
Ontology-based Infrastructure for Intelligent

Applications

Andreas Eberhart

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes

Saarbrücken, 2004

Tag des Kolloquiums: 18.12.2003
Dekan: Prof. Dr. Slusallek
Vorsitzender: Prof. Dr. Andreas Zeller
Berichterstatter: Prof. Dr. Wolfgang Wahlster, Prof. Dr. Andreas Reuter

Für Hermann und Martin in liebevollem Gedenken

Abstract

Ontologien sind derzeit ein viel diskutiertes Thema in Bereichen wie Wissens-
management oder Enterprise Application Integration. Diese Arbeit stellt dar,
wie Ontologien als Infrastruktur zur Entwicklung neuartiger Applikationen ver-
wendet werden können, die den User bei verschiedenen Arbeiten unterstützen.
Aufbauend auf den im Rahmen des Semantischen Webs entstandenen Spezi-
fikationen, werden drei wesentliche Beiträge geleistet. Zum einen stellen wir
Inferenzmaschinen vor, die das Ausführen von deklarativ spezifizierter Applika-
tionslogik erlauben, wobei besonderes Augenmerk auf die Skalierbarkeit gelegt
wird. Zum anderen schlagen wir mehrere Lösungen zum Anschluss solcher Sys-
teme an bestehende IT Infrastruktur vor. Dies beinhaltet den, unseres Wissens
nach, ersten lauffähigen Prototyp der die beiden aufstrebenden Felder des Se-
mantischen Webs und Web Services verbindet. Schließlich stellen wir einige
intelligente Applikationen vor, die auf Ontologien basieren und somit großteils
von Werkzeugen automatisch generiert werden können.

Abstract

Ontologies currently are a hot topic in the areas of knowledge management and
enterprise application integration. In this thesis, we investigate how ontologies
can also be used as an infrastructure for developing applications that intelli-
gently support a user with various tasks. Based on recent developments in the
area of the Semantic Web, we provide three major contributions. We introduce
inference engines, which allow the execution of business logic that is specified in
a declarative way, while putting strong emphasis on scalability and ease of use.
Secondly, we suggest various solutions for interfacing applications that are de-
veloped under this new paradigm with existing IT infrastructure. This includes
the first running solution, to our knowledge, for combining the emerging areas
of the Semantic Web and Web Services. Finally, we introduce a set of intelligent
applications, which is built on top of ontologies and Semantic Web standards,
providing a proof of concept that the engineering effort can largely be based on
standard components.

Abstract

Ontologien sind derzeit ein viel diskutiertes Thema in Bereichen wie Wissens-
management oder Enterprise Application Integration. Diese Arbeit stellt dar,
wie Ontologien als Infrastruktur zur Entwicklung neuartiger Applikationen ver-
wendet werden können, die den User bei verschiedenen Arbeiten unterstützen.
Hierbei werden die folgenden wesentlichen Fragestellungen beantwortet.

1. Wie viel und welche Art von semantisch gekennzeichneten Daten sind im
Web derzeit verfügbar?

Wir suchen das Web mittels vier verschiedener Methoden nach RDF ab.
Die gefundenen RDF Fakten werden aufgrund des Prädikatnamespaces
und dem Fundort analysiert. Die Resultate zeigen, dass RDF noch nicht
von einer großen Nutzergruppe verwendet wird. Dennoch sind viel ver-
sprechende Anzeichen wie die RDF Unterstützung der Adobe Werkzeuge
zu erkennen.

2. Können Regeln und Ontologien in eine etablierte IT Landschaft aus Daten-
bank und objektorientierten Programmiersprachen integriert werden?

Wir präsentieren die OntoJava und OntoSQL Inferenzmaschinen, die
sich auf bewährte Technologien wie Java und relationale Datenbanken
stützten. Dabei werden RDF Schema Ontologien und RuleML in Java
beziehungsweise SQL übersetzt. Trotz einiger inhärenter Einschränkungen
bewährten sich diese Werkzeuge als Basis für die Entwicklung weiterer
Applikationen. Leistungstest zeigen, dass Datenbanken durchaus mit tra-
ditionellen regelbasierten Inferenzmaschinen wie XSB mithalten können.

3. Können Ontologien und Ereignis Bedingung Aktionsregeln zur Spezifika-
tion des Verhaltens von Agenten verwendet werden?

Die deklarative Spezifikation von Agenten ist ein sehr viel versprechender
Ansatz, da er den Entwickler von vielen der Lasten befreit, die die Pro-
grammierung von Agenten normalerweise mit sich bringt. Mit OntoAgent
stellen wir eine Plattform vor, die es erlaubt einen Agenten komplett mit
Standards des Semantischen Webs, insbesondere RDF, RDF Schema und
RuleML, zu spezifizieren. Die Implementierung basiert auf OntoSQL und
einigen Modulen zur Realisierung von Reaktionsregeln, einer Komman-
dobibliothek und einer Kommunikationseinheit. Wir diskutieren ferner
etliche der getroffenen Designentscheidungen.

4. Ist es möglich semantisch gekennzeichnete Dienste ad hoc aufzurufen?

Wir präsentieren WSDF, eine semantische Annotation von Web Ser-
vices basierend auf WSDL, RDF Schema und RuleML. Mit Hilfe eines
WSDL Kompilers und unseres OntoSQL RuleML-SQL Konverters wird
ein Klient in die Lage versetzt, die generische Beschreibung des Dien-
stes in lauffähigen Code umzusetzen. Dadurch ist lediglich eine gemein-
same Ontologie die Voraussetzung für das Aufrufen des Dienstes. Ob-
wohl wir uns auf die einfachste Form, nämlich Dienste ohne Seiteneffekte,
beschränken ist dies ein wesentlicher Schritt nach vorn, da bisher im-
mer explizit gegen die Schnittstelle programmiert werden musste oder ein
vorab bekanntes UDDI tModel implementiert sein musste. Verglichen
mit anderen Ansätzen wie DAML-S oder WSMF bieten wir nicht nur die
Sprache, sondern erstmals auch eine funktionierende Laufzeitumgebung
die es dem Klienten erlaubt generische Dienste aufzurufen und die Ergeb-
nisse korrekt zu interpretieren.

5. Ist es möglich linguistische Funktionen mittels derselben Mechanismen zu
verwirklichen, die auch zur Einbindung von anderen Informationsquellen
verwendet werden?

Die OntoLang und SmartDialog Sprachsysteme demonstrieren diese
Möglichkeit. OntoLang verwendet linguistische Annotationen um ein-
fache Sätze zu verstehen und die darin enthaltenen Fakten in die RDF
Wissensbasis einzufügen. Dadurch ist OntoLang in der Lage über die
Inferenzmaschine mit beliebigen anderen Applikationen zu interagieren.

6. Bietet die einer Software zugrunde liegende Ontologie eine ausreichende
Basis um verschiedenen Komponenten eine Kooperation zu ermöglichen?

Angenommen die Ontologie ist sowohl in dem Datenmodell der Fakten-
basis als auch in der Inferenz- und der Anfrageschicht vertreten, so zeigen
wir, dass Applikationsteile über diese Schnittstelle kooperieren können.
Das gemeinsame Datenmodell fungiert hierbei als Mediator.

7. Sind Ontologien bei der Entwicklung von komplexen Applikationen hilfre-
ich?

Wir stellen die Tragfähigkeit unserer Konzepte dadurch unter Beweise,
indem wir einige Beispielapplikationen mit unseren eigenen Werkzeugen
entwickeln. SmartGuide und SmartDialog demonstrieren hierbei wie eine
komplexe Document Retrieval Anwendung die den Nutzerkontext mit ein-
bezieht und klärende Fragen stellt mit vertretbarem Aufwand implemen-
tiert werden kann.

Abstract

Ontologies currently are a hot topic in the areas of knowledge management
and enterprise application integration. In this thesis, we investigate how on-
tologies can also be used as an infrastructure for developing applications that
intelligently support a user with various tasks. In particular, the following key
questions are answered.

1. How much and what kind of semantically tagged data is available on the
Web today?

We crawled the Web for RDF data using four different search strategies.
The RDF facts were analyzed according to their predicate namespaces and
their location. The results show that RDF has not yet caught on with a
large user community. However, there are promising signs such as Adobe
supporting RDF in its tools.

2. Can rules and ontology be integrated into a mainstream IT infrastructure
of databases and object oriented programming languages?

We present the OntoJava and OntoSQL inference engines which leverage
proven technologies such as Java and relational databases by translating
RDF Schema ontologies and RuleML into Java and SQL respectively. De-
spite some inherent limitations on the rule expressiveness, the tools prove
to be a valuable backbone for application development. Performance mea-
surements show that SQL databases can very well keep up with traditional
rule engines such as XSB.

3. Can ontologies and event condition action rules be used to define the
behavioral aspects of agents?

Declaratively specifying agents is an extremely promising approach since
it relieves programmers from many of the burdens that are usually inher-
ent with the implementation of agent systems. We present OntoAgent, a
framework, which builds on Boley et. al’s idea of specifying an agent en-
tirely using the Semantic Web mark-up languages RDF, RDF Schema, and
RuleML. The implementation is based on OntoSQL and a set of add-ons
for realizing reaction rules, a command library, and a messaging subsystem
based on HTTP. Several design choices and trade-offs are discussed.

4. Is it possible to invoke a semantically tagged service on the fly?

We present WSDF, a semantic annotation of Web Services based on the
existing languages WSDL, RDFS, and RuleML. Using a WSDL compiler
and our OntoSQL RuleML to SQL converter, a client application is able
to process the generic descriptions into running code. Web Services can
therefore be invoked simply by agreeing on an RDFS ontology a priori.
Even though we restrict ourselves to the simplest case of methods without
side effects, this is a major step forward, since traditionally programmers
must either be aware of a certain UDDI tModel or simply read a textual
description and program corresponding client code. Compared to other
approaches like WSMF or DAML-S, we provide a complete solution that
not only specifies service mark-up, but for the first time also specifies how
the client has to interpret the results.

5. Is it possible to base linguistic features on the same mechanisms that are
used for obtaining data from information sources other than the user?

The OntoLang and SmartDialog language systems demonstrate this pos-
sibility. OntoLang uses linguistic annotations to parse and understand
simple natural language statements, which are fed into the RDF fact base.
This way, OntoLang is seamlessly integrated with the inference engine and
other applications that also access the inference component. SmartDialog
leverages the knowledge base to predict how answers to potential questions
affect the pool of possible documents to be suggested.

6. Does an underlying ontology provide the necessary foundation for various
system components to interoperate seamlessly?

Assuming that the ontology is represented in both the facts’ data model
and the query and inference layer, we show that all applications can be
interfaced via this foundation. The mediator is the shared knowledge and
data model.

7. Are ontologies a useful help for developing a complex application?

By developing an entire suite of sample applications, we provided a proof
of concept that an ontology-based infrastructure is useful for developing
intelligent applications. SmartGuide and SmartDialog demonstrate how a
complicated document retrieval application, which takes the user’s current
context into account and asks clarification questions, can be built with
relatively little engineering effort.

Contents

1 Introduction 6
1.1 Application Scenario . 7
1.2 Requirements Analysis . 8
1.3 Key Research Questions . 9
1.4 Overview of the Remaining Chapters 11

2 Background 12
2.1 What is an Ontology? . 12

2.1.1 Ontologies as Reference Vocabularies 13
2.1.2 Ontologies as Taxonomies 13
2.1.3 Ontologies and Schemata 15
2.1.4 Ontologies and Logic . 17
2.1.5 Resolving the Different Viewpoints 17

2.2 Intelligent Help Systems . 17
2.3 Document Retrieval . 18

2.3.1 Definition of Precision and Recall 18
2.3.2 Text-based Search . 19
2.3.3 Keyword-based Search . 21
2.3.4 Taxonomy-based Search 21

2.4 Metadata Standards . 22
2.4.1 HTML Metadata . 22
2.4.2 Dublin Core Metadata . 23
2.4.3 Sharable Content Object Reference Model 23
2.4.4 SCORM Data Model . 25

3 Related Work 27
3.1 Question Answering . 27
3.2 Intelligent User Interfaces . 31
3.3 Agent Systems . 32
3.4 Knowledge Management . 35
3.5 Similarities and Differences to our Approach 37

1

4 Requirements for a Unified Approach 39
4.1 Sharing and Reuse of Content and Knowledge 39
4.2 Ontology as the Basis . 40

4.2.1 Collaborative Ontology Engineering 41
4.2.2 Reusing Standard Software Components 42

4.3 Mainstream Technology . 42
4.4 Incorporating Various Information Sources 43
4.5 Agent Setting . 44
4.6 Summary . 44

5 The Semantic Web Initiative 45
5.1 Overview . 45
5.2 The Encoding Layer . 47

5.2.1 Unicode . 47
5.2.2 Universal Resource Identifiers 48
5.2.3 eXtensible Markup Language 48

5.3 Data Layer . 51
5.3.1 Resource Description Framework 51
5.3.2 RDF Schema . 57

5.4 Ontology Layer . 59
5.4.1 DAML+OIL . 59
5.4.2 Web Ontology Language 61

5.5 Query Languages . 62
5.5.1 RDFPath . 62
5.5.2 RQL . 63
5.5.3 TRIPLE . 63

5.6 Logic Layer . 64
5.6.1 RuleML . 65
5.6.2 N3 Rules . 67
5.6.3 Java Rules JSR . 67

5.7 Encryption and Digital Signatures 68
5.8 Web Services . 69

5.8.1 The History of Web Services 69
5.8.2 SOAP, WSDL, and UDDI 70
5.8.3 WSFL and XLANG . 71
5.8.4 DAML-S . 72
5.8.5 WSMF . 72

6 Survey of Available Resources 74
6.1 Data and Ontologies . 75

6.1.1 Wordnet . 75
6.1.2 Open Directory . 76
6.1.3 OpenCyc . 76
6.1.4 Gene Ontology . 76
6.1.5 MusicBrainz . 77
6.1.6 MIT Process Handbook 77

2

6.2 RDF Survey . 77
6.2.1 Collection of the Survey Data 78
6.2.2 Search Results . 82
6.2.3 Comparison of the Two Experiments 88

6.3 Summary . 90
6.4 Software . 92

6.4.1 Ontology and Data Editors 92
6.4.2 Inference Engines . 95
6.4.3 Storage Systems . 96
6.4.4 Miscellaneous Tools . 96

7 Design Choices 99
7.1 Overall Architecture . 99
7.2 Core Data, Rule, and Query Layers 100
7.3 Data and Ontology Editing . 101
7.4 Interfaces to External Data Sources 101
7.5 Gathering Information from the User 103
7.6 Applications . 104

8 Core Technology 106
8.1 OntoJava . 106

8.1.1 Mapping the Class Taxonomy 107
8.1.2 Mapping Properties . 108
8.1.3 Mapping Rules . 109
8.1.4 Property Inheritance . 110
8.1.5 Constraints . 111
8.1.6 Multiple Inheritance . 111
8.1.7 Defining Instances . 112
8.1.8 Extending the Generated Classes 113
8.1.9 Namespaces . 113
8.1.10 Reaction Rules . 114
8.1.11 Further Features . 114
8.1.12 OntoJava Implementation Architecture 114

8.2 OntoSQL . 117
8.2.1 Mapping Datalog Queries to SQL 117
8.2.2 Mapping Datalog Rules to SQL 118
8.2.3 Recursive Rules . 119
8.2.4 Further Mapping Possibilities 120
8.2.5 Building Applications with OntoSQL 121
8.2.6 OntoSQL Architecture . 121
8.2.7 Performance Results . 121
8.2.8 Optimization Strategies Employed 128

8.3 OntoAgent . 129
8.3.1 A Generic Agent Architecture 130
8.3.2 Rationale for Rule Extensions 131
8.3.3 Rule Execution . 132

3

8.3.4 Implementation of the Agent Framework 133
8.3.5 Deductive Database . 133
8.3.6 Agent Actions . 135
8.3.7 Communication Subsystem 137
8.3.8 Intelligent Application . 139

8.4 Web Service Description Framework 140
8.4.1 Semantics of Parameters and Return Types 141
8.4.2 Semantics of the Method 142
8.4.3 When to Invoke a Service? 142
8.4.4 WSDF Syntax . 143
8.4.5 java2wsdf and prolog2ruleml 144
8.4.6 System Architecture and Invocation Sequence 145

8.5 Integrating Legacy Data . 146
8.6 OntoLang . 146

8.6.1 Modeling Simple Statements in RDF 147
8.6.2 Using OntoLang for Ontology Engineering 148

9 Building a Smart Librarian 150
9.1 Ontologies Used . 150

9.1.1 Distributed Systems Ontology 151
9.1.2 University Rules and Ontology 153
9.1.3 Java API Ontology . 153

9.2 SmartGuide . 154
9.2.1 Formal Description of SmartGuide 154
9.2.2 User Sessions and Fact Lifetime 155
9.2.3 Deployment . 155
9.2.4 Leveraging External Datasources 157

9.3 SmartDialog . 159
9.3.1 Question Generation . 160

9.4 SmartAPI . 162
9.5 Security . 164

9.5.1 Disclosing Information to Other Agents 164
9.5.2 Security in Multi User Knowledge Bases 165

9.6 Evaluation . 167

10 Further Work 168
10.1 OntoJava and OntoSQL . 168
10.2 OntoAgent . 168
10.3 WSDF and SmartAPI . 169
10.4 SmartGuide and SmartDialog . 169
10.5 Probabilistic Reasoning . 170

11 Summary 171
11.1 Results and Contributions . 171
11.2 Outlook on the Semantic Web Initiative 174

4

A List of Acromyns Used 176

B Guide to the Software Download Pages 179
B.1 OntoJava . 179
B.2 OntoSQL . 179
B.3 OntoAgent . 180
B.4 Prolog2RuleML . 180
B.5 OntoLang . 180
B.6 SmartGuide . 180
B.7 RDF Crawler . 180

5

Chapter 1

Introduction

Information and communication technologies are increasingly penetrating al-
most every aspect of our everyday lives. Many examples for this trend can be
given: digital photography is about to replace celluloid pictures, packages can
be tracked via the Internet, and enterprise information systems are gaining im-
portance also for smaller corporations. This development opens up enormous
opportunities. However, much of this potential has not yet been fully realized.
In our opinion many problems arise from a general lack of data integration.
Massive amounts of data are available but usually, it is virtually impossible to
cross-link the various data sources. Consider a travel reservation system, which
feeds off a large database containing schedule and booking information. While
such a service provides a lot of value to customers, quite often they are in a
situation where schedule information needs to be combined with geographic in-
formation, for instance when the closest railway station to a specific landmark is
to be determined. The amazing growth on the Internet lays the technical foun-
dation by interconnecting almost all computer systems worldwide. The wide
adoption of Internet markup languages such as HTML and XML are helpful,
however, they only solve the syntactic problems of character encoding, escape
sequences, and standardized parsing approaches. The interpretation of the se-
mantics, i.e. the meaning of the data, is usually left up to the user. In the travel
scenario mentioned above, this means that the user has to interact with both the
travel and a geographic information system. Another major obstacle to arriving
at the full potential of information technology lies in the limited functionality of
most of today’s applications. Obviously, there are no strict criteria for defining
the characteristics of a smart or intelligent application. Relating to the point
above, we think that smart systems should proactively be able to integrate data
from various sources. A travel system that can tell the user which train to take,
at which station to get off, and how to get to the landmark will definitely be
perceived as being smarter than the individual solutions. The software engi-
neering perspective is also very important. We believe that today’s applications
lack intelligent behavior due to the associated implementation cost.

The idea is to apply ontologies in order to tackle these problems. An ontology

6

can be defined as a formal specification of important domain concepts and their
relationships, which is agreed upon by a large community. Ontologies have been
used before. Their impact, however, was definitely limited, mostly because
the construction and maintenance of an ontology is a very costly task. The
recent, amazing comeback of this technique is fueled by the Semantic Web,
which applies ontologies on the Internet. The vision of a Web of cross-linked
ontologies, managed in a heterogeneous and distributed fashion is obviously
quite appealing.

Our thesis is that data integration and software engineering can benefit from
establishing ontologies as the basis for a variety of intelligent applications. This
statement draws an analogy to today’s situation, where relational datamodels
are the basis for a large array of enterprise applications. We claim that it is
not necessary to reinvent the “AI wheel”. However, there is a clear need for
more efficient engineering techniques and a large-scale integration of the various
existing approaches. We believe that ontologies can be the catalyst for achieving
these goals.

1.1 Application Scenario

We chose a help system scenario to develop and validate the thesis. A concrete
example allows us to analyze the requirements of such an intelligent system and
how ontologies can help during its development and operations. The example
also serves as a proof of concept, since we applied our own ideas while developing
various aspects of a help system. The broad context of the scenario is online
learning. More specifically we address help systems where the user searches for
a small piece of information rather than an entire course on a subject. Note
that the system will not generate the answer. Instead, it will point the user to
a document1 that contains the answer.

We choose this topic for the following reasons. Online learning is a very
challenging and important area since the world’s leading nations are currently
witnessing the transition from the industrial to the knowledge society. Further-
more, the area of online learning definitely suffers from a lack of data integration.
Today, a learning system typically comes with pre-packaged content as well as
an authoring system for producing one’s own material. A well-controlled set of
metadata describing the difficulty level, didactic style, learning goals, and other
attributes is used to realize fairly sophisticated functionality such as curriculum
planning or learner performance assessment. However, due to the high produc-
tion cost for online material, most of the closed systems suffer from their small
content base. Alternatively, one can try to leverage material off the entire Inter-
net. The desired document will most likely exist, finding it and making it work
with one’s system, however, becomes the problem. Last but not least, without
being explicitly stated, ontologies already play a role in today’s document re-

1In the following text, we often refer to documents. We are not limiting this to text
documents. Instead, by document we mean any kind of multimedia unit such as an animation,
an image, a video, an HTML page, or a text document.

7

trieval techniques. Consider a search using an Internet directory. Many people
argue that the directory’s taxonomy already defines important concepts and a
commonly agreed upon vocabulary for them. Furthermore, as we mentioned be-
fore, the metadata of teaching objects commonly talks about learning goals and
relationships to other resources. Again, important concepts are formalized, thus
at least partly fulfilling ontological requirements. This becomes an important
issue, especially when content is supposed to be exchanged between different
content repositories.

1.2 Requirements Analysis

The common approaches for finding information, namely full text search, key-
word search, and searching a taxonomy of document categories, offer quite a bit
of potential for improvement. This section motivates looking for alternatives by
taking a close look at how humans collaborate in a social network in order to
retrieve the right information. The analysis of his analogy will illustrate some
of the shortcomings of the usual brute force methods applied by computers. It
also provides us with the requirements of more advanced systems.

Whom to Ask? Today, using search engines only unleashes the immense
computational power of modern computers. This approach undoubtedly yields
very good results for some types of queries, but we all face situations where
this is not necessarily the case. Let us look at how we obtain information in
our daily lives: an important aspect could be characterized under the term ”ask
the expert”. Assume we know that Jim is the database guru in our company.
Therefore, Jim could probably point us to a good tutorial on JDBC. What is
important here is that Jim also knows me, thus he knows which level of difficulty
would be appropriate for documents he would suggest to read. If someone
encounters a software setup problem while working on a term project, the right
person to ask would probably be an experienced computer user who is taking the
same class. Chances are that this person has already encountered and solved the
same problem. This addresses the issue of personalization. We would probably
also find the relevant information on the Internet, but in such a personalized
environment, the search precision is much higher. It is important to note that
in such a scenario things can be quite fuzzy. The more people you ask, the more
answers you get. Ultimately, it is up to the searcher to judge whom to trust and
whose answer to believe. This can be based on previous good experiences with
somebody’s advice or the person’s reputation. A similarity to this observation
can be found when searching for information on the Web: an experienced Web
user applies a lot of rules on which site to use in order to find a certain piece of
information. Someone’s homepage is best found using the Google search engine,
which usually brings up the correct URL as the first result. Organizations or
companies are usually registered with major Web portals. One probably chooses
a German portal like web.de or yahoo.de if a German company is to be found.
Finally, the population of a country is best found at a site like the CIA world

8

fact book. All these examples demonstrate that searching the Web is not an
easy skill.

Clarification Dialogue Once the expert is identified, people usually engage
in a conversation where the expert tries to find out more. A user saying: I am
having trouble setting up software X might prompt the expert’s question: which
operating system are you working on? Finally this interaction is ended with the
expert providing an answer, pointing to a document, advising to consult another
expert, or saying: I don’t know.

Integrating Data Obviously these processes are very complex and several
quite fuzzy heuristics are involved in every step. However, a common feature
that can be identified is that humans are able to leverage large amounts contex-
tual and background knowledge for their reasoning process. This becomes clear
when the input of a simple full text search on JDBC, i.e. the query ”JDBC
tutorial”, is compared to the example above where data about the skills and
preferences of the user, detailed knowledge of the domain, and rich information
on the documents are combined in Jim’s decision making process.

The points above clearly show that there is room for improvements. How-
ever, it also becomes evident, that approaches from several different areas need
to be considered when attempting to build a system that mimics some of this
behavior. Natural language processing plays a role for the user dialog, agent
technology can help to model the collaboration of humans with different back-
grounds, knowledge representation plays a crucial role in enabling machines to
perform some sort of reasoning, and last but not least middleware and data
integration issues are important, for instance to merge information from the
university enrollment system with metadata of a teaching object.

1.3 Key Research Questions

Based on the requirements analysis, we will now outline the key research ques-
tions, which are addressed in this thesis.

1. The Semantic Web allows users to mark up their data in a machine under-
standable way. Consequently, it is a key ingredient for our architecture,
since only a large shared pool of semantically enriched data will make
intelligent approaches superior to today’s brute force mechanisms. While
the technical specifications and tools are already in place, it is unclear
whether a wide community of users will adopt the Semantic Web. There-
fore, a key question is how much and what kind of semantically tagged
data is available on the Web today.

2. From the requirements analysis it is clear, that an intelligent help system
cannot be viewed from an isolated perspective. On the one hand, it should

9

base on an ontology to facilitate sharing data and to benefit from existing
knowledge. On the other hand, it must be easy to integrate a solution
with existing information systems. Furthermore, we expect scalability to
be a major concern, since we operate is a Web setting. Consequently, the
second key question is whether rules and ontology can be integrated into a
mainstream IT infrastructure of databases and object oriented program-
ming languages.

3. We identified an agent-oriented architecture as an important component.
Rather than relying on a single document and knowledge repository, a
solution should include various agents coming from different backgrounds
and contexts in finding the right information. This is obviously a very
challenging task. In this context, the first question to answer is whether
ontologies and event condition action rules can be used to define the be-
havioral aspects of agents. A second step, which is outside the scope of
this thesis, would deal with developing suitable behavioral patterns for
solving the information retrieval problem in a distributed environment.

4. While agent based solutions have yet to catch on to everyday IT solu-
tions, Web Services are a promising alternative, which is viable in the
short-term. A significant number of services are already being offered.
With Web Service support being built into tools like Microsoft Office, this
number is likely to grow very rapidly. Services providing language trans-
lation features, knowledge base searches, or GIS data can be an essential
source of information to an intelligent help system. The key question is,
whether it is possible to invoke a semantically tagged service on the fly,
i.e. without having seen the service interface description before or the
service implementing a known standardized API. Note that this could be
interpreted as the first step from a traditional distributed system with
predefined APIs to an agent based architecture.

5. As pointed out by the clarification dialogue requirement, a sophisticated
help system must provide natural language functionality. The key question
is whether it is possible to base these features on the same mechanisms that
are used for obtaining data from information sources other than the user.
This includes marking up linguistic information, maintaining contextual
information, as well as computations to be performed for understanding
or generating language.

6. Consider the previous points from the agent infrastructure to linguistic
features. All the various system components need to share the same data
model and the same knowledge base in order to collaborate. Therefore,
arguably the most important question is whether an underlying ontology
provides the necessary foundation for these components to interoperate
seamlessly.

7. The last key question is whether ontologies prove to be a useful help for
developing a complex application. We answer this question by applying

10

our ontology driven infrastructure to a small help system prototype. This
serves two purposes: Firstly, it provides a proof of concept that onto-
logy based software development and data integration works. Secondly,
it shows that some of the alternatives to today’s brute force methods de-
scribed above are viable.

1.4 Overview of the Remaining Chapters

This thesis is organized as follows. The next chapter provides a more in-depth
background on some of the issues and technologies like document retrieval, digi-
tal libraries, metadata standards, application integration, and engineering issues
that were mentioned briefly in this introduction. From the metadata standards,
we discuss how certain vocabularies, and in a general sense, ontologies, play an
important role for the interoperability of metadata sets. The term ontology is
defined and different communities’ viewpoints on this very ambiguous term are
explained. The related work chapter mainly introduces work in the areas of
intelligent user interfaces, question answering, and knowledge management and
compares them to our ideas on help systems. In chapter 4, we analyze which re-
quirements are essential for making such intelligent help and document retrieval
systems successful. Chapter 5 introduces the state of the art in the area of the
Semantic Web, which we believe to be a key technology in the solution to be
presented in this thesis. We cover emerging markup language standards, which
allow us to handle metadata, domain knowledge, and rules in a uniform way.
Chapter 6 provides a survey of available resources that one could build upon
when implementing a new system. This includes Internet-based knowledge shar-
ing efforts, data collections from the open source community, well-established
databases such as Wordnet, and also an overview of software supporting these
emerging standards. Chapters 7, 8, and 9 describe our major design decisions,
our ontology-based application building framework, and our case study, the im-
plementation of the SmartGuide intelligent librarian system. We introduce our
basic components, which lay the foundation for higher-level applications such as
the SmartDialog clarification dialog system. Here, an analysis of the knowledge
base is used to determine which clarification question should be answered by
the user. This thesis ends with chapters 10 and 11 that provide an outlook with
an outline of possible extensions to the work presented as well as a summary.

11

Chapter 2

Background

This chapter begins with a definition of ontology and its relation to terms like
vocabulary or schema. We analyze various communities’ views on this issue
since several misconceptions about the term ontology arise from the vastly dif-
ferent application backgrounds. The background information provided in this
section attempts to resolve this and provide a general definition. We then pick
up and explain our application scenario in more detail. This is followed by
a description of current document search techniques and metadata standards.
We will illustrate how ontological issues are already present in today’s meta-
data standards, even though they are not explicitly mentioned as such. Current
work in the area of online learning systems is a good case for the need for an
ontological underpinning.

2.1 What is an Ontology?

The Encyclopedia Britannica defines the term ontology as ”the theory or study
of being as such; i.e., of the basic characteristics of all reality”. This definition
reflects the field of ontology, which has been around for centuries and is a sub-
discipline of Philosophy and Metaphysics. If a search for ”ontology” is entered
into the Google search engine today, an estimated number of 352,000 pages are
returned. Google rates sites according to the number of references to the site
from other hosts. The top results come from fields like e-Commerce or Biology,
which are completely unrelated to the original meaning of ontology. Rather than
Metaphysics and the study of being as such, we can read about ”enabling virtual
business” or the ”Gene Ontology Consortium”. This observation is in line with
McGuinness’ noting ”the emergence of ontologies from academic obscurity into
mainstream business and practice on the web” [110].

Gruber provides one of the most cited new definitions of ontology as ”a
formal, explicit specification of a shared conceptualization” [72]. Here, a con-
ceptualization refers to people’s conceptual understanding of a certain domain.
While being very general, this definition captures the essence of what ontology

12

means, regardless of potential application areas one might have in mind. Many
other definitions can be found. Campbell and Shapiro consider an ontology to
”consist of a representational vocabulary with precise definitions of the mean-
ings of the terms of this vocabulary plus a set of formal axioms that constrain
interpretations and well-formed use of these terms” [20]. This definition em-
phasizes the formal logic aspects of ontology, the intention of wanting to reason
with ontological constructs. In contrast to this viewpoint, Uschold and Jasper
give a very loose definition and state, ”An ontology may take a variety of forms,
but necessarily it will include a vocabulary of terms, and some specification of
their meaning” [141].

The range of definitions relating ontology to strict formal logic on the one
hand to comparing it with a simple vocabulary of terms on the other hand,
makes it very evident that there is a lot of disconsensus as to what an ontology
actually is. This is the cause for quite some misunderstanding when researchers
talk about this topic. Obviously, this also makes it very hard to establish
ontologies as the foundation of the next generation web.

We approach this issue by outlining how different user communities use the
term ontology.

2.1.1 Ontologies as Reference Vocabularies

People in different countries, companies, and sometimes even among various
company departments often develop their own language for everyday terms they
are dealing with. A middleware layer that manages access to a central database
might be referred to as connector, pool manager, access layer, and so on. At
the most basic level, an ontology is simply a set of terms with very detailed and
unambiguous descriptions attached. Another essential property of such a refer-
ence dictionary is that a large community accepts it. When users within this
community communicate, they can refer to this repository in order to under-
stand each other. This works much like people from different countries agreeing
on one language they use to talk to each other.

2.1.2 Ontologies as Taxonomies

Taxonomies are going one step further. Here, the terms and concepts that
comprise the vocabulary are also placed in a hierarchy of is-a relationships.
This structuring usually comes very naturally, and a taxonomy can be found in
almost every ontology. They are also referred to as the taxonomic backbone [75].
Taxonomic classification is frequently used, with the yellow pages being the
most prominent every day example. Here, companies are categorized according
to an agreed-upon hierarchy of commercial sectors. If the taxonomy would
be poorly designed or unnatural for people, search precision and recall would
definitely suffer. There are many well-established categorization hierarchies.
Examples are the North American Industry Classification System (NAICS),
the Universal Standard Products and Services Codes (UNSPSC), and the ISO
3166 geographic taxonomies. These standards are also used with the Universal

13

Description Discovery and Integration (UDDI) Standard, explained in detail in
section 5.8.2.

We believe that Internet directories like the Open Directory and Yahoo!
can also serve as an important reference point. Labrou and Finin support
this view [96]. It is quite clear that an Internet directory can only serve as
a fairly high-level ontology since no detailed concepts are available in there.
However, their breadth is very appealing. The wide acceptance and visibility
of such portals are even more important. Obviously, the chances of successfully
communicating with another agent are much higher when such a mainstream
ontology is used. As an analogy, one could compare this to a situation of asking
for directions, where it is also advisable to choose a mainstream language such
as English.

The Gene Ontology initiative is another example for this kind of ontology
definition. In order to facilitate the integration of the various genome databases,
one important base is to have a taxonomy of terms and concepts that a wide
user community agrees upon. Besides the basic subclass relationship, the Gene
Ontology also contains the part-of relationship [25].

Even though a taxonomic arrangement of terms is usually quite natural to
create, Guarino and Welty argue that there needs to be a formal approach to
design and test taxonomies [74]. The rationale is that errors in the design of
the backbone taxonomy will create multiple problems when trying to use these
ontologies at a later point. Again we can draw on experience from data mod-
eling, where a flawed database schema will greatly complicate the development
of database applications. Overall, there is little formalism to help ontology en-
gineers do their job. Guarino and Welty introduce identity, rigidity, and unity
which describe properties of taxonomic concepts and which can be attached to
the concepts. These descriptions are inherited from parent concepts. The idea
is to eliminate all inconsistencies that arise from a situation where a concept
is tagged with an attribute that clashes with the attributes of a parent class.
An example would be the parent concept being rigid and the child concept not
being rigid. Instead of explaining the theoretical underpinning, which can be
found in [74], we want to list the most common design errors given in that paper.

Errors commonly result from mixing up subclasses and instances. For ex-
ample, human cannot be a subclass of species, since a human is identified by a
position in space and time. For instance, if two humans are at different locations
at the same time, they must be different. This clashes with the identity of a
species, which is determined by the position in a biological taxonomy. Since
meta properties, in this case identity, would be inherited from species to hu-
man, human cannot be a subclass of species. Another common mistake is the
misuse of the part-of and subclass-of relations. The example bases on rigidity.
A property is rigid if it is true for any instance of the class. An engine is part
of a car and not a subclass of car, since the rigid properties of both, i.e. being
able to accommodate persons and being able to generate rotational force, do not
match. Again, the rigid property would be inherited by the subclass and this
clash reveals the design flaw. Often the subclass construct is used to model a
disjunction limitation. An artificial class car-part with its subclass engine is an

14

example. What the modeler wants to express is the fact that a car part must be
either an engine, a wheel, or so on. However, this is different from saying that
all engines are car parts, which is not true if a boat’s engine is considered. This
statement is implied by the subclass relationship though. Polysemy, a concept
well known in data modeling, is another frequent source for errors. The ontology
engineer needs to be careful to distinguish the class of book, having a certain
content and written by a certain author, and an instance of this class, a specific
copy of a book being owned by a certain person and having a dent in the cover.
It is crucial to model this as an instance-of and not a subclass relationship.
Finally, the constitution relationship is often falsely modeled using the subclass
of construct. An example would be an ocean consisting of water. Water is not
a subclass of ocean though.

2.1.3 Ontologies and Schemata

The similarities and differences between the terms schema and ontology are not
trivial to identify. Within the context of the OntoBroker project, ontologies
are used to create document type definitions (DTDs) [47], suggesting both a
close relationship between the terms but also ontology to be the higher-order
concept. On W3C mailing lists, for example, the relationship between XML
and RDF Schemata on the one hand, and ontologies on the other hand is one
of the most frequently discussed issues. Similar arguments can be made about
entity relationship or unified modeling language diagrams. Again, the answer
depends on one’s point of view and one’s definition of ontology. Consider the
well-known MathML1 or ChemML2 mark-up languages as an example. On the
respective websites, we can find schemata containing terms like trigometric op-
eration or hydrogen count. In addition to simply introducing these terms, some
information and some constraints about their relationship are encoded as well.
A simple example would be a molecule consisting of several different atoms. In
the ChemML DTD and XML Schema, a molecule is defined as a complex data
type having the type atom as one of its constituents. Typically, the relation-
ship, i.e. oxygen being a part of the molecule water, is not defined explicitly.
By employing the notion of simple and complex types, DTDs and XML Schema
allow us to model hierarchical data structures with the types defined. As we will
further illustrate in section 5.3.1, the Resource Description Framework (RDF)
takes a different approach. Here, the relationships are at the center of attention.
Rather than defining the molecule - atom relationship in the type definition of
molecule, this relationship is explicitly defined in RDF. The type definitions do
not include attributes or properties. The second major difference is the intro-
duction of the RDF addressing scheme that bases on URIs. If the same URI
appears in different contexts, it always refers to the same logical resource. This
allows us to model directed labeled graphs, breaking the tree restriction imposed
by XML Schema and DTDs. In order to have some kind of relationship with

1http://www.w3.org/Math/
2http://www.xml-cml.org/

15

another piece of data, an element does not have to have this data as its parent
anymore. Generally, schemata support the definition of some constraints. Type
constraints disallow non-atoms to be parts of molecules, cardinality constraints
prevent zero-valued or negative coefficients, other constraints allow the restric-
tion of non-numerical value ranges, etc. In general, we can say that if the weak
definition of ontology as a vocabulary is chosen, schemata with a reasonable
public acceptance can be considered to be an ontology.

If we switch to the strict definition of an ontology as a vocabulary with
formal axioms, the differences and the deficiencies of schemata become more
obvious. Andersen argues that the constraints provided by schema languages
are far too weak to enforce the requirement that an ontology needs to define the
kinds of things that exist in the application domain3. The example given shows
that a simple XML Schema for address data fails this formal criterion, since in
can by no means model the fact that the address ”Hauptstrasse 56, D-69118
Heidelberg, US”, though being valid with respect to the schema, is a nonsense
address since Heidelberg is in Germany, not the US. Another example addresses
temporal constraints, an issue that still creates a lot of problems in the database
world. The statement that ”Ponce de Leon lived at 21 Citrus Drive, Miami FL,
12345, US” cannot be true since the US was not around during Ponce de Leon’s
lifetime.

In our opinion, the motivations behind establishing ontologies and schemata
are often different. Schemata are usually designed with a specific application
in mind. If an XML Schema is written for a B2B application, one looks at
what data is available in the respective information systems to begin with. A
common design criterion for database schemata is the question of how a certain
design will influence the applications at a later point. Often one faces a decision
on whether to completely denormalize a schema or whether a small amount
of redundancy actually makes things easier. In contrast to this, an ontology
is usually designed without a specific application in mind. The focus is to
conceptualize a certain domain of interest within a larger community of users.
Consider the following simple example of students taking courses and courses
being taught by instructors. A database schema would most likely not talk
about the relationship of students being taught by instructors. The schema will
implicitly assume that an instructor teaches a student if the student takes a
course taught by the instructor. It would be redundant to explicitly store this
information. The database application will compute this information by joining
the respective tables. An ontology, on the other hand, would explicitly define
all three relationships and probably also the three inverse relationships. The
advantage is that any kind of statement can be interpreted, whether we say
John teaches Joe or Joe is taught by John. However, this puts a bigger burden
on the ontology software.

3http://lists.w3.org/Archives/Public/www-webont-wg/2002Apr/0001.html

16

2.1.4 Ontologies and Logic

Sowa describes the relationship between logic and ontology as follows: ”Logic
provides the formal structure and rules of inference. Ontology defines the kinds
of things that exist in the application domain. Computation supports the appli-
cations that distinguish knowledge representation from pure philosophy” [132].
According to these statements, it is logic that makes ontologies useful for com-
puter scientists. Therefore, logic is an integral part of any ontology-based solu-
tion according to this definition.

In this thesis, we support this point of view, but on a more practical level.
We think of the requirements stated by Andersen and Sowa as very desirable,
but long-term goals. The fact that a basic technology like XML creates such a
stir in the IT world demonstrates that today’s major problems are much simpler
in nature than the complex issues pointed out in the address example above.
We look at logic from a software engineering perspective as a tool that allows us
to write simpler and more reusable applications. Chapter 8 will provide more
detail on this and show how at least a small subset of logic statements can be
executed by mainstream software tools.

2.1.5 Resolving the Different Viewpoints

In light of all these varying viewpoints, the question arises whether it is feasible
at all to attempt to develop reusable ontologies, which form the basis for a suite
of different applications. Aren’t ontologies bound to be isolated solutions devel-
oped for a specific purpose? We do not think so. The level of descriptiveness
might vary in the examples mentioned before, but the less descriptive parts, such
as a concept taxonomy, can be found again in the more elaborate forms. Also,
close ties to natural language and the desire to achieve consensus with respect to
the interpretation of the terms specified are common attributes throughout all
levels of definition detail. As we will see in the next chapter, the Semantic Web
initiative provides users with a set of standard mark-up languages, allowing us
to express ontologies in various levels of complexity. Any organization can pick
up a basic taxonomy of terms, cross-link, and enrich it by axioms. Ultimately,
a marketplace of ontologies will spring up, much like today’s Web, where the
usefulness of an ontology will be decided upon by the number of users it has.

2.2 Intelligent Help Systems

Our everyday lives are getting more and more complicated. Even simple devices
are being loaded with functionality, most of which the user is unlikely to ever
need to use. Consider an employee having to use a feature of the company’s
information system for the first time. Assistance in this case can be sought
online. These problem solving support cases are different from a student learning
about a more general topic via an online course. It will be much easier to locate
the entire course rather than an FAQ or a short tutorial on a specific aspect of
a software package, for instance. Also, once the course is started, the learning

17

management system or simple hyperlinks in the course’s components will provide
navigation support to locate the individual parts and subsections. Searching is
not a very big issue in this case. In the other example, the documents or
tutorials found will be consumed relatively quickly. The user is in the process
of performing a certain task or working on a problem. In the process of doing
so, he or she will come back to and use the search facility to find other resources
quite frequently. Another aspect is that a course on a certain subject will
most likely have a consistent look and feel in terms of the educational style
and the onscreen design. When a user is jumping back and forth between the
task to perform and a help or support system, it is not that important for the
individual units to have a consistent look and feel. After all, the user will most
likely search for resources out of very different contexts. Thus, compared to
a pure learning scenario, the possible base of relevant documents is larger and
searching is a more frequent and more important operation in such support
or online help cases. Nevertheless, it should be possible to adopt the design
and implementation principles of a solution developed in this context to other
application areas as well.

There are two major approaches to question answering. The classical way,
implemented in most traditional expert systems, will attempt to generate an
answer based on the reasoning process. With the ubiquitous availability of
billions of documents on the Internet, a second approach of the system pointing
to a document that contains the answer becomes more viable. We refer to this
as the ”smart librarian” approach. With this method, question answering can
be seen as a subset of the more general problem of document retrieval. The
next section will introduce the major concepts of document retrieval.

2.3 Document Retrieval

Document retrieval can be defined as a function SE that maps a list of search
inputs Q to a list of documents (d1, d2, ..., dn):

SE(Q) = (d1, d2, ..., dn) (2.1)

The input depends heavily on the system. The classical inputs would be a
single keyword, a category to be displayed, or a Boolean expression with terms
specifying whether a word or phrase must or must not appear. However, it is
also possible to use someone’s nationality or educational background as inputs.
The output will usually be ranked according to the documents’ relevance or
contain a probability rating associated with each result.

