
Statistical A∗ Dependency Parsing

Péter Dienes
Computational Linguistics

Saarland University

Alexander Koller
Computational Linguistics

Saarland University

Marco Kuhlmann
Programming Systems Lab

Saarland University

1 Introduction

Extensible Dependency Grammar (xdg, Duchier
and Debusmann (2001)) is a recently developed
dependency grammar formalism that allows the
characterization of linguistic structures along mul-
tiple dimensions of description. It can be imple-
mented eYciently using constraint programming
(cp, Koller and Niehren (2002)). In the cp context,
parsing is cast as a search problem: The states of
the search are partial parse trees, successful end
states are complete and valid parses.
In this paper, we propose a probability model

for xdg dependency trees and an A∗ search control
regime for the xdg parsing algorithm that guaran-
tees the best parse to be found first. Extending
xdg with a statistical component has the benefit
of bringing the formalism further into the gram-
matical mainstream; it also enables xdg to eY-
ciently deal with large, corpus-induced grammars
that come with a high degree of ambiguity.
On the processing side, to the best of our knowl-

edge, the use of an A∗ heuristic in the context of
a cp search is novel. In particular, the combina-
tion of cp with statistical guidance in the applica-
tion area of computational linguistics is novel, ex-
cept for an unpublished experiment by Brants and
Duchier (p. c.). Other applications in the area of
the syntax-semantics interface that could be solved
with the same methods are the resolution of scope
ambiguities with preferences, and statistical gener-
ation (Koller and Striegnitz, 2002).
Our probability model is a lexicalized one, build-

ing on bilexical probabilities of head–dependent
pairs (for a general overview of such models,
cf. Collins (1999)). The most closely related
parametrisation is Resnik’s model for stochastic
tree-adjoining grammars (Resnik, 1992). On the

processing side, A∗ search has first been proposed
for parsing by Klein and Manning (2003), who use
it in conjunction with a chart parsing algorithm
for a pcfg. We claim that employing A∗ search fits
into the cp framework even more naturally.
The paper reports work in progress. While it

defines an initial probability model and a parsing
algorithm, implementation and evaluation remain
to be done, and we only present some first ideas.
We hope to finish these parts in time for the work-
shop itself.

2 Extensible Dependency Grammar

xdg is a dependency grammar formalism relat-
ing sentences to syntactic structures that have one
node per word in the sentence. Each node is la-
belled with a lexicon entry for this word. Nodes are
connected with labelled edges. The lexicon entries
specify what edges can emanate from a node with
this entry (the lexical entry’s valency), and what
edges can go into it.
The general xdg formalism allows the grammar

writer to distinguish any number of diVerent di-
mensions of description, such as immediate dom-
inance (id) and linear precedence (lp) structures,
which can be related by declarative constraints in
the grammar. We will concentrate on id structures
in the paper, but all our results continue to work
for grammars with additional dimensions.
At the id level, we take a lexical entry l of xdg

to consist of a word, a set inval(l) of labels that an
edge coming into a node labelled by l can have, and
the valency list val(l), which specifies what edges
can go out of the node. val(l) is an ordered list
with elements of the form a (require exactly one
outgoing edge with label a), a? (allow an optional
edge with label a), or a∗ (allow zero or arbitrarily

objsubj adv

passionatelyBob loves Hazel

Figure 1: Sample xdg syntax tree.

many edges with label a).

A dependency tree τ of xdg is a tree, together
with a node labelling function τn that assigns lex-
ical entries to nodes and an edge labelling func-
tion τe that assigns edge labels to edges. A de-
pendency tree is well-formed according to τn and
τe iV (i) for each node v, the edge e that goes
into v has a label acceptable by the lexical entry
(τe(e) ∈ inval(τn(v))); and (ii) for each node the
set of outgoing edge labels is compatible with the
valency list of the lexical entry associated with the
node.

