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Abstract

Shadows provide important visual cues for the relative position of objects in three-
dimensional space. For interactive and real-time applications, e.g. in virtual reality
systems or games, the shadow computation needs to be extremely fast, usually
synchronized with the display’s refresh rate. Using dynamic scenes with many,
movable light sources, shadow computation is therefore often the main bottleneck
in a rendering system.

In this thesis we will discuss this problem in detail: Originating from Williams’
shadow maps and Crow’s shadow volumes, we will present hardware-accelerated
shadow techniques that are able to generate shadows of high-quality while still
being fast enough to be used in real-time or interactive applications. We will show
algorithms for the computation of hard shadows as well as for the more complex
problem of approximating soft shadows caused by area light sources.

Kurzfassung

Schatten sind wichtige visuelle Merkmale dieüber die relative Position eines Ob-
jektes in einem drei-dimensionalen Raum Aufschluss geben. Die Schattenberech-
nung muss f̈ur interaktive und Echtzeit-Anwendungen, wie z.B. Virtual Reality
Systeme oder in Spielen, extrem schnell erfolgen, idealerweise synchronisiert mit
der Bildwiederholfrequenz. Im Fall von dynamischen Szenen mit vielen, bewegli-
chen Lichtquellen, ist die Berechnung von Schatten oftmals der zeitkritischste Teil
innerhalb eines Rendering-Systems.

In dieser Dissertation behandeln wir genau dieses Problem im Detail. Ausge-
hend von Williams’ Shadow Maps und Crow’s Shadow Volumes werden Hardware-
beschleunigte Schattentechniken vorgestellt, die Schatten von hoher Qualität er-
zeugen k̈onnen, aber trotzdem so effizient sind, dass sie für Echtzeit- und interakti-
ve Anwendungen eingesetzt werden können. Wir werden sowohl Algorithmen zur
Berechnung harter Schatten beschreiben, als auch das schwierigere Problem der
Approximation von sanften Schatten, wie sie z.B. bei Flächenlichtquellen entste-
hen, behandeln.
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Summary

The accurate and efficient computation of shadows is one of the major challenges
in the context of digital image synthesis. Today, a vast number of techniques exist
that are able to produce very realistic shadows caused by complex light sources.
But since the main focus of these algorithms is the quality of the resulting shadows,
implementation and efficiency aspects are often neglected. As a consequence, these
software-based techniques are often not able to perform at the high image refresh
rates of current real-time, hardware-accelerated rendering applications.

In this dissertation we will focus on exactly this problem: computing realisti-
cally looking shadows for fully dynamic scenes using graphics hardware. Given
this problem statement, we have to deal with three important requirements when
developing a real-time shadow algorithm.

First, the resulting shadows should look realistic. Although physically correct-
ness is the major goal in digital image synthesis, it is often sufficient to have a
rough approximation that looks visually pleasing.

Second, we can not make any assumptions about the input data to process.
Since most real-time applications are coupled with human interaction, we normally
have no prior knowledge of spatial relationship or movement of lights and objects.
The shadow algorithm therefore has to be general and robust enough to handle all
possible configurations.

Third, the design of the algorithm needs to be tailored to the underlying graph-
ics hardware. This is often one of the hardest requirements to fulfill: The pipeline
architecture of current graphics systems is specialized for fast, parallel processing
of small data packets, such as triangles or pixels. Since shadows are a global ef-
fect, based on the spatial relationship of objects and lights in the scene, we need
to find methods of storing and accessing global scene information that work in this
pipeline model.

In this thesis we present several shadow techniques that have been designed
based on these three criteria. The first two parts focus on methods to compute
shadows for point light sources which are extensions of the shadow mapping (first
part) and shadow volumes (second part) techniques. In the third part, we propose
two approaches for the more complex problem of computing soft shadows caused
by extended light sources, such as linear or area lights.

Shadow Mapping

In the first part we present several extensions to the classical shadow mapping
technique. Shadow mapping can be seen as a special variant of texture mapping
and therefore perfectly fits to the design of current graphics hardware. But since it
is an image-based method, we also have to deal with sampling artifacts that result,
e.g., from a low sampling density or numerical precision issues.

First, we present a set of algorithms that can be used to reduce these visible
artifacts. The main idea here is to first analyze the spatial arrangement of camera,
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light source, and scene objects and use this information to optimize the shadow
map settings. This way, most of the available precision is used for the visible parts
in the scene, rather than wasting samples for something that is not in the actual
view of the camera.

Next, we propose a shadow map filtering method that can be used for hardware-
accelerated shadow mapping without the need of dedicated hardware functionality.
Based on percentage closer filtering, we show how to map this filtering scheme to
hardware by color-coding depth values and applying image-processing techniques,
for which hardware-accelerated architectures exist.

The next chapter in this part of the thesis deals with the problem of using
shadow maps for light sources with hemispherical or omnidirectional characteris-
tics. Since the classical shadow mapping method is based on a perspective projec-
tion, a single shadow map can only capture a relatively small field-of-view but not
the complete environment. We present a solution to this problem by replacing the
perspective projection with a dual-paraboloid mapping. Dual-paraboloid shadow
mapping reduces the number of shadow maps needed to capture the surrounding
environment and is also suitable for hardware implementation.

The last algorithm presented in this part concentrates on performance aspects
of shadow mapping. In many applications, the generation of shadow maps is im-
plemented as an additional rendering pass that is solely used to obtain depth values
of objects nearest to the light source. This means that during shadow map gener-
ation much of the hardware capabilities are not used. Therefore we propose the
use of extended light maps, a combination of light maps and shadow maps. During
shadow map generation we not only compute depth values, but also pre-calculate
parts of the local illumination model for the given light source.

Shadow Volumes

The second part of this thesis concentrates on shadow volume techniques used for
hardware-accelerated rendering.

First, we present an implementation of shadow volumes for application in an
interactive, hybrid rendering system. By using graphics hardware to compute the
direct illumination, we can dedicate more CPU resources for the expensive indi-
rect illumination computation. However, for physically correct rendering we have
to ensure that the direct illumination is computed at very high quality, including
accurate shadow information, and also at very high speed. In this chapter we show
how to efficiently compute shadows using the shadow volume algorithm for a num-
ber of light sources. To speed up the computation for multiple light sources, we
combine the results of up to four lights in one temporary intensity texture, which is
later mapped onto the final scene. This intensity texture is not only used to reduce
the number of rendering passes needed for the scene, but can also be utilized to
integrate non-uniform directional power distribution.

In the second chapter of this part, we present a fully hardware-accelerated
shadow volume implementation that requires no CPU work at all and furthermore
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supports fully dynamic scenes, including object deformation. An expensive part
of the shadow volume algorithm is the determination of silhouette edges for each
shadow casting object. Silhouette edges are needed to generate the side planes of
the corresponding shadow volumes. We show how to map this processing step to
hardware by using floating point vertex and pixel processing units, available on
newer graphics hardware. This way, the hardware can process vertex data at nearly
the same precision as the CPU, but at a much higher speed. Apart from efficiency,
one major aspect of our algorithm is that it can also detect silhouette edges for
meshes which are deformed on the graphics hardware. This was previously only
possible by simulating the hardware-based deformation in software, which is not
only very inefficient but also very complicated to implement.

Soft Shadows

The third part of this thesis is dedicated to the computation of soft shadows caused
by area or linear light sources. We present two techniques that approximate soft
shadows using a relatively small number of samples on the light source itself, so
that the algorithms can be used in a hardware-accelerated rendering system.

The first method works for linear light sources, as used, e.g., in architectural
scenes to represent neon lamps. Here we propose a new shadow map variant,
called soft shadow map. Soft shadow maps not only contain qualitative shadow
information (lit or blocked) but also quantitative information (amount of energy
arriving). This is achieved by first generating a standard shadow map for each
sample point on the light source. Next, these maps are used to detect shadow
boundaries as seen by each of the sample points. From these silhouette edges we
can compute the quantitative information for the neighboring sample points. Since
our method is mostly based on image processing and texture mapping, it is an
ideal candidate for a hardware-accelerated implementation. Furthermore, we will
show how to use soft shadow maps for approximating shadows caused by area light
sources.

Next, we propose an algorithm that approximates soft shadows only using in-
formation obtained from a single sample point. As in the previous technique, the
basis of our method is the traditional shadow mapping approach. However, instead
of testing only a single entry in the shadow map, we search the neighborhood of
a given sample to obtain information about the spatial arrangement of the scene.
The results of this step are a number of distances, e.g. the distance to the next entry
which is in shadow or lit, from which we calculate a penumbra value. Although
this approach is far from being physically correct, it resembles most of the soft
shadow characteristics and can also be implemented very efficiently.
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Zusammenfassung

Die genaue und effiziente Berechnung von Schatten ist eine der Hauptheraus-
forderungen im Bereich der digitalen Bildsynthese. Es existiert heutzutage ei-
ne betr̈achtliche Anzahl von Techniken, die in der Lage sind, sehr realistische
Schatten wie sie durch komplexe Lichtquellen entstehen zu berechnen. Da aber
das Hauptaugenmerk dieser Algorithmen auf der Qualität der berechneten Schat-
ten liegt, werden Implementierungs- und Effizienzaspekte häufig vernachl̈assigt.
Demzufolge sind jene Software-basierten Techniken häufig nicht in der Lage
die Geschwindigkeitsanforderungen von gegenwärtigen Hardware-beschleunigten
Echtzeit-Renderern zu erfüllen.

In dieser Dissertation konzentrieren wir uns auf genau dieses Problem: Die
Hardware-unterstützte Berechnung von realistisch wirkenden Schatten für dyna-
mische Szenenbeschreibungen. Aufgrund dieser Problemstellung müssen wir uns
bei dem Entwurf eines Echtzeit-Schattenalgorithmus mit drei wichtigen Anforde-
rungen bescḧaftigen.

Zunächst sollten die resultierenden Schatten natürlich aussehen. Obgleich eine
physikalisch korrekte Berechnung das Hauptziel der digitalen Bildsynthese ist, ist
es oftmals ausreichend, nur eine grobe Näherung zu erzeugen, die visuell richtig
erscheint.

Die zweite Anforderung besteht darin, den Schattenalgorithmus von der zu be-
rechnenden Szene zu trennen. Da die meisten Echtzeitanwendungen durch die In-
teraktion mit dem Benutzer gesteuert werden, können wir im Algorithmus grund-
sätzlich keine Annahmen̈uber die Art der Szene oder die jeweilige Positionen
der Objekte voraussetzen. Der Schattenalgorithmus muss deshalb so entworfen
werden, dass eine zuverlässige Berechnung von allgemeinen Szenen in jeglicher
räumlicher Konfiguration m̈oglich ist.

Drittens muss das Design des Algorithmus auf die zugrundeliegende Graphik-
hardware zugeschnitten werden. Dies ist häufig eine der schwierigsten Anforde-
rungen: Die Pipeline-Architektur, auf der viele Graphiksysteme basieren, ist für
die schnelle, simultane Verarbeitung von kleinen Datenpaketen wie Dreiecken oder
Pixeln spezialisiert. Da aber Schatten ein globaler Effekt sind, dem die räumliche
Anordnung der Objekte und Lichtquellen zugrunde liegt, müssen wir jeweils Me-
thoden entwickeln, die bezüglich Datenspeicherung und Datenabfrage in diesem
lokalen Pipeline-Modell m̈oglich sind.

In dieser Dissertation werden wir einige Schattentechniken vorstellen, deren
Design auf diesen drei Anforderungen basiert. In den ersten beiden Teilen konzen-
trieren wir uns auf Verfahren, die Schatten für Punktlichtquellen berechnen. Dies
sind zum einen Methoden die auf dem Schattenkartenalgorithmus basieren (erster
Teil), zum anderen solche, die eine Erweiterung des Schattenvolumenansatzes dar-
stellen (zweiter Teil). Im dritten Teil befassen wir uns mit dem komplizierteren
Problem der Berechnung von weichen Schatten (Soft Shadows), wie sie z.B. durch
Flächenlichtquellen entstehen. Hier werden wir zwei Verfahren vorstellen, die die-
se Art von Schatten n̈aherungsweise berechnen.
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Schattenkarten

Im ersten Teil stellen wir einige Erweiterungen und Verbesserungen der klas-
sischen Schattenkartentechnik (Shadow-Mapping) dar. Dieses Verfahren kann
als eine spezielle Variante des Texture-Mappings angesehen werden und eignet
sich deshalb hervorragend für den Einsatz auf Graphikhardware. Da es aller-
dings eine bild-basierte Methode ist, müssen wir uns insbesondere mit Sampling-
Problemen, die z.B. aufgrund einer zu geringen Auflösung der Schattenkarte auf-
treten, bescḧaftigen.

Zuerst befassen wir uns mit einer Reihe von Ansätzen, die verwendet werden
können, um diese sichtbaren Sampling-Probleme zu verringern. Der Grundgedan-
ke hier ist, dass wir zun̈achst die r̈aumliche Anordnung von Kamera, Lichtquel-
le und Objekten der Szene analysieren und diese Informationen dazu nutzen, den
Shadow-Mapping-Prozess zu optimieren. Auf diese Weise wird ein möglichst gros-
ser Bereich der Schattenkarte für die sichtbaren Teile der Szene verwendet, anstatt
Teile der Schattenkarte für von der Kamera aus nicht sichtbare Regionen zu ver-
geuden.

Als nächstes befassen wir uns mit Filterungs-Methoden die für das Hardware-
untersẗutzte Schattenkarten-Verfahren geeignet sind. Ausgehend von der sogenann-
ten Percentage-Closer-Filterung zeigen wir, wie dieses Verfahren auf die Graphik-
hardwareübertragen werden kann. Hierbei gehen wir nicht davon aus, dass diese
Methode direkt von der Hardware unterstützt wird, sondern nutzen die Standard-
Funktionaliẗat der Graphikkarte. Durch Farbkodierung der Tiefeninformationen
kann das Filtern durch einfache Bildverarbeitungs-Operationen durchgeführt wer-
den, die auf einigen Graphiksystemen von der Hardware unterstützt werden.

Die Verwendung des Schattenkartenverfahrens für Lichtquellen mit hemispḧa-
rischer oder omni-direktionaler Abstrahlcharakteristik ist der Inhalt des folgenden
Kapitels. Da Shadow-Mapping̈ublicherweise auf einer perspektivischen Abbil-
dung basiert, kann eine einzige Schattenkarte nur einen verhältnism̈assig kleinen
Teil, aber nicht die gesamte Umgebung, repräsentieren. Aus diesem Grund stellen
wir einen Ansatz vor, bei dem die perspektivische Projektion durch das sogenannte
Dual-Paraboloid-Mapping ersetzt wird. Im Vergleich zur perspektivischen Abbil-
dung reduziert sich durch diesen Algorithmus, der sich sehr gut für eine Hardware-
basierte Implementierung eignet, die Anzahl der benötigten Schattenkarten erheb-
lich.

Der letzte Algorithmus in diesem Teil behandelt Effizienzaspekte des Shadow-
Mappings. In vielen Anwendung stellt die Generierung der Schattenkarte einen
zus̈atzlichen Rendering-Durchlauf dar, der ausschliesslich der Berechnung der Tie-
fenwerte dient. Dies heisst, dass während dieser Phase ein Grossteil der Graphik-
karten-Funktionaliẗat nicht genutzt wird. In diesem Kapitel stellen wir deshalb
das Konzept der Extended-Light-Maps – eine Kombination aus Light-Maps und
Shadow-Maps – vor. Hierbei werden während der Generierung nicht nur die Tie-
fenwerte, sondern auch Teile der lokalen Beleuchtung berechnet.
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Schattenvolumen

Der zweiten Teil konzentriert sich auf Schattenvolumenverfahren (Shadow-
Volumes), die f̈ur Hardware-beschleunigtes Rendering eingesetzt werden können.

Zunächst stellen wir eine Shadow-Volume-Implementierung vor, die für ein
hybrides (Hardware/Software)-Rendering-System entworfen wurde. Durch Aus-
lagerung der lokalen Beleuchtungsberechnung auf die Graphikhardware können
mehr CPU-Ressourcen für die kostspielige indirekte Beleuchtungsberechnung zur
Verfügung gestellt werden. Hierbei muss allerdings sichergestellt werden, dass
die lokale Beleuchtung, einschliesslich Schatten, sowohl effizient als auch mit
möglichst hoher Qualiẗat berechnet wird. In diesem Kapitel zeigen wir, wie sich
der Shadow-Volume-Algorithmus für mehrere Lichtquellen effizient implementie-
ren l̈asst. Hierbei wird die Schatteninformation für bis zu vier Lichtquellen in ei-
ner tempor̈aren Intensiẗatstextur abgelegt, die dann erst später mit dem berechne-
ten Bild kombiniert wird. Um die Qualität der lokalen Beleuchtungsberechnung
zu erḧohen, demonstrieren wir, wie diese Intensitätstexturen verwendet werden
können, um beispielsweise Lichtquellen mit ungleichmässigem Abstrahlverhalten
zu repr̈asentieren.

Im zweiten Kapitel befassen wir uns ebenfalls mit der Implementierung von
Shadow-Volumes. Der vorgestellte Algorithmus erlaubt es, Shadow-Volumes für
dynamische Szenen, inklusive z.B. Deformation, rein Hardware-basiert zu be-
rechnen. Ein aufwendiger Teil des Shadow-Volume-Verfahrens ist die Bestim-
mung der Silhouettenkanten, die für jedes schattenwerfende Objekt durchgeführt
werden muss. Wir zeigen wie durch den Einsatz von programmierbaren Pixel-
und Geometrie-Einheiten, die bei heutiger Graphikhardware in Gleitkomma-
Genauigkeit arbeiten, auch dieser Teil des Verfahrens Hardware-basiert implemen-
tiert werden kann. Bez̈uglich der Genauigkeit der Berechnung steht dieses Verfah-
ren einer Software-basierten Implementierung in nichts nach, ist aber deutlich ef-
fizienter. Ein weiterer Vorteil dieser Hardware-basierten Silhouetten-Bestimmung
zeigt sich bei Objekten, deren Geometrie von der Hardware verändert (deformiert)
wird. Um in diesem Fall die Silhouetten zu bestimmen, müsste eine Software-
Implementierung die Deformation, wie sie von der Graphikhardware durchgeführt
wird, simulieren, was nicht nur ineffizient, sondern auch schwierig zu implemen-
tieren ist. Bei unserer Hardware-Implementierung dagegen ist dies kein Problem,
da s̈amtliche Geometrie auf der Hardware verarbeitet wird.

Weiche Schatten

Im dritten Teil dieser Dissertation widmen wir uns der Berechnung von weichen
Schatten, wie sie durch lineare oder auch Flächenlichtquellen entstehen können.
Wir stellen zwei Verfahren vor die diese sanften Schattenüberg̈ange ausgehend von
wenigen Abtastpunkten auf der Lichtquelle approximieren, so dass eine Hardware-
basierte Implementierung m̈oglich wird.

Der erste Algorithmus eignet sich insbesondere für lineare Lichtquellen, wie
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sie z.B. ḧaufig in Architekturszenen zur Simulation von Neonröhren eingesetzt
werden. Wir benutzen hierzu sogenannte Soft-Shadow-Maps, die nicht nur qua-
litative Information (beleuchtet oder im Schatten), sondern auch quantitative In-
formation (Menge der einfallenden Energie) enthalten. Bei der Generierung dieser
Soft-Shadow-Maps wird zunächst eine herk̈ommliche Schattenkarte für jeden Ab-
tastpunkt auf der Lichtquelle generiert. Anschliessend können wir anhand dieser
Schattenkarten die Schattengrenzen aus Sicht jedes Abtastpunktes ermitteln und
diese Grenzen den benachbarten Abtastpunkten als weiche Schattenüberg̈ange zu-
ordnen. Da unsere Methode hauptsächlich auf Bildverarbeitungsoperationen und
Texture-Mapping beruht, eignet sie sich sehr gut für eine Hardware-basierte Imple-
mentierung. Desweiteren erklären wir, wie Soft-Shadow-Maps auch für Flächen-
lichtquellen eingesetzt werden können.

Ein zweiter, auch auf Schattenkarten basierender Algorithmus erlaubt die Ap-
proximation von weichen Schatten ausgehend von nur einem Abtastpunkt der
Lichtquelle. Anstatt nur jeweils einen einzigen Eintrag in der Schattenkarte zu te-
sten, analysieren wir zusätzlich die n̈ahere Umgebung diese Eintrags, um Informa-
tion über die r̈aumliche Anordnung der Objekte zu erhalten. Das Resultat dieser
Analyse ist eine Anzahl von Abständen, z.B. der Abstand zu dem nächstliegenden
Eintrag der im Schatten liegt, mit deren Hilfe wir die quantitative Sichtbarkeit der
Lichtquelle approximieren. Obgleich dieses Verfahren eine sehr grobe Näherung
darstellt, die nicht physikalisch basiert ist, erzeugt es dennoch realistisch wirken-
de weiche Schattenüberg̈ange und kann desweiteren sehr effizient implementiert
werden.
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Chapter 1

Introduction

Darkness is the absence of light. Shadow is the diminution of light.
Primitive shadow is that which is attached to shaded bodies. Derived
shadow is that which separates itself from shaded bodies and travels
through the air. Repercussed shadow is that which is surrounded by
an illuminated surface. The simple shadow is that which does not see
any part of the light which causes it. The simple shadow commences
in the line which parts it from the boundaries of the luminous bodies.

Leonardo da Vinci (1452 to 1519)

The study of the behavior of light and its effect in the surrounding environment
has been, and is still nowadays, a challenging field of research. The above citation
is an excerpt from Leonardo da Vinci’s notebooks [Leonardo da Vinci45] where
Leonardo has sketched his observations on the interaction of light and objects. He
was one of the leading minds during the Italian Renaissance (1420-1600), in which
artists started to observe the real world and came up with rules for applying light
and shadow in a very natural way. The main stylistic element that was characteris-
tic for that period waschiaroscuro1. The arrangement of light and dark regions in
an image was extensively used to produce the illusion of depth in paintings. The
rules of properly shading an object were defined by identifying different regions on
the object and the surrounding environment. The impression of a glossy object was
achieved by drawing highlights at that part of the object where the light source is
most dominant, whereas the overall lit parts where drawn as the combination of ob-
ject and light color, with decreasing intensity as the light source influence becomes
less dominant. To emphasize the object’s position in the scene, cast shadows are
applied for the surrounding environment. Self-shadowing of an object was defined
as a continuous color fade from a dark color (shadow) to black (core shadow). With
more than one light source in the scene, an artist could further improve the three
dimensional effect by adding reflected light to shadow and core shadow regions.

1from the italian works ”chiaro” (clear or light) and ”oscuro” (obscure or dark)
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History in computer graphics made a quite similar way. In the early days,
graphical output was mostly in wire frame mode and used for engineering applica-
tions, e.g., visualizing machine parts. During the 1960s, realism went a step further
by having objects displayed as shaded solids, done with half-toning, pattern-based
approaches similar to artistic pencil drawings techniques. This way depth and spa-
tial relationship in computer generated images was enhanced. At the end of the six-
ties Arthur Appel presented his work on the shaded rendering of solids [Appel68].
This was probably one of the first publications on shadow techniques in the history
of computer graphics. In this paper, different ways of shading solid objects, includ-
ing shadows, were presented: A brute force, point by point shading approach but
also optimizations, e.g., detecting contour edges relevant for shadow boundaries.
With Appel’s work the importance of shadows in computer generated images was
emphasized: Shadows are important visual cues that make the spatial relationship
of objects easier to understand.

In these early days of computer graphics, rendering an image took from several
minutes up to hours or days, even for very trivial scenes. Algorithms like ray
tracing or radiosity pushed realism to photo-realistic quality, but computation time
was so enormous that no interaction was possible.

This changed immediately by the introduction of hardware-accelerated render-
ing. Companies like SGI developed powerful systems that had dedicated hardware
support for lighting, texturing, and hidden surface removal. Although the amount
of realism produced by hardware-accelerated rendering could not compete with
offline methods of that time, the systems were able to produce images in a fraction
of a second. This opened a new branch for computer graphics, called real-time
rendering.

Using rasterization based graphics hardware involves a trade-off between qual-
ity and speed. One key concept that allows extreme parallel processing and fast
rendering is the restriction to local illumination and simple reflection models. In
contrast to global illumination, the appearance of an object depends only on a small
number of parameters, e.g. the light source’s position and direction, viewer, and
surface material. Adding shadows to this type of architecture is difficult. Polygons
are processed independently of each other, but shadow computation is based on the
global arrangements of objects and light sources in a scene.

Two kind of algorithms are suitable to solve the global shadow task. One are
the so called off-line methods which classify the shadow regions in a preprocess-
ing step and only use the graphics hardware to visualize the final result. A popular
method in this category are light maps generated from a global illumination system
which are then applied as surface texture maps. In terms of quality this approach
is one of the most accurate shadow techniques, if texture resolution is sufficiently
high enough so that rasterization artifacts can not be seen. However, computing
an accurate global illumination solution is an expensive, time-consuming task, so
in terms of speed this approach is only suitable for static environments, e.g. ar-
chitectural visualization where interaction is completely restricted to the change of
viewing parameters.
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For dynamic environments with changing objects and illumination, global shad-
ows need to be updated at ideally the same rate as the display device. Interactive
and real-time applications require updates of about 10 up to more then 60 frames
per second, which puts a heavy load on the shadow computation. Furthermore,
there are also special applications, such as virtual studios or simulation systems,
which require a fixed output frame rate, regardless of the scene’s complexity or
current viewing parameters.

Shadow algorithms therefore have to trade-off between quality and speed: Shad-
ows need to be visually pleasing but also computed at a fraction of a second, even
for complex environments.

In addition to the requirement of handling fully dynamic environments effi-
ciently we further specify the characteristic of the shadow algorithms discussed in
this thesis by three more terms:

Realistic
As already mentioned before, the quality of the resulting shadows is among
the most important properties of any shadow technique. The generated shad-
ows should always correspond to the spatial relationship of objects in the
scene and the type of light source being used. Especially in the context of
real-time rendering, photorealistic, physically correct shadows are often not
possible due to computation time restrictions. For most applications it is
sufficient to have a shadow approximation that looks visually pleasing.

General
A shadow algorithm should make only few to no assumptions about the
scene description itself or other parameters (camera, animation paths, etc.).
Shadows should be of the same quality, putting no restrictions to the pro-
cessed scene.

Hardware-accelerated but flexible
The shadow technique should make use of as much hardware-assistance
as possible. This is not only a requirement in order to be able to handle
very complex scenes at reasonable frame rates, but also in terms of resource
management. Since the CPU is more and more dedicated to non-graphic
work, e.g. sound processing or numerical simulation, CPU-based compu-
tation must to be minimized. In addition to this, the algorithm should be
easy to integrate into an existing interactive rendering system. The cost of
implementation and required changes to the core functionality of the system
should therefore be minimized.

Designing suitable algorithms is a process of finding a reasonable trade-off be-
tween all these criteria. A fully hardware-accelerated method for example may
only work for a specific class of scene objects, while a more hybrid approach, that
involves much more CPU based computation, would support all types of objects.

An application developer should therefore carefully specify which require-
ments are most important and which can be restricted to special cases. Such a
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special case could be the type of light sources that are supported, e.g. an algorithm
that computes shadows for spot lights with a limited cut-off angle can be imple-
mented quite efficiently in contrast to shadow algorithms that support more general
light source types.

The algorithms proposed in this thesis are all examples of emphasizing one
or more criteria, as in the light source type example. Given the requirements the
resulting shadow quality is then often dominated by the clever use of available
resources, like CPU time or hardware-capabilities.

1.1 Contribution and Overview

The reminder of this thesis is organized as follows. The next chapter serve as an
introduction to digital image synthesis and hardware-accelerated rendering tech-
niques. This includes basic methods of computing visible surfaces as well as an
introduction to reflection models, light sources, and shadows. And the end of the
chapter we will also show how these concepts are realized on modern graphics
hardware architectures.

The third chapter focuses on related work in the context of shadow algorithms.
Here we will describe the major shadow algorithms that are suitable for efficient
shadow computation in a real-time environment. Since there exists a huge number
of publications in this area, we will concentrate on those being widely used in ap-
plications like games and virtual reality and those relevant for our work. This chap-
ter also contains a detailed description of shadow maps [Williams78] and shadow
volumes [Crow77] since many of our proposed algorithms are extended variants or
special implementations of these techniques.

In the first part of this thesis we present several enhancements to Williams’
shadow map technique for point light sources that can greatly improve shadow
quality and rendering speed:

• A method that adjusts the light source’s viewing frustum in order to reduce
sampling artifacts [Brabec02a].

• An hardware-accelerated method for shadow map filtering [Brabec01] that
can be implemented on standard OpenGL hardware.

• A specialized shadow map parameterization for hemispherical or omnidirec-
tional light sources [Brabec02b].

• A combined light map / shadow map approach [Brabec00] that is capable of
saving valuable hardware-resources.

The second part describes two approaches that are based on the shadow volume
algorithm:

• A shadow volume implementation for complex environments that can be
used for many light sources and special light source characteristics
[Dmitriev02].
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• A full hardware-accelerated implementation of the shadow volume approach,
including silhouette detection and extraction [Brabec03].

In the third part, two novel algorithms are presented that can be used to create
realistic shadows caused by area or linear light sources:

• A hardware-accelerated soft shadow technique for linear light sources
[Heidrich00].

• A hybrid-method that approximates soft shadows using only a single shadow
map [Brabec02c].

We will conclude this thesis and discuss future work in Chapter 12.
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Chapter 2

Background

In this chapter we will describe some of the concepts needed for understanding the
algorithms and methods presented in the following chapters of this thesis. A more
detailed and complete overview of computer graphics techniques can be found
in [Foley96]. A very extensive overview of the techniques used in digital image
synthesis is presented in [Glassner95].