2.3.1 Definition of Precision and Recall

Precision and recall are typically used measures to quantitatively assess the
performance of a retrieval algorithm. Let Drel be the set of relevant documents
and Dresult be the set of documents appearing in the search result. Then,
precision P and recall R of the search SE(Q) are defined as follows:

18

PSE(Q) =
|Drel ∩Dresult|

|Drel|
(2.2)

RSE(Q) =
|Drel ∩Dresult|

|Dresult|
(2.3)

This traditional definition of recall is only applicable for a limited document
base. Obviously it is impossible to determine all the relevant documents on the
Web with respect to a specific search. Furthermore, since in a large documents
repository several documents will contain similar information, it is very likely
that a user will be fully satisfied after examining a subset of all relevant doc-
uments. For these reasons, recall is much less important than precision. An
important observation for measuring the recall is that one can define several
measures of relevance for documents. Many earlier studies work with discrete
classes such as ”relevant”, ”partly relevant”, and ”not relevant”. Search engines
often compute percent values of relevance and a document might actually only
be partially relevant. The formulae above only characterize a yes/no decision.

There is a general trade-off between precision and recall. If all documents
are returned, recall is guaranteed to be 100% but precision will be close to
0%. If the search yields only one matching document, the situation is reversed.
Therefore, it is crucial to find the right balance for the respective application.

2.3.2 Text-based Search

In this section we want to briefly introduce the major concepts of full text or
text-based search. This method is definitely the most frequently used since it is
very cheap and easy to implement. Full text search does not require additional
metadata to be entered. It relies completely on the computational power, the
immense storage capacities, and the available network bandwidth in modern
computer networks.

Crawling The first step in the process of setting up a full text search envi-
ronment is to determine which documents should be covered. This can be the
contents of certain folders on a file system or a set of pages on the Inter- or
Intranet. Crawling refers to automatically traversing web pages by following
hyperlinks found inside of the documents. The documents’ locations are typi-
cally stored in a database. Figure 2.1 shows a possible database schema. This
way one can avoid the crawler from accessing the same page twice in the process,
since a history of visited pages in available.

A problem lies in the diverse media types. While it is quite easy to obtain
the text from HTML, Office files, or PostScript documents, the sheer amount
of different formats poses some problems here. Extracting information for in-
dexing from multimedial content such as animations, audio, and video files in
arbitrary formats is not an impossible, but at least a rather complex and very
time-consuming task [101, 121]. Uhl and Lichter present a powerful alternative

19

url

PK ID

url
title
lastVisit
content

appearsIn

PK,FK1 urlID
PK,FK2 wordID

position

word

PK id

word

Figure 2.1: A possible schema for a full text search system.

approach for searching multimedial content in a distributed fashion [139]. How-
ever, we believe that it is unlikely that such an architecture will be adopted on
a wide scale.

Indexing Figure 2.1 illustrates how data collected by crawlers could be orga-
nized in a central database. The locations scanned and words found are stored
in respective tables. This makes it easier and more space efficient to reference
them in the central appearsIn table that denotes the position of every word
found in every document. Usually prepositions, articles, and other words that
are unlikely to be searched will be skipped when a document is processed. In
order to be able to still provide the textual context of a keyword found, the en-
tire content can be stored as a compressed binary large object in the url table.
Considering that pure text takes up only a fraction of the space required by
images, audio, and video, such an approach will be able to store and retrieve
the text of a very large document base. The search process then involves joining
the tables under the respective Boolean and text phrase conditions. Indexes on
the word IDs make sure that these searches can be performed efficiently.

Page Ranking Due to the massive amount of data on the Internet, conven-
tional measures like recall become less important. Ranking the search results,
however, is crucial. If an Internet search returns 5000 matching documents, a
user will most likely only browse though the first couple of top ranked pages.
A link appearing after that will most likely be ignored. A whole collection of
strategies has been developed for this purpose. The quotient of word occurrences
to document size or the proximity of the search words within a document are
commonly used methods. The Google engine’s popularity is largely based on
its outstanding page ranking system. It uses two fairly obviously but extremely
effective approaches. If the search terms appear in Google’s Internet directory
pages (see section 2.3.4 below), the matching directory entry is returned. This
way, a user searching for a company’s homepage is able to find it within sec-
onds. Otherwise, Google ranks pages by the number of links referencing the
page from other hosts. The rationale is that high quality pages will be ref-
erenced frequently. The advantage is that, in a way, a large user community

20

”decides” upon the ranking.

Linguistic Features The approach described so far treats words and doc-
uments like ordinary data structures. Some very basic linguistic features are
able to augment the overall system. One problem is posed by the several pos-
sible endings of a verb like ”wait” for instance. The strings ”waited”, ”wait-
ing”, and ”waits” are all treated as different. Stemming reduces these forms
to their morphological root, greatly improving the search. Stemming algo-
rithms differ greatly in the level of sophistication and depend heavily on the
base language [58]. They are often used to improve recall in document retrieval
applications [93].

Another frequently applied method is looking up synonyms in a thesaurus.
A search for ”man” will then also return a document containing the word ”guy”.
These features protect the user form having to try out different words with the
same stem or different synonyms in the search queries.

The third problem lies with words that have several meanings. A quote
can refer to a stock quote and a literature quote, possibly causing completely
irrelevant documents to be suggested. This issue can be addressed by disam-
biguating the meaning using the context. If other words like ”Wall Street” and
”Dow Jones” appear in the same sentence as ”quote”, it is safe to assume that
a stock quote is meant.

2.3.3 Keyword-based Search

The idea behind keyword-based search is that the pure occurrence of a word
does not imply that a text is mostly about a concept characterized by the word.
A simple example are negations such as ”this document is not about glycerin”.
Instead of relying strictly on the text, keywords must be provided along with
the document. Technically, the information can also be stored in a structure as
the one shown in Figure 2.1. When choosing the keywords it is important to
specify both general and quite specific ones to make sure that both general and
specific queries will retrieve the respective document. Again, a trade-off between
precision (specific keywords) and recall (general keywords) can be observed here.

2.3.4 Taxonomy-based Search

The most prominent example of a taxonomic classification of Internet pages and
also its first adopter is definitely the Yahoo! portal. The Web is partitioned into
several top-level categories, which are themselves subdivided. This hierarchy of
areas is referred to as a taxonomy, since the subcategories are usually subclasses,
or specializations, of the upper class or category. In contrast to pure full text
indexing, several human editors decide whether a certain site is worth listing
and make sure that accepted sites appear under the appropriate category. This
is obviously a large effort, however, the high quality of its portal ensured Yahoo!
a loyal user base. Yahoo!’s arguably biggest competitor is the Open Directory
project which has been adopted by Google. This project functions much like

21

Yahoo, but it bases on currently over 50,000 volunteer editors. Section 6.1.2
will describe this initiative in more detail.

2.4 Metadata Standards

The following examples for metadata standards are intended to provide an
overview of the typical kinds of information stored in web- and online learn-
ing related metadata sets. It is by no means a complete listing. Along with
this overview, section 2.4.3 shows that it is often not quite clear how the data
is to be interpreted. This observation will led us to several issues related to
application integration and semantics which we will elaborate on in section 2.1.

2.4.1 HTML Metadata

The hypertext markup language is undoubtedly the most common and most
accepted format on the Web. The World Wide Web Consortium’s specification4

provides for metadata to be inserted directly at the beginning of the document.
The following example illustrates how a set of relevant keywords can be specified
using the HTML Meta tag.

<html>

<head>

<META NAME="keywords" CONTENT="Schach Chess Echecs">

</head>

...

HTML metadata can be grouped into two categories. Content related fields
are the keywords, a textual description of the page, plus information on the au-
thor and the tool used to generate the file. The aim of this data is to help search
engines index documents. The second category is more technical in nature. It
deals a lot with browser and caching issues. Furthermore the page author can
provide information for robots crawling the site during the indexing process.

Even though HTML metadata is so simple, it is considered to be a prime
vehicle in increasing the ranking of websites with search engines. Playboy Inc.
actually sued two adult web site operators for including the keywords ”Playboy”
and ”Playmate” hundreds of times in their metadata. This caused several search
engines to return those sites ahead of playboy.com in their search result pages.
This practice, which is often referred to as keyword spamming, led several search
engines to take countermeasures against these practices in order to improve the
quality of the results.

4http://www.w3.org/TR/html4/

22

2.4.2 Dublin Core Metadata

The Dublin Core Metadata initiative5 organizes discussion forums and work-
shops that aim establishing consensus-driven efforts to promote widespread ac-
ceptance of metadata standards and practices. Currently, a vocabulary for
describing quite straightforward fields like title, author, format, keywords, lan-
guage, or audience is defined. The Dublin Core website lists about seventy ma-
jor projects such as the Australian Government Locator Service or the Berkeley
Digital Library Catalog, that use Dublin Core metadata. Due to its pioneer
efforts and wide acceptance, the Dublin Core elements are a building block
for several other initiatives, among them SCORM, which is presented in the
following section.

2.4.3 Sharable Content Object Reference Model

Several initiatives have been launched that deal with defining a standard meta-
data model. Overall, most of them can be characterized as conceptually similar.
The ultimate advantage of standardization is the possibility to exchange content
between different learning and content management systems. It is clear that the
didactic approach and the visual look and feel of a teaching unit are hard to stan-
dardize. Therefore, it will probably never be possible to compose a consistent
large teaching unit from components written and designed by a large number
of authors that simply upload in their learning object into some system. Unless
the authors collaborate closely, such an undertaking will most likely result in a
heterogeneous, fractioned end product6. On a technical level, a standard like
SCORM allows to move content between different systems. An XML metadata
serialization and packaging format is defined within the framework. Therefore,
teaching system A can serialize and export metadata in this XML format in
order for system B to be able to load it into its own internal data structures.
This is obviously a very appealing feature that brings us a step closer to a global
marketplace of teaching content. This solution can be though of as some sort
of business to business (B2B) data exchange standard for the education sector,
similar to the well known B2B exchange formats like ebXML7, the Rosetta Net8

initiative for semiconductor manufacturing companies, or SWIFT9, the de facto
standard in the financial sector.

Unlike the HTML meta tags described in section 2.4.1 above, the SCORM
metadata can practically reside anywhere and appear in many physical repre-
sentations such as a main memory data structure of the learning system, inside
a relational database, or as a serialized stream of XML characters inside a file
or traveling across the network.

5http://dublincore.org/
6Within the Multibook [134] project, a dramatically new approach to authoring is illus-

trated that might eventually provide a solution to this problem.
7http://www.ebxml.org/
8http://www.rosettanet.org/
9http://www.swift.com/

23

Content Servers
Internet

HTML

PPT

MP3

AVI

Figure 2.2: The SCORM metadata standard and API definitions are supposed
to display an appropriate combination of learning units in a variety of situations.

In 1997 the Department of Defense and the White House Office of Science
and Technology Policy launched the Advanced Distributed Learning (ADL)10

initiative. From our point of view, this initiative seems to be the one with the
most momentum and the widest acceptance. The purpose of the ADL initia-
tive is to ensure access to high-quality education, training and decision aiding
materials that can be tailored to individual learner needs and made available
whenever and wherever they are required. Figure 2.2 illustrates the ADL vision.
The World Wide Web is thought of as a giant content repository. A SCORM
server can read and interpret the associated metadata and compose a set of
documents, sounds, or other multimedia files into an appropriate learning or
support unit. Apart from the pure metadata definitions, SCORM also defines
an application programming interface (API) that allows a content object to in-
teract with a so-called learning management system (LMS). This API would
enable an exam object to write the student’s score back into some sort of grades
database hosted in the LMS.

The SCORM metadata standard references the IMS learning resource meta-
data information model11. In turn, IMS bases on the IEEE Learning Technology
Standards Committee (LTSC) Learning Objects Metadata (LOM) Specifica-
tion12 that was developed as a result of a joint effort between the IMS Global
Learning Consortium, Inc. and the Alliance of Remote Instructional Authoring
and Distribution Networks for Europe (ARIADNE)13. Together, these specifi-
cations form the SCORM content aggregation model. Rather than a complete
data model, SCORM is though of as a base that can be extended to meet a spe-
cific project’s needs. D. Suthers [136] for instance, reports of having to extend
the metadata model when applying it to a set of primary and secondary school
resources.

10http://www.adlnet.org/
11http://www.imsglobal.org/
12http://ltsc.ieee.org/
13http://www.ariadne-eu.org/

24

2.4.4 SCORM Data Model

The following summarizes the individual parts of the SCORM metadata model.

General The General category contains the information describing the re-
source with its title, the language it uses, its keywords, a textual description,
etc. All in all, this category contains the most basic data needed.

Lifecycle The Lifecycle category groups the features related to the history and
current state of this resource as well as the users who have edited this resource
during its evolution. Sample attributes include the authors, their roles, the
version, and the status of the item. An interesting aspect is that a person’s
information is stored in the vCard format14.

Meta-metadata The Meta-metadata category holds authoring and version
information on the meta-data record itself, rather than the original teaching
object being described. Consequently, these categories fields are very similar to
the lifecycle category.

Technical The Technical category groups the technical requirements and
characteristics of the resource. The attributes include the resource’s mime type,
the size, the URL, or the client’s software requirements.

Educational The Educational category consists of the educational and ped-
agogic characteristics of the resource. The interactivity level, the difficulty, the
intended end user role, and targeted age group are among the attributes here.
Educational properties are obviously quite fuzzy in their nature. SCORM de-
fines a value range for these fields. The semantics of the individual values are
defined by a longer textual description. Examples are the values for the difficulty
of an object, which can range from ”very low” to ”very high”.

Rights The Rights category deals with the intellectual property rights and
conditions of use for the resource. This category only contains very rudimentary
information that would have to be extended to be the base of a digital rights
management application.

Relation The Relation category groups features that define the relationship
between this resource and other targeted resources. This category is quite in-
teresting since it allows storing information about the resource’s prerequisites
and its position within a navigation structure. A chapter and its sections could
all be modeled as resources, with the chapter having a containment relationship
with the sections.

14http://www.imc.org/pdi/

25

Annotation The Annotation category provides comments on the educational
use of the resource and information on when and by whom the comments were
created.

Classification Finally, the Classification category describes where this
resource falls within a particular classification system. In our point of view,
this category is of utmost importance since it allows stating what the document
is about. This is done by referencing a standard taxonomy as it can be found
in libraries or the aforementioned online taxonomies that are the basis of web
portals like Yahoo!. A tutorial on the Power Builder database development
suite might reference the Yahoo category Home > Computers and Internet
> Software > Databases > Development > Power Builder. Furthermore, the
resource’s discipline, the required educational level, the didactic style, and
other aspects can be modeled by referencing respective taxonomies. Obviously
the key point here is that the taxonomy to be referenced should on the one
hand be well known, while on the other hand it should be fine grained enough
the describe the document in as much detail as possible. The taxonomic path
shown above is definitely more descriptive as the most detailed corresponding
web.de: Verzeichnis > Computer & Software > Programmieren > Datenbanken.

It must be noted that the SCORM standard only specifies the meaning and
the semantics of its metadata elements. These definitions might suggest a cer-
tain use of the respective fields, however, this is left up to the application. How
a learning management system uses the data in order to derive an educationally
appropriate teaching object sequence for a particular user it left open entirely.
Another problem is that the highly relevant relation and classification categories
are vaguely specified. SCORM only talks about how a classification scheme or
related teaching unit can be referenced on a technical level. The semantics of
such references and best practice suggestions are missing entirely.

26

Chapter 3

Related Work

There has been interesting work done in fields related to our sample application
area of online learning and help systems. One aspect of knowledge management,
for instance, is concerned with representing and conceptualizing knowledge such
that it and also mostly its transfer from employee to employee can be properly
managed and supported by tools. In the introduction, help systems were men-
tioned as one main application area. Help systems imply that a user is trying
to get an answer for a specific query. This is quite similar to a well-established
information retrieval topic known as open domain question answering. Software
agents are supposed to find the answer to trivia-like questions within a publicly
available repository like newsgroup posts, a set of newspaper articles, or the
Web as the largest available repository.

3.1 Question Answering

The general goal of a question answering system is to either generate the answer
to a natural language question or to simply point to a suitable answer. The
answer generation approach has been more popular. It was implemented in
solutions like the MIT Start geological answering agent. Generating an answer
obviously is more complicated then pointing to an existing one. Therefore,
these systems typically suffer from a small target application domain. With the
success of the Internet, the focus began to shift. Within a few years, millions
of documents on practically any topic were available. Obviously, this made
the smart librarian approach of pointing to an answer a much more viable
solution. Once more research was put into the retrieval strategies, the systems
also became more practical. Systems like Mulder, for instance, are capable of
answering questions from any domain. We will proceed with a summary of a
few sample question-answering systems.

27

MIT Start System The MIT START system[89] was one of the first ques-
tion answering systems to be exposed via a web interface1. It allows users to
ask questions about two application domains: geographical facts and MIT’s
Artificial Intelligence Laboratory. Questions like ”which cities are within 50
miles of Rome” or ”which countries border Finland” are answered based on
knowledge from the CIA world fact book. The system is also quite flexible
and understands most geographical terms and phrases one can think of. Once
the question is matched to certain facts in the knowledge base, START follows
a pointer back to a corresponding piece of text that was used to extract this
knowledge, which is then displayed as the answer. These pointers are manually
fed into the system using text annotations. While the START system demon-
strates outstanding accuracy and is able to understand most natural language
questions, the biggest drawback is its limitation to the well-contained world of
geography and the lab in which it was created. A definite advantage of choosing
geography in particular is that there are plenty of well-structured knowledge
bases available for this area. The limited scope of START is definitely caused
by relying on manually typed annotations. Nevertheless, START was definitely
an early trendsetter. After all, the Semantic Web community adopts the strat-
egy of basing intelligent applications on manual annotation entry instead of
information retrieval algorithms. Consensus has been reached, however, that
this is only feasible if annotations are created and maintained by a large user
community in a distributed fashion and if that data can be exchanged via the
Internet. We will cover this issue in more detail in chapter 5.

Mulder Mulder is another question answering system developed by Kwok et.
al. [95]. It functions radically differently from the MIT Start system. It also
takes on the different, more complicated task of answering questions from any
domain. Mulder employs the so-called information carnivore strategy, i.e. it
resends the question asked to another search engine, which in Mulder’s case
is Google. The process begins by classifying the questions. Using the results
from this analysis, Mulder then rephrases the original search query before it
is sent on. The goal is to guess words that would appear in a sentence con-
taining the answer. Since Google returns not only the URL of matching pages,
but also the text block containing the word matches, a sentence containing the
answer is likely to be part of Google’s answer already. If the question is ”who
was the first American in space?” the rephrased query could be ”first American
space”, which may match a solution like ”the first American in space was Alan
Shepard”. The difficulty is to guess how specific the query should be. A fairly
unspecific query like in our example might return too many hits. Alternatively,
search engines can be fed with quoted phrases as well. Mulder solves this speci-
ficity / generality tradeoff by sending different query versions in parallel. The
result summaries obtained from those searches are then analyzed and the po-
tential answers extracted. This is done based on how far the question keywords
are apart within the search-hit summary provided by Google. If the words are

1http://www.ai.mit.edu/projects/infolab/

28

scattered far apart in the document found, it is less likely that they form the
answer. These word distances are also weighted using the popular inverse do-
cument frequency, which assigns high weights to uncommon words. Obviously
when searching for answers on the Web, not all of them will be correct. The
authors give the example that a commonly given but wrong answer to the ques-
tion above is ”John Glenn”. Since the system can only return one answer, it
uses a voting procedure to determine which of the multiple answers found by
the search engines will be picked. Similar results are first clustered according to
similarity. This avoids counting a correct but misspelled answer as a separate
answer. Finally, a simple vote is taken and the most frequent answer is picked.

The results are surprisingly good. The TREC8 question corpus (see para-
graph below) was used for testing, and the Mulder system was compared to
Google and AskJeeves2. The performance was evaluated by the number of
words a user has to read before finding the answer. Furthermore, the recall,
i.e. the number of questions answered correctly, was considered. On average,
Mulder outperformed Google by a factor of 6.6 in terms of user effort while
achieving the same recall. AskJeeves responds to natural language questions,
but surprisingly, it performs worse than Google. According to the authors, this
might be an indication that AskJeeves’ question answering strategy is not fully
automated. It appears as if the most frequently asked questions are answered
by manually pre-selected replies.

In general, Mulder can be seen as a module on top of Google making it
more user friendly by applying answer extracting and query rewriting knowledge
as well as by running multiple queries in an automated fashion in order to
determine the necessary degree of query specificity. While the results are quite
impressive and demonstrate how the Internet and its resources can be used
for question answering in a powerful way, one might criticize that Mulder is
probably tuned for TREC8-like questions.

FAQ Finder Like the Mulder system, the University of Chicago and De-
Paul’s FAQ Finder project [19] also targets the Internet as a knowledge base
for question answering. Several newsgroups offer a set of frequently asked ques-
tions (FAQs) to their newcomers in order to prevent those questions from being
posted over and over again on the mailing lists. These FAQs were identified as
a valuable source of information since usually a lot of work and experience from
an entire user community went into their development. Similar to Mulder’s
problem setting, the system is supposed to speed up the time it takes a user to
find the answer she or he is looking for and provide an alternative to wading
through the FAQs manually.

In order to perform a first pre-selection within the index database of FAQs,
FAQ Finder uses a technique similar to the one described for the Mulder sys-
tem. Only FAQs with words similar to the ones appearing in the question
are considered. In a first approach, the question and answer pairs were com-
pared according to a vector of so-called frequency times log of inverse document

2http://www.ask.com

29

frequency values. This measure is similar to the inverse document frequency
measure employed by Mulder and helps to assign higher weights to very spe-
cific terms. After the FAQ Finder determined the question answer pair whose
question is closest to the original user question, the corresponding answer is re-
turned. This approach yielded fairly good results, however, the system exposed
some weakness since it was not yet able to draw simple conclusions based on
synonyms and the word semantics. Extending the word matching to synonym
matching is quite simple since the Wordnet knowledgebase provides the neces-
sary synset concept already. Quillian’s marker-passing algorithm was used to
include some of the sentences’ semantics into the similarity computation. The
similarity of two terms is computed by following links within Wordnet that bring
us from the first to the second concept. The term husband is related to wife
through their common hypernym spouse, for instance. The authors opted to
implement these additional measures. They boosted the recall from 58% with
the statistical score system to 67% with the combined method.

The TREC Competition A series of Text REtrieval Conferences (TREC)
was devoted to working on the problem of finding information in large data
repositories. In order to benchmark the results, a test set has been defined.
Based on a large collection of newspaper articles, trivia-like questions, such as
”Who invented the paper clip?” need to be answered by candidate information
retrieval systems. In 2001, over thirty systems took part in the competition.
The following procedure seems to be the standard way of approaching the prob-
lem. First, the question is analyzed and the matching documents and passages
retrieved. Then, the passages are compared and matched against the question
before the results are ranked in a final step. These steps and techniques are
similar to the ones presented for the Mulder or the FAQ Finder systems. A
common property also seems to be the use of a question type taxonomy and
leveraging Wordnet for a shallow semantic analysis. Zheng’s AnswerBus [144], a
system developed by Harabagiu et. al. [78], and the Webclopedia project [83] are
representatives of the set of question answering systems having these common
features and this somewhat standard architecture.

OntoSeek The use of Wordnet is not only restricted to question answering
systems. Guarino et. al. propose a system called OntoSeek that uses Wordnet
for more precise Web searches [73]. When operating on a restricted dataset
such as a product catalog or an Internet directory, Wordnet can be used to
increase recall by exploiting synonym relationships and to increase precision
by disambiguating keywords based on the linguistic context. The system was
developed as follows. In an initial step, Wordnet was merged with the Sensus
ontology3. With the help of a user interface, the resources such as catalog
descriptions were converted to conceptual graphs. Those graphs contain simple
statements such as that the tubing is part of a mountain bike. The authors
chose this relatively simple approach since the use of a linguistic ontology was a

3http://www.isi.edu/natural-language/resources/sensus.html

30

major design goal. Representing a resource as a graph then reduces the problem
of content matching to ontology-driven graph matching. The search interface
allows the user to enter a query. The system immediately uses the underlying
ontology to disambiguate search keywords. The query is then also represented
as a conceptual graph, allowing the resource descriptions established in the
encoding phase to be matched against it.

One of the major findings of this work is that even though the Wordnet
taxonomy does not follow some of the basic ontological modeling principles one
of the authors describes in [75], this drawback is far outweighed by the sheer
size of the Wordnet body and its broad domain coverage.

3.2 Intelligent User Interfaces

The area of intelligent user interfaces is also very much related to our research
since it shows approaches and ways how the user’s tasks can be supported using
intelligent techniques. We believe that an intelligent user interface is a much-
needed feature for an online learning application. Often, it is not only the
massive amount of information that creates a burden for the learner, but also
the ever-growing complexity of today’s applications. To briefly illustrate this
wide domain, we pick out three examples in the following paragraphs. Maybury
and Wahlster provide a comprehensive overview of intelligent user interfaces
in [108].

User and Discourse Models Establishing user and discourse models is a
central aspect of intelligent user interfaces. Wahlster identifies them to be nec-
essary prerequisites for ”identifying the objects to which the dialogue partner
is referring, for analyzing a nonliteral meaning and/or indirect speech acts, and
for determining what effects a planned utterance will have on the dialogue part-
ner.” [143]. Wahlster’s XTRA system was applied for assisting users with filling
out tax forms. It maintains a model containing, among other information, the
user’s level of expertise, which influences the system’s output. For instance, the
user being unfamiliar with the concept of Employee Savings Benefit causes the
system to use a pointing gesture onto the tax form rather than using the term
directly.

Cased Based Browsing Hammond et. al. proposed so-called FindMe
agents [77]. These agents use case based reasoning to help a user select products.
One of the examples given is choosing a video to watch where the choice of about
20,000 titles is enormous. The rationale is that if a user liked a certain movie,
chances are that she or he will like another movie with similar attributes. The
authors found the approach to work best is relatively unstructured domains.
If users can easily evaluate an item, i.e. liking or disliking a movie, but have
trouble pinpointing and articulating why, traditional database searches tend to
fail. In a way, this can also be seen as a document retrieval or search process.

31

Obviously, the difference is that results are not directly returned after sending
a query. The results are rather the product of a longer browsing process.

Intelligent Classroom Another aspect of intelligent user interfaces, com-
pletely unrelated to search and retrieval, is demonstrated by the Intelligent
Classroom project. In [59], Franklin and Hammond describe a system that aims
at minimizing the number of human-machine interactions that are required to
arrive at a certain goal. Examples are dimming the lights when course material
is being projected, or in the case of a lecture being televised to a remote site,
zooming the camera on the lecturer’s writing on the board. The Intelligent
Classroom uses a formal representation of concepts and actions going on in a
classroom setting. Using this model, a process manager is implemented that is
able to recognize plans in order to anticipate what needs to happen next. Ob-
viously, the actions carried out by a lecturer do not always follow a predefined
model. To cope with this, the system incorporates a history of events. Once the
plan is recognized, the actions are simply looked up in a handcrafted knowledge
based. This approach is perfectly reasonable, since the domain is small enough.
In addition, deep reasoning about actions performed is not required unless a
more complicated behavior is to be implemented.

3.3 Agent Systems

Agent systems are interesting to our line of research in many ways. The in-
troduction outlined how it can be very beneficial to query different repositories
depending on the situation a user is is when seeking assistance. On the one
hand a large repository is more likely to contain a suitable document, however,
the effort required to find it could be immense. On the other hand, a fellow
user might have just encountered a similar problem and he will be much more
likely to be able to help quickly by incorporating a common context into the
search process. This idea implies that there should be a large set of distributed
repositories that are managed individually and serve different purposes. This
heterogeneity can be of great advantage when a suitable solution for a specific
case is sought. The organizationally different repositories can even compete
against each other when a certain reward system is put in place for providing
suitable help. Obviously such a knowledge and service marketplace will need an
underlying agent infrastructure to work properly.

A second point is that traditional distributed systems are not designed to
scale up for flexible interoperation on the Web. The agent community has always
strived for developing a less structured way of communication and collaboration
than the one offered with the traditional middleware standards basing on remote
procedure calls. Consequently, agents are an interesting topic with respect to
data integration. Furthermore, agent technology aims at the distributed execu-
tion of business logic that stands in contrast to the rather fixed and predefined
workflows of most major IT solutions.

32

In this section, we will first briefly outline the Foundation for Intelligent
Physical Agents (FIPA) agent framework. For our purposes, the major aspect
is the logical inter-agent communication protocol. We will see that ontologies
also play an important role here. Finally we take a brief excursion from agent
technology and present Edutella, a peer-to-peer system developed for online
learning.

Agent Frameworks One of the most popular agent platforms is the FIPA
standard along with its reference implementation FIPA-OS. The FIPA archi-
tecture has three major layers. The framework provides the bottom two layers,
namely the communication channel and the agent shell. The communication
layer is able to use a variety of middleware protocols ranging from Web Services
to the Voyager CORBA implementation. Directory and agent location services
are also located in this core layer. The agent shell provides an interface to a
pluggable knowledge base component. The FIPA reference implementation, for
instance, can use JESS as a knowledge base. In this case the JESS specific
commands are wrapped to conform to FIPA. The middle layer also provides
session management capabilities that the agent can rely on. The actual agent
implementation can leverage the framework and concentrate on the main tasks
to be carried out. A developer can access the core functionality via a set of base
classes and APIs.

Agent Messaging One major distinction between an agent system and a
distributed system is the way the software components communicate. Whereas
a distributed system is based on remote procedure calls and therefore requires
a predefined interface, agents are more loosely coupled.

Agent frameworks typically cover several different communication patterns.
Terms like brokering, mediators, message routers, discovery services, etc. are
frequently found in the respective specifications. However, we believe those
issues are more implementation specific. The crucial point in agent systems is
the question of whether and how agents can communicate and collaborate with
minimal a priori knowledge and tuning required by developers which is the main
feature distinguishing agents from a distributed system or program.

One of the first specifications of an agent message format was the Knowledge
Query and Manipulation Language (KQML). It is a language and protocol for
exchanging information and knowledge and is part of the larger ARPA Knowl-
edge Sharing Effort. The second major part of this effort is the Knowledge
Interchange Format (KIF). KIF is an attempt to standardize a language for
exchanging knowledge and provides for the expression of arbitrary sentences
in first-order predicate calculus in a machine-readable format [62]. Naturally,
KQML messages can use KIF as a query and assertion format, but other lan-
guages can be used as well [54]. Consider the following example using standard
prolog:

(ask-all

:content "price(IBM, [?price, ?time])"

33

:receiver stock-server

:language standard_prolog

:ontology NYSE-TICKS)

This message is sent to a stock server. Since both the price and the time
variables are unbound, it will obtain all available stock quotes of IBM. The
receiver is specified using a generic name rather than a specific address, which
is a common approach for all kinds of distributed systems. The ontology label
will be discussed in the next section. The FIPA standard also defines a message
format called Agent Communication Language (ACL), which is very similar to
KQML. One FIPA specification suggests also using KIF as a knowledge content
language within ACL messages [55].

Ontologies in Agent Systems Unless agents use natural language to com-
municate, an approach that would be completely impractical considering today’s
state of the technology, they need some shared formalism in order to be able to
understand each other. If we again draw the analogy to a distributed system,
it is the programmers that need to agree on the shared interface. With this
common knowledge and the agreement on what a specific call will do, they can
implement the client and server accordingly. However, this approach is limited,
since a programmer needs to customize the system every time a new component
is integrated. Agents claim to be interoperable without human intervention. A
message like the one above, sent to an agent that the sender has never seen or
dealt with before, should be understood. The last line of the message shows that,
besides both agents supporting the KQML specification, the common ground
is that both agents understand the NYSE-TICKS ontology. More specifically,
they agree on the meaning of the price relationship and they also both agree that
”IBM” denotes a stock symbol at the New York stock exchange. The agents can
only communicate if this prerequisite is fulfilled. This view of an ontology being
a key enabler for interoperable systems is supported by many authors [99, 16].

Ontolingua Ontolingua extends the basic KIF format with primitives for
defining ontological constructs like classes and relations, allowing organizing
knowledge in object-centered hierarchies. Ontolingua translates this generic
representation to other languages such that the knowledge can be stored and
reasoned about using existing engines for the target languages [71]. Further-
more, an API for accessing and manipulating a knowledge base, called Open
Knowledge Base Connectivity, is defined [53]. Even though the Ontolingua sys-
tem was exposed as a web application, the ontology library is not too broad.
Nevertheless, one can argue that a lot of the ideas that are promoted in today’s
Semantic Web initiative originally came from the Ontolingua project.

Edutella An interesting alternative to traditional agent systems has been mo-
tivated by the recent success and stir caused by peer to peer (P2P) networking
systems [57, 109] like Napster or Gnutella. The typical P2P application or-
ganizes the large base of participants’ workstations to form a gigantic virtual

34

distributed fileserver. Usually, multimedia files like songs and movies are being
shared in today’s P2P networks. The Edutella project4 aims at extending this
paradigm to teaching content. Besides the P2P architecture, the handling of
metadata is the primary focus. Edutella bases on existing metadata standards
like SCORM, already mentioned in section 2.4.3, but uses RDF as an exchange
format. In order to be able to access content within this distributed network,
a metadata query facility is of central importance. Therefore, the RDF Query
Exchange Language (RDF-QEL) has been developed and multiple implementa-
tion options have been suggested [116]. Edutella also aims at reusing existing
software components in the P2P area, most notably Sun’s JXTA project which
provides a highly useful Java-based P2P construction framework.

3.4 Knowledge Management

The last aspect we want to investigate in the related work chapter is the area
of knowledge management. Within this arguable quite wide description we
shall look at the formal aspects that are more closely related to knowledge rep-
resentation. Online learning and help systems definitely also cover issues of
knowledge management. After all, such systems can be classified as knowledge
management tools, i.e. systems that support the knowledge transfer from the
knowledge engineer or expert to the end user. The following sections will de-
scribe two projects carried out at the German Research Center for Artificial
Intelligence. The KnowMore and FRODO projects are closely related to our
work since they emphasize proactive help features for users and focus on the
distributed character of knowledge management. Finally, the Haystack project
is introduced which originally introduced the idea of establishing a collection
of so-called per user information environments and searching those within a
community of users.

KnowMore The KnowMore system aims at supporting users during steps of
a workflow by introducing a so-called organizational memory [1]. The paper
gives the example of acquiring a customer project. During the different work-
flow phases from the initial contact via a phone call all the way to signing the
contract, the KnowMore systems proactively suggests documents that might be
helpful. An example of such functionality is a yellow page directory of compe-
tences within the organization being displayed when the offer to the customer
is written. Another scenario could be a log of interactions with the customer
being made available for reference upon the next interaction. The system is
implemented as follows. The workflow steps’ information needs are modeled as
queries, together with processing rules on how the results of these queries should
be displayed. The required input data for the queries comes from the workflow
system context as well as many other data sources like documents, databases, or
business process descriptions. Logic-based modeling of structure and metadata

4http://edutella.jxta.org/

35

using domain and enterprise ontologies is used to provide a uniform knowledge
description. This enables the system to be able to perform intelligent infor-
mation retrieval on the data. The example given is a search heuristic stating
that people working on a project that uses a certain technology are likely to be
competent in this technology.

Frodo The FRODO project refines the developments of the KnowMore
project by emphasizing the distributed and heterogeneous nature of knowledge
management. Rather than having a single organizational memory, a collection
of independently designed organizational memories is connected using an agent
platform. The agents perform deduction processes in a distributed fashion. At
the core of the FRODO agents sits the TRIPLE inference engine, described
in more detail in section 5.5.3. This allows a declarative representation of the
agent’s knowledge. The agent’s reactive behavior in response to outside events
is modeled via reaction rules. The inference engine and the declarative agent
specification are then wrapped inside Jade, which is a FIPA compliant agent
framework. Besides the design goal of basing FRODO on agent technology
and Internet standards, the development of a toolkit for the development and
maintenance of domain ontologies has also been identified as a key requirement.
FRODO currently is work is progress. The information summarized here comes
from the requirements analysis and system architecture document [142].

Haystack The Haystack project was started in 1997 at MIT [2]. The aim of
the project is to design a digital information retrieval system that behaves less
like a library and more like a personal bookshelf. On a very course level, the
strategy works as follows. First the system gathers information and stores it in
a very general datamodel. During the second step, the system tries to gather
information about the user by observing how the user accesses the corpus. The
collected material is also processed offline in order to further analyze it. Finally,
the haystack adapts its data and retrieval processes trying to mimic actions
observed from the user. The paper gives the following example. A user might
query the system for a specific keyword trying to find a paper she or he has read
recently. Once the paper is found by Haystack, the system returns a link to it
as well as a link to a colleague who originally sent the paper via email.

The example outlines the value of cross-linking seemingly irrelevant informa-
tion. Data is gathered by looking the user over the shoulder and recording which
documents are opened or which email is sent to whom. Consequently, very little
user effort is actually required. After a while, every user will have collected a
large pile of data. This is where the literal name, a haystack of information
comes from. The theory says that it will be possible to draw useful conclusions
from the data gathered. Recently, the Haystack project was picked up again
in the context of the Semantic Web [86] by introducing RDF as the storage
model. The authors developed a new processing language for manipulating and
creating semi-structured data called Adenine.

36

3.5 Similarities and Differences to our Approach

We will conclude this chapter by identifying the similarities and differences of
the related work presented to our approaches and ideas.

The challenge commonly faced in information retrieval and question answer-
ing projects is the correct interpretation of natural language. This approach
has advantages and disadvantages. On the one hand, it is obviously a great
plus to be able to basically leverage the entire Internet indexed in a search
engine like Google. The Mulder project is a representative having this advan-
tage. With relatively little development and no user effort in terms of entering
and maintaining metadata, a quite powerful system could be created. However,
commercially these ideas are yet to be adopted. One can only speculate about
the reasons. The most likely explanation is that by basing on natural language,
too many errors and misinterpretations are introduced into the system, causing
the added value for the user to decrease.

Tim Berners-Lee addresses this issue. He argues that ”instead of asking
machines to understand people’s language” a solution should ”involve asking
people to make the extra effort” [10]. The extra effort mentioned refers to
machine-readable metadata created by humans. This is the basic philosophy
of the Semantic Web activity, explained in detail in chapter 5, which we base
our work on. Nevertheless, the ideas presented by the question answering com-
munity are very important to get the Semantic Web jump-started and to get
over the chicken and egg situation regarding the lack of data and the lack of
Semantic Web applications we are witnessing at the moment. We will elaborate
more on this issue in our RDF survey section 6.2.

Several ideas can be drawn from the Intelligent User Interface community,
especially with respect to desirable system behavior. However, we believe that
it is crucial which data and which intelligent algorithms are used to imple-
ment certain features. This point differentiates our work from the approaches
mentioned, since we focus very much on ontologies and formal inferencing on
available metadata.

The agent systems introduced provide on major insight for us; namely the
importance of ontologies for system interoperability. This is only one of many
aspects of platforms and standards like KQML and FIPA-OS. They also deal
with several middleware can communication protocol issues, which we think
are not too important on a conceptual level. The distributed query facility
developed in the Edutella project is an important base, which can be reused
in our applications. Our work focuses on one further aspect in particular, the
declarative specification of software agents on the basis of the shared ontology.
Therefore out work complements the pervious efforts on agent systems that were
outlined in this chapter.

The projects listed in the knowledge management section arguable are closest
to our ideas. The haystack system originally inspired us to look into distributed
and more customized solutions. However, the technical realizations are quite
different. The FRODO project is closely related in terms of technology. FRODO
also bases on Semantic Web standards. Further similarities are also present on

37

an application level. In particular, FRODO and our work share the ideas of
pro-active information presentation and the distributed character of the system.
However, the FRODO project is still in progress and operates on a much larger
scale with the focus being on workflow systems. On a technology level, FRODO
bases on TRIPLE. Our solutions have a different scope in that they are less
powerful and instead base completely on mainstream components in order to
simplify the deployment.

38

Chapter 4

Requirements for a Unified

Approach

The initial application scope of our research has been outlined in the background
chapter. We also discussed which aspects are already covered by related work
in the area, as well as what problems were faced. Using this information, in
this chapter we want to list a series of major design goals we think are crucial
for the successful development, maintenance, and most of all adoption of future
artificial intelligence applications.

4.1 Sharing and Reuse of Content and Knowl-

edge

A first requirement can be drawn from experiences in the online learning systems
community. In the late 1990ies, a lot of research funding went into pushing on-
line learning technology in the hope to successfully establish a solid information
technology infrastructure for the knowledge society. Despite these enormous
funds, the initiative suffered from a quite fundamental problem. Most research
projects aimed at developing an online learning platform with document man-
agement, authoring, and online learning collaboration features. Unfortunately,
the results were hundreds of mostly incompatible systems. Since most of the
effort went into development of software, the content fed into the respective tool
was typically very limited. This is quite natural, since authoring content within
the framework of a research project is definitely a less interesting issue. On the
other hand, a system with hardly any content in it is not of much use to the
student.

The same argument can be made for just about any application. Consider
expert systems. Figure 4.1 shows a screenshot of the printer troubleshooting
expert system built into the Windows operating system. While this is a nice
feature to have, applications like those are seldomly found in the IT world. We

39

Figure 4.1: A simple printer troubleshooting expert system in Windows.

think the reason for this is that the limited usefulness of such a system usually
does not justify the cost incurred by its development. It simply does not make
sense to start from scratch and develop such an assistant for all kinds of problem
cases.

Both examples, the lack of content and scope in online learning and in help
systems, are an indication that any successful approach must be based on shar-
ing and reusing content. It is quite obvious that a single group of authors and
developers can never create a system large enough to be beneficial to many
users with various backgrounds. The online learning community has also real-
ized this key issue and addresses it with various standardization efforts such as
the SCORM metadata standard. In essence, SCORM allows exchanging a pre-
defined set of metadata between systems. Therefore, it is somewhat like a B2B
standard for the online learning industry. We believe that this is a step in the
right direction. However, more flexibility will be necessary. To us, the Semantic
Web initiative is a prime candidate for enabling sharing and reusing not only
documents and metadata, but also knowledge about the respective domains.
Only if such knowledge can be encoded and exchanged, will applications be
able to make smarter decisions, for example, when to present a piece of content
or which sequence to present a group of learning modules in. Also, the issues
regarding the meaning of classification information outlined in section 2.4.3 and
the requirement to have an extensible metadata format naturally lead us to the
Semantic Web and ontologies.

4.2 Ontology as the Basis

From the prerequisite of a system having to be based on sharing and reuse, we
can directly infer the next requirement. Two parties can always exchange data if

40

they agree on a certain syntactical datastructure for the transfer. However, they
can only really share the data if they have the same understanding of it. Like we
outlined in section 2.1, an agreed upon ontology is a key enabler for sharing and
reuse. We even want to go a step further. In our opinion, the shared ontology
should be at the core of the entire system. This has two advantages. First of
all, the use of the ontology is maximized, justifying the high development and
maintenance cost. Secondly, it brings a high level of consistency to the overall
system. Currently we often find a situation, where the individual components
of a system are based on different knowledge bases. For instance, a natural
language processing component might use Wordnet whereas the KQML-based
agent communication middleware uses another knowledge terminology. The
ideal situation would be to base all system modules on the same ontological
basis. In a way, this can be compared to a large variety of applications, dealing
with task ranging from online transaction processing to analytical data mining,
all accessing the same logical database.

Having stated the requirement of an ontology forming the base of several
intelligent applications, it also must be clear, that the development of such
ontologies must be performed in a collaborative fashion. If the ontology should
be a shared, agreed upon representation of a conceptualization, it is only natural
to have the ontology established by a group of people. Section 6.4.1 briefly
describes some of the currently available software solutions for collaborative
ontology design.

4.2.1 Collaborative Ontology Engineering

Holsapple and Joshi provide five basic approaches for ontology design [85] that
provide valuable insight on the best way on how to accomplish sharing and
reuse on the ontological level. The Inspirational Approach characterizes an
individual writing an ontology in an ad-hoc fashion. This approach usually lacks
a theoretical underpinning and often causes problems since the personal views of
the engineer strongly influence the outcome. The advantages are obviously the
rapid development and the often innovative character of the result. Modeling
the ontology according to observations is called the Inductive Approach. This
yields ontologies suitable for a specific purpose. However, the results usually do
not generalize. Establishing some general principles and applying them to an
ontology geared to a specific case characterize the Deduction Approach. This
approach seems quite useful from a theoretical perspective; however, identifying
and selecting such principles will be an almost impossible task given the fact
that the intuitive approach is already quite hard. If several partial ontologies
about a domain are merged in an iterative fashion, this is called the Synthesis
Approach. The base ontologies themselves will in turn be established using one
of the other methods. Apart from some methods like the ones presented by
Guarino [74, 75] and Gruber [72] not many quality assurance metrics have been
defined for ontologies. Therefore, the merging task will again be quite hard
to perform. Since a single person again does the merging, this approach also
seems impractical. The authors strongly suggest the Collaborative Approach

41

to be employed. Rather than trying to merge ontologies after the fact of them
being engineered, discussions and co-authoring of an ontology by a diverse group
of editors is thought to be most promising.

