
DOMAIN-INDEPENDENT LOCAL SEARCH

for LINEAR INTEGER OPTIMIZATION

JOACHIM PAUL WALSER

DISSERTATION

ZUR ERLANGUNG DES GRADES

DOKTOR DER INGENIEURWISSENSCHAFTEN

DER TECHNISCHEN FAKULTÄT

DER UNIVERSITÄT DES SAARLANDES

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

SAARBÜCKEN, OCTOBER 1998

Copyright c
�

October 1998, JOACHIM PAUL WALSER

Programming Systems Lab
Universität des Saarlandes, 66041 Saarbrücken, Germany����� ���
	������������� �����������
� ��� �!#"�" �$���%����&������� �'�(������� "*)+�,�-� �.�/	

This document was prepared with LaTeX.

PRÜFUNGSAUSSCHUSS / EXAMINING COMMITTEE:

Erstgutachter: PROF. DR. GERT SMOLKA

Zweitgutachter: DR. HENRY KAUTZ, AT&T SHANNON LABS

Vorsitzender: PROF. DR. JÖRG SIEKMANN

Dekan: PROF. DR. WOLFGANG PAUL

Tag des Kolloquiums: 26. OKTOBER 1998

Abstract

Integer and combinatorial optimization problems constitute a major challenge for
algorithmics. They arise when a large number of discrete organizational decisions
have to be made, subject to constraints and optimization criteria.

This thesis describes and investigates new domain-independent local search
strategies for linear integer optimization. We introduce WSAT(OIP), an inte-
ger local search method which operates on an algebraic problem representation.
WSAT(OIP) generalizes Walksat, a successful local search procedure for proposi-
tional satisfiability (SAT), to more expressive constraint systems.

For this purpose, we introduce over-constrained integer programs (OIPs), a
constraint class which is closely related to integer programs. OIP allows for a nat-
ural generalization of the principles of SAT local search to integer optimization.
Further, it will be shown that OIPs are a special case of integer linear programs
and permit combinations with linear programming for bound computation, ini-
tialization by rounding, search space reduction, and feasibility testing. The repre-
sentation is similar enough to integer programs to make use of existing algebraic
modeling languages as front-end to a local search solver. To improve performance
on realistic problems, WSAT(OIP) incorporates strategies from Tabu Search.

We experimentally investigate WSAT(OIP) for a variety of realisic integer op-
timization problems from the domains of time tabling, sports scheduling, radar
surveillance, course assignment, and capacitated production planning. The ex-
perimental design examines efficiency, scaling (with increasing problem size and
constrainedness), and robustness. The results demonstrate that integer local search
can outperform or compete with state-of-the-art integer programming (IP) branch-
and-bound and constraint programming (CP) approaches to these problems in
finding near-optimal solutions.

Key findings of our empirical study include that integer local search is able to
solve difficult constraint problems from time-tabling and sports scheduling when
cast into a 0-1 representation, which are beyond the scope of IP branch-and-bound
strategies and for which devising robust constraint programs is a non-trivial task.

For several realistic optimization problems (0-1 integer and finite domain) we
show that integer local search exhibits graceful runtime scaling with increasing
problem size and constrainedness. It can therefore significantly outperform IP
branch-and-bound strategies on large or tightly constrained problems in finding
near-optimal solutions. The problems under consideration are mostly beyond the
limitations of a previous general-purpose simulated annealing strategy for 0-1 in-
teger programs.

Zusammenfassung

Ganzzahlige und kombinatorische Optimierungsprobleme stellen eine schwierige
Herausforderung im Gebiet der Algorithmen dar. Sie treten auf, wenn eine große
Anzahl diskreter organisatorischer Entscheidungen unter Berücksichtigung von
Constraints und Optimierungskriterien zu treffen sind.

Diese Arbeit beschreibt und untersucht neue, domänenunabhängige Strategi-
en der lokalen Suche zur ganzzahligen linearen Optimierung. Wir beschreiben
WSAT(OIP), eine Strategie “ganzzahliger lokaler Suche”, die auf einer algebrai-
schen Problemrepräsentation operiert. WSAT(OIP) verallgemeinert Walksat, eine
erfolgreiche Prozedur lokaler Suche für das Erfüllbarkeitsproblem der Aussagen-
logik (SAT), auf ausdrucksstärkere Constraint-Systeme.

Für diesen Zweck führen wir die Klasse der “Over-constrained Integer Pro-
grams” (OIPs) ein, eine Constraint-Klasse, die eng mit ganzzahligen Program-
men verwandt ist. OIPs erlauben einerseits eine natürliche Verallgemeinerung der
Prinzipien von lokaler Suche für SAT. Andererseits sind sie ein Spezialfall der
ganzzahligen linearen Programme und ermöglichen die Kombination mit linearer
Programmierung zur Berechnung von Schranken, Initialisierung durch Rundung,
Suchraum-Reduktion und für Gültigkeits-Tests. OIPs sind ganzzahligen Program-
men ähnlich, so daß existierende algebraische Modellierungssprachen als Einga-
beschnittstelle für einen Problemlöser benutzt werden können, der auf lokaler Su-
che basiert. Um die Performanz auf realistischen Problemen zu verbessern, ist
WSAT(OIP) mit Strategien der Tabu-Suche ausgestattet.

Wir führen eine experimentelle Untersuchung von WSAT(OIP) auf einer Rei-
he von realistischen ganzzahligen Constraint- und Optimierungsproblemen durch.
Die Probleme stammen aus den Domänen Zeitplan-Erstellung, Sport-Ablaufpla-
nung, Radar-Überwachung, Kurs-Zuteilung und Produktions-Planung. Das expe-
rimentelle Design untersucht Effizienz, Skalierung mit zunehmender Problem-
größe und stärkeren Constraints sowie Robustheit. Die Ergebnisse zeigen, daß
ganzzahlige lokale Suche bezüglich Performanz auf diesen Problemklassen zeit-
gemäße Ansätze der ganzzahligen Programmierung und der Constraint-Program-
mierung beim Finden nahe-optimaler Lösungen schlägt oder mit ihnen konkur-
riert.

Kernergebnisse der empirischen Untersuchung sind, daß ganzzahlige lokale
Suche in der Lage ist, schwierige Constraint-Probleme der Zeitplan-Erstellung
und Sport-Ablaufplanung in einer 0-1 Repräsentation zu lösen, die außerhalb der
Grenzen der ganzzahligen linearen Programmierung liegen, und für die die Ent-
wicklung eines robustes Constraint-Programms eine nicht-triviale Aufgabe dar-
stellt.

i

Für mehrere realistische Optimierungsprobleme (ganzzahlig 0-1 und endliche Be-
reiche) zeigen wir, daß ganzzahlige lokale Suche eine günstige Skalierung der
Laufzeit mit zunehmender Problemgröße und Constrainedness aufweist. Dadurch
zeigt das Verfahren auf großen Problemen und auf Problemen mit starken Cons-
traints deutlich bessere Performanz für das Finden nahe-optimaler Lösungen als
die Branch-and-Bound Strategie der ganzzahligen Programmierung. Die unter-
suchten Probleme liegen zumeist außerhalb der Grenzen einer existierenden Si-
mulated Annealing Strategie für allgemeine lineare 0-1 Programme.

ii

Kurzzusammenfassung

Ganzzahlige und kombinatorische Optimierungsprobleme stellen eine schwieri-
ge Herausforderung im Gebiet der Algorithmen dar. Diese Arbeit beschreibt und
untersucht neue, domänenunabhängige Strategien der lokalen Suche zur ganzzah-
ligen linearen Optimierung. Wir beschreiben WSAT(OIP), eine Strategie “ganz-
zahliger lokaler Suche”, die auf einer algebraischen Problemrepräsentation ope-
riert. WSAT(OIP) verallgemeinert Walksat, eine erfolgreiche Prozedur lokaler Su-
che für das Erfüllbarkeitsproblem der Aussagenlogik. Wir führen eine experimen-
telle Untersuchung von WSAT(OIP) auf realistischen, ganzzahligen Constraint-
und Optimierungsproblemen durch (Zeitplanung, Sport-Ablaufplanung, Radar-
Überwachung, Kurszuteilung und Produktionsplanung). Die empirischen Ergeb-
nisse zeigen, daß ganzzahlige lokale Suche auf diesen Problemklassen bezüglich
Effizienz und Skalierung (zunehmende Problemgröße und stärkere Constraints)
zeitgemäße Ansätze der ganzzahligen Programmierung (branch-and-bound) und
der Constraint-Programmierung im Finden nahe-optimaler Lösungen schlägt oder
mit ihnen konkurrieren kann.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor, Gert Smolka, for
his support, guidance and advice during the course of this research. With him, I
believe I have learned that striving for simplicity is one of the sharpest tools to
improve understanding.

I am indebted to Jimi Crawford for much support and encouragement over
the years. Jimi has had a profound influence on my research orientation since
getting me in touch with local search in 1995 at CIRL in Oregon. Again thanks
for inviting me to an exciting research stay at i2 Technologies and for making it
possible to connect this research to manufacturing planning problems.

I am grateful to Henry Kautz for the inspiring work of his group at AT&T
Labs, which provided the starting point for this work. It is no exaggeration to say
that without his and Bart Selman’s work on local search, this thesis wouldn’t ex-
ist. Again thanks for accepting to join my examining committee and for valuable
feedback on a thesis draft.

Several colleagues have contributed to this research through discussions, and
I owe them sincere thanks: Martin Henz, whose sharp observations and ques-
tions pushed me forward through all phases of this work. Martin Müller, who has
helped me to sort out many theoretical issues. Andrew Parkes who has shaped my
understanding of local search. Joachim Niehren and Christian Schulte who often
helped me to gain perspective. Martin Henz, Martin Müller, Tobias Müller, and
Joachim Niehren have provided valuable feedback on draft chapters of this thesis.

Thanks to Seif Haridi and Per Brand at SICS for providing the right application
problem at the right time and thereby sparking initial ideas for this work. Seif and
Per also encouraged me when the early algorithms failed and contributed through
many discussions. Again thanks to Seif for inviting me to a pleasant stay at SICS.

Many thanks to Alexander Bockmayr and Thomas Kasper at MPI for valuable
feedback on integer local search and for pointers to the optimization literature.
At i2 Technologies, I have greatly benefitted from discussions with people from
the optimization teams, particularly Mukesh Dalal, Ramesh Iyer, and Narayan
Venkatasubramanyan. I thank my co-authors, Ramesh and Narayan, for gener-
ously allowing me to include material from a joint publication. I am grateful to
Ravi Gujar, i2 and an i2 client from the process industry for the persistence to
make publication of the production planning study possible.

iv

I have enjoyed working with all the members of the Programming Systems
Lab, especially Martin Henz, Martin Müller, Tobias Müller, Joachim Niehren,
Christian Schulte, and Jörg Würtz. Thanks to all of you for introducing me to the
fascinating world of Oz and for providing a pleasant work environment. Special
thanks to Ralf Scheidhauer and Michael Mehl for their expertise and patience with
system-related questions.

I would further like to thank: Mike Trick and George Nemhauser for shar-
ing the ACC problem requirements at an early stage, and for encouraging feed-
back. Again thanks to Mike for valuable comments on a draft of the ACC chap-
ter. Thanks to David Abramson and Marcus Randall for providing the GPSIMAN

solver of David Connolly, and for valuable hints on its parameters and a search
space reduction technique. Thanks to Mats Carlsson, Per Kreuger and Antonio
Krüger for helpful discussions, and to David M. Gay for tips on AMPL.

I am deeply grateful to my parents, Irene and Peter, for their love and support in
good times and bad. And to Christine, for her wise advice and for all the love we
share.

This research was supported by a doctoral scholarship of the Deutsche Forschungs-
gemeinschaft (DFG, German Science Foundation) within the Graduiertenkolleg
Kognitionswissenschaft, Saarbrücken. Many thanks to the DFG for establishing
this excellent program. I would also like to acknowledge the American Associa-
tion for Artificial Intelligence for providing three scholarships to participate in the
AAAI conference.

The work in this dissertation was carried out in the computer science depart-
ment of the Universität des Saarlandes at Programming Systems Lab between
November 1995 and August 1998, during an internship as a member of the op-
timization team of i2 Technologies in Summer 1997, and during short visits at
the Computational Intelligence Research Lab, Oregon (1996) and the Swedish In-
stitue for Computer Science (1998).

v

To my mother, Irene

Contents

1 Introduction 1
1.1 Integer Optimization and Heuristics 2
1.2 Integer Local Search . 6
1.3 Experimental Results . 8
1.4 Contributions . 11
1.5 Thesis Overview . 12

2 Frameworks for Combinatorial Optimization 13
2.1 Integer Programming Branch-and-bound 13
2.2 Finite Domain Constraint Programming 15
2.3 Local Search . 17
2.4 Modeling Languages . 22
2.5 Search Relaxations and Integer Local Search 23

3 Local Search for Integer Constraints 25
3.1 Over-constrained Integer Programs 26

3.1.1 Definition . 28
3.1.2 Relation to Integer Linear Programs 29
3.1.3 Constraint-Bounds . 32

3.2 Integer Local Search: WSAT(OIP) 32
3.2.1 The Score . 34
3.2.2 The Main Loop . 35
3.2.3 Move Selection and Tabu Search Extensions 35

3.3 Combinations with Linear Programming 38
3.3.1 Bounds from LP Relaxations 38
3.3.2 Initialization by Rounding LP Solutions 39
3.3.3 Search Space Reduction using LP Reduced Costs 42
3.3.4 Implementation Issues 43

3.4 A Graphical Interpretation . 44
3.5 Related Work . 49

3.5.1 Integer Programming Heuristics 49
3.5.2 Local Search in Constraint Satisfaction 52

vii

4 Case Studies Methodology 54
4.1 Optimization in Practice: Criteria of Success 55

4.1.1 Scaling with Increasing Problem Size 56
4.1.2 Scaling with Increasing Constrainedness 56
4.1.3 Flexibility and Residual Robustness 57

4.2 The Problem Class Selection . 57
4.3 The Empirical Comparisons . 58

5 Time-tabling and Sports Scheduling 60
5.1 The Progressive Party Problem 60

5.1.1 Problem Description and Formulation 61
5.1.2 Experimental Results and Comparison 63

5.2 The ACC Basketball Scheduling Problem 66
5.2.1 Double Round Robin Scheduling 67
5.2.2 Problem Specification of ACC97/98 68
5.2.3 Integer Local Search Formulation 70
5.2.4 Redundant Constraints 74
5.2.5 Previous (Multi-Stage) Approaches 74
5.2.6 Experimental Results under Varied Constrainedness . . . 75
5.2.7 Minimal Distortion Mirroring 79

5.3 Conclusions . 81

6 Covering and Assignment 83
6.1 Radar Surveillance Covering . 83

6.1.1 Problem Description and Formulation 83
6.1.2 Experimental Results under Varied Problem Size 86

6.2 Course Assignment . 90
6.2.1 Problem Description and Formulation 90
6.2.2 Experimental Results under Varied Problem Size 92

6.3 Conclusions . 95

7 Capacitated Production Planning 96
7.1 Capacitated Lot-sizing . 97
7.2 Integer Local Search Formulation 99
7.3 Mixed Integer Programming Formulation 100

7.3.1 Lagrangean Relaxation Approach 101
7.3.2 Restricting the Problem 102

7.4 Experimental Results . 102
7.4.1 Comparison of Results 103
7.4.2 Lower Bounds . 105

7.5 Conclusions . 106

viii

8 Extensions 107
8.1 Current Limitations . 107
8.2 An Alternative Scoring Scheme 108
8.3 Future Research . 111

9 Conclusions 113

A A Complete AMPL Model for ACC97/98 115

Bibliography 122

List of Tables 134

List of Figures 135

Index 136

ix

Chapter 1

Introduction

THE THESIS

Local search methods as developed for propositional satisfiability can be general-
ized to linear integer optimization, yielding a domain-independent, efficient and
scalable method for realistic problems. Empirically, it will be shown that the
method is:

domain-independent because it is directly applicable to a wide variety of diffi-
cult integer optimization problems when cast in the algebraic representa-
tion of over-constrained integer programs. In particular, time tabling, sports
scheduling, radar surveillance, course assignment, and capacitated produc-
tion planning will be studied, and representations using 0-1 variables and
finite domain variables will be considered.

efficient because, for the problems under consideration, it performs remarkably
well in terms of solution quality and runtime, outperforming or competing
with state-of-the-art (i) integer programming branch-and-bound implemen-
tations, (ii) constraint programming approaches, and (iii) a previous general
purpose heuristic for 0-1 integer optimization.

scalable because its runtime gracefully increases with increasing problem size
and increasing problem constrainedness.

1

Chapter 1. Introduction 2

This introduction first establishes the context in which this work is situated
(integer optimization, heuristics, local search) and gives high-level descriptions of
the basic strategy of integer local search and the representation of over-constrained
integer programs. It then summarizes the experimental results and presents an
overview of the organization of this thesis.

This research is situated in the interface between artificial intelligence and
operations research. Since the two fields have been relatively separated in their
past, terminology conflicts occasionally arise that we will attempt to point out.

1.1 INTEGER OPTIMIZATION AND HEURISTICS

A major challenge in algorithmics to date is to devise efficient methods for com-
binatorial optimization problems. Combinatorial optimization is the problem of
solving a system of constraints over many discrete variables and finding solutions
that maximize or minimize some optimization criteria [116, 113]. The complex-
ity of many interesting combinatorial optimization problems is known to be NP-
hard.1

Combinatorial optimization problems vary largely, prototypical examples rang-
ing from time-tabling over machine-scheduling to resource allocation. A problem
class that captures a wide range of practically important problems is the integer
linear programming problem (ILP).2 An ILP consists of a set of linear inequalities
(constraints) over integer variables, and a linear objective function, and is usually
defined [113] as:

(ILP) min � cx : Ax � b � x � Zn��� �
where Zn� is the set of nonnegative integral n-dimensional vectors and x �	� x1 ��
�
�
��
xn are the variables. An instance of the problem is specified by the data � c � A � b ,
with b and c n-vectors and A an m � n matrix, and all numbers are rational (note
that an equality constraint can be represented by two inequalities). If all variables
are binary (0-1), the problem is also called 0-1 ILP. Throughout this thesis, we
assume the optimization objective to be minimizing, and focus on integer pro-
gramming problems with linear constraints and objective functions. A variable
assignment that meets all constraints is called a feasible solution.

A wide variety of methods have been developed for solving ILP problems and
are the subject of ongoing research in mathematical programming. When the in-
tegrality restrictions (x � Zn�) of an ILP are relaxed, one obtains the well-studied

1A search problem X is NP-hard if for some NP-complete decision problem Y there is a
polynomial-time reduction from Y to X [86].

2The term ‘programming’ dates back to the 1940s, when Dantzig described the simplex method
for linear programming. ‘Programming’ was a military term that, at the time, referred to planning
and scheduling of logistics.

Chapter 1. Introduction 3

linear programming problem (LP) for which polynomial algorithms are known
[91] and efficient implementations exist. ILP methods can make use of LP re-
laxations in many ways, for instance for lower bounding or feasibility testing, and
most integer programming (IP) frameworks are based on iteratively solving LP re-
laxations, e. g. branch-and-bound or cutting-plane algorithms [113]. In summary,
ILP provides a good starting point for general-purpose optimization methods.

Domain-Specific vs. Domain-Independent Techniques

There are two orientations of research on optimization algorithms. First, special-
ized techniques that excel in solving narrow classes of optimization problems for
which maximal quality is crucial and development times can be neglected. Such
techniques often solve sub-problems of the general ILP problem, for example the
Set-Covering Problem (SCP).

Let M � � 1 ��
�
�
 � m � be a finite set and let � M j
� for j � I � � 1 ��
�
�
�� n � be a given

collection of subsets of M. We say that F
�

I is a cover of M if � j � F M j � M. In
the set-covering problem, c j is a cost associated with M j, and we seek a minimum-
cost cover [113]. SCP can be formulated as an integer linear program using 0-1
variables x j with x j � 1 if and only if j is in the cover.3 The ILP formulation of
SCP is:

(SCP) min � cx :
n

∑
j � 1

ai jx j � 1 � i � 1 ��
�
�
 � m � x � � 0 � 1 � n � �

where c is an n-vector, � ai j is a 0-1 matrix, and the variables are binary (0-1).
Domain-specific strategies for the set-covering problem are restricted to problems
of the form (SCP) as specified. Incorporating other constraints typically requires
adjusting the algorithms or replacing the strategies altogether.

In contrast, domain-independent techniques strive to be flexible and applicable
to a wider range of practical problems without the need of designing strategies on
a class-by-class basis [59]. Such techniques work from a model of a given prob-
lem instance (a representation in a suitable constraint class). They are of practical
importance because practitioners often lack the necessary time and expertise to
research and develop effective special-purpose algorithms. Further, in real envi-
ronments, flexibility is often critical to respond to rapidly changing requirements.

Research on domain-independent techniques for combinatorial optimization
has given rise to general-purpose tools in integer programming, such as a va-
riety of branch-and-bound solvers (e. g. CPLEX, LINDO, XPRESSMP, MINTO
to name but a few). More recently, Constraint Programming (CP) systems have
entered the picture that support rapid development of domain-specific methods

3x j ��� 0 � 1 	 can be constrained through inequalities x j
 0 ��� x j
 � 1.

Chapter 1. Introduction 4

and incorporate an increasing variety of techniques for constraint propagation and
search (e. g. CHIP [42], Oz [136], ILOG solver [119]).

Heuristics and Local Search

Optimization methods can either be exact or approximate. While exact methods
perform a systematic search for optimal solutions, approximate methods provide
no theoretical guarantee for finding optimal or even feasible solutions. In oper-
ations research, approximate methods are commonly termed heuristics, and we
will stay with this usage.4 Heuristics concentrate on finding near-optimal solu-
tions quickly, and have received much interest in recent years due to their practical
success [125, 122, 1, 61].

An important class of heuristics is local search [1] which has a long history
for combinatorial optimization and dates back to methods for the travelling sales-
man problem in the 1950s and 1960s [20, 37, 101]. The key idea behind local
search is to start from a solution and iteratively perform changes to improve it.
There are many variations of local search methods, sharing the common notion
of local moves which are transitions in the space of (feasible and possibly in-
feasible) solutions, typically according to a strategy that works by improving the
local gradient of a measure of the solution quality (a strategy called hillclimbing).
Many variants of local search exist that can be applied to combinatorial optimiza-
tion problems, prominent examples being simulated annealing [95] tabu search
[57, 61], genetic algorithms [112, 62] or the greedy randomized adaptive search
procedure (GRASP) [127].

In artificial intelligence, local search strategies have recently seen much suc-
cess for model finding in propositional satisfiability [134, 64, 110, 53, 133] and
a variety of applications to combinatorial problems have been reported [131, 35,
127, 54, 92]. Local search strategies of this kind are also called iterative repair
[107, 152, 134]: Given a problem that is stated in terms of variables and con-
straints, one first generates some initial assignment of all variables, normally vio-
lating a number of constraints. Subsequently, variable values are changed in order
to reduce the number of conflicts with the constraints, i. e. in order to repair the
current variable assignment.

Heuristics for Integer Optimization

Most heuristics for integer optimization are dedicated to a specific problem (like
set-covering or job-shop scheduling) and often excel in terms of the quality of
solutions found and efficiency. Perhaps surprisingly, only few efforts have been

4Note that in artificial intelligence, the term ‘heuristic’ commonly refers to a ‘rule-of-thumb’
decision strategy of an algorithm.

Chapter 1. Introduction 5

made to devise heuristics that target a wider range of combinatorial optimization
problems and operate on problem representations using constraints.

Recently, several general-purpose heuristics have been described which aim at
solving general ILP problems (some being extensions of the pioneering work by
Balas and Martin [9]). These heuristics are of two types, (i) approaches which
relax the integrality constraints and primarily operate on continuous variables
[9, 3, 103, 59, 61] (e. g. by solving the linear program followed by special pivot
moves), and (ii) local search methods in which the local moves are performed di-
rectly in the space of integer solutions, such as simulated annealing [33, 4] and
stochastic local search [146, 147].5

The methods presented in this thesis are of the second type and arise from
generalizing successful strategies of local search for propositional satisfiability
[146, 147]. We will refer to these methods as integer local search.

Local Search for Propositional Satisfiability

A problem of much interest in computer science is the propositional satisfiability
problem (SAT). Let V be a finite set of 0-1 (Boolean) variables. An assignment
for V is a mapping from V to � 0 � 1 � . A literal is either a variable v or its negation v
(v � 1 iff v � 0). A clause is a set of literals, and is satisfied by a given assignment
A if at least one of its literals is assigned to 1. A set of clauses � is interpreted
in conjunctive normal form (CNF): An assignment A satisfies � if and only if all
clauses in � are satisfied under A.

(SAT) Given a set V of variables and a set � of clauses
over V , is there an assignment for V that satisfies all
clauses in � ?

We observe that SAT is also a special case of 0-1 ILP (with objective function
c � 0), since each clause can be translated to a linear inequality: For instance,
the clause � x � y � can be translated to � 1 � x �� y � 1. The 0-1 ILP problem is
more general than SAT because it allows for arbitrary right-hand-sides (b) and
coefficients (A), and because SAT is a decision problem, i. e. there is no explicit
representation of an objective function in SAT.

The Walksat Strategy. A number of efficient local search strategies have been
developed for SAT in recent years, one of the most successful ones being the
Walksat procedure by Selman, Kautz, and Cohen [133, 105]. To find solutions
to a set � , the basic Walksat strategy performs a greedy local search equipped
with a ‘noise’ strategy: Initially, all variables are assigned a random value from

5[9, 3, 103] actually contain phases of type (ii).

Chapter 1. Introduction 6

� 0 � 1 � . While some of the clauses will be satisfied, others are violated. To seek
an assignment that satisfies all clauses, the method iteratively selects a violated
clause c � � , and from c selects a variable such that changing its value yields
the largest increase in the total number of satisfied clauses. If no variable exists
that improves the total number of satisfied clauses, a variable from c is selected
at random according to some detailed scheme. Such variable changes (flips) are
repeated a fixed maximal number of iterations after which a restart takes place. If
no satisfying assignment is found after a fixed number of restarts, the procedure
is terminated unsuccessfully.

1.2 INTEGER LOCAL SEARCH

This dissertation is concerned with local search strategies for integer optimiza-
tion. It describes, discusses and empirically analyzes WSAT(OIP), a domain-
independent method that generalizes local search for propositional satisfiability
(the Walksat strategy) to integer optimization and integer constraint solving.

Over-constrained Integer Programs

Many integer optimization problems have no concise SAT encoding, and hence
SAT local search algorithms cannot be applied. In order to generalize SAT local
search to integer optimization, we introduce an extension of SAT to a constraint
system called over-constrained integer programs (OIPs). Extending the repair
strategy of Walksat to OIP optimization will then be a natural step.

An OIP consists of hard and soft inequality constraints, wherein the optimiza-
tion objectives are represented by the soft constraints. If all inequalities are linear,
the OIP problem can be formulated in matrix notation as

Ax � b � Cx
�

d (soft) � x � D �
where A and C are m � n-matrices, b � d are m-vectors, and x � � x1 ��
�
�
 � xn is the
variable vector, ranging over positive finite domains xi � Di. A variable assign-
ment that satisfies all hard constraints is called a feasible solution. Given a tuple
� A � b � C � d � D , the OIP minimization problem is

(OIP) min ��� Cx � d � : Ax � b � x � D � ��� v � : � ∑
i

max � 0 � vi �

wherein the objective is to find a feasible solution with minimal soft constraint
violation. In �
�� , the contribution of each violated soft constraint to the overall
objective is its degree of violation. As will be shown, OIPs are a special case of
integer linear programs because each soft constraint encodes a piecewise-linear

Chapter 1. Introduction 7

convex objective function. The reduction enables effective combinations with
linear programming for lower bounding, initialization by rounding, search space
reduction, and feasibility testing.

While ILP encodes the optimization objectives using a monolithic objective
function, OIP uses many competing soft-constraints. OIPs are a natural repre-
sentation to generalize iterative repair strategies like Walksat: Only violated con-
straints need to be repaired, and no principal distinction is drawn between repair-
ing hard and soft constraints, thereby seeking solutions that are both feasible and
near-optimal. OIP is similar enough to ILP to make use of algebraic modeling
languages like AMPL [48] as front-end to an integer local search solver.

Unlike methods that rely on properties of the linear relaxation, note that in-
teger local search is not limited to inequality and equation constraints but can be
extended to other types of constraints, for example disequality constraints (x �� y)
or symbolic constraints (all-different(x1 ��
�
�
 � xn)).

The WSAT(OIP) Strategy

WSAT(OIP) is now a natural generalization of Walksat. It performs local moves
in the space of feasible and infeasible solutions by repairing constraint violations.
Iteratively, WSAT(OIP) changes a variable value as follows. First, select a violated
constraint c : if only hard or only soft constraints are violated, select c at random.
If hard and soft constraints are violated, with some probability phard select a ran-
dom violated hard constraint and with 1 � phard a random violated soft constraint.
The phard parameter controls how quickly the search is driven into the feasible
region of the search space.

Next, to decide which variable from c to change, it no longer suffices to reduce
the number of violated constraints as Walksat does. Instead, a score is maintained
that accounts for both the soft constraint violation and the degree of infeasibility
of an assignment (using �
 � above for both soft and hard constraints). For 0-1
variables, a variable change amounts to flipping the value. To extend the principle
to finite domain variables, a new class of local moves is introduced that changes
a variable value to a smaller or greater values nearby. Like variable flips, such
trigger moves are also induced by violated linear inequalities and only repairs in
c are considered that reduce the violation of c.

Among the possible repairs, the strategy greedily chooses the one that most
improves the overall score, but occasionally resorts to random moves if no im-
provement is possible. Following Walksat, WSAT(OIP) is stochastic local search
and inherits Walksat’s noise strategy. To improve the performance for realistic
problems, the method is further extended with principles from tabu search [57, 58]
by keeping a history of past moves. History information can be used to diversify
the search process. For instance, variables can have a tabu status that disallows

Chapter 1. Introduction 8

changes that would undo a recent change (tabu status can be overridden by aspi-
ration criteria). Finally, detailed tie breaking rules [53] are built into the strategy
that are based on the history of the search and decide which move to perform when
several variables have an equal score.

1.3 EXPERIMENTAL RESULTS

A substantial part of this thesis is concerned with an empirical investigation of
the WSAT(OIP) method for practical optimization problems. The problems un-
der consideration are the Progressive Party Problem (PPP) [135], scheduling of a
basketball season (ACC) [114], radar surveillance (RS) [24], course assignment
(CA), and capacitated production planning (CPP) [147]. The problem instances
stem from real applications (ACC, CA, CPP) or contain realistic structure (PPP,
RS). Each class contains large-scale instances, involving several thousand vari-
ables and constraints.

We compare the results of integer local search WSAT(OIP) to approaches from
the recent literature (ACC [114, 69], PPP [135, 75]), and to some of the best
state-of-the-art methods for the respective problems. In particular, we compare
the results to IP branch-and-bound (CPLEX 5.0 [79], an efficient general-purpose
mixed integer programming solver), several constraint programming approaches
and a previous general-purpose simulated annealing method for 0-1 ILPs (GPSI-
MAN) [33].

The problems fall into three broad classes, grouped in three experimental
chapters: (i) tightly constrained 0-1 integer constraint problems (PPP, ACC), (ii)
0-1 integer optimization problems (RS, CA), and (iii) integer optimization prob-
lems with finite domain variables (CPP).

Because the problems vary remarkably, the experimental results demonstrate
the general-purpose nature of the method. Further, the different types of prob-
lems will shed light on different performance aspects: Scaling of runtime with
increasing size, scaling with increasing constrainedness, and residual robustness
(performance variation on a distribution of similar instances). The experimental
results can be summarized according to the three problem types.

(i) 0-1 integer constraint problems from time-tabling (PPP, ACC). Even though
such feasibility problems can be formulated as ILPs, these encodings pose
a difficult challenge for integer programming strategies [135, 75, 114, 146].
Our case studies demonstrate that integer local search can solve such prob-
lems directly from a 0-1 representation.

For PPP, a constraint programming approach is known [135] to solve indi-
vidual instances of the problem, while the problem appears to be beyond

Chapter 1. Introduction 9

the size limitations of integer programming branch-and-bound [135, 75].
Our experiments show that the core problem can be solved more efficiently
using WSAT(OIP). Further, when slight variations of the instance given in
[135] are considered, we find that local search is robust with respect to the
modifications, while we were not able to find a CP enumeration strategy to
solve all test problems.

The second problem, ACC basketball scheduling, was presented and solved
in a multi-stage approach in [114]. The approach uses IP branch-and-bound
and explicit enumeration in four separate stages, with a performance of
roughly 24h to generate a set of feasible schedules. A more efficient CP
strategy is also known [69]. We present a 0-1 linear integer encoding of the
problem that does not separate the problem into stages. Given this mono-
lithic 0-1 representation, we study the performance of integer local search
with increasing problem constrainedness. Our experiments show that for
loosely constrained instances, integer local search finds solutions in sec-
onds. As the constraints are tightened, runtimes tend to increase moder-
ately. When the entire constraints from [114, 139] are encoded, we show
that WSAT(OIP) still finds solutions in 30 minutes, despite only 87 solu-
tions remain! In experiments with IP branch-and-bound we find that CPLEX

manages to solve only the loosely constrained instances within reasonable
runtime.

(ii) 0-1 integer optimization problems (RS / CA — extended set covering / gen-
eralized assignment) are classical domains of IP branch-and-bound meth-
ods, and pose a difficult challenge for constraint programming approaches.

On these problems, the experiments show that WSAT(OIP) and CPLEX effi-
ciently find solutions of similar quality for small problems. As the problem
size increases, the runtime of WSAT(OIP) scales gracefully. Integer local
search therefore outperforms IP branch-and-bound on large problems by
orders of magnitude.

In one series of experiments on (RS), we further find that the OIP repre-
sentation (soft constraints) is critical for WSAT(OIP) to achieve the above
reported performance. The results show that the OIP representation cap-
tures structural aspects that can be exploited by integer local search, leading
to a promising primal heuristic for large-scale problems.

(iii) OIPs with finite domain variables. The last experimental chapter studies a
real production planning problem (CPP) from the process industry (manu-
facturing of chemicals, food, plastics, etc.), technically termed ‘capacitated
lot sizing’.

Chapter 1. Introduction 10

Because the problem requires discrete lot-sizes, domain-specific methods
from the literature are not directly applicable. We therefore approach the
problem with WSAT(OIP), and empirically compare the results to a mixed
integer programming branch-and-bound approach (again using CPLEX) on
real problem data. We find that integer local search is considerably more
robust than MIP branch-and-bound in finding feasible solutions in limited
time, in particular as the capacity constraints are tightened. With respect to
production cost, both methods find solutions of similar quality.

With respect to parameters for WSAT(OIP) we find that a set of standard parame-
ters usually performs well on the given domains without much manual fine-tuning,
and little further customization was necessary, with exception of constraint-weights
(used for CPP), and redundant constraints (used for ACC).

GPSIMAN. Where applicable, we additionally perform experiments with GPSI-
MAN, a general-purpose simulated annealing method [33]. GPSIMAN was not able
to find solutions to the 0-1 constraint problems, even at the lowest tightness levels
within 12 hours. For the optimization problems under consideration, GPSIMAN

was able to solve instances of only one class (RS), but did not succeed in solving
the larger instances satisfactorily.

Limitations and Scope

The computational study of integer local search described herein contains a num-
ber of limitations. First, throughout our experiments, we assume pure integer
optimization problems. Industrial problems, however, often contain a continuous
component and require handling mixed integer programming problems, which are
not addressed in the framework of integer local search as presented in this thesis.

Second, our case studies do not investigate problems that contain a strong intri-
cate solution structure, like traveling salesman problems or job-shop scheduling.
Encodings of these problems into ILP are typically large and the solution structure
is difficult to maintain by local moves that change single variable-values, as per-
formed by WSAT(OIP). For such problems, more informed local moves need to be
considered. Another general and effective strategy for such problems is “Abstract
Local Search” by Crawford, Dalal and Walser [36]. In Abstract Local Search, a
greedy constructive heuristic is combined with local moves in an abstract search
space.

Third, with exception to one problem class (CPP), we observe that the in-
stances under consideration contain mainly 0-1 coefficients. In fact, for the basic
version of WSAT(OIP), strongly differing coefficients are problematic because the
score gradient favors variables that appear with large coefficients. An extension
of the basic scoring scheme will be discussed that addresses larger coefficients.

Chapter 1. Introduction 11

1.4 CONTRIBUTIONS

The results reported in this dissertation have partly appeared in previous publica-
tions:

(1) WALSER, J. Solving Linear Pseudo-boolean Constraint Problems with Lo-
cal Search. In Proceedings of the Fourteenth National Conference on Arti-
ficial Intelligence (AAAI-97) (1997).

(2) WALSER, J., IYER, R., AND VENKATASUBRAMANYAN, N. An Integer
Local Search Method with Application to Capacitated Production Planning.
In Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence (AAAI-98) (1998).

