Retargetable Postpass Optimisation by
Integer Linear Programming

Dissertation

Zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultat I
der Universitiat des Saarlandes

von

Diplom-Informatiker
Daniel Kastner

Oktober, 2000

Tag des Kolloquiums: 22.12.2000
Dekan: Prof. Dr. R. Schulze-Pillot

Gutachter: Prof. Dr. R. Wilhelm
Prof. Dr.-Ing. L. Thiele

Vorsitzender: Prof. Dr.-Ing. P. Slusallek

Abstract

Embedded Systems are subject to severe cost restrictions but im-
pose high performance requirements on typical applications. This
has lead to the development of specialised irregular hardware ar-
chitectures for which traditional code generation and optimisa-
tion techniques fail to achieve a satisfactory code quality. There-
fore assembly programming is still common practice. One reason
for this is the interdependence of code generation phases, the so-
called phase-coupling problem. Integer linear programming (ILP)
allows to integrate several phases in a homogeneous problem de-
scription and to solve them simultaneously. In this thesis, two
well-structured ILP formulations for the problem of global phase-
coupled code optimisation for irregular architectures are presented.
The relationship between the design of the hardware architecture
and the appropriate ILP modelling style is investigated. In order
to speed up the computations, ILP-based approximations are de-
veloped that provide a very high solution quality and reduce the
computation time significantly compared to the exact solution.
The optimisations are implemented in a retargetable framework
for postpass optimisations and analyses, called PROPAN. The rel-
evant properties of the target architecture are concisely specified in
a novel architecture description language TDL. From the TDL de-
scription a hardware-sensitive postpass optimiser is automatically
generated that performs efficiency-increasing transformations on
assembly code using integer linear programming. The system has
been retargeted to several representative standard digital signal
processors. Practical experiments demonstrate the applicability
of this approach.

ii

Zusammenfassung

Eingebettete Systeme unterliegen engen Kostenschranken, ty-
pische Anwendungen stellen jedoch hohe Leistungsanforderun-
gen. Dies hat zur Entwicklung spezialisierter irregularer Hard-
warearchitekturen gefiihrt, fiir die traditionelle Codeerzeugungs-
und -optimierungsverfahren keine zufriedenstellenden Ergebnisse
erzielen. Anwendungsprogramme fiir eingebettete Systeme werden
daher oft in Assembler programmiert. Eine Ursache hierfiir ist die
gegenseitige Abhéngigkeit der Codeerzeugungsphasen, das soge-
nannte Phasenkopplungsproblem. Ganzzahlige lineare Program-
mierung (ILP) jedoch ermdglicht es, verschiedene Teilprobleme in
einer homogenen Problembeschreibung zu integrieren und gemein-
sam zu 16sen. In der vorliegenden Arbeit werden zwei strukturierte
ILP-Formulierungen zur globalen, phasengekoppelten Codeopti-
mierung fiir irreguldre Architekturen vorgestellt. Der Zusam-
menhang zwischen dem Hardwareentwurf der Zielarchitektur und
der geeigneten Modellierungsmethode fiir ganzzahlige lineare Pro-
gramme wird herausgestellt. Zur Beschleunigung der Berechnun-
gen werden ILP-basierte Approximationen entwickelt, die eine
sehr hohe Codequalitat erzielen und die Berechnungszeit im Ver-
gleich zur exakten Losung deutlich senken. Die Optimierungen
wurden in einem retargierbaren System fiir Postpassoptimierun-
gen und -analysen, genannt PROPAN, implementiert. Eine neue
Architekturbeschreibungssprache TDL ermoglicht eine kurze und
priagnante Spezifikation der relevanten Hardwareeigenschaften der
Zielarchitektur. Aus der TDL-Beschreibung wird ein hardware-
sensitiver Postpassoptimierer generiert, der durch Einsatz ganz-
zahliger linearer Programmierung effizienzsteigernde Transforma-
tionen von Assemblercode durchfiihrt. Das System wurde fur ver-
schiedene reprasentative Standardprozessoren retargiert. Die ex-
perimentellen Ergebnisse belegen die Anwendbarkeit dieses Ver-
fahrens.

i

v

Extended Abstract

During the last years, the markets for telecommunication, embedded systems,
and multimedia applications have been rapidly growing. The distinct cost sensitiv-
ity of these markets in connection with the stringent time constraints of real-time
applications have led to the development of specialised, irregular hardware architec-
tures designed to efficiently execute typical applications of digital signal processing.
In the area of general-purpose processors, compiler technology has reached a high
level of maturity. For irregular architectures however, the code quality achieved
by traditional high-level language compilers is often not satisfactory. Generat-
ing efficient code for irregular architectures requires highly optimising techniques
that have to be aware of specific hardware features of the target processor. Since
such techniques are usually not provided by standard compilers, many digital sig-
nal processing applications are developed in assembly language. The increasing
complexity of typical applications and the shrinking design cycles of embedded
processors render this approach increasingly unacceptable. Therefore, there is an
urgent need for retargetable code generation and optimisation techniques that can
be quickly adapted to different target architectures and can provide a high code
quality.

In this thesis the PROPAN system is presented as a retargetable framework for
high-quality code optimisations and machine-dependent program analyses at as-
sembly level. In the past, research on retargetability has mainly focused on closed
compilation systems. Using such a system in industry however mostly requires
replacing the existing compiler infrastructure which causes high costs. Thus the
use of retargetable compilers in industry is rare. To the best of our knowledge,
PROPAN is the first postpass framework where the issues of easy retargetability
and of high-quality code optimisations have been combined. Due to the postpass
orientation, PROPAN can be integrated in existing tool chains with moderate effort
and allows to improve the code quality of existing compilers. Thus the costs as-
sociated with changing the compiler infrastructure in a company can be avoided.
The retargetability concept of PROPAN is based on a combination of generic and
generative mechanisms. We have developed a new machine description language
called TpL which allows to specify the hardware resources of the target proces-
sor, its instruction set, and its assembly language in a concise way. Apart from
the assembly orientation the main innovation of TDL is the generic modelling of
irregular hardware constraints that allows them to be exploited in generic search-
based optimisation algorithms. From the TDL description a parser for the assembly

language and an architecture database are generated. The architecture database
consists of a set of ANSI C files containing data structures representing all relevant
information about the target architecture and functions to initialise, access and ma-
nipulate this information. The core system of PROPAN has been implemented in
a generic, i. e., machine-independent way; if target-specific information is required,
the generated architecture database is referenced. For each target architecture the
architecture database is linked with the generic core system yielding a dedicated
hardware-sensitive postpass optimiser.

Generating high-quality code for irregular architectures requires taking the
phase-coupling problem into account. In general, the code generation process is
subdivided into several phases. For complexity reasons they are usually addressed
separately by heuristic methods. While the heuristic approaches perform well for
regular architectures, suboptimal combinations of suboptimal partial results can
lead to poor code quality for irregular architectures. In this thesis a new approach
is presented that unifies a well-known subset of the code generation phases at as-
sembly level. The use of integer linear programming allows a generic homogeneous
modelling of the problem of phase-coupled code optimisation taking into account
irregular hardware characteristics of individual target architectures. The theory of
integer linear programming has lead to sophisticated solution techniques such that
powerful tools are available for computing solutions of integer linear programs. In
our work we have developed extensions of two well-structured ILP formulations for
phase-coupled instruction scheduling, register assignment and resource allocation.
We have investigated the structure of both ILP formulations and the relation-
ship between ILP modelling styles and hardware architectures. One formulation
is based on an order-indexed modelling. It supports an efficient integration of the
register assignment task for architectures with severely restricted instruction-level
parallelism. The other formulation uses a time-indexed modelling. It provides
an efficient integration of the problems of instruction scheduling and resource al-
location. It is well suited for architectures where a large amount of alternative
functional units has to be taken into account. In contrast to most other exact code
generation methods the scope of the optimisations presented in this thesis is not
restricted to single basic blocks. In order to speed up the computation process we
have developed dedicated ILP-based approximations. Thus the generated integer
linear programs can be solved either exactly providing provably optimal solutions,
or by the use of the approximative methods. The basic idea of the approximations
is the iterative solution of partial relaxations of the original problem. They allow
to reduce the computation time significantly and still provide a very high solution
quality.

The PROPAN framework has been retargeted to a wide range of architectures.
It has been used to generate ILP-based postpass optimisers for two widely used
modern digital signal processors with considerably different hardware characteris-
tics, the Analog Devices ADSP-2106x [Ana95] and the Philips TriMedia TM1000
[Phi97]. PROPAN can also be used as a platform for generic program analyses
and user-supplied hardware-dependent program optimisations. It is integrated in

vi

a framework for calculating worst-case execution time guarantees for real-time
systems [FKLT99]; in this context a TDL specification of the Infineon TriCore
uC/DSP [Inf00] has been developed. For the Infineon C16x [Sie96] microprocessor
family PROPAN has been used as a platform for implementing hardware-sensitive
postpass optimisations that are part of a commercial postpass optimiser [Abs00a].
Various aspects of this thesis have been presented in a number of publications
[KL98, K199, K&s99a, KW99, FKL199, Kis00a, Kas00b].

vii

viii

Ausfuhrliche Zusammenfassung

Innerhalb der letzten Jahre hat ein starkes Wachstum der Markte fiir Telekom-
munikation, eingebettete Systeme und Multimediaanwendungen stattgefunden. Die
ausgepragte Kostensensitivitat dieser Markte in Verbindung mit strengen Zeit-
schranken, denen Realzeitanwendungen unterliegen, haben zur Entwicklung spe-
zialisierter, irreguldrer Hardwarearchitekturen gefiihrt. Diese werden speziell zur
effizienten Ausfithrung von Algorithmen der digitalen Signalverarbeitung entwor-
fen. Auf dem Gebiet der Allzweckprozessoren hat die Compilertechnologie eine
hohe Reife erreicht. Fiir irregulidre Architekturen jedoch ist die von traditionellen
Hochsprachencompilern erzeugte Codequalitit in der Regel nicht ausreichend. Die
Erzeugung effizienten Maschinencodes fiir irregulare Architekturen erfordert hoch-
optimierende Techniken, die an spezielle Hardwareeigenschaften des Zielprozessors
angepaflt sein miissen. Da solche Verfahren in Standardcompilern iiblicherweise
nicht eingesetzt werden, werden viele Anwendungen der digitalen Signalverar-
beitung in Assembler programmiert. Aufgrund der steigenden Komplexitat typi-
scher Anwendungsprogramme und der schrumpfenden Produktzyklen eingebetteter
Prozessoren wird dies jedoch zunehmend inakzeptabel. Daher besteht ein dring-
ender Bedarf an retargierbaren Codeerzeugungs- und -optimierungstechniken, die
schnell an unterschiedliche Zielarchitekturen angepafit werden konnen und in der
Lage sind, eine hohe Codequalitit zu erreichen.

In der vorliegenden Arbeit wird das PROPAN-System als ein retargierbares
System fiir hochleistungsfahige Codeoptimierungen und maschinenabhangige Pro-
grammanalysen auf Assemblerebene vorgestellt. In der Vergangenheit hat sich
die Forschung im Bereich retargierbarer Techniken hauptséichlich auf geschlossene
Ubersetzungssysteme konzentriert. Der industrielle Einsatz solcher Systeme im-
pliziert jedoch in der Regel einen Austausch der Compilerinfrastruktur, was mit ho-
hen Kosten verbunden ist. Daher sind retargierbare Compiler in der Industrie kaum
anzutreffen. Unserer Kenntnis nach ist PROPAN das erste postpass-orientierte Sys-
tem, das die Ziele leichter Retargierbarkeit und suchbasierter Codeoptimierung-
stechniken kombiniert. Aufgrund der Postpassorientierung kann PROPAN mit ge-
ringem Aufwand in existierende Toolketten integriert werden und ermoglicht die
Verbesserung der Codequalitit existierender Compiler. Dadurch werden die mit
dem Austausch der Compilerinfrastruktur verbundenen Kosten vermieden. Das
Retargierbarkeitskonzept von PROPAN beruht auf der Kombination generischer
und generativer Techniken. Im Rahmen dieser Arbeit wird eine neue Maschi-
nenbeschreibungssprache, TDL, vorgestellt, die die Spezifikation der Hardwarer-

1X

essourcen eines Zielprozessors, seines Instruktionssatzes und der verwendeten As-
semblersprache in kurzer und prignanter Form ermoglicht. Abgesehen von der
Assemblerorientierung besteht die wichtigste Innovation von TDL in der gene-
rischen Modellierung irreguldrer Hardwareeigenschaften, die es ermdglicht, diese
in generischen suchbasierten Optimierungsalgorithmen zu beriicksichtigen. Aus
der TDL-Beschreibung wird ein Parser fiir die spezifizierte Assemblersprache und
eine Architekturdatenbank in Form von ANSI-C Dateien generiert. Darin wer-
den Datenstrukturen definiert, in denen alle relevanten Informationen iiber die
Zielarchitektur reprasentiert sind sowie Funktionen zum Zugriff, zur Initialisierung
und zur Manipulation dieser Datenstrukturen. Das Kernsystem von PROPAN ist
generisch, d. h. maschinenunabhéingig implementiert. Werden architekturspezi-
fische Informationen benotigt, wird die generierte Architekturdatenbank referen-
ziert. Fiir jede Zielarchitektur wird die Architekturdatenbank mit dem generischen
Kernsystem zusammengelinkt und es ergibt sich ein spezieller hardwaresensitiver
Postpassoptimierer.

Zur Erzeugung einer hohen Codequalitit fiir irreguldre Architekturen ist die
Beriicksichtigung des Phasenkopplungsproblems erforderlich. Im allgemeinen wird
der Codeerzeugungsprozefl in verschiedene Teilaufgaben untergliedert. Aus Kom-
plexitatsgriinden werden diese iiblicherweise getrennt voneinander durch heuristi-
sche Verfahren gelost. Die Codequalitédt der heuristischen Verfahren ist fiir regulére
Architekturen in der Regel ausreichend. Bei irreguldren Architekturen jedoch kann
es aufgrund der suboptimalen Kombination suboptimaler Teillésungen zur Erzeu-
gung ineffizienten Maschinencodes kommen. In der vorliegenden Arbeit wird ein
neuer Ansatz vorgestellt, der verschiedene Teilaufgaben der Codeerzeugung auf
Assemblerebene vereinigt. Die Verwendung ganzzahliger linearer Programmierung
ermoglicht eine generische homogene Modellierung des Problems der phasengekop-
pelten Codeoptimierung unter Beriicksichtigung irregularer Hardwareeigenschaften
der jeweiligen Zielarchitektur. Die Theorie der ganzzahligen linearen Program-
mierung hat zu hochentwickelten Losungstechniken gefiihrt, so dafi leistungsfahige
Tools zum Losen ganzzahliger linearer Programme verfiigbar sind. Im Rahmen
dieser Arbeit werden Erweiterungen zweier strukturierter ILP-Formulierungen fiir
phasengekoppelte Instruktionsanordnung, Registerzuteilung und Ressourcenalloka-
tion vorgestellt. Die Struktur beider ILP-Formulierungen wird untersucht und der
Zusammenhang zwischen ILP-Modellierung und Hardwareentwurf der Zielarchitek-
tur herausgestellt. Eine Formulierung basiert auf einer reihenfolge-bezogenen In-
dizierung. Sie ermoglicht eine effiziente Modellierung des Registerzuteilungsprob-
lems und ist besonders fiir Architekturen mit eingeschrankten Parallelverarbei-
tungskapazitaten geeignet. Die andere Formulierung verwendet eine zeitpunkt-
bezogene Modellierung. Sie erlaubt eine effiziente Koppelung von Instruktion-
sanordnung und Ressourcenallokation und ist fiir Architekturen mit einer groflen
Anzahl alternativer funktionaler Einheiten geeignet. Im Gegensatz zu fritheren ex-
akten phasengekoppelten Codeerzeugungsverfahren sind die in dieser Arbeit vor-
gestellten Optimierungen nicht auf Basisblockgrenzen beschrinkt. Ein weiterer
Schwerpunkt liegt auf der Entwicklung ILP-basierter Approximationen durch die

die Berechnungen beschleunigt werden konnen. Die erzeugten ganzzahligen line-
aren Programme konnen somit entweder exakt gelost werden, wodurch beweisbar
optimale Ergebnisse erzielt werden, oder durch Einsatz der approximativen Tech-
niken. Die Grundidee der Approximationen besteht in der schrittweisen Losung
partieller Relaxationen des Originalproblems. Sie erlauben eine deutliche Reduk-
tion der Berechnungszeit und erzielen dennoch eine sehr hohe Codequalitét.

Das PROPAN System wurde fiir verschiedene reprasentative Standardprozes-
soren retargiert. Es wurde zur Erzeugung ILP-basierter Postpassoptimierer fiir
zwei moderne digitale Signalprozessoren mit sehr unterschiedlichen Architekturei-
genschaften eingesetzt, den Analog Devices ADSP-2106x SHARC [Ana95] und den
Philips TriMedia TM1000 [Phi97]. PROPAN kann auch als Plattform fiir gene-
rische Programmanalysen und benutzerdefinierte hardwareabhangige Programm-
optimierungen eingesetzt werden. PROPAN ist in ein System zur Berechnung von
Laufzeitgarantien in Realzeitsystemen integriert [FKL99]; in diesem Zusammen-
hang wurde eine TDL-Beschreibung des Infineon TriCore pC/DSP [Inf00] entwick-
elt. Fiir die Infineon C16x-Mikroprozessorfamilie [Sie96] wurde PROPAN als Aus-
gangsbasis zur Implementierung hardwaresensitiver Postpassoptimierungen einge-
setzt, die Teil eines kommerziellen Postpassoptimierers sind [Abs00a]. Verschiedene
Aspekte dieser Arbeit wurden in einer Reihe von Veroffentlichungen vorgestellt
[KL98, K199, K&s99a, KW99, FKL 199, Kés00a, Kas00b].

x1

xii

Acknowledgements

I would like to thank my advisor Prof. Dr. Reinhard Wilhelm for his invaluable
advice and his guidance and support throughout my course of graduate study. His
comments often unveiled new interesting aspects and perspectives. He always left
me a lot of freedom and contributed much to an enjoyable and productive working
atmosphere.

I like to thank Christian Ferdinand for his advice and many fruitful suggestions
and comments. This work has greatly benefited from his insight and experience.
The implementation uses several modules developed by Marc Langenbach; special
thanks goes to him for years of excellent cooperation, the pleasant and productive
working atmosphere, and many stimulating discussions. For careful proof reading
of this thesis in different stages I thank Reinhold Heckmann, Marc Langenbach,
Christian Ferdinand, Stephan Diehl, Friedrich Eisenbrand and Florian Martin.

I thank Henrik Theiling for adapting his control flow reconstruction algorithm
to the assembly setting. I am also grateful to Nicolas Fritz and Stephan Wilhelm
who were the first users of the PROPAN system. They suffered through several bugs
and shortcomings and their comments helped improving the system. A word of
thanks also goes to Steven Bashford for interesting discussions and to all members
of the chair of programming languages and compiler construction for the inspiring
and cooperative working atmosphere.

Also, I wish to thank the Deutsche Forschungsgemeinschaft for supporting this
research by a graduate fellowship in the Graduiertenkolleg “Effizienz und Kom-
plexitat von Algorithmen und Rechenanlagen” at Saarland University.

I would like to thank Prof. Dr. Kurt Mehlhorn and the Max Planck Institute
for Informatik of Saarbriicken for granting access to their CPLEX installation and
their compute server. I gratefully acknowledge the support of Hans Rieder from
the Fraunhofer IZFP who made available the g21k compiler for the SHARC and
provided industry-relevant hand-crafted assembly programs for the experimental
evaluation. I like to thank the Philips research group Eindhoven, especially Joachim
Trescher and Zbigniew Chamski, for making available the Philips tmcc compiler
and the development environment for the TM1000.

