
On Lambda Binding Constraints and

Context Unification

Joachim Niehren1 and Mateu Villaret2

1 Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany.
2 IMA, Universitat de Girona, Campus de Montilivi, Girona, Spain.

Abstract. Lambda binding and parallelism constraints are the main
ingredients of the constraint language for lambda structures. Parallelism
constraints alone are known to have the same expressive power as the lan-
guage of context unification. Lambda binding constraints however were
never investigated in that framework. We show that lambda binding plus
parallelism constraints can be expressed in context unification with tree
regular constraints.

1 Introduction

The constraint language for lambda structures (CLLS) is a first-order language by
which to talk about lambda terms [6, 7]. These are modeled as lambda structures,
i.e. trees with additional lambda binding edges. CLLS can talk about the nodes
of a lambda structure, children, ancestor, and lambda binding; it can also speak
about the parallelism relation between segments of lambda structure, which
relates those segments that have the same tree and lambda binding structure.

We have argued so far that parallelism and lambda binding constraints are
the main ingredients of CLLS. Parallelism constraints [8] subsume dominance
constraints [14, 2, 1] which by themselves have a wide range of applications in
computational linguistics, in syntax, semantics, and discourse (see i.g. [20, 5]).
The full language of CLLS was introduced and still serves as a uniform framework
for modeling underspecification in natural language semantics.

Context unification (CU) [4] extends first-order unification by second-order
variables that denote contexts. Contexts are trees with finitely many holes. The
segments of CLLS can be seen as occurrences of contexts. CU treats contexts as
functions that fill the holes of the context when applied to a sequence of trees.
CU is closely related with linear second-order unification [9, 12]. Whether CU is
decidable is open but was often conjectured (see e.g. [13]). This is because various
restrictions [9, 17, 18, 4, 19] make it decidable, while the analogous restrictions
applied to second-order unification don’t [10, 11].

It was shown in [15] that parallelism constraints are equivalent in expressive
power to the language of CU. Lambda binding constraints, however, were never
taken into account in this framework, and this was for good reasons: On the one
hand side, it would be quite surprising if lambda binding could be expressed by
using only parallelism constraints and thus by CU. On the other hand side, it

seems unlikely that adding lambda binding to parallelism constraints could raise
undecidability, so this extension seemed of low interest with respect to the open
decidability question for CU.

In this paper, we show that lambda binding and parallelism constraints can
be expressed by CU with tree regular constraints [12]. This result is far from
obvious. Its proof requires several encoding steps, one of which is based on a
general but recent relationship between dominance logic and tree automata [16].
Another step relies on a new special property of parallel lambda binder that this
paper exhibits for a first time.

If one believes in the conjecture of [12] that adding tree regular constraints
to CU does not raise undecidability, then our result shows that adding lambda
binding to parallelism constraints does neither.

We proceed as follows: Section 2 recalls the notions of tree structures, seg-
ments, and parallelism. Section 3 continues with lambda structures, where par-
allelism is restricted to to deal with parallel lambda binding. Section 4 defines
the languages of dominance, parallelism, and lambda binding constraints. In
Section 5 we present the special property of parallel lambda binding that our
encodings will rely on. Sections 6 and 7 show how to eliminate lambda binding
constraints through naming of lambda binder, but at the cost of adding first-
order dominance formulas. Section 8 then explains why parallelism constraints
plus first-order dominance formulas can be expressed by CU with tree regular
constraints. The final section, section 9, discusses applications and limitations
of our approach.

2 Tree Structures and Parallelism

We assume a finite signature Σ of function symbols ranged over by f, g. Each
function symbol has an arity ar(f) ≥ 0.

Finite Trees. A finite (rooted) tree τ over Σ is a ground term over Σ, i.e.
τ ::= f(τ1, . . . , τn) where n = ar(f) ≥ 0 and f ∈ Σ. We identify a node of a tree
with the word of positive integers π that addresses this node from the root:

nodesf(τ1,...,τn) = {ε} ∪ {iπ | 1 ≤ i ≤ n, π ∈ nodesτi
}

The empty word ε is called the root of the tree, i.e. root(τ) = ε, while a word iπ
addresses the π node of the i-th subtree of τ . We freely identify a tree τ with the
function τ : nodesτ → Σ that maps nodes of τ to their function symbol labeling.
If τ = f(τ1, . . . , τn) then we set:

τ(π) = f(τ1, . . . , τn)(π) =

{

f if π = ε
τi(π

′) if π = iπ′

If τ is a tree with π ∈ nodesτ then we write τ.π for the subtree of τ rooted by
π. Furthermore, we write τ [π/τ ′] for the tree that is obtained by replacing the
subtree of τ at node π by τ ′.

2

Dominance and Parallelism. Let τ be a tree with π, π′, π1, . . . , πn ∈ nodesτ . The
children-labeling relation π:f(π1, . . . , πn) holds for τ if the node π is labeled by
f in τ and has the children π1, . . . , πn in that order from left to right. This is if
τ(π) = f and π1 = π1, . . ., πn = πn where n = ar(f). The dominance relation
πC

∗π′ holds for τ if π is an ancestor of π′, i.e. if π is above π′ in τ , i.e. if π is
a prefix of π′. Strict dominance πC

+π′ holds for τ if πC
∗π′ but not π=π′ in τ .