I believe that the original contributions described in this dissertation, and partly
reported in the above publications, include:

� Generalization of SAT local search to linear integer optimization over bi-
nary (0-1) and finite domain variables.

� Development of over-constrained integer programs (OIP) as a basis for ap-
plying iterative repair to integer optimization. Reduction from OIP to ILP
in order to permit combinations with linear programming.

� Development of a carefully engineered local search strategy for over- con-
strained integer programs (WSAT(OIP)) including a new type of local move
for “triggering” finite-domain variable values.

� Implementation of the strategy in an efficient solver, interfacing with AMPL
and CPLEX, and providing the first local search solver for integer optimiza-
tion to interface with an algebraic modeling language.

� Empirical study of the approach demonstrating its flexibility, efficiency and
graceful scaling on a variety of hard realistic integer optimization / integer
constraint problems. Within the empirical study, our original results include

– evidence that large and tightly constrained problems beyond the limi-
tations of ILP branch-and-bound can be solved directly from a mono-
lithic 0-1 integer encoding by integer local search,

– evidence that OIP soft-constraint encodings can capture structural as-
pects exploitable by integer local search,

– two problem-specific results: (i) a heuristic can solve a temporally
dense double-round robin sports scheduling problem, and (ii) a general-
purpose heuristic can solve a large production planning problem en-
coded with finite domain variables.

Chapter 1. Introduction 12

� Development of the notion of integer local search and its characterization
in terms of search relaxations.

1.5 THESIS OVERVIEW

Chapter 2 briefly introduces three general frameworks for combinatorial optimiza-
tion and their terminology, i. e. ILP branch-and-bound, finite domain constraint
programming and local search heuristics. It then discusses complementary search
relaxations as a characteristic of optimization methods. Chapter 3 describes the
technical contributions, over-constrained integer programs (OIPs) with reductions
to ILP, and gives a detailed description of WSAT(OIP). It further discusses sev-
eral possible combinations with linear programming, and then illustrates differ-
ent variations of the WSAT(OIP) strategy by a graphical example. Chapter 4 de-
scribes the case study methodology. It discusses criteria of success for practical
optimization methods: flexibility, robustness and scaling with increasing problem
size and constrainedness, and motivates the problem set selection. Chapters 5 to
7 contain the experimental case studies, each chapter focusing on one problem
type and demonstrating that integer local search meets some of the above criteria
of success. Chapter 5 describes experiments on constraint problems from time-
tabling and sports scheduling; Chapter 6 describes experiments on radar surveil-
lance and course assignment; and Chapter 7 describes experiments on capacitated
production planning. Chapter 8 discusses limitations and extensions of the current
WSAT(OIP) method and suggests future work. Finally, Chapter 9 concludes this
thesis.

Chapter 2

Frameworks for
Combinatorial Optimization

This chapter introduces several general frameworks for combinatorial optimiza-
tion that are being applied in the case studies of this thesis. All three frameworks,
integer linear programming (ILP), finite domain constraint programming (CP) and
local search are well established and many successful applications have been re-
ported. In this chapter, we will briefly describe the basic strategies and introduce
the terminology of the respective frameworks.

2.1 INTEGER PROGRAMMING BRANCH-AND-BOUND

Here, the basics of the IP branch-and-bound algorithm will be discussed that uses
linear programming relaxations. It is the basic algorithm used by all commercial
codes for solving mixed-integer programming problems (MILP) [113]. The ex-
position follows [113]. For a more complete presentation and for discussions of
linear programming (LP), the reader is referred to [113, 31].

IP branch-and-bound is concerned with finding optimal solutions to the ILP
problem,

(ILP) zIP � min � cx : x � S � � where S � � x � Zn� : Ax � b � �
Note that the ILP becomes a MILP problem that includes continuous variables
when some of the integrality constraints are relaxed. The branch-and-bound strat-
egy can equally be applied to MILP problems.

LP relaxation

In IP branch-and-bound, a tree is searched. Initially, at the root node, a linear
relaxation of the original problem is solved, i. e. S is replaced with S0

LP � � x �
13

Chapter 2. Frameworks for Combinatorial Optimization 14

Rn� : Ax � b � . Subsequently, constraints are added to the problem to divide
it into subproblems to be solved separately. At each node, a linear relaxation is
solved,

zi
LP � min � cx : x � Si

LP
� �

where Si
LP constitutes the linear relaxation of the respective subproblem Si.

Also, at any node i during search, there are three conditions when a node can
be pruned, i. e. none of its children need to be considered. The conditions are

(i) infeasibility, if Si
LP � � , i. e. no solution to the linear program exists

(ii) optimality, if xi � Zn� , i. e. the solution is integral

(iii) value dominance, zi
LP � zIP, where zIP is the value of a known feasible solution

to ILP.

Tree Search

If the node is not pruned by one of the conditions (i)-(iii), branching occurs.
Branching is done by adding linear constraints to the current problem. There
are various ways to perform branching. One common way is to perform ‘vari-
able dichotomy’, that is choose some variable x j which has a non-integral solu-
tion value x � j in the linear relaxation. Branch on S � � x � Zn� : x j

���
x � j � � and

S � � x � Zn� : x j � � x � j � � 1 � , and recursively search both nodes. At any node i,
if the given LP solution is optimal, the current feasible solution is stored.

The size of the enumeration tree depends largely on the pruning, i. e. on the
quality of the bounds produced by the linear programming relaxation and on the
solutions found early in the search. If the linear relaxation at the root yields solu-
tions whose objective function values are close to the optimal solutions of (ILP),
we say that the relaxation is tight.

Many issues need to be considered to develop efficient branch-and-bound
strategies, such as the selection of branching variables, and more generally search
strategies to explore the search tree. Efficient branch-and-bound implementations
like CPLEX further add valid inequalities (also called cuts) which are inferred from
specific classes of constraints present in the original constraints. Using these com-
ponents plus efficient algorithms to compute and re-compute LP relaxations, ILP
branch-and-bound provides a general and efficient technique for many ILP opti-
mization problems. A variety of efficient commercial branch-and-bound solvers
are available, (e. g. CPLEX, LINDO, XPRESSMP, MINTO).

Chapter 2. Frameworks for Combinatorial Optimization 15

2.2 FINITE DOMAIN CONSTRAINT PROGRAMMING

Finite domain constraint programming (CP) is a programming technique designed
for solving constraint satisfaction problems (CSPs). A CSP is typically defined
[140] in terms of (i) a set of variables, each ranging over a finite discrete domain of
values, and (ii) a set of constraints, which are relations over subsets of the variable
domains. The problem is to assign values to all variables from their domains,
subject to the constraints. A large number of problems in AI and other areas of
computer science can be viewed as special cases of this general notion of CSP
[97].

Constraint programming evolved from research in constraint logic program-
ming languages ([81] gives a survey), and led to the development of constraint
programming languages such as CHIP [42], Oz [136], CLP(FD) [32], ECLiPSe
[6], and the constraint programming library ILOG Solver [78, 119]. Concurrent
constraint programming properly addresses the concurrent aspects of constraint
programming [128, 70, 136]. CP technology is becoming increasingly successful
for industrial problems, and many emerging applications have been attacked with
constraint programming (see [143] for a survey). We will next describe the CP
framework, following [69, 137].

Constraint Store

Every variable of the CSP problem is represented by a finite domain variable. All
information on the variables is stored directly in a constraint store [80], in terms
of the sets of possible values that each variables can take. This set is called the cur-
rent domain of the variable. Computation starts with the current domain of every
variable being the one given in the CSP. For example x � � 1 ��
�
�
 � 5 � might be the
initial current domain. Subsequently, the information on the current variable do-
mains is updated in the constraint store. This means that the domain information
of the variables is treated as a primitive constraint.

Constraint Propagators

In addition to the primitive constraints, combinatorial problems require non-prim-
itive constraints, which are handled through computational agents called propaga-
tors [150]. Propagators operationalize the semantic definition of the constraints.
Some of the corresponding local consistency techniques have been established in
artificial intelligence [140]. In finite domain constraint programming, the basic in-
ference principle of propagators is domain-reduction. Each propagator observes
the variables that occur in the constraint. Whenever possible, it amplifies the con-
straint store in terms of these variables by excluding values from their domains.

Chapter 2. Frameworks for Combinatorial Optimization 16

For example, a propagator can realize a constraint all-different(x1 ��
�
�
 � xn), re-
quiring that all variables x1 ��
�
�
 � xn be assigned different values. There are different
ways to operationalize this constraint [126, 120]. A straightforward way is to wait
until the domain of one of the variables becomes a singleton and then eliminate
its element from the domains of the other variables. Removing the value from the
domains of the other variables may in turn trigger other propagation. If a propa-
gator is entailed, it ceases existence. If a propagator can determine that a variable
domain becomes empty, the constraint store becomes inconsistent.

The propagation process continues until no propagator can further amplify the
constraint store. The computation space (i. e. the constraint store together with
the propagators) is said to become stable. Still, at this point, many variables will
typically have multiple values in their domains. Thus the constraint store does not
represent a solution to the CSP.

Tree Search

Once a constraint store has become stable, no further information can be inferred
by the propagators. To solve the current finite domain problem Pi at node i, one
can choose a constraint C and solve two subproblems Pi � � C � and Pi � ��� C � .
Such branching on constraint C is likely to trigger new propagation. After stability
is reached again, the branching process is continued recursively on both sides.
Often, the constraint C is an assignment of a variable to one of its remaining
values, e. g. x � 1 if � 1 ��
�
�
�� 3 � are remaining.

To obtain a complete search for all solutions, the branching continues recur-
sively until either all variables have a unique value in the store or until the store
has become inconsistent. The branching scheme yields a complete set of solu-
tions to the original problem because of the soundness and completeness of the
branching.

The choice of constraint C is a critical issue for the performance of the search.
If C assigns one variable, an enumeration strategy determines which variable and
which value from its domain are selected for assignment. The issue here is to
find good heuristics for variable and value selection. A full description of the
branching is called a search strategy.

Finite domain CP systems usually offer rich support for the propagators that
can be used to model constraint problems. Also CP systems take control of prop-
agation and search. Different CP systems offer varying support in the design of
search strategies. An advanced concept for high-level programming of search
strategies is through using first-class computation spaces [130]. By providing the
building blocks of constraint propagation, branching and search, constraint pro-
gramming can be viewed as a supporting framework for the rapid development of
domain-specific optimization strategies.

Chapter 2. Frameworks for Combinatorial Optimization 17

CP has seen much success in a variety of domains; for instance in scheduling,
various algorithmic techniques from OR (e. g. [26, 8]) have been integrated in con-
straint programming by encapsulation into propagators and branching strategies
[10, 150] and are available in a academic and commercial solvers such as ILOG
Scheduler, Oz or CHIP.

2.3 LOCAL SEARCH

Many combinatorial optimization problems are NP-hard [50], and the theory of
NP-completeness has reduced hopes that NP-hard problems can be solved within
polynomially bounded computation times. Nevertheless, sub-optimal solutions
are sometimes easy to find. Consequently, there is much interest in approxima-
tion algorithms (heuristics) that can find near-optimal solutions within reasonable
running times, even at the cost of giving up the optimality guarantee under infinite
runtime.

Practically, for many realistic optimization problems good solutions can be
found efficiently, and heuristics are typically among the best strategies in terms
of efficiency and solution quality for problems of realistic size and complexity
[1, 122, 61, 125]. Heuristics can be classified as either constructive (greedy)
heuristics or as local search heuristics. The former are typically efficient one-
pass algorithms whereas the latter are strategies of iterative improvement. We will
be concerned exclusively with local search heuristics here. By relaxing the guar-
antee of finding optimal (or even feasible) solutions, heuristics are not required to
search for solutions systematically. Instead they can freely follow a local gradient
in the search space.

Local search algorithms have been applied to many combinatorial optimiza-
tion problems in one or another variation. Local search algorithms can be de-
scribed in terms of several basic components. The combinatorial problem to solve,
a cost function of a solution to the problem, a neighborhood function that defines
the possible transitions in the search space. And finally, the control strategy ac-
cording to which the local moves are performed. In the following definitions, we
will informally follow [1] extended to apply to feasibility problems.

Combinatorial Problem. For the purpose of this discussion, a combinatorial prob-
lem can be specified by a set of problem instances to be solved. A problem
is either a minimization or maximization problem.

Cost Function. An instance of a combinatorial problem is defined by the set of
feasible solutions and a cost function that maps each solution to a scalar
cost. The problem is to find a globally optimal feasible solution, i. e. a

Chapter 2. Frameworks for Combinatorial Optimization 18

feasible solution that optimizes the cost function. We will only consider
minimization problems here.

Neighborhood Function. Local search progresses by making transitions from one
node to another. The set of nodes includes the feasible solution, but may
also include other, infeasible, solutions. Given an instance of a combinato-
rial problem, the neighborhood function is defined by a mapping from the
set of nodes to its neighbors, i. e. the subsets of the set of nodes. A solu-
tion is locally optimal with respect to a neighborhood function if its cost is
strictly better than the cost of each of all its neighbors. Notice that there
can also be ‘stateful’ neighborhood functions, i. e. the set of neighbors can
change as the search progresses.

Control Strategy. The final component is the control strategy. It defines the strat-
egy of how the nodes are examined. For example, a basic control strategy
of local search is iterative improvement. Here, one starts with some initial
solution and searches its neighborhood for a solution of lower cost. If such
a solution is found, the current solution is replaced and the search continues.
Otherwise, the algorithm returns the current solution, which is then locally
optimal.

A central problem of local search are local optima, i. e. nodes in the search
space where no neighbor strictly improves over the current node in terms of the
cost function. Many strategies have been proposed that address the problem of
how to overcome local optima. In many cases, non-improving local moves are
admitted based on a probabilistic decision (noise) or based on the history of the
search. A number of ‘meta-heuristics’ have been proposed that address the prob-
lem of local optima.

Meta-Heuristics

To obtain guiding principles for designing effective optimization strategies, a
number of conceptual meta-level strategies have been employed with local search.
These strategies are referred to as meta-heuristics, a term coined by Glover [56].
The most prominent meta-heuristics for optimization given in the following. Note
these strategies can typically be superimposed on the basic control strategy.

Simulated Annealing, introduced for optimization by Kirkpatrick et al. in 1983,
uses the metaphor of the annealing process in steal manufacturing by which
the brittleness of the steal can be reduced [95]. The central idea is to accept
a candidate move that decreases the solution quality based on a probabil-
isitc decision. During the time of the search, the probability of acceptance

Chapter 2. Frameworks for Combinatorial Optimization 19

of such deteriorating moves is decreased according to a given annealing
schedule [2].

Genetic Algorithms model optimization as an evolutionary process. The strategy
is to have a pool of chromosomes and iteratively apply the principles of
mutation, mating and selection to attain ‘survival of the fittest’ [73, 62].
Genetic algorithms extend the basic local search scheme to populations of
solutions. Early applications in Artificial Intelligence in the 1960s were in
game-playing, pattern recognition, or adaptation, and it is more recently that
applications to optimization problems have been reported [62, 124, 112].

Tabu Search uses information based on the history of the search [57, 61], and is
a particularly successful strategy for many practical problems. The central
idea is the use of adaptive memory to overcome local optima by driving the
search to different (diversification) or back to promising (intensification)
parts of the search space.

Artificial Neural Networks make use of the metaphor of the neuron and are or-
ganized in network structures. The network of nodes is iteratively modi-
fied by adjusting the interconnections between neurons according to var-
ious schemes. Neural networks have been popular since the late 1960s,
and have more recently been successfully applied to optimization problems
[77, 44, 118, 38].

Meta-heuristics express orthogonal concepts and hybrids are possible. Meta-
heuristics are domain-independent conceptual strategies. For particular appli-
cation problems, they require concrete implementation and their success varies
between different application domains.

RISC and CISC Local Search

We can distinguish local search strategies for combinatorial optimization accord-
ing to the structure of the local neighborhood. We have earlier given a short de-
scription of Walksat, a local search method for propositional satisfiability in which
the local neighborhood of an assignment A consists of a subset of � A �

: A
� �

A with one variable flipped � and contains O � n neighbors for a problem instance
with n variables. This local neighborhood is simple and small.

On the other hand, many local search strategies use local neighborhoods that
are more intricate and larger. For example, consider the traveling salesman prob-
lem, the problem of finding a minimal-cost tour visiting a number of cities such
that each city is visited exactly once. Effective local search strategies for travel-
ing salesman move in the space of feasible tours by complex edge-exchanges on

Chapter 2. Frameworks for Combinatorial Optimization 20

tours [88]. Another example is job-shop scheduling, where the goal is to assign
start-times to a number of tasks that compete for resources, such that the finishing
time of the latest finishing task is minimized (makespan optimization). Effective
techniques for job-shop-scheduling move in the space of feasible schedules by
complex move operations between tasks that are on a critical path1 of the sched-
ule [7].

Such local search strategies differ from the SAT case in that problem solutions
are expressed in terms of complex entities like tours or schedules. All solutions
are required to comply with this structure, and to avoid the difficulty of restoring
it, the local moves are designed to be structure-preserving. This is contrasted with
local search for SAT and the proposed methods for integer local search, in which
no explicit solution structure is preserved.

In this thesis, we exclusively consider strategies which (i) operate by chang-
ing variable-values, (ii) have neighborhoods with a size linear in the problem size
(number of variables), and (iii) guarantee to preserve only one property with any
move, namely that all variables are assigned exactly one value from their domain.
Because of this atomic nature of the local moves we can refer to strategies with
properties (i)–(iii) as ‘reduced instruction set’ or RISC local search. This is in con-
trast with the CISC local search strategies for the domains traveling salesman or
scheduling. We consider both feasibility and optimization problem formulations.

Local Search for SAT

Local search strategies have recently seen much success for model finding in
propositional satisfiability [134, 64, 110, 53, 133]. Figure 2.1 gives the outline
of a typical local search routine in the spirit of the now classic strategy GSAT

by Selman, Levesque and Mitchel [134]. It searches for a satisfying variable as-
signment for a set of clauses A. Here, local moves are “flips” of variables that
are chosen by select-variable , usually according to a randomized greedy strategy.
The parameter

� ��� � 	 � �&� can be used to ensure termination, while
� ����� � �� deter-

mines the frequency of restarts that can often help to overcome local minima (in
the number of unsatisfied clauses).

Walksat. The Walksat strategy by Selman, Kautz and Cohen [133, 92] is a par-
ticularly effective local search strategy and follows the scheme in Figure 2.1. Its
variable selection operates as follows. First, it randomly selects one of the clauses
from c that are not satisfied by the given assignment A. It then flips the value
of one of the variables in c, thereby rendering c satisfied. Because of the flip,
however, one or more other clauses may become unsatisfied. Therefore, to decide

1A path through the directed graph of adjacent tasks which ends in one of the tasks that finish
latest.

Chapter 2. Frameworks for Combinatorial Optimization 21

proc Local-Search-SAT
Input clauses C � �������	��
� � and

����������� ���
Output a satisfying total assignment of C, if found
for i : � 1 to

����������� ���
do

A : � random truth assignment
for j : � 1 to

�������	��
�
do

if A satisfies C then return A
P : � select–variable � C � A �
A : � A with P flipped

end
end
return “No satisfying assignment found”

end

Figure 2.1: A generic local search procedure for SAT.

which variable to flip, it considers the number of clauses that become unsatisfied
(break) when one of the variables in c is flipped, for each of the variables in c (this
‘breakcount’ approximates the true change in the number of satisfied clauses). If it
is not possible to make c true without breaking some other clause, Walksat follows
a probabilistic scheme. The entire strategy is given in Figure 2.2, where b � A � v
denotes the number of clauses in C that break if a variable v is flipped given the
assignment A.

proc select–variable � C � A �
c : � a random unsatisfied clause from C
m : � min � b � A � v � : v � c �
if m � 0 then s : � a variable in v � c with b � A � v ��� 0
else with probability p : s : � a random variable in c

probability 1 � p : s : � a variable v � c
with minimal b � A � v �

end
return s

end

Figure 2.2: The Walksat variable selection strategy, ties are broken at random.

Application Domains

Walksat and other flavors of local search for propositional satisfiability have been
applied to a variety of combinatorial problems. The following list gives a short

Chapter 2. Frameworks for Combinatorial Optimization 22

survey on application domains various local search procedures for propositional
satisfiability have been applied. The domains of study include graph coloring,
N-queens and Boolean induction [134, 131], circuit diagnosis, circuit synthe-
sis various planning problems (logistics, rocket, towers of hanoi, blocks world)
[133, 92], Sadeh’s scheduling problems [35, 145], quasigroups, and number fac-
torization [54], and Hamiltonian circuit [76]. Some of the above problems have
been used in the Beijing SAT competition [100]. Further, SAT local search algo-
rithms have been applied to a collection of benchmarks within the DIMACS effort
on “Cliques, coloring, and satisfiability” [89], in particular Boolean function syn-
thesis, circuit testing, parity function learning, randomly generated one-solution
problems [127]. Another source of SAT benchmarks which attracted much inter-
est and is random 3-SAT [109, 34]. Random 3-SAT has been a driving force for
studying and improving local search algorithms e. g. [134, 132, 52, 53, 133, 117].

Maximum Satisfiability. There are also optimization counterparts of SAT, MAX-
SAT and and weighted and/or partial MAXSAT. The goal in MAXSAT is to find an
assignment that maximizes the number of satisfied clauses. In weighted MAXSAT ,
a weight is associated with each clause and the sum of the weights of the satisfied
clauses is to be maximized. Another recent variant is partial MAXSAT in which
the clauses are classified into hard and soft clauses, and the goal is to maximize
the number of soft clauses while all hard clauses must simultaneously be satisfied.

Local search methods applied to randomly generated MAXSAT problems have
been reported [67, 133, 144], partial MAXSAT has been used for encodings of
class-scheduling and random formulas [29], and partial weighted MAXSAT has
been used for solving steiner tree problems [84].

2.4 MODELING LANGUAGES

The optimization frameworks given above are computational frameworks for solv-
ing constraint optimization problems that are given by a suitable set of constraints.

Complementary to the aspect of problem solving, modeling languages have
been designed to allow to formulate constraint problems conveniently and ana-
lyze their solutions. An ILP modeling system takes as input a description of the
constraints and objective functions in some natural formulation. Often, this repre-
sentation is quite similar to the mathematical description. Given the model, there
is typically some presolving stage performed for simplification and feasibility test-
ing [47]. Subsequently, the model is presented to an ILP solver that is connected
to the modeling system. Finally, after the solutions are returned from the solver,
the modeling system allows for inspection of the solution. Most modeling sys-
tems support a variety of algorithmic codes. The integer local search procedure

Chapter 2. Frameworks for Combinatorial Optimization 23

that will be given later, WSAT(OIP), has been hooked up to the AMPL modeling
language [49]. Other popular modeling systems include GAMS [18], LINGO,
PLAM [13].

2.5 SEARCH RELAXATIONS

Search strategies for combinatorial optimization can be contrasted according to
different criteria in order to better understand their characteristics. For example,
the ‘systematicity’ view contrasts search strategies as to whether they are sys-
tematic (complete) or follow a local gradient (usually incomplete). For instance,
intelligent backtracking and local search can be contrasted in this view and com-
binations have been proposed [55].

Another view is the ‘inference’ view, which classifies strategies according to
which constraints in a system are treated as primitive (i. e. efficient methods can
be used to solve them) vs. non-primitive (i. e. adding them makes the system hard
to solve) [142]. Integer programming and finite domain constraint programming
can be contrasted and integrated in this view [21].

To improve our understanding of integer local search, let us view combina-
torial search in terms of relaxations. Combinatorial search means to traverse the
nodes of a search space, be it in a systematic or non-systematic way, and indepen-
dent of the amount of inference that takes place to get from one node to the next.
Either way, the essence of combinatorial search is to seek for ‘perfect’ nodes (in
the sense of feasible and optimal solutions) by traversing many ‘imperfect’ nodes
(solutions that meet only a subset of the requirements while violating others).

If the solutions to a discrete optimization problem are defined by variable as-
signments, the assignments must meet three requirements: (i) totality, i. e. all
variables have exactly one value assigned, (ii) integrality, i. e. all assigned vari-
able values are integral, and (iii) consistency, i. e. the assignment meets all prob-
lem constraints. We argue here that it is an important factor of a strategy which
requirements are relaxed during search.

Integer programming branch-and-bound. The relaxation view of integer pro-
gramming branch-and-bound strategies is: relax the integrality constraints
in order to make use of efficient strategies to solve a linear program. In
branch-and-bound, this relaxation occurs at each node of a search tree:
branching constraints are added, the linear system is solved and all variables
are assigned values—some of which happen to be integral. The search tree
is traversed in this fashion until a solution is found with all variables inte-
gral. Then, the solution is stored, the objective function is bounded and the
search continues, in the following using the relaxation bounds for pruning.

Chapter 2. Frameworks for Combinatorial Optimization 24

Hence, the requirement that is relaxed by IP branch-and-bound is integral-
ity, while maintaining that all variables be assigned values (totality) and all
intermediate LP solutions be feasible to the problem constraints (one way
to define consistency).

Constraint satisfaction search. Conversely, complete search strategies for con-
straint satisfaction (CSP) [140] are based on propagate-and-branch and only
assign integral values to variables. Here, the variables range over finite inte-
ger domains and the search starts from a partial assignment of the variables.
At any point, some variables have a value assigned while others are unas-
signed (more than one value is left in their domain): For instance, suppose
we start with a variable x � � 1 ��
�
�
 � 5 � , which due to some constraint x � 3
becomes x � � 1 � 2 � , and next due to branching on x might become assigned
to x � 1. The power of CSP methods stems from strong propagation algo-
rithms (e. g. arc-consistency) that rule out all variable values that are known
to be inconsistent with the current partial variable assignment and the set
of constraints (local consistency). Search in CSP progresses in the space
of partial variable assignments where variable values are speculatively as-
signed (and possibly later retracted) with the goal to eventually assign one
value to every variable, such that the solution is optimal. Hence, constraint
satisfaction search maintains integrality and local consistency, but relaxes
totality, i. e. the requirement that all variables be assigned one value.

Integer local search. Complementary to the two previous frameworks, integer
local search relaxes the third property: consistency. That is, all variables
are always assigned individual values, and all values are integral, yet the
assignments may violate problem constraints and may thus be inconsistent.
The goal is to find a consistent solution (one which does not violate any
problem constraints) that is optimal. Thus, integer local search maintains
integrality and totality, but relaxes consistency.

We hope that this view of combinatorial search can foster the understanding of
integer local search and also stimulate ideas for new hybrid methods.

Chapter 3

Local Search for
Integer Constraints

��� � � �����/	
	���� 	 �	�
� �#��� � �/���� ��� � � 	��*��� � �%����� � �����&� �#� � � � � �/� �
� � 	 ��� �����+�����&��� �����	 	 ��� ��� � � � 	 �������*��� � ���*� � � � � � � � �	��� ��� � �
������� �
/�/�����&� � � � ��� 	 �-��� ���� ��� ��	 � ��� � ������� � �-� � �
����� ��� /	 ��� � � �+��� �-��� ���&� �
� ��� �������

Fred Glover in [56], 1986

This chapter introduces new local search strategies for integer optimization and
represents the technical core of this thesis. It describes and discusses WSAT(OIP),
a domain-independent method that generalizes the Walksat procedure of Selman,
Kautz, and Cohen [133] for propositional satisfiability to integer optimization and
integer constraint solving. For performance on realistic applications, the method
additionally incorporates principles from tabu search [58].

WSAT(OIP) operates on over-constrained integer programs (OIPs), an alge-
braic representation for combinatorial optimization problems which is similar to
integer programs. The chapter first introduces and discusses OIP, showing that
OIP is a special case of integer linear programs. We will argue that OIPs are well
suited for devising efficient iterative repair strategies for integer optimization. On
the other hand, OIPs allow for combinations with linear programming via a re-
duction to integer linear programs.

Then the WSAT(OIP) procedure will be described in terms of its basic princi-
ples and we give the details of a carefully engineered strategy for the selection of
local moves that evolved in the course of the case studies.

Several combinations with linear programming will then be discussed for com-
puting bounds on the optimal solution, approximation and search space reduc-
tion. Finally, we will illustrate the basic algorithms and several extensions by a

25

Chapter 3. Local Search for Integer Constraints 26

graphical example to review the described techniques. The chapter concludes by
discussing related work on local search for integer programming and constraint
satisfaction.

3.1 OVER-CONSTRAINED INTEGER PROGRAMS

The first step in solving an optimization problem is to choose a suitable represen-
tation. In Artificial Intelligence, a popular representation is propositional satisfi-
ability (SAT). SAT can represent a variety of interesting combinatorial problems,
for example graph coloring [134, 131], circuit diagnosis and synthesis [90, 133],
or various AI planning problems [92, 93].

A number of efficient search strategies have been developed for SAT in recent
years, both complete [34, 40] and incomplete [134, 133, 64].1 However, many
combinatorial problems have no concise encoding in propositional logic, espe-
cially those involving arithmetic constraints. Hence these algorithms cannot be
applied.

For example, consider the pigeonhole problem which occurs as a core prob-
lem within many combinatorial problems. Consider a statement with Boolean
variables pi j, where pi j means pigeon i is in hole j. A natural encoding is to
use two different constraints, (a) every pigeon is in exactly one hole ∑ j pi j � 1
(for all i), and (b) no two pigeons are in the same hole ∑i pi j

�
1 (for all j).

Given n pigeons and m holes, this formulation consists of n � m pseudo-Boolean
constraints. On the other hand, a SAT encoding would be (a) � j pi j (for all i)
and � j � k �� j : pi j � pik (for all i, O � m2n clauses); similarly for (b). With
O � m2n � n2m constraints, the size of the SAT encoding would be impractical for
larger instances.

Pseudo-Boolean / 0-1 Integer Constraints

The class of linear pseudo-Boolean constraints (linear 0-1 integer constraints) is
defined as follows [66]. A linear pseudo-Boolean constraint is of the form

∑
i � I

ci � Li � d � (3.1)

where ci � d are rational numbers, � � � � � � � � ��� ��� � � and the Li are literals for
all i � I (a literal is a Boolean variable or its negation). A set of pseudo-Boolean
constraints together with an objective function yields a 0-1 ILP. Pseudo-Boolean
constraints generalize SAT in the sense that every Boolean clause (disjunction

1The corresponding OR terminology is exact vs. heuristic.

Chapter 3. Local Search for Integer Constraints 27

of literals) can be translated into a single linear pseudo-Boolean inequality. For
example, the clause x � y would be translated to � 1 � x � y � 1.

On the other hand, when converting linear pseudo-Boolean inequalities to
propositional satisfiability, the number of SAT clauses required to represent one
inequality can grow exponentially with the number of variables in the inequality.
To see this, consider an example from Barth [12], the conversion of l1 � � � � � ln �
d. Without introducing new variables, its equivalent SAT representation is a con-
junction of

� n
n � d

�
1 � SAT clauses,

�
I ��� 1 �
	
	�	�� n : � I � � n � d

�
1

� � i � I li

Generalizing SAT Local Search

There are still practical shortcomings of the pure pseudo-Boolean constraint rep-
resentation (3.1). First, optimization problems (as opposed to decision problems)
contain objectives which should be included in the representation.

Second, certain problems may better be represented using non-Boolean deci-
sion variables (e. g. production of a good could vary between 1 and 100 items).
Compiling such problems to a pseudo-Boolean system would again incur an in-
crease in both the number of variables and the length of the constraints.2 Depend-
ing on the applied algorithms, the structure present in the original formulation
may not be accessible in the compiled version of the problem.

Despite the fact that SAT does not quite have the right expressivity for many
realistic optimization problems, efficient methods exist for SAT and it is desirable
to generalize their principles to more expressive constraint classes. Obtaining
leverage from a generalization is especially interesting for the efficient SAT local
search algorithms developed recently, e. g. Walksat [133].

Over-constrained Integer Programs: Motivation

To give a natural generalization, we will introduce over-constrained integer pro-
grams (OIPs), an algebraic representation that is suited for a range of combinato-
rial optimization problems. With respect to expressivity, we will show that OIPs
are a special case of integer linear programs (ILPs).

The principal difference to ILPs is that while ILPs use a monolithic objective
function, OIPs represent the overall optimization objective by many competing
soft-constraints. Using soft constraints to encode objectives, it is natural to apply
iterative repair [108] to integer optimization. Further, the OIP structure can be

2Binary and gray code representation for large variable domains are possible [104], but we will
see some limitations for local search in Chapter 7.

Chapter 3. Local Search for Integer Constraints 28

exploited by iterative local search: After a short initial phase, only a small fraction
of the soft constraints are violated and the search can focus on repairing those
violated constraints.

In general, an over-constrained system is a set of constraints in which typically
not all constraints may be satisfied and some are therefore marked as ‘soft’ or
ranked according to a preference system [83]. Optimization objectives have also
been encoded by soft constraints in the context of constraint hierarchies [22].

OIPs are similar to ILPs. So can we make use of techniques from linear pro-
gramming? The answer is yes. We will give a transformation of OIP into ILP that
is inspired from piecewise-linear programming. Another aspect concerns stan-
dard modeling languages like AMPL [48]. Can they be applied to model OIPs?
The answer is, again, yes. ILP modeling languages can be used for modeling. In
fact, combining a modeling language with a local search algorithm directly yields
a practical constraint solver. For illustration, we will provide a detailed AMPL
model of one case study from sports scheduling in the Appendix.

3.1.1 Definition

We refer to a constraint system of hard and soft inequalities over finite domain
variables as an over-constrained integer program, (OIP). Here, we only consider
the case where all constraints are linear inequalities and the system is given by a
tuple � � � A � b � C � d � D , formulated in matrix notation as

Ax � b

Cx
�

d (soft)

x � D �
(3.2)

where A � � ai j and C � � ci j are m � n coefficient matrices, b and d are m-
vectors, and x � � x1 ��
�
�
 � xn is the variable vector, ranging over positive finite
domains D � � D1 ��
�
�
 � Dn .3 (3.2) will be interpreted as the OIP minimization
problem

min ��� Cx � d � : Ax � b � x � D � � with � v � : � ∑
i

max � 0 � vi
 (OIP)

In �
�� , the contribution of each violated soft constraint to the overall objective is
its degree of violation. An assignment to all the variables that satisfies all hard

3For conciseness, we will discuss OIPs in the form (3.2) which could be referred to as min-
normal form. Every OIP minimization problem can be converted into min normal form by mul-
tiplying every incorrectly directed inequality (e. g. � instead of
) by � 1 and converting every
equality into two inequalities.Input to the algorithms described in the following is not required to
be in min-normal form. Also, implementations use sparse matrix representations.

Chapter 3. Local Search for Integer Constraints 29

constraints of � is called a feasible solution, and for every feasible solution s, the
value of � Cs � d � will be called soft constraint violation of � . As will be shown,
OIPs are a special case of integer linear programs.

Based on OIPs, a single strategy will later be formulated both to find feasible
solutions to difficult problems of hard constraints, and to find good solutions to
optimization problems. The strategy will proceed by iteratively repairing violated
hard and soft constraints.

3.1.2 Relation to Integer Linear Programs

For many practical applications, we would like to enable collaboration of OIP
solvers with existing optimization technology based on linear programming. Ex-
amples of such combinations are lower bounding techniques (like linear relax-
ations or Lagrangean relaxation), approximation algorithms based on linear pro-
gramming, or search space reduction techniques (see Section 3.3 for a detailed
discussion).

Due to the evaluation �
�� , however, a given OIP is not immediately equivalent
to an integer linear program (ILP). Next, it will be shown that every OIP can be
converted to an ILP. We consider the following cases: (i) If a given OIP has a
certain property (called confinedness), it is equivalent to an ILP. Further, (ii) every
OIP can be converted to an equivalent ILP.

Equivalence is defined here in the sense that two ILPs/OIPs are equivalent if
they have the same feasible solutions and their objective function values are the
same for every feasible solution.

Notational Convention. To simplify the following discussion, we will write

min � cx : Ax � b � x � D � �
as an abbreviation for the ILP

min � cx
�

: Ax
� � b � x

�

i � ∑
j � Di

j � yi j � ∑
j � Di

yi j � 1 � yi j � � 0 � 1 � � � (3.3)

in which the finite domain variables xi � Di are replaced by variables x
�

i and ad-
ditional binary variables yi j � � 0 � 1 � are introduced for all j � Di. If all finite
domains range over integers (no loss of generality) then (3.3) is an ILP (x � Zn�).

Definition 1 (Confinedness) An over-constrained integer program � A � b � C � d � D
is confined if and only if for every feasible solution s, the following holds:

Cs � d �
��
� 0

...
0

���
�

Chapter 3. Local Search for Integer Constraints 30

Proposition 1 A confined OIP � A � b � C � d � D is equivalent to the ILP

min � � Cx � d � 1 : Ax � b � x � D � � with � v � 1 : � ∑
i

vi � (3.4)

Proof. As confinedness holds, �
�� is equivalent to the norm �
 � 1 for all feasible
solutions.

The following proposition shows that every OIP can be converted to an ILP
by introducing additional constraints.