We start with a short introduction to hidden-surface removal techniques. The
determination of visible (or hidden) surfaces is one of the major tasks when gener-
ating a digital image. As we will see in the next chapters, there is a duality between
the computation of visible surfaces seen from the camera and the determination of
lit and shadowed surfaces as seen from the light source.

Next, we introduce some of the lighting and shading models used in computer
graphics today. Since there exists a vast number of different techniques, we will
only focus on those relevant for real-time rendering. A major part of this section is
the discussion of shadows caused by various types of light sources.

The last section deals with the architecture of graphics hardware and the prin-
ciples of hardware-accelerated rendering. We will review the main parts of the
general graphics pipeline but also discuss recent trends and features of graphics
hardware.

2.1 Hidden-Surface Removal

One of the fundamental tasks in the process of digital image synthesis is the deter-
mination of visible surfaces for a given view and scene. Given a set of 3D opaque,
solid objects only parts of the scene can be seen from a given point of observation.
Objects far away may be completely hidden from the viewer by objects in between,
whereas cases exists were only a fraction of an object may be visible.

Although the basic task sounds quite simple, one can imagine that as the num-
ber of objects in the scene or the final image resolution increases, the exact and
efficient visible-surface determination gets more complicated.
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According to [Foley96], there exist two fundamental approaches to the specific
problem: For a given pixel in the final image, we can find the object that is closest
to the viewer. Or, we can test each object in the scene, and try to find those parts
of the object that are not blocked by any other object in the scene or parts of the
object itself.

In this section we give a brief overview of algorithms for both classes, one is
the z-bufferapproach [Catmull75] that is the common visibility method used for
hardware-accelerated rendering today, while the other is a list-priority algorithm
that resolves visibility by sorting and splitting objects according to their spatial
position [Newell72]. A comprehensive overview of visibility techniques can be
found in [Foley96, Sutherland74].

2.1.1 View Transformations

Since visibility is computed according to the actual camera setting the type of view
transformation or camera model needs to be taken into account. Most render-
ing systems support two basic types of camera models, one is the classical pin-
hole camera model, the other is the directional camera, which is mostly used in
CAD/CAM applications for technical illustration. There exist of course more so-
phisticated models that are more physically motivated, e.g. the thin lens model
[Heidrich99].

A directional camera, or orthographic projection, is by far the most simplest
model to implement. For a given surface point the point is projected orthogonally
along the line of sight onto the image plane. It can easily be seen that this model is
not really a good choice for realistic image synthesis, since distances are not taken
into account; all objects are justflattenedonto the image plane.

A better approach is the pinhole camera model. Here it is assumed that the
camera itself is a simple box with an infinitesimal small hole on one side and a film
on the opposite side of the box. Light falling through the hole will be projected
as an upside-down image onto the film. Geometrically, this is nothing more than
a perspective projection using the hole as the center of projection. The size of the
resulting image varies according to the distance between the opposite side of the
box (film) and the center of projection. The model can further be simplified by
placing the virtual film in front of the center of projection. This way the resulting
image is generated in the right orientation.

One drawback of the perspective projection is that it still requires some amount
of geometric calculation in order to determine the distance from a given surface
point to the eye. But this computational overhead can be minimized by applying
a perspective transformation that not only projects points to two dimensions (x,y
image plane) but also preserves meaningful distance information (z component),
which can be used to determine the visible surfaces. Such a transformation exists
and is widely used in digital image synthesis. The perspective view frustum can
be transformed into an orthographic frustum by moving the center of projection to
infinity, so that all lines to the projection point become parallel. This is illustrated
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Figure 2.1: Perspective transformation.

in Figure 2.1. The perspective view frustum with the center of projection at the
origin (left) is transformed to a unit sized cube, the so calledcanonical view volume
(right).

As can be seen in this figure, the view frustum is not only bound by the side
planes (top, bottom, left, right) but also along the viewing direction itself. It is
assumed that the view frustum starts at thenearclipping plane and ends at thefar
clipping plane. These clipping planes are essential for an actual implementation
since we cannot represent a unbounded numerical range ofz.

Using 4D homogeneous coordinates, as explained in [Foley96], the perspective
transformation can be written as a 4×4 matrix that is then be applied as the final
transformation in a scene structure.

In the OpenGL graphics API [Woo99] the perspective transformation matrix
transforms the viewing frustum into a unit cube. The 4×4 is

P =


2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −( f+n)
f−n

−2 f n
f−n

0 0 −1 0

 . (2.1)

The parameters here correspond to the rectangle that defines the front of the view
frustum(r,b,n) and(l , t,n), which will be mapped to(−1,−1,−1) and(1,1,−1),
and the far distance valuef , which will be mapped to a z value of 1. Other graphics
API, e.g. DirectX [Microsoft00], perform the mapping to a half-cube with z values
between 0 and 1.

2.1.2 Z-Buffer

A very simple hidden surface removal technique is thez-bufferalgorithm intro-
duced by [Catmull75]. This brute-force, image-spaced approach requires an image
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buffer that is not only capable of storing a color value for each pixel, but also the
corresponding distance to the viewer (depth). For each primitive being rasterized,
color values are only updated if the pixel’s actual distance is less than the value
stored in the buffer, otherwise the pixel is rejected. For pixels passing the test, the
stored depth and color are replaced by the new values. Using the canonical view
frustum introduced before, the normalizedz coordinate can be used as an appro-
priate distance, instead of computing the euclidean distance. It can easily be seen
that the complexity of this approach is linear, since it only depends on the number
of pixels in the output image and the number of primitives being rasterized.

During the 1970s, this approach was not very popular and only used in specific
cases, e.g. for curved surfaces where polygonal sorting was too complicated. For
general polygonal scenes, object-space techniques combined with hierarchical rep-
resentations were more efficient for that specific task. One main argument against
the z-buffer was the additional memory needed for the framebuffer. In order to
obtain reasonable results, it should have a resolution of 16 to 32 bits per pixel.

The popularity of the z-buffer changed immediately in the beginning of 1980,
when companies like Silicon Graphics introduced special graphic computers that
had dedicated z-buffer hardware, including a framebuffer capable of storing depth
and color. For a hardware implementation, the z-buffer algorithm was the opti-
mal choice. First, the algorithm itself is very simple and needs only trivial load,
compare, and store operations. Second, the algorithm fits perfectly in the pipeline
design since it only depends on the values stored in the framebuffer and the incom-
ing pixel.

2.1.3 Painter’s Algorithm

One of the simplest algorithm in the class of object-space algorithms is thedepth-
sort or painter’s algorithm[Newell72]. The algorithm works in three steps:

1. Sort all polygons according to their minimumz value.

2. Check for any overlaps inz and split polygons if theirz extends overlap.

3. Draw all polygons into the framebuffer from back to front.

The second step is by far the most expensive one, since it generates new geometry
if polygons need to be splitted. In contrast to the z-buffer approach, the resulting
priority-list does not depend on the final image resolution, and can therefore be
re-used if the scene and viewing parameters remain constant. The naive imple-
mentation of Newell’s approach has quadratic complexity, since every polygon has
to be checked against all other polygons in the scene.

A special application for which list-priority algorithms are also used in hardware-
accelerated rendering is the rendering of transparent objects. In order to correctly
blend all polygons, the order of drawing needs to be back-to-front, which is not
possible with the z-buffer method.
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2.2 Lighting and Shading

The appearance of an object is not only dominated by its shape and position in the
environment, but also by its color. Several factors influence the surface appearance
of an object: The material it is made of as well as the type of illumination under
which the object is viewed. In this section we will introduce the concepts of light-
ing and shading as it is done in digital image synthesis. We will take a close look
on techniques used in hardware-accelerated rendering, in which very simplified
models are common due to performance issues and hardware capabilities.

2.2.1 Radiometry

Digital image synthesis is strongly related to the physics describing the transport
of light in space. We therefore introduce some of basic radiometric terms and
quantities needed for the accurate description of light and shading models.

Radiant energyQ [J]
Planck showed that each photon carries a discrete amount of energy which is
proportional to its wavelength. A photon’s radiant energy isQ = hv, where
h is Planck’s constant andv the frequency of radiation. The total radiant
energy is the contribution of all photons over all wavelengths.

Radiant flux Φ [W]
Radiant flux is the radiant energy per timeΦ = dQ/dt, or Φ = Q/t if energy
is constant during time.

Radiant intensity I [W/sr]
Radiant intensity is the radiant flux per unit solid angleI = dΦ/dω.

Irradiance E
[
W/m2

]
Irradiance is a special case of radiant intensity that describes the radiant en-
ergy per unit area incident onto a differential surface pointx, E(x) = dΦ/dA.

Radiosity B
[
W/m2

]
Radiosity is another special case of radiant energy per unit area referring to
energy leaving a surface.

RadianceL
[
W/m2sr

]
Radiance is the radiant flux per unit projected area per unit solid angle (inci-
dent or outgoing).

L(x,ω) =
d2Φ

cosθdAdω
(2.2)

For shading computation, radiance is on of the most important quantities
since it describes how many photons per time arrive at a differential area on
a surface from a specific direction.
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2.2.2 Reflectance Models

Defining the optical properties of a material requires a formulation of how incom-
ing light is reflected back into the environment. A common way of specifying this
is thebidirectional reflection distribution function(BRDF)

fr(x, ~ωi → ~ωo) :=
dL0(x, ~ωo)

Li(x, ~ωi)cosθidωi
(2.3)

that describes how much of the energy arriving at pointx from a direction~ωi is
reflected towards an outgoing direction~ωo. Although the BRDF includes some
simplified assumptions, e.g. neglecting effects like fluorescence, phosphorescence,
or participating media, it is capable of modeling most of the important physical
effects needed in digital image synthesis. A more detailed description of BRDFs
including all physical properties and assumptions can be found in [Glassner95].

As can be seen in Equation 2.3, the BRDF in its general form is a 6-dimensional
function, depending on the surface pointx as well as on the incoming (~ωi) and out-
going direction (~ωo). Accurately representing a material by measuring its BRDF is
often too complex due to the large amount of memory needed to store the sampled
data. Many rendering systems therefore choose to usereflection modelsinstead.
These models describe the characteristics of specific materials using only a few
parameters instead of a high-dimensional BRDF.

In the following we describe some of the reflection models that are commonly
used in hardware-accelerated rendering. Implementing a reflection model in hard-
ware requires that the model itself can be evaluated very efficiently but is still
general enough to represent a wide range of materials.

The simplest type of reflection isambient reflection. Here it is assumed that
energy (light) is arriving uniformly from all directions. This results in a constant
color across the surface, depending only on the fraction of incoming light that is
reflected. Ambient reflection is used e.g. in CAD/CAM applications, where the
realistic shading of solids is not required, or as an approximation for the indirect
illumination in a scene.

Usingdiffuseor Lambertian reflectionthe outgoing energy is equal for all di-
rections but depends on the incoming direction. Viewing the object from different
directions has no effect on the appearance, but moving the object or light source
may change the appearance. The physical motivation for diffuse reflection is light
that is scattered multiple times inside the material and leaves the surface with no
preferred direction.

A simple reflection model that adds glossy effects, suitable for shiny plastic
surfaces, was proposed by [Bui-Tuong75], known as the Phong model. Trading in
physical correctness for efficiency, the model uses a power of the cosine between
viewing and reflection direction to approximate glossy reflections. [Blinn77] pre-
sented a modified version of Phong’s original model which uses the cosine between
the surface normal and the halfway vector (vector between light and viewing di-
rection). This model is widely known as theBlinn-Phongreflection model. Many
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graphics architectures support a variant of the Phong or Blinn-Phong model in
hardware, often extended by some more parameters to give the user better control
over the surface appearance. With graphics hardware becoming more and more
powerful and flexible, more complex, realistic reflection models can be used for
hardware-accelerated rendering. A detailed description of such techniques can be
found in [Kautz03] and [Heidrich99].

(a) ambient (b) diffuse (c) specular (d) diff.+spec.

Figure 2.2: Examples of reflection models.

To summarize our short tour of reflection models, Figure 2.2 should give an
impression of ambient, diffuse, specular and a combination of diffuse and specular
reflection.

2.2.3 Light Sources

In the previous part we concentrated on how incoming light is reflected back to the
environment. Since light does not come from nowhere, we also have to specify
the sources of light. In general, a light source is an instance where parts of the
incoming energy, e.g. in the form of electricity or heat, are propagated to the
environment in the form of photons.

Light sources are an important component of each rendering system since they
are responsible for the initial energy transported within the synthetic environment.
Although realistic image synthesis would require physically correct models of real-
world light source, very simplified models are common to reduce computation
time.

One simple type of light source is adirectional light, as depicted in Figure
2.3(a). Here it is assumed that light is originating from a point at infinity, so that all
light rays hit the surface at the same direction. The light source is therefore defined
by its direction and intensity. Directional light sources are especially useful to
model sun light, for which the assumption of a far away light source holds.

To model a light source in near distance, apoint light can be used that radiates
energy from a given position equally to all directions (Figure 2.3(b)). This model
can further be improved by adding additional parameters such as a main direction
and a maximum angle (cut-off) that together define a cone to which illumination is
restricted, as shown in Figure 2.3(c). This is known as thespot lightmodel, inspired
by the type of light sources used for stage lighting in theaters. To emphasize the
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(a) Directional (b) Point

cutoff
angle

(c) Spot

(d) Linear (e) Area (f) Volume

Figure 2.3: Types of light sources.

main direction, intensity distribution may also be decreased as the direction leaves
the main direction, using e.g. an exponential intensity fall-off.

The next three models we want to describe are the so calledextendedlight
sources. In contrast to point or directional lights, these models describe more
physically plausible types of illumination since energy is not originating from a
infinitesimal small or far away source but from a line, surface, or volume.

Linear lightsare mostly used to model the illumination produced by a long and
thin lamp , which is approximately true for many neon lamps found in buildings.
A simple linear light radiates energy from all points on a line segment equally into
all directions as depicted in Figure 2.3(d).

Extending linear lights with one more dimension brings us to thearea light
model (Figure 2.3(e)), where light is emitted at each point on a defined surface.
The simplest area light is a triangle but in general, any surface description can be
used. Area lights play an important role in realistic image synthesis since they can
be used to represent real world illumination quite well. However, for hardware-
accelerated rendering the illumination evaluation for this type is often too time
consuming, so that a number of point or directional lights are used instead.

An even more complex type of illumination can be represented by avolume
light. Here all points inside a volume emit light into the environment as shown in
Figure 2.3(e). Due to its complex nature, volume light sources are rarely used by
now, so we will neglect this specific type of illumination in this thesis.

For many of the light sources introduced so far we have assumed that the in-
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tensity is uniform for all outgoing directions, except for the spot light model where
intensity varies as the direction leaves the main axis. More physically correct illu-
mination can be achieved by using a sampled representation of light source charac-
teristics, obtained by measuring real-world luminaries. This representation is often
directly available from lamp manufacturers in form of agoniometric diagram, from
which the intensity for a given direction can be extracted. A detailed description
of such industry standards can be found in [Glassner95].

2.2.4 Shadows

Rendering an object with realistic appearance we need to evaluate the reflection
model on all surface points with respect to those rays of light that hit the surface
at the given point. This requires an examination of the environment in which the
object is placed: Firstly, the object may not be in the view of the light source,
maybe completely outside the cone of a spot light. Secondly, there could be other
objects in the scene that block some or all of the rays from the light source to the
surface point. An example of the later situation is sketched in Figure 2.4(a). In

A B C D

(a) example setup

A B C D

Intensity

(b) intensity curve

Figure 2.4: Example of intensity transition.

this scene we want to determine the contribution of the luminaire above at various
sample points (A,B,C,D) on a given surface. At point A, all rays that are emitted in
the direction to A hit the surface. For point B some of the light rays are blocked by
the cube in-between. At sample C no light at all can hit the surface, whereas point
D again receives the full energy.

Computing the intensity level for all sample points on the surface results in
a smooth curve as shown in Figure 2.4(b). We can classify the points by either
fully lit (A,D), partially lit/shadowed (B), or fully shadowed (C). It is clear that this
intensity curve does not only depend on the spatial arrangement of receiver surface,
blocker, and luminaire but also on the type of light source used.

Given a point light source which emits light from single point in space, there’s
only one ray of light that can potentially hit the surface point, which is exactly the
ray originating from the light source and directed towards the surface point. The
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(a) point (b) linear (c) area

Figure 2.5: Shadows from different types of light sources.

corresponding intensity level can therefore only be 100% (fully lit) or 0% (fully
shadowed), depending whether the ray is blocked or not. The resulting shadow
will exhibit sharp boundaries where the intensity level changes as can be seen in
the example scene shown in Figure 2.5(a). We will refer to this type of shadow as
hard shadowor umbra. Sharp shadow boundaries are common to all non-extended
light sources, such as directional, point, and spot lights.

Using a linear light source, a number of light rays may hit a specific surface
point, all originating from sample points on the line segment associated with the
light source. Contribution therefore varies between 0% and 100%, resulting in a
smooth shadow transition as shown in Figure 2.5(b). Linear light sources have a
specific characteristic that can be observed at the top of the cast shadow in Figure
2.5(b): Smooth shadow regions are only generated for blocker edges that are not
parallel to light source’s line segment. In the parallel case a hard shadow transition
will be visible, since all rays are blocked when crossing the given edge. We refer to
the region in which the transition from lit to shadowed takes place as thepenumbra.
A shadow consisting of penumbra and umbra regions is calledsoft shadow.

Light
Source

Umbra LitLit

(a) point

Light Source

Umbra

Penumbra Penumbra

LitLit

(b) linear

Figure 2.6: Hard vs. soft shadows.
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For a linear light source we can easily visualize the geometric relationship be-
tween blocker, receiver, and light source and construct the shadow boundaries.
Figure 2.6 shows such a 2D arrangement. On the left side, a point light source is
used. As we can see, the contribution of the light source changes at two points on
the receiver, resulting in a lit-umbra-lit transition. Using an extended light source,
e.g. a linear one as shown on the right side of Figure 2.6, we can determine the rel-
evant points at which illumination changes by drawing lines between the extremal
points of the blocker and the end points of the linear light. This gives us the regions
on the receiver in which the light source is fully visible, partially visible/occluded,
and fully occluded, resulting in a lit-penumbra-umbra-penumbra-lit transition.

Overall smooth shadows can be obtained when using an area light source (Fig-
ure 2.5(c). As explained before, an area light is of finite size where every point on
the surface can emit rays of light. As in the linear case, each point on a surface may
be hit by all, some, or none of the light rays, resulting in asoft shadowif blocking
objects are in between.

Let us now examine the physical relationship between light emitted and light
received in more detail. According to [Agrawala00] the irradiance caused by an
area light source with uniform energy distribution is given by

E =
∫

A

L cosθi cosθl

πr2 V dA (2.4)

whereθi is the angle at which the surface is hit,θl is the angle between ray and
light source normal, andL is the light’s radiance. A special role in this equation is
the visibility maskV, which should be set to 1 for rays that hit the surface or 0 for
rays blocked by objects in the environment. Or in other words,V is only set to 1 if
the light source sample point can be seen from the actual surface point.

A common way to speed up evaluation of this integral is to neglectV in the
irradiance calculation and use an average visibility

ATT =
1
A

∫
A

V dA (2.5)

that is later applied to dim the shading result [Agrawala00]. Although this approach
is not physically correct, it is widely used in many rendering systems due to the
following reasons. Firstly, the human eye is very sensible to low-quality shadows
than it is to low-quality, non-shadowed shading. A renderer can therefore choose to
use more light source samples for computing the attenuation factor and spend less
work on the evaluation of the reflection model. Secondly, separate visibility gives
way for algorithms that do not sample the light source or analytically compute the
irradiance but output a rough, fast approximation forATT. Such algorithms will
be shown in Part III of this thesis.
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2.3 Hardware-accelerated Rendering

Having introduced some aspects of realistic image synthesis, like materials and
light sources, we will now focus on one specific type of rendering system, which
is hardware-accelerated rendering. Using hardware customized for specific tasks,
such as lighting or hidden-surface removal via the z-buffer, has an enormous impact
on the rendering speed. On the other hand, specialized hardware restricts rendering
to those algorithms that can be implemented using the given functionality.

Nearly all graphics boards available today are rasterization based. Rasteriza-
tion is the process of projecting each primitive into 2D screen coordinates and gen-
erating individual pixels for all of its covered area. These pixels are then written to
the framebuffer, which is later used to drive the output display device.

One major aspect of hardware-accelerated rendering is the programming mech-
anism, which is used to configure and access the graphics board. While it would be
possible to directly access the hardware via low-level drivers, a more sophisticated
programming model is needed in order to make application development possi-
ble. In the past, several hardware vendors tried to push their specific graphics API
(application program interface) but only two were accepted by the graphics com-
munity and became industry standards. One is Microsoft’s DirectX [Microsoft00],
which is the most used graphics API for games since it provides a common frame-
work that not only supports graphics hardware but also other devices, such as sound
cards or input devices. One major drawback of DirectX is that it can only be used
for hardware running the Microsoft Windows operating system. The second indus-
try standard is OpenGL [Woo99, Segal98], an open platform graphics API, which
evolved from SGI’s Iris GL, and is available for many operating systems. Since
both APIs can be used to control the same hardware device, the functionality pro-
vided is nearly identical. In this thesis we choose to use OpenGL as the underlying
graphics API, since it is more widely used in academic research today. All of the
algorithms can of course be implemented using DirectX.

Graphics hardware today is designed in a pipeline fashion, similar to the tra-
ditional rendering pipeline proposed by [Foley96]. Figure 2.7 depicts a rendering
pipeline which is a simplified version of the model used in OpenGL. The pipeline
consists of three main stages: Theapplicationstage, the execution environment
in which the application is running, is responsible for configuring the pipeline and
feeding data to the subsequent stage, which is thegeometry processingstage. Dur-
ing this stage, the transformation and lighting takes place. Therasterizationpart is
then responsible for scan-converting the incoming geometry and further process-
ing the resulting fragments. At the end of the pipeline is theframebuffer, where
incoming fragments are stored.

We will now examine the individual stages of the rendering pipeline in more
detail, using the definitions and specific order of operations according to OpenGL.
Since the OpenGL rendering pipeline is quite complex, we only focus on the most
important parts. For a complete overview and more details see [Woo99].
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Figure 2.7: Rendering pipeline.

2.3.1 Application

The application stage is the control and data instance of the rendering pipeline.
As the initial stage in the pipeline, the application is not only responsible for con-
figuring the rendering pipeline, e.g. setting up the image resolution, downloading
textures, or defining light and camera parameters, but also for feeding the geometry
stage with data.

Geometric data in the context of hardware-accelerated rendering is defined in
terms of primitives that are supported by the rendering architecture. OpenGL has a
number of geometric primitives that a conformant implementation has to support,
e.g. points, triangles, quadrilaterals, convex polygons, and connected groups of
primitives (strips, fans). Primitives are either transferred as a sequence of vertex
positions or using indices referring to a previously defined array of vertices.

As can be seen, the application stage has no fixed functionality and can there-
fore only be executed in software, where the developer has full control over the
implementation.

2.3.2 Geometry Stage

Primitives arriving at the geometry stage are further processed in several sub-stages
working on a per-primitive or per-vertex basis.

The first task is to transform all vertices into a global coordinate system. This
transformation consists of bringing the vertices toworld spaceusing the actual
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modeling matrix. Next comes the transformation toeye space, where the trans-
formation is given by the matrix incorporating the viewing parameters (position,
direction, field-of-view) of the camera. Since the representation in world space co-
ordinates is not needed in the pipeline, many architectures, such as OpenGL, use a
combinedmodelview transformation, which directly transforms vertices from their
local coordinate system to eye space.

In order to give objects a realistic appearance, one major task of the geometry
stage is the lighting calculation. OpenGL uses for this task a modified version of
the Blinn-Phong model [Blinn77] introduced in Section 2.2.2, which is evaluated
per vertex. For efficiency reasons, the types of light sources OpenGL directly sup-
ports are limited to the simple, non-extended ones, namely direction, point, and
spot light, that were explained in Section 2.2.3. Evaluation of the Blinn-Phong
model implies that the application stage not only provides the coordinates of the
vertex itself but also several other attributes and parameters. Attributes are addi-
tional properties that can vary with each vertex, such as a normal vector, color,
texture coordinates, and several other properties. These attributes are specified in
conjunction with the vertex position and can therefore also be transferred directly
by value or indirectly using indices to attribute arrays. Parameters, on the other
hand, are those values that remain constant for a number of primitives, e.g. de-
scribing the material of an object that consists of many triangles. The values for
these are specified in a setup phase that configures the hardware before any ge-
ometry is passed through. While the only additional attribute for the Blinn-Phong
model is the normal vector, there is quite a large number of parameters that affect
this computation, e.g. several positions and directions for the light sources in the
scene as well as the ambient, diffuse, and specular parameters of the material itself.

The geometry stage is also responsible for transforming the vertices into the
canonical view volume according to the perspective or orthographic projection
shown in Section 2.1.1. Since this transformation distorts the spatial relationship
needed for lighting computation, it cannot be combined with modelview transfor-
mation. The canonical view volume simplifies the process ofclipping. Here all
primitives completely outside of the unit cube are rejected, while for primitives
partially inside/outside of the view volume intersections with the side planes have
to be computed in order to pass only those parts to subsequent stages that are visi-
ble.

The remaining task of this stage is theviewport transformation, which brings
all vertices passing the clipping stage toscreen coordinates.

Programmable Transform and Lighting

The growing demand of having more realistic reflection models than Blinn-Phong
and more control over the geometric transformations has led to graphics hardware
that supports programmable transform and lighting. The first user-programmable
vertex engine was proposed by [Lindholm01] and realized in the GeForce-series of
graphics cards by NVIDIA. Several other hardware vendors proposed similar ver-
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tex programming models, which differed in the number of operations and param-
eters supported. Recently, the OpenGL architectural review board (ARB) merged
the various programming models into a common, vendor-independent specification
that we now want to explain in more detail.

Vertex shaders, also calledvertex programs, replace parts of the fixed-function
transform and lighting operations that are computed per-vertex, such as modelview
and projection matrix transformation, normal transformation, per-vertex lighting,
texture coordinate generation, and many others. Operations that are not affected are
clipping, perspective divide, viewport transformation, color clamping, and all other
operations in subsequent parts of the geometry stage. Figure 2.8 illustration the

Vertex Attributes

Generic
16+ vectors (x,y,z,w)

Conventional
color, texcoords, etc.

Temporary
Registers

12+ vectors (x,y,z,w)

Address
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Program

Constants
each counts as one instr.

OpenGL state
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Environment
Parameters

96+ vectors (x,y,z,w)
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Parameters
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Parameters

position, color, texcoords, point size, etc.
Program Results

- 128+ instructions
- assembler opcode-style
- specified as ASCII
- 4-component vector operations
  with masking & swizzling
- program variables (names)

Figure 2.8: Vertex program execution environment.

environment according to the OpenGL ARB specification in which a user-defined
vertex shader is executed. The central part of this environment is the vertex pro-
gram, an assembler program specified as an ASCII-string, which will be executed
on the graphics hardware. The instruction set for these programs is based on vec-
torized operations, all working on 4-component floating point vectors. Besides the
standard instructions (move, add, sub, etc.) there are also a number of instructions
specialized for vertex processing, e.g. to compute dot products or reciprocal square
roots. A vertex program works on one vertex at a time, so there is no possibility to
access or modify connectivity information or access values of adjacent vertices of
the primitive.

To store intermediate values, the vertex shader has read/write access to a num-
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ber of temporary registers. There is also one special register, called the address
register, which can be used to perform indirect lookups from the parameter sets
described later.

As in the fixed-function geometry stage, there are a number of attributes and
parameters which the vertex shader takes as input. Attributes are the conventional
OpenGL per-vertex attributes (position, color, texture coordinates, etc.) as well
as a set of 16 or more generic attributes that can be used to pass additional data
per-vertex. There are four types of parameters that can be used within a vertex pro-
gram: A set of environment parameters, that are used to define global values used
by a number of vertex programs. A set of local parameters, that are bound to a spe-
cific vertex shader. A number of parameters that correspond to the OpenGL state
relevant for vertex processing, e.g. the actual modelview matrix or light source pa-
rameters. These parameters are automatically set by OpenGL. Constant parameters
are implicitly set inside the code of the vertex shader.

After evaluation, the vertex shader outputs the transformed vertex position (in
clip space) and a number of additional attributes, such as texture coordinates, color,
fog factor, point size, etc., which are then passed to the subsequent clipping stage.

Programmable vertex processing is a powerful tool which enables the imple-
mentation of complex algorithms on the graphics hardware. Examples of use in-
clude all kinds of reflection models or geometric deformation, which can be seen
in recent computer games.

The complete ARB style vertex programs are currently only supported on
newer graphics hardware, like the ATI Radeon 9700/9800 or NVIDIA’s GeForce
FX series. Older cards only support some parts of the extension. In this case it is
up to the driver to decide whether it can execute a given shader on the hardware or
if it has to be evaluated in software.

2.3.3 Rasterization Stage

The transformed and lit vertices arriving at the rasterization stage are first processed
by thescan conversionunit, which generates so calledfragmentsfor the screen
space region occupied by the primitive. A fragment can be seen as an extended
pixel, that not only represents a color value, but also carries additional attributes,
such as a depth and alpha value and texture coordinates. Except for the texture
coordinate sets, which are perspectively correct interpolated, all values are linearly
interpolated using the per-vertex values.

If texturing is enabled, the fragment’s texture coordinates are then used to do
the texture lookups in the defined images. Texturing can be done in several ways,
using one up to four dimensional textures and different filter techniques, such as
nearest neighbor, bilinear, or even trilinear using mipmap textures. The application
has also some control of how the texture’s color is combined with the interpolated
vertex color and other color values.

