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Abstract

Concurrency plays an important rôle in programming language design. Logic variables in
the form of futures and promises provide a means of synchronization and communication in
concurrent computation. Futures and promises, which differ from general logic variables in
that a distinction is made between reading and writing them, have been introduced previously.
However, no formal operational semantics has been provided for promises.

In order to formally investigate properties of futures and promises in a functional setting,
a concurrent λ-calculus extended with futures and promises is presented. It is intended to
provide a computation model for the programming language Alice [Ali02]. We prove the
calculus confluent, and give a proof showing strong normalization in the simply typed case
without promises. Further, we introduce a type system so as to statically enforce proper use
of promises in the calculus.
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making sure studying is fun. Manuel Bodirsky, Arno Eigenwillig, Tobias Gärtner, Joachim
Niehren, Andreas Rossberg and Gert Smolka read and commented on previous versions of this
thesis. Finally, I would like to thank my parents for their support throughout my life.

vii



viii



Contents

1 Introduction 3
1.1 Futures and Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Futures and Promises in the Programming Language Alice . . . . . . . . . . . . 6
1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Programming with Futures and Promises 11
2.1 Lazy List Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Asynchronous Remote Procedure Call . . . . . . . . . . . . . . . . . . . . . . . 13

3 A Calculus of Futures and Promises 15
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 A Concurrent λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The Calculus λFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Simple Types for λFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Computational Completeness and Recursion . . . . . . . . . . . . . . . . . . . . 28
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Futures 35
4.1 The Subcalculus λF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Uniform Confluence of λF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Uniform Confluence of Untyped Expressions . . . . . . . . . . . . . . . . 37
4.2.2 Uniform Confluence of Simply Typed Expressions . . . . . . . . . . . . 39

4.3 Strong Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Chapter 1

Introduction

Concurrency plays an increasingly important rôle in programming, evidenced by the variety
of languages offering support for concurrent computation. Java [GJSB00], Concurrent ML
[Rep99] and Oz [Smo95b, Smo95a] are examples. The popularity of concurrency is partly due
to the rise in distributed and parallel computing, but also due to the use of concurrency in
applications such as user-interfaces and the like.

Synchronization and communication of concurrently running threads are fundamental op-
erations in these languages. Different mechanisms are employed, e.g. channels, shared cells
or logic variables are used to transmit information between threads, put locks on shared data
structures and synchronize on certain events.

In this thesis, we investigate how concurrent computation and a restricted form of logic
variables behave in combination with a functional core language. The motivation for doing
this is the programming language Alice [Ali02], where this variant of logic variables are used.
Also, we are interested in what the basic properties of such languages are from a theoretical
point of view.

More specifically, we will introduce a small concurrent functional language containing re-
stricted forms of logic variables, called promises and futures. We provide an operational seman-
tics and prove several technical results. In particular, the reduction relation of the concurrent
language is proved confluent, and for the simply typed fragment we prove a strong normaliza-
tion theorem.

Concurrent Computation. Concurrency as understood for this thesis may be character-
ized as interleaving computation. In particular, concurrent computation does not depend on
parallelism of the underlying infrastructure. Certain tasks in computing are inherently concur-
rent in their nature, prime examples being user-interaction, distributed systems, autonomous
software agents, and systems providing multiple services to their clients. Concurrent threads
provide the right level of abstraction to deal with asynchronous (and slow) requests, and their
subsequent synchronization.

Logic Variables and Synchronization. General logic variables stem from the class of logic
programming languages such as Prolog [Pro85, SS94, JL87]. Initially, when freshly introduced,
they carry no value. Therefore they allow for the stepwise construction of values, using further
logic variables for the construction of subvalues if necessary. They are transient, in that they

3



4 Introduction

are identified with their value as soon as this becomes available. This provides a mechanism
for implicit synchronization of concurrent threads that share a logic variable: A thread reading
the variable automatically suspends while sufficient information is not available.

We will be concerned with futures and promises, which differ from general logic variables
in that a distinction is made between reading and writing them. Bidirectional unification can
be replaced by (single-) assignment.

Functional Programming. Functional programming is a paradigm based on well-understood
and solid theoretical foundations. We will adopt the common agreement that λ-calculus pro-
vides a good foundation to reason about the operational behaviour of functional programs. For
a recent, comprehensive account of λ-calculus and functional programming, see [Mit96].

Semantically, one distinguishes strict, or eager, languages such as Standard ML [MTHM97],
from non-strict languages, e.g. Haskell [ABB+99] and Miranda [Tur85]. Function application
in strict languages is done by first evaluating the arguments. They are strict in the sense
that both function and arguments must evaluate to values. On the other hand, non-strict
languages evaluate their arguments only if needed in the function body. In [Oka98] it has
been demonstrated that lazy evaluation, an implementation technique of non-strictness by
evaluation on demand, provides an important tool for designing amortized data structures in
a purely functional setting.

The absence of side-effects in purely functional languages makes them well-suited base
languages for concurrent programming. In fact, several concurrent extensions of functional
languages have been developed during the last two decades. CML [Rep99], Concurrent Haskell
[JGF96], and Facile [GMP89] are a few examples.

Models of Computation. Commonly, high-level programming languages are explained
with respect to a computation model. One goal of this thesis is to provide a computation
model for the concurrent functional programming language Alice [Ali02], incorporating logic
variables in the form of promise and futures.

There are numerous formal models of basic concurrent computation. Among the best-
known are CCS [Mil89] and its successor, the π-calculus [MPW92, SW01], where computation
is based solely on the transmission of names via shared channels. Pict is a language based
on this model [PT00]. The join-calculus [FG96], underlying the language JoCaml, [CF99] is
related, but somewhat closer to actual programming languages.

Concurrent constraint programming [Sar93, Smo95b, VS+96] is based on the idea of con-
currently acting agents (actors) which communicate via shared logic variables. These reside in
a global constraint store whose information increases monotonically as computation proceeds.

Finally, the models underlying functional programming are untyped and typed λ-calculi,
often extended by constants and primitive functions [Plo77]. The formal semantics of λ-calculus
with evaluation on demand has been studied, e.g., in [AFM+95, AF97, MOW98].

1.1 Futures and Promises

So what exactly do we mean by futures and promises? A formalization of the concept is
deferred to Chapter 3, here we confine ourselves to an informal description.

General logic variables, e.g. as found in Prolog [Pro85, SS94] and Oz [Smo95b, Smo95a],
are introduced without being bound to a value, they obtain their final value by participating,
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possibly more than once, in unification. They provide a simple mechanism for the synchro-
nization of concurrent threads that share a logic variable: A thread reading the variable may
suspend due to missing information, and it can resume computation as soon as this information
becomes available.

However, logic variables also can become a source of programming errors that are hard to
detect since the direction of information flow cannot be statically determined. This is especially
true when it comes to concurrency, where deadlocks and indeterminism may result from the
use of logic variables. Specifically, it is not at all an easy task to determine which threads can
write a particular logic variable and which threads are readers only.

In Oz, there is a second kind of logic variable, called future. Futures allow reading only. In
fact, futures have already been present in Multilisp [Hal85, FF96] in the context of parallelism,
allowing the programmer to explicitly indicate which subexpressions may be evaluated in par-
allel by annotation with the keyword future. The expression future(e) may thus return a
future associated to e, and begin evaluation of e in parallel. As soon as the value denoted by
e has been computed, this value and the future are identified.

Similarly, a second kind of “lazy” future annotation is introduced. Expressions can now
be declared as either concur or byneed, where by-need expressions are evaluated only if and
when their result is needed.

The expression
concur x=e in e′

evaluates e in a new thread, while evaluation of e′ continues as long as no attempt of reading
from x is made. Again, once the value e evaluates to is available, future and value are equated
in e′. In the case of

byneed x=e in e′

evaluation of e is initiated only after the first attempt to read from x. Thus, byneed futures are
somewhat dual to the strictness annotations commonly found in non-strict languages such as
Haskell [ABB+99]. They provide a way to obtain lazy evaluation without major adjustments
of the framework.

Now viewing a future as the reading side of a logic variable, a promise is just the writer,
promising to eventually supply a value. For example,

prom bindx for x in e

introduces two new entities: the future x of type σ, and the promise bindx which can be fulfilled
by applying it to some value v: The application

bindx (v)

yields a dummy value, but also, more importantly, binds the future x to v as side-effect.

In summary, there are three ways to introduce a future x. First, as a future “referring” to a
concurrent computation, second as a byneed- (or lazy future, and third as a promised future.
Comparing the different ways to produce futures, the following observation can be made: for
futures x created by concur or byneed, it is immediately (statically) clear who the eventual
supplier of x’s value is. In contrast, for a promised future, the supplier will be determined only
dynamically. Several examples are given in Chapter 2, showing how promises and futures are
used in programming.
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So naturally the question arises what the benefits are from sep-
arating reading and writing of a logic variable. Conceptionally, the
future x should be bound only once. Consequently, a promise should
be fulfilled only once, i.e. the expression bindx v should not be exe-
cuted several times. In fact, logic variables are often used in this way
in concurrent logic programming (Figure 1.1): Writing x is done in a
sequentialized fashion, having the actual writer in a semaphore or the
like. However, several concurrent threads may read from x without
causing any difficulties.

Strictly adhering to the rule of assigning a logic variable at most
once will eliminate the usual problems caused by threads competing
to write a particular logic variable. As a consequence, the result of
computations is now deterministic, since logic variables are no longer
true resources.

What happens if we try to fulfill a promise that has already been fulfilled? Usually, this is
an unintended, and unwanted, state of the computation. There are several design decisions
conceivable:

• Carry on. As the system is in an abnormal, if not illegal, state, we do not consider this
an appropriate solution.

• Suspend. One may argue that this is a sensible decision. Moreover, it is very simple.
Suspending when trying to fulfill a promise for the second time is the approach we will
take over in the next chapter.

• Throw an exception. This seems the best solution in practice, as it is then the program-
mer’s responsibility to provide an application-specific error handling. In fact, this is the
way the problem is solved in the programming language Alice [Ali02].

• Don’t let it happen. This is what the intention of using promises tells. In Chapter 5, we
will consider how this can be enforced automatically, using a system of linear types.

It would be interesting to see how the third idea, using exceptions, can be formalized. We
just remark that it is not immediately clear what properties are required of exceptions in a
concurrent language. Certainly this question is of practical importance.

1.2 Futures and Promises in the Programming Language

Alice

This work is done in the context of the programming language Alice, the interested reader is
referred to [Kor01, Ali02] for more information. Alice is a concurrent extension of the strict
functional language Standard ML [MTHM97]. ML is strongly typed, providing polymorphic
type inference [Mil78, DM82], a sophisticated, parametric module system and a considerable
amount of programming tools and libraries. Alice aims at combining the expressive power of
concurrent constraint programming, as found in Oz [Smo95b, Smo95a], with a functional core
language. This was first outlined in [Smo98], where it is argued that logic and concurrent
constraint programming benefits from being based on a call-by-value functional core language.
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Futures and promises in Alice are provided through modules, which are called structures as in
Standard ML.

Futures. The structure Future contains, among others, the values

concur: (unit→α)→α

and

byneed:(unit→α)→α

that, given a procedure f : unit→α, immediately return a future while evaluating f() in a new
thread in the case of concur, resp. creating a suspension in the case of byneed.

The structure Future also contains the exception Future. If evaluation of f() raises
an exception exn, then every attempt to access the future will raise Future(exn). More-
over, it contains further “impure”, non-functional operations on futures, such as await:α→α,
awaitOne:α×β→α and isFuture:α→bool with the obvious behaviours.

Promises. Promises in Alice are provided by the structure Promise. This structure defines
the type α promise, along with operations

promise:unit→ α promise

which creates a new promise,

future:α promise→ α

which returns the future associated with the promise, and the “application”

fulfill: α promise× α→ unit

The application fulfill(p,v) binds the future associated with p to v (provided it is not the
future itself). Any further attempt to fulfill p will raise the exception Promise.

Providing promises in this way differs from how we introduced promises in the previous
section in two respects. First, in Alice there is the specific type α promise for promises, and
application of a promise is done by fulfill. This distinguishes writing y v for an arbitrary,
non-promise variable y from p v for a promise p, by clearly indicating the side-effect of binding
a future in the type. Second, the associated future is obtained from the promise p through
future(p), whereas in Section 1.1 both future and promise are introduced simultaneously.
The effect of

prom bindx for x in e

may thus be achieved by writing

let bindx = promise() in let x = future(bindx) in e

in Alice, additionally replacing occurences of bindx v with fulfill(bindx,v). Note however
that the type structure of Alice is rich, using α promise instead of simply typing promises by
α→ (), and this replacement cannot be done automatically.
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Conversely we may regard promises of Alice as pairs 〈bindx, x〉, so Alice’s promise translates
to

promise() prom bindx for x in 〈bindx, x〉

future e snd e

and

fulfill(e,e′) (fst e) e′ .

The reason for deviating from promises as found in Alice is motivated by technical consider-
ations: In Section 5.2, a type system is presented that ensures linear use of promises, while
allowing the associated futures to be used without restriction. Thus, it makes sense to introduce
promise and future simultaneously, but as seperate entities.

1.3 Contributions of the Thesis

In this thesis, we develop the theory of a concurrent computation model with futures and
promises, called λFP . Its sequential core is based on the call-by-value λ-calculus, but it also
provides for evaluation on demand through by-need annotations.

In the next part, Chapter 2, several examples on the use of futures and promises are
presented. The aim is to demonstrate the usefulness of these concepts in concurrent functional
programming.

In Section 3.2, some intuition is developed, and in Section3.3 the calculus λFP is formally
introduced. A type system very similar to that of the simply typed λ-calculus is presented in
Section 3.5, and a subject reduction theorem for this language is proved. In Section 3.6, the
expressiveness of the language is investigated, with the outcome that promises yield computa-
tional completeness even in the simply typed case, as they suffice to define general recursion.

In Chapter 4, we take a closer look at the sublanguage λF of promise-free expressions. In
particular, we embed the simply typed fragment into the simply typed λ-calculus in Section
4.3, thereby obtaining a strong normalization theorem for the promise-free simply typed lan-
guage. In Section 4.2, we prove both the simply typed and untyped languages confluent.
In fact, they are proven uniformly confluent [Nie00], and this property is used in Section 4.4,
where complexity-preserving embeddings of call-by-value and call-by-need λ-calculus are given.
Uniform confluence then provides a way to relate their respective complexities, which yields
a formal proof that the call-by-value strategy needs at least as many computational steps as
call-by-need, along the lines of [Nie00]. The results of Section 4.4 have been summarized in
[Sch01].

Chapter 5 deals with the full language again. In 5.2, a refined type system based on
mode annotations is proposed. It statically enforces proper once-only writing of futures via
promises. In fact, in Section 5.3 we prove that reduction on well-typed expressions is uniformly
confluent as well. Next, in 5.4 cells are added, obtaining the calculus λFPC . As demonstrated
by the example in Section 2.3, λFPC may indeed serve as the core language for a concurrent
programming language, as it is sufficiently expressive to program channels for many-to-one and
many-to-many communication.
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1.4 Related Work

There has been much work on the semantics of concurrent programming languages, as well as
on formal calculi addressing the related areas of concurrency, mobility and distribution.

The semantics most closely related to the one presented here is probably one given by Berry
et al. in [BMT92] for a fragment of Concurrent ML (CML, see [Rep92, Rep99]), another con-
current extension of Standard ML. In [FHJ98], a labelled transition system semantics has been
presented for CML which provides a notion of bisimulation equivalence on programs. Following
work in [JR00] extends this to cover almost all the essential features of CML, including the
dynamic generation of new channels. However, there are no logic variables present in CML;
channels are taken as primitives for communication.

Futures have been introduced to functional programming already in Multilisp [Hal85]. In
[FF96], Flanagan and Felleisen give a formal semantics at various abstraction levels for a λ-
calculus with let and futures, making use of abstract machines. A deterministic, sequential
operational semantics that simply treats futures as annotations is shown to agree with both a
parallel reduction semantics and a placeholder object semantics. A key step in the proof is a
Diamond Lemma, similar to the notion of uniform confluence shown to hold for our calculus.
This latter work was performed with the intention of providing a basis for implementing futures
and proving correctness of certain compiler optimizations in the context of parallelism. Our
semantics for futures corresponds roughly to the parallel reduction of [FF96].

Promises as a type-safe mechanism for remote procedure call, being able to deal with
exceptions, are described in [LS88]. Closely related are the I-Structures [ANP89] of Id and
its successor pH: An I-structure is allocated by array(l,r), returning an “empty” array with
lower and upper index bounds l and r. Such an I-structure A can be filled subsequently by
constraints of the form A[i] = v. Multiple writing of location i will result in a run-time error.