Proposition 2 An over-constrained integer program � A � b � � ci � d � D ,
Ax � b � ci x

�
di (soft) � x � D

is equivalent to the ILP

min � ∑
i

ei : Ax � b � ci x � si � ei � di � ei � si � 0 � x � D �
 (3.5)

Proof. The basic idea behind the conversion is that every soft inequality can be
converted into an equality constraint with two additional variables: a slack vari-
able si and an excess variable ei, where the excess variable accounts for the in-
curred penalty. The OIP minimization problem is

min � ∑
i

max � 0 � ci x � di : Ax � b � x � D �

To show equivalence, it suffices to show equality of the two objective functions
for all x. We will employ (componentwise) ordered tuples � a � b � . It remains to
show that for all x,

min ��� x � e1 � ��� � � em � : ci x � si � ei � di � si � 0 � ei � 0 �
��� x � max � 0 � c1 x � d1 � � � � � max � 0 � cm x � dm �

This can be shown componentwise for all i because the si � ei are independent from
s j � e j for all i �� j. For each i, we consider the components � x � e �i � � min ��� x � ei � :

�
�
 � and � x � max � 0 � cix � di � . We consider two cases:

1. ci x � di � 0. The right-hand-side is max � 0 � ci x � di � 0. The left-hand-side
also yields e �i � 0 since this is the smallest ei � 0 satisfying ei � ci x � si � di.

2. ci x � di � 0. Now the left-hand-side yields

e �i � min � ei : ei � ci x � si � di � si � 0 � ei � 0 � � ci x � di �
which is also the value of the right-hand-side.

Chapter 3. Local Search for Integer Constraints 31

In summary, OIPs are a special case of ILPs. We notice that all OIP models
which will be given in the case studies happen to be confined, which is typically
easy to check.4 The algorithms that will be described subsequently are directly
applicable to general OIPs, however.

There is a close relation of OIP to integer linear programs with piecewise-
linear objective functions.5 A piecewise-linear function is a function that is pieced
together from linear segments. Every soft constraint cx

�
d gives rise to a penalty

that is expressed by a piecewise-linear convex function max � 0 � cx � d , as shown
in Figure 3.1. Given the fact that the sum of two convex functions is a con-
vex function, OIP objectives are piecewise-linear convex. Piecewise-linearities
are employed in models to give a more realistic description of costs than can be
achieved by linear terms alone [48]. There are also extensions of the simplex
algorithm for piecewise-linear convex programming [46].

d

penalty

cx

(a) cx � d (soft)

penalty

cx
d

(b) cx
 d (soft)

Figure 3.1: Piecewise-linear penalty functions

An OIP Example. As an example of a piecewise-linear objective function, con-
sider the problem of assigning a set of tasks T to a workforce W . Suppose that
every task consumes one hour and every worker w is employed for 8 hours, but can
work overtime at some cost. The problem can be modeled with binary variables,
atw � 1 iff task t is assigned to worker w. The constraints are:

Assign every task ∑w atw � 1 � for all t.
Limit workday ∑t atw

�
12 � for all w.

Minimize overtime ∑t atw
�

8 (soft) � for all w.

The goal is to assign the tasks to the workers such that the summed overtime is
minimized. The problem as stated above is not a hard combinatorial problem but
it may occur as subpart of one.

4Note that the following is a simple sufficient condition for confinedness: for every soft con-
straint cx � d, there exists a hard constraint cx
 d.

5I thank Andrew Parkes for bringing my attention to the relation between soft constraints and
piecewise-linear functions, which eventually lead to Proposition 2.

Chapter 3. Local Search for Integer Constraints 32

3.1.3 Constraint-Bounds

A soft constraint cx
�

d of an over-constrained integer program is similar to an
objective function with a bound. Therefore, the right-hand side d will be referred
to as constraint-bound. For modeling, we need to understand the degrees of free-
dom of choosing the constraint bounds: Consider an OIP � containing a soft
constraint s : cx

�
l, to minimize the excess of a function cx over l. We observe

that the larger the values of l, the larger the (soft) feasible region of s. Sometimes,
for a given value of l there may be no feasible solution to the problem that satisfies
s. This raises the question in what range the constraint-bounds can be increased
or decreased without changing the optimization problem?

Definition 2 (Rebounding) Given an OIP � � � A � b � C � d � D , the OIP � A � b � C �
d

� � D is a called a rebounding of � .

Proposition 3 (Invariance under Confined Rebounding) If � 1 and � 2 are con-
fined OIPs, and � 2 is a rebounding of � 1, then the set of optimal solutions is the
same for � 1 and � 2.

Proof. Since � 1 is confined, it is equivalent to an IP with minimization ob-
jective � Cx � d1 � 1. As � 2 is also confined and a syntactic rebounding of � 1,
its corresponding IP has the same set of constraints but a minimization objective
of � Cx � d2 � 1 � � Cx � d1 � 1 � k, for some k. Obviously, every solution x of � 1
with objective value s is a solution of � 2 with objective s � k and thus the sets of
optimal solutions are the same.

Proposition 3 implies that if for operational purposes it is helpful to increase
the constraint-bounds, this may be done provided that confinedness is maintained.

Proposition 4 Let � A � b � C � d � D be a confined OIP. For every d
�

with d
�

i
�

di for
all i, the rebounding � A � b � C � d � � D is confined.

The proof follows directly from the definition of confinedness. Together with
Proposition 3, Proposition 4 states that optimal solutions do not change if the
soft constraint-bounds are tightened (note that their objective function values do,
however). This tells us that choosing soft constraint-bounds too tightly does not
affect the optimization problem except for a shift in the objective function values.

3.2 INTEGER LOCAL SEARCH: WSAT(OIP)

This section introduces WSAT(OIP), a local search method to solve optimization
and feasibility problems represented by OIPs. Starting from some initial assign-
ment, the procedure performs changes of variable values, thereby moving in the
space of integer assignments to find feasible or good solutions.

Chapter 3. Local Search for Integer Constraints 33

randomly select select variable/value
unsatisfied constraint(randomly, biased)

initialize variables
from constraint

restart

two-stage move selection

variable := value

Figure 3.2: Local search and the two-stage control strategy of Walksat.

WSAT(OIP) generalizes Walksat (described in section 2.3), but its perfor-
mance on realistic problems is often critically dependent on the incorporated
concepts from Tabu Search [61]. As the case studies will demonstrate, despite
its conceptual simplicity, WSAT(OIP) is surprisingly effective in terms of perfor-
mance and robustness. Historically, WSAT(OIP) builds upon WSAT ����� [146]
which performs stochastic tabu search on over-constrained pseudo-Boolean sys-
tems. Generalizing from Boolean variables to general finite domain variables,
WSAT(OIP) subsumes WSAT ����� .

The Strategy

We describe the method starting from its basic principles, and proceed by giving
the main loop of the algorithm and the (important) details of how the local moves
are selected. A summary of the parameters concludes the description. Section
3.4 will further illustrate the search process and several extensions by a graphical
example.

WSAT(OIP) follows an ‘iterative repair’ strategy and operates on a total as-
signment (an assignment to all variables). Individual variable/value pairs are iter-
atively selected to be changed in order to improve the local gradient of an overall
measure of the satisfaction of the constraints. The main cycle for selecting lo-
cal moves is illustrated in Figure 3.2. Generalizing from the Walksat algorithm
[133], variable changes in WSAT(OIP) are selected in a two-stage strategy of first
randomly selecting an unsatisfied constraint for partial repair and from the con-
straint selecting a variable to be changed.6 This two-stage control strategy, which
we will call ‘Walksat-Principle’, distinguishes Walksat among the many flavors
of recent local search algorithms for SAT and CSP (including GSAT [134], GSAT

+walk [133] and MIN-CONFLICTS [108]).7 Note that it favors those variables that
appear in many unsatisfied constraints [133].

The criterion for move selection is to perform hill-climbing on a score which
reflects both the degree of infeasibility and the optimization objective. A value

6In contrast to SAT, a variable change does not always repair the selected constraint completely.
7More generally, this two-stage control strategy is (i) select a constraint c for repair, and (ii)

select a partial repair for constraint c.

Chapter 3. Local Search for Integer Constraints 34

change of a Boolean variable is to flip (complement) the variable to improve the
score. As a generalization, a move of WSAT(OIP) consists of triggering the value
of a finite domain variable to a smaller or greater value in the neighborhood of
its current value assignment. Occasionally, a restart with a new initial assign-
ment takes place to escape from local optima, for example after a fixed number of
moves.

3.2.1 The Score

To describe the move selection strategy for over-constrained IPs in detail, we first
need a score definition. Given a particular assignment x, a system of the form
(3.2) is evaluated as,

score � x � � b � Ax � λλλ � � Cx � d �
 (3.6)

using the usual norm � v � � ∑i max � 0 � vi . A useful property of the score (3.6) is
that it is identical to the value of the objective function of the equivalent ILP.

Additionally, the score (3.6) uses a vector λλλ � 0 for weighting the hard con-
straint violations, defined by � v � λλλ : � ∑i λi max � 0 � vi . Note that the soft con-
straints do not carry weights in order that the score of feasible solutions be equal
to the objective function value. Only one case study will make use of non-unit
weights, and all experiments were performed with weights that were assigned
statically.

x
1

x
2

 x + x = 61 2

= feasible integer point
= infeasible integer point
= feasible continuos points

3

5

2

1

4

6

1 2 3 4 5 6

x=(1,2)

Figure 3.3: Manhattan distance, a shortest path to enter the feasible region of a
constraint with all coefficients from � � 1 � 0 � 1 � .

Graphical Illustration. To illustrate the score (3.6), assume a current variable
assignment s and a constraint c : cx � d with all elements of c from � � 1 � 0 � 1 � .

Chapter 3. Local Search for Integer Constraints 35

Then, � d � cs � measures the number of unit variable changes required to enter the
feasible region of the constraint, i. e. the Manhattan distance of s to c. Figure 3.3
illustrates the situation for the constraint x1 � x2 � 6 over two variables s1 � s2 �� 1 � 2 ��
�
�
 � 5 � . The score of s � � 1 � 2 is 6 � � 1 � 2 � 3 unit variable changes.
Section 8.2 will discuss a refinement of this scoring scheme.

3.2.2 The Main Loop

In each iteration, WSAT(OIP) makes a change of exactly one variable-value pair,
Figure 3.4 illustrates the basic main loop of WSAT(OIP). If an assignment is
found that is better than the best one found in the past, this new best assignment
is stored. If an assignment is found that is known to be optimal (e. g. using a
relaxation-proof), the optimal assignment is returned. A restart is performed after
a fixed number of iterations.

proc WSAT(OIP)
input OIP � ,

���������������
,
����������� ���

output an approximately optimal feasible solution
for � , if found

for i : � 1 to
����������� ���

do
a : � initial total assignment, a � v � � dom � v ���

possibly infeasible
u : �
	
for j : � 1 to

����������� ���
do

if a is known to be optimal then return a
if a is feasible � score � a �� u then u : � a
c : � select–unsatisfied-constraint ��� � a ��
v� s ��� : � select–partial-repair ��� � c � a �

a : � a � v � s � �
end

end
if u �	 then return u

else return “no feasible solution found”
end

Figure 3.4: Main loop of WSAT(OIP) for over-constrained integer programs.

3.2.3 Move Selection and Tabu Search Extensions

The fundamental principle behind WSAT(OIP) is steepest-descent (selecting local
moves that most improve the total score) combined with adaptive memory [58]

Chapter 3. Local Search for Integer Constraints 36

1. Randomly select an unsatisfied constraint α (with probability
phard a hard constraint, and with 1 � phard a soft constraint).

2. From α, select all variables which can be changed such that
α’s score improves. For each such variable, select one or more
α-improving values and compute the hypothetical total scores
(Boolean variables are flipped, finite domain variables are trig-
gered up or down by at most d stpes).

3. From the selected variable-value pairs, remove the ones which
are tabu (tabu-aspiration by score).

4. Of the remaining variable-value pairs, select one that most im-
proves the total score, if assigned. Break ties according to i)
frequency and ii) recency.

5. If the total score cannot be improved: With probability pnoise,
select a random α-improving non-tabu variable-value pair. With
1 � pnoise, select the best possible one.

Figure 3.5: A stochastic tabu search strategy for move selection in
WSAT(OIP). The strategy extends Walksat to systems of hard and
soft constraints (1.) and its variable selection to general finite do-
main variables (2.). Additionally, the straegy is merged with adaptive
memory from tabu search (3.) and an extended version of history-
based tie-breaking (4.) [53].

and a noise strategy to overcome local minima. The remaining degrees of free-
dom are how to select (i) a constraint and (ii) a partial repair, i. e. a variable and
its new value. It a time-consuming engineering task to find good strategies for
(i) and (ii) which has a strong impact on performance. The influence of differ-
ent variable selection strategies on performance has been investigated previously
for SAT local search [117, 105]. Throughout the case studies, unsatisfied con-
straints are selected at random. Although different constraint selection schemes
have been studied (among those selecting one of the violated constraints ordered
by increasing/decreasing ‘constrainedness’), we could not find a selection scheme
that improved over random selection.

Figure 3.5 gives a scheme that combines successful elements from stochas-
tic local search and deterministic tabu search. The particular strategy evolved in
the course of our case studies and includes a tabu mechanism, history-based tie-
breaking, and timid noise: A tabu mechanism with tenure of size t avoids assign-
ing a variable-value pair that has been assigned in the previous t moves—unless

Chapter 3. Local Search for Integer Constraints 37

parameter std value description
pnoise 0–0.2 probability of a allowing random downhill move
phard 0.8–0.9 probability of selecting a hard constraints for repair
pzero 0.5–0.9 probability of initializing a variable with zero
t 1–2 tabu-tenure (overridden by score-aspiration)
� ���
� � �/ 2 maximal trigger distance of non-binary variables
tie-breaking on history-based tie breaking (frequency,recency)
� ��� � 	 � �&� total number of tries
� ��� � �����&� number of moves within a try

Table 3.1: Parameters of WSAT(OIP) with standard ranges.

the score would improve over the best past score (in tabu search terminology,
overriding the tabu-status of a move is called aspiration). All ties between other-
wise equivalent variable-value pairs are broken by a history mechanism inspired
by Gent and Walsh’s HSAT [53]: On ties, choose the move that was chosen i) least
frequently, and then ii) longest ago.

In contrast to SAT local search, the length of 0-1 inequalities that can be han-
dled efficiently can be quite large. This is because only those variables need to
be scored that contribute to the violation of a constraint. For example, in the
course assignment problems, inequalities contained up to 350 variables of which
typically only 10% needed to be scored for repair.

Parameters

Finally, Table 3.1 summarizes the parameters of the basic algorithm. It also re-
ports parameter ranges as rules of thumb. Most parameter settings in the case
studies were performed with settings from these ranges (the exact values will be
reported). Additionally, for practical purposes a seed parameter is used: fixing the
seed yields a deterministic algorithm.

Chapter 3. Local Search for Integer Constraints 38

3.3 COMBINATIONS WITH LINEAR PROGRAMMING

Local search methods like WSAT(OIP) suffer from several principal drawbacks
when used in an optimization context. These are:

(i) The inability to detect if a (specific) obtained solution is optimal or to esti-
mate how far from optimality the solution is.

(ii) The lack of any guarantee of the quality of the solutions returned. (For
some NP-hard problems, approximation algorithms exist that can give such,
although weak, guarantees [72]).

(iii) The absence of sound search-space pruning methods during the local search
process.

We will argue that combinations with linear programming can help to over-
come these drawbacks to some extent. Especially, for (i) lower bounding, (ii)
initial assignment by rounding, and (iii) search space reduction.

The first section describes the standard use of the linear relaxation to obtain
(lower) bounds for (minimization) problems. The second section describes the
computation of initial assignments by linear programming followed by random-
ized rounding, and a novel extension of this idea for WSAT(OIP). And the third
section discusses the use of ‘reduced costs’ for search space reduction, as pro-
posed by Balas and Martin [9].

3.3.1 Bounds from LP Relaxations

It is well-known that linear programming problems are polynomially solvable in
theory, and can often be solved efficiently in practice [31]. This fact can be ex-
ploited by using linear programming (LP) to efficiently compute bounds on the
optimum of a problem at hand. In practice, bounds obtained directly from the LP
relaxation are often valuable estimates of the solution quality.

Consider the following 0-1 integer problem in matrix notation (note that LP
relaxations are applicable to general integer programs)

Z � � � minimize cx

subject to Ax � b

xi � � 0 � 1 �

(3.7)

One way to generate a lower bound to problem (3.7) is to relax the integrality
constraints xi � � 0 � 1 � by substitution with bounds on the variables. This yields

Chapter 3. Local Search for Integer Constraints 39

the linear program

Z � � � minimize cx

subject to Ax � b

xi � �
0 � 1 �

(3.8)

As (3.8) is a relaxation of (3.7), every lower bound of (3.8), in particular its opti-
mal solution, is a valid lower bound of (3.7). In absence of the optimal objective
value for the integer programming problem, this fact can be used to estimate the
quality of a solution to (3.7) by solving the linear relaxation (3.8).

The difference between the optimal IP and LP solutions, Z � � � Z � � , is usu-
ally referred to as integrality gap. Practitioners have observed that problems with
small integrality gaps tend to be solved more efficiently by integer programming
branch-and-bound than problems with large gaps. Other general methods for
lower bounding could be used as well, e. g. Lagrangean relaxation [17].

3.3.2 Initialization by Rounding LP Solutions

Solving the linear program followed by rounding the non-integral solutions can
be combined with integer local search in useful ways. Consider a combinatorial
optimization problem given by the ILP

minimize cx

subject to Ax � b

xi integer

(3.9)

As before, the first step is to relax the integrality constraints and apply linear
programming to solve the system

minimize cx̂

subject to Ax̂ � b
 (3.10)

The result is an LP-optimal solution x̂i � i � 1
�
�
 n. As the x̂i may be fractional,
the LP solution may not constitute a feasible solution for the integer program.
In order to restore integrality, the resulting values x̂i can therefore be rounded
(i) deterministically or (ii) in a randomized fashion (up or down) to yield values
x̄i. There are several benefits that can be obtained from rounding, and we will

start by describing two practical benefits that arise irrespectively of the employed
rounding scheme. Subsequently, we will touch on a theoretical benefit of the
combination.

Chapter 3. Local Search for Integer Constraints 40

Practical Benefits

Some discrete optimization problems exhibit a low level of discreteness because
even although all variables are integer, their domains are large. An efficient way
to solve such problems is by linear programming and rounding in the initialization
stage of an integer local search method. To illustrate this, consider the following
problem formulation, occurring as a subtask of a real configuration problem.8

Z � � � minimize x1 � 20x2 � 20x3 � 20x4

subject to x1 � 4x2 � 2x3 � x4 � 800

x1 � x2 � 4x3 � x4 � 100

x1 � x2 � x3 � 4x4 � 600

x1 � x2 � x3 � x4 � 400

xi � � 1 ��
�
�
 � 1000 �

(3.11)

Due to the large variable domains � 1 ��
�
�
 � 1000 � , this problem is in a sense
‘close’ to its linear relaxation. This fact is illustrated by Table 3.2 which contains
the optimal LP and IP solutions. Using the optimal LP solution and determin-

var LP IP
x1 200 201
x2 133.33 133
x3 0 0
x4 66.667 67
z 6000 6010

Table 3.2: Optimal solutions for a subtask of a configuration problem (3.11).

istically rounding it yields a solution which violates only the first constraint in
problem (3.11).

Because of the type of local moves, WSAT(OIP) as described above is not the
method of choice for problems with very large domains if started from a random
initial variable assignment. However, when initialized with the rounded LP solu-
tion from Table 3.2 it only takes one variable flip to restore feasibility and arrive
at the optimal IP solution. This is because examining the ways to repair the only
violated constraint, all variables of the first constraint are scored and increasing x1
yields the smallest increase in the overall score.

8Thanks to Thomas Axling for providing the example.

Chapter 3. Local Search for Integer Constraints 41

Observations for Binary Variables

Even if all variable domains are binary, rounding the non-integral solutions ob-
tained from linear programming can be helpful. In general, feasibility with the
constraints is lost due to the rounding step. However, integer local search can be
expected to recover feasibility quickly in most cases. An additional benefit may
arise with problems for which the LP relaxation yields a large number of integral
values. For instance on “large-sized” generalized assignment benchmarks from
OR-library [16], instances exist for which the LP optimum has only 1% (5 out of
500!) non-integral variables; all other variables were 0 or 1.

Leashed Local Search. For the case that a significant number of integral val-
ues are obtained from the LP relaxation, we propose an extension of WSAT(OIP)
which we call leashed local search. Starting from an initial rounded LP solution,
perform local search as usual. However, limit the radius the search may divert
from the initial assignment, by limiting the hamming distance between the ini-
tial solution and the current solution (the hamming distance between two Boolean
variable assignments is the number of bits that differ). We did not explore this
technique in the case studies because the principal aim of this work is to examine
what can be achieved by local search; the effectiveness of Leashed Local Search
on the other hand would be tied to the question how close to the IP solution a
corresponding LP solution is. Also, in some of our case-studies (see Section 6.1),
solving the LP relaxation took orders of magnitude longer than solving the origi-
nal integer problem with WSAT(OIP).

Approximation by Randomized Rounding

The approach of randomized rounding is due to Raghavan and Thompson [121],
and can be used to formulate efficient (polynomial) approximation algorithms
with provable performance guarantees. The key insight of randomized rounding
is that certain performance guarantees can be derived if one solves a linear relax-
ation (3.11) and randomly rounds the fractional variables. Generally, if x̂i is the
solution obtained from linear programming, we assign a solution variable for the
IP, x̄i � 1 with probability x̂i and x̄i � 0 with probability 1 � x̂i. Recently, a number
of approximation algorithms for NP-hard problems have been presented based on
randomized rounding, whose characteristic is to give a quality guarantee for the
returned solution [72]. One example is maximum satisfiability (MAXSAT) for
which randomized rounding can be combined with random variable assignment
(pzero � 0
 5) to yield an approximation algorithm which guarantees that its solu-
tion satisfies at least 3/4 of the clauses [151, 111].

If, for a particular problem, such a performance guarantee exists for random-
ized rounding, this guarantee is of course directly inherited by an integer local

Chapter 3. Local Search for Integer Constraints 42

search method if randomized rounding is used to obtain the initial solution.

3.3.3 Search Space Reduction using LP Reduced Costs

We next describe a method for dynamic search space reduction of local search
which can be employed in combination with WSAT(OIP), and which has been
reported by Balas and Martin [9] and Abramson et al. [4].

The idea is that solving the LP relaxation of an integer program to optimality
reveals information about the sensitivity of the solution with respect to changes in
the problem’s parameters. In mathematical programming, such analysis is referred
to as sensitivity analysis [31, 149].

An important instrument in sensitivity analysis are reduced costs: When solv-
ing the linear program to optimality using the simplex method, together with the
optimal solution one obtains an optimal tableau which contains basic variables
(the variables that are non-zero in the optimal solution) and nonbasic variables
(the variables that are zero). We describe the idea in terms of 0-1 integer pro-
grams.

For any nonbasic variable vi, its reduce cost ri is the amount by which vi’s
objective function coefficient must be improved before vi will become a basic
variable in some optimal solution to the LP. Another interpretation of ri is that it
is the amount by which the objective function Z � � will increase (in a minimization
problem) if the variable is increased by one.

Reduced costs can be employed for a dynamic pruning of the search space in
the following way. If at any time during the search the best feasible solution found
(upper bound) has an objective function value of Z ��� , then all variables vi can be
fixed to zero for which Z � � � ri � Z ��� . This is true because assigning one to these
variables would yield a solution which is provably worse than the best solution
already found.

This strategy can be used to extend WSAT(OIP) by allowing it to fix variables
in the following way: Every time an improved feasible solution (upper bound)
with objective value Z ��� is found, all variables vi for which Z � � � ri � Z ��� holds
can be fixed to 0. Notice that the current value of vi must then be 0 (because
if vi � 1 then it would follow that Z ��� � Z � � � ri which is in contradiction with
Z ��� � Z � � � ri). If all variables are fixed, the upper bound is provably optimal.

A requirement for the pruning to be effective is that a significant percentage
of the reduced cost values be sufficiently large. For example, this is typically
the case for set-partitioning problems where many variables can be fixed by the
technique.9 In the case studies conducted here, except for Chapter 7, the reduced
costs were not significant (the particular covering and assignment problems had

9David Abramson, personal communication.

Chapter 3. Local Search for Integer Constraints 43

mostly zero reduced costs and the feasibility problems have no true reduced costs
because there is no objective function).

Preliminary Results. Because of the small reduced costs in our case studies, we
have not evaluated search space reduction in detail at this point. Nevertheless,
in addition to the observations by Abramson et al. [4], our observations on gen-
eralized assignment benchmarks from OR-library [16] are very promising. For
example, on a ‘large-sized’ GAP instance, 334 out of 500 binary variables would
have been fixed to 0 during the search process using the upper bound found by
WSAT(OIP) after a short time—a remarkable reduction of the search space.

3.3.4 Implementation Issues

WSAT(OIP) has been implemented in C/C++, making use of the Lax/Yacc com-
piler genererator for parsing and of the standard Gnu C++ container libraries for
hashing. Including interfaces to Oz, AMPL, and CPLEX the code is roughly 7000
lines of source code. However, the core algorithms of WSAT(OIP) require only
around 2500 lines.

Incremental Data Structures

In order to perform the local moves efficiently, it has often been emphasized for
SAT local search that incremental data structures can greatly enhance the per-
formance. The bottleneck of this computation is the evaluation of the proposed
moves. Therefore, the WSAT(OIP) implementation employs incremental data
structures similar to the ones used by Walksat and GSAT [134] (discussed in detail
in [106]).

The fundamental data structure used to represent the unsatisfied constraints
are two cross-linked arrays (used once for hard and once for soft constraints): At
any point in time, one direction u

�
1
�
�
 k � maintains the indices of all k unsatisfied

constraints for efficient selection of a random unsatisfied constraint. The other
direction ui

�
1
�
�
 m � is used to efficiently update u and maintains the index where

constraint i is positioned in the u array if currently unsatisfied, i. e. u
�
ui

�
i � � � i.

These arrays are updated whenever a constraint changes between sat and unsat.
Also, the evaluation of the left hand side of each constraint under the current
assignment (cx) is incrementally maintained. Further, to efficiently compute a
change of the overall score upon changing a variable value, a list is maintained
for each variable v which links v to all the constraints it occurs in with non-zero
coefficient. To compute the score of changing a variable, it is sufficient to visit
all constraints that it appears in, add or subtract the coefficient to the current left
hand side, and reevaluate if the constraint is sat or unsat. After a changing the

Chapter 3. Local Search for Integer Constraints 44

value of a variable, an update takes place of the u and ui arrays, and the value of
the incremental total score is adjusted as before.

3.4 A GRAPHICAL INTERPRETATION

To illustrate the search process, its limitations and various ways to improve it,
we will now look at how WSAT(OIP) moves in the space of integer solutions in a
graphical example. Consider the following OIP (3.12) and its graphical equivalent
in Figure 3.6, as it is usually depicted for IP/LP problems.

� A 9x1 � 5x2 � 45
� B x1 � x2 � 6
� C 8x1 � 5x2

�
0 (soft)

x1 � x2 � � 1 � 2 ��
�
�
 � 5 �

(3.12)

One easily verifies that the OIP (3.12) is confined and can thus be reduced
to an integer linear program with minimization objective 8x1 � 5x2. Figure 3.6
shows the feasible region of the LP relaxation shaded in gray, and delimited by
the constraints (the feasible region of soft constraint (C) is shaded light gray).
The black circles are the points that are feasible to the integer problem, the white
circles are the points that are integer but are outside the feasible region defined by
the (hard) problem constraints. Also plotted is one isocost line (arbitrarily starting
at point (3,5)) and denoted by the equation z � 8x1 � 5x2. All isocost lines are
parallel to the plotted one, and the intersection of the feasible region with the
leftmost possible isocost line (minimizing z) yields the LP optimum.

To illustrate the search process of WSAT(OIP) and several improvements by
this example, we will consider in order (a) the search process with vanilla param-
eters, (b) search with tabu tenure t � 1, (c) search with constraint weights λλλ, (d)
initialization by rounding of the LP optimum, and (e) search after constraint LP
rebounding.

The Figures 3.7 illustrate the moves of WSAT(OIP) to solve the problem
(3.12) using different strategies. First, Figure 3.7(a) depicts the progress of vanilla
WSAT(OIP) after an initialization to � 0 � 0 . Each diamond plots one variable as-
signment visited during the search. Each arrow plots the trajectory between two
assignments, and each arrow is marked by the constraint (A,B, or C) that is se-
lected for partial repair. If different selected constraints lead to the same move,
the transition arrow is marked with more than one letter (e. g. A,B).10

To eliminate the random aspect from this discussion, we do not allow random
moves, i. e. we always start at point (0,0) (setting pzero � 1), always take the best

10In the particular example we are lucky in that no branching trajectories exist.

Chapter 3. Local Search for Integer Constraints 45

x
1

9x + 5x = 451 2

x
2

3

5

8

9

2

1

4

6

7

1 2 3 4 5 6

 x + x = 61 2

= LP relaxation’s feasible points
= IP infeasible point
= IP feasible point

 x = 3.75
 x = 2.25

1

2

z = 49

-1

-2
1 28x + 5x = 0

Optimal LP solution = 41.25

Figure 3.6: Graphical Interpretation of Problem (3.12)

possible move (pnoise � 0) and always pick a hard constraint for repair when one
is violated (phard � 1). Otherwise, we employ standard parameter settings. Thus,
� ���
� � �
 is 2, which means that individual variable changes are allowed up to two
units in this example, leading to arrows of up to length 2.

The vanilla search 3.7(a) starts by greedy moves along the x1 axis, since the
score improvement is larger along x1 than x2. For another 3 moves, WSAT(OIP)
continues moving towards the feasible region, first reaching A’s feasible region at
(5,0), then the overall feasible region and then reaching the local optimum (5,1)
with an objective function value of 45. Now, both hard constraints are satisfied
and the soft constraint C is selected for repair. With respect to the score gradient,
decreasing x2 appears to be the best alternative, reaching the previously visited
point (5,0). At this point, the search starts cycling because the noise level is zero.

Tabu Search. The tabu search 3.7(b) proceeds similarly, except that the transition
back to (5,0) is tabu and the search happens to enter the feasible region at the
IP optimal point (4,2) with an objective function value of 42. We notice that
although the tabu element prevents cycling in this case, the search reaches the
optimal solution only after a detour. The tabu mechanism was also critical to find

Chapter 3. Local Search for Integer Constraints 46

x
1

x
2

B

3

5

2

1

4

6

-1

-2 C

A

C

2 4 6A,B A,B A,B

B

(a) Vanilla WSAT(OIP).

x
1

x
2

B

3

5

2

1

4

6

-1

-2 C

A

2 4 6

B
C

solution
optimal IP

A,B A,B A,B

A,B

(b) Search process with tabu tenure t �

1

Figure 3.7: Search trajectories of different WSAT(OIP) strategies.

good solutions in several case studies.
Observation of 3.7(a) reveals that the mistake of the vanilla search was that it

did not turn at (4,0). Instead of moving more directly towards the IP optimum,
the score suggested that the better move was to achieve feasibility of constraint
A. Using this example, we will discuss more elaborate techniques to alleviate
the situation. Some of the following techniques have been applied within the
application case studies.

Constraint Weights. In the vanilla search at point (4,0), why did the score sug-
gest to move along x1? Clearly, in terms of feasibility, (4,2) is superior as it is
feasible with respect to both constraints A and B. Nevertheless, the violated of
soft constraint C dominates and the score indicated to take the move (5,0). In this
example, however, moving towards the feasible region first would have yielded
a better solution. One way to achieve this with WSAT(OIP) is to increase the
weights of hard constraints. The trajectory in Figure 3.7(c) is the result of setting
λλλ to a large integer for A and B, say 100 (illustrated by bold lines). Constraint
weights were also critical in the case study on capacitated production planning.

Initializing by Rounding LP Solutions. Sometimes it is useful to start from an
initial solution which is close to the LP optimum, as sketched in the previous

Chapter 3. Local Search for Integer Constraints 47

x
1

x
2

B

3

5

2

1

4

6

-1

-2 C

A

2 4 5 6

solution
optimal IP

A,BA,B

A,B

(c) Search process with weights on
hard constraints.

x
1

x
2

B

3

5

2

1

4

6

-1

-2 C

A

2 4 65

optimal IP
solution

1 3

(d) Search process initialized by
rounding the LP optimal solution � .

Figure 3.7: (cont) Search trajectories of different WSAT(OIP) strategies.

section. Figure 3.7(d) depicts this search process which consists of no moves at
all, as the initial solution is already IP optimal (which is of course rarely the case in
practice). Notice that optimality is proved here by the LP optimum of 41.25: there
exists no integer solution with a cost better than 42 and above the LP optimum.

Constraint Rebounding. In section 3.1.3, we mentioned that it can be advanta-
geous to relax the threshold of a soft constraint and enlarge its feasible region.
As we will see, our example is such a case. By solving the LP relaxation, we
determine that the soft constraint C can never be fully satisfied as the LP optimum
is 41.25. Relaxing the right-hand-side of inequality C to a valid lower bound is
a confined rebounding and yields the system (3.13), which has the same set of
solutions as the original problem (by proposition 3).11

� A 9x1 � 5x2 � 45
� B x1 � x2 � 6
� C’ 8x1 � 5x2

�
41
 25 � � Z � � (soft)

x1 � x2 � � 1 � 2 ��
�
�
 � 5 �

(3.13)

11Notice that in general there is more than one soft constraint and more complex rebounding
techniques need to be applied if the bounds are not inherently provided in the model.

Chapter 3. Local Search for Integer Constraints 48

x
1

x
2

B

3

5

2

1

4

6

-1

-2 C

A

2 4 65

optimal IP
solution

A,BA,B

A,B

C’

(e) Search process after constraint LP
rebounding.

Figure 3.7: (cont) Search trajectories of different WSAT(OIP) strategies.

The search process on the rebounded system is illustrated in figure 3.7(e). Through
the rebounding, the assignments along the trajectory are now all in the feasible re-
gion for C’, and the search concentrates on entering the feasible region of the hard
constraints. Notice that after the rebounding, the objective function values are
shifted down by 41
 25 � 0, thus the optimal IP solution is now 0
 75.

Chapter 3. Local Search for Integer Constraints 49

3.5 RELATED WORK

There are three principal lines of related work. (i) General-purpose heuristics
for integer programming, (ii) local search strategies for constraint satisfaction
(CSP) problems, and (iii) domain-specific heuristics for problem classes like set-
covering, generalized assignment, or time-tabling. We will focus on (i) and (ii)
and will not discuss the numerous domain-specific heuristics (iii) here.

In the following, we will present a thorough review of the literature on general-
purpose heuristics and summarize the problem classes used for experimentation.
As one indicator of problem difficulty, the largest problem sizes are additionally
reported in the form

�
n � m � , where n is the largest number of variables (‘columns’)

and m is the largest number of constraints (‘rows’) reported in the experiments.

3.5.1 Integer Programming Heuristics

We start by discussing related work on general purpose heuristics for integer pro-
gramming from the OR literature. There are two principal characteristics of in-
teger programming heuristics. They either relax the integrality constraints and
operate on continuous variables. Or, they adhere to the integrality constraints and
perform local moves in the space of integer solutions, like WSAT(OIP) does.

Integrality Relaxing Heuristics

A pioneering 0-1 integer programming heuristic which combines a variety of tech-
niques is the pivot&complement heuristic (P&C) of Balas and Martin [9]. It ex-
ploits the fact that an optimal solution to a 0-1 IP problem can be found at one of
the extreme points of the linear programming feasible region.

P&C has both of the above characteristics and operates in two phases. The first
(“search”) phase performs mainly pivot moves (in the simplex tableau) attempting
to find at a good feasible 0-1 solution. Once feasibility has been achieved, the sec-
ond (“improvement”) phase attempts to improve the solution objective by flipping
in turn one variable, a tuple or a triplet of variables. Experimental results with
P&C have been reported in [9] for capital budgeting

�
200 � 30 � , set covering

�
905 � 200 � , set

partitioning
�
14 � 88 � (crew scheduling). Tabu search enhancements of P&C (treat-

ing P&C as a black-box subroutine) a have been evaluated on multi-constrained
knapsack problems

�
105 � 30 � [3, 103] as well as special set covering

�
45 � 331 � and mis-

cellaneous problems
�
224 � 201 � [3].

Another strategy that superimposes tabu search principles to extreme-point
transitions has been given by Løkketangen and Glover [102]. It uses advanced
tabu search strategies for diversification and a learning approach called ‘target
analysis’. Experimental results are reported for multi-constrained knapsack prob-

Chapter 3. Local Search for Integer Constraints 50

lems
�
90 � 30 � . Recently, Glover and Laguna [59, 60] have proposed a theoretical

basis for IP heuristics. Their approach shares a foundation with a framework for
generating cutting planes for IP problems, but has not yet been experimentally
evaluated.

Integer Local Search

The next of kin of WSAT(OIP) is the class of integer local search heuristics.
Among the few strategies which have been reported is a simulated annealing strat-
egy (GPSIMAN) by Connolly [33] as well as a refinement (RFSA) and a variation
(PISA) thereof by Abramson et al. [4]. RFSA adds the search space reduction tech-
nique of Section 3.3.3 to GPSIMAN, and PISA uses a different (inferior) neighbor-
hood transition approach.