Finally I would like to thank my parents Hans-Dieter and Josefa and my girl-
friend Sylvie for their patience and their support.

xiil

xiv

Contents

. Introduction
1.1. The PROPAN System
1.2. Overview of this thesis

. The Code Generation Problem

2.1. Fundamental Program Representations

2.2. The Code Generation Phases
2.2.1. Code Selection
2.2.2. Register Allocation and Assignment
2.2.3. Instruction Scheduling
2.2.4. The Phase Coupling Problem

2.3. Code Generation for Embedded Processors

2.3.1. Code Generation for Irregular Architectures

2.3.2. Retargetable Code Generation

. A Classification of Microprocessors

3.1. Applications of Digital Signal Processors
3.2. Characteristics of Digital Signal Processors

. A Short Introduction to Integer Linear Programming

4.1. General Overview
4.2. Mathematical Foundations
4.2.1. The Theory of Linear Programming

4.2.2. The Theory of Integer Linear Programming

4.3. The Branch-And-Bound Algorithm

. ILP-Models for the Code Generation Problem

5.1. Basic Definitions

5.2. The SILP Model
5.2.1. Basic Formulation.
5.2.2. Integration of Register Assignment
5.2.3. The Structure of the SILP Polytope
5.2.4. Valid Inequalities
5.2.5. Complexity,

5.3. The OASIC Model

XV

Contents

xvi

5.3.1. Basic Formulation.
5.3.2. Integrating Register Assignment
5.3.3. The Structure of the OASIC Polytope
5.3.4. Complexity
5.4. Control Flow Modelling
5.4.1. Modelling Disjunctive Constraints
5.4.2. Representing the Control Flow Structure
5.5. ILP Models and Hardware Architectures

. ILP-Based Approximation Techniques

6.1. Related Work
6.2. Approximations for the SILP Formulation
6.2.1. Stepwise Approximation
6.2.2. Isolated Flow Analysis
6.2.3. Stepwise Approximation of Isolated Flows
6.2.4. Approximation of Isolated Operations.
6.3. Approximations for the OASIC Formulation

. Superblock-Based Code Optimisation

7.1. The Superblock Graph
7.1.1. Superblock Covering,
7.1.2. Superblock Merging L.
7.1.3. Partitioning Lo L Lo

7.2. The Global Register Assignment Problem
7.2.1. Global Heterogeneous Register Renaming
7.2.2. Virtual Registers and Abstract Resources
7.2.3. Virtual Definitions and Virtual Uses
7.2.4. Global Lifetime Modelling

7.3. Global Timing Constraints
7.3.1. Inter-Iteration Data Dependences
7.3.2. Inter-Iteration Latency Constraints

7.4. Superblock Synchronisation
7.4.1. Timing Synchronisation
7.4.2. Lifetime Synchronisation
7.4.3. Resource Synchronisation,

7.5. Completing the Register Assignment

. The Target Description Language TDL

8.1. Related Work
8.2. The Resource Specification
8.3. The Specification of the Instruction Set
8.3.1. The Specification of the Semantics
8.4. The Constraint Section
8.4.1. Generating Integer Linear Constraints

81
82
84
84
87
88
89
91

Contents

8.4.2. Generating Support Functions for List Scheduling 162

8.5. The Assembly Section 163

9. The Implementation of the PROPAN Framework 165
9.1. The Structure of PROPAN 165
9.2. Computing the Program Representations 167
9.2.1. The Control Flow Graph 167

9.2.2. The Data Dependence Graph 169

9.2.3. The Control Dependence Graph 173

9.3. Generic List Scheduling and Resource Allocation. 175
9.4. Computing the ASAP and ALAP Control Steps 177
9.5. The Optimisation Interface 179
10.Experimental Results 183
10.1. Analog Devices ADSP-2106x SHARC 184
10.1.1. Architecture o 184

10.1.2. Performance of the Optimiser 186

10.2. Philips TriMedia TM1000 200
10.2.1. Architecture 200

10.2.2. Performance of the Optimisers 201

10.3. Summary oL e e 217
11.Related Work 221
11.1. Retargetable Code Generation 221
11.2. Heuristic Phase Coupling 227
11.3. Search-Based Methods in Code Generation 228
12.Conclusion and Outlook 233
13.List of Symbols 235
A. Appendix 237
A.1. Instruction Set of the SHARC 237
A.1.1. Notation e 237

A.1.2. Instruction Formats 239

A.1.3. Compute Operations 242

A.2. Excerpts from the TDL Specification of the SHARC 245
A.3. Instruction Set of the TM1000 252
A.4. Excerpts from the TDL Specification of the TM1000 256

xvii

Contents

xviii

1. Introduction

During the last years, the markets for telecommunication, embedded systems, and
multimedia applications have been rapidly growing. The distinct cost sensitivity
of those markets in connection with the stringent time constraints of real-time
applications have led to the development of specialised, irregular hardware archi-
tectures designed to efficiently execute typical applications of digital signal pro-
cessing. Common characteristics of those architectures are, e.g., heterogeneous
register files, support for low-overhead looping, and restricted interconnectivity of
functional units and register sets. In the area of general-purpose processors, com-
piler technology has reached a high level of maturity. For irregular architectures
however, the code quality achieved by traditional high-level language compilers
often is not satisfactory [SCL96, ZVSM94]. Generating efficient code for irregular
architectures requires highly optimising techniques which have to be aware of spe-
cific hardware features of the target processor. Since such techniques are usually
not provided by standard compilers, many digital signal processing applications
are developed in assembly language [SCL96]. Assembly programming is a time
consuming and error-prone task that suffers from bad portability and bad main-
tainability thus reducing the productivity of software development. Due to the
increasing complexity of embedded applications and the shrinking design cycles
of embedded processors, the usage of high-level programming languages becomes
more and more imperative. As a consequence a growing demand for compilation
techniques that can produce high-quality code for irregular architectures has risen.

Most digital signal processors dispose of special functionality; identifying spe-
cial functionality however requires bringing much architectural information into
the compiler. Developing a dedicated compiler for each processor is prohibitive
due to the short design cycles and the cost sensitivity of the embedded markets.
Thus retargetable code generation and optimisation techniques that can be quickly
adapted to different target architectures and are able to generate high-quality code
for each individual target have become an active area of research [MG95].

The process of generating code for high-level language programs can be subdi-
vided into several phases: code selection, register allocation, instruction scheduling,
register assignment, and functional unit binding. Since most of these subtasks are
NP-complete problems, in classical code generation methods they are addressed in
separate phases by heuristic algorithms. Unfortunately the code generation phases
are interdependent; decisions made in one phase impose constraints to the sub-
sequently addressed phases. For regular architectures the quality of the classical

1. Introduction

heuristic methods is satisfactory. For irregular architectures however the interde-
pendencies between the phases usually lead to a significant decrease of code qual-
ity [ZSWS95] due to the suboptimal combination of suboptimal partial results.
In heuristic phase-coupling methods a heuristic algorithm for one code generation
phase typically is extended to address other subtasks based on heuristic estimates
of the phase interactions. As a consequence the quality of the generated code
strongly depends on the choice of the heuristics. The quality of the individual
heuristics and their combined effects in turn strongly depend on the target archi-
tecture. Thus there is a conflict between the goals of retargetability and heuristic
generation of high-quality code.

Search-based techniques such as integer linear programming allow to model the
interactions of code generation phases in an exact way. In the last decade, the
use of integer programming models has increased significantly which is mostly due
to the advances in algorithms for solving integer programs and the availability of
reliable software packages [JNS97]. Computing an optimal solution of an integer
linear program is NP-complete [GJ79]. Nevertheless many large instances of such
problems can be solved. Recent research has lead to an understanding of polyhedral
properties that can be used to develop well-structured formulations permitting
efficient computations [CWM94, Bal98]. Other advances have made it possible
to improve the efficiency of ILP solving techniques by curtailing the necessary
enumeration process [JNS97, Eis00]. The use of integer linear programming for
phase-coupled code generation however is still rare.

Although during the last years several retargetable research compilers have been
developed they are rarely used in industry. To the best of our knowledge the only
commercially available retargetable compiler developed for embedded systems is
the CHESS compiler [LVPK*95]. One reason is the problem of simultaneously
realizing the goals of retargetability and of generating high-quality code. Another
reason is that using such a system in industry mostly requires replacing the exist-
ing compiler infrastructure which causes high costs. Therefore postpass techniques
are a very attractive solution since they allow to improve the quality of previously
generated machine or assembly code without requiring to change the complete
compilation system. The legacy compiler can be kept and yet the efficiency of
the generated software is increased leading to a large cost benefit. Another ad-
vantage of postpass methods is that they make optimisations of compiler-intrinsic
functions possible. Compiler-intrinsic functions are often used to embed manually
written assembly code into high-level language programs. For high-level language
compilers they usually represent barriers across which no program optimisation is
possible. However this does not concern postpass approaches since they work on
machine level anyway. Moreover the machine level is a natural stage for optimisa-
tions aiming at exploiting hardware-specific functionality of digital signal proces-
sors. Previous studies [KL99] and industrial experience [Abs00a] have shown that
postpass methods can be integrated into existing tool chains with moderate effort.

In embedded systems, the software often has to meet specific requirements
which necessitate complex program analyses. In real-time systems, e. g., it must be

1.1. The PROPAN System

guaranteed that tight time constraints will be met by every execution of a program.
The calculation of tight time bounds for modern architectures is impeded by the
use of caches and pipelines. The consequence is that hardware-dependent program
analyses have to be performed which—as e. g. the static cache behaviour prediction
of [Fer97]—are necessarily postpass analyses. The results of such analyses can
also be used for program optimisations, e.g. by cache-sensitive task scheduling
algorithms [KT98, KT99].

1.1. The PROPAN System

Our contribution to this situation is the PROPAN system (Postpass-oriented Retar-
getable OPtimiser and ANalyser) that has been designed as a retargetable frame-
work for postpass optimisations and analyses. To the best of our knowledge,
PROPAN is the first system where the issues of machine description driven re-
targetability and of search-based postpass optimisations have been combined.

Generated
Architecture
Database

Machine
Specification

Optional

user-supplied
Functionality

---------------- » Generation
— Access

Figure 1.1.: The retargetability concept.

The retargetability concept of PROPAN is based on the combination of generic
and generative techniques. An illustration is given in Fig. 1.1 in an abstract form.
The core system is composed from generic and generated program parts. Generic
program parts are independent from the target architecture and can be used for
different processors without any modification. If hardware-specific knowledge is

1. Introduction

required all information is retrieved in a standardised way from an architecture
‘database’ that is generated from a central machine description. The program
parts that change with the specific target architecture are automatically gener-
ated from the machine description. Thus retargeting the system to a different
architecture only requires an appropriate specification of the target machine. Ad-
ditionally the integration of user-supplied functionality is supported. This may
include dedicated program analyses or hardware-specific program transformations.
Those external program parts can communicate with the core system via a well-
defined file interface and can access the architecture database generated from the
machine description.

A detailed overview of the PROPAN framework is shown in Fig. 1.2. The input
of PROPAN consists of a TDL-description of the target machine and of the assembly
programs that are to be analysed or optimised. TDL (Target Description Language)
is a dedicated machine description language that allows to specify the hardware
resources of the target processor, its instruction set, the assembly language and
irregular hardware constraints. Apart from the assembly orientation the main in-
novation of TDL is the generic modelling of the irregular hardware constraints that
allows them to be exploited in generic search-based optimisation algorithms. The
TDL specification is processed once for each target architecture; from the TDL de-
scription a parser for the specified assembly language and an architecture database
are generated. The architecture database consists of a set of ANSI-C files where
data structures representing all specified information about the target architec-
ture and functions to initialise, access and manipulate them are defined. The core
system of PROPAN is generic; if hardware-specific knowledge is required the ar-
chitecture database is referenced. For each target architecture, the generic core
system is linked with the generated files yielding a dedicated hardware-sensitive
postpass optimiser.

The parser reads the input programs and computes their control flow graphs
that are represented in a generic intermediate language called CRL (Control Flow
Representation Language) [Lan99]. The input format is not restricted to assembly
files; it is also possible to specify the output format of disassemblers reading exe-
cutable files, or textual representations of compiler-specific intermediate formats.
The CRL interface serves as the main interface for all optimisation and analysis
algorithms including additional user-supplied algorithms. From the control flow
graph, the necessary program representations as, e.g., the data dependence and
the control dependence graphs are calculated by generic algorithms. If required,
a register renaming algorithm is executed that replaces references to physical reg-
isters of the input program by references to virtual registers. This way spurious
data dependences limiting the available parallelism are removed.

The central part of the PROPAN system is the modelling of phase-coupled code
optimisation by integer linear programming. A set of fundamental code generation
subtasks is identified that can still be addressed on assembly level and phase-
coupling methods are investigated that allow to compute high-quality solutions in
a generic way without the necessity of reimplementing parts of the source code. In-

1.1. The PROPAN System

The PROPAN System

eneric computation o
program representations

Generation of integer linear programs
supporting phase-coupled instruction
scheduling, register assignment and

functional unit binding.

Generic annotated
control flow graph
(CRL)

Input program
(assembly code)

TDL-specification of _)
the target machine U Evaluation of
MILP solution

Assembly Optimised
reconstruction assembly file
y
Architecture database:
target-specific data structures
and functions (ANSI-C)

Figure 1.2.: The PROPAN system.

ILP solver
(CPLEX)

teger linear programming allows a homogeneous problem description that can fully
integrate the tasks of instruction scheduling, register reassignment, and functional
unit binding, or subsets thereof. Our approach is based on two well-structured ILP
models developed in the area of architectural synthesis [GE92, GE93, Zha96]. We
have adapted those models to the postpass optimisation problem and extended
them to incorporate irregular hardware characteristics and exceed basic block
boundaries. Among those models, the most appropriate formulation can be chosen
individually for each target architecture. For each input program a dedicated inte-
ger linear program is generated that models the execution of the program on the
specified target architecture!. In contrast to most previous approaches for search-
based code generation the optimisation scope is not restricted to basic blocks. A
novel superblock concept allows to extend the optimisation scope across basic block
and loop boundaries. For each superblock, an individual integer linear program is
generated.

Since integer linear programming is an NP-complete problem, the time for
computing a provably optimal solution can grow high for large input programs.
Therefore a set of ILP-based approximations has been developed that can reduce
the computation time significantly and still obtain high-quality solutions. The
basic idea of the ILP-based approximations is the iterative solution of heuristically

!The incorporation of the register assignment task however can be considered promising only
for the SILP formulation (see Chap. 5).

1. Introduction

determined relaxations of the original problem. In the last step of the optimisation
process the solutions of the integer linear programs are evaluated and the optimised
assembly file is generated.

1.2. Overview of this thesis

In the next chapter an overview of code generation and optimisation is given. The
fundamental code generation phases are introduced and the problem of code gen-
eration for irregular architectures is illustrated. Chap. 3 gives a classification of
modern microprocessors that focuses on design characteristics and application ar-
eas of digital signal processors as one class of processors characterised by irregular
architectures. Chap. 4 gives a short introduction into integer linear programming
where the most important mathematical concepts required for the scope of this
thesis are summarised. The ILP models used for code generation are presented
in Chap. 5. Proofs of important properties of their polytope structure are given,
the incorporation of the control flow structure of programs is described and the
dependence between ILP modelling styles and hardware architectures is pointed
out. In Chap. 6 novel ILP-based approximations are presented that allow to reduce
the computation time while still retaining a high solution quality. Chap. 7 is ded-
icated to the superblock mechanism that allows to extend the optimisation scope
across basic block boundaries. After the definition of the underlying concepts, the
required extensions of the ILP models are presented and evaluated. In Chap. 8
the hardware description language TDL is presented in detail. Special attention
is paid to the generation of integer linear constraints from a specification of ar-
chitectural irregularities in the form of logical conditions. Implementation details
of the PROPAN system are presented in Chap. 9. An overview of the modelled
architectures is given in Chap. 10, followed by the evaluation of our experimental
analyses.

Surveys of relevant publications specifically related to individual chapters of
this thesis are given at the beginning of the corresponding chapters. A separated
survey of retargetable compilation systems and of code generation and optimisation
frameworks for irregular architectures is given in Chap. 11.

Finally, Chap. 12 concludes and gives an outlook to future research. The ap-
pendix contains a summary of the instruction sets of the Analog Devices ADSP-
2106x SHARC and the Philips TriMedia TM1000, together with excerpts from
their TDL specifications. A list of symbols is given at the end of this thesis.

2. The Code Generation Problem

Compilers for high-level programming languages aim at transforming input pro-
grams written in a certain source language into a semantically equivalent program
in some target language, usually the machine or assembly code of a target proces-
sor. Conceptually, the process of compiling can be subdivided into several phases.
In an initial phase, often called the compiler frontend, the syntactic structure and
static semantic properties of the source program are computed. The results of this
phase comprise either messages about syntactic or semantic errors in the program
or an appropriate representation of the syntactic structure and the static seman-
tic properties of the program. Subsequently many compilers perform efficiency-
increasing program transformations on this representation that, to a large degree,
are machine independent. This includes tasks like constant folding, elimination of
common subexpressions, elimination of dead code, loop-invariant code motion, etc.
The corresponding phase is often called the middle-end of the compiler. Then a
synthesis phase takes the intermediate representation produced by the middle-end
and converts it into semantically equivalent target machine code. An important
part of the synthesis phase is the task of code generation which consists of several
subtasks:

e The goal of code selection is to map the intermediate representation to a
semantically equivalent sequence of machine operations.

e The task of register allocation is to map the values of the intermediate rep-
resentation to physical registers in order to minimise the number of memory
references during program execution. It consists itself of two subtasks: Reg-
ister allocation proper attempts to decide which variables and expressions of
the intermediate representation are mapped to registers and which ones are
kept in memory. The second subtask is called register assignment; its goal
is to determine the physical registers that are used to store the values that
have been previously selected to reside in registers.

o Instruction scheduling is the task of reordering the produced instruction
stream in order to minimise pipeline stalls and to exploit the available in-
struction-level parallelism.

e Resource allocation is concerned with binding operations to machine re-
sources, e. g. functional units or buses; it is also called functional unit binding.

2. The Code Generation Problem

This task is only relevant for architectures where operations can be explicitly
assigned to functional units and where the binding can impose constraints to
register assignment and instruction scheduling.

All code generation tasks have high worst case complexity; in general, code se-
lection, register allocation, register assignment and instruction scheduling are NP-
complete [GJ79] problems. Therefore, traditional code generation approaches rely
on heuristic methods. Furthermore, a modular decomposition of code generation
is advisable for reasons of software complexity. Thus in traditional approaches all
code generation phases are addressed isolatedly by separate algorithms. Unfortu-
nately this can lead to a suboptimal combination of suboptimal partial solutions
resulting in a very poor code quality, especially for irregular architectures.

The remainder of this chapter is organised as follows: in Sec. 2.1 an overview
of the fundamental program representations is given that are computed from the
intermediate representation of the program and constitute the input of most sub-
tasks of code generation. Subsequently the individual code generation phases are
presented in more detail and the phase coupling problem is described. In Sec. 2.3,
the problems associated with the compilation for irregular architectures and their
consequences to the code generation process are summarised.

2.1. Fundamental Program Representations

The program representations introduced in this chapter can be defined either on
source level, or on machine level. For the scope of this thesis it is more convenient
to choose the machine-level representations. Therefore, it is necessary to introduce
the concept of machine operations. In the terminology of [LDS80, Bas95| a micro-
operation, or machine operation, is an elementary operation that can be executed by
the target processor. The notion of machine operation has to be distinguished from
the concept of machine instructions. In some architectures exhibiting intraproces-
sor parallelism, especially in VLIW! architectures, several machine operations can
be combined to form one machine instruction. The execution of all operations
contained in the same instruction is started in parallel. In the following a short
summary of the most important concepts is given; more detailed explanations and
additional literature references can be found in [WM95, Bas95].

The control flow graph of a procedure indicates which instructions can be exe-
cuted one after the other. Whether this actually occurs during program execution
may depend on conditions which in general cannot be evaluated at compilation
time.

Definition 2.1 (Control Flow Graph) The control flow graph of a procedure
is a directed graph G¢ = (N¢, Ec,na,ng) with node and edge labels. For each
instruction i of the procedure there is a node n; € N¢ that is marked by i. The edges

Very Long Instruction Word

2.1. Fundamental Program Representations

(n,m, \) denote the control flow of the procedure; A € {T, F,€} is the edge label.
The subgraphs representing loops, conditional branches and sequential program flow
are shown in Fig. 2.1. Edges belonging to unconditional branches lead from the

cfe (while B do S od) = ¢fg (if B then S, else S, fi) = cfe (S,:S,) =
cfg (S)
F T F l
T cfe (S) cfg (S,) cfz (S))

/g (S) ‘ ‘

I

Figure 2.1.: Control flow graph for composed statements. A subgraph G, =
(N¢, Ef,nly,ng) is inserted as follows: All incoming edges lead to n'y,
all outgoing edges to the successor node uniquely determined by the
execution context.

node of the branch to the branch destination. The node ny € N¢ is the uniquely
determined entry point into the procedure; it belongs to the first instruction to be
erecuted. ng denotes the end node that is reached by any path through the control
flow graph. Nodes with more than one predecessor are called joins and nodes with
more than one successor are called forks.

Definition 2.2 (Path) A path 7 from node ny to node ny in a directed graph G =
(N, E) is a sequence of edges, beginning with a node ny € N and ending in ny € N
where ™ = (n1,n2), (N2, n3), ..., (Ng_1,n%) and (ny,nip1) € E fori=1,...k— 1.
The length of m is defined as the number of edges on 7, i.e. I(w) =k — 1.

Definition 2.3 (Basic Block) A basic block in a control flow graph is a path of
mazimal length which has no joins except possibly at the beginning and no forks
except possibly at the end.

If the first instruction of a basic block is executed, then in case of error-free
execution (no runtime errors, exceptions, etc.) all other operations of the basic
block are executed as well.

Definition 2.4 (Basic Block Graph) The basic block graph Gg = (Ng, Eg, ba,
ba) of a control flow graph Go = (N¢, Ec,na,nq) is formed from G¢ by combining
each basic block into a node. Edges of G¢ leading to the first node of a basic block,
lead to the node of that basic block in Gg. FEdges of G¢ leaving the last node of a
basic block, lead out of the node of that basic block in Gg. The node by denotes the
uniquely determined entry block of the procedure; bq denotes the exit block that is
reached at the end of any path through the procedure.

2. The Code Generation Problem

When performing global analyses or optimisations the control structure of the
procedure has to be taken into account. As an example, moving an operation from
the then-block of a conditional branch to the else-block must be prevented in order
to preserve program semantics. The control structure of a procedure is represented
by the control dependence graph G¢p. Defining the control dependence graph
requires several other definitions to be given first.

Definition 2.5 (Dominator) Let a control flow graph Gc = (N¢, Ec,na,nq) be
giwen. A node n € Ng dominates a node m € Ng, n Ay m, if and only if each
path from the entry node ny of the procedure to m contains the node n. Fach node
dominates itself.

Definition 2.6 (Immediate Dominator) Let a control flow graph Go = (Ng,
Ec,na,nq) be given. A node n € N¢ is an immediate dominator of m € Ng, if
and only if

onAdm
e Az: mAgz AN zAgm A z#n N z#m.

Definition 2.7 (Dominator Tree) The dominator tree Ty of a control flow graph
s a tree containing all nodes of the control flow graph G¢. Its root is the entry
node ny of the procedure. There is an edge between n and m if and only if n s
immediate dominator of m.