Other proposals for integrating logic variables into functional languages have been made.
For example, the accumulators of [PE88] provide a quite general way of introducing state to
a functional language, which can be updated preserving determinacy of evaluation. Promises
can be seen as an instance of this scheme.

Type systems have been successfully used for expressing safety properties, e.g. the system in
[Bou97b] was proposed with the intention of proving the absence of deadlock. In the context of
concurrent calculi, types have been found useful for proving security and behavioural properties
as well. In particular, our linear type system with mode annotations, presented in Chapter 5,
is inspired by the various typing disciplines for resource management in π-calculus proposed
in the literature, see [SW01] for a recent account.

It turns out that the type system resembles very much the uniqueness annotations [BS96]
found in the language Clean. Further, similar type systems have been devised in [TWM95,
Mog98] with the rather different motivation of program transformation and optimization.
There, the annotations yield information in the sense of a program analysis [NN99].

Boudol’s Blue calculus [Bou97a] integrates both the λ-calculus and the π-calculus in a direct
way. The calculus shares important properties with the language presented here: (small)
β-reduction is strongly normalizing and satisfies the diamond property. However there are
differences, e.g. β-reduction in the Blue calculus is split into two parts, substitution of variables
and resource fetching.

The theory of uniformly confluent calculi has been developed in [Nie00]. It was put to
use to show that call-by-need complexity of λ-terms is bounded from above by call-by-value
complexity. These ideas form the basis of Section 4.4 of this thesis.
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Chapter 2

Programming with Futures and

Promises

In this chapter several small examples are presented, involving the use futures and promises.
They are adapted from [Ali02]. These examples shall provide the intuition that guides the
formal development in later chapters. Here, the examples are written in an informal way,
using a notation close to Standard ML syntax. However, we won’t give a formal semantics in
this chapter.

2.1 Lazy List Construction

Lazy futures provide a convenient way of implementing possibly infinite lists. As a simple,
concrete example, consider the following.

fun generate f n =

byneed ((f n) ::generate f (n+1))

The byneed keyword delays evaluation of the infinite list

[f(n), f(n + 1), f(n + 2), . . . ]

which is the result computed by generate f n. For example, generate (fn x => x) 0 com-
putes the list

[0, 1, 2, . . . ]

of natural numbers. Evaluation is done elementwise and only if and when the current element
is actually needed. More precisely,

generate (fn x => x) 0

immediately returns a lazy future of integer list type. Accessing its head, evaluation of this
future is initiated, yielding the expected result 0. Likewise, accessing its tail will return a new
lazy future with head 1 and another lazy future representing its tail, as expected.

11



12 Programming with Futures and Promises

2.2 Streams

A different way of constructing potentially infinite lists is by ending a list with a promised
future, which may be replaced by the tail of the list later on. This is a technique useful for
dealing with, e.g., input, in particular in combination with concurrency. The channels presented
below use essentially this idea. As a simple example of this kind, consider the following.

let val p = promise()

val c = cell p

fun app n =

let val p = exchange(c, promise())

val h = future p

in

fulfill(p, n::h)

end

in

(app, future p)

end

This first introduces a new promise p, locating it in the cell c. Cells are comparable to ML
reference cells, with the exception that an atomic exchange operation is provided instead of
separate update and dereferencing. A call to the append function will then exchange this

p

. . .n m k h

Figure 2.1: Constructing a list iteratively

promise with a freshly created one. Further, by fulfilling the old promise, it will replace the
associated future with the new “rest list”, consisting of the argument and the future of the newly
created promise. For example, after successive calls to append with arguments n, m, . . . , k, the
constructed list is depicted in Figure 2.1, with p allowing the construction to continue. Note
that whenever access to the next element is not possible, the requesting thread just suspends
on the future h until the next call to append yields the next list element. This technique lies
at the heart of how channels for many-to-one communication between concurrent threads can
be implemented in a language with logic variables.

This example also demonstrates how promises may be used to construct data structures
“with holes” for values to be plugged in later. In contrast to purely functional lists, the above
append function appends an element onto the tail of a list in constant time.

2.3 Channels

Here, we demonstrate how to implement a (monomorphic) channel with unbounded capac-
ity for buffering in a language with cells. These channels are adequate for many-to-many
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communication.

. . . rv1 v2 vn

t:

h:

l:

p

receive

send

Figure 2.2: Implementation of channels

The channel can be accessed via two procedures; send:σ→unit will write a given value to
the channel, and receive:unit→σ will return the next value from the channel. In case there is
no such value, receive will block until some thread does a send on this channel.

The stream is implemented by a finite list, ended not by the usual nil-constructor, but by a
logic variable representing the elements that are to be written by subsequent sends. The basic
idea of the implementation are the streams of the preceding Section 2.2. There are references to
the read end and write end of the channel, making use of cells with an (atomic) update operation
exchange. Figure 2.2 shows an illustration of the implementation, the implementation itself is
given in Figure 2.3 on the following page.

A call to send will fulfill the old promise, replacing the future ending the buffer by
cons(v,r′), where r′ is a fresh future. Its promise will be written into the cell t, which,
as invariant, contains at any point of time the promise to bind the end-of-buffer future. Read-
ing from the buffer is done by “moving the head-pointer h.” Note that receive() will block
(more specifically, tail l will block), provided h points to a promised future. Note also that
these channels are in fact appropriate for many-to-many communication. The implementation
is thread-safe, since multiple reader threads cannot interfere in between the atomic exchange
operation in receive: the current list l is replaced by a future that is then bound to the tail
of l. Any thread attempting to read (via receive) from h will block until h contains tail l.
Using a promised future in this way, it is generally possible to obtain a dereferencing operation
from the atomic exchange operator.

2.4 Asynchronous Remote Procedure Call

As final example, we consider Remote Procedure Calls (RPCs) and how futures serve to obtain
asynchronicity. In distributed systems, with remote procedure calls there is usually the problem
of network latency. Suppose the language supports only synchronous RPCs directly, then
concur allows to turn this into an asynchronous operation. The idea is to simply wrap the
call, continuing computation with the future that is immediately returned. To be somewhat
more concrete,
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let val p = promise():σ list

val r = future p
val t = cell(p)
val h = cell(r)

in

let fun send v =

let val p′ = promise():σ list

val r′ = future p′

val p = exchange(t,p′)
in p (cons(v,r′)) end

fun receive =

let val q = promise():σ list

val l′ = future q
val l = exchange(h,l′)

in q (tail l); head l end

in (send, receive) end

end

Figure 2.3: Implementation of channels: channelσ

let val r = rpcf(arg)
in

exp
end

will block until the result of the call to f is bound to r, only then evaluation of exp proceeds.
However, turning this into an asynchronous call as in

concur r = rpcf(arg)
in

exp
end

allows for immediate evaluation of exp, blocking only if and when the result of the RPC is in
fact needed.



Chapter 3

A Calculus of Futures and

Promises

In this chapter, a small language based on λ-calculus is introduced that incorporates promises
and futures. It formalizes the concept of “placeholder variables” and the means to fill them
later on, in the context of a functional language.

3.1 Notation

In this section, we fix the notation that we use throughout the thesis. Also, we will recall some
not so common definitions.

Sets, Relations and Maps

By N we denote the non-negative integers including 0. A∩B, A−B and A∪B are intersection,
difference and union, resp., of sets. More generally, if Ai, i ∈ I is a family of sets, then
⋃

{Ai | i ∈ I} is their union. A × B is the cartesian product, and An is the n-fold cartesian
product A×· · ·×A. By A]B we denote the disjoint union of sets. We write =df for definitional
equality, and ≡ for structural equality of terms.

We will be concerned with binary relations R ⊆ A×B only; we write (s, t) ∈ R, 〈s, t〉 ∈ R
and sRt interchangeably. For relations →1⊆ A1 × A2 and →2⊆ A2 × A3 we denote their
composition by →1→2. That is, s1 →1→2 s3 iff there is some s2 ∈ A2 such that s1 →1 s2

and s2 →2 s3. Also, for a relation →⊆ A× A on some set S we denote its reflexive transitive
closure by →∗. Its inverse is the relation ←⊆ A × A defined by s ← s′ iff s′ → s. We write
s→ if s→ s′ for some s′.

A (partial) function f from A to B, written f : A → B, is a binary relation between A
and B s.t. for each s ∈ A there is at most one t ∈ B with (s, t) ∈ f . As usual, we will write
functional relationship as f(s) = t. The domain dom(f) of a function f : A→ B is the subset
of A on which f is defined, i.e. dom(f) = {s ∈ A | f(s) = t for some t ∈ B}. The range ran(f)
of f is the set {f(a) | a ∈ dom(f)}. If A, B are sets, then [A→fin B] denotes the set of finite
(partial) functions from A to B, i.e. those f : A → B where dom(f) has finite cardinality. If
dom(f) = {a1, . . . , an} then f will often be written as the set {a1 7→ f(a1), . . . , an 7→ f(an)}.

15
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By f [a 7→ b] we denote adjunction, i.e. the map which coincides with f on dom(f)− {a} and
maps a to b.

Uniform Confluence and Executions

s

��
??

??
??

����
��

��

6= s2

���
�

�
s1

��
?

?
?

s′

Figure 3.1: Uni-
form confluence.

The relation → on S is confluent if whenever s→∗ s1 and s→∗ s2 for
some s, s1, s2 ∈ S, then there exists s′ ∈ S such that both s1 →

∗ s′ and
s2 →

∗ s′.
Adopting the notions from [Nie00], a relation→ is said to be uniformly

confluent if s → s1 and s → s2, where s1 6= s2, implies s1 → s′ ← s2 for
some s′ ∈ S. Two relations →1,→2⊆ S×S commute if whenever s→1 s1

and s →2 s2 there exists s′ ∈ S such that s1 →2 s′ and s2 →1 s′. A
partial execution of s ∈ S is a (finite or infinite) sequence (si)i such that
s = s0 and si → si+1 for all i. By an execution we mean a maximal
partial execution, i.e. a partial execution that cannot be extended. Again, this may be finite
or infinite.

3.2 A Concurrent λ-Calculus

Before formally introducing the full language in the next section, we will first try to develop
some intuition by considering a subset only. The language we consider is an extension of
the simply typed λ-calculus. In addition to the usual terms, i.e. variables, abstraction and
application, there is an additional construct for the spawning of new threads. The following
grammar defines the syntax of expressions.

e ::= x | λx.e | e e | concur e

Since we want to model a language with eager evaluation, β-reduction takes the usual form

(λx.e) v
β
−→ e[v/x]

where v is a value, i.e. of the form

v ::= x | λx.e

Intuitively, the meaning of concur e is that e is evaluated in a new thread. Therefore, we must
allow for the concurrent evaluation of several expressions. This can be achieved by considering
multisets of expressions, instead of single terms. However, concur e also immediately returns a
future x associated with this thread. For this reason we will consider configurations, which are
finite maps C : Var→ Exp, associating a variable (the future) with each thread (an expression).
These considerations lead to the following reduction rule.

concur e
Cxe
−−−→ x

The label Cxe indicates that the current configuration C is extended by the new binding x7→e.
Finally, if the result of the evaluation of e is available, the future x should be identified

with e. For reasons discussed later, this is done by a lookup rather than globally substituting
the result for x. The corresponding rule takes the form

x v
Lxv′

−−−→ v′ v
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meaning that the future x can be replaced by the result of a concurrently performed compu-
tation, provided v′ is in fact the value associated with this future, i.e. provided C(x) = v ′.

To model a deterministic evaluation strategy, reduction is not allowed everywhere, but only
at positions marked by an evaluation context. These contexts are defined by

E::= [ ] | E e | v E

where the single occurrence of [ ] marks the next redex, and E[e] denotes the term obtained
from E by replacing [ ] with e. So in fact, the reduction relation on expressions will be the
least relation defined by the above axioms and the inference rule

e
α
−→ e′

E[e]
α
−→ E[e′]

Now these reductions on expressions take place in the context of a configuration. For example,

the reduction x v
Lxv′

−−−→ v′ v is only admissible if C(x) = v′, and similarly for concur e
Cxe
−−−→

x where the domain of C must be extended, i.e. x /∈ dom(C). This interaction between
expressions and configurations is expressed by the rule

e
α
−→ e′

C[x7→e]
α
−→ C[x7→e′]

stating that each reduction of a configuration is caused by a reduction of a single expression.
Finally, we can define the reduction relation → on configurations, which is what we are really
interested in. There is a rule for each of the axioms, describing the global effect of this reduction
on the configuration. For β-reduction, this is just the trivial

C
β
−→ C ′

C −→ C ′

For spawning of new threads, the rule

C
Cxe
−−−→ C ′ x /∈ dom(C)

C −→ C ′[x7→e]

formalizes the intuitive explanation of concur e given above: a new thread evaluating e is
introduced to the configuration, associating the future x to e. Correspondingly, lookup results
in the rule

C
Lxv
−−→ C ′ C(x) = v

C −→ C ′

It is now easy to extend the model with lazy futures. We simply add new terms byneed e,
meaning that a new future x is returned immediately, but evaluation of e is triggered only if
and when the actual result of this future is needed. To facilitate this additional control on the
evaluation order, we simply extend configurations by a second component containing all the
expressions whose evaluation has not been triggered so far. That is, a configuration is a pair
(C, B) of finite maps associating variables with expressions. There is a new axiom,

byneed e
Bxe
−−→ x



18 A Calculus of Futures and Promises

and the rules are supplemented by

C
Bxe
−−→ C ′ x /∈ dom(C) ∪ dom(B)

(C, B)→ (C ′, B[x7→e])

and

C
Lxx
−−→ C ′

(C, B ] {x7→e})→ (C ′[x7→e], B)

dealing with creation of new lazy futures and their triggering, repectively. In the latter case,
observe how lookup is “abused” to force the evaluation of e. The label Lxx expresses that the
result of evaluating e is now needed, while leaving the triggering expression as is.

As final extension, promises are added by taking configurations to consist of three finite
maps (P, C, B), where P maps a future x to its associated promise y. For the new terms
prom e, there are axioms for introduction and elimination of new promises. Introduction is
made formal by

prom e
Pyx
−−−→ e y x

introducing the future x and the associated promise y. Elimination is

y v
Fyv
−−→ ()

and the two corresponding inference rules on configurations are

C
Pyx
−−−→ C ′ x 6= y fresh

(P, C, B)→ (P [x7→y], C ′, B)

and

C
Fyv
−−→ C ′ P (x) = y x /∈ dom(C)

(P, C, B)→ (P, C[x7→v], B)

The second side-condition in the last rule, requiring x /∈ dom(C), ensures that each promise is
used at most once. We will now formally define this calculus.

3.3 The Calculus λ
FP

As has been stated before, the language we consider is an extension of the λ-calculus. In
addition to the usual terms, we have constructs for concurrent and lazy futures and for promises.

3.3.1 Syntax

The language of types is generated by

σ ∈ Ty ::= unit | α | σ → σ′

where we assume an infinite set TyVar of type variables, ranged over by α, β, . . . . For simplicity,
the only base type considered is unit with the only element of type unit being (). The results
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of this thesis will, however, easily transfer to a language enriched by other base types with
their typical operations, such as booleans and integers. Also, product and sum types should
not pose any new problems.

Let Var be an infinite set of variables and x, y, z ∈ Var. Then the set of expressions Exp is
given by the grammar

e ∈ Exp ::= () (constant)

| x (variable)

| λx.e (abstraction)

| e e (application)

| concur e (spawn)

| byneed e (delayed)

| prom e (promise)

The first four lines give the usual λ-expressions, while the last three define terms for futures
and promises. We will sometimes use the derived syntactical forms let x = e in e′, and
sequential composition e; e′, defined by

let x = e in e′ =df (λx.e′) e

e; e′ =df (λy.e′) e where y is not free in e′

Similarly, we consider

concur x=e in e′ =df (λx.e′) (concur e)

byneed x=e in e′ =df (λx.e′) (byneed e)

and

prom y for x in e =df prom (λy.λx.e)

as derived constructs. If the name of a variable is not important, an underscore “ ” will be
used. Also, we will freely use brackets whenever giving examples in concrete syntax.

3.3.2 Reduction

Next, we formally define the operational semantics of λFP . As there will be several expressions
being evaluated in parallel threads in the general case, the semantics must provide some way
of representing multisets of expressions. As demonstrated in the preceding section, this is
achieved by considering configurations which are finite maps with domain the set Var, and
codomain the set Exp of λFP -expressions satisfying certain additional requirements.

Constants, Values and Variables

Expressions are identified up to consistent renaming of bound variables, so we can always
assume all free and bound variables to be distinct.