The disjointness relation π⊥π′ holds for τ if neither πC
∗π′ nor π′

C
∗π hold for

τ .

Definition 1. A segment σ = π/π1, . . . , πn of a tree τ is a tuple of nodes
π, π1, . . . , πn of τ such that π dominates all πi and, all πi with different index
are pairwise disjoint. We call π the root of σ and π1, . . . , πn its holes.

The nodes of a segment σ of a tree τ are those nodes of τ that lie between
the root of σ and its holes:

nodesτ (π/π1, . . . , πn) = {π′ ∈ nodesτ | πC
∗π′ and not πiC

+π′ for 1 ≤ i ≤ n}

Note that our notion of segment nodes generalize the notion of tree nodes prop-
erly: nodesτ.π = nodesτ (π/) holds for all trees τ and nodes π ∈ nodes(τ). The
labels and children of holes do not belong anymore to the segment. We therefore
define the inner nodes of a segment to be all those nodes that are not holes, i.e.:

nodes−τ (σ) = nodesτ (σ) − {π1, . . . , πn} if σ = π/π1, . . . , πn

Definition 2. A correspondence function between segments σ1 and σ2 with the
same number of holes of a tree τ is a function c : nodesτ (σ1) → nodesτ (σ2) that
is one-to-one and onto and satisfies the following homomorphism conditions:

1. The root of σ1 is mapped to the root of σ2 and the sequence of holes of σ1

is mapped to the sequence of holes of σ2 in the same order.
2. The labels of inner nodes π ∈ nodes−τ (σ1) are preserved: τ(π) = τ(c(π)).
3. The children of inner nodes in π ∈ nodes−τ (σ1) are mapped to corresponding

children in σ2: for all 1 ≤ i ≤ ar(τ(π)) it holds that c(πi) = c(π)i.

We call two segments σ1 and σ2 of a tree structure τ (tree) parallel and write
σ1∼σ2 if and only if there exists a correspondence function between them. Tree
parallelism can be characterized equivalently by saying that parallel segments
are occurrences of the same context (see Proposition 13 below).

3 Lambda Structures and Parallel Lambda Binding

Lambda structures represent lambda terms uniquely modulo consistent renaming
of bound variables. They can be seen as tree structures that are decorated with
lambda binding edges.

The signature Σ of lambda structures contains the symbols var (arity 0, for
variables), lam (arity 1, for abstraction), and @ (arity 2, for application). The tree
uses these symbols to reflect the structure of the lambda term and of first-order
connectives. The binding function λ explicitly maps var-labeled to lam-labeled
nodes.

3

@

varf

lam

11 12

1

ε

Fig. 1. The lambda
structure of λx.f(x)

For example, Fig. 1 shows a representation of the term
λx.f(x). Here λ(12) = ε.

Definition 3. A lambda structure (τ, λ) is a pair of a
tree τ and a total binding function λ : τ−1(var) → τ−1(lam)
such that λ(π)C∗π holds for all var-nodes π in τ .

We freely consider lambda structures logical structures that beside of the
relations of tree structures have relations for lambda binding and inverse lambda
binding. The inverse lambda binding relation λ−1(π0)={π1,..., πn} states that
π0 binds π1, . . . , πn, and only those nodes are lambda-bound by π0.

Definition 4. Two segments σ1, σ2 of a lambda structure (τ, λ) are (binding)
parallel σ1∼σ2 if they are tree parallel so that the correspondence function c
between σ1 and σ2 satisfies the following axioms of parallel binding:

Internal binder. Internal lambda binder in parallel segments correspond: for
all π ∈ nodes−τ (σ1) if λ(π) ∈ nodes−τ (σ1) then λ(c(π)) = c(λ(π)).

External binder. External lambda binder of corresponding var-nodes are equal:
for all π ∈ nodes−τ (σ1) if λ(π) 6∈ nodes−τ (σ1) then λ(c(π)) = λ(π).

No hanging binder. A var-node below a segment cannot be bound by a lam-
node within: λ−1(π) ⊆ nodes−τ (σi) for all i ∈ 1, 2 and π ∈ nodes−τ (σi).

Note that this definition overloads the notion of parallelism σ1∼σ2. For tree
structures it means tree parallelism and for lambda structures binding paral-
lelism. Which of the two notions of parallelism is spoken about should always
become clear from the respective context.

Lemma 5. Parallelism in lambda structures is symmetric: if σ1∼σ2 holds in a
lambda structure then σ2∼σ1 holds as well.

Proof. Suppose that σ1 and σ2 are parallel segments of a lambda structure (τ, λ)
and that c is the correspondence function between them. By assumption, c satis-
fies the axioms of parallel binding. We have to show that the inverse correspon-
dence function c−1 also satisfies these axioms.

Internal binder. Suppose that π, λ(π) ∈ nodes−τ (σ2). Let π′ = c−1(π) be a
node in nodes−τ (σ1). Since λ(π′) dominates π′ there remain only two possi-
bilities:
1. Case λ(π′) ∈ nodes−τ (σ1). The internal binder axiom for c yields
c(λ(π′)) = λ(c(π′)) = λ(π). We can apply the inverse function c−1 on
both sides and obtain λ(c−1(π)) = c−1(λ(π)) as required.