An xdg grammar G is a relation that connects
words to lexical entries for these words. The set of
lexical entries according to the grammarG is desig-
nated by LG . The (id) parsing problem for a gram-
mar G can be stated as follows. Given a sentence
w1 · · ·wn , find a tree and labelling functions τn , τe
such that (i) the dependency tree thus specified is
well-formed, and (ii) there is a bijectionmap from
words to nodes in the tree such that τn(map(wi))

is a lexical entry for wi , for all i .

As an example, consider the dependency tree
in Fig. 1. It would be grammatical according to
a grammar in which the only lexical entry for
love allows no incoming edges (i.e., the finite verb
must be the root of the tree), and has valency
[sub j , ob j , adv∗] – i.e., it must take exactly one
subject and exactly one object, and arbitrarily
many adverbial modifiers. Lexical entries for Bob
and Hazel could both accept incoming sub j and
ob j edges, and would at least not require any out-
going edges.

3 Probability Model

Now we add a generative probability model to the
id dimension of xdg. Given a well-formed (depen-

dency) tree τ , the probability P(τ) of the tree is

P(τ) = PR(τn(root)) ·∏
(v,v′)∈edges(τ)

PL(l |τn(v)) · PD(τn(v
′)|τn(v), l)

where l = τe(v, v′) and

(a) the root probability PR(l) is the probability
of a lexical entry being the root of the depen-
dency tree, such that

∑
l∈LG

PR(l) = 1;

(b) the labelling probability PL(lab|l) is the prob-
ability of lab being among the outgoing edge
labels of the lexical entry l ; and

(c) the bilexical dependency probabilities
PD(l ′|l , lab) designate the probability of the
lexical entry l ′ being a child of the lexical entry
l over an edge with label lab, such that for
each l and for each label lab in the valency list
of l ,

∑
l ′∈LG

PD(l ′|l , lab) = 1.

Intuitively, in the generative process, the first
step is the generation of the root lexical entry lroot
for a sentence with probability PR(lroot). Then, for
each node v in the tree, we go through each valency
slot lab of its associated lexical entry l = τn(v)
and generate the lexical entry l ′ filling this slot with
probability PD(l ′|l , lab). Note that we assume con-
ditional independence between sisters, as well as
between words not in immediate dependency rela-
tionship – as in the the standard head-lexicalized
pcfg-model (e.g. (Magerman, 1995)). Our model
resembles most closely Resnik’s (1992) probability
model for tag, but we do not generate empty ad-
junction slots.
In order to ensure the consistency of the model

(i.e., the probability of all trees for all grammat-
ical sentences should sum to 1), reentrancies are
not allowed. Note further that the probability
model assigns probabilities only to well-formed
structures according to the grammar. There is
a strict division of labor between the grammar,
which imposes hard constraints on possible depen-
dency trees, and the probability model, which de-
termines lexical preferences (cf. Eisner (1996)).

ecost(σ) =

∑
v2∈dom(τn)

min {− log PR(l) | l ∈ τ ∗

σ (v2)}

∪ {C(l1, lab, l2) | l2 ∈ τ ∗

σ (v2), ∃ v1 : (v1, l1, l2, lab) ∈ inσ (v2)}

where the cost C(l1, lab, l2) = − log(PD(l2|l1, lab) · PL(lab|l1))

Figure 2: Estimated cost

4 Parsing Algorithm

The next step is to eYciently compute the most
probable dependency tree for a given sentence.
Based on the implementation of xdg parsing as
search for a solution of a constraint problem, we
show how this can be done by imposing an A∗ con-
trol regime on this search.
Constraint-based dependency parsing may be

visualized as exploring a search tree whose inner
nodes are partially determined parse trees. In each
such parse tree, some (initially all) of the nodes
may not yet have a decided lexical entry, or may
not yet be connected to a parent node (or both). In
the course of the search, the set of possible lexical
entries and parents for each node is eventually cut
down by constraint propagation (inference-driven
exclusion of choices according to the principles of
the grammar) and distribution (non-deterministic
choice). Leaves of the search tree are either failed
(i.e., inconsistent with the grammar), or they are
complete parses of the input, in which each node
has exactly one lexical entry and each node except
for the root has exactly one parent.
While the shape of the search tree is deter-

mined by propagation and distribution, the order
in which the nodes of the search tree are expanded
is an independent issue (Schulte, 1997). We choose
to traverse the search tree under an A∗ regime,
which guarantees that the first solution we find is
optimal. We evaluate each partially determined
parse tree by means of a cost function which es-
timates the negative logarithm of the most proba-
ble parse tree τ to which the partial tree can be ex-
tended. The search minimizes − log P(τ), so the
optimal solution has maximal probability.
We define τ ∗