The set of values is the subset Val ⊆ Exp of expressions that consists of constants, variables
and abstractions, i.e. λ-terms of the following form.

v ∈ Val ::= () | x | λx.e

The sets fv(e) and bv(e) of free resp. bound variables of an expression e ∈ Exp are defined in
the obvious way, as shown in Figure 3.2. A term e is closed if fv(e) = ∅.
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Free fv(()) =df ∅
variables fv(x) =df {x}

fv(e e′) =df fv(e) ∪ fv(e′)
fv(λx.e) =df fv(e)− {x}
fv(concur e) =df fv(byneed e) =df fv(prom e) =df fv(e)

Bound bv(()) =df bv(x) =df ∅
variables bv(e e′) =df bv(e) ∪ bv(e′)

bv(λx.e) =df bv(e) ∪ {x}
bv(concur e) =df bv(byneed e) =df bv(prom e) =df bv(e)

Figure 3.2: Free and bound variables

Configurations

Expressions of a configuration can be distinguished as being either an ordinary computation,
a still suspended byneed computation, or an unbound future variable that may become bound
by fulfilling the associated promise, i.e. applying it to a value.

For a triple (P, C, B) of finite maps

P ∈ [Var→fin Var]

C, B ∈ [Var→fin Exp]

we lift the notion of free and bound variables as follows. The set var(P, C, B) of variables of
the triple is defined as

var(P, C, B) =df dom(P ) ∪ ran(P ) ∪ dom(C) ∪ dom(B)

Next, the set bv(P, C, B) of its bound variables is

bv(P, C, B) =df var(P, C, B) ∪
⋃

{bv(e) | e ∈ ran(C) or e ∈ ran(B)}

Correspondingly, the set fv(P, C, B) of its free variables is defined by

fv(P, C, B) =df

⋃

{fv(e) | e ∈ ran(C) or e ∈ ran(B)} − var(P, C, B)

Thus, variables x, where x ∈ var(P, C, B), are bound in the triple (P, C, B). We can now define
a configuration to be a triple (P, C, B) of functions subject to the following conditions.

Definition 3.3.1. A triple (P, C, B), where P ∈ [Var→fin Var] and C, B ∈ [Var→fin Exp] is
a configuration if the conditions

(C1) ran(P ), dom(C) and dom(B) are pairwise disjoint finite sets of variables

(C2) P is injective, and dom(P ) ∩ ran(P ) = dom(B) ∩ dom(P ) = ∅

are satisfied.
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However, note that we do not require dom(P ) and dom(C) to be disjoint. Also note that
P (x) = y will mean that x is the future associated with the promise y, i.e. x can be bound by
applying y. Due to injectivity of P , this choice is purely arbitrary, and one could well use P−1

instead. Only the expressions “in C” allow for computations to take place, in the sense made
precise by the reduction rules below.

The set of all configurations will be denoted by Config. As with expressions, we identify
configurations up to consistent renaming of bound variables. Also, we will in the following
assume that configurations are α-standardized, i.e. all bound variables are different and also
differ from all free variables.

Evaluation Contexts and Substitution

There are reduction rules for β-reduction, introduction and elimination of promises and futures,
and finally rules dealing with forcing by-need threads. In order to model a standard call-by-
value, left-to-right reduction of (sequential) expressions we make use of evaluation contexts as
used in [WF94]. Such a context E can be seen as a term containing a single occurrence of the
distinguished variable [ ]. The set of evaluation contexts E is defined by

E ::= [ ] | E e | v E

where e ranges over expressions and v over values. By E[e] we will denote substitution of e
for [ ] in E. Note that this is necessarily capture-free, as there are no binding constructs in
evaluation contexts. The position of [ ] marks the position of the next redex. For example,
consider the term

(λx.e) ((concur e1) e2) ≡ (λx.e) ([ ] e2)[concur e1]

which says the next redex is concur e1, and neither of e and e2 may be reduced next.
Generally, substitution [v/x] applied to a term e is defined straightforwardly, assuming in

particular that all the free variables of v, as well as x, are distinct from the bound variables
in e:

() [v/x] =df ()

x [v/x] =df v

y [v/x] =df y if y 6= x

(λy.e) [v/x] =df λy.e [v/x]

(e e′) [v/x] =df (e [v/x]) (e′ [v/x])

(concur e) [v/x] =df concur (e [v/x])

(byneed e) [v/x] =df byneed (e [v/x])

(prom e) [v/x] =df prom (e [v/x])

Reduction on Expressions

Borrowing terminology from process calculi, reduction takes the form of labelled transition
α
→

between expressions. For e, e′ ∈ Exp, the statement e
α
−→ e′ means that e evaluates in one step

to e′, thereby possibly affecting the configuration via the action, or side-effect, α.
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First, labels α are

α ∈ Lab ::= β | Pyx | Fye | Cxe | Bxe | Lxe

where x, y ∈ Var and e ∈ Exp. The reduction relation
α
−→ is now defined by the following

axioms. β-reduction is

(β) E[(λx.e) v]
β
−→ E[e[v/x]]

just as in call-by-value λ-calculus.Note that our choice of evaluation contexts E in fact leads
to call-by-value standard reduction [Plo75].
The rule for introduction of promises is

(prom) E[prom e]
Pyx
−−−→ E[e y x]

That is, the expression prom e reduces in one step to e y x. A promise y for a future x means
that x7→y is in P . The variable x can be bound to value v via y v, and elimination of promises
takes the form

(fulfill) E[y v]
Fyv
−−→ E[()]

New (lazy) futures are introduced by the transitions

(concur) E[concur e]
Cxe
−−−→ E[x]

and

(byneed) E[byneed e]
Bxe
−−→ E[x]

Next, there is a rule to handle the lookup of values. If a future x comes into function position
and its associated value is already available, this occurrence of x is replaced.

(lookup) E[x v]
Lxv′

−−−→ E[v′ v]

Finally, if a lazy future comes into function position, evaluation of the associated expression is
triggered. This will be expressed by a lookup, labelled Lxx, as can be seen below.

Action and Reduction on Configurations

We shall now define how the actions change a configuration, actually performing the side-effect
that a reduction step e

α
−→ e′ causes. The interplay between reduction on single expressions

and their impact on a configuration is stated by the inference rule

(select)
e

α
−→ e′

C[x7→e]
〈α,x〉
−−−→ C[x7→e′]

This rule, or rather the absence of a similar rule for B, also shows that only expressions of the
“C”-component may cause reductions.

Finally, we can define the relation → on configurations. There is one rule for each of the
actions α. In fact, there are two rules for Lxe, corresponding to the fact that forcing is modelled
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by lookup. As in the case of expressions, reduction takes the form of labelled transition
〈α,x〉
−−−→,

where α ∈ Lab and x ∈ Var. The variable x indicates which thread caused the transition.

(β)
C

〈β,z〉
−−−→ C ′

(P, C, B)
〈β,z〉
−−−→ (P, C ′, B)

(Prom)
C

〈Pyx,z〉
−−−−−→ C ′ x 6= y x, y /∈ var(P, C, B)

(P, C, B)
〈Pyx,z〉
−−−−−→ (P [x7→y], C ′, B)

(Fulfill )
C

〈Fyv,z〉
−−−−−→ C ′ P (x) = y x /∈ dom(C)

(P, C, B)
〈Fyv,z〉
−−−−−→ (P, C ′[x7→v], B)

(Concur)
C

〈Cxe,z〉
−−−−−→ C ′ x /∈ var(P, C, B)

(P, C, B)
〈Cxe,z〉
−−−−−→ (P, C ′[x7→e], B)

(Byneed)
C

〈Bxe,z〉
−−−−−→ C ′ x /∈ var(P, C, B)

(P, C, B)
〈Bxe,z〉
−−−−−→ (P, C ′, B[x7→e])

(Lookup)
C

〈Lxv,z〉
−−−−−→ C ′ C(x) = v

(P, C, B)
〈Lxv,z〉
−−−−−→ (P, C ′, B)

(Force)
C

〈Lxx,z〉
−−−−−→ C

(P, C, B ] {x7→e})
〈Lxx,z〉
−−−−−→ (P, C[x7→e], B)

Note that by condition (C1) in Definition 3.3.1, at most one of the last two rules is applicable
with respect to x. The reduction relation → on the set of configurations is simply the union

→ =df

⋃

{
〈α,x〉
−−−→ | α ∈ Lab and x ∈ Var}

We just state the following easily verified observations, concerning well-definedness of reduction
and preservation of closedness.

Observation 3.3.2. If (P, C, B) ∈ Config and (P, C, B) → (P ′, C ′, B′), then (P ′, C ′, B′) ∈
Config, i.e. → preserves the properties of the maps required by conditions (C1) and (C2) of
Definition 3.3.1.

Observation 3.3.3. If fv(P, C, B) = ∅ and (P, C, B)→ (P ′, C ′, B′), then fv(P ′, C ′, B′) = ∅.

Note that, rather than globally substituting v for x when fulfilling the promise y, we add the
binding x7→v to the environment and perform a lookup whenever the value v is needed. This
is necessary because it is perfectly possible for configurations to become cyclic, in that v itself
contains a free occurrence of x. This gives a first hint at the expressive power of promises and
we will get back to this later in Section 3.6. However, promises are the only reason for cycles,
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as will be stated in Lemma 4.3.2 in the next chapter. Syntax and semantics of λFP -calculus
are summarized at the end of this chapter, in Figure 3.5 on page 34.

Remark. Transitions via
Pxy
−−−→,

Cxe
−−−→ and

Bxe
−−→ are very similar to scope extrusion in π-

calculus, e.g. in the reduction

(νx ȳ〈x〉.P ) | y(z).Q→ νx(P | Q{x/z})

Here, the scope of the (local) variable x is dynamically extended to also include the process Q.
A configuration reminds of canonical forms of π-calculus processes, where the scope of top-level
local names is global, i.e. π-processes of the form (νx1 . . . xk) (P1 | · · · | Pn).

Initial Configuration

Reduction works on configurations. If we want to talk about reduction of terms it is thus
necessary to embed the term into a configuration to have something to start with. Given
e ∈ Exp, an initial configuration of e is

(∅, {x0 7→ e}, ∅)

assuming x0 ∈ Var is not free in e. Clearly this is a configuration, and if e is closed then so
is (∅, {x0 7→ e}, ∅). Note that by identifying configurations up to α-equivalence, all the initial
configurations for e are in fact equal.

If no confusion is likely, we will just write e for the initial configuration of e.

Derived Configuration Semantics

By the rules of labelled transition and its action on configurations, one can derive an equivalent,
more direct reduction semantics, consisting of just one level. However, the following demon-
strates that the resulting rules are hard to read and understand, since usually only a small
part of the configuration is involved in a single reduction step. The notation obscures which
parts are really relevant. For example, β-reduction becomes, when lifted to configurations,

(β′) (P, C ] {y 7→ E[(λx.e) v]}, B)→ (P, C ] {y 7→ E[e[v/x]]}, B)

Likewise, (Concur) can be rewritten as

(Concur ′) (P, C ] {y 7→ E[concur e]}, B)→ (P, C ] {y 7→ E[x], x 7→ e}, B)

where x is fresh. Deriving the remaining rules is as simple, and not done here as we will not
work with this semantics.

Cells

Above, we introduced the language λFP, which is based on the call-by-value λ-calculus with
concur- and byneed-annotations. Also, it contains assignable logic variables. However, our
aim is to provide a computation model for concurrent computation of Alice [Ali02]. For this,
λFP is not sufficient and we will add cells to the language in Section 5.4, obtaining the language
λFPC .
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x7→concur 2·3 + concur 2·2 + 2·1
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x3 7→6 , x2 7→2·2 , x7→6 + x2 + 2·1

∗
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x3 7→6 , x2 7→4 , x7→12

Figure 3.3: Initial part of a derivation dag

3.4 An Example

To demonstrate (concurrent) evaluation in λFP to some extent, in this sectionwe will look at
an example. This is in no way a practical application of futures and concurrency. However, it
allows us to see how our formalizations work. To make the example slightly more interesting,
we will use a natural number type nat, assuming natural number constants and arithmetic
operations.

So suppose we want to compute the summation
∑n

x=1 f(x), for a function f . Using futures,
it is then possible to evaluate several of the f(x) concurrently. In particular, we could write

e ≡ concur (2·3) + concur (2·2) + 2·1 (3.1)

Already (3.1) shows that there are quite a few interleaved computation sequences possible,
thus relaxing deterministic reduction order considerably.

The first step is by rule (concur), and we obtain from the initial configuration e the configura-
tion

(∅, {x3 7→2·3, x7→x3 + concur 2·2 + 2·1}, ∅) (3.2)

for some fresh variable x3. Now configuration (3.2) has two distinct transitions. First, thread
x3 may compute the value of 2·3, and second, thread x may reduce the redex concur 2·2 + 2·1
by (concur). Figure 3.3 depicts the initial part of the complete derivation graph of e. It is not
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Γ ` ():unit
(unit)

Γ, x:σ ` x:σ
(var)

Γ ` e : σ′→σ Γ ` e′:σ′

Γ ` e e′ : σ
(appl)

Γ, x:σ ` e:σ′

Γ ` λx.e : σ→σ′
(abs)

Γ ` e:σ

Γ ` concur e : σ
(conc)

Γ ` e:σ

Γ ` byneed e : σ
(need)

Γ ` e:(σ′→unit)→σ′ → σ

Γ ` prom e : σ
(prom)

Figure 3.4: Type inference rules for the simply typed λFP -calculus

difficult to find a path in this graph leading to the expected result

(∅, {x3 7→6, x2 7→4, x7→12}, ∅) (3.3)

In fact, from the results of sections 4.2 and 4.3 it follows that both the derivation graph is
finite and has the configuration (3.3) as only node of out-degree 0.

3.5 Simple Types for λ
FP

In this section, a type system for λFP is presented. It is a straightforward extension of the type
rules for the simply typed λ-calculus, which is then lifted to configurations. Also, it is not hard
to prove a subject reduction theorem, stating that typing of configurations is invariant under
reduction. However, simple examples show that the single assignment property of promises is
in no way enforced in λFP. Therefore a much more elaborated type system is developed in
Chapter 5.

The type rules are listed in Figure 3.4. Here, Γ ranges over type environments x1:σ1 . . . xn:σn,
i.e. functional relations between Var and Ty. The typing judgment Γ ` e:σ means that the
expression e can be assigned type σ, given type assumptions Γ. Note that by identifying terms
up to α-equivalence we can always assume all xi to be distinct when deriving a type for ex-
pression e. In particular, we write Γ, x:σ for Γ ] {x:σ}. We will sometimes write Γ(x) = σ if
x:σ ∈ Γ.

The rules for constants, variables, abstraction and application are well-known from the
simply-typed λ-calculus. The rules (conc) and (need) should be obvious. The rule (prom)
takes care that promise y and associated future x are consistently used in e, by requiring that
the respective types match as y : σ′→unit and x:σ′ in the reduct e y x.

Clearly, for types to be “useful” they should be compatible with reduction. In order to
prove a subject reduction theorem for our language, we need some preliminary lemmas, mainly
stating properties of substitution.

Lemma 3.5.1. Let e, e′ be arbitrary terms. If Γ, x:σ′ ` e:σ and Γ ` e′:σ′, then Γ ` e[e
′
/x]:σ.
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Proof. By induction on the structure of e. This is standard.

Lemma 3.5.2. Suppose Γ ` E[e]:σ for a context E and term e. Then, for some σ′, Γ ` e:σ′.
Moreover, if Γ ` e′:σ′ then also Γ ` E[e′]:σ.

Proof. By an easy induction on the structure of the context E.

Next, we lift typings to configurations, requiring that the types of expressions are globally
consistent, in the sense made precise by the following definition.

Definition 3.5.3. A type environment Γ is a typing for the configuration (P, C, B), written
Γ ` (P, C, B), if var(P, C, B) ⊆ dom(Γ) and

• for all x ∈ dom(C), Γ(x) = σ only if Γ ` C(x):σ,

• for all x ∈ dom(B), Γ(x) = σ only if Γ ` B(x):σ, and

• for all x ∈ dom(P ), both Γ(x) = σ and Γ(P (x)) = σ→unit, for some σ ∈ Ty.

Subject reduction can now be stated as

Lemma 3.5.4 (Subject Reduction). Suppose Γ ` (P, C, B), and (P, C, B) → (P ′, C ′, B′).
Then Γ′ ` (P ′, C ′, B′) for some Γ′ ⊇ Γ.

Thus, if Γ ` C(x):σ then also Γ′ ` C ′(x):σ.

Proof. Consider cases for −→ and extend Γ to Γ′ satisfying Γ′ ` (P ′, C ′, B′). Lemma 3.5.2

allows to deal with evaluation contexts. For the case
〈β,x〉
−−−→ by rule (β) we can apply Lemma

3.5.1.

From this we immediately obtain a subject reduction theorem of simply typed expressions.

Proposition 3.5.5. If ` e:σ for closed e ∈ Exp, σ ∈ Ty and if (∅, {x0 7→ e}, ∅)→∗ (P, C[x0 7→v], B),
then Γ ` v:σ for some environment Γ.