2. Case λ(π′) 6∈ nodes−τ (σ1). The external binder for c implies λ(π′) =
λ(c(π′)) = λ(π). If π′ does not belong to the inner nodes of σ2 then
λ(π′) is a hanging binder which is not possible. In the same way, we
can proof by induction that (c−1)n(π) must belong to the inner nodes of
σ2 for all n ≥ 1. But this is also impossible as trees are assumed finite.

4

Lambda binding constraints:

µ ::= λ(X)=Y | λ−1(X)⊆{X1, . . . , Xm} | µ1 ∧ µ2

First-order dominance formulas:

ν ::= X:f(X1, . . . , Xn) | XC
∗Y | ∀X.ν | ¬ν | ν1 ∧ ν2

Parallelism constraints:

φ ::= X:f(X1, . . . , Xn) | XC
∗Y | S1∼S2 | φ1 ∧ φ2

Segment terms:
S ::= X/X1, . . . , Xm (m ≥ 0)

Fig. 2. Logical languages for tree and lambda structures

External binder. Suppose that π ∈ nodes−τ (σ2) while λ(π) 6∈ nodes−τ (σ2). Let
π′ = c−1(π) ∈ nodes−τ (σ1). Again, there are two possibilities:

1. Case λ(π′) ∈ nodes−τ (σ1). The internal binder axiom for c yields
c(λ(π′)) = λ(c(π′)) = λ(π) which is impossible since λ(π) does not
belong to the image nodes−τ (σ2) of c.

2. Case λ(π′) 6∈ nodes−τ (σ1). The external binder for c implies λ(π′) =
λ(c(π′)) = λ(π) as required.

No hanging binder. This axiom coincides for c and c−1.

4 Constraint Languages

Given the model-theoretic notions of tree structures and lambda structures we
can now define logical languages for their description in the usual Tarski’an
manner.

We assume an infinite set X,Y, Z of node variables and define languages of
tree descriptions in Figure 2. A lambda binding constraint µ is a conjunction
of lambda binding and inverse lambda binding literals: λ(X)=Y means that
the value of X is a var-node that is lambda bound by the value of Y , while
λ−1(X)⊆{X1, . . . , Xm} says that all var-nodes bound by the lam-node denoted
by X are values of one of X1 to Xm.

A dominance constraint is a conjuction of dominance XC
∗Y and children-

labeling literals X:f(X1, . . . , Xn) that describe the respective relations in some
tree structure. We will write X=Y to abbreviate XC

∗Y ∧ YC
∗X. Note that

dominance constraints are subsumed by parallelism constraints by definition.
A first-order dominance formula ν is built from dominance constraints and the
usual first-order connectives: universal quantification, negation, and conjunction.
These can also expres existential quantification ∃X.ν and disjunction ν1 ∨ ν2
that we will freely use. Furthermore, we will write X 6=Y instead of ¬X=Y and
XC

+Y for XC
∗Y ∧ X 6=Y .

5

A parallelism constraint φ is a conjunction of children-labeling, dominance,
and parallelism literals S1∼S2. We use segment terms S of the formX/X1, . . . , Xm

to describe segments with m holes, given that the values of X and X1, . . . , Xm

satisfy the conditions imposed on the root and holes of segments (Definition 1).
Note that a parallelism literal S1∼S2 requires that the values of S1 and S2 are
indeed segments.

To keep this section self contained let us quickly recall some model theoretic
notions. We write var(ψ) for the set of free variables of a formula ψ of one of the
above kinds. A variable assigment to the nodes of a tree τ is a total function
α : V → nodes(τ) where V is a finite subset of node variables. A solution of a
formula ψ thus consists of a tree structure τ or a lambda structure (τ, λ) and
a variable assignment α : V → nodes(τ) such that var(ψ) ⊆ V . Segment terms
evaluate to tuples of nodes α(X/X1,..., Xn) = α(X)/α(X1),..., α(Xn) which may
or may not be segments. Apart from this, we require as usual that a formula
evaluates to true in all solution. We write τ, α |= ψ if τ, α is a solution of ψ, and
in similarly (τ, λ), α |= ψ. A formula is satisfiable if it has a solution.

Theorem 6. The satisfiablity problem of parallelism plus lambda binding con-
straints φ ∧ µ can be reduced in polynomial time to the satisfiability problem of
parallelism constraints plus first-order dominance formulas φ′ ∧ ν.

Note that the signature is part of the input of the respective satisfiablity
problems. This means that a formula φ ∧ µ over signature Σ can be translated to
some formula φ′ ∧ ν over some other signatureΣ ′. Sections 5-7 deals with proving
this theorem. Section 8 links the result of Theorem 6 to context unification plus
tree regular constraints.

5 Non-Intervenance Property

Y/Y’X/X’ ~

Y’

V

lam

Y

X’

X

var

Fig. 3. Intervenance

We now present a new property of parallelism in
lambda structures that will be fundamental to our elim-
ination of lambda binding constraints. It says that a cor-
responding lam-node cannot intervene between the lam-
node and one of the var-nodes it binds. This statement
is obvious for non-overlapping parallel segments but non
obvious otherwise.

Example 7. The parallelism constraint drawn in Fig. 3
is unsatisfiable as will be proved by Lemma 8 below. The
problem is that lam-node Y corresponds to X but must
intervene between X and one of its bound var-nodes, i.e.
V .