σ (v) to be the set of possible lexi-
cal entries for v that propagation and distribution

haven’t yet ruled out in the search state σ . inσ (v2)
is the set of potential incoming edges of the node v2.
It contains all quadruples (v1, l1, l2, lab) in which
v1 is a potential parent of v2, l1 and l2 are poten-
tial lexical entries for v1 and v2, and lab is an edge
label that can connect l1 and l2.
The estimated cost ecost(σ) of a search state σ

is defined in Fig. 2. The first line estimates the cost
for the case when v2 becomes the root of the de-
pendency tree, and the second line estimates the
cost of the best possible edge into v2. ecost(σ) un-
derestimates− log(P(τ)), so it is an admissible A∗

heuristic.

Search regime Search begins with propagation
in the initial search state and then proceeds in
phases. Each phase begins with a distribution step
that will create a set of new search states, called
choices. After full propagation, ecost is computed
for each of the choices, taking the remaining possi-
ble lexical entries and edges into account. Search
then continues at that node in the search tree that
carries the least costs.

Implementation In the rest of this section, we
show that employing A∗ search does not increase
asymptotic complexity (in the input size) of the
parsing algorithm, although it requires some addi-
tional book-keeping which increases the complex-
ity by a constant factor. Since in the worst case
we still have to explore the whole search space (of
exponential size), it is still an open question how
much we actually benefit from using A∗ search,
subject to empirical evaluation.
We annotate each node v in the search tree with

a priority queue (pq) that supports the eYcient
computation of ecost(v). The elements of the pq
for v in each search state σ are the entries of

τ ∗

σ (v) along with the negative logarithms of their
PR probabilities, and the entries of inσ (v), along
with the negative logarithms of their PD probabil-
ities. The queue is initialized before the search
starts with all possible lexical entries and incoming
edges. Then, during the search, every time a propa-
gator removes a possible lexical entry or a possible
edge, these changes are reflected in the queue by
deleting the corresponding entries.
Because elements are only inserted into our

queues in the initialization phase, we can imple-
ment a pq as a doubly linked list that is sorted in
increasing order of the negative logarithms of the
probabilities. We can initialize all pqs for all nodes
in time O(n2

· k2 · (log k + log n)), where n is the
sentence length, and k is the maximal number of
lexical entries per word in the grammar.
Computation of ecost(σ) is O(n), as the mini-

mization in Fig. 2 only requires us to look at the
head of the list for each node. This is dominated
by the �(n2) time that the standard xdg parser
spends on propagation in each step, so it doesn’t
contribute additional asymptotic costs. Deletion
of an item from a pq is also O(1). Because the
queue entries must spell out possible combina-
tions of lexical entries for nodes, a propagator
deleting an edge between two nodes might have to
delete multiple entries from a queue. This can in-
crease the total runtime of propagation over the
course of the whole search by a factor of O(k2).

5 Training and Evaluation

We plan to train and evaluate our system both
on the Penn Treebank (using the dependency con-
verter of (Buchholz, 2002)) and on the NEGRA
Treebank. As it is very diYcult to generalize lex-
ical entries obtained from a treebank for optional
complements and adjuncts, we expect that our first
grammar will have no optional complements, and
adjuncts will be subsumed under the general edge
label adjunct. In addition, we will have to assume
a simplified grammar for the lp dimension, e.g.
with completely free or completely fixed word or-
der.
Given the heavily lexicalized nature of the prob-

ability model, we are bound to run into a serious
sparse data problem. We intend to tackle this prob-

lem by substituting infrequent words by their part-
of-speech tags before training and parsing. Depen-
dency probabilities are to be obtained by a maxi-
mal likelihood estimation using themodified train-
ing trees. Root probabilities could be obtained by
considering head lexical entries for both matrix
and embedded clauses.
We plan to evaluate the system according to

its accuracy in determining labeled and unlabeled
head-dependent relations (Carroll et al., 1998).
Furthermore, in the case of the English experi-
ment, we can convert the dependency trees to un-
labeled phrase structure trees, which will enable
us to use standard (unlabeled) parseval bracket-
ing metrics to compare our results with the main-
stream parsing approaches.