After all values of the fragments have been set, a number of test are applied.
The scissor testis used to reject fragments that are outside of a specified screen-
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space rectangle. Thealpha testrejects fragments depending on their alpha value by
comparing it with a given reference value. Thestencil testconditionally eliminates
a fragment based on the corresponding value in the stencil buffer. Thedepth testis
used for hidden-surface removal. Here the depth value of the fragment is compared
with the value stored in the z-buffer, explained in Section 2.1.2.

A fragment passing all those tests is written to theframebuffer. There are
several modes to combine the incoming color with the color already stored, which
is calledblending. Additionally dithering, logical operations, andmasking, can be
applied. See [Woo99] for more details.

The framebuffer itself is a very powerful tool. Not only can it be used to store
the final image, but it can also be utilized as normal memory, e.g. for storing inter-
mediate results. One special functionality that is now available on many graphics
cards is the rendering to virtual buffers, so calledoffscreen buffers. An offscreen
buffer is completely separated from the display device but can be used just like
the normal framebuffer. An example application of offscreen buffers isrender-to-
texture, a process where the image generated in a previous rendering pass is later
used as a texture image. Offscreen buffers may also support more bits per color
channel, up to floating point precision on recent graphics cards.

Programmable Per-Fragment Computations

The inflexibility of the rasterization stage has led to a number of OpenGL exten-
sions that added more functionality. NVIDIA proposed a simple but very powerful
mechanism calledregister combiners[NVIDIA02] that replaced the texture, color
sum, and fog computation. Recently, the OpenGL ARB has specified a general
programming model that greatly simplifies the process of configuring those parts
of the rasterization stage.

The so calledfragment shaders(or pixel shaders), are small assembler pro-
grams that are evaluated in an execution environment which is similar to the vertex
shaders introduced in Section 2.3.2.

A fragment shader takes as input the interpolated color values and texture co-
ordinates generated in the geometry stage. In addition to those attributes there are
also a number of parameters that are either user-defined or represent parts of the
OpenGL state.

The instruction set supported is similar to the vertex shaders, but has addi-
tional operations that can be used to perform texture lookups. In contrast to the
fixed-function pipeline texture lookups are no longer limited to the specified tex-
ture coordinates. A fragment shader is free to sample the texture at any position or
use the result of one texture lookup as texture coordinates for a second lookup, a
process also known asdependent texturing.

The result of a fragment program is the fragment’s color and alpha value, which
is then passed to the per-fragment operations. It is also possible to replace the frag-
ment’s depth value, but a fragment program cannot change the fragment’s screen
space position.



24 Chapter 2: Background

Currently, fragment programs do not support branching or looping, due to per-
formance reasons, but this may change in future hardware.

2.3.4 Graphics Architectures

We will now take a closer look on some graphics architectures focusing on how
the rendering pipeline is realized and what additional functionality is available.
Currently, the time slot in which a specific graphics card can be seen as the state-
of-the-art hardware is only about 6 months, or even less, so we will focus only on
those systems that were used for implementing and testing the algorithms proposed
in the following chapters.

The design of graphics hardware drastically changed during the last 5 to 10
years. Hardware-accelerated rendering was for a long time dominated by large,
massive-parallel graphics computers, e.g. SGI’s Onyx with the InfiniteReality
graphics subsystem. With the growing market of consumer class PC-systems and
video games, affordable, single-chip graphics cards became popular.

NVIDIA GeForce 256 (1999)
With the release of this card in 1999, hardware-accelerated rendering on consumer
class PC-hardware set a new standard. NVIDIA presented the first single-chip ar-
chitecture that did geometry processing (transform and lighting) and rasterization.
This chip was able to transform, clip, and light up to 25 million triangles per sec-
ond. The rasterization stage was able to perform at up to 480 million pixels per
second, using four parallel pixel pipelines and up to two textures simultaneously.
It was also the first card that supported a more general programming model dur-
ing fragment processing with the register combiner extension. At the end of 1999,
NVIDIA already presented a modified version of this card called GeForce2, which
mainly offered higher performance rather than new features.

SGI Octane/VPro (2000)
With the VPro graphics boards used in the Octane workstation series, SGI pre-
sented their first single-chip OpenGL rendering engine. Although the peak geom-
etry rate of 7 million triangles per second and a maximum fill rate of 425 million
pixels per second could not compete with the peak numbers of PC-cards at the time,
it had many features which are relevant for scientific and industrial applications:
Full hardware support for the OpenGL imaging subset, an extension specialized to
imaging operations, such as convolution, color conversion, histogram computation
etc. Higher color precision using up to 12 bits per channel in the frame buffer and
16 bits during the rasterization stage.

In contrast to the PC-hardware, this system is located in the high-end unix
workstation price segment (> 15.000 USD). Due to its fast memory interface and
accelerated 2D-imaging capabilities, it is still widely used today, e.g. for 2D com-
positing or medical applications where large amounts of data need to be processed.
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NVIDIA GeForce3 (2001)
The flexibility of the hardware rendering pipeline further improved with the release
of NVIDIA’s GeForce3. Besides the higher fill and geometry rate, the card offered
several new features that replaced parts of the fixed-function OpenGL pipeline.
It was the first card that supported programmable vertex processing using vertex
shaders, not yet at the level of the shown ARB-style shaders (Section 2.3.2), but
still very flexible. Programmability was also improved during texturing using so-
calledtexture shadersthat could e.g. be used to perform dependent texture lookups
or dot products on texture coordinates.

ATI Radeon 9700 (2002)
The next major step in graphics technology was the release of cards supporting Mi-
crosoft’s DirectX 9 standard, such as ATI’s Radeon 9700. This card supports the
full-featured ARB-style vertex shaders. The geometry stage was further extended
to process higher-order surfaces and displacement mapping. All computations dur-
ing rasterization are performed at floating point precision, supporting ARB-style
fragment programs (Section 2.3.3) with up to 16 different texture images and 32
individual lookups. Full floating point precision is also available for offscreen
buffers and texture images.

NVIDIA GeForceFX 5800 (2003)
In 2003, the buzzword for state-of-the-art graphics cards iscinematic rendering,
since the quality of the rendered images is getting close to software rendering.

This card increased the flexibility of the rendering pipeline by supporting com-
plex vertex shaders (over 65000 instructions), with flow control (looping, branch-
ing, subroutines), as well as more complex fragment shaders with full floating point
precision.

Shading Languages

With respect to software developers, the functionality available on those type of
cards is also problematic. In order to take full advantage of the features, an appli-
cation has to be customized to run on a specific card. Besides the standard OpenGL
functionality, recent graphics boards may offer over 70 extensions to OpenGL,
where a large number of extensions are proprietary. It is therefore necessary to
define a more general programming model for flexible graphics pipelines. A first
effort in this direction was presented by [Mark03], proposing a C-style shading lan-
guage for vertex and fragment processing. The ongoing specification of OpenGL
2.0 will even go further since it will not only include a powerful shading language
[Kessenich03] but also a very general memory model that simplifies the manage-
ment of framebuffers, texture images, vertex arrays, etc.
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Chapter 3

Overview of Shadow
Techniques

Since shadows are such an important visual effect, it is not surprising that a host
of literature by many researchers is available on this topic. In this chapter we will
only discuss some methods, focusing on those suitable for interactive and real-time
applications, as well as on algorithms which are related to the methods proposed in
the following chapters. For a general overview on shadow techniques, we recom-
mend Woo’s survey on shadow algorithms [Woo90] as a good starting point. An
excellent overview of real-time soft shadows techniques was presented by Hasen-
fratz et al. [Hasenfratz03].

As already mentioned in the previous chapter, shadow algorithms are in a way
similar to techniques used for hidden-surface removal. To determine whether a
given surface is lit or in shadow, we have to check if the surface is visible from
the light source. Using a hidden-surface algorithm we therefore place a virtual
camera at the light source’s position and resolve visibility for all objects in the
scene. The result of this step can then be used to selectively activate/deactivate the
light source’s contribution during shading calculation. Many shadow techniques
are therefore adapted versions of known hidden-surface techniques.

We will now review a number of prominent shadow techniques, discussing
their pros and cons, and showing how they can (or why they can not) be imple-
mented on graphics hardware.

3.1 Classification of Shadow Techniques

3.1.1 Object-space vs. Image-space Shadow Computation

In the field of hardware accelerated, interactive rendering, shadow algorithms are
mainly categorized by the space in which the calculation takes place. One class
are algorithms that compute shadow information inobject-space, using the scene’s
geometry as input data. Object-space techniques in general produce very accurate,
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precise shadows since most of the available information is used. The drawback of
these methods is computational complexity: A naive, straight-forward object-space
shadow algorithm has quadratic complexity in the number of objects since every
pair of objects has to be checked for a shadow situation. For large, complex en-
vironments the processing time can therefore be enormous since every calculation
will be performed at full floating point precision.

The contrast of object-space shadow techniques are algorithms that work on
sampled representations of the scene. Theseimage-spaceshadow algorithms op-
erate on one or more render images, e.g. depth images. In general, image-space
techniques are well suited for hardware-accelerated rendering since the hardware is
optimized for rendering images and performing operations on images, like texture
mapping. A major drawback of computing shadows in image-space is due to sam-
pling artifacts. Shadow quality may suffer from low-sampled scene representations
or numerical problems when performing operations on these images.

There is also a third class of methods often used in computer games. Instead
of computing the shadow by analyzing the scene, the shadow region is sketched
using additional geometry or texture maps. For example the shadow of a character
on a planar surface can be approximated by a simple disc like shape that moves
and scales according to the character’s movement. Although these fake methods
are very common, we will not discuss them here and focus on those methods that
computereal shadows.

3.1.2 Hard vs. Soft Shadows

Another important aspect are the types of light sources that a specific shadow
method can handle. As seen in Section 2.2.3 and 2.2.4, extended light sources
cause very complex shadow transitions, whereas point or directional light sources
exhibit only sharp shadow boundaries. In order to efficiently compute shadow re-
gions, many algorithms therefore focus on specific types of light sources. In the
context of hardware-accelerated rendering shadow computation for non-extended
light sources is possible at real-time frame rates, even for very complex scenes,
while extended light sources are still rarely used due to the high computational
overhead.

The classification of hard vs. soft shadow techniques is not as clear as e.g. the
object- and image-space classification. In theory, any soft shadow technique may
also be used to produce hard shadows simply by scaling the extend of the light
source down so that the result cannot be distinguished from a single light source
sample. Since shadow computation for extended light sources is very complicated,
this is of course no common technique.

What is more interesting is the reverse approach: Given a hard shadow algo-
rithm, we can adopt it to produce soft shadows by approximating the extended light
source by a number of point samples. In Section 2.2.4 we showed how visibility
can be separated from shading using the attenuation factor (Equation 2.5). Instead
of analytically integrating visibilityV over the light source’s area, we now accu-
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mulate a number of visibilitiesVi taken from discreet sample points on the light
source:

ATT =
1
A

∫
A

V dA ≈ ATT′ =
1
N

N

∑
i

Vi (3.1)

Using a sufficient large number of samplesN, the attenuation factorATT′ should
be a good approximation forATT. This sampling approach, however, suffers from
quantization artifacts. In other words, withN light source samples we can only
discriminateN−1 levels of penumbra in addition to the umbra and the completely
lit regions. This can be seen in the example scene in Figure 3.1. Here we evaluated

(a) 1 sample (b) 5 samples (c) 64 samples

Figure 3.1: Sampling the light source.

ATT′ using a hard shadow algorithm that was applied for one sample (N = 1), five
samples (N = 5), and 64 samples (N = 64). ForN = 1, the result is a hard shadow
transition, since only one boolean shadow value per pixel is available. ForN = 5,
the discreet sampling is clearly visible. UsingN = 64, we can generate 63 levels of
penumbra. Quantization artifacts are still visible, but for an interactive application
the shadow quality may be sufficient. However, for complex environments the hard
shadow technique needs to be very efficient in order to achieve reasonable frame
rates.

3.1.3 Hardware-accelerated vs. Software-based Methods

The classification of hardware-accelerated or pure software methods is another im-
portant aspect, especially in this thesis. The pipeline architecture shown in the
previous chapter has a direct influence on the design and implementation of a
hardware-accelerated shadow technique. A software-based method can take advan-
tage of all computational power and flexibility that CPU and memory subsystem
provide, e.g. random memory accesses, subroutine calls, or complex numerical
computations.

In contrast to this, graphics hardware has a very limited set of resources. The
available data that can be used as input or output is more or less fixed and also the
number of operations is, compared to software implementations, very limited.

This makes the design of efficient, hardware-accelerated shadow techniques a
very difficult task. Graphics cards are optimized forlocal processing, meaning that
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all computations, e.g. lighting, access only a small subset of the scene description.
Since shadows are aglobal effect, for which the spatial arrangement of objects
and lights in the scene is important, an algorithm has to split the input data into
smaller sets that can be handled by the hardware. This allows the computation on a
per-primitive, per-vertex, or per-fragment basis, taking advantage of the hardware’s
capabilities.

3.2 A Review of Shadow Techniques

3.2.1 Shadow Rays

In ray-tracing [Whitted80], a shadow ray is cast towards the light source to ob-
tain an attenuation factor for point and directional light sources. In a brute-force
implementation each shadow ray has to be tested for intersection with all objects
in the scene. On newer graphics hardware, which support programmable vertex
and fragment stages, the shadow ray approach can be realized by storing the scene
description as textures and computing intersections using fragment shader, as e.g.
shown by [Purcell02]. Although this hardware-accelerated ray tracing implemen-
tation runs at interactive frame rates for scenes of moderate complexity, it does not
perform well for dynamic environments. For interactive applications, pure soft-
ware based ray tracing on a PC-cluster [Wald01] or with dedicated ray tracing
hardware [Schmittler02], is an alternative to hardware-accelerated rendering. The
shadow ray method can also be extended to distribution ray-tracing [Cook84] for
the rendering of soft shadows. Here the light source is sampled by a number of
rays, as explained in Section 3.1.2.

3.2.2 Geometric Analysis

Some researchers use a geometrical analysis of the scene to find regions of the
scene where the whole light source is visible, the whole light source is occluded
(umbra), and regions where parts of the light source are visible (penumbra). These
methods work in object space by either generating discontinuities on the illumi-
nated objects (discontinuity meshing along the lines of Heckbert [Heckbert92]), or
by backprojecting the scene onto the light source, as done for example by Dret-
takis and Fiume [Drettakis94], Ouellette and Fiume [Ouellette99b], and Stewart
and Ghali [Stewart94].

After the discontinuities have been geometrically analyzed, the actual shading
of each point can be performed analytically, or again using sampling. Common to
both discontinuity meshing and back projection is the large geometric complexity,
which makes these approaches ill suited for interactive applications or hardware
implementation.

If only a small subset of the scene geometry is dynamic, e.g. in architectural
scenes, the expensive re-meshing step can be optimized by analyzing and updat-
ing only the affected meshes. This way, discontinuity meshing can be used for
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interactive rendering, as e.g. shown by Loscos and Drettakis [Loscos97].
Govindaraju et al. [Govindaraju03] presented a hybrid software/hardware algo-

rithm for interactive shadow generation in complex environments. The expensive
step of geometric analysis is reduced to a small subset of the scene’s geometry
by using hardware-accelerated occlusion testing and hierarchical visibility culling.
For regions where the analytic computation is not needed, e.g. large shadow re-
gions, shadow maps are used (see Section 3.2.4), while exact fine detailed shadow
information is covered by shadow polygons.

There has also been some work by Parker et al. [Parker98] on approximating
the penumbra by manipulating the geometry of the occluders, and then assuming
a point light source. This work does not yield the exact solution for the penumbra,
but results in an approximation of high visual quality. We will describe a modified
version of this approach in Chapter 11 using a sampled representation of the scene,
which can easily be generated using graphics hardware.

3.2.3 Shadows on Planar Receivers

In the area of real-time computer graphics, especially in games, we often see spe-
cial purpose algorithms that are only adequate for very specific situations, such as
the projected geometry approach [Blinn88], which only works for shadows cast
onto large planar objects.

Consider the setup in Figure 3.2(a). We can create the shadow on the receiver
plane by drawing the triangle a second time, with the vertices projected onto the
receiver and the point light as the center of projection. Using framebuffer blending
we can use this additional geometry to dim the shading of the underlying plane.

N

(a) example setup (b) individual faces (c) resulting shadow

Figure 3.2: Projected geometry.

Figure 3.2(b) shows the individual faces of a cube projected onto the ground
plane. Without the edge highlighting, as in Figure 3.2(b), the shadow looks just
right.

The projection itself can be expressed as a 4×4 transformation matrix1, which

1A detailed derivation of this matrix can be found in [Akenine-Möller02b].
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allows us to combine it with the object’s transformation matrix. For each receiver
plane, we therefore have to render all objects a second time, which gives us the
flattened shadow geometry.

(a) multiple blending (b) surface bounds (c) anti shadow

Figure 3.3: Problems with projected geometry.

There are a number of special situations that have to be addressed. Due to lim-
ited numerical precision in the z-buffer an artifact known asz-fightingwill appear,
because it is not guaranteed that all fragments of the shadow geometry pass the
depth test. One should therefore slightly offset the shadow geometry towards the
light source, so that the shadow geometry is drawn above the receiver surface.

Another problematic situation is shown in Figure 3.3(a). To account for am-
bient illumination in the scene, it is desirable to just dim the color of the receiver
plane in the shadow region, rather than drawing it fully black. If we just set up the
hardware such that every shadow pixel will modulate the result in the framebuffer
the shadow region will not have a consistent shading. This is due to the fact that
shadow polygons will overlap when we project them onto the ground plane, result-
ing in multiple blending. Using the stencil buffer we can take care that only one
fragment passes through, so double blending will not occur.

Up to now we assumed that the receiver is a plane, rather than a polygon
with a finite size. This can lead to problems as shown in Figure 3.3(b). Here
the shadow region does exceed the surface bounds of the receiver, resulting in an
outside shadow. This artifact can also be easily solved using the stencil buffer. In
a first pass we render the scene without the receiver polygon. Next, the receiver
polygon is drawn with an additional stencil operation that set the stencil value to
1 for all fragments passing the depth test. When rendering shadow geometry, the
stencil test is then used to accept only those fragments for which the stencil value
is set to 1. This way drawing of shadow geometry is restricted to the receiver poly-
gon. This approach can also be used to avoid the offset towards the light source,
discussed before. If the stencil bits of the receiver surface are set, we do not need
the depth test anymore, which solves the problem of z-fighting.

Using a general projection with the light source as the center of projection
may result in so calledanti shadowsas shown in Figure 3.3(c). Here the cube’s
polygons are projected onto the plane, although the light source is between receiver
and occluder, a situation where no shadow should appear. A simple solution to this
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would be to check for this situation and only draw those objects that are between
the light and the receiver plane. Another way of avoiding anti-shadows is the use
of a projective transformation that preserves z values, as shown in Section 2.1.1.
With a 3D-to-3D projection we can use an additional clipping plane that rejects all
geometry behind the light source.

An artifact similar to anti shadows arefalse shadows. Here geometry from
below the receiver plane is projected onto the surface. This can also be solved
using a clipping plane placed at the receiver plane.

If the light source and scene geometry remains constant over a number of
frames, a common way is to precompute shadow textures rather than projecting
the geometry in each frame. This is achieved by setting up a frustum with the light
source as the center of projection and the receiver plane as the projection plane.
By rendering the occluder geometry a shadow texture is generated which is then
applied as a normal texture map for the receiver plane. Such precomputed shadow
texture are also calledshadow masks.

Soft Shadows on Planar Receivers

Heckbert and Herf [Heckbert97] adapted the projected geometry method for ren-
dering soft shadows caused by area light sources on graphics hardware. This works
by first choosing a sample on the area light and rendering the receiver surface
with lighting from the specific sample. Next, the flattened occluder geometry is
draw in black, just as in the previous algorithm. By repeating this for a number of
sample points and adding up the individual images using theaccumulation buffer
[Haeberli90], a soft shadow texture is generated that will later be used as the re-
ceiver’s texture map. This approach will suffer from sampling artifacts if the num-
ber of light source samples is not sufficiently high (as described in Section 3.1.2).
On the other hand, the number of samples is directly proportional to the number
of rendering passes and accumulation steps, which makes the method ill-suited for
soft shadows in complex, dynamic environments.

An approximative approach to soft shadowing was presented by Soler and Sil-
lion [Soler98] using convolution of blocker images. Similar to Heckbert and Herf,
this method computes soft shadow textures for planar receivers, but it has the ad-
vantage that no expensive sampling of the light source is required. The key idea
here is that a soft shadow can be approximated by convolution of the blocker image
and an image of the area light. On modern hardware this method can utilize spe-
cialized DSP features to convolve images, leading to interactive rendering times.
The main drawback of the method is the clustering of geometry, as the number
of clusters is directly related to the amount of texture memory and convolution
operations.

Haines [Haines01] proposed a method for approximating soft shadows by first
generating a hard shadow image on the receiver plane and then compute penumbra
regions using distance information obtained from the occluder’s silhouette edges.
The hard shadow region is generated by the projected geometry method describe
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previously. The penumbra regions are added by additional geometry at the hard
shadow’s boundaries, drawn with a gradient from black to white to approximate a
smooth shadow transition. These gradient areas are shown in Figure 3.4(a): Each
vertex of the occluder will cast a circular shadow area, whereas silhouette edges
will cast a quadrilateral shape. The radius of each circle is varied according to
the distance of the occluder vertex to the ground plane, whereas the size of the
quadrilateral is determined by the circle sizes at its end points. The resulting soft

(a) penumbra geometry (b) generated shadow

Figure 3.4: Haines’ soft shadow method.

shadow is depicted in Figure 3.4(b). Haines showed that the gradient overlap is not
a problem when drawing threedimensional shapes (cones and sheets) and using
the z-buffer to resolve visibility. This soft shadow technique is easy to imple-
mented and well suited for hardware-accelerated rendering. A major drawback is
that penumbrae are added to the hard shadow region, which makes the soft shadow
look too large in some situations.

A fast soft shadow method, especially suited for technical illustrations, was
proposed by Gooch et al. [Gooch99]. Here the authors project the same shadow
mask multiple times onto a series of stacked planes and translate and accumulate
the results onto the receiver plane.

3.2.4 Shadow Maps

Williams’ shadow map algorithm [Williams78] is the fundamental idea of most
shadow methods working on sampled representations of the scene.

In a first step, the scene is rendered as seen by the light source. Using the
z-buffer we obtain the depth values of the frontmost pixels which are then stored
away in the so calledshadow map. In the second step the scene is rendered once
again, this time from the camera’s point of view. To check whether a given pixel
is in shadow we transform the pixel’s coordinates to the light source’s coordinate
system. By comparing the resulting distance value with the corresponding value
stored in the shadow map we can check if a pixel is in shadow or lit by the light
source. This comparison step is illustrated in Figure 3.5. Figure 3.6(a) shows an
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Figure 3.5: Shadow mapping illustrated.

example scene in which shadows were generated using the shadow map in Figure
3.6(b).

A hardware implementation of this algorithm using specialized hardware func-
tionality was proposed by Segal et al. [Segal92]. Using automatic texture coordi-
nate generation it is possible to have homogeneous texture coordinates(s, t, r,q)
that are derived from the eye-space coordinate system. In conjunction with a tex-
ture matrix (which is a 4×4 matrix applied to these texture coordinates) one can
implement the necessary transformation to the light source coordinate system in-
cluding the perspective projection.

In order to perform the shadow test, a dedicated texture mapping mode is
needed that compares the entry at(s/q, t/q) in the shadow map with the com-
puted depth value(r/q). The result of this operation is coded as color(0,0,0,0) or
color (1,1,1,1). In addition to this shadow test mode, the graphics hardware has
also to support a way of storing depth values as textures.

In OpenGL all of these capabilities are supported by two extensions: The
depthtextureextension introduces new internal texture formats for 16, 24, or 32
bit depth values. Theshadowextension defines two operations (≤ and≥) that
compare(r/q) with the value stored at(s/q, t/q). For a long time these exten-
sions were only supported on high-end graphics workstations. Today hardware-
support for shadow mapping is also available on consumer class graphics cards,
e.g. NVIDIA’s GeForce3 or ATI’s Radeon.

Williams’ approach is often calledbackward shadow mapping, in contrast to
forward shadow mappingas proposed by Zhang [Zhang98]. Instead of transform-
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(a) final view (b) shadow map

Figure 3.6: Shadow mapping.

ing eye space pixels to the light source’s coordinate system (backward), the shadow
map itself is warped to eye space, resulting in a modulation image. Forward
shadow mapping allows easy integration of light maps and anti-aliasing (blurring
the modulation image), but the warping itself may introduce artifacts.

Color-coded Shadow Maps

The previous implementation relies on dedicated shadow mapping support, which
is only available on some graphics cards and therefore not part of the standard
OpenGL specification. An implementation that runs on any OpenGL hardware
was presented by Heidrich [Heidrich99]. Instead of using the z-buffer a 1D ramp
texture is used that converts depth values to color values. The main idea here is to
use one of the color channels, e.g. alpha, for storing depth values.

The first step of the shadow map algorithm is the generation of a depth image
from the light source position. Since we plan to use the alpha channel for holding
the depth map, we generate this map with the following method. We render the
scene with the camera located at the light position, and resolve visibility using
thez-buffer. At the same time, we texture-map the whole scene with a 1D texture
containing a linear ramp between 0 and 1 in the alpha channel. During the texturing
step, thez coordinate in light source space is used as the texture coordinate of
each vertex. This can be achieved using OpenGL’s automatic texture coordinate
generation. The described method yields a shadow map in the alpha channel, where
the light sourcez is uniformly quantized between some near and some far plane
containing the illuminated geometry.

Given such an alpha shadow map, we can now implement the shadow test as
follows. The shadow map algorithm requires us to check for each point in space,
whether its actual distance from the light source is larger than the reference distance
from the shadow map. The first term, the actual distance from the light source, can
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be obtained again by applying the 1D alpha texture containing the linear ramp. The
texture coordinates for each vertex have to be the same as during the generation of
the shadow map, but this time the scene has to be rendered from the desired camera
position rather than the light source position.

From this, we would like to subtract the shadow map value corresponding to
each point, and check the result against 0 (a value of 0 means that the point is lit,
> 0 means it is in shadow). We can achieve this subtraction by rendering the scene
again, this time using the alpha shadow map as a projective texture for the whole
scene, while setting up alpha blending to subtract the result from the pixel value of
the previous rendering pass. Afterwards, the alpha channel contains a mask for the
shadowed and the lit regions of a scene, which can be used to correctly illuminate
the lit regions in a third pass. It should be noted that on a system with support for
multitexturing and two simultaneous textures, the first two rendering passes can be
combined into a single one. If the system even supports 3 or more simultaneous
textures, all rendering passes can be combined into a single one (the generation of
the shadow map still requires a separate pass), and no destination alpha channel is
required in the framebuffer.

A major drawback of Heidrich’s method is numerical precision due to the lim-
ited color resolution in the framebuffer, which is usually 8 bit on consumer class
hardware. High-end workstations, e.g. SGI’s InfiniteReality and Octane series,
support up to 12 bit color component precision. Kilgard [Kilgard00] presented
an extended version of Heidrich’s approach which allows to use up to 16 bit depth
precision by splitting and combining the high and low bytes of the 16 bit word. Re-
cently, consumer class graphics cards support floating point offscreen buffers, but
on those type of cards the shadow mapping extensions are often directly supported.

In Chapter 4 we will propose several enhancements of Heidrich’s method which
optimize the distribution of depth values. Chapter 5 presents a shadow map filter-
ing scheme based on color-coded shadow maps.

Shadow Map Bias

Williams’ original work suffered from sampling artifacts during the generation of
the shadow map as well as when performing the shadow test.

One of the typical artifacts of a shadow map algorithm is that, due to quantiza-
tion artifacts, a surface may shadow itself from the light source. This artifact has
sometimes also been calledsurface acne, and leads to black spots in the middle
of a lit surface, as shown in Figure 3.7(a). One solution, described by Reeves et
al. [Reeves87], is to use an offset from a global interval for performing the depth
comparison. This, however, can introduce other artifacts, like missing shadows in
the image in Figure 3.7(c). Finding the right offset (as in Figure 3.7(b)) is therefore
up to the developer.

A better solution proposed by Woo [Woo92] is to store the average depth of
the first and the second intersection at each pixel of the shadow map. This way, the
depth values of lit pixels are usually much smaller than the reference values in the
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(a) bias too low (b) just right (c) bias too high

Figure 3.7: Shadow test bias.

depth map, and the numerical instabilities vanish. In Chapter 4 we will present a
hardware-implementation of Woo’s idea using color coded shadow maps.

Shadow Map Filtering

Reeves et al. [Reeves87] also proposed a filtering method called percentage closer
filtering (PCF) which reduced the problem of blocky shadow edges due to low res-
olution shadow maps and generates smooth, anti-aliased shadow edges. Basically,
PCF works by reversing the order of filtering and comparing. Instead of first filter-
ing the texture image over some specific region and using the resulting value for
further processing, PCF performs the comparison step first.

Figure 3.8: PCF illustrated.

Figure 3.8 illustrates the scheme in the case of a 3×3 region in the shadow
map. Ninez values are compared against a given surfacez value which results
in a 3×3 binary mask from which the percentage shadowing can be calculated by
simple bit counting. The region that is sampled can be determined by projecting
the pixel boundary rectangle onto the shadow map. Figure 3.9 shows an example
scene rendered without (left) and with (right) shadow map filtering applied. As can
be seen in the close-up views, blocky shadow edges are reduced.

Hardware-support for shadow map filtering is supported on some of the newer
PC-graphics cards. In Chapter 5 we will present a special PCF method that can be
implemented on standard OpenGL hardware.