XC
+YC

+X ′ ∧ X/X ′∼Y/Y ′ ∧ YC
+V ∧ λ(V)=X

Lemma 8. Let (τ, λ) be a lambda structure with parallel segments σ and σ′ that
correspond via the correspondence function c. For all π with λ(π) ∈ nodes−τ (σ)
it is not the case that λ(π)C+c(λ(π))C+π.

6

Proof. We suppose that λ(π) ∈ nodes−τ (σ) and λ(π)C+c(λ(π))C+π and derive
a contradiction. The segments σ and σ′ must overlap properly such that root of
σ dominates that of σ′.

root(σ)C+root(σ′)

We can assume that π belongs to the inner nodes of both segments. Notice that
π ∈ nodes−τ (σ) holds since otherwise λ(π) would be a hanging binder. W.l.o.g.
π also belongs to the inner nodes of the lower segment π ∈ nodes−τ (σ′) since
otherwise π⊥root(σ′) and the lemma would follow trivially.

We now prove the following property inductively and thus derive a contra-
diction: For all nodes π ∈ nodes−τ (σ) ∩ nodes−τ (σ′) it is impossible that:

λ(π)C+c(λ(π))C+π.

The proof is by well-founded induction on the length of the word π.

1. Case root(σ′)C∗λ(π)C+c(λ(π)). Let π′ = c−1(π) be an inner node of σ.
The length of the word π′ is properly smaller than the length of π. Since
π belongs to the inner nodes of σ′, the axiom for internal binder can be
applied to the correspondence function c yielding c(λ(π′)) = λ(c(π′)) and
thus c(λ(π′)) = λ(π). The node λ(π′) must properly dominate both c(λ(π′))
and π′. The address (length) of c(λ(π′)) is smaller than that of π′, so that:

λ(π′)C+c(λ(π′))C+π′

This is impossible as stated by induction hypothesis applied to π′.
2. Case λ(π)C+root(σ′)C∗c(λ(π)). Let π′ = c−1(π) be an inner node of σ.

Since π is externally bound outside of σ′, the axiom for external binder

applies to the inverse correspondence function c−1 by Lemma 5 and yields
λ(π′) = λ(π). By now, π′ is internally bound in σ. The axiom for internal

binder applied to correspondence function c yields: c(λ(π′)) = λ(c(π′))
which is c(λ(π)) = λ(π). This clearly contradicts λ(π)C+c(λ(π)).

6 Elimination of Lambda Binding Constraints

We now give a translation that eliminates lambda binding literals in the presence
of parallelism constraints while preserving satisfiability. The procedure is highly
non-deterministic and will introduce first-order dominance formulas to express
consistent binding.

6.1 Consistent Naming of Variable Binders

The idea behind our translation is to eliminate lambda binding by naming vari-
able binder. This means that we want to use named labels lamu and varu, instead
of anonymous labels lam and var.

In order to avoid variable capturing, we would like to introduce different
names u, v, w for different binder lamu, lamv, lamw. But unfortunately we cannot

7

intervenelamu(Y,X) = ∃Z∃Z ′. Y C
+ZC

+X ∧ Z:lamu(Z ′)

bindu(X, Y) = ∃Z (Y :lamu(Z) ∧ ZC
∗X ∧ X:varu) ∧ ¬intervene−lamu(Y,X)

Fig. 4. Non-intervenance and lambda binding

always do so in the presence of parallelism: corresponding lam-nodes have to
carry same label lamu and corresponding var-nodes the same label varu.

Given that we cannot freely assign fresh names, we are faced with the danger
of capturing and have to avoid it. The simplest idea were to forbid trees where
some node with label lamu intervenes between any two other nodes with labels
lamu and varu. This restriction can be easily expressed by a closed first-order
dominance formula or could also be directly checked by a tree automaton in
some tree regular constraint.

Unfortunately, the above restriction is too restrictive and thus not correct.
The problem is that a corresponding lam-node can occur above of the lam-node
it corresponds to. This can lead to the unwanted situation, as illustrated by the
following example:

lamu(@(lamu(@(a, varu)), varu))

It can always happen that a corresponding lamu takes place above of a binding
lamu-node, so that the binding lamu intervenes between the corresponding lamu-
node and one of the varu-nodes bound by it.

Lemma 8 says that no corresponding lam-node can intervene between the
lam-node it corresponds to and one of var-nodes it binds. This indicates a way
out of that trouble: we have to require non-intervenance only when expressing
lambda binding but not in general.

We define the binary predicate intervenelamu
(Y,X) through the the first-order

dominance formula in Fig. 4, which holds in a tree structure τ if and only if some
lamu-node intervenes between the values of X and Y .

We can now express λ(X)=Y with binder name u through the predicate
bindu(X,Y) that is also given in Fig. 4. It requires X to be labeled with varu, Y
with lamu, and no other lamu-node to intervene between X and Y .

6.2 Guessing Correspondence Classes

We have said so far that corresponding lam and var nodes have to carry the same
node labels. But we have to be a little more careful since we may have several
correspondence functions for several pairs of parallel segments.

We say that two nodes are in the same correspondence class for a set of
correspondence function {c1, . . . , cn}, if they are in the symmetric, reflexive,
transitive closure of these functions.