In essence, GPSIMAN proceeds as follows. In each iteration, suppose we start
from a feasible assignment A. A random 0-1 variable is selected and flipped.
Then, an attempt is made to restore feasibility of the changed assignment, yielding
A

�

. Next, the score C � A is compared to C � A � and the move is always accepted
provided it is not deteriorating the score (i. e. ∆C � C � A � � C � A � 0). If A

�

is worse than A, the move is accepted with a probability e∆C � T , where T is a
temperature that is decreased according to an annealing schedule. The annealing
schedule starts from a high temperature (many deteriorating moves allowed) and
is slowly reduced. Occasionally, a temporary heheating phase takes place.

The feasibility restoration of GPSIMAN and RFSA (‘restore feasibility’) pro-
ceeds by ranking the variables according to a ‘help-score’ and choosing the best
variable. Unlike WSAT(OIP), the computation of the help-score does not predict
the true the effect of flipping a variable. Instead, it computes an intricate measure
of the repair effect, taking into account a ‘criticality’ of the violated constraints.
Details of the computation can be found in [4] or [33]. In contrast, PISA (‘penal-
ize infeasibility’) takes a different approach by incorporating violated constraints
into the objective function, and not restoring feasibility after each flip. Similarly
as WSAT(OIP), PISA allows the search to move through infeasible regions of the
search space. Abramson et al. do not commit to a particular penalty function but
find PISA to have inferior performance than RFSA. In [4], a number of disadvan-
tages of this scheme are discussed that do not apply to WSAT(OIP), e. g. “a new
cost function is required every time a new problem is encountered.” The version
of GPSIMAN we had available is implemented in Fortran.

WSAT(OIP) is related to both PISA and RFSA: Although WSAT(OIP) can move
through infeasible regions, its repair strategy (phard) may be set to immediate fea-
sibility restoration as well. We see the principal differences to GPSIMAN in the
score computation of WSAT(OIP), the applied principles from tabu search, and
the fact that WSAT(OIP) operates on OIPs according to the Walksat-Principle.

Chapter 3. Local Search for Integer Constraints 51

Experimental Comparison with GPSIMAN. We have evaluated the GPSIMAN sol-
ver on our benchmarks (RFSA has ceased service and was not available). How-
ever, with exception to the radar surveillance problems (Section 6.1), it did not
succeed in finding acceptable solutions. For the radar surveillance problems, the
results were not competitive to those of WSAT(OIP), despite GPSIMAN was al-
lowed more than two orders of magnitude the runtime of WSAT(OIP). The results
are consistent with previously reported experiments [4].

For the course assignment problems, GPSIMAN was not able to find satis-
factory solutions to even small instances.12 Also, the timetabling problems in
Chapter 5 (all tightness levels) were beyond the limitations of GPSIMAN, which
gives supporting evidence for Abramson et al.’s conclusion that “although the
RFSA approach performs better than the PISA approach, it fails for problems that
are heavily constrained”. GPSIMAN does not support general integer variables
and therefore not applicable to the Chapter 7 problems. In [33] GPSIMAN ex-
periments are described on quadratic assignment

�
506 � 458 � , grids-and-crosses

�
256 � 78 � ,

knapsack
�
100 � 1 � , processor-communication

�
66 � 698 � , graph coloring

�
248 � 630 � , and class

timetabling
�
468 � 492 � . RFSA and PISA have been evaluated and compared on large set

partitioning problems
�
78186 � 492 � using extensive preprocessing and dynamic search

space reduction [4].

A Simulated Annealing Code. A recent approach, INTSA, by Abramson and Ran-
dall [5] combines different neighborhood transition schemes of simulated anneal-
ing for different combinatorial problems. INTSA is reported to perform well in
comparison with GPSIMAN and a IP branch-and-bound solver (OSL). The goal of
the framework is to automatically choose an appropriate SA neighborhood based
on the given algebraic problem description. For example, choose value changes
for graph coloring, but choose a 2-opt move for the type of constraint used to
represent traveling salesman problems.

While this is clearly an appealing idea, it remains to be shown that INTSA

will be able to handle problems with mixed types of constraints (in addition to
the pure problems handled by problem-specific SA implementations). In fact, as
[5] note, “the INTSA results were actually gathered from a number of different
programs, each of which handled one of the classes of constraints rather than one
program which could differentiate the constraint class and choose the appropri-
ate algorithm.” INTSA has been evaluated on quadratic assignment (30 facilities),
travelling salesman (666 cities), graph coloring (300 nodes, 740 edges), bin pack-
ing (500 items, 201 bins), and generalized assignment (8 agents, 32 jobs).

We would very much like to see an approach that combines the strengths of
INTSA and WSAT(OIP): different neighborhood schemes combined with flexi-

12Unfortunately, the implementation produced illegal (super-optimal) solutions when given
more promising parameters.

Chapter 3. Local Search for Integer Constraints 52

bility in the type of constraints. One possible scenario would be to employ the
Walksat Principle for dispatching the repairs to be made.

CSP Tabu Search as a General Problem Solver. Shortly before the submission of
this thesis, an independent approach of iterative repair to linear integer constraints
was published by Nonobe and Ibaraki [115] (previously presented at APORS-97
in Melbourne, December 97, shortly after WSAT � � � appeared at AAAI-97).
It shares with this work the iterative repair approach to ILP problems, and also
provides a comprehensive empirical study with encouraging results. Technically,
the approaches are less similar. First, the framework by Nonobe and Ibaraki does
not start from SAT local search, and hence uses different local moves (‘shift’
and ‘swap’) instead of the atomic flip moves performed by WSAT(OIP). Further,
to approach optimization problems, [115] introduces a mechanism to tighten a
bound on the objective function and an additional control mechanism. This is
in contrast to our use of OIP for this purpose. Further, [115] employs an open
definition of CSP as base representation and hence does not address combinations
with linear programming. Also, [115] employs solely 0-1 variables, and while two
of the experimental studies are on similar problem types, no application to tight
0-1 ILP feasibility problems seems to be provided in [115]. It would be interesting
to further compare the two approaches.

3.5.2 Local Search in Constraint Satisfaction

The other line of work on domain-independent local search has taken place in the
context of constraint satisfaction problems (CSPs) in artificial intelligence. For
the purpose of the discussion, we distinguish between binary CSPs (in which all
constraints involve exactly two variables) and non-binary CSPs. Also, we distin-
guish between an extensional representation (in which constraints are represented
by an explicit set of allowed or forbidden variable-value tuples) and intensional
representations. Of course, algebraic constraints are non-extensional and gener-
ally non-binary representations.

One of the earliest approaches of heuristic search in constraint satisfaction is
the min-conflicts heuristic by Minton et al. [108] (previously published 1990).
It has been formulated both as a backtracking algorithm and as a hill climbing
strategy. The basic principle is the same as in SAT local search, namely to “select
a variable that is in conflict, and assign it a value that minimizes the number
of conflicts” [108]. Min-conflicts was evaluated on graph coloring (binary), the
n-queens problem (binary), and scheduling of the Hubble Space Telescope (non-
binary).

Different methods in the same spirit were evaluated for graph coloring and
frequency assignment by Hao and Dorne [68]. The min-conflicts strategy was en-

Chapter 3. Local Search for Integer Constraints 53

riched with noise and applied to randomly generated binary MAX-CSP problems
by Wallace and Freuder [144].

Another line of work is the connectionist approach GENET by Wang, Tsang,
Davenport et al. [38, 39]. GENET is an iterative repair network approach that
operates by a heuristic learning rule. Although GENET was initially formulated
for binary extensionally represented CSPs, various extensions to non-binary non-
extensional CSPs have taken place, among them the work on E-GENET [98, 99].
In E-GENET, more expressive constraints have been studied (each on one type
of benchmark): A ‘linear-arithmetic’ constraint (cryptarthmetic puzzles), an ‘at-
Most’ constraint (car sequencing), a ‘disjunctive’ constraint (Hamiltonian path),
and a ‘cumulative’ constraint (simple scheduling problem).

Chapter 4

Case Studies Methodology

����������� � � � � �
	��� � �
��� � � �����
 ������ � � � � � �
 � � � � � � � � � � � � � � � � � � ��� � � � ��� ���
� �
 � ��� � � � ��� � � ����� � � � ��� � � � � � � � ��� � � �!� ��� � � � �"�$# � � � � � � � ����� � � % ��� � � ���
�&� % � ��� � � � � �
 � ��	 � ��� � �'� ��(�
 � � (� � �
 ������ � � ��� � � � � � � � � � � � � ���!� � � � � � ��� �
	

 ����&� � � ��� � � � � � � � � � ��	 � � � � � � � � ��� � � � �
	 � �
 � ��� � � � � �&�)(����� % � �+*	��� � � �
� � � � �'% � � � ,�� ����� �-� � ��� � � � �
 ������ � � � ��� � � � �
 � ��� � � � ��� � � � �
	
 � � � � � � � � � � �

 � � ���
 ������ � � � � � ��� � � � � �&� � � % � � � � � ��� � �
�� � � � ��� � � ��� .

John N. Hooker in [74]

The previous chapter has described new methods for integer local search and
presented the WSAT(OIP) procedure. The next three chapters will empirically
investigate the performance of WSAT(OIP) in a number of realistic case studies.
In between, this chapter reflects on issues and goals of our experimental analysis.

There are three chapters for three different aspects of WSAT(OIP): Chapter 5
investigates WSAT(OIP)’s ability to solve difficult 0-1 integer feasibility problems.
Chapter 6 concentrates on 0-1 integer optimization problems. Finally, Chapter 7
focuses on the extension of WSAT(OIP) to (non 0-1) finite domain problems.

There can be different goals of experimental analysis [123, 74, 11]. Because
integer local search is at an early stage, our case studies mainly investigate two
central aspects: Domain-independence and applicability to optimization in prac-
tice. To demonstrate domain-independence, we draw applications from a range of
integer optimization problems. To support the claim of practicality, we highlight
the aspects that we believe matter for practical concerns. This chapter contem-
plates criteria of success for practical optimization methods and motivates the
case studies on the grounds of those criteria.

54

Chapter 4. Case Studies Methodology 55

4.1 OPTIMIZATION IN PRACTICE:
CRITERIA OF SUCCESS

Theoretical analysis of algorithms is usually concerned with aspects of worst-case
or average case resource requirements. Normally, one is interested in bounds on
resource usage such as time or memory, usually under varied problem parameters
such as size. Additionally, for approximation algorithms, one attempts to derive
lower bounds on the quality of the solutions. However, at present most practical
optimization algorithms for NP-hard problems are beyond the scope of rigorous
theoretical analysis [74, 85, 11], even worse so when applied to realistic problem
classes. In this situation, one needs to resort to experimental testing.

When moving from theoretical to experimental analysis, one is faced with an
unfamiliar amount of freedom. Factors that often limit theoretical analyses dis-
appear, such as restrictive assumptions on the instance distribution or restrictions
on the algorithmic properties to investigate. Hence, careful decisions need to be
made what aspects an empirical evaluation should investigate. The central deci-
sions are how to define algorithmic performance and to select a set of ‘typical’
problems to evaluate.

Normally, given a problem instance, performance is measured in terms of (i)
time to obtain the first or best solution, or (ii) best solution quality obtained in
limited time. Orthogonally, however, it is critical to investigate the variation of
these measures on a given instance distribution. We refer to performance variation
over a given instance distribution as robustness. Note that there is an another
issue of robustness, namely performance variation when changing the instance
distribution (i. e. considering different problems), which we call flexibility.

On first sight, robustness might be regarded as a question of secondary im-
portance in comparison to solution quality or runtime. But in fact, it is of critical
importance and inseparable. In particular for NP-hard problems, an algorithm
that performs well on one set of problem instances is hardly of any practical use
if small variations of the instance parameters break it (if its runtime changes from
4
 83 seconds, precisely measured on one given instance, to 2 weeks on the next).

There are several aspects of robustness. First, we are interested in the scaling
of runtime with increasing problem size (keeping other problem characteristics
similar). The second aspect is scaling of runtime with increasing constrainedness,
i. e. how does performance vary as additional constraints are thrown at the prob-
lem.1 A third aspect is residual robustness, i. e. robustness under minor variations
of instance characteristics which only remotely affect size or constrainedness.

1We will not attempt to give a rigorous definition of ‘constrainedness’.

Chapter 4. Case Studies Methodology 56

4.1.1 Scaling with Increasing Problem Size

At the center of most theoretical algorithm analysis is the question how an algo-
rithm’s performance varies with increasing problem size. Despite the importance
commonly attributed to this question on a theoretical level, it is sometimes ne-
glected in experimental studies.

Sometimes, there are good reasons not to study scaling with size, especially
on real problem instances, where one usually has no handle on the size of the
problem. Even if instance size varies, real problems sometimes happen to vary
strongly along a number of characteristics and size may appear as ‘just another
parameter’. It is then difficult to isolate size from the other parameters. How-
ever, if artificially generated problems are studied, there is normally no reason not
to investigate scaling (care must be taken not to change the problem characteris-
tics when crafting instances of different size). We measure problem size by the
number of variables and constraints of a given encoding. The scaling behavior is
of practical importance since real problems are often large—typically at least as
large as state-of-the-art technology can handle.

Moreover, what makes scaling critical is that different algorithms exhibit dif-
ferent scaling behavior. Empirically, what is a excellent algorithm for small prob-
lems may not be applicable to large-scale problems. Conversely, a heuristic that
works well for large problems may not have the desired properties for small prob-
lems (i. e. because it is approximate and one might care for optimality). Scaling
of local search has previously been examined on hard randomly generated satis-
fiability problems and sub-exponential (average) scaling was observed [53, 117].
In our case studies, we examine the scaling behavior of integer local search for
realistically structured (randomly generated) covering problems as well as for real
course assignment problems in Chapter 6.

4.1.2 Scaling with Increasing Constrainedness

A second dimension in scaling occurs with increasing constrainedness. Investi-
gating algorithmic behavior along this dimension is important in particular as the
typical practitioner’s approach to constraint problems is iterative repair: “State
some known constraints and find a solution by invoking a solver. Observe that it
exhibits certain unliked characteristics and state additional constraints that disal-
low them. Re-solve and iterate.” In this typical spiral process, it is critical that both
the loosely constrained and the more tightly constrained problem can be solved.

In recent years, there has been some interest in AI in studying the algorith-
mic performance across different degrees of constrainedness. For several problem
domains and algorithms, an easy-hard-easy pattern has been observed in time-to-
first-solution as the problem constrainedness is being increased. Most of these

Chapter 4. Case Studies Methodology 57

studies have investigated performance on randomly generated problem instances.
As yet, there is no generally accepted way to quantify the constrainedness of a
problem instance, although measures for the constrainedness of an ensemble have
been given [51, 109, 148].

Chapters 5 (timetabling) and 7 (production planning) shed some light on the
issue of scaling with increasing constrainedness on real problems. While in the
first study we use the number of solutions as a rough measure of constrainedness,
the latter uses a parameter of the input problem, i. e. resource capacity.

4.1.3 Flexibility and Residual Robustness

Another requirement of practical optimization methods is flexibility. When a
method is specifically tailored to a narrow problem class (e. g. set covering or
generalized assignment or time-tabling etc.), incorporating additional constraints
to solve a closely related problem usually requires adjusting the algorithms or
replacing the strategies altogether. Flexibility is investigated both across the dif-
ferent case studies (if a method is domain-independent, it will have to be flexible)
and within the case studies (each of the considered problems includes a variety of
different constraints).

The last aspect of runtime variation is residual robustness: After factoring out
issues of size and constrainedness, we are left with a residuum of performance
variation on a given instance distribution. For real problems, however, it may be
difficult to obtain several instances with similar parameters. One solution is to
perturb the input parameters of a given instance, thereby generating ‘pseudo-real’
problems.2 We refrained from perturbing real problems to avoid the difficulty of
choosing which factors to perturb. In most cases, the case studies examine several
similar instances of a given problem.

4.2 THE PROBLEM CLASS SELECTION

In recent years, the use of randomly generated benchmark problems has increas-
ingly been criticized for empirical evaluation of algorithms, e. g. [87]. To ad-
dress the need for a realistic assessment of optimization technology, our choice
of benchmark problems focuses on problems ‘as real-world as available’. All
benchmark problems have either been studied in the recent AI or OR literature
(timetabling and sports scheduling), are the result of industrial cooperations (radar
surveillance covering and capacitated production planning) or originate from op-
erating applications (course assignment, sports scheduling).

2A term used by Toby Walsh in personal communication.

Chapter 4. Case Studies Methodology 58

The benchmarks have been selected to examine the four requirements for prac-
tical optimization methods stated above: (i) scaling with problem size and (ii)
constrainedness, (iii) flexibility and (iv) residual robustness. All benchmark prob-
lems under consideration share that they stem from NP-hard problem classes, have
a large number of variables and constraints, contain a heterogenous set of con-
straints, and are difficult for the best general state-of-the-art optimization tech-
niques available (both scientific and commercial packages). The set of bench-
marks diverges from the classical pure problems (e. g. set covering, set parti-
tioning, generalized assignment etc.) and involves complicating side constraints
which, in most cases, would have prevented a direct application of domain-specific
heuristics from the literature. All case studies are on integer linear problems. All
but one case study are on 0-1 integer optimization (binary variables).

Two case studies (Chapter 5) address the ability to solve hard feasibility prob-
lems, a property not commonly addressed by optimization benchmarks. Such
problems are typically difficult for general-purpose integer optimization meth-
ods like IP branch-and-bound. We did not investigate graph coloring problems
because several studies of iterative repair exist for this domain [134, 68, 108].
Clearly, integer optimization problems vary largely and the particular selection
only covers a small fraction. The claim on domain-independence should hence be
viewed in relation to the state-of-the-art ILP solver technology.

The benchmark problems have the following size characteristics (maximal
number of variables and constraints): Radar surveillance covering (10989 � 14595),
course assignment (8404 � 11350), the Progressive Party Problem (4632 � 30965),
ACC Basketball (1339 � 3053), and production planning (using finite domain vari-
ables, 7520 � 3047). Although problem size does not directly imply hardness, it is
a relevant problem characteristic and we notice that the size of the benchmarks is
larger than in many previous studies of general-purpose methods.

With exception to capacitated production planning (which contains proprietary
data), all benchmark problems have been made available through the Constraints
Archive at

� ��� �! "�"������%� ��� 	 �������-	 �����*��� ��� �
" ��� ��� � 	 ��� � � � " .

4.3 THE EMPIRICAL COMPARISONS

To demonstrate the performance and range of applicability of integer local search,
this thesis takes a competitive approach to performance evaluation. It focuses on
comparing WSAT(OIP) to other general-purpose optimization frameworks, which
have been described in Chapter 2. Whenever appropriate, we thus compare to
IP/MIP branch-and-bound (CPLEX 5.0 [79]), constraint programming solvers (Oz
[136] and ILOG Solver [78] approaches from the literature), and GPSIMAN, a
domain-independent simulated-annealing heuristic [33, 4]. The employed con-

Chapter 4. Case Studies Methodology 59

straint programming approaches incorporate some domain knowledge in the form
of enumeration heuristics or suitable problem factorizations.

In order to compare the results of the WSAT(OIP) heuristic to exact algorithms,
the exact methods are run in “heuristic mode” [9], i. e. the best solution found
within a given time limit is reported (occasionally, second-best solutions are also
reported if qualities are similar but time differs significantly), if optimality can be
proved, this is reported. To evaluate the experimental results in absence of prov-
ably optimal solutions, we employ methods for generating valid lower bounds,
i. e. linear relaxation and Lagrangean relaxation.

For the MIP branch-and-bound experiments, the CPLEX 5.0 MIP optimizer
[79] is used as it is commonly regarded as one of the fastest general-purpose
MIP-optimizers and has been in commercial use for over 10 years. CPLEX 5.0 uti-
lizes state-of-the-art algorithms and techniques, including cuts (cliques & covers),
heuristics, a variety of branching and node selection strategies, and a sophisticated
mixed integer pre-processing system [79]. We often run CPLEX with standard pa-
rameters, which involves automatic control of several MIP subroutines (such as
heuristics, branching, cut generation). The standard parameter settings are usually
non-trivial to improve upon (in many cases we report on non-standard settings as
well). It should be recognized that CPLEX is the product of several man-decades
of development and research, whereas the WSAT(OIP) implementation is compar-
atively simple.

Mostly, run-times are reported but no memory requirements even though in
some applications space usage may be an important issue. We neglect the issue
in our study, but point out that the memory usage may differ significantly for the
different frameworks: Tree-search approaches like CPLEX and CP sometimes oc-
cupy hundreds of megabytes of main memory while integer local search uses con-
stant memory during the search. To compensate for exaggerated memory usage,
all runtimes are measured as wall clock time, which purposefully incorporates a
penalty for paging.

Chapter 5

Time-tabling and
Sports Scheduling

This chapter investigates two difficult time-tabling/scheduling problems, ‘the Pro-
gressive Party Problem’ (PPP) and scheduling of the Atlantic Coast (basketball)
Competition of 1997/98 (ACC). Both problems were recently introduced and
solved in the literature [114, 135]. The previous results demonstrate that finding
feasible solutions for these problem is challenging, even when using approaches
that incorporate domain-knowledge.

Both problems can be encoded with 0-1 integer constraints (a model for PPP
has been given in [135] and a model for the full ACC problem will be presented
here), but no approaches have previously been reported to find solutions directly
from 0-1 encodings of these problems.

This chapter reports on experiments of integer local search given 0-1 integer
models of problem instances of PPP and ACC. For both problems, the experimen-
tal results will be compared to the previously reported results. Moreover, we will
study the performance of local search with increasing problem constrainedness.
In particular, for the ACC problem, an extensive study of integer local will be
presented that investigates the scaling of runtime with increasing problem con-
strainedness.

5.1 THE PROGRESSIVE PARTY PROBLEM

The problem in the first case study, “the progressive party problem”, was recently
introduced in a comparison between constraint programming and integer linear
programming [135]. A main result of the study is that the problem appears to be
beyond the size limitations of integer linear programming (ILP) but can be solved
using constraint propagation and chronological backtracking. Our experiments

60

Chapter 5. Time-tabling and Sports Scheduling 61

show that the problem can be solved significantly faster using WSAT(OIP). Fur-
ther, we look at slight variations of the instance given in [135] and find that local
search is robust with respect to the modifications. On the other hand we were
not able to find a constraint program that could solve all of our test problems. To
solve the problem with WSAT(OIP), we factor it into two stages. In the first stage,
a small number of principal variables are explicitly enumerated (e. g. using con-
straint programming), while in the second stage, the variables valued in stage one
are propagated through the theory, and the remaining subproblem is attacked with
local search.

5.1.1 Problem Description and Formulation

In the integer local search approach, we employ a 0-1 model similar to the one
used by Smith et al. [135]. The problem model is large and incorporates a variety
of different constraints which suggested that it would be an interesting test case
for integer local search.

The problem scenario is an evening party in the context of a yachting rally.
Certain boats are selected to be hosts, and the crews of the remaining boats in turn
visit the host boats for several successive half-hour periods. The crew of a host
boat remains on board to act as hosts while the crew of a guest boat together visits
several hosts. Every boat can only host a limited number of guests at a time and
crew sizes are different. Table 5.1 reports boat capacities and crew sizes. There are
six time periods. A guest boat cannot revisit a host and guest crews cannot meet
more than once. The problem facing the rally organizer is that of minimizing the
number of host boats (presumably for reasons of supply logistics): Certain boats
are constrained to be hosts, and selecting the hosts among the remaining boats is
stated as part of the problem.

We do not claim that this problem is of immediate practical significance; how-
ever, it has the advantage of being a well-studied hard time-tabling problem with
a variety of constraints. The variables in the problem are the following: δi � 1 iff
boat i is used as host boat. Variables γikt � 1 iff boat k is a guest of boat i in period
t. Constant ci is the crew size of boat i and Ki is its total capacity. The objective is
to minimize the number of hosts ∑i δi, subject to:

Constraints CD. A boat can only be visited if it is a host boat.

γikt � δi
�

0 for all i � k � t; i �� k.

Constraints CCAP. The capacity of a host boat cannot be exceeded.

∑
k � k �� i

ckγikt
�

Ki � ci for all i � t.

Chapter 5. Time-tabling and Sports Scheduling 62

boat cap crew boat cap crew boat cap crew
1 6 2 15 8 3 29 6 2
2 8 2 16 12 6 30 6 4
3 12 2 17 8 2 31 6 2
4 12 2 18 8 2 32 6 2
5 12 4 19 8 4 33 6 2
6 12 4 20 8 2 34 6 2
7 12 4 21 8 4 35 6 2
8 10 1 22 8 5 36 6 2
9 10 2 23 7 4 37 6 4

10 10 2 24 7 4 38 6 5
11 10 2 25 7 2 39 9 7
12 10 3 26 7 2 40 0 2
13 8 4 27 7 4 41 0 3
14 8 2 28 7 5 42 0 4

Table 5.1: Boat specifications. The entries are boat number i, spare capacity Ki � ci and
crew size ci.

Constraints GA. Each crew must always have a host or be a host.

δk � ∑
i � i �� k

γikt � 1 for all k � t.

Constraints GB. A guest crew cannot visit a host boat more than once.

∑
t

γikt
�

1 for all i � k; i �� k

An additional set of 0-1 variables was introduced to state the meet-once re-
strictions. mklt � 1 if boats k and l meet at time t. This simplifies the ILP model
described in [135].1

Constraints U. Link mklt with γikt .

γikt � γilt � mklt
�

1 for all k � l � t; k � l

Constraints M. Every pair of hosts can meet at most once.

∑
t

mklt
�

1 for all k � l; k � l.

1The original ILP description [135] is mklt � 1 iff boats k and l meet at time t. The modifica-
tion simplifies the problem and saves approximately 30K clauses. According to Sally Brailsford
(personal communication) this had been tried in the ILP model.

Chapter 5. Time-tabling and Sports Scheduling 63

With B boats and T time periods, the problem has O � B2T variables and
O � B2T constraints in this formulation. Smith et al. note that the CP representa-
tion is more compact and has “far fewer constraints and variables than the ILP”.
This is not the case since the number of both constraints and variables is actually
O � B2T in both encodings (even in the improved ILP model in [135]).

Although the problem is formulated as an optimization problem, given the
particular description of the participating boats the task is to find a feasible as-
signment with 13 host boats. Every solution with 13 hosts is optimal because the
capacity constraints cannot be met with 12 hosts even for a single time period.
Solving the problem can be divided into two stages: (i) selection of the host boats,
and (ii) assignment of guest boats to hosts for all time periods. It turns out that the
spare capacity of the boats is a good indicator of whether a boat should be host
or guest, so after forcing special boats to be hosts (e.g. the rally organizer), the
remaining hosts were selected by decreasing spare capacity (the spare capacity of
a boat is its total capacity minus its crew size). In both the ILP and the CP ap-
proach, Smith et al. treat both stages of the problem. However, the search-space
for a particular host selection is too large to be explored exhaustively within hours
of computation. This shows that solving stage (ii) by itself is a hard subprob-
lem and we therefore focus on stage (ii): Finding a guest allocation given a fixed
selection of hosts. Thereafter we will outline a strategy that captures both stages.

Smith et al. report the problem could not be solved with a commercial integer
programming tool (XPRESSMP, using a variety of tricks) because it appears to be
beyond the size limitations of ILP.

5.1.2 Experimental Results and Comparison

For the experiments, we use the original problem instance of Smith et al. and ran-
domly vary the host selection to produce 5 additional instances. For all instances,
we keep the original description of boat capacities and crew sizes. After fixing
the 13 hosts and performing constraint propagation as an efficient preprocessing,
the original problem has 4632 variables and 30965 remaining clauses in pseudo-
Boolean formulation. WSAT(OIP) finds a feasible guest allocation in 5.5 seconds
(averaged over 20 successful runs on a SPARCstation 20) using a tabu memory
of size 1 and initializing with a bias of pz � 0
 9. Additionally, setting up the
constraints from an abstract representation requires around 15 seconds. Table 5.2
summarizes the results.

For comparison, Smith et al. report 27 minutes of runtime of their ILOG
Solver program on a SPARCstation IPX. To reproduce the results, we imple-
mented the described modeling in Oz,2 a concurrent constraint language [136].3

2I thank J örg W ürtz and Thorsten̈Olgart for modeling the progressive party problem in Oz.
3Publically available from �����������
	�	������������������ ������� ����	 � !�	 .

Chapter 5. Time-tabling and Sports Scheduling 64

host boats h g %cap WSAT(OIP)

1–12,16 100 92 .92 2.9s

1–13 (orig) 98 94 .96 5.5s
1,3-13,19 96 92 .96 6.4s
3–13,25,26 98 94 .96 8.8s

1–11,19,21 95 93 .98 31.6s
1–9,16–19 93 91 .98 42.5s

Table 5.2: Experimental results for variations of the Progressive Party Problem.
The columns are: Selected hosts, total sum of host spare capacities h, total sum of
guest crew sizes g; percentage of total capacity used as a measure of constrained-
ness (%cap � g � h). Runtimes averaged over 20 runs of WSAT(OIP),

� ��� � �����&� =� , flip-rate 1.1 K-flips/s.

We used constraints and a labeling strategy similar to the one described by Smith
et al.. Although our constraint program was able to solve the original instance in
8 minutes (on a SPARCstation 20), we could not find a labeling strategy that was
able to solve all sample instances.4

It has been claimed [135] that the progressive party problem can be solved
with constraint programming in a straightforward way. Our experiments confirm
this for the original problem instance, but we find that slight variations can make
the problem too difficult to solve in hours of computation.5 Because CP is not a
particular algorithm but subsumes a wide variety of techniques to operationalize
constraint solving, no general conclusion can be drawn about its performance on
the particular problem. Stronger propagation, better labeling, randomization [63]
or search strategies might be able to improve the performance robustness on this
problem.

The authors of [135] also report an integer programming approach (using
XPRESSMP) given the stage (ii) problem, in which a problem with up to 15 boats
and 4 time periods could be solved.

Embedding into constraint programming. To solve both stages of the problem,
we propose a loose coupling of systematic and local search. The approach simply
enumerates the principal variables heuristically (in this case the δi’s, stage (i)),
then performs constraint propagation/simplification and applies local search to
solve the remaining subproblem (stage (ii)). In our implementation, we use an
embedding of WSAT(OIP) into the constraint language Oz. The advantage of

4J örg W ürtz, personal communication.
5We thank Mats Carlsson for confirming this observation with a SICStus FD implementation.

Chapter 5. Time-tabling and Sports Scheduling 65

using a constraint language is the high-level support for problem modeling and
solution checking. Oz additionally offers the use of computation spaces which
simplifies the embedding of a solver like WSAT(OIP) into CP.

Notes on the Experiments

Before using the two-stage approach, we experimented with local search on a ver-
sion of the problem that included host selection. Observation of the local search
process revealed that host selection and guest allocation were mixed and the host
selection was changed almost as often as the guest allocation, which seemed to be
an unreasonable strategy.

Before introducing the mklt variables and U, M constraints we solved Smith’s
first encoding (constraints S,V,Y) with local search. With 32136 variables and
90844 constraints (after fixing the hosts), this encoding was much larger. Never-
theless, WSAT(OIP) solved it in a few minutes.

Related Work

Recently, Hooker and Osorio [75] introduced a framework called Mixed Log-
ical/Linear Programming (MLLP). They apply MLLP to the progressive party
problem and compare the experimental results to a MIP encoding solved with
CPLEX. Instead of using the two-stage factoring presented above, Hooker and
Osorio encode both stages of the problem using a compact representation with
the number of host boats as minimization objective. Their approach (MLLP) can
solve problems of up to 10 boats and 4 time periods to optimality within sev-
eral hours (for comparison, the original problem has 29 boats and 6 time periods);
MILP is reported [75] to find optimal solutions up to 8 boats and 4 periods without
manual intervention.

Chapter 5. Time-tabling and Sports Scheduling 66

5.2 THE ACC BASKETBALL SCHEDULING PROBLEM

In the second case study in timetabling/scheduling, we investigate a difficult prob-
lem from sports scheduling that was recently studied and solved by Nemhauser
and Trick [114], the scheduling of the Atlantic Coast Competition in basketball
(ACC Basketball 97/98). The previous approach by Nemhauser and Trick (N&T)
involved a domain-specific problem factorization together with a mix of integer
programming and explicit enumeration leading to a solution that was accepted by
the ACC.

Here, we investigate an integer local search approach to the ACC problem that
works directly from a monolithic 0-1 integer linear program and includes all of
the documented constraints [114, 139] of the original problem.

With respect to the experimental results, integer programming and explicit
enumeration have been reported [114] to find a set of schedules within around
24 hours on a modern workstation (the approach is exact and finds all solutions
to the problem modulo certain restricting assumptions, i. e. the particular mirror-
ing scheme).6 More recently, a very efficient approach to the problem has been
reported by Henz [69] that applies constraint programming to a problem factor-
ization by Schreuder [129] (similar to the factorization used in [114]).

In contrast to the previous approaches, the integer local search approach uses
no problem factorization, but still finds solutions that are competitive with the
official timetable [114] with respect to several optimization criteria. In summary,
the results of the case study are:

(i) Both modeling and solving of the ACC problem can be accomplished using
a monolithic IP representation. Requiring solutions to be at least as good as
the official timetable with respect to all optimization criteria given in [114],
solutions are found in 30 minutes (on average) by WSAT(OIP). This is an
exciting result for local search as the problem (with a potential search space
of 21773 variable assignments) has only 87 solutions!

(ii) A general purpose heuristic, WSAT(OIP), can solve a real instance of a
dense double-round-robin (DDRR) scheduling problem.

(iii) In a double round robin competition, the second half of the schedule typi-
cally mirrors the first. However, to comply with given team pairing require-
ments, such perfect mirroring is not always possible: To handle additional
pairing requirements, the previous approaches based on factorization resort
to swapping slots of the schedule, which is not possible when conflicting

6Note that much shorter times have been reported for finding a first solution (Michael Trick,
personal communication). In the last stage, 300 million schedules are generated and filtered.

Chapter 5. Time-tabling and Sports Scheduling 67

pairing requirements exist. To deal with conflicting pairings, we present
minimal distortion mirroring, a new approach in which only few pairings
are swapped while the basic mirroring scheme is preserved.

5.2.1 Double Round Robin Scheduling

In a Double Round Robin (DRR) sport competition, which is a popular scheme in
many sports, every team t plays against every other team exactly twice during the
competition, once at home (the place of t) and once away.

There are two types of sports schedules: temporally dense and temporally
relaxed. In temporally dense double round robin scheduling (DDRR) like the
ACC competition, the number of slots (time periods in which games may take
place) is almost equal to the number of games that each team must play. If there
is an even number n of teams, a DDRR schedule has 2 � n � 1 slots. If n is odd,
there are 2n slots in which n � 1 teams play and one team is bye.

Contrary to temporally relaxed schedules where local improvement heuris-
tics appear to be used frequently (e. g. [45]), a brief survey in [114] attests for
temporally-dense schedules that “while some local improvement heuristics have
been found, they tend to be rather limited in scope and heavily dependent on find-
ing good initial solutions.” Hence, by using a (i) domain-independent (ii) heuristic
which starts from (iii) a random initial solution, our approach takes several steps
in one.

As with most other real sport scheduling problems, the ACC 1997/98 problem
is constrained by a wide variety of requirements and objectives. For example, it
is desired to have a large separation between the two games of a pair of teams.
If the criterion is to minimize the maximal distance between any two teams, the
minimal separation is half the number of teams. In this situation, the problem is
typically simplified by requiring that the pairings in the first and the second half be
identical, except that the places of the games are reversed. If the timetable meets
this condition, it is said to be perfectly mirrored. In the ACC 97/98 problem,
individual team pairing constraints prohibit a perfect mirroring.

Another important aspect concerns the satisfaction of the local spectators who
prefer not too few and not too many local games in a sequence. Therefore, the
succession of home and away matches needs to be altered frequently. The re-
quirements of the ACC given in [114] with respect to the allowed sequences of
home/away and bye are intricate and rule out a direct application of previous work
on double round robin tournaments [25, 129]. Further, there are constraints that
no team should face the particularly strong teams in immediate succession.

The third aspect concerns broadcasting, as television networks require a stream
of “high quality” games and have additional requirements when the most popular
pairings should occur. Since teams return home after almost every away game in

Chapter 5. Time-tabling and Sports Scheduling 68

the ACC, there are no travel constraints.
Because the problem characteristics change if details of the specification are

omitted, it is unavoidable to present the entire list of constraints (as will be shown,
simplified versions of the problem are in fact very easy for integer local search).
The following section therefore presents the complete “laundry-list” [114] of con-
straints.