Proof. Let Γ0 =df x0:σ. Then Γ0 ` (∅, {x0 7→ e}, ∅), and induction on the number of reduction
steps gives Γ such that Γ ` (P, C[x0 7→v], B) and Γ(x0) = Γ0(x0) = σ. This implies Γ ` v:σ, by
definition of typings.

We conclude this section with two remarks.

Unique types. For the simply typed language, we could have used terms with type an-
notations, e.g. writing λx:σ.e and prom y for x:σ in e, taking the latter as short hand for
prom (λy:σ→unit.λx:σ.e). Then it is easy to verify that expressions possess at most one type,
in the sense that whenever Γ ` e:σ and Γ ` e:σ′ this implies σ = σ′. However, in general this is
not the case for typings of configurations, and this property is not even preserved by reduction.
To see this, consider the (closed) expression prom y for x:unit in y x; x which has the unique
type unit, and observe that

prom y for x:unit in y x; x
〈β,x0〉
−−−−→

〈β,x0〉
−−−−→

〈Pyx,x0〉
−−−−−−→

〈Fyx,x0〉
−−−−−−→

〈β,x0〉
−−−−→ ({x7→y}, {x0 7→x, x7→x}, ∅)

by applying reduction rules (Prom), (Fulfill) and (β) successively. For the resulting configura-
tion, Γσ =df x0:σ, x:σ, y:σ→unit is a valid typing, for any type σ.
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Type Soundness. The above subject reduction theorem is not sufficient to obtain what is
often called type soundness, stating that “well-typed programs do not go wrong,” meaning
that no runtime type errors occur during reduction of well-typed expressions. In fact, the type
system guarantees that functions and operators are applied to the right kind of arguments only,
nevertheless, well-typed programs may get stuck. This problem has to do with promises, as
multiple assignments to a future via its associated promise are not ruled out. More concretely,
consider the following

prom y for x in y (); y ()

which gets stuck when trying to perform the second of the two assignments y (). A stronger
type system taking care of the problem will be presented in Chapter 5.

3.6 Computational Completeness and Recursion

We conclude this chapter by looking at the expressivity of λFP . We begin with the rather
obvious result that in the untyped calculus all computable functions are definable. Indeed,
immediately from the definition of → on configurations, we obtain the following proposition
with respect to call-by-value reduction →β [Plo75] on λ-calculus terms M .

Proposition 3.6.1. For all M , M →β M ′ if and only if M −→M ′ by (β).

Let us now take a look at the additional expressive power that promises give in the context
of recursive function definitions. We will show that we can define a recursion operator in the
simply typed language. This is in contrast to the simply typed λ-calculus, where a well-known
result states that all definable functions are terminating (see, e.g., [Tho92]).

So why do promises provide a way to define recursive functions? Let us consider the
following example. Suppose we want to define the factorial function fac : N → N in our
language. We assume that the language has been extended by base types B of booleans and N

of natural number constants, together with sufficiently many operations on them.
The obvious recursive definition of fac in a language with explicit recursion is of course the

following
fac n =df if n = 0 then 1 else n ∗ (fac(n− 1)) (3.4)

To express this in λFP , promises come into play: They allow to recursively refer to fac,
without fac being defined. Replacing the function name by a variable f and introducing a
promise, (3.4) gives

prom p for f in λn.if n = 0 then 1 else n ∗ f(n− 1)

Now, after the definition of fac with respect to f has been given, the promise can be fulfilled,
binding f to fac itself. This gives exactly the required recursive definition. Also, it is not hard
to check that this term indeed is well-typed, of type N→N. The complete function definition
then might look as follows.

prom p for f :N→ N

in

let fac = λn.if n = 0 then 1 else n ∗ f(n− 1);
= p fac

in fac
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Having seen this example, the approach can be generalized straightforwardly, leading to the
definition of a fixed point operator fix, for any given type σ.

fix =df λx. prom p for f
in

p (x f); f

Typability and fixed point property are stated in the following lemmas.

Lemma 3.6.2. Let σ ∈ Ty. Then fix is typable. More precisely,

` fix:((σ→σ)→ σ→σ)→ (σ→σ)

Lemma 3.6.3. Suppose λg.λz.e:(σ→σ)→ σ→σ. Then

(P, C[y 7→E[fix λg.λz.e]], B)→∗ (P [f 7→p], C[f 7→λz.e[f/g], y 7→E[f ]], B)

where f may occur free in e[f/g].

Proof. The proof can be done by simply constructing the reduction sequence. The lemma is
stated only for terms of the form λg.λz.e in order to guarantee termination of the evaluation
of the expression “x f”.

3.7 Discussion

3.7.1 Summary

In this chapter we introduced an abstract concurrent programming language based on λ-
calculus. It contains futures and promises, and is intended to serve as a computation model
for the Alice programming language.

Futures allow reading, but not writing. Promises allow to write a future exactly once. Any
further attempt to bind the future will result in blocking the respective thread. Thus, this
form of logic variables are a resource, and as such a source of indeterminism. In Chapter 5 this
will be examined more closely. Associated with each concurrent thread and each suspended
computation is a logic variable. However, this thread is the only writer on its respective
variable, so the above mentioned problem of multiple attempts to bind the future does not
occur.

We then presented a type system and, as a first technical result, proved a subject reduction
theorem. Finally, expressiveness of the language was briefly considered. It turned out that
recursion is expressible even in the simply typed case. In the next chapter, we will turn our
attention to the sublanguage of promise-free expressions.

3.7.2 Variations

One could envisage many different formalizations of the concepts under consideration. Follow-
ing, some possibilities are discussed.
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Threads. Concurrency and logic variables might be treated as orthogonal concepts. More
specifically, we could have introduced the new expression thread e, along with the axiom

(thread) E[thread e]
Cxe
−−−→ E[()]

That is, thread e spawns a new thread evaluating e, but does not return a result. It is easily
seen that concur e becomes definable in terms of thread and prom, e.g. by writing the result
on a future as side-effect.

prom y for x in (thread y e); x

However, it does not seem possible to treat evaluation on demand as simple in this framework.

Term Constants. It would be possible to introduce the syntax of the language as an exten-
sion of λ-calculus by viewing concur, byneed and prom as constants. More precisely, we could
consider the language as λ-calculus over the signature containing typed term constants

concurσ : σ→σ

byneedσ : σ→σ

and

promσ,σ′ : ((σ→unit)→σ→σ′)→ σ′

for each type σ, σ′, as done in [Mit96] to obtain a λ-calculus over a specific algebraic structure.
One would then add directed “equations”to specify the reduction behaviour of these constants.
These are exactly the axioms for labelled reduction we used:

concur e
Cxe
= x

byneed e
Bxe
= x

and

promσ,σ′ e
Pyx
= e y x

Such a formalisation would have the conceptual advantage that it is not necessary to define
the syntax of the language explicitly, but just give the signature and axioms. However, there
are two disadvantages related to this approach. First, syntactical sugar cannot be defined as
easily since the constants depend on types. For example, we cannot simply define

prom y for x:σ in e =df promσ,?(λy.λx.e)

independently of a type given to e. The second shortcoming is more severe and is connected
to the evaluation strategy: considering the constants as values,

concurσ E

would become a valid evaluation context, contrary to our intention that concur e is a non-
strict application, i.e. that e is not evaluated before the (top-level) reduction of concur e has
happened. The easy way out, considering the constants as non-values, would lead to an even
more questionable behaviour. For example, (λx.x) concurσ would not allow for any reductions.
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Lookup Operator The language could be extended by an explicit lookup operator “?”,
implementing “force and wait” (the await operator of Alice). For this, the set of expressions
contains new terms

e ::= . . . | ?e

and the set of evaluation context becomes

E ::= . . . | ?E

Further, we would add axioms

E[?x]
Lxv
−−→ E[?v]

for a variable x, and

E[?v]
ε
−→ E[v]

provided v /∈ Var. Here, ε is the silent action, causing no change to the configuration. In the
first case the “?” is kept because it may be necessary to follow a chain of futures before ob-
taining the actual value these futures represent. In fact, this process might not even terminate,
e.g. if C(x) = x1, C(x1) = x2, . . . , C(xn−1) = xn and C(xn) = x. One may guarantee that

lookup is well-founded by insisting that
Fyx1
−−−→ is defined only if no direct cycles are created,

i.e. if not C(x1) = x2, . . . , C(xn−1) = xn where P (xn) = y. In fact, this corresponds to the
specification of promises in the Alice programming language, where an exception is raised in
this case.

Having terms for explicit lookup has the advantage that extensions of the language become
simpler. For example, when adding integers, because of the lookup operator it suffices to add
the new axiom

+ n1 n2
ε
−→ n

where n = n1 +n2. To express addition, one would then write + ?e1 ?e2 which takes care that
futures are replaced by actual values before performing the addition. Without “?” this can
only be achieved by explicitly adding the lookup rules

E[+x e]
Lxv
−−→ E[+ v e]

and

E[+n x]
Lxv
−−→ E[+n v]

On the other hand, instead of writing function application, it becomes of course necessary to
explicitly write ?e1 e2 to obtain the behaviour of the application e1 e2 in λFP.

Syntactical configurations. Also, it could be nice to consider a purely syntactical calculus
“without” the additional concept of configurations, some of the basic rules of which would be

concur x=v in E[x v′]→ concur x=v in E[v v′]
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and

byneed x=e in E[x v′]→ concur x=e in E[x v′]

In this way, there is no distinction between expressions and configurations. Concurrent evalua-
tion could be modelled here by extending the set of evaluation contexts E, including e.g. both
concur x=E in e and concur x=e in E. In fact, for this to work one then needs context rules
such as

concur x=concur y=e1 in e2 in e3 → concur y=e1 in concur x=e2 in e3

rearranging evaluation contexts. Note the similarities to, e.g., the call-by-let λ-calculus of
Maraist et al. in [MOTW95] and the various call-by-need λ-calculi proposed in the literature.
However, a problem arises out of the possible interdependence of threads which is introduced
by promises. A simple example like

prom y for x in concur z1=x in concur z2=z1 in y z2

which reduces to the cyclic

concur z1=z2 in concur z2=z1 in ()

suggests that in order to be complete with respect to the “intuitive” behaviour one needs
further context rules such as

concur x=e1 in concur y=e2 in e3 → concur y=e2 in concur x=e1 in e3

Alternatively, the syntax could be extended to allow mutually recursive definitions within
concur, e.g. in the example,

concur z1=z2 z2 = z1 in ()

These problems are inherent because of recursion in the language. However, they have been
dealt with in the literature before, for example in the λneed calculus with recursion in [AF97].

Parallel composition. As a further alternative, one could extend the syntax by some (com-
mutative and associative) parallel composition construct e ‖ e′, which is the way this is handled
in process calculi such as CCS [Mil89] or π-calculus [Mil99, SW01].

However, in our setting each thread binds a logic variable, namely the future eventually
yielding the result of the concurrent computation. In fact, as can be seen from the semantics,
parallel composition simply translates to concur =e in e′, i.e. a concurrent thread where the
return value is not used. Thus, we would need to also annotate these variables, e.g. writing

ex ‖ e′y

and this formalization would be quite close to being no more than a syntactic version of the
configurations we use.
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Promises as pairs. Finally it should be remarked that the reason for formalizing promises
by

prom y for x in e

or more precisely, by prom e, thus deviating from promises as found in Alice, is motivated by
technical considerations: In Section 5.2, a type system is introduced that ensures linear use of
y, but does not restrict the use of x in any way. Therefore, it has advantages treating promise
and associated future as different objects.

For the same reason, a formalization of promises as pairs writer/future 〈y, x〉 causes prob-
lems: The first component of this pair needs to be treated linearly, whereas linear use of the
second would be too restrictive. In Section 1.2 the relation between these different possibilities
has already been indicated.
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Types α ∈ TyVar
σ, σ′ ∈ Ty ::= unit | α | σ → σ′

Syntax x, y, z ∈ Var
v, v′ ∈ Val ::= () | x | λx.e
e, e′ ∈ Exp ::= v | e e′ | concur e | byneed e | prom e

Configuration (P, C, B) ∈ [Var →fin Var]× [Var →fin Exp]2 where
(C1) ran(P ), dom(C), dom(B) are p.w. disjoint
(C2) dom(P ) ∩ ran(P ) = dom(B) ∩ dom(P ) = ∅, and P is injective

Contexts E ::= [ ] | E e | v E

Labels α ∈ Lab ::= β | Pyx | Fyv | Cxe | Bxe | Lxe

Transition (β) E[(λx.e) v]
β
−→ E[e[v/x]]

(prom) E[prom e]
Pyx
−−−→ E[e y x]

(fulfill) E[y v]
Fyv
−−→ E[()]

(concur) E[concur e]
Cxe
−−−→ E[x]

(byneed) E[byneed e]
Bxe
−−→ E[x]

(lookup) E[x v]
Lxv′

−−−→ E[v′ v]

Selection (select)
e

α
−→ e′

C[x7→e]
〈α,x〉
−−−→ C[x7→e′]

Reduction (β)
C

〈β,z〉
−−−→ C′

(P, C, B)
〈β,z〉
−−−→ (P, C ′, B)

(Prom)
C

〈Pyx,z〉
−−−−−→ C′ x 6= y x, y /∈ var(P, C, B)

(P, C, B)
〈Pyx,z〉
−−−−−→ (P [x7→y], C ′, B)

(Fulfill)
C

〈Fyv,z〉
−−−−−→ C′ P (x) = y x /∈ dom(C)

(P, C, B)
〈Fyv,z〉
−−−−−→ (P, C′[x7→v], B)

(Concur)
C

〈Cxe,z〉
−−−−−→ C′ x /∈ var(P, C, B)

(P, C, B)
〈Cxe,z〉
−−−−−→ (P, C′[x7→e], B)

(Byneed)
C

〈Bxe,z〉
−−−−−→ C′ x /∈ var(P, C, B)

(P, C, B)
〈Bxe,z〉
−−−−−→ (P, C′, B[x7→e])

(Lookup)
C

〈Lxv,z〉
−−−−−→ C′ C(x) = v

(P, C, B)
〈Lxv,z〉
−−−−−→ (P, C′, B)

(Force)
C

〈Lxx,z〉
−−−−−→ C

(P, C, B ] {x7→e})
〈Lxx,z〉
−−−−−→ (P, C[x7→e], B)

Figure 3.5: Syntax and semantics of λFP -calculus



Chapter 4

Futures

In this chapter some properties of futures are investigated in detail. There are two main results:
The promise-free calculus, called λF , is uniformly confluent, and the simply typed version of
λF is strongly normalizing. Also, we demonstrate that the calculus might be interesting for
theoretical applications: By uniform confluence in this functional setting we obtain a compar-
atively easy formal proof that call-by-value complexity in λ-calculus dominates call-by-need
complexity. This considerably simplifies a proof previously given by Niehren in [Nie00], where
a uniformly confluent fragment of π-calculus had been used. In fact, uniform confluence is
also employed in the strong normalization proof, again demonstrating the importance of the
concept when talking about complexity in reduction calculi.

4.1 The Subcalculus λ
F

The subset of expressions for the calculus we are concerned with in this chapter is formally
given by the following grammar.

e ∈ Exp− ::= () (constant)
| x (variable)
| λx.e (abstraction)
| e e′ (application)
| concur e (spawn)
| byneed e (delayed)

Essentially, this is the language from the previous chapter, excluding promises. Also, we will
denote the restriction of the reduction relation → to configurations with Exp− expressions
again by →, and call the resulting system λF .

As is immediate from the reduction rules, the P -part of a configuration (P, C, B) is invariant
under reduction of promise-free configurations. Therefore we will take a configuration to be
just the pair (C, B) in this chapter for simplicity.

4.2 Uniform Confluence of λ
F

We will begin by proving reduction uniformly confluent, as this is a key property used in
the proof of strong normalization that follows. Confluence is a property well-known from λ-

35
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calculus, essentially stating that the order of evaluating subexpressions is irrelevant. On the one
hand, our use of call-by-value reduction contexts restricts the number of redexes compared to
pure λ-calculi, while on the other hand concurrency spoils deterministic reduction as found in
sequential languages with fixed evaluation strategy. The results of this section show, however,
that the transition relation on λF -configurations is not only confluent, but in fact is uniformly
confluent [Nie00]. This will be shown to hold for both the untyped and the typed calculus λF .
Uniform confluence is an interesting concept as it does not only imply uniqueness of normal
forms but also asserts that all reduction paths leading to a normal form have the same length.
Hence, it becomes possible to talk about the (time) complexity of expressions in reduction
calculi.

(C, B)
〈α1,y〉

��
??

??
?

〈α0,x〉

����
��
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6= (C1, B1)

〈α0,x〉���
�

�
(C0, B0)

〈α1,y〉 ��
?