Again, the Semantic Web appears to be the ideal foundation for this design
goal. In section 8.6 for instance, we will demonstrate a rudimentary language
processing algorithm that bases on an ontology which is augmented with lexical
information. Furthermore, section 8.3 describes how agents can be specified in
a declarative way using an ontology and a rule set.

4.2.2 Reusing Standard Software Components

Another aspect comes from the software engineering perspective. If a single
ontology is the base for several applications, there must be a certain infrastruc-
ture for representing, structuring, storing, and querying knowledge. Such an
infrastructure will speed up the development dramatically. A negative example
for what happens without such tools can be observed in the Thought Treasure
natural language processing system1. Thought treasure also bases on an onto-
logy stating simple facts of life such as that soda is a drink. The following lines
show the ontology representation format:

===soda.z//soft#A drink*.z/fizzy#A drink*.gz/

carbonated#A soft#A drink*.z/

pop,soda# pop*,coke.z/tonic.oz/soda.My/

It is quite hard to read, let alone modify, the information given in these three
lines. Certainly, a large fraction of the Thought Treasure code deals with basic
tasks such as parsing this representation. Obviously, a base ontology stored in
a standardized format with a set of freely available utilities and APIs would be
very beneficial. An analogy, even though on a much lower level, can be drawn
to the situation of everybody inventing their own data encoding formats with
their own escape character handling and so on. Here, the invention of XML and
readily available SAX and DOM parsers greatly improved the situation.

4.3 Mainstream Technology

During the design phase of a system, decisions need to be made on which third
party components should be used. Especially in a more research-oriented envi-
ronment, we often face a tradeoff between using proven mainstream technologies
and more exotic software, which often is the result of very recent research ac-
tivities. The reasons for adopting mainstream technology are quite obvious: we
find well-functioning, polished, and well-documented solutions. The alternatives
often offer much more functionality and one is usually able to find a solution
that fits the specific needs of the project much better.

1http://www.signiform.com/tt/htm/tt.htm

42

We argue that in case of doubt, mainstream technology should be used. The
reason is simple: it is better to have a system with more content than to have
one with more features. The World Wide Web is the ultimate example for this
argument. The HyperCard system available on the Macintosh platform offered
more functionality compared to the simple hyperlink mechanism of today’s Web.
However, HyperCard suffered from a small content base and was never really a
successful product.

Using mainstream technology we can make sure that systems scale on a
performance, on a usability, and on an integration level. By usability we mean
that people outside a research lab will be able to use the software. Integration
refers to the ability to connect a system with other systems. When mainstream
tools are being used, chances are that an appropriate off the shelf middleware
or bridging software is available.

Even though this view might be controversial, other research groups are
adopting the same strategy of sacrificing functionality for scalability and ease
of use and engineering. An example is the Karlsruhe Ontology (KAON) tool
suite [114].

4.4 Incorporating Various Information Sources

By investing in a shared ontology and an infrastructure for sharing and reuse,
an important prerequisite for another requirement is established. We believe
that intelligent systems should try to draw from as many information sources
as possible. If agents and even legacy information systems speak the same
middleware protocol and share an ontology, exchanging information becomes
less difficult and developers and researchers can focus on what to do with the
data obtained. We will provide two examples.

Incorporating Contextual Information As mentioned in a survey paper
by Berzillon [18], leveraging contextual information has been a research issue
for several decades already. We believe that contextual information, whether it
is gathered from direct user input, an external data source, or by observing the
user interactions over time, is crucial in adding value to an application. Among
other things, it is the lack of context that makes a computerized help system
much less efficient than a human expert.

Web Service Integration Web Services are an emerging middleware plat-
form basing on Internet standards. Section 5.8 will outline the technical foun-
dations in more detail. It enables programmatic access to information that
previously was only available via a browser-based interface. Unfortunately not
many commercial websites have implemented Web Service-based gateways so
far. Therefore, many research prototypes currently wrap an existing website
by parsing the HTML output and exposing a programmatic interface to the
outside. This causes an engineering overhead and complicates maintenance,
since the wrapper often has to be updated when the website design is changed.

43

The Mulder project homepage, for instance, has been turned off due to this
maintenance issue.

With respect to the tool support, the developments in this area are very
promising. Web Services are also gaining popularity as an enterprise applica-
tion integration solution. Therefore, we predict that in the future it will be
increasingly possible to query enterprise information systems from intelligent
applications via a web service interface.

4.5 Agent Setting

From many of the previously stated requirements, such as sharing and reuse, it
is already clear that a solution should be distributed in nature. The question
remains whether the overall architecture should be a centrally managed, pure
client server variant or whether it needs to be distributed among several orga-
nizationally independent entities. We believe that in the spirit of the Internet,
the latter architecture should be chosen. The user or intelligent agent should be
able to choose from a variety of content providers supporting different points of
view and different learning styles, for instance.

4.6 Summary

In this chapter we listed key requirements, we think are necessary for building
useful intelligent applications. Summarizing the arguments, the key require-
ments are sharing and reuse of content, the integration of external data sources,
applying mainstream technology, as well as a distributed agent infrastructure.
Ontologies play a central role in all of these points. The standards introduced
within the Semantic Web initiative are prime candidates as the basis for our
work. There definitely is a substantial amount of tool support, which allows us
to avoid reinventing the wheel for each application.

44

Chapter 5

The Semantic Web

Initiative

In 1998, Tim Berners Lee, the creator of the Web, introduced his vision of the
next generation Internet, basing on recent research results such as the Univer-
sity of Maryland’s Simple HTML Ontology Extensions [80]. Since then, the
Semantic Web initiative has gotten a lot of exposure within the research com-
munity [11, 81, 10, 50] and even in many mainstream computer magazines [145].

This chapter will introduce concepts and the associated mark-up languages
of the Semantic Web. We will also compare this technology to related standards
from the eXtensible Markup Language (XML) and Web Services communities.

5.1 Overview

As Berners-Lee points out in a technical note1, questions like ”What is the
Semantic Web, and how is it going to affect me?”, or ”When XML gives us
interoperability, why do we need the Semantic Web?” are often asked. In this
overview section we want to address and answer these questions, before the next
section is diving into the technical details of the various mark-up languages and
standards.

In the technical note a nice analogy is drawn between the problems one
used to face in the pre web era when downloading a document and today’s
application integration problems. Getting a document from a remote site used
to be a major problem. Users needed to telnet into remote systems and learn
how to use proprietary library software. The Web changed all this by providing
ubiquitous access to documents on just about any topic from anywhere in the
world. In principle, the Web did nothing new but it made things a lot easier.

Consider an enterprise with its information systems. Inventory, payroll,
or customer relationship management systems often grow over time and are

1http://www.w3.org/DesignIssues/Business

45

Unicode
 URI

XML + NS + xmlschema

RDF + RDF Schema

D

i
g
i
t
a
l

S

i
g
n
a
t
u
r
e

Ontology Vocabulary

Logic

Proof

Trust

Self.

Desc.

Doc.

Data

Data

Rules

Figure 5.1: The Stack of Markup Languages proposed for the Semantic Web.

therefore poorly interconnected. A similar observation can be made with one’s
personal data being spread around a calendar, an email client, or a list of In-
ternet favorites. We all have to do a lot of copying and pasting between these
applications. On the enterprise level, custom glue code needs to be written for
exporting and importing data. XML addresses this problem, however, it only
makes it easier to integrate the applications by providing a uniform way to parse
and serialize data and by allowing for convenient transformations between dif-
ferent datastructures with XSLT. The glue code still needs to be hand-written.
The Semantic Web aims at doing to applications, what the Web did to doc-
uments. It provides a web enabled layer or information backbone, into which
many diverse information sources can be plugged in. With every source rep-
resenting information in the same conceptual way, structured queries over all
applications are possible. This way, the various systems can cooperate and share
information without the need for custom connectors.

As with most Web-related recommendations and standards, the World Wide
Web Consortium manages the development of the Semantic Web languages.
Figure 5.1 displays the proposed layered architecture. Even though the exact
borders between the layers in terms of functionality and responsibilities depend
on one’s point of view, the figure is well suited to understand the coarse archi-
tecture. The W3C aims at working its way up the stack. The encoding layers
and parts of the data layer are specified and working drafts exist for the onto-
logy layer. Research groups are addressing the upper layers, however, no official
W3C working group has been established for the logic and proof layers yet.

The foundation is built by well-established and accepted Internet technolo-
gies, namely Unicode, the Uniform Resource Identification (URI) scheme and
of course XML, XML Namespaces, and XML Schema. All layers above make
heavy use of these core technologies. For instance, all mark-up languages are
subsets of XML.

The data layer allows representing information in an unambiguous way. An

46

interconnected graph of data is established by using URIs to denote concepts and
instances. Different applications can use this data or publish own information
via this methodology.

If such a Web enabled data representation approach is to be the basis of data
integration, the meaning of globally referenced entities and concept must be
specified. This is done in the ontology layer sitting on top of the data layer. As
mentioned in section 2.1, ontologies formally represent a shared understanding
about a domain. Therefore, they allow interpreting information from the data
layer.

The logic layer contains domain knowledge in the form of rules allowing
automated reasoning on available data. The idea is to be able to explicitly
formalize knowledge, rather than embedding it in program code, which is hard
to maintain. A government, for example, could specify and distribute tax laws
in formal logic. This would enable an inference engine to establish a tax return
based on the rule set and the user’s tax data.

The proof layer is supposed to enable more complex agent interactions. Typ-
ically, an example from the authentication domain is given. Assume an agent
wants to access a protected resource. At first, the document management agent
denies the request stating that access is only granted to employees of company
X and employees of partner companies. The requesting agent supplies a proof
that it is entitled to view the document: it is acting on behalf of person P which
is working for company C which is a partner of company X, therefore access
must be granted. In conjunction with standard security features such as en-
cryption, certificates, and digital signatures, mechanisms like these are thought
to enable the Web of Trust. Note that the current research mostly focuses on
topics dealing with issues up to the logic layer. The proof and trust layers are
long-term research goals and therefore, they are not included in the following
detailed descriptions.

5.2 The Encoding Layer

We start by describing the encoding layer and working our way up to the logic
layer. This chapter concludes with an overview over the area of Web Services
and its similarities and differences compared to Semantic Web technology.

5.2.1 Unicode

The American Standard Code for Information Interchange (ASCII) introduced
in 1968, made it possible to exchange data between different computer systems
by standardizing the mapping between characters and numbers. With seven bits
available for this encoding, only the most basic characters used in the western
world were included in the ACSII standard. This limitation causes serious prob-
lems when special characters like German umlauts or French accents have to be
stored. A workaround was to use the eighth bit differently for region dependent
encodings. The European Union alone requires several different encodings to

47

http:

mailto:

ftp:

urn:

URLs

URNs

URIs

Figure 5.2: Addressing schemes on the Web.

cover all its languages, again causing several problems. A web browser, for ex-
ample, needs to set the right encoding style when viewing pages from a different
region. The Unicode standard is addressing this issue by providing a unique
number for every character regardless of which platform, program, or language
is used. Today, an increasing number of major software vendors are supporting
the Unicode standard. XML also offers support for Unicode characters.

5.2.2 Universal Resource Identifiers

Every Web user is familiar with the Universal Resource Locator (URL) address-
ing scheme for web pages. The goal of this section is to briefly define the terms
Universal Resource Identifiers (URI) and Universal Resource Name (URN) and
to explain their relationship to URLs. Figure 5.2 shows that, according to RFC
23962, URIs comprise both URLs and URNs. There are also two types of URNs.
The first type is location-independent, i.e. it does not point to a specific do-
cument. The URN urn:oracle-xsql, for example, is a unique identification of
Oracle’s XSQL technology. The second type has an institutional commitment
to persistence and availability, i.e. the page’s location is guaranteed to remain
the same.

5.2.3 eXtensible Markup Language

From 1996 to 1998 a workgroup of the World Wide Web Consortium devoted
itself to writing the XML recommendation. The key design goals for this new
document format focused around the support for a broad range of applications,
ensuring a high acceptance rate, and most importantly the simplicity for both
users and software developers. This simplicity led to the broad user acceptance
and tool support of XML today. Leading software manufacturers such as IBM,
Oracle, Microsoft, Software AG, SAP, and others have subsequently created
a wide range of XML tools or have integrated XML components in existing
products. Today, ”XML support” has become a key selling factor of the product.
The fact that a whole range of other languages has been developed on top of

2http://www.ietf.org/rfc/rfc2396.txt

48

XML, clearly illustrates that XML has become an important base technology. In
this section we will briefly explain the most important issues that are necessary
for understanding the other languages. A more detailed introduction can be
found in [44].

XML Documents XML documents have a hierarchical structure, much like
the chapters, sections, and subsections of this document. This is done via so-
called elements, which clearly delimit and label the individual document parts.
In addition, attributes can be assigned to the elements. The following example
contains contact information data:

<?xml version="1.0"?>

<contact type="business">

<name>Peter Miller</name>

<email>peter@company.com</email>

</contact>

Unlike browsers accepting sloppily written HTML pages, every XML docu-
ment has to strictly obey the syntax rules in to be accepted by an XML parser.

The features of XML are extremely simple and on first sight, it is not clear
how such a simple format can be beneficial. A study conducted by the Gartner
Group estimated that 35-40% of the programming budget of a typical com-
pany are spent on proprietary solutions that format documents or create lists
for exchanging data between different databases and applications. Obviously, a
simple, globally used way of writing down information is a great help when deal-
ing with such issues. XML relieves developers from tasks like writing parsers,
dealing with special characters and escape sequences, and labeling data.

Namespaces The purpose of namespaces is to be able to use elements from
different XML vocabularies in one document. Let us assume there is a document,
which contains medical information about patients. All elements containing the
patient’s contact information can belong to the namespace contact, for exam-
ple <contact:telephone>. Medical information is allocated to the namespace
”med” such as <med:organ>. The accounting software can now read the docu-
ment and pick out the contact tags alone, in order to address a letter. However,
a search engine for doctors uses only the elements relevant to medicine. Names-
paces make it easier to use simple XML software components in any possible
scenario, such as the management of addresses. A namespace is defined within
an attribute of the root element.

<x xmlns:edifact=’http://www.edi.org/edifact#’>

<edifact:price units=’Euro’>32.18</edifact:price>

</x>

This example defines the edi-namespace. A URI identifies the name-
space. Documentation could be found here, however, this is not neces-
sary. The URI simply constitutes a string that identifies the namespace.

49

In a way, namespaces provide a mechanism for shorthand notations of el-
ement names. Consider edifact:price which is a shorthand notation for
http://www.edi.org/edifact#price. Unfortunately this mechanism cannot be
applied to values, a feature that would be nice to have especially in the Seman-
tic Web context. As pointed out in [70], a possible workaround for this is using
XML entities defined in a local Document Type Definition (DTD). An entity
is denoted by &entity-name; and basically serves as a text module. Similar
to the macro preprocessor facility well known in the C programming language,
every occurrence of the entity within the document is replaced with the text
assigned to the entity. Consider the following XML document:

<?xml version=’1.0’?>

<!DOCTYPE edifact:Example [

<!ENTITY edifact ’http://www.edi.org/edifact#’>

]>

<edifact:example xmlns:edifact="&edifact;">

<edifact:element edifact:att="&edifact;att-value" />

...

</edifact:example>

The local DTD defines the entity &edifact; which is used
in both the definition of the namespace and within the attribute
value. The string &edifact;att-value is hereby expanded to
http://www.edi.org/edifact#att-value. This method allows using
the namespace prefix for element and attribute values also. The fact that this
awkward workaround needs to be used in some situations is currently subject
of active discussion in the RDF and Semantic Web standards efforts.

XML Schema XML Schema allows restricting the structure and vocabulary
used in XML documents. The schemata themselves are written in XML as the
following small example demonstrates.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="contact">

<xsd:complexType>

<xsd:element name="name" type="string" />

<xsd:element name="email" type="uriReference" />

</xsd:complexType>

</xsd:element>

</xsd:schema>

A so-called validator can then check if a document is valid with respect to
a schema referenced from the document. This is an interesting feature that
simplifies the exchange of documents. Participants of a B2B trading system
could collaboratively define a schema. The integrity of incoming documents can
then be checked by a standard piece of software. It is important to note that
the development of the application is easier if, with a positive answer from the

50

XML validator, a certain degree of error checking is not necessary anymore.
This cuts costs and at the same time makes the application essentially more
robust. In this case a similarity to database applications can be seen. Any good
database schema, using key references and integrity constraints, will guarantee
that the data has a certain level of quality. Considering the example above, you
can rely on a contact element having a name and an email field, for example.
Technically a document specifies the URL of the schema it claims to be valid
against in the schemaLocation attribute:

<contact xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="contact.xsd">

...

5.3 Data Layer

The Resource Description Framework (RDF) is at the core of the data layer.
We also included an introduction to RDF Schema in this section, even though
some people argue that RDF Schema is already an ontology language since it
allows to provide webized and extensible definitions of shared concepts and their
relationships. Staab et. al. for instance use a small extension to RDF Schema
for modeling ontologies [133].

5.3.1 Resource Description Framework

RDF is a framework for metadata and the most basic mark-up language in the
context of the Semantic Web [97]. The core idea is that everything is treated
as a URI. A person, for instance, could be denoted by her or his homepage.
When talking about Ora Lassila, we might use the site http://www.lassila.org;
a desk in some office might be referenced via the company’s inventory list as
http://xyz.com/inventory#K4622-ERF. In the RDF terminology, these things
are called resources. It is then possible to make statements about the resources.
If Joe is Peter’s brother, we could state this as the following subject, predicate,
object triple:

Subject: http://www.mit.edu/~joe/

Predicate: http://www.cogsci.princeton.edu/~wn/isBrotherOf

Object: http://www.mit.edu/~peter/

In RDF, this subject, predicate, object triple is written as follows:

<?xml version=’1.0’?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:wn="http://www.cogsci.princeton.edu/~wn/">

<rdf:Description rdf:about="http://www.mit.edu/~joe/">

<wn:isBrotherOf

rdf:resource="http://www.mit.edu/~peter/" />

51

Boston

http://www.mit.edu/~joe/

http://www.mit.edu/~peter/

i
s
B
r
o
t
h
e
r
O
f

l
i
v
e
s
i
n

Figure 5.3: Every RDF triple is an arc in a directed labelled graph with resources
as the nodes.

</rdf:Description>

</rdf:RDF>

Note that the isBrotherOf predicate is a URI pointing to a version of the
Princeton Wordnet lexical database project3. In Wordnet, a concept brother
can be found. Different URIs can specify other meanings of brother, such as
monk. Consequently, the pre- and postfix denotes the relationship of being
someone’s blood brother. Even though this is somewhat clumsy, there is a
specific reason for choosing Wordnet as the predicate namespace. Due to the
wide acceptance and popularity of Wordnet, we can assume that many agents
can correctly interpret our statement.

Consider another example, the statement that Joe lives in Boston. Again we
present the subject, predicate, object as well as the native RDF representation:

Subject: http://www.mit.edu/~joe/

Predicate: http://www.schema.org/rdf/livesin

Object: Boston

<?xml version=’1.0’?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:schema="http://www.schema.org/rdf/">

<rdf:Description rdf:about="http://www.mit.edu/~joe/"

schema:livesin="Boston"

/>

</rdf:RDF>

The first difference is that the predicate comes from another namespace.
Secondly, the object is a simple string or literal, rather than a resource. If
another statement also uses the string Boston as its object, it would be up
to the application to decide, if the city of Boston, or maybe a project with
codename Boston is meant. Further technical aspects of RDF, for instance
various forms of abbreviated XML syntax, can be found on the respective W3C
portal site4.

3http://www.cogsci.princeton.edu/∼wn/
4http://www.w3.org/RDF

52

3.0

c

i
n
C
o
u
r
s
e

g
r
a
d
e

S

t
o
o
k

Figure 5.4: RDF uses anonymous intermediate nodes for representing relation-
ships with an arity greater than two.

Since further statements about Joe, Peter, and other resources can be made,
we eventually end up with a directed labeled graph. This graph is shown in
figure 5.3. The resources are the graph nodes and the statements define the
edges.

Non-binary Relations Mapping the binary relations to a directed labeled
graph is quite intuitive. The question arises, however, how relations with higher
arity are to be represented. This is a quite common case in relational data-
modeling for instance. Consider the example of a student enrolling in a course
and then getting a grade for it. In this case, enrollment is a ternary relation-
ship, since the grade is neither assigned directly to the student nor directly to
the course. The grade is associated to the student-course relation and a tuple
(S, C, 3.0) denotes that student S got a 3.0 in course C. RDF uses the so-called
anonymous resources for this case:

<rdf:Description about="http://.../S">

<uni:took rdf:parseType="Resource">

<uni:grade>3.0</uni:grade>

<uni:inCourse resource="http://.../C" />

</uni:took>

</rdf:Description>

Figure 5.4 shows the RDF graph for this enrollment example. The RDF
graph illustrates how the three nodes are connected by binary relations via the
anonymous middle node. This modeling approach is also known from relational
databases. The ER diagram from figure 5.5 contains an explicit enrollment
table, even though this was not mentioned in the problem specification. Nat-
urally, this relation contains the grade attribute. Just like more attributes can
be added to this table, more resources can be linked from the anonymous RDF
resource to model n-ary relations. There is no clean way to represent a unary
relation in RDF. A simple workaround that can be applied is to attach a dummy
object such that the unary relation becomes binary again.

Collections Besides resources and literals, RDF also supports collections as
an object type. The RDF recommendation specifies bags, alternatives, and

53

Student

PK
 StudentID

...

Course

PK
 CourseID

...

Enrollment

PK,FK1
 SID

PK,FK2
 CID

grade

Figure 5.5: ER model corresponding to the RDF graph in figure 5.4.

Tent

rdf:Bag

r
d
f
:
t
y

p
e

_
1

Backpack

S

_
2

Figure 5.6: RDF addressing schema for the elements of a collection.

sequences. No order is defined in a bag whereas the order does matter in the
sequence. If the object is an alternative, it means that the actual single value is
one of the items listed in the alternative collection. The syntax is similar to the
ternary relation example above. It also uses nested XML elements to denote an
intermediate resource, i.e. the bag in the example below. The arcs connecting
the items of the collection are assigned the pseudo labels 1, 2, and so on. The
corresponding RDF graph is shown in figure 5.6.

<rdf:Description about="...">

<s:bring>

<rdf:Bag>

<rdf:li>Tent</rdf:li>

<rdf:li>Backpack</rdf:li>

</rdf:Bag>

</s:bring>

</rdf:Description>

Reification With reification, we can use an RDF statement itself as the ob-
ject of another statement. This sounds somewhat strange at first, however this
scheme allows for a powerful feature: one can make statements about state-
ments as depicted in figure 5.7. For instance, consider the referenced statement
to be: ”Jack is the murderer”, and the outer subject and predicate to be: ”De-
tective believes”. The entire compound would then be: ”The Detective believes
that Jack is the murderer”. This is definitely an interesting feature, especially
considering that RDF fragments might be collected from anywhere on the Web.

54

Figure 5.7: RDF Reification mechanism: a statement can itself be the object of
another statement.

In these cases it is definitely a good idea to have a native mechanism for the
representation of such meta statements. Denzinger provides some nice ideas on
how to deal with contradiction, missing, and wrong information when reason-
ing is done on the Web [31]. Reification would definitely support many of the
algorithms that are proposed there.

However, reification is a quite controversial issue. We believe that it is too
advanced of a feature to be placed in a language, which is located within one of
the basic levels in terms of functionality. Like any other RDF fact, reification
statements are also triples. Consequently, they can also be stored in any RDF
database. However, an RDF query language as well as its implementation in
an RDF storage system should explicitly support reification without leaving
the application to interpret the base and reification facts on a pure triple level.
A recent survey on RDF storage systems and associated query languages [51]
shows that only one out of six RDF query languages, namely TRIPLE, explicitly
supports reification. A similar picture can be seen for storage and query engines
that implement one of the query languages. Out of fourteen implementations,
reification is also only supported by the TRIPLE engine. Detailed information
on TRIPLE is provided in section 5.5.3.

Where is RDF stored? RDF is serialized using XML syntax. Like any XML
document, RDF might only be a stream of bytes traveling from one application
to another via the network. In this case, the stream will most likely be generated
dynamically by a web application exposing some dataset in RDF format. This
is comparable to SOAP messages containing information coming from a central
database, for instance. RDF can also be stored in static files, separately or, if
statements about an HTML website are being made, within the head tag of the
website. Sean B. Palmer collected several approaches for embedding RDF in
HTML on the Infomesh website5.

Why not use XML? A frequently asked question on RDF is concerned with
why RDF is needed on top of XML to begin with. After all, that statement
that Joe lives in Boston can be encoded directly in XML, for instance within
the following two examples:

5http://infomesh.net/2002/rdfinhtml/

55

<contact>

<id>http://www.mit.edu/~joe/</id>

<livesin>Boston</livesin>

</contact>

<livesin>

<who>http://www.mit.edu/~joe/</who>

<where>Boston</where>

</livesin>

One can easily come up with several other variants, all of them making sense
to humans. However, to an application, they are just hierarchical datastructures
and it is not really clear how the values are related to each other. The simple
reason for inventing RDF was to provide a standard way of writing down such
simple statements.

Another argument for RDF is the fact that data in any form can be broken
down into a representation as a directed labeled graph, as we have seen in the
paragraph on modeling non-binary relations. XML on the other hand, supports
only hierarchical structures, clearly causing problems when n to m relations are
to be represented. If students are enrolled in many courses and many students
can in turn attend courses, clearly, a hierarchical representation must introduce
redundancy, no matter which way one looks at it. Similar to the RDF addressing
scheme of using URIs as identifiers for resources, XML also has the notion of
ID attributes that would, in principle also allow to model graphs. This feature,
however, is hardly used at all in the XML world.

Notation 3 Notation 3 (N3) is an increasingly popular alternative seriali-
zation syntax for RDF graphs6. It is motivated by the fact that the XML
versions of these graphs are usually quite hard to read. While N3 is basically
equivalent to RDF in its XML syntax, it is easier to read and write.

N3 files begin with the declaration of namespaces, identified by the prefix
keyword. These are followed by a list of statement groups, which are termi-
nated by periods. Within each group, all statements refer to the same subject
specified at the beginning. Each subject s is followed by one or more semicolon-
delimited predicate object pairs (pi, oi). These are then combined to the state-
ments (s, p1, o1), (s, p2, o2), Along the same lines, a subject predicate pair
(s, p) can be followed by several comma-delimited objects (o1, o2, ...). This then
translates to (s, p, o1), (s, p, o2), N3 distinguishes between URIs and literals
by delimiting them with angle brackets and quotes respectively. The following
lines show the N3 version of the example from the RDF section. The notation
is more compact and also easier to read.

@prefix wn: <http://www.cogsci.princeton.edu/~wn/> .

@prefix sc: <http://www.schema.org/rdf/#> .

6http://www.w3.org/DesignIssues/Notation3.html

56

<http://www.mit.edu/~joe/>

wn:isBrotherOf <http://www.mit.edu/~peter/>;

sc:livesin "Boston".

N3 also has a rules part to it which will be outlined in section 5.6.2

5.3.2 RDF Schema

RDF Schema (RDFS) takes the logical next step and provides a type system
for RDF graphs. It allows defining a class inheritance hierarchy, with multi-
ple inheritance being explicitly supported. Following the principle that URIs
represent everything from simple instances to complex concepts, they are also
used to identify classes. RDFS also uses the subject, predicate, object triple
notation. The following statements, for instance, 1) declare the class student as
such, 2) declare the class student as a subclass of person and 3) identify Joe as
an instance of the class student:

Subject: http://www.mit.edu/types#Student

Predicate: http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Object: http://www.w3.org/2000/01/rdf-schema#Class

Subject: http://www.mit.edu/types#Student

Predicate: http://www.w3.org/2000/01/rdf-schema#subClassOf

Object: http://www.schema.org/rdfs/types#Person

Subject: http://www.mit.edu/~joe/

Predicate: http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Object: http://www.mit.edu/types#Student

The strength of this mechanism is the ability to cross-reference other
schemata by exploiting the possibility to point to any class defined in any other
schema via a URI mechanism. The example is a fictious schema about stu-
dents developed at MIT. The second statement defines the class student by
subclassing person, which is defined in a general schema from a higher-level
entity. As far as the syntax is concerned, RDF Schema is simply a set of RDF
statements that use schema vocabulary like type, subClassOf, or Class. The
explicit RDF serialization is therefore omitted since it works exactly like the
example shown in the RDF section above.

Besides class and instance definitions, RDF Schema also allows for the
definition of predicates. The example above uses predicates from the given
W3C namespaces. The examples of the RDF section above, however, refer-
enced predicates like livesIn. In RDF Schema, custom predicates are defined
by specifying the predicate domain and range. The signatures of livesIn and
brotherOf could be (Person livesIn Literal) and (MalePerson isBrotherOf
Person). Note that literal denotes any kind of string, i.e. no URI. The fol-
lowing lines provide the definition of the isBrotherOf predicate in RDF no-
tation. In order to abbreviate the URIs, assume that the entity &wn; is as-

57

signed to http://www.cogsci.princeton.edu/ wn/ and that the entity &rdf; is
http://www.w3.org/1999/02/22-rdf-syntax-ns#.

<rdf:Description about="&wn;isBrotherOf">

<rdf:type resource="&rdf;Property"/>

<rdfs:subPropertyOf rdf:resource="&wn;isSiblingOf"/>

<rdfs:domain rdf:resource="&wn;MalePerson"/>

<rdfs:range rdf:resource="&wn;Person"/>

</rdf:Description>

The first line specifies the subject URI. In the second line, isBrotherOf is
defined as an RDF property. The subPropertyOf keyword allows establishing
a hierarchy of properties, just like subClassOf forms a hierarchy of classes. The
semantics are quite simple. If p is a subproperty of q, then q(A, B) implies
p(A, B). Finally, the last two lines within the description element defines that
only male persons can be brothers of persons.

Possible Applications One can already think of several useful applications
on the basis of RDF and RDF Schema. A frequently cited aspect is data inte-
gration. One simple prototype described on xml.com generates and integrates
RDF metadata of email messages and an address book7. While this is definitely
no breathtaking functionality, the article demonstrates that with a few lines of
code and some readily available RDF tools, a working system can be created
very quickly. Another application by Decker et. al. deals with Web searches[29].
RDF metadata is collected and stored in a central repository. Using a simple
inference engine, searches can be made more effective by leveraging synonyms
and including pages within a subcategory in a search for a broader category.
Again, the system’s architecture is quite simple and no major engineering effort
was necessary for its implementation.

Concept Maps RDF graphs often remind people of concept maps or related
topics, which are typically used to capture an expert’s view of a domain. This
is done in a very unformalized way by basically drawing a graph with important
terms as the nodes and linking those with linguistic associations. Figure 5.8
shows an example.

In s strict sense, concept maps cannot be considered a form of knowledge
representation, since they do not have defined semantics and no clear logical
syntax. The application of these structures is mainly within classroom applica-
tions. By underpinning a set of documents with a concept map and by providing
hyperlinks from the map to the individual documents, students were found to
learn important concepts much faster [21]. Carr et. al. use similar methodology
to generate hyperlinks for a given document [22]. In a more general sense they
can be seen as a tool for aiding inter-personal collaboration.

Techniques similar to Concept maps are topic maps, concept spaces, or mind
maps. What is interesting from a Semantic Web point of view is that there

7http://www.xml.com/pub/a/2000/08/09/rdfdb/

58

Atmosphere

Ozone

Layer

is

f
o
r
m
s

in

Gas

beneficial
 Stratosphere
in

Figure 5.8: A concept map on Ozone.

actually is an ISO standard and an associated XML DTD for serializing topic
maps8. However, concept or topic maps should not be confused with RDF.
RDF can be a vehicle for representing them. This is, however, the only direct
relationship.

5.4 Ontology Layer

The ontology layer arguably is the central and most important piece in the
Semantic Web framework. It provides the vocabulary for the data layer and it
is also the base for the logic layer in that rules refer to concepts and relations
defined in the ontology. The goal is to provide a language that can be used
for applications that need to understand the content of information instead of
just understanding the human-readable presentation of content. Compared to
RDF Schema, ontology languages provide additional vocabulary for describing
concepts and relations.

Two major representatives can be found in this section, DAML+OIL and
the recently published follow-up, the W3C Web Ontology Language.

5.4.1 DAML+OIL

As the name suggests, DAML+OIL9 is the joint result of two originally separate
projects. The DARPA Agent Mark-up Language (DAML) program formally be-
gan in August 2000. The goal was to develop a language on top of XML and
RDF that would provide a powerful way to describe objects and their relation-
ships to other objects [82]. The Ontology Interchange Language or Ontology
Inference Layer (OIL) project10 in turn is a similar effort funded by the Euro-
pean union [52]. Both projects quickly joined forces and released the first joint
specification at the end of 2000.

Technically, DAML+OIL bases on description logics. A specific description
logic is mainly characterized by a set of constructors that allow to define complex
classes and roles from basic ones. The classes are hereby treated as sets of
objects. The roles in turn are binary relations between objects.

8ISO 13250, http://www.topicmaps.org/
9http://www.daml.org

10http://www.ontoknowledge.org/oil/

59

Class Constructs DAML+OIL picks up some of the commonly used descrip-
tion logic constructors, such as disjointWith, which identifies that a class has
no instance in common with another class. Consider the following example
taken from the DAML+OIL website11 where the class Female is defined to be
a subclass of Animal and to be disjoint with the class Male:

<daml:Class rdf:ID="Female">

<rdfs:subClassOf rdf:resource="#Animal"/>

<daml:disjointWith rdf:resource="#Male"/>

</daml:Class>

Along the same lines, a class TallMan can be defined as the intersection of
the classes TallThing and Man:

<daml:Class rdf:ID="TallMan">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#TallThing"/>

<daml:Class rdf:about="#Man"/>

</daml:intersectionOf>

</daml:Class>

Note that the class inheritance mechanism is taken from RDF Schema, how-
ever, the new disjointWith and intersectionOf constructs come from the
DAML namespace set to http://www.daml.org/2001/03/daml+oil#. Other
constructs that define the relationship between two classes by making state-
ments about their instances are unionOf, disjointUnionOf, intersectionOf,
complementOf, and sameClassAs. Besides by referring to other classes, prop-
erties can also be used to construct more complex classes. Consider the class
TallThing being defined as things whose hasHeight property has the value
tall:

<daml:Class rdf:ID="TallThing">

<daml:sameClassAs>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasHeight"/>

<daml:hasValue rdf:resource="#tall"/>

</daml:Restriction>

</daml:sameClassAs>

</daml:Class>

The example defines TallThing to be equivalent to an anonymous class
defined by the restriction. This anonymous class is the class of all things that
satisfy the restriction of having tall as the value of the hasHeight property.
Since TallThing is equivalent to this anonymous class, the restriction will hold
for all members of TallThing. Note that using the sameClassAs construct
is semantically different from subClassOf. The subClassOf relationship, on

11http://www.daml.org/2001/03/daml+oil-walkthru

60

the one hand, allows the following conclusion: if subClassOf(A, B) ∧ (a ∈
A), then (a ∈ B), i.e. every TallThing must also have tall as its height,
however, things with tall height do not necessarily have to be a TallThing.
The sameClassAs construct, on the other hand, allows to defer the following
statement: if sameClassAs(A, B) ∧ (a ∈ A) ∧ (b ∈ B), then (a ∈ B) ∧ (b ∈ A),
i.e. the set of tall things is exactly the set of things with tall as the value of
the hasHeight property.

Property Constructs DAML+OIL provides additional constructs to pro-
vide the ability to further describe properties defined in RDF Schema. The
ObjectProperty and DatatypeProperty allow distinguishing between proper-
ties that have objects and primitive datatypes as their range. Rather than
simply denoting all data values as literals as it is done in RDF, DAML+OIL
references the rich set of primitive data types defined in XML Schema.
For instance, the property shoesize would be defined as a subPropertyOf

DatatypeProperty. Another construct, the UniqueProperty implicitly defines
the cardinality to be exactly one. If P is a UniqueProperty, then P (x, y) and
P (x, z) implies y = z. The UnambiguousProperty has a similar effect for the
property’s domain: if P (x, y) and P (z, y) then x = z. Like its name suggests,
subclassing from the DAML+OIL TransitiveProperty marks a property as
transitive, i.e. P (x, y) and P (y, z) implies P (x, z). Finally, the inverseOf con-
struct allows to define a property as the inverse of another property. WorksFor,
for instance, could be defined as being the inverse of employs. Further-
more, a property’s cardinality can be set to an exact range with cardinality,
minCardinality, and maxCardinality.

Note that this section does by no means provide a comprehensive list of
DAML+OIL features. For instance, it is possible to define custom data types by
extending the basic XML Schema definitions and to define equivalence between
classes. The most important concepts, however, have been outlined.

5.4.2 Web Ontology Language

The Web Ontology Language (OWL) is currently being designed by a W3C Web
Ontology Working Group. It can be considered the successor of the DAML+OIL
effort, since DAML+OIL was officially turned in as a submission to W3C in
September 2001. Therefore, the goals of OWL remain the same. One feature
of OWL is notable, however. It is the introduction of OWL Lite, a simplified
version of the language. The idea behind OWL Lite is that the step from RDF
and RDF Schema to OWL might be too big for tool developers. OWL Lite is
thought to have a useful set of base features that are easy enough to imple-
ment. This is an important point, since the availability of tools is a necessary
prerequisite for successful adoption of standards.

OWL Lite uses a subset of the full OWL language constructors. Classes can
only be defined in terms of named superclasses, i.e. the use of anonymous classes
defined by restrictions is not possible. Similarly, property restrictions in OWL

61

Lite use named classes. Furthermore, the cardinality mechanism is limited to
cardinalities of zero and one.

5.5 Query Languages

Even though query languages are an integral part of any data processing en-
vironment, there are no established standards yet. Several approaches have
been proposed up to now. According to Karvounarakis et. el.[88], these can be
roughly grouped into the following categories: Some languages like RDFPath
emphasize the graph structure of the RDF data and use mechanisms similar to
XPath12, a query language originally designed for selecting information from
XML trees. Other alternative proposals like SquishQL borrow many syntax
elements from the structured query language (SQL) and view RDF data as a
collection of statements. Other approaches base on the object query language
(OQL), Lisp (VERSA), and Frame Logic (TRIPLE). Work on a query language
for DAML, the DAML Query Language (DQL), is currently work in progress.
An initial abstract specification has been published13, however no formal syntax
is defined yet.

Since it is nearly impossible to list and explain all query approaches, the
sections below focus on three representatives. We chose RDFPath, RQL, and
TRIPLE for reasons of popularity and in order to show approaches that are
quite different in nature.

5.5.1 RDFPath

RDFPath picks up the graph traversal ideas also found in the XPath XML query
language, the Lore system[111], and related work in the area of semi structured
databases. Starting from a so-called primary selection of resources in the RDF
graph, location steps identify a set of resources, which are reachable via one
step from the starting set. The location step child() denotes all children, i.e.
resources linked via any arc. Similarly, child(dc:creator)/child(vCard:FN)
would be the set of resources reachable from the context via an arc labeled
with dc:creator and a second arc labeled with vCard:FN. Other location steps
include constructs for identifying elements of RDF containers and the prop-
erty labels themselves. Finally, filters can be used to restrict the possible paths
that can be taken: [child(dc:creator) = "Karl Mustermann"] selects all re-
sources of a given set of nodes that have a dc:creator child with the string rep-
resentation ”Karl Mustermann”. The concepts and the syntax are very similar
to XPath. Of course the difference is that instead of trees, which are hierarchical
directed labeled graphs, general directed labeled graphs are being traversed.

12http://www.w3.org/TR/xpath
13http://www.daml.org/2002/08/dql/dql

62

5.5.2 RQL

RQL was developed within the On-To-Knowledge EU project [88]. It uses SQL-
like query expressions like the following:

select T

from Painting{X}.title{T}, {Y}created{C}

where X=Y and C>"1930"

Several syntax elements are being displayed here. The term
Painting{X}.title{T} denotes that the titles of all resources of type paint-
ing should be selected. The second term in the from clause {Y}created{C} is
joined. Since X and Y must have the same value, this is an equi-join. The tuples
can be filtered further by specifying conditions like D>"1930".

RQL bases on RDF Schema semantics with respect to its type system.
Hence, if a class oil painting were defined to be a subclass of painting, the oil
paintings would also be returned by the query. A potential RQL implementer
would have to take care of the transitivity of the binary predicate subClassOf,
which RQL inherits from RDF Schema.

5.5.3 TRIPLE

TRIPLE is a very interesting project by Stefan Decker and Michael Sintek14,
since in a way it is a query language, a rule language, and also an inference
engine. It is the successor of the Simple Logic-based RDF Interpreter (SiLRI)
and therefore closely related to Frame- or F-Logic[90]. F-Logic combines the
strengths of both the object oriented data model with its rich data modeling
capabilities and deductive database languages with their clear semantics and
expressiveness.

Similar to N3, namespaces and even abbreviations to lengthy names can be
defined as follows:

rdf := "http://www.w3.org/1999/02/22-rdf-syntax-ns#".

isa := rdf:subClassOf.

Statements are written in the form subject[predicate->object]. The
first feature that distinguishes TRIPLE from other approaches is the support
for models. The plain statement notation can be augmented with a suffix to
indicate the model it is in: subject[predicate->object]@model. A second
unique feature of TRIPLE is its support for reification. The object can be re-
placed by another statement placed in angle brackets: s1[p1-> <s2[p2->o2]>].
The following example shows how F-Logic rules can be embedded. A couple
of statements using Dublin core vocabulary are augmented by a rule stating
that a document qualifies for a keyword search if it has a dc:subject relation
to the keyword. The query search(X, "RDF") would then bind the resource
dfki:d 01 01 to X.

14http://triple.semanticweb.org

63

@dfki:documents {

dfki:d_01_01 [

dc:title -> "TRIPLE";

dc:subject -> "RDF";

...

].

FORALL S,D search(S,D) <-

D[dc:subject -> S].

}

Conventional approaches use built-in semantics. This means, a system that
is based on the RDF Schema semantics, for instance, is therefore not suitable
for Topic Maps or UML. TRIPLE allows different semantics to be adopted via
parameterized models. In a parameterized model, the semantics can be specified
in a declarative way using F-Logic rules. This mechanism allows the flexibility
of adopting different semantics on the fly. The sample rule below defines the
semantics of the RDF Schema subPropertyOf predicate in a declarative way
by stating that if S is a subPropertyOf P and some resource O is connected to
V via the property S, then they are also connected via the property P .

FORALL O,P,V O[P->V] <- EXISTS S S[subPropertyOf->P] AND O[S->V].

If the semantics cannot be entirely declared via rules, as it is the case for
description logic-based languages like DAML+OIL, external engines can be at-
tached to the TRIPLE system.

TRIPLE is both a query language and an inference system. Therefore,
section 5.5.3 will outline the more implementation-oriented aspects.

5.6 Logic Layer

The logic layer is definitely related to query languages, since a query Q can be
interpreted as the rule: if Q is true for variable assignment A, then print A.
The latest representative in the query language section also being a rule system
is a result of this fact.

The rule or logic layer sits on top of the RDF data and the RDFS / OWL
ontology layers. Even though no W3C recommendation specifically deals with
these aspects, we believe it is crucial for making Semantic Web technology
useful. Several authors also support this view [76, 29, 133]. It is the rules that
encode common knowledge about an ontology’s concepts and actually allow for
computations to happen. A simple example would be a rule stating that people
living in an US city also live in the US itself. For humans, this is a trivial
conclusion to make, however, it is not trivial at all for a computer program.
The simple rule livesIn(x, z)← livesIn(x, y)∧partOf(y, z) captures such basic
knowledge in a declarative way and allows the machine to defer this additional
piece of information.

64

Integrity Constraints

Reaction Rules

Derivation Rules

Facts

Figure 5.9: The top-level RuleML hierarchy.

In this section we will describe three representatives. First, the RuleML
initiative is presented. It aims at developing an interchangeable XML-based
syntax for rules. After this, the rule part of the popular Notation3 is shown.
Finally, we outline the efforts of the Java Rules committee, which is working on
bringing the logic world closer to the mainstream of iterative and object-oriented
languages.

5.6.1 RuleML

One of the most promising candidates for rule mark-up standards is the
RuleML[14] language. In the spirit of the Semantic Web and the view that
an ontology is the combination of a backbone taxonomy, axioms, and rules,
the RuleML initiative establishes an XML-based structure for exchanging rules.
RuleML identifies the rule categories shown in Figure 5.9 and aims at building
modular syntactical definitions for them.

• Reaction rules or Event Condition Action (ECA) rules get activated by a
certain event, then check their condition, and possibly perform an action.
Therefore, general reaction rules can only be executed in a forward fashion,
i.e. the sequence of steps just outlined.

• Integrity constraints can be viewed as special reaction rules whose only
action can be to flag an inconsistency in the data set. The execution of
integrity constraints is the same as for general reaction rules.

• Derivation rules are also reaction rules in that their action is to assert
new information if the rule premise is true. Note that RuleML does not
prescribe whether this should be done in a forward chaining fashion, i.e.
working upwards from base facts to the goal, or backward chaining fashion,
i.e. working downward from the goal.

• Finally, simple facts can be viewed as a rule with an empty, i.e. true,
premise.

