6 490 254 881 294 816 2 392.1 = −4% +3% −34% best
golomb-9 34 910 1 861 679 2 146 317 18 522.1 = −7% −0% −32% best
golomb-10 191 050 13 721 156 15 747 604 152 272.0 = −8% −2% −32% best
sched-bridge 62 3 942 11 973 22.1 = +0% −0% +36% best
sched-orb06 57 108 2 970 070 6 048 079 59 105.0 = −5% −1% +39% best
sched-orb09 5 648 307 798 623 801 6 436.7 = −5% −1% +36% best
sched-la18 19 174 386 236 898 941 11 167.5 = −5% −1% +34% best
sched-mt10 43 628 3 023 368 6 107 837 49 502.1 = −7% −2% +39% best

ysis shows we can use bounds propagation on the single
alldifferent constraint in each benchmark without affect-
ing search space.

The third class of examples are scheduling examples: in-
cluding the well-known bridge scheduling example [4], the
remainder are job-shop scheduling examples taken from J.E.
Beasley’s OR Library [2]. Here analysis shows that the
cumulativeEF constraint (using a generalization of edge-
finding [12]) appearing in the benchmarks only requires
bounds propagation.

All but the multi-knapsack and the scheduling bench-
marks use default labelling labelling. The labelling for the
multi-knapsack problems split the domains of variables ac-
cording to the arithmetic mean of infimum and supremum of
a variable (and thus are very close to the default labelling).
The scheduling benchmarks use a labelling strategy similar
to that mentioned in [1] (the labelling strategy considers and
contributes bounds information only and hence is equivalent
to labelling for the purposes of the analysis).

Table 3 gives results for executing each benchmark to find
either all solutions (all in column Search), the first solution
(first), or a best solution (best). The table contains the
number of searched nodes, the number of times the domain
of a variable was changed (DomChg), the number of times
a propagator was executed (Exec), and the runtime (wall-
time) in milliseconds. The numbers for the transformed pro-
grams are given relative to the numbers of the original pro-
grams, a negative percentage means that the transformed
program shows an improvement of that percentage. For ex-
ample, a time-value of −50% means that the transformed
program is twice as fast. A positive percentage is analo-
gous.

All numbers have been taken with the Mozart (version
1.2.0) implementation of Oz [14] on a standard personal
computer with a 700 MHz Athlon processor, 256 MB of
main memory, and RedHat Linux 7.1 as operating system.
All runtimes are the arithmetic mean of 25 runs.

In order to do the tests we needed to add bounds propaga-
tion versions of alldifferent and cumulativeEF to Mozart.
We used the naive O(n2) algorithm described in [15] for

alldifferent. We mimicked a range-equivalent version of
cumulativeEF by using the domain propagation version on a
new copy (x′1, . . . , x

′
n) of the original variables (x1, . . . , xn),

and connecting these to the original variables through in-
equalities xi ≥ x′i and x′i ≥ xi.

The results show substantial improvement in execution
time for the first class of benchmarks illustrating the expense
of domain propagation on large equations. The number of
nodes explored in each case is identical (illustrating Theo-
rem 3.6 in action) for this and all benchmarks. Moreover the
domains in this case are always identical (not just bounds-
equal) as illustrated by the number of domain changes and
executions.

The results for the second set of benchmarks show a mod-
erate speedup. This is due to the fact that our bounds
version of alldifferent is only a prototype compared to
the mature (already provided) domain version. It can be
expected that with a state-of-the-art implementation of a
bounds propagation version of alldifferent (either the
O(n logn) algorithm of [15], or the linear algorithm of [13]),
the improvement in runtime will be considerably better.
Note that the number of domain changes reduces for the
larger benchmarks (golomb-*) indicating useless (in terms
of search space) removal of internal values. Interestingly the
number of constraint executions can be greater for bounds
propagation since it may require a number of executions to
determine the same information as the domain version.

For the third class of benchmarks, we obviously expect a
slow down since we are mimicking a range-equivalent bounds
propagation version of cumulativeEF using the domain ver-
sion. However, bounds propagation requires less variable
modifications as well as less constraint executions. This
suite shows that it is worth investigating bounds propagators
for cumulativeEF which are range-equivalent to the current
domain version.

4. CONCLUSION
We have examined the propagation behaviour of domain

and bounds propagators for common primitive constraints,
and discovered cases where they will determine failure at

the same time. By constructing theorems about how con-
junctions of propagators can be built which maintain this
property we are able to prove when domain and bounds
propagation for a constraint system will give the same be-
haviour. We devised an analysis to determine where we can
safely replace domain propagation by bounds propagation
in a CLP(FD) program. We have illustrated a number of
real programs where the analysis is able to determine weaker
forms of propagators with equivalent search behaviour, and
gave some evidence for the improvements possible.