?
?

(C ′, B′)

Figure 4.1: Uniform con-
fluence on Config.

Recall that a relation → is confluent if whenever s →∗ s1 and
s→∗ s2 then there exists s′ ∈ S such that both s1 →

∗ s′ and s2 →
∗

s′. It is uniformly confluent if s1 ← s → s2 for s1 6= s2 implies
s1 → s′ ← s2 for some s′. The slightly stronger property which we
will actually prove is stated diagrammatically in Figure 4.1. It is
not hard to show that uniform confluence implies confluence. Also,
uniform confluence guarantees that all the executions of a term
have the same length, which again may be finite or infinite. This
consequence is used in the proof showing strong normalization,
given in the next section.

Proving confluence for the configuration calculus is simplified by the observation that each
term has at most one redex as subterm, which is proved in the next lemma. Although this
does not hold for configurations, we still have that redexes in different threads are independent
of each other, so in particular we do not have any critical pairs, i.e. there are no overlapping
redexes. In fact, the next lemma holds for the full calculus, not only for the restriction λF.

Lemma 4.2.1. Suppose (P2, C2, B2)
〈α2,x〉
←−−−− (P, C, B)

〈α1,x〉
−−−−→ (P1, C1, B1). Then (P1, C1, B1) =

(P2, C2, B2), up to renaming of bound variables.

Proof. By the assumption and the inference rules, we have both

C[x7→e]
〈α1,x〉
−−−−→ C[x7→e1] and C[x7→e]

〈α2,x〉
−−−−→ C[x7→e2]

for some e, e1, e2 ∈ Exp such that e
α1−→ e1 and e

α2−→ e2. The proof is now by induction on the
structure of e. The cases where e ∈ Val, i.e. where e is a constant, a variable or an abstraction,
are trivial, as then the empty evaluation context is the only one that applies and there are no
reduction rules at all that match these terms.

• If e ≡ concur e′, then e itself is reducible via (concur). However, this is the only
applicable rule, and the empty context is the only applicable context. So necessarily
e1 ≡ y, e2 ≡ z, α1 ≡ Cye′ and α2 ≡ Cze′, for some variables y, z ∈ Var.. By the
side-condition in rule (Concur) we know y, z /∈ var(P, C, B). Moreover, B1 = B = B2,
C1 = C[x7→y, y 7→e′] and C2 = C[x7→z, z 7→e′]. Therefore the two configurations can differ
only in the name of the bound variable y.

• The case e ≡ byneed e′ is analoguous to the previous one for concur e′.

• If e ≡ prom e′, then the proof is similar.
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• So suppose e ≡ e′ e′′. There are several subcases to consider.

– Firstly, if both e′ and e′′ are values, then none of these is a redex. Depending on
the shape of e′, e is reducible by either of rules (β), (fulfill) or (lookup). If e′ is
not a variable, then neither (fulfill) nor (lookup) applies, and if e′ ≡ y ∈ Var, then
(β) does not apply. Now the side-conditions of the respective rules (Fulfill) and
(Lookup) on configurations and disjointness of ran(P ) and dom(C), dom(B) show

that applicability of these rules is mutually exclusive. In the case of e
Fye′′

−−−→ e1 and

e
Fye′′

−−−→ e2 by (fulfill), injectivity of P ensures that the resulting configurations are

equal. In the case of e
Lyv1
−−−→ e1 and e

Lyv2
−−−→ e2 by (lookup), we can conclude v1 ≡ v2

from disjointness of dom(C) and dom(B). Again, this shows that (P1, C1, B1) =
(P2, C2, B2).

– If e′ is not a value, then reduction of e may be caused by reductions of e′ only,
by definition of evaluation contexts. Thus, the result follows from the inductive
hypothesis.

– Finally, if e′ is a value but e′′ is not, there is no rule that applies directly to e, and
the reductions of e are caused solely by reductions of e′′. Again, the result follows
by induction.

This concludes the proof.

4.2.1 Uniform Confluence of Untyped Expressions

We first consider uniform confluence for the calculus λF without the restriction to typable

terms only. We start with the key lemma, showing that transitions
〈α,x〉
−−−→ on configurations

that are “independent” of each other do commute.

Lemma 4.2.2. Let x0 6= x1 be distinct variables and suppose there are two transitions

(C, B)

〈α0,x0〉

��

〈α1,x1〉
// (C1, B1)

6=

(C0, B0)

Then there exists (C ′, B′) such that the above diagram can be closed to the following

(C, B)

〈α0,x0〉

��

〈α1,x1〉
// (C1, B1)

〈α0,x0〉

��
�

�

�

(C0, B0)
〈α1,x1〉

//___ (C ′, B′)

Proof. The proof is by a tedious case distinction on the labels α0, α1. Most cases are easy to
check, so we will consider only some representative ones here.

• First, suppose α0 = β = α1. By the inference rule (β) we have B0 = B = B1. Further,

C(x0) = E0[(λx.e0) v0] and C(x1) = E1[(λy.e1) v1]
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by rule (select), and so

C0 = C[x0 7→E0[e0[v0/x]]] and C1 = C[x1 7→E1[e1[v1/y]]]

Hence,

(C0, B0)
〈β,x1〉
−−−−→ (C[x0 7→E0[e0[v0/x]], x1 7→E1[e1[v1/y]]], B)

〈β,x0〉
←−−−− (C1, B1)

• Next, suppose α0 = Cxe0 and α1 = Bye1. Then, assuming that

C(x0) = E0[concur e0] and C(x1) = E1[byneed e1]

we have B0 = B, B1 = B[y 7→e1], C0 = C[x0 7→E0[x], x7→e0] and C1 = C[x1 7→E1[y]].
Possibly renaming bound variables, we can assume x 6= y. Therefore,

(C0, B0)
〈Bye1,x1〉
−−−−−−→ (C[x0 7→E0[x], x1 7→E1[y] x7→e0], B1)

〈Cxe0,x0〉
←−−−−−− (C1, B1)

• Finally, suppose α0 = Lxv0 and α1 = Lyv1. The case where x 6= y is similar to the
previous ones. Now assume x = y, then

– if x ∈ dom(B), B(x) = e and B′ =df B|dom(B)−{x} is the restriction of B to variables
distinct from x, then

B0 = B′ = B1 and C0 = C[x7→e] = C1

so there is nothing to show.

– if x ∈ dom(C), we have B0 = B = B1, v0 = C(x) = v1 and

C(x0) = E0[x v] and C(x1) = E1[x v′]

Thus,

(C0, B0)
〈Lxv0,x1〉
−−−−−−→ (C[x0 7→E0[v0 v], x1 7→E1[v0 v′]], B)

〈Lxv0,x1〉
←−−−−−− (C1, B1)

The remaining cases are similar.

However, note that the above reasoning only works as long as we do not consider e
Fxv
−−→ e′,

by (the λFP -) rule (fulfill). In this case the side-condition (x /∈ dom(C)) of (Fulfill) may be
satisfied in the first transition, but need not hold for the second one. In the next Chapter we
will restrict the use of promises, thereby guaranteeing that the side-condition is always satisfied
for (Fulfill) as well and thus extend the confluence proof.

Proposition 4.2.3 (Uniform Confluence). Reduction → on the set of λF -configurations is
uniformly confluent. In particular, → is confluent.



4.3 Strong Normalization 39

Proof. Suppose (C0, B0) ←− (C, B) −→ (C1, B1) and assume (C0, B0) 6= (C1, B1). We conclude
from Lemma 4.2.1 that there are distinct x0 6= x1 in dom(C) causing the transitions, i.e.

(C0, B0)
〈α0,x0〉
←−−−−− (C, B)

〈α1,x1〉
−−−−−→ (C1, B1)

for some α0, α1. By Lemma 4.2.2, there is (C ′, B′) such that (C0, B0) −→ (C ′, B′)←− (C1, B1).

4.2.2 Uniform Confluence of Simply Typed Expressions

Uniform confluence now carries over to the simply typed case immediately: Whenever (C, B)
is well-typed and (C0, B0) ← (C, B)→ (C1, B1), then (C0, B0), (C1, B1) can be given a type,
by subject reduction (Lemma 3.5.4). By uniform confluence (C0, B0) → (C ′, B′) ← (C1, B1)
for some (C ′, B′), and again by subject reduction (C ′, B′) is well-typed.

Proposition 4.2.4 (Uniform Confluence). Reduction restricted to well-typed configurations
of λF is uniformly confluent. In particular, it is confluent.

4.3 Strong Normalization

For terms of the simply typed λ-calculus with constants it is well-known that every reduction
sequence is finite (see [Tho92], for instance). As can be seen from the reduction relation,

concur x=e in e′

and similarly

byneed x=e in e′

behave very much like a let in λ-calculus, which in turn can be coded into simply typed
λ-calculus. Moreover, we consider only weak reduction in λF, not reducing below, e.g., abstrac-
tions. Hence, for expressions that do not contain any promises, it should be intuitively clear
that strong normalization holds, just as for the simply typed λ-calculus: There are no infinite
reduction sequences. In fact, we will show that this is true. It is worth pointing out again that
this certainly does not hold for the full language λFP, since promises suffice do define recursive
(and non-terminating) functions, as shown in Section 3.6 on page 28.

So how should one prove strong normalization of λF ? The obvious choice is to simulate
reduction sequences on configurations by reduction sequences on terms of the simply typed
λ-calculus. If one could show that every reduction step possible on the configuration can be
matched by some β-reduction step on a simply typed λ-term, this would give a finite upper
bound on the number of possible reduction steps, and the result will follow.

However, not all reduction rules of λF have a natural analogue in λ-calculus reduction, and
so we will try to find simulations that are invariant under, e.g. transition by rule (lookup). We
then deal with termination of these reductions separately.

In order to apply the simulation technique, it seems necessary to encode a whole configu-
ration into a single λ-term that has sufficiently many redexes for the simulation to work. We
proceed as follows. First we give an example showing that a näıve simulation does not work
and must be refined. Next, we define a restricted, “canonical” reduction relation −−→

can
for which

a very simple simulation already works. We then relate canonical reduction −−→
can

to the original

−→ relation, using the uniform confluence property proved in the previous section.
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4.3.1 Näıve Simulation

Suppose we want to simulate reduction of the term

e =df (λy.v) concur e′ (4.1)

where we assume that v does not contain free occurences of y. It seems very natural to set
the term in relation to the λ-term (λy.v) e′, which is just e where the concur annotation is
ignored. So, starting with the initial configuration

({x0 7→(λy.v) concur e′}, ∅)

we have a transition to

({x0 7→(λy.v) x, x7→e′}, ∅) (4.2)

Now a sensible way to represent both threads in a single term of the λ-calculus seems to be
substituting thread e′ for its associated future x in (λy.v) x, obtaining (λy.v) e′. By β-reduction
(recall that x is a value), one then obtains the configuration ({x0 7→v, x7→e′}). Simulating this

on the corresponding λ-term, we obtain the term v. A problem occurs now whenever e′
β
−→ e′′.

(λy.v) concur e′

��

∼ (λy.v) e′

��

({x0 7→(λy.v) x, x7→e′}, ∅)

��

∼ (λy.v) e′

��
({x0 7→v, x7→e′}, ∅)

��

∼ v

({x0 7→v, x7→e′′}, ∅) ?

Looking carefully at example (4.1) on this page we see what the problem with the näıve
simulation is: it does not work. Although the “main” thread in the computation might not
need the result being computed in the second thread, computation in this thread will continue.
In the corresponding λ-term we then do not have a sufficient number of redexes to match this.

Put differently, we should not have performed the first β-reduction, as this led to a λ-
term containing only part of the configuration. The reason for it is that the β-reduction step
had a future as argument whose value still had to be computed, and so did not correspond
to a “canonical” step of by-value reduction. Clearly, disallowing such steps will prevent this
problem. We will work out the details of how this works next, before showing that it in fact
suffices to consider the restricted reduction relation.

4.3.2 Canonical Reduction

Intuitively, canonical reduction imitates call-by-value reduction, taking the complete configu-
ration into account to prevent reduction steps that led to the failure of the simulation in the
above example (4.1).

Ordering and Representability

It should be clear from the operational semantics that we cannot create mutually dependant
threads in the restricted language anymore, thus the above idea of representing a configura-
tion as a λ-term (by substitution) can be applied. We begin with a lemma stating that our
configurations will indeed remain acyclic during reduction, in the following sense.
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Definition 4.3.1. Suppose C ∪B = {x1 7→e1, . . . , xn 7→en} for a configuration (C, B). Then a
linear order <(C,B) on the variables {x1, . . . , xn} is admissible if fv(ei) ⊆ {xk | xk > xi} for
all 1 ≤ i ≤ n.

If the configuration is clear from the context, we will drop the subscript (C, B), writing
just <. In (4.2) of the example on the preceding page, we thus have that x0 < x is admissible,
whereas x < x0 is not. Recall that for a term e, the initial configuration is just ({x0 7→e}, ∅),
for which the empty relation trivially is admissible. The existence of admissible orders is
an invariant, as the following lemma shows. In particular, we can assume that for all the
configurations we consider in this section, deriving from initial configurations of λF -terms,
admissible orders exist.

Lemma 4.3.2. Suppose (C, B) −→ (C ′, B′), and assume that there is an admissible order
<(C,B). Then this can be extended to an admissible order <(C′,B′) on dom(C ′) ∪ dom(B′).

Proof. Consider cases for −→. Without loss of generality assume that x1 < · · · < xn is such an
ordering on the variables xi, where {x1, . . . , xn} = dom(C) ∪ dom(B).

• If (C, B)
〈Lyy,x〉
−−−−−→ (C ′, B′) by (Lookup), then C ∪ B = C ′ ∪ B′ and there is nothing to

show.

• For (C, B)
〈β,x〉
−−−→ (C ′, B′) we know fv(C(x)) ⊇ fv(C ′(x)), and for all y 6= x we have

(C ∪B)(y) = (C ′ ∪B′)(y). So we let <(C′,B′)=df<(C,B).

• If (C, B)
〈Lyv′,x〉
−−−−−→ (C ′, B′) by (Force), then

C(x) = E[y v]
Lyv′

−−−→ E[v′ v] = C ′(x)

where (C ∪B)(y) = v′, i.e. the free variables of C ′(x) are contained in the set fv(C(x))∪
fv(v′). However, C(x) = E[y v] and admissibility of <(C,B) implies x <(C,B) y, and so
we may again obtain an admissible order by <(C′,B′)=df<(C,B).

• Finally, if (C, B)
〈α,xi〉
−−−−→ (C ′, B′) by (Concur) or (Byneed), then the transition was by

C(xi)
Cye
−−→ C ′(xi) or C(xi)

Bye
−−→ C ′(xi)

for fresh y. In particular, this means fv(e) ⊆ fv(C(xi)) and fv(C ′(xi)) ⊆ fv(C(xi))∪ {y}.
Consequently, the relation <(C′,B′), obtained by extending the order <(C,B) to

x1 < · · · < xi < y < xi+1 < · · · < xn

is an admissible order.

Observe that the last case depends on the fact that y is fresh. In particular, it would not

hold in general for
Fye
−−→ reductions by the λFP -rule (Fulfill), which may very well introduce

cyclic dependencies among the variables.
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We will now formally define the representation of a λF -term, later lifting this to λF -
configurations. For an expression e ∈ Exp− let [[e]] be the λ-calculus term obtained by simply
removing concur and byneed.

Definition 4.3.3. A translation [[·]] of well-typed Exp−-terms into the simply typed λ-calculus
is given by defining

[[()]] =df (),

[[x]] =df x,

[[λx.e]] =df λx.[[e]],

[[e e′]] =df [[e]][[e′]]

and

[[concur e]] =df [[byneed e]] =df [[e]] .

It is not hard to see that for any well-typed term e the translation [[e]] indeed is a well-
typed term of the simply typed λ-calculus with constant ():unit, over base type unit. Also,
fv([[e]]) = fv(e). The translation immediately carries over to contexts E, so that [[E[e]]] ≡
[[E]][[[e]]]. Furthermore, it is easily verified that [[e[v/x]] ≡ [[e]][ [[ v ]]/x] holds, and thus

[[E[(λx.e) v]]]→β [[E[e[v/x]]]] (4.3)

The next step is to lift the translation to configurations. We will use the suggestive notation

subst Mn/xn . . . M1/x1 in M =df M [M1/x1] · · · [Mn/xn] (4.4)

for a sequence successive substitutions.

Definition 4.3.4. Let (C, B) be a configuration, C ∪B = {x1 7→e1, . . . , xn 7→en}, and assume
x1 < · · · < xn wrt. an admissible order <(C,B). The term repC,B,<(C,B)

defined by

repC,B,< =df subst [[en]]/xn . . . [[e1]]/x1 in x1

is a representation for (C, B) wrt. <(C,B).