Reeves’ approach is also often used to approximate penumbra regions by vary-
ing the filter kernel with respect to the projected footprint. This is requires a very
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(a) no filtering (b) PCF

Figure 3.9: PCF filtering.

high resolution depth map in order to obtain soft shadows with reasonable quality.
Hourcade and Nicolas [Hourcade85] also addressed the shadow map sampling

problems and came up with a method using object identifiers (priority information)
and prefiltering.

A special type of shadow maps, called deep shadow maps, were presented
by Lokovic and Veach [Lokovic00]. Instead of storing only a single depth value in
each shadow map entry, a list of fractional visibility at each possible depth is stored.
Deep shadow maps can therefore be used to capture fine detailed geometry, such
as hair or fur, or even shadows from particles. A hardware-based implementation
of this approach was presented by Kim and Neumann [Kim01], based on a volume
slicing scheme.

Shadow Map Parameterization

When generating the shadow map in the first pass, it is also desirable to adopt the
sampling rate of the shadow map for the current camera view. Recently, two papers
addressed this issue.

Fernando et al. [Fernando01] came up with a method calledAdaptive Shadow
Maps(ASMs) where they presented a hierarchical refinement structure that adap-
tively generates shadow maps based on the camera view. ASMs can be used for
hardware-accelerated rendering but require many rendering passes in order to re-
fine the shadow map.

Stamminger et al. [Stamminger02] showed that it is also possible to compute
shadow maps in the post-perspective space of the current camera view. These
Perspective Shadow Maps(PSMs) can be directly implemented in hardware and
greatly reduce shadow map aliasing. Drawbacks of the PSMs are that the shadow
quality varies strongly with the setting of the camera’s near and far plane and that
special cases have to be handled if e.g. the light source is located behind the viewer.

In Chapter 4 we will show how a tight fitting frustum for shadow mapping can
be generated automatically, which results in a better sampling rate.

The shadow map’s parameterization is also important for the type of light
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source being used. Using Williams’ original method, only spot lights with a lim-
ited cut-off angle are supported due to the perspective projection involved. In
Chapter 6 we will propose a different shadow map parameterization, based on
dual-paraboloid mapping [Heidrich98b], which can be used for hemi- and omni-
spherical light sources.

Soft Shadows using Shadow Maps

A common way to render soft shadows using shadow mapping is to sample the
light source and accumulate the individual hard shadow images. With dedicated
hardware-support and scenes with medium complexity this approach is practical
for a small number of light source samples.

Isar et al. [Isard02] presented an implementation of this brute-force soft shadow
method that distributes shadow map generation over a number of graphics PCs.
This way, interactive rendering of high-quality soft shadows is possible, since each
node only has to render a small number of shadow maps.

Chen and Williams [Chen93] computed soft shadows caused by area lights
using image interpolation techniques. Given a small number of shadow maps from
individual sample points new shadow maps are computed by interpolating between
neighboring maps.

Agrawala et al. [Agrawala00] efficiently adopted image-based methods to com-
pute soft shadows. Although their coherence-based ray tracing method does not
perform at interactive rates, they also presented an approach using layered attenu-
ation maps, which can be used in interactive applications.

Keating and Max [Keating99] used multi-layered depth images (MDIs) to ap-
proximate penumbra regions. MDIs are obtained from only a single light source
sample, but store depths at multiple distances from the light source. By warp-
ing each camera pixel to the MDI frame, soft shadows are generated by depth-
dependent filtering. Since traversal of the MDIs is done using ray tracing, the
method is only suitable for offline rendering.

An image-space variant of Haines’ [Haines01] soft shadow method for planar
receiver was presented by Wyman et al. [Wyman03]. In addition to the normal
shadow map, apenumbra mapis generated by drawing shaded cones and sheets
(see Section 3.2.3) for each of the occluder’s edges and corners into this map. The
penumbra map is then used as a projective texture and can therefore also be applied
for non-planar receiver geometry.

In Part III of this thesis we will present two hardware-accelerated techniques
that approximate penumbra regions using only a small number of samples on the
light source.

3.2.5 Shadow Volumes

Crow’s shadow volume algorithm [Crow77] is one of the most popular algorithms
for shadow generation. By extending occluder polygons to form semi-infinite vol-
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umes, so called shadow volumes, shadowed pixels can be determined by simply
testing if the pixel lies in at least one shadow volume. A hardware-accelerated
implementation of Crow’s shadow algorithm was later proposed by Heidmann
[Heidmann91]. Especially for real-time applications it is the de-facto standard way
for precise, high quality shadows. This is due to the fact that shadow information is
generated in object space, meaning that shadow information is available for every
window-space pixel.

The shadow volumes algorithm starts with the detection of possible silhouette
edges. For simplicity, we assume that all shadow casting objects are closed trian-
gular meshes (2-manifold) for which connectivity information is available.

Figure 3.10: Silhouette edge detection.

To test whether a given edge is a silhouette edge we check if the edge connects
a front- and a back-facing triangle, with respect to the light source. This is illus-
trated in Figure 3.10. Triangle orientation can easily be checked by taking the dot
product of the face normal and the vector to the light source. If this dot product
is negative, a triangle is back-facing with respect to the light, otherwise it is front-
facing. Repeating this for all edges, we obtain a set of silhouette edges that form
closed loops.

Next we extrude these silhouette loops to form semi-infinite volumes. For each
silhouette edge a quadrilateral is constructed by taking the two original vertices of
the edge and two vertices which are computed by moving the original vertices far
away to infinity along the ray originating from the light source through the vertex.

Together with the object’s front facing triangles, these quadrilaterals bound all
regions in space which are in shadow. In order to check if a given point is in shadow
all we have to do is to determine if the point lies outside of all shadow volumes.

This information can be easily obtained by following a ray from the viewer to
the surface point and counting how many times we enter or leave a shadow volume
boundary polygon. This counting scheme is illustrated in Figure 3.11.

Here shadow volumes have been generated for a sphere and a box illuminated
by a point light source. While following the ray from the viewer to surface point
A, we count how many times we enter (increment) and leave (decrement) a shadow
boundary. The final counter value of 0 indicates that the surface point is lit by the



42 Chapter 3: Overview of Shadow Techniques

Figure 3.11: Inside-outside test.

light source, since we have left the shadow regions as many times as we entered
them. Counting shadow boundaries for surface pointB yields a value of 2, since
the point is inside two shadow volumes (sphere and box).

Implementing this test using ray tracing would be a very time consuming task.
Heidmann showed that this simple in-out counting can be performed on graphics
hardware using the stencil buffer. First, the stencil buffer is initialized to zero (all
pixels lit). Next, the whole scene is drawn as seen by the camera. In this step
only depth information is relevant so color channels and all lighting and shading
computations can be disabled.

The actual counting can then be achieved by disabling depth buffer writes and
rendering all shadow volume quadrilaterals. In this step the stencil operation is
setup in such a way that front-facing quadrilaterals (with respect to the viewer)
increment the stencil value at the window space position for all pixels that pass
the depth test. Similarly, all pixels that pass the depth test and belong to a back-
facing quadrilateral will decrement the stencil value. On modern graphics hard-
ware this can be implemented in a single rendering pass (two-sided stencil testing)
whereas on older hardware separate passes for front- and back-facing quadrilat-
erals are needed (single stencil operation). Changing the counter value based on
the front- and back-facing information requires a consistent winding order when
constructing the quadrilaterals. This can for instance be achieved by sticking to the
vertex order of the front-facing triangle (with respect to the light source) adjacent
to the silhouette edge.

In a final step, the scene is rendered once again, this time with lighting and
shading turned on. During rendering we set up the stencil test such that only those
pixels whose corresponding stencil value is zero will pass through.

Figure 3.12 shows an example scene with shadows computed using stencil
shadow volumes. As can be seen in the left image, shadow volumes generate very
precise shadows for arbitrary (polygonal) receiver and occluder geometry. Figure
3.12(b) shows the scene with the silhouette edges emphasized. From these edges,
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shadow volumes are generated as depicted in Figure 3.12(c).

(a) final image (b) silhouette edges (c) shadow volumes

Figure 3.12: Shadow volumes.

Optimizing Silhouette Detection

With complex geometric scenes, the computation of object silhouettes can be a
quite expensive task. Especially in fully dynamic environments, the silhouette
edges may change from frame to frame. There a number of methods that deal
with this problem.

A spatial data structure for shadow volumes was introduced by Chin and Feiner
[Chin89]. They modified the well-knownbinary space partitioning(BSP) scheme,
so that for every light source a BSP tree is generated that represents the shadow
volume caused by the polygons facing towards the light. The algorithm was further
improved by Chrysanthou and Slater [Chrysanthou95] to handle dynamic scenes
as well.

McCool [McCool00] presented an algorithm that reduces the often problematic
geometry complexity of Crow’s method by reconstructing shadow volumes from
a sampled depth map. He uses an edge detection algorithm to obtain the discon-
tinuities in the depth map, which then act as the boundary polygons of a shadow
volume. With this method an optimal shadow volume (non intersecting volumes)
can be generated. However, the quality of the generated shadows may suffer from
sampling artifacts due to the limited depth map resolution.

Pop et al. [Pop01] explained how thedual spaceof a primal space can be
used to detect silhouette edges. In dual space, the light position becomes a plane,
whereas edges stay edges. Those edges that intersect the plane are detected silhou-
ette edges. Although this method sounds complicated at a first sight, it can greatly
take advantage of temporal coherence, e.g. for moving light sources.

As graphics hardware becomes faster and faster, especially in terms of fill rate
and vertex processing, a simple brute force approach is becoming popular again.
Instead of detecting silhouette edges, one can also consider individual triangles as
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shadow casting objects and generate a shadow volume for each. This method is
simple to implement but is only useful for very few, coarsely tessellated objects.

In Chapter 9 of this thesis we will present a fully hardware-accelerated imple-
mentation for detecting silhouette edges and extruding shadow volumes.

Generating and Rendering Shadow Volumes

There are a number of situations where the generation and rendering of shadow
volumes is problematic and may lead to artifacts in the generated shadows.

Up to now we assumed that all shadow casting objects are well-modeled (2-
manifold). For non-closed objects, the stencil counting scheme may fail due to
open edges in the occluder for which no corresponding in/out side plane exists.
Bergeron [Bergeron86] presented a version of Crow’s algorithm which also is cap-
able of handling non-closed objects as well as non-planar polygons. Here different
increment/decrement values are used if the shadow quadrilateral is caused by an
open or closed edge.

Recently, an alternative to stencil-based counting using alpha blending was
proposed by Roettger et al. [Roettger02]. They replace increment and decrement
operations by multiplications, which under certain conditions is even faster than us-
ing the stencil buffer. The main benefit of their method is that it works for graphics
cards that do not support hardware-accelerated stencil testing.

Stencil counting may also produce wrong results due to view frustum clipping.
Consider the case depicted in Figure 3.13(a). Here the shadow volume intersects
the near clipping plane, meaning that some parts of the side planes, and therefore
some stencil events, are missing. This can be fixed by additionally drawing the
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Figure 3.13: Problems due to view frustum clipping.

missing geometry at the near plane, as done by [Diefenbach94]. This preserves
a closed shadow volume (Figure 3.13(b)) for which all stencil events are com-
puted. This analytic computation can be very complicated and time consuming.
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A different solution to the near plane problem has been proposed by Udeshi and
Hansen [Udeshi99], where they used separate in and out counters.
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Figure 3.14: Depth-fail stencil counting.

Everitt and Kilgard [Everitt02] came up with a bullet-proof implementation of
stencil based shadow volumes for hardware-accelerated rendering. They solve the
problem of non-closed shadow volumes due to near/far plane clipping by invert-
ing the stencil count scheme, an unpublished idea by Carmack [Carmack00], and
moving the far plane to infinity. This way, shadow volumes are always closed, and
artifact-free shadows can be generated. Figure 3.14 illustrates this method: During
rendering of shadow volumes, the stencil test is setup such that it counts the number
of fragments for which the depth testfails (in contrast to the standard depth-pass
counting). Since there is no far clipping plane, it is guaranteed that all sides of the
shadow volume will be counted. With depth-fail stencil testing it is necessary that
all shadow volumes are completely closed, including the top and bottom. Figure
3.14(b) depicts a case in which one stencil event is due to the top of the shadow
volume. Everitt showed that depth precision using a far plane at infinity is only
slightly worse than a finite far plane, due to the 1/z quantization. The tutorial by
Lengyel [Lengyel02] provides some more implementation details and shows how
fill rate problems can be reduced by using attenuated light sources.

Depth-fail stencil counting also solves the problem when the viewer is inside
one or more shadow volumes. With depth-pass counting, the stencil buffer needs to
be initialized with the correct number, while depth-fail only counts events behind
the actual pixel and therefore produces the correct result.

Soft Shadows using Shadow Volumes

Several researches adopted the shadow volume method to produce soft shadows
for extended light sources.

Brotman and Badler [Brotman84] came up with a soft shadow version of Crow’s
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algorithm where they generated shadow volumes for a number of light source sam-
ples and computed the overlap using a depth buffer algorithm.

Nishita et al. [Nishita85] constructed penumbra and umbra volumes for linear
light sources. Since the analytic computation of these volumes is very expensive,
the method is not suitable for a real-time implementation.

Recently, Akenine-M̈oller and Assarsson [Akenine-M̈oller02a, Assarsson03]
presented a soft shadow volume method based onpenumbra wedges. Instead of
extruding a single quad for each of the occluder’s silhouette edge, a wedge is
constructed which represents the penumbra volume. Although the construction
of penumbra wedges can be quite complicated, the rendering of wedges can be
implemented using graphics hardware, which results in real-time frame rates.
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Chapter 4

Practical Shadow Mapping

In this part of the thesis we will propose a number of variants and extensions of
the classical shadow mapping algorithm. We will show methods to reduce arti-
facts caused by the image-based nature of this approach, extensions to the type of
light sources that can be used, and also methods that increase the efficiency of the
shadow mapping algorithm. Since we want to use our techniques in a real-time
rendering framework, all of them have an efficient hardware-accelerated imple-
mentation, which we will also discuss in detail.

As we have seen in the previous chapter, shadow mapping has a number of
drawbacks due to numerical precision and sampling. Many of these problems can
be reduced if the shadow map is optimized for the current camera view and for the
scene itself.

In this chapter we focus on the traditional shadow map algorithm and show
how the light source’s viewing frustum can be adjusted to use most of the available
precision, in terms of shadow map resolution.

Since it is also important that the available depth precision is used equally for
all regions inside this frustum, we first show how uniformly spaced depth values
can be used when generating the shadow map. Here we present a general method
that works in conjunction with dedicated shadow mapping hardware. Using color-
encoded depth maps, as introduced in the previous chapter, we further improve
depth precision by using an adaptive, histogram-based optimization step and Woo’s
method [Woo92] of using the second depth value.

4.1 Distribution of depth values

When rendering the scene from a given viewpoint, depth values are sampled non-
uniformly (1/z) due to the perspective projection. This makes sense for the camera
position, since objects near to the viewer are more important than those far away,
and therefore sampled at a higher precision. For the light source position this
assumption is no longer true. It could be the case that objects very far from the
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light source are the main focus of the actual camera, so sampling those at lowerz
precision may introduce artifacts, e.g. missing shadow detail. A solution to this
was e.g. presented by Heidrich [Heidrich99] (Section 3.2.4). Here depth values
are sampled uniformly using a 1D ramp texture that maps eye space depth values
to color values, which are later used as the corresponding shadow map.

(a) 1/z (b) z linear

Figure 4.1: Distribution of depth values.

Figure 4.1 illustrates the difference between linear and 1/z mapping. On the
left side, depth values are sampled using the traditional perspective projection. Ob-
jects near to the light source obtain most of the available depth values, whereas
objects far away (e.g. the ground plane) have less precision. Shadow details for
the teapot may be missing while the torus may be oversampled. The right side of
Figure 4.1 shows the same setup using a linear distribution of depth values. Here
all objects are sampled equally. We can achieve this linear distribution of depth
values using a customized vertex transformation, which can be implemented using
the so calledvertex shaderor vertex programfunctionality introduced in Section
2.3.2.

Instead of transforming all components of a homogeneous pointP=(xe,ye,ze,we)
by the perspective transformation matrix, e.g.(x,y,z,w) = Lightpro j ·P, we replace
thezcomponent by a new valuez′ = zl ∗w. The linear depth valuezl ∈ [0;1] corre-
sponds to the eye space valueze mapped according to the light source near and far
plane:

zl =− ze+near
f ar−near

To account for normalization(x/w,y/w,z/w,1) which takes place afterwards (nor-
malized device coordinates), we also pre-multiplyzl by w. This way, thez com-
ponent is not affected by the perspective division, and depth values are uniformly
distributed between the near and far plane.
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4.1.1 Second Depth Shadow Maps

As already mentioned, Heidrich [Heidrich99] proposed a very clever method for
shadow mapping that works with the standard OpenGL feature set. Despite the
linear quantization of the depth values, numerical precision and quantization arti-
facts remain a critical issue. Deeper framebuffers and textures, as well as higher
precision operations in the texturing units of graphics hardware will certainly help
to reduce these problems. Nonetheless, some algorithmic advances to improve
numerical stability are highly desirable.

Woo [Woo92] modified the shadow mapping algorithm to use a depth map
where the reference value is actually a weighted sum of the visible surface and the
first surface point behind it. This improved the numerical stability of the shadow
map algorithm, because it mostly avoids depth comparisons of very similar values,
resulting in an artifact known assurface acne(as shown in Section 3.2.4).

In order to implement this algorithm with OpenGL, we have to alter the method
for generating the shadow map. In addition to generating a depth image of the scene
that represents the visible surfaces, we now also have to generate a second depth
image containing all the second surfaces. This can be achieved with an additional
rendering pass using alpha blending: In a first pass, the shadow map is generated in
the alpha channel as before. In a second pass, the scene is rendered again with the
same texture coordinates, but this time the 1D texture also contains a linear ramp
in the color channels in addition to the alpha channel. Furthermore, we disable
writing to the alpha channel and the depth buffer, and set up the depth test such
that only those pixels get rendered where the new depth value is larger than the
value already contained in the framebuffer. This ensures, that the frontmost (i.e.
visible) surfaces do not get rendered a second time. At the same time, framebuffer
blending is set up to select the minimum of all color values for each pixel. This
will select the frontmost surface of all those that survived the depth test, which is
the second surface in total. Before these rendering passes, the framebuffer should
be cleared to a value of 1, corresponding to objects further away than the far plane.

The result of this method is a framebuffer containing the depths of the visible
surfaces in the alpha channel, and the depths of the second surfaces as a luminance
value. We can employ a color matrix, which is part of the OpenGL imaging subset
to average the two and store the result in an alpha texture. On multitexturing sys-
tems, we can also simply load the two intersections as two separate textures, and
apply them independently of each other. This avoids the color matrix, which may
not be available on some systems. An example for a second depth shadow map is
depicted in Figure 4.2.

Contrast Improvements

Another way to make Heidrich’s algorithm numerically more stable is to further
improve the distribution of numerical precision across the whole depth region be-
tween near and far plane in the shadow map. For example, if the scene consists of
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(a) first (b) second (c) average

Figure 4.2: Second depth shadow maps.

several objects that are close to the light source and several that are away from it,
but only few objects in between, then a uniform quantization of the depth values as
described above wastes numerical precision in this center part.

In this case it would be better to replace the linear ramp texture that acts as
a table mapping fromz coordinates into the interval 0. . .1 by some nonlinear but
monotonic function. This function should be designed to maximize the contrast
in the depth map in the sense that all quantization levels should appear roughly
equally often in the resulting depth map. In image processing, this task is known
as histogram equalization, and algorithms for determining an adequate table given
a histogram of the original, uncorrected image are well known [Gonzalez92].

Thus, in order to perform a histogram equalization on the shadow map, we
need to acquire the histogram of the original depth map. We can do this either
using software, or the histogram feature provided by the OpenGL imaging subset.
Ideally, we would then for every frame have to generate the original shadow map,
compute the histogram, and from it the table that equalizes the histogram, and
finally re-render the shadow map using the computed table. In an animation, where
light sources and objects move gradually, we can, however, get rid of one of these
passes if we are willing to work with the table of the preceding frame.

We then simply generate the shadow map using the old table from the preced-
ing frame, and, while this map is transferred to texture memory, we let OpenGL
compute its histogram. That histogram is then used to generate a new table which
we then use in the next frame. Figure 4.3 shows the effect of histogram equalization
on a depth map.

4.1.2 How near, how far ?

A very important property that affects the depth precision of the shadow map is the
setting of the near and far plane when rendering from the light source position. A
common approach is to set those to nearly arbitrary values like 0.01 and 1000.0
and hope that a shadow map with 24 bit precision will still cover enough of the
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(a) original map (b) normalized map

(c) histogram (red: originalz distribution, green: optimizedz distribution)

Figure 4.3: Histogram equalization.

relevant shadow information.
By analyzing the scene we can improve depth precision by setting the near and

far plane such that all relevant objects are inside the light’s viewing frustum, as
depicted on the left side of Figure 4.4.

In terms of depth precision, this setting is still far from being optimal. It is
clear that the torus needs to be included in the shadow map, since it will cast a
large shadow onto the ground plane and teapot, but for this shadow information
only one bit would be sufficient since the shadow caster itself is not seen by the
camera. So what we really would like to have is some kind of tight fitting near and
far plane setup that concentrates on those objects that are visible in the final scene
(seen from camera position). This optimal setting is depicted on the right side of
Figure 4.4. If we would render this scene with the traditional approach, shadows
cast by the torus would be missing since the whole object lies outside the light’s
viewing frustum and would be clipped away.

We can easily include such objects by having depth values of objects in front
of the near or beyond the far plane clamped to zero or one, respectively. This
clamping can be achieved with a specialdepth replacetexture mode1, available

1As the name implies, this texture mode replaces a fragment’s window space depth value.
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(a) standard (b) tight fitting

Figure 4.4: Setting of near and far plane.

as part of thetexture shaderextension [NVIDIA02] provided by recent NVIDIA
graphics cards.

Assume we want to render a shadow map with 16 bit precision where depth
values outside the valid range are clamped rather than clipped away. These depth
values can be encoded using two bytes, where one contains the least significant
bits (LSB) while the other stores the most significant bits (MSB). If we setup a two
dimensional ramp texture in which we encode the LSBs in the red channel (0 to
255, column) and in the green channel we store the MSBs (0 to 255, row position),
we can map the lower 8 bit of a givenzvalue by setting thescoordinate to 256.0∗z
and using thes coordinate repeat mode. This ways maps the fractional part of
256.0∗ z to the LSB entry in the ramp texture. To code the MSB we can directly
mapz to t and use aclamp-to-edgemode such that valuesz< 0 are clamped to 0
and valuesz> 1.0 are clamped to 1.0.

To replace the current window space depth value with the new, clamped value
we now have to setup the texture shader as depicted in Figure 4.5. Texture unit 0
is responsible for mapping the higher and lower bits of the depth value to a color
encoded RGB value (blue component set to zero). Texture unit 1 is configured
to perform adot product depth replaceoperation, which takes texture coordinates
from unit 1 and computes a dot product with the result of the previous texture unit
(color encoded depth). The result is a new depth value that is just a clamped version
of the original depth value.

One problem with this texture shader setup is that the LSB is repeated even
for objects in front or beyond the near/far planes, due to thes coordinate texture
repeat. If we set the planes such that all pixels in front of the near clipping plane
are mapped to a MSB of 0 and pixels beyond the far clipping plane to a MSB of
255 we do not have to worry about the LSB part of the depth value. So the effective
range of depth values is between 0x0100 and 0xfeff. This method can be extended
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Figure 4.5: Texture shader setup.

to 24 bit depths by using a special HILO texture format [NVIDIA02], for which
filtering takes place at 16 bits per component.

Up to now we did not take care about the view frustum culling that takes place
before the rasterization. If for example an object lies completely in front of the
near clipping plane all triangles would be culled away after the transformation step
(clip coordinates). To avoid this we simply modify the vertex shader described in
Section 4.1 such that thez component of the output position is set to a value of
0.5∗w. This way all vertices are forced to lie between the valid[0;1] z range. The
zvalues passed as texture coordinates for texture unit 0 are still the linearzl ’s. After
the depth replace step we then restore validz coordinates used for depth testing.

4.2 Concentrating on the visible part

In the previous section we discussed how important the setting of near and far clip-
ping is with respect to the depth resolution. For the shadow map resolution (width
and height) the remaining four sides of the light’s viewing frustum are crucial.

Consider a very large scene and a spotlight with a large cutoff angle. If we
would just render the shadow map using the cutoff angle to determine the view
frustum we would receive very coarse shadow edges when the camera focuses on
small portions of the scene. Hence it is important that the viewing frustum of the
light is optimized for the current camera view. This can be achieved by determining
the visible pixels (as seen from the camera) and constructing a viewing frustum that
includes all these relevant pixels.

In order to compute the visible pixels, we first render the scene from the camera
position and use projective texturing to map a control texture onto the scene. This
control texture is projected from the light source position and contains color-coded
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information about the row-column position, similar to the ramp texture used for
the depth replace. In this step we use the maximal light frustum (cutoff angle) in
order to ensure that all illuminated parts of the scene are processed. Since pixels
outside the light frustum are not relevant we reserve one row-column entry, e.g.
(0,0), for outside regions and use this as the texture’s border color. By reading
back the framebuffer to host memory we can now analyze which regions in the
shadow map are used. In the following subsections we will discuss methods for
finding a suitable light frustum based on this information.

4.2.1 Axis aligned bounding rectangle

The easiest and fastest method is to compute the axis aligned bounding rectangle
that encloses all relevant pixels. This can be implemented by searching for the
maximum and minimum row and column values, while leaving out the values used
for the outside part (texture border). This bounding rectangle can now be used
to focus the shadow map on the visible pixels in the scene. All we have to do is
to perform a scale and bias on thex andy coordinates after the light’s projection
matrix to bring

[xmin;xmax]× [ymin;ymax]→ [−1;1]× [−1;1] .

4.2.2 Optimal bounding rectangle

A better solution for adjusting the view of the light source is to compute the optimal
bounding rectangle that encloses all visible pixels. This can be realized by using a
method known as therotating calipersalgorithm [Toussaint83, Pirzadeh99] which
is capable of computing the minimum area enclosing rectangle in linear time. We
start by computing the two dimensional convex hull of all visible points using the
monotone chainalgorithm presented by [Andrew79].

Figure 4.6: Rotating calipers.

As stated by [Pirzadeh99], the minimum area rectangle enclosing a convex
polygonP has a side collinear with an edge ofP. Using this property, a brute-
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force approach would be to construct an enclosing rectangle for each edge ofP.
This has a complexity ofO(n2) since we have to find minima and maxima for
each edge separately. The rotating calipers algorithm rotates two sets of parallel
lines (calipers)aroundthe polygon and incrementally updates the extreme values,
thus requiring only linear time to find the optimal bounding rectangle. Figure 4.6
illustrates one step of this algorithm: The support lines are rotated (clockwise)
until a line coincides with an edge ofP. If the area of the new bounding rectangle
is less than the stored minimum area rectangle, this bounding rectangle becomes
the new minimum. This procedure is repeated until the accumulated rotation angle
is greater than 90 degrees2.

4.2.3 Examples

Figure 4.7 shows an example scene illuminated by one spotlight with a large cutoff
angle. Here, the image resolution was set to 512×512 pixels (4-times oversam-
pling), whereas the shadow map only has a resolution of 256×256 pixels. For the
control rendering pass a 64×64 pixel region was used. The frame rates for this
scene are about 20 to 25 frames per second (74000 triangles).

In Figure 4.7(a) we directly compared the adjusted light frustum (left half of the
image) with the result obtained using some fixed setting (right half). Here the ad-
justment can only slightly improve the shadow quality (coarse shadow edges), but
the algorithm still computes an optimal setting for the light’s near and far clipping
plane.

Figure 4.7(b) shows the optimized light frustum and the camera frustum, seen
from a different perspective. In Figure 4.7(c) the convex hull and the resulting min-
imum area enclosing rectangle are drawn as they are located in the non-optimized
shadow map.

In Figure 4.8(a) the camera was moved so that it focuses on a small part of the
scene. Here the automatic adjustment greatly improves shadow quality since the
shadow map now also focuses on the important part of the scene. Figure 4.8(b)
shows the normal depth map, as it would look with an un-optimized frustum,
whereas Figure 4.8(c) shows the depth map as it is generated with our method.
It can be seen that the light frustum is slightly over-estimated. This is due to the
resolution of the control texture. An even tighter fit can be achieved by repeating
the control texture rendering several times, so that the frustum converges near the
optimum.

2For a detailed description of the algorithm please see [Pirzadeh99].
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(a) adjusted vs. normal

(b) frustum settings (c) depth map

Figure 4.7: Scene rendered with light frustum adjusted.



4.2 Concentrating on the visible part 59

(a) adjusted vs. normal

(b) normal depth map (c) focused depth map

Figure 4.8: Camera close-up.
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4.3 Discussion

In this chapter we have shown how the accuracy of shadow mapping can be greatly
enhanced using a light source frustum that adapts to the actual camera view and
depth values that are uniformly spaced between the light source’s near and far
plane. Since we clamp depth values rather than clipping geometry we can in-
clude shadow casters that are not visible from the camera view without stretching
the light frustum, thus restricting depth precision to the visible part. On recent
graphics cards, depth clamping can also be implemented using fragment programs
(Section 2.3.3), instead of the texture setup proposed here. Recently, some cards
also directly support depth clamping, e.g. NVIDIA’s GeForceFX.

The tight fitting light frustum is not only useful for shadow maps based on
William’s original work. When using e.g.Perspective Shadow Maps, as presented
by Stamminger and Drettakis [Stamminger02], we can also concentrate this type
of shadow map on the visible and illuminated parts of the scene, which should
improve the sampling ratio even further.