Given a parallelism and lambda binding constraint φ ∧ µ we will be interested
in the set of correspondence functions for pair of segments that are required to
be parallel in φ. But how can we know whether two variables of φ ∧ µ will
denote nodes in the same correspondence class? We cannot do it a priori, but we

8

simply guess it as there are only finitely many possibilities for the finitely many
variables.

6.3 Translation

We want to guess one of the possible partitions into correspondence classes for
variables of φ. Instead, we simply guess an equivalence relation on the variables
of φ, and as our proofs will show, we don’t have to express that equivalent
variables denote values in the same correspondence class. Let

equφ = {e | e ⊆ vars(φ) × vars(φ) equivalence relation}

be the set of possible equivalence relations on the variables of φ. We write e(X)
for the equivalence class of some variable X ∈ vars(φ) with respect to e, but
consider equivalence classes of distinct equivalence relations to be distinct. Let

namese = {e(X) | X ∈ vars(φ)}

be the set names of e which contains all equivalences classes of e. Note that
namese is finite for all e ∈ equφ, and that namese and namese′ are disjoint for
distinct equivalence classes e and e′.

We now fix a constraint Φ = φ ∧ µ and guess an equivalence relation e ∈ equφ

that determines the translation [.]e presented in Fig. 5. This translation maps
to a parallelism constraint plus first order dominance formulas φ′ ∧ ν over the
following signature Σφ which extends Σ with finitely many symbols:

Σφ = Σ] {lamu, varu | u ∈ namese, e ∈ equ(φ)}

The literal λ(X) = Y is translated to binde(Y)(X,Y) as explained before. This
ensures that all corresponding nodes in e are translated with the same name
e(Y). The axioms about external binding and no hanging binder are stated
by first-order dominance formulas in the translation of parallelism literals. The
first-order formulas are defined in Fig. 6. Note that the axiom of internal bind-

ing will always be satisfied without extra requirements.
We have to ensure that all varu-nodes in solutions of translated constraints

will be bound by some lamu-node. Let no−free−vare be as defined in Fig. 6. We
then define the complete translation [Φ] by:

[Φ] =
∨

e∈equφ

[Φ]e ∧ no−free−vare

Proposition 9. A parallelism and lambda binding constraint φ ∧ µ is satisfiable
if and only if its translation [φ ∧ µ] is.

7 Correctness and Completeness

We want to prove that our translation preserves satisfiability. We split the proof
into Lemmas 10 and 11.

9

[λ(X)=Y]e = binde(Y)(X, Y)
[λ−1(Y)⊆{X1, . . . , Xn}]e = ∀X.binde(Y)(X, Y) → ∨n

i=1X=Xi

[Y :lam(Z)]e = Y :lame(Y)(Z)
[X:var]e = ∃Y. [λ(X)=Y]e

[Y :f(Y1 . . . , Yn)]e = Y :f(Y1 . . . , Yn) if f 6∈ {lam, var}
[XC

∗Y]e = XC
∗Y

[S1 ∼ S2]e = S1 ∼ S2 ∧ external−bindere(S1, S2) ∧
no−hang−bindere(S1) ∧ no−hang−bindere(S2)

[Φ1 ∧ Φ2]e = [Φ1]e ∧ [Φ2]e

Fig. 5. Naming variable binder for correspondence classes e

inside(X, Y/Y1, . . . , Yn) = Y C
∗X ∧ (

∨

i∈{1..n} XC
+Yi)

root(X, Y/Y1, . . . , Yn) = X=Y
no−hang−bindere(S) =

∧

u∈namese
no−hang−binderu(S)

no−hang−binderu(S) = ¬(∃Y ∃Z. bindu(Y,Z) ∧ ¬inside(Y, S) ∧ inside(Z, S))
external−bindere(S1, S2) =

∧

u∈namese
external−binderu(S1, S2)

external−binderu(S1, S2) =
∀Z1∀Z2∀Y. (bindu(Z1, Z2) ∧ inside(Z1, S1) ∧ ¬inside(Z2, S1) ∧ root(Y, S2))

→ (Z2C
∗Y ∧ ¬intervene−lamu(Z2, Y))

no−free−vare =
∧

u∈namese
∀X. X:varu → (∃Y ∃Z. Y :lamu(Z) ∧ Y ′

C
∗X)

Fig. 6. Auxiliary predicates

Lemma 10. Let Φ be a conjunction of a parallelism and lambda binding con-
straint and e ∈ equ(Φ) an equivalence relation on vars(Φ). If [Φ]e ∧ no−free−vare
is satisfiable then Φ is satisfiable.

Proof. Let τ be a tree structure and α : vars → nodesτ an assignment with

τ, α |= [Φ]e ∧ no−free−vare

We now define a lambda structure (p(τ), λ) of signature Σ by projecting labels
away. The nodes of p(τ) are the nodes of τ . Let projection proj : Σφ → Σ be
the identity function except that proj(lamu) = lam and proj(varu) = var for any
u ∈ namese. The labels of p(τ) satisfy for all π ∈ nodesτ :

p(τ)(π) = proj(τ(π))

We define the lambda binding function λ : p(τ)−1(var) → p(τ)−1(lam) as follows:
Let π be a node such that p(τ)(π) = var. There exists a unique name u such
that τ(π) = varu. We define λ(π) to be the lowest ancestor of π that is labeled
by lamu. This is the unique node in p(τ) that satisfies bindu(π, λ(π)). It exists
since we required τ, α |= no−free−vare.