The XML syntax is fairly straightforward to understand. The rule compo-
nents like atoms, variables, and relations are embedded in the respective XML

65

elements. RuleML defines a DTD, which allows an application to check the
syntactical correctness of the ruleset with a standard XML validation tool. The
DTD version is 0.8. In this version, RuleML is similar to datalog. Consider the
example given in the section above:

<?xml version="1.0" standalone="no" ?>

<!DOCTYPE rulebase SYSTEM

’http://www.dfki.uni-kl.de/ruleml/dtd/0.8/ruleml-datalog.dtd’>

<rulebase>

<imp>

<_head>

<atom>

<_opr><rel>livesIn</rel></_opr>

<var>x</var>

<var>z</var>

</atom>

</_head>

<_body>

<and>

<atom>

<_opr><rel>livesIn</rel></_opr>

<var>x</var>

<var>y</var>

</atom>

<atom>

<_opr><rel>partOf</rel></_opr>

<var>y</var>

<var>z</var>

</atom>

</_body>

</imp>

</rulebase>

It is planned to extend the RuleML syntax to Horn logic and to webize
the language by allowing to reason over objects identified by URIs. This will
also include the ability to introduce an ontology’s type system into the rules by
linking the rule relations, constants, and variables to the respective properties
and classes found in the ontology. Grosof and Poon already suggest a possible
syntax [70]. Grosof and Horrocks as well as Volz et. al. also present initial
work on the DAML Rules project which aims at combining description logics
and logic programming [68]. Outside the Semantic Web context, this approach
as originally adopted by the CARIN system [100]. Our developments, which we
will present in sections 8.1 and 8.2, regarding basing RuleML on RDF Schemata
go in the same direction. Furthermore a RuleML working group is currently
dedicated to developing a reaction rule extension. An interesting issue regarding
the manageability of a rule set are courteous logic programs where a more

66

specific rule added at a later point in time can override more general rules [69].
Benjamin Grosof also did some interesting work in this area and provides a
working system called SweetJess [67]. The work of Antoniou provides the basis
of integrating prioritized rules with description logics [5]. These directions of
research are likely to influence or to be included in future RuleML versions.
RuleML is supported by a growing number of software tools. The TRIPLE and
MANDRAX engines [84], for instance, provide inferencing support for RuleML
rule bases.

5.6.2 N3 Rules

Besides giving an alternative notation for RDF graphs, N3 also includes a simple
rule syntax. The predicates for implication, existence, and forall quantification
are located in the namespace http://www.w3.org/2000/10/swap/log#. Similar
to XML namespaces, a default namespace with the empty prefix can also be
defined. As a basis for rules, N3 introduces syntactical constructs like {:s :p

:o} which are called formulae. Note that this formula does not state that the
triple (s, p, o) is true. Formulae are rather connected via predicates from the log
namespace. Consider the following example:

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

@prefix : <http://example.org/> .

this log:forAll :p, :q.

{ :p ont:inverse :q. } log:implies

{ this log:forAll :x, :y.

{ :x :p :y. } log:implies { :y :q :x. }

} .

This can be read as: the following is true for all combinations of p and q:
If p is the inverse of q, then for all x and y, (x, p, y) implies (y, q, x). N3 does
not make any statements about how these rules will be executed. Tim Berners-
Lee provides a reference implementation called CWM, which is described in the
survey section 6.4.2 on inference engines.

5.6.3 Java Rules JSR

Java Specification Requests (JSRs) are the initial phase in a process of estab-
lishing a standardized API for the three Java distributions, the micro, standard,
and enterprise editions. The, in the meantime, well-established Servlet speci-
fication, for example, also went through a JSR process. The Java Rules JSR
9415 aims at easing the integration of the various rule engines into existing Java

15http://www.jcp.org/jsr/detail/094.jsp

67

code. Currently this is a major obstacle for the development of rule based enter-
prise systems for workflow management. The Platform for Privacy Preferences
(P3P) project in browsers would also be a prime candidate for being developed
in a rule-based fashion. The goal is to provide a generic adapter, which will
allow various rule engines to be plugged into an application. Note that the Java
Rules initiative is solely concerned with providing ways to interact with the rule
engine’s memory as well as administrative functions like loading and unloading
a ruleset or starting and stopping the engine.

Java Rules are not concerned with rule syntax. Therefore, RuleML might
complement Java Rules since both technologies together would allow an appli-
cation not only to use different inference engines but also load different rulesets
for execution.

In our opinion, Java Rules is very promising work in progress. Currently a
prototype exists that connects JESS to a Java application via Java Rules.

5.7 Encryption and Digital Signatures

As we already stated in section 5.1, the proof and trust layers, as envisioned
in [12] or [138], are long term research goals. Nevertheless, we want to briefly
outline the status of the enabling technologies such as encryption and digi-
tal signatures. The current Internet security infrastructure is mostly based on
HTTP basic authentication and the secure socket layer (SSL). With basic au-
thentication, the client is challenged for a password upon requesting a restricted
resource. The username and passwords are simply base64 encoded and can be
read by anyone eavesdropping on the network traffic. Therefore, basic authen-
tication only makes sense in conjunction with SSL. SSL uses the public key
infrastructure to exchange a triple DES key which is then used for the further
communication [130]. The use of the public key mechanism is restricted to
the key exchange, since Triple DES can be processed faster. In conjunction
with server and potentially even client certificates, these technologies enable
the most basic security requirements of authentication, confidentiality, and in-
tegrity. Non-repudiation, i.e. the guarantee that a message really comes from
the entity one thinks it is coming from, can only be supported by adding a
digital signature.

In addition to this missing feature, especially for web services, it would
be desirable to be able to integrate intermediary brokers in a message chain.
With SSL, it is not possible to protect the message content from them, since a
message must be decrypted and encrypted again in order to be forwarded via a
different SSL session. There are several proposed standards looming in the XML
and web service communities, namely XML Encryption, XML Signature, and
SOAP Security extensions, which deal with mechanism for achieving transport
independent authentication, encryption, and signatures. A nice overview of the
current situation and tools is given in [65].

In any case, it is very likely that the W3C will publish a standard soon.
Within the long-term timeframe for the Web of trust, the encryption and sig-

68

nature standardization issues will therefore definitely not be an obstacle.

5.8 Web Services

Even though Web Services are not directly related to the Semantic Web, their
recent success made it the future de facto standard for Web-based remote pro-
cedure calls. This development prompted the Semantic Web community to
investigate ways in which the two technologies can be combined in useful ways.
Sections 5.8.4 and 5.8.5 look at the two most prominent developments in this
area, namely DAML-S and WSMF. Before that we will outline the history of
Web Services and briefly discuss some of the important technical issues.

5.8.1 The History of Web Services

After the Web’s initial phase of being a medium for convenient reading and
publishing static information, the popularity of Web applications has grown
enormously. Today, there hardly is a service or a good that is not available
online. Nevertheless, almost all of these services are geared towards human in-
teraction. The electronic data interchange (EDI) community had quite some
success in standardizing message formats for application integration; it is how-
ever impossible to develop a lightweight standard that serves a variety of appli-
cation domains. Therefore, EDI solutions are typically very specific to a certain
industry.

In 1998, the XML specification laid the foundation for more large-scale solu-
tions by defining a generic syntax for semi-structured data. Even though XML is
a very low level specification, the wide support is all kinds of software solutions
allows for much simpler and faster development of B2B or EAI software. Cur-
rently, existing EDI standards are being mapped to the XML world. EbXML
is one of the more prominent examples of this trend. Microsoft’s BizTalk server
also incorporates this approach. It acts as a message exchange hub that is able
to map different message formats into others. Internally, all incoming files are
converted to XML in order to be able to transform them using XSLT.

Apart from XML as being a data representation format, Web Services are
XML’s other major application area. Remote procedure calls basing on XML
data encoding and standard Internet transport protocols are believed to be the
silver bullet for lifting the Web to the next level: The programmatic exchange
of information between technically and organizationally completely heteroge-
neous systems. This is a point where traditional middleware like DCOM and
CORBA [118] failed already at a technical level. Despite some promising ap-
proaches on data integration like the one presented in [17], different vendors’
solutions proved to be incompatible. Furthermore, the lack of a universally
available infrastructure like naming services, security, and protocols, made a
wide-scale adoption impossible. Therefore, these middleware solutions are typi-
cally found in implementations of a distributed system, which is deployed under
the supervision of a single team of developers. This situation was disadvanta-

69

geous not only for customers, but also for core technology providers, since not
too much money can be made in the middleware market. This is one of the
main reasons for the previously unseen cooperation on XML middleware inter-
operability. The goal is to compete on the enterprise application level instead.

5.8.2 SOAP, WSDL, and UDDI

The W3C specified a stack of markup languages that cover all aspects nec-
essary for a distributed, dynamic, and service-oriented architecture. XML in
conjunction with XML Schema datatypes provides the basic marshalling and
unmarshalling mechanism. On top of this, the Simple Object Access Protocol
(SOAP) defines how messages can be packaged and sent to their destination.
SOAP also defines the concept of message headers containing management in-
formation that is not directly related to the actual message contents in the
body. Headers can include transaction or session information [128] for example.
Like every remote procedure call framework, Web Services also need an inter-
face description language. The Web Service Description Language16 (WSDL)
defines message types and error codes, but it also provides a binding mecha-
nism that identifies the exact URL a message has to be sent to in order to be
processed by the respective Web Service implementation. Finally the Universal
Description, Discovery and Integration (UDDI) standard establishes a standard
procedure to publish and query Web Services in a public repository17. In order
to enable flexible searches, repositories are able to store rich service metadata.
This includes basic contact information on the company hosting the service as
well as a taxonomic classification of both the service and the company accord-
ing to well-known classification systems such as NAICS, UNSPSC, or the ISO
3166 geographic taxonomies. From an ontological point of view, these well-
known taxonomies again provide a standard vocabulary, which is important for
publishing, searching, and discovering services. For instance a query could be
formulated that searches for all services offered by companies in the NAICS
education sector, which are located in the ISO 3166 region of North Dakota.

The Web Service standards stack of SOAP, WSDL, and UDDI allows for
business partners’ services being located and invoked at runtime. A supply
chain management system, for instance, can easily register a new trading partner
in a local UDDI repository. From there, the overall system can obtain the
service location and query prices or the availability of items in stock. The
seamless integration of these standards into development tools, most notably
Visual Studio .NET, allows for rapid product development.

Despite the recent advances on technical interoperability, it is still a dream
to invoke remote services in a completely automated fashion. In the supply
chain management example above, there needs to be some sort of standard-
ization body that specifies the interfaces for querying prices and availability.
These standards will then be represented by UDDI tModels. A new supplier’s

16http://www.w3.org/TR/wsdl
17http://www.uddi.org

70

services can only be invoked, if they follow the overall system’s tModel specifi-
cation. Commonly, this specification is given as a WSDL interface description.
In contrast to searching for a certain service type at runtime, the other com-
mon pattern is to use the UDDI registry as a design time service repository. A
developer can manually search for services, read the documentation, generate
proxies, and write code to invoke the services. Neither of the two approaches
allows for a completely automatic service invocation without a priori knowledge
about a certain tModel or without a human writing custom code for unknown
tModels.

Note that there is broad support in the industry for Web Services. As a
matter of fact, similar technologies that have been developed before are being
merged with the Web Service effort. An example are HP’s e-Speak business
to business technology tools that also provide an RPC infrastructure with a
UDDI-like company-wide service repository that is searchable via taxonomies
and keywords assigned to services. The current HP Web Services suite, formerly
known as e-Speak, is now entirely devoted to Web Services18.

5.8.3 WSFL and XLANG

Obviously the current language stack is mainly concerned with fairly basic fea-
tures required for remote procedure invocation. Issues like behavioral aspects,
quality of service, contractual issues, or business processes are completely uncov-
ered. Consequently, yet another set of languages is being developed to address
these issues. Many representatives can be named here, however we focus on
two languages. XLANG is a Microsoft specification, and an implementation is
available with Microsoft’s BizTalk Server19. The second representative is the
Web Service Flow Language (WSFL), which is an IBM specification. In turn, a
WSFL implementation is available through the Web Services Process Manage-
ment Toolkit20.

A goal of both languages is to provide a means of specifying how a to use
the functionality provided by a collection of Web Services in order to create a
composite service. Such a composite service description will then contain the
execution sequence or choreography of individual Web Services. This includes
descriptions of tasks, loops, branching tasks, merging tasks, and so on. Special
emphasis is devoted to the handling of transactions and exceptions.

The Web Service Endpoint Language (WSEL) is planned to complement
WSDL and WSFL in that it allows to capture properties of the provider. For
instance, it is possible to specify that potential callers must support a certain
encryption mechanism or that the service operator guarantees a maximum re-
sponse time of 20 seconds.

18hp web services platform: a comparison with hp e-speak:
http://www.hpmiddleware.com/downloads/pdf/espeak webservices.pdf

19http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm
20http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

71

5.8.4 DAML-S

Business process definitions are a step forward, but ultimately it is necessary to
capture what a service does on a conceptual level. UDDI addresses this issue to
some extent by allowing to classify services and companies according to standard
industry, service, and geographic taxonomies such as UNSPEC. However, it
would be preferable to use a widely accepted ontology for such tasks. Only this
will allow a software agent to inspect the description and invoke the service on
the fly, without any prior knowledge.

The DAML initiative described in section 5.4.1 created a subgroup working
on the DAML-Service (DAML-S) specification. DAML-S comprises an upper-
level ontology vocabulary for services [30]. It contains three major description
categories.

• The service grounding contains technical information required for access-
ing the service. DAML-S is not restricted to be used with Web Services
only, but can be used in conjunction with CORBA or KQML.

• The service model contains information on how the service works. This
includes pre- and post-conditions as well as a description of input and
output parameters. These descriptions link a parameter not only to its
datatype but also to an ontological term.

• The service profile describes what the service does. This information is
similar to XLANG and WSFL like process models.

McIlraith et. al. developed a small prototype of a travel portal that invokes
semantically tagged Web Services [112]. Other than that, DAML-S is work in
progress and no other prototypical implementations exist to our knowledge.

Many efforts aim at a further integration of Semantic Web and Web Ser-
vice technologies. A nice survey and feature comparison of DAML-S and re-
lated technologies like e-Speak and UDDI is available on the DAML website21.
Paolucci et. al. provide some initial ideas on semantically describing Web Ser-
vice capabilities ontologies [120]. These efforts were implemented in a prototype
which combines DAML-S and UDDI via a translation component [119].

5.8.5 WSMF

Within the Web Service Modeling Framework (WSMF), four major aspects are
identified [49]. Like DAML-S, ontologies are used as an integral part to enable
interoperability and a certain level of understanding among participating agents.
Secondly, WSMF contains goal repositories that define the problems that should
be solved by web services. A goal consists of pre- and post-conditions. For in-
stance, asking for the nearest restaurant requires, as a pre-condition, the ability
to specify the current location. In terms of the Web Service descriptions, the
third point is that WSMF makes a clear distinction between the internal Web

21http://www.daml.org/services/daml-s/2001/10/survey-f-release.pdf

72

Service structure and its externally visible interface. Fensel and Bussler argue
that a service, which is in a complex way composed of various other services,
can have a simple external interface. Many Web Service description languages
distinguish between elementary and complex Web Services, which implicitly
confuses internal process structure and external signature. Finally, a mediator
architecture is proposed to overcome interoperability issues which are, for in-
stance, caused by different invocation patterns on the client and server sides.
Similar to DAML-S, WSMF is also work in progress.

73

Chapter 6

Survey of Available

Resources

After having explained the rationale for basing our work on Semantic Web
standards and introducing the new technology in the previous two chapters, we
evaluate the current state of the Semantic Web. This has two aspects to it.
First of all, we have a look at the tools that have been and that are being devel-
oped by researchers around the world. Even though the Semantic Web has not
yet reached the regular development departments of major IT companies, the
amount of tools that has sprung up recently is quite amazing. Secondly, we also
want to check how much data is marked up using languages like RDF and RDF
Schema. We believe that the tools and the technology as such can only mature
if there is a large enough body of data to operate against. Our survey with
respect to sources of data is twofold. We look at big data- and knowledgebases
that are frequently used and referred to from projects in the Semantic Web
field. It is important to note here that in principle it does not matter whether
a certain ontology or data collection is available in a Semantic Web mark-up
language. The important aspects are that the collection is useful and publicly
available. Converting the representation from one format to another usually is
not the big problem. Apart from large dataset available from one organization,
we also did crawling experiments to see if the average Internet user has already
begun to use these new technologies. The results presented in section 6.2 show
that this is not yet the case but that there are also promising developments.
Finally, section 6.4 surveys the software tools available.

We want to point out that in this area, especially the tools are developing
very fast. We can only provide a snapshot which will be outdated fairly soon.
However, the information is useful to see where the strengths and weaknesses
lie and in which direction future research needs to be directed.

74

6.1 Data and Ontologies

The title of this section ”Data and Ontologies” again manifests the problem
of when something should be called an ontology. All of the projects cited here
qualify as ontologies in that they are well known and define a certain terminology
that is used in a large user community. Wordnet, for instance, can be considered
an ontology, even though the RDF Schema ontological part of it is very simple
and small compared to the data portion carrying the important information. In
turn, the UNSPEC product classification scheme is modeled as a huge taxonomy
of product and service classes and contains no data at all.

We do not want to discuss the pros and cons of both representations here.
This issue is addressed in section 9.1.1. Instead, we simply explain the most
prominent projects and briefly outline their potential use within Semantic Web
applications. Magkanaraki et. al. provide a more comprehensive list of related
projects [104].

6.1.1 Wordnet

WordNet is a lexical reference system developed at Princeton1. Nouns, verbs,
adjectives and adverbs of the English language are organized into synonym sets.
Each of these sets corresponds to an underlying lexical concept. The synonym
sets themselves are cross-linked via both lexical relations between word forms
and semantic relations between meanings. The relations used are antonymity,
hyponymity, and meronymity [113].

WordNet is a valuable resource due to its strong linguistic features and
its broad coverage of the English language. As we pointed out in the related
work chapter, it is used frequently in systems such as the Web Knowledgebase
(WebKB) [107] for performing shallow lexical analysis. Wordnet terms can fur-
thermore be used to provide a well-defined vocabulary for attribute ranges. For
instance, a photo annotation tool, described in [127], uses WordNet definitions
for possible color values. The Semantic Web community also realized WordNet’s
potential and an RDF version of it has been published on the SemanticWeb.org
portal2. The WordNet relations are captured and described in a corresponding
RDF Schema definition.

The site xmlns.com is devoted to providing fixed reference points acting
as crystallization points for a Web of metadata forming a global RDF graph.
Consequently, it provides URIs that can be used to refer to WordNet concepts in
an RDF way3. Note that these names show up quite frequently in the following
survey of today’s RDF resources. Section 6.2.1 provides more information on
this topic.

1http://www.cogsci.princeton.edu/∼wn/
2http://www.semanticweb.org/library/
3http://xmlns.com/2001/08/wordnet/

75

6.1.2 Open Directory

The Open Directory is the largest human-edited directory on the Web4. Un-
like other Web portal sites like Yahoo! or Web.de, the Open Directory adopts
an open source strategy. Currently over 50,000 volunteers manage the catalog,
organize the categories and review pages before including them. The popular-
ity of this project got a dramatic boost, when Google incorporated the Open
Directory project into its site.

Due to its open source character, the base data about the category structure
and the page classifications is freely available for download in RDF format.
Currently this comprises about 3.8 million sites and over 460,000 categories
making it the largest dataset available in RDF format. Obviously this is an
extremely valuable resource that allows a user, for instance, to classify his or
her own pages according to this popular scheme.

6.1.3 OpenCyc

Like the Open Directory project, OpenCyc is also an open source project and
therefore a freely available version of the Cyc knowledge base5. The Cyc project
aims at building a foundation of basic common sense knowledge via a huge
collection of concepts and assertions. The effort is characterized by its top down
ontology development approach, trying to establish a set of top-level concepts
to be used by other, more fine-grained ontologies. This is often referred to as a
standard upper ontology.

The usefulness of standard upper ontologies is discussed controversially. On
the one hand combining smaller specific ontologies with a general upper ontology
seems like a natural thing to do. On the other hand, the concepts are necessarily
extremely abstract and it takes quite some effort to get into the thought process
that went into their development, let alone trying to figure out how to use them
for one’s own application.

The OpenCyc distribution comes with a large ontology of 6,000 concepts
and 60,000 assertions as well as browsing, editing, and inference tools. An API
to connect OpenCyc with other applications is also provided.

6.1.4 Gene Ontology

The objective of the Gene Ontology project6 is to provide uniform vocabularies
for the description of gene products. It grew out of the desire to integrate the
many biological databases available from various research groups via the Web
today. Even though Gene Ontology does not solve the data integration problem,
establishing a shared vocabulary is the first step towards this goal.

Currently, the Gene Ontology consists of three logical components, which
model molecular functions, biological processes, and cellular components. These

4http://dmoz.org
5http://www.opencyc.org
6http://www.geneontology.org

76

can be viewed and edited via the DAG Edit software. This editor can be
equipped with an export module allowing the ontology to be represented in
RDF.

6.1.5 MusicBrainz

With the recent developments in Peer to Peer networking, especially the sharing
of MP3 files, the MusicBrainz project got some attention. It offers a Web-
enabled RDF version of the popular CD database (CDDB) [137]. CDDB is a
huge collection of information on artists, titles, music genres, and CD’s available
on the market. It is used as an online discography as well as a backend system
which MP3 players like WinAmp query in order to obtain metadata of the
track or CD currently being played. Like some of the other projects mentioned,
MusicBrainz adopts the open source approach and the information on close to
one million tracks is freely available. Another key feature is that contributions
are also open. Users can submit new information to MusicBrainz or correct
errors in the data set.

6.1.6 MIT Process Handbook

The MIT Process Handbook project collects information on how different orga-
nizations perform similar processes and represents them in an online database.
The goal is to provide a tool for redesigning existing organizational processes,
inventing new IT supported organizational process structures, and, as a long
term goal, generating business process software support automatically [106].
The first goal as been at least partly achieved since the handbook has been used
by consulting firms. As part of the SweetDeal effort, Grosof et. al. describe
how the MIT Process Handbook was converted to DAML+OIL [70]. Currently
only a smaller fraction of the around 10,000 classes have been converted into
Semantic Web format. Nevertheless, this is an interesting basis for marrying
knowledge-based computing with the area of business processes and workflow
management.

6.2 RDF Survey

Since RDF and the ability to state facts is the foundation of the Semantic Web,
a survey of how much RDF data can be found is of interest. RDF is definitely
used a lot by the Semantic Web research community; therefore, the survey is
more an indication to what extent the general public is starting to adopt the
technologies developed. It is also of interest to evaluate typically used predicate
namespaces in order to draw conclusions about the application areas. The
following text illustrates how the search was conducted and which tools were
used. The results are then presented in section 6.2.2 before an evaluation and
a summary are provided.

77

6.2.1 Collection of the Survey Data

We first did some initial experiments using the RDF crawler developed at the
University of Karlsruhe7. Given a starting URL, RDF Crawler recursively tra-
verses hyperlinks up to a specified search depth. RDF data found is stored in a
file on the local system. The experiments quickly revealed that it is not easy to
find RDF data on the Web. If the starting points for the search are not selected
carefully, a pure crawling approach might require an extensive amount of URLs
to be processed before any RDF data is found. Therefore we decided to pursue
four different strategies, which are outlined in the following paragraphs.

The first experiment was performed in December of 2001. With the software
and the search process in place, we reran the same experiment in August of 2002.
The main intention for this second run was to see if a significant increase could
be observed after the Semantic Web initiative got quite some public exposure
at that time. We plan to repeat the experiments in the future as well.

Crawling According to a study by Lawrence and Giles in 1998 [98], even
major search engines that continuously crawl the Web only achieve a coverage
of at most 17% of the static Internet pages. Due to the massive growth of the
Internet, this number is likely to have decreased even more [9]. With the limited
bandwidth and computing resources available to our study, it was only possible
to cover small islands of URLs. Nevertheless, we applied this approach, but
chose popular sites within the RDF community as starting points. Table 6.1
shows these URLs that were used in both search runs. A total of 12507 pages
within two hops of these URLs were processed in the first run. Two major RDF
collections, namely the Open Directory Project structure and content dumps
and the RDF version of the Wordnet lexical database project, were left out due
to their large size. A site related to the RPM software packaging tool8 also
contains a large number of RDF files describing software distributions. These
were only scanned in part. Since the choice of starting pages is very restrictive
and quite arbitrary, we decided to include the Google directory page on RDF
and its fifteen subordinate categories as well for the second run9. Similar to the
www.semanticweb.org pages, these contain a very complete set of links to all
sorts of RDF related sites. 31764 pages of this category were crawled during
the second run.

Open Directory In order to make sure that the breadth of the Web is some-
what captured, we searched URLs from the Open Directory project. During
the first run, 527408 URLs were extracted. Due to the massive growth of the
Open Directory project, within eight months, this number increased to 2912434.

7http://ontobroker.semanticweb.org/rdfcrawl/
8http://rpmfind.net/linux/RDF/
9The Google RDF directory can be found at http://directory.google.com under Reference >

Libraries > Library and Information Science > Technical Services > Cataloguing > Metadata
> Resource Description Framework. Note that the Google directory bases on the Open
Directory.

78

URL
http://www.w3.org/RDF/

http://wilbur-rdf.sourceforge.net/
http://www.daml.org/
http://www.lassila.org/

http://www-db.stanford.edu/∼melnik/
http://www-db.stanford.edu/∼melnik/rdf/api.html

http://www-db.stanford.edu/∼stefan/
http://www-db.stanford.edu/
http://www.semanticweb.org/

http://protege.semanticweb.org/

Table 6.1: Popular sites within the RDF community were chosen as starting
points for crawling

This comprises links from all categories, except for the adult pages. The URLs
obtained from this source are typically entry- or homepages. Due to the large
number of URLs, no more crawling was done from these sites. Obviously this
approach will not find standalone RDF data, residing is a separate file. How-
ever, we expected to find information about the website encoded in the HTML
page itself, as demonstrated by the following example:

<head>

...

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about=""

dc:title="Ora Lassila"

dc:description="Ora Lassila’s professional home page"

</rdf:RDF>

</head>

Targeted search Since the initial experiments indicated that RDF data is
hard to find, a more targeted search was conducted. Google allows searching
for pages with a certain string in the URL. Obviously a URL containing RDF
is more likely to contain some RDF data than a URL that does not. A small
parser was developed that extracts the URLs out of a Google HTML result page.
During the second run we used the newly available Web Service interface that
allows Google to be queried programmatically from a Java or .NET client10.
Leveraging the extensive Google database, a total of 1256 URLs were obtained
during the first run. Table 6.2 summarizes the number of URLs in each of
the three categories. There is a small overlap between the categories. Three
URLs where RDF data was found appear in both the RDF community and

10See http://www.google.com/apis/ for details

79

the Open Directory categories, 63 URLs appear in the RDF community as well
as the Google targeted search categories. For the second experiment, fewer
pages containing RDF in the URL could be retrieved from Google and the
number decreased to 1079. Note that this is by no means an indication that
less information on RDF could be found. The most likely scenario is an internal
change in the Google system. The search result site actually claims to have
found 2,410,000 pages, however only the number specified could be obtained,
both via the browser and the Web Service interface.

URLs found in the fact triples Since RDF subjects, predicates, and most
objects can be URLs themselves, we assumed to be able to find RDF data
at those URLs. Facts gained from the other categories were extracted first.
When examining the collected facts, we only considered URLs that have not
appeared in any other category. We chose to implement this restriction due to
the expected large overlap with the other categories. After 124374 facts had been
found via the other approaches, a first search process on the facts was started,
yielding 365 new URLs. Note that URL anchors, i.e. the ”#” character in the
URL must be ignored, since anchors only identify a certain position within the
same document. Therefore it is not necessary to scan such a URL again and
consequently only the part left of this sign was considered. The facts of those
URLs were loaded again and the process was repeated in the hope that one can
follow the edges of the RDF graph to find new data. The 1923 new facts from
the 365 new URLs yielded only 23 new websites and the process was stopped
at this point.

This situation changed in the second run. 139288 facts were found at URLs
from the other categories. The subjects, predicates, and resource objects form
those facts pointed to 6037 previously unseen URLs. We loaded 54227 new
facts from those URLs. This number is promisingly high, however, it turned
out that almost all of the facts came from large data repositories that orga-
nized their data not within one large file accessible at a single URL, but rather
made that data available via several URLs. One example is http://xmlns.com,
where an RDF representation of the Wordnet database is hosted. The URL
http://xmlns.com/wordnet/1.6/Survivor, for instance, contains several state-
ments about other Wordnet resources located at similar URLs. Nevertheless,
we were able to extract 697 new URLs from those new facts. At this point,
hardly any URLs could be identified from facts from those sites that were not
a simple derivation of previously seen URLs and the process was stopped.

Architecture of the RDF database In order to be able to perform further
analysis of the data, we decided to load the facts into a relational database
system. Figure 6.1 shows the table layout. The facts table stores subject,
predicate, and object triples, along with the id of the URL they were found in.
The primary key selection makes sure that data cannot be inserted twice from
the same source in case the upload program needs to be run repeatedly. The
URLs table has a further uniqueness constraint on the URL attribute to avoid

80

Number of URLs scanned
Category Dec 2001 Aug 2002

RDF Community 12507 31764
URLs from Open Directory 527408 2912434
RDF appears in the URL 1256 1079

URLs from facts 365 6733

Table 6.2: URLs per category

urls

PK
 id

I1
 url

msg

facts

PK
 subject

PK
 predicate

PK
 object

PK,FK1
 foundin

urltype

PK,FK2
 urlid

PK
 type

Figure 6.1: Design of the RDF database

duplicate URLs in the data set. Finally, the URLtype table indicates which of
the four categories mentioned above the URL belongs to. The msg field in the
URLs table records any error such as network errors, XML parsing errors, etc.,
that might occur while the data is accessed.

Figure 6.2 illustrates the overall software design. Any URL to be scanned
is first inserted into the URLs table in the database. A different approach was
used for each category: Data from the Open Directory dump was extracted with
an XSLT style sheet. The program GetGoogleURLs obtains URLs containing
the string RDF by running a query against Google. The Crawler program uses
multiple threads to traverse the hyperlink structure from several starting points
like Semantic Web portal sites. Finally, the last category’s URLs are generated
via the ScanFacts component, which bases mainly on an SQL statement that
selects fact URLs that do not yet show up in the URL table.

After the URLs table is filled, the RDFLoad program can be started to scan
the URLs for RDF data. It uses Sergey Melnik’s RDF API11 to upload the
facts to the database. Any Java exception that is caught is written into the
message field in order to trace, for instance how many pages contain syntactically
incorrect RDF, or how many pages could not be reached because of a network
outage. Since RDF API is widely used, a URL is considered to contain correct
RDF if the RDF API in the version of Jan 19th 2001 parses it without error
message and if the resulting RDF triple set is not empty. It is considered to
contain incorrect RDF, if an org.xml.sax.SAXParseException is thrown, and
it is considered to not contain any RDF if a java.io.EOFException: no more

11http://www-db.stanford.edu/∼melnik/rdf/api.html

81

ReadURLs
GetGoogleURLs
Crawl

xalan XSLT engine

URLs
 Facts

starting

points

dmoz content

sql insert

stmts

ScanFacts

Figure 6.2: Overall software design

input exception occurs or if the resulting RDF triple set is empty. Any RDF
data found is also written to a file <num>.rdf for further examination, with
num being the id of the URL scanned. Finally, ScanFacts inserts URLs found
in the facts table into the URLs table. Note that ScanFacts can only be run
after ReadURLs inserted some facts. Furthermore, ReadURLs must be run again
to load facts found in the newly inserted URLs.

The major advantage of this database-centric architecture is that the search
process can be stopped and resumed without any problem. The database pro-
vides the necessary persistence and constraints to make sure that data cannot
be inserted twice. Since this survey aims at evaluating a snapshot of the current
use and acceptance level of RDF, the database only accumulates data and no
mechanism for deleting or updating the information is implemented.

The application as well as the data sets can be downloaded at http://www.i-
u.de/schools/eberhart/rdf/.

6.2.2 Search Results

This section outlines the results of the search conducted over 541536 web sites
in the first, and 2952010 web sites in the second search.

How many pages contain RDF data? Figures 6.3 and 6.4 show how many
pages contained RDF data by outlining the percentages of the following cases:
a general error such as file not found occurred, page available but no RDF data
found, syntactically incorrect, and correct RDF found. As expected, we see that
there are strong variations between the categories. During the first experiment,
RDF data was found in only sixteen out of over half a million pages from the
Open Directory. This number increased to 180 out of 2.9 million pages in
the second run. The density around Semantic Web portals is higher but still
disappointing. About one percent of the URLs were found to contain RDF in

82

Figure 6.3: RDF data found per category during the first search Dec. 2001

both runs12. Finally, the highest success rate was found in pages with ”rdf”
in the URL, especially pages ending with ”.rdf”. These URLs contain RDF
data with a probability of 17% and 10% in the first and second experiments
respectively. Similar percentages occurred in the last URL category, where we
followed RDF arcs that were present in the facts found in other categories.
We found RDF in 9% and 13% of the pages during the first and second runs.
Overall, with the categories combined, this translates to 1018 out of 541536
URLs containing RDF, 613 of them with correct and 405 with incorrect RDF
for the first run. In the second run, out of 2952010 pages, 1479 contained
valid and 2940 contained invalid RDF. Please note that the overall numbers
are largely dominated by the Open Directory category, where the bulk of pages
were scanned.

Error causes Figures 6.5 and 6.6 provide more detailed information about
the error causes, i.e. the ”General error” and ”RDF error” sections from figures
6.3 and 6.4. Network errors and URLs that no longer point to any page were
expected to be the most frequent sources of problems. In the first experiment,
system errors are caused by the ReadURLs component and play a small role for
the URLs gained from the targeted search. Five of these failures were recorded,
four null pointer exceptions with unknown causes and one out of memory error,
caused by a large binary file. During the second run we increased the number
of threads used to search especially the large number of Open Directory pages.
This resulted in a substantially higher number of 1147 out of memory errors in
this category. Considering the total number of 2.9 million URLs scanned, this
is definitely not a big concern for the quality of the results.

12Originally we also counted documents where the RDF API yielded an empty result, i.e. a
set of zero RDF statements. The exclusion of these pages explains the higher number stated
in [40]. Also refer to the updated version [41]

83

Figure 6.4: RDF data found per category during the second search Aug. 2002

An interesting issue are the 405 and 2940 RDF parsing errors that might re-
veal potential problems caused by the use of older RDF versions or frequently oc-
curring mistakes made by RDF authors. In both experiments, over half of these
errors are caused by unresolved entity declarations such as the non-breaking
space entity defined in HTML. The remaining error causes are partly
XML-related such as missing attribute quotes and partly RDF-related such as
nested descriptions. We found that 14 and 24 URLs respectively omitted the
RDF namespace and simply placed <RDF> tags in the document. This manifests
itself in a ”unresolved namespace prefix” error.

Size of the RDF data sets During the first search, a total of 125072 facts
were extracted, 104580 came from the targeted search category, 19696 from the
RDF community category, 1923 from facts URLs, and only 98 from Open Di-
rectory web sites. Figures 6.7 and 6.8 illustrate how much data was found at the
different URLs. When analyzing the second run with respect to the category’s
contribution to the total number of 254783 facts, it can be seen that with 115495
facts, the last category contributed more than the RDF community pages with
107308 facts. 29168 facts come from the targeted search and 2812 from Open
Directory pages. The first run yielded only three large files with more than
10000 facts, namely a list of airports from http://www.megginson.com, an
excerpt from the CIA world fact book at http://www.ontoknowledge.org,
and a category description file at http://w.moreover.com. The sec-
ond search tapped into five large repositories, namely the OpenCyc
project at http://opencyc.sourceforge.net, part of the WordNet database
at http://www.semanticweb.org/library/wordnet/wordnet hyponyms-
20010201.rdf, two military ontologies at http://orlando.drc.com/, and
again http://w.moreover.com. Overall, two changes can be observed between
the experiments. First and foremost, the last category happened to tap into

84

Figure 6.5: Error types during the first search Dec. 2001

Figure 6.6: Error types during the second search Aug. 2002

85

Figure 6.7: Distribution of the RDF data set sizes during the first search Dec.
2001

two highly connected datasets, the xmlns.com version of Wordnet, which is
split into many files and the moreover.com directory. This resulted in the large
overall increase. The remaining categories actually show little change except
for the large number of URLs containing medium sized datasets in the Open
Directory category.

A fairly large number of sites contain data in the rich site summary (RSS) for-
mat version 0.9. RSS is a format that originally has been proposed by Netscape
as a lightweight syndication format for distributing news headlines on the Web,
for example via Netcenter channels. An RSS example is shown in the following
block:

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

xmlns="http://my.netscape.com/rdf/simple/0.9/">

<rss>

<channel>

<title>BBspot</title>

<link>http://www.bbspot.com</link>

<description>Your Spot for Tech Humor</description>

</channel>

...

Typical namespaces used After the probability of finding RDF data and
the typical data set sizes have been evaluated, we examine the facts further. In
order to be able to correctly interpret data, it is crucial that an agent under-
stands or can correctly interpret the predicate used in the triple. One of the

86

Figure 6.8: Distribution of the RDF data set sizes during the second search
Aug. 2002

most prominent and frequently cited examples is the Dublin Core metadata vo-
cabulary. Tables 6.3 and 6.4 show how often a certain namespace prefix occurs
in the facts gathered, along with information at how many distinct URLs this
namespace prefix was found.

In the data of the first experiment, we can see that some large data sets like
the Ontoknowledge case study and David Megginson’s airport example rank
among the top namespaces but are only used by one web site. The largest
number of distinct sites references the W3C and the Dublin Core namespaces,
with the RDF type relationship occurring very often. We really should have
counted the distinct hosts rather than distinct URLs, since a large data set
being split into several files, like in the rpmfind.net example, would create the
wrong impression. This was not done since the data model does not support
this specific query. A manual check confirmed though, that the URLs really are
located on a large number of different hosts. In contrast to our suggestion of
using Wordnet or the Open Directory as a base for anchoring statements, no
predicates that could be linked to these projects were found.

The second experiment shows a similar picture. Again, we can see some
of the large datasets that contribute many facts but occur only within a very
limited number of documents. Dublin Core remains the most frequently used
non-W3C namespace, however, the Adobe namespace is a prominent newcomer
in this list of namespaces found at several different sources. These pages follow
the Adobe eXtensible Metadata Platform (XMP) [3]. XMP builds on top of
RDF and is designed to embed metadata into application files. The fact that a
major IT company embraces RDF is obviously a very encouraging sign for the
Semantic Web community.

Like the predicates, commonly referenced objects, often referred to as RDF

87

Predicate namespace prefix in # in #
of URLs of facts

http://www.ontoknowledge.org/oil/case-studies 1 23259
http://www.w3.org/1999/02/22-rdf-syntax-ns#type 326 21011

http://www.w3.org/1999/02/22-rdf-syntax-ns# 326 17298
http://www.megginson.com/exp/ns/airports# 2 13589
http://alchemy.openjava.org/ocs/directory# 1 7014
http://www.w3.org/2000/01/rdf-schema# 62 6182

http://purl.org/ 123 5198
http://interdataworking.com/vocabulary/ 27 4698

http://www.trustix.net/schema/rdf/spi-0.0.1# 2 3012
http://my.netscape.com/rdf/simple/ 93 2446

Other http://www.w3.org 331 2212
http://www.daml.org 27 2032
http://www.rpm.org 7 1716

http://metainfo.hauN.org 1 1351
http://home.netscape.com/ 1 801

Other 164 13253

Table 6.3: Predicate namespace prefixes used by the RDF data found during
the first search Dec. 2001

hubs, are also important for agents to understand RDF facts. Metadata of a
web site pointing to an Open Directory category is an example. This would
allow any agent aware of the Open Directory to draw conclusions about the
content of the site for example. Table 6.5 shows the results of this test. In both
experiments we found about 57% of the objects to be literals, mostly numbers
and the frequently occurring strings ”en”, ”text/plain”. As the large number of
RDF type predicates suggests, the objects are mostly RDFS classes. We could
not find any non-class object that is referenced frequently from many different
sites. Hardly any references to prominent repositories such as Wordnet or Open
Directory objects were found.

6.2.3 Comparison of the Two Experiments

Before we will give an evaluation, we want to analyze if any trend can be ob-
served when the runs from December of 2001 and August of 2002 are compared.
Overall, the results do not show any drastic changes except for the much larger
number of URLs and facts found in the last category, which comprises the sites
referenced by the other facts found. This hints at a higher lever of intercon-
nectivity among the RDF facts. However, a closer analysis shows that most of
these come from a small set of sources. During the first run, URLs from 152
distinct hosts were added. This is within the same order of magnitude than the
269 hosts obtained during the second experiment.

88

Predicate namespace prefix in # in #
of URLs of facts

http://www.cogsci.princeton.edu/ 1 78445
http://www.w3.org/2000/01/rdf-schema 693 57132

http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1205 37926
http://orlando.drc.com/ 19 27773

Other http://www.w3.org 435 11454
http://alchemy.openjava.org/ 2 9793

http://purl.org/ 463 9411
http://interdataworking.com/ 16 5247

http://www.daml.org/ 53 4490
http://ilrt.org/ 9 2124

http://opencyc.sourceforge.net/ 1 1630
http://ns.adobe.com/ 152 1589

http://my.netscape.com/ 34 902
http://www.rpm.org/ 3 734

http://www.ontoknowledge.org/ 2 645
http://dublincore.org/ 82 544
http://www.omg.org/ 3 523

http://www.semanticweb.org/ 41 466
http://annotation.semanticweb.org/ 5 375

http://xmlns.com/ 48 351
http://example.org/ 95 121

http://www.nesstar.org/ 6 106
Other 129 3002

Table 6.4: Predicate namespace prefixes used by the RDF data found during
the second search Aug. 2002

RDF Object in number of in number of
Facts Dec. 2001 facts Aug. 2002

Other literals 58949 237163
Other resources 44562 175110

http://www.w3.org/1999/ 7646 7947
02/22-rdf-syntax-ns#

Numbers 8115 9667
en 2414 3278

hourly 2361 3265
text/plain 1002 1410

Table 6.5: Overview over RDF Objects

89

Overall more pages were scanned, largely due to the big increase in the size of
the Open Directory, and naturally also more pages containing RDF surfaced, al-
though the percentage of pages containing RDF actually declined. The changes
are not too big so we advise against trying to draw any conclusion from this.

Possible sources of errors Apart from the limited search that might not
have revealed large amounts of RDF data, another source of error is not recog-
nizing RDF data when a page is scanned. We tested several cases of incorrectly
formatted RDF and missing RDF namespace definition. It turned out that the
RDF API we used for the search reacts in a very robust manner by indicating
the problem with a proper error message. If an XML or XHTML document is
scanned by the RDF API, an empty dataset is returned. Some random samples
of these cases were examined manually and no malfunction, i.e. RDF data that
was omitted by the RDF API, could be detected there.

6.3 Summary

Some of the projects introduced in the beginning of this chapter are very promis-
ing. Especially the use of the open content approach seems to ensure high qual-
ity data, broad coverage within the target domain, and the involvement of a
large user community. Nevertheless, there are not too many examples one can
cite and we are nowhere near the situation where base data for any conceivable
application is available online, as it is the case for HTML pages.

RDF The results of our RDF survey suggest that RDF has not yet caught
on with a large user community. Obviously the search was not very extensive.
Therefore it is possible, that some large RDF islands were not found. Much RDF
data might also not be publicly available on the Web. In a way we are seeing a
situation that is similar to the adoption of Web Services. There are millions of
data sources that could easily be made available via both Web Service and RDF
interfaces on a technical level. Without a doubt, Web Services have covered more
ground in terms of public acceptance, however, except for some highly visible
services like the Google Web Service API or Microsoft’s Map Point service13,
most of the services that can be found in the UDDI registries today have a clear
test prototype character. The most likely explanation for this situation is that
the automation of the Web, be it through Web Services or the Semantic Web,
brings about a radical change from a business perspective. Advertising largely
finances today’s Web with its free offerings. This must change when machines
and no longer humans access the sites. Several payment methods such as micro
payment and bulk subscriptions are being considered, however, it is too early
to see clear trends or even standards in this direction. Once this shift towards a
more automated Web begins, we will probably also see more data being exposed
in RDF format.

13http://www.microsoft.com/mappoint/net/

90

The use of RDF as a simple metadata format for HTML pages does not
make much sense at the moment, since HTML meta tags do the job just fine.
The strengths of RDF, namely its extensibility and the possibility to refer to
widely accepted standard vocabularies and global identifiers, are not being used.
The very poor search results among regular web sites taken from the Open
Directory clearly support this observation. Furthermore, the nature of facts
found indicates that the level of interconnection is quite low, i.e. most objects
are literals or belong to RDF schemata. Apart from the Dublin Core and the
Adobe XMP namespaces, hardly any other non-W3C vocabulary is used by
many different authors. Looking at the bright side, specifically Adobe’s support
of RDF is a very promising sign.