Using color-encoded depth values, precision can be improved by using his-
togram equalization, which concentrates depth samples to regions where they are
actually needed. Also the often problematic user-defined shadow test bias is not
needed when using the average depth of the first and second depth values.
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Shadow Map Filtering

The previous chapter proposed several techniques that can be used to adjust the
shadow map to the actual scene parameters and enhance the distribution of depth
values. However, shadow mapping suffers especially from undersampling artifacts
when it comes to higher frequency parts, a problem that was not addressed so far.

As explained in Section 3.2.4, Reeves et al. [Reeves87] proposed a way of
filtering shadow maps using so calledpercentage closer filtering(PCF), which
basically performs several shadow tests for each pixel and outputs the percentage
visibility value, based on the outcome of the shadow tests. Recently, some graphics
cards directly support PCF, which greatly enhances shadow quality when using
shadow maps in real-time rendering.

In this chapter we will show how Reeves’ approach can also be implemented in
hardware supporting only the standard OpenGL feature set. Our algorithm there-
fore relies on Heidrich’s [Heidrich99] color-encoded depth maps, introduced in
Section 3.2.4.

Besides Reeves’ original idea, we also present a variant calledFast PCF, which
is especially suitable for real-time applications.

5.1 Hardware-based Percentage Closer Filtering

A special PCF implementation can be realized by extending the color-ramp shadow
mapping technique. In Heidrich’s approach, only one shadow test for each frag-
ment is performed, which will result in blocky shadow edges when the shadow
map resolution is too low. In order to filter the shadow map, we would need to
calculate the area occupied of the projected pixel in the shadow map, and perform
several shadow tests over this region, which is not possible on standard OpenGL
hardware.

However, it is possible to use PCF if we assume a constant filter region, e.g.
a 2×2 footprint, which is the smallest, symmetric filter size. For this we have to
compare each pixel’s z against four z values stored in the shadow map.
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Figure 5.1: Stratified sampling and pixel packing.

For a constant footprint we are able to generate a shadow map where each entry
consists ofn components and wheren is the number of samples per footprint.
Given a 2×2 footprint the four components can simply be stored using the red,
green, blue, and alpha channel of the texture image. For the generation of the
shadow map this means that we have to render the scene four times where in each
pass only one color channel is enabled for writing and the image plane is jittered
as depicted in Figure 5.1. This stratified sampling scheme increases the effective
resolution by a factor of two in each dimension, so instead of a 1024×1024 one
component shadow map we have now generated a 1024×1024 shadow map with
four depth values per texel.

Given such a packed shadow map it is relatively easy to adapt Heidrich’s alpha-
based shadow test since we only have to extend the one component scheme to four
components (RGBA).

During the shadow test passes we first render the scene as seen by the camera
but since we want to compare the surface point’s depth against every component
in the shadow map we replicate the z values over all four color channels. Next,
the projection of the shadow map is done as before. This corresponds to Reeves’
comparison step, resulting in a four component shadow mask.

In order to compute one scalar value per pixel which should represent the per-
centage shadowing, we have to count the non zero values in the shadow mask and
divide this sum by the number of samples taken per pixel. All this can be performed
within a single framebuffer to framebuffer copy.
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0 64 64 64 64

0 64 64 64 64

0 64 64 64 64

0 63 63 63 63

RGBA Color Table Color Matrix

R = unused

G = unused

B = unused

A = R+G+B+A
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Shadow in
Alpha !

Figure 5.2: Computing the percentage of shadowing.

Assuming a color depth of 8 bits per component, we setup the OpenGL imaging
pipeline as depicted in Figure 5.2. At first, incoming values are transformed using
a RGBA color table. This clamps values to either 0 (completely lit) or 64, which
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represents 25% shadow in total1. Second, a simple 4×4 color matrix is used to
sum up the contributions of all color channels and to pass out the result as the new
alpha value. After this, five different levels of shadowing per pixel are stored in
the alpha channel of the framebuffer: 0% shadowed (lit), 25%, 50%, and 75% for
partially shadowed pixels and 100% for pixels that are completely shadowed.

This algorithm works very well for footprints of size 2×2 since all components
can be processed simultaneously using the four color channels. If it comes to larger
filter sizes, e.g. 3×3 or 4×4, the algorithm needs to be split up into parts of a
maximum of four components per texel. The resulting contributions can then be
summed up using the accumulation buffer [Haeberli90].

Although theoretically possible, filter sizes greater than 2×2 are no longer
practical for interactive or real-time applications. Considering a filter region of
4×4, the generation of the shadow map would require 16 rendering passes and
four RGBA texture maps to store the results. During the shadow test, another eight
passes are necessary to perform the subtraction plus up to four framebuffer copies
and accumulation buffer operations.

5.2 Fast PCF for Real-Time Applications

In Section 5.1 a hardware-based algorithm for percentage closer filtering using
Reeves’ original method was proposed. However, for real-time applications this
method requires way too much hardware resources, especially when it comes to
larger filter sizes. In this section we present a slightly modified version of Reeves’
PCF that overcomes these limitations.

Considering the generation of the shadow map, a footprint ofn×n reduces the
effective resolution by a factor ofn in each dimension. For hardware graphics
this means that we either have to use a very large shadow map or need to render
the scene several times to different color channels. Since the number of rendering
passes and the image resolution are critical for real time frame rates,real PCF is
not well suited for very complex and dynamic scenes or machines with limited
hardware resources.

A faster way of performing percentage closer filtering can be achieved if we
try to retain the effective resolution of the shadow map and use a filtering scheme
that softens shadow boundaries by just looking at adjacent texels to compute the
shadow mask.

To do this, we render the shadow map using a 1D color ramp texture (as ex-
plained in Section 3.2.4), but instead of using only one color channel we store the
encoded depth values in all four channels. Next, we want to generate a packed
shadow map where each texel consists of four adjacent pixels as shown in Figure
5.3. Collecting neighboring pixels in that manner is not a trivial task since most

1Using a value of 63 in one of the color channels ensures that the value for completely shadowed
pixels sums up to 255.



64 Chapter 5: Shadow Map Filtering

Red Green

Blue Alpha

Figure 5.3: Fast PCF filtering and pixel packing.

rasterization hardware does not provide efficient methods for changing the posi-
tion of pixels2. One exception to this is the OpenGL Imaging Subset, which does
provide a method for performing convolutions on image data in either one or two
dimensions. In the case of a 3×3 RGBA convolution the new color of a pixelP′ is
computed as

P′
i j =

2

∑
m=0

2

∑
n=0

CmnPm+1,n+ j , (5.1)

whereC is the 3×3 RGBA convolution filter andP a specific pixel in the input
image. This weighted sum can be adapted to perform the pixel packing as depicted
in Figure 5.3 if we setup the filter kernel to collect only one color component for
each color channel. Using

C =

 [0,0,0,0] [0,0,0,0] [0,0,0,0]
[0,0,1,0] [0,0,0,1] [0,0,0,0]
[1,0,0,0] [0,1,0,0] [0,0,0,0]


the resulting pixel valueP′ consists of the red channel taken from the lower left,
the green channel from the lower mid pixel and so on. Although one column and
one row of the filter kernel is not used at all, we prefer filter sizes with odd widths
and heights, e.g. 3×3 or 5×5, since graphics hardware is normally optimized for
this kind of filter sizes3.

After this convolution, which is applied when we copy the framebuffer con-
tents to the RGBA shadow map, we have packed four depth samples into a single
texel. This differs from the pixel packing scheme presented in Section 5.1 since the
resolution remains constant (using only one rendering pass for the shadow map).

Performing the shadow test and computing the percentage shadowing term is
very similar to the hardware-based PCF algorithm in Section 5.1, except that the
texture coordinates need to be slightly offset by(ds

2 , dt
2 ) (see Figure 5.4) to account

2Apart from some global methods, e.g. for scaling image data.
3This is due to the fact that most image processing convolutions, e.g. Gaussian blur, are symmet-

ric and pixel centered.
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t

Figure 5.4: Texture coordinate offset.

for the new center pixel (since the convolution filter packs the lower left part as the
new center pixel, as illustrated in Figure 5.3).

Having only one rendering pass for the shadow map generation, it becomes
affordable to use larger filter sizes. In the case of a 4×4 footprint we can split
up the computation into four shadow mapping phases and use the accumulation
buffer to sum up the results. For each pass we use a 3×3 convolution that samples
either the upper left, upper right, lower left, or lower right 2×2 region as explained
before. With this multipass method, 4∗5 = 20 shadowing levels can be generated.

5.3 Results

We have implemented the described methods on Silicon Graphics Octane VPro/8
and O2 workstations using OpenGL as an underlying graphics API. Since the exe-
cution time of the algorithms depends on high polygon throughput (rendering the
scene several times from different points of view) and high fill rates (framebuffer
and texture map copies) this kind of machines, which are optimized for both classes
of applications, are ideal platforms. Furthermore, a hardware-accelerated OpenGL
imaging pipeline, needed for the fast PCF algorithm presented in Section 5.2 is
only supported on mid- and high-level graphics workstations.

A comparison of the different variants of shadow filtering techniques is de-
picted in Figure 5.5. In order to make differences more noticeable, a small part
(red rectangle) of each image is magnified. The scene consists of about 7000 poly-
gons and was rendered using an image resolution of 800×600 pixels with normal
OpenGL lighting and one light source enabled.

Starting from left to right, the first image shows the result without shadow
map filtering. Using a shadow map resolution of 512×512 pixels, undersampling
artifacts at shadow boundaries are quite noticeable (blocky edges). On an SGI
Octane VPro/8, this scene can be rendered at about 25−30 frames per second4.

The second column shows the same scene but this time with percentage closer
filtering applied as described in Section 5.1. With only three more grey levels,

4All times presented here include the generation of the shadow map (as in fully dynamic scenes).
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(a) without filtering (b) normal PCF, 2×2 (c) fast PCF, 2×2 (d) fast PCF, 4×4, mul-
tipass

Figure 5.5: Comparison of shadow filtering techniques.

the shadows look much more realistic. The shadow map still has a resolution of
512×512, but since we used a 2×2 filter, which requires four rendering passes
during the shadow map generation phase, we virtually increased the resolution by
packing four depth values into a single texel. Frame rates using this method drop
down to about 10 fps, which is due to the three additional rendering passes needed
for shadow map generation.

With fast percentage closer filtering enabled (Section 5.2), we can achieve in-
teractive frame rates of about 15−20 fps. Using a 2×2 footprint combined with
the modified pixel packing method, shadow boundaries are well smoothed (Figure
5.5(c)) resulting in an image quality comparable to the normal PCF method.

The last column shows the result of fast percentage closer filtering using a 4×4
footprint. Having about 20 different levels of shadowing, blockiness is very much
reduced. As described in Section 5.2, filters of sizes larger than 2×2 need to be
implemented using multipass rendering and an accumulation buffer to sum up the
results. Due to this, a frame rate of only 5 fps can be achieved. If we restrict our-
selves to stationary lighting, the shadow map generation becomes a precomputing
step which makes PCF with filter sizes larger than 2×2 affordable.

Figure 5.6 shows another example scene. On the left side the scene was ren-
dered without filtering. Although the shadow map resolution was increased to
1024×1024 pixels, the shadow boundaries are still very blocky. Using fast PCF
with a filter size of 2×2, shadow boundaries appear well smoothed (right). The
rendering times are about 15 versus 10 frames per second.
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(a) without filtering (b) fast PCF, 2×2 filter

Figure 5.6: Test scene.

5.4 Discussion

In this chapter we showed how Reeves’ percentage closer filtering can be ap-
plied for hardware-based shadow map rendering. With this approach, shadows
of high quality can be rendered at interactive or real-time frame rates. As the al-
gorithm makes intensive use of the OpenGL imaging extensions, a hardware-only
implementation is currently only possible for certain graphics workstations. For
consumer-class PC graphic cards additional memory transfers from frame buffer
to host (and back) are necessary to emulate imaging operations in software.

When discussing the algorithm we did not address sampling artifacts due to the
limited depth resolution. When encoding depth values as color values we loose a lot
of precision because of the (normal) 8 bits per color channel. A solution to this is
already possible since some architectures, e.g. SGI’s Octane VPro or InfiniteReal-
ity, support color depths of 12 bits per channel. Recent PC-class graphics hardware
supports offscreen buffers with even floating point precision, but do normally not
support a fully hardware-accelerated implementation of the OpenGL imaging sub-
set. As shown in the previous chapter, we can enhance depth precision by using the
histogram refinement or Woo’s second depth idea. Combining these method with
the PCF algorithm proposed here allows us to use high-quality shadow mapping
on graphics hardware that does not directly support it.
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Chapter 6

Dual-Paraboloid Shadow
Mapping

One main argument that often leads people to prefer shadow volumes over shadow
mapping is the limitedfield-of-viewwhen generating a suitable shadow map for
a given point light source. In cases where a point light source radiates over the
complete hemisphere or even omnidirectional, traditional shadow mapping (using
only a single depth map) fails.

The only solution to this problem so far is to use more than one shadow map.
In the worst case, up to six shadow maps must be used to cover the complete en-
vironment [Dietrich01]. Although these maps can be represented as a cube map
(resulting in a single texture lookup when performing the shadow test), this ap-
proach still requires up to six rendering passes when generating the shadow maps,
making it unsuitable for interactive or real time applications.

In this chapter we present a method to perform shadow mapping for hemispher-
ical and omnidirectional point light sources using only one (hemispherical) or two
(omnidirectional) rendering passes for the generation of the shadow map and one
final rendering pass to perform the shadow test. Similar to the traditional shadow
mapping technique, all steps of the algorithm can be implemented using graphics
hardware.

6.1 Shadow Mapping for Hemispherical and Omni-
directional Light Sources

Shadows generated with the traditional shadow mapping algorithm are limited to
the view frustum used when generating the shadow map, as depicted in Figure
6.1(a).

Since all relevant occluder geometry is inside the frustum shadows are gener-
ated as expected. This setup is useful if the light source has a spotlight charac-
teristic (only objects inside the spotlight cone are illuminated) but fails if the light
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(a) (b)

Figure 6.1: (a): Traditional shadow mapping frustum. (b): Multiple shadow
maps for field-of-view of 180◦ (hemispherical).

source is hemispherical or omnidirectional (field-of-view>= 180◦). The trivial so-
lution to handle such cases would be to use a number of shadow maps that together
cover the whole environment seen by the light source.

Figure 6.1(b) shows such a setup for a light source with a viewing angle of
180◦(hemispherical). In order to cover Object A as well as Object B the environ-
ment needs to be subdivided in a cube like manner where a separate shadow map
is used for each side of the cube1. While this setup can be efficiently rendered if
the graphics hardware supports cube map textures (as explained in [Dietrich01])
the generation of the (up to six) shadow maps is still too expensive.

The solution to this problem is quite simple: In order to minimize the cost
of generating shadow maps we have to find a way of computing a shadow map
that covers the whole field-of-view of the given light source. Since the sampling
rate should be somehow constant to avoid changes in shadow quality we have to
choose a parameterization that fulfills this criterion and that is also easy to compute
(hardware-accelerated rendering).

We can find such parameterizations in the field of environment mapping, which
approximates global illumination by precomputing a so calledenvironment map
[Blinn76] which is later used to determine the incoming light for a given direction
(reflection vector). Although there exist a vast number of 3D-to-2D mappings
(used toflatten a panoramic environment into a 2D texture map), only a small
subset is really appropriate for hardware accelerated rendering:

Spherical Mapping. For a long time this was thestandardparameterization used
to represent environment maps [Haeberli93]. This parameterization can be
simple explained by imagining a perfectly reflecting mirror ball centered
around the object of interest. Although this parameterization only has one

1Since only one hemisphere will be lit, only five sides of the cube are needed.
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point of singularity, the sampling rate varies significantly since pixels get
extremely distorted towards the perimeter of the flattened sphere.

Blinn/Newell Mapping. A different parameterization of the sphere was proposed
by [Blinn76]. Here 2D coordinates(u,v) are computed using a longitude-
latitude mapping of the direction vector. Although this approach does not
introduce as much distortion as the previous sphere mapping technique, it is
not commonly used due to the expensive longitude-latitude mapping (which
involves computingarctanandarcsin).

Cube Mapping. As already mentioned in previous section, the cube map param-
eterization [Voorhies94] is very popular since it does not require any re-
warping to obtain images for the cube faces. Many graphics cards (e.g.
NVIDIA, ATI) directly support texture fetching using cube maps. Again the
main disadvantage are the number of rendering passes during the generation
phase, making this method nearly unusable for dynamic environments.

(Dual-) Paraboloid Mapping. Another parameterization was proposed by Hei-
drich and Seidel [Heidrich98b]. Here the analogy is the image obtained by
an orthographic camera viewing a perfectly reflecting paraboloid. When
compared to sphere or cube mapping, this parameterization introduces less
artifacts because the sampling rate only varies by a factor of 4 over the com-
plete hemisphere. For 360◦views, two parabolic maps can be attached back
to back.

When comparing these different environment mapping techniques, it becomes
obvious that the parabolic parameterization would be among the best choices for
hemispherical and omnidirectional shadow maps due to the following properties:

• Sampling ratio varies only by a factor of 4.

• One map covers one hemisphere

• Easy to implement (described in Section 6.2)

In the next sections we will describe the concept of paraboloid mapping in
detail, first using the mathematical interpretation and later with respect to graphics
hardware (implementation).

6.1.1 Theory of Paraboloid Mapping

As described by Heidrich and Seidel [Heidrich98b], the image seen by an ortho-
graphic camera facing a reflecting paraboloid

f (x,y) =
1
2
− 1

2
(x2 +y2) ,x2 +y2 ≤ 1, (6.1)

contains all information about the hemisphere centered at(0,0,0) and oriented
towards the camera(0,0,1). This function is plotted in Figure 6.2(a). Since the
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paraboloid acts like a lens, all reflected rays originate from the focal point(0,0,0)
of the paraboloid.

(a) (b)

Figure 6.2: (a): Paraboloid f (x,y) = 1
2−

1
2(x2+y2). (b): Using two paraboloids

to capture the complete environment.

In order to capture the complete environment (360◦), two paraboloids attached
back-to-back can be used, as sketched in Figure 6.2(b). Each paraboloid captures
rays from one hemisphere and reflects it to one of the two main directions.

To use the paraboloid as a 3D-to-2D mapping scheme all we have to do is
finding the pointP = (x,y,z) on the paraboloid that reflects a given direction~v
towards the directiond0 = (0,0,1) (or d1 = (0,0,−1) for the opposite hemisphere).
Using Equation 6.1 we find the normal vector atP to be

~n =
1
z

 x
y
1

 . (6.2)

Since the paraboloid is perfectly reflecting we simply calculate the halfway vector
~h which is equal to~n up to some scaling factor. Using~h and Equation 6.2 we can
now formulate the 2D mapping of~v:

~h = ~d0 +~v = k ·

 x
y
1

 vz≥ 0. (6.3)

For vz < 0 d0 gets replaced byd1 which corresponds to the other hemisphere
(paraboloid).

6.1.2 Dual-Paraboloid Shadow Mapping

As shown in Equation 6.3 the paraboloid mapping can be used to parameterize
one hemisphere using 2D coordinates(x,y). These 2D coordinates can of course
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also be used to perform a shadow map lookup. Instead of computing a perspective
projection(x/z,y/z) all we have to do is to use the new mapping instead.

It is clear that this won’t work alone because we still need some scalar value
representing the depth of a pixel for the actual shadow test. Since the dual approach
already divides the environment into positive and negativez regions, we can get
along by just using the distance between the given surface point and the center of
the paraboloid(0,0,0). This way we extended the original paraboloid mapping to
be a 3D-to-3D mapping which retains all information relevant for shadow mapping.

Hemispherical Point Light

In the case of a point light source with a field-of-view of 180◦ one paraboloid map
is capable of storing all relevant depth information that can be seen by the light
source. The shadow map is generated by first calculating the transformation that
translates the light’s position to(0,0,0) and rotates the light direction (main axis)
into eitherd0 or d1. For all surface points in front of the light source we compute
the 2D coordinates (x andy of halfway vector scaled toz= 1) and store the point’s
distance to the origin (light source) at that shadow map position.

During the actual shadow test surface points get first transformed to the new
light source coordinate system. If the transformed point is in front of the light
source we calculate the paraboloid coordinates and compare the stored depth value
with the actual distance of the point to the origin. The point is now in shadow if
the stored depth value is less than the actual computed one. Otherwise the point is
lit.

Omnidirectional Point Light

For light sources that illuminate the complete environment (360◦ ) we have to use
the dual-paraboloid approach since one paraboloid map only covers one hemi-
sphere. To generate these two maps we compute the transformation that brings
the point light to the origin(0,0,0). For all surface points we first have to check
which map is responsible for storing the information. Based on the sign of thez
component we choose either thefront-facing2 paraboloid withd0 = (0,0,1) or the
back-facingone withd1 = (0,0,−1). After this test the shadow map position and
entry is computed as before (using eitherd0 or d1 to compute the halfway vector)
and stored in the selected shadow map.

When performing the shadow test all we have to do is to transform the surface
point to the light source coordinate system, choose the corresponding shadow map
andd0/1 based on the sign of thezcomponent and do the shadow map test as in the
hemispherical case.

2The termsfront- andback-facingare non significant and only used to divide the environment
into two regions.
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6.2 Implementation

Heidrich and Seidel [Heidrich98b] showed that dual-paraboloid environment map-
ping can be implemented on standard graphics hardware (e.g. using OpenGL
[Segal98]). Since they used a preprocessing step to compute the environment
map it is not obvious how paraboloid maps could be generated for fully dynamic
environments. One, although very time consuming way would be to first gener-
ate a cube map (six rendering passes) and re-sample those images as described in
[Blythe99]. Although this could be implemented using graphics hardware it would
still be too slow for real time applications.

To speed up this generation phase the obvious way would be to render an im-
age using the paraboloid mapping instead of the perspective projection normally
used. Rasterization hardware renders triangles by perspective correct interpolation
(homogeneous coordinates). Since this part of the hardware is fixed, we cannot
directly map pixels to new positions as the paraboloid mapping would require.

However we can accept this linear interpolation if we assume that the scene
geometry is tessellated fine enough. In this case we can simply transform the ver-
tices of triangles according to the paraboloid mapping since the interpolated pixels
won’t differ too much from the exact solution due to the fine tessellation.

Mapping vertices according to the extended paraboloid mapping (2D coordi-
nates and depth value) can easily be implemented using the so called programmable
vertex engines [Lindholm01] available on state-of-the-art graphics cards (see Sec-
tion 2.3.2). These vertex programs operate on a stream of vertices and replace the
former fixed vertex pipeline (transformation, lighting, texture coordinate genera-
tion etc.) by a user-defined program. These programs are usually directly evaluated
on the graphics hardware resulting in high speed and high flexibility.

6.2.1 Generation of Paraboloid Shadow Maps

Implementing the generation phase for one paraboloid shadow map using vertex
programming is straight forward since the programming model supports all opera-
tions needed. However we have to be careful about numerical stability. Since we
want to include only those pixels that a really part of the hemisphere belonging to
the chosenz axis (d0 or d1) we have to find a way of culling away unwanted pix-
els. Theoretically this test could be based solely on the range of valid coordinates
x2+y2≤ 1 (Equation 6.1). For the implementation this fails due to numerical prob-
lems: When usingd0 = (0,0,1) the normalization for points withz→−1 would
break due to the singularity at this point. If we would hand down theseundefined x
andy coordinates to the rasterization engine it would result in an undefined polygon
being rasterized. The solution to this is a per-pixel culling test. During generation
of the shadow map we calculate an alpha value based on thez coordinate of the
transformed vertex. This alpha value is mapped to an unsigned value[0;1] by an
offset of 0.5. Using the alpha test we can now cull away pixels based on the sign of
thez coordinate which corresponds to either the front- or back-facing hemisphere
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being rendered.
With this scheme we can now implement a vertex program to generate a paraboloid

shadow map for one hemisphered0 according to the following pseudo-code3:

P′ = Mlight ·Mmodel·P
P′ = P′/P′

w

output alpha = 0.5+ P′
z

zscale
/* for alpha test */

lenP′ = ||P′||
P′ = P′

lenP′

P′ = P′+d0 /* halfway vector */

P′
x = P′

x
P′

z
/* x paraboloid coordinate */

P′
y = P′

y

P′
z

/* y paraboloid coordinate */

P′
z = lenP′−znear

zfar−znear
+zbias /* distance */

P′
w = 1
output position = P′

First the incoming vertex is transformed and normalized by itsw component.
Next, an alpha value∈ [0;1] is computed by scaling thez component by some
user-defined constant (e.g. light’s far planezfar) and biasing it by 0.5 to conserve
the sign ofz. Using an alpha test functionα ≥ 0.5 pixel values belonging to the
opposite hemisphered1 are culled away.

Finally, we compute the paraboloid coordinatesP′
x andP′

y as described previ-
ously. ForP′

z we assign the scaled and biased distance fromP′ to (0,0,0). Due
to the precision of the depth buffer we have to use appropriate scaling and biasing
factors here, similar to the selection of near and far clipping plane when using a
perspective projection4. To avoid self shadowing artifacts we also have to move the
zcomponent slightly away from the light source using a bias valuezbias (similar as
in [Reeves87]).

Generating a shadow map for the opposite hemisphered1 is trivial since we
only have to flip the sign ofP′

z after the transformation step and use the parameter-
ization ofd0 as before:

P′ = Mlight ·Mmodel·P
P′

z =−P′
z

. . .

6.2.2 Shadow Mapping with Paraboloid Shadow Maps

Implementing the shadow test using paraboloid mapping is as trivial as the gener-
ation step. In the case of an omnidirectional point light we compute the mappings

3Instead of the assembler code we choose a more readable form here.
4Computing the distance to the origin means that we have near and far clippingspheresinstead

of planes.
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for P′
0 (directiond0) andP′

1 (directiond1) and assign these as texture coordinates
for texture unit 0 and 1. This step requires an additional scale and bias operation
since texture coordinates need to be in the range of[0;1].

In addition to this we also have to compute a value for selecting the right
paraboloid map. By computing an alpha value based on the sign of thez com-
ponent ofP′

0 we can later select the appropriate texture map by checkingα ≥ 0.5.

Finally the normal OpenGL vertex operations (camera transformation, per-
spective projection, lighting, additional texture coordinates etc.) are applied.

In pseudo-code the vertex program for rendering from the camera view using
two paraboloid shadow maps will look like this:

P′
0 = Mlight ·Mmodel·P
output alpha = 0.5+

P′
0,z

zscale
. . .
P′

0 = P′+d0 /* hemisphere (0,0,1) */
. . .
texcoords0 = 0.5+0.5·P′

0 /* texcoords ∈ [0;1] */
P′

1 = Mlight ·Mmodel·P
. . .
P′

1 = P′+d1 /* hemisphere (0,0,−1) */
. . .
texcoords1 = 0.5+0.5·P′

1 /* texcoords ∈ [0;1] */
normal OpenGL calculation for

lighting and vertex position

During the texturing stage we select the appropriate shadow test result depend-
ing on the computed alpha value:

if(α ≥ 0.5)then
res = tex0 /* 1 for lit, 0 for shadow */

else

res = tex1 /* 1 for lit, 0 for shadow */
endif

outputRGB= res ·full illumination +
(1−res) ·ambient illumination

This can be implemented using programmable texture blending (e.g. NVIDIA’s
register combiners [NVIDIA02]) which is available on all state-of-the-art graphics
cards.

For hemispherical point lights only one texture unit is used for shadow mapping
and the result of oneif-clause setsres= 0 (one hemisphere always in shadow).
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6.3 Results

We implemented and tested our shadow mapping technique on an AMD Athlon
Linux PC equipped with a NVIDIA GeForce3 64Mb graphics card using OpenGL
as a graphics API. This cards supports vertex programs, programmable texture
blending and also multitexturing with up to four texture units. This way we can
include the shadow test when rendering the final scene while still having two (or
three) texture units left for the scene’s textures.

As stated in previous sections, the number of rendering passes is two for hemi-
spherical point lights (one shadow map generation and one final rendering pass)
versus three for a omnidirectional light source (two for generating two hemispher-
ical shadow maps and one final rendering pass using two texture units for the
shadow test).

Figure 6.3 shows a scene illuminated by an omnidirectional point light source
located in the middle of the room. This scene was directly imported from 3D
Studio Max and only the wall polygons have been tessellated further (each wall
subdivided into 64 quads) to avoid the interpolation problems addressed in Section
6.2. On a GeForce3 this scene can be rendered in real time (> 30 frames per
second) including dynamic update of shadow maps at each frame (three rendering
passes in total).

Figure 6.4 shows the results for a hemispherical light source located at the top
of the room. As in Figure 6.3 only the surrounding walls and the floor polygon
had been further subdivided. In this example an additional texturing unit is used
to include the scene’s textures in the final pass. This scene can also be rendered at
real time rates (one shadow map generation pass and one final pass).

Both examples had been rendered using a resolution of 512 by 512 pixels for
both, shadow maps and final image. Shadow quality can be further improved by
generating high resolution maps using offscreen buffers.

6.4 Discussion

In this chapter we have shown that the dual paraboloid approach presented by
[Heidrich98b] can easily be adopted for shadow mapping. This approach is well
suited for hemispherical and omnidirectional light sources. By utilizing advanced
graphics cards features the algorithm runs completely in hardware and uses only a
minimal amount of rendering passes.

Although the algorithm fails for very large polygons due to the linear interpo-
lation performed during rasterization this is in most cases no problem: For games
and other interactive applications most geometry is already very high-detailed. The
only exception to this are large polygons representing walls, floor, ceiling etc.
These polygons could either be further tessellated or simply ignored during the
shadow map generation phase. Later is valid in cases where the visible part of the
scene is bounded by such polygons, meaning those parts of the scene won’t cast
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visible shadows anyway.
Since our method differs from the traditional shadow mapping approach only

in terms of parameterization, we are able to apply all known quality improvements
(e.g. percentage closer filtering [Reeves87]) without any efforts.
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Figure 6.3: Left: Scene illuminated by an omnidirectional point light (located
in the middle of the room). Middle column: The two paraboloid shadow maps
used (shown as grey scale images). Right column: The two hemispheres as
seen by the light source.