Definition 2.8 (Postdominator) Let a control flow graph Gc = (N¢, Ec,n4,nq)
be given. A node n € N¢ postdominates a node m € N¢, n A, m, if and only if
each path from m to ng contains the node n. A node never postdominates itself.

Definition 2.9 (Immediate Postdominator) Let a control flow graph Go =
(N¢, Ec, na,nq) be given. A node n € N¢ is an immediate postdominator of
m € Ng, if and only if

e nA,m
o Az: mn A,z AN zA, m AN z#n.

Definition 2.10 (Postdominator Tree) The postdominator tree T, of a control
flow graph is a tree containing all nodes of the control flow graph G¢. Its root is
the exit node ng of the procedure. There is an edge between n and m if and only if
n 1s the immediate postdominator of m.

The postdominator tree can be calculated as the dominator tree of the inverse
control flow graph; an algorithm is given in [K&s97, ASUS86].

Definition 2.11 (Control Dependence) Let Go = (Ng, E¢,n4,nq) be a con-
trol flow graph. A node n € N¢ has control dependence on m € Ng, n 62 m, if the
following conditions hold:

10

2.1. Fundamental Program Representations

1. (nya,\) € Ec where A € {T, F, ¢},
2. m does not post dominate n, ~(m A, n), and

3. there is a path p = n,a,...,m, such that for all z € p where z #n, z # m
holds: m A, z.

A node m s control dependent on n if and only if n 62 m.

Definition 2.12 (Control Dependence Graph) The control dependence graph
Gep of a control flow graph Goc = (Ng, Ec,n4,nq) is a directed graph Ggop =
(Nep, Ecp) with edge labels, such that (n,m,\) € E¢p < n §¢ m and (n,a,\) €
Ec and A € {T, F}.

Definition 2.13 (Control Equivalence) Let a control dependence graph Gcp =
(Nep, Ecp) be given. Two nodes ny,ny € Nop are control equivalent if they have
the same predecessor m in the control dependence graph and the edges (m,nq, A1)
and (m ng, A2) have the same label, i. e., Ay = As.

During instruction scheduling the operations of a procedure are reordered with
the goal of improving the efficency of the program. The program semantics must
not be changed by the reordering. In order to preserve the program semantics the
control dependences must be respected, but additionally also the data dependences
of the operations have to be taken into account. Data dependences are determined
by the ordering of reading respectively writing accesses to the components of the
machine state, as e.g. registers, or memory cells. Writing accesses are termed
as definitions, reading accesses as uses. The data dependences of a procedure are
represented by the data dependence graph.

Definition 2.14 (Data Dependence Graph) Let G¢ = (Ng, Ec,na,nq) be a
control flow graph. Its data dependence graph is a directed graph Gp = (Np, Ep)
with node and edge labels whose nodes are labelled by the operations of the procedure.
The set of edges is defined as Ep C Np X Np X R X T where R denotes the storage
resources of the target processor and T = {t,a,o0} denotes the type of the data
dependence. An edge runs from the node of an operation i to the node of an
operation 7, if 1 has to be executed before j, i.e. if there is a path from i to j in
the control flow graph and if

e i defines a resource r, j uses it and the path from i to j does not contain
other definitions of r (true dependence): (i,j,7,t) € Ep

e 1 uses a resource, j defines it and the path from i to j does not contain any
definitions of r (anti dependence): (i, j,r,a) € Ep

e i and j use the same resource and the path from i to j does not contain any
uses nor any definitions of r (output dependence): (i,7,7,0) € Ep.

11

2. The Code Generation Problem

Let EY denote the set of all true dependences, E% the set of all anti dependences
and EY, the set of all output dependences, then the edge set of the data dependence
graph can be rewritten as follows:

Ep = EY U E% U E%.

Programs that contain loops must be handled with care, since their data de-
pendence graph may contain cycles. Each data dependence must be classified as
loop-carried if the dependence is caused by the repeated execution of a loop body,
i.e. the operation instances belong to different loop iterations, or otherwise as
loop-independent.

Definition 2.15 (Loop) Let a basic block graph Gp and its dominator tree Ty
be given. A loop G = (Np,Er,hy) is a subgraph of Gg where N, C Vi and
E;, C Ny x Ny, such that E;, C Eq. G, must satisfy two conditions:

e There must be a unique entry point, the loop header hp, that dominates all
blocks of the loop, i.e. hy Ay b Vb e Np.

o There must be at least one path starting from the loop header hy € Ep that
leads back to itself.

The edges (b,hy) € Er are denoted backward edges of Gr; all others forward
edges. The body of the loop Gy, is defined as N, — {hr}.

A loop Gy is said to enclose another loop G, if N, C Ny,. The loop nesting
depth [, of a loop GG, is defined to be the number of loops G # G, such that
G1, encloses GG1,. The data dependences are classified as loop-independent or loop-
carried with the help of the reduced transitive hull G of the basic block graph.

Definition 2.16 (Reduced Transitive Hull of the Basic Block Graph)
Let the basic block graph Gg = (Np, Ep,ba,bq) of a procedure be given and let Eg
denote the set of all forward edges in Eg. Then the reduced transitive hull of the
basic block graph is defined as G = (N, Ef;,ba,ba). There is an edge (b, g) in
E if and only if one of the following conditions is met:

o there is a path from b to g in E, or

e there is a loop G, = (N, Er,hr) with b € Ny, g ¢ Ny, such that there is a
path from hy, to g in Ex.

As an illustration, a basic block graph and its reduced transitive hull are shown
in Fig. 2.2. The shaded blocks form a loop L whose header is block Ap.

From the control flow graph G¢ and the reduced transitive hull of the basic
block graph, the reduced transitive hull of the control flow graph G§ can be derived.
All incoming edges into a block b € Gp are represented by edges leading into
the first node of E- that belongs to b; all outgoing edges of b are represented

12

2.2. The Code Generation Phases

-

Figure 2.2.: A basic block graph and its reduced transitive hull.

by outgoing edges of the node for the last instruction in b. The edges between
instructions of the same basic block are the same as in G¢. Then, each dependence
from an operation 7 to another operation j ((4, j,r,7) € Ep) where the instruction
containing 7 is no predecessor of the instruction containing j in G, is a loop-carried
dependence.

2.2. The Code Generation Phases
2.2.1. Code Selection

The input of the code selection phase is the intermediate representation of the
input program, typically in the form of expression trees. The implementation of a
code selector can be simplified by using code selector generators with appropriate
descriptions of the target machine and its correspondence to the intermediate rep-
resentation. The basic idea of code selector generators can be formalised by the
theory of tree parsing and tree automata [FSW94, WM97|. The instruction set of
the target machine is described by a regular tree grammar. The right-hand side of a
rule describes the meaning of an operation in the form of tree patterns of the inter-
mediate representation. The terminals correspond to the nodes of the intermediate
representation, the non-terminals denote storage resources of the target machine.
From such a machine grammar, expression trees of the intermediate representation
can be derived. The derivation tree of an expression tree describes a semanti-
cally equivalent sequence of machine operations. In order to deal with ambiguous
machine grammars, the rules are annotated with costs such that among different
derivation trees for the same expression tree the cheapest one can be selected. An-
other theoretical foundation has been given by the theory of term rewriting systems
[PL88, Emm92|. Early implementations based on [GG78, Hen84| used LR-parsing
techniques driven by a specification of the target machine by a context-free gram-
mar. The code selector was generated by a parser generator. The limitation
however was that the code selection for ambiguous instruction sets could not be
modelled conveniently. A solution of this problem is to combine pattern matching

13

2. The Code Generation Problem

algorithms with dynamic programming to determine locally optimal operation se-
quences [AG85, WW89, HD89a] or extend the pattern matcher to directly selecting
locally optimal operation sequences [PLG88, HD89b]. Examples for contemporary
code generators are BEG [Emm89], Twig [AGT89], iburg [FHP92], and OLIVE
[SPA9T].

A drawback of the code selection by tree parsing is caused by the necessity of
processing expression or syntax trees. If due to common subexpressions, the inter-
mediate representation takes the form of a directed acyclic graph (DAG), usually
heuristics are used to break up the DAG into a forest of trees. For architectures
with a complex instruction set or with irregular hardware features the independent
covering of the expression trees may result in a decrease of code quality [LDKT95].
This is covered in more detail in Sec. 2.2.4.

2.2.2. Register Allocation and Assignment

There is a large and continuously increasing gap between the processing speed of
the CPU and the memory access time [Fer97]. Therefore the program execution
can be accelerated by keeping the largest possible number of values of live pro-
gram variables and live intermediate results, often called symbolic registers, in fast
processor registers. Liveness of a variable or result means that its current value
will potentially be needed again later during the program execution. The number
of simultaneously live symbolic registers usually exceeds the number of physical
registers. Hence, a resource optimisation problem results. Those values should
be kept in processor registers that produce the highest benefits for the execution
time. Register allocation proper attempts to determine which symbolic registers
are mapped to physical registers and which ones are stored in memory. The task of
register assignment is to select a particular physical register. For architectures with
heterogeneous register files the register assignment problem includes the problem
of selecting an appropriate register bank. Often the term register allocation is used
to denote both the phases of register allocation proper and register assignment.

The input of the register allocation is an intermediate representation of the pro-
gram where each operation and each modified variable is associated with a symbolic
register. The same physical register must never be assigned to two different sym-
bolic registers if they are simultaneously live and might contain different values.
In the following the most important definitions and concepts of register allocation
are summarised; a more detailed introduction is given in [WM97].

Definition 2.17 (live, life range) A symbolic register r is live at a program
point p, if there is a program path from the entry node of the procedure to p that
contains a definition of r and there is a path from p to a use of r on which r is not
defined. The life range of a symbolic register r is the set of the program points at
which r 1s live.

Definition 2.18 (interference, register interference graph) Two life ranges
of symbolic registers interfere, if one of them is defined during the life range of the

14

2.2. The Code Generation Phases

other. The register interference graph is an undirected graph whose nodes are life
ranges of symbolic registers and whose edges connect the nodes of interfering life
ranges.

Typically, register allocation is performed by graph colouring algorithms as
presented in [Cha82, CH90]. The problems of register allocation and assignment
are translated into the problem of colouring the register interference graph by k
colours where k£ denotes the number of available physical registers. Different colours
must be assigned to directly connected nodes. Since for k£ > 2 the problem of
deciding whether an arbitrary graph can be coloured by & colours is NP-complete,
[Cha82, CHI0] suggest the use of heuristics. The basic idea of the graph colouring
method is the following: if the interference graph contains a node n with a degree
less than k, then n can definitively be assigned a colour that is different from the
colours of all its neighbours. The node n is removed from G and a new graph G’ is
obtained that contains one node and several edges fewer. If no k colouring can be
found, heuristics have been proposed to introduce spill code [Cha82], or to split life
ranges [CH90]. While the algorithms of [Cha82, CH90] are restricted to basic block
level, global register allocation algorithms exceed basic block boundaries and take
the control flow structure of the program into account. Examples of global register
allocation algorithms based on heuristics are the packing algorithm of [Ben94],
the probabilistic register allocation of [PF92] and the optimistic graph colouring
approach of Briggs et al. [BCT94].

2.2.3. Instruction Scheduling

Most contemporary microprocessors offer intraprocessor parallelism, e. g., parallel
functional units and/or pipelines. Instruction scheduling attempts to reorder the
(sequential) machine operation sequences produced by previous phases in order to
exploit these parallel capabilities. A program dependence analysis determines data
and control dependences in the program. These limit the ways the operations of
the program can be reordered.

The data dependence graph defines a partial order among the operations of the
input program. A precedence relation < on Np can be defined where

i<j i
Thus, 7 < j holds if operation j depends directly or indirectly on operation i.
The resulting problem is to rearrange the instructions of the input program so
that the execution time is minimised, but no precedence constraints are violated.
In its simplest form, instruction scheduling corresponds to the classical problem
of precedence constrained scheduling. Let a set T of tasks of length 1 be given,
m machines, an arbitrary partial order < on 7, and an upper bound 7 on the

schedule length. The goal is to find a schedule 0 : T — {1,...,T}, so that
forallt € {1,...,T} where |{i € T : 0(i) = t}| < m holds:

i=<7 = o(i) < o(j)

15

2. The Code Generation Problem

This optimisation problem is already NP-complete for m = 2, if each task has to be
executed by a dedicated machine [GJ79]. In the problem of instruction scheduling
the tasks correspond to machine operations and the machines represent parallel
functional units of the underlying processor, e.g. ALUs, multipliers, etc.

For real-world hardware architectures, the problem usually is more complex.
One reason is that the assumption that each task has length 1 in general is not
valid. If the assumption holds and each task can be executed by any of the available
m machines the scheduling problem can be solved in polynomial time if m = 2. This
problem already becomes NP-complete if both tasks lengths 1 and 2 are allowed.
In instruction scheduling each task has to be executed by one specific machine and
the task length in general can be any nonnegative integer. Another complication is
that many architectures exhibiting instruction-level parallelism dispose of several
identical functional units that represent instances of one functional unit type. In
this case additional resource constraints have to be taken into account such that
in the classification of [GJ79] the instruction scheduling problem corresponds to
precedence and resource constrained scheduling. The complexity further rises if
the assignment of operations to functional units is not uniquely determined, and
if irregular restrictions of parallelism have to be taken into account.

Several heuristic scheduling methods are in use for instruction scheduling, e.g.
list scheduling [LDS80, Fis81, Gas89], trace scheduling [Fis81], region scheduling
[GS90], and percolation scheduling [Nic85]. The list scheduling algorithm [LDS80]
starts with an empty list of instructions. A microoperation is inserted into the last
instruction of the list if it satisfies the following three conditions:

e It is ready, i.e. all predecessors in the data dependence graph have already
been scheduled.

e Its priority is the highest among all ready microoperations. Different heuris-
tics have been proposed to determine the priority, e. g., the time an operation
remains in the data ready set, or the length of the longest path from an op-
eration in the data dependence graph (highest-level-first heuristic).

e The insertion into the last instruction is feasible, i.e. all operations already
contained in it can be executed in parallel to the current operation.

If there is no ready operation that can be inserted into the last instruction, a
new instruction is appended to the list. List scheduling is the most common algo-
rithm for local instruction scheduling; its worst-case time complexity is O(n?) for
n microoperations [LDS80].

An algorithm for global instruction scheduling is Fisher’s trace scheduling algo-
rithm. The basic idea of this approach is to schedule the operations of consecutive
basic blocks jointly in order to increase the available parallelism. Basic blocks that
are frequently executed directly after one another should be addressed jointly. For
this, the code generator retrieves information about the execution frequencies of the
basic blocks in a procedure by measurements or heuristic estimates. The algorithm

16

2.2. The Code Generation Phases

decomposes the control flow graph of a procedure into disjoint subpaths. First it
considers the most frequently executed block. Then it decides whether a preceding
or subsequent basic block is scheduled jointly with the current block. During the
scheduling of the resulting trace, operations can be moved from the original basic
block beyond control flow forks and joins. In basic blocks leading into or out of this
trace, compensation code has to be inserted. Then the most frequently executed
block that has not been scheduled yet is selected and the algorithm iterates until
all basic blocks of the procedure have been scheduled.

2.2.4. The Phase Coupling Problem

The classical code generation methods described above address each code genera-
tion subtask in a separate phase. Unfortunately the code generation tasks are in-
terdependent; decisions made in one phase impose constraints to the subsequently
executed phases. For regular architectures the quality of the heuristic methods
is satisfactory. For irregular architectures however the interdependencies between
the phases usually lead to a significant decrease of code quality [ZSWS95]. In the
following some basic interdependencies between the code generation phases are de-
scribed; the next section then focuses specifically on code generation for irregular
architectures.

The goal of code selection is to select the cheapest instruction sequence for a
given subgraph of the intermediate representation. Memory accesses increase the
cost of the instruction sequence. Therefore the code selector will use as many reg-
isters as possible. Since code selection usually takes place before register allocation
and assumes an infinite number of registers it is in conflict with register allocation
that has to cope with a limited number of registers. Since the costs of spill code are
not considered during code selection, the chosen operation sequence may turn out
to be disadvantageous due to the insertion of spill code. Moreover the conventional
heuristic of breaking up directed acyclic graphs into trees suitable for tree-based
code selection may introduce unnecessary stores of intermediate values.

A similar conflict exists between register allocation and instruction scheduling.
For instruction scheduling it is profitable to use many different registers since this
leads to a reduction of the anti and output dependences. Those dependences
are often termed false dependences since they are caused by the reuse of physical
registers and are not dictated by the program semantics. Nevertheless they restrict
the available parallelism. Since the goal of register allocation is to minimise the
number of memory accesses it will try to reuse as many registers as possible whereas
for instruction scheduling it would be better to use different registers as long as this
does not lead to the insertion of spill code. Thus, if register allocation is performed
first, it can limit the available parallelism by introducing false data dependences.
If instruction scheduling precedes register allocation, the number of simultaneously
live values can be increased so much that many of these values have to be stored
in main memory which may deteriorate the code quality considerably.

Several heuristic methods have been developed that take into account the re-

17

2. The Code Generation Problem

quirements of other code generation subtasks with the help of estimations. A
detailed overview of those methods is given in Sec. 11.2. Since for regular architec-
tures heuristic methods usually produce satisfactory results, exact phase-coupling
methods integrating different code generation phases in a homogeneous approach
have not been estimated promising. The possible increase of code quality has
not been considered worth the increase of compilation time associated with more
powerful solution algorithms. However for irregular architectures the situation is
different.

2.3. Code Generation for Embedded Processors

While for regular architectures the classical heuristic approaches produce satis-
factory results, empirical studies have shown that the code quality achieved for
irregular architectures often is insufficient [ZSWS95, PCL96]. One class of proces-
sors that is characterised by irregular architectures are the digital signal processors
(see Chap. 3) often used in embedded systems. Important requirements of those
processors are high computation performance on the one hand, but low cost and
low power consumption on the other hand. This is best achieved by architectural
specialisation usually leading to irregular architectures. It has turned out that the
code quality of traditional high-level language compilers for many digital signal
processors is not acceptable. Therefore in the area of digital signal processing still
assembly programming is in common use. Given the high economic importance of
DSPs this seems surprising and can only be explained historically. The originally
small size of the programs running on DSPs permitted assembly programming, so
the specific compiling problems for DSPs did not receive much attention. However
during the last years the size of DSP applications and the time-to-market pressure
have constantly been rising. Since assembly programming is a very time consum-
ing and error prone task and leads to bad portability and bad maintainability, the
productivity of software development is seriously affected. The consequence is that
an urgent demand for the use of high-level languages has arisen that, in general,
cannot be met in a satisfactory way for efficiency reasons.

There are several reasons for the inefficiency of traditional code generation ap-
proaches in the area of digital signal processing. One problem is that the primary
metric of many established efficiency-increasing transformations like function in-
lining, loop unrolling or software pipelining is performance rather than code size.
However code size plays an important role in DSP compilation, since DSP archi-
tectures often have limited on-chip program memory. The code size has to be
considered as a barrier for the parallelism-increasing transformations as in the ap-
proaches of [BCE198] so that their potential is limited. Another problem is the
architectural irregularity of many embedded processors. In the presence of irregular
hardware features the efficiency of traditional heuristics decreases whereas the im-
pact of phase coupling problems increases. Often digital signal processors dispose
of special functionality, but the ability of traditional compilers to capture the exis-

18

2.3. Code Generation for Embedded Processors

tence of specialised functionality is very restricted. Identifying special functionality
requires bringing much architectural information into the compiler. However this
is very problematic since the market for embedded processors is characterised by
fast design cycles and severe cost restrictions. Developing a dedicated compiler for
each new architecture takes too much time and is too expensive. The consequence
is that retargetable compilation techniques have to be developed. This means that
it must be possible to quickly adapt an existing compiler to considerably different
target architectures while still retaining a high code quality.

In the remainder of this chapter the consequences of irregular hardware features
for the code generation process are outlined in more detail. Different approaches
for retargetable compilation have been developed in the past; a classification of
those approaches based on [Leu97, Sud98] is given subsequently. Chap. 3 gives
a classification of contemporary microprocessors that focuses on the aspect of ir-
regularity and presents typical features of embedded processors in more details.
An overview of approaches addressing the conflicting goals of retargetability and
high-quality code generation is given in Chap. 11.

2.3.1. Code Generation for Irregular Architectures

Typical characteristics of irregular architectures are distributed heterogeneous reg-
ister files, irregularly restricted instruction-level parallelism and restricted inter-
connectivity of functional units and register sets (see Chap. 3 for more details).

A consequence of such architectural restrictions is that breaking up directed
acyclic graphs of the intermediate representation into trees suitable for code selec-
tion by tree parsing can impose limitations to the achievable code quality [LDKT95,
Bas95]. The expression trees are constructed from DAGs by associating common
subexpressions with temporary storage locations. Since the trees are addressed
separately, in the code selected for one tree a storage location may be chosen
that turns out to be disadvantageous for other expression trees. In the presence
of complex data paths, accessing that value might require a set of data transfer
operations across a route of register sets. Moreover the heuristic generation of
expression trees can prevent the selection of complex machine operations if the
matching tree pattern is distributed across several trees.

Complex data routes also aggravate the phase coupling problem between code
selection and register allocation. If spilling has to take place across a route of
register sets it can lead to a significant decrease of the quality of the selected code.
Thus the effects of register allocation have to be taken into account during code
selection. Most tree-based code selectors are implemented by combining pattern
matching with dynamic programming algorithms. A presupposition of the dynamic
programming approach is that the costs of the subtrees of a node are independent
of one another. However in order to efficiently compute the spill costs, knowledge
about the locations of the program values and the evaluation order of the subtrees
is required. In consequence the costs of the subtrees are not independent any more
such that a necessary precondition for applying dynamic programming is violated

19

2. The Code Generation Problem

[Bas95].