It remains to prove that p(τ), λ, α is indeed a solution of Φ, i.e. whether
(p(τ), λ), α satisfies all literals of Φ. We distinguish all possible kinds of literals:

10

1. XC
∗Y in Φ: The dominance relation of τ coincides with that of p(τ). Since

τ, α |= XC
∗Y it follows that (p(τ), λ), α |= XC

∗Y .

2. X:f(X1, . . . , Xn) in Φ where f 6∈ {lam, var}. The children relation of τ coin-
cides with that of p(τ), so there is no difference again.

3. X:var in Φ: Note that X:var is equivalent to ∃Y.λ(X) = Y .
4. X:lam(Z) in Φ: Now, the literal X:lame(X)(Z) belongs to [Φ]e. Thus, τ, α |=
X:lame(X)(Z) which implies (p(τ), λ), α |= X:lam(Z) by the definition of
proj.

5. λ(X)=Y in Φ: Let τ, α |= [λ(X)=Y]e. By definition of the translation
[λ(X)=Y]e this means that τ, α |= binde(Y)(X,Y). In particular, it fol-
lows that α(Y) is the lowest lame(Y)-labeled ancestor of the vare(Y)-labeled
node α(X). The definition of the lambda-binding relation of p(τ) yields
(p(τ), λ), α |= λ(X)=Y as required.

6. λ−1(Y) ⊆ {X1, . . . , Xn} in Φ: similar arguments than in previous case can
be argued.

7. S1∼S2 in Φ: This is the most complicated case. If τ, α satisfies this literal then
clearly, (p(τ), λ), α satisfies the correspondence conditions for all labeling
and children relations. We have to verify that (p(τ), λ) also satisfies the
conditions of parallel binding. Let c : nodes−τ (α(S1)) → nodes−τ (α(S2)) be
the correspondence function between α(S1) and α(S2) which exists since
τ, α |= [Φ]e.

Internal binder. Let λ(π1)=π2 for some π1, π2 ∈ nodes−τ (α(S1)). By defi-
nition of λ, there exists a name u such that τ(π1) = varu and π2 is the
lowest node above π1 with τ(π2) = lamu. Since the labels of the nodes
on the path between π1 and π2 are equal to the labels of the nodes of the
corresponding path from c(π1) to c(π2) it follows that τ(c(π1)) = varu,
τ(c(π2)) = lamu and that no node in between is labeled with lamu. Thus,
λ(c(π1)) = c(π2).

External binder. Suppose that λ(π1)=π2 for two nodes π1 ∈ nodes−τ (α(S1))
and π2 6∈ nodes−τ (α(S1)). There exists a name u such that τ(π1) =
varu and π2 is the lowest ancestor of π1 with τ(π2) = lamu. By corre-
spondence, it follows that τ(c(π1)) = varu and that no lamu-node lies
on the path form the root of segment α(S2) to c(π1). The predicate
external−binderu(S1, S2) requires that π2 dominates that root of α(S2)
and that no lamu-node intervenes on the path from π2 to that root.
Thus, π2 is the lowest ancestor of c(π1) that satisfies τ(π2) = lamu, i.e.
λ(c(π1)) = π2.

No hanging binder. Let S be either of the segment terms S1 or S2. Sup-
pose that λ(π1)=π2 for some nodes π1 /∈ nodes−τ (S) and π2 ∈ nodes−τ (S).
There exists a name u ∈ namese such that τ(π1) = varu and π2 is the
lowest ancestor of π1 with τ(π2) = lamu. This contradicts that τ, α solves
no−hang−binderu(S) as required by [S1∼S2]e.

Lemma 11. If Φ has a solution whose correspondence classes induce the equiv-
alence relation e then [Φ]e ∧ no−free−vare is satisfiable.

11

Proof. Let Φ be a conjunction of a parallelism and lambda binding constraint
over signature Σ and (τ, λ), α a solution of it. Let {c1, . . . , cn} be the correspon-
dence functions for the parallel segments α(S) ∼ α(S ′) where S∼S′ belongs to
φ. Let c ⊆ nodesτ × nodesτ be the reflexive, symmetric, and transitive closure of
{c1, . . . , cn}, and e ∈ equ(Φ) be the relation {(X,Y) | (α(X), α(Y)) ∈ c}.

We define treee(τ, λ) as a tree over the extended signature Σφ whose nodes
are those of τ and whose labeling function satisfies for all π ∈ nodesτ that:

treee(τ, λ)(π) =

lame(X) if (π, α(X)) ∈ c, τ(π) = lam, X ∈ vars(Φ)
vare(X) if (λ(π), α(X)) ∈ c,X ∈ vars(Φ)
τ(π) otherwise

We now prove that treee(τ, λ), α solves [Φ]e, i.e. all of its conjuncts. This can
be easily verified for dominance, labeling, and parallelism literals in [Φ]e. Notice
in particular that corresponding lam-nodes in τ are assigned the same labels in
treee(τ, λ). Next, we consider the first-order formulas introduced in the transla-
tion of lambda binding and parallelism literals.