Despite the poor results, we believe that RDF has a lot of potential. The
popularity of the NEC CiteSeer [15] research index for example, is a clear in-
dication that there is a need for metadata and better, more targeted search on
the Web. CiteSeer extracts the information which other papers are cited by a
certain publication. The number of citations is used as an indication for the
quality of a publication. If RDF publications metadata had been used, a system
like this would be quite easy to implement. One can only imagine the various
RDF applications that will be possible in the future.

We believe that it is crucial for the success of the Semantic Web that the
research community starts working on some of these applications in order to
get a large user community excited about the ideas and possibilities. Only then
will it be possible to resolve what seems to be a chicken and egg problem: data
will only be marked up if there is an application, and an application only is
successful if it operates on a large data set.

RDF Schema A similar picture is drawn by a survey of RDF Schemata [104].
The authors observe that only a few projects examined provide a large body
of classes for the backbone taxonomy. Furthermore, many syntax errors were
found in the samples. The paper also supports our observation about the Dublin
Core namespace being frequently used.

DAML+OIL and OWL With the core languages from the ontology layer
being fairly new and not too many tools in place yet, one cannot expect to find
a significant number of ontologies online at the moment. Our observation is
that most of the ontologies that are currently available at sites like the DAML
ontology library14 are quite simple and mostly define concept taxonomies, a
feature that is already available in RDF Schema.

Despite not wanting to raise unrealistic expectations, we believe that the
future adoption of these languages has to be monitored very carefully. Hayes
criticizes using Description Logics for representing knowledge on the Semantic
Web and suggests that deficiencies of DAML+OIL and OWL are in part re-
sponsible for their slow adoption [79]. He argues that Description Logic is too
concerned with efficiency and by doing so makes DAML+OIL users having ”...to

14http://www.daml.org/library

91

take a course in how to say things in peculiar and unintuitive ways.” Hayes sug-
gests developing a content language whose sole function is to express, transmit
and store propositions to be used by a large variety of inference engines. No
safeguards should be placed on this language. Even if this causes an engine to
time out during computation, Hayes argues that on the Web, systems need to
deal with these kinds of failures anyway. The advantages of an expressive and
easy to use language far outweigh these potential problems.

Outlook In order to predict the evolution of ontologies on the Semantic Web,
Kim draws an analogy to paper-based business forms [91]. The form designer
has the knowledge of the terms and processes related to the form. It is argued
that the invention of the photocopier changed the situation by allowing the users
to bootleg forms. This creates uncertainty, because tasks and processes might
not have been defined for these bootlegs. In the Semantic Web, the analogous
tool to the photocopier is the knowledge / ontology modeling tool. Again,
the users, not just a single ontology engineer, can codify shared understanding.
Consequently, Kim argues that in the long run, the use of ontologies will become
a mainstream technique.

6.4 Software

This sections covers Semantic Web software tools. We will first look into graph-
ical ontology editing tools, examine their usability, and how well they support
the engineering cycle and collaborative editing of both data and the ontology
itself. The second major part looks at inference engines. This section strongly
draws on the query language and rules overview section 5.5 in the first part
of the chapter. Inference engines also go hand in hand with the storage layer.
Therefore, storage solutions are evaluated next. This section concludes with an
overview of miscellaneous tools like basic application programming interfaces
and some more specialized ontology tools.

6.4.1 Ontology and Data Editors

Graphical ontology editors are important tools that support the development
process. In principle, these tools can be compared to HTML editors that allow
the user to design a webpage without having to worry about the exact syntax of
HTML. In the same way, ontology editors hide the details of the native ontology
representation format and allow the user to graphically create and edit certain
aspects of the ontology. Obviously, this is an appealing alternative to using a
text editor to write the ontology directly in its representation format. However,
sometimes this is necessary anyway if a certain feature of the ontology language
is not controllable via the graphical interface.

There are several editing tools available today. A survey within the scope of
the OntoWeb project tested eleven systems alone [51].

92

Figure 6.9: The Protégé ontology editor

Protégé The Protégé editor [117] was developed at the Stanford Medical In-
formatics department. It definitely is one of the most popular editing tools
around. Figure 6.9 shows a screenshot of the tool. The left pane shows the
backbone taxonomy, which can be conveniently edited by dragging and drop-
ping, adding, and deleting concepts within the hierarchy. Concept hierarchies
with multiple inheritance can also be designed using this tool. The large area on
the lower right shows the relationships between the concepts. Constraints about
a property’s domain, range, or cardinality can be entered easily. Besides the
ontology, Protégé is also used to enter data. An extensible entry form designer
is very useful when non-expert users are supposed to perform the data entry.

The ontology can either be saved to an RDF Schema file or to a relational
database. Unfortunately, the database schema used to save the information is
not very straightforward and intuitive. Apart from this drawback, the overall
architecture is open and allows for including custom plug-ins. This mechanism
makes it is possible to develop own data entry widgets, to embed a reasoning
engine, or to customize the data export.

Overall Protégé is a very polished and user-friendly tool with nice extensi-
bility features. A weak point of the version we tested was the limited multi-user
support, even when a database backend is used for storage. Changes made by
one user are not propagated to the others. Protégé still has the notion of saving,
even though new concepts are inserted into the database right away. Further-

93

Figure 6.10: Webpage annotation with OntoMAT

more, the database backend table structure is very unintuitive from an RDF
point of view. Rather than storing triples, we find a table with eight columns,
several of them seemingly holding internal Protégé values. A triple represen-
tation including the full concept URIs would make it a lot easier to connect
Protégé with other applications via the shared database.

KAON The Karlsruhe Ontology (KAON) and Semantic Web Tool Suite is
the second representative to be described [114]. As the attribute ”tool suite”
indicates, KAON consists of a set of tools. Among them is a very simple editor
plug-in for the OntoMAT workbench called Simple Ontology and Metadata Ed-
itor Plug-in (SOEP). We chose to present this simple editor since it is able to
hook into a central server via the KAON-API. The server centrally stores the ac-
tual ontology and is implemented using a relational database. This design choice
allows the server to perform concurrency control by locking structures that are
being edited by a user. Therefore, this architecture supports the collaborative
development of ontologies in the different phases of the ontology engineering
cycle.

Important representatives of data editors are the so-called annotation tools.
A document, typically a webpage, is loaded and certain text passages can be
copied into a metadata set that is associated with the document. Currently
this process is still quite cumbersome and ultimately, these annotation features
must be included in web pages editors like FrontPage.

94

Summary As a conclusion, it can be said that there are several very similar
ontology editing tools. They differ in certain handling aspects, import and
export format support, and the availability of extensibility mechanisms. A weak
point of almost all of the tools is the support for the ontology lifecycle phases of
collaborative editing, testing, deployment, maintenance, and refinement. More
research should also go into better visualization techniques, especially for large
ontologies.

6.4.2 Inference Engines

Rules are an integral part of the Semantic Web since they provide an easy mech-
anism to formalize knowledge that is much richer than a simple class taxonomy.
Consequently, rule engines are just as important. Due to the lack of a standard
or de facto standard, the rule languages and the corresponding engines used in
the Semantic Web context vary a lot. The systems presented in the remainder
of this section arguably are the most important ones.

JESS The Java Expert System Shell (JESS) was developed at the Sandia
National Laboratories15. It’s language bases on the CLIPS production rules
system [33]. JESS has grown to be one of the most frequently used inference
engines. It is, for instance, used for the JSR 94 reference implementation and
for the inference plug-in of the popular Protégé editor. The popularity of JESS
bases mostly on its seamless integration with the Java language. JESS can be
called from Java and in turn Java methods can be declared as JESS functions.
There are several other Java engines available today. Another popular system,
for instance, is the IBM Common Rules project16.

XSB The XSB deductive database is often used by Semantic Web related
projects17. XSB is a particular ordinary-logic-program (OLP) system. It evalu-
ates rules in a backward fashion similar to Prolog. Due to its highly optimized
tabled resolution algorithm, XSB is a leading academic OLP system. It sup-
ports well founded semantics, which solve Prolog’s problem of entering infinite
loops, for example in the case of Russel’s Barber Paradox [125]. In university
development for over 10 years, it is a popular choice for ontology-based software
engines such as the Triple system, introduced in section 5.5.3, or the Ontol-
ogyWorks suite of tools18. The respective languages offered by these systems
are compiled into XSB prolog for efficient execution. The XSB grounding is
hidden from the user via the TRIPLE shell and, in case of the OntologyWorks
system, a Java API. XSB is also able to load facts from a relational database
via an ODBC interface, allowing to easily access large amounts of data stored
in commercial enterprise information systems.

15http://herzberg.ca.sandia.gov/jess/
16http://alphaworks.ibm.com/commonrules
17A typical example is outlined at http://ilrt.org/discovery/2000/10/swsql/
18http://www.ontologyworks.com/

95

CWM CWM is a forward-chaining reasoner specifically designed for the Se-
mantic Web. It currently is available as a prototype version from the W3C
website19. It reads RDF in XML or N3 serializations and is able to process
rules written in the N3 rule syntax. CWM is designed to work like simple com-
mand line tools such as awk and sed. The N3 ruleset can also contain queries,
which basically are rules with only a body. The result of queries is generated
as an RDF XML or N3 output stream. Simple mathematical and string opera-
tions are built in via the namespace mechanism shown in the previous chapter’s
section on the N3 language.

FaCT and Racer The Fast Classification of Terminologies (FaCT) system
was written by Ian Horrocks20 and is a Description Logic (DL) classifier us-
ing a highly optimized tableaux subsumption algorithm. Given a set of DL
statements, FaCT will compute the class taxonomy and test the satisfyability
by trying to establish a model of the concepts. Consequently, FaCT operates
solely on the class definitions, not on instance data. It is a tool to detect errors
in the definitions at design time. Other systems operating on instance data
usually rely on rule engines such as JESS or XSB such as the DAMLJessKB21

system, for instance. An exception is the Racer Description Logic classifier22.
Recently, it has gained popularity since it is able to reason over ground facts
as well. The TRIPLE system, for instance, uses Racer for the visualization of
ontologies.

6.4.3 Storage Systems

According to an OntoWeb survey [103], the storage servers currently available
mainly base on either relational databases or XSB in conjunction with the Berke-
ley DB embedded database system. Almost every system implements a query
language, typically RQL, RDQL, or SquishQL. Popular systems are TRIPLE,
KAON, Redland, Sesame, and RDFDB. Even though combining the storage
system with an inference engine on top of it would be a natural choice, most
solutions either do not provide inferencing at all or rely on external software,
causing the query and rule functionality to be poorly integrated. TRIPLE is
the only exception here. Furthermore, RDF Schema is also not commonly sup-
ported. RDFDB is reported to have been tested with 20 million triples [103].
Nevertheless, the systems mentioned still need to be proven in terms of scala-
bility.

6.4.4 Miscellaneous Tools

There is much more ontology related software that could be mentioned in this
section. We conclude this list of relevant software tools with a quick overview of

19http://www.w3.org/2000/10/swap/doc/cwm.html
20http://www.cs.man.ac.uk/ horrocks/FaCT/
21http://plan.mcs.drexel.edu/projects/legorobots/design/software/DAMLJessKB/
22http://www.fh-wedel.de/∼mo/racer/

96

basic application programming interfaces and ontology merging and validation
tools.

Application Programming Interfaces The instant availability of easy to
use application programming interfaces like the Document Object Model (DOM)
and the Simple Api for XML (SAX) played a big role in XML’s success. Similar
APIs for RDF, RDF Schema, and DAML have been around for quite some time
now. Sergey Melnik’s RDF API is a prominent example as well as HP’s ARP
RDF parser included in the Jena suite. Jena, for instance, also provides RDF
Schema and DAML APIs allowing to parse, update, and serialize the respective
formats. There is definitely not a lack of systems, however, a standard API,
which all parsers should be conform to is still work in progress.

Ontology Merging Tools In the previous sections we saw that the term
ontology is used in several different contexts for quite different things. Let
alone the complex task of trying to formally describe an application domain
with an ontology, we believe that ontology merging will always be a semi-
automatic task where software can only support a human knowledge engineer.
We also believe that merging ontologies only makes sense if the ontologies are
relatively non-formal, i.e. have more of a vocabulary then a logic program
character. This view is supported by the fact that none of the three tools,
FCA-Merge [135], PROMPT23, and ODEMerge24, evaluated by the OntoWeb
report [51] can merge ontological rules and axioms yet. All of the systems also
require manual input by the user. Formal translation approaches do exist. For
example, Ciocoiu and Nau propose ontology based models, which allow a formal-
ized translation from one ontology to another [23]. However, no corresponding
system implementing those approaches is available to our knowledge.

The bottom-up and top-down approaches are possible for ontology merging.
In the bottom-up method, a set of documents is first marked up using both
ontologies. In a second step, a pruned concept lattice is automatically computed
from this data. The user can then extract the merged ontology from this lattice
and the sets of relation names from the two original ontologies.

The top-down approach of PROMPT and ODEMerge starts by analyzing
similarities in the concepts and making suggestions on which of them should be
merged. During the merging process, the system tries to match class hierarchies
and relationships. In case a dangling reference results from a concept being
dropped or renamed, the user is notified and prompted for the appropriate
correction.

Ontology Validation Tools Ontology validation tools currently base on very
different methods. The OntoClean system, already described in section 2.1.2,
employs a formal approach where the consistency of the backbone taxonomy

23http://protege.stanford.edu/plugins/prompt/prompt.html
24http://delicias.dia.fi.upm.es/webODE/index.html

97

is evaluated via meta properties such as rigidity and identity. Ontoprise de-
veloped two tools called OntoGenerator and OntoAnalyser. The OntoAnalyser
system allows simple checks on ontologies using F-Logic queries. Finding on-
tological names that do not conform to a predefined naming convention is an
example. OntoGenerator aims at evaluating the performance of ontology-based
applications. Synthetic values are inserted into the ontology to be tested and
the runtime of sample queries is determined. Finally, the ONE-T tool checks
for formal errors in an ontology. For instance, inheritance cycles or type er-
rors in subclass and instance-of relationships are detected. These are very basic
features that are also often checked by the ontology editor directly.

Summary The availability of mature APIs for several programming languages
is an important base for the Semantic Web. However, the ontology management
is still very immature. Holsapple and Joshi suggest that ontology merging might
not be a promising solution since the merging is likely to produce both poor
results and high cost for the merging process [85]. Except for the OntoClean and
OntoGenerator systems, the approaches for ontology validation are still quite
primitive.

98

Chapter 7

Design Choices

This chapter will first give an architectural overview of our suite of software
components for building intelligent applications based on ontologies and Se-
mantic Web standards. The overview in section 7.1 is followed by the detailed
design of the data storage, ontology, and rules layers which form the core of
our solution. After this, section 7.3 shows how editing tools are interfaced with
the core layer in order to author ontologies and base content. Since we made
a strong point about data reuse, section 7.4 outlines three approaches on how
we can tap into external datasources. The last two sections focus on the flow of
input and output between the user and the system. Furthermore, a feature list
of the SmartGuide and SmartAPI applications is given. We focus on describing
the major design decisions, the choices on which existing solutions and data are
integrated, as well as the purpose of the integrated component in the overall
picture.

7.1 Overall Architecture

Clearly, the Semantic Web languages have been designed with a very distributed
architecture in mind. We identified this as a key requirement in chapter 4. Con-
sequently, our overall design builds on the idea of every user having a personal
assistance agent running on a desktop at work, a laptop, or a small portable
device such as a personal organizer or a cellular phone. Additionally, agents
are available on the corporate Intranet or the Internet taking over similar func-
tionality of web portal sites, search engines, or document repositories as, for
instance, the solution presented in [45]. The difference is that a human user
does not contact these agents directly, but via other agents which might act on
behalf of a human user.

This ecosystem of agents will function and interact like a group of humans.
Different views and logical organization of content are explicitly supported by
the ability to customize agents. Agents can also have areas of specialization.
Such agents will only be dedicated to serving a small set of other agents. In

99

Data Storage

Layer

Rule Layer

Query Layer

Figure 7.1: The data, rule, and query layers are the foundation of our architec-
ture.

turn, there can be agents with a very general focus, which can be accessed by
the entire agent population. In the following, we explain the architecture from
the point of view of a single agent. We then go on and explain how the agents
can be interfaced.

7.2 Core Data, Rule, and Query Layers

The first question that has to be addressed is which interpretation of ontology
should be used. Since our goal is the ontology-based construction of software, it
is clear that a more formal approach needs to be taken. A simple vocabulary can
be the basis for data integration but not for actually constructing software. We
therefore define an ontology to be a backbone taxonomy, a set of relationships
between the classes of the taxonomy, and a set of rules representing additional
domain knowledge.

Clearly RDF will be used for data representation since the tree structure of
pure XML is not sufficient to model a metadata network of connected resources.
RDF Schema provides the mechanism for establishing the class taxonomy and
typed relations among them. RDF Schema is also the base of other higher-level
languages such as OWL, indicating its high level of acceptance. We decided
not to use description logic based languages like OWL or OIL. The reasons
for this are twofold. Firstly, as we pointed out in the software survey, the tool
support for these languages is relatively poor at the moment. Secondly, we agree
with Hayes’ argument that the more powerful description logic constructs are
somewhat awkward to use [79]. As a matter of fact, most of today’s description
logic ontologies mostly only use the simple features that are comparable to what
is offered by RDF Schema.

Instead of using description logics, we opted for including simple recursive
datalog rules for enriching the ontology with more expressive domain knowl-
edge. We opted against more expressive logics such as first order logic, since
we believe they are not necessary for our general application area of intelligent
document retrieval and help systems [34]. Shallow reasoning performed on a

100

wide range of semantically enriched metadata will be enough to solve the prob-
lems in these areas [35]. Instead, we allow both procedural attachments in rules
and reactive rule behavior. The rationale behind this decision is to be able to
specify the software solely on a rule level, relieving much of the burden from
the developer. Furthermore, using RuleML as a rule representation format is
an obvious choice. The current version supports datalog. The reactive rule and
procedural attachment syntax mentioned before are currently being specified.

Figure 7.1 shows the hierarchy of the data, rule, and query layers. The
base data repository stores statements on a triple basis. It is the responsibility
for the datastore to enforce the restrictions specified in the underlying RDF
Schema definition. RuleML plays a role in all three layers. The rule layer
deducts information from the given rules and data. Therefore it lies between
the data and the query layers. Queries can be formulated as rules without
rule head. Integrity constraints are realized as rules with a special procedural
attachment, i.e. raising an error.

Following the design requirement of using mainstream technology, we provide
the OntoJava and OntoSQL implementations of this core specification. The
details are given in the next chapter in sections 8.1 and 8.2.

7.3 Data and Ontology Editing

After the conceptual architecture of the core components has been illustrated,
we explain how data and ontology are edited and deployed. Figure 7.2 shows
the core components on the right and the three editors on the left side, one for
each RDF, RDF Schema, and RuleML. For reasons of simplicity, we chose to
maintain ontologies in files in their native RDF Schema and RuleML formats,
rather than choosing a more collaboration-friendly approach as the ones outlined
in section 4.2.1. The files are deployed to the core system by a set of converters.
This has two advantages, the first being that we can reuse Protégé as an editor
for both RDF and RDF Schema. Secondly, a conversion procedure is necessary
anyway once third-party rulesets and schemata are to be downloaded and used.

Besides Protégé, we also use a classical database client server setup for data
entry. Specifically, Microsoft Access serves as an RDF editor in conjunction with
a SQL Server database created by OntoSQL. Like any XML language, RuleML
is also not suitable to be edited manually. We developed the Prolog2RuleML
system, presented in section 8.4.5, which allows to use the much more convenient
Prolog rule notation with any text editor.

7.4 Interfaces to External Data Sources

As we pointed out in the beginning of this chapter, one agent might only have
a very limited set of resources stored locally. Consequently, the tight integra-
tion with other peers and agents is crucial. We opted for three major ways of
interfacing a single agent with other data sources. The most obvious way is

101

Data Storage

Layer

Rule Layer

Query Layer

Rule Editor

Schema

Editor

Metadata

Editor

R
u
l
e
M
L

R
u
l
e
M
L

R
D
F

S
c
h
e
m
a

R
D
F

(
n
a
t
i
v
e

t
r
i
p
l
e

f
o
r
m
a
t
)

RuleML

Converter

RDF

Converter

RDF

Schema

Converter

R
D
F

(
X
M
L
)

Figure 7.2: A set of editors is used to create the ontology and the content. The
XML-based markup, generated locally or received from a third party, is loaded
into the system using converters.

Data Storage

Layer

Rule Layer

Query Layer

Legacy Data

Web

Services

Adapter

Messaging

Subsystem

Reaction Rules

I
n
 t
e
 r
n
 e
 t

Universal

WS Client

Agents

SOAP

Agent Middleware

Action Rules

Figure 7.3: Agents deployed on other peers, Web Services, and legacy systems
represent the three kinds of external information sources.

102

message exchange with other agents. Figure 7.3 shows this channel on the top
right. The agent middleware can use arbitrary transport protocols like SOAP
over HTTP or Java RMI. On a message level, we use two KQML-style message
types that refer to a shared ontology. A query message triggers a response back
to the calling agent with results obtained from the query layer. The purpose of
tell messages is to spread information around to other agents.

While this message-passing paradigm is a standard feature of any agent sys-
tem, our interface between the local knowledge base and the messaging system
is innovative. It bases on the observation of Boley et. al., that an agent can
be entirely specified in a declarative way [14]. The figure shows a reaction rule
component, which handles incoming messages as well as an action rule part,
which can actively send messages. This means that we use rules to specify the
behavior of the agent rather than following the traditional approach of writ-
ing code in an iterative programming language to do so. For our OntoAgent
implementation, described in section 8.3, we opted against a full-blown agent
infrastructure like FIPA-OS. In the spirit of Web Services, our agent middleware
bases on simple and well-established Internet standards.

While this inter-agent messaging might be the prime way of communicating
in the future, currently this is only an option within a local test bed since no
public agents are deployed. Therefore, other gateways are necessary. Even
though Web Services have yet to take off for applications other than enterprise
application integration, they are a promising technology likely to have a major
impact. In the light of this observation, we developed a universal knowledge base
to Web Service gateway called Web Service Description Framework (WSDF),
which we explain in detail in section 8.4. Simply by enriching the existing
interface description with semantic information, WSDF allows our agents to
dynamically invoke Web Services without previous knowledge of its API. Finally,
probably the most important sources of information are existing applications.
This can range from ones personal calendar to a corporate information system.
We suggest an easy extension of our OntoSQL engine, which allows existing
information of a relational database to be viewed as Semantic Web data.

7.5 Gathering Information from the User

Besides obtaining structured data from other applications, the user is the other
prime source of information. Figure 7.4 illustrates that a model of the user is
kept in the core datastore. This allows us to integrate the user model with the
other available information and rules. Consequently, the data is logically repre-
sented as RDF triples that are again conform to the core ontology. Physically,
these applications most likely will load the data directly via the native datas-
tore interface, rather than using the XML serialization. We envision two ways
of gathering information. First of all, the user should be able to make simple
statements using natural language. In order to translate these statements into
RDF, we developed a small solution called OntoLang (see section 8.6). In the
spirit of our ontology-based software engineering method, OntoLang uses the

103

Data Storage

Layer

Rule Layer

Query Layer

Dialog

Natural

Language

Layer

R

D

F

Q
u
e
s
t
i
o
n
A
n

s
w

e
r

Sensors

R
D
F

Smart

Application

Figure 7.4: A smart application can present selected information to the user.
In turn, the user can feed information into the system by initiating a natural
language dialog or simply via controls placed on the user interface.

ontology for this translation process.
Other, simpler but not less effective ways are special user interface controls.

A button might be labeled ”I am interested in topic X”. The corresponding
action of asserting interestedIn(user, X) into the knowledge base can simply be
hard coded in the event handler. Dynamically placing such controls on the user
interface is done by the SmartGuide application, introduced in the chapter 9.
Finally, special sensors can feed information such as a GPA position or, in the
case of a helper application, the local system’s configuration parameters, for
instance.

7.6 Applications

We developed two intelligent applications, SmartGuide and SmartAPI. Smart-
Guide addresses document retrieval while attempting to incorporate as much
contextual knowledge as possible. The knowledge base combines a user model
with domain knowledge. In conjunction with rich content metadata, Smart-
Guide leverages this information in order to suggest documents, which are likely
to be useful, or which provide the answer to a problem the user is facing. The
natural language statement parser, mentioned in the previous section, is aug-
mented with SmartDialog, a clarification dialog system. SmartDialog analyses
the user model and the current suggestions in order to optimize the recommen-

104

dations. The details of this dialog system are given in section 9.3.
A second application, SmartAPI, serves a more specific problem domain,

i.e. assisting programmers with their job. Rather than documents being tagged
with metainformation, SmartAPI bases on semantically enriched APIs. In com-
bination with an ontology on frequent programming tasks, comparable to the
MIT Process Handbook, SmartAPI can then automatically generate small pro-
gram sequences, saving the developer from having to study the documentation
and find the respective useful parts. SmartAPI is discussed in section 9.4.

105

Chapter 8

Core Technology

After the coarse architecture has been introduced in the previous chapter, we
will now present our individual technological contributions in detail before pro-
viding application examples in the following chapter. First, sections 8.1 and 8.2
introduce the OntoJava and OntoSQL inference engines. Both solutions base
on mainstream technology, however, they are very different in that OntoJava
is a solution for executing rules on a small scale, possibly on a portable devide
such as a cellular phone or a personal organizer. Basing on relational databases,
OntoSQL is targeted more towards the backend server area. The OntoAgent
framework, explained in section 8.3, provides a solid engineering basis for the
development of agent-enabled applications. An application of OntoAgent from
the area of online learing will be demonstrated in the following chapter. The
integration of external data sources is at the center of attention in section 8.4,
which illustrates our Web Service Description Framework. We conclude with
OntoLang, a small system that shows how Semantic Web technology can also
be leveraged in yet another context, namely language understanding.

8.1 OntoJava

The core idea behind OntoJava is that a directed, labeled RDF graph lends
itself to being modeled using objects and object references of an object oriented
programming language like Java. One of the main benefits is that many aspects
of the RDF Schema semantics are actually enforced by the Java compiler and
interpreter. An object located in a main memory database represents every
resource with its URI. We will examine to what extent the restrictions on the
graph’s arcs imposed by RDF Schema can be enforced by the language’s type
system and which restrictions are necessary. Apart form this discussion, we in-
troduce the OntoJava cross compiler, that automatically converts RDF Schema,
and RuleML into a set of Java Classes that act as a combined main memory
object database with a built in forward chaining rule engine1. Figure 8.1 illus-

1Initially, the forward-chaining approach was introduced by the OPS5 system [26]

106

RDFS Ontology

RuleML

Java Object DB

+

Java Rule Engine

Loader
 API

Smart Application

OntoJava

+javac

Figure 8.1: The object database/inference engine generated by OntoJava can
be loaded with RDF data and accessed by an application

trates this process and how a smart application can interface with the object
database. An object-oriented language like Java offers many advantages and
therefore the section concludes by proposing Java-enabled reaction rules and
ways to customize the generated classes.

Conceptually, OntoJava consists of three major parts. The first part in sec-
tion 8.1.1 is the mapping of RDF Schema classes to classes in an object oriented
sense. This was pioneered by Cranefield [27] who suggests a mapping of UML
to both Java classes and RDF Schema ontologies as the layering of Semantic
Web languages from figure 5.1 suggests. This approach is also supported by
Grosof [70], who is also our co-lead in the RuleML ontology combination sub-
group. The second part in section 8.1.2 is the explicit association of predicates
in rules with properties of the ontology. Finally, the third part in section 8.1.3
deal with rule compilation. This work was inspired by previous approaches of
compiling Prolog into C execution engines [24, 124].

8.1.1 Mapping the Class Taxonomy

A class taxonomy, which can be expressed in RDF Schema, is the backbone of
an ontology. Domain concepts are represented as classes with a hierarchy being
imposed by the subClassOf property. Consider the following example:

<rdfs:Class rdf:about="⪯Person">

<rdfs:subClassOf rdf:resource="⪯Animal"/>

</rdfs:Class>

OntoJava maps every RDFS class into a Java class. The subClassOf prop-
erty is similar to inheritance in object oriented systems with respect to both
being transitive relationships defining the class hierarchy. However, the RDF
Schema version is more flexible than its Java or C# counterpart since it al-
lows multiple inheritance. OntoJava is therefore not able to handle multiple
inheritance in the RDFS source at the moment. Section 8.1.6 outlines a simple
solution for this limitation where RDF Schema classes are converted to inter-
faces which are then implemented. The RDF Schema example above is mapped
to a class Person that inherits from Animal.

public class Person extends Animal

107

8.1.2 Mapping Properties

RDF Schema properties are defined with a domain and a range. Using the
directed labeled graph metaphor, an arc’s label identifies which property it
refers to. The types of the resources connected by the arc must be the same
class that’s listed as the property’s range or domain, or a subclass of it. The
range is decisive for the type of the arc’s source, the domain for its destination’s
type. Besides a class, the range of a property can also be a literal. Properties
of classes can be defined as follows:

<rdf:Property rdf:about="⪯isParentOf"

<rdfs:domain rdf:resource="⪯Person"/>

<rdfs:range rdf:resource="⪯Person"/>

</rdf:Property>

<rdf:Property rdf:about="⪯name"

<rdfs:domain rdf:resource="⪯Person"/>

<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

Properties with a literal as the range are mapped directly into instance
variables, which is quite straightforward. Note that it is easy to change this to
get/set access methods. This becomes necessary if changes need to be tracked
to support an undo operation or if multiple inheritance basing on interfaces is
implemented. Relations to other instances are represented by a collection of
references to other Java objects. This is the natural representation of a directed
labeled graph in Java. The RDF Schema example above causes to following
methods and variables to be defined in the class Person:

public class Person extends Animal {

public String name;

private HashSet isParentOf = new HashSet();

public void putIsParentOf(Person p) {

has.add(p);

}

public boolean getIsParentOf(Person p) {

return has.contains(p);

}

public HashSet getAllIsParentOf() {

return isParentOf;

}

}

As sections 8.1.3 and 8.1.5 will explain further, the get/put access methods
play an important role for the rule mechanism or when restrictions on the vari-
ables are to be checked. The corresponding get and put methods ensure that

108

the appropriate data types, as defined in the RDF Schema property definition,
are used. Note that the Java compiler enforces this. RDF Schema allows a
property to have multiple domains, but only a single range. Multiple domains
would result in several Java classes having variables and methods with the same
name, which is no problem.

In terms of logic, the assertion isParentOf(a, b) corresponds to the invo-
cation of a.putIsParentOf(b). The query isParentOf(a, b) can be answered
by calling a.getIsParentOf(b)whereas a.getAllIsParentOf() yields the an-
swer to isParentOf(a, X). Finally, isParentOf(X, Y) is answered by iterating
over all person instances and calling getAllIsParentOf again.

Ternary relations are not part of RDF and are handled by a workaround
of using an intermediate pseudo resource. A similar scheme can be applied to
OntoJava by promoting a relation from a simple object reference to having its
own object, which can then point to more than two constituents.

8.1.3 Mapping Rules

The two basic rule evaluation strategies are forward and backward chaining.
Obviously a imperative language environment lends itself to forward chaining,
where the rules are executed in an if-then fashion. Rule implications are simply
asserted into the fact base as new facts. The popular Java Expert System Shell
(JESS)2 is another representative for this evaluation style, implementing the
RETE [56] algorithm to ensure efficient rule execution.

Restrictions on the rules’ expressiveness, namely disallowing negation, make
sure, that exactly one minimal model exists for the set of rules [46]. A minimal
model describes the smallest possible fact base, where for any variable assign-
ment on any rule body yielding true, the rule’s head is also true. Therefore,
if the minimal model is contained in the current fact base, no more rules will
fire and assert new facts. The order in which the rules are evaluated does not
matter, since the fact base cannot shrink. If stratified negation is allowed, rules
containing the not operator must be executed last. This feature is not yet
implemented in OntoJava.

In OntoJava, each rule from the RuleML base is converted into a static
method. The brute force approach would be to check the right side for all
possible bindings of the free variables for each rule until no new assertion oc-
curs, which would be quite inefficient. OntoJava implements the following op-
timizations. Every time an update takes place on a specific property of an
object, all rules are evaluated, that contain that property in their right side,
i.e. the rules that are potentially affected by the change. This means that
the rules are checked incrementally. Consider the rule isUncleOf(A, C) ←
isBrotherOf(A, B) ∧ isParentOf(B, C) which has some label, say rule5. Fur-
ther assume that this is the only rule, which has the isBrotherOf predicate on
the right side. This causes the following call to be placed in the putIsBrotherOf
access method in the person class:

2http://herzberg.ca.sandia.gov/jess/

109

public void putIsBrotherOf(Person p) {

if (!(isBrotherOf.add(p)))

return;

Rule.rule5(this, p, null);

}

First, the new relationship is stored by inserting it into the set datastructure.
If the object was already in there, the add method returns false and the call
returns. Otherwise, the rule is activated. Since the rule has three variables,
three parameters are passed. We also know that the added relation is the only
change to the database. Therefore, A and B, the first and second variable,
must be bound to this, the current object, and p, the object inserted into the
datastructure. Only C must be bound to all persons. Here, we can use the
free variables’ type information. A free variable appearing with a isParentOf

predicate can only be bound to persons. Thus, instead of iterating over all
objects, we only need to iterate over persons. The following shows the rule’s
code:

public static void rule5(Person a, Person b, Person c) {

if a==null, iterate a over all persons

if b==null, iterate b over all persons

if c==null, iterate c over all persons

with combinations of (a, b, c) {

if (a.getIsBrotherOf(b) && b.getIsParentOf(c))

a.putIsUncleOf(c);

}

}

Note that the call to putIsUncleOf can again trigger other rules that are
activated in the respective put method.

Obviously this approach will not perform efficiently for rules with many free
variables, since all but two of the combinations of free variables need to be tested
by nested loops. We are planning another optimization here by performing
short circuit evaluation of parts of the condition at the outer loops. This should
drastically reduce the number of combinations that need to be checked.

Rules with large amounts of free variables being checked in nested loops
resemble a relational join very much. This leads to section 8.2 where we examine
how rules can be evaluated top-down by an SQL engine.

Obviously OntoJava currently implements only a brute force algorithm.
Many optimizations have been suggested in the past. Section 8.2.8 will outline
some of the most common approaches using in deductive and even relational
databases.

8.1.4 Property Inheritance

RDF Schema defines the core property subPropertyOf with the following se-
mantics:

110

parent(a, b)← subPropertyOf(father, parent) ∧ father(a, b) (8.1)

This rule can be rewritten into a set of rules:

{p(a, b)← c(a, b) | subPropertyOf(c, p))} (8.2)

Rather than implementing special handling for subproperties in the gener-
ated code of the access methods, we decided to reuse the built-in rule mechanism
and include a rule for each subproperty relation defined in the RDF Schema
source according to equation 8.2.

The transitivity of subPropertyOf is handled by the fact that asserting the
parent property through the rule will in turn trigger another rule asserting the
grandparent property, and so on.

8.1.5 Constraints

RDF Schema currently has no mechanism for defining further constraints. How-
ever, it is clear that this would be a valuable addition. DAML+OIL, for instance,
offers a construct like daml:maxCardinality to restrict the number of outgo-
ing arcs from an object. Dealing with a constraint violation includes detecting
the violation, notifying the user, and finally reversing changes made to the
data repository. Constraints cannot be checked incrementally, since partially
inserted data might reflect an inconsistent state. Once the user issues some sort
of commit, the conditions must be checked. It is definitely possible to generate
constraint checks into each class. Violations could be flagged using Java excep-
tion mechanism. To make sure the operations of a transaction can be reversed,
each object might clone the internal datastructures and retain a copy of the old
values until a successful commit is issued.

8.1.6 Multiple Inheritance

Unlike C++, Java does not allow a class to have more than one superclass. The
reason lies in ambiguities in which implementation of an inherited method m

is to be called, if both super classes implement m. Java solves this ambiguity
by disallowing multiple inheritance for classes and offering multiple inheritance
for interfaces only. Since an interface only contains the method signatures and
not the implementations, it is always clear which method a caller refers to.
Consequently, a Java interface instead of a class will be generated for each RDF
Schema class. A class StudentWorker that is derived from both Student and
Worker, results in the following Java interfaces:

public interface Student extends Person { ... }

public interface Worker extends Person { ... }

public interface StudentWorker extends Student, Worker { ... }

111

An implementation class is generated for each interface. Note that the com-
plete implementations of StudentImpl and WorkerImpl need to be repeated in
StudentWorkerImpl. This is not really a problem since the implementation is
generated automatically anyway.

public class StudentWorkerImpl extends PersonImpl

implements StudentWorker {

... implement Student, Worker, and StudentWorker methods

}

Finally, the following code then creates an instance of the class:

StudentWorker sw = new StudentWorkerImpl();

8.1.7 Defining Instances

RDF Schema defines the type property. A resource can be declared to be an
instance of a class via a (ResourceURI, type, ClassName) triple. Unlike regular
triples that are represented by storing a reference to the object in the respective
data structure of the subject, the OntoJava framework handles this triple by
instantiating an object of type ClassName:

ClassName obj = DB.createClassName(ResourceURI);

Thus, the triple is represented by the Java expression obj instanceof

ClassName being true. Using a factory method offers further flexibility when
custom behavior is to be added to the generated classes. Section 8.1.8 describes
this mechanism in more detail. OntoJava also maintains global data structures
allowing convenient access to the objects stored in the main memory database.
Every object that is created by a factory method is immediately inserted in
a global hash set using the resource’s URI as the key allowing for efficient re-
trieval. Furthermore, a set data structure is maintained for each RDF Schema
class to be able to quickly answer a query asking for all Person instances in the
database.

Since the type predicate is treated in a special way, consequently, checking
if a resource is of a specific type is not preformed by searching a type-predicate
data structure but via the Java instanceof operator. The respective special
handling for type predicates is built into the OntoJava software.

This behavior reveals a restriction of the OntoJava system. While in RDF,
a class can be defined to be an instance of several classes, this is not possible
in an object oriented programming environment. An instance can be viewed or
cast to the interfaces and super classes related to the instance’s class, but never
to a completely unrelated class.

A solution for this limitation would be to implement the typing mechanism
with own code instead of having it (partly) handled by the programming lan-
guage environment. However, this would greatly complicate the code and make

112

the application programming interfaces less descriptive, reversing major advan-
tages of the solution. Furthermore, the Java compiler would no longer be able to
catch RDF Schema violations at compile time. Since these points are important
advantages of OntoJava, it seems reasonable to not opt for such a workaround
and accept this limitation.

A workaround suggested for handling multi-class membership in classes
C1, ..., Cn with Protégé is to create a new class C which inherits from C1, ..., Cn.3

An instance of this new class has the multi-class property, however, this would
require creating, compiling, and loading new classes into the virtual machine at
runtime.

8.1.8 Extending the Generated Classes

Extending the generated classes with own functionality can customize the sys-
tem. As was mentioned in section 8.1.7, we use factory methods to create new
objects in the database. Using the abstract factory design pattern [61], the user
can replace the object factory with an own version that creates the customized
classes instead of the original ones. The inference functionality remains since
the new classes only extend the existing ones.

8.1.9 Namespaces

OntoJava’s handling of namespaces is fairly rudimentary at the moment. One
option, which was used in the examples shown so far, is to omit a certain
namespace prefix from the RDF Schema source. Alternatively, the entire URI
is used in class names. Here, we replace characters that cannot appear in
variable names with an underscore. Method names can still be given with-
out the namespace prefix, since they do not have to have unique names like
the classes do. The URL http://www.w3c.org/onto/Concept would become the
class http www w3c org onto Concept. The drawback of this simple approach
is that it results in very lengthy class names and makes the API quite unread-
able. Nevertheless, this allows different RDF Schema sources to be combined
into a single application.

Alternatively, a namespaces can be associated with Java packages. The
naming convention for packages is already based on Internet DNS names. For
instance, the Document Object Model interface specified by the W3C is located
in the package org.w3c.dom. If the folders given in the URL are converted into
further subpackages, the class name would only have to contain the URL’s last
part. The URL above would then become the class org.w3c.onto.Concept.
This is definitely more natural, and with the proper import statement, the class
can even be referred to only as Concept.

3http://smi-web.stanford.edu/projects/protege/protege-rdf/protege-rdf.html

113

8.1.10 Reaction Rules

Rather than asserting new facts, reaction rules perform an operation like sending
mail or printing a message to the console. Usually the inference system defines
a set of commands like print that can be used in reaction rules. Since we are
dealing with a Java environment, it seems quite natural to allow Java statements
to be embedded in reaction rule heads. The following example calls a web
application, using a free variable as a parameter:

<_head><java>

runtime.Loader.load("http://host/servlet/SearchGate?flight="

+ <var>F</var>.name);

</java></_head>

The web application’s RDF output is then loaded into the database using a
runtime library. The implementation is quite simple. Instead of generating the
call to the assertion method as shown in section 8.1.3, the code from the rule is
printed. Only the variable references need to be replaced.

This solution is flexible, but it also seems fairly proprietary. After all, rules
are supposed to be exchanged across any platform and system. However, any
kind of reaction rule command is proprietary. It seems natural to reuse an
existing platform. Furthermore, applets apply the same concept. With Java
being a cross-platform language and a virtual machine being installed on a
large fraction of hosts, it seems fairly reasonable to load not just RuleML, but
also some accompanying Java libraries for sending email etc.

8.1.11 Further Features

In addition to the features presented so far, OntoJava has two more aspects.
Since the active database is only held in main memory, we provided for a seriali-
zation and deserialization facility which base on the mechanisms build into the
Java APIs. This way a snapshot of the current state of the object database can
be stored on disc. Besides the predicates coming from the ontology, OntoJava
has some simple type comparators for numbers, strings, and dates built in.

8.1.12 OntoJava Implementation Architecture

The design and implementation of the OntoJava cross-compiler strictly follows
object-oriented principles. Figure 8.2 shows the class inheritance graph. On-
toJava bases on both an RDF and a RuleML parser. The RDF parser is not
shown in the figure, since it is provided from an external library. The RuleML
parser classes can be seen on the left with the RuleML package prefix. Note
that the class names correspond directly to the XML element names found in
the RuleML syntax DTD. The generic RuleML parser classes are now extended
within the convert package. This is enabled via an abstract node factory, which
produces instances of the desired RuleML parser extension. Our converter ex-
tension adds functionality allowing the nodes to transform themselves into Java

114

Figure 8.2: Class inheritance diagram of the OntoJava package

statements. The methods required for doing this include collecting rule body
variables or the actual print order. These methods are specified in the central
CRuleNode interface, which is implemented by all converter classes. This archi-
tecture proved to be very useful once we exchanged the Java converter with the
SQL converter for the OntoSQL system.

Figure 8.3 shows a class collaboration graph from the RuleML parser part.
The solid arrows denote subclass relationships; the dashed lines indicate that
instances of one class have references to instances of another class. A rule has a
head and a body. These are both SingleChildNodes, which in turn reference
one node each.

Figure 8.4 shows a class collaboration diagram from the converter module.
A rule variable references a class, which specifies its type information. The
class holds three references to the predefined types object, class, and string.
The object and class types were introduced to allow an instanceOf(object,

class) built-in predicate.

115

ruleml::Imp

ruleml::RuleNode

ruleml::SingleChildNode

node

ruleml::Head

_head

ruleml::Body

_body

Figure 8.3: Class collaboration diagram .

convert::CVar

ruleml::Var

ruleml::LeafNode

convert::CRuleNode convert::CClass

type

convert::COntoClass convert::COntoObjectClass convert::CStringClass

CLASS OBJECT STRING

Figure 8.4: Class collaboration diagram .

116

$classruleml_1_1RuleNode.html
$classruleml_1_1SingleChildNode.html
$classruleml_1_1Head.html
$classruleml_1_1Body.html
$classruleml_1_1Var.html
$classruleml_1_1LeafNode.html
$interfaceconvert_1_1CRuleNode.html
$classconvert_1_1CClass.html
$classconvert_1_1COntoClass.html
$classconvert_1_1COntoObjectClass.html
$classconvert_1_1CStringClass.html

8.2 OntoSQL

While OntoJava’s goal is to provide simple inferencing support for mobile and
small devices, OntoSQL aims at backend server systems. Databases can be
found in virtually every enterprise. Jim Gray even calls them ”the bricks of
cyberspace”. Furthermore, databases have already been used as logic engines.
The XSB deductive database, for instance, provides an ODBC backend into
relational database systems [126] where database cursors are used to retrieve
the base facts which are normally loaded from the XSB fact base. Rather than
simply providing a storage repository for facts, the database engine can also
execute SQL queries which a Prolog to SQL compiler [32] generates from queries
passed into the odbc query built-in predicate. Therefore, it seems natural to
reuse database technology for Semantic Web solutions. Since our design goals
only require simple reasoning, we decided against an approach where a powerful
reasoner like XSB is attached to the database. Some initial test with the XSB
database backend also revealed serious performance problems caused by multiple
open cursors, general failures due to ODBC errors, and the tendency of XSB to
load the entire database tables into main memory. Another reason for sticking
with a basic database is the fact that we want to be able to use the database’s
SQL interface directly.