5.2.2 Problem Specification of ACC97/98

The ACC in basketball consists of nine universities: Clemson (Clem), Duke,
Florida State (FSU), GeorgiaTech (GT), Maryland (UMD), North Carolina (UNC),
North Carolina State (NCSt), Virginia (UVA), and Wake Forst (Wake). The prob-
lem is to find a 18 slot DDRR for the period of nine weeks (12/31/97, a Wednesday
to 3/1/89, a Sunday), such that in each week there is a weekday and a weekend
game. In the following description of the requirements, we follow exactly the pre-
sentation of Henz [69] and distinguish ‘requirements’ from ‘optimization criteria’.
The requirements can be viewed as a minimal set of constraints to satisfy, whereas
the optimization criteria may be met in different ways since they are generally in
conflict. The requirements are the following:

R0. Double round robin. The teams play a temporally dense double-round robin
competition.

R1. Return match separation. The teams wish return their games as separate as
possible (i.e. if a at b in slot i, then b at a at i � D for suitably large D). The
measure is to maximizing the minimum distance. The requested separation
between games between two teams also holds for byes: No team wants its
two byes too close together. The minimal temporal distance between first
leg and corresponding return match must be 7 slots. Considering that UNC
plays Duke in slot 11 an 18 (see requirement 9 below) 7 is the maximal
value for this minimal distance.

R2. No two final aways. No team can play away in both last slots.

R3. Home/Away/Bye pattern constraints. No team may have more than two
away matches in a row. No team may have more than two home matches in
a row. No team may have more than three away matches or byes in a row.
No team may have more than four home matches or byes in a row.

Similar conditions hold for consecutive weekend slots. No team may have
more than two away matches on subsequent weekends. No team may have
more than two home matches on subsequent weekends. No team may have

Chapter 5. Time-tabling and Sports Scheduling 69

more than three away matches or byes on subsequent weekends. No team
may have more than three home matches or byes on subsequent weekends.

R4. Weekend pattern. Of the weekends, each team plays four at home, four on
the road, and one bye.

R5. First weekends. Each team must have home matches or byes at least on two
of the first five weekends.

R6. Rival matches. Every team except FSU has a traditional rival. The rival-
pairs are Duke-UNC, Clem-GT, NCSt-Wake, and UMD-UVA. In the last
slot, every team except FSU plays against its rival, unless it plays against
FSU or has a bye.

R7. Popular matches in February. The following pairings must occur at least
once in slots 11 to 18: Wake-UNC, Wake-Duke, GT-UNC, and GT-Duke.

R8. Opponent ordering constraints. No team plays in two consecutive slots
away against UNC and Duke. No team plays in three consecutive slots
against UNC, Duke and Wake (independent of home/away).

R9. Other idiosyncratic constraints. UNC plays its rival Duke in the last slot
and in slot 11. UNC plays Clem in the second slot. Duke has a bye in slot
16. Wake does not play home in slot 17. Wake has a bye the first slot. Clem,
Duke, UMD and Wake do not play away in the last slot. Clem, FSU, GT
and Wake do not play away in the first slot. Neither FSU nor NCSt have a
bye in the last slot. UNC does not have a bye in the first slot.

R10. A small set of additions to the original description have been published very
recently [139]: Every team must have an H in the first three slots. Every
team must have an H in the last three slots. Wake is bye in the first slot and
must end AH.

Optimization criteria

There are several additional criteria the ACC requires of a time-table [114]. As
Henz notes [69], some of these optimization criteria are conflicting, so the best
one can hope for are Pareto-optimal solutions. The goal of the integer local search
approach is to find solutions that are at least as good as the official 97/98 schedule.

O1. Avoid two opening aways. The number of teams that play away in the first
two slots should be small. We denote this number by OAA.

Chapter 5. Time-tabling and Sports Scheduling 70

away

C
le

m
D

uk
e

F
S

U
G

T
U

M
D

U
N

C
N

C
S

t
U

V
A

W
ak

e

ho
m

e

Clem 0 0 0 0 0 B 0 0 0
Duke 0 0 0 B A 0 0 B B
FSU 0 0 0 0 0 0 0 0 0
GT 0 B 0 0 B A 0 0 B
UMD 0 A 0 B 0 A 0 B 0
UNC B A 0 B B 0 0 0 0
NCSt 0 B 0 0 0 B 0 0 B
UVA 0 B 0 0 0 0 0 0 B
Wake 0 B 0 B 0 B B 0 0

Weekday Games

away

C
le

m
D

uk
e

F
S

U
G

T
U

M
D

U
N

C
N

C
S

t
U

V
A

W
ak

e

ho
m

e

Clem 0 0 0 0 0 A 0 0 0
Duke 0 0 0 B A A 0 B B
FSU 0 0 0 0 0 0 0 0 0
GT 0 0 0 0 B 0 0 0 B
UMD 0 0 0 0 0 0 0 0 0
UNC 0 0 0 B B 0 0 0 0
NCSt 0 B 0 0 0 B 0 0 B
UVA 0 B 0 0 0 0 0 0 0
Wake 0 B 0 B 0 B B 0 0

Weekend Games

Table 5.3: Game quality

O2. Good slots in February. Table 5.3 classifies (a) weekday and (b) weekend
games into A-games, B-games and bad games (represented by 0). If a slot
contains at least one A-game or at least two B-games, it is called an A-slot.
If a slot is not an A-slot and contains at least one B-game, it is a B-slot.
All other slots are bad slots. In February (slots 11 through 18), the A-slots
should be maximized and the bad slots minimized.

O3. Home/Away/Bye pattern criteria. The number of occurrences of three sub-
sequent home matches or byes should be small (HB3). Similarly, the number
of occurrences of three subsequent away matches or byes (AB3). And again,
for weekends the same criteria should hold (HB

�

3 � AB
�

3).

Any schedule can be rated according to the above optimization criteria, sum-
marized by a vector of 7 numbers. The official timetable computed by Nemhauser
and Trick meets these optimization criteria as follows:

OAA HB3 AB3 HB
�

3 AB
�

3 bad A-slots
1 4 3 5 4 2 3

5.2.3 Integer Local Search Formulation

In this section, a 0-1 integer linear local search model will be developed to state all
the requirements. To simplify the model, we number the teams in the order given
above. For the integer local search model, we introduce indices i and j that range

Chapter 5. Time-tabling and Sports Scheduling 71

over teams � 1
�
�
 9 � and t which ranges over slots � 1
�
�
 18 � . The binary decision
variables are xi jt and xi jt � 1 iff team i plays as guest of team j in slot t, for all
1
�

i � j � 9. Additionally, a team index of 0 is used to express byes, e. g. xi0t � 1
iff team i is bye in slot t. Similarly, xiit encodes homes, i. e. xiit � 1 iff team i plays
at home in slot t.

We present the constraints from the most general ones to the more specific and
finish with the idiosyncrasies of the ACC97/98 season.

R0. The following constraints implement the basic double round robin scheme,
requirement R0.

Every team plays at exactly one place (or is bye) in every slot.

∑
0 � j � 9

xi jt � 1 � for all i � 0 � t (5.1)

Every team is visited by at most one team in every slot.

∑
0 � i �� j

xi jt
�

1 � for all j � 0 � t (5.2)

All pairings are consistent.

xi jt � x j jt � for all 0 � i �� j and t (5.3)

Double round robin: Every team plays every other team once away (and once
at home which is implied in combination with (5.3)).

∑
t

xi jt � 1 � for all i � 0 � j �� i (5.4)

R3. The following constraints restrict the allowed game sequences (Home/Away/
Bye pattern constraints), and need to be duplicated for the weekend slots.

Treating bye as away, no more than 2 away games in a row.

∑
s � t 	
	
	 t � 2

xiis
�

2 � for all i, 1
�

t
�

T � 2 (5.5)

Treating bye as home, no more than 3 home games in a row.

∑
s � t 	
	�	 t � 3

� xiis � xi0s � 3 � for all i, 1
�

t
�

T � 3 (5.6)

Treating bye as away, no more than 2 home games in a row.

∑
s � t 	
	
	 t � 2

xiis
�

2 � for all i, 1
�

t
�

T � 2 (5.7)

Chapter 5. Time-tabling and Sports Scheduling 72

Formulating the Mirroring Scheme

R1. To ease comparison with the previous approaches [114, 69], we will use
the same mirroring scheme throughout our experiments. Due to requirement R9
which states that UNC and Duke meet in slots 11 and 18, perfect mirroring is
not possible. For this reason, the N&T approach resorts to a mirroring scheme
that switches slots 9 and 11 and obtain a mirroring scheme in which the minimal
distance between any pair of teams is 7. The N&T approach also switches slots
8 and 9 (although no obvious constraint enforces this), and arrives at a set of
mirrored slots of

MNT � � � 1 � 8 � � 2 � 9 � � 3 � 12 � � 4 � 13 � � 5 � 14 � � 6 � 15 � � 7 � 16 � � 10 � 17 ��� 11 � 18 �

Note that fixing a conflict in a perfect mirroring scheme by switching entire slots
also affects all the other pairings; all teams meeting in slot 1 will meet again in
slot 9—only because of the UNC–Duke meeting. We will discuss an alternative
to this scheme in Section 5.2.7. The constraints that enforce the mirroring can be
formulated as:

Mirror return games.

xi js � x jit for all i �� j and � s � t � MNT (5.8)

Mirror byes.

xi0t � xi0s for all i �� j and � s � t � MNT (5.9)

ACC Specific Requirements

R2, R4, R5. The following restrictions are more specific to the ACC and concern
unliked sequences of H/A/B.

No team finishes AA.

xi � i � T � 1 � xi � 0 � T � 1 � xi � i � T � xi � 0 � T � 1 � for all i (5.10)

Of the 9 Saturdays, each team plays four at home, four on the road, and one
bye.

∑
t � 2 � 4 �
	�	
	�� T xiit � 4 � ∑

t � 2 � 4 �
	
	
	�� T xi0t � 1 (5.11)

Each team must be home or bye at least on two of the first five weekends.

∑
t � 1 	
	
	 5 xiit � xi0t � 2 � for all i (5.12)

Chapter 5. Time-tabling and Sports Scheduling 73

R6, R7, R8, R9, R10. Finally, the team-specific requirements of the ACC97/98.
We do not present the constraints here as for most of these requirements the
the constraint encoding is straightforward. An exception is constraint R6 (rival
games), for which an equivalent formulation can be used, i. e., three of the four
rival games must be played in the last slot.

Optimization Criteria

The optimization criteria are modeled here as hard constraints to ensure that all
resulting solutions will be at least as good as the official schedule. Soft constraints
could be used alternatively, of course.

O1, O2, O3. Modeling O1 is straightforward:

Avoid opening away/away (no more than 1 team).

∑
i
� xi � i � 1 � xi � 0 � 1 � xi � i � 2 � xi � 0 � 2 � 8 (5.13)

To formulate O2, additional variables need to be introduced for all slots in
February; qtr � 1 if the quality of slot t � Feb is r, where r � � 0,1,2 � , r � 0 repre-
sents a bad slot, r � 1 a B, and r � 2 an A slot, respectively (of course, ∑r qtr � 1
for all t). An example from the constraints that link the x and q variables:

Given the game quality matrix Gw for weekdays, every weekday slot in Febru-
ary that is marked as an A slot must contain at least one A or two B games.

2 � qt2
� ∑

i �� j

Gw
i j � x jit � for all weekdays t � Feb (5.14)

Similarly for B slots and for week ends.

Ensure the N/T quality level for game qualities.

∑
t � Feb

qt2 � 3 ∑
t � Feb

qt0
�

2 (5.15)

Similarly, to ensure the Home/Away/Bye sequences stated in O3, additional vari-
ables are introduced for every team and time point t0 that state when long unliked
sequences occur starting at t0. For the full list of constraints, the reader is referred
to Appendix A.

Chapter 5. Time-tabling and Sports Scheduling 74

5.2.4 Redundant Constraints

There are certain simple truths about DDRR schedules that are implicit in any
DDRR encoding and that can be explicated in order to improve the operational
performance of integer local search.

Such redundant constraints are often employed in other domain-independent
frameworks to improve a representation with respect to the operational behavior
of a solver when applied to it. In constraint programming, for example, redundant
constraints can strengthen the propagation. In integer linear programming, redun-
dant constraints are used to tighten the LP relaxation. Also, redundant constraints
have recently been used for local search by Kautz and Selman [93] in SAT plan-
ning models. The following redundant constraints are used in the DDRR model.7

Every team is bye twice.

∑
t

xi0t � 2 � for all i (5.16)

One team is bye in every time slot (holds for an odd number of teams only).

∑
i

xi0t � 1 � for all t (5.17)

Half the teams are home in each slot.

∑
i

xiit � 4 � for all t (5.18)

5.2.5 Previous (Multi-Stage) Approaches

The previous strategies to solve the ACC problem [114, 69] factor the problem
into several stages, following earlier approaches to sports scheduling by Cain [25],
Schreuder [129], and others. Each stage of the problem is solved individually and
ensures that a subset of the full set of constraints are met. Solving all stages in
sequence yields complete timetables that meet all the constraints.

(i) The first stage of the multi-stage approach generates so-called patterns:
A feasible pattern is a sequence of H/A/B (one letter for each slot of the
DDRR) which meets the particular mirroring scheme and all given H/A/B
constraints.

7We notice that there is an interesting connection to the pattern set approaches: The redundant
constraints (5.17) and (5.18) express exactly the constraints on grouping patterns into pattern sets.

Chapter 5. Time-tabling and Sports Scheduling 75

(ii) The second stage produces so-called pattern sets: a number of patterns (as
many as there are teams) are selected from the collection of patterns into a
pattern set. The chosen patterns of each pattern set must meet the condition
that for every slot, there must be four patterns with an H, four with an A and
one B. Additionally, one can require a pattern set to minimize the number
of less preferred patterns [114] (e. g. requirement O1).

(iii) The third stage, finally, renders the complete timetables. A timetable is
computed on the basis of a given pattern set by assigning one team to each
pattern in the set. A timetable is feasible if all problem constraints are met.
In [114] ACC timetables are computed with an additional intermediate stage
that assigns team placeholders to pattern sets first.

To solve the problem, the N&T approach [114] uses explicit enumeration in stage
(i), integer programming in stage (ii), and integer programming and explicit enu-
meration in stage (iii). This indicates the difficulty of solving the problem.

Henz [69] uses constraint programming to solve the individual stages. The CP
approach, implemented in Oz [136], turns out to be significantly more efficient
than integer programming with explicit enumeration, primarily because the time-
consuming final explicit enumeration phase is more efficiently accomplished by
using constraint propagation.8

5.2.6 Experimental Results under Varied Constrainedness

In this section, we describe the experimental results of integer local search. All
above constraints were modeled with the AMPL algebraic modeling language.
After AMPL preprocessing, the constraints were handed to WSAT(OIP) in ex-
panded form using an AMPL-WSAT(OIP) interface (Appendix A contains the full
AMPL model).

Figure 5.1 shows a timetable found by WSAT(OIP) for the entire set of con-
straints given above (R0–R10,O1–O3). The quality of the timetable improves the
official timetable given in [114] with respect to several formalized quality mea-
sures (note that additional informal considerations lead to the selection of the
official timetable [114]).

OAA HB3 AB3 HB
�

3 AB
�

3 bad A-slots
1 3 1 5 4 0 4

The initial experiments of WSAT(OIP) were carried out before all require-
ments were available and lead to promising results.9 As more and more constraints

8Oz is publically available from ������� � � 	 	�� ��� � ������ � � � � � � � �	���!�	 .
9I thank Michael Trick and George Nemhauser for sharing the requirements at an early stage.

Chapter 5. Time-tabling and Sports Scheduling 76

slots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Clem 1 � 8 � 6 � 4 � 3 � 2 � 5 � 9 � 8 � 6 � 7 0 � 4 � 3 � 2 � 5 � 9 � 7 0
Duke 2 � 5 � 7 � 9 � 4 � 1 � 3 0 � 5 � 7 � 8 � 6 � 9 � 4 � 1 � 3 0 � 8 � 6
FSU 3 � 6 � 9 � 7 � 1 0 � 2 � 8 � 6 � 9 � 5 � 4 � 7 � 1 0 � 2 � 8 � 5 � 4
GT 4 � 7 � 8 � 1 � 2 � 5 0 � 6 � 7 � 8 � 9 � 3 � 1 � 2 � 5 0 � 6 � 9 � 3
UMD 5 � 2 0 � 6 � 9 � 4 � 1 � 7 � 2 0 � 3 � 8 � 6 � 9 � 4 � 1 � 7 � 3 � 8
UNC 6 � 3 � 1 � 5 � 8 � 7 � 9 � 4 � 3 � 1 0 � 2 � 5 � 8 � 7 � 9 � 4 0 � 2
NCSt 7 � 4 � 2 � 3 0 � 6 � 8 � 5 � 4 � 2 � 1 � 9 � 3 0 � 6 � 8 � 5 � 1 � 9
UVA 8 � 1 � 4 0 � 6 � 9 � 7 � 3 � 1 � 4 � 2 � 5 0 � 6 � 9 � 7 � 3 � 2 � 5

te
am

s

Wake 9 0 + 3 � 2 � 5 + 8 � 6 + 1 0 � 3 + 4 � 7 + 2 + 5 � 8 + 6 � 1 � 4 + 7

Figure 5.1: A Schreuder-timetable computed by WSAT(OIP) from an AMPL model of
the constraints R1–R10, O1–O3. The format is the same as the one used in [129]. � 1
means home against 1, � 1 means away at team 1, 0 means ’bye’. The particular run took
150s.

unfolded, the solution times increased. To capture this behavior, we next present
experimental results for a sequence of problems with increasing constrainedness.

Table 5.4 investigates the scaling of WSAT(OIP) with increasing constrained-
ness. The problem instances start from general constraints of the DDRR scheme
and successively incorporate more specific constraints. The number of solutions
to the problem was computed using the Oz constraint program by Henz [69].10

We additionally ran an IP branch-and-bound procedure (CPLEX 5.0) on the given
problems to obtain an estimate of its capabilities for the monolithic 0-1 ILP.

Discussion of Results

The approach by Nemhauser and Trick [114] yielded a complete set of solutions
for the problem of tightness t9 with a turn-around time of 24 hours. The multi-
stage constraint program [69] is currently the most efficient approach and finds
all solutions to the full problem, requiring only a few minutes (depending on the
exact tightness of the problem). Interestingly, opposed to local search, runtimes of
the CP approach to find the first solution tend to decrease the tighter the problem is
constrained. Conversely, it occasionally exhibits problems on loosely constrained
variants of the problem, when the deterministic search happens to enter large sub-
trees that do not contain solutions. For example, tightness t4 does not render a so-
lution within hours. When the number of generated patterns (first stage) is large,

10I thank Martin Henz for sharing the Oz program. Note that our tightness level t5 corresponds
to tightness 0 reported in [69].

Chapter 5. Time-tabling and Sports Scheduling 77

constraints comment tight n m #sols WSAT(OIP) CPLEX

added � red. � red.. 5.0
(5.1)-(5.4) DDRR t0 1620 1737 unkn 1s 0.1s 183s
(5.5)- (5.7) H/A/B t1 1620 2286 unkn 15s 0.4s 649s
Weekends H/A/B t2 1620 2520 unkn 79s 1s 873s
(5.8)- (5.9) Mirror t3 1620 3249 � 1e5 27s 9s 10462s

(5.10)-(5.12) R2,4,5 t4 1620 3285 – 631s 162s CNS
Idiosyncratic R6-R9 t5 1339 3052 321 245m

�
1664s CNS

(5.13) O1 t6 1335 3047 321 – 1484s CNS
(5.14)-(5.15) O2 t7 1359 3069 272 – 2128s CNS
Opt. H/A/B O3 t8 1773 3466 88 – 2847s CNS
Recent add. R10 t9 1773 3479 87 – 1798s CNS

Table 5.4: Experimental results for increasing constrainedness. Columns report the con-
straints added, the ‘tightness’ level, the number of variables and constraints of the prob-
lem, the total number of solutions (‘unkn’ means unknown). The WSAT(OIP) columns
report on runtimes with (+red.) and without (� red.) redundant constraints (5.16)-(5.18).
All runtimes are time to first solution on an Intel Pentium Pro 300Mhz (’–’ means no
experiment performed, CNS=could not be solved in 12h runtime). For WSAT(OIP), run-
times are averaged over 50 runs (� red) and 20 runs (� red), and 10 runs

� � . The maximal
standard error in column � red is 13%.

the CP approach can also run into difficulties if useless pattern sets are produced
first.

Integer Local Search. The general observation from Table 5.4 is that as the the
number of solutions decreases, runtimes of WSAT(OIP) increase, as is to be ex-
pected with local search. What is surprising, however, is that solutions are still
found when the constrainedness has reached a level that rules out all but 87 solu-
tions! Another observation is that the redundant constraints play an important role
for local search in this problem, in particular as the constrainedness is increased
(thus we did not conduct experiments above tightness level t5 without redundant
constraints). More evidence is provided by the fact that posting additional con-
straints which do not change the number of solutions tends to decrease runtime.

Throughout the experiments, WSAT(OIP) was run in single-solution mode, al-
though a multi-solution search would arguably be more appropriate for a compari-
son to the previous approaches. A multi-solution search would involve continuing
search after having found a feasible solution, while avoiding previously gener-
ated timetables. Possibly, the search could be encouraged to remain ‘close’ to the
previously found solutions.

Chapter 5. Time-tabling and Sports Scheduling 78

Comparison. Since local search is incomplete, it is not possible to search for the
complete set of solutions and then stop. On the other hand, to be able to solve
the problem, restrictive assumptions are made in the N&T and CP formulations
(the mirroring scheme) which rule out a number of solutions to the problem that
would otherwise be considered perfectly acceptable. The main advantage of the
completeness of N&T and CP for this problem is thus their ability to detect when
no solutions exist to the constraints.

The main disadvantage of a pure local search approach is thus that there is no
response if no feasible solution exists to a particular model. However, since the
problem is formulated using integer constraints, LP relaxations can be employed:
When tightening the constraints leads to IP infeasibility, the corresponding LP
will sometimes also be infeasible. LP infeasibility can normally be determined
efficiently by linear programming. For example consider tightening constraint
(5.5) to “treating bye as away, no more than 1 away game in a row”; the LP
relaxation of the resulting model is proved infeasible by CPLEX in 75 seconds.
Also, existing LP presolving can sometimes prove infeasibility. For instance, we
accidentally swapped incorrect slots of the mirroring scheme and obtained an in-
feasibility warning from the AMPL presolver instantly.

Parameters. WSAT(OIP) was run with parameters t � 2, pnoise � 0
 01,
� �����

� � ����� =2e6, pzero � 0
 9. Note that the runtime variation due to parameter vari-
ations turned out to be small (similar to the standard error for 20 runs). For exam-
ple, changing parameters to pnoise � 0
 2, or additionally turning off history yielded
similar results for these problems. However, a rigorous experimental analysis is
beyond the scope of this thesis.

To obtain an estimate of the capabilities of IP branch-and-bound for the mono-
lithic 0-1 ILP, we also ran CPLEX on the given problems. All results report on
standard parameter settings. CPLEX was further tried with a feature (‘sosscan’)
that identifies special ordered sets (sos type 3, i. e. a set of binary variables that ap-
pear in a less-than or equality constraint with +1 coefficients and an RHS value of
+1), to apply special branching strategies. Despite 20% of the constraints being of
this type, performance degraded with this option. We also attempted other option
changes which did not improve performance, e. g. changing the branching direc-
tion (by setting the branch variable first to one in order to improve propagation),
and “strong branching”, recommended for hard pure integer programming prob-
lems. Note that we cannot rule out that a different IP model or other parameter
settings might improve performance.

Chapter 5. Time-tabling and Sports Scheduling 79

5.2.7 Minimal Distortion Mirroring

As mentioned earlier, in order to comply with the given team pairing constraints
that are in conflict with the mirroring scheme, the previous approaches swap entire
slots. Swapping slots, however, is problematic when several preassigned team
pairings are in a conflict: For example, suppose that the team pairing � 1 � 2 � is
required in slots t1 � t2 while pairing � 3 � 4 � is required in slots t1 � t3 (neither t2 nor
t3 mirroring t1). In this case, if t2 �� t3, swapping slots is not possible because two
swaps would be required that are inconsistent with each other. To handle this case,
we will resort to swap individual opponents instead of entire columns.

We will refer to the slot mirroring some slot t in the original mirroring scheme
as t

�

. Consider the case in which the input constraints fix the team pairing � a � b �
for slots t1 � t2 wherein t

�

1 �� t2 (i. e. t2 does not mirror t1). Now instead of swap-
ping column t

�

1 and t2 like before, we limit the distortion of the original mirroring
scheme. The idea is to pick two suitable teams c1 and c2 (called sweeper teams)
and make the following changes: Relax all mirror constraints involving a � b � c1 � c2

for the slots t1 � t �

1 � t2 � t
�

2 and add constraints to fix the pairings of the sweeper teams.
Figure 5.2 illustrates the situation for the case of t1 and t2 both being in the first
half of the season.

In this minimal distortion mirroring11, the basic mirror pattern is mostly pre-
served and additional team pairing requirements can be included. The distance to
return games remains the distance of the perfect mirroring for all pairings except
� i � j � � a � b � c1 � c2

� 2 � i �� j, thereby improving the mean distance between a game
and its return game.

t1 � ��� t2 t
�

1 ��� � t
�

2� a � b � � a � b � ��� � a � c1
� � a � c2

�
� c1 � c2

� � c1 � c2
� � b � c2

� � b � c1
�

Figure 5.2: Minimal distortion mirroring

Modeling

In order to formulate minimal distortion mirroring, we employ additional vari-
ables to select the teams c1 and c2. For each team 1

�
i
�

9, the binary variable
yi � 1 iff i is a sweeper team (of course, teams a and b cannot be sweeper teams).
First, to achieve a minimal distortion, we require the number of sweeper teams to
be minimal, i. e. ∑i yi � 2.

11I thank Martin Henz for coining this term in a discussion.

Chapter 5. Time-tabling and Sports Scheduling 80

Next, we need to reformulate the mirror constraints, choosing a perfect mirror
Mp � � � s � s � 9 : 1

�
s
�

9 � . While we mirror byes exactly as before (5.9), the
following constraints substitute (5.8).

Mirror return games as usual except in slots t1 � t �

1 � t2 � t
�

2.

xi js � x jit for all i �� j and � s � t � Mp; s � t �� � t1 � t �

1 � t2 � t
�

2
� (5.19)

In slots t1 � t �

1 � t2 � t
�

2, mirror return games as usual except for games against con-
flict teams (a and b) and the (current) sweeper teams.

yi � y j � � xi js � x jit for all i �� j; i � j �� a � b
and � s � t � Mp; � s � t � � � t1 � t �

1 � t2 � t
�

2
� �� � (5.20)

In slot t1 and t2, if i and j are sweeper teams, they must meet.

� yi
�

y j � � xi jt � x jit for all i � j; i � j �� a � b; t � � t1 � t2 � (5.21)

In slot t
�

1 and t
�

2, if i is a sweeper team, it must meet a conflict team.

yi �
�

j � � a � b
� xi jt � x jit for all i �� a � b; t � � t �

1 � t
�

2
� (5.22)

Note that (5.21) and (5.22) are still linear inequalities. Given the above model
of the ACC problem (R1–R9), we obtain the timetable in Figure 5.3 together
with the automatically assigned sweeper teams from WSAT(OIP) (average runtime
was not measured in this experiment). In contrast to the MNT mirror, which has
an average distance between pairings of 8.11, the minimal distortion schedule
achieves a distance of 8.80.12 The quality vector of timetable 5.3 is:

OAA HB3 AB3 HB
�

3 AB
�

3 bad A-slots
0 4 3 5 4 1 3

12Of the 9 � 9 � 81 return games (counting byes), only 8 have a distance of 7 from their first
leg, all others have a distance of 9.

Chapter 5. Time-tabling and Sports Scheduling 81

slots
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

t �1 t �2 t1 t2

Clem 1 � 2 � 6 � 8 0 � 4 � 7 � 9 � 5 � 6 � 2 � 3 � 8 0 � 4 � 7 � 9 � 5 � 3
Duke 2 � 1 � 3 � 5 � 9 � 7 � 4 0 � 8 � 3 � 1 � 6 � 5 � 9 � 7 � 4 0 � 8 � 6
FSU 3 � 8 � 2 � 7 � 4 � 9 � 6 � 5 0 � 2 � 8 � 1 � 7 � 4 � 9 � 6 � 5 0 � 1
GT 4 � 5 � 8 � 9 � 3 � 1 � 2 � 6 � 7 0 � 5 � 8 � 9 � 3 � 1 � 2 � 6 � 7 0
UMD 5 � 4 � 9 � 2 � 7 � 6 0 � 3 � 1 � 8 � 4 � 9 � 2 � 7 � 6 0 � 3 � 1 � 8
UNC 6 � 7 � 1 0 � 8 � 5 � 3 � 4 � 9 � 1 � 7 � 2 0 � 8 � 5 � 3 � 4 � 9 � 2
NCSt 7 � 6 0 � 3 � 5 � 2 � 1 � 8 � 4 � 9 � 6 0 � 3 � 5 � 2 � 1 � 8 � 4 � 9
UVA 8 � 3 � 4 � 1 � 6 0 � 9 � 7 � 2 � 5 � 3 � 4 � 1 � 6 0 � 9 � 7 � 2 � 5

te
am

s

Wake 9 0 � 5 � 4 � 2 � 3 � 8 � 1 � 6 � 7 0 � 5 � 4 � 2 � 3 � 8 � 1 � 6 � 7

Figure 5.3: A minimal distortion timetable from WSAT(OIP), meeting the requirements
R1–R9. Preassigned games that conflict with the regular mirror are shown in boldface. To
correct the conflict, two sweeper teams are selected, which happens automatically when
the described model is solved. Games that do not follow the standard mirroring scheme
are drawn in boxes (as well as the sweeper teams).

5.3 CONCLUSIONS

This chapter has studied two hard timetabling/scheduling problems, The Progres-
sive Party Problem and scheduling of the ACC97/98 basketball conference. Both
problems can be formulated as 0-1 integer linear programs. It has reported the first
ILP model for the ACC problem that we are aware of and improved the existing
ILP model for progressive party.

To the best of our knowledge, no previous techniques have been reported
to solve either of the problems from a given 0-1 ILP representation (Smith et
al. [135] report a number of unsuccessful attempts using integer programming
branch-and-bound). From the viewpoint of integer programming, the contribu-
tion of this chapter is thus to demonstrate that both problems can be solved in a
0-1 integer constraint encoding using a general solver (WSAT(OIP)).

From the applications viewpoint, we have shown in the first case study that the
progressive party problem can be solved efficiently and robustly using WSAT(OIP),
i. e. the strategy scales gracefully with increasing constrainedness of the instances
(the original study [135] investigated only one instance).

The second case study has demonstrated that integer local search is able to find
solutions to ACC97/98, a difficult and complex timetabling problem. We have
shown that our approach yields solutions competitive with the official timetable
(reported in [114]). We also presented minimal distortion mirroring, a mirroring

Chapter 5. Time-tabling and Sports Scheduling 82

scheme that can still handle the situation when team pairing requirements conflict
with swapping time slots of a mirroring scheme, the strategy employed in previous
(factorization) approaches.

Additionally, the second case study in this chapter has studied the behavior of
WSAT(OIP) across a range of increasingly tight problems. While we have seen
that the runtime of local search does increase on very tight problems, we have
demonstrated that even extremely tight problems can be solved by WSAT(OIP).
Moreover, we have shown that adding redundant constraints can help local search
to find solutions more quickly.

Chapter 6

Covering and Assignment

This chapter investigates two integer optimization problems, radar surveillance
and course assignment. For both problems, the 0-1 OIP encoding is straightfor-
ward. Structurally, the problems are extensions of set covering and generalized
assignment, respectively. The first problem stems from an industrial project at the
Swedish Institute for Computer Science (SICS), while the second problem arose
from an operating application at the Universität des Saarlandes. Both studies in
this chapter will focus on performance variation of integer local search and IP
branch-and-bound with increasing problem size.

Further, using the radar surveillance problems, we will perform experiments to
determine the impact of the OIP representation on performance. The experiments
demonstrate that the WSAT(OIP) method critically depends on the soft constraint
representation using constraint bounds.

6.1 RADAR SURVEILLANCE COVERING

The problem considered in this section is related to the classic NP-hard set- cov-
ering problem (see (SCP) in the Introduction). It extends set covering by compli-
cating side-constraints that are specific to the radar domain and which prevent a
direct application of domain-specific heuristics from the literature. On the other
hand, its particular structure is well-suited for an encoding into OIP and makes it
an intersting test case for integer local search.

6.1.1 Problem Description and Formulation

The case study and its basic modeling originate from a project currently carried
out at the Swedish Institute of Computer Science (SICS) [24]. The goal is to plan
radar surveillance of a geographic area. As customary in the radar surveillance
domain, the area is divided into hexagonal cells. As part of the problem statement,

83

Chapter 6. Covering and Assignment 84

a number of radar stations are given that are located in fixed cells on the map. The
problem is to find a static plan that determines for every cell c by which radar
stations c is observed, subject to the constraints that each cell be observed by at
least three stations. Figure 6.1 gives an illustration.

Each radar station can divide its signal scope circle into six sectors and can
vary the signal strength in each sector independently from zero to some given
maximum distance dmax. Aside from some insignificant cells, the majority of the
cells must be covered by 3 radar stations (desired coverage 3) and all coverage
beyond this is to be minimized (over-coverage). Small over-coverage is desired
for economic reasons as well as for reasons of detectability, i. e. radar can more
easily be detected in areas with a high exposure.

Because of the placement of stations, some cells cannot (physically) be cov-
ered by at least three stations and hence must be covered by as many stations as
possible (and can then be factored out from the problem). In the original model,
a radar station can be switched on to cover only the cell that it is located in. It
always covers it provided it is switched on for some sector.

sector 2

distance

sector 1

1 2

2

3

radar station

3

3

Figure 6.1: Radar map with hexagonal cells.

The problem can be modeled by the following over-constrained 0-1 integer
program. For every combination of radar unit u, sector 1

�
s
�

6 and possible
observation distance 1

�
d
�

dmax, a Boolean variable σusd is introduced. Variable
σusd � 1 if and only if station u is switched on in sector s at distance d. The set
of all cells that station u reaches in sector s at distance d is denoted by Cusd . The
over-constrained integer program (OIP) model is as follows.

Cover each cell. There are significant and insignificant cells. While insignif-
icant cells should not be observed, significant cells must be covered by at
least three stations.

∑
c � Cusd

σusd � Dc � for all c � (6.1)

Chapter 6. Covering and Assignment 85

where for all cells c, Dc � 3 if c is significant and Dc � 0 if c is insignifi-
cant. For any c, σusd leads to all stations u that can reach c (and s � d yields
their respective observation field in terms of sector and distance where c is
reached).

Consistency. If station u is switched on at distance d � 1 in sector s, it is also
be switched on at distance d � 1 in sector s.

σusd � σusd �
�

0 for all u � s � 1 � d
�

dmax � d
� � d � 1
 (6.2)

Soft Constraints. Minimize over-coverage. Cells should not be exposed be-
yond their desired coverage.

(soft) ∑
c � usd

σusd
�

Dc � for all c
 (6.3)

It is important to note that in order to minimize the total over-coverage,
minimizing the number of violated soft constraints is not sufficient. Over-
coverage can occur in different degrees for each cell.

Minimizing Over-coverage in the OIP

To understand the OIP minimization problem, we first observe that it is confined:
for every soft constraint cx

�
d, there exists a hard constraint cx � d. Therefore,

the OIP minimization problem has the linear objective function

min ∑
c
� ∑
c � Cusd

σusd � Dc � (6.4)

and can directly be translated to an integer linear program using (6.4). The ILP
can be approached with IP branch-and-bound and the linear relaxation can be used
to compute lower bounds on the over-coverage.

Relation to Set-Covering

As observed above, the radar surveillance problem shares some of its structure
with the set covering problem (SCP). It is the side constraints of physical con-
sistency (6.2) that avoid the direct application of domain-specific methods for
set-covering. Also, it should be noted that we are not currently aware of an NP-
hardness result for the radar-surveillance domain.

Chapter 6. Covering and Assignment 86

6.1.2 Experimental Results under Varied Problem Size

This section reports on experimental results for a collection of radar surveillance
instances that were generated according to different characteristics. All instances
were randomly generated and vary in size (100 to 2100 cells), in the percentage
of insignificant cells (0%, 2% and 5%), and in the spread of radar stations on
the map (even or uneven). The density of stations remained constant. Since real
placement information for radar stations was not available, insignificant cells were
randomly positioned on the map. Table 6.1 summarizes the experimental results,
based on a suite of radar instances generated at SICS. We ran integer local search
WSAT(OIP), IP branch-and-bound CPLEX 5.0, a 0-1 simulated annealing strategy
GPSIMAN [33], and the CPLEX 5.0 linear programming optimizer.

Parameters. WSAT(OIP) was run with standard parameters (phard � 0
 8 � pzero �
0
 5 � pnoise � 0
 01 � t � 1) and with varying settings of

� ��� � � ����� for the different
problem sizes: 30K, 100K, 300K, 500K respectively. CPLEX was run with dif-
ferent variations of the standard/auto parameter settings. We only report standard
parameters since this yielded the overall best performance for the collection of
instances. CPLEX was limited to 12h of computation time and did not reach the
given memory limit of 400MB. For GPSIMAN, we used the following parameters:
Maximum neighborhood size suggested by the solver (372, 776, 4447, 10772, re-
spectively), 20 runs, 100 iterations, highest level of reoptimization, default cooling
schedule (including re-heating).