In order to overcome those restrictions several algorithms have been developed
that address code selection for directed acyclic graphs — which in [Set75, AJU77]
has been proven to be an NP-complete problem even for simple architectures. The
approaches of [BL99, LDKT95, FHMK94]| are presented in Chap. 11 in more detail.

Another restriction of code selector implementations by dynamic programming
is that the potential instruction-level parallelism of an architecture cannot be taken
into account [Bas95]. Again this is due to the presupposition that an optimal code
sequence for an input tree can be constructed from optimal code sequences of the
subtrees [ASU86, AGT89]. Due to the possibility of parallel execution the costs of
one subtree may depend on the costs of other subtrees of a given node. Additionally
there is a phase coupling problem between code selection and instruction schedul-
ing: a cheapest operation sequence chosen during code selection may turn out to
be suboptimal if it prevents the parallel execution of other operation sequences.

The phase coupling problem between register assignment, instruction schedul-
ing and functional unit binding also plays an important role. Due to the restricted
connectivity of register files and functional units the register assignment may con-
strain the selection of functional units and vice versa. Additionally the functional
unit binding strongly influences the parallelism available for instruction schedul-
ing. On the other hand the scheduling freedom may also depend on the register
assignment, e.g. due to encoding restrictions as in the ADSP-2106X SHARC. Both
the tasks of register assignment and instruction scheduling in general are already
NP-complete problems when addressed separately.

2.3.2. Retargetable Code Generation

Due to the short design cycles in the market for embedded systems, it is necessary
to develop retargetable compilation techniques. This means that with minor mod-
ifications a compiler for one processor must be able to generate high-quality code
for a different hardware architecture. There are different approaches to achieve
this goal; in the following a classification is given that is based on [Leu97, Sud98].
Depending on the type of its retargetability, a compiler can be assigned to one of
the following classes:

processor-specific: The code generation techniques of the compiler are specifically
tailored to a fixed target processor. In order to generate code for another
architecture a large part of the compiler backend has to be re-implemented.

portable: The code generation methods of the compiler are implemented in a mod-
ular way such that an adaptation to different target processors is possible that
reuses a large part of the existing code generation methods. The adaptation
may require rewriting certain parts of the compiler source code or providing
a set, of target-specific code generation functions.

20

2.3. Code Generation for Embedded Processors

retargetable: The compiler uses an external target machine description that can
be provided by the developer. All information about the target architecture
that is needed for code generation is automatically derived from the machine
description. A further distinction can be made depending on whether the
retargeting may imply rewriting compiler source code. If this is the case
the compiler is said to be user-retargetable, otherwise it is called machine-
independent.

parameterisable: The compiler is tailored to a specific class of processors sharing
the same basic architecture. An external machine description is used which
only consists of numerical parameters such as register file sizes, the number
of functional units, or different operation latencies.

Some well-known portable compilers primarily for general purpose processors are
gce [Sta98] and lcc [FH95]. Both are located at the edge between portable and
user-retargetable compilers. gcc requires an exhaustive target machine description
in which the hardware description is intermixed with the implementation of the
code selector. The frontend of lcc and parts of its backend are architecture-
independent, only some program parts required for code generation have to be
implemented separately. The code selector is generated from a specification of the
instruction set in the form of a regular tree grammar by the code selector generator
iburg [FHP92]. Examples of retargetable compilers are CHESS [LVPK'95] or
Express [HGG'99]; a parameterisable compiler is part of the Trimaran system
[tri98]. A more detailed description of each of those approaches together with a
summary of further retargetable compilers is given in Chap. 11.

21

2. The Code Generation Problem

22

3. A Classification of
Microprocessors

A traditional classification scheme of microprocessors is based on the basic design of
their instruction set architecture. It is distinguished between complex instruction
set computers (CISCs), reduced instruction set computers (RISCs) and very long
instruction word (VLIW) architectures. Those classes can be characterised as
follows [WM95]:

e The design goal of CISCs is to close the ’semantic gap’ between high-level
programming languages and machine languages. They are characterised by:

— alarge number of complex addressing modes to support efficient accesses
to different data structures,

— manifold versions of operations for operands of different length and com-
binations of different sorts of operands,

— different execution times for instructions,
— few processor registers,
— a microprogrammed control logic.

e The basic idea of RISC processors is to increase the execution speed of ma-
chine instructions by simplifying them. They are characterised by

the ability to execute one machine operation per clock cycle,

restricting memory accesses to dedicated load/store instructions,

few addressing modes,

— a hard-wired control logic.

e VLIW architectures are designed to provide explicit statically determined
instruction-level parallelism. A fixed number of machine operations can be
composed to form a VLIW instruction; the execution of operations from the
same instruction is started in parallel. Arranging the operations to exploit a
high degree of instruction-level parallelism is the task of the compiler.

23

3. A Classification of Microprocessors

A special subclass of RISCs or CISCs are the superscalar processors which pro-
vide multiple instruction pipelines in order to allow multiple instructions to be
issued simultaneously during each clock cycle [Fly95, HP96]. In contrast to VLIW
architectures the parallelism is not necessarily exposed to the compiler.

With the emergence of embedded systems, during the last years the acceptance
for computationally intensive compilation techniques that facilitate an improve-
ment of code quality at the expense of higher compilation time has increased. This
change cannot be explained in a satisfactory way by the traditional classification
scheme; more insight can be given by an application-based classification. Many
processors used in embedded systems incorporate features of all previously men-
tioned architectural design styles — but they are subject to irregular restrictions
and application-specific extensions. The impact of those irregular architectural
features on the task of code generation is very important and represents a basic
motivation of this thesis. Based on their application domain, contemporary mi-
croprocessors can be classified in two coarse categories: general-purpose processors
(GPPs) and application-specific processors (ASPs).

o GPPs are designed to efficiently execute a wide range of different applications,
e.g. the typical workload of a personal computer. Since they must provide the
functionality required by all of these applications, general-purpose processors
have a low level of specialisation. Cheaper or less power-intensive general-
purpose processors which are used in industrial applications are often denoted
as microcontrollers. Most traditional RISC or CISC processors belong to the
class of general-purpose processors.

e Application-specific processors (ASPs) are designed to efficiently execute a
narrow domain of applications. Important requirements are high computa-
tion performance, low cost, and low power consumption. This is best achieved
by architectural specialisation commonly resulting in very specialised and ir-
regular architectures. The negative consequence is that compiling for these
architectures becomes a very difficult task. There exist mainly 3 classes of
ASPs: an application specific integrated circuit (ASIC) is designed to imple-
ment a given target algorithm completely in hardware. An application spe-
cific instruction set processor (ASIP) is a programmable architecture where
hardware and instruction set are designed together to implement a very spe-
cific algorithm. Usually the program is stored in Read-Only Memory. DSPs
are specialised programmable microprocessors designed for applications that
require extensive real-time numerical computations.

Because of the restricted programmability of ASICs and ASIPs in the following
we will focus on digital signal processors. DSPs can be partitioned into fixed
and floating-point DSPs. The earliest digital signal processors used fixed-point
arithmetic, and in fact fixed-point DSPs still dominate today [LBSL97]. In fixed-
point processors, numbers are represented either as integers (integer arithmetic)
or as fractions between —1.0 and +1.0 (fractional arithmetic). The programmer

24

is responsible for correctly scaling the result of the fractional operations. Another
class of DSP processors primarily use floating-point arithmetic where numbers are
represented by the combination of a mantissa and an exponent. The mantissa is
usually a signed fractional value with a single implied integer bit assumed to be
equal to 1. In floating point processors, scaling is automatically done; thus they are
easier to program than fixed point processors. On the other hand, the additional
hardware in floating-point DSPs results in higher cost and power consumption than
in fixed-point DSPs.

There are several reasons for the differentiation between general-purpose pro-
cessors and application-specific processors. One reason simply becomes evident
when comparing the sizes and the prices of the processors. The die sizes of DSPs
usually range from 25mm? to 60mm? whereas the die size of GPPs lies between
160mm? (Pentium) and 250mm? (SuperSparc). Example prices of fixed-point DSPs
in 1997 were $35.89 for the Motorola DSP56166 or $43.95 for the Texas Instruments
TMS320C541. As for floating-point DSPs, the price of the TMSC44 in 1997 was
$158.40 and the ADSP-21062 costed $249.00. Modern general-purpose processors
were considerable more expensive; for a 200 MHz Intel Pentium Pro with a 256K
L2 cache $487 had to be paid in 1998.

The performance characteristics of contemporary general-purpose processors
are appropriate for most application domains of DSPs. Nevertheless in most cases
power consumption and cost make the use of GPPs prohibitive for use in DSP appli-
cations. In [Cam98] a formalisation of the architectural specialisation is proposed
that confirms the superiority of DSPs over GPPs with respect to applications of
digital signal processing. The power consumption of a CMOS device can be defined
as

P =CV*fAN

where C' denotes the capacitance, V the CPU core voltage, f the core clock fre-
quency, and AN the number of gates that change state during a given clock cycle.
More complex architectures require more gates. More specialised architectures
have fewer gates toggles per task. Thus an architecture specialisation metric can
be defined based on how many clock cycles and gates are required to complete a
given functional task. In [Cam98]| the ratio

P
AS erformance

PowerConsumption

is proposed as a metric of architecture specialisation. The performance is approx-
imated by the number of operations executed per second (P = Of). Then several
observations can be made:

e Increasing the clock rate has no influence on the performance per power ratio.

A4S — Performance . of . O
~ PowerConsumption CV2fAN CV2AN

25

3. A Classification of Microprocessors

e A voltage decrease significantly improves performance per power for the same

architecture. o
AS, covian VR
- o V2
AS; CVZAN Vi
FFT MFLOPS/WATT
80
£ 70 .
g 60 - A A& *
g-) 50 - A Oosrn _ 58 ~ . .
9 40 - 7 Ouisces 314 e 10.9 —
Huscer - 7 _ 93
L 30 7 Q;e’%csa
= 20 -
i
L 10+
0 T T T T T T T 1
64 128 256 512 1024 2048 4096 8192 16384 32768
Complex FFT Length (Points)
—— Alpha 21064A, 275 MHz, 275 MFLOP Peak, 3.3 Volts, 33+8 Watts
—=— Alpha 21164, 333 MHz, 666 MFLOP Peak, 2.2 Volt, 25.4+6 Watts
—+— SHARC 21060, 40 MHz, 120 MFLOP Peak, 3.3 Volt, 1.75 Watts

Figure 3.1.: Performance per power.

In Fig. 3.1 a comparison between the performance per power ratios of two
alpha processors and the digital signal processor ADSP-21060 is shown for a fast
fourier transformation algorithm. The ratios have been obtained by determining
the number of operations required to execute the algorithm and by measuring
the power consumption. The diagram shows that the specialisation ratio AS of
the SHARC is 18 times higher than that of the Alpha 21064A. Note that two
different architectures are compared such that the operation per second ratio is
not a completely accurate basis for a performance comparison. However since due
to specialised instructions for digital signal processing the instruction set of the
SHARC is more complex than that of the Alpha, the comparison is conservative.

The study of [Cam98] indicates that contemporary GPPs do supply the perfor-
mance required for embedded applications, but cannot compete with specialised
DSPs in terms of performance per power. Another conclusion is that advances
within the same architectural style have a relatively low effect on the architectural
specialisation so that it can be expected that the relative lead of the DSPs will
prevail. This conclusion is based on the central assumption that the performance
capacities of digital signal processors are fully exploited. In the past this has usu-
ally been achieved by implementing the applications in assembly language. Due to
the increasing software complexity and shrinking time-to-market cycles, assembly
programming becomes increasingly unacceptable and the need for using high-level
programming languages arises. A presupposition of using high-level languages is

26

3.1. Applications of Digital Signal Processors

that there are compilation techniques that allow to produce high-quality code even
for irregular architectures.

Recently the Intel Native Signal Processing Initiative has been launched aim-
ing at integrating typical DSP functionality like multiply-accumulate units into
general-purpose processor designs and thus creating “hybrid” architectures. How-
ever it is questionable that systems based on general-purpose processors with their
intrinsic time-sharing nature will be able to meet the real-time requirements of
typical DSP applications [LBSL97]. The majority of DSPs are not met in stan-
dard desktop computers but on systems which require the combination of low cost,
reduced power consumption and high performance.

3.1. Applications of Digital Signal Processors

The emergence of digital signal processors is primarily driven by the explosion
in the markets of embedded systems, telecommunication and multimedia. Various
studies have pointed out the growth of embedded systems. According to Dataquest
Interactive, 57% of all 32-bit microprocessors sold in 1995 were employed in such
systems. The global DSP-market is expected to grow 40 % per year while the
personal computer market is starting to level off at 14%. The share of general-
purpose processors produced annually is only 6% while the application specific
processors represent 94% of the total number of processors produced every year.

Typical DSP applications share a number of well defined characteristics. First
the input data is usually a sequence of samples from some sort of digitised signal,
originating from microphones, sensors, antennas, video cameras, etc. Second, ap-
plications require extensive numeric computation which must be performed unter
very stringent time constraints. This happens because they usually run on real-
time systems which demand very high throughput and very low latency. Common
application areas are low-cost embedded systems like, e.g., speech synthesis and
recognition, high speed modems, digital cellular phones, disk drives (servo control),
etc. But there are also numerous high-performance applications: image compres-
sion and decompression, medical and seismic imaging, radar/sonar, etc.

Embedded systems are subject to severe cost restrictions. The cost of a mi-
croprocessor increases non-linearly with its die size. Thus generating high-density
code is an important issue in code generation for digital signal processing since any
reduction in ROM area translates to a non-linear reduction in cost. In order to
guarantee that code density and performance requirements are safely met, system
designers usually hand-program the embedded system in assembly language. In
order to understand the reasons why the code quality of conventional compilers
mostly is not acceptable, we have to look in some more detail at the architectural
characteristics of digital signal processors.

27

3. A Classification of Microprocessors

3.2.

Characteristics of Digital Signal Processors

Digital signal processors are programmable microprocessors specialised for appli-
cations of digital signal processing. Therefore most DSPs share some common
features to support repetitive, numerically intensive tasks:

28

e Dedicated multiply-accumulate (MAC) units allow to perform multiplication

and accumulation in a single cycle. MAC operations are used in vector prod-
ucts, digital filters, correlations, fourier transforms, etc.

Multiple access memory architectures provide high bandwidths between pro-
cessor and memory. This is essential to achieve good performance for repet-
itive data-intensive operations frequently occurring in DSP applications. A
common design goal is to achieve a throughput of one instruction per clock
cycle. This implies being able to complete several memory accesses per clock
cycle. Therefore, memory space is often divided into program memory and
data memory which can be accessed simultaneously using separate buses
(Harvard architecture). Moreover the data memory space often is subdivided
into multiple banks. This allows for variables in different memory banks to
be accessed in parallel using dedicated addressing units. Often the memory
accesses can be executed in parallel to arithmetic operations. A common
restriction is that multiple memory accesses are only available for certain
instructions such that the available parallelism is irregularly restricted.

A typical characteristic of many DSPs is the availability of specialised ad-
dressing modes. There are three commonly used modes: linear, circular and
reverse arithmetic addressing. In the linear addressing mode, the address
of the data is computed by adding/subtracting an offset to/from an address
register, which is often implemented as post-modify operation. In circular
addressing the final address is determined by incrementing or decrementing
an address register and then taking the remainder of the division of this
intermediate value by a constant N (e.g. for circular buffers). In reverse
arithmetic addressing, the carry bits of the increment or decrement opera-
tion are propagated in the reverse order (from the most significant to the
least significant bit). This addressing mode specifically supports fast imple-
mentations of fourier transformations.

Branch instructions in DSPs often use control bits which are automatically
set by arithmetic operations. This permits the branch condition to be de-
tected early in the pipeline, an approach which combined with typically short
pipelines leads to small interlock penalties.

DSP architectures usually have arithmetic instructions that can be residu-
ally controlled. These are instructions whose execution behaviour depends
on specific bit values stored in a control register that were set by another

3.2. Characteristics of Digital Signal Processors

instruction. Depending on a control bit, the result of an arithmetic instruc-
tion may be sign extended or not. Another application of residual control
is predicated (guarded) execution, i.e. instructions that are only executed
depending on certain bit or register values.

e Another typical feature are hardware loops, often denoted as zero-overhead
loops. The key difference between hardware and software loops is that hard-
ware loops do not need explicit instructions for incrementing or decrementing
counters, checking the loop condition, or branching back to the top of the
loop.

e Often the interconnectivity between registers and functional units is restric-
ted. The main reason is that broad interconnectivity results in increased cost
and a degradation of individual instruction performance. In many DSP archi-
tectures there are instructions whose operands have to be located in specific
register files (heterogeneous register architectures). In GPPs the register us-
age usually is not restricted. This considerably simplifies the code generation
problem since it decouples the tasks of instruction selection from register allo-
cation (homogeneous register architectures) and instruction scheduling from
register assignment.

e Many digital signal processors have strongly encoded instruction formats.
Achieving a throughput of one instruction per clock cycle requires the ability
to fetch one instruction per cycle. Thus each instruction usually has to fit
into a single memory word. The consequence is that the number of bits used
for encoding the instructions has to be minimised. The necessary number of
bits can be reduced in several ways, e.g. by

— reducing the number of addressing modes. Not all combinations of op-
erations and addressing modes are feasible, e.g. immediate memory
accesses often are restricted to a small set of instructions.

— restricting the set of feasible source and destination operands. In the
extreme case there are operations with implicit operands.

— using mode bits. An example for a processor using mode bits is the
TMS320C5x [Tex98al|, where there are no separate arithmetic and log-
ical shift operations. A shift mode bit in a control register determines
whether the shift instruction represents an arithmetic or a logical shift.

The consequence is an increased irregularity of the instruction set, but the
narrower instruction word width usually reduces overall processor and system
cost.

Most of those hardware characteristics can be exploited at machine operation
level. Therefore it is a natural approach to address efficency-increasing transforma-
tions related to those characteristics in a postpass stage, i.e. after the generation
of assembly code.

29

3. A Classification of Microprocessors

30

4. A Short Introduction to Integer
Linear Programming

In this chapter some basic definitions and theorems of linear and integer linear pro-
gramming as well as the underlying mathematical concepts are shortly summarised.
Only the concepts that are required for the understanding of this thesis are pre-
sented; detailed surveys can be found in [NW88, NW89, PS82, Sch86, Wil93a,
Wil93b, JNS97].

4.1. General Overview

Integer linear programming deals with the problem of maximising or minimising
a linear function subject to linear inequality and equality constraints where some
or all of the variables are required to be integral. A rich variety of problems can
be represented by such discrete optimisation models. Typical applications con-
cern the management and efficient use of scarce resources to increase productivity.
Examples are planning problems as production scheduling, machine sequencing,
or capital budgeting, portfolio analysis and design problems such as VLSI circuit
design and the design of automated production systems. Scientific applications
include problems in molecular biology, high energy physics and X-ray crystallogra-
phy [NW88, NW89]. In the last decade, the use of integer programming models has
increased significantly which is mostly due to the advances in algorithms for solving
integer programs and the availability of reliable software packages [JNS97]. Com-
puting an optimal solution of an integer linear program is NP-complete [GJ79).
Nevertheless many large instances of such problems can be solved. Recent re-
search has lead to an understanding of properties that make some ILP formula-
tions easily solvable. Those formulations are called structured [CWM94] since it
is the structure of their constraints that permits efficient computations. Using
structured formulations has lead to a considerable success in the ILP approach to
NP-complete problems as, e.g., the travelling salesman problem [LLKS85] or in
0-1-programming [CJP83]. Recent advances have also made it possible to improve
the efficiency of ILP solving techniques by curtailing the necessary enumeration
process [JNS97, Eis00].

31

4. A Short Introduction to Integer Linear Programming

4.2. Mathematical Foundations

Definition 4.1 Let S C IR". A point x € IR" is a convex combination of points of
S if there is a finite set {z'}t_, € S and a N € R with Y _ N =1, =3 ._, A\’
and A\; > 0 for alli =1,...,t. If \; > 0 for alli = 1,...,t, x is called strict
conver combination of S. The convexr hull of S, conv(S), is the set of all convex
combinations of points in S.

Definition 4.2 A set of points x',...,2¥ € R"™ is called linearly independent, if
the unique solution of Zle ANzt =0, for \;eRis)\ =0 foralli=1,...,k.

Definition 4.3 A set of points z',..., 2% € IR"™ is called affinely independent if
the unique solution of Zle ozt =0, oy € R, Zle a; = 0 is a; = 0 for all
1=1,...,k.

Definition 4.4 A polyhedron P C R" is a set of points satisfying a finite number
of linear inequalities; P = {x € R"™ | Az < b}, where (A,b) is an m X (n + 1)-
matriz. A polyhedron is called rational, if there is an m' x (n + 1)-matriz (A', V')
with rational coefficients such that P = {x € R" | A’z < b'}.

Definition 4.5 A point x € P is called vertex of the polyhedron P, if x cannot be
represented as a strict conver combination of two different points from P.

Definition 4.6 A polyhedron P C IR" is bounded if there is an w € R, such
that PC {z €e R" | —w < z; < w for j =1,...,n}. A bounded polyhedron is
called a polytope.

Definition 4.7 A polyhedron P is of dimension k, dim(P) = k, if the mazimum
number of affinely independent points in P is k + 1.

Given a polyhedron P = {z € R" | Az < b} the question arises which of
the inequalities a'z < b; are necessary in the description of P and which can be
omitted.