Note that by Lemma 4.3.2, there is an admissible order < for every configuration (C, B) that
was derived from the initial configuration of a (well-typed) λF -term. Further, we just remark
that by subject reduction these configurations are also well-typed, and then the representation
repC,B,< is typable in the simply typed λ-calculus.

However, just considering representations is not sufficient, because these may not contain
sufficiently many redexes to match reduction steps of the configuration. Example (4.1) on
page 40 clearly showed the problem.

Canonical Reduction and Complete Representations

We shall now see how to overcome the problem that occurred with the näıve simulation on
page 40. Recall that it was caused by β-reducing a subexpression of the representation where
the argument was not fully evaluated.
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Definition 4.3.5. Canonical reduction
〈α,x〉
−−−→
can

is defined by

(C, B)
〈α,x〉
−−−→
can

(C ′, B′)

if (C, B)
〈α,x〉
−−−→ (C ′, B′) and there is an admissible order < of (C, B) such that C(x′) ∈ Val for

all x′ ∈ dom(C) with x′ > x.

As before, we let −−→
can

=df

⋃

α∈Lab

α
−−→
can

. To demonstrate canonical reduction, reconsider the

previous example. The critical reduction was in (4.2),

({x0 7→(λy.v) x, x7→e′}, ∅)
〈β,x0〉
−−−−→ ({x0 7→v, x7→e′}, ∅)

by rule (β), assuming e′ /∈ Val and x not free in v. However, since necessarily x0 < x and
e′ /∈ Val, the only canonical reduction in this case is

({x0 7→(λy.v) x, x7→e′}, ∅)
〈β,x〉
−−−→
can

({x0 7→(λy.v) x, x7→e′′}, ∅)

assuming e′
β
−→ e′′. Not surprisingly, this step can be matched in the representation with

respect to <,

subst [[e′]]/x ((λy.[[v]]) x)/x0 in x0 ≡ (λy.[[v]]) [[e′]]

→β (λy.[[v]]) [[e′′]]

≡ subst [[e′′]]/x ((λy.[[v]]) x)/x0 in x0

by equation (4.3).

It should be remarked that canonical reduction restricts → reduction, but nevertheless is
not just deterministic standard reduction. Canonical reduction is complemented by a notion
of complete representation which, intuitively, asserts that the representation contains all the
“essential” threads as subterms.

Definition 4.3.6. Suppose (C, B) is a λF -configuration, with C ∪B = {x1 7→e1, . . . , xn 7→en},
and x1 < · · · < xn is an admissible order for (C, B). Then repC,B,< is a complete representa-
tion if, whenever ei /∈ Val and xi ∈ dom(C), then

subst [[ei−1]]/xi−1 · · · [[e1]]/x1 in x1

contains xi free.

In particular, any representation of an initial configuration is complete. In the following, we
state that this property is invariant under canonical reduction, and hence canonical reduction
steps can be appropriately matched on the representations.

Simulation

We next see how to simulate canonical reduction on complete representations.
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Lemma 4.3.7. Suppose (C, B) is a configuration with admissible order < s.t. repC,B,< is a

complete representation. If (C, B)
〈β,xi〉
−−−−→

can
(C ′, B′) by (β), then < is also admissible for (C ′, B′)

and

repC,B,< →β repC′,B′,<

where repC′,B′,< is complete.

Proof. By definition, if C ∪B = {x1 7→e1, . . . , xn 7→en} and x1 < · · · < xn then

repC,B,< ≡ subst [[en]]/xn . . . [[e1]]/x1 in x1

By assumption and the definition of
〈β,xi〉
−−−−→

can
we have xi ∈ dom(C) and

ei
β
−→ e′i

By (4.3), [[ei]]→β [[e′i]] and so by the definition of a complete representation,

repC,B,< →β subst [[en]]/xn . . . [[e′i]]/xi . . . [[e1]]/x1 in x1 ≡ repC′,B′,<′

As in the proof of Lemma 4.3.2, < is admissible for (C ′, B′). Finally, from the definition of
canonical reduction it follows that if ek /∈ Val, then C(xj) = C ′(xj) for all xj < xk in dom(C).
Hence, completeness of repC′,B′,< follows from completeness of repC,B,<.

Lemma 4.3.8. Let (C, B) be a configuration with admissible order < so that repC,B,< is

complete. If (C, B)
〈α,xi〉
−−−−→

can
(C ′, B′) not by (β), i.e. α is not β, then there exists admissible <′

for (C ′, B′) such that

repC,B,< ≡ repC′,B′,<′

and repC′,B′,<′ is complete for (C ′, B′).

Proof. We consider the possible canonical reductions in turn. So suppose (C, B) is a canonical
configuration, with admissible order < s.t. repC,B,< is a complete representation.

• If (C, B)
〈Lxjv′,xi〉
−−−−−−−→

can
(C ′, B′) by rule (Lookup), then <′=df< is admissible for (C ′, B′) as

well, as seen in the proof of Lemma 4.3.2. Also, the reduction is caused by

C(xi) = E[xj v]
〈Lxjv′,xi〉
−−−−−−−→ E[v′ v] = C ′(xi)

and

repC,B,< ≡ subst [[en]]/xn . . . [[v′]]/xj . . . [[E[xj v]]]/xi . . . [[e1]]/x1 in x1

≡ subst [[en]]/xn . . . [[v′]]/xj . . . [[E[v′ v]]]/xi . . . [[e1]]/x1 in x1

≡ repC′,B′,<′

which is a complete representation for (C ′, B′) since repC,B,< is.
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• Next, suppose the reduction is by (Concur), i.e. for some xi ∈ dom(C),

C(xi) = ei ≡ E[concur e]
Cxe
−−−→ E[x] ≡ C ′(xi)

Using [[ei]] ≡ [[E[concur e]]] ≡ [[E]][[[e]]] ≡ ([[E[x]]])[ [[ e ]]/x], we obtain

repC,B,< ≡ subst [[en]]/xn . . . [[ei]]/xi . . . [[e1]]/x1 in x1

≡ subst [[en]]/xn . . . [[e]]/x [[E[x]]]/xi . . . [[e1]]/x1 in x1

≡ repC′,B′,<′

where <′ is the admissible extension of < defined in the proof of Lemma 4.3.2. Com-
pleteness of repC′,B′,<′ follows from completeness of repC,B,<.

• The case
〈Bxe,xi〉
−−−−−→

can
by (Byneed) is analogous.

• Finally, suppose (C, B)
〈Lxjxj ,xi〉
−−−−−−−→

can
(C ′, B′), by rule (Force). By definition, there is xi ∈

dom(C) causing the reduction, i.e.

C(xi) = ei ≡ E[xj v]
Lxjxj

−−−−→ ei = C ′(xi)

xi < xj by admissibility and in particular xj occurs free in

subst [[ej−1]]/xj−1 . . . [[ei]]/xi . . . [[e1]]/x1 in x1

Thus, repC′,B′,<′ ≡ repC,B,< is complete.

This concludes the proof.

Strong Normalization of Canonical Reduction

We are now in the position to prove the main result of this section, the strong normalization
property of λF with respect to canonical reduction −−→

can
.

Proposition 4.3.9 (Strong Normalization of −−→
can

).

Let e ∈ Exp− be a well-typed term. Then every −−→
can

-reduction sequence beginning with the

initial configuration ({x0 7→ e}, ∅) is finite.

Proof. For any configuration (C, B), let (Ĉ, B̂) be the configuration where all future variables
are replaced by the respective expression. Formally, without loss of generality assume x1 <
· · · < xn is an admissible order on var(C, B), and let ei = (C ∪B)(xi). Then, if

êi =df ei[ei+1/xi+1] · · · [en/xn] ,

(Ĉ, B̂) is obtained from (C, B) by replacing ei with êi. Also, let |(C, B)| denote the size of the
configuration, given by the sum

∑

x∈dom(C)

|C(x)|+
∑

x∈dom(B)

|B(x)| ,
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where the length |e| of e is defined in the obvious way. Moreover, for any configuration (C, B),
the number l(C, B) of possible consecutive −−→

can
-reductions by rule (Lookup) is finite: Let l(ei)

denote the maximal number of possible lookups for variables in ei. A very crude estimate on
the number of variables occurring in ei shows that clearly

l(ei) ≤ |ei|(1 +
∑

xj>xi

l(ej))

and by induction one obtains the bound

l(en−k) ≤ 2k|en−k| · · · |en−1|

Thus,
∑

xi∈dom(C) l(ei) <∞. Finally, define φ(C, B) ∈ N
3 by

φ(C, B) =df (
∣

∣

∣
(Ĉ, B̂)

∣

∣

∣
, |dom(B)| , l(C, B))

Then, whenever (C, B) −−→
can

(C ′, B′), not by rule (β), one easily checks that

φ(C, B) >lex φ(C ′, B′)

with respect to the lexicographic order on N
3. In fact, we have the following relationship on

the components of φ(C, B) and φ(C ′, B′), depending on the rule applied to infer the reduction.

(Concur, Byneed) > ≤ ≤
(Force) = > ≤
(Lookup) = = >

Now assume there is some infinite reduction sequence

(C1, B1) −−→
can

(C2, B2) −−→
can

. . .

then well-foundedness of >lex implies that any such infinite reduction sequence must make use

of infinitely many
〈β,x〉
−−−→
can

reductions, by rule (β). Using the fact that for initial λF -configurations

there exists a complete representation, then by Lemma 4.3.7 and Lemma 4.3.8 we can then
find admissible orders <i such that for all i,

Mi =df repCi,Bi,<i

is a complete representation of (Ci, Bi), and for some infinite subsequence Mi1 →β Mi2 →β

. . . , contradicting the strong normalization property of the simply typed λ-calculus. Hence,
reduction on configurations must be strongly normalizing as well.

4.3.3 Strong Normalization of →

Although working with canonical reduction so far, the results carry over to the reduction
relation → as well. Here, we show how the two relate.

Lemma 4.3.10. For any configuration (C, B) with admissible variable order,

(C, B) −→ iff (C, B) −−→
can
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Proof. Clearly any −−→
can

-reduction also is a −→-reduction. Conversely, suppose (C, B) is −−→
can

-

irreducible. Then, for all xi ∈ dom(C), C(xi) is not −→-reducible or else C(xj) /∈ Val for all
xj > xi in dom(C). The second case is absurd, considering i = n, where xn is maximal wrt.
<. Hence, C(xi) is −→-irreducible for all xi ∈ dom(C), and so (C, B) must be −→-irreducible as
well, by rule (select).

Lemma 4.3.11. The length of any (complete) −→-execution of a configuration with admissible
order equals the length of any (complete) −−→

can
-execution.

Proof. By the preceding Lemma 4.3.10, any (complete) −−→
can

-execution is a (complete) −→-

execution. The result now follows from Lemma 4.3.12.

Lemma 4.3.12. The length of all (complete) −→-executions of a configuration (C, B) is equal.

Proof. This is an instance of Proposition 2.4 of [Nie00], a general result about uniformly
confluent calculi.

Immediately from Proposition 4.3.9 and Lemma 4.3.11 we now obtain strong normalization
for −→.

Proposition 4.3.13 (Strong Normalization of −→).
Let e ∈ Exp− be a well-typed term. Then every −→-reduction sequence beginning with the initial
configuration e is finite.

4.4 An Application: Call-by-Need vs. Call-by-Value Com-

plexity Revisited

Call-by-value and call-by-name are well-known reduction strategies in λ-calculi. Consider an
application (λx.M) M ′, then using a call-by-value strategy the actual parameter M ′ is first
evaluated before being substituted for the formal parameter x in the function body M . In
contrast, under a call-by-name strategy x is replaced immediately by M ′ in M . Both strategies
are not optimal in that they may perform unnecessary work, either if x does not occur in M
at all, or else if there are multiple occurrences of x. Call-by-need improves on the by-name
strategy by replacing x not directly by M ′ but rather by a reference to M ′, and replacing M ′

by its value as soon as this has been computed for the first time. Therefore, it is “obvious” that
evaluation of any term M under call-by-need takes at most as many computational steps as
needed using call-by-value. However, a formal proof is not at all straightforward, the problem
being the different scheduling of corresponding computation steps.

Our language is expressive enough to encode call-by-value and call-by-need λ-calculi such
that the complexity is preserved, while concurrency allows for the reordering of computational
steps that is necessary for what might be phrased transforming call-by-need into call-by-value.

For a configuration (C, B) we define its complexity by

C(C, B) =df sup {m | m is the number of
〈β,x〉
−−−→-reductions in a partial execution of (C, B) }

As in the preceding section on strong normalization, the crucial point for the following is
that all (complete) executions of a configuration have the same length, by uniform confluence of
(untyped) λF -reduction →. Thus, for all configurations (C, B) the complexity C(C, B) equals
the length of any of its complete executions, which may be finite or infinite.
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Syntax M ::= x | λx.M |M M
V ::= λx.M

Contexts E ::= [ ] | E M | V E

Reduction E[(λx.M) V ] →val E[M [V/x]]

Encoding [[x]]val =df x
[[λx.M ]]val =df λx.[[M ]]val

[[M N ]]val =df [[M ]]val (concur [[N ]]val)

Figure 4.2: The call-by-value λ-calculus λval with standard reduction

4.4.1 Encoding the Call-by-Value λ-calculus

We define an embedding [[·]]val of the call-by-value λ-calculus with standard reduction [Plo75],
which is presented in Figure 4.2. Basically, the embedding relaxes the order in which subex-
pressions are reduced. Intuitively, allowing arguments to be evaluated concurrently will permit
to match β-reduction steps of call-by-need and call-by-value strategy. By uniform confluence,
this reordering does not change complexity. For the encoding, we observe that [[M ]][ [[ V ]]/x] =
[[M [V/x]]]. Thus, the encoding naturally extends to contexts E so that [[E]]val [[[M ]]val] =
[[E[M ]]]val. For a λ-term M , let

Cval(M) =df sup {m | m is the length of a partial execution of M}

be its by-value complexity. Since only β-reduction steps contribute to the complexity of a
configuration, Cval(M) = C([[M ]]val) is intuitively clear. It can be shown formally using a
simulation similar to that used in the preceding section.

Lemma 4.4.1. For all closed λ-terms M , Cval(M) = C([[M ]]val).

4.4.2 Implementing Call-by-Need

We proceed in a similar fashion for the call-by-need strategy. It is defined using byneed

annotations, analogous to the embedding of by-value:

[[M1 M2]]
need =df [[M1]]

need (byneed [[M2]]
need)

The encoding is summarized in Figure 4.3. This is reasonably close to formal models of call-by-
need proposed previously in the literature, e.g. the λneed-calculus in [AFM+95]. Note, however,
that our evaluation contexts are slightly more restrictive than those of the λneed-calculus, with
the result that lookup is “lazy”. We leave it open whether λneed-calculus can be encoded s.t.
time complexity is preserved.

In analogy to Cval, the byneed complexity Cneed(M) of a λ-term M is defined by

Cneed(M) =df C([[M ]]need)
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Encoding [[x]]need =df x
[[λx.M ]]need =df λx.[[M ]]need

[[M N ]]need =df [[M ]]need (byneed [[N ]]need)

Figure 4.3: Implementing the call-by-need strategy

4.4.3 Relating Call-by-Need and Call-by-Value

We are now in the position to sketch the proof of the result relating call-by-value and call-by-
need complexity, using the encodings of the previous sections. Let [[·]] be the map that replaces
(sub-) expressions byneed e with concur e. Let Sneed

val be the relation consisting of all pairs of
configurations 〈(C, B), (C ′, B′)〉 s.t. B′ is empty and for all x 7→ e in C ∪B there is x 7→ e′ in
C ′ with e′ ≡ [[e]]. So in particular,

〈[[M ]]need, [[M ]]val〉 ∈ Sneed
val

for all λ-terms M .
It is easy to check that Sneed

val indeed is a lengthening simulation in the sense that whenever

〈(C1, B1), (C2, B2)〉 ∈ S
need
val and (C1, B1)

〈β,x〉
−−−→ (C ′

1, B
′
1)

then there exists (C ′
2, B

′
2) such that

(C2, B2)
〈β,x〉
−−−→ (C ′

2, B
′
2) and 〈(C ′

1, B
′
1), (C ′

2, B
′
2)〉 ∈ S

need
val

and if

(C1, B1)→ (C ′
1, B

′
1) not by (β)

there exists (C ′
2, B

′
2) such that

(C2, B2)→
∗ (C ′

2, B
′
2) for some 〈(C ′

1, B
′
1), (C ′

2, B
′
2)〉 ∈ S

need
val

Hence, 〈(C1, B1), (C2, B2)〉 ∈ S
need
val implies C(C1, B1) ≤ C(C2, B2). From this, Lemma 4.4.1

and the definition of Cneed we then obtain

Proposition 4.4.2. For all terms M of the λ-calculus, Cneed(M) ≤ Cval(M).
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Chapter 5

Linear Types for Promises

In this section, we investigate properties of the full calculus λFP again, including promises. A
linear type system is presented that enforces the single-assignment discipline that we want to
hold for promises. We show that uniform confluence extends to configurations well-typed with
respect to the system.