Experiments with Constraint Programming. Various models (finite domain in-
teger and Boolean) and enumeration schemes have been tried [24]. Although
small problems are solved to optimality quickly, the larger sample instances could
be solved with large over-coverage values only, given reasonable time. We hy-
pothesize that it is thrashing that makes these problems hard for a constraint pro-
gram that backtracks chronologically: Two distant radar stations hardly affect
each other, yet with chronological backtracking the state of one station is only
changed after visiting the complete subspace of configurations of many other sta-
tions.

Discussion

According to Haridi et al., the long-term goal of the project is to cover a large
geographical area with thousands of cells. It is thus an important criterion of
success that the solution strategy scale well. The experimental results clearly show
that while both IP branch-and-bound and GPSIMAN can handle small problems
efficiently, problems of realistic size are beyond their size limitations.

C
hapter

6.
C

overing
and

A
ssignm

ent
87

size n m spread %sig LP oc* CPLEX GPSIMAN WSAT(OIP)
lb time best to-best total best mean time/r best mean m-best

100:22 434 606 even 100 0 0s 0 opt 1s 1s opt 0.2 10s opt 0.0 0.0s
200:44 933 1273 even 100 1 2s 1 opt 7s 7s opt 2.3 35s opt 1.0 0.0s

900:200 4616 6203 even 100 2 70s 2 opt 2213s 2213s 3 12.4 528s opt 2.0 0.6s
2100:467 10975 14644 even 100 3 391s 3 4 9.7h 12h – – – opt 3.0 1.9s

100:22 410 581 even 98 1 0s 1 opt 1s 1s opt 1.8 9s opt 1.0 0.0s
200:44 905 1246 even 98 2 2s 2 opt 7s 7s opt 4.4 34s opt 2.0 0.1s

900:200 4623 6174 even 98 4 88s 4 opt 676s 676s 17 31.3 700s opt 5.2 4.5s
2100:467 10989 14595 even 98 11.5 661s 12 14 9.1h 12h 14 54.0 3462s 13 14.9 18.4s

100:22 371 518 uneven 100 3 0s 3 opt 1s 1s opt 3.3 7s opt 3.0 0.1s
200:44 772 1065 uneven 100 0 1s 0 opt 4s 4s opt 0.8 24s opt 0.0 0.1s

900:200 4446 5699 uneven 100 5 46s 5 6 1293s 12h 6 15.4 611s opt 5.0 3.6s
2100:467 10771 14002 uneven 100 8.1 362s 9 11 4.2h 12h – – – 10 10.8 11.7s

100:22 371 518 even 95 4 0s 4 opt 0s 0s 5 6.8 9s opt 5.0 0.1s
200:44 772 1065 even 95 5 2s 5 opt 3s 3s 14 18.3 28s opt 5.3 1.1s

900:200 4446 5699 even 95 19 92s 19 opt 456s 456s 61 75.3 667s 25 27.4 9.3s
2100:467 10771 14002 even 95 64.25 740s - 67 3077s 12h – – – 96 102.4 21.1s

Table 6.1: Experimental comparison for radar surveillance problems: Columns are problem size in number of cells and
stations (stations have a maximal reach of dmax

� 4), encoding size in number of variables n and clauses m, spread of
stations on the map, percentage of significant cells, and LP lower bound for over-coverage. oc* gives optimal over-coverage
(integer). CPLEX 5.0 columns are: best over-coverage found, time-to-best solution, and total runtime. CPLEX was run with
standard/auto parameter settings. GPSIMAN: best over-coverage found within 20 runs, mean over-coverage over all runs,
and time per run. WSAT(OIP): best over-coverage found within 20 runs, mean over-coverage over all runs, and mean-time
to best over-coverage over all runs. All runtimes measured on a SPARCstation 20.

Chapter 6. Covering and Assignment 88

In contrast, WSAT(OIP) is very effective on the sample problems of this do-
main, even for realistically sized problems. Only one class of problems with many
insignificant cells (essentially ‘holes’ in the map) was difficult to solve. We did not
systematically make attempts to improve performance on these instances because
it is unknown if realistic maps would show this characteristic.1

From the LP optimal solutions, one observes that for many instances of the
sample, the LP relaxation is tight, i. e. the optimal value of the over-coverage is
the same as the LP lower bound.2 Such problems are usually easier than problems
with larger relaxation gaps (under otherwise similar parameters). The difficulty
for the IP is thus closely linked with the size of the problems. Interestingly, in
many cases the LP relaxation optimization takes longer than computing the opti-
mal IP solutions using WSAT(OIP).

Dropping the Constraint Bounds

The surprising effectiveness of WSAT(OIP) in this domain raises the question what
the reasons are for the performance. To address this question, we performed the
following experiment, which is based on the hypothesis that the performance is
related to the OIP problem structure. Each problem instance was modified by
changing the bounds of the soft constraints from ‘

�
3’ to ‘

�
0’. From Proposition

4 (in Section 3.1.3), we know that tightening bounds of a confined OIP does not
change the set of solutions. Further, we can account for the shift in the objective
function by substracting a value from the resulting objective, 3ns (if ns is the
number of insignificant cells).

Table 6.2 reports on the experimental results. Parameters were manually re-
tuned to adjust for the change of the representation, resulting in switching off
both the tabu mechanism and history-based tie breaking. The results in the table
demonstrate that the constraint bounds are critical to obtain the previous perfor-
mance. This result is consistent with our expectation because dropping the con-
straint bounds effectively makes the repair strategy blind with respect to which
soft constraints are violated. When dropping the bounds, the search thus looses
its focus and blindly makes perturbations of the variable values.

1Increasing noise and decreasing phard provides some better solutions.
2We thank Alexander Bockmayr for initially pointing this out.

Chapter 6. Covering and Assignment 89

size spread %sig oc* WSAT(OIP)
STD no-bounds total

100:22 even 100 0 opt opt 16s
200:44 even 100 1 opt 8 48s

900:200 even 100 2 opt 47 314s
2100:467 even 100 3 opt 93 1144s

100:22 even 98 1 opt 3 14s
200:44 even 98 2 opt 9 58s

900:200 even 98 4 opt 56 448s
2100:467 even 98 12 13 166 866s

100:22 uneven 100 3 opt 5 16s
200:44 uneven 100 0 opt 1 58s

900:200 uneven 100 5 opt 36 564s
2100:467 uneven 100 9 10 102 1132s

100:22 even 95 4 opt 10 16s
200:44 even 95 5 opt 12 58s

900:200 even 95 19 25 95 290s
2100:467 even 95 - 96 266 756s

Table 6.2: Performance drop of WSAT(OIP) when dropping constraint-bounds.
STD repeats the optimal solutions from the previous table, ‘no-bounds’ reports on
the best solution found in 20 runs, and total reports total runtime.

Chapter 6. Covering and Assignment 90

6.2 COURSE ASSIGNMENT

The course assignment problem considered in this section deals with assigning
students into pre-planned courses according to their preferences. The study was
carried out based on real data of the School of Law of the University des Saarlan-
des in the semesters of Summer 97 and Winter 97/98, and the obtained results were
used by the school to assign students to classes. As the semesters have different
numbers of students, the task created a collection of real problems of varying size,
ready-to-use for an investigation on real data. The problem under consideration is
related to the generalized assignment problem (GAP) but includes additional side
constraints.

6.2.1 Problem Description and Formulation

The scenario is the following. Students of a law school (up to 500 per semester)
have to be assigned to courses (up to 30) with pre-assigned time slots and rooms.
The law school offers to use a Web based interface3 to register for a number of
legal fields according the students’ current interests. Further, students may submit
a timetable stating the preferred time slots and the slots which they are unable to
attend (disliked slots or aversions). As several courses are taught in each field, the
aim is to assign students to courses maximizing the overall satisfaction (satisfying
aversions and preferences) such that every student is assigned to one course in
every one of her registered fields, while the capacity of the courses is not exceeded
and the courses are not filled too sparsely.

The formulation of the problem is stated in the following, Table 6.3 summa-
rizes the indices, constants and sets. The set F denotes the different legal fields,
each field f � F is represented by a set C f of courses. The set C contains all
courses and and ck is the desired number of participants of course k � C (usu-
ally the average number of participants of a course within the field). The fields for
which a student i is registered are given by Ri

�
F . Further, the student preferences

are part of the problem statement and are encoded by binary constants, pik � 1 if
student i prefers the slot of course k and otherwise 0. Conversely, aik � 1 if i has
dislikes course k (because k is taught during a time slot which i cannot attend).

The aim is to fill the courses within given upper and lower limits while mini-
mizing the number of disliked assignments and minimizing the number of unsat-
isfied preferences (in this order). The problem can be encoded as follows: For
every student i and course k, use a variable xik � 1 if i is assigned to k, otherwise
0 (if i is not registered for the field of course k, xik is 0).

3An application provided to the students at Saarbr ücken by Reinhard Schu.

Chapter 6. Covering and Assignment 91

Index Definition
i Index for students.
k � l Indices for courses.
f Index for field.
Symbol Definition
F Set of legal fields.
C Set of all courses.
Ri Fields which student i is registered for.
C f Set of courses in field f .
ck Desired number of participants of course k.
pik binary constant, 1 iff i prefers k.
aik binary constant, 1 iff i dislikes k.
mi Upper bound on satisfiable preferences for i.
ucap, lcap Relative upper/lower capacity limits for courses.

Table 6.3: Parameters for the course assignment problem.

OIP Formulation. The OIP formulation uses the following constraints.

Every student must attend exactly one course of each field she is registered for.

∑
k � C f

xik � 1 � for all students i, and fields f � Ri. (6.5)

The number of participants of a course may not exceed the desired number of
participants by more than ucap and not fall below lcap.

lcap � ck
� ∑

i
xik
�

ucap � ck � for all courses k � C. (6.6)

No student can visit two courses that temporally overlap.

xik � xil
�

1 � for all students i, registered fields s � t �
such that k � Cs � l � Ct � und k � l overlap
 (6.7)

Soft Constraints. For every student, minimize the number of aversions, i. e. the
number of assigned courses that are disliked due to their time slot.

(soft) ∑
1 � k � s

aik � xik
�

0 � for all students i. (6.8)

Chapter 6. Covering and Assignment 92

Soft Constraints. For every student, minimize the number of unsatisfied pref-
erences.

(soft) ∑
1 � k � s

pik � xik � mi � for all students i. (6.9)

where mi is an upper bound on the number of satisfiable preferences: mi �
min ���Ri � � ∑ j pi j

� for student i where �Ri � is the number of registered fields
and ∑ j pi j is the number of preferred courses of i.

The reasoning behind the bound is as follows: Obviously, the number of
registered fields is an upper bound on the number of satisfiable prefer-
ences. However, if a student has less preferred courses than registered
fields, the number of satisfiable preferences is the maximum number of
non-overlapping preferred courses that cover all registered fields. To keep
the modeling simple, however, we approximate this value by the number of
courses in preferred time slots ∑ j pi j, which is a valid upper bound.

In order to account for the order of the goals (minimize the number of aver-
sions first), constraints (6.8) are weighted such that constraints (6.9) are always
dominated.

ILP Reducibility

In order to apply lower bounding from the direct ILP conversion, we establish
confinedness first. The given OIP (6.5)–(6.8) is confined.
Proof: The soft constraints (6.8) are confined as all coefficients aik are positive.
The soft constraints (6.9) are confined because the upper bounds are valid accord-
ing to the above reasoning.

Given the confinedness of the problem, we can directly reduce it to an ILP
without the need to introduce additional variables. All IP branch-and-bound ex-
periments are subsequently applied to the transformed OIPs.

Note that in the given OIP minimization problem, the objective function value
is given as a pair A–P, where A is the number of aversions in the assignment
and P relates to the number of unsatisfied preferences. P may overestimate the
number of unsatisfied preferences because mi is an (approximate) upper bound on
the exact number of satisfiable preferences for student i.

6.2.2 Experimental Results under Varied Problem Size

Table 6.4 reports on results of CPLEX 5.0 and WSAT(OIP). Both solvers were
run with standard parameter settings. Additionally reported are CPLEX results
using strong branching. Several other parameter settings have been tried (e. g.

C
hapter

6.
C

overing
and

A
ssignm

ent
93

name n m LP opt MIP lb WSAT(OIP) CPLEX

�

CPLEX
�

A-P A-P best mean to-best best to-best total best to-best total

ss97-6 256 171 3-04 3-04

�

opt opt 0.0s opt 0.0s 0.0s opt 0.0s 0.0s
ws97-5 906 640 26-42 26-42

�

opt opt 2.1s opt 0.1s 0.1s opt 0.1s 0.1s
ss97-4 2288 1130 8-08 8-13

�

opt opt 0.2s opt 145s 68m

�

opt 10.1s 22.3s
ws97-3 3299 2416 2-21.8 3-24.5 3-33 3-35 6.3s 3-31 5.0s 4.9h

�

3-31[33] 46m[65s] 12h
ss97-2 8404 11350 9-10 9-10.2 9-39 9-40 39.0s 14-75 47m 12.2h

�

9-47[50] 12h[70m] 12h

Table 6.4: Course assignment, problem characteristics and experimental results. LP opt reports the optimal LP solution
value, MIP lb the best MIP solution found by branch-and-bound (

�

provably optimal). All objective values measure the
aversion–preference (A-P) values. WSAT(OIP) results report the best solution found over 20 runs, the mean best solution
found, and the mean time to best solution. CPLEX

�

5.0 report the best solution found, the time to the best [and second-best]
solution, and the total runtime (including optimality proof if the IP optimum was found). Column CPLEX

�

reports results
obtained with the ‘strong branching’ strategy. All runs performed on an Intel Pentium Pro 300Mhz running Linux.

Chapter 6. Covering and Assignment 94

different root heuristics) but did not improve performance. CPLEX tree memory
was bounded to 400 megabytes to avoid paging, runs marked

�

were cut-off to
avoid paging and did not prove optimality.

Relation to the Generalized Assignment Problem

The standard generlized assignment problem can be formulated as follows. Let I
be a set of agents and J be a set of jobs. For i � I � j � J, define ci j as the cost of
assigning job j to agent i, ri j as the resource required by agent i to perform job j,
and bi as the capacity of agent i. Let xi j be the binary decision variable that is 1
if agent i performs job j and 0 otherwise. The Generalized Assignment Problem
(GAP) is

minimize ∑
i � I

∑
j � J

ci jxi j �
subject to ∑

i � I
xi j � 1 � j � J �

∑
j � J

ri jxi j
�

bi � i � I �
xi j � � 0 � 1 �

(GAP)

The course assignment problem differs from the standard GAP in the no-overlap
constraints (6.7) and in the capacity constraints (6.6) that enforce a lower level of
participation for every course.

Related Work on the GAP. Cattrysse and VanWassenhove [27] report that most
existing techniques for the GAP are based on branch-and-bound with bounds sup-
plied through heuristics and through relaxations of the original problem (not nec-
essarily linear programming relaxations). According to [27], bounds are usually
derived from relaxation of the assignment or capacity constraints and a variety of
techniques have been applied to the GAP. Some of the existing techniques might
thus be applied to the course assignment problems.

Chapter 6. Covering and Assignment 95

6.3 CONCLUSIONS

In this chapter, two 0-1 integer optimization problems, radar surveillance cover-
ing and course assignment, have been studied, whose difficulty to a large extent
is a result of their unavoidable size. For each of the problems, a confined OIP
encoding was given, which was directly converted to a corresponding ILP.

Experimental results of integer local search (WSAT(OIP)) and IP branch-and-
bound (CPLEX) have been reported for both domains. While for both domains,
similar results were obtained for small problem instances with both frameworks,
the experiments have shown that their scaling properties differ largely. Because
integer local search exhibits a much more graceful scaling, WSAT(OIP) was able
to outperform CPLEX by orders magnitude (runtime) on some of the largest given
problems.

Chapter 7

Capacitated Production Planning

��� � ��� �-	 � �-� � ����� � � �����(/	 �&�/� �
	 �&� � � �-��� ���&� � � � ��� ��� ���&�/	 ��� � � �
� ���/����� � �
� � �-��� ��� �/� �/� � ����� ��%� �+�/	��&� 	 ��� �*��	��&��� � � � ���
	 �+���.� /	��
�
� ��� � � ��� � �+���

[Nemhauser and Wolsey, 1988]

Production planning is an important task in manufacturing systems and gives
rise to a variety of optimization problems. Here we study a real-world lot-sizing
problem from the process industry (manufacturing of chemicals, food, plastics,
etc.). The problem is expressed as follows: given a set of products and a collection
of customer orders with due dates, construct a minimal-cost production plan such
that all orders are met in time without exceeding resource capacity. The total cost
of a plan consists of inventory and labor costs.

The problem under consideration is similar to the well-studied capacitated
lot-sizing problem (CLSP, see [43] for a survey) but includes the requirement of
discrete lot-sizes that prevents a direct application of domain-specific methods
from the literature [41, 94, 71]. We therefore approach the problem with a new
domain-independent heuristic for integer optimization, WSAT(OIP), and empiri-
cally compare it to a commercial mixed integer programming (MIP) branch-and-
bound solver (CPLEX 5.0).

This chapter describes a case study of WSAT(OIP) on a large CLSP with dis-
crete lot-sizes and fixed charges. We compare the experimental results on real data
to CPLEX applied to a tight integer programming model. We find that MIP branch-
and-bound can only solve a sub-class of the CLSP with discrete lot-sizes, namely
the problem where fixed charges and lot-sizes are equal. Further, WSAT(OIP) is
considerably more robust than CPLEX in finding feasible solutions in limited time,
in particular as the capacity constraints are tightened. With respect to production
cost, both methods find solutions of similar quality. We examine fixed-capacity

96

Chapter 7. Capacitated Production Planning 97

and varied-capacity problems. Using a Lagrangean relaxation technique we pro-
vide lower bounds that prove that the fixed-capacity problems are solved with
near-optimal overall cost. We show that substantial savings can be achieved by
varying capacity.

7.1 CAPACITATED LOT-SIZING

The problem under consideration can be classified as single-level, dynamic-de-
mand capacitated lot-sizing problem (CLSP) with discrete lot-sizes and fixed char-
ges. Given is a set of products and a number of customer orders (or forecasted
demands) with due dates on a finite planning horizon. The goal is to compute a
minimal-cost production plan such that all customer orders are met in time. No
lateness or shortage of orders is permitted. Products (or items) can be produced in
discrete periods of the planning horizon (weeks).

Because production consumes resources and resources have limited capacity,
items often have to be produced earlier than needed and carried to the period
where they are shipped. Such carrying incurs inventory cost (opportunity cost of
capital and storage cost) which is one of two cost factors in the problem considered
here. Solving the CLSP optimally is known to be NP-hard [19]. Table 7.1 specifies
the problem parameters.

The CLSP considered here has two particularities: (i) Items can only be pro-
duced in predefined quantities (lots) and setup costs are compensated by economic
production quantities (EPQs). At any time, production of item i is possible in
quantities of 0 or Ei � k � Li, where k � 0, Li is the lot-size and Ei is the EPQ for
item i (every EPQ is a multiple of the lot-size). (ii) The only resource is labor,
available in either one or two shifts in any period. The amount of available labor
has an associated cost (labor availability and consumption are expressed in cost
units). Thus, production cost is equal to the sum of labor and inventory costs.

In the problem, labor capacity can be varied between one and two shifts. Be-
cause less capacity enforces earlier production of items, a tradeoff exists between
labor and inventory costs. Because labor costs dominate inventory costs, reducing
labor is critical to substantially save costs. However, due to practical considera-
tions it is not acceptable to have too many labor level changes; thus the number of
labor level changes considered was limited to 2 in our experiments.

To optimize the overall problem, we take the approach to solve a series of
capacitated lot-sizing problems with different ‘labor profiles’ and choose the best
solution, as follows.

Chapter 7. Capacitated Production Planning 98

Index Definition
i Index for items/products.
t Index for time periods.
Symbol Definition
Li Lot-size of product i.
Ei Economic production quantity of product i.
Dit Demand of product i in time period t.
Tt Total labor units available in time period t.
Ri Unit labor requirement for product i.
Ci Cost of carrying product i per unit/period.
Ωit Future demand of product i starting period t.
T Number of periods.
N Number of items.
S Cost per labor shift.

Table 7.1: Parameters for the CLSP with discrete lot-sizes and fixed charges (eco-
nomic production quantities, EPQs).

Labor Profiles

Labor consumption varies between items and is expressed by parameters Ri in
terms of resource consumption per production of one unit of item i. In any period
t, the total labor consumption is limited by Tt , available in one or two shifts.
One shift incurs a per-week cost of S, two shifts incur 2S. A labor profile thus
corresponds to a set � � t � Tt � 1 � t

�
T � Tt � � S � 2S � � . Possible labor profiles are

restricted to the pattern 2-shifts/1-shift/2-shifts and can be denoted by an interval�
s1 � s2 � referring to periods s1
�
�
 s2 on one shift, and periods 1
�
�
 s1 � 1 and s2 �

1
�
�
 T on two shifts. The cost of a labor profile
�
s1 � s2 � is thus � T ��� s2 � s1 � 1 � �

2S � � s2 � s1 � 1 � S

Every labor profile has an optimal inventory cost. If labor could be freely

varied, the labor availability would have to be modeled with problem variables.
However, since the number of allowed labor profiles is small, we factored the
labor variability out from the optimization problem and approached the problem
by solving each permitted labor profile, optimizing one CLSP at a time. Possible
shift boundaries

�
s1 � s2 � were generated starting with s1 � 1 and an initial one-

shift period length l (s2 � s1 � l � 1). Iteratively, s2 was then increased as long as
WSAT(OIP) found feasible solutions for the resulting CLSP (for CPLEX, as long
as infeasibility was not proved). If no feasible solution was found (for CPLEX,
if infeasibility of the profile was proved), s1 was increased to the next period and
s2 was reset. The two different integer solvers require different algebraic models
which are described in the following.

Chapter 7. Capacitated Production Planning 99

7.2 INTEGER LOCAL SEARCH FORMULATION

The integer local search model is a straightforward OIP. Production quantities per
item and time period are expressed by finite domain variables pit that range over
the allowed production quantities (and are bounded by the summed future demand
Ωit):

pit � � p
� Ωit � p � 0 � p � Ei � k � L �

where k � 0 � 1 � 2 ��
�
�
 , for every item i and time period t and Ωit is determined as
Ωit � ∑t � s � T Dis

To formulate the constraints, we will make use of the abbreviation S
�
i � t � rep-

resenting the amount of product i carried in inventory in time period t (textually
substituted in the constraints):

S
�
i � t � �

t

∑
s � 1

pis � Dis

The OIP formulation is as follows.

S
�
i � t � � 0 � i � t (NOH)

∑
i

Ri � pit
�

Tt � t (CAP)

(soft) Ci � S
�
i � t � � 0 � i � t (INV)

Negative-on-hand constraints (NOH) ensure that all orders are met in time. Capac-
ity constraints (CAP) express that available labor capacity is not to be exceeded.
The soft constraints (INV) express the competing objectives of minimizing in-
ventory costs; for every item and time period, the inventory cost from carrying
material has to be minimized. For every feasible solution, the resulting objective
(the total inventory cost) is the summed violation of all soft constraints measured
by �
 � (OIP). Notice that for every soft (INV) constraint, there is a correspond-
ing (NOH) constraint, thus the OIP is confined. Using finite domain variables to
model production, the local search progresses by moving production up or down
in allowed quantities induced by the violated constraints.

0-1 Integer Model

The first modeling attempt used an over-constrained 0-1 integer model with a log-
arithmic encoding of production quantities (Eix1 � Lix2 � 2Lix3 � 4Lix4 �
�
�
).
In addition to the blowup of the number of variables for this model, running
WSAT(OIP) did not yield solutions of acceptable quality. We put this failure down
to the fact that with a logarithmic encoding, a small change of production often

Chapter 7. Capacitated Production Planning 100

requires a long sequence of local moves. For example, an increase from 2k � 1 to
2k lots can only be achieved by flipping k � 1 variables. This appeared to be a
strong hindrance of the search process.

7.3 MIXED INTEGER PROGRAMMING FORMULATION

This section requires some familiarity with integer programming terminology, as
covered for example in [113].1 The sets and variables defined in the mixed in-
teger programming model (MILP) are given in tables 7.1 and 7.2. The problem
formulation (P) is as follows.

P : minimize
xit � yit � zit � sit

N

∑
i � 1

T

∑
t � 1

Cisit (7.1)

subject to

xit � si � t � 1 � Dit � sit � i � t (7.2)

xit � Liyit � i � SKU1 (7.3)

xit � Eizit � Liyit � i � SKU2 (7.4)

Eizit
�

xit
� Ωitzit � i � SKU2 (7.5)

t

∑
k � 1

xik � Li
� t

∑
k � 1

Dik � Li � � i � SKU1 � t (7.6)

t � 1

∑
k � 1

xik �
t � 1

∑
k � 1

Dikzit �
t

∑
k � 1

Dik � 1 � zit
� i � SKU2 � t (7.7)

∑
i

Rixit
�

Tt � t (7.8)

zit � � 0 � 1 � � yit integer

In the MILP model, equation (7.1) represents the sum of total inventory carry-
ing costs. Equation (7.2) is the material balance in each time period and equations
(7.3)-(7.4) determine the total production quantity of each product in time period
t. Note that binary variables are only defined for i � SKU2. Equation (7.5) states
that if zit is non-zero, then the minimum amount (EPQ) must be produced, and
cannot exceed the bound Ωit (only for items in SKU2).

Equations (7.6)-(7.7) represent constraints that tighten the relaxation gap be-
tween the integer solution and the LP relaxation of the problem. Equation (7.7)

1The MILP modeling and CPLEX experiments were carried out by Ramesh Iyer and Narayan
Venkatasubramanyan.

Chapter 7. Capacitated Production Planning 101

Sets
SKU Set of products (stock keeping units).
SKU1 Set of products for which lot-size (Li) is equal to economic production

quantity (Ei).
SKU2 Set of products for which lot-size is a multiple of economic production

quantity.
Variables

sit Amount of product i carried in inventory in time period t.
xit Amount of product i produced in time period t.
yit Number of lots of product i produced in time period t.
zit Binary variable which is one if product i is produced in time period t.

Table 7.2: Sets and decision variables for the MILP model.

states that if product i is produced in period t, then the total amount produced up
to period t � 1 must meet the total demand up to period t � 1. However, if the
product is not made in period t, then the amount produced up to period t � 1 must
meet the demand up to period t. From our observation, this equation reduces the
relaxation gap significantly and helps reduce the number of nodes branched on in
a branch-and-bound solution method. Finally, equation (7.8) represents the labor
constraints that link the problems across all products.

Due to the modeling of discontinuous integer values (xit � � 0 � Ei � Ei � Li
�
�
 �)
for items i � SKU2 with binary variables zit , solving large problems is extremely
expensive. We therefore attempted a Lagrangean relaxation technique (see [17]
for an overview of Lagrangean relaxation) where the problem is decomposed by
relaxing the equations (7.8) to obtain the value of binary variables and then solving
problem (P) for fixed value of binary variables, thereby solving subproblems that
are less expensive to solve in each step.

7.3.1 Lagrangean Relaxation Approach

The Lagrangean relaxation method used for solving the problem (P) relaxes the
complicating constraints (7.8) using Lagrange multipliers, thus resulting in a re-
laxed problem that is decomposable for each i. The relaxed problem (PL) is as
follows

PL:minimize
xit � yit � zit � sit

� N

∑
i � 1

T

∑
t � 1

Cisit � �
T

∑
t � 1

λt

N

∑
i � 1
� Rixit � Tt �

subject to Equations (7.2)-(7.7).

Chapter 7. Capacitated Production Planning 102

Thus, (PL) is a relaxation of (P) and represents a lower bound to the solution
of (P). Since (PL) is decomposable with respect to i, each subproblem is combina-
torially less complex, and can be solved to determine the variables zit . Then, for
fixed values of zit , the problem (P) may be solved to determine a specific solution
that is an upper bound to the solution of (P).

We note that due to the discrete lot-sizes, the integer solution of (P) may result
in slacks in equation (7.8) and therefore may result in all multipliers of value zero
(to satisfy complementary slackness). Therefore, the multipliers λt for the next
iteration were obtained from the LP relaxation of (P). The problem is then solved
iteratively until the bounds converge. Note that the bounds are not guaranteed to
converge as there may be a duality gap due to discrete nature of the problem.

7.3.2 Restricting the Problem

It is comparatively easier to solve the problem when xit has no discontinuous
discrete integer values. Thus, with the assumption Li : � Ei � i � SKU2, binary
variables zit and equations (7.5) and (7.7) can be eliminated from the formula-
tion. Restricting a given problem instance increases the lot-sizes for all products
in SKU2, thereby reducing the set of feasible solutions. As we could not find so-
lutions to the unrestricted problem with CPLEX, we used restricted models for all
experiments with IP branch-and-bound. The restricted problem is a sub-class of
the original problem.

7.4 EXPERIMENTAL RESULTS

The experimental results reported in this section are based on a study of real data
for 190 items and 52 weeks provided by a client of i2 Technologies2 from the
process industry. The OIP model resulting from the given data is large: 7520
finite domain variables (average domain size 10) and 3047 constraints (average
number of variables 30, 1525 constraints soft).

To summarize the experimental results from the viewpoint of the client, what
did the study achieve? (i) It found a solution which is provably within 1.4%
of the optimal total cost for constant labor (two shifts), which (ii) shows that
substantially cutting down cost requires reducing labor. (iii) It showed that labor
can be reduced to one shift in up to 25 weeks with over 15% potential savings of
total cost (or USD 1.9 million).

2A leading provider of supply chain scheduling systems.

Chapter 7. Capacitated Production Planning 103

real problem restricted problem
cost WSAT(OIP) CPLEX WSAT(OIP)
profile fixed capacity, two shifts (230K)
labor 11,960,000 11,960,000 11,960,000
inventory 1,023,106 1,120,680 1,040,373
total 12,983,106 13,080,680 13,000,373
profile one shift [28,52] [32,51] [29,52]
labor 9,085,000 9,660,000 9,200,000
inventory 1,961,049 1,609,344 2,003,884
total 11,046,049 11,269,344 11,203,884

Table 7.3: Computational results (Dollar costs) of WSAT(OIP) and CPLEX. The
restricted model forces Li : � Ei.

7.4.1 Comparison of Results

Table 7.3 reports the best solutions found by CPLEX and WSAT(OIP) in limited
time and for different labor profiles. The table divides horizontally and vertically,
distinguishing the original from the restricted model and the fixed-capacity from
the varied-capacity case. With respect to overall quality, the best solutions among
all profiles obtained from both methods are similar (WSAT(OIP) leading by less
than 2%, or USD 223,295). In the experiments, the runtime of WSAT(OIP) was
limited to 10 minutes, CPLEX was allowed 30 minutes for optimization and was
cut-off after 60 minutes in case no feasible solution was found. All experiments
were performed on a Sun Sparc Ultra II. Run-times were kept short because many
labor profiles had to be examined to find solutions of good overall quality.

Figure 7.1 visualizes the experiments across different labor profiles for both
WSAT(OIP) and CPLEX. The right edge of the triangle reflects the fact that the
size of the one-shift period must decrease as week 52 is approached, because
the planning horizon is finite. On the restricted model, CPLEX could not find a
solution with more than 21 one-shift periods in the given time while WSAT(OIP)
was able to solve a problem with 25 one-shift periods.

In general, CPLEX had difficulties to find feasible solutions as the labor con-
straints were tightened. Of 115 profiles solved by WSAT(OIP), CPLEX 5.0 only
solved 66 profiles (57%) within the given time limit. For the profiles that could be
solved with both methods, WSAT(OIP) found better solutions in 41 cases; CPLEX

found better solutions in 25 cases, despite the fact that it was applied to the re-
stricted model. In the cases where WSAT(OIP) [CPLEX] was better, on average it
improved over CPLEX [WSAT(OIP)] by 2.8% [1.4%] with respect to pure inven-
tory cost.

Chapter 7. Capacitated Production Planning 104

cost (M)

14
16

18
20

22
24

size

20
22

24
26

28
30

32
34

36
38

start

11.2
11.4
11.6
11.8

12

(a) WSAT(OIP) on the over-constrained IP
model, 10mins per profile.

cost (M)

14
16

18
20

22
24

size

20
22

24
26

28
30

32
34

36
38

start

11.2
11.4
11.6
11.8

12

(b) CPLEX 5.0 on the restricted MILP model,
30-60mins per profile.

Figure 7.1: Solutions for various labor profiles. Each impulse represents the total
cost of the best solution found at one labor profile (start/size coordinates corre-
spond to profiles

�
start, start+size � 1 � , the vertical axis is overall cost).

Influence of Restricted Model

To better understand the influence of the restricted model on the solutions obtained
by CPLEX, we further experimented with WSAT(OIP) on the restricted model, the
results of which are shown in Figure 7.2. Interestingly, WSAT(OIP) could still
solve 100 of the 115 profiles given the restricted model. In Figure 7.2 (b), crosses
indicate those labor profiles for which feasible solutions exist to the restricted
model that CPLEX could not find within a time bound of 1h.

Parameters

CPLEX was run with standard parameter settings. Throughout the experiments
with WSAT(OIP), the following parameters were used: Initial production was set
to zero (pzero � 1), and a number of 10 tries were performed, each with 100K
moves. Allowed variable triggers were limited to 2 steps up or down the cur-
rent variable value. Hard constraints were repaired with high priority (phard �
0
 9). Random moves appeared to deteriorate the solution quality, therefore we set
pnoise � 0. A long tabu tenure appeared to be important to find feasible solutions
for problems with very tight capacity (t � 100). Constraint weights were criti-
cal to obtain good feasible solutions and were assigned statically: The hard NOH
constraints were weighted with a large number, expressing a preference to keep
NOH constraints satisfied. In contrast, CAP constraints were weighted below 1
 0
so that temporarily violating them during the search was encouraged.

Chapter 7. Capacitated Production Planning 105

cost (M)

14
16

18
20

22
24

size

20
22

24
26

28
30

32
34

36
38

start

11.2
11.4
11.6
11.8

12

(a) WSAT(OIP) on the restricted OIP model.

cost (M)

14
16

18
20

22
24

size

20
22

24
26

28
30

32
34

36
38

start

11.2
11.4
11.6
11.8

12

(b) CPLEX on the restricted MILP model.

Figure 7.2: Performance comparison the restricted model. Crosses indicate pro-
files that were solved by WSAT(OIP).

7.4.2 Lower Bounds

To assess the quality of the solutions, we applied bound reasoning based on La-
grangean relaxation as described above. We used a relaxed labor profile of con-
stant 300K, which is over two shifts per week and therefore an unrealistic prob-
lem. For a precise estimate of the solution quality, table 7.4 reports pure inventory
costs based on this profile for the different methods. Using Lagrangean decom-
position, we found solutions to the relaxed labor profile, but unfortunately could
not find solutions for realistic capacity constraints. Table 7.4 also indicates that
WSAT(OIP) is still considerably away from the best Lagrangean relaxation based
solution (3.4% of inventory costs). With respect to the overall cost of this pro-
file, the difference vanishes (0.2%). The reported lower bound is valid also for
the original problem with constant two-shift labor, because the 300K-problem is
a relaxation of the original problem.

Solution/bound (Tt � 300K) type value
Best IP solution restricted 986,780
Best solution from WSAT(OIP) restricted 973,834
Best solution from WSAT(OIP) original 942,511
Best Lagrangean solution original 911,960
Best valid lower bound original 839,875

Table 7.4: Solutions (inventory cost) based on a fixed-capacity labor profile of
300K in all weeks.

Chapter 7. Capacitated Production Planning 106

7.5 CONCLUSIONS

We have studied a real-world capacitated lot-sizing problem (CLSP) from the pro-
cess industry. Because the problem includes discrete lot-size requirements not re-
ported in the CLSP literature, existing domain-specific methods are not directly
applicable. We approached the problem with WSAT(OIP), and experimentally
compared the results to a commercial mixed integer programming solver, CPLEX.

The empirical results are promising: Integer local search can solve a CLSP
with discrete lot-sizes of which a commercial MIP solver can only solve a sub-
class. In terms of robustness, WSAT(OIP) is superior to CPLEX on the given data,
in particular as the capacity constraints are tightened. The ILS model is simpler
than the MIP model, and with respect to solution quality, the techniques are on
par.

Chapter 8

Extensions

The primary goals in this thesis so far have been twofold: To describe new effec-
tive algorithms within the integer local search framework and to demonstrate their
capabilities for practical applications. In this section, we will critically examine
the limitations of the current methods and subsequently suggest an extension to
overcome some of the current limitations and suggest future research.

8.1 CURRENT LIMITATIONS

The limitations of integer local search as laid out within this thesis can be charac-
terized in terms of (i) the range of problems not under consideration, and (ii) the
factors not investigated by the experimental analysis.

Range of Problems

The limitations with respect to the range of studied problems are the following.
First, throughout this dissertation, we assume pure integer optimization problems.
Practical industrial problems, however, often contain a continuous component
(witness thereof is the ubiquity of the linear programming method). The frame-
work of integer local search presented herein does not currently address mixed
IPs.