6 Conclusion

We have proposed a probability model for xdg
and an extension of the cp-based xdg parsing al-
gorithm by an A∗ search control regime. Our ap-
proach is guaranteed to find the optimal parse first,
and potentially explores only a narrow part of the
search space. It is interesting from the parsing
point of view because it equips xdg with a statis-
tical model and parser, and from a computational
point of view because it explores the use of A∗

search in the context of constraint programming,
an extension that is very natural, albeit previously
unexplored.
There is a number of issues that we did not

address in this paper, and a number of open
questions. A particularly interesting one is that
while our approach can deal with arbitrary multi-
dimensional xdg grammars, the grammars we
know how to derive from a corpus only have a
meaningful id dimension, and we can only assign
probabilities to the id dimension. If we assume
that the probabilities of diVerent dimensions are
independent, we could simply derive a model for
each dimension and then multiply the probabili-
ties; the algorithm would generalize trivially. How
close such an independence assumption is to the
truth remains to be seen.
We see the work in the paper as a first step

towards a unified framework for syntactic and
semantic processing, which combines constraint
propagation with statistical guidance. xdg is ide-

ally suited to an integration with scope under-
specification in the spirit of (Egg et al., 2001);
we envision that the methods introduced here
for statistical parsing could be used there to
process scope preferences. On the other hand,
Koller and Striegnitz (2002) have shown how to
treat TAG generation from flat semantics to sur-
face text as an xdg parsing problem. In this con-
text, the present work can be applied to obtain a
statistical generation system.

References
Sabine Buchholz. 2002. Memory-Based Grammatical Relation

Finding. Ph.D. thesis, Tilburg University.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. In Pro-
ceedings of the 1st LREC, pages 447–454, Granada, Spain.

Michael Collins. 1999. Head-Driven Statistical Models for Nat-
ural Language Parsing. Ph.D. thesis, University of Pennsyl-
vania.

Denys Duchier and Ralph Debusmann. 2001. Topological de-
pendency trees: A constraint-based account of linear prece-
dence. In Proceedings of the 39th ACL, Toulouse, France.

M. Egg, A. Koller, and J. Niehren. 2001. The constraint lan-
guage for lambda structures. Journal of Logic, Language,
and Information, 10:457–485.

Jason Eisner. 1996. Three new probabilistic models for depen-
dency parsing: An exploration. In Proceedings of the 16th
COLING, pages 340–345, Copenhagen.

Dan Klein and Christopher D. Manning. 2003. A* parsing:
Fast exact Viterbi parse selection. In Proceedings of HLT-
NAACL 03.

Alexander Koller and Joachim Niehren. 2002. Constraint
programming in computational linguistics. In D. Barker-
Plummer, D. Beaver, J. van Benthem, and P. Scotto
di Luzio, editors, Words, Proofs, and Diagrams, pages 95–
122. CSLI Press.

Alexander Koller and Kristina Striegnitz. 2002. Generation
as dependency parsing. In Proceedings of the 40th ACL,
Philadelphia.

David Magerman. 1995. Statistical decision-tree models for
parsing. In Proceedings of the 33rd ACL, pages 276–283,
Cambridge, MA.

Philip Resnik. 1992. Probabilistic tree-adjoining grammars as
a framework for statistical natural language processing. In
Proceedings of the 15th COLING, pages 418–424, Nantes.

Christian Schulte. 1997. Programming constraint infer-
ence engines. In Gert Smolka, editor, Proceedings of the
Third CP Conference, volume 1330 of LNCS, pages 519–533,
Schloss Hagenberg, Austria.