5.1 Promises, Single-assignment and Confluence

Recall that a promise y is created, along with its associated future x, by

prom y for x in e

formalized by the axiom prom e
Pyx
−−−→ eyx. Then, y may be applied to some value v, thereby

binding x to v. This was formalized by the transition rule

(fulfill) E[y v]
Fyv
−−→ E[()]

in Chapter 3. This rule is applicable to E[y v] in a configuration provided x /∈ dom(C), for
the unique x such that y = P (x). The intention is to bind x at most once, viewing it as a
read-only logic variable that initially carries no value. Consequently, y should be applied no
more than once, which is ensured by the side-condition x /∈ dom(C).

Note the difference between concur- and byneed-futures on the one hand and promises
on the other. While concur x=e in e′ and byneed x=e in e′ introduce x along with the
description e of its value, prom y for x in e introduces x without value description, but rather
with the promise to supply a value in due time.

Put differently, “possession” of a promise y should be seen as the permission to write the
logic variable, while x allows only for reading its contents. Generally, if several concurrently
running threads have permission to bind x then this is a source of (unwanted) indeterminism.
For example, consider

prom y for x in (concur x2=y v2 in y v1) (5.1)

which eventually results in the configuration

({x7→y}, {x1 7→y v1, x2 7→y v2}, ∅)

51
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which may evolve to either of the (possibly distinct) configurations

({x7→y}, {x7→v1, x1 7→(), x2 7→y v2}, ∅)

and

({x7→y}, {x7→v2, x1 7→y v1, x2 7→()}, ∅)

So the future x could end up being bound to either of v1, v2. Perhaps worse, one of the
concurrent threads y v1, y v2 is sure to get stuck as soon as x has been bound by the other
thread. The simple example (5.1) already demonstrates that “improper” use of promises spoils
confluence and introduces indeterminism.

In contrast, as long as it is at most once attempted to apply the function y in the course of
reduction, this will capture exactly the single-assignment behaviour we expect of promises, and
it will render reduction of programs confluent. But this usage of promises requires discipline
when programming. Usually this is hard, if not impossible, to maintain. It would be much
better if there was a way to enforce this discipline, and indeed in the next section a refined
type system is presented that takes care of proper usage of promises.

5.2 Linear Types for Promises

In this section, a linear type system is presented. It refines the type system for simple types
from Section 3.5 by mode annotations, introducing constraints on the usage of promises. The
fragment of the language that is well-typed with respect to this type system will be shown to
treat promises properly, in that all the promises are attempted to be assigned at most once.
Clearly this property is not decidable in general, there is an easy reduction from the halting
problem of the simply typed λ-calculus with explicit recursion operator1: If e2 is an expression
using a promise assignment twice, such as (5.1), then (λx.e2) e is admissible if and only if e
is not terminating, so this gives a reduction from the (complement of) the set of terminating
λ-terms with explicit recursion.

We proceed as follows: First the linear type system is presented, along with some examples
demonstrating its usage. Next, a Subject Reduction lemma is proved that shows invariance of
typing under reduction. Finally we state that well-typing indeed implies proper use of promises.

5.2.1 Linear Types

We distinguish types σ and annotated types σ1. Intuitively, if a value is of annotated, or linear,
type σ1, it may be applied only once, whereas use of values of type σ is not restricted in any
way.

σ ::= unit | α | σµ1

1 → σµ2

2

µ ::= ε | 1

The type rules are presented in Figure 5.1. A judgment is of the form Γ ` e:σµ, where the
type environment Γ is a finite set written as the sequence

Γ = x1:σ
µ1

1 , . . . , xn:σµn
n

1Recall that recursion can be expressed using promises.
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Γ, x:σµ ` x:σµ
(var)

Γ ` e:σ

Γ ` e:σ1
(weak)

Γ ` e:σµ

Γ ` concur e : σµ
(conc)

Γ ` ():unit
µ

(unit)

Γ ` e:σµ

Γ ` byneed e : σµ
(need)

Γ′ ⊆ Γ, x:σµ1
1

Γ′ ` e:σµ2
2

Γ ` λx.e : (σµ1
1
→σµ2

2
)µ

(abs)

once(Γ) ⊇ once(Γ1) ] once(Γ2)
Γ1 ` e1:(σ

µ1
1
→σµ2

2
)µ Γ2 ` e2:σ

µ1
1

Γi ⊆ Γ

Γ ` e1 e2 : σµ2
2

(appl)

Γ ` e:(σµ1
1
→unit

1)1 → σµ1
1

→ σµ

Γ ` prom e : σµ
(prom)

Figure 5.1: Rules for the linear mode system

x:σ1 in Γ will mean the variable may be used only once, and this is enforced essentially by
splitting these resources in the antecedent of rule (appl). For a given type environment Γ, the
set once(Γ) consists of the variables of linear type in Γ,

once(Γ) =df {x:σµ ∈ Γ | µ = 1}

We will always additionally assume that the following well-formedness condition holds

Γ ` e:σµ implies µ = 1, whenever once(Γ) 6= ∅ (wfc)

Also, there is a rule handling conversion of types σ into σ1. One might devise a similar rule
for the conversion back,

Γ ` e:σ1 once(Γ) = ∅

Γ ` e:σ
(gen)

but this turns out to be unsound in that types are not preserved under reduction. A simple
example for this is

prom (λy.λx.y)

which is a closed term, and so could be given type (σ → unit1), using rule (gen). However, this
term needs to be given a linear type, otherwise y could be applied more than once, e.g. in

(λz.(. . . z . . . z . . . ))(promλy.λx.y)

Note that the only way to introduce a promise y is by assigning the (linear) type (σµ → unit1)1.
The type system is similar to those presented in [TWM95, Mog98], which can be seen as

instances of the general framework of type and effect systems [NN99]. However, these systems
were introduced to obtain usage information along with type checking, in the sense of program
analyses. In particular, programs are typable in the underlying system if and only if they are
typable in the annotated system.

In contrast, with the system above we consider only those programs well-typed where
usage of promises can be proved linear by the annotated system. This is closer in spirit to the
uniqueness typings in the language Clean [BS96].
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Examples of Linear Typings

Before passing on to the technicalities needed for the further development we explain the rules
of Figure 5.1 by means of a few examples. These show how to handle type derivations in the
new system.

Example 1. Consider again the simple confluence counter-example (5.1) from the previous
section. This is not typable any more, using the rules given in Figure 5.1. For suppose to the
contrary that

Γ ` prom p for x in (concur x′=p v2 in p v1):σ
µ

for some Γ, some σµ. Consider a shortest derivation. In case this ends by (weak), then also
Γ ` . . . :σµ′

. Hence, wlog. we can assume that the last rule in the derivation is (prom). By the
same reasoning,

Γ ` λp.λx.concur x′=p v2 in p v1:σ
µ

and then for some Γ′ ⊆ Γ, p:(σ′ → unit1)1, x:σ′,

Γ′ ` concur x′=p v2 in p v1:σ
µ′

Again, for a shortest derivation we can thus assume it ends by (conc), and, unravelling the
definition of concur. . . in. . . , we know there are Γ1, Γ2 ⊆ Γ′,

once(Γ1) ∩ once(Γ2) = ∅

and both

Γ1 ` p v1:σ
µ1

1 and Γ2, x
′:σµ1

1 ` p v2:σ
µ′′

However, one easily checks that p /∈ Γ1 implies Γ 6` p v1, and likewise for p /∈ Γ2 (see Lemma
5.2.2, stated below on page 56). Thus, the above term is not typable any more.

Example 2. Consider the fixpoint operator fix, defined in Section 3.6 on page 29. In the
simply typed case, fix could be given the type

` fix:((σ→σ)→ (σ→σ))→ (σ→σ)

Unfortunately, this type cannot be derived with the rules from Figure 5.1 on the preceding
page because fix contains a promise. However, it still is typable. In fact, by rules (var) and
(app),

Γ1 ` x f :σ → σ

for the environment Γ1 =df x:(σ→σ)→ (σ→σ), f :σ → σ. Likewise,

p:((σ → σ)→ unit1)1 ` p:((σ → σ)→ unit1)1

by (var), and so

Γ1, p:((σ → σ)→ unit1)1 ` p (x f) : unit1 (5.2)
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by rule (app). Similarly, by rules (var) and (weak), we obtain

Γ1 ` x:(σ→σ)→ (σ→σ) and Γ1 ` f :(σ → σ)1

Therefore, Γ1, u:unit1 ` x f :(σ → σ)1 by (app), and from (abs) we conclude

Γ1 ` λu.x f : (unit1 → (σ→σ)1) (5.3)

Using rule (app) on (5.2) and (5.3) yields

Γ2 ` p (x f); x f : (σ → σ1)

for Γ2 =df Γ1, p:((σ → σ)→ unit1)1, and so

` fix:((σ→σ)→ (σ→σ))→ (σ→σ)1

by rules (prom) and (abs).

Typing of Configurations

As in the case for simple types, typings are lifted from terms to whole configurations. Obviously,
because of linearity there are more constraints on the configuration that must be satisfied.

Definition 5.2.1. A type environment Γ is a well-typing for the configuration (P, C, B), writ-
ten Γ ` (P, C, B), if var(P, C, B) ⊆ dom(Γ), and for all xi ∈ dom(C)∪dom(B) there are Γi ⊆ Γ
s.t. all of the following hold:

(L0) whenever xi:σ
µi

i ∈ Γ for xi ∈ dom(C) ∪ dom(B), then

Γi ` (C ∪B)(xi):σ
µi

i

(L1) for all x ∈ dom(P ), Γ(x) = σµ implies Γ(P (x)) = (σµ → unit1)1

(L2) if once(Γi) is non-empty, then µi = 1 and whenever µi = 1 then xi occurs free at most
once in ran(C) ∪ ran(B); and

(L3) once(Γi) ∩ once(Γj) 6= ∅, for some i 6= j implies

– (C ∪B)(xi) is irreducible and xi is not free in ran(C) ∪ ran(B), or

– (C ∪B)(xj) is irreducible and xj not free in the image ran(C)∪ ran(B) of (C ∪B).

Conditions (L0) and (L1) are the analogue of the consistency conditions on type environments
from Chapter 3.5. Condition (L2) guarantees that futures associated with linear expressions
have linear types, and (L3) guarantees that each linear variable occurs in at most one thread.
However, due to possible lookups of values, the condition takes the slightly relaxed above form.
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5.2.2 Subject Reduction

As in the simply typed case, we need some preliminary lemmas before stating a subject reduc-
tion theorem. The following are easily proved by induction on a shortest derivation.

Lemma 5.2.2. Suppose Γ, x:σ1 ` e:σµ1

1 . Then x occurs free in e at most once. Also, if
Γ ` e:σµ and Γ does not contain x, then e does not contain x free.

Lemma 5.2.3. Assume, for some Γ(1), Γ(2) s.t. once(Γ(1)) ∩ once(Γ(2)) = ∅, Γ(1) ` e:σµ

holds. If Γ(3) ⊆ Γ(2), x:σµ so that Γ(3) ` e1:σ
µ1

1 , then Γ(1) ∪ Γ(3) ` e1[e/x]:σµ1

1 .

Lemma 5.2.4. Suppose Γ ` E[e]:σµ. Then also

Γ′ ` e:σµ1

1 , where Γ′ ⊆ Γ− (once(Γ)− fv(e))

for some σ1, µ1. Moreover, for fresh variable x

Γ′′ ` E[x]:σµ, where Γ′′ ⊆ Γ− (once(Γ) ∩ fv(e)), x:σµ1

1 .

The last lemma allows to deal with evaluation contexts, splitting the free linear variables
of a term E[e] in the environments Γ′, Γ′′. We can use these lemmas to derive the following
assertion about β-reduction.

Lemma 5.2.5. Suppose Γ ` E[(λx.e) v]:σµ. Then for some Γ′ ⊆ Γ, Γ′ ` E[e[v/x]]:σµ.

Proof. By Lemma 5.2.4 there are Γ1, Γ2 ⊆ Γ s.t. once(Γ1) ∩ once(Γ2) = ∅ and

Γ1, y:σµ1

1 ` E[y]:σµ and Γ2 ` (λx.e) v : σµ1

1

By the rules (app) and (abs), given in Figure 5.1 on page 53, there are Γ3 ⊆ Γ2, x:σµ2

2 and
Γ4 ⊆ Γ2 so that once(Γ3) ∩ once(Γ4) = ∅, and

Γ3 ` e:σµ1

1 and Γ4 ` v : σµ2

2

By Lemma 5.2.3,

Γ4, Γ3 ` e[v/x]:σµ1

1

and again by Lemma 5.2.3,

Γ1, Γ3, Γ4 ` E[e[v/x]]:σµ

With the help of the preceding lemmas, we can now prove a Subject Reduction lemma for
linearly typed configurations, the proof of which is somewhat involved, though not difficult.

Lemma 5.2.6. Assume Γ ` (P, C, B) and (P, C, B) → (P ′, C ′, B′). Then, for some Γ′ ⊇ Γ,
Γ′ ` (P ′, C ′, B′).

Proof. We consider cases according to the rule by which (P, C, B) → (P ′, C ′, B′) has been
inferred.
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• Suppose (P, C, B)
〈β,xi〉
−−−−→ (P ′, C ′, B′) by (β). By definition,

C(xi) = E[(λx.e) v]
β
−→ E[e[v/x]] = C ′(xi) .

By assumption on Γ, there exists Γi ⊆ Γ satisfying (L0)-(L3). In particular,

Γi ` E[(λx.e) v]:σµ

where xi:σ
µ in Γ, and by Lemma 5.2.5

Γ′
i ` E[e[v/x]]:σµ

for some Γ′
i ⊆ Γi. From this it follows that conditions (L0)-(L3) are satisfied, and thus

Γ ` (P ′, C ′, B′) as required.

• In the case where (P, C, B)
〈Lxx,xi〉
−−−−−→ (P ′, C ′, B′) by rule (Force), Γ ` (P ′, C ′, B′) trivially

holds.

• If (P, C, B)
〈Cxke,xi〉
−−−−−−→ (P ′, C ′, B′) by rule (Concur), then there is xi ∈ dom(C) and fresh

variable xk s.t.

C(xi) = E[concur e]
Cxke
−−−→ E[xk] = C ′(xi)

By assumption, there is Γi ⊆ Γ so that

Γi ` E[concur e]:σµ

and by Lemma 5.2.4 there are subsets Γ′
i ⊆ Γi and Γ′′

i ⊆ Γi, xk:σµ1

1 s.t. once(Γ′
i) ∩

once(Γ′′
i ) = ∅ and both

Γ′
i ` concur e:σµ1

1 and Γ′′
i ` E[xk]:σµ

If we let Γk =df Γ′
i and consider Γ′′

i instead of Γi, then it is easily seen that Γ, xk:σµ1

1

satisfies conditions (L0)-(L3) and so Γ, xk:σµ1

1 ` (P ′, C ′, B′)

• The case for
〈Bxke,xi〉
−−−−−−→ by (Byneed) is analogous.

• If (P, C, B)
〈Lxjv,xi〉
−−−−−−→ (P ′, C ′, B′), by (Lookup), then there are xi, xj ∈ dom(C) s.t.

C(xj) = v′ and

C(xi) = E[xj v]
Lxjv
−−−→ E[v′ v] = C ′(xi)

Moreover, there are Γi, Γj ⊆ Γ chosen with respect to (L0)-(L3) so that

Γi ` E[xj v]:σµ1

1 and Γj ` v′:σµ2

2

In the case where once(Γj) is empty we are done, for then Γi, Γj ` E[v′ v]:σµ1

1 by Lemma
5.2.3 and (L0)-(L3) are satisfied for Γ′ =df Γ.
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So suppose once(Γj) 6= ∅. By (L2), Γ(xj) = σ1
2 and xj occurs at most once free in the

configuration. As it indeed does occur free in C(xi) and C(xi) is not irreducible, then

once(Γi) ∩ once(Γj) = ∅

by (L3). Thus we know that by Lemma 5.2.3

Γ′
i ` E[v′ v]:σµ1

1

for some Γ′
i ⊆ Γi ∪ Γj . Also, as xj has a linear type and occurs in C(xi), once(Γi)

is nonempty, by Lemma 5.2.2. Hence, conditions (L0)-(L2) hold for Γ and (P ′, C ′, B′).
Now

once(Γ′
i) ∩ once(Γj) 6= ∅

but C(xj) = v′ is irreducible and the only occurrence of xj has been replaced. So finally
suppose once(Γk) ∩ once(Γ′

i) is nonempty, i.e.