Definition 4.8 An inequality a'z < b; is called valid for P, if it is satisfied by all
points in P.

Definition 4.9 If o'z < b; is a valid inequality for P and F = {x € P | a'z = b;},
then F is called a face of P and we say that o'z < b; represents the set F. A face
F is said to be proper, if FF # 0 and F # P. A face F of P is a facet of P if
dim(F) = dim(P) — 1.

In [NW8S] it is shown that in order to describe P it is sufficient to characterise
its facets. For each facet F' of P one of the inequalities representing F' is necessary
to describe P. Each inequality a"x < b,, representing a face of P of dimension
d < dim(P) — 1 is irrelevant to the description of P. To each polyhedron P
there is a finite set of linear inequalities forming a minimal representation of P
[NW88]. When describing a polyhedron one should always try to find such a
minimal representation.

32

4.2. Mathematical Foundations

Valid Inequality TX<T

Figure 4.1.: Valid inequalities and faces.

4.2.1. The Theory of Linear Programming

A good understanding of the theory and the algorithms of linear programming is
essential for understanding integer programming. Linear programming algorithms
are often used as a subroutine in integer programming algorithms to obtain bounds
on the optimal value of the integer program. A deeper connection between linear
and integer programming is that corresponding to any integer programming prob-
lem there is a linear programming problem that has the same solution as the integer
problem.

In the following the terminology is shortly presented and some central duality
theorems are given. The duality theory provides necessary and sufficient optimality
conditions as well as means to determine bounds on the optimal value of a linear
program.

In the problem of linear programming a linear objective function is given that
is to be minimised (or maximised) subject to a finite number of linear inequalities.

min Zrp = '
Az > b (4.1)
r € IR}

where
ceR™ beR", AeR™".

The set S = {z € R} | Az > b} is called feasible region, an & € S is called
feasible solution. The feasible region of a linear program is a convex polyhedron.
An instance of the problem is said to be feasible if S # (). The function z;p = ¢’z
is called objective function, a feasible point & € S that minimises z;p is said to be

an optimal solution. If z* is an optimal solution, zzp(z*) = ¢’'z* is called optimal

33

4. A Short Introduction to Integer Linear Programming

solution value. An instance of (4.1) is unbounded, if for all w € IR there isan z € S
with ¢T'# < w. Computing a solution of an instance of (4.1) means calculating an
optimal solution or showing that it is unbounded or infeasible. If all coefficients
are rational, each feasible instance of a linear program has at least one optimal
rational solution or is unbounded.

If a linear program is given the questions arise how the optimality of a solution
can be proven and whether a lower bound on the optimal value of the objective
function can be determined. In this context the problem (4.1) is denoted as the
primal problem. The dual problem of (4.1) is defined as follows:

maz 2z, = y'b
yTA < ¢ (4.2)
y € RTY

The vector of the objective function coefficients of the dual corresponds to the
right-hand side vector of the primal problem and vice versa; the coefficient matrix
of the dual is the transposed coefficient matrix of the primal. Each linear program
can be dualised this way. The dual of the dual (4.2) is the primal problem such
that it does not matter which of them is denoted as the dual and which as the
primal problem.

Example 4.1 Let the following primal problem be given:
min 36x; + T2x9 + 24z3

T + 2y + x3 > 6

21?1 + 3$2 2 3

4561 — T2 + T3 > -9

—x; 4+ T2 4+ xz > 15

T1,To,x3 > 0

Then the dual problem reads as follows:
mar 6y; + 3y — Y9y3 + 1oy,

y1 + 2y + 4dys — oy <36
21 + 3y — ys + ya < T2
vy - + ys + ya < 2
Y1,Y2,Y3, 92 = 0

|

Proposition 4.1 (Weak Duality) Let T be a feasible solution of the primal prob-
lem

T

min cx
Az > b
n
z € RY

34

4.2. Mathematical Foundations

and y o feasible solution of the dual problem

max y'b
yTA < ¢
y € RTY
then
7b<c7.

Proposition 4.2 (Strong Duality) Let x* be a feasible solution of the primal
problem and y* a feasible solution of the dual problem. The equation c'z* = y*T'b
holds if and only if x* is an optimal solution of the primal and y* is an optimal
solution of the dual problem.

Corollary 4.1 Let P and D be a pair of dual linear programs as defined in (4.1)
and (4.2).

1. A linear program has an optimal solution if and only if P and D have (at
least) one feasible solution. The optimal values of the objective functions of
P and D are identical.

2. If P has no lower bound, D is infeasible.

3. If D has no upper bound, P is infeasible.

The duality properties play an important role, e.g., in the branch-and-bound
algorithm presented in Chap. 4.3.

There are several well-known algorithms for linear programming: the simplex
algorithm, the ellipsoid method of Khachiyan [Kha80], and the projective algo-
rithm of Karmarkar [Kar84]. The most prominent algorithm is the simplez method
designed by Dantzig [Dan51]. Although its worst-case complexity is exponential,
on the average the method is very efficient. Practical experience shows that the
number of necessary pivot steps is about linear. The primal and dual simplex
algorithms are components of many software systems for linear and integer linear
programming including the CPLEX library [ILO99] used in the implementation of
this thesis. The ellipsoid algorithm and the projective algorithm have polynomial
time complexity; however the ellipsoid method is considered computationally im-
practical. More detailed discussions of those algorithms can be found in [NW88],
[NW89], [PS82], [Chv83], [Sch86], or [Sch93].

4.2.2. The Theory of Integer Linear Programming

A mized integer linear program (MIP) is an optimisation problem of the form

min {¢"z +h"y | Az + Gy > b; x € Z%, y € RY} (4.3)

35

4. A Short Introduction to Integer Linear Programming

where
celR", beR™, he R?, Ac¢ R™", Ge IR™?P

The special case of a MIP where there are no continuous variables is called pure
integer linear program (ILP). It has the following form:

min z;p = cx (4.4)

r € PFDZ”

where
Pp={z|Az>b, z€R}}, ceR", be R", A R™™"

In the scope of this thesis we can assume that A € Z™" and b € Z™.
The optimal solution of an integer linear program can be computed by solving
the following problem [NW88]:

min z;p = cx (4.5)
x € P

where
Pr=conv({z |z € Pr NZ"}).

A representation of Pr and P; (equations 4.4, 4.5) is given for the two-dimensio-
nal case in Fig. 4.2. The integer points within Pr represent the feasible solutions
of the integer linear program; depending on the objective function at least one of
them is an optimal solution. The feasible region of (4.4) only consists of the integer
points whereas the feasible region of (4.5), P, consists of the convex hull of those
points.

XZ
> objective function

integer points

\4

Figure 4.2.: Feasible region.

Since Pr is a rational polyhedron, each linear function can be optimised over Pg
in polynomial time by linear programming algorithms. However in the general case

36

4.2. Mathematical Foundations

this observation cannot directly be exploited when solving integer linear programs.
Often no system of linear equations describing P; is known, and in general the
number of inequalities that are necessary to describe the convex hull P; is extremely
large [NW89]. Nevertheless it is an important observation that can be exploited
to increase the efficiency of ILP models and algorithms.

Definition 4.10 (Relaxation) Let an optimisation problem Q with feasible re-
gion X (Q) be given. An optimisation problem QF is called a relaxation of Q, if
for the feasible region X (QR) holds:

X(Q) € X(@").

If all integrality constraints of an ILP are removed, the resulting linear program
is called the LP-relazation of the ILP. The LP-relaxation is defined as follows:

min 2z = c'z (4.6)
r € Pgp

where
Pp={z|Az>b, t€R}}, ceR", be Z", AcZ™"

Since P; C Pp, it follows that zz < z;p. If Pr = Py, the polyhedron Pp is
said to be integral. In this case zg = z;p holds and the optimal solution can be
calculated in polynomial time by solving the LP-relaxation. Therefore, when for-
mulating an integer linear program one should always try to find a set of constraints
describing Pr as an integral polyhedron.

Unfortunately, most problems do not directly translate into integral polyhedra
and it is not known how the required additional linear inequalities have to be
formulated—and there might be an exponential number of them [NW89]. So, in
general P; C Pp and the LP relaxation provides a lower bound for the objective
function. The efficiency of many algorithms for solving integer linear programs
depends on the quality of this bound. The better Pr approximates the feasible
area P; the tighter is the bound. Thus, for efficiently solving an ILP formulation
it is extremely important that P is close to Py (see Chap. 4.3) [CWM94].

One important algebraic property that can be used to check the integrality of
a polyhedron is the total unimodularity of the constraint matrix. If the coeffi-
cient matrix of a set of constraints can be proven to be totally unimodular, the
corresponding polyhedron is integral.

Definition 4.11 A square, integer matric B € Z™" is called unimodular if for
its determinant B holds |B| = £1. An integer matriz A € R™ ™ is called totally

unimodular if every square, nonsingular submatriz of A is unimodular.

Theorem 4.1 Let A be a totally unimodular matriz and let b be an integral vector.
If P={x € R" | Az > b} is not empty, then P is an integral polyhedron.

37

4. A Short Introduction to Integer Linear Programming

Theorem 4.2 Let A be a totally unimodular matriz, and let b, b, d and d' be
integral vectors. If P = {z € R |V < Az <b,d' <z < d} is not empty, then P
s an integral polyhedron.

A stronger connection is established by the theorem of Hoffman and Kruskal:

Theorem 4.3 Let A be an integral matriz. Then A is totally unimodular, if and
only if for each integral vector b the polyhedron {x € R’ | Ax < b} is integral.

The following definitions and theorems are helpful in checking total unimodu-
larity.

Theorem 4.4 Let A € {0,1,—1}™*". If A has no more than two nonzero entries
in each column, and if Y . a;; = 0 if column j contains two nonzero coefficients,
then A is totally unimodular.

Theorem 4.5 The following statements are equivalent:
o A is totally unimodular.

o The transpose of A, AT, is totally unimodular.

e A matriz obtained by multiplying a row (column) of A by —1 is totally uni-
modular.

e A matriz obtained by permuting rows (columns) of A is totally unimodular.

e A matriz obtained by duplicating rows (columns) of A is totally unimodular.

Theorem 4.6 Let A € {0,1,—1}™*". Then A is totally unimodular, if and only
if for every J C N = {1,...,n} there exists a partition Jy, Jo of J such that

E aij—g ai]-

jEI JEJ2

Definition 4.12 Let A € {0,1}™*". Then A is called an interval matrix if in
each column the 1’s appear consecutively; that is if a;; = ag; =1 and k > 1 + 1,
then a;; =1 for all l with i <1 < k.

<1 fori=1,...,m.

Theorem 4.7 Interval matrices are totally unimodular.

The proofs of theorems (4.1 — 4.7) are given in [NW88|.

Advances in solving ILP formulations have been made in several ways. By for-
mally analysing the structure of the constraints, tight descriptions of the feasible
region Pp can be developed that approximate P; more closely. Moreover the for-
mulation can be tightened by incorporating valid inequalities which are due to the
integrality of decision variables. This way better bounds on the objective function
can be found and the efficiency of ILP formulations increases. The availability of
good bounds plays an important role for example in the branch-and-bound algo-
rithm. Finally the increased understanding of the constraints has led to better
relaxation- and branching strategies [Wil93a, CWM94].

38

4.3. The Branch-And-Bound Algorithm

4.3. The Branch-And-Bound Algorithm

The most prominent algorithm for solving integer linear programs is the branch-
and-bound method [NW88, Sch86]. By using controlled enumeration and relax-
ation and/or duality, the feasible region S of the optimisation problem IP is par-
titioned in a set of disjoint subsets {S* | 4 =1,...,k} and the problem is solved
over each of those subsets. In this section the general branch-and-bound method
for the problem of integer linear programming is presented.

Definition 4.13 Let a set S be given. The sets {S'}¥_, are said to be a division
of S, if Ule St = S. A division is called partition, if S°NS7 = 0 for 1,5 =
...k i#7.

Proposition 4.3 Let {S'}t_| be a division of S and ztp = min{cTz | z € S*}.
Then for z;p = min{c'z | z € S} holds

zip = min zbp.
i=1,...,

Proposition 4.3 represents the starting point of a divide and conquer algorithm.
A problem is partitioned into subproblems that are recursively solved by the same
algorithm [Meh88]. Then the solution of the entire problem is composed from the
solutions of the subproblems.

Carried to the extreme, this can lead to a total enumeration of all elements of
S—which is only possible if S' contains very few elements. In order for this approach
to be practicable the number of investigated partitions has to be as small as possible
and the computation time at each node of the enumeration tree has to be kept low.
In the branch-and-bound method for the problem of integer linear programming,
the computation effort for the subproblems is restricted by solving relaxations or
the dual problems. This way it is not necessary to compute the optimal solution
of an integer linear problem of its own at each node of the enumeration tree. Let
RP? be a relaxation of IP?, 2% the optimal objective function value of RP?, and
DP' the dual of IP'. The following Proposition 4.4 provides criteria for pruning
the enumeration tree. An example of a pruned enumeration tree is given in Fig. 4.3
where the children of each node represent the partitions of the problem associated
with the parent node. If the algorithm can establish that no further partitioning of
a problem is necessary the branch-and-bound tree is pruned at the corresponding
node.

Proposition 4.4 The enumeration tree can be pruned at the node corresponding
to St if any of the following conditions holds:

1. RP" is infeasible.
T

2. There is an optimal solution z%, of RP' that satisfies x% € S' and 2%, = L'zt

3. 2% > Zp, where Zip is the value of some feasible solution of IP.

39

4. A Short Introduction to Integer Linear Programming

Figure 4.3.: Example of a branch-and-bound tree.

4. The problem DP" is unbounded from above.

5. DP* has a feasible solution z%p where 2%p > Zip.

Explanation 1 1. If the relaxation has no feasible solution, this implies that
there is no feasible integral solution since the feasible region of the relazation
1s a superset of the feasible region of the corresponding integer linear program.

2. If the optimal solution of a relaxation is a feasible solution of the entire prob-
lem, no further decomposition is required.

3. The objective function value 2% of RP? always represents a lower bound on
the objective function value of IP'. If a feasible solution of IP has already
been found whose objective function value Zip is less than or equal to 2%,
IP" cannot provide a better feasible solution. Therefore it is not necessary to
divide IP?; the enumeration tree can be pruned at the node for IP:.

4. If the dual has no upper bound, the corresponding primal problem is infeasible.
In consequence there is no feasible solution, especially no feasible integral
solution.

b. Because of the weak duality, each feasible solution of the dual problem repre-
sents a lower bound for all feasible solutions of the primal problem. Therefore
the best solution found so far cannot be improved by solving IP*.

The general branch-and-bound algorithm is presented in pseudocode on page
41 (Algorithm 4.4). Let L = {IP'} be a set of integer linear programs of the form
zip = min{c’x | z € S} where S* C S. Each problem from L is associated with a
lower bound 2zt < 2%.

40

4.3. The Branch-And-Bound Algorithm

L={IP}; §°=5; 2° = —o0; z1p = o0;
while (L # 0) {

/* Node selection and relaxation */
Choose a problem IP? € L and remove it from L;
Solve the relaxation RP%;
Let zﬁz be the optimal objective function value of the relaxation and let 553{
be an optimal solution.
/* Pruning */
if (2% > z1p) {
Start the next loop iteration. If the relaxation is solved by using a dual

algorithm, this can be done as soon as the dual objective function
value reaches or exceeds Z7p.

}
if (z%, € 5°) {
if (T2t < z1p) {
Set zip = cTac“R;
0 = 1
}
Remove from L all problems with 2* > Z7p;
if (¢l = 77p) {
Start the next loop iteration.

}

/* Partitioning */

Let {S"}%_, be a partition of S".

Add to L the problems {IPU};?:1 where 2 = 2%, for j = 1,...,k. For each

of the new subproblems the objective function value of their parent’s
relaxation, i.e. of the current relaxation, is used as lower bound.

}
if (Z7p < 00) {

T,..0

The solution z°, whose objective function value is Z7p = ¢ 2° is optimal.

o* =1 2* = 7Ip;

else {

There is no feasible solution: S = {;

Figure 4.4.: The Branch-and-bound Algorithm.

4. A Short Introduction to Integer Linear Programming

There are several algorithms that are available to perform the partitioning. One
of them is the Dakin method [Dak65]. First the algorithm selects a decision variable
z, and then generates the subproblems IP" and IP" from IP. Let z® denote an
optimal solution of the relaxation of IP. Then the subproblem IP™ is built from
IP by adding the inequality z, < |zZ|; adding x,, > [zF] yields the subproblem
IP™. An advantage of this method is that only upper and lower bound constraints
are added to the relaxation. Therefore the computation effort required to solve the
relaxations does not increase with increasing depth of the branch-and-bound tree
in contrast to some other methods as the Land-Doig method [LD60].

Proposition 4.5 Let S* be the feasible region of node t in the enumeration tree.
If min{c"z | x € SL} < Z;p holds, the node t cannot be pruned.

This proposition indicates that independently from the shape of the tree, the
bounds, i.e. the quality of the relaxations, are the primary factor for the efficiency
of a branch-and-bound algorithm. This is the reason why it is essential that the
feasible region of the relaxation be close to the feasible region of the integral prob-
lem. The solution efficiency is also strongly influenced by the selection of the next
node to be examined and the selection of the variable that defines the division. For
variable selection no robust methods have been established yet [NW89]. Therefore
it is common practice to rely on user-defined branching priorities. As an example
a binary variable indicating whether a project is to be started or not should be as-
signed a higher priority than a variable corresponding to detailed decisions within
the project.

The input of the node selection is a list L of the active subproblems, i. e. the set
of nodes of the decision tree that have not been pruned yet. The decision that has
to be made is which of those nodes is to be examined next. It can be distinguished
between a priori rules that determine the development of the tree in advance and
adaptive rules that use information about the status of the active nodes. The most
important a priori rules are depth first search with backtracking and breadth first
search. If the current node is not pruned, the depth first search selects one of its
two children to visit next. Backtracking means that if a node is pruned the path
from that node to the root of the enumeration tree is traversed until the first node
is reached that has a still unvisited child. In breadth first search all nodes of a
given depth are traversed before any nodes of the next depth are visited. Due to
the large amount of memory required to store the list of the active nodes, this
strategy often is not practicable for large problems. Moreover practical experience
indicates that feasible solutions can be expected to be located deep in the tree and
not near the root [NW88|. Common adaptive rules are the best bound and the
best estimate rules. The best bound rule chooses the node with the smallest lower
bound, i.e. whose relaxation has the lowest objective function value. The best
estimate rule chooses the node that has the largest probability of representing an
optimal solution. If 2* > 2’ is an estimate for 2%, then that 7 € L is selected that
minimises 2°.

42

4.3. The Branch-And-Bound Algorithm

Contemporary mathematical programming libraries as, e.g., CPLEX [IL0O99]
usually provide an extension of branch-and-bound algorithms, the so-called branch-
and-cut algorithms. The branch-and-cut algorithm is a synthesis of the branch-and-
bound algorithm and cutting-plane methods [JNS97]. A cut is a valid inequality
of the original integer problem /P that is not part of the current formulation and
that is not satisfied by all feasible points of the current LP relaxation. If a solution
of the LP relaxation of IP does not satisfy all of the constraints the separation
problem is to find a violated inequality. Since the convex hull of the feasible points
is a polyhedron such an inequality must exist. A linear time algorithm to detect
such violated inequalities has been proposed by Gomory [JNS97]. In pure cutting
plane algorithms cuts are added at the root node until an optimal MIP solution
has been found [Gom63]. While in practice these algorithms turned out to be
time and memory consuming, better results can be achieved with branch-and-cut
algorithms [CJP83, PR87]. At each node of the enumeration tree that is not pruned
a separation problem is solved. If one or more violated inequalities are found they
are added to the formulation and the LP is solved again. If none are found the
algorithm branches. There are specialised branch-and-cut algorithms for a variety
of combinatorial optimisation problems [JNS97]. For more comprehensive surveys
the reader may refer to [NW88, NW89, Sch86, PS82].

43

4. A Short Introduction to Integer Linear Programming

44

5. ILP-Models for the Code
Generation Problem

Integer linear programming has a long tradition as a method for investigating
general scheduling problems. There is a large amount of literature where ILP for-
mulations for special classes of scheduling problems together with their polyhedral
characteristics are presented. A detailed survey would go beyond the scope of this
thesis; comprehensive surveys are given in [QS94, BEP96, Sch96a, Hal97, KW99].
The scheduling problems addressed in those approaches mostly represent opera-
tions research problems; well-known problems are the flow shop or the job shop
scheduling problems [BEP*96]. It is only during the last years that integer linear
programming has gained increased attention in the area of code generation. ILP
formulations for instruction scheduling of sequential code have been presented in
[Ary85, Leu97, HLWO00]. In [GW96, KW98] an ILP model for register allocation is
proposed. In the area of software pipelining, ILP models have been developed that
aim at computing an optimal unrolling factor and at overlapping different loop
iterations in order to get to an optimal schedule [AJLA95, RGSL96, GAG96]. In
most of the software pipelining approaches homogeneous VLIW-like architectures
without significant resource restrictions are considered and no phase coupling with
other code generation phases is attempted.