Figure 6.4: Left: Scene illuminated by a hemispherical point light. Right
column: Shadow map and light source view (paraboloid mapping).
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Chapter 7

Extended Light Maps

Recalling the different shadow map algorithms in the previous chapters it becomes
clear that shadow mapping is very well suited for hardware-accelerated render-
ing. This is especially due to the fact that the shadow map itself can be generated
using rasterization hardware, so no additional effort has to be made during this
step. Since the shadow map generation phase does only compute thez values of
the frontmost pixels, a large number of hardware resources, e.g. texture mapping
capabilities, remain unused during this step.

In this chapter we describe a technique that combines the power of light map-
ping with the traditional shadow mapping algorithm in a very efficient way. Light
maps are precomputed textures that are either directly mapped onto the surfaces or
projected into the scene, as done by [Segal92]. Light mapping is mostly used to
overcome the limitations imposed by poor per-vertex lighting (e.g. to render high
quality specular highlights on large polygons) but is also suitable for special effects
like simulating slide projectors [Heidrich98a].

We call this combination anextended light map, since we add an additional
shadow channel to the RGB light map. In the following sections we describe our
approach in more detail, give some example applications and finally show some
results. As an underlying graphics API we refer to the OpenGL rendering pipeline
[Segal98, Woo99] and some of the extensions proposed by [NVIDIA02], but it
is also possible to map the algorithm to other graphics APIs such as Microsoft’s
DirectX [Microsoft00].

7.1 Extended Light Maps

Modern graphics hardware is capable of rendering large polygonal models with
several simultaneously applied textures and lights at real-time frame rates. How-
ever, as speed and quality increases, it is always important to utilize as much hard-
ware resources as possible in a single rendering pass to achieve good looking re-
sults at high frame rates. The idea of rendering with extended light maps is simple
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but very efficient: To compute shadows using the traditional shadow map approach,
one has to render the whole scene as seen by the light source position. Normally
this is done by rendering the scene and reading back the depth buffer which is
later used as a shadow map texture. In the case of utilizing graphics hardware this
approach is far from being efficient: rendering the geometry is expensive and no
lighting or texture mapping had been applied at this time, which e.g. means that
some ultra-fast T&L (transform and lighting) circuits as well as several texturing
units had been wasted.

The solution to this dilemma is simple: during shadow map generation, we also
compute parts of the illumination of the frontmost surface and combine the result-
ing light map with the computed shadow map. This has the advantage that much
more surface detail can be achieved during the final rendering pass. While perform-
ing the normal shadow mapping, which is done via projective texture mapping, we
can also apply our precomputed illumination information to lit pixels (pixels that
pass the shadow test) at nearly no additional cost.

An extended light map is basically a two-channel 2D texture image storing
information as seen by a point light source. The first channel, which we call the
light channelconsist of RGB triples representing some kind of lighting information
of the frontmost surface (as seen from the light source). The second channel, called
theshadow channel, is used to store the depth (z value) of this frontmost surface.
This channel is usually stored in the alpha channel of the extended light map and
is later used to determine which pixels are lit and which ones are in shadow.

7.1.1 Shadow Channel

Our shadow mapping implementation is based on the color-coded shadow mapping
technique described by [Heidrich99] (see Section 3.2.4). The main idea of this al-
gorithm is to encode depth values in the alpha channel of the framebuffer. During
shadow map generation, the whole scene is textured using a 1D texture map repre-
senting a linear ramp between 0 and 1 in the alpha channel. With automatic texture
coordinate generation enabled, one can computezvalues in light source space and
map these into the alpha channel. This image is stored away in a 2D texture map
and will later be projected into the scene. For the final shadow test the scene is now
rendered as seen by camera, but this time with two textures enabled: one is the 2D
shadow map from the previous pass (which holdsz values of the frontmost pixels
as seen by the light source), while the other is the linear ramp 1D texture which
now generates thez values in light source space of the frontmost pixels as seen by
the camera. Using state-of-the-art graphics hardware, e.g. NVIDIA’s register com-
biners [NVIDIA02], the shadow test can now be performed by subtracting these
two values and using a conditional test: a pixel is in shadow, if the camera’szvalue
is greater than the corresponding shadow map entry. Otherwise the pixel can be
seen by the light source and will be lit.
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Shadow Mapping using the Fog Computation

Since our main goal is to utilize as much hardware resources as possible during the
shadow map generation pass, we use a slightly modified version of the alpha based
shadow map algorithm. Instead of using a 1D texture one could also use OpenGL’s
fog computation in order to mapz values to alpha values. Fog is normally used to
fade away objects as the distance to the eye increases. To do this, OpenGL com-
putes the so calledfog factor. Beside some exponential functions, the fog factor
can also be configured to decrease linearly as the distance to the eye increases1. In
this mode, the fog factor is computed as

f =
end−|z|

end−start
,

whereend andstart are user defined scalar values. Settingstart andend to the
light source view’s near and far clipping plane,f gives us the same linear mapping
as the 1D alpha texture (beside the fact that the mapping is now from 1 to 0 as the
distance increases). To avoid numerical problems we also slightly offset (bias) the
z values so that lit pixels don’t shadow themselves in the final rendering pass. The
bias is applied by simply subtracting a small positive value (biasz) from both, the
endandstart value. So the fog factor will be computed as

f =
light f ar −biasz−|z|
light f ar − lightnear

.

Instead of blending incoming fragments with this fog factor, we directly storef in
the alpha channel. Using this method, we don’t need any texture mapping units
during the generation of the alpha shadow map.

It should be pointed out that this fog based approach can only be applied during
the shadow map generation pass. This is due to the fact, that fog is calculated in
eye space. Since we needz values in the light source coordinate system we still
have to use the 1D mapping in the final pass, because there is no way to transform
zvalues before the fog factor is computed. A possible extension for future graphics
hardware would be some kind of user-defined reference plane for fog computation,
so that we can perform shadow mapping without any ”helper” textures.

7.1.2 Light Channel

Precomputing Illumination

One possible use of extended light maps is the precomputation of illumination.
Havingz values encoded in the alpha channel, we still have theRGBchannels left
to store the result of the lighting and texturing computation. Using only ambient
and diffuse illumination, we could simply enable the light source, store the result-
ing color values and map them onto the scene in the final pass. In the case of

1Note that the distance is computed as the distance to the eye plane(0,0,1,0).
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specular reflections this would be incorrect, because the computation of specular
highlights is done using the so calledhalfway vector, which is the normalized vec-
tor between viewing and light direction. These would always be the same since
we are rendering the scene as seen by the light source. The idea is to separate the
specular part from the calculation of ambient and diffuse illumination. To get the
correct halfway vector we simply use an additional light source for the specular
contribution which is placed at the final camera position. With this setup we have
just swapped the meaning of ”viewing direction” and ”light direction” during the
light map generation step , but this swap operation has no effect on the halfway
vector anyway.

What is now incorrect is the computation of the spotlight effect and attenuation.
The spotlight effect, which describes some kind of intensity fall off with respect to
the main spotlight direction, would now be computed using the camera’s direction.
There are two solution to this problem. One would be to simply ignore the spotlight
effect and have the additional light source act like a point light source, while the
other solution involves some kind ofspotlight texture, as described by [Segal92].
The later has the benefit, that spotlight textures are applied on a per-pixel basis and
therefore usually look much more convincing then the per-vertex spotlight effect
computed by OpenGL. If a spotlight texture is used, it should be applied to both
light sources, not only to the specular one.

To solve the problem of correct attenuation one could also use some kind of
1D texture map, representing the combination of constant, linear, and quadratic
fall off, but this would probably be a waste of resources. A cheap approximation
could be achieved by moving the specular light source along the camera direction
so that the distance to objects is nearly equal to the distance as seen by the light
source position.

Environment Mapping

The light channel could also be used to map all kinds of reflections onto the front-
most surfaces. OpenGL supports various methods for computing texture coordi-
nates suitable for environment mapping. Nearly all of the them are calculated using
the reflection vector

r = u−2nnTu

which is based on the vectoru pointing from the origin to the vertex and the current
normal vectorn. If we want to use these texture coordinates during the light chan-
nel generation phase, we have to ensure that the reflection vectors are calculated
in the camera’s eye space, not in light source space. We can achieve this using a
matrix setup that is normally a ”don’t do” in OpenGL programming. For the actual
viewing matrix, we use the camera viewing matrix. This yields correct eye space
coordinates during the texture generation phase. For the projection matrix, we con-
catenate the light’s projection and viewing matrix and also multiply the inverse of
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the camera’s viewing matrix to the right. So the setup is something like

Viewing = Cview

Projection = Lproj L viewC−1
view .

This enables us to render the scene from the light source view, but with all eye
space computations done in the camera’s eye space, which is important for proper
calculation of texture coordinates used for environment mapping. One drawback
of this approach is that also the fog computation or the 1D ramp texture used for
shadow testing will no longer be performed in light source space. So we have to
be careful that the coordinate system used during the generation of the shadow
channel is somehow compatible to the one used in the final shadow test phase.

7.2 Results

We have implemented the approaches described in this chapter using a standard PC
with a NVIDIA GeForce2 GTS 32MB graphics card. This card is able to perform
up to two texturing steps simultaneously and does also support the NVIDIA register
combiner extension [NVIDIA02].

Figure 7.1 shows the result of using two extended light maps to illuminate a
given scene. During the generation phase, lighting and texturing is computed and
stored away in the light channel of the extended light map. In the final rendering
pass, only geometry with no additional lighting or texturing is rendered, so every
surface detail is part of the extended light maps. Even at very high resolution
(1024×1024 pixels for the extended light maps) the scene can still be rendered at
real-time frame rates on a NVIDIA GeForce2 GTS. Rendering this scene requires
four passes in total (two for the generation of the extended light maps plus two for
the final image).

In Figure 7.2 the light channel is used to perform some kind of environment
mapping for the sphere in the center of the room. This scene uses three passes
in total, one for the generation of the extended light map, one for normal lighting
and object textures plus one final pass to apply the extended light map. Reflec-
tions are rendered using a precomputed cube map [NVIDIA99] where the six faces
correspond to the wall, ceiling and floor textures.
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(a) final image

(b) light ch. 1 (c) shadow ch. 1 (d) light ch. 2 (e) shadow ch. 2

Figure 7.1: A scene illuminated by two extended light maps.
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(a) final image

(b) light channel (c) shadow channel

Figure 7.2: A simple scene with one extended light map used for environment
mapping.
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7.3 Discussion

In this chapter we presented a way of combining shadow maps with light maps. The
benefit of this approach is that additional hardware resources are available during
the shadow mapping step. These additional resources can be used to achieve better
image quality while reducing the number of rendering passes normally needed for
these kind of effects. It has to be pointed out that this precomputed light channel
will only be applied to lit pixels, since information is only available for pixels seen
by the light source. So in the case of environment mapping it is not possible to
have reflections appear in shadowed regions. Another problem related to accurate
shadowing is the resolution and depth of the framebuffer. In our implementation
the maximal size of an extended light map was 1024×1024 pixels. This is enough
for most applications but in order to achieve high quality images it would be nec-
essary to use high resolution offscreen buffers or the ability to render directly into
textures, which is currently only possible on some SGI workstations and on a few
PC graphics cards. The framebuffer’s depth is also important to achieve reasonable
shadow quality for highly detailed scenes. Most of the graphics hardware available
today is still using 8 bits for each color channel. This results in a very poor sam-
pling quality of depth values. Using floating point offscreen buffers available on
some newer PC-cards color and depth precision is no longer an issue.
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Chapter 8

Shadow Volumes for
Interactive Global Illumination

While the previous part of this thesis was dedicated to the shadow mapping tech-
nique, we will now switch to the secondmain shadow method that is used in
hardware-accelerated rendering today: shadow volumes. In contrast to the image-
based shadow mapping technique, the shadow volume method performs all calcu-
lations in object-space, resulting in very precise shadowing information.

In the context of high-quality rendering, e.g. in architectural applications, very
precise lighting calculations are needed in order to obtain physically meaningful
results. This can be achieved by using global illumination techniques that approxi-
mate the global light transport within an environment. Without going into detail, it
is obvious that a major part of any global illumination technique is the computation
of visibility.

In this chapter we will show how hardware-accelerated shadow volumes can
be combined with a global illumination system. In our hybrid rendering system,
we choose to compute the direct illumination (including shadows) using graphics
hardware, whereas the more complicated indirect illumination is calculated using
software rendering. Since our system is dedicated to the rendering of very complex
scenes, we support only point light sources where all direct illumination can be
computed in hardware. More complex light source, such as area lights, can of
course be computed using the indirect illumination system.

One main aspect when implementing a rendering system for complex scenes,
which usually consists of many light sources, is the efficient rendering of shadows.
Rather than iterating over individual light sources and accumulating contributions
our implementation precomputes screen-spaced shadow masks that capture shadow
information for groups of light sources, thereby reducing the number of rendering
passes needed. These shadow masks not only store simple boolean visibility (lit or
shadowed) but also quantitative information about the light source’s energy. This
way we can easily integrate non-uniform energy distributions, e.g. given in the
form of goniometric diagrams, into a hardware renderer.
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8.1 Motivation

In order to compute the energy arriving at a given surface, the first task is to deter-
mine the sources of energy, which may be direct sources, such as lights, or indirect
sources, such as reflected light. Given these sources of energy, we then have to
check if energy originating from a given source hits the surface or is blocked by
objects inbetween.

Although we already discussed this shadow problem in the previous chapters,
the computation of shadows in a global illumination system is of special interest.
Previously, we only considered the light sources as the only source of energy and
therefore concentrated on methods that efficiently compute shadows for a rather
limited number of lights. In the case of indirect illumination, these techniques fail
due to the overhead of building up the necessary data structures, e.g. in the case of
shadow maps. Many global illumination systems therefore use geometric methods
or shadow rays to compute visibility.

Due to the enormous numerical calculations involved in global illumination
computations, energy transport (including visibility) is usually computed as an av-
erage value for patches of the scene. Patches are single elements of the scene’s
mesh structure, e.g. triangles or quadrilaterals. Computing a global illumination
solution is therefore directly related to the number of patches in the scene.

Neglecting shadowing, a very course tessellation would be sufficient, since di-
rect and indirect light usually does not contain sharp intensity changes. Adding
shadowing, the scene’s mesh structure is directly related to the shadow quality.
Since blocking geometry introduces high-frequency intensity changes, one can
only achieve accurate shadow boundaries by a very fine mesh tessellation or a
mesh refinement strategy that generate patches with edges aligned to the shadow
boundaries, a method known as discontinuity meshing [Heckbert92].

As seen in the previous part of this thesis, shadows in interactive, dynamic envi-
ronments can be generated very efficiently using the shadow map technique. How-
ever, due to the image-based nature of this method, sampling artifacts are likely
to occur, even when advanced filtering techniques and better parameterizations are
used or the resolution of the shadow map is increased.

In Section 3.2.5 we introduced Crow’s shadow volumes [Crow77] as one of
the most popular object-space shadow methods that can be efficiently mapped
to graphics hardware using the stencil-counting scheme proposed by Heidmann
[Heidmann91]. The main benefit of using shadow volumes is that this approach
generates pixel correct shadow boundaries, which is very important for high-quality
rendering.

Since our focus is on the direct illumination part of the system, especially in
the shadow part, we will only briefly describe the indirect illumination method. A
more detailed description of the whole system can be found in [Dmitriev02].
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8.2 Global Illumination

The global illumination part of our hybrid rendering system is based on Quasi-
Monte Carlo photon tracing and density estimation techniques.

Our system exploits temporal coherence of illumination by tracing photons
selectively to the scene regions that require illumination update. Such regions are
identified by a small number of so called pilot photons. Based on the pilot photons
which require updating, we detect photons with similar paths due to periodicity in
the multi-dimensional Halton sequence, which is used to generate photons.

If not all invalid photons can be updated during a single frame, frames are
progressively refined in subsequent cycles. The order in which the photons are
updated is decided by inexpensive energy- and perception-based criteria whose
goal is to minimize the perceivability of outdated illumination.

8.3 Direct Illumination

For computing the effect of direct illumination we chose to use OpenGL-compliant
graphics hardware. Instead of restricting ourselves to the fixed function pipeline of
standard OpenGL we utilize programmable vertex and pixel hardware to gain the
highest qualitative and most efficient rendering possible. Our current implementa-
tion is customized to run on NVIDIA GeForce3 graphics cards, but can of course
also be implemented on any other card with similar features (e.g. ATI’s Radeon
series).

One main aspect of image quality is the accurate representation of shadows.
Although shadow mapping[Williams78] is directly supported by the graphics hard-
ware it is problematic due to its sampling problems. Another disadvantage is that
for dynamic environments shadow maps change very often which would lead to
a huge amount of regeneration passes. We therefore prefer the shadow volume
algorithm proposed by Crow[Crow77] since it

• generates very precise shadows by performing calculations in object space,

• can be efficiently implemented using graphics hardware, and

• is appropriate for dynamic environments.

For complex scenes the generation of shadow volumes, which requires finding
the silhouette edges of all objects with respect to the light source, is quite expen-
sive. By exploiting temporal coherency of shadow volumes we can limit the regen-
eration of shadow volumes to those objects that are moving and reuse the volumes
of all static objects from the previous frame.

Our shadow volume implementation is based on the hardware stencil buffer
scheme presented by Everitt et al. [Everitt02], which solves the problematic cases
of shadow volumes intersecting the near clipping plane.
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With normal OpenGL the shadow volume algorithm would requireN+1 ren-
dering passes whereN is the number of shadow casting light sources. However
using programmable features available on recent graphics hardware we are able to
collapse up to 4 passes into a single one. This is done by first rendering the scene’s
geometry as seen by the camera, resulting in having the depth values of the front
most pixels in the depth buffer. After this we loop over the first four light sources
where in each step we first initialize the stencil buffer and draw shadow volumes
with the corresponding stencil operation (increment/decrement). The content of
the stencil buffer, which corresponds to the shadow test result, is then copied to
one of the color buffer channels (red channel for first light, green channel for sec-
ond, etc.) and the stencil buffer is initialized for the next light source. After this
loop we obtain a RGBAshadow maskcontaining the shadow information for up to
four light sources.

In the final rendering pass we then render the scene once again but this time
using a customized vertex program [Lindholm01] which instead of summing up all
lighting contributions for a given vertex uses additional output attributes that hands
out the illumination for light sourceL0...3 separately. These values will then be
linearly interpolated over the primitive (triangle) and passed to the texture blending
stage.

Having the shadow mask as an projective RGBA texture we can apply the
shadow result separately for each of the four light sources and output the total
illumination as the pixel value.

out = indirect+ illum(L0) ·maskR+ illum(L1) ·maskG + . . .

For more light sources this approach can be extended by simple multipass render-
ing. So forN light sources we have to generatedN/4e shadow masks. Another
dN/4e passes are needed to compute the illumination. These passes can then be
summed up using additive blending or the accumulation buffer.

This shadow mask scheme is not only very efficient but also enhances image
quality. Using the normal loop scheme, the contributions of all light sources need
to be summed up using either the accumulation buffer or additive blending. Since
both operations are performed at the end of the pixel pipeline precision is limited
to (normally) 8 bits per color channel, whereas our approach sums up at an earlier
stage in the pipeline where precision is much higher. Accuracy is also increased
for N > 4 since we use the accumulation buffer (or additive blending) for groups of
four light sources rather than summing up the contribution of individual lights. An-
other advantage is that our method does not suffer from z-fighting artifacts which
normally occur when rendering the scene several times.

8.3.1 Goniometric Diagrams

In order to achieve realistic image quality we also choose to support complex point
light sources with non-uniform directional power distribution. Description of these
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goniometric diagrams are available in standardized formats and are essential for
accurate lighting computations.

We include these distributions by re-sampling from the standard format to a
cube map texture [Voorhies94], which can efficiently store the complete 360o view
of a point light source and which is supported by the graphics hardware. Figure 8.1
shows an example of a goniometric diagram represented as a cube map texture.

(a)

-x -z +x +z

-y

+y

(b)

Figure 8.1: Goniometric Diagram.

Restricting ourselves to monochromatic goniometric diagrams we can include
these as an additional scaling factor for the local illumination of a given light
source. Referring to Equation 8.1 themaskscaling factor, which was considered
to be either 1.0 for lit and 0.0 for shadowed pixels, can be used to perform this
additional scaling. In the first rendering pass we render using the appropriate cube
map textures and store the scaling factors in one of the color channels. Using four
texture units and RGBA masking we are able to generate these for 4 light sources
simultaneously. When copying the result of the shadow test back to the color buffer
we set all pixels to 0.0 where the shadow test succeeded. Although the dynamic
range of these textures is limited to 0.0 to 1.0 this method still improves image
quality significantly while introducing only a minimal overhead. Using textures
with floating point precision, available on very recent graphics boards, the full dy-
namic range of the goniometric diagrams is available. But this precision does not
come for free, since floating point textures consume up to four times more memory.

8.4 Results

Figure 8.2 shows some example images obtained from our hybrid rendering system
running on 1.7 GHz Dual P4 Xeon processors, and an NVIDIA GeForce3 64 MB
video card.
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Figure 8.2(a) consists of about 12.400 mesh elements and is illuminated by
four light sources with goniometric diagrams. Figure 8.2(b) illustrates the shadows
volume boundaries generated. For this scene we obtain frame rates of about 8
fps, which includes the display of indirect lighting and direct lighting with shadow
computations performed by the graphics hardware. Our current implementation
does not support triangle strip generation which affects the refresh rate figures,
however, this is not a limiting factor for the performance of indirect lighting display
which is refined at an even slower pace.

A more complex scene is shown in Figure 8.2(c). Here the scene consists of
about 377.400 mesh elements and two light sources with goniometric diagrams.
An interactive session using this scene runs at about 1 fps.

(a) room (b) shadow volumes

(c) house

Figure 8.2: Interactive session snapshots.
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8.5 Discussion

In this chapter we presented a hybrid rendering system for interactive rendering of
complex environments, such as architectural scenes. We showed how shadow vol-
umes can be used efficiently for a number of light sources by storing the visibility
information for groups of light sources in so called shadow mask textures rather
than iterating and accumulating individual light source contributions. One main
aspect of our shadow volume implementation is the support of non-uniform light
source distributions. By including these quantitative information into the shadow
masks we can improve visual quality of the rendered images without major perfor-
mance loss.

For future work we would like to further improve the efficiency of our OpenGL
renderer. This can e.g. be achieved by using connected primitives, such as trian-
gle strips, rather than individual mesh elements. Also, for more complex scenes,
hardware-based occlusion culling mechanisms will definitely help to improve ren-
dering speed.

Concerning the shadow volume implementation, there are a number of im-
provements possible. First of all, silhouette generation is still performed on the
host processor, consuming computation resources which could otherwise be used
by the indirect illumination part of the renderer. In Chapter 9 we will present a
fully hardware-accelerated shadow volume implementation (including silhouette
detection), that could solve this problem.
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Chapter 9

Shadow Volumes on
Programmable Graphics

Hardware

In the previous chapter we have shown that stencil-based shadow volumes can
be used to generate precise, high quality shadows. This is due to the fact that
shadow information is generated in object space, meaning that shadow information
is available for every window-space pixel. Achieving information that precise is
hardly possible with a sampling based method like e.g. the different shadow map
approaches we have seen in the first part.

But this accurate shadow information does not come for free. Generating the
necessary silhouette information can put a heavy load on the CPU, and rendering
the extruded shadow volumes on graphics hardware can easily exhaust fill rate
capabilities.

Another problem is the hybrid nature of this algorithm. In order to produce
accurate shadow volumes, both, the CPU and the graphics hardware have to be
synchronized. This not only refers to the data transfer, but also, most importantly,
to a consistent numerical precision during all calculations.

Nowadays thisperfectsynchronization becomes even more important. Recent
graphics hardware exposes powerful programming features that allow nearly arbi-
trary operations on both vertex and pixel data. When using these programmable
features in conjunction with shadow volumes the silhouette extraction performed
on the CPU becomes even more problematic.

In this chapter we address these issues and present a method for implementing
the whole algorithm on the graphics hardware. Migrating the silhouette extraction
to graphics hardware solves a number of issues:

• All calculations are performed on the same hardware, resulting in consistent
precision.
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• Shadowing objects can be used with programmable vertex processing in the
same manner as with fixed transformation processing.

• Applications gain more CPU time, since resources which were formerly ded-
icated to silhouette extraction are released.

• Rendering with shadow volumes no longer needs to be synchronized with
CPU and graphics hardware, minimizing potential idle time on both pro-
cessing units.

• Silhouette extraction is performed on large chunks of data in parallel (bulk
processing), which results in enormous speed up.

• Using the shadow volume approach in an application becomes very simple
since only trivial, local preprocessing of the objects needs to be performed.
This is especially important forgeneralscene graphs, where silhouette ex-
traction would require traversal of all possible transformation and deforma-
tion nodes.

9.1 Motivation

Recalling the different steps of the stencil-based shadow volume algorithm (see
Section 3.2.5), it becomes clear that silhouette detection and shadow volume ex-
trusion are the only steps that still have to be performed on the CPU. This can not
only become a bottleneck if shadow casting objects are highly tessellated, but is in-
deed problematic if the input geometry will be deformed by the graphics hardware.
Current state-of-the-art graphics boards provide powerful, programmable vertex
processing units (vertex programs) [Lindholm01] which can be used for nearly
arbitrary geometric transformations, e.g. displacement mapping or matrix palette
skinning. Using vertex programs in conjunction with shadow volumes requires the
CPU to emulate all vertex processing in the same way as it is actually done by the
graphics hardware.

As a consequence, detecting silhouette edges is no longer a trivial and fast
operation since vertices and face normals have to be re-calculated at every frame in
the worst case. Also numerical differences can lead to strange artifacts, e.g. light
leaks. As an example, the result of calculatingsqrt(x) can significantly differ since
CPU and graphics hardware may use different approximations.

Another bottleneck when using the common hybrid approach is that CPU and
graphics hardware need to be synchronized such that all shadow volumes are gener-
ated when the graphics hardware is ready to render them. Especially in applications
like games the CPU is more and more dedicated to handle input events, artificial
intelligence or sound, and all graphic-related work should ideally be done by the
graphics hardware. Therefore keeping these two processing units asynchronous
reduces potential idle time on both.
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In the following sections we will show how silhouette detection and shadow
volume generation can be implemented on programmable graphics hardware, which
solves the described problems.

9.2 Silhouette Detection

In the first step of our hardware implementation we need to bring the actual geo-
metry and the light sources into a common coordinate system. We will choose to
transform both to world space, which is view-independent and also, with respect
to the scene geometry, reusable for different light sources.

Since all graphics cards perform a combined transformation which also in-
cludes the viewing transformation, we begin by setting the viewing matrix to iden-
tity. This way every vertex is transformed to world space. Secondly, every vertex
in the scene is assigned a unique index number, so that it can later be referenced
by its index. For objects which are referenced multiple times, e.g. an object placed
in the scene at different locations, we need to ensure that vertices with different
transformations also obtain different indices.

With these vertex indices we are now able to dump the world space coordinates
of each vertex to the graphics hardware. The result of this step is a texture, in
which each texel stores the world space positions of one vertex. The mapping of
a vertex to its position in the texture is defined by the vertex index. To retain as
much precision for the vertex positions as possible, we use a 4-channel (RGBA)
offscreen buffer with floating point precision as output buffer.

We will now explain how this step can be implemented with the help of a vertex
program: Instead of rendering filled primitives, like triangles or quadrilaterals, only
the vertex itself is rendered as a point. We use the vertex program to compute the
position (x,y) in the output buffer from the vertex index (passed along as a vertex
attribute) and specify the result as the output position for the vertex. This way each
vertex gets rendered as a single pixel at the position (x,y). The final task now is to
set the color at position (x,y) to the corresponding vertex’s world space coordinates.
Since the vertex color output of a vertex program gets clamped to[0. . .1], we
output this value using one of the unclamped output registers, e.g. one of the 4D
texture coordinates, and then map it to the color register in a fragment program.
Note that the vertex’s world coordinates include all vertex transformations (i.e.
modeling or procedural transformations). This step is graphically explained in
Figure 9.1 (Step 1).

The next task in our algorithm is the classification of possible silhouette edges.
Assuming that all meshes used in the scene are well-modeled (2-manifold), mean-
ing that there are no open edges and every edge connects exactly two triangles,
the silhouette test only needs four vertices and the light source position(s) as input
data. Two vertices are used to locate the edge itself whereas the remaining two are
used to construct the two triangles that meet at the given edge.

As explained in Section 3.2.5, the silhouette test consists of checking the front-
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and back-face condition of the two triangles with respect to the given light source.
Our implementation is therefore straightforward: Given the connectivity infor-

mation (edges) for all meshes we also assign all edges an unique identifier (index),
used for later referencing. Since connectivity and index numbers remain constant,
this can be implemented as a preprocessing step.

To detect silhouette edges, we use a brute-force approach that tests every edge
in every frame during runtime (except for simple cases, where scene and light
sources remain constant). Doing this on the host processor can be quite expensive,
but on the graphics card, which can be seen like a SIMD-like (single instruction,
multiple data) processor, this is an efficient operation running in parallel.

Like in the world space transformation step, we render all edges as single
points. As before, these points represent the index number of a given edge, and
have no real geometric meaning. Along with the index number describing the po-
sition where to store the result of the edge computation, we also pass all relevant
input data for the given edge as additional per-vertex (point) attributes. As stated
before, this input data consists of a total of four indices referring to the points
that make up the two adjacent triangles. Since the light source position remains
constant for all edges, this parameter is set globally.