1. Case binde(Y)(X,Y) in [Φ]e. This requires λ(X)=Y in Φ (the corresponding
translation of λ−1(Y) ⊆ {X1, . . . , Xn} in Φ, is quite similar). It then clearly
holds that treee(τ, λ)(α(X)) = vare(Y) and treee(τ, λ)(α(Y)) = lame(Y). Fur-
thermore α(Y)C+α(X). It remains to show for treee(τ, λ) that no lame(Y)-
node intervenes between α(X) and α(Y). We do this by contradiction. Sup-
pose there exists π such that α(Y)C+πC

+α(X) and treee(τ, λ)(π) = lame(Y).
By definition of treee(τ, λ) there exists Z such that (π, α(Z)) ∈ c and
e(Y) = e(Z). Hence (α(Y), α(Z)) ∈ c and thus (π, α(Y)) ∈ c. But this
is impossible by the non-intervenance property shown in Lemma 8: no lam-
node such as π that corresponds to α(Y) intervene between α(Y) and the
var-node α(X) bound by it.

2. Case external−binderu(S1, S2) in [Φ]e where S1∼S2 in Φ and u ∈ namese. By
contradiction. Suppose that there exist π1 ∈ nodesτ (α(S1)), π2 6∈ nodesτ (α(S1))
such that treee(τ, λ)(π1) = varu and π2 is the lowest ancestor of π1 with
treee(τ, λ)(π2) = lamu. Furthermore, assume either not π2C

∗root(α(S2)) or
intervenelamu

(π2, root(α(S2))). The first choice is impossible since the bind-
ing axioms were violated otherwise. (The correspondent of an exteranlly
bound node must be bound externally). Let π′

1 be the correspondent of π1

with respect to the parallel segment α(S1)∼α(S2). By Lemma 8 we know
that no lam-node corresponding to π2 can intervene between π2 and π′

and thus between π2 and root(S2). This also contradicts the second choice:
intervenelamu

(π2, root(α(S2))).
3. no−hang−bindere(S) in [Φ]e where S is either S1 or S2 and S1∼S2 in Φ. Let’s

proceed by contradiction, assume that it is not satisfied by treee(τ, λ), α,
then there must exist a name u ∈ namesφ and two nodes π1, π2 such that
treee(τ, λ)(π1) = lamu and treee(τ, λ)(π2) = varu, even more π1 ∈ nodesτ (α(S)),
π2 6∈ nodesτ (α(S)) and there not exists a third node π3 between π1 and π2.
Then, by Lemma 8, π1 can not be a corresponding node of the lambda bind-
ing node of π2, therefore, by definition of treee(τ, λ) λ(π1) = π2 ∈ λ, but

12

this is impossible because (τ, λ), α must satisfy the no hanging binder

condition.

4. Finally, we prove that treee(τ, λ), α satisfies no−free−vare. This is simple.

8 Context Unification with Tree Regular Constraints

We have shown so far how to express lambda binding and parallelism constraints
φ ∧ µ by parallelism constraints with first-order dominance formulas φ ∧
ν. We can now apply Theorem 11 of [16]: parallelism constraints plus first-
order dominance formulas φ ∧ ν can be expressed in context unification plus
tree regular constraints. The same result also holds with monadic second-order
dominance formulas, but we don’t need them here.

The encoding of dominance formulas through tree automata applies similar
tricks as encoding the weak monadic logic WS2S into tree automata. This result
can be lifted with another encoding trick to translate parallelism constraints
plus dominance formulas to parallelism constraints with tree regular constraints
of the form tree(X) ∈ L(A) where L(A) is the regular language of some tree
automaton A and tree(X) denotes the tree rooted by node X. Finally, one can
translate parallelism plus tree regular constraints to context unification with tree
regular constraints by extending on [15].

Theorem 12. Every conjunction of parallelism and lambda binding constraints
is satisfaction equivalent to some context unification problem with tree regular
constraints, and this problem can be computed in polynomial time.

As explained above, this theorem is a corollary to Theorem 6 of the present
paper and Theorem 11 of [16]. But to apply the later, we have first to show that
the definition of parallelism used there is equivalent to ours (Prop. 13 below).

Let {•1, . . . , •n, . . .} be an infinite set of hole markers. A context γ over Σ
is a tree over Σ and the set of hole markers, but such that each hole occurs at
most once in the context. For instance, f(•2, g(•1)) is a context with two holes.
A segment can be identified with an occurrence of a context: For every segment
σ of a tree τ with n holes we uniquely define a context contextτ (σ) with hole
markers •1, . . . , •n as follows:

contextτ (π/π1, . . . , πn) = (τ [π1/•1] . . . [πn/•n]).π

The order in which the substitutions are performed does not matter since all
holes πi of a segment are pairwise disjoint. Note also, that the root π is never
removed from τ while substituting, since it must dominate all holes πi.

Proposition 13. A tree parallelism relation σ1∼σ2 holds between two segments
of a tree τ if and only if both segments are occurrences of the same context, i.e.
contextτ (σ1) = contextτ (σ2).

13

9 Applications and Limitations

It is proposed in [3] to extend CLLS by group parallelism in order to deal with
beta reduction constraints. The question is now whether beta reduciton con-
straints can be expressed in context unification with tree regular constraints.

The simplest form of beta reduction constraints betan(X,Y) says that the
lambda substructure rooted by node X beta reduces in a single step with
a redex that binds at most n variables to the substructure rooted by node
Y . This constraint is equivalent to say that the tree below X has the form
S1(@(lam(S2(var, . . . , var), S3)) where at most n occurrences of var-nodes are
bound by the lam-node, while the tree below Y is of the shape S1(S2(S3, . . . , S3)).
As long as one ignores the precise rules of parallel binding, this can be easily
expressed by lambda binding and parallelism constraints.