The use of integer linear programming for phase-coupled code generation how-
ever is still rare. In traditional code generation systems, calculation speed plays
an important role. Usually fast graph-based heuristics are applied that lead to the
generation of suboptimal code. For homogeneous architectures the code quality
of these techniques is satisfactory. Further improvements of the code quality are
considered less important than any increase of compilation time. Traditional code
generation techniques however fail to achieve a satisfactory code quality for irreg-
ular architectures, as detailed in Chap. 2. In the area of embedded systems where
mostly processors with irregular architectures are used the code quality plays an
important role. Therefore in this area higher calculation times are acceptable if
they allow for increased code quality. Similar preconditions are given in the area of
architectural synthesis. The goal of architectural synthesis is to design the fastest
architecture for a given input algorithm that does not exceed a fixed cost maxi-
mum, or to design the cheapest architecture for the input algorithm that meets a
fixed performance criterion. In order to evaluate the performance capacities of a
hardware design it is important to determine the optimal code sequence for the

45

5. ILP-Models for the Code Generation Problem

given input algorithm. In [GE92, GE93] and [Zha96] two well-structured ILP mod-
els for architectural synthesis have been presented. Both models can be used to
perform phase-coupled instruction scheduling, register assignment and functional
unit binding. An important characteristic of these approaches is that the find-
ings of polyhedral theory have been applied in order to arrive at well-structured
formulations that allow for efficient problem solving.

In previous publications [K&s97, KL98, K1.99] we have investigated the applica-
bility of the phase-coupled ILP formulations [GE92, GE93| and [Zha96] for the code
generation problem for irregular architectures. Based on the results of these studies
the ILP models have been extended to form the basis of the retargetable phase-
coupled code optimisation framework presented in this thesis. The use of integer
linear programming offers several advantages. First integer linear programming
allows for a concise problem description in which irregular hardware characteris-
tics can be easily incorporated. Second the theory of integer linear programming
has lead to sophisticated solution techniques [NW88, Sch86, JNS97, Wil93b] so
that powerful tools are available for computing the solution even of larger problem
instances [ILO99, SN98]. Moreover as will be shown in this thesis, ILP-based ap-
proximations can be used to reduce calculation time and yet compute high-quality
solutions such that a scalable optimisation quality is achieved.

Depending on the choice of the main decision variables, integer linear program-
ming models for the code generation problem can be classified as time-indexed
formulations or order-indexed formulations [KW99]. In time-indexed approaches,
the decision variables are based on the discrete point in time the modelled events
are assigned to. The ordering of the events is derived from the assignment to points
of time. In order-indexed approaches, the semantics of the decision variables re-
flect the ordering of the modelled events. Here the assignment of the events to
points of time is derived from the computed ordering. The SILP-model (Sec. 5.2)
is an order-indexed formulation, while the OASIC formulation described in Sec. 5.3
is an example of a time-indexed formulation. As detailed in Sec. 5.5, depending
on the architectural design and the kind of optimisation to be performed, both
formulation styles exhibit different performance characteristics. Our results indi-
cate that some architectural parameters can be better described by a time-indexed
formulation while for others an order-indexed formulation is better suited.

This chapter is organised as follows: after some fundamental definitions, the
ILP models of the SILP and the OASIC formulations are presented for sequen-
tial program flow in Sec. 5.2 respectively Sec. 5.3. In Sec. 5.4 a mechanism to
incorporate the control flow structure of the input procedure in integer linear pro-
gramming formulations is presented. This modelling is the presupposition of the
superblock-based code optimisation presented in Chap. 7. ILP constraints to in-
corporate irregular hardware characteristics are presented in Sec. 8.4. In Sec. 5.5,
the connection between the ILP modelling style (time-indexed vs. order-indexed)
and the architectural characteristics of the target processor are detailed.

46

5.1. Basic Definitions

5.1. Basic Definitions

The goal of the ILP models presented in this chapter is to compute an optimal
solution to the problems of instruction scheduling, register assignment and resource
allocation for a given input procedure p. Let N; be a set of nodes where each
operation 7 of p is mapped to an individual node n; € N;. As detailed in Chap. 2 the
data dependences of the input program define a precedence relation < C Ny x Ny
where i < j & i =5 .

Each operation of the target processor can be executed by dedicated functional
units. In general, several alternative functional units are available for the execution
of an operation. If the properties of those functional units are identical, they can
be considered as instances of the same resource type. Then it is not necessary to
distinguish between them in the generated integer linear programs. If the properties
of the functional units differ, it may be necessary to differentiate between them
when generating the ILP formulations. It is assumed that operations mapped to
different functional unit types can be executed in parallel if this is not prevented by
data dependences. The number of operations that can be simultaneously executed
by the same type of functional units is given by the number of instances of this
resource type. This corresponds to the VLIW execution model where an instruction
can be composed of several microoperations that are executed in parallel. In order
to determine the feasible assignment of operations to functional unit types the
resource graph G [Zha96] is used. The resource graph is derived from the TDL-
specification of the target architecture (see Chap. 8). The set NL contains a node
for each functional unit type of the target processor.

Definition 5.1 (Resource Graph) The resource graph Ggr = (Ng, Egr) is a bi-
partite directed graph. Its node set Nrp = Ny U N}, contains a node for each oper-
ation of the input procedure and a node for each functional unit type of the target
processor. The set of edges Er C Nr x NE describes all possible assignments of
operations to functional unit types. If (j, k) € Eg, operation j € Ny can be executed
by an instance of the functional unit type k € N

In architectures with heterogeneous register files the set of destination registers
available for storing the result of an operation is usually restricted. It may be
necessary to differentiate between registers of the same register file, or between
different resource aliases. In order to describe the registers available for storing
the result of an operation, the register graph G4 = (Ny4, E4) is used. Registers
that can be considered equivalent during code generation are grouped to register
groups. Since those groups do not necessarily correspond to the register files of the
target architecture they are called abstract register files (see Sec. 10.1.1). The set
N3 of abstract register files of a given target architecture is determined from the
TpL-description of the target processor (see Chap. 8).

Definition 5.2 (Register Graph) The register graph G4 = (Na, E4) is a bipar-
tite directed graph. Its node set Ny = Ni*UN§ contains a node for each operation

47

5. ILP-Models for the Code Generation Problem

of the input procedure that performs a write access to a register and a node for
each abstract register file of the target processor. The set of edges E4 C Ni* x N
describes which registers can be used to store the result of each operation in N3.
If (j,r) € E4, operation j € Ni* can store its result in a register of the abstract
register file r € Nj.

Before generating the integer linear programs, an interval is calculated for each
operation ¢ containing all control steps in which the execution of ¢ can be started in
any feasible schedule. This interval is defined as N (i) = {asap(i), ... alap(i) } where
asap(i) denotes the as soon as possible, alap(i) the as late as possible control step
for the starting time of operation i [Fou81]. The asap control step is the earliest
control step in which ¢ can be started without violating any data dependences; it
is calculated as the longest path to operation ¢ in the data dependence graph. The
computation of the alap control step requires an upper bound U on the execution
time of the input program to be given. The longest path to operation 7 is calculated
in the inverse data dependence graph and its length is subtracted form U, yielding
asap(7). It denotes the latest control step in which the execution of i can be started
such that the upper bound U of the execution time is not exceeded and no data
dependences are violated. The asap and alap values are refined by taking into
account the number of available hardware resources. The algorithm for computing
the asap and alap values is summarised in Sec. 9.4.

All decision variables introduced in the remainder of this chapter are assumed
to be non-negative. The non-negativity constraints are not explicitly listed in
the description of the ILP formulations. Throughout this chapter the following
terminology is used:

e asap(i) denotes the as soon as possible, alap(i) the as late as possible control
step for the starting time of operation 1.

e N(i) = {asap(i),...,alap(i)} is a superset of all control steps in which ¢ can
be started in any feasible schedule.

e ¢; € N(i) denotes the starting time for the execution of an operation i.

e Q% € IN represents the amount of time required to execute operation i by an
instance of functional unit type k.

° L;? € IN represents the latency of the functional unit type k € Nj executing
operation j, i.e. the minimal time interval between two successive data inputs
to the same instance of k.

e The number of available instances of a functional unit type k € N}, is denoted
Ry.

e The length of the life range of a variable defined by operation ¢ is denoted
7; € IN.

48

5.2. The SILP Model

5.2. The SILP Model

The SILP formulation (Scheduling and Allocation with Integer Linear Program-
ming) has been developed by Li Zhang in 1996 [Zha96] as an approach for phase-
coupled scheduling, allocation of functional units and register assignment. In
[K&s97, KL98, KL99] it has been modified to incorporate irregular hardware char-
acteristics and refined to meet the requirements of phase-coupled postpass optimi-
sations; this extended formulation is presented in the remainder of this section.

The SILP model is an order-indexed formulation. The main decision variables
describe the flow of the hardware resources of the target architecture through the
operations of the input procedure. Each flow variable xfj € {0,1} indicates whether
operation ¢ passes an instance of the functional unit type k£ to operation j. The
starting time for the execution of each operation is determined from the calculated
resource flow.

Most ILP formulations used in the area of code generation are time-indexed
models. For classical scheduling problems order-indexed models have been pro-
posed where the decision variables specify whether one job transitively precedes
another one [Pot80, Pet88, Fis92, NS92]. The difference of the SILP formulation
is that the decision variables indicate whether one operation is the immediate pre-
decessor of another operation on a specified resource type. To our knowledge no
order-indexed formulations other than SILP have been developed for the code gen-
eration problem. Our results however indicate that order-indexed formulations can
be superior to time-indexed formulations depending on the problem dimension and
the architecture of the target processor.

5.2.1. Basic Formulation

In the SILP formulation, the integer linear programs are generated from the re-
source flow graph Gp = (Np, Er). This graph describes the execution of the input
procedure as a flow of the available execution units through the operations of the
procedure. For each functional unit type a separated flow network is generated.
Each functional unit type k € N is represented by two nodes kg, ks € Ny where
the node kg represents the source and kg the sink of the corresponding flow net-
work. The first operation to be executed on resource type k gets an instance k,
of this type from the source node kq; after the execution has been completed, it
passes k, to the next operation using the same resource type. The last operation
using a certain instance of the functional unit type k returns it to ks. The num-
ber of simultaneously used instances of each resource type must never exceed the
number R, of available instances.

Definition 5.3 (Resource Flow Graph) The resource flow graph is a directed
graph Ggp = (Np, Er) with a set Np = Ny U UkeN};{kQ’kS} of nodes and a set
Er = UkeN}; E% C Np x Np x NE of labelled edges. The edges of E¥ describe all

49

5. ILP-Models for the Code Generation Problem

possible resource flows with respect to the functional unit type k.
Ep = {(i,j,k) |4, € Nt A (i,k) € Er A (j,k) € Er A j2i A i#j}
U {(kQaja k) | (.7’ k) € ER }
U {(j7k57k) ‘ (]:k)EER}

Each edge (i,4,k) € Ep is associated with a binary flow variable z}; € {0,1}.
An instance of the functional unit type & is moved along the edge (7, J, k) from 3
to j if and only if xfj =1.

Example 5.1 Fig. 5.1 shows an example resource flow graph for two functional
unit types ALU and MUL. It is assumed that the operations that have to be
executed by the ALU are independent, such that there is no restriction of the
operation ordering. Assume further that operation n is data dependent on m such
that in the subgraph of the functional unit type MUL there is only one feasible
operation ordering. If the target architecture disposes of two ALUs, i.e. if there
are two instances of the functional unit type ALU, the operations ¢ and j can be
executed in parallel; otherwise both have to share the same instance of ALU and
have to be sequentialised.

Figure 5.1.: Example of a resource flow graph.

|

In the following both the source and the sink node of a resource type k are
denoted as k in order to simplify the notation of the equations; from the context
it is always clear whether a source or a sink node is meant.

An algebraic representation of the resource flow graph can be given with the
following flow equations. For each node the value of the flow entering the node
must be equal to the value of the flow leaving this node; this is guaranteed by
the flow conservation constraints (5.1). Additionally it has to be ensured that
each operation is executed by exactly one resource instance; for this purpose the
execution constraints are used (5.2).

Uk = 0 VjeN VkeNg: (jk) € Egr (5.1)
Yook =1 Vvjen (5.2)
keNE:
(:k)€ER

90

5.2. The SILP Model

The variable CIJ;? denotes the flow entering a node j € Ny, and \I!;c denotes the
flow leaving it. The exact definitions read as follows:

k k k k
=) af V=) (5.3)
(i,4,k)EER (i,k)EER

Example 5.2 The flow conservation constraints generated for the resource flow
graph of Fig. 5.1 read as follows:

B+ — afs, — afs = 0
B+ T8 — i, — = 0
B = Ty — T = 0

B T — = 0
Wi = 1

v el =1

P, = 1

1

MUL MUL __
IMUL,n—i_wm,n -

|

The number of resource flow edges and thus the number of flow variables :vfj
can be reduced by the asap/alap analysis as presented in Chap. 9.4. If for two
operations 7 and j the inequality L¥ + asap(i) > alap(j) holds for all functional
unit types i can be assigned to, no resource flow edge (i, 7, k) is needed for any k.
The reason is that operation i is always executed after operation j such that ¢ can
never pass a resource instance to j.

If each operation j can only be executed by exactly one resource type k, the
constraints 5.1 and 5.2 are replaced by

® =1 VjeN VkeVi:(jk) €Eg (5.4)

U =1 VjeN VkeV{:(jk)<€Eg
The execution time of an operation and the corresponding functional unit la-
tency may vary with different functional unit types the operation can be mapped
to. If an operation is mapped to a functional unit type k, one of the instances of &

must reach that operation by an incoming flow edge. Thus the execution time w;
of an operation j can be defined as

wi=Y Y Q-zf VjeN (5.6)

keNE (ij,k)EEF

Similarly the functional unit latency associated with the execution of an oper-
ation j can be calculated as

51

5. ILP-Models for the Code Generation Problem

=Y > ILfal Vjiel (5.7)

If the execution time (latency) of an operation does not vary depending on the
chosen functional unit type, w; (2;) are considered as constants when solving the
integer linear programs.

The number of operations simultaneously executed by a functional unit type
k must never exceed the number of available instances of that resource. This can
be achieved by restricting the maximal value of the flow leaving the node of the
functional unit type £ in the resource flow graph.

Y af; <R, VkeNj (5.8)
(k7jak)€EF

Example 5.3 Let R,,, = 2 and R,,,;, = 1. Then the resource constraints gener-
ated for the resource flow graph of Fig. 5.1 read as follows:

ALU ALU
xALU,i + xALU,j

IA A

MUL MUL
L yvurm + L ymuLyn

|

Instruction scheduling requires a modelling of the data dependences among the
operations of the input procedure. The constraints to be generated depend on the
type of the dependences. In case of a true dependence (i, 7,7,t) € E%, j may only
be started after the execution of 7 has been finished and the result is available:

ti—ti>w; ¥ (i,4,7,t) € Ep (5.9)

If there is an output dependence between two operations i and j ((¢,7,7,0) €
E?9)), j must not be allowed to write its result before the result of i has been written:

tj —t;, > w; — w; + 1 Vv (’i,j, T, 0) € E% (510)

In case of anti dependences (4, j,r,a) € E% it has to be ensured that j writes
its result after the execution of 7 has been started.

tigtj—i-wj—l V(’l:,j,’I‘,CI,)EE% (511)

Finally dedicated constraints are required in order to synchronise the starting
time of the operations with the values of the flow variables. If two operations 7 and

52

5.2. The SILP Model

j are both assigned to the same functional unit type &, j must await the execution
of 7 if an instance of k is passed along the edge (i) € Ef, i.e. if zf; = 1.

keNE:
(i=j7k)eEF

The constants «;; have to be chosen large enough such that if 7 and j are
not mapped to the same resource instance the inequality is always valid. The
better the feasible region of the relaxation Pr approximates the feasible region of
the integer linear program P; the more efficient the integer linear program can
be solved. The larger the value of ¢;; is chosen, the larger grows the distance
between Pr and P;. Since this can strongly affect the solution efficiency, the
smallest possible value is chosen for «;;. The tightest solution polytope for a serial
constraint t; — t; > 2 + (z;; — 1)oy; is realized by «;; = 2z; — asap(j) + alap(i).
The proof is given in [Zha96]. A serial constraint only has to be generated if
zi + alap(i) > asap(j). Otherwise operation j is always executed after operation i
such that the sequentialisation has not to be explicitly enforced.

Kq

Ks

Figure 5.2.: Infeasible resource flow.

Apart from the sequentialisation of operations, the serial constraints are re-
quired in order to ensure the well-definedness of the flow modelling. The infeasible
resource flows shown in Fig. 5.2 do not violate any of the constraints (5.1, 5.2).
The serial constraints however imply that ¢4 < t5 < tg < t4 such that the flows of
Fig. 5.2 cannot represent a feasible solution.

The goal of the ILP-formulation is to minimise the execution time of the input
procedure. The execution time is measured in control steps (clock cycles). So
the integer linear program for the problem of instruction scheduling and resource
allocation can be summarised as follows:

e Objective Function

min = Meps (5.13)

e ILP Constraints

93

5. ILP-Models for the Code Generation Problem

o4

. Time Constraints

The maximal number of control steps M,s, i.e. the value of the ob-
jective function is defined as the starting time of the last operation to
be executed.

tj < Msteps V] € N; (514)

. Precedence Constraints

The data dependences of the input program have to be respected.

t; —t; > w; v (’i,j, T, t) S EtD
t; —t; Z’wi—’w]'-i-l V(’i,j,T‘,O)EE%
ti S tj+wj—1 V(i,j,r,a)eE%

. Flow Conservation Constraints

The flow entering a node must have the same value as the flow leaving
that node.

®—-UF = 0 VjeNp, VkeNf: (j,k)€Eg

. Execution Constraints

Each operation must be executed exactly once by exactly one hardware
component.

Yook =1 VjeNy

F.
kGNR.

(j)k)EER

. Resource Constraints

The number of instances of all functional unit types must not be ex-
ceeded.

Y #<R VkeNg

(kajak)EEF

. Serial Constraints

If two operations 7 and j are both assigned to the same functional unit
type k, 7 must await the execution of ¢ if an instance of k is passed along
the edge (i,7, k) € Ep, i.e. if 2j; = 1. Define ay; = z;—asap(j)+alap(i),
then the constraints are defined as follows:

ti—t; > 2+ (> xfj—1) i Vi,j:3k:(i,5,k) € Ep
keNg:
(i;jyk)EEF

5.2. The SILP Model

The resource flow concept presented so far is capable of modelling hardware
architectures where the pipeline behaviour can be described by the two parameters
execution time and latency. Each operation is assigned to exactly one functional
unit. If additional restrictions for the usage of the system buses have to be taken
into account, the modelling is extended. Assume, e.g., that the number of results
that can be written to the system bus per clock cycle is restricted. The usage of the
result bus can be modelled as a dedicated resource flow that has to be considered
in addition to the resource flows of the functional units. Then each operation must
be assigned to a functional unit and additionally to the result bus. The access
restrictions with respect to the bus are represented by resource constraints, the
flow constraints (5.1) and the execution constraints (5.2) guarantee the correctness
of the flow modelling. The synchronisation of the operations writing to the result
bus is enforced by dedicated serial constraints

tj-l—wj—ti—w,-ZzB—i-(Zxﬁ—l)azj

JENI

The serial bus constraints have to be generated for each pair of operations that
may write their result in the same clock cycle. The latency zg corresponds to the
number of clock cycles required to transfer a result from the functional unit to
the destination location across the bus. The difference to the serial constraints
(5.12) is that the completion time of the operations (t; + w;) is at the base of
the serial constraints and not the starting times. A separated modelling of the
result bus is not necessary for the Analog Devices ADSP-2106X SHARC [Ana95],
the Infineon C16x [Sie96], the Texas Instruments TMS320C6x [Tex98b| and the
Infineon TriCore [Inf00]; however it is required for the Philips TriMedia TM1000
[Phi97] (see Sec. 10.2).

5.2.2. Integration of Register Assignment

In this section, the basic SILP formulation is extended to incorporate the register
assignment problem. The register assignment problem is formulated as a register
distribution problem based on the register flow graph. This graph is similar to the
compatibility graph of [ST94| where each lifetime is mapped to a node and edges
connect all nodes whose life ranges are disjoint. Let N7 be a set of nodes where
each node represents an operation of the input program that performs a write
access to a register. Each node j € Nj' is connected with the register resource
nodes representing the abstract register files r where (j,7) € E4.

Definition 5.4 (Register Flow Graph) The register flow graph Gz = (Nz,Ez)
is a directed graph with a set Ny = Ni* U UreN;g{T@ rs} of nodes and a set Ez =
UreNg E7 C NyzxNyx N{% of directed marked edges. Fach node j € NIA represents
an operation performing a write access to a register generating a variable with life

95

5. ILP-Models for the Code Generation Problem

range 7;. Each edge (i,j,7) € Ey represents a possible flow of an element register
of the abstract register file r € N# from i to j.

Ey, = {(i,j,r) |i,j € N A (i,r) € Ex A (j,r) €Es Nj£i A
i # j Anso(i,j) = true} U {(rq,5,7) | (j,r) € Ea }
U {(j,T'S,T) | (jar) S EA }

Each edge (i,7,7) € Ey is associated with a binary register flow variable Ti; €
{0,1}. If 27; = 1, the same register is used to store the variables generated by
operations ¢ and j. No register flow edge is required between two operations ¢ and
j, if it is statically known that the life ranges of the variables defined by ¢ and j
overlap (nso(i,j) = true). This is, e.g., the case if both define an input operand
of another operation I.