There is plenty more scope for understanding when one
form of propagator is equivalent in strength to another. We
should characterise the many global constraints available
like alldifferent and cumulativeEF in terms of their prop-
agation behaviour, and extend the analysis to handle them.
The most important use of this information is probably in
building more efficient versions of global constraints and rec-
ognizing where they can be used safely without increasing
search space. There is also scope for finding weaker con-
ditions that maintain bounds-equality of domains for con-
straints.

Other kinds of propagation are also worth considering
such as value propagation or propagators for stronger no-
tions of consistency like path consistency.

There is further scope for improving the propagators pro-
duced by the transformation. For example, consider the
constraints

x1 + x2 + x3 ≤ 3, x3 + x4 6= 2, alldifferent([x4, x5, x6])

We can safely use the bounds propagator bnd(x3 + x4 6=
2, x3) for one variable in the disequality while using the do-
main propagator dom(x3+x4 6= 2, x4) for the other variable.

Acknowledgements
We are grateful to Tobias Müller for support with mimicking
bounds-propagation. We also thank the anonymous referees
for their suggestions which undoubtedly improved the paper.

5. REFERENCES
[1] P. Baptiste, C. Le Pape, and W. Nuijten.

Incorporating efficient operations research algorithms
in constraint-based scheduling. In First International
Joint Workshop on Artificial Intelligence and
Operations Research, 1995.

[2] J. E. Beasley. OR library.
http://www.ms.ic.ac.uk/info.html.

[3] B. Demoen, M. Garćıa de la Banda, and P. J. Stuckey.
Type constraint solving for parametric and ad-hoc
polymorphism. In J. Edwards, editor, Proceedings of
the 22nd Australian Computer Science Conference,
pages 217–228. Springer-Verlag, January 1999.

[4] M. Dincbas, H. Simonis, and P. Van Hentenryck.
Solving Large Combinatorial Problems in Logic
Programming. The Journal of Logic Programming,
8(1-2):74–94, Jan.-Mar. 1990.

[5] M. Garćıa de la Banda, M. Hermenegildo,
M. Bruynooghe, V. Dumortier, G. Janssens, and
W. Simoens. Analysis of constraint logic programs.
ACM Transactions on Programming Languages and
Systems, 18(5):564–614, 1996.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability. W. H. Freeman And Company, New
York, NY, USA, 1979.

[7] W. Harvey and P. J. Stuckey. Constraint
representation for propagation. In M. Maher and J.-F.
Puget, editors, Proceedings of the Fourth International
Conference on Principles and Practice of Constraint
Programming, volume 1520 of Lecture Notes in
Computer Science, pages 235–249. Springer-Verlag,
Oct. 1998.

[8] A. D. Kelly, K. Marriott, A. Macdonald, P. J. Stuckey,
and R. Yap. Optimizing compilation for CLP(R).
ACM Transactions on Programming Languages and
Systems, 20(6):1223–1250, 1998.

[9] V. Lagoon and P. J. Stuckey. A framework for analysis
of typed logic programs. In Proceedings of the Fifth
International Symposium on Functional and Logic
Programming, volume 2024 of Lecture Notes in
Computer Science, pages 296–310. Springer-Verlag,
2001.

[10] K. Marriott and H. Søndergaard. Analysis of
constraint logic programs. In S. Debray and
M. Hermengildo, editors, Logic Programming:
Proceedings of the 1990 North American Conference,
pages 531–547, Austin, TX, USA, October 1990. The
MIT Press.

[11] K. Marriott and P. J. Stuckey. Programming with
Constraints: an Introduction. The MIT Press, 1998.

[12] P. Martin and D. B. Shmoys. A new approach to
computing optimal schedules for the job-shop
scheduling problem. In W. H. Cunningham, S. T.
McCormick, and M. Queyranne, editors, Integer
Programming and Combinatorial Optimization, 5th
International IPCO Conference, volume 1084 of
Lecture Notes in Computer Science, pages 389–403,
Vancouver, BC, Canada, June 1996. Springer-Verlag.

[13] K. Mehlhorn and S. Thiel. Faster algorithms for
bound-consistency of the sortedness and the
alldifferent constraint. In R. Dechter, editor,
Proceedings of the Sixth International Conference on
Principles and Practice of Constraint Programming,
volume 1894 of Lecture Notes in Computer Science,
pages 306–319, Singapore, Sept. 2000. Springer-Verlag.

[14] Mozart Consortium. The Mozart programming
system, 1999. Available from www.mozart-oz.org.

[15] J.-F. Puget. A fast algorithm for the bound
consistency of alldiff constraints. In Proceedings of the
15th National Conference on Artificial Intelligence
(AAAI-98), pages 359–366, Madison, WI, USA, July
1998. AAAI Press/The MIT Press.

[16] J.-C. Régin. A filtering algorithm for constraints of
difference in CSPs. In Proceedings of the Twelth
National Conference on Artificial Intelligence,
volume 1, pages 362–367, Seattle, WA, USA, 1994.
AAAI Press.

[17] P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. The MIT Press, 1989.

[18] P. Van Hentenryck. The OPL Optimization
Programming Language. The MIT Press, Cambridge,
MA, USA, 1999.