The problem is that var-nodes of the function body S2 might possibly be
bound in the context S1. But then, S1 would have hanging binders. The prob-
lem can be fixed by redefining hanging binder with respect to groups of seg-
ments instead with respect to individual segments, i.e. one introduces group
parallelism (S1, . . . , Sn)∼(S′

1, . . . , S
′

n) which is like a conjunction of parallelism
literals ∧n

i=1Si∼S
′

i but such that hanging binder are defined with respect to
groups of segments (S1, . . . , Sn) resp. (S′

1, . . . , S
′

n).

X1

X4

@

X2

X3

var

varX5

lam

lam

X7

X6

@

Fig. 7. Group Parallelism

Unfortunately, we cannot extend
the encodings of the present paper to
also deal with group parallelism. The
problem is that group parallelism does
not satisfy the non-intervenance prop-
erty as stated for ordinary parallelism
in Lemma 8. This is illustrated in
Fig. 7 where the group parallelism
constraint:

(X1/X2, X4/X5)∼(X2/X3, X3/X4)

holds. Even though the lam-node X2

corresponds to X1, it intervenes be-
tween X1 and one of its bound var-
nodes X6.

Nevertheless we can still express restricted beta reduction constraints in con-
text unification with tree regular constraints. We can describe a finite sequence
of beta-reduction steps by group parallelism between disjoint groups – which sat-
isfy the non-intervenance property – if we require that the terms in the sequence
are all placed in disjoint positions of the surrounding lambda structure.

Another interesting question is, which binary relations on tree structures
can be expressed by tree regular constraints in the way that we express the
lambda binding relation. For instance, one might ask whether one can express
the anaphoric binding relation of CLLS. This question is non-obvious so that we
have to leave it open.

14

References

1. Ernst Althaus, Denys Duchier, Alexander Koller, Kurt Mehlhorn, Joachim
Niehren, and Sven Thiel. An efficient algorithm for the configuration problem
of dominance graphs. In 12th ACM-SIAM Symposium on Discrete Algorithms,
pages 815–824, 2001.

2. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the
theory of finite trees. Journal of Logic, Language, and Information, 4:5–39, 1995.

3. Manuel Bodirsky, Katrin Erk, Alexander Koller, and Joachim Niehren. Beta re-
duction constraints. In RTA’01, volume 2051 of LNCS, pages 31–46, 2001.

4. Hubert Comon. Completion of rewrite systems with membership constraints. Sym-

bolic Computation, 25(4):397–453, 1998. Extends on a paper at ICALP’92.
5. Denys Duchier and Claire Gardent. Tree descriptions, constraints and incremen-

tality. In Computing Meaning, Volume 2, volume 77 of Studies In Linguistics And

Philosophy, pages 205–227. December 2001.
6. Markus Egg, Alexander Koller, and Joachim Niehren. The constraint language for

lambda structures. Journal of Logic, Language and Information, 2001.
7. Katrin Erk, Alexander Koller, and Joachim Niehren. Processing underspecified

semantic representations in the constraint language for lambda structures. Journal

of Logic, Language and Information, 2000.
8. Katrin Erk and Joachim Niehren. Parallelism constraints. In RTA’00, volume 1833

of LNCS, pages 110–126, 2000.
9. Jordi Levy. Linear second-order unification. In RTA’96, volume 1103 of LNCS,

pages 332–346, 1996.
10. Jordi Levy and Margus Veanes. On unification problems in restricted second-order

languages. In CSL’98, Brno, Czech Republic, 1998.
11. Jordi Levy and Margus Veanes. On the undecidability of second-order unification.

Information and Computation, 159:125–150, 2000.
12. Jordi Levy and Mateu Villaret. Linear second-order unification and context uni-

fication with tree-regular constraints. In RTA’00, volume 1833 of LNCS, pages
156–171, 2000.

13. Jordi Levy and Mateu Villaret. Context unification and traversal equations. In
RTA’01, volume 2051 of LNCS, pages 167–184, 2001.

14. Mitchell P. Marcus, Donald Hindle, and Margaret M. Fleck. D-theory: Talking
about talking about trees. In Proceedings of the 21st ACL, pages 129–136, 1983.

15. Joachim Niehren and Alexander Koller. Dominance constraints in context unifica-
tion. In LACL’98, volume 2014 of LNAI, 2001.

16. Joachim Niehren and Mateu Villaret. The monadic second-order dominance logic
and parallelism constraints, January 2002. Submitted. Available at http://www.

ps.uni-sb.de/Papers.
17. Manfred Schmidt-Schauß. An algorithm for distributive unification. In RTA’96,

volume 1103 of LNCS, pages 287–301, 1996.
18. Manfred Schmidt-Schauß. A decision algorithm for distributive unification. Theo-

retical Computer Science, 208:111–148, 1998.
19. Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations

with two context variables is decidable. In CADE-16, LNAI, pages 67–81, 1999.
20. K. Vijay-Shanker. Using descriptions of trees in a tree adjoining grammar. Com-

putational Linguistics, 18:481–518, 1992.

15