This section first compares the similarities and differences between the
datalog-oriented RuleML version 0.8 and SQL. We pick up and elaborate ideas
presented in [46] and the Edutella white paper [116], where a mapping of the
RDF-QEL query language to SQL is discussed briefly. The second part intro-
duces the OntoSQL system, which is able to automatically generate the neces-
sary tables and views in a relational database system4, enabling it to act as a
RuleML engine.

8.2.1 Mapping Datalog Queries to SQL

For this discussion we assume that the information is stored in a single table
containing fact triples. We have three string columns, subject, predicate, and
object, which are all part of the composite primary key, preventing the applica-
tion to insert the same triple twice.

create table fact (

subject char(255),

predicate char(255),

object char(255),

primary key (subject, predicate, object)

);

This storage schema is obviously very simplistic, yet sufficient for our analy-
sis. Possible alternatives deal with models and optimize space requirements by

4In SQL-type relational database systems a view is actually defined by a set of rules [140].

117

introducing namespaces and URIs as entities in the schema.5

We distinguish between implication rules and queries. A rule A← B states
that Avar is true if Bvar is found to be true for a certain variable assignment. A
query finds all variable assignments for which the search condition is true. We
can generalize a query to be an implication rule with an empty left side: ← B.

We examine the mapping of queries first. Handling rules is complicated by
the fact that the right side can depend on other rules. Section 8.2.2 explains
how this is handled using SQL views.

Queries on a single predicate are mapped as follows:

isFatherOf(X, Y)

select * from fact where predicate = ’isFatherOf’

Conjunctions are translated to self-joins on the fact table. The join condi-
tion is determined by the occurrences of the variables in the query. Here, the
object of the isParentOf triple must be the same resource as the subject of the
isBrotherOf triple.

isParentOf(X, Y) and isBrotherOf(Y, Z)

select * from fact a, fact b where

a.object = b.subject and

a.predicate = ’isParentOf’ and

b.predicate = ’isBrotherOf’

The SQL union operator can handle disjunctions. Note that generally, a
disjunction like A← B or C can be written as two rules or queries A← B and
A← C, and vice versa.

isBrotherOf(X, Y) or isSisterOf(X, Y)

select * from fact where predicate = ’isBrotherOf’

union

select * from fact where predicate = ’isSisterOf’

8.2.2 Mapping Datalog Rules to SQL

As mentioned before, rules are similar to queries, except for the fact that impli-
cation results can influence other rules. Consider the following simple example
consisting of two rules:

isSiblingOf(X, Y) <- isSisterOf(X, Y)

isRelatedTo(X, Y) <- isSiblingOf(X, Y)

5Sergey Melnik collected a list of proposals about ways of storing RDF data in relational
databases at http://www-db.stanford.edu/∼melnik/rdf/db.html

118

The second rule depends on the first rule via the isSiblingOf property. To
answer a query asking for all siblings, we could use the following SQL query
that is embedded in a view:

create view isSiblingOf as

select * from fact where predicate = ’isSiblingOf’

union

select subject, ’isSiblingOf’, object from fact

where predicate = ’isSisterOf’

The first subquery gets all isSiblingOf facts from the database. This is
necessary since the user might assert a sibling relationship, if the gender of the
sibling is not known. The second subquery processes the first rule. Except
for the select clause, that explicitly states the predicate used on the rule’s left
side, the query corresponds directly to the datalog query isSisterOf(Y, Z).
Wrapping the query in a view allows us to treat the view’s name isSiblingOf

as a table. The DBMS internally resolves the underlying SQL statement.
If a query for all related resources is posed, the same mechanism can be

applied. Note that the SQL query references the view defined above:

create view isRelatedTo as

select * from fact where predicate = ’isRelatedTo’

union

select subject, ’isRelatedTo’, object from isSiblingOf

Since even this simple example results in quite elaborate queries, it makes
a lot of sense to encapsulate the queries retrieving every triple with a given
predicate in a separate SQL view. These views can then be reused in other
views or queries, as demonstrated in the last example.

Now the user can run the SQL query select * from isRelatedTo. The
SQL engine of the DBMS handles all rules. While this is very convenient, we
must rely on the DBMS’s optimizer to efficiently handle the range of joins and
union operations triggered by a simple query like the one above.

8.2.3 Recursive Rules

Recursive rules, i.e. rules where the predicate on the left side also appears on the
right side, cannot be handled with the methodology presented above. In order
to make sure that the rule set can be converted, a predicate dependency graph
is established. It contains a node for each predicate. Whenever a predicate A
appears in the body of a rule which has the predicate B in its head, we define
B to be dependent on A and we draw an arc from A to B. The rule set can
be converted if the dependency graph is free of cycles, with the exception of a
cycle caused by a linear recursion of a predicate with itself. These cases can be
handled by recursive queries, which are defined in the SQL-99 standard:

119

create view isAncestorOf as

with rec(subject, ’isAncestorOf’, object, level) AS (

select * from fact where predicate = ’isAncestorOf’

union all

select subject, ’isAncestorOf’, object from Parent

union all

select a.subject, ’isAncestorOf’, b.object, level+1

from rec a, Parent b

where a.object = b.subject and level < 9

)

select * from ancestor;

This view corresponds to isAncestorOf(A, C) ← isAncestorOf(A, B) ∧
isParentOf(B, C). The first and the second subquery get all existing ancestor
information and combine it with the parent information. This forms the basis
for the recursive third subquery. DB2 does not terminate the query, if the data
contains a cycle. The level parameter registers the depth of the recursion and
prevents an endless loop by restricting the search to a certain depth.

We model every predicate as an SQL view. From the dependency graph we
can conclude, that, with the exception of the case above, no view definition will
be recursive. This allows us to run SQL queries similar to the ones shown in
section 8.2.1 from arbitrary database clients. The rules will then be executed
transparently by the system.

Note that even the fact table might actually be a view of a regular ER
schema. This way, up to date information can be used without any need to
upload data from an enterprise information system.

8.2.4 Further Mapping Possibilities

Besides the mappings presented so far, two more possibilities have been sug-
gested [32]. These are not yet included in the OntoSQL system mainly because
RuleML does not support these primitives yet. Note that we use the conven-
tional notion of arbitrary n-ary relations in the Prolog and SQL sense here.
Negation can be handled by using a negated exists subquery, as shown in the
following example:

<- employee(X) and not manager(X)

select id from employee where not exists

(select * from manager where id = employee.id)

Furthermore, it is suggested to group by free variables. Consider wanting to
compute the average salary for each employee role, given an employee relation
with name, role, and salary attributes. The underscore used in place of the
employee name denotes a ”do not care”:

<- avg(S, employee(_,R,S))

120

select avg(salary) from employee group by role

8.2.5 Building Applications with OntoSQL

OntoSQL is used to define the tables and views necessary. Once this pro-
cess is complete, an application program can simply query the views using the
generic DBMS SQL interfaces. Since we found DB26 to be the only DBMS
currently supporting SQL 99 recursive queries, OntoSQL contains the following
workaround in order to support other DBMSs as well. Rather than a recursive
query, a sequence of self-joins on the fact table is preformed and the results
combined by the union operator. This yields the correct results if the longest
transitive closure sequence is smaller than the maximum number of self joins
performed on the fact table.

8.2.6 OntoSQL Architecture

Large parts of the OntoJava cross-compiler architecture were reused for On-
toSQL. Figure 8.5 shows that in the class hierarchy, the ontosql package takes
the place of the Java converter seen in figure 8.2. A slight change manifests
itself in the interface SQLAble, which is implemented by the classes representing
constants and variables. This interface deals with establishing the SQL query’s
where clause, which is mainly influenced by these two components. This is also
documented by the class collaboration graph in figure 8.6. The variable class
contains a reference to a list of SQLAbles, which are the conditions that need
to appear in the where clause.

8.2.7 Performance Results

Obviously, the performance of large rulesets is a concern due to the multiple joins
and large union statements which have to be evaluated when data from a view is
requested. We ran three series of performance tests to analyze this problem and
compare the performance of relational database to traditional inference engines.

Software and Hardware Configuration Each test compares the perfor-
mance of Microsoft SQL Server 2000, IBM UDB 7.2, and XSB 2.5. The tests
for both relational databases were performed in a client server setting with a
Java program connecting via JDBC-ODBC middleware. XSB on the other hand
was evaluated by using the Prolog findall predicate. This predicate collects
all solutions of a goal, such as ancestor(X, Y) and stores them in a list. How-
ever, this happens inside of the Prolog engine and no results need to be pushed
through elaborate middleware layers. Therefore, the comparison of the database
servers to XBS should only be interpreted in a qualitative way. The database
server had an Intel Pentium III processor with 866MHz and 512MB RAM. The
same machine was also used for the XSB test runs.

6The personal developer edition of DB2 version 7.2 is available at the IBM website.

121

Figure 8.5: Class inheritance diagram of the OntoSQL package

ontosql::SVar

ruleml::Var

ruleml::LeafNode

ontosql::SRuleNode ontosql::SQLAble ontosql::ConditionList

bodySQLAbles

Figure 8.6: Class collaboration diagram .

122

$classruleml_1_1Var.html
$classruleml_1_1LeafNode.html
$interfaceontosql_1_1SRuleNode.html
$interfaceontosql_1_1SQLAble.html
$classontosql_1_1ConditionList.html

Test 1 The first test is supposed to evaluate how a large number of rules,
which are chained together by the choice of head and body predicates, affect
the performance. We define the following rules:

p1(X,Y) <- p0(X,Y).

p2(X,Y) <- p1(X,Y).

...

Consequently, a fact table was created for each predicate along with the
corresponding view definition, which calculates the union of the base facts and
the additional information obtained by via the rule:

create view p2 as

select * from p2fact

union

select * from p1

All fact tables were filled with 1000 tuples each having the values (1,1), (2,2),
... as subject object pairs. The experiment then performs queries on all of the
views and measures the time it takes from sending the query to receiving the
last result row. In turn, the measurements for XSB were taken by timing the
command findall([X,Y], f0(X,Y), L) from the input prompt. Figure 8.7
illustrates how the database engine executes this chain of rules. We end up
with a linear sequence of union operators, each being fed with the previous
result and the values from a full scan of another fact table.

Figure 8.8 shows the average execution times of four test runs for querying
the different predicates in the chain. From the execution plan, one can conclude
that the increase with a growing number of rules would ideally be linear. The
performance of DB2 and SQL Server increases slightly faster than linear with
DB2 performing much worse overall. While loading the 38th view, DB2 aborted
with an out of memory error. The execution time of SQL Server is only slightly
slower compared to XSB, even though SQL Server was configured in the client
server setting. Both observations indicate that the queries are well optimized
in SQL Server. The overall response times for computing a chain of 100 rules,
which causes the database to merge 100000 tuples is less than 400 milliseconds.
Clearly, this is an indication that SQL Server, like XSB, holds all tables in main
memory. The performance of DB2 compared to XSB is what we expected.

Test 2 The second test aims at creating rules resulting in several join opera-
tions. Therefore the rule base was changed to a Fibonacci-like pattern with a
predicate depending on its two predecessors. The fact tables again contained
1000 tuples each.

p1(X,Y) <- p0(X,Y).

p2(X,Z) <- p1(X,Y), p0(Y,Z).

p3(X,Z) <- p2(X,Y), p1(Y,Z).

...

123

Figure 8.7: SQL Server’s execution plan for a simple chain of implication rules.

Figure 8.8: Performance of a chain of simple rules. SQL Server almost reaches
the performance level of XSB.

124

Figure 8.9: SQL Server’s execution plan for a chain of complex rules.

This causes execution plans like the one shown in figure 8.9. Due to the fact
that two views need to be joined to compute the next view, the operator tree
looks like a binary tree. As it can be seen in the exponential character of the
curves in figure 8.10, none of the three candidates comes up with the much faster
strategy of iteratively materializing the predicates. This exponential growth in
complexity causes DB2 and XSB to run out of memory starting from level eight.
SQL Server is able to compute up to level ten before exceeding the limit of 256
tables in a join. Up to level six, which already causes massive computations
to take place, the response times of less than two seconds are very satisfactory.
Again, the performance of SQL Server compared to XSB is outstanding.

Test 3 The third test run was supposed to evaluate the performance of com-
puting with recursive rules. The test bases on a single table filled with the
values (1,2), (2,3), ..., (1000,1001). The underlying predicate is assumed to be
transitive. Depending on how many recursion levels are computed, a maximum
of 1000 + 999 + 998 + ... + 1 values should be retrieved.

This test run required different setups for each database software. We used
the SQL 99 recursive query facility of DB2. Figure 8.12 shows that the exe-
cution time increases almost linearly. DB2 was actually able to compute the
full recursion depth. Over time, the increase slowed down, probably due to the
number of new results being added getting smaller and smaller. The full transi-

125

Figure 8.10: The performance of computing with an exponentially growing op-
erator tree.

Figure 8.11: SQL Server’s execution plan for recursive rules.

126

Figure 8.12: The performance of evaluating recursive rules.

tive set was computed and transferred within less than 60 seconds. Since SQL
Server cannot handle recursive rules, we used the self-join workaround. This
yields execution plans like the one shown in figure 8.11. The performance is
comparable to DB2, however, the table join limit was again hit starting from
recursion depth 21 onwards. In the case of XSB, we tried to mimic recursion
depth with an addition level value being passed, similar to the level parameter
used in the recursive SQL 99 query. The search is stopped once a specified maxi-
mum level is exceeded. It turns out that this is much slower than computing the
full recursion to begin with. Obviously, XSB is highly optimized for recursion
with its tabling algorithm. Consequently, we only computed the full recursion
and the impressive time of 1.5 seconds is not dependent on the recursion depth.

Evaluation The performance measurements are encouraging due to the fast
response times. Furthermore, SQL Server handles huge queries that result from
the combination of different views without problems or serious performance
penalty and even outperforms XSB in many cases. DB2 on the other hand,
performs well for recursive queries. However, XSB exposes unparalleled per-
formance in this area. The situation encountered in the second test run is an
extreme case and all databases have problems with it. We believe that such a
chain of complex rules will hardly ever appear in a normal rule base. In general,
database servers definitely seem up for the challenge. Test run one showed, that
dozens of simple rules can easily be chained together. However, it is definitely
advisable to avoid the table self-join workaround for recursive predicates. The

127

IBM implementation of SQL 99 recursive queries provides both scalability and
good performance results. Hence, DB2 should be preferred over SQL Server
even though SQL Server performed better in tests one and two.

8.2.8 Optimization Strategies Employed

When recursive queries are evaluated using the naive Prolog-style top-down or
backward chaining strategy, many facts are computed over and over again since
the system returns all possible proofs for a certain derived fact. This is an un-
necessary overhead, since a user is usually only interested in the data, not the
proof. The bottom-up or forward chaining strategy does not have this problem
but suffers from another deficiency. It will compute many facts, which are com-
pletely unnecessary for answering the query. This paragraph will briefly outline
some possible optimizations, which are partly implemented in logic program-
ming environments and database management systems.

Tabled Resolution XSB uses a mechanism called tabled resolution, where
intermediate results are cached in memory [125]. The user can explicitly mark
a predicate to be tabled or let the system decide. However, this decision can be
tricky. Tabling improves performance dramatically for certain cases such as the
ancestor predicate. However, tabling the append predicate, for instance, would
lead to so-called over tabling, i.e. all intermediate sub lists being stored.

Magic Sets Magic Sets are another methodology, which can be found fre-
quently. This technique, first introduced by Bancilhon et. al. [7], establishes
sets of facts that might contribute to answering a query. If a fact is not in this
Magic Set, it does not have to be considered. Introducing artificial predicates,
which correspond to the sets, then enforces membership in the sets. The logic
program is automatically transformed in such a way that the artificial predi-
cates are included in the rule body conjunctions. Therefore, this compile time
technique avoids deriving unnecessary facts, which lie outside of the Magic Sets.

Deductive databases such as LDL were the first systems to employ Magic
Sets [125]. Mumick and Pirahesh report on their implementation of Magic
Sets transformations in the Starburst relational database system [115]. This
technique replaces part of the traditional optimization techniques in that it is
used to push down all equality and non-equality predicates into the operator
tree. Seshadri et. al. describe a cost-based implementation of Magic Sets in
DB2 [129]. Both publications report great performance improvements for the
new algorithms. However, these results refer to decision support type of queries.
We were not able to determine if, and to what extent the current versions of DB2
and SQL Server used for our experiments implement Magic Sets. We believe
that DB2’s recursive queries use this optimization and that the other queries
were optimized with the traditional methods. In general, deductive databases
can definitely benefit from Magic Set optimizations. Currently, a Magic Set
based rule engine is being implemented for KAON. This work was still ongoing,
at the time this thesis was written.

128

Iterative Fixpoint Evaluation In contrast to compile time optimizations
like Magic Sets rewriting, Iterative Fixpoint Evaluation is a method applied at
runtime. It bases on a relatively simple observation, which can be made during
the goal evaluation. If a fact f is discovered during a specific rule evaluation
iteration, then it must be based on a fact which was newly found in the previous
round. Otherwise, f would have been found before. The classical example is
the same generation problem.

sg(X, Y)← flat(X, Y)

sg(X, Y)← up(X, A) ∧ sg(A, B) ∧ down(B, Y)

Ramakrishnan and Ullman describe, how Iterative Fixpoint Evaluation
works in this case [123]. The first rule never changes after the first iteration,
since we only find ground facts in the rule’s body. In the second rule, new values
of sg are computed as we go along. Therefore, the rule engine would work with
the full relations of up and down, however, only those values of sg are consid-
ered, which were newly concluded in the previous iteration. This decreases the
execution time dramatically, since the change in the values of sg is relatively
small. Many deductive database projects such as LOLA [8] or Aditi [6] adopted
this approach. This strategy is actually also implemented by OntoJava, since
further rule evaluation depends on new facts being asserted during the process.

8.3 OntoAgent

Apart from the integration of external services, a second trend in enterprise ap-
plications can be observed. Especially in the supply chain management domain,
traditional centralistic approaches fail to realize the full potential of informa-
tion technology. Pioneers in this area are definitely logistics companies like UPS,
which offer web-based packet tracking services for their customers. Nevertheless,
the vision of parts carrying sensors and information requires a more decentral-
ized approach, where decisions can be made locally by smart components and
agents rather than simply propagating every piece of information to an over-
loaded server and waiting for instructions.

While this vision of agent-based enterprise systems is very appealing, the
development effort is quite daunting. The complexity of existing systems, es-
pecially in the area of EAI, is already causing major headaches for project
leaders. Therefore, a new design paradigm for agent technology, which focuses
on ease of development, is necessary. Boley et. al. suggest to declaratively
specify agents using standard Semantic Web markup languages [14]. Again, an
ontology providing a shared conceptual representation is a prerequisite for this
paradigm. Outside of AI and Semantic Web communities, ontologies are often
viewed as purely academic and not really relevant to everyday problems. How-
ever, it is important to note that ontologies do have a large overlap with the
various standardization efforts such as RosettaNet or ebXML. Both need to de-
fine a standardized vocabulary for a domain. For instance, one can leverage the

129

Deductive Database

MSG In
 Send Command

Event Condition Action Rules

Derivation Rules

Facts
Integrity Constraints

Figure 8.13: Components of a generic agent.

broad shard understanding of the RosettaNet concept of a buyer and define one’s
own ontology class by extending the resource http://rosettanet.org/roles/Buyer.
This observation is supported by a recent report of the Gartner group, predicting
that ontologies will be a core component in 75% of all EAI projects [87].

In the recent years, several definitions for the term agent have been given.
Franklin and Graesser provide a nice overview of the various points of view [60].
They go on and define an autonomous agent as “... a system situated within
and a part of an environment that senses that environment and acts on it,
over time, in pursuit of its own agenda and so as to effect what it senses in
the future”. Maes provides a similar description for the term intelligent agent:
”An intelligent agent is a long-lived software process that runs with little or no
human supervision. It can cope with unforeseen events. It senses changes in its
environment and acts upon them.”

8.3.1 A Generic Agent Architecture

Boley et al.’s definition refines the statements above by identifying the five major
components illustrated in figure 8.13. The following paragraphs explain each
component’s function as well as how it can be represented using Semantic Web
mark-up languages.

Mental State Every agent has a ”mental state”, which is a set of facts it
believes to be true. While there are a large variety of knowledge representation
techniques available, simple directed labeled graphs have become the method
of choice in the Semantic Web community. Objects or resources, represented
by graph nodes, are interconnected via labeled relationships. The Resource
Description Framework (RDF) can be used to serialize such graphs.

Schema for the Mental State Shared ontologies are thought to be the
key enabling technology for agent interoperation. A class taxonomy along
with properties defined for the classes are the basic components of such an
ontology. Therefore, ontology representation languages like RDF Schema and
DAML+OIL provide syntax for the definition of classes and properties and they
can be used to model a schema of an agent’s mental state. Before agents can

130

successfully exchange und understand each other’s messages, they should agree
on a common ontology to use. Otherwise it is not guaranteed that the data is
interpreted according to the shared domain conceptualization.

Integrity constraints Rules play a pivotal role as they appear in
the following three agent components. Integrity constraints such as IF

condition-not-fulfilled THEN error can be viewed as logic statements used
to exclude illegal mental states. The RuleML initiative is currently planning to
include integrity constraints in one of the next versions. Currently, they appear
for example in SQL (check, create assertion, referential integrity, etc.) or UML’s
Object Constraint Language (OCL).

Derivation rules The classical form of rules are derivation rules such as
IF condition THEN conclusion. They specify the agent’s terminological and
heuristic knowledge and allow deriving new information from the basic set of
facts known to the agent.

Reaction rules Reaction rules define the agent’s behavior in response to
events and messages. Reaction rules are often referred to as Event Condition
Action (ECA) rules and have the following form: UPON message RECEIVED: IF

condition THEN action. While derivation rules influence the agent’s reasoning
by establishing conclusions, reaction rules can trigger actions such as sending
email, printing a message, or sending a message to another agent.

8.3.2 Rationale for Rule Extensions

In addition to these three rule types that are used to model these basic agent
building blocks, we introduce the following two categories.

Queries In many applications it is desirable for some sort of intelligent appli-
cation to query an agent’s mental state. We therefore consider queries, which
can be viewed as a derivation rule without rule head. Rather than deriving
conclusions, a query yields the variable assignments for which the query’s con-
dition is true: IF condition THEN yield-result. These variable assignments
are then returned to the caller.

Action Rules Finally, we consider the situation where an agent not only
reacts to external events, but can also act spontaneously. Therefore, we define
action rules to be a special case of reaction rules where only the condition is
necessary to trigger the action part. Table 8.1 summarizes the three basic rule
types and our two additional rule classes.

The main argument for our extension comes from the question of how the
message flow between agents is initiated. Our standpoint is that an agent should
also be able to actively examine, i.e. query, its environment. In certain situa-
tions, these queries should be activated without an external stimulus. We think

131

Rule
Type

Description Invocation Example

Derivation
Rules

Define derived concepts on top
of base concepts

Other rules IF condition
THEN conclu-
sion

Action
Rules

Like derivation rules but can
contain commands like send
email, print message, or assert
new fact in the rule head

After up-
date

IF condition
THEN action

Reaction
Rules
(ECA)

Like action rules but in addition
to a condition, an external event
or message is needed for the rule
to fire

Incoming
message

UPON message
RECEIVED:
IF condition
THEN action

Queries Obtain base data and derived
data from derivation rules

Application IF condition
THEN yield-
result

Integrity
Con-
straints

Make sure that the agent’s in-
ternal state is legal with respect
to the application domain

After up-
date

IF condition-
not-fulfilled
THEN error

Table 8.1: OntoAgent rule types

that agents will often try to obtain information from a legacy system via an
RDF wrapper interface. The alternative standpoint is a more workflow-oriented
view. Such a scenario might have sensors outside the agent that actively inform
agents via the proposed event interface. Even though it makes the implemen-
tation more complicated, we choose the first approach in order to solve the
message initiation problem.

8.3.3 Rule Execution

The rule classes expose important differences with respect to their execution
behavior. Queries are initiated by an external component like an application
or another agent. The local agent then services this request. The search con-
dition is evaluated against the base facts and the computed facts. Therefore,
derivation rules will be triggered if the search condition tests the predicates that
appear in the rule heads of derivation rules. All these operations are read only
due to the backward-chaining nature of our system. Action rules and integrity
constraints, however, react to changes to the base facts. Integrity constraints
need to be check after each update operation in order to make sure the new
state is consistent. Similarly, action rules can only be activated after an update.
If this were not the case, they would fire permanently. Thus, both types of
rules can be activated by a one-time event of a fact being inserted. ECA rules

132

Deductive Database

MSG In
 Remote Query

JDBC

Derivation Rules

Facts
Integrity Constraints

C

o
m

m

a
n
d

L
i
b
r
a
r
y

A

c
t
i
o
n

R

u
l
e
s

OntoSQL (RuleML to SQL)

Update
 Change Rules
 Query

Intelligent App

Figure 8.14: Components of an agent running on the OntoAgent platform.

also react to such an event. Rather than an update, an incoming message or
event is the deciding trigger for these kinds of rules. These observations play
an important role for the implementation of our OntoAgent platform [36, 38].

8.3.4 Implementation of the Agent Framework

There are several rule engines available today, many of them even supporting
RuleML. SweetRules [66] and the TRIPLE system [131] are arguably is the most
prominent among those. We chose to base the OntoAgent platform mainly on
our OntoSQL platform. OntoSQL’s main advantage is the fact that it bases on
mainstream relational database technology. Executing such an agent specifica-
tion requires a data store, an inference engine operating on top of it, as well as a
messaging system for incoming and outgoing communication. This section will
pick up the generic agent components mentioned in the previous section and
describe the underlying major design decisions as well as the implementation
basing on the OntoSQL [37] system.

8.3.5 Deductive Database

As illustrated in Figure 8.14, the fact base along with the derivation rules build
the agent’s foundation. Derivation rule engines are often referred to as deduc-
tive databases. Both the OntoJava and OntoSQL systems, introduced in the
previous sections, are good candidates for the implementation. We opted for
OntoSQL, since the application of database technology such as triggers seems
like an interesting approach for handling the different rule types.

Derivation Rules Consequently, derivation rules are translated into SQL
statements as explain earlier. No special extension of the OntoSQL framework
is necessary in order to fulfill this agent rule requirement.

Integrity Constraints An important means to keep the database clean and
in a correct state are the so-called integrity constraints. It is desirable to perform

133

as many checks directly inside the database as possible, rather than pushing
this duty up to an application. The SQL check mechanism allows restricting the
range of a certain attribute. Referential integrity and uniqueness constraints are
usually used for clean modeling of database schemata. However, the traditional
database integrity constraint mechanisms are not really applicable in our case
since the schema used is very generic. It can essentially be reduced to a single
subject, predicate, object table. This approach has clear advantages in dealing
with semi-structured data; however, it requires more effort to be put on the
definition of constraints.

The create assertion construct would solve this problem, since it allows a
constraint to be defined as a condition including several tables. In contrast,
the check construct only allows referring to other attributes of the same table.
Unfortunately none of the major database vendors currently implements this
feature.

We propose to use SQL triggers in this case. Consider the following example
of a trigger ensuring that the domain of the predicate fatherOf is the class of
all males.

create trigger fatherOfSignature

on fatherOfFact, typeFact

for insert, update, delete

as

if exists (

select * from fatherOf where subject not in

(select subject from type where object = ’Male’)

)

begin

raiserror (’Fathers must be Male’, 16, 1)

rollback transaction

end

Triggers basically consist of an SQL statement that is executed upon an
event - typically an update. A trigger must be defined for a certain table. It
seems natural to define this trigger on the fatherOfFact and typeFact tables
since their views appear in the condition’s SQL statement. However, other
predicates such as isParentOf can imply fatherhood via a derivation rule. The
respective fact tables, isParentOfFact in this case, would therefore also need to
have this trigger defined on them. The trigger syntax allows using the pseudo
tables deleted and inserted in the body. These tables have exactly the same
structure as the base table, but only contain the deleted or the changed and
inserted tuples of the table. This feature can be used to do incremental checks
only on the tuples affected in the current transaction.

The question arises, whether we can use these pseudotables rather than re-
computing the entire views again. While this is possible for simple cases, for
example if the predicate does not appear in any derivation rule, the general case
seems to get quite complex. One would have to rewrite the queries described in

134

Figure 8.15: Triggers can enforce integrity constraints at the database level.
The dog Fido cannot be Peter’s father and the transaction is rolled back.

the previous section by replacing [PredicateName] with inserted. Further-
more, the delete case would require different logic. If the triple (Pat, type, Male)
is deleted from the type base facts, the integrity constraint is only violated if
Pat is a father and there are no other facts, such as (Pat, type, TallMale), that
allow us to conclude that Pat is male.

In case of a constraint violation, the trigger causes the current transaction
to be rolled back, undoing all changes that lead to the violation. Figure 8.15
shows an example of the above trigger in action. It shows Microsoft Access
which is used as a graphical front-end for SQL Server. The “Fathers must be
Male” error shows up since Fido the dog cannot be Peter’s father.

The RuleML initiative is currently working on extending their rule language
to include syntax for constraints as well.

Currently, OntoAgent provides no support for the specification of integrity
constraints. This quite non-trivial task is entirely left up to the application
designer. At least applying the brute-force strategy of defining the trigger for
all tables can solve the problem of deciding which tables need to be associated
with a certain trigger. Another complication is that constraints often require
existence and forall quantification. The example above could be read as: raise
an error if there exists a father who is not in the set of male persons.

8.3.6 Agent Actions

The previous section laid the agent’s foundation by providing the fact store,
inferencing, and the capability to exclude illegal mental states. This section
will now explain how agent’s can perform actions in order to interact with their
environment.

Command Library We chose to implement the command library in Java.
Java offers a rich array of build-in functionality such as threading capabilities
and a large selection of abstract data types. Furthermore, an extensive variety
of external libraries are available as Java archives for sending email or SOAP

135

print(X) prints X to the console
assert(triple) permanently asserts new fact
delete(triple) permanently deletes fact

email(X,Y) sends X the email with text Y
load(URL) loads and asserts RDF triples

send(X,triple-1,...,triple-n) sends X a message consisting of triples

Table 8.2: OntoAgent command library

RPC functionality. Table 8.2 shows the most important commands that can be
triggered from rules.

The send, email, and load commands are executed within their own thread,
since these operations can potentially take a long time and could stall the en-
gine’s execution. The load command allows the agent to interface with any
RDF-enabled information source. This could be an enterprise information sys-
tem as well as another agent’s remote query interface.

Asserting new facts has to be used with care. Nevertheless, we believe that
the assert and delete functionality is very important. Assume an agent wants to
maintain a history of important events in order to use them for making further
decisions. Data about the events could be stored and deleted by action rules.
The decision-making rules could be designed with the temporary nature of the
data in mind. For example, these rules could have a heuristic character.

Action Rules As shown in table 8.1, action rules, like integrity constraints,
get evaluated upon updates to the fact base. Again, triggers seem to be the nat-
ural choice, especially since both the Oracle and IBM database servers support
Java stored procedures. This would make it extremely convenient to combine
Java’s flexibility with the reuse of an existing trigger mechanism. However,
there is a complication. Integrity constraints must hold all the time. Therefore,
it does not matter if they are evaluated when it is not really necessary, i.e. due
to the problems we described with the triggers’ incremental strategy.

Action rules, however, must only fire, if a variable binding makes the con-
dition true when it was not beforehand. The following example illustrates the
issue: If all parents receive a congratulation email, we only want them to get
the email if their child was just born. If we’d simply check the condition, every
parent would get the mail after any child was born.

Due to this problem we opted for a solution where action rules are triggered
from outside the database. After each update, the action rules’ conditions are
checked via the JDBC interface. The resulting tables containing the variable
assignments are stored in a Java abstract data type, along with the command
they trigger. This information is then compared to the previous state and calling
the appropriate methods in the command library performs all new actions:

136

set currentState = EMPTY

forever

upon update:

check action rule conditions

store results in variable newState

for each action in newState and action not in currentState

perform action

currentState = newstate

next

8.3.7 Communication Subsystem

In our system, we distinguish between two basic types of messages: queries and
information messages. Figure 8.14 shows that the message input and remote
query components handle the respective incoming events and messages, whereas
outgoing messages and queries originate from the command library. This section
describes the structure of the messages, their effect on the agent, as well as the
implementation basing on the modules previously introduced.

Queries from Remote Agents An agent sends queries in a synchronous
manner,7, in order to obtain data from another agent. Since most RDF parsers
support reading data from URLs, it seemed natural to package the query inside
an HTTP GET request. This simple mechanism can easily be replaced by using
SOAP middleware. We are working on an implementation using the axis web
service engine8 in conjunction with the tomcat web server. The answer obtained
is then an RDF/XML document. We support very simple queries retrieving all
outgoing arcs from an RDF resource (subject, ?, ?) or all outgoing arcs from an
RDF resource with a specified label (subject, predicate, ?). A query sent to the
agent at host could look as follows:

http://host/servlet/Query?subject=...&predicate=...&object=?

The RDF result is then added to the querying agent’s fact base via the
update interface. Figure 8.14 shows that messages or queries from the agent
are initiated from the command library which is in turn activated by the action
rule component. The following action rule causes the agent to query some
information host for a customer’s preferences, which are then also asserted into
the local database:

queryAndAssert(”http : //infohost/servlet/”, Cust, ”hasPreference”, ”?”)
← isCustomerOf(Cust, Comp)

The implementation of the query servlet only requires reading the requested
predicate view and formatting the result in RDF. Future versions of OntoAgent

7Synchronous meaning that the calling thread is blocked. Note that, as described in
section 8.3.6, the caller specifically starts a new thread to be able to resume its operation.

8http://xml.apache.org/axis/

137

might incorporate an RDF query language or the recently published RuleML
query specification, in order to allow for more flexibility in the queries.

Query Result Lifetime and Result Caching Various strategies are possi-
ble on how the results from other agents are to be treated. Currently OntoAgent
asserts them until the agent knowledge base is reset. Alternatively, it would be
possible to assert facts temporarily. For instance, a customer preference might
be valid for a week, before it is deleted.

Along the same lines, it might make sense to cache query results. The easiest
and more elegant way would be to do this in the communication subsystem. If
a method to query for customer preferences is called repeatedly, only the first
invocation will actually query a remote agent. Technically we can implement
caching via a hashtable, which uses the parameters as keys and the results as
values. Note that these features are not implemented.

Reaction (ECA) Rules Obviously reaction rules are quite similar to action
rules. Consider the following example:9

ON RECEIVE requestReservation(?CarGrp, ?Period) FROM ?Customer

IF hasCapacity(?CarGrp, ?Period)

THEN SEND askIf(blacklisted(?Customer)) TO Headquarter

The first challenge is to correctly associate an incoming message with a
certain ECA rule. The condition will again be computed via an SQL view.
Therefore, the second task is to pass the incoming values into the view. One
approach would be to use triggers again, which are themselves ECA rules. For
a number of reasons given in [38], we opted against this method and decided to
leverage our action rule functionality. We treat the predicates that appear in
the message as regular RDF Schema predicates. The handler for the incoming
messages temporarily inserts the contents of the message into the database. Note
that we use the intermediate resource reservation ?R to represent the ternary
relationship between Customer, CarGrp, and Period. The rule is rewritten by
treating the ON RECEIVE part as a normal condition:

send(askIfBlacklisted, ?Customer, Headquarter) <-

requestReservation(?Customer, ?R) and

hasCarGrp(?R, ?CarGrp) and

hasPeriod(?R, ?Period)

create trigger HandleRequestReservation

on MsgIn

for insert

as

for all tuples in (

select hc.sender from hasCapacity hc, inserted i

9The example is taken from http://tmitwww.tm.tue.nl/staff/gwagner/AORML/

138

where i.msgType = ’requestReservation’

and hc.subject = i.par1

and hc.object = i.par2

)

call send(askIfBlacklisted, hc.sender, Headquarter)

remove message

Compared to the action rule case, this trigger only needs to be defined
to react upon inserts in the message table, since only an incoming message
can trigger an action. Nevertheless, we decided against this approach for the
following reasons. First and foremost, this approach requires quite a lot of
additional functionality in OntoSQL. Secondly, triggers and trigger actions tend
to be fairly dependent on the implementation of the database server. It would
be quite hard to support the major vendors. Finally the following alternative
turns out to nicely leverage our action rule functionality. We treat the predicates
that appear in the message as regular RDF Schema predicates. The handler for
the incoming messages temporarily inserts the contents of the message into the
database. Note that we use the intermediate resource Reservation to represent
the ternary relationship between Customer, CarGrp, and Period:

requestReservation(Customer, Reservation)
hasCarGrp(Reservation, CarGrp)
hasPeriod(Reservation, Period)

The rule is rewritten by treating the ON RECEIVE part as a normal condition.
If the entire condition is met, the rule fires which mimics the desired reaction
rule behavior. After the insert, which triggers the ECA rules (which actually
become action rules), the message facts are deleted again:

receive message M(p1, p2, ..., pn)

insert parameters (p1, p2, ..., pn) into fact base

(this can trigger certain actions of ECA rules)

remove parameters (p1, p2, ..., pn)

If the entire condition is met, the rule fires which mimics the desired reaction
rule behavior. Figure 8.16 depicts how the incoming message is processed. First,
the reservation request pseudo fact is inserted via the regular update component.
After the update, the view send is queried to retrieve the parameter values of
all outgoing messages. If the respective parameter constellation has not been
encountered before, then the call is performed. Finally, the initial insertion is
simply rolled back. Note that this is the only difference to the regular assertion
of a fact via the update component.

8.3.8 Intelligent Application

Agents become intelligent agents if they are able to learn. Since machine learn-
ing techniques usually base on a wide variety of computational algorithms, it

139

MSG In

1
:

i
n
s
e
r
t
5
:

r
o
l
l
b
a
c
k

Update

Table: requestReservation Fact

subject
 object

Josh
 resid-52032

View: send

p1
 p2

askIfBlacklisted
 Josh

p3

HQ

2
:

q
u
e
r
y

3: compute delta
 to

 prev. invokation

Command Lib

4: call

Figure 8.16: A history of actions is kept in order to determine which rule to fire.

seems awkward to try and implement rule-based learning algorithms. We pro-
pose a different setting. Figure 8.14 shows an intelligent application component
that interfaces with the basic agent framework. In such as layered architecture,
the learning algorithms can be implemented in any language or system using
traditional techniques. The base data, however, can come from the deductive
database via the query interface. The intelligent application can influence the
basic framework in two ways. It can assert and delete base facts altering the in-
ference results and ultimately the agent’s behavior. More importantly, though,
the rules themselves can be modified over time. Since we operate on top of a re-
lational database, this would only require drop/create trigger/view statements
that can even be performed while the agent is running.

We believe that the declarative specification is a great tool to let researchers
and developers focus on the learning and behavioral aspects of agent technol-
ogy located in the top layer of the architecture shown in figure 8.14. We are
currently using OntoAgent in the development of a collaborative agent system
for document retrieval [36]. The idea is that a community of users all shares
their personal collection of links to relevant online reading material. Rules are
used to determine whom to ask in a given situation. The idea of an intelligent
application might even be something as simple as a feedback system, where the
user, over time, tells its document retrieval agent who provided the best links.

8.4 Web Service Description Framework

When looking at the current Web Services stack, it is clear that a more detailed
description of services that goes beyond the simple method signatures that can
be found in WSDL specifications in needed [122]. It is necessary to capture
what a service does on a conceptual level. UDDI addresses this issue to some
extent by allowing to classify services and companies according to standard
industry, service, and geographic taxonomies such as UNSPEC. In this paper we
extend this idea by applying some of the concepts and ideas from the Semantic
Web community. Standard mark-up languages like the Resource Description
Framework Schema (RDF Schema) or the DARPA Agent Mark-up Language

140

(DAML) allow the specification of ontologies, which can be viewed as a powerful
extension to taxonomies.

The idea of semantically describing Web Services is not new. Within the
DAML project, the DAML-Service (DAML-S) group defined an ontology for
describing complex Web Services as well as business processes. Their work
provides a vocabulary for marking up services [4]. In Europe, a large research
group is working on the Web Service Modeling Framework [49]. It proposes
a complex mediator architecture for brokering between different data models
and service invocation styles. Both projects propose good concepts and ideas,
however, due to the extremely complex nature of the problem and the wide
scope of both projects, the results and suggestions are currently mostly limited
to how services should be marked-up. The actual service consumption is often
left out. McIlraith et. al. provide an approach where user profiles can be fed
into a ConGolog program which locates and executes services [112].

With the Web Service Description Framework (WSDF) we take a different
approach by reducing the scope to calling function-like services without side ef-
fects and omitting the problem of business process integration with its workflow
aspects [42]. Our philosophy is to provide proof of concept that is applicable
today on a smaller scope.

8.4.1 Semantics of Parameters and Return Types

Consider the following example: Let’s assume we need to find out the courses a
student is currently enrolled in. The following service is applicable:

[WebMethod]

public string[] getCurrentCourses(string studentID)

This illustrates the first challenge. A WSDL specification only provides us
with the raw data types, string and string array in this case. The fact that the
parameter actually denotes a student ID that is given out by the university’s
registrar and that course IDs identify the courses taught at the university is
completely beyond the scope of WSDL. Solely the information that both kinds of
IDs happen to have the same data type string is given. Of course one could wrap
the simple types in custom data types such as StudentIDType. Nevertheless, a
client is still left guessing and needs to linguistically analyze the type’s name.
The WSDL message types look like this:

<message name="getCurrentCoursesRequest">

<part name="studentID" type="xsd:string">

</message>

At this point, we use an ontology about universities to supplement the WSDL
specification with conceptual information. The ontology will provide courseID

and studentID properties linking the instances to the literal values. The WSDF
then simply adds another type information to each message part. In the exam-
ple above, studentID would not only be a string, but also a literal, which is
connected to the ontology’s student class.

141

8.4.2 Semantics of the Method

Let’s assume the required student ID is not known. Instead, we have the user’s
first name, last name, and birthday. Before the getCurrentCoursesmethod can
be invoked, the following service must be called in order to obtain the student
ID:

[WebMethod]

public string getStudentID(string fn, string ln, Date bd)

The same argument about the parameters and the return type applies here.
However, we want to point out another issue. Obviously the parameters supplied
must belong to the same person, as well as the student ID which is returned,
is the student ID of the same person. Again, this is quite intuitive for a pro-
grammer reading the interface, but quite hard for a program to figure out. In
WSDF we use rules to describe this behavior. We define ontological classes
WebService and WebServiceCall. A WebServiceCall has parameters and re-
sults. The WebService class carries relevant technical information about an
attached stub for instance. The following rule captures the method’s semantics.
Note that the use of the variable S on both sides of the rule ensures that the
parameters and results belong to the same student.

studentID(S, I)← hasMethod(WSC, ”getStudentID”)∧
returnV alueOf(I, WSC)∧
hasParameter(WSC, FN, LN, BD)∧
firstName(S, FN)∧
lastName(S, LN)∧
birthday(S, BD)

The rule already describes how returned vales should be interpreted. In a
logical sense, the new fact studentID(S, I) is asserted upon I being returned.
The next section will provide insight into what is actually happening in a running
system in this case.

In principle, a service can be invoked once all parameters are available. The
following second rule specifies, that the Web Service instance getStudentID can
be called once the three arguments from the same student are available.

callable(getStudentID, FN, LN, BD)← firstName(S, FN)∧
lastName(S, LN)∧
birthday(S, BD)

8.4.3 When to Invoke a Service?

Of course not any service that theoretically could be invoked should actually
be invoked. The client application can use the following two approaches. In
the goal-driven approach, we use backtracking to determine a calling sequence,
which will answer the goal query. In the previous example, the goal could be to

142

find out whether Joe is enrolled in IT200. This can be answered by calling the
getCurrentCourses service. Having established this, the new sub goal becomes
finding out a student ID. This process is repeated until a subsequent sub goal
is fulfilled by the current knowledge state.

The second approach is more heuristic in nature. Here, a service is called
if it looks promising. In the example, the rationale might be to try to find out
as much information about the user as possible. Therefore, both services would
also be called.

8.4.4 WSDF Syntax

The WSDF syntax complements existing WSDL information about a service.
This implies that the Web Service can of course still be invoked in the tradi-
tional way. The WSDF file contains several links to the parameter and method
descriptions. The rules are given in RuleML syntax.

<?xml version="1.0"?>

<wsdf xmlns="http://www.i-u.de/schools/eberhart/wsdf"

xmlns:ruleml="http://www.dfki.de/ruleml"

targetWSDL="http://www.mit.edu/services/CourseInfo.wsdl">

<type part="studentID" message="getCurrentCoursesRequest"

ontotype="http://www.mit.edu/properties#studentID" />

...

<method name="getCurrentCourses">

<semantics>

<ruleml:imp>

<ruleml:head>

<ruleml:atom>

<ruleml:rel>

http://www.mit.edu/properties#studentID

</ruleml:rel>

<ruleml:var>S</ruleml:var>

<ruleml:var>I</ruleml:var>

</ruleml:atom>

</ruleml:head>

<ruleml:head>

<ruleml:atom>

<ruleml:rel>

http://www.i-u.de/schools/eberhart/wsdf#returnValueOf

</ruleml:rel>

<ruleml:var>S</ruleml:var>

<ruleml:var>I</ruleml:var>

</ruleml:atom>

</ruleml:head>

...