∅ 6= once(Γ′
i) ∩ once(Γj)

= (once(Γi) ∩ once(Γk)) ∪ (once(Γj) ∩ once(Γk))

So once(Γi) ∩ once(Γk) is nonempty or once(Γj) ∩ once(Γk) is nonempty. Hence,
(C ∪ B)(xk) must be irreducible and condition (L3) for Γ and (P ′, C ′, B′) follows from
(L3) for (P, C, B).

• Next suppose (P, C, B)
〈Pyx,xi〉
−−−−−−→ (P ′, C ′, B′), by (Prom). So there is xi ∈ dom(C) and

x, y /∈ var((P, C, B)) such that

C(xi) = E[prom e]
Pyx
−−−→ E[e y x] = C ′(xi)

By assumption there exists Γi satisfying (L0)-(L3) and

Γi ` E[prom e]:σ1

By Lemma 5.2.4 there are Γ1, Γ2 ⊆ Γi s.t. once(Γ1) ∩ once(Γ2) = ∅ and

Γ1, z:σµ2

2 ` E[z]:σ1 and Γ2 ` prom e : σµ2

2

for fresh z. Hence

Γ2 ` e : (σµ1

1 →unit1)1 → σµ1

1 → σµ2

2

for some σµ1

1 , by rule (prom). So letting Γ′ =df Γ, y:(σµ1

1 →unit1)1, x:σµ1

1 and Γ′
2 =df

Γ2, y:(σµ1

1 →unit1)1, x:σµ1

1 , by (app) and Lemma 5.2.3 we obtain

Γ1, Γ
′
2 ` E[e y x]:σ1

By Lemma 5.2.2, y occurs free at most once and so Γ′ ` (P ′, C ′, B′).
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• Finally, suppose (P, C, B)
〈Fyv,xi〉
−−−−−→ (P ′, C ′, B′), by (Fulfill). Then

C(xi) = E[y v]
Fyv
−−→ E[()] = C ′(xi) ,

assuming that for xk /∈ dom(C) unique xk with y = P (xk). By (L1),

Γ(xk) = σµ and Γ(y) = (σµ → unit1)1

Also, there exists Γi ⊆ Γ satisfying

Γi ` E[y v]:σµ2

2

and (L0)-(L3), so by Lemma 5.2.4 there are Γ1, Γ2 ⊆ Γi s.t. once(Γ1) ∩ once(Γ2) = ∅
and

Γ1 ` v:σµ and Γ2 ` E[()]:σµ2

2

If we define Γ′
i =df Γ1 and Γk =df Γ2 then conditions (L0)-(L3) are satisfied, and so

Γ ` (P ′, C ′, B′). This concludes the proof.

Corollary 5.2.7. Each promise y introduced in the reduction of a well-typed term ` e:σµ is
fulfilled at most once.

Proof. Suppose there is a first application of promise y,

e→∗ (P, C, B)
〈Fyv,xi〉
−−−−−→ (P ′, C ′, B)

Then C(xi) = E[y v] and both, P (x) = y, x /∈ dom(C) and

C ′(xi) = E[()] and C ′(x) = v

By Subject Reduction, Lemma 5.2.6, Γ ` (P, C, B), and therefore Γi ` E[y v] for some Γi ⊆ Γ.
Observing that Γi(y) = Γ(y) is a linear type and applying Lemma 5.2.2 we see that there is
exactly this single occurrence of y in C(x). Moreover, by condition (L3) on typings, whenever
y additionally occurs in some (C ∪B)(xj), then (C ∪B)(xj) is irreducible and will stay so (as
it cannot come into evaluation contexts through lookups again). So this is the only application
of y in the evaluation of e.

5.3 Uniform Confluence of Linearly Typed λ
FP

One of the main goals of this chapter is to show that proper use of promises results in a well-
behaved language. Under the assumption, asserted by Corollary 5.2.7, that for each promised
future the respective assignment function y is applied at most once, we can indeed easily
conclude confluence. We do this by extending the proof of Lemma 4.2.2.
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Lemma 5.3.1. Let x0 6= x1 be distinct variables and suppose there are two transitions

(P, C, B)

〈α0,x0〉

��

〈α1,x1〉
// (P1, C1, B1)

6=

(P0, C0, B0)

Then there exists (C ′, B′) such that the above diagram can be closed to the following

(P, C, B)

〈α0,x0〉

��

〈α1,x1〉
// (P1, C1, B1)

〈α0,x0〉

��
�

�

�

(P0, C0, B0)
〈α1,x1〉

//___ (P ′, C ′, B′)

Proof. We extend the proof from Lemma 4.2.2, considering the missing combinations of reduc-
tions. Of course, the interesting case is that α0 = Fyv0 and α1 = Fyv1 is prevented.

• Suppose α0 = Fy0v0 and α1 = Fy1v1. If y0 = P (x) = y1 for some x ∈ dom(P ), then by
Corollary 5.2.7 the promise y0 is applied at most once. So in fact, we must have x0 = x1,
contradicting the assumption that x0 and x1 are distinct. Thus, no such transitions are
possible.

If P (x) = y0 6= y1 = P (x′), then x 6= x′. Hence, P0 = P = P1, B0 = B = B1,and if

C(x0) = E0[y0 v0] and C(x1) = E1[y1 v1]

then C0 = C[x0 7→E0[()]] and C1 = C[x1 7→E1[()]]. Hence

(P0, C0, B0)
Fy1v1
−−−−→ (P, C[x0 7→E0[()], x1 7→E1[()], x7→v0, x′ 7→v1], B)

Fy0v0
←−−−− (P1, C1, B1)

• Now consider the case α0 = Cxe and α1 = Fyv. Then B0 = B = B1, P0 = P = P1, and

C0 = C[x0 7→E0[x], x7→e] and C1 = C[x1 7→E1[()], x′ 7→v]

provided y = P (x′), C(x0) = E0[concur e], and C(x1) = E1[y v]. Therefore,

(P0, C0, B0)
Fyv
−−→ (P, C[x0 7→E0[x], x7→e, x1 7→E1[()], x′ 7→v], B)

Cxe
←−−− (P1, C1, B1)

The remaining cases are similar.

These considerations suffice to obtain the following Uniform Confluence result.

Proposition 5.3.2 (Uniform Confluence). Reduction → on the set of well-typed configu-
rations is uniformly confluent. In particular, it is confluent.

Proof. The result follows from Lemma 4.2.1 on page 36 and the above Lemma 5.3.1, exactly
as in the proof of Lemma 4.2.3.
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Types σ ::= . . . | σ ref

Syntax e ::= . . . | cell e | exchange(e1,e2)

Labels α ::= . . . | Sxe | Exee′

Type rules
Γ ` e:σ

Γ ` cell e:σ ref
(cell)

Γ ` e1:σ ref Γ ` e2:σ

Γ ` exchange(e1,e2):σ
(exch)

Configuration (S, P, C, B) ∈ [Var →fin Val]2 × [Var →fin Exp]2

Contexts E ::= . . . | cell E | exchange(E,e) | exchange(v,E)

Reduction (lookup’) E[exchange(x,v′)]
Lxv
−−→ E[exchange(v,v′)]

(cell) E[cell v]
Sxv
−−→ E[x]

(exch) E[exchange(x,v)]
Exvv′

−−−−→ E[v′]

(Cell)
C

〈Sxv,y〉
−−−−−→ C′ x /∈ var(S, P, C, B)

(S, P, C, B)
〈Sxv,y〉
−−−−−→ (S[x7→v], P, C ′, B)

(Exch)
C

〈Exvv′,y〉
−−−−−−→ C′

(S[x7→v′], P, C, B)
〈Exvv′,y〉
−−−−−−→ (S[x7→v], P, C ′, B)

Figure 5.2: Syntax, type and reduction rules for reference cells

5.4 Extending the Language

As the results of the previous sections show, so far we do not have full “concurrent expressivity”,
in that reduction is necessarily confluent, provided promises are used properly, i.e. are applied
at most once. In particular, so far it is not possible to program many-to-one or many-to-many
communication as this necessarily introduces indeterminism.

To this end, we simply extend the language with reference cells, obtaining the language
λFPC . A cell is a mutable piece of data, so this extension indeed will take us outside of the
confluent setting. In contrast to, e.g., ML ref-types, we do not directly allow for separate up-
date and dereferencing but only provide an atomic exchange operation. This is fairly standard
in concurrent resp. parallel systems. However, in a language with promises this is not really a
restriction since update and dereferencing can be easily coded.

The syntax is extended by two new constructs dealing with cells.

cell v,
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introduces a new cell carrying the initial value v, and

exchange(x,v),

which updates the cell x to v while returning the old value of x. Again, we may use derived
forms,

let x=cell(e) in e′ =df (λx.e′) (cell e) .

Further, the new type constructor ref is introduced. The type rules ensure that reference cells
carrying values of type σ are given type σ ref. Configurations are extended by an additional
component S ∈ [Var →fin Val] that deals with the bindings of cells to their current contents.
Evaluation contexts extend in the obvious way to these new constructs by setting

E ::= . . . | cell E | exchange(E,e) | exchange(v,E)

To deal correctly with lookup of values bound to a future, as well as forcing of byneed futures,
there is an additional axiom

(lookup′) E[exchange(x,v′)]
Lxv
−−→ E[exchange(v,v′)]

This axiom reflects the fact that exchange is strict in its first argument. In fact, a similar
treatment would be necessary when considering, e.g. integer addition. The axioms for cells are

(cell) E[cell v]
Sxv
−−→ E[x]

and

(exch) E[exchange(x,v)
Exvv′

−−−−→ E[v′]

The corresponding inference rules for the reduction relation on configurations are then

(Cell)
C

〈Sxv,y〉
−−−−−→ C ′ x /∈ var((S, P, C, B))

(S, P, C, B)
〈Sxv,y〉
−−−−−→ (S[x7→v], P, C ′, B)

and

(Exch)
C

〈Exvv′,y〉
−−−−−−→ C ′

(S[x7→v′], P, C, B)
〈Exvv′,y〉
−−−−−−→ (S[x7→v], P, C ′, B)

A summary of the new constructs along with reduction and type inference rules are given in
Figure 5.2.

Although possible in principle, here we will not consider cells in combination with linear
types. We just remark that Definition 5.2.1 carries over to extended configurations, replacing
(P, C, B) by (S, P, C, B) etc., and also Lemmas 5.2.2-5.2.4 hold again. In fact, Subject Reduc-
tion is valid as well, and so is Corollary 5.2.7, giving a safety property for the extended language
with respect to proper use of promises. It should be observed, however, that confluence does
not hold any more.
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As shown by the example in Section 2.3, monomorphic channels channelσ for transmission
of elements of type σ (with send and receive) can indeed be implemented, provided lists and
products are added to the language. Indeed, channelσ is typable with respect to the linear
type system presented in the preceding sections. Unfortunately, the type for channelσ itself
will be linear, and so both send and receive can be used at most once, which does not lead
to any interesting applications. However, we can still infer the expected simple types, i.e.

` channelσ:(σ → unit)× (unit→ σ)

when extending the inference rules given in Figures 3.4 and 5.2 by rules for list and binary
products.
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Chapter 6

Discussion and Outlook

6.1 Summary

In this work we introduced a formal model of concurrency with logic variables in the form of
futures and promises. The (sequential) core language is an eager functional language, modelled
by the call-by-value λ-calculus.

We investigated various properties of this calculus, which suggest that futures and promises
form a well-behaved extension of λ-calculus in that it inherits well-known properties: First,
the simply typed language λF is strongly normalizing. Second, although reduction is clearly
not deterministic, we established a powerful confluence result by proving both the typed and
untyped promise-free calculus λF uniformly confluent.

Moreover, we showed its applicability to more theoretical problems by providing very simple
and natural complexity-preserving embeddings of call-by-value- and call-by-need λ-calculus.
Concurrency then gave a means of comparing the respective encodings, thus allowing for a
formal proof that the complexity of call-by-need reduction is bounded above by call-by-value
reduction.

In order to enforce “proper” use of promises, a refined type system has been devised. It
allowed to prove all the well-typed expressions of the full calculus λFP uniformly confluent.

Finally, we discussed an extension made in order to obtain full “concurrent expressiveness,”
by which we mean the ability to perform many-to-one communication via channels. To this
end, cells with an atomic exchange operation have been added. Despite the extension which
rendered reduction indeterministic, we indicated that it is possible to guarantee the proper use
of promises, using the linear type system.

6.2 Open Problems and Further Work

Several questions remain open, and there are interesting directions for future work. We consider
some of these briefly in this section.

Formal Language Definition. First, the work done in this thesis needs to be assessed
more closely with respect to its practical applicability. It will be particularly worthwile to
incorporate futures and promises, as well as the other extensions of Alice [Ali02], into the

65
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formal definition of Standard ML [MTHM97], or rather the alternative definition [HS00] by
Harper et al. which is more appropriate for concurrent extensions. This project seems very
natural to do, and indeed, one of the reasons to choose SML as base language for Alice was
the existence of a formal semantics of the former.

Such work would include an investigation of impure features of both SML and Alice, and
how these fit into the concurrent framework. For example, there are several possible design
decisions conceivable of how to best treat failure and exception handling in concurrent threads.
To demonstrate this, consider the Alice expression

let val x = concur (fn => raise exn) in exp end

The exception exn is raised in a second thread, and the future x is replaced by a failed future.
As soon as x is accessed, the exception is passed on. However, when using threads imperatively,
i.e. not using the return value, as in

let val = concur (fn => raise exn) in exp end

the programmer may be completely unaware of the exception being raised. Therefore, different
solutions might be better suited.

Besides exceptions, Alice introduces several impure features necessary for actual program-
ming with futures and promises, such as isFuture, isFailed, which have not been considered
here.

Polymorphic Types and Type Inference. Further questions that were not discussed here
include polymorphic and recursive types, as well as type inference. These form an essential
part of the design of ML and, certainly, of ML’s popularity.

For the join-calculus, underlying the language JoCaml, type inference in the style of
Hindley-Milner provides no additional difficulties [FLMR97]. It is well-known, however, that
polymorphic references cause problems. A simple and practical solution has been proposed in
[Wri95] by restricting type generalizations. Note that essentially the same restrictions apply
to promises as well: If x is given the polymorphic type ∀α.α, then

prom y for x in y (λz.not z); x 1

would be well-typed, but clearly will result in a type conflict at runtime.
Moreover, it remains to be seen how polymorphism and linear modes go together. A

promising starting point for an investigation of these issues might be to consider the more
general framework of (annotated) type and effect systems [NN99]. Using a two-level approach,
it might even be possible to infer principal types.

Expressiveness of Linear Types. A different line of work concerning the linear type system
is its expressiveness. For linear types to be of practical use, the class of typable expressions
(using promises safely) needs to be extended to cover, e.g., the channels from Section 2.3. Also,
there should be some possibility to hide the linear annotations, for example when occurring in
library implementations.

So far, we do not know whether and how this can be achieved. Considering some statement
of the form “there exists a fresh resource p”, similar to the way existential types ∃α.τ are used
in polymorphic λ-calculus [Mit96], might be an idea.
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Operational Equivalence. A notion of bisimulation equivalence, possibly capturing obser-
vational equivalence of our calculus, would be important. A notion of program equivalence
is necessary to justify rewriting of fragments, as usually done, e.g. in compiler optimizations.
Besides, it has some applications in specification and subsequent correctness proofs. Work
along these lines has been done for Facile in [PGM90], and for a quite comprehensive fragment
of CML in [FHJ98, JR00].

The need for such an investigation may become more plausible when noticing that promises
ruin equational reasoning. In fact, just as with the I-structures of [ANP89], it is clear that the
program fragment

let z=(prom y for x in y) in (z, z)

semantically differs from

(prom y for x in y, prom y for x in y),

showing that we lose referential transparency of the core language when adding promises.

λFP, Process Calculus and by-need Models. On the purely theoretical side, the exact
relation of our calculus to the established process calculi is not clear. Reusing the δ-calculus
and its encoding into π0, the applicative core of π-calculus, as shown in [Nie99], it may be
possible to also translate λFP into π-calculus.

Also, as indicated in Section 4.4, it would be interesting to see how the λneed calculus of
[AFM+95] can be encoded in λFP in a way that preserves complexity. Finally, we conjecture
that the proof of strong normalization given in Chapter 4.3 carries over to the simply typed
call-by-let calculus of [MOTW95] without major adaptations.

Finally, as discussed at the end of Chapter 3, there are many promising variations of the
calculus. Certainly investigating some of them will yield new insights. In particular, a language
with an explicit lookup operation “? e” seems interesting since it avoids the need to define new
lookup axioms for every language extension. Moreover, the await found in Alice exactly
implements such an operator, so this is clearly relevant for a programming model of Alice.
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