Life ranges of variables are defined by true dependences. If an operation 1%
performs a write access to a register used by the operations ji, ..., jm, the variable
defined by ¢ is alive until the last use of that variable. The modelling of the
life ranges requires the constraints for the true dependences to be modified. The
distance between the control step where the destination operand defined by an
operation ¢ becomes available and a use j is measured by an integer variable b;; > 0.
The constraints (5.9) for true dependences are replaced by the following equivalent
constraints:

ti—ti—bij=w; V(i,4,tr)€E, (5.15)

For the life range of the register defined by operation ¢ the following inequality
holds:
T; > bij +w; Y (i,5,t,r) € EY (5.16)

An operation j is only allowed to define the same register as a preceding operation
1, if the execution of j starts after the life range 7; of the variable defined by ¢ has
expired. This is ensured by the register serial constraints

tj—tizﬂ-—wj+(> x;."j—1> U Vi,j:3k(i,5,k) € Ey (5.17)
’I‘ENﬁ:

(iyj’r)EEZ
The value U is an upper bound of the execution time of the input program. If ¢
and j do not use the same register, i.e. if rens. Ty = 0, constraint (5.17) is
(izjar)EEZ
always satisfied.

Similarly to Sec. 5.2.1 the modelling of the register flow graph requires flow
conservation constraints, resource constraints and execution constraints. Then,
the the mixed integer linear program for integrated instruction scheduling, resource
allocation and register assignment can be given as follows:

min = Mieps (5.18)

96

5.2. The SILP Model

subject to
tj = Msteps V] € NI
tj_ti_bij = w; V(i,j,t,T)EEtD
tj_ti 2 wz_w]+1 V(iajaOaT)EE%
t;, < tj—i—wj—l V(i,j,a,r)EE,%
®F—UF = 0 VjeN,VkeNf:(jk)€Eg
Yoo =1 Vjen
keN};:
(jﬂk)EER
Y oz < R VkeNg
(kajzk)eEF
Vi,7€ Ny:
ot > o k- . s ’
tj—1t; > z,—i—(Z T 1) Qj Sk (i,j.k) € Ex
kENII;:
(Zajﬂk)EEF
T > by +w; vV (i,4,t,r) € B}
-V = 0 VjeN VreNg: (jr)€Ea (5.19)

oo) s =1 VjeNt (5.20)

TGN)‘%: (i5jyr)EEZ

(j,?")EEA
S 4, < R VreNg (5-21)
(rj,r)EEZ
ti—t > —w;+ Z x,—1|-U Vg
il 2 T j ij dr: (i,5,r) € Eyg
reNé:
(4,5,1)€EZ

From the solution of the integer linear program the physical register assignment,
for sequential code can directly be derived; the necessary extensions for programs
with complex control flow are described in Sec. 7.2.

5.2.3. The Structure of the SILP Polytope

In [Zha96] it has been shown that the polytope of the precedence constraints is
integral if the execution time of the machine operations does not depend on the
functional unit binding. If each operation can be mapped to exactly one functional
unit type, also the polytope of the constraints (5.4) and (5.5) representing the flow
conservation and execution constraints is integral. In the following we will prove
that the polytopes of the original flow conservation constraints (5.1), execution
constraints (5.2) and the resource constraints (5.8) are integral. The combined
polytope of the flow conservation constraints and the execution constraints is not
integral in the general case; this is shown by a counterexample. The combined

o7

5. ILP-Models for the Code Generation Problem

polytope of the flow conservation and the resource constraints however is integral
as well as the combined polytope of the execution and the resource constraints.
The same integrality properties also hold for the polytopes of the corresponding
register flow constraints (5.19),(5.20), (5.21).

In the coefficient matrix of the SILP polytope each row corresponds to one
constraint and each column to a decision variable xfj The strategy of all following
proofs is to show that the coefficient matrices of the respective constraints are
totally unimodular. Thus it follows from Theorem 4.2 that the corresponding
polytopes are integral.

Lemma 5.1 The polytope of the flow conservation constraints (5.1) is integral.

Proof: The flow conservation constraints have been defined as follows:
O — k=0 VjeNpVkeN,: (j,k)€Eg

Let C' € {0,1,—1}™>™ be the coefficient matrix of the flow conservation con-
straints. Consider the variable xf] This variable is used to describe the flow of
resource type k entering operation j and the flow of resource type k leaving oper-
ation ¢. In the flow conservation constraint for operation ¢ and resource type k fo
is used with coefficient —1 and in the flow conservation constraint for operation j
and resource type k its coefficient is 1. In all other constraints it does not appear,
i.e. its coefficient is equal to 0.

Thus in each column there are exactly two nonzero entries whose sum is equal

to zero. Then it follows from Theorem 4.4 that C' is totally unimodular.

Lemma 5.2 The polytope of the execution constraints (5.2) is integral.

Proof: The execution constraints have been defined as follows:

Yo ef=1 VjeNp
KEN 4:
(j’k)EER

Let E € {0,1}™*" he the coefficient matrix of the execution constraints. Only
in the constraint generated for operation j the coefficient of a variable xfj is equal
to 1; in all other constraints it is equal to zero. Thus each column contains exactly

one nonzero entry. Then it follows from Theorem 4.4 that F is totally unimodular.

The coefficient matrix of the combined polytope of the flow conservation con-
straints (5.1) and the execution constraints (5.2) however is not totally unimodular.
This can be shown by a simple example. Let three operations Ny = {1,2,3} and
two resource types Ni = {A, B} and the resource flow graph of Fig 5.3 be given.
The dotted edges represent the flow edges of resource type A, the dashed ones the

o8

5.2. The SILP Model

As

Figure 5.3.: Example of a resource flow graph.

flow edges of B. Then the following flow conservation and the execution constraints
are generated:

A A A

$ﬁ1 + $§41 + $§41 — Ty — T3 — L4 = (4)
$£2 + fo + $§42 - 33541 - 37?3 - $124A =
Ths + Ty + 2hy — a —xgy — gy =
xgl-l—:vfl-l—:v:ﬁ—xﬁ—xg—xﬁg =
8, b+l — 2l —2B 2l =)

B B B B B B
Tps + T3+ Toz — Tz; — Tzg — Tzg =

A A A B B B _
Tyy T Ty + T3 + Ty + Ty + Ty =
A A A B B B _
Tpo T T1g T T35 + Ty + Ty + T3y =

A A A B B B
Tp3 + Xiz + Ty + Ty + T3 + Ty =

|
N = =R =R =R e

Now consider some entries of the rows (i) — (iv) in the coefficient matrix.

oy ofy zfy 2l
(i) =1 =1 0 0
(i) 0 0 1 -1
(Gii) 1 0 1 0
(v) 0 1 0 1

Since a matrix A is totally unimodular if and only if its transpose is totally
unimodular (Theorem 4.5), Theorem 4.6 can equivalently be formulated as fol-
lows: A matrix A € {0,1,—1}™*" is totally unimodular if and only if for every
Q C M ={1,...,m} there exists a partition @1, Q2 of @) such that

E aij— E aij

1€Q1 1€Q2

<lforj=1,...,n. (5.22)

99

5. ILP-Models for the Code Generation Problem

However in the example there is no partitioning of @ = {(4), (i7), (i), (iv)} that
satisfies condition (5.22). Because of the variables z4, and x4y, (i), (iv) must
always be in the same partition as (7). Because of x5, (ii) must not be in the same
partition as (zi¢). Thus the partitioning Q1 = {(7), (i73), (iv) }, Q2 = {(i7)} results.
But this partitioning violates condition (5.22) in the column of variable z%,. Thus
it follows from Hoffman and Kruskal’s theorem that the coefficient matrix of the
flow conservation and the execution constraints does not imply the integrality of
the polytope.

Lemma 5.3 The polytope of the resource constraints (5.8) is integral.

Proof: The resource constraints have been defined as follows:

> 2} <R, VEkeNf (5.23)
(k’j,k)EEF

Let R € {0,1}™s*"s be the coefficient matrix of the resource constraints. The
coefficient of a variable :vfj is 1 only in the constraint generated for resource type
k; in all other rows of R it is equal to zero. Thus each column contains exactly one
nonzero entry. Hence R is totally unimodular.

Lemma 5.4 The polytope of the flow conservation and the resource constraints is
integral.

Proof: Consider the matrix F' = g € {0,1, —1}™+*™ where my = my + ms.

The only variables whose coefficients are 1 in the resource constraints have the
form z7; for a resource type r and an operation j. Those variables are used exactly
once in the specification of the flow conservation constraints, when specifying the
resource flow entering the node of an operation j. Thus the columns representing
variables of the form z7y; contain exactly one nonzero coefficient in C' and in R;
in both matrices the values of the coefficients are equal to 1. Therefore for each
Q C {1,...,m; + m3} there exists a partitioning satisfying condition (5.22); the
rows from C' are inserted in ()1, the rows from R in ()5. Thus the matrix F' is
totally unimodular.

Lemma 5.5 The polytope of the execution and the resource constraints is integral.

E .
r)€ {0,1}™5%™5 where ms = mgo+mg3. Since
each column of F and each column of R contains at most one nonzero entry, for
each @ C {1,...,mqy + m3} there exists a partitioning satisfying condition (5.22).
The partitioning can be constructed by inserting the rows from E into (); and the
rows from R in Q. Hence F} is totally unimodular.

Proof: Define the matrix F; =

60

5.2. The SILP Model

In [Zha96] it has been shown that if the execution time of the operations does
not depend on the functional unit assignment, the polytope of the precedence con-
straints is integral. Thus, deviations of the feasible region of the SILP model from
the integral polytope are only due to the serial constraints and to the combination
of flow conservation and execution constraints.

5.2.4. Valid Inequalities

In this section, some valid inequalities are presented that can be used to increase
the efficiency of the ILP formulation. By adding the valid inequalities, the feasible
area Pr of the relaxation is approximated more closely to the solution polytope of
the integral problem (cf. Chap4) [Zha96].

e The following constraint must be satisfied:
k k k
xi]-—i-xjigl Vi,j € N, (4,5, k) € Ef

If this inequality is violated, xfj = xfz =1 holds. Thus the nodes of 7 and j
cannot be reached from a resource node. The resulting flow cannot represent

a feasible solution. An illustration is given in Fig. 5.4.

Figure 5.4.: Valid inequality: :rfj + xfz <1

e Another valid inequality reads as follows:
af +ar. <1 Y (m,n)€Ep A (j,m),(n,j) € E}

An illustration is given in Fig. 5.5. If 2% = 1 and z};, = 1, operation n
must be executed before operation m. This is a contradiction to the data
dependence (m,n) € EY), represented by the bold edge in the figure.

5.2.5. Complexity

In the following the number of constraints and the number of integer variables are
given as a measure for the complexity of the ILP formulation [NW88].

For each operation j € Nj one time constraint (inequality 5.14) has to be gen-
erated, such that there are | N7| time constraints altogether. The number of prece-
dence constraints (inequalities 5.9 - 5.11) can be determined as |[Ep| = O(|Np|?) =
O(|N;|?). There are at most |N;| - |[NL| flow conservation constraints (equation

61

5. ILP-Models for the Code Generation Problem

Figure 5.5.: Valid inequality: xfm + xﬁj <1

5.1), and at most |N;| execution constraints (equation 5.2). The number of re-
source constraints is determined by the number |N%| of functional unit types of
the target architecture and is independent of the input procedure. The number of
serial constraints (inequality 5.12) can be given as

Ns = |{(7’7]ak) € EF‘Z)] € NI/\ (Z,k) € ER/\ (]ak) € ER/\j 7< ZAZ#]H
= O(|Ni])

Thus an upper bound for the total number of constraints is O(|N¢|?); this bound is
also valid for the extended model that incorporates the register assignment prob-
lem.

Now let us turn to the number of decision variables. In order to model the
starting time for the execution of the operations |N;| variables are required. The
number of flow variables is bounded by O(|NE|-|N;|?+|N#|-|N#|?) = O((INE| +
IN#)|N2|). In [Zha96] it has been shown that if the problem of functional unit
assignment can be neglected only the flow variables used in the serial constraints
have to be specified as integers. Thus the bound O(|N;|?) is a pessimistic upper
bound for the number of the variables explicitly specified as integers.

5.3. The OASIC Model

The OASIC formulation (Optimal Architectural Synthesis with Interface Constraints)
has been developed by Gebotys/Elmasry [GE92, GE93] for simultaneously perform-
ing scheduling, functional unit allocation and register assignment. In [KL98, KL99]
it has been modified to incorporate irregular hardware characteristics and refined
to meet the requirements of phase-coupled postpass optimisations; this extended
formulation is presented in the remainder of this section. The OASIC model is
a time-indexed formulation. The main decision variables are called xfn € {0,1},
where xfn = 1 means, that microoperation j is assigned to the nth control step
(n > 1) in the generated schedule and is executed by an instance of the functional
unit type k.

62

5.3. The OASIC Model

5.3.1. Basic Formulation

In the OASIC model, polyhedral theory is used to formulate constraints that iden-
tify integral facets of the solution polytope and incorporate them in the generated
integer linear programs. A preliminary ILP model is transformed into the node
packing problem from which some integral facets are extracted [GE92, GE93|.
Those facets are taken into account in the final model. The preliminary model
for instruction scheduling and functional unit allocation consists of three types of
general constraints: the assignment constraints, the resource and the precedence
constraints.

The operation assignment constraints ensure that the execution of each oper-
ation is started in exactly one control step and that it is assigned to exactly one
functional unit.

> Zx =1 VjeNp (5.24)

keNg neN(j
(4,k)EER

Example 5.4 Assume that the target architecture contains one ALU and one
multiplier Nf = {ALU, MUL}, both with a latency of 1 clock cycle. Let three
operations be given N; = {i,j,k} where N(i) = {1,2,3}, N(j) = {2,3,4}, and
N(k) ={1,2,3,4}, (i,ALU) € Eg, (j,ALU) € Eg, and (k, MUL) € Epy such that
each operation can be executed in one clock cycle. Then the following assignment
constraints are generated:

ALU + ./Ll;qZLU + l/L_ALU — 1
ALU ALU ALU —

Z jo + Zj3 + L ja = 1
MUL MUL MUL MUL .
Ty T Ty + Ty + Xy =

The resource constraints prevent more than R operations from being assigned
to each functional unit type k£ at the same control step.

n+LE-1
Yo > ah <R VEENE A0S0 < Mye, (5.25)
’LEN ng=n

(4, k)EER n;€N (i)

Example 5.5 The resource constraints generated for the scenario of Example 5.4

63

5. ILP-Models for the Code Generation Problem

read as follows:

i’ <1
O |
T’ + mfj” < 1
[|
zl + LL';?’LU < 1
Tyt <1
vyt <1
Ty <01

|

The data dependences of the input program are modelled by the precedence
constraints. In [GE92, GE93] precedence constraints have only been presented
for true dependences; in the following also the constraints for output and anti
dependences are given. Moreover the formulation has been extended to take into
account interdependencies between the values of latency and execution time of an
operation and its functional unit assignment.

e In case of a true dependence (i,7,7,t) € E% the execution of operation j
must not be started before the execution of ¢ has been finished. For each
dependence one constraint has to be generated; variations of the execution
time of 7 in dependence of the functional unit used to execute 7 are considered.

Sk + Y 2k <1 V(i) e B (5.26)
k:(i,k)EER: k:(j,k)EER
QF>nj—n;+1

Vo€ N(i) YV n; € N(j),ny < i+ max Qf — 1

e In case of an output dependence (i, j,7,0) € E% it has to be ensured that the
execution of 7 is finished before the execution of j has been finished. If the
execution times of the operations depend on the functional unit assignment,
for each combination of execution time values a dedicated constraint has to
be generated. Let W; = {Q% | (i,k) € Eg} for each operation 4; then the
constraints are defined as follows:

S>ooak, + Y ab <1 V(o) € By (5.27)
ki(i,k)EER: ki(j,k)EER:
QF=w; Q;?:wj

v niEN(i)anEN(j),njSni+wi—wj,
A ’IUZ'EI/VZ'V’UJJ'EWJ'

64

5.3. The OASIC Model

e In case of an anti dependence (i,7j,7,a) € E% the execution of ¢ must have
been started before the execution of 7 has been finished. Again it is sufficient
to generate one constraint per dependence; variations of the execution time
of 7 are taken into account.

Yoodho+ Y ek <1 V(gnaeEy, (528
k:(i,k)EER k(igkefR

V n; € N(i) Vn; € N(j), n, §n,~—mkian

Example 5.6 Consider again the scenario of example 5.4. Assume that each
operation can be executed in one clock cycle. Let the following data dependences be
given: (i,7,t,r1) € EY, (i,7,0,71) € E%, and (i, k,a,7m3) € E%. A visualisation of
the corresponding data dependence graph is shown in Fig. 5.6. Then the following
precedence constraints are generated:

Figure 5.6.: Data dependence graph of example 5.6

ALU ALU
Ty~ +ap <1
ALU ALU
Tig© +xj <1
ALU ALU
Tiy” + s <1
ALU ALU
Tig~ + x5y < 1
ALU ALU
Tig~ txy <1
ALU ALU
Ty~ tay <1
ALU MUL
Tigw + T <1
ALU MUL
Tig + o <1
ALU MUL
Tig~ + T <1

|

In [GE92, GE93| an improved modelling of the precedence constraints has been
developed that takes into account integral facets derived from a transformation to

65

5. ILP-Models for the Code Generation Problem

the node packing problem. Let an undirected graph Gy = (Ny, Ex) and a cost
vector ¢ be given. Then the weighted node packing problem is defined as follows:

max E CuToy
U

Tut+x, < 1 V (u,v) € Ex
z, € {0,1}

From constraints (5.24),(5.26), (5.27), and (5.28) a system of linear inequalities
of the form Ax < b can be formed, where A is a matrix all whose entries are
0 or 1, and b is a unit vector. From this system a node packing graph Gn =
(N, Ey) is generated. Each variable z¥ is mapped to a node u € Ny. The edges
En of the graph are defined as follows: for each row of A (each constraint), the
columns (variables) with coefficient 1 define a complete subgraph (clique) in G.
The resulting graph represents the node packing problem. An odd cycle C is a
cycle consisting of an odd number of nodes. It is called chordless if no two nodes
of C share an edge that does not belong to the cycle. Let K be the set of all
cliques of G and C be the set of all chordless odd cycles in G. Then the following
inequalities represent facets of the node packing polytope:

oz, <1 VKek (5.30)
ueK

1
D z < 5(IC1=1) ¥ C € where |C|>5 (5.31)
ueC

The precedence constraints (5.26), (5.27), and (5.28) are replaced by the con-
straints (5.32), (5.33), and (5.34) generating these clique facets. Details about that
transformation can be found in [GE92]. If the execution times of the operations
depend on the functional unit assignment, for each combination of execution time
values a dedicated constraint has to be generated. For each operation i define the
sets W; = {QF | (i,k) € Er} and R;(w;) = {k € N§ | (i,k) € Er N QF = w;};
then the constraints are defined as follows:

66

Z Z xJ"J + Z Z mZ S
k€R;(w;) nj<n kER;(w;) ny>n—w;+1
”:EN(J) ni€N (i)
v (i,5,1,t) €
neN'(i,j)={n+w;,—1 |
k k
DOEDDETE D DD D
kERj (w]) nj <n keRi(’wi) ni2n—witw;
n;EN(7)
V (4, 4,m,0) €
n€N°(z‘ j)=A{n"+w; —w; |
Z Z]n] + Z Z xzm S
kER j<n—w;+1 kER;(w;) ni>n
SRyt T en(Shalw)
V (i,5,ma) €
ne N (i,j)={n+w; -1 |

1. True dependences

a) Assume that a true dependence (i, j, 7,

an assignment of operations to control steps where x

and m; < m; +w;. We will show

constraints (5.32) must have been generated for xfjn

a contradiction to the assumption.

5.3. The OASIC Model

1 (5.32)
Ef:,,wi € I/Vi,wj € VVJ

n' € N()} N N(j)

1 (5.33)

E%,wi S I/Viawj € I/Vj’
n' € N(i), (i,k) € Eg} N N(j)
1 (5.34)

E%awi € I/I/Z’w] € W/vja
W e N(Gj)}n N(i)

Since in [GE92, GE93| only the formulation of the constraints for the true
dependences is presented and no proof of correctness is given, in the following a
correctness proof for all types of data dependence constraints is given.

Proof: It has to be shown that the inequalities (5.32-5.34) prevent violations of
the data dependences and that they do not exclude any feasible ordering.

t) is violated. Then there must be
=1A a: =1
that in this case the precedence

kj C .
. and i, which is

Define n := m; + w; — 1. We know that m; € N(j) < m; +w; — 1 =

n < alap(i) + w; — 1 < alap(j) € N(

j) such that n € N*(i, 7).

But then an inequality of the type (5.32) is generated where both i,

k;
and 7,

> 2

k nj<m;+w;—1

xfnj + Z

k:
_.'L']

.. . . ki
This is a contradiction to @3, = 2,

k- ni>mitw;—

; appear on the left hand side.

zk

n;
1—w;+1

1

>

=1

67

68

ILP-Models for the Code Generation Problem

b) We have to show that no feasible ordering is excluded. For all pairs of

variables (xf;h, xsz]) that appear on the left hand side of an inequality

of type (5.32) the following condition holds:

np>n—w,+1>n;—w+1
<~ ni-l—wiznj-l—l
< N t+w; >n;

Since the constraints are only generated if there is a true dependence
from i to j ((4,7,7,t) € E%) only assignments of 7 and j to control steps
that violate this dependence are excluded.

2. Output dependences

a) Assume that an output dependence (i,7,7,0) is violated. Then there
must be an assignment of operations to control steps where xf;m =

1A xfﬁnj =1and m; < m; + w; —w; + 1.

Define n := m; + w; — w;. We know that m; € N(j) < m; +w; —w; =
n < alap(i) +w; — w; < alap(j) € N(j) such that n € N°(3, j).

But then an inequality of the type (5.33) must have been generated
where both :rf;m and xfﬁn] appear on the left hand side.