Testing if a given edge is a silhouette edge is now trivial: We bind the dumped
vertex positions as a 4-component floating point texture map and use the four in-
dices to get the world space coordinates of all points. Since texture lookups are
only possible in the fragment (pixel) processing step, this has to be implemented
as a so called fragment shader.

For both triangles that meet at the given edge we calculate the plane equations
and compute the signed distance to the light source position. If the signs of the two
distances differ, the edge is marked as a silhouette edge. Since the edge’s vertex
ordering has to be preserved for later steps, we also compute a flag indicating
whether the vertex ordering of the front facing triangle corresponds to the order of
the edge’s vertices.

The result of the silhouette detection, which are two binary flags, are then writ-
ten to the framebuffer as a color-coded value at the edge-index position.

9.3 Generation of Shadow Volumes

Generating and rendering the shadow volumes using the results of the previous
steps is now straightforward.

In a preprocessing step we generate quadrilaterals for all edges, but instead of
using the object’s vertex coordinates and transformations, each vertex has a total
of three indices and one flag:

• Two indices referring to the world space position of the edge’s two end
points.
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• One index referring to the silhouette flag and the vertex-ordering for the
given edge.

• A flag (yes/no) indicating whether the vertex should lie on the edge or should
be extruded to infinity. Each quadrilateral has two points on the edge and two
points that have to be moved to infinity.

Since we only want to render quadrilaterals for silhouette edges, the silhouette flag
is used as a trivial reject. If the edge is not a silhouette edge, we move all vertices
outside the viewing frustum, e.g. behind the viewer, so that the complete primitive
is clipped away. For silhouette edges we either directly output the world space
position, or, if the extrusion flag is true, we move the vertex to infinity with respect
to the light source direction. Choosing one of the edge’s vertices is based on the
vertex-ordering flag, which preserves a consistent winding order.

All these steps are implemented as a vertex program and therefore are fully
hardware-accelerated. The generated shadow volumes are similar to those gen-
erated on the CPU and can now be used for the stencil-based counting scheme.
Figure 9.1 illustrates the different steps of the hardware-based shadow volumes
algorithm.

9.4 Implementation

We implemented the described algorithm on an ATI Radeon 9700 graphics card
using OpenGL. This card supports all the programmable feature, like vertex and
fragment programs with floating point precision, as well as floating point offscreen
buffers and textures.

For the first step, we use a floating point RGBA offscreen buffer and modify
all of the scene’s shaders (vertex programs) such that instead of using the original
vertex position the index number is used to calculate (x,y) pixel coordinates and the
world space position is written out to the framebuffer. Currently this is a manual
step but can simply be automated by a script that generates the modified shaders.
Since only the world space position is relevant during this step, we can further
optimize it by analyzing which computations inside the shader affect the position
and remove all other operations that are only relevant for e.g. the output color or
texture coordinates.

For computing the silhouette and vertex-ordering flags, an offscreen buffer with
less precision (e.g. RGB with eight bits per channel) is sufficient. By rendering
all edges as points and using the offscreen buffer of the previous step as a 2D
texture map, we can obtain the four world space position by sampling this texture
at the exact integer positions (vertex indices). The light source position is specified
as a global parameter. The fragment shader then computes the plane equation
and tests for the front-/back-facing condition and the vertex ordering flag. In the
previous sections we only discussed the silhouette detection for one light source.
However, the fragment shader can easily compute the flags for several light sources
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Input: original mesh

Store position at vertex index (render-to-texture)

Step 1: transform vertices to world space

P0 P1

PN

Two indices for edge, two indices for adjacent triangles
Step 2: process edges

Get world space positions from Step 1 texture and check
front-face / back-face condition.
Store result at edge index (offscreen buffer)

Use offscreen buffer from Step 2 as vertex attribute
array (silhouette flag) and Step 1 buffer as vertex
position array.

Step 3: render shadow volume quads

for each edge {
  if silhouette flag is true
      extrude
   else
      move quad outside view
}

Figure 9.1: Workflow for hardware-based shadow volumes.
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simultaneously. The number of light sources that can be checked during this step
is only limited by the maximum instruction length of the fragment shader and the
number of bits available in the offscreen buffer. Since the results for one light
source needs two bits, a standard RGB buffer can store the results for up to 12 light
sources.

Rendering the shadow volume quadrilaterals requires the results of the two
previous steps as input. Since the vertex extrusion and the trivial reject has to be
performed before rasterization, this has to be implemented as a vertex program.
Unfortunately, there is currently no fast path to access the required data in the
vertex program directly. For our algorithm we therefore would propose one of the
following features:

• Texture access during vertex processing. First attempts in this direction are
made with the release of DirectX 9’s displacement mapping, but a more
general lookup would be necessary for our method.

• A fast, on the card copy from framebuffer to a vertex attribute array. This
could be implemented as a simple copy operation, or ideally ascopy-by-
referencesimilar to therender-to-texturefunctionality.

Due to the lack of the proposed features, we are forced to use a very slow mecha-
nism that transfers the data from the two buffers to host (CPU) memory and imme-
diately downloads the same data as vertex attribute data for our current implemen-
tation.

9.5 Results

Figure 9.2 shows two example scenes with shadow volumes generated using our
hardware approach. For both scenes, three light sources are used and silhouette
edges are detected for all lights simultaneously. In Figure 9.2 (a) the vertex texture
has a size of 128×128 pixels, needed to store the world space positions of the
9326 vertices. The edge buffer has a size of 256×128 which is enough to store
the silhouette flags for the 27627 edges. Figure 9.2 (b) has a vertex texture of size
64×64 pixels (9326 vertices) and an edge buffer of size 128×128. The scenes were
rendered at a window resolution of 512×512 on an AMD Athlon 1GHz machine
equipped with an ATI Radeon 9700 card. For both scenes we obtain frame rates
about 20 fps. The main bottleneck here are the framebuffer read backs. With all
steps running on the hardware (as proposed in Section 9.4) we expect our method
to run considerably faster. Our current implementation should therefore be seen as
a proof-of-concept.

Figure 9.3 (left) shows a more complex example illuminated by three light
sources. Here the geometry of each of the three spheres is displaced by a procedural
noise shader, implemented as a vertex program. Detecting silhouette edges for this
scene on the CPU would be very difficult since the vertex program would need to
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be evaluated on the CPU in order to obtain world space coordinates. Detecting
silhouette edges with our hardware method is as simple as for the previous scenes.
Only small modifications to the noise shader were necessary which ensure that for
each vertex the world space position is passed as a result and the index becomes
the vertex’s pixel position. Here the vertex texture has a resolution of 64×32 (1638
vertices) and the edge buffer has a resolution of 128×64 (4896 edges).

Since the procedural noise shader only computes new vertex positions, the ver-
tex normals no longer correspond to the actual geometry. Therefore the shading
of the three objects looks unrealistic. To avoid strange artifacts we also disabled
self and global shadowing for the three objects. With proper shading normals there
would be a smooth intensity transition into the shadow region.

Figure 9.3 (right) shows the silhouette edges detected for one light source (yel-
low) as well as the generated shadow volumes for all three lights (red).

9.6 Discussion

In this chapter we have shown how to perform the silhouette detection step of the
shadow volume algorithm in hardware. The benefits of this approach are not only
the gain in speed, what is most important is that shadow volumes can now easily
be generated for geometry that is transformed by programmable vertex engines,
as shown in the procedural noise example. The algorithm itself relies on capabil-
ities available on recent graphics cards: programmable vertex and fragment units,
floating point buffers, as well as floating point textures.

An important feature which is currently missing is a fast way to use the con-
tents of a buffer as input for a vertex program, needed when rendering the shadow
volumes. We are confident that future drivers will provide a more general memory
management functionality. First efforts in this direction are already visible with the
upcoming OpenGL 2.0 specification or the so called OpenGLsuper buffers1.

Also, we did not address the problem of shadow volumes that intersect the near
or far clipping plane. A solution to this was presented by Everitt et al. [Everitt02].
As future work we would like to investigate how those special cases can be detected
and efficiently processed using our algorithm.

Another possible application for the silhouette detection presented here is in
the context of non-photorealistic rendering (NPR). Here the silhouette information
could be used to achieve toon-like or pencil drawn shading effects on a per triangle
basis, rather than using image-spaced techniques.

1Seewww.opengl.org for more details on these specifications.
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(a) (b)

Figure 9.2: Two examples scenes with shadows from three light sources.

Figure 9.3: Three spheres deformed by a procedural noise shader and illumi-
nated by three light sources.
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Part III

Soft Shadow Techniques





Chapter 10

Soft Shadow Maps for Linear
Lights

The two previous parts of this thesis showed several ways of efficiently computing
shadows caused by point light sources. All methods presented so far are based
on either the shadow volume method [Crow77] or the shadow map [Williams78]
technique.

Variants to produce soft shadows for linear and area light sources are known
both for the shadow volume and for the shadow map algorithm (see, for exam-
ple [Bergeron86, Brotman84], discussed in Chapter 3). These work by replacing
the linear or area light source with a number of point light sources. In many cases,
the light source does not subtend a very large solid angle as seen from any object
point in the scene. This means that, especially in scenes with mostly diffuse mate-
rials, the local illumination caused by different samples of the light source differs
only marginally, and thus a small number of light source samples should be suffi-
cient. Nonetheless, the number of samples often has to be quite significant to obtain
smooth penumbra regions. This is due to the fact that, withN light source samples,
we obtainN + 1 different levels of shadow: fully lit, fully shadowed (umbra), as
well asN−1 levels of penumbra. Thus we will need to have a large number of
light source samples for scenes with large penumbra regions, or the quantization
into N−1 penumbra regions will become apparent.

In other words, while a small number of samples would be sufficient for the
local shading process, we require a large number of samples to establish the correct
visibility in the penumbra regions. This significantly increases the computational
cost of soft shadows, and makes them infeasible for many interactive applications.

In this chapter, we introduce a new soft shadow algorithm based on the shadow
map technique. This method is designed to produce high-quality penumbra regions
for linear and area light sources with a very small number of light source samples.
It is not an exact method and will produce artifacts if the light source is so severely
undersampled that the visibility information is entirely insufficient (i.e. if there are
some portions of the scene that should be in the penumbra, but are not seen by any



112 Chapter 10: Soft Shadow Maps for Linear Lights

of the light source samples). On the other hand, it produces believable soft shadows
as long as the sampling is good enough to avoid these problems. Figure 10.1 gives
a first example of our technique.

Figure 10.1: Left: approximating a linear light source with two point lights.
Right: our method, also using two light source samples.

10.1 Soft Shadow Maps

We start the discussion of our soft shadow algorithm by considering the simple
case of a linear light source. One property of such a light is that edges parallel
to a linear light source do not have a penumbra region. In other words, there is a
sharp transition from umbra to fully lit regions for these edges. Furthermore, linear
light sources have the advantage that the visibility considerations of a 3D scene
can be reduced to 2D scenes. Consider the intersection of the scene with a plane
containing the light source. If we can solve the visibility problem for all such
planes, i.e. for the whole bundle of planes having the light source as a common
line, then we know the visibility of the light source for all 3D points in the scene.

For a motivation of our soft shadow algorithm, consider the configuration in
Figure 10.2, which contains a linear light source at the top, an occluder and a
receiver polygon. In order to compute the correct penumbra, we have to determine
for each point on the receiver, which percentage of the linear light source is visible
from that point. This percentage is plotted as a function of the surface location at
the bottom of Figure 10.2.

In this simple configuration, it is clear that we have two penumbra regions, one
where the visibility varies from 100% atp1 to 0% atp2, and similarly from 100%
at q1 to 0% atq2. In general, the transition from fully visible to fully occluded
is a rational function, which becomes obvious by considering the simple case of a
single occluder edge, as depicted in Figure 10.3.

Without loss of generality, the occluder edge is located at the origin (the slope
of the occluder is not of importance), the light source is given by the formula
y1 := mx1+t, and the intersection of the receiver with the 2D plane in consideration
is given byy2 := nx2 +s. From the constraintx1/x2 = y1/y2, which characterizes
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Figure 10.2: Top: a simple scene with a linear light source, an occluder and a
receiver polygon. Bottom: the percentage of visible portions of the light source
as a function of the location on the receiver.

the point(x1,y1) on the light source that is just visible from(x2,y2), it follows that

x1 =
x2t

nx2−mx2 +s
. (10.1)

This rational function simplifies to a linear one if the slopesm of the light
source andn of the receiver are identical, i.e. if light and receiver are parallel as in
Figure 10.2.

If light source and receiver are not parallel, the rational function has a sin-
gularity at the point where the receiver polygon intersects the line on which the
linear light source resides. However, this is an area where the penumbra region
collapses to zero size anyway. On the other hand, the regions for which we expect
large penumbra regions are far away from this singularity, and there the rational
function from Equation 10.1 behaves almost like a linear function.

Following these thoughts, the process of computing the soft shadows has now
been reduced to finding the value of a linear approximation of the visibility function
for each point on the receiver, as depicted in Figure 10.2. We would like to do this
with a shadow map algorithm, by replacing the linear light source with a small
number, say two, point lights. Of course, the shadow map for each individual point
light does not have any information about the penumbra regions in the scene.

However, we can texture map the visibility information onto the scene by
adding a second channel to the two shadow maps corresponding to the two point
lights. Like in the original algorithm, the first channel stores the reference depth
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y1=m x1+t

y2=n x2+s
Receiver

Occluder

Light Source

Figure 10.3: A simple scene with a single occluder edge that can be used to
characterize the change of visibility across a planar receiver that is not parallel
to the linear light source.

values of objects as seen from a particular point light. The second, new channel
contains visibility values between 0 and 1 for each of the object points visible from
the corresponding point light. Put differently, the shadow map not only contains
information aboutwhichobject points are visible from a given point light, but also
a percentage value that describeshow muchof the whole linear light source can
be seen by that point. For any given object point, the sum of these visibility terms
from the two point lights should then result in the value of the function plotted at
the bottom of Figure 10.2.

Given two shadow mapsS1 andS2 including such visibility channelsV1 andV2,
one for each of the two point light sourcesL1 andL2, the shading of a particular
pointp in the scene proceeds according to the following algorithm:

shade( p ) {
if( depth(p)> S1[p] )

l1= 0;
else

l1= V1[p] * localIllum(p,L1);

if( depth(p)> S2[p] )
l2= 0;

else
l2= V2[p] * localIllum(p,L2);

return l1+l2;
}

In this piece of pseudo codeSi [p] means looking up the reference depth value
corresponding top in shadow mapi. SimilarlyVi [p] means looking up the visibility
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value forp.

10.1.1 Generating the Visibility Map

The remaining question is, how to generate the visibility channels for the two
shadow maps. The object points in one of the penumbra regions are of particu-
lar interest. In our simple setting, these are the object points seen by one of the two
point lights, but not by both.

Now imagine we take the shadow map from the right sample point, triangu-
late all the depth samples, and warp all the resulting triangles into the view of the
left point light, thereby using the depth buffer to resolve visibility conflicts. This
is similar to an image based rendering algorithm along the lines of post-rendering
3D warping [Mark97]. The resulting image will consist of two kinds of polygons:
those corresponding to the real geometry in the scene, and “phantom polygons”,
sometimes also called “skins”, which result from triangulating across depth con-
tinuities. Both types are depicted in Figure 10.4. The skins are depicted as gray
lines, while the original surfaces are colored black.

Figure 10.4: Top: skin polygons warped from one depth map into the other.
Bottom: visibility contributions for both point lights at each point on the re-
ceiver, using the presented method to generate the visibility channel of the
shadow maps.

While the original polygons are the desired result in IBR and the skins are
an artifact, it is the skins that are of particular interest to us. Wherever they are
visible in the destination image (i.e. in the image corresponding to the left point
light), a penumbra region is located! Moreover, we know qualitatively what the
visibility value should be for points in this region. Since the skins are generated by
depth discontinuities in the source shadow map, they always connect an occluder
polygon and a receiver polygon. Points in the penumbra region that are closer to
the occluder in the reprojected image see less of the linear light than points closer
to the receiver polygon.



116 Chapter 10: Soft Shadow Maps for Linear Lights

If we assume a linear transition between fully visible and fully occluded, as
argued in the previous section, then we can generate the visibility channel as
follows: First, we need to find the depth discontinuities in the shadow map of
the right point light, which can be done using standard image processing tech-
niques [Gonzalez92], and can be performed at interactive speed. The resulting
skins then need to be reprojected into the shadow map of the left point light, and
scan converted using a depth buffer algorithm. At the same time we Gouraud-
shade the skin polygons by assigning the value 0 to vertices on the occluder and
the value 1 to vertices on the receiver. We repeat the whole procedure to project
the discontinuities from the depth buffer of the left point light to the right shadow
map.

A final consideration for the generation of the visibility channel is the treatment
of completely lit and completely shadowed object points. The latter case is simple.
Since points in the umbra are not seen by any of the two light sources, they will fail
the shadow map tests for both point light sources, and therefore be rendered black
(or with an ambient color only). Completely lit points on the other hand, are seen
by both point lights, and therefore we need to make sure that the visibilities for
both lights sum up to 1. One way of doing this is to give these points a visibility
of 0.5 in both shadow maps. This can easily be implemented by initializing the
visibility of each point to 0.5 before starting to warp the skin polygons.

Figure 10.4 shows the contributions in visibility to each point on the receiver
from Figure 10.2 for the two point lights, using the just described algorithm to gen-
erate the visibility channels. Furthermore, Figure 10.5 shows the result of applying
this algorithm to a simple 3D test scene.

Figure 10.5: Center and right: the visibility channel for the two point lights
for the scene on the left.

10.1.2 Linear Light Sources With More Samples

The restriction of this algorithm for generating the visibility map is that object
points seeing portions of the linear light source, but none of the two point lights at
its ends, will appear to lie in the umbra. Moreover, there are situations where this
results in discontinuities, as depicted in Figure 10.6. These artifacts result from
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a severe undersampling of the light source, with the consequence that important
visibility information is available in neither of the two shadow maps.

Figure 10.6: An example of failure due to extreme undersampling of the light
source which causes some portions of the penumbra to end up in full shadow.
These artifacts can only be resolved by increasing the sampling rate on the
light source.

The consequence from this observation is to increase the sampling rate by
adding in one or more additional point lights on the linear light source. For ex-
ample, if we add in a third point light in the center of the linear light, we have
effectively subdivided the linear light into two smaller linear lights that distribute
only half the energy of the original one. If we treat these two linear light segments
independently with the algorithm described in the previous section, we get the sit-
uation depicted in Figure 10.7 for the same geometric setup as in Figures 10.2
and 10.4.

The top row of the figure corresponds to the rendering of the left half, while
the bottom row corresponds to the right half of the linear light. Note that the light
source on the right side of the top row, and the one on the left side of the bottom
row correspond to the same point light, namely the one inserted at the center of
the linear light. Therefore it is possible to combine these two point lights into a
single one with twice the brightness, by summing together the visibility channels
(the depth channels are identical anyway!).

With this general approach we can add in as many additional sample points
on the linear light source as are required to avoid the problems of points in the
penumbra that are not seen by any light source sample. To generate the visibility
channel for one of the sample points, we need to consider only the depth discon-
tinuities (skins) of those samples directly adjacent to this point. For example, in
Figure 10.7, the discontinuities from the rightmost sample do not play a role for
the visibility map of the leftmost sample and vice versa.
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Figure 10.7: By inserting an additional point light in the center, we have effec-
tively reduced the problem to two linear lights of half the length and intensity.
Top row: left half of linear light. Bottom row: right half.

10.1.3 Extension to Area Light Sources

So far, we have exclusively considered linear light sources. Area light sources
provide even more complex and interesting penumbra regions. A simple extension
of the algorithms presented in the preceding two sections to area light sources
works as follows.

We start with a light source consisting of a single triangle. Like in Section 10.1.1
we can simply generate the depth maps for each of the vertices of the triangles,
which is where we place point lights to substitute for the triangular light source.
By finding the discontinuities in these depth maps, generating the corresponding
skins, and warping them to both of the other maps, we can again mark the positions
of the penumbra regions in the respective map.

At this point, some more sophisticated analysis of the geometric configuration
would be necessary to yield a better approximation for the visibility transition be-
tween fully visible and fully occluded. For area light sources, this transition is,
in general, a quadratic rational function, so that the linear approximation used for
linear light sources may no longer be adequate. In our work and in all the examples
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we present here we ignore this fact and use the linear approximation anyway. The
results are surprisingly convincing, as you can see in Section 10.2.

On the other hand, if we had a better approximation of the true function, which
would have to be developed as part of future work, we could integrate it by putting
it into a texture, and applying it to the skin polygons while those are warped to
the respective destination shadow map. This would then replace the Gouraud-
shading we currently use. From this point on, the adaptation of the algorithm to
more complex area light sources comprised of a mesh of triangles, is simple, and
proceeds as described in Section 10.1.2. As mentioned there, we can again merge
the visibility channels of those maps that belong to the same vertex (i.e. point light)
in the triangle mesh. As a result, the number of shadow map tests is identical to the
number of vertices in the triangle mesh.

A special variant of our method is presented by Ying et al. [Ying02]. Here the
authors use the information stored in the visibility channel to approximate the area
of the light source as seen from a given sample point. This is illustrated in Figure
10.8: Given a polygonal, convex light source, we run our algorithm for each edge
of the polygon. This results in a total of five shadow maps (one for each sample
point) and ten visibility maps (two for each edge) that have to be generated.

P0

P0/1

P1

P2

P2/3

P3

P4

P4/0

Figure 10.8: Computing the visibility of a polygonal, convex light source.

Using the shadow maps, we observe that the sample pointsP0 and P2 are
blocked, whereas the other three sample points can be seen. For each edge that
connects a visible and blocked sample point ([P0P1], [P2P3], [P4P0]), the visibility
channel of the visible sample point (P1,P3,P4) tells us at which fraction the given
edge is divided (P0/1,P2/3,P4/0). Given this information, it is now an easy task to
compute the visible area of the light source.
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10.1.4 Soft Shadow Map Implementation

Our soft shadow map technique is based on the color-coded shadow map imple-
mentation presented in Section 3.2.4. Color-coded shadow maps store the depth
value in one (or more) color channels of a regular texture map. This can be achieved
by using automatic texture coordinate generation and a 1D ramp texture which
maps ther component (which corresponds to thez value) to the color channels.
In our implementation we restrict ourselves to 8-bit depth precision and use the
texture’s alpha channel to store the depth value.

If we have an additional visibility channel as described in Section 10.1, we
store it in the luminance channel of the shadow map, so that each map is then
a luminance-alpha texture. We then render the contributions from the individual
light source samples in separate rendering passes, and add up the results. The
pass for each individual light is not much different from the standard shadow map
algorithm. The only change to the algorithm for point lights is that we have to
set up OpenGL to multiply the luminance channel of the visibility channel with
the result from the OpenGL lighting (fragment color). This does not require an
additional rendering pass.

What remains to be done is the generation of the visibility channel. It closely
follows the description in Section 10.1.1. In order to find the discontinuities in
the depth maps, we use convolution with a 3× 3 Laplacian edge detection filter
followed by a thresholding operation. Both operations are also supported by the
OpenGL imaging subset. However, the generation of the geometry for the skin
polygons from the edge enhanced shadow map can only be performed in software.
This requires reading back the framebuffer into main memory, which may cause a
performance bottleneck on low-end systems.

10.2 Results

We have implemented the approaches described in this chapter for two different
hardware platforms. Firstly, we use SGI workstations (SGI Octane, O2 and Visual
Workstation), which all have support for the OpenGL imaging extensions, but not
for features like multitexturing that would help us reducing the number of rendering
passes.

Secondly, we have used an NVIDIA GeForce 256 with DDR RAM. This graph-
ics board supports multitexturing with a flexible way of combining the resulting
colors for each fragment. This allows us to implement the core shadow map al-
gorithm in a single rendering pass. On the other hand, this chip set, like the other
consumer graphics boards, does not yet support the OpenGL imaging extensions,
so that the required features had to be implemented in software. This is slower
than the hardware implementation on the workstations for two reasons. Firstly, the
operations are not parallelized as in the hardware versions, and secondly, we need
to read back the framebuffer contents over the AGP bus to perform the operations.
The resulting bandwidth is the bottleneck of the implementation.
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Figure 10.9: Comparison of different soft shadow techniques. Top row: sim-
ple approximation of the light source by several point lights. Bottom row: the
method proposed in this chapter. Left column: a linear light source approxi-
mated with two samples. Note the artifact introduced where the soft shadows
overlap. This is due to undersampling (see Section 10.1.2). Center: The ar-
tifacts disappear as a third light source sample is introduced. Right: Result
from a triangular area light source.

A comparison of the different variants of our soft shadowing algorithm is de-
picted in Figure 10.9. The top row shows the images that would be generated by
simply approximating a linear or area light source with a number of point lights.
The bottom row shows results from our algorithm with the same number of light
source samples. It can be seen that the quality of the penumbra regions is much
higher in all cases. The left column shows the result from approximating a linear
light source with two samples. It has been chosen such that overlapping penum-
bra regions exhibit the undersampling artifacts described in Section 10.1.2. These
artifacts disappear as a third light source sample is inserted, as shown in the cen-
ter column. Finally, the right column depicts images taken with a triangular area
light source. Although we only use a linear transition between umbra and fully lit
regions, as described in Section 10.1.3, the penumbrae look quite convincing.

Figure 10.10 compares a high-quality solution for the visibility of a scene
with one linear light source, one blocker and one receiver with our method. Fig-
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ure 10.10a shows the solution of a ray-tracer using 200 light source samples to
determine the visibility in every point on the receiver. Figure 10.10b depicts the
result of a software implementation of our method. In contrast to the OpenGL
implementation, the software implementation allows for having the same per-pixel
shading as in the ray-traced image. Figure 10.10c shows a ray-traced solution with
10 uniformly spaced samples for comparison. With a shadow map resolution of
500×500, our method including map generation and rendering of 2×1700 skin
polygons takes about as long as ray-tracing with 6 samples.

(a) ray traced, 200 samples (b) our method, 2 samples (c) ray traced, 10 samples

Figure 10.10: A comparison of ray-traced images and our method.

Figure 10.11 shows some more complex scenes. Once the shadow maps are
computed, the rendering times using our soft shadow algorithm are identical to
those for rendering hard shadows with the same number of point lights. This is true
for all scenes. Therefore, our algorithm can be used for interactive walkthroughs
with no additional cost.

Building the shadow maps in a dynamic environment is obviously more expen-
sive for our algorithm, since the visibility channels need to be generated as well.
This requires edge detection within the depth maps, as well as rendering a poten-
tially large number of skin polygons. The cost of generating the shadow maps
therefore depends on the scene geometry. It varies from< 1/20 seconds for the
simple scene in Figure 10.9 to about 2 seconds for the area light source in the jack-
in-a-box scene in Figure 10.11. These numbers include the time for rendering the
scene to generate the depth maps.

10.3 Discussion

In this chapter we presented a new soft shadow algorithm based on the shadow map
method. It is designed to produce high-quality penumbra regions for linear and area
light sources with a small number of light source samples. We demonstrated that
the method works efficiently and produces high-quality penumbrae for non-trivial
scenes. Furthermore, we showed that the method can efficiently utilize graphics
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hardware for interactive display.
It remains an open research problem to determine the best place to insert sam-

ples into a linear or area light source. Work by Ouellette and Fiume [Ouellette99a]
seems to be a promising starting point for determining those locations where a new
sample point would improve the overall quality of the penumbra regions the most.
Furthermore, the shading of the penumbra for the case of area light sources de-
serves more attention. A linear visibility transition, as used in our method, is not
always a good assumption for this case.
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Figure 10.11: Some more examples.



Chapter 11

Single Sample Soft Shadows
using Depth Maps

As we have seen in the last chapter, the efficient computation of soft shadows
is a very complicated task. The soft shadow maps method described previously
reduces the workload by using only a small number of sample points, e.g. the two
endpoints of a linear light source. To approximate the penumbra caused by an area
light source, even more sample points have to be considered in order to achieve
realistic shadowing effects.

However, for real-time applications, such as computer games, we often do not
necessarily need a physically correct solution rather than a visually pleasing result,
which should give the impression of acorrectsoft shadow computation.

In this chapter we will present a way of computing these kind offake soft
shadows using only sampled images taken from the view of a point light source.
This soft shadow algorithm can be seen as an extension of the classical shadow map
algorithm for calculating hard shadows. Instead of computing only a binary value
(shadowed or lit) for each pixel seen by the camera, our algorithm processes the
neighborhood of the corresponding depth map entry to gather information about
what the shadow might look like in the case of an area light source.

Even though the input data contains no information about the characteristics
of an area light, the resulting shadows are yet of very good quality and give the
impression of a physically plausible computation. Using only a minimal amount
of input data and a very compact algorithm, we can achieve extremely high com-
putation speed. This way we can also utilize graphics hardware and specialized
processor instruction sets.

11.1 Single Sample Soft Shadows

Parker et al. [Parker98] showed how soft penumbra regions can be generated by
defining an extended hull for each possible occluder object. By treating theinner
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object as opaque and having the opacity of theouter object fall off towards the
outer boundary one can dim the contribution of a point light source according to
the relative distances of light, occluder, and receiver. Figure 11.1 illustrates this
scheme.

Figure 11.1: Computing penumbrae for a point light source.

In order to avoid light leaks occurring for adjacent objects the size of the in-
ner object needs to be at least as large as the original occluder geometry. Since
this causes relatively large umbra regions, which would not occur in a physically
correct shadow computation, the approximation still produces reasonably looking
shadows as long as the occluder objects aren’t too small compared to the simu-
lated light source area. Parker et al. implemented this scheme using standard ray
tracing. In this case, it is a comparatively easy task to compute the extended hulls
for primitives like spheres and triangles, and ray intersection directly calculates the
distances to the outer and inner boundaries, which are used to compute a corre-
sponding attenuation factor.