</ruleml:imp>

143

</semantics>

...

</method>

</wsdf>

Note that the rules consist of predicates from both the target ontology that
is used to describe the services as well as the WSDF mini-ontology on Web
Services, return types, etc.

8.4.5 java2wsdf and prolog2ruleml

Like any XML dialect, WSDF and RuleML are not meant to be edited manually.
Following java2wsdl’s example of generating a service’s WSDL description di-
rectly from the public methods, we developed the java2wsdf tool. It constructs
the WSDF markup from information the programmer places in the javadoc for-
matted comments preceding a method, which will be exposed as a Web Service:

/**

* Returns the studentID of the student with a given

* name, firstname, and birthday

*

*@param fn The student’s first name

* wsdf:ontotype="http://www.mit.edu/types#firstname"

...

*@return The list of courses takes by the student

* wsdf:ontotype="http://www.mit.edu/types#studentID"

*@rules callable(?getStudentID, FN, LN, BD)

* <- firstName(?S, ?FN) and

* lastName(?S, ?LN) and

* birthday(?S, ? BD)

...

*/

public String studentID getStudentID(String fn, String ln, Date bd)

Since the naming conventions of java2wsdl are known, the conversion is
fairly straightforward. The implementation bases on a doclet, which can read
the values of the existing tags in order to extract the ontological tagging as well
as the custom tags, like @rules. The rules themselves are denoted in a prolog-
like syntax which allows :- or <- as the rule symbol and interprets both commas
and the ”and” keyword as logical conjunctions. The actual prolog2ruleml parser,
which is then called from java2wsdf, was constructed with the JavaCC compiler
compiler.

JavaCC allows to formally establish a grammar, in this case for prolog im-
plications, as enrich it with Java commands which are executed upon the re-
spective parsing events. Consider the example for parsing the rule base, which
is a carriage return delimited stream containing prolog style rules:

144

Application

Service Provider 1

java2wsdf
java2wsdl

implementation

WSDF
WSDL

OntoSQL (RuleML to SQL)

SQL Engine

V

i
e
w

s

wsdl2java

stub

Service Provider 2

java2wsdf
java2wsdl

implementation

WSDF
WSDL

RDFS Ontology

i
n

v
o

k
e

Figure 8.17: The overall WSDF system architecture.

String rulebase() :

{

String rulebase = "";

String imp = null;

}

{

(imp = imp() { rulebase = rulebase + imp; })+

{ return "<rulebase>" + rulebase + "</rulebase>"; }

}

In essence, this defines a rule base to consist of one or more implications:
rulebase := (imp)+. JavaCC allows defining the grammar rule to return a
string. In our case, this is the RuleML representation of the ruleset. The
RuleML representation of each individual implication is therefore returned and
simply appended to the local variable ruleset.

8.4.6 System Architecture and Invocation Sequence

Figure 8.17 shows the overall system. At runtime, the WSDL and WSDF de-
scriptions are downloaded from the service providers. The necessary base is
provided by the fact, that both the client application and the providers share
the same RDFS ontology. The OntoSQL toolkit and the WSDL compiler will
then generate the SQL views and the Web Service stubs. The figure shows an
example where client and server are both written in Java. Note that WSDF
remains language-independent markup. Tools for other languages can easily be
developed.

145

The actual invocation of the service works as follows. First, the application
needs to determine which service to call. Using the SQL statement select * from
callable, a list of Web Services where the required parameters are available is
returned from the SQL view callable. Heuristics or a backtracking algorithm
to select the next service can use the WSDF type information. The input
parameters are obtained from the database and the call is made. At the same
time, a new WebServiceCall instance and the respective parameters used are
inserted into the database. This is an important step for correctly interpreting
the result. Once it arrives, a tuple is inserted which associates the result with
the call. This will then cause the service semantic description rule’s body to
be true. At this point the rule head’s values can explicitly be asserted and the
Web Service call’s information be archived or deleted from the active deductive
state.

8.5 Integrating Legacy Data

Besides integrating external services, leveraging existing data is a major point
for making agent technology feasible. Assume a university’s information system
contains a table with student data such as student ID, first name, last name,
and so on. It is easy to expose this data as RDF triples and load them into
a reasoner. However, since the existing enrollment and transcript applications
will stay operational, usually the data is kept in both the database and the
Semantic Web worlds. This is a very undesirable situation since it creates
redundancy. Inspired by the KAON suite of tools [114], we developed a very
simple mechanism for this, which again bases on SQL views [43]. Rather than
defining a fact table as suggested in section 8.2, we create a view which converts
the existing relational data into OntoSQL facts:

create view hasStudentIDFact as

select "http://www.mit.edu/~"+loginName+"/", studentID from student

Obviously, this mapping must be done manually, since only a domain expert
can identify the corresponding fields in both the database schema and the onto-
logy. Furthermore, adjustments must often be made to webize the data. In our
example, the URIs for students are given by the tilde-login name addressing for
personal web pages, which needs to be computed in via a select expression. Note
that in the example, the studentID attribute of the view is updatable which
means that an update on hasStudentIDFact affects the original student table.
Consequently, the strength of this simple approach is its combination with the
OntoSQL framework. Together, both the Semantic Web agents and the legacy
applications operate on the same data source.

8.6 OntoLang

Besides obtaining information by querying existing information sources like
web services and calendar applications, the user can provide information to

146

the system using a very simple natural language interface. This interface
bases on ideas from the MIT Start system [89] and the Template Definition
Language [94]. Classes, RDF instances, and relations are tagged with cor-
responding lexical terms. A simple sentence such as ”I am in Karlsruhe”
can then be analyzed by identifying ”I” as the user, ”Karlsruhe” as a city,
and ”am in” as the hasLocation predicate. Since the signature of the pred-
icate matches the types of the objects found in the sentence, the statement
hasLocation(User, Karlsruhe) can be asserted.

A similar language to concept mapping approach was for instance used in a
document management application at Xerox corporation [48]. Within the con-
text of the Semantic Web, this approach of enhancing ontologies with linguistic
information was pioneered by an ontology focused crawling application, written
on top of the KAON system [102].

8.6.1 Modeling Simple Statements in RDF

OntoLang is a small linguistic tool that can parse simple subject, predicate,
object sentences. This is done based on an ontology’s predicate definitions.
The example shown in figure 8.18 illustrates how the predicates are attached
with possible ways of their appearance in a sentence. The enrolledIn predicate,
for instance, can be expressed by saying that someone is enrolled in a course or
that someone takes a course. With the exception of enrolledIn, the inverse
predicates’ word forms are also given. Note that, this information can easily be
encoded in RDF triples such as:

Subject: http://www.mit.edu/onto#enrolledIn

Predicate: http://www.i-u.de/schools/eberhart/ontolang/wordForm

Object: is enrolled in

Consequently, an instance of one of the classes shown in figure 8.18 also
has its possible linguistic representation attached. The resource corresponding
to IU’s transaction processing course could have the word forms ”transaction
processing”, ”IT401”, or ”IT 401”. Both Java the programming language and
Java the coffee bean have ”Java” as their word form.

Matching Given the ontology and the word forms, OntoLang is able to pro-
cess a simple sentence into an RDF triple by matching the predicates and nouns
onto the sentence and checking whether the types are correct. The following
example shows how the associated type information helps to disambiguate sim-
ilar word forms for different concepts. Consider the input sentence ”the tomcat
web server is written in Java”. The word tomcat appears in the word forms
list of the resource corresponding to the tomcat web server. In turn Java can
be interpreted in the two ways mentioned above. However, only the interpreta-
tion as a programming language makes sense, since the predicate isWrittenIn

establishes a relationship between software and programming languages.

147

any

course

student

person

lecturer

programming

language

taughtBy (taught by, lecturer of)

teaches (teach, teaches, teaching, teacher of, lecturer of)

likes (love, loves, loving, like, liking, likes)

isLikedBy (is liked by)

enrolledIn

(enrolled in, take, taking,

takes, attend, attends,

attending)

Figure 8.18: OntoLang uses a linguistic tagging of ontological relations in order
to identify statements in a sentence.

Stemming We perform stemming on the noun word forms. This means that
both chair and chairs are reduced to their linguistic root. Therefore, OntoLang
considers them to be equal. This approach is definitely only suitable for our very
rudimentary approach, since we loose potentially valuable information during
this process. The predicates are not stemmed, since there typically aren’t too
many predicates in an ontology and since stemming can be problematic at times.
Consider ”teaches” and ”taught”. Both have the same stem, however, they
denote inverse relationships. It makes a big difference if A teaches B or if A is
taught by B.

Extending OntoLang OntoLang is based on a set of interfaces for predicates,
nouns, etc. In the example we provide a simple sample implementation that
reads the flat text files or RDF input. Customized parsers that get fed from
various ontology representation formats can easily be introduced into the system
via a parser factory mechanism.

8.6.2 Using OntoLang for Ontology Engineering

As section 9.2 will show, OntoLang is mainly intended as a simple front-end for
driving SmartGuide, an intelligent retrieval application. However, we are think-
ing about possible extensions to support the complicated tasks of knowledge
acquisition, both on a factual and a conceptual level. We believe that the area
of text mining will be crucial for generating a substantial number of facts for
a knowledge base. Consider the following example. Currently, the abundance
of scientific publications reporting on various experiments, their parameters,
and their results need to be read, understood, and converted to a structured
format by humans. Obviously, ontologies play a crucial role for those kinds of

148

applications, in order to make the machines partly understand the text.
In a more interactive setting, OntoLang might be a useful tool to allow a

user to permanently enter facts into the knowledge base in a casual manner.
Stemming and thesauri-based features are important to give the user a certain
freedom in expressing a fact naturally.

Last but not least, a natural language interface might be helpful in detecting
missing ontological concepts. The language interfaces can simply collect utter-
ances that were not parsed successfully. If a certain word appears very often,
it can be presented to the ontology engineer who might then update the the-
saurus or add a corresponding concept to the ontology. Along the same lines, a
correction feature could be built. Assume that, before processing a user utter-
ance, the system double checks with the user to make sure what it understood
is what the user meant. This can be done by printing a representation of the
formal RDF graph for instance. The system would then also collect sentences
that were understood incorrectly. A frequent pattern of errors might lead to an
ontological error.

149

Chapter 9

Building a Smart Librarian

This chapter will now describe the applications that were built on top of the
base technologies presented in the previous chapter. We will first describe the
data and the underlying ontology used in section 9.1. After this, the Smart-
Guide system [39] is introduced. SmartGuide performs a variety of inferences
in order to decide which hyperlinks to recommend to the user. This section
focuses especially on the integration of external information sources. Smart-
Dialog is an extension of SmartGuide in that it searches the current state of
the knowledgebase in order to identify useful questions to be answered by the
user. SmartGuide applies a steepest descent search over a generality measure
for documents. The SmartAPI system has a different focus. Rather than the
traditional document retrieval scenario, it provides a solution for intelligently
supporting programmers in coping with large documentation on various pro-
gramming libraries. Nevertheless, it largely bases on the same technologies as
the other two applications.

9.1 Ontologies Used

As we pointed out in the data and ontology survey in section 6.1, only very little
data and few ontologies are freely available on the Web today. It would be quite
awkward to try to come up with an application area that would allow reusing
some of the available sources. Therefore, we developed most of the ontology
and the accompanying data ourselves. Occasionally, we were able to integrate
certain components of external sources.

We used Protégé to model the RDF Schema ontology, which was then up-
loaded into a SQL Server database. We used both Protégé and Microsoft Ac-
cess 2000 as a data entry front-end. Protégé’s RDF output was loaded into the
database. In turn, Access was directly connected to the central data store via
ODBC. The rules were written in Prolog syntax with a simple text editor. The
Prolog2RuleML and OntoSQL systems were then used to upload the rule base
into the database server. The focus of this work was the domain of distributed

150

systems. Two related domains on various Java APIs and on universities were
also developed for an extension of SmartGuide and the SmartAPI application.
The tables 9.1 and 9.2 show the number of classes, predicates, and rules in the
ontologies as well as the size of the RDF graph data which was developed. The
following sections describe the individual domain ontologies in more detail.

9.1.1 Distributed Systems Ontology

The distributed systems ontology contains information about software, proto-
cols, programming languages, potential errors, etc. We found it to be quite easy
to quickly whip up a small example containing some dozen terms. However, the
task of coming up with useful and general definitions turned out to be quite
hard.

In a first attempt, we defined a very fine-grained model, which for example
included information about processes, memory segments, and communication
paths between them. The idea was to use such data in order to predict po-
tential causes for errors and malfunctions. We abandoned this approach since
too much data and too many details would have been required for such deep
analysis. Instead, we decided to follow a more heuristic approach which based
on comparably shallow data and reasoning chains. This model turned out to
be well suited for the SmartGuide application since a human user can easily
compensate potential errors or misleading results produced by the system. The
situation would be quite different, if the system was geared to function in an
unattended mode, for instance to perform self-diagnosis and automatically carry
out actions to solve a potential error.

In general, we found it useful to start the modeling process by writing down
knowledge to be represented in textual form first. When dealing with web prox-
ies, for instance, we would like our system to know that a web proxy mediates
communication between a browser and a web server, that a browser can be con-
figured to bypass a proxy, that certain internet connections are only available
via a proxy, and so on. From these statements, we extracted the classes and
properties in a first step. In a second step, the statements were transformed
into implication rules. The typical implication rules state fairly obvious things
about the domain. For instance, one rule can conclude that a user working
with Servlets will need to use an external Java library for this. In turn, this
conclusion will trigger a further rule, stating that external libraries need to be
correctly included in the classpath environment. Even though these rules are
quite simple, their combination allows the system to derive a series of facts. We
found this to be much more useful for picking the appropriate document com-
pared to the traditional matching of search terms and keywords. After all, these
conclusions are trivial for humans but definitely not obvious for the machine.

Shallow vs. Deep Reasoning The classpath example given above also
nicely illustrates our distinction between shallow and deep reasoning. It would
be possible to store information on the paths of Java libraries on a computer
system. With this and the knowledge that the classpath environment variable is

151

a semicolon-separated list of paths, one could automatically conclude whether
a required library is correctly installed or not. For our application, we believe
this deep reasoning approach would be too elaborate. It should be sufficient to
present the user with a tip describing the problem, given that in the current
situation she or he is likely to have encountered this problem.

Document Metadata In order to distinguish our system from the tradi-
tional keyword-based search, we first decided to use simple rules such as ”if
the user encountered a ClassNotFound exception, recommend this page” for se-
lecting the appropriate documents. This approach makes sense, because rather
than simply tagging the page with the ClassNotFound keyword, it describes
the circumstance of encountering it to be the key trigger for recommending it.
Nevertheless, given the fact that thousands of such rules would be needed in
SmartGuide, using the rule mechanism seemed impractical. We therefore de-
cided to implement a special mechanism for matching the documents. Rather
than a list of keywords, the metadata contains a list of conditions such as ”cur-
rent user encountered ClassNotFound”, which are then evaluated by the appli-
cation, not the core inference engine. Different semantics can be implemented
by the application. In a rule sense, the outcome would be the conjunction of
these conditions. An alternative to a Boolean result is a weighted measure,
which depends on the fraction of conditions, which were evaluated to true. The
SmartDialog application described in section 9.3 further extends this list by a
document specificity measure.

Meta Concepts A common problem, which is encountered in real-world con-
ceptual models, is the question whether an element should be modeled as an
instance or as a class. Schreiber provides the following example which arose
during the development of an image retrieval system1. Statements had to be
made about species such as apes and particular apes being depicted on certain
photographs. Consequently, a class species was defined which is the set of all
species. Properties of species would be their habitat or general diet informa-
tion. Ape is an instance of this class but ape is also the set of all apes that
have specific names, ages, weights, and so on. As mentioned in section 2.1.2, it
would clearly be wrong to make ape a subclass of species, since a specific ape
would then also be an instance of species. In this context, concepts such as
ape, which are both class and instance, are referred to as meta-concepts. Even
if the top-level class, like species, is omitted, the question on whether a large
taxonomy should be modeled as classes or instances remains. The UNSPSC
service taxonomy is a prominent example here. One project within the DAML
effort mapped all UNSPSC classes into corresponding DAML classes2. This is a
straightforward approach, however, it might turn out to be impractical for cer-
tain software tools. Alternatively, one can define a generic class ServiceType

with a parentServiceType property.

1http://www.cs.man.ac.uk/∼horrocks/OntoWeb/SIG/challenge-problems.pdf
2http://www.daml.org/ontologies/106

152

In our case the issue of meta-concepts surfaced with software. There are
different SoftwareTypes such as compilers or editors having a specific purpose.
The apache web server would be an instance of SoftwareType. In turn, all
apache installations on specific computers and with specific configurations are
instances of the concept apache. Since the goal of our effort is to encode general
knowledge about software types, which is applicable in various scenarios, we
decided to shift the focus to the meta level and talk about software types rather
than installations of software. The latter would be a valid alternative for an IT
infrastructure management system for example.

9.1.2 University Rules and Ontology

We extended the distributed systems ontology with general information about
a university. This has two reasons. First and foremost, it provides SmartGuide
with the vocabulary and knowledge necessary to tap into the university infor-
mation system. Secondly, we envision a user portal that comprises not only
information for learning, but is also useful for getting around on campus and
finding out about events and procedures.

The major subdivision can be made into locations such as buildings, offices,
lecture halls, parking structures, etc., events such as courses being taught or a
campus tour being held, and persons such as lecturers, students, visitors, and
couriers. These classes are linked via relations such as lecturers teaching courses,
or students taking courses. We used a small sample university ontology3 as a
basis. Objects within the university such as buildings and faculty are repre-
sented by RDF resource URIs. Rules and constraints were written in RuleML
using predicates defined by the ontology. Consider the following example stat-
ing that every lecture of a class that a student is enrolled in is treated as an
appointment:

hasAppointment(S, L) ← enrolledIn(S, C) ∧ hasLecture(C, L)

The link to the distributed systems ontology is established by providing
information on topics for classes and software to be used for homework assign-
ments. Furthermore, it might be possible to establish a skill profile for students
in order to better customize search results for them.

9.1.3 Java API Ontology

The Java API ontology is a natural extension of the distributed systems onto-
logy. Rather than defining course grained concepts and their relationships, it
extends these general concepts and maps them to classes, methods, and con-
stants found in the Java language and the Java API. The generic concept of a
file can be linked to the class java.io.File for instance. It actually turned out
that examining a well-designed API can provide good input for the ontology

3http://kaon.semanticweb.org/ontos/test.kaon

153

Ontology Classes Predicates Rules
Distributed Systems 27 35 38

University 19 23 11
Java API 10 12 4

Table 9.1: Sizes of the ontologies

Ontology Nodes Edges
Distributed Systems 417 574

University 94 123
Java API 66093 82587

Table 9.2: Sizes of the data sets

engineering process, since relationships between concepts often manifest them-
selves in the API. The ontology itself is not very big. It mainly talks about Java
classes and their methods, methods having parameters, return values, and asso-
ciated exceptions. However, the amount of data stored is quite large since most
of the information can be collected and processed automatically. We used the
Java reflection API for this purpose, which allows to introspect classes and ob-
jects at runtime. A small loader program examines the classes belonging to the
API to be processed and uploads the relevant information into the database.
The data extracted with this automatic procedure was manually augmented
with links to concepts from the distributed systems ontology in order to provide
a rich source for the SmartAPI application described in section 9.4.

9.2 SmartGuide

Much work has been done in the area of recommendation systems. Billsus and
Pazzani [13] describe how machine learning techniques can be applied to rat-
ings given by other users. The Deep Map project [105] covers several aspects
such as natural language interfaces and the use of ontologies for smart applica-
tions. Several other papers could be cited here. Our approach differs in that
it focuses heavily on software engineering issues such as sharing and reuse of
domain ontologies, the integration of existing information sources, and the ease
of deployment into an existing IT landscape.

9.2.1 Formal Description of SmartGuide

The previous section, which described some of the design issues of our dis-
tributed systems ontology, already gave some hints about the implementation
of the SmartGuide system. We will now explain the ideas and concepts be-
hind SmartGuide in detail. SmartGuide is a link recommendation system. As

154

we mentioned before, the goal is to retrieve a document containing the desired
information rather than actually computing a suitable answer. This makes
SmartGuide comparable to a traditional search engine which takes a query Q
and usually displays the ranked result (d1, d2, ..., dn). We can therefore formally
view a search engine as a function SE:

SE(Q) = (d1, d2, ..., dn)

SmartGuide also computes a list of documents, however, the input is a set
of facts f1, f2, ..., fn rather than a simple query. The input facts are collected
from the user as well as internal and external information sources. Additional
information is derived from these facts via inferencing over a ruleset R. This is
formalized as a function IR which produces a new set of facts given the original
one. We can now describe SmartGuide as a function SG:

SG(IR(f1, f2, ..., fn)) = (d1, d2, ..., dn) (9.1)

The advantage is clearly the fact that more input data as well as domain
knowledge encoded in the ruleset are used for the retrieval process.

9.2.2 User Sessions and Fact Lifetime

In order to keep the system as simple as possible, we distinguish between two
kinds of facts. The first kind are base facts which are asserted by an operator
or knowledge engineer. The system treats these facts as permanent and has
no mechanism of deleting them. Deletions must be made from an external
application if they are necessary.

The second kind of facts are temporary in nature. All statements issued
by a user, collected from external agents or Web Services fall in this category.
SmartGuide assumes those facts to be true for the duration of a user session.
After the session is closed, the temporary facts are deleted and only the base
facts remain in the knowledge base.

9.2.3 Deployment

We deployed SmartGuide in two scenarios, the first one designed to support
students with their work and studies, the second one geared towards providing
smart services on mobile devices, for instance when a new student arrives on
campus.

Help System Since the help system scenario can rely on powerful hardware
and needs to cope with large data volumes, we opted for an implementation
based on OntoSQL. Figure 9.1 shows the HTML user interface. The user can
state simple sentences, which are then analyzed by OntoLang. SmartGuide
presents what it understood, giving the user the chance to undo and rephrase
the statement. The links are simply displayed at the bottom of the page. Every

155

Figure 9.1: The SmartGuide interface. The user can make simple natural lan-
guage statements. Based on this as well as background and domain knowledge,
the system recommends links.

time another statement is made, SmartGuide reevaluates the document condi-
tions, potentially causing some documents dropping below the required match-
ing threshold and others to appear in the recommendation list. SmartGuide
uses the quotient of true conditions over the total number of conditions as a
matching score.

In the sample statement ”I am enrolled in IT401” from figure 9.1, the user
refers to her- or himself. This very common pattern is treated in a special
way. Before using the system, users need to authenticate themselves. This
way, a reference like ”I” or ”me” can be associated to the correct user resource
in the knowledge base. The ”Reset Memory” button also hints at another
feature. Statements made by the user during a search session are treated as
temporary facts, which are undone after the user logs off. This makes sense,
since a statement about having encountered a certain exception while trying to
solve an exercise is most likely not true a week from now. The implementation
simply rolls back the database transaction, which remains open for the entire
user session. We chose the read committed transaction isolation level in order
to avoid the long running transactions locking many resources. Dirty reads are
actually wanted, however, it is unlikely that they will occur, unless a user makes
statements about another user or about a commonly used resource.

Mobile Guidance and Assistance Besides using SmartGuide as a help
system, we envision another application area when deploying the system on a
mobile device. Every time the user enters an unfamiliar environment such as an
airport, SmartGuide can obtain information from external sources and combine

156

Figure 9.2: An OntoJava enabled mobile application. Rules trigger calls to
the university information system and suggest web pages to the user based on
collected information.

it with the local knowledge, for instance from the user’s calendar. Figure 9.2
shows an example of a student getting help from SmartGuide. The system knows
that the student needs to go to the International University, since a class he is
enrolled in is starting soon. Given the statement that he is still in Karlsruhe,
the system displays driving directions to the campus. The example also outlines
a big advantage of OntoJava. The application as well as the generated engine
is deployed as an applet guiding the user through the universities website and
additional services.

9.2.4 Leveraging External Datasources

This section describes how external datasources are being fed into our rule
systems.

From the University Information System In order to minimize the soft-
ware engineering efforts, we opted against a WSDF based integration. This
would have required such services to be implemented to begin with. Instead, we
chose the much more direct way of integration via the view mechanism described
in section 8.5. We imported information on students, courses, and enrollments

157

Campus

Registrar

.

Agent
 Agent

Agent

Sue

enrolledIn

IT200
Sue

wantsInfoOn

JDBC

Also look for

Java, SQL, DB

Figure 9.3: Agents using different rule bases collaborating on a document re-
trieval task.

this way. Since data on the topics, homework assignments, and projects of the
courses are not available in structured format, we developed a mockup database
for this and inserted some sample data.

The biggest advantage of this simplification is that it solves the problem of
deciding when to invoke a service, how long to keep cached results, and when
to drop the query results from the local fact base. If a WSDF based solution
would be necessary, triggering invocations could be done similar to OntoAgent’s
approach of using action rules. Consider the example from figure 9.2. Given the
student ID, the following action rule specifies the universities enrollment system
to be queried:

getEnrollments(S)← studentID(S, ID)

Note that the observations from section 8.3.7 about result caching and the
lifetime of asserted facts also apply here. We currently do not support result
caching. Query results are treated like user statement, which means they are
deleted at the end of the session.

From Other Agents This section explains the rationale and the design of
how various SmartGuide agents can collaborate amongst themselves. An impor-
tant aspect of how humans find information can be characterized by the term
search context. If I know that Jim is the database guru in my company, he
could probably point me to a good tutorial on JDBC. What is important here
is that Jim also knows me. Thus he knows, for example, which level of difficulty
would be appropriate. This context is lost, if an external hotline is called for
help. However, an external service might have a larger knowledge base to work
with.

This observation can be mapped onto an agent system. Every user would
have his or her personal document retrieval agent. In addition, there are larger
scale agents, similar to today’s search engines. The agents share a basic ontology
on users, user interests, documents, keywords, and synonyms.

158

The agents expose intelligence in the following ways: given a search query
by the user, they decide which other agents to involve in the search. Agents also
know where to obtain further information on the user that might be helpful to
determine the search context. Finally, agents can reason about which documents
might be helpful.

Figure 9.3 illustrates a sample session. Sue works on the homework for the
course IT200. In order to obtain information for solving a problem that came up,
Sue provides her agent with a search string via the wantsInfoOn predicate. The
corresponding triple is inserted into the personal agent’s database, triggering
action rules to send out information messages to other agents containing this
data. A friend’s agent is involved in the hope that the friend encountered the
same problem and found a good reference. Positive feedback from Sue’s friend
might have caused her agent to adapt the rule base in order to recommend the
reference next time around. An external agent at JavaGuru.com is also invoked.
The friend’s agent queries the university’s registrar to obtain information on
which courses Sue is enrolled in, hoping this will help in the decision making
on which documents to recommend. The JavaGuru.com agent does not query
the contextual knowledge, but it has a large body of domain knowledge built-in,
allowing it to compute terms related to the original query about JDBC. Further
action rules cause any recommendation to be sent back to Sue’s agent, which
displays the result.

This sample illustrates how queries and information messages triggered by
action rules bring this agent ecosystem to life. The agents work in different
environments, have different rules, and work with varying degrees of domain
knowledge.

9.3 SmartDialog

Just like the performance of a conventional search engine greatly depends on the
right formulation of the query, SmartGuide greatly relies on a solid base of facts
available about the user and his or her current context. SmartDialog addresses
this problem by asking the user questions, which are likely to be helpful in
finding a suitable document.

The principle behind this mechanism is quite simple. Equation 9.1 provides
a formal description of the retrieval process. What is needed first is a quality
measure Q for the recommendations. Our hypothesis here is that the specificity
of the documents in the result set is a good heuristic. If a document’s metadata
is very specific and detailed, the chances that it is included in the result set are
quite slim. If it is returned anyway, it is likely to be useful to the user. We
currently assign a specificity value S from 1 to 10 manually when the metadata
for the document is entered. In the future this can be replaced by a user
feedback mechanism or by simply tracking how often the system recommends a
document. The quality measure of a set of recommendations is then defined as:

159

Q(d1, d2, ..., dn) =
n∑

i=1

Sdi
(9.2)

After a quality metric is available, we can try optimizing the input, i.e. the
facts. This is done in the following way. Assume we had a set of potential
questions Q1, Q2, ..., Qn to ask. A sample question might be ”which operating
system did the problem occur on?”. Each of the questions has an associated set
of answers Ai1, Ai2, ..., Aim and since every answer to the question translates into
a corresponding fact, i.e. occuredOn(problem, Aij), each question also results in
a set of potential facts. Therefore, we can temporarily insert each of these facts
and compute how this affects the answer quality by evaluating equation 9.1.
The different values for a question are then weighed according to the answers’
likelihoods, since the answer ”Windows” is much more likely than ”Free BSD”.
Finally, the weighted average quality change for this question is recorded. This
process is repeated for all possible questions. The question with the highest
quality, i.e. likelihood of improving the recommendation result quality, is then
chosen and presented to the user. The following pseudocode summarizes shows
the question selection process:

generate questions

for each question Q

for each answer to Q

F = fact corresponding to Q into fact base

insert F

measure quality

delete F

compute average weighted quality AWQ[Q]

ask question with highest AWQ

9.3.1 Question Generation

The remaining issue to be explained is how the questions and the corresponding
answer sets are being computed. We suggest three approaches here.

The Usual Suspects For several domains it is possible to define an a priori
set of questions to be asked. In a way this is similar to the questions asked
by a simple expert system as the one shown in figure 4.1. SmartDialog simply
goes though a hard-coded list of questions and checks whether an appropriate
fact is already in the fact base. The differencs to a classical expert system is
that SmartDialog is able to decide which question to ask. The order in which
questions are asked is determined dynamically rather than following a fixed
path. For instance, if the rule base does not contain a fact on which operating
system the user works with then the associated question is being considered.

160

p
a

r
e

n
t

User
 Windows

Windows XP

Windows 2000

p
a
r
e
n
t

u
s
e
s

u
s
e
s

Figure 9.4: The existing fact that Windows is used is refined by the information
that the user works with Windows 2000.

Taxonomic Refining of Facts Quite often, facts can be refined. Assume
the user stated that she or he is working with Windows. In this case, it might
be helpful to know which version of Windows is being used. We call this pattern
taxonomic refining of facts. We search for facts, which consist of subjects or
objects that are part of a taxonomic hierarchy. These are selected as candidates
for asking questions about whether a more specific kind of resource is involved.
Consider the fact: ”current user uses Windows”. Windows might be modeled
as an instance of the software type and consequently, Windows 2000 and Win-
dows XP have a parent child relationship to Windows. Figure 9.4 shows the
corresponding fact graph. If no fact about a more specific version of Windows
being used can be found in the knowledge base, then the question ”What kind
of Windows is used?” is asked. The actual text of the question is derived from
a template associated with the predicate: ”What kind of <subject> is used?”.
Once the answer is asserted, the more unspecific fact is obsolete. However, it is
unproblematic to leave it in the fact base as an explicitly asserted fact, since the
statement ”user uses Windows” is true in any case, since it can be concluded
from ”user uses Windows 2000”.

Figure 9.5 shows a sample SmartDialog session. At first some very general
links turn up. Only after the question ”What kind of Excpetion” is answered
with ”ClassNotFoundException” very specific suggestions can be recommended
by the system. Note that the fixed set of answers is encoded in a drop-down
list. This method is somewhat restrictive but we found it to work well in that
it minimizes the chance of misunderstandings in the clarification dialog.

Extending the Fact Graph Internally, facts are stored as subject, predicate,
objects triples. The rationale behind the last method is that if these triples are
viewed as a graph, additional facts that can be connected to the existing facts
are more likely to be helpful or applicable in the first place. Starting from the
resource representing the current user, we establish the fact graph. The subject
and object type information leads us to predicates having the respective type
as the domain or range. Assume no information about software usage can be
found in the knowledge base. The mere presence of the ”uses” predicate will
trigger the question ”What kind of software are you using?”.

161

Figure 9.5: SmartDialog determines that more detail on the user’s exception is
most likely to be helpful.

9.4 SmartAPI

The SmartAPI application tries to address the problem of software developers
having to cope with the ever-increasing number of application programming in-
terfaces for databases, XML, file IO, etc. We observed that quite often, a certain
sequence of statements needs to be coded in order to perform a single logical
operation like opening a file line by line or sending a select query and reading
the result. The problem is, that unless the programmer is experienced and has
used the required class libraries several times before, such a seemingly trivial
task requires quite some reading in the respective documentation. Consider the
first sample task of reading a file line by line. Given a string that contains the
path to the file, this Java code needs to be written:

import java.io.*;

...

try

{

File f = new File(path);

FileInputStream fis = new FileInputStream(f);

InputStreamReader isr = new InputStreamReader(fis);

BufferedReader br = new BufferedReader(isr);

String line;

while ((line = br.readLine()) != null)

{

...

}

}

162

catch(IOException e)

{

e.printStackTrace();

}

In order to finally be able to use the line variable for the desired purpose, this
non-trivial skeleton has to be programmed. Note that there actually is a conve-
nience class called FileReader that allows replacing the first three constructors.
However, many programmers do not know about this since it is buried among
sixty classes and interfaces in the java.io package.

The idea of SmartAPI is that with information on the currently available
data, such as path, and the goal to be achieved, such as reading a file line by line,
SmartAPI can write this skeleton automatically. This includes the exceptions
to be caught, the required import statements, and the actual code.

SmartAPI consists of three parts. The search algorithm, which determines
the invocation sequence, is implemented in Java using a breadth-first graph
strategy. The nodes are sets of objects being available to use in the current
program context as well as the list of methods called so far. The search goal is
to find a state in which the desired method is called. In case of the task being
”reading a file line by line”, this method is BufferedReader.readLine, in case
of reading the results of a database query, it is ResultSet.getInt, getString,
etc. The second part is the loader application, which provides the raw infor-
mation on methods, exceptions, datatypes, etc. that can be read directly from
the Java class metadata. The third component allows to semantically tag this
raw data, much like WSDF describes a Web Service as shown in section 8.4.
The file constructor, for instance, takes a string parameter, which semantically
represents a file system path. Similarly, java.io.File is linked to the ontolog-
ical concept of a file. This allows SmartAPI to determine that a file has several
rows, i.e. a loop is likely to be necessary.

Compared to WSDF, we omit describing methods and constructors in fur-
ther detail with rules since the Java API is not purely functional in nature.
Furthermore, the goal of the application is to generate a skeleton. The pro-
grammer will always have to adjust and customize the SmartAPI suggestion.
However, much of the initial reading of documentation can be avoided.

Figure 9.6 visualizes the search process. The starting state is given by the
user in the form of currently available objects. In this case, the only information
given is a path. Note that the concept path comes from the ontology. The Java
API represents paths as strings. The goal is specified as ”reading a file line
by line”. Internally, this task is associated to calling the readLine method
on a BufferedReader object. Note that unlike with WSDF, we do not have
rules stating that it must be the same BufferedReader that is associated with
the path that was originally given. Consequently, there is no guarantee that
the resulting suggestion will be correct. Once the search starts, new states are
reached by calling methods on the objects available, or by constructing new
objects from existing ones. Many paths will lead to dead ends. SmartAPI will
then choose the shortest path leading to the desired goal state.

163

Start state

Path p

Goal state

BufferedReader.readLine

appears in the call stack

n
e
w

F
i
l
e

R
e
a
d

e
r
(
p

)

Path p

FileReader fr

Path p

FileReader fr

BufferedReader br

n
e
w

B
u
f
f
e
r
e
d
R
e
a
d
e
r
(
f
r
)

b
r
.

r
e
a
d

L
i
n

e
(
)

n
e
w

S
t
r
i
n
g
T
o
k
e
n
i
z
r
(
p
)

...

Figure 9.6: Internal search process of SmartAPI.

As with WSDF, we currently do not handle side effects. Consider writing
a database application. Calling the method, which advances a result set cursor
does not change anything in our representation of states.

9.5 Security

So far, only the helpful aspects of intelligent systems have been presented. How-
ever, experience shows that there will always be users trying to take advantage
of technological innovations. The type of systems we implemented are also very
prone to being abused, since most features only work well if sufficient context
information is available. It is therefore crucial that the user is in total control
over which information is disclosed to certain other agents, and which informa-
tion stored in a central knowledge base is accessible to others. In the framework
of this thesis, we did not work out a detailed solution for this problem and the
following two paragraphs only discuss some of the basic concepts, which apply
to this problem.

9.5.1 Disclosing Information to Other Agents

As we outlined in section 5.7, Tim Berners-Lee’s layered Semantic Web archi-
tecture already includes the notion of a web of trust. It bases on formal proofs,
which are assembled by the requesting agent and validated by the queried agent.
Reconsider the example of an agent A acting on behalf of O who is authorized to

164

access resource R. The corresponding proof submitted by A in order to access
R might look as follows:

hasAccess(A, R)← actsOfBehalfOf(A, O) ∧ hasAccess(O, R)

This approach sounds quite logical, however, it bases on several assump-
tions. The agents need to identify themselves with digital signatures, use secure
communication channels, and must be able to assemble and validate the proofs.
More importantly, the queried agent still needs to accept the rule given above
as such, and it needs to verify that the facts given, i.e. actsOfBehalfOf(A, O)
and hasAccess(O, R), are true. The second fact will probably be found in the
local knowledge base. The first fact stating that A acts on behalf of O might
be stated and digitally signed by O, which raises the question whether O is
trustworthy enough given that fact that O has access to R.

We are very skeptical that a formal proof mechanism will be sufficient or
vastly more beneficial than simple access control lists for resources. For in-
stance, it is impossible to encode that you should not loan out borrowed things,
which essentially is the dilemma in the example above. We think that, at least
for less sensitive information, a more heuristic approach will be more suitable.
This belief is inspired by todays email filtering tools such as SpamAssasin4

and websites like ShareReactor5 that have sprung up around peer to peer file
swapping services. In both application scenarios, the goal is similar, namely
to identify which email is spam and which downloadable file has good quality.
SpamAssasin uses a very simple point system. A limited set of conditions is
checked for each email. If a condition, for example the email containing a hy-
perlink, is true, then the email gets a point. If after all checks, the point total
exceeds a certain threshold then the email is classified as spam.

Other tools leverage the entire Internet community. Users can submit a
digital footprint of spam email messages or downloaded files with the wrong or
bad content to a central site. Other users can then refer to this site in order
to perform the classification. Online auction sites, such as EBay, use a similar
system to rate the trustworthiness of buyers and sellers. However, even this
community-based approach has already been undermined. Users accumulated
good ratings with several small transactions only to run away with the money
of their last big sale without delivering the goods.

Looking at the various existing solutions that are based on communities and
heuristics, it seems much more likely for solutions along those lines to materialize
for security and trust among agents on the Semantic Web.

9.5.2 Security in Multi User Knowledge Bases

Apart from inter-agent trust and security issues, we also need to consider these
points for shared knowledge bases. As our OntoSQL prototype shows, security
issues within knowledge or deductive databases are somewhat similar to the

4http://spamassassin.org/
5http://www.sharereactor.com/

165

Figure 9.7: Security elements of a Enterprise Java Beans (EJB) application
server.

security issues of today’s database servers. Consequently, we will first look at
security mechanisms of database and application servers before we outline the
differences to systems like OntoSQL.

Rights and user management in a database server can be compared to an
operating system’s file management. Users and user groups are granted certain
types of access rights such as read and write to tables and views. Views allow
a more fine-grained control over a table rather than just declaring the entire
table as readable or protected. A view can be defined over a table, selecting
and projecting only the information which should be accessible to a user U . The
actual base table can then be protected from U , only allowing partial access to
selected information via the view.

Figure 9.7 shows that application servers also have the notion of users, roles,
and groups, however, the resources they protect are methods or business logic.
Before a method can be invoked locally or remotely, the application server checks
whether the current security context matches the method metadata.

Speaking in the knowledge base terminology, database systems usually pro-
tect an entire concept such as a table storing information about employee per-
formance. Usually, access to such security relevant information is given to a
generic user, which an application uses to read the data. This application will
then make sure, that an employee can only access other employees’ information if
they work under her or him for example6. These more fine-grained access rights
cannot be conveniently modeled with the built-in mechanisms of databases and

6Also, consider a web email application such as Hotmail. It is very unlikely, that the
millions of users exist in the email database. Instead, authentication and security is handled
by the web application

166

application servers.
The main difference between traditional systems and knowledge-based sys-

tems is that more application knowledge and logic is specified declaratively
using rules and ontologies rather than being coded in imperative languages like
C++ or Java. Consequently, it makes sense to also specify access rights using
these mechanisms. Rules appear to be the most straightforward approach here.
Consider the employee performance example from above. The following rule
expresses who is allowed to read employee data.

empInfoReadable(E, I)← empInfo(E, I) ∧ worksFor(E, currentUser)

We believe this approach has two key benefits. Firstly, it is only natural to
express access rights in the same manner as other domain rules. Secondly, only
minimal extra effort is required for the implementation. In this case, a special
function currentUser needs to be introduced. Furthermore, normal users would
only be allowed to access the empInfoReadable predicate.

9.6 Evaluation

We believe that our approach of providing ontology-based infrastructure for
various types of intelligent applications is promising. With only minor additions,
the same knowledge base can be reused in the different components. OntoLang,
for instance, only requires additional linguistic tagging for existing concepts.
Besides the faster development of the component itself, the various solutions
can be integrated easily since they base on the same semantics. Another big
plus is the fact that standard markup languages allow relying on third-party
tools during development.

Unlike we originally planned, large parts of the storage, inference, text pro-
cessing, and communication components had be coded by the author. Individual
solutions and tools for the various tasks we had to accomplish definitely exist.
However, their integration seemed to be an almost impossible task. Further-
more, the search for data and ontologies we could build on was disappointing.
This caused us not having enough time to develop a larger prototype. Conse-
quently, our experiments only provide a proof of concept. No conclusion about
how technologies like SmartDialog will scale up in a large deployment can and
should be made.

167

Chapter 10

Further Work

This section will outline possible extensions to our work as well as future research
directions building on the various technologies provided in this thesis.

10.1 OntoJava and OntoSQL

With respect to our inference engines OntoJava and OntoSQL, we illustrated
certain features such as multiple inheritance and constraints, which have not
yet been implemented. An interesting issue would be to exploit object rela-
tional features such as SQL 99 types and inheritance and replacing the simple
fact tables. This would allow more efficient data access and checking of RDF
Schema types within the database engine. The next step from there would be
a closer integration of OntoJava and OntoSQL. We are also investigating a fea-
ture of the JESS rule engine that allows us to reason with generic Java objects.
Applying this mechanism to Enterprise Java Beans would open new opportu-
nities of embedding rule engines into custom application servers. Security and
portability aspects of Java reaction rules are other important topics. Finally, an
important line of research would be to incorporate more powerful rule variants
as well as description logic languages such as OWL. Together with Benjamin
Grosof, we started working on a mapping of an OWL subset to rules as well as
on integrating general UML and ER models into such a framework.

10.2 OntoAgent

Important aspects for future research on OntoAgent are security and trust
amongst the agents. Currently, a malicious agent can query the entire de-
ductive databases of all other agents. To solve this issue, we are thinking about
dropping the remote query mechanism and requiring an agent to send a regular
message instead. This would allow the other agent to decide what to reply. We
are also thinking about certain fact metadata fields such as who asserted a fact,
where it came from, when it was asserted, and when it will expire.

168

Last but not least we need to gain more experience on performance issues
as well as the handling of different approaches, for example regarding integrity
constraints. It will make sense to revisit the Java vs. SQL design choices for
implementing reaction rules, once the database vendors support more function-
ality.

We believe that with respect to organizing a collection of software agents,
potentially via rules, much can be learned from the areas of self-organizing
networks and agent behavior patterns [28].

10.3 WSDF and SmartAPI

We described our initial efforts on the Web Service Description Framework. We
currently only cover the simplest case of calling methods that do not have side
effects. The obvious next step is to try to extend WSDF to more complicated
services. We need to explore if for those cases it is sufficient to describe the
services using rules.

We think a promising line of research would be to try to extend the frame-
work from logic-based clients to clients written in imperative languages. As-
suming that core data structures are semantically tagged, it should be possible
to automatically generate code for a bridge that mediates between the different
representations before and after invoking the service.

Furthermore, the relationship of our approach to workflow and process de-
scription languages like XLANG or WSFL and standardization efforts such as
RosettaNet or ebXML is of interest. Finally, the syntax needs to be revisited.
Since the languages used for WSDF, namely RuleML, WSDL, and RDFS, have
very different notation styles, the current syntax can definitely be improved with
respect to its clarity.

The SmartAPI system is closely related to WSDF, even though our appli-
cation areas for these technologies are quite different. Consequently, SmartAPI
will also benefit greatly from modeling method calls with side effects. The sys-
tem needs to be evaluated further. A good benchmark would be to see the
performance compared to a simple collection of frequently used code fragments.
On the user interface side, we are thinking about developing a plug-in for the
popular Eclipse editor. It is also possible to minimize the user input by scanning
the variables available from the chosen context within the source code.