Also, the case studies do not address problems in which the solutions are re-
quired to adhere to some intricate and dominating structure, such as traveling
salesman problems or job-shop scheduling. Such problems require solution struc-
ture like tours in a travelling salesman problem or schedules in job-shop schedul-
ing, which are difficult to maintain by local repairs on the level of variable assign-
ments. For those problems, a local search in another search space (e. g. swapping
cities on a tour or jobs on a critical path in a schedule) turns out to be more suitable.
Alternatively if it is easy to obtain solution structure constructively, combining a

107

Chapter 8. Extensions 108

greedy constructive heuristic with local moves in an abstract priority space can be
very effective, as proposed in the framework of “Abstract Local Search” by Craw-
ford, Dalal and Walser [36]. While the greedy heuristic can incorporate domain
knowledge, the abstract moves change decisions in a suitable priority space (“to
schedule task A earlier increase its priority”).

Finally, with exception of one problem class (capacitated production plan-
ning), the problems under consideration happen to contain mainly 0-1 coefficients.
In fact, for the basic version of WSAT(OIP), larger coefficients can impose a prob-
lem since the score gradient favors variables with large coefficients. Section 8.2
below suggests a way to extend the basic scoring scheme to handle large coeffi-
cients.

Experimental Analysis

Several limitations of the experimental analysis should be discussed that translate
directly into suggestions for future research. First, throughout this thesis, per-
formance has been studied in terms of time to optimal solutions and quality of
solutions obtained in limited time. Generally, both measures of an optimization
algorithm are derived from its underlying convergence behavior. To better under-
stand the tradeoffs between time and quality, an investigation of the convergence
behaviour would be necessary.

Second, the proposed integer local search procedures contain several compo-
nents and parameters, such as tabu search components, tie-breaking rules, noise,
etc. Although some parameters have been investigated in the experimental analy-
sis in individual case studies, a more rigorous study would be required to assess
which algorithmic components and parameters are indeed critical for the success
of integer local search and which parameter settings are optimal. An alternative
strategy would be to strive for automatically adjusting parameters.

The case studies have demonstrated that OIP models capture the structure of
many realistic problems via soft constraints, and this structure can be exploited
by integer local search. Additionally, it would be interesting to consider OIP en-
codings of standard benchmark problems, e. g. problems from OR-library [16].
Even though many such benchmarks are randomly generated and limited with
respect to their constraints, using such standard benchmarks would allow to com-
pare domain-independent local search to domain-specific optimization heuristics
from the literature, as a supplement to the comparison study using general-purpose
frameworks.

8.2 AN ALTERNATIVE SCORING SCHEME

In all of the case studies, the score as defined in (3.6) has been employed, lead-
ing to a satisfactory operational performance of WSAT(OIP). With exception

Chapter 8. Extensions 109

to production planning, most of the arising coefficients happened be limited to
� � 1 � 0 � 1 � . Preliminary experiments indicate that instances which contain larger
coefficients may be more difficult for WSAT(OIP). For instance, we notice that
the production planning problem requires manual weight setting. Further, some
problems studied in the literature (e. g. [30]) contain larger coefficients and are
not satisfactorily solved. As will be shown, this limitation is at least partly due to
the applied standard score. Further, we will see that the standard score lacks mo-
tivation from a geometrical viewpoint. We will therefore propose an alternative
scoring scheme next.

Let us recall the example from Section 3.4 (illustrated in Figure 3.6),

� A 9x1 � 5x2 � 45
� B x1 � x2 � 6
� C 8x1 � 5x2

�
0 (soft)

x1 � x2 � � 1 � 2 ��
�
�
 � 5 �

We observe that at point (0,0), the contribution of constraint B to the score is

6 while A’s contribution is 45. This is despite the fact that the geometric distance
of point (0,0) to A and B is almost identical, and the Manhattan distance of (0,0)
to A is 5, i. e. even smaller than the distance to B of 6.

This observation motivates reconsidering the distance function, and using the
geometric Euclidean distance. From analytic geometry (e. g. [96]), we know that
every inequality defines a half-space. In order to compute the distance of a point
p to a half-space ax � b (if p lies outside), we compute its distance to the corre-
sponding hyper-plane ax � b.

To compute the distance, note that a hyper-plane can be represented in Hessian
normal form, � 1 � � a � � � a � x � � b � 0, where a is a normal vector of the hyper-
plane, � x � y � defines the scalar product ∑i xiyi, and � a � : ��� � a � a � . The distance
of a point p to the hyper-plane is then computed [96] as � 1 � � a � � � a � p � � b � .

Hence, the Euclidean distance of a point p from the half-space defined by the
constraint ax � b can be computed as

� b � ap �
� a � � (8.1)

where �
�� is defined as usual (OIP), and the resulting distance is 0 if p lies inside
the half-space.1

Surprisingly, we observe that for constraint ax � b, (8.1) is exactly the orig-
inal score weighted by 1 � � a � . That is, Euclidean scoring amounts to a weighting
scheme that can be computed statically as a preprocessing of the constraints.

1Note that ap is the scalar product since a is a row vector.

Chapter 8. Extensions 110

To preserve equality between the score of a feasible solution and its objective
function value, we propose to leave the soft constraints unweighted. Hence, the
Euclidean score for an OIP ��� ai � b � C � d � D shall be defined as follows

score � x � whard � � b � Ax � λλλe � � Cx � d � � (8.2)

where the weight vector λλλe is defined as λe
i � 1 � � ai � for constraint ai x � bi and

�
�� λλλ is defined as usual (3.6). Additionally, whard is a weight on the hard con-
straints.

For confined OIPs, one geometrically motivated way to choose whard is to base
it on the corresponding objective function: If the soft constraint violation is � Cx �
d � 1 and we write this as a classic objective function cx � d : � � Cx � d � 1 (which is
possible as the OIP is confined), then whard can be chosen as � c � in order to balance
the overall violation of hard and soft constraints.

Example. In example (3.12), the Euclidean score results in a weighting scheme
of whard ��� 82 � 52 � 9
 43 due to the soft constraint. Further, the weights are
λe

A � 1 � � 92 � 52 � and λe
B � 1 � � 1 � 1. In the trajectory example, the same opti-

mal trajectory is obtained as illustrated in Figure 3.7(c), which was obtained for a
simpler, manually generated weighting scheme.

Preliminary experiments. Two preliminary experiments can be reported with
Euclidean scoring. First, in the production planning case study, Euclidean scor-
ing automatically leads to a similar weighting scheme and to similar experimental
results as the scheme obtained in a tedious process of manual adjustment.

Second, to probe the effectiveness of Euclidean scoring, we tested it on a
benchmark problem from generalized assignment (GAP) from OR-library [16]
(GAP has been described in Section 6.2.2). We considered one problem instance
from the set of ‘large-sized’ instances, referenced by C-1 (500 variables, 110 con-
straints) and described by Chu and Beasley [30].

In the experiment, we employed deterministic rounding of the linear relax-
ation to initialize the 0-1 variables. Using standard scoring, WSAT(OIP) could
not find a feasible solution to problem C-1. When applying Euclidean scoring,
an integer solution (with cost 1934) was usually found within a few seconds by
WSAT(OIP), which is close to the optimal IP solution (1931) and to the LP opti-
mum (1923.975).

It took significantly longer (many restarts) to find the IP optimum using this
technique. We expect that the technique of dynamic search space reduction [9, 5]
(described in Section 3.3.3) will improve on this result, considering that 341 out
of 500 binary variables can be pruned after a few seconds, based on the 1934-
solution. Moreover, the problem class would provide a good test case for leashed
local search (Section 3.3.2) since the percentage of non-integral solutions of the

Chapter 8. Extensions 111

LP optimum is very small. We are looking forward to perform an extensive ex-
perimental study of integer local search for this problem class.

8.3 FUTURE RESEARCH

Within the endeavor to find general-purpose heuristics for combinatorial optimiza-
tion, this work has established a link between local search for propositional satisfi-
ability (SAT) and integer optimization. From this perspective, as SAT local search
strategies are continuously improved, the particular strategy is insignificant com-
pared to the possibilities that arise due to the link, encouraged by the empirical
results of this first generalization. SAT can be used as a test-bed to obtain better
core algorithms while integer encodings can leverage their applicability.

We discuss some of the future paths that appear most promising to pursue in
order to further improve and extend the proposed methods.

Incorporating Meta-heuristics and Learning. A variety of meta-heuristic tech-
niques have been proposed for combinatorial optimization, and sophisticated strate-
gies have been presented for particular problem classes. In particular genetic algo-
rithms and tabu search [61] offer a variety of strategies that would be immediately
applicable in an integer local search framework, some of which are very likely to
enhance the proposed strategies (e. g. tabu search intensification and more com-
plex diversification rules, or genetic crossover).

A route that we predict will lead to very powerful integer local search solvers
is the incorporation of learning strategies recently proposed for local search. Can-
didate strategies include reactive search [15, 14] which proposes a history-based
feedback scheme, or STAGE [23] which automatically learns evaluation (scoring)
functions for combinatorial optimization. Also, learning strategies for constraint-
weights [131, 110, 28] or arc-weights [138] would be interesting to integrate in
the WSAT(OIP) framework for further performance improvements.

Extensions of Integer Local Search. An interesting path to investigate is the
connection between iterative repair and mathematical programming, which is a
largely unexplored area. There will be a need to address the combination of in-
teger local search with optimization strategies for continuous variables. Possibly,
integer local search might be combined with other heuristics for integer program-
ming to achieve this goal. Also, the formal incorporation of maximization func-
tions into OIP will be a task to address.

With respect to the supply of constraints, we expect to have more expressive
constraints available soon to extend the current expressivity of OIP. In several
practically relevant cases, this can be done without the need to change the current
repair strategy. For instance, within ILP it is difficult to express in the constraint

Chapter 8. Extensions 112

minseq � k � [x1 ��
�
�
 � xn] � l, which requires that if one of the variables xi is assigned
to l, then it must be part of a subsequence of at least k variables that are all assigned
to l. This constraint can naturally be handled by the current repair mechanism.

Towards a Local Search Based Constraint Solver. The class of integer linear pro-
grams covers a wide range of practically important problems and provides a good
starting point for general-purpose heuristics. Nevertheless, some problems exhibit
a more complex structure and need more expressive constraint representations. In
contrast to integer programming frameworks that rely on linear relaxations, local
search is not limited with respect to the underlying constraint systems. Hence, lo-
cal search strategies WSAT(�) are likely to appear that can handle more complex
constraint systems � , or even constraints from very different domains.

The current two-stage control strategy is (i) select a constraint c for repair,
(ii) select a partial repair for constraint c. We expect that this control strategy al-
lows for integrating a variety of more complex constraints. For instance, symbolic
constraints from finite domain constraint programming (e. g. all-different) or con-
straints that address more complex structure (e. g. travelling salesman tours) will
need to be integrated. Different constraints will require different strategies of local
repair. The challenge of mixed constraint systems will be to extend the two-stage
control strategy into a mature architecture that integrates different local neighbor-
hoods and effectively control execution.

In addition to handling problems that are larger or more constrained, the chal-
lenge for local search will thus be to handle more complex problem structure.
For instance, optimally planning the manufacturing process of a set of items by
sequencing a number of ordered tasks that allocate different resources, while min-
imizing lateness and inventory costs. We predict that the complex structure of
such real-world scenarios will be an important measure of the next generation of
local search architectures.

Chapter 9

Conclusions

��� �!	 �� � ��� � � �
���� � � � � � ���$ � � � � � � � � � ��� (� � � � � � �&�� � � � � ��� ��� � �&(� ��� �
� � �
�� � � ����� � ��� �
 ����&� � � ��� � � � ����� �'(� � �'� ��� � � �&� % � ��� � � � �

�����
� � � 	����� � � �

� � 	 � � � � � � � �� �!	���� � �
	 �&� % � ��� � � � ����� � � � � � � ����� � � % �
 � � � � � �
�� � � � � ����� � � �
� � � �&� � � � � ��� � � � �
�� � � ��� ��� � � ��� � � � � � � .

[USA Today; December 31, 1997]

In this thesis we have presented a new effective approach to domain-indepen-
dent integer optimization based on generalizing local search for propositional sat-
isfiability. The approach is applicable to a wide variety of combinatorial opti-
mization problems that arise in practical applications. It operates on an algebraic
representation similar to integer linear programs and is thus flexible and can di-
rectly be applied to realistic problem encodings.

In this integer local search framework, a combinatorial optimization or con-
straint problem is stated by an encoding with hard and soft linear constraints over
finite domain variables, called an over-constrained integer program. The struc-
ture of this representation lends itself well to iterative repair approaches since it
encodes the optimization objectives by many competing soft constraints instead
using of a monolithic objective function. With respect to expressivity, we have
shown that this representation is a special-case of integer linear programs.

While the local search strategy that we have presented is simple, we have em-
pirically demonstrated its efficiency, scalability and robustness in a variety of case
studies on realistic integer optimization problems. The problems either stem from
the recent literature, from operating applications, or from industrial cooperation.

We have experimentally evaluated the described methods in comparisons with
the literature and with general-purpose optimization strategies. The results show
that integer local search outperforms or competes with state-of-the-art integer pro-
gramming (IP) branch-and-bound and constraint programming (CP) approaches

113

Chapter 9. Conclusions 114

for the problems under consideration, in finding feasible or near-optimal solutions
in limited time. The presented method, WSAT(OIP), is arguably general-purpose
because neither integer programming branch-and-bound nor finite domain con-
straint programming can currently solve the range of problems that have all been
solved with integer local search in our case studies.

A drawback of all current local search strategies is their incompleteness, that
is their inability to prove infeasibility of an input problem or the quality of the
achieved solutions. To partially overcome this drawback, we have discussed sev-
eral effective combinations with linear programming for lower bounding, initial-
ization by rounding, search space reduction and feasibility testing.

We believe that the iterative repair strategy of integer local search offers many
opportunities for improvements to the core strategy and for further generalization
to more expressive constraint systems, making it applicable to structurally yet
more complex problems in the future.

Concluding Remark. Given the practical need for general optimization methods
and the often-quoted effectiveness of special-purpose heuristics, it is perhaps sur-
prising that only few efforts have been made to devise general-purpose heuristics
for optimization. Summarizing the effectiveness of integer local search, “the fu-
ture will be full of algorithms”, in fact. But hopes are up that research on domain-
independent heuristics will lead to fewer algorithms in need to be designed for
combinatorial optimization.

Appendix A

A Complete AMPL Model
for ACC97/98

The following AMPL model describes the full set of constraints [114, 139] of the
ACC 97/98 basketball scheduling problem which was investigated in Section 5.2.

���
��� �������	����
�����������������������
���
��	�����������������������! � �"�#� �$&%('	����)��*�+����,���-�./��
0��1�2
��� %3��2547698:6<;������	��)>=?8�)��	1�)������@
!��1A'	B*�������C�ED��	�F=HG�-�'I=J��.�1�.����K�! � �$

���
��� 8���)����*������)*�
���

�	����L������@�M�)�-���)���- NPORQTSU������VS�=ASXW�.����7S�=�SXY�'ZG[S�=ASU\�L]S�=5SPG�^�W]S�=
SPG�_�>S�= SX_��'��]S�=�SPG�`��]S�=ASa;������IScbed

�	����8������	���M��)�-���)���- NPO�L������@�f.���
Z�	�RQgSP��B��7ShbId
�	����i��	.���-��M��)�-���)���- NPORQj�k6�6Pl�m��	��)�-7%UL����!�@��2nbId
�	���5;�������-���B*�E��)�-���)���- NPORQj�k6�6a�������>%Xi��	.���-���2o��BRl�bId
�	���5;��������Z��-/�E��)�-���)���- NPORQ5lF6�6a�������>%Xi��	.���-���2o��BRl�bId
�	����Y��	��)�.���)�B5��)�-���)���- NPORQj���k6�6p��$�b&d
�	����^�
�)�)��) NPORQq%��r=U$/2@=+%(l7=U /2@=+%(s7=0��l/2@=+%Ut>=!��s/2@=+%vu7=!�0t�2C=

%(w7=0��u/2@=+%("I=!��w/2@=M%���x7=!�!"/2@=+%�����=!��$/2Ebed
����)����RY�
0����� NPOR�������>%Ui��	.���-/��2@d
����)����y\��!����zZ.�����
���B�;�����������-MQ	L������C�k=JL������C��bId
����)����y\��!����zZ.�����
���B�;�������-���B�Q	L������C�k=JL������C��bId

��� `���)�
Z�Z�/�����7N{8��/
�)*
!��1*�
��� L:|(
@=v}I=X��~�Or��
����5�������K
E�/����B/�M�����������	�A}j
!��)��	.���-A�

� ��)�LyQ	L������@�k=J8������	���@=Hi��	.���-/��bE�r
!����)�B]d

���
��� W�W�i�iy�	�	�*����)��/
0���*�
���

��.���}������A�����	8yQ�
�
0��L������@�k=J��
!��i��	.���-���b]N
��.	��Q�}y
!��8������Z����b L[|(
@=v}7=a��~+O��rd

115

Appendix A. A Complete AMPL Model for ACC97/98 116

��.���}������A�����	`yQ�}y
0��L������@�k=J��
!��i��	.���-���b]N
��.	��Q�
�
!��L������@�INo
�����}�b L:|(
@=v}I=X��~���O��rd

��.���}������A���5�8yQ�
�
0��L������@�k= }y
!��L������@�@=J��
!��i��	.���-/�7No
�����}�b]N
L:|a}7=U}7=X��~��AL:|(
@=U}7=X��~��	O�x7d

��.���}������A���AW�i�i�Q�
�
!��L������@�k= }y
!��L������C�7No
�����}�b]N
��.	��Q	��
!��i��	.���-���bML:|(
@=U}7=X��~+O��rd

���
��� i���-�.���-��	�����Z�	������)��/
!���*�
���

��.���}������A���AL��jQ�
�
0��L������@��b]N
��.	��Q	��
!��i��	.���-���bML:|(
@=�Sa��B��7S�=X��~EO�l7d

��.���}������A�����Z�jQZ��
0��i��Z.���-/��b>N
��.	��Q�
�
!��L������@�	bML:|(
@=�SP��B��7S�=a��~�O��rd

��.���}������A�������yQZ��
0��i��Z.���-/��b>N
��.	��Q�
�
!��L������@�	bML:|(
@=3
C=X��~+O��������)>%3�	��)�-7%UL����!�@��2Z#�l/2Cd

���
��� '���	�.��Z���	���	�Z������)���
!���*�y%Ui��	.���-/��2
���

��L�)�������
!��1M��B��5���
�������7=H���M���)��+��,��	��lA������B51����*����
!����)����:N�|J�7%U�*2���O�l�~
��.���}������A����'��z*�EQ�
�
!��L������C�k=J�K
!��i��Z.���-/�qNJ����OA��)�� � %UY�
!�����I=Xi��Z.���-/�C=vl/2�b]N

��.	��Q���
!��� 6�6?������>%U�]=Xi��	.���-/�@=vl/2C= �j
!��L������@�INH������
	b�L:|v
@=v�7=p��~���O�l7d

��L�)�������
!��1M��B��5���M������B]=H���M���)��+��,��	��l��������+1����*����
!����)����:N�|J�7%��*2���O�l�~
��.���}������A����'��z�s�Q�
�
!��L������C�k=J�K
!��i��Z.���-/�qNJ����OA��)�� � %UY�
!�����I=Xi��Z.���-/�C=vl/2�b]N

��.	��Q���
!��� 6�6?������>%U�]=Xi��	.���-/�@=vl/2ZbnL:|v
@=3
@=p��~���O�l7d

��L�)�������
!��1M��B��5���M������B]=H���M���)��+��,��	��sA������B51����*����
!����)����:N�|J�7%X����2���O�sM~
� %X��B����������	B�O������7%������*��2�2
��.���}������A����'��z�l�Q�
�
!��L������C�k=J�K
!��i��Z.���-/�qNJ����OA��)�� � %UY�
!�����I=Xi��Z.���-/�C=vs/2�b]N

��.	��Q���
!��� 6�6?������>%U�]=Xi��	.���-/�@=vs/2Zby%����	L:|(
@=p
@=p�Z~*2���O�s7d

��L�)�������
!��1M��B��5���
�������7=H���M���)��+��,��	��t��������+1����*����
!����)����:NJ�I%X����2��	O�tA~
��.���}������A����'��z	t�Q�
�
!��L������C�k=J�K
!��i��Z.���-/�qNJ����OA��)�� � %UY�
!�����I=Xi��Z.���-/�C=Xt�2�b]N

��.	��Q���
!��� 6�6?������>%U�]=Xi��	.���-/�@=Xt�2Zby%UL[|(
@=3
@= �Z~��5L:|(
@=�SP��B��7S�= �Z~*2��	O5t>d

���
��� '���	�.��Z���	���	�Z������)���
!���*�y%X;��������	��-/��2
���

��L�)�������
!��1M��B��5���
�������7=H���M���)��+��,��	��lA������B51����*����
!����)����:N�|J�7%U�*2���O�l�~
��.���}������A����'��z*����Q�
�
!��L����!�@�k=J��
!��;��������	��-/�&N

����OA��)�� � % �������>%X;����	���	��-���2@=a;����	���	��-/�C=vl�2Zb]N
��.	��Q���
!��� 6�6?������>%U�]=a;��������	��-/�k=Ul�2C=?�j
!��L����!�@�7N ��
!��;��������	��-/�

�	��-�������
Zb+L[|(
@=v�7= �Z~���O�l7d

Appendix A. A Complete AMPL Model for ACC97/98 117

��L�)�������
!��1M��B��5���M������B]=H���M���)��+��,��	��l��������+1����*����
!����)����:N�|J�7%��*2���O�l�~
��.���}������A����'��z�s���Q�
�
!��L����!�@�k=J��
!��;��������	��-/�&N

����OA��)�� � % �������>%X;����	���	��-���2@=a;����	���	��-/�C=vl�2Zb]N
��.	��Q���
!��� 6�6?������>%U�]=a;��������	��-/�k=Ul�2eN?��
!��;����	���	��-/�	b�L:|(
C=3
@=p�Z~��	O�lId

��L�)�������
!��1M��B��5���M������B]=H���M���)��+��,��	��sA������B51����*����
!����)����:N�|J�7%X����2���O�sM~
� %X��B����������	B�O������7%������*��2�2
��.���}������A����'��z�l���Q�
�
!��L����!�@�k=J��
!��;��������	��-/�&N

����OA��)�� � % �������>%X;����	���	��-���2@=a;����	���	��-/�C=vs�2Zb]N
��.	��Q���
!��� 6�6?������>%U�]=a;��������	��-/�k=Us�2eN?��
!��;����	���	��-/�	b

%�� �	L:|v
@=3
@=p��~*2���O�s7d

��L�)�������
!��1M��B��5���
�������7=H���M���)��+��,��	��t �������+1��!�����5
!�R�5)����VNH�7%X���*2���O�tA~
��.���}������A����'��z	t���Q�
�
!��L����!�@�k=J��
!��;��������	��-/�&N

����OA��)�� � % �������>%X;����	���	��-���2@=a;����	���	��-/�C=vs�2Zb]N
��.	��Q���
!��� 6�6?������>%U�]=a;��������	��-/�k=Us�2eN?��
!��;����	���	��-/�	b

%UL:|(
@=p
@=p�Z~��5L:|(
C=�Sa��B��IS�=p�Z~*2 ��O�s7d

���
��� ^�
�)�)��)R�	�	������)��/
!���/�
���

��.���}������A���A^���iC�EQ�
�
!��L������C�k= }�
!��L������@�k=+%3�@=X��25
!��^�
�)�)��):N
�����}�b]N
%�� �	L[|(
@=v}7= �Z~*2 �5L:|a}I=3
@=X��~���OK��d

��.���}������A���A^���i�l�Q�
�
!��L������C�k=+%3�k=X�*2�
0��^�
!)�)���)�b>N
%�� �	L[|(
@=�Sa��B��7S�=p��~*2 ��L:|v
@=�Sa��B��7S�=X��~���O��rd

���
��� ����'	������
��*
�����	������)��/
!���*�
���

��_��+�����!�j�/
!�r
���,��������
��.���}������A���AY�����Q�
�
!��L������@��b>N

��.	��Q	��
!����)�� � %XY�
!�����e=Xi��	.���-���2k6�69Y*
0������b
%UL:|(
C=3
@=X��~ ��L:|v
@=�Sa��B��7S�=X��~/2���O��rd

�y���� ����������Z��-+i��	.���-/�k= �����!,����������/����B/��t�,��!���7= tR�Z����,��A)�����-
�R�	��-��	���+��B��
��.���}������A����'���LC�EQ�
�
!��L������C��b]N

��.	��Q	��
!��;��������Z��-/��bEL[|(
@=3
@=a��~+O5t]d
��.���}������A����'���L�l�Q�
�
!��L������C��b]N

��.	��Q	��
!��;��������Z��-/��bEL[|(
@=�Sa��B��7S�=X��~MOK�rd

� �����*�A��)���B����	�R�����������	�������5�����*
�)*���5�*
 � � �����	���	��-/�
��.���}������A���AY���Y�Q�
�
!��L������@��b>N

��.	��Q	��
!��;��������Z��-/�7N?�)�-7%U��2
�	O�u�b
%UL:|v
@=3
@=X��~���L[|(
@=�Sa��B��7S�=X��~*2���O�l7d

���
��� ����#��Z�����	�	����������
��*
��+�Z�	������)��/
!���*�
���

��.���}������A���Ai���`:NH�5i�
 � ��� �*���*��,����
L:|	SXW�.����7S�=�SPG�_�>S�= Y*
!������~��5L:|	SPG�_�>S�=+SaW�.����7S�=XY�
!������~
�
L:|	SU������VS�=�SU\�L]S�= Y*
!������~��5L:|	SU\�L]S�= SX������VS�=XY�
!������~
�

Appendix A. A Complete AMPL Model for ACC97/98 118

L:|	SX_��'��]S�=�Sa;������IS�=aY�
0�����Z~
�5L:|	Sa;������7S�=�SX_��'��>S�=aY�
3�����	~ �
L:|	SPG�^�W]S�=+S9G�`��]S�=JY*
!������~��5L:|	SPG�`��]S+=�S9G�^�W]S�=JY*
!������~��	O�s7d

��8��	��./����)��*���*��,����5
!��Y��	�
��.���}������A���AY����RQe%0
@=U}/2A
!�yQe%�Sa;��	���7S�=�S9G�_�>S32C=�%�Sa;������IS�=�SXW	.����IS32C=

%�SU\�L]S�=�SPG�_�>S32@=�%�SU\�L>S�=�SPW�.����ISp2	b�b7N
��.	��Q	��
!��Y��	��)�.���)�B�bK%XL:|(
@=v}I=X��~��5L:|a}7=p
@=X��~*2���O��rd

�y�Z�����	���	���A��)�-���)*
!��1��	�Z������)���
!���*�
��.���}������A�����	8�����Q�
�
!��L������C�k=J�K
!��i��Z.���-/�7No
 ���ISXW�.����7S �	��-j
 ���ISPG�_�>S

�Z��-�� ��OA��)�� � %UY�
!�����I=Xi��	.���-/��2�bKN
��.	��Q���
!���:6�6<������>%U�>=Xi��	.���-/��2Zb

%UL:|(
C=�SXW�.����7S�=p�Z~ �5L:|(
@=�S9G�_�>S�= �Z~*2 ��OK��d

��.���}������A�����	8��Z�RQ�
�
!��L������C�k=J�K
!��i��Z.���-/�7No
 ���ISXW�.����7S �	��-j
 ���ISPG�_�>S
�Z��-�
 ���ISa;��	���7S �	��-5� ��OA��)�� � %UY�
!�����I=Xi��	.���-��k=Xl/2	b7N

��.	��Q���
!���:6�6<������>%U�>=Xi��	.���-/�k=Ul�2C=?�j
!�yQISXW�.����7S�=�SPG�_�>S�=�SP;��Z���7SUb�b
%UL:|(
C=v�7=p�Z~ ��L:|P�7=3
@=p��~*2 ��O�l7d

���
��� �	��,���)y
�-*
Z����B�����)����*
��M�Z�	������)��/
!���*�
���

�	����Y�
���\��!������-*
 ���	��t���
���,r
!��QZL������@�@=H8������Z���k=Ji��	.���-/�k= xF6�6p��bId
��.���}������A���AY�����Q	��
!�yx]6�6p�r=+%0
C=v}7=X�]=a��2+
!��Y�
���\���������b>N L:|(
C=v}7=X��~AO5�]d

-������7d
�	����Y�
���\��!�����&NPO

�AG�_�5������B*��W�.����R
!�������Z����
Z������-
W�.���� G�_� ��� �
G�_� W�.���� �!$ �
W�.���� ��B�� �!w �
;������ ;������ �!" x

�����M;��	���R
��M��B��R
!�y'�����������,��5����,���)M��.*���A����,������
;������ ��B�� � �
������ ����!� � �
Y�'ZG Y�'ZG � �
\�L \�L � �

��-	.������	�	�������+���+��B���,���)��5�/
!��,���)
W�.���� W�.���� �!$ �

��)������
Y�'ZG ��B�� �!$ x
_��'�� ��B�� �!$ x
G�_� ��B�� � x

����-�-*
���
��	���&|P��)����RL�)�
����]Sp�f)�� �
���
Z�Z���E���5^���B�$7=��� � �$�~
�5;�������,����+�A��B��R
!���	�������M�Z��-E��.������	��-5���
;������ ;������ �!$ �
;������ ��B�� �!" x

d
����-����ed

Appendix A. A Complete AMPL Model for ACC97/98 119

��.���}������A��� ��W��ZlFN L[|	SPG�_�7S�=�SU������VS�=vl�~���LF|	SU����!�VS�=�SPG�_�>S�=vl	~�O �rd
��.���}������A��� ��W��ZsFN L[|	SU����!�VS�=�SU������VS�=aY*
!������~���L[|	SU����!�:S�=�Sa��B��IS�=XY*
!������~�O��rd
��.���}������A��� ��W��ZuFN L[|	SPG�^�W>S�=�SPG�^�W]S�=XY�
0�����Z~���L[|ZS9G�^�W7S�=�SP��B��7S�=XY*
0������~�O��rd
��.���}������A��� ��W��ZwFN L[|	Sa;������7S�=�Sa;������7S�=aY*
!������~���L[|	Sa;������IS�=�Sa��B��IS�=XY*
!������~�O��rd

���
��� Y�)����RL�)�
����]Sp�f)�� �
���
��	���E���5^���B� 7=��� � �$
���

�R� � �)�BA�������5��.*���A,�� � �5�	� ��
0����,��5�/
�)*���A��,�)������������/�
��.���}������A���AY�L���Q�
�
!��L������@��b>N

��.	��Q	��
!� �k6�6as�bML[|(
@=3
@=a��~���O��rd

�R� � �)�BA�������5��.*���A,�� � �5�	� ��
0����,����������5��,�)������������*�
��.���}������A���5D�L���Q�
�
!��L������@��b>N

��.	��Q	��
!����)�� � %XY�
!�����e=Xi��	.���-��k=Xl/2I6�6<Y*
!������bnL:|(
@=p
@=X��~��	OK�rd

���
��� �Z����
p�@
�������
��	�+�)�
�����)*
Z�
���

��� �)�
����)�
Z�	���
��� � � �/
�-5�Z���	�r
!��1A��� %a�����M����)��+��,��	���E�������k2
��� .��	�+��,����	�����/�������Z���:NJ�!.	��� � ��)5�������C�f,������5��)5��B�����Oy�	��)�-I%UL������C��2��*�

��.���}������A�����	���:N
��.	��Q�
�
!��L����!�@��b

%UL[|(
@=3
@=0�!~���L:|v
@=�Sa��B��IS�=0�0~���L:|v
@=3
@=vl�~���L:|(
C=�Sa��B��7S�=vl	~*2 ��Oy�	��)�-7%XL������@��2��*�rd

��� �)�
����)�
Z�	��l
��� \�������	�.�����
���
Z���7N ��#��/#Z����-+i��	.���-/�
���
��� `���)�
Z�Z�/�����7N '������ ��zZ.�����
���B
��� ������,j�����	��
��+��
���,���)��Z���]=P�F=o��)�����-R�������

� ��)Rz�Q	Y��	��)�.��)�B]=Jx]6�6al�bM�r
!����)�B]d
��.���}������A����'�D��	L�zAQZ��
!��Y��	��)�.���)�B�b]N �!.	��Q	�
0�yxF6�6al�bAz]|9�>=�	�~AO ��d

-������7d
� \�������zZ.�����
���B�;�������-��	B:| �]=a��~�O�lh�����	�*��
���������� ���/����B*�
� ,������5�	��-A� �
���
��*�5
!��
��A��l����	�*��,g% 	�.�����
���B���2
� � �!�����*�!,VN?l7= � �!�*���*��,VNo�

����)����y\��!����zZ.�����
���B�;�������-���BqN
����!�yW�.����+Y�'ZG�\�LAG�^�W+G�_�A_��'��+G�`��5;������ NPO

������jx�x�x�x�x��Mx�x�x
W�.����5x�x�x��Ml�x�x����
Y�'ZG x�x�x�x�x�x�x�x�x
\�L x��Mx�x��Ml�x�x��
G�^�W x�l�x��Mx�l�x��Ex
G�_� �El�x����Mx�x�x�x
_��'���x��Mx�x�x��Mx�x��
G�`�� x��Mx�x�x�x�x�x��
;������5x��Mx��Mx����Ex�x d

Appendix A. A Complete AMPL Model for ACC97/98 120

����)����y\��!����zZ.�����
���B�;�����������-&N
����!�yW�.����+Y�'ZG�\�LAG�^�W+G�_�A_��'��+G�`��5;������ NPO

������jx�x�x�x�x�l�x�x�x
W�.����5x�x�x��Ml�l�x����
Y�'ZG x�x�x�x�x�x�x�x�x
\�L x�x�x�x��Mx�x�x��
G�^�W x�x�x�x�x�x�x�x�x
G�_� x�x�x����Mx�x�x�x
_��'���x��Mx�x�x��Mx�x��
G�`�� x��Mx�x�x�x�x�x�x
;������5x��Mx��Mx����Ex�x d

����-����ed

�y��
!���ALy�	��-�z � ��)�
��	�/�����IN �����j�������y
��M�]=o��,���)��R
������
�y�����������	���+�y�)��	�y���������5��������1��������
��.���}������A���5D�L�z*�EQ	��
!��Y��	��)�.���)�B:N ��
!��;����	���	��-/�	b]N

l�m�z]|<�]=vl�~��	Oj��.Z��Q �
!��L����!�@�k=H,�
!��L������@�7N � ���Z,/b
\�������zZ.�����
���B�;��������Z��-[|<,>= � ~AmML:| � =a,]=X��~>d

��.���}������A���5D�L�z�l�Q	��
!��Y��	��)�.���)�B:N ��
!��;����	��-���B*�	b]N
l�m�z]|<�]=vl�~��	Oj��.Z��Q �
!��L����!�@�k=H,�
!��L������@�7N � ���Z,/b

\�������zZ.�����
���B�;�������-��	B:|<,>= � ~AmML:| � =a,]=X��~>d

��
����R�������j
��E�F= ��,���)���
��A���R�����������	���+��1������
��.���}������A���5D�L�z�s�Q	��
!��Y��	��)�.���)�B:N ��
!��;����	���	��-/�	b]N

�	m�z]|<�]=!�!~��	Oj��.Z��Q �
!��L����!�@�k=H,�
!��L������@�7N � ���Z,/b
\�������zZ.�����
���B�;��������Z��-[|<,>= � ~AmML:| � =a,]=X��~>d

��.���}������A���5D�L�z	t�Q	��
!��Y��	��)�.���)�B:N ��
!��;����	��-���B*�	b]N
�	m�z]|<�]=!�!~��	Oj��.Z��Q �
!��L����!�@�k=H,�
!��L������@�7N � ���Z,/b

\�������zZ.�����
���B�;�������-��	B:|<,>= � ~AmML:| � =a,]=X��~>d

��i���		.r
�)��+sA��i��	.���-/�5
0��Y��	��)�.��)�B
��.���}������A���A^�� ����i��	.���-/�INJ��.	��Q	��
!��Y��	��)�.���)�B�b�z]|9�]=vl�~���O�s7d

��i���		.r
�)����	O�l+����-5i��	.���-/�5
!��Y��	��)�.���)�B
��.���}������A���A^���_�����W�i��	.���-/�7N?��.	��Q	��
!��Y��	��)�.��)�B�b+z]|<�]=vx�~���O�l7d

��� �)�
����)�
Z�	��s
��� ��������#Z������B�#���B�� ���������)��y��)�
�����)�
Z�

�	����i��	.���-���^�s ��)�-��)���- NPO�Q��@6�6X�������>%Ui��	.���-/��2��	lEbId
�	����i��	.���-���^�s	;��M��)�-��)���- NPO�Q�l]6�6X�������>%Ui��	.���-/��2��	l�mZl ��B�l�bId

��� `���)�
Z�Z�/�����E������)�������
!��1+�	����
p�@
�������
��	����)*
�����)�
��
��� �F691:6 ����)R������,��������K
+�	��-A)��	.���-+�]=
��� ����sF|(
@=a��~�Or�M
����y�	��	�.��	���	�+������������������s
��� ,������+1���������������)��*�E����)5�������R��
!��)��	.���-y

��� _��	L��:N�� ��Or�+
������f)�����-/����� ��� ���y%X�����j
����*2

� ��)�����s QZL������@�@=Ji��	.���-���^�s�b �r
!����)�B]d
� ��)�����s QZL������@�@=Ji��	.���-���^�s�b �r
!����)�B]d
� ��)�����s	;��5QZL������@�@=Ji��	.���-���^�s	;���bf�r
!����)�B]d
� ��)�����s	;��5QZL������@�@=Ji��	.���-���^�s	;���bf�r
!����)�B]d

Appendix A. A Complete AMPL Model for ACC97/98 121

� ����s�Or��
��>= ��)�������
!��1+��B��5��� �������7= s��������+1��!������������.�)y
!�y�A)����:N
��.���}������A��������s�D�Q�
�
!��L������C�k=J�K
!��i��Z.���-/��^�s�b]N

��.	��Q���
!��� 6�6?������>%U�]=Xi��	.���-/�@=vl/2Zb
%UL:|v
@=3
@=p��~���L[|(
@=�Sa��B��7S�=p��~*2���O�l������sF|(
C=X��~>d

������s�Or��
��>= ��)�������
!��1+��B��5���������B]= sA������B51��!������������.�)y
!�y�A)����:N
��.���}������A���A����s�D�Q�
�
!��L������C�k=J�K
!��i��Z.���-/��^�s�b]N

��.	��Q���
!��� 6�6?������>%U�]=Xi��	.���-/�@=vl/2Zb
%�� �ZL:|(
@=3
C=p�Z~*2���O�l������sF|v
@=X��~>d

�R'/
p�@
	����)��ZB+����)������	���	��-/�IN
� ����s�Or��
��>= ��)�������
!��1+��B��5��� �������7= s��������+1��!������������.�)y
!�y�A)����:N
��.���}������A��������s�D�;��5Q�
�
0��L������@�k= ��
!��i��	.���-/��^�s	;���b]N

��.	��Q���
!��� 6�6?������>%U�]=a;��������	��-/�k=Ul�2eN?��
!��;����	���	��-/�	b
%UL:|v
@=3
@=p��~���L[|(
@=�Sa��B��7S�=p��~*2���O�l������s	;��]|(
@=X��~7d

������s�Or��
��>= ��)�������
!��1+��B��5���������B]= sA������B51��!������������.�)y
!�y�A)����:N
��.���}������A���A����s�D�;��5Q�
�
0��L������@�k= ��
!��i��	.���-/��^�s	;���b]N

��.	��Q���
!��� 6�6?������>%U�]=a;��������	��-/�k=Ul�2eN?��
!��;����	���	��-/�	b
%�� �ZL:|(
@=3
C=p�Z~*2���O�l������s	;��F|(
@=X��~>d

����Y���)Z��./���������	�Z������)���
!���*�f�	�y�Z����
p�k
 ������
Z�Z����)*
�����)�
��
��.���}������A��������s�D���t:N �!.	��Q�
�
0��L������@�k=J��
!��i��	.���-���^�s�b ����s]|(
@=X��~���O�t>d
��.���}������A���A����s�D���sFN �!.	��Q�
�
0��L������@�k=J��
!��i��	.���-���^�s�b ����s]|(
@=X��~���O�sId
��.���}������A��������s	;���D���uFN �!.	��Q�
�
0��L������@�k=J��
!��i��	.���-���^�s	;���b�����sZ;��F|(
@=a��~���O�u7d
��.���}������A���A����s	;���D���t:N �!.	��Q�
�
0��L������@�k=J��
!��i��	.���-���^�s	;���b�����sZ;��F|(
@=a��~���O5t]d

Bibliography

[1] AARTS, E., AND LENSTRA, J. K., Eds. Local Search in Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics and Op-
timization, 1997.