Although it was shown that the algorithm only introduces about 20% of compu-
tation overhead (compared to normal ray tracing), it is still far from being suitable
for interactive rendering. Especially when it comes to more complex scenes, too
much computation is spent on extending the geometric primitives and computing
attenuation factors that later will be discarded.

In the following sections we will show that this method can be adopted to
work on sampled data (depth maps) in a much more efficient manner, while still
achieving good shadow quality.
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11.2 A Sampling Based Approach

Just like the traditional shadow map algorithm presented in [Williams78], we start
with the computation of two depth images, one taken from the view of the point
light source and one taken from the camera. To compute hard shadows we simply
have to compare the transformed z value of each frontmost pixel (as seen by the
camera) to the corresponding entry in the light source depth map, according to the
algorithm shown in Figure 11.2.

foreach(x,y) {
P = (x,y,depth camera[x,y])
P′ =warp to light(P)
if(depth light[P′

x,P
′
y] < P′

z)
pixel is blocked

else
pixel is lit

}

Figure 11.2: Shadow map algorithm.

To modify this method to add anoutsidepenumbra region, we have to extend
theelse branch of the shadow test to determine if the pixel is really lit or lies in
a penumbra region. According to the ray tracing scheme explained in the previ-
ous section, we have to trace back the ray from the surface point towards the light
source and see if any outer object is intersected. If we consider the light source
depth map as a collection ofvirtual layers, where each layer is a binary mask de-
scribing which pixels between the light and the layer got blocked by an occluder
inbetween (hard shadow test result), we can simulate the intensity fall-off caused
by an area light source by choosing the nearest layer toP′

z that is still in front, and
compute the distance between(P′

x,P
′
y) and the nearest blocked pixel in that specific

layer. This is in a sense similar to Parker’s method since finding the minimum dis-
tance corresponds to intersecting the outer hull and computing the distance to the
inner boundary. The main difference is of course that we use a sampled represen-
tation containing all possible occluders rather than the exact geometry of only one
occluder.

Figure 11.3 illustrates the search scheme using a very simple setup consisting
of the umbra generated by an ellipsoid as an occluder and a ground plane as the
receiver polygon. For a given pointP which does not lie inside the umbra, we
first warpP to the view of the light source (P′). Since the original pointP was
somewhere near the umbra, we find the transformed pointP′ in the neighborhood
of the blocker image which causes the umbra. To calculate an attenuation factor for
P, we start searching the neighborhood ofP′ till we either find a blocked pixel or
a certain maximal search radiusrmax is exceeded. The attenuation factorf is now



128 Chapter 11: Single Sample Soft Shadows using Depth Maps

�

���

� ���	��
������� �

���	���	���	��� ���

�

Figure 11.3: Projecting and searching for the nearest blocker pixel.

simply the minimal distancer (or r = rmax if no blocking pixel is found) divided
by the maximal radiusrmax. So f = r

rmax
rises up from 0 (no illumination) to 1 (full

illumination) as the distance to the blocker increases.
In other words, we can now generate smooth shadow penumbra regions of a

given maximal extentrmax. To simulate the behavior of areal area light source,
we now have to define which properties affect the size of the penumbra and how
these can be realized with our search scheme. As widely known, the following two
distances mainly define the extend of the penumbra1:

• the distance between occluder and receiver, and

• the distance between receiver and light source.

For our search scheme the distance between receiver and light source can be
integrated by varyingrmax according to the distance between a given surface point
P and the light source position. Assuming a fixed occluder, a receiver far away
from the light source will get a larger penumbra whereas a receiver near to the
light source will have a smallerrmax assigned.

Taking into account the distance between occluder and receiver is a little bit
tricky: Since finding an appropriate occluder is the stop criterion for our search
routine, we do not know in advance what this distance will be. What we do know
is that the occluder has to be inside the region determined by the maximal extend,
which is computed using the distance between receiver and light source.

In other words, the finalrmax may be less than the initial search radius. For our
search routine this means that we first search the maximal extend since an occluder

1Apart from other properties like orientation of receiver and light source etc.
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pixel is found and then re-scale the initial search radius by a factor computed using
the distance between the surface pointP and the found occluder pixel and use this
rmax as the denominator for computingf (attenuation factor).

Assuming that the position of the point light in light source space is located
at (0,0,0) and that the light direction is along thez axis, we set the initial search
radius

rmax= rscale∗ |P′
z|+ rbias,

whererscale and rbias are user defined constants describing the area light effect2.
Since shadow maps are usually generated for the very limited cut-off angle of
spotlights, the difference of usingP′

z instead of computing an euclidean distance
is negligible. We can now rewrite the hard shadow algorithm to produce soft shad-
ows by simply adding this search function (see Figure 11.4).

foreach(x,y) {
P = (x,y,depth camera[x,y])
P′ =warp to light(P)
if(depth light[P′

x,P
′
y] < P′

z)
pixel is blocked

else
f = search(P′)
modulate pixel by f

}
search(P′) {

r = 1
rmax= rscale∗ |P′

z|+ rbias

while(r < rmax) {
if ∃(s, t) : ‖(P′

x,P
′
y)− (s, t)‖= r∧

depth light[s, t] < P′
z {

rmax∗= rshrink∗ (P′
z−depth light[s, t])

return clamp0,1(r/rmax)
}
else

increase r
}
return 1.0

}

Figure 11.4: Soft shadow algorithm.

In the first loop we iterate over all frontmost pixels as seen by the camera
performing the hard shadow test. For each lit pixel we start a search routine where

2rbias can be used to force a certain penumbra width even for receivers very near to the light
source.
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we search in the light source depth map in order to find a suitable blocker pixel at
a minimal distance to the transformed surface point. If a blocker pixel is found we
then re-scale the initialrmax by a factor computed using the distance between the
surface point and the occluder pixel. An user-defined scaling factorrshrink is used
to give additional control on the effect of this distance.

As can be seen in the pseudo code the describedvirtual layersare implicitly
selected by processing only those pixels in the depth map where a blocker lies in
front of the potential receiver (depth light[s, t] < P′

z).
Up to now we have restricted ourselves to a very simple setup where the re-

ceiver was parallel to the light source image plane. This has the effect thatP′
z

remains constant during the soft shadow search, or in other words, the search takes
place in a constant virtual layer. This is no longer the case if we consider an arbi-
trary receiver as depicted in Figure 11.5.
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Figure 11.5: Wrong self shadowing due to constantz.

If we performed a search on the constant layerz< P′
z we would immediately

end up in the receiver’s own shadow since the receiver plane may cross several
of the virtual layers. This can be seen in the virtual layer image in Figure 11.5
where about two thirds of the layer contain blocked pixels belonging to the receiver
polygon.

To solve this problem, we either have to divide the scene into disjunct occluders
and receivers3, which would make the algorithm only suitable for very special
situations, or we need to supply more information to the search routine. To define
an additional search criterion, which gives the answer to the question ”does this

3Which is e.g. suitable for games where a character moves in a static environment.
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blocker pixel belong to me?”, we follow Hourcade’s [Hourcade85] approach and
assign object IDs. These IDs are identification numbers grouping logical, spatially
related, objects of the scene.

It must be pointed out that all triangles belonging to a certain object in the scene
must be assigned the same object ID, otherwise self shadowing artifacts would oc-
cur if the search exceeded the projected area of the triangle belonging toP. Of
course there are situations where also the ID approach fails, e.g. if distinct ob-
jects are nearly adjacent, but for most real-time applications there should exist a
reasonable grouping of objects.

11.2.1 Handling of Hard Shadow Regions

Up to now we have concentrated on the computation of theouterpart of the hard
shadow region and simply assumed that the hard shadow region is not lit at all. In
the case of an area light source, which we would like to simulate, this is of course
an indefensible assumption. What we would like to obtain is of course a penumbra
region which also smoothes thisinner region. This can be easily achieved if we
apply the same search technique for pixels that are initially blocked by an occluder.
Instead of searching for the nearest blocker pixel within a given search radius we
now have to search for the nearest pixel that is lit by the light source.

To combine this with theouterpenumbra result we assume thatouterandinner
regions meet at an attenuation value of 0.5 (or some user defined constant). The
final algorithm (including the object ID test) that produces penumbra regions can
then be implemented according to pseudo code shown in Figure 11.6.

11.3 Implementation

11.3.1 Generating the Input Data

Since our algorithm relies on sampled input data, graphics hardware can be used to
generate the input data needed for the shadow computation. In a first step we render
the scene as seen by the light source and encode object IDs as color values. For
very complex scenes we either use all available color channels (RGBA) or restrict
ourselves to one channel (alpha) and assign object IDs modulo 2n (n bits precision
in the alpha channel). This gives us the depth map (z-buffer) and the object IDs
of the frontmost pixels according to the light source view, which we transfer back
to the host memory. We then repeat the same procedure for the camera view. If
only the alpha channel is used for encoding the object IDs, we can combine this
rendering pass with the rendering of the final scene (without shadows).

In cases where 8 bits are enough we could also use a special depth/stencil
format available on newer NVIDIA GeForce cards. With this mode we simply
encode IDs as stencil values and obtain a packed ID/depth map (8 bits stencil, 24
bit depth) using only one framebuffer read. Another benefit of this format is that
memory accesses to id/depth pairs are more cache friendly.
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foreach(x,y)
{

P = (x,y,depth camera[x,y])
P′ =warp to light(P)
P′

ID =id camera[x,y]
inner= depth light[P′

x,P
′
y] < P′

z

f = search(P′, inner)
modulate pixel by f

}

search(P′, inner)
{

r = 0
rmax= rscale∗ |P′

z|+ rbias

while(r < rmax)
{
if inner
{

if ∃(s, t) : ‖(P′
x,P

′
y)− (s, t)‖= r ∧

depth light[s, t] >= P′
z ∧

id light[s, t] == P′
ID

{
rmax∗= rshrink∗ (depth light[s, t]−P′

z)
return clamp0,0.5(0.5∗ (1− (r/rmax)))

}
}
else
{

if ∃(s, t) : ‖(P′
x,P

′
y)− (s, t)‖= r ∧

depth light[s, t] < P′
z ∧

id light[s, t] 6= P′
ID

{
rmax∗= rshrink∗ (P′

z−depth light[s, t])
return clamp0.5,1.0(0.5∗ (1+(r/rmax)))

}
}
increase r

}
return inner ? 0.0 : 1.0

}

Figure 11.6: Final algorithm (including inner and outer penumbra).
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11.3.2 Shadow Computation

The actual shadow computation takes place at the host CPU. According to the
pseudo code in Section 11.2.1, we iterate over all pixels seen by the camera and
warp them to the light source coordinate system. Next we start searching for either
the nearest blocker pixel (outer penumbra region) or the nearest pixel that is lit
(inner penumbra region).

Since memory accesses (and the resulting cache misses) are the main bottle-
neck, we do not search circularly around the warped pixel but search linearly using
an axis aligned bounding box. Doing so we are actually computing more than
needed but this way we can utilize SIMD (single instruction, multiple data) fea-
tures of the CPU, e.g. MMX, 3DNow, or SSE, which allows us to compute several
r in parallel. If an appropriate blocking pixel is found (object ID test, minimal dis-
tance), we store the resulting attenuation factor for the given camera space pixel. If
the search fails, a value of 1.0 or 0.0 is assigned (full illumination, hard shadow).

At the end, the contribution of the point light source is modulated by the atten-
uation map using alpha blending.

11.3.3 Improvements

Subpixel Accuracy

When warping pixels from camera to light there are two ways to initialize the
search routine. One would be to simply round(P′

x,P
′
y) to the nearest integer position

and compute distances using only integer operations. While this should give the
maximum performance, the quality of the computed penumbrae would suffer from
quantization artifacts. Consider the case where pixels representing a large area in
camera screen space are warped to the same pixel in the light source depth map.
Since all pixels will find the same blocker pixel at the same distance, a constant
attenuation factor will be computed for the whole area.

Figure 11.7: Computing distances at subpixel accuracy.
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This can be avoided by not rounding to the nearest integer but performing the
distance calculation at floating point precision. As depicted in Figure 11.7, we
compute the distance of the warped pixel (grey) to the next blocker pixels, which
lie at integer position. Quantization artifacts can be further reduced if we also
slightly jitter the integer position of the blocker pixels. In practice we observed
that the latter is only needed for very low resolution depth maps.

Adaptive Sampling

Up to now we only briefly discussed the cost of searching the depth map. Consider
a scene where only 5% of the frontmost pixels are in hard shadow. To compute
accurate penumbra regions we would need to perform neighborhood searches for
95% of the pixels in the worst case4. So for all completely lit pixels we have
searched the largest region (rmax) without finding any blocker pixel. Even with a
highly optimized search routine and depth maps of moderate size it would be very
difficult to reach interactive frame rates.

Instead we propose an interpolation scheme that efficiently reduces the number
of exhaustive searches needed for accurate shadowing. The interpolation starts by
iterating over the columns of the camera depth map. In each iteration step, we take
groups of 5 pixels and do the hard shadow test for all of them. Additionally, we
also store the corresponding object IDs of the blockers, or, in the case of lit pixels,
the object ID of the receiver pixel. Next, we perform a soft shadow search for the
two border pixels in this group. As a criterion for the inner pixels we check if

• the object IDs are equal and

• the hard shadow test results are equal.

If this is true, we assume that there will be no dramatic shadow change within the
pixel group and simply linearly interpolate the attenuation factors of the border
pixels across the middle pixels. If the group test fails we refine by doing the soft
shadow search for the middle pixel and subdivide the group into two three pixel
groups for which we repeat the group test, interpolation and subdivision.

Figure 11.8 shows an example of such an interpolation step. Let us assume that
the object ID of pixel 3 differs from the rest. In the first phase we perform hard
shadow tests for all pixels and soft shadow searches for the two border ones. Since
the interpolation criterion fails (IDs not equal), the pixel group is refined by a soft
shadow search for pixel 2 and subdivided into two groups. Pixel group(0,1,2)
fulfills the criterion and an interpolated attenuation factor is assigned to pixel 1,
whereas for pixel group(2,3,4) we need to compute the attenuation by search. As
we will later also need object IDs for interpolated pixels, we simply use the object
ID of one interpolant in that case. We repeat this for all pixel groups in this and
every 4th column, leaving a gap of three pixels in the horizontal direction.

4Worst case occurs when all pixels are in the view of the light source.
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Figure 11.8: Subdivision and interpolation.

Having linearly interpolated over the columns we now process all rows in the
same manner and fill up the horizontal gaps. This bi-linear interpolation mecha-
nism is capable of reducing the number of expensive searches. In the best case, the
searching is only done for one pixel in a 16 pixel block. Since this case normally
occurs very often (e.g. in fully illuminated areas), we can achieve a great speed-up
using the interpolation. On the other hand, quality loss is negligible or non-existent
because of the very conservative refinement.

The size of the pixel group used for interpolation should depend on the im-
age size. In our experiments we observed that blocks of 4×4 pixels are a good
speed/quality trade-off when rendering images of moderate size, e.g. 512×512
or 800×600 pixels, whereas larger block sizes may introduce artifacts due to the
non-perspectively correct interpolation.

11.4 Results

We have implemented our soft shadow technique on an Intel Pentium 4 1.7GHz
computer equipped with an NVIDIA GeForce3 graphics card. Since the genera-
tion of depth and ID maps is done using graphics hardware, we get an additional
overhead due to the two frame buffer reads needed to transfer the sampled images
back to host memory.

Figure 11.10 shows the results of our soft shadow algorithm for a very simple
scene consisting of one torus (occluder) and a receiver plane. We rendered the
same scene three times varying only the position and orientation of the occluder.

All images in Figure 11.10 were rendered using an image resolution of 512×512
pixels and a light depth/ID map resolution of 256×256 pixels. By default, we al-
ways use the full image resolution when computing the depth and ID map for the
camera view. Frame rates for this scene are about 10−15f ps. Computing only
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the hard shadows (shadow test done on the host CPU) the scene can be rendered at
about 30f ps.

In the left imagermax was set to 20 (20 pixel search radius) for the inner and
outer penumbra. The receiver plane does not reach this maximum (due to the
distance between receiver and light source). The average search radius for pixels
on the receiver plane is about 16 pixels. The effect of increasing or decreasingrmax

for this scene is plotted in Figure 11.9. It must be pointed out that the distance
between occluder and receiver does not affect the initial search radius. Therefore
the cost of computing soft shadows for the three images in Figure 11.10 is nearly
constant.

In the left image artifacts can be seen (ring), where the inner and outer penum-
bra meet. This is because the attenuation factors for inner and outer regions are
computed in a slightly different way (see Section 11.2.1). Theoretically this tran-
sition should be smooth.
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Figure 11.9: Frame rates for the torus test scene (Figure 11.11)

Figure 11.11 (left) shows a more crowded example scene with objects placed
at various heights. It can be seen that objects very near to the floor plane cast
very sharp shadows, whereas the shadows from the three tori are much smoother.
The other two images in Figure 11.11 show the scene with hard shadows and hard
shadows with outer penumbra. Since our soft shadow algorithm is based on the
shadow map technique, we are independent of the scene geometry, which means we
can generate soft shadows for arbitrary geometry. There is no distinction between
receiver and occluder objects (apart from the missing self shadowing due to the ID
test).

Figure 11.12 shows two more complex scenes where we used our soft shadow
algorithm for penumbra generation. In order to assign reasonable object IDs we



11.5 Discussion 137

simply group polygons using the tree structure obtained when parsing the scene
file. This way all polygons sharing the same transformation and material node are
assigned the same object ID. Both images were taken using a low-resolution light
depth/ID map of 256×256 pixels and an image resolution of 512×512 pixel. In
the right image we choose a very large cutoff angle for the spotlight which would
normally generate very coarse hard shadows. Here the subpixel accuracy explained
in Section 11.3.3 efficiently smoothes the shadows. Both images can be rendered
at interactive frame rates (≈ 15f ps).

Note that all the timings strongly vary with the size of the penumbra, so chang-
ing the light position or alteringrmax may speed up or slow down the computation,
depending on the number of searches that have to be performed. When examining
the shape of the penumbrae, one can observe that they do not perfectly correspond
to the occluder shape. This is due to the circular nature of the search routine, which
rounds off corners when searching for the minimal distance.

11.5 Discussion

In this chapter we have shown how good-looking, soft penumbra regions can be
generated using only information obtained from a single light source sample. Al-
though the method is a very crude approximation it gives a dramatic change in im-
age quality, while still being computationally efficient. We showed how the time
consuming depth map search can be avoided for many regions by interpolating at-
tenuation factors across blocks of pixels. Since the algorithm works on sampled
representations of the scene, computation time depends mostly on the shadow sizes
and image resolutions and not on geometric complexity, which makes the method
suitable for general situations.

In its current state the algorithm still relies on a number of user parameters
(rmax, rshrink, etc.) which where introducedad-hoc. As future work we would like to
hide these parameters and compute them based on one intuitive parameter (e.g. the
radius of a spherical light source, defined in the scene’s coordinate system). This
way it would also be possible to compare our method to more accurate algorithms.

With real time frame rates as a future goal, another focus will be on more
sophisticated search algorithms that work on hierarchical and/or tiled depth maps
as well as investigating methods of precomputed or cached distance information.
Kirsch and D̈ollner [Kirsch03] introduced so called shadow width maps, which
store the distances of blocked pixels to the shadow boundaries by placing a virtual
plane behind all occluder objects. During rendering they can then simply lookup a
general inner width and modulate it according to the actual distances between light
source, occluder, and receiver. However, their method only works for the inner soft
shadow region and does not support overlapping shadow regions.

Further speed improvements could also be achieved by using graphics hard-
ware, e.g. interleaved framebuffer reads, as well as on the host CPU by using
special processor instructions sets.
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Figure 11.10: A simple test scene showing the effect of varying distance be-
tween receiver and occluder.

Figure 11.11: A morecrowdedscene. Left: soft shadows, middle: hard shad-
ows, right: hard shadows with outer penumbra.

Another research direction will be the quality of shadows. Up to now we simply
used a linear intensity fall-off, which of course is not correct. Assuming a diffuse
spherical light and an occluder with a straight edge (similar to Parker’s original
algorithm), a better approximation would be a sinusoid as the attenuation function.

Finally, we have only slightly addressed aliasing issues that occur when work-
ing on sampled data. Our algorithm can work on very low-resolution image data
since the search technique efficiently smoothes blocky hard shadows. However,
we expect an additional improvement of quality by using filtering schemes that
also take into account the stamp size of the warped pixel or work on super-sampled
depth maps.
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Figure 11.12: Two more complex scenes rendered with our soft shadow algo-
rithm.
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Chapter 12

Conclusions, Summary, and
Future Work

12.1 Conclusions

The topic of this dissertation are shadow techniques that are suitable for interactive
and real-time applications, such as computer games or virtual reality environments.

One main aspect when designing these kind of algorithms is that we need to
find an implementation that corresponds to the architecture of current graphics
hardware. This is because only a hardware-based method can achieve a sufficient
frame rate for fully dynamic environments.

In such an environment, we can not make any assumptions about the spatial
arrangement of objects and light sources. The shadow algorithm therefore has to
be numerically stable and robust enough to handle all possible configurations. A
software-based hierarchical scene structure additionally helps to reduce the work-
load by culling away large parts of the scene or pre-sorting objects to e.g. take
advantage of z-culling hardware early in the pipeline. In this thesis we did not ad-
dress this kind of efficiency techniques and just concentrated on the computation
of shadows for the complete scene description. In principle, any algorithm that is
used to cull away non-visible portions of the scene can be combined with the algo-
rithms proposed in this thesis to reduce the workload for the shadow computation
step.

Besides efficiency and numerical robustness, another important aspect of any
shadow algorithm is the quality of the resulting shadows. For hard shadows, object-
space techniques such as the shadow volume algorithm, provide the best visual
quality since for each camera space pixel, we have exact shadow information.
Image-based techniques, such as the shadow mapping technique, work on sampled
data and therefore have to deal with aliasing artifacts due to the limited resolution
of the shadow map.

Using extended light sources, such as linear or area lights, the computation of
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good-looking, accurate, and real-time soft shadows is a much more complicated
task. Although the brute-force sampling based approach is to some extent possible
due to the enormous gain in fill-rate and geometry performance that current graph-
ics cards offer, this problem can only be solved efficiently by more sophisticated
methods.

12.2 Summary

We now briefly summarize the shadow techniques presented in thesis, discuss their
main contribution, as well as their limitations and drawbacks.

Shadow Mapping

In Part I of this thesis we focused on the shadow map technique as proposed by
[Williams78]. The image-based, scene-independent nature of this algorithm along
with its direct hardware support, made it a common choice for computing shadows.

In Chapter 4 we presented several extensions of Williams’ original method that
addressed numerical robustness and sampling quality. We showed how the distri-
bution of depth values can be optimized by using a linear spacing and histogram
equalization. In combination with the proposed depth clamping approach, we can
then use most of the available depth precision for the visible parts of the scene,
rather than wasting depth samples for objects outside the view frustum or large
empty regions. Numerical problems during the shadow test can be avoided by stor-
ing an intermediate depth value, a hardware-based variant of Woo’s [Woo92] idea.
Furthermore, we presented a method of concentrating the shadow map to the vis-
ible parts of the scene. This way, we reduce aliasing artifacts since less entries in
the shadow map are wasted for regions that are not visible by the current camera
view. The main drawback of the methods presented in Chapter 4 is that we need
to obtain some information about the actual scene. This feedback is currently pro-
vided by color-coding all relevant information and transferring it back to the CPU
as an image. With future graphics hardware providing more programmability and
a more general memory access model, this transfer bottleneck will no longer be an
issue since all information can be processed on the card.

In Chapter 5 we focused on percentage closer filtering (PCF) for shadow maps,
as proposed by Reeves et al. [Reeves87]. Although there are now some graph-
ics cards that natively support Reeves’ filtering scheme, e.g. NVIDIA’s GeForce3,
there are still a number of graphics systems that do not provide this special func-
tionality. For this kind of hardware we showed that PCF is possible by extending
Heidrich’s color-coded shadow mapping method [Heidrich99] to multiple depth
tests. In terms of numerical robustness, this color-coded approach suffers from the
limited color resolution, which is about 8 to 12 bits per color channel. But on the
other side, for systems, that do not support dedicated shadow map functionality
or programmable pixel units, this method is the only way to implement filtered
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shadow maps in hardware.
Shadow maps as proposed by Williams are based on a perspective projection

used when generating the shadow map. As a consequence, the shadow map has
only information about those objects that are inside its field-of-view. While this
perfectly fits for spot lights with a limited cut-off angle, the shadow map algo-
rithm fails for point lights with hemispherical or omnidirectional characteristics.
A solution to this was proposed in Chapter 6, where we replaced the perspective
projection with a paraboloid mapping. This way, we can store a 180◦ view using
only a single shadow map, or capture the complete environment by attaching two
paraboloid shadow maps back to back. The shadow computation for an omnidi-
rectional point light therefore can be performed in only three rendering passes. A
drawback of our method is that we are forced to compute the paraboloid mapping
per vertex, rather than per pixel. This requires a relatively fine tessellation of the
input geometry, so that the linear interpolation of each primitive does not produce
shadow artifacts.

Efficiency aspects of a shadow map implementation were the topic of Chapter
7. Here we introduced extended light maps, a special kind of light map that also
includes depth information and can therefore be used just like a normal shadow
map. The benefit of this approach is that most of the hardware resources are used
during the generation of the shadow map. While our current implementation is
based on standard 8-bit color components, we can of course improve the quality of
the pre-calculated illumination and shadows by using floating point textures which
are available on newer graphics cards.

Shadow Volumes

In Part II we concentrated on shadow volumes, which is the de-facto standard for
computing shadows if only a small subset of the objects in the scene is dynamic.
For example this is the case in many computer games, where only the game char-
acters and some objects are moving.

In Chapter 8 we showed how to efficiently integrate the shadow volume al-
gorithm into an interactive, hybrid-rendering system used for architectural visual-
ization. By moving the expensive shadow calculation from the CPU to graphics
hardware, we are able to dedicate more CPU resources to the computation of in-
direct illumination. Additionally, we store the shadow information for up to four
light source in an intensity texture, which not only saves a number of rendering
passes (which are very expensive for complex architectural scenes) but also allows
us to include goniometric diagrams at nearly no additional cost.

A fully hardware-accelerated shadow volume implementation was presented in
Chapter 9. By using programmable vertex and pixel units as well as floating point
buffers, which are available on current state-of-the-art graphics cards, we are able
to detect and process silhouette edges of shadow casting objects on the graphics
card rather than having this step implemented on the CPU. This not only frees
valuable CPU resources and speeds up the silhouette computation, but also allows
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mesh deformations on the hardware.

Soft Shadows

Rendering high-quality soft shadows in real-time was the focus in Part III of this
thesis.

For linear light sources, we presented a novel technique that approximates soft
shadows at high-quality while using only a small number of light source samples.
Since soft shadow maps work on sampled data, the algorithm is to some extend
independent of the scene complexity, apart from the detection of a number of oc-
cluder edges from which we generate the skin polygons. A drawback of our method
is that there are situations in which the number of sample points is definitely too
low such that important occluder edges are missed. Here we have to come up with
a way of automatically deciding, where to add new sample points.

The soft shadow technique proposed in Chapter 11 aimed at producing visu-
ally pleasing soft shadows rather than trying to compute a physically correct so-
lution. We have shown how to extract information about the spatial arrangement
of occluder, light source, and receiver, using only a depth map obtained from one
sample point. Although the algorithm at its current state produces convincing soft
shadows, it still has a number of drawbacks. First, our search technique is very
time consuming, since we need to perform it on the CPU. Here a hardware-based
implementation would definitely help to bring the algorithm to real-time frame
rates. Second, the size of the penumbra is controlled by a number of user-defined
parameters that are not intuitive. Therefore we have to find a formula that e.g. is
solely based on the radius of a spherical light source to which our search strategy
corresponds.

12.3 Future Work

Many of the algorithms presented in this thesis focus on the fast and robust com-
putation of hard shadows. These kinds of shadows are nowadays a common visual
element in games and interactive applications. Although we are able to compute
hard shadows for a number of light sources and scenes of decent complexity in
real-time today, there are still a number of problems we need to solve. The shadow
volume or shadow map based techniques presented in this thesis produce reason-
able results at high frame rates for the polygonal models that are currently used
in hardware-based rendering. But if we take a look at the scenes that are used
in the field of software rendering today, we will not be able to handle these in
real-time with our current techniques. As an example, rendering shadows for com-
plex hair or fur models definitely breaks the performance of any shadow volume
implementation due to the enormous geometry and fill-rate workload. Adapting
software-based methods, like the hardware-based deep shadow map implementa-
tion presented by Kim and Neumann [Kim01], is often a solution for specialized
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applications, but can not be used efficiently in a general hardware rendering engine.
The key to solve these kinds of problems is to reduce the workload to the minimum
computation that is required to produce visually believing results. As an example,
we can not judge if the shadow cast by one hair strand is correct or wrong, but
we can definitely say if the overall shadow looks natural or not. Developing this
kind of visually adaptive, hardware-accelerated shadow techniques is one of the
challenging tasks for the future.

The most important direction of future research in the field of real-time shadow
techniques is of course the accurate and fast computation of shadows caused by ex-
tended light sources. Although there are now a number of promising approaches,
see the state-of-the-art report by [Hasenfratz03] for a good overview, there is still a
lot of work to be done in this area. None of the techniques described in this report
can be seen as a general-purpose, robust, and fast soft shadow technique, since
too much restrictions or limitations are imposed on the shadow casting objects,
receivers, or light source shapes. With future graphics hardware supporting more
sophisticated programmability and data access methods, we are confident that fu-
ture research will bring us to soft shadow techniques that are as general and easy
to use as e.g. shadow volumes or shadow maps.
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