10.4 SmartGuide and SmartDialog

The most important next step with respect to our intelligent sample applications
was already mentioned in section 9.6. All systems need to be tested with larger
ontologies and more data. This is also the base for a quantitative performance
assessment, which compares the usefulness of our ideas compared to expert
systems, question answering systems and search engines.

An interesting point from the engineering side would be to provide the user

169

with explanations on why a certain document is recommended. It might be
useful for the user to have such additional information instead of purely relying
on the SmartGuide ranking and the document title.

10.5 Probabilistic Reasoning

A very fundamental concern, which needs to be addressed in the future, is the
feasibility of cleanly including probabilities into the reasoning process. Our
SmartGuide and SmartDialog systems implement some heuristics basing on
probabilities and somewhat fuzzy metrics of specificity. These algorithms were
placed on top of a traditional Boolean inference mechanism. We looked into
approaches such as Fuzzy Logic and Bayesian Networks. However, we believe
probabilistic relational models to be the most promising candidate [63, 64, 92].

170

Chapter 11

Summary

This thesis described how ontologies and the Semantic Web in particular can
provide an infrastructure for developing and integrating intelligent applications.
We will now summarize our individual results and contributions and provide an
outlook on the future of the Semantic Web.

11.1 Results and Contributions

Seven key questions were raised in the introduction. The following text picks
those up again and summarizes if and how they have been answered.

1. How much and what kind of semantically tagged data is available on the
Web today?

We crawled the Web for RDF data. Four different search strategies,
namely scanning homepages listed in DMOZ, crawling in the proximity of
Semantic Web portal sites, retrieving URLs containing the string RDF,
and searching the URIs from previously found RDF facts, were used. The
RDF facts were analyzed according to their predicate namespaces and
their location. A promising development is the Adobe RDF metadata for-
mat, which is produced by Adobe tools. Researchers are currently working
on embedding RDF support into the popular Plone content management
system. We believe that such easy to use tools that expose existing meta-
data in RDF format will be the crystallization point for the Semantic
Web.

2. Can rules and ontology be integrated into a mainstream IT infrastructure
of databases and object oriented programming languages?

We presented our OntoJava and OntoSQL inference engines which lever-
age proven technologies such as Java and relational databases as core
components to build on. Despite some of the inherent limitations, we
strongly believe that the advantages of this approach by far outweigh the

171

limitations. There is an abundance of Java tools like IDEs and debug-
gers available. The javadoc tool, for instance, can automatically create a
browsable documentation of the ontology. Java’s reflection interface also
enables us to easily inspect the ontology from an application or browse
the state of the object database. OntoJava allows for easy extension and
integration of the ontology into the existing IT landscape. Finally, it is
possible to customize the inference mechanism if, for example, probabilis-
tic reasoning is to be introduced. OntoSQL addresses the forward chaining
limitation of the Java approach. It is also not limited to main memory
storage and provides persistence, transactional safety, security and backup
management, as well as many middleware and data entry solutions such
as ODBC and Access. The fact that virtually every enterprise builds its
IT infrastructure on relational databases is probably the most convincing
argument for trying to introduce Semantic Web technology this way.

3. Can ontologies and event condition action rules be used to define the
behavioral aspects of agents?

OntoAgent builds on Boley et. al’s [14] idea of specifying an agent en-
tirely using the Semantic Web mark-up languages RDF, RDF Schema,
and RuleML. We described our implementation of OntoAgent, which is
based on the OntoSQL tool that allows us to use a relational database
as an inference engine. With a set of add-ons, written in Java, we were
able to augment the system with the necessary components, i.e. reaction
rules, a command library, and a messaging subsystem based on HTTP.
Several design choices and trade-offs were discussed. In several cases, we
opted against the pure SQL variant with assertions and triggers due to
varying database implementations, unimplemented SQL99 features, and
engineering simplicity. We believe that this is an extremely promising ap-
proach since it relieves programmers from many of the burdens that are
usually inherent with the implementation of agent systems. It also makes
it easier to integrate agents written by different teams. We identified the
key points of agreeing on a common RDF Schema and of proper action
and reaction rules for enabling collaboration.

4. Is it possible to invoke a semantically tagged service on the fly?

We presented WSDF, a semantic annotation of Web Services based on the
existing languages WSDL, RDFS, and RuleML. Using a WSDL compiler
and our OntoSQL RuleML to SQL converter, a client application is able
to process the generic descriptions into running code. Web Services can
therefore be invoked simply by agreeing on an RDFS ontology a priori.
Even though we restrict ourselves to the simplest case of methods without
side effects, this is a major step forward, since traditionally programmers
must either be aware of a certain UDDI tModel or simply read a textual
description and program corresponding client code. Compared to other
approaches like WSMF or DAML-S, we provide a complete solution that

172

not only specifies service mark-up, but for the first time also specifies how
the client has to interpret the results.

5. Is it possible to base linguistic features on the same mechanisms that are
used for obtaining data from information sources other than the user?

OntoLang uses linguistic annotations to parse and understand simple nat-
ural language statements, which are fed into the RDF fact base. This way,
OntoLang is seamlessly integrated with the inference engine and other ap-
plications that also access the inference component. Since annotations
required by OntoLang are also given is RDF format, no extra parser is
required. Only the algorithm matching a sentence onto the ontology was
implemented in Java. SmartDialog leverages the knowledge base to predict
how answers to potential questions affect the pool of possible documents
to be suggested. The situation is similar to OntoLang since the fact stor-
age could be reused but the logic had to be written by hand rather than
using rules.

6. Does an underlying ontology provide the necessary foundation for various
system components to interoperate seamlessly?

Assuming that the ontology is represented in both the facts’ data model
and the query and inference layer, all applications can be interfaced via
this foundation. The mediator is the shared knowledge and data model.
Note that just as in the database world, updates to the knowledge base
made by one component are immediately visible to all other components.
This way it was very easy to integrate OntoLang with WSDF, simply
because both base on ontologies marked up in Semantic Web languages.

7. Are ontologies a useful help for developing a complex application?

By developing an entire suite of sample applications, we provided a proof
of concept that an ontology-based infrastructure is useful for developing
intelligent applications. SmartGuide and SmartDialog demonstrate how a
complicated document retrieval application, which takes the user’s current
context into account and asks clarification questions, can be built with
relatively little engineering effort. SmartAPI shows that a vastly different
application can also base on the same core components.

Our thesis is that data integration and software engineering can benefit from
establishing ontologies as the basis for a variety of intelligent applications. We
believe that the thesis is correct and that our approach is a viable solution
for integrating existing data, knowledge, and tools into combined and therefore
much more powerful systems. We provide tools for using ontologies and rules as
the foundation of intelligent software. The sample implementation of an online
help system proved that the engineering effort could be reduced significantly.
The prototype is also able to leverage existing legacy databases, other agents, as
well as Web Services are information sources demonstrating the data integration
aspect. The weakness of our work is that the concepts need to be validated in
larger deployments.

173

11.2 Outlook on the Semantic Web Initiative

The Semantic Web initiative offers exciting possibilities. The standardization of
various mark-up languages for semantically well-defined statements, ontologies,
and rules allows users all over the world to easily publish and share machine-
readable data and knowledge. The range of potential applications is only limited
by one’s imagination. Integrated travel portals, intelligent support for online
learning, or smart enterprise application integration solutions are some exam-
ples.

As it can already be seen in the XML world, the standardization of mark-up
languages has another key advantage besides sharing and reuse of data. Being
able to build on a large pool of parsers, editors, converters, and other tools
supporting these standardized languages is another huge advantage.

Despite the advantages we mentioned, we observe a chicken and egg situa-
tion, which currently prevents the fast adoption of these new technologies. Data
and knowledge is available, however, they are not being published in Semantic
Web formats since there currently are no Semantic Web applications consuming
the data. In turn, writing applications only makes sense if data is available.
We have two recommendations for overcoming this problem. First and fore-
most, we believe that the development of tools and systems should favor issues
of scalability, user friendliness, and interfaces to existing data repositories, over
advanced features such as the Web of trust or the integration of highly ex-
pressive logic variants. We believe that our work, especially with OntoSQL and
WSDF, goes in the right direction here. Secondly, more research projects should
aim at developing Semantic Web applications. Such implementations will get a
larger community interested and will provide valuable experience and feedback
for adjustments to current and for the specification of future standards.

Despite the relatively slow rate of adoption so far, there are many promis-
ing developments, such as Adobe’s embracing of RDF. Also, more and more
enterprise application integration projects are starting to use ontologies. Obvi-
ously, EAI projects have a more immediate and, in terms of monetary savings,
measurable impact compared to projects from domains such as knowledge man-
agement that traditionally already employ ontologies. Successful ontology-based
EAI projects are likely to promote the Semantic Web.

The areas of Web Services and Semantic Web share the dilemma of lack-
ing a clear business model. Today’s browser-based Web is mostly financed by
banner advertisements. However, this model does not work once machines ac-
cess Internet resources, regardless of whether it is a Web Service client or a
Semantic Web agent. Microsoft is currently experiencing a heavy setback with
its subscription-based myServices strategy. In our opinion, these problems will
be solved as soon as a solid payment infrastructure is established. Once peo-
ple come up with a killer application, it will be easy to establish a good and
successful business model for it.

174

Acknowledgements

First and foremost, I want to thank Prof. Dr. Andreas Reuter for his valuable
feedback and comments as well as for giving me the time required to do this
research and the opportunity to meet colleagues during my visits to Berkeley,
Stanford, and many other workshops and conferences. I also thank Prof. Dr.
Wolfgang Wahlster for his suggestions and for accepting me as a PhD candidate
at the University of Saarbruecken. Dr. Harold Boley, Said Tabet, Prof. Dr.
Gerd Wagner, and Prof. Dr. Benjamin Grosof, the initiators of the RuleML
initiative, always encouraged me in my line of research. Coming from a small
institution, my participation in the RuleML effort was particularly important
for me since it gave me the chance to collaborate with many other researcher
that have the same interests. I also thank my current and former colleagues at
the International University and the European Media Lab, in particular Prof.
Dr. Stefan Fischer, Prof. Dr. Ian Cloete, Dr. Isabel Rojas, Dr. Wolfgang
Becker, Horst Hellbrueck, and Ulrich Walther for many interesting and fruitful
discussions and for making our work environment so pleasant. I also got many
ideas from great discussions with Bill Andersen from OntologyWorks Inc. Last
but not least, I thank my family, especially my wife Karin and my mother
Hildegard, for encouraging and helping me during my studies and of course for
proof reading this document.

175

Appendix A

List of Acromyns Used

ACL Agent Communication Language
ADL Advanced Distributed Learning
ARIADNE Alliance of Remote Instructional Authoring and

Distribution Networks for Europe
API Application Programming Interface
ARPA Advanced Research Projects Agency
ASCII American Standard Code for Information Interchange
CBT Computer Based Training
CIA Central Intelligence Agency
CORBA Common Object Request Broker Architecture
DAML DARPA Agent Markup Language
DARPA Defense Advanced Research Projects Agency
DBMS Database Management System
DCOM Distributed Component Object Model
DOM Document Object Model
DTD Document Type Definition
EAI Enterprise Application Integration
ECA Event Condition Action
EDI Electronic Data Interchange
EDIFACT United Nations Directories for Electronic Data Interchange for

Administration, Commerce and Transport
EJB Enterprise Java Beans
EOF End Of File
FAQ Frequently Asked Question
FCA Formal Concept Analysis
FIPA Foundation for Intelligent Physical Agents
GPS Global Positioning System
HTML Hypertext Mark-up Language
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IBM International Business Machines Inc.

176

IDE Integrated Development Environment
IMS Instructional Management Systems
IST Information Society Technologies
ISO International Organization for Standardization
JDBC Java Database Connectivity
JESS Java Expert System Shell
JSR Java Specification Request
KAON Karlsruhe Ontology Tool Suite
KIF Knowledge Interchange Format
KQML Knowledge Query Mark-up Language
LMS Learning Management System
LOM Learning Object Metadata
LTSC Learning Technology Standards Committee
MIT Massachusetts Institute of Technology
NAICS North American Industry Classification System
NEC Nippon Electric Company
NYSE New York Stock Exchange
OCL Object Constraint Language
ODBC Open Database Connectivity
OKBC Open Knowledge Base Connectivity
OIL Ontology Inference Layer / Ontology Interchange Language
OWL Web Ontology Language / Ontology Works Language
PDF Portable Document Format
PURL Persistent Uniform Resource Locator
QEL Query Exchange Language
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RDQL Resource Description Query Language
RPC Remote Procedure Call
RPM RPM Package Manager
RQL RDF Query Language
RSS Rich Site Summary
SAX Simple API for XML
SCORM Sharable Content Object Reference Model
SOAP Simple Object Access Protocol
SOEP Simple Ontology and Metadata Editor Plugin
SQL Structured Query Language
START SynTactic Analysis using Reversible Transformations
SWIFT Society for Worldwide Inter bank Financial Telecommunications
TREC Text Retrieval Conferences
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
UNSPSC Universal Standard Products and Services Codes
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name

177

WSDF Web Service Description Framework
WSEL Web Service Endpoint Language
WSFL Web Service Flow Language
WSMF Web Service Modeling Framework
WWW World Wide Web
XHTML Extensible Hypertext Mark-up Language
XLANG XML Language
XML Extensible Mark-up Language
XMP Extensible Metadata Platform
XSL Extensible Stylesheet Language
XSLT XSL Transformations

178

Appendix B

Guide to the Software

Download Pages

This appendix is to provide a quick overview of the software downloads that
are available from the author’s website at http://www.i-u.de/schools/eberhart/.
Note that all information is also available on the accompanying CD. Nevertheless
we invite you to visit the website for most up to date information and patches.
The individual project pages can usually be found by appending the project’s
name to the author homepage’s URL.

B.1 OntoJava

The OntoJava system is available from http://www.i-
u.de/schools/eberhart/ontojava/. This site contains a quick introduction,
a feature list, a list of limitations, and information on bugs and known issues.
The download contains the sources as well as a set of Windows batch files for
running the examples.

B.2 OntoSQL

The OntoSQL project page can be found at http://www.i-
u.de/schools/eberhart/ontosql/. The download contains sources, binaries,
and examples. The examples were tested on Microsoft SQL Server 2000, but
should run on any other major database server. Currently, the OntoSQL
system generates a text file containing the required table and view creation
statements, which can be run against an ODBC data source using the upload
tool provided.

179

B.3 OntoAgent

The OntoAgent system is available under http://www.i-
u.de/schools/eberhart/ontoagent/. The download includes a small example,
which uses two instances of a Java-enabled web server with two attached
Microsoft Access databases to perform the agent communication and reasoning.

B.4 Prolog2RuleML

The prolog2ruleml converter tool is available at http://www.i-
u.de/schools/eberhart/prolog2ruleml/. The site offers the application,
the underlying JavaCC grammar as well as an online version of the system at
http://212.126.209.136:8080/prolog2ruleml.html.

B.5 OntoLang

The OntoLang system’s project page is located at http://www.i-
u.de/schools/eberhart/ontolang/. The system and a small command-line
based example are included in the download. A version of OntoLang is included
in the online demo of SmartGuide. See the following section for this.

B.6 SmartGuide

The site http://www.i-u.de/schools/eberhart/smartguide/ offers a small intro-
duction to the SmartGuide system. A demonstration application, which bases
on the university domain, is available as well. Note that OntoLang is included
in this application allowing the user to make simple statements such as ”I am
enrolled in IT401”.

B.7 RDF Crawler

The page of our RDF Crawler http://www.i-u.de/schools/eberhart/rdf/ offers
the source code, binaries, and software documentation. In addition, copies
of all RDF files found during the search, as well as lists of all URL scanned
are available in RDF and text and tab formats as well as a Microsoft Access
database.

180

Bibliography

[1] A. Abecker, A. Bernardi, and M. Sintek. Proactive knowledge delivery for
enterprise knowledge management. In G. Ruhe and F. Bomarius, editors,
SEKE Learning Software Organizations - Methodology and Applications,
pages 103–117. Springer-Verlag, 1999.

[2] E. Adar, D. Karger, and L. Stein. Haystack: Per-user information en-
vironments. In Proceedings of the Eighth International Conference on
Information Knowledge Management, pages 413–422, Kansas City, MO,
USA, 1999.

[3] Adobe Inc. A managers introduction to Adobe eXtensible
Metadata Platform, the Adobe XML metadata framework.
http://www.adobe.com/products/xmp/pdfs/whitepaper.pdf.

[4] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDer-
mott, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service description for the Semantic Web. In I. Horrocks
and J. Hendler, editors, Proceedings of the First International Semantic
Web Conference (ISWC 2002), pages 348–363, Chia, Sardinia, Italy, June
2002. Springer.

[5] G. Antoniou. Nonmonotonic rule systems using ontologies. In
M. Schroeder and G. Wagner, editors, Proceedings of the international
Workshop on Rule Markup Languages for Business Rules on the Semantic
Web. In conjunction with the first International Semantic Web Conference
(ISWC 2002), pages 128–139, Chia, Sardinia, Italy, July 2002.

[6] I. Balbin and K. Ramamohanarao. A generalization of the differential
approach to recursive query evaluation. Journal of Logic Programming,
4(3):259–262, 1987.

[7] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other
strange ways to implement logic programs (extended abstract). In Pro-
ceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of
database systems, pages 1–15, Cambridge, MA, USA, 1986. ACM Press.

181

[8] R. Bayer. Query evaluation and recursion in deductive database systems.
Technical Report TUM-I8503, Technische Universitaet Muenchen, Mu-
nich, Germany, 1985.

[9] M. Bergman. The Deep Web: Surfacing hidden value. In J. Turner and E.
Trager, editors. Journal of Electronic Publishing. Ann Arbor, MI, USA,
7(1), 2001.

[10] T. Berners-Lee and J. Hendler. Publishing on the Semantic Web. Nature,
pages 1023 – 1024, April 2001.

[11] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, pages 28–37, May 2001.

[12] T. Berners-Lee, D. Karger, L. Stein, R. Swick, and
D. Weitzner. Semantic Web development. http://www.w3.org/
2000/01/sw/DevelopmentProposal, 2000.

[13] D. Billsus and M. Pazzani. Learning collaborative information filters. In
Proceedings 15th International Conf. on Machine Learning, pages 46–54,
Madison, WI, USA, 1998. Morgan Kaufmann.

[14] H. Boley, S. Tabet, and G. Wagner. Design rationale of RuleML:
A markup language for Semantic Web rules. In Semantic Web
Working Symposium, Stanford University, CA, USA, July 2001.
http://www.semanticweb.org/SWWS/program/full/paper20.pdf.

[15] K. Bollacker, S. Lawrence, and C. Giles. CiteSeer: An autonomous Web
agent for automatic retrieval and identification of interesting publications.
In K. Sycara and M. Wooldridge, editors, Proceedings of the Second Inter-
national Conference on Autonomous Agents, pages 116–123, New York,
NY, USA, 1998. ACM Press.

[16] C. Bornhoevd. Semantic metadata for the integration of Web-based data
for electronic commerce. In Proceedings of the International Workshop
on Advance Issues of E-Commerce and Web-based Information Systems,
page 137, Santa Clara, USA, April 1999.

[17] A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, and J. Beard.
Supporting dynamic interactions among Web-based information sources.
IEEE Transactions on Knowledge and Data Engineering, 12(5), October
2000.

[18] P. Brezillon. Context in human-machine problem solving: A survey. Tech-
nical Report 96/29, Laforia, Universite Paris VI, Paris, France, 1996.

[19] R. Burke, K. Hammond, V. Kulyukin, S. Lytinen, N. Tomuro, and
S. Schoenberg. Question answering from frequently asked question files:
Experiences with the FAQ finder system. Technical Report TR-97-05,
InfoLab, University of Chicago, 20, 1997.

182

[20] A. Campbell and S. Shapiro. Ontological mediation: An overview. In
IJCAI-95 Workshop on Basic Ontological Issues for Knowledge Sharing,
Montreal, QC, Canada, 1995.

[21] A. Canas, R. Hewett, M. Carvalho, and M. Carnot. Knowledge models
for organizing and searching information. In Proceedings of the Interna-
tional Conference on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet (SSGRR 2001), August 2001. CD
ROM Paper 129.

[22] L. Carr, W. Hall, S. Bechhofer, and C. Goble. Conceptual linking:
ontology-based open hypermedia. In Proceedings of the 10th International
World Wide Web Conference, pages 334–342, Hong Kong, China, 2001.

[23] M. Ciocoiu and D. Nau. Ontology-based semantics. In A. Cohn,
F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowl-
edge Representation and Reasoning, pages 539–546, San Francisco, CA,
USA, 2000. Morgan Kaufmann.

[24] P. Codognet and D. Diaz. WAMCC: Compiling prolog to C. In Inter-
national Conference on Logic Programming, pages 317–331, Kanazawa,
Japan, June 1995.

[25] The Gene Ontology Consortium. Creating the gene ontology resource:
design and implementation. Genome Research, 11:1425–1433, 2001.

[26] T. Cooper and N. Wogrin. Rule-based Programming with OPS5. Morgan
Kaufmann, San Francisco, CA, USA, 1988.

[27] S. Cranefield. UML and the Semantic Web. In Proceedings of
the International Semantic Web Working Symposium (SWWS), 2001.
http://www.semanticweb.org/SWWS/program/full/paper1.pdf.

[28] K. Decker, A. Pannu, K. Sycara, and M. Williamson. Designing behav-
iors for information agents. In W. Johnson and B. Hayes-Roth, editors,
Proceedings of the First International Conference on Autonomous Agents
(Agents’97), pages 404–412, Marina del Rey, CA, USA, 5–8, 1997. ACM
Press.

[29] S. Decker, D. Brickley, J. Saarela, and J. Angele. A
query and inference service for rdf. Position paper for the
W3C Query Languages meeting in Boston, December 1998.
http://www.w3.org/TandS/QL/QL98/pp/queryservice.html.

[30] G. Denker, J. Hobbs, D. Martin, S. Narayanan, and R. Waldinger. Access-
ing information and services on the DAML-enabled Web. In S. Decker,
D. Fensel, A. Sheth, and S. Staab, editors, Proceedings of the Second Inter-
national Workshop on the Semantic Web - SemWeb, Hong Kong, China,
May 2001.

183

[31] J. Denzinger. Distributed deduction and the Semantic Web. In Proceedings
of the AI-2002 Workshop on Business Agents and the Semantic Web,
pages 2–9, May 2002.

[32] C. Draxler. Prolog to SQL compiler. Technical report, CIS Centre for
Information and Speech Processing, Ludwig-Maximilians-University, Mu-
nich, August 1993.

[33] J. Dvorak. Using clips in the domain of knowledge-based massively parallel
programming. In G. Riley, editor, Proceedings of the Third Conference on
CLIPS, pages 195–202, September 1994.

[34] A. Eberhart. Applications of the Semantic Web for docu-
ment retrieval. In Position paper at the Semantic Web Work-
ing Symposium (SWWS 2001), Stanford University, CA, USA,
July 2001. http://www.semanticweb.org/SWWS/program/position/soi-
eberhart.pdf.

[35] A. Eberhart. Building a domain-aware e-support system. In Proceedings
of the International Conference on Advances in Infrastructure for Elec-
tronic Business, Science, and Education on the Internet (SSGRR 2001),
L’Aquila, Italy, August 2001. CD ROM Paper 44.

[36] A. Eberhart. An agent infrastructure based on Semantic Web standards.
In Proceedings of the Business Agents and the Semantic Web Workshop.
In conjunction with the Fifteenth Canadian Conference on Artificial In-
telligence, pages 10–17, Calgary, AB, Canada, May 2002.

[37] A. Eberhart. Automatic generation of Java/SQL based inference engines
from RDF Schema and RuleML. In I. Horrocks and J. Hendler, editors,
Proceedings of the First International Semantic Web Conference (ISWC
2002), pages 102–116, Chia, Sardinia, Italy, June 2002. Springer.

[38] A. Eberhart. OntoAgent: A platform for the declarative specification
of agents. In M. Schroeder and G. Wagner, editors, Proceedings of the
international Workshop on Rule Markup Languages for Business Rules on
the Semantic Web. In conjunction with the first International Semantic
Web Conference (ISWC 2002), pages 58–71, Chia, Sardinia, Italy, July
2002.

[39] A. Eberhart. SmartGuide: An intelligent information system basing on
Semantic Web standards. In Proceedings of the International Conference
on Artificial Intelligence), Las Vegas, NV, USA, June 2002. CD ROM.

[40] A. Eberhart. Survey of RDF data on the Web. In Proceedings of the 6th
World Multiconference on Systems, Cybernetics and Informatics (SCI-
2002), Orlando, FL, USA, July 2002. CD ROM Volume XI.

184

[41] A. Eberhart. Survey of RDF data on the Web. Technical Report TR-01-
2002, International University in Germany, Bruchsal, Germany, August
2002. Updated version with new results from 8/2002.

[42] A. Eberhart. Towards universal Web Service clients. In
B. Hopgood, B. Matthews, and M. Wilson, editors, Pro-
ceedings of the Euroweb 2002: The Web and the GRID:
from e-science to e-business, Oxford, UK, December 2002.
http://www1.bcs.org.uk/DocsRepository/03700/3780/eberhart.htm.

[43] A. Eberhart. Semantic Web meets electronic commerce. Electronic
Commerce Research and Applications. Special issue on Headways in E-
Commerce with the Semantic Web. Elsevier Science, London, UK, 2003.
accepted to appear.

[44] A. Eberhart and S. Fischer. Java Tools: Using XML, EJB, Corba, Servlets
and SOAP. John Wiley and Sons, Chichester, GB, 2002.

[45] A. Eberhart, F. Schiele, and S. Fischer. The electronic course authoring
and management system at the international university. In Proceedings
of the 4th World Congress on Integrated Design and Process Techology
(IDPT99), published at IDPT2000, Dallas, TX, USA, 2000.

[46] R. Elmasri and S. Navathe. Fundamentals of Database Systems, chap-
ter 24, pages 729–760. Addison-Wesley, Redwood City, CA, USA, second
edition, 1992.

[47] M. Erdmann and R. Studer. Ontologies as conceptual models for XML
documents. In Proceedings of the 12th Workshop for Knowledge Acqui-
sition, Modeling and Management (KAW’99), Banff, Canada, October
1999.

[48] J. Everett, D. Bobrow, R. Stolle, R. Crouch, V. de Paiva, C. Condoravdi,
M. van den Berg, and L. Polanyi. Making ontologies work for resolv-
ing redundancies across documents. Communications of the ACM, 45(2),
Feburary 2002.

[49] D. Fensel and C. Bussler. The web service modeling framework wsmf.
Technical Report IR-493, Vfije Universiteit Amsterdam, Faculteit der Ex-
acte Wetenschappen, Divisie W&I, February 2002.

[50] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors. Spinning
the Semantic Web: Bringing the World Wide Web to Its Full Potential.
MIT Press, Cambridge, MA, USA, 2002.

[51] D. Fensel and A. Perez. A survey on ontology tools. Technical
Report OntoWeb Deliverable 1.3, OntoWeb consortium, May 2002.
http://www.ontoweb.org/ download/deliverables/D13 v1-0.zip.

185

[52] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. Patel-
Schneider. OIL: An ontology infrastructure for the Semantic Web. IEEE
Intelligent Systems, 16(2):38–44, 2001.

[53] R. Fikes and A. Farquhar. Distributed repositories of highly expressive
reusable knowledge. IEEE Intelligent Systems, 14(2):73–79, March/April
1999.

[54] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent
Communication Language. In N. Adam, B. Bhargava, and Y. Yesha,
editors, Proceedings of the 3rd International Conference on Information
and Knowledge Management (CIKM’94), pages 456–463, Gaithersburg,
MD, USA, 1994. ACM Press.

[55] FIPA. FIPA KIF content language specification. Technical Re-
port XC00010B, Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00010/.

[56] C. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern matching problem. Artificial Intelligence, 19:17–37, 1982.

[57] G. Fox. Peer-to-peer networks. IEEE Computing in Science and Engi-
neering, May/June:75–77, 2001.

[58] W. Frakes. Information Retrieval: Data Structures and Algorithms, chap-
ter Stemming algorithms, pages 131–160. Prentice Hall, 1992.

[59] D. Franklin and K. Hammond. The intelligent classroom: providing com-
petent assistance. In J. Mueller, E. Andre, S. Sen, and C. Frasson, editors,
Proceedings of the Fifth International Conference on Autonomous Agents,
pages 161–168, Montreal, QC, Canada, 2001. ACM Press.

[60] S. Franklin and A. Graesser. Is it an agent, or just a program?: A tax-
onomy for autonomous agents. In Agent Theories, Architectures, and
Languages, pages 21–35, 1996.

[61] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, Redwood City, CA, USA, 1995.

[62] M. Genesereth and R. Fikes. Knowledge interchange format, version 3.0
reference manual. Technical Report Logic-92-1, Computer Science De-
partment, Stanford University, 1992.

[63] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Relational Data Min-
ing, chapter Learning Probabilistic Relational Models. Springer-Verlag,
Heidelberg, D, 2001.

[64] L. Getoor, D. Koller, and N. Friedman. From instances to classes in prob-
abilistic relational models. In Proceedings of the ICML-2000 Workshop on
Attribute-Value and Relational Learning: Crossing the Boundaries, Stan-
ford, CA, USA, June 2000.

186

[65] S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura,
and R. Neyama. Building Web Services with Java: Making Sense of XML,
SOAP, WSDL and UDDI. Sams, Indianapolis, IN, USA, December 2001.

[66] B. Grosof. Representing e-business rules for the Semantic Web: Situated
courteous logic programs in RuleML. In Proceedings of the Workshop on
Information Technologies and Systems (WITS ’01). In conjunction with
the Internatinal Conference on Information Systems (ICIS-2001), New
Orleans, LA, USA, December 2001.

[67] B. Grosof, M. Gandhe, and T. Finin. Sweetjess: Translating DAML-
RuleML to JESS. In M. Schroeder and G. Wagner, editors, Proceedings of
the international Workshop on Rule Markup Languages for Business Rules
on the Semantic Web. In conjunction with the first International Seman-
tic Web Conference (ISWC 2002), pages 5–25, Chia, Sardinia, Italy, July
2002.

[68] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Descrip-
tion logic programs: Combining logic programs with description
logic. In Proceedings of the Twelfth International World Wide
Web Conference (WWW 2003), Budapest, Hungary, May 2003.
http://www2003.org/cdrom/papers/refereed/p117/p117-grosof.html.

[69] B. Grosof, Y. Labrou, and H. Chan. A declarative approach to business
rules in contracts: courteous logic programs in XML. In M. Wellman,
editor, Proceedings of the first ACM Conference on Electronic Commerce
(EC-99), pages 68–77, Denver, CO, USA, 1999.

[70] B. Grosof and T. Poon. Representing agent contracts with exceptions us-
ing XML rules, ontologies, and process descriptions. In M. Schroeder and
G. Wagner, editors, Proceedings of the international Workshop on Rule
Markup Languages for Business Rules on the Semantic Web. In conjunc-
tion with the first International Semantic Web Conference (ISWC 2002),
pages 72–93, Chia, Sardinia, Italy, July 2002.

[71] T. Gruber. Ontolingua: A mechanism to support portable ontologies.
Technical Report KSL-91-66, Knowledge Systems Laboratory, Stanford
University, Palo Alto, CA, USA, March 1992.

[72] T. Gruber. Towards Principles for the Design of Ontologies Used for
Knowledge Sharing. In N. Guarino and R. Poli, editors, Formal Onto-
logy in Conceptual Analysis and Knowledge Representation, Deventer, NL,
1993. Kluwer Academic Publishers.

[73] N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Content-based access
to the Web. IEEE Intelligent Systems, 14(3):70–80, May 1999.

[74] N. Guarino and C. Welty. A formal ontology of properties. In R. Dieng and
O. Corby, editors, 14th European Conference on Artificial Intelligence,

187

Workshop on Applications of Ontologies and Problem-Solving Methods,
pages 97–112, August 2000.

[75] N. Guarino and C. Welty. Evaluating ontological decisions with ontoclean.
Communications of the ACM, 45(2), Feburary 2002.

[76] R. Guha, O. Lassila, E. Miller, and D. Brickley. Enabling inferencing. Po-
sition paper for the W3C Query Languages meeting in Boston, December
1998. http://www.w3.org/TandS/QL/QL98/pp/enabling.html.

[77] K. Hammond, R. Burke, and S. Lytinen. A Case-Based Approach to
Knowledge Navigation. In D. Leake, editor. Case-Based Reasoning Expe-
riences Lessons and Future Directions, pages 125–136. MIT Press, 1996.

[78] S. Harabagiu, M. Pasca, and S. Maiorano. Experiments with open-domain
textual question answering. In Proceedings of the 18th International
Conference on Computational Linguistics, Saarbrueken Germany, August
2000.

[79] P. Hayes. Catching the dreams. http://www.aifb.uni-karlsruhe.de/
∼sst/is/WebOntologyLanguage/hayes.htm, 2002.

[80] J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation
language for internet applications. Technical Report CS-TR-4078, De-
partment of Computer Science, University of Maryland, 1999.

[81] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems,
16(2), 2001.

[82] J. Hendler and D. McGuinness. The DARPA agent markup language.
IEEE Intelligent Systems, 15(6):72–73, Nov./Dec. 2000.

[83] U. Hermjakob, E. Hovy, and C. Lin. Knowledge-based question answering.
In Proceedings of the 6th World Multiconference on Systems, Cybernetics
and Informatics (SCI-2002), Orlando, FL, USA, July 2002.

[84] J. Hiller. MANDARAX - a Java opensource implementation of rule-based
technologies. In Proceedings of the International Conference on Object
Technology, 2001.

[85] W. Holsapple and K. Joshi. A collaborative approach to ontology design.
Communications of the ACM, 45(2), Feburary 2002.

[86] D. Huynh, D. Karger, and D. Quan. Haystack: A platform for creat-
ing, organizing and visualizing information using rdf. In Semantic Web
Workshop. In conjunction with the Eleventh World Wide Web Conference,
2002.

[87] J. Jacobs and A. Linden. Semantic Web technologies take middleware to
next level. Technical Report T-17-5338, Gartner Group, August 2002.

188

[88] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki.
Querying RDF descriptions for community web portals. In 17iemes
Journees Bases de Donnees Avancees (BDA’01), pages 133–144, Agadir,
Marocco, October 2001.

[89] B. Katz. From sentence processing to information access on the World
Wide Web. In Proceedings of the AAAI Spring Symposium on Natural
Language Processing for the World Wide Web, pages 77–86, Stanford,
CA, USA, 1997.

[90] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42, 1995.

[91] H. Kim. Predicting how ontologies for the Semantic Web will evolve.
Communications of the ACM, 45(2), Feburary 2002.

[92] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI), pages
580–587, Madison, WI, USA, 1998.

[93] W. Kraaij and R. Pohlmann. Viewing stemming as recall enhancement. In
Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 40–48, Zuerich,
Switzerland, 1996. ACM Press.

[94] H. Krieger and U. Schaefer. TDL – a type description language for HPSG,
part 1: Overview. Technical Report RR-94-37, DFKI, November 1994.

[95] C. Kwok, O. Etzioni, and D. Weld. Scaling question answering to the Web.
In Proceedings of the 10th International World Wide Web Conference,
pages 150–161, Hong Kong, China, May 2001.

[96] Y. Labrou and T. Finin. Yahoo! as an ontology: Using yahoo! cate-
gories to describe documents. In Proceedings of the Eight International
Conference of Information Knowledge Management (CIKM 1999), pages
180–187, Kansas City, MO, USA, October 1999.

[97] O. Lassila. Web metadata: A matter of semantics. IEEE Internet Com-
puting, 2(4):30–37, 1998.

[98] S. Lawrence and C. Giles. Searching the World Wide Web. Science,
280(5360):98–100, 1998.

[99] J. Lee. Icoma: An open infrastructure for agentbased intelligent electronic
commerce on the internet. In Proceedings of the International Conference
on Parallel and Distributed Systems (CPADS), pages 648–655, Los Alami-
tos, CA, USA, 1997. IEEE Comp Soc.

[100] A. Levy and M. Rousset. Combining horn rules and description logics in
CARIN. Artificial Intelligence Journal, 104, September 1998.

189

[101] R. Lienhart, W. Effelsberg, and R. Jain. Towards a visual grep: A system-
atic analysis of various methods to compare video sequences. In R. Jain
I. Sethi, editor, Storage and Retrieval for Image and Video Databases VI,
volume SPIE 3312, pages 271–282, 1998.

[102] A. Maedche, M. Ehrig, S. Handschuh, R. Volz, and L. Stojanovic.
Ontology-focused crawling of documents and relational metadata. In
Proceedings of the Eleventh International World Wide Web Conference
WWW-2002, (Poster), May 2002.

[103] A. Maganaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and
T. Anh. Ontology storage and querying. Technical Report 308, Founda-
tion for Research and Technology Hellas, Institute of Computer Science,
Information Systems Laboratory, April 2002.

[104] A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Bench-
marking RDF schemas for the Semantic Web. In I. Horrocks and
J. Hendler, editors, Proceedings of the First International Semantic Web
Conference (ISWC 2002), pages 132–146, Chia, Sardinia, Italy, June 2002.
Springer.

[105] R. Malaka and A. Zipf. Deep Map - challenging IT research in the
framework of a tourist information system. In D. Buhalis D. Fesenmaier,
S. Klein, editor, Proceedings of 7th. International Congress on Tourism
and Communications, ENTER2000, pages 15–27, Barcelona, Spain, 2000.
Springer.

[106] T. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and
E. ODonnell. Tools for inventing organizations: Toward a handbook of
organizational processes. Management Science, 45(3):425–443, 1999.

[107] P. Martin and P. Eklund. Large-scale cooperatively-built heterogeneous
kbs. In Proceedings of ICCS 2001, 9th International Conference on Con-
ceptual Structures, pages 231–244, Heidelberg, D, August 2001. Springer
Verlag.

[108] M. Maybury and W. Wahlster, editors. Readings in Intelligent User In-
terfaces. Morgan Kaufmann, San Francisco, CA, USA, 1998.

[109] R. McGrath. Discovery and its discontents: Discovery protocols for ubiq-
uitous computing. Technical Report UIUCDCS-R-99-2132, Department
of Computer Science University of Illinois Urbana-Champaign, IL, USA,
March 2000.

[110] D. McGuinness. Ontologies Come of Age. In D. Fensel and J. Hendler
and H. Lieberman and W. Wahlster, editors. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential, pages 171–197. MIT
Press, Cambridge, MA, USA, 2002.

190

[111] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A
database management system for semistructured data. SIGMOD Record,
26(3):54–66, 1997.

[112] S. McIlraith, T. Son, and H. Zeng. Semantic Web services. IEEE Intelli-
gent Systems, 16(2), 2001.

[113] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduc-
tion to wordnet: An on-line lexical database. International Journal of
Lexicography, 3:245–264, 1990.

[114] B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach
for semantics-driven enterprise applications. In Proceedings of the First
International Conference on Ontologies, Databases and Application of Se-
mantics (ODBASE-2002), Irvine, CA, USA, October 2002. Springer.

[115] I. Mumick and H. Pirahesh. Implementation of magic-sets in a relational
database system. In Proceedings of the ACM SIGMOD Int. Conf. on
Management of Data, pages 103–114, Minneapolis, MN, USA, May 1994.

[116] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. EDUTELLA: A P2P networking infrastructure
based on RDF. In Proceedings of the eleventh international conference on
World Wide Web, pages 604–615, Hawaii, USA, 2002. ACM Press.

[117] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen.
Creating Semantic Web contents with Protege-2000. IEEE Intelligent
Systems, 16(2):60–71, 2001.

[118] R. Orfali and D. Harkey. Client/Server Programming with Java and
CORBA. John Wiley and Sons, 1997.

[119] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Importing the
Semantic Web in UDDI. In C. Bussler, R. Hull, S. McIlraith, M. Orlowska,
B. Pernici, and J. Yang, editors, Proceedings of the Workshop on Web
Services, E-Business and Semantic Web, CAiSE 2002, pages 225–236,
Toronto, ON, Canada, June 2002.

[120] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic match-
ing of Web Services capabilities. In I. Horrocks and J. Hendler, editors,
Proceedings of the First International Semantic Web Conference (ISWC
2002), pages 333–347, Chia, Sardinia, Italy, June 2002. Springer.

[121] S. Pfeiffer, R. Lienhart, S. Fischer, and W. Effelsberg. Abstracting dig-
ital movies automatically. Journal of Visual Communication and Image
Representation, 7:345–353, December 1996.

[122] J. Pollock. The Web Services scandal. EAI Journal, August 2002.

191

[123] R. Ramakrishnan and J. Ullman. A survey of research on deductive
database systems. Journal of Logic Programming, 23(2):125–149, 1993.

[124] P. Van Roy. Can Logic Programming Execute as Fast as Imperative Pro-
gramming? PhD thesis, University of California, Berkley, December 1990.

[125] K. Sagonas, T. Swift, and D. Warren. XSB as an efficient deductive
database engine. In R. Snodgrass and M. Winslett, editors, Proceedings
of the ACM SIGMOD Int. Conf. on Management of Data, pages 442–453,
1994.

[126] K. Sagonas, T. Swift, D.S. Warren, J. Freire, and P. Rao. The XSB pro-
grammer’s manual, version 2.1 volume 2: Libraries and interfaces, April
1999.

[127] A. Schreiber, B. Dubbeldam, J. Wielemaker, and B. Wielinga. Ontology-
based photo annotation. IEEE Intelligent Systems, May/June 2001.

[128] K. Scribner and M. Stiver. Understanding SOAP: The Authoritative So-
lution. Sams, Indianapolis, IN, USA, 2000.

[129] P. Seshadri, J. Hellerstein, H. Pirahesh, T. Leung, R. Ramakrishnan,
D. Srivastava, P. Stuckey, and S. Sudarshan. Cost-based optimization
for magic: algebra and implementation. In Proceedings of the ACM SIG-
MOD Int. Conf. on Management of Data, pages 435–446, Montreal, QC,
Canada, June 1996.

[130] S. Singh. The Code Book, chapter 7. Anchor Books, Garden City, NY,
August 2000.

[131] M. Sintek and S. Decker. TRIPLE - an RDF query, inference, and trans-
formation language. In Proceedings of the International Conference on
Applications of Prolog, pages 47–56, Tokyo, JP, October 2001.

[132] J. Sowa. Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA,
USA, August 1999.

[133] S. Staab, M. Erdmann, A. Maedche, and S. Decker. An extensible ap-
proach for modeling ontologies in RDF(S). In Proceedings of the ECDL
Workshop on the Semantic Web, pages 11–22, Lisbon, Portugal, Septem-
ber 2000.

[134] A. Steinacker, C. Seeberg, S. Fischer, and R. Steinmetz. Multibook: Meta-
data for the Web. In 2nd International Conference on New Learning
Technologies, pages 16–24, Bern, Switzerland, 1999.

[135] G. Stumme and A. Maedche. FCA-merge: A bottom-up approach for
merging ontologies. In Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence, pages 225–234, Seattle, WA, USA, August
2001. Morgan Kaufmann.

192

[136] D. Suthers. Using learning object meta-data in a database of primary and
secondary school resources. In Proceedings of International Conference on
Computers in Education, Taipei, TW, November 2000.

[137] A. Swartz. MusicBrainz: A Semantic Web Service. IEEE Intelligent
Systems, 17(1):76–77, 2002.

[138] A. Swartz and J. Hendler. The Semantic Web: A network of content for
the digital city. In Proceedings Second Annual Digital Cities Workshop,
Kyoto, Japan, October 2001.

[139] A. Uhl and H. Lichter. New wave searchables: Changing the paradigm
of internet-scale search. In Proceedings of the International Conference
on Advances in Infrastructure for Electronic Business, Science, and Ed-
ucation on the Internet (SSGRR 2001), August 2001. CD ROM Paper
148.

[140] J. Ullman and J. Widom. A First Course in Database Systems. Prentice
Hall, Englewood Cliffs, NJ, USA, 1997.

[141] M. Uschold and R. Jasper. A framework for understanding and clas-
sifying ontology applications. In Proceedings of the IJCAI99 Workshop
on Ontologies and Problem-Solving Methods(KRR5), Stockholm, Sweden,
volume 18, August 1999.

[142] L. van Elst and A. Abecker. Domain ontology agents for distributed orga-
nizational memories. In R. Dieng-Kuntz and N. Matta, editors. Knowledge
Management and Organizational Memories. Kluwer Academic Publishers,
Netherlands, July 2002.

[143] W. Wahlster. User and discourse models for multimodal communication.
In J. Sullivan and S. Tyler, editors. Int. User Interfaces. New York, NY,
USA, pages 45–67, 1991.

[144] Z. Zheng. Answerbus question answering system. In Proceeding of HLT
Human Language Technology Conference (HLT 2002), pages 24–27, San
Diego, CA, USA, March 2002.

[145] C. Ziegler. Deus ex machina. CT. Heise Verlag, Hannover, Germany, 6,
2002.

193