[2] AARTS, E. H., KORST, J. H., AND VAN LAARHOVEN, P. J. Simulated
annealing. In Local Search in Combinatorial Optimization, E. Aarts and
J. K. Lenstra, Eds. Wiley, 1997, pp. 91–120.

[3] ABOUDI, R., AND JÖRNSTEN, K. Tabu search for general zero-one inte-
ger programs using the pivot and complement heuristic. ORSA Journal on
Computing 6, 1 (1994), 82–93.

[4] ABRAMSON, D., DANG, H., AND KRISHNAMOORTHY, M. A comparison
of two methods for solving 0–1 integer programs using a general purpose
simulated annealing algorithm. Annals of Operations Research 63 (1996),
129–150.

[5] ABRAMSON, D., AND RANDALL, M. A simulated annealing code for
general integer linear programs. Annals of Operations Research (1998). To
appear.

[6] AGGOUN, A., CHAN, D., DUFRESNE, P., FALVEY, E., GRANT, H.,
HEROLD, A., MACARTNEY, G., MEIER, M., MILLER, D., MUDAMBI,
S., PEREZ, B., VAN ROSSUM, E., SCHIMPF, J., TSAHAGEAS, P. A., AND

DE VILLENEUVE, D. H. ECLiPSe 3.5. User manual, European Computer
Industry Research Centre (ECRC), Munich, Germany, Dec. 1995.

[7] ANDERSON, E. J., GLASS, C. A., AND POTTS, C. N. Machine schedul-
ing. In Local Search in Combinatorial Optimization, E. Aarts and J. K.
Lenstra, Eds. Wiley, 1997, pp. 361–414.

[8] APPLEGATE, D., AND COOK, W. A computational study of the job-shop
scheduling problem. ORSA Journal on Computing 3, 2 (1991), 149–156.

122

BIBLIOGRAPHY 123

[9] BALAS, E., AND MARTIN, C. Pivot and complement – a heuristic for
zero-one programming. Management Science 26 (1980), 86–96.

[10] BAPTISTE, P., PAPE, C. L., AND NUIJTEN, W. Incorporating efficient
operations research algorithms in constraint-based scheduling. In Proceed-
ings of the first international joint workshop on Artificial Intelligence and
Operations Research (1995). Timberline Lodge, Oregon.

[11] BARR, R. S., GOLDEN, B. L., KELLY, J. P., RESENDE, M. G., AND

WILLIAM R. STEWART, J. Designing and reporting on computational ex-
periments with heuristic methods. Journal of Heuristics 1 (1995), 9–32.

[12] BARTH, P. Linear 0-1 inequalities and extended clauses. Tech. Rep.
MPI-I-94-216, Max-Planck Institut für Informatik, Im Stadtwald, 66123
Saarbrücken, Germany, 1994.

[13] BARTH, P., AND BOCKMAYR, A. Modelling mixed-integer optimisa-
tion problems in constraint logic programming. Research Report MPI-
I-95-2-011, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany, November 1995.

[14] BATTITI, R. Reactive search: Toward self-tuning heurisitcs. In Modern
Heuristic Search Methods, V. Rayward-Smith, I. Osman, C. Reeves, and
G. Smith, Eds. Wiley, 1996, ch. 4.

[15] BATTITI, R., AND PROTASI, M. Reactive search, a history-sensitive
heuristic for max-sat. ACM Journal of Experimental Algorithmics (1997).

[16] BEASLEY, J. Or-library: distributing test problems by electronic mail.
Journal of the Operational Research Society 41, 11 (1990), 1069–1072.

[17] BEASLEY, J. E. Lagrangean relaxation. In Modern Heuristic Tech-
niques for Combinatorial Problems, C. R. Reeves, Ed. Halsted Press, 1993,
pp. 70–150.

[18] BISSCHOP, J., AND MEERAUS, A. On the development of a general alge-
braic modeling system in a strategic planning environment. Mathematical
Study 20 (1982), 1–29.

[19] BITRAN, G., AND YANASSE, H. Computational complexity of the capac-
itated lot size problem. Management Science 28 (1982), 1174–1186.

[20] BOCK, F. An algorithm for solving ‘travelling-salesman’ and related net-
work optimization problems. Manuscript associated with talk presented

BIBLIOGRAPHY 124

at the Fourteenth National Meeting of the Operations Research Society of
America, 897, 1958.

[21] BOCKMAYR, A., AND KASPER, T. Branch-and-infer: A unifying frame-
work for integer and finite domain constraint programming. INFORMS J.
Computing (1998). To appear.

[22] BORNING, A., FREEMAN-BENSON, B., AND WILSON, M. Constraint
hierarchies. In Over-constrained Systems, M. B. Jampel, E. Freuder, and
M. Maher, Eds. Springer, 1996.

[23] BOYAN, J. A., AND MOORE, A. W. Learning evaluation functions for
global optimization and boolean satisfiability. In Proceedings Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI-98) (1998), pp. 3–10.

[24] BRAND, P., HARIDI, S., AND OLSSON, O. Some radar surveillance prob-
lems. Tech. rep., Swedish Institute of Computer Science, SICS, 1997. To
appear.

[25] CAIN, W. The computer-assisted heuristic approach used to scheduling
the major league baseball clubs. In Optimal Strategies in Sports, S. Ladany
and R. Machol, Eds., no. 5 in Studies in Management Science and Systems.
North-Holland Publishing Co., 1977, pp. 32–41.

[26] CARLIER, J., AND PINSON, E. An algorithm for solving the job-shop
problem. Management Science 35, 2 (1989), 164–176.

[27] CATRYSSE, D., AND WASSENHOVE, L. A survey of algorithms for the
generalized assignment problem. European Journal of Operational Re-
search (1992), 260–272.

[28] CHA, B., AND IWAMA, K. Adding new clauses for faster local search.
In Proceedings Thirteenth National Conference on Artificial Intelligence
(AAAI-96) (1996).

[29] CHA, B., IWAMA, K., KAMBAYASHI, Y., AND MIYAZAKI, S. Local
search algorithms for partial maxsat. In Proceedings AAAI-97 (1997).

[30] CHU, P., AND BEASLEY, J. A genetic algorithm for the generalised assign-
ment problem. Computers & Operations Research 24, 1 (1997), 17–23.

[31] CHVÁTAL, V. Linear Programming. W.H. Freeman, 1983.

[32] CODOGNET, P., AND DIAZ, D. Compiling constraints in �
�������	��

. Journal
of Logic Programming 27, 3 (June 1996), 185–226.

BIBLIOGRAPHY 125

[33] CONNOLLY, D. General purpose simulated annealing. Journal of the Op-
erational Research Society 43 (1992), 495–505.

[34] CRAWFORD, J., AND AUTON, L. Experimental results on the crossover
point in Random 3SAT. Artificial Intelligence (1996). To appear.

[35] CRAWFORD, J., AND BAKER, A. Experimental results on the application
of satisfiability algorithms to scheduling problems. In Proceedings AAAI-
94 (1994), pp. 1092–1097.

[36] CRAWFORD, J. M., DALAL, M., AND WALSER, J. P. Abstract local
search. In Proceedings of the AIPS-98 Workshop on Planning as Com-
binatorial Search (1998). In conjunction with The Fourth International
Conference on Artificial Intelligence Planning Systems, AIPS-98.

[37] CROES, G. A method for solving traveling salesman problems. Operations
Research 6 (1958), 791–812.

[38] DAVENPORT, A., TSANG, E., WANG, C., AND ZHU, K. GENET: A
connectionist architecture for solving constraint satisfaction problems by
iterative improvement. In Proceedings AAAI-94 (1994).

[39] DAVENPORT, A. J. Extensions and Evaluation of GENET in Constraint
Satisfaction. PhD thesis, Department of Computer Science, University of
Essex, 1997.

[40] DAVIS, M., LOGEMANN, G., AND LOVELAND, D. A machine program
for theorem-proving. Journal of the ACM 5 (1962), 394–397.

[41] DIABY, M., BAHL, H., KARWAN, M., AND ZIONTS, S. A Lagrangean re-
laxation approach for very-large-scale capacitated lot-sizing. Management
Science 38, 9 (1992), 1329–1340.

[42] DINCBAS, M., HENTENRYCK, P. V., SIMONIS, H., AGGOUN, A., AND

GRAF, T. The constraint logic programming language CHIP. In Pro-
ceedings International Conference on Fifth Generation Computer Systems
(1988), Y. Kodratoff, Ed., Springer-Verlag, pp. 693–702.

[43] DREXL, A., AND KIMMS, A. Lot sizing and scheduling – survey and
extensions. European Journal of Operational Research 99 (1997), 221–
235.

[44] DURBIN, R., AND WILLSHAW, D. An analogue approach to the travlling
salesman problem using an elastic net method. Nature 326 (1987), 689–
691.

BIBLIOGRAPHY 126

[45] FERLAND, J., AND FLEURENT, C. Computer aided scheduling for a sports
league. INFOR 21 (1991), 47–65.

[46] FOURER, R. A simplex algorithm for piecewise-linear programming iii:
Computational analysis and applications. Mathematical Programming 53
(1992), 213–235.

[47] FOURER, R., AND GAY, D. M. Large scale optimization: State of the art.
In Experience with a Primal Presolve Algorithm, W. Hager, D. Hearn, and
P. Pardalos, Eds. Kluwer Academic Publishers, 1994, pp. 135–154.

[48] FOURER, R., GAY, D. M., AND KERNIGHAN, B. W. A modeling lan-
guage for mathematical programming. agement Science 36 (1990), 519–
554.

[49] FOURER, R., GAY, D. M., AND KERNIGHAN, B. W. AMPL, A Model-
ing Language for Mathematical Programming. Boyd & Fraser publishing
Company, 1993.

[50] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A
Guide to the Theory of NP-completeness. W.H. Freeman and Company,
1979.

[51] GENT, I., MACINTYRE, E., PROSSER, P., AND WALSH, T. The con-
strainedness of search. In Proceedings AAAI-96 (1996).

[52] GENT, I., AND WALSH, T. An empirical analysis of search in GSAT.
Journal of Artificial Intelligence Research 1 (September 1993), 47–59.

[53] GENT, I., AND WALSH, T. Towards an understanding of hill-climbing
procedures for SAT. In Proceedings AAAI-93 (1993), pp. 28–33.

[54] GENT, I., AND WALSH, T. Unsatisfied variables in local search. In Hybrid
Problems, Hybrid Solutions (Proceedings of AISB-95) (1995), IOS Press.

[55] GINSBERG, M., AND MCALLESTER, D. GSAT and dynamic backtrack-
ing. In PPCP’94: Second Workshop on Principles and Practice of Con-
straint Programming (Seattle, May 1994), A. Borning, Ed.

[56] GLOVER, F. Future paths for integer programming and links to artificial in-
telligence. In Computer and Operations Research (1986), vol. 13, pp. 533–
549.

[57] GLOVER, F. Tabu seaerch – part I & II. ORSA Journal on Computing 1/2,
3/1 (1989), 190–260/4–32.

BIBLIOGRAPHY 127

[58] GLOVER, F., AND LAGUNA, M. Tabu search. In Modern Heuristic Tech-
niques for Combinatorial Problems, C. R. Reeves, Ed. Halsted Press, 1993,
pp. 70–150.

[59] GLOVER, F., AND LAGUNA, M. General purpose heuristics for integer
programming–part I. Journal of Heuristics 2, 4 (1997), 343–358.

[60] GLOVER, F., AND LAGUNA, M. General purpose heuristics for integer
programming–part II. Journal of Heuristics 3, 2 (1997), 161–179.

[61] GLOVER, F., AND LAGUNA, M. Tabu Search. Kluwer Academic Publish-
ers, 1997.

[62] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[63] GOMES, C., SELMAN, B., AND KAUTZ, H. Boosting combinatorial
search through randomization. In Proceedings Fifteenth National Confer-
ence on Artificial Intelligence (AAAI-98) (1998).

[64] GU, J. Efficient local search for very large-scale satisfiability problems.
SIGART Bulletin 3, 1 (1992), 8–12.

[65] HALMOS, P. R. How to write mathematics. L’Enseignement Mathématique
16 (1970), 123–152.

[66] HAMMER, P., AND RUDEANU, S. Boolean Methods in Operations Re-
search and Related Areas. Springer, 1968.

[67] HANSEN, P., AND JAUMARD, B. Algorithms for the maximum satisfiabil-
ity problem. Computing 44 (1990), 279–303.

[68] HAO, J.-K., AND DORNE, R. Empirical studies of heuristic local search
for constraint solving. In Proceedings of the Second International Con-
ference on Principles and Practice of Constraint Programming, CP-96
(1996), pp. 194–208.

[69] HENZ, M. Scheduling a major college basketball conference—revisited.
Draft. Submitted. (1998).

[70] HENZ, M., SMOLKA, G., AND WÜRTZ, J. Oz—a programming language
for multi-agent systems. In 13th International Joint Conference on Artifi-
cial Intelligence (Chambéry, France, 30 August–3 September 1993), R. Ba-
jcsy, Ed., vol. 1, Morgan Kaufmann Publishers, pp. 404–409.

BIBLIOGRAPHY 128

[71] HINDI, K. Solving a CLSP by a tabu search heuristic. Journal of the
Operational Research Society 47 (1996), 151–161.

[72] HOCHBAUM, D. S., Ed. Approximation Algorithms for NP-hard Problems.
PWS Publishing Company, 1995.

[73] HOLLAND, J. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[74] HOOKER, J. Needed: An empirical science of algorithms. Operations
Research 42 (1994), 201–212.

[75] HOOKER, J., AND OSORIO, M. Mixed logical/linear programming. Dis-
crete Applied Mathematics (1997). To appear.

[76] HOOS, H. H. Solving hard combinatorial problems with GSAT – a case
study. In Proceedings of the 20th annual german conference on artificial
intelligence (KI-96) (1996).

[77] HOPFIELD, J., AND TANK, D. ‘Neural’ computation of decisions in opti-
mization problems. Biological Cybernetics 52 (1985), 141–152.

[78] ILOG. ILOG SOLVER 3.2, User Manual. �������������	���
������������������ , 1996.

[79] ILOG, CPLEX DIVISION. Using the CPLEX Callable Library and Base
System, Version 5.0, 1997.

[80] JAFFAR, J., AND LASSEZ, J.-L. Constraint logic programming. In Prin-
ciples of Programming Languages (1987), pp. 111–119.

[81] JAFFAR, J., AND MAHER, M. Constraint logic programming—a survey.
Journal of Logic Programming 19/20 (1994), 503–582.

[82] JAIN, R. The Art of computer Systems Performance Analysis. John Wiley
and Sons, 1991.

[83] JAMPEL, M. B., FREUDER, E., AND MAHER, M., Eds. Over-Constrained
Systems, vol. 1106 of LNCS. Springer, 1996.

[84] JIANG, Y., KAUTZ, H., AND SELMAN, B. Solving problems with hard
and soft constraints using a stochastic algorithm for MAX-SAT. In Pro-
ceedings of the First International Joint Workshop on Artificial Intelligence
and Operations Research (1995).

BIBLIOGRAPHY 129

[85] JOHNSON, D. S. A theoretician’s guide to the experimental analysis of al-
gorithms. �
���������
�	�����������������	� � ���
� ����������� �)�� �� � ���	��������� . Preliminary
draft.

[86] JOHNSON, D. S. A catalog of complecity classes. In Handbook of The-
oretical Computer Science, Vol. A, J. Van Leeuwen, Ed. Elsevier, 1990,
pp. 67–161.

[87] JOHNSON, D. S. Experimental analysis of algorithms: The good, the bad,
and the ugly. Invited talk at AAAI-96., 1996.

[88] JOHNSON, D. S., AND MCGEOCH, L. A. The travelling salesman prob-
lem: A case study. In Local Search in Combinatorial Optimization, E. Aarts
and J. K. Lenstra, Eds. Wiley, 1997, pp. 215–310.

[89] JOHNSON, D. S., AND TRICK, M. A., Eds. Cliques, coloring, and satisfi-
ability: 2nd DIMACS implementation challenge: DIMACS workshop 1993
(Providence, RI, 1996), vol. 26 of DIMACS series in discrete mathematics
and theoretical computer science, American Mathematical Society.

[90] KAMATH, A., KARMARKAR, N., RAMAKRISHNAN, K., AND RESENDE,
M. An interior point approach to Boolean vector function synthesis. In
36th MSCAS (1993), pp. 185–189.

[91] KARMARKAR, N. A new polynomial time algorithm for linear program-
ming. Combinatorica 4 (1984), 375–395.

[92] KAUTZ, H., AND SELMAN, B. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. In Proceedings AAAI-96 (1996),
pp. 1194–1201.

[93] KAUTZ, H., AND SELMAN, B. The role of domain-specific knowledge in
the planning as satisfiability framework. In Proceedings AAAI-98 (1998).

[94] KIRCA, Ö., AND KÖKTEN, M. A new heuristic approach for the multi-
item dynamic lot sizing problem. European Journal of Operational Re-
search 75 (1994), 332–341.

[95] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization
by simulated annealing. Science, Number 4598, 13 May 1983 220, 4598
(1983), 671–680.

[96] KOECHER, M. Lineare Algebra und Analytische Geometrie. Springer-
Verlag, 1983.

BIBLIOGRAPHY 130

[97] KUMAR, V. Algorithms for constraint-satisfaction problems: A survey. AI
Magazin 13 (1990), 32–44.

[98] LEE, J. H., FUNG LEUNG, H., AND WING WON, H. Extending e-genet for
non-binary csps. In Proceedings of the seventh International Conference
on Tools with Artificial Intelligence (1995), pp. 338–343.

[99] LEE, J. H., FUNG LEUNG, H., AND WING WON, H. Towards a more
efficient stochastic constraint solver. In Proceedings of the Second Interna-
tional Conference on Principles and Practice of Constraint Programming,
CP-96 (1996).

[100] LI, W., BAI, S., GU, J., SELMAN, B., CRAWFORD, J., AND WANG,
D. international competition and symposium on satisfiability testing.
�
���������
�	���������
 � � � � ������� ������� � � �	 ��� � � � �� � , March 1996.

[101] LIN, S. Computer solutions of the traveling salesman problem. Bell System
Technical Journal 44 (1965), 2245–2269.

[102] LØKKETANGEN, A., AND GLOVER, F. Tabu search for zero-one mixed in-
teger programming with advanced level strategies and learning. Intl. Jour-
nal of Operations and Quantitative Management 1, 2 (1995), 89–108.

[103] LØKKETANGEN, A., JÖRNSTEN, K., AND STORØY, S. Tabu search
within a pivot and complement framework. Int. Transactions on Opera-
tions Research 1, 3 (1994), 305–316.

[104] MATHIAS, E., AND WHITLEY, L. Transforming the search space with
gray coding. In IEEE Conference on Evolutionary Computation (1994),
vol. 1, pp. 513–518.

[105] MCALLESTER, D., SELMAN, B., AND KAUTZ, H. Evidence for invari-
ants in local search. In Proceedings Fourteenth National Conference on
Artificial Intelligence (AAAI-97) (1997).

[106] MICHEL, L., AND HENTENRYCK, P. V. Localizer, a modeling language
for local search. In Proceedings of the Third International Conference
on Principles and Practice of Constraint Programming, CP-97 (1997),
Springer LNCS.

[107] MINTON, S., JOHNSTON, M. D., PHILIPS, A. B., AND LAIRD, P. Solv-
ing large-scale constraint satisfaction and scheduling problems using a
heuristic repair method. In Proceedings Eighth National Conference on
Artificial Intelligence (AAAI-90) (1990), pp. 17–24.

BIBLIOGRAPHY 131

[108] MINTON, S., JOHNSTON, M. D., PHILIPS, A. B., AND LAIRD, P. Min-
imizing conflicts: a heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence 58 (1992), 161–205.

[109] MITCHELL, D., SELMAN, B., AND LEVESQUE, H. Hard and easy distri-
butions of SAT problems. In Proceedings AAAI-92 (1992), pp. 459–465.

[110] MORRIS, P. The breakout method for escaping from local minima. In Pro-
ceedings Eleventh National Conference on Artificial Intelligence (AAAI-93)
(1993).

[111] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge
University Press, 1995.

[112] MÜHLENBEIN, H. Genetic algorithms. In Local Search in Combinatorial
Optimization, E. Aarts and J. K. Lenstra, Eds. Wiley, 1997, pp. 137–172.

[113] NEMHAUSER, G., AND WOLSEY, L. Integer and Combinatorial Op-
timization. Series in Discrete Mathematics and Optimization. Wiley-
Intersience, 1988.

[114] NEMHAUSER, G. L., AND TRICK, M. A. Scheduling a major college
basketball conference. In Proceedings of the 2nd International Conference
on the Practice And Theory of Automated Timetabling (1997).

[115] NONOBE, K., AND IBARAKI, T. A tabu search approach to the constraint
satisfaction problem as a general problem solver. European Journal of
Operational Research 106, 2-3 (April 1998).

[116] PAPADIMITRIOU, C. H., AND STEIGLITZ, K. Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice-Hall, New York, 1982.

[117] PARKES, A., AND WALSER, J. Tuning local search for satisfiability test-
ing. In Proceedings AAAI-96 (1996), pp. 356–362.

[118] PETERSON, C., AND B.SÖDERBERG. A new method for mapping opti-
mization problems onto neural networks. International Journal of Neural
Systems 1 (1989), 3–22.

[119] PUGET, J. A C++ implementation of CLP. In Proceedings Second Singa-
pore International Conference on Intelligent Systems (1994). Singapore.

[120] PUGET, J.-F. A fast algorithm for the bound consistency of alldiff con-
straints. In Proceedings Fifteenth National Conference on Artificial Intelli-
gence (AAAI-98) (1998), pp. 359–366.

BIBLIOGRAPHY 132

[121] RAGHAVAN, P., AND THOMPSON, C. Randomized rounding. Combintor-
ica 7 (1987), 365–374.

[122] RAYWARD-SMITH, V., OSMAN, I., AND REEVES, C., Eds. Modern
Heuristic Search Methods. Wiley, 1996.

[123] REEVES, C. R. Evaluation of heuristic performance. In Modern Heuristic
Techniques for Combinatorial Problems, C. R. Reeves, Ed. Halsted Press,
1993, ch. 3, pp. 304–315.

[124] REEVES, C. R. Genetic algorithms. In Modern Heuristic Techniques for
Combinatorial Problems, C. R. Reeves, Ed. Halsted Press, 1993, ch. 3,
pp. 304–315.

[125] REEVES, C. R., Ed. Modern Heuristic Techniques for Combinatorial
Problems. Halsted Press, 1993.

[126] RÉGIN, J.-C. A filtering algorithm for constraints of difference in csps. In
Proceedings Twelfth National Conference on Artificial Intelligence (AAAI-
94) (1994), pp. 362–367.

[127] RESENDE, M., AND FEO, T. A GRASP for satisfiability. In The Second
DIMACS Implementation Chellenge, M. Trick, Ed., DIMACS Series on
Discrete Mathematics and Theoretical Computer Science. 1995.

[128] SARASWAT, V., AND RINARD, M. Concurrent constraint programming.
In Proceedings of the 7th Annual ACM Symposium on Principles of Pro-
gramming Languages (San Francisco, CA, January 1990), pp. 232–245.

[129] SCHREUDER, J. Combinatorial apsects of construction of competition
dutch professional footbal leageus. Discrete applied mathematics 35
(1992), 301–312.

[130] SCHULTE, C. Programming constraint inference engines. In Proceedings
of the Third International Conference on Principles and Practice of Con-
straint Programming (Schloß Hagenberg, Austria, Oct. 1997), G. Smolka,
Ed., vol. 1330 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 519–533.

[131] SELMAN, B., AND KAUTZ, H. Domain-independent extensions to GSAT:
Solving large structured satisfiability problems. In Proceedings of IJCAI-93
(1993).

[132] SELMAN, B., AND KAUTZ, H. An empirical study of greedy local search
for satisfiability testing. In Proceedings of IJCAI-93 (1993).

BIBLIOGRAPHY 133

[133] SELMAN, B., KAUTZ, H., AND COHEN, B. Noise strategies for improving
local search. In Proceedings AAAI-94 (1994), pp. 337–343.

[134] SELMAN, B., LEVESQUE, H., AND MITCHELL, D. A new method
for solving hard satisfiability problems. In Proceedings AAAI-92 (1992),
pp. 440–446.

[135] SMITH, B., BRAILSFORD, S., HUBBARD, P., AND WILLIAMS, H. The
progressive party problem: Integer linear programming and constraint pro-
gramming compared. Constraints 1 (1996), 119–138.

[136] SMOLKA, G. The Oz programming model. In Computer Science Today,
Lecture Notes in Computer Science, vol. 1000. Springer-Verlag, Berlin,
1995, pp. 324–343.

[137] SMOLKA, G., SCHULTE, C., AND WÜRTZ, J. Finite Domain Con-
straint Programming in Oz, A Tutorial. Programming Systems Lab, Ger-
man Research Center for Artificial Intelligence, Stuhlsatzenhausweg 3, D-
66123 Saarbrücken, Germany, 1998. DFKI Oz 2.0 Documentation Series,
�
���������
�	������� � � � � � ���� � � � � ��� � � .

[138] THORNTON, J., AND SATTAR, A. Using arc weights to improve iterative
repair. In Proceedings Fifteenth National Conference on Artificial Intelli-
gence (AAAI-98) (1998).

[139] TRICK, M. Modifications to the problem description of “scheduling a ma-
jor college basketball conference”. http://mat.gsia.cmu.edu/acc mod.html,
Mai 1998.

[140] TSANG, E. Foundations of Constraint Satisfaction. Academic Press, Lon-
don, 1993.

[141] TSCHICHOLD, J. Ausgewählte Aufsätze über Fragen der Gestalt des
Buches und der Typographie. Birkhäuser, 1975.

[142] VAN HENTENRYCK, P., AND DEVILLE, U. Operational semantics of
constraint logic programming over finite domains. In Programming lan-
guage implementation and logic programming, PLILP’91 (1991), vol. 528
of Springer, LNCS.

[143] WALLACE, M. Practical applications of constraint programming. Con-
straints 1 (1996), 139–168.

[144] WALLACE, R. J., AND FREUDER, E. C. Heuristic methods for over-
constrained constraint satisfaction problems. In in [83]. Springer, 1996.

BIBLIOGRAPHY 134

[145] WALSER, J. Retrospective analysis: Refinements of local search for satis-
fiability testing. Master’s thesis, University of Oregon, 1995.

[146] WALSER, J. Solving linear pseudo-boolean constraint problems with local
search. In Proceedings AAAI-97 (1997).

[147] WALSER, J., IYER, R., AND VENKATASUBRAMANYAN, N. An integer
local search method with application to capacitated production planning.
In Proceedings AAAI-98 (1998).

[148] WILLIAMS, C., AND HOGG, T. Exploiting the deep structure of constraint
problems. Artificial Intelligence 70 (1994), 73–117.

[149] WINSTON, W. L. Operations Research – Applications and Algorithms.
Duxbury Press, 1994.

[150] WÜRTZ, J. Lösen kombinatorischer Probleme mit Constraintprogram-
mierung in Oz. PhD thesis, Universität des Saarlandes, Fachbereich In-
formatik, Saarbrücken, Germany, Jan. 1998.

[151] YANAKAKIS, M. On the approximation of maximum satisfiability. Pro-
ceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms (1992),
1–9.

[152] ZWEBEN, M. A framework for iterative improvement search algorithms
suited for constraint satisfaction problems. Tech. Rep. RIA-90-05-03-1,
NASA Ames Research Center, AI Research Branch, 1990.

List of Tables

3.1 Parameters of WSAT(OIP) with Standard Ranges. 37
3.2 Optimal Solutions for Configuration Subtask 40

5.1 Boat Specifications for the Progressive Party Problem 62
5.2 Experimental Results for the Progressive Party Problem. 64
5.3 Game Quality (Weekday/Weekend) for the ACC Problem 70
5.4 Experimental Results for ACC Problem 77

6.1 Experimental Results for Radar Surveillance Problems 87
6.2 Performance Drop When Dropping Constraint-bounds 89
6.3 Parameters for the Course Assignment Problem 91
6.4 Course Assignment, Experimental Results 93

7.1 Parameters for the CLSP with Discrete Lot-sizes. 98
7.2 Sets and Decision Variables for the CLSP MILP Model. 101
7.3 Computational Results for the CLSP 103
7.4 Solutions Based on a Fixed-capacity Labor Profile 105

135

List of Figures

2.1 A Generic Local Search Procedure for SAT 21
2.2 The Walksat Variable Selection Strategy 21

3.1 Piecewise-linear Penalty Functions 31
3.2 Local Search and Walksat’s Two-stage Control Strategy 33
3.3 Manhattan Distance to a Constraint 34
3.4 Main Loop of WSAT(OIP) . 35
3.5 Move Selection Strategy of WSAT(OIP) 36
3.6 Graphical Interpretation of problem (3.12) 45
3.7 Search Trajectories of Different WSAT(OIP) Strategies 46
3.7 (cont) Search Trajectories . 47
3.7 (cont) Search Trajectories . 48

5.1 Schreuder-timetable for R1–R10, O1–O3, from WSAT(OIP) . . . 76
5.2 Minimal Distortion Mirroring . 79
5.3 A Minimal Distortion Timetable From WSAT(OIP) 81

6.1 Radar Map with Hexagonal Cells 84

7.1 Solutions for Various Labor Profiles 104
7.2 Performance Comparison on the Restricted Model 105

136

Index

Symbols
0-1 integer constraints27

A
abstract local search 10
ACC Basketball 97/98 66
alternative scoring 108
annealing schedule 19
approximate method 4
Artificial Neural Networks.19
aspiration . 37
aspiration criteria 8

B
benchmark set 57
Boolean . 5
branch-and-bound 13
branching . 16
breakcount . 21

C
capacitated lot-sizing 97
capacitated production planning . . 96
CISC local search 20
clause . 5
CLSP . 97
CLSP lower bounds 105
CNF. .5
combinatorial problem 17
computation space 16
concurrent CP 15
confinedness property 29
conjunctive normal form 5
consistency 23, 24

constraint programming 15
constraint satisfaction problems . . 15
constraint store 15
constraint-bound 32
constructive heuristics17
cost function 17
course assignment problem 90
cover . 3
CP . 15
critical path . 20
CSPs . 15

D
decision problem 5
diversification 19
Double Round Robin 67
DRR . 67

E
empirical comparisons 58
enumeration strategy 16
Euclidean distance 109
Euclidean score 110
exact method . 4

F
feasible solution 2, 6, 29
finite domain CP 15
first leg . 68
flexibility 55, 57
flip . 20

G
game mirroring 67
GAP . 94, 110

137

INDEX 138

Generalized Assignment Problem 94
generic SAT local search 20
Genetic Algorithms 19
GSAT . 20

H
hamming distance 41
Hessian normal form.109
heuristic . 4, 17
hexagonal cells 83
hill-climbing 33
hillclimbing . 4
history-based tie breaking 36

I
i2 Technologies 102
ILP. .2
ILP problem . 2
instance. .2
integer linear programming 2
integer local search 5, 23
integer programming heuristics . . 49
integrality .23
integrality gap 39
intensification 19
IP branch-and-bound. 13
isocost line. .44
iterative improvement 17, 18
iterative repair 4, 27

L
labor profile . 98
Lagrangean relaxation 101
leashed local search 41
linear programming 2, 13
linear pseudo-Boolean constraints 26
linear relaxation 13
literal . 5
local consistency 24
local gradient .4
local moves . 4
local neighborhood 17

local optima.18
local search 4, 17
locally optimal 18
LP . 13
LP relaxation.13

M
machine learning 111
Manhattan distance 35
MAXSAT. .22
meta-heuristics 18, 111
MILP . 13
min-conflicts heuristic 52
min-normal form 28
minimal distortion mirroring 79
mixed-integer programming 13
model . 3
modeling languages 22

N
neighborhood function 18
noise . 18
normal vector 109

O
objective function 2
OIP . 28
over-constrained integer program, 28
over-coverage 84
Oz . 15

P
partial MAXSAT 22
pattern sets .75
patterns . 74
perfectly mirrored 67
piecewise-linear convex 31
pigeonhole problem. 26
pivot&complement heuristic 49
problem instance 2
problem instances 17
production planning 96

INDEX 139

Progressive Party Problem 61
propagators . 15
propositional satisfiability problem 5
pseudo-Boolean local search 33

R
radar surveillance covering 83
random 3-SAT 22
reduced costs42
redundant constraints 74
residual robustness 55, 57
return match 68
RISC local search 20
robustness . 55

S
SAT . 5
satisfied clause 5
scalar product 109
scaling . 55
score . 33, 34
SCP . 3
search relaxations 23
sensitivity analysis 42
Set-Covering Problem. 3
Simulated Annealing18
soft constraint violation 29
sports scheduling 66
standard parameters 59
stochastic local search.36
systematic method 4

T
Tabu Search . 19
temperature . 50
tight relaxation 14
timetables. .75
total assignment 33
totality . 23, 24
traveling salesman problem 19
tree search 14, 16
triggering . 34

two-stage control strategy 33

V
variable flip 6, 34

W
Walksat . 5, 20
Walksat-Principle 33
weighted MAXSAT. 22
WSAT(OIP) 7, 25
WSAT(OIP) parameters 37

Y
yachting rally 61