)P EPID D

k n; §m¢—|—wi—wj k mZmi—}—wi—wj—wi—kwj
This is a contradiction to z¥ = xkj =1

b) We have to show that no feasible ordering is excluded. For all pairs of
variables (xf;h, xfﬁl) that appear on the left hand side of an inequality

of type (5.33) the following condition holds:

n; > n—w; +w; > n; —w; +w; >nj—wi+wj—1
= nj<n,-+wi—wj+1
Since the constraints are only generated if there is an output dependence
from i to j ((¢,7,7,0) € E9) only assignments of ¢ and j to control steps

that violate this dependence are excluded.

3. Anti dependences

5.3. The OASIC Model

a) Assume that an anti dependence (i, j, 7, a) is violated. Then there must
be an assignment of operations to control steps where xf;nl =1Az
1 and m; > m; +w; — 1.
Choose n := m; + w; — 1. We know that m; € N(i) > m; +w; — 1 =
n > asap(j) + w; — 1 > asap(i) € N(i) such that n € N°(3, j).
But then an inequality of the type (5.34) must have been generated
where both xf;nl and xfﬁn] appear on the left hand side.

2 > mt),), o <

k nj<mjtwj—1-w;+1 k ni>mjtw;—1

o . . . k; _ kj _
This is a contradiction to z;, = ;. = 1.

b) We have to show that no feasible ordering is excluded. For all pairs of
variables (:vf;w xfilj) that appear on the left hand side of an inequality
of type (5.34) the following condition holds:

n;>n2>n; +wj—1

Since the constraints are only generated if there is an anti dependence
from i to j ((i,7,7,a) € E%) only assignments of 7 and j to control steps
that violate this dependence are excluded.

The constraints presented so far allow the modelling of hardware architectures
where the pipeline behaviour can be completely described by the two parameters
execution time and latency. Each operation is assigned to exactly one functional
unit. If additional restrictions for the usage of the system buses have to be taken
into account, the modelling is extended. Assume again that the number of results
that can be written to the system bus per clock cycle is restricted. This means
that the completion time of the operations has to be synchronised with respect to
the bus. It has to be ensured that if the execution of an operation ¢ is started in
control step ¢, an access to the result bus is registered in cycle ¢+ w;. Let B denote
the result bus, then the following constraint has to be generated:

ij,MQ? >ak, VjeN, Vk:(jk) € EgVneN(j) (5.35)
Additionally, resource and operation assignment constraints have to be generated
for the result buses. For the assignment constraints, all control steps where the
completion of the operation can take place have to be considered.

Similarly to the SILP formulation, for each operation ¢ the variable ¢; denotes
the starting time for the execution of i. However the value of the t; variables is

69

5. ILP-Models for the Code Generation Problem

computed directly from the main decision variables x . by the following equation:
k
b= XY sk
k:(j,k)EER nEN(j)

Then the integer linear program for instruction scheduling and functional unit
allocation in the OASIC-based formulation can be summarised as follows:

e Objective function

min Meps (5.36)

e Constraints

1. Time Constraints

The maximal number of control steps Mg,s, i.€e. the value of the ob-
jective function is defined as the starting time of the last operation to
be executed.

tj < Msteps Vj€eN (537)

2. Precedence Constraints

The data dependences of the input program have to be respected. De-
pending on the type of data dependences there are three types of con-
straints:

Z Z wjnj + Z Z ”lv, S 1
kER;(w;) nj< kER;(w;) nj2n—w;+1
nJEN(]) nZEN()

V(i,j,T,t) € E%,wiEI/Vz-,wjer
ne N'(i,j)={n"+w -1 n' € N(i)} N N(j)

2. D myt D), wh <1

kER;(wj) nj<n k€ER;(w;) ni>n—w;+w;
mEN(z)

\V/(i,j,T,O) S E%,wiEVVi,ijWj,
ne€ N°(i,j)={n'+w;—w; |n' € N@i) , (i,k) € Egr} N N(j)

> X Wt X) ek, <1

keR;(wj) nj<n—w;+1 keR;(w;) mi>n
njEN(j) ni€N ()

V(i,j,T,a,) € E%awiEVViaijWj,
ne N (i,j)={n"+w;—1 | n"€eN(G)}n N()

70

5.3. The OASIC Model

3. Execution Constraints

The execution of each operation must start in exactly one control step
and is performed by exactly one resource instance.

o Y &k =1 Vjien (5.38)

kenE. neN(j)
(jak)EER

4. Resource Constraints
In no control step there must be more than Rj operations being exe-
cuted by resource type k, i.e. the number of available instances of each
functional unit type must not be exceeded.

n+LF-1
> Y ah <R VEENL AO<n< My (5.39)
i€ENT: ng=n

(i,k)EER M E€N(i)

5.3.2. Integrating Register Assignment

If the register assignment problem is incorporated in the ILP formulation, it has
to be ensured that in no control step more than R, registers are used for each
abstract register file r of capacity R,. Then at most R, variable life ranges stored
in this register file are overlapping. If the ordering of the operations is fixed, the life
range of a variable can be represented by a lifetime-defining edge (i, j) between the
operation ¢ defining the value and the operation j that is the last to use that value.
When addressing instruction scheduling and register assignment simultaneously,
the ordering of the operations is not fixed such that, in general, a lifetime-defining
edge cannot be statically determined. A naive approach is to assume a lifetime-
defining edge between a definition and all uses. The number of edges can be reduced
by transitivity analysis and by asap/alap analysis [GE92, K&s97].

Definition 5.5 Let U be an upper bound for the execution time of the input pro-
gram. An edge i < j crosses control step n, if N(i) N {0,1,...,n— (w; — 1)} # 0
and N(j)N{n+1,n+2,...,U} #0.

The number of edges with head i that cross control step n is denoted e, (7);
formally e (i) = [{i < jx | k =1,...,1; (4,Jx) crosses control step n}|. M(n)
denotes the set of all maximal sets M'(n) of edges crossing control step n with
pairwise different heads.

In order to ensure that the number of available registers is not exceeded, the
register crossing constraints (5.40) are introduced. The number of constraints to
be generated for control step n can be given as [[; e, (7).

71

5. ILP-Models for the Code Generation Problem

2 (D X Wt X D W

Ja=<jp€M'(n) KEN4 n1<n kEN4 na>n

Nn1€N(Ja) n2€EN (Js)
k k
2 > T D D W) < 2°R
kEN 4 ng<n kEN 4 ng>n
n3€N(jp) n4EN (ja)
Vn AY M(n)e M(n) (5.40)

Example 5.7 Let two operations ¢ and j be given with w; = w; =1 and N (i) =
{1,...,4}, N(j) = {2,...,5}. Then for control step n = 2 and M'(2) = {(i,7)}
the following constraint is generated:

k k k k
D Tt DL = D W= D, whn, S 2R
1<ni<2 3<ns<5 2<n3<2 3<ny<4
= Th + Thy — Ty — afy — ap +afy +af + 2 < 2R
Graphically visualised the following ordering results:
+ i
1| zk
2 fo fo
k k
3 Tys T
3354 $?4
k
- +
For exactly one r € {1,...,4} the variable z;+ must take the value 1, and
for exactly one s € {2,...,5}, :Ufs = 1 must hold. If there is a crossing edge,

the left hand side of inequality (5.40) evaluates to 2, otherwise it evaluates to 0.
It is excluded that the left hand side takes a negative value since otherwise the
precedence constraints would be violated.

|

5.3.3. The Structure of the OASIC Polytope

The polytope of the OASIC formulation is defined by three types of constraints:
the precedence constraints, the execution and the resource constraints. In [GE92,
GE93] it has been shown that the polytope of the precedence constraints is not
integral. The formulation of the constraints (5.32) — (5.34) however takes into

72

5.3. The OASIC Model

account integral facets derived from a transformation to the node packing polytope.
Thus while the polytope cannot be guaranteed to be integral it represents a good
approximation to the integral polytope [GE92, GE93]. In [CWM93, CWM94] the
integrality of some subpolytopes of the OASIC polytope has been shown when the
task of functional unit binding is not addressed. In the following we will prove for
the problem formulation addressing the functional unit binding that the polytopes
of the execution constraints, of the resource constraints and the combined polytope
of the execution and the resource constraints are integral. Thus any deviations of
the feasible region from the integral polytope are due to the precedence constraints.

Lemma 5.6 The polytope of the execution constraints is integral.

Proof: The execution constraints have been defined as follows:

)

kEN};: neN(]
(jak)EER

Let E € {0,1}™*™ be the coefficient matrix of the execution constraints. Only
in the constraint generated for operation j the coefficient of a variable z%, is equal
to 1; in all other constraints it is equal to zero. Thus each column contains exactly
one nonzero entry. Then it follows from Theorem 4.4 that F is totally unimodular.
Hence the polytope of the execution constraints is integral (cf. Theorem 4.2).

Lemma 5.7 The polytope of the resource constraints is integral.

Proof: The resource constraints have been defined as follows:

n+LF-1

Z Z xfngk Vk‘ENg/\OSnngteps
iENT: ng=n.
(i,k)eER MEN(3)

Let R € {0,1}™*" be the coeflicient matrix of the resource constraints. As-
sume that the constraints have been generated by iterating through the available
resource types in an outer loop and traversing all feasible control steps in the inner
loop. Then it follows from the definition of the constraints that if the coefficient
of a variable z¥ in a row « is equal to 1, its coefficient in row a + 1 is either 1, or
0. If it is equal to zero, it will be equal to zero in all rows 8 > «. Thus R is an in-
terval matrix and it follows from Theorem 4.7 that R is totally unimodular. Since
the property of total unimodularity is maintained when interchanging rows and
columns (see Theorem 4.5) R remains totally unimodular even if the constraints

are generated in another order. Hence the polytope of the resource constraints is
integral.

73

5. ILP-Models for the Code Generation Problem

Lemma 5.8 The combined polytope of the execution and the resource constraints
1S integral.

R
E
i.e. where the rows of the resource constraints precede the rows of the execution
constraints. Assume, e. g., that operations 1 and 2 can be executed on two resource
types k1 and k5 then the matrix M has the following shape:

Proof: Consider the matrix M = < € {0,1}™3*"3 where m3 = m; + my

" 1.--1 0---0 0---0 1---1 0---0 0---0 1
0---0 1---1 0---0 0---0 1---1 0---0

A" 0.0 0---0 0---0 0---0 0---0

]
ja)
.
oEs
]
ja)
]
ja)
]
]
ja)

0---0 0---0 0---0 0---0 Ak

We will show that the matrix M is totally unimodular with the help of Theorem 4.6
applied to row partitionings. It is obvious that it is sufficient to show that feasible

e . 121 . e .
partitionings can be found for the matrices BF = [Ak } since a partitioning
i

of M can be constructed directly from those partial partitionings. Each of the
matrices BF has the following shape (only the nonzero entries are shown):

D
1 - - 1
1 1
k _

Bi = 1 . 1

1 . 1
! 1]

As an example assume that there is an operation ¢ where |N(i)| = 5 that is

executed on a functional unit type k with latency 2. Then the matrix B¥ is defined
as follows:

11111
11000
01100

k _

Bi=loo0110

00011
0000 1|

74

5.4. Control Flow Modelling

It is obvious that the transpose of BY is an interval matrix and thus is totally
unimodular. From Theorem 4.5 follows directly that BF is totally unimodular.
Thus for each Bf and every Q C M = {1,...,mF + 1} there exists a partition
@1, Q- of @ such that

pro—Zblo <lforo=1,...,n" (5.41)
pPEQ1 leQ2
This concludes the proof.

5.3.4. Complexity

Similarly to Sec. 5.2.5 we will use the number of integer variables and the number of
constraints as a measure of complexity. First we will neglect the register assignment
problem and only present the bounds for the modelling of instruction scheduling
and resource allocation.

For each operation i € N; one variable z¥ is generated per control step n €
N(i) and per functional unit k£ the operation can be assigned to. With u, :=
max{alap(j) — asap(j) | j € N;} the number of the integer variables can be
bounded by u, - |Nj| - [N = O(INE| - [Ny 2).

Now let us consider the required number of constraints. It is necessary to
generate |N;| time constraints (5.37) and |N;| execution constraints (5.24); the
number of resource constraints (5.25) can be given as | N5 |- |N;| - max;en, w;. The
number of precedence constraints (5.32 - 5.34) is bounded by O(u, - |Ep|) with
u, = max{alap(j) | 7 € Np} — min{asap(i) | i € Np} + 1. Since O(u, - |Epl|) C
O(|Np| - |Ep|) € O(|Np|?) the number of precedence constraints is bounded by
O(|Np|?) which also represents an upper bound on the total number of constraints.

If the register assignment problem is incorporated into the ILP formulation, the
complexity increases significantly. For each control step n there are I1;e, (i) crossing
constraints. If there are two uses for each definition such that the corresponding
lifetime-defining edges cross control step n, the number of crossing constraints for
n evaluates to II;2 = 2°. Thus the number of register crossing constraints can
grow exponentially in the number of operations; this can lead to an exponential
space consumption. Since the experimental analysis of [K&s97] indicate that the
complexity is too high for practical use, the incorporation of the register assignment
in the OASIC formulation has not been implemented in the PROPAN-framework
and will not be considered during the remainder of this thesis.

5.4. Control Flow Modelling

In order to preserve the semantics of input procedures containing conditional code
or loops, the modelling of the data dependences is not sufficient. For example an
operation from the then block of a conditional statement might be moved into the

75

5. ILP-Models for the Code Generation Problem

else part without any data dependences being violated. This transformation, in
general, is not semantic preserving and must be prevented. A common approach
is to insert virtual nodes at the beginning and the end of each basic block and
prevent reordering across basic block boundaries by adding data dependences to
those nodes [E1186, GE92]. In the remainder of this section, an ILP-based mecha-
nism is presented that allows to perform instruction scheduling across basic block
boundaries [K&s97, KL98|. The set of basic blocks in the input program is assumed
to be fixed. From the control dependence graph for each operation the set of all
basic blocks it can be assigned to is determined. The corresponding disjunctions
are inserted into the integer linear programs with the help of additional binary
variables. In the following the general mechanism for modelling disjunctive con-
straints is presented; then the application of this modelling for representing the
control flow structure is explained.

5.4.1. Modelling Disjunctive Constraints

Disjunctive constraints are used to model decision problems where feasible solutions
must be part of at least / of m alternative sets. Let X;,...,X,;, C IR]} denote the
alternative sets where each set is characterised as follows:

X;={z e R"| Az <V}
Furthermore let an upper bound U be given such that

Ar<V4+U Vji=1,....,m

If a constraint o]z < b] is replaced by alz < b} + U, it becomes irrelevant.

In order to force a variable z to be contained in at least [of the sets Xj,
dedicated binary variables yi, ...,y are introduced where y; = 0 & z € X, and
y; = 1< x ¢ X;. The binary variables y; are incorporated into the constraints
such that the constraints of each X; must be satisfied if y; = 0 and are redundant

if y; = 1. This is achieved by the following system of linear inequalities:

Alr < V+Uy; Vi=1,...,m (5.42)
Zyj < m-—1 (5.43)
j=1

y; € {0,1} Vji=1,....m (5.44)

This modelling is correct since y; = 0 yields the constraints A7z < & while y; = 1
yields the trivial constraint A%z < b’ + U [NW88, DK96]. If each solution has to
be contained in exactly [of the m alternatives, inequality (5.43) has to be replaced
by

m

Zyj:m—l

=1

76

5.4. Control Flow Modelling

5.4.2. Representing the Control Flow Structure

In order to represent the control flow structure of a program by a set of disjunc-
tive constraints each basic block by is associated with a starting time ¢ and a
completion time ¢f. An operation j is contained in a basic block by if and only if
< t; < tf. The set X} of all operations that may be contained in basic block by
is defined as follows:

Xk:{jEN[|t£—th0/\tj—tkESO}

The fact that an operation j can be assigned to exactly one of m possible ba-
sic blocks b, ...,b, can be represented by a system of linear inequalities using
dedicated binary variables yjl-, ..., yj" where y;.“ =0if j € b, and y;.“ =1, if j & by.

Let U denote an upper bound of the execution time of the input program; then
in order to ensure that each operation j is contained in exactly one of the sets

Xy, ..., X,, the following constraints are generated:
th—t;—Uyf < 0 Vk=1,...,m (5.45)
ti—ty —Uyf < 0 Vk=1,...,m (5.46)
dovp = m—1 (5.47)
k=1
yy € {0,1} Vk=1,...,m (5.48)

If m = 2, only one binary variable is required. Then the following constraints
are generated:

th—t;—Uy; < 0 (5.49)
ti—ty —Uy; < 0 (5.50)
th—t;—U(l—y;) < 0 (5.51)
ti—ty —U(l—y;) < 0 (5.52)
y; € {0,1} (5.53)

Example 5.8 Assume operation j can be contained in the three basic blocks b1, b,
and b3. Then the following constraints are generated:

tt — t; — Uy; <0
tp — tf — Uy, <0
ty — t; — Uy, <0
tp — ty — Uy, <0
ty — t; — Uyl < 0
tp — t8 — Uy} < 0
v oy o+ oy =2

77

5. ILP-Models for the Code Generation Problem

The set of basic blocks where an operation j can be located is determined from
the control dependence graph. Code movements are only allowed between basic
blocks that are control equivalent. In order for the assignment of operations to
basic blocks to be well defined all control flow operations like branches, or loop
operations must remain in their original basic block. If a basic block b begins with
a loop operation 7; and ends with a branch iy, assigning another operation j to
basic block b means scheduling j between 7; and 5. The basic blocks themselves
must not be reordered, i. e. the basic block order of the input program is kept in the
output program. This way, the ordering of the control flow operations is fixed; all
remaining operations can be moved between control equivalent basic blocks. The
ordering of the basic blocks is included in the integer linear programs by generating
the following inequalities for each pair of basic blocks b;, b; where (b;, b;) € E;}

th—tf < (5.54)
A E
ty <t (5.56)

Additional constraints are required to take into account the completion time of
the basic blocks when calculating the value of the objective function:

ty — Meps <0 VbeE Ng (5.57)

The extensions to allow restricted code movements between basic blocks that
are not control equivalent, e. g. in loop-invariant code motion, assignment sinking
or assignment hoisting [Riit98] are straightforward. These movements however lead
to the insertion of compensation code [WM95] and have not been incorporated in
the current implementation.

With the ILP formulations presented above it is not possible to incorporate
disjoint control flow paths in the same integer linear program. Consider, e.g., the
then and the else block of a conditional statement. Then there can be program
executions where some of the operations of the then block have the same starting
time as some of the operations of the else block in another program execution.
In the ILP formulations for the code generation problem however assigning the
same starting time to two operation means that they are part of the same ma-
chine instruction and are executed in parallel—which, of course, is not true for the
operations of the disjoint control flow paths.

The representation however is powerful enough to allow (possibly nested) loops
to be represented by a homogeneous integer linear program; details about this are
presented in Chap. 7.

78

5.5. ILP Models and Hardware Architectures

5.5. ILP Models and Hardware Architectures

The complexity of the ILP models for the code optimisation problem is influenced
by the design of the target architecture. The effects of architectural characteristics
on the generated integer linear programs however differ between the time-indexed
OASIC model and the order-indexed SILP formulation. In the OASIC formulation
the incorporation of the register assignment problem cannot be considered promis-
ing since the required number of constraints grows exponentially in the number of
input operations. In the SILP formulation the number of additional constraints and
binary variables is in the order of O(|N;|?). Thus if an integration of instruction
scheduling and register assignment is required, the SILP formulation outperforms
the OASIC model.

In the following we will investigate the performance of both models for the
problems of instruction scheduling and resource allocation. If the execution times
of the machine operations depend on the functional unit binding, the efficiency
of both models decreases. Compared to the case where the execution time of the
operations is independent of the functional unit assignment, a higher number of
precedence constraints is required in the OASIC formulation (cf. page 64). This
leads to a performance degradation since the polytope of the precedence constraints
is not integral. In the SILP formulation the polytope of the precedence constraints
is integral if the execution time of each operation is uniquely defined, but it is not
integral if the execution time varies depending on the functional unit assignment
(cf. page 52) [Zha96]. With increasing execution times of the machine operations
the number of constraints in the OASIC formulation increases whereas this does
not influence the number of constraints of the SILP formulation.

The number of resource flow variables in the SILP formulation is bounded
by O(]NE]| - |Nf|?), the number of decision variables in the OASIC formulation
by O(uy - |[NE| - |N7|) where u, = maxien,{alap(i) — asap(i)}. Thus in both
formulations the number of binary variables in the worst case depends linearly on
the number of resource types. Since the number of decision variables however is
only influenced by the number of alternative resource types each operation can
be mapped to, it is in fact independent from the number of resource types if the
assignment of operations to resources is uniquely defined. In a postpass framework
it is a reasonable approach to derive an upper bound for the execution time from the
schedule of the input program. For architectures with a high degree of instruction-
level parallelism this can lead to small intervals N(i) for the starting time of each
operation . In consequence the value u, can be significantly smaller than its worst-
case value, u, = O(|N;|), such that in the best case the number of decision variables
of the OASIC model only grows slightly more than linearly with the number of
operations. The number of flow variables in the SILP formulation however cannot
be reduced this way; there is a binary variable xfj for each pair (i, j) of operations
such that both can be executed by resource type £ and there is no data dependence
from j to ¢. Thus for architectures with a high degree of instruction-level parallelism
the number of variables in the SILP formulation grows nearly proportionally to

79

5. ILP-Models for the Code Generation Problem

|N7|? and in the OASIC model almost proportionally to |N;|. If there is a large
number of different resource types each operation can be mapped to, this can lead
to a large difference in the variable number since the number of resource types is
a factor in the term for the number of decision variables (O(|Ng| - |N;|?)). As
the optimisers generated for the TriMedia TM1000 show, this difference can be
significant (see Chap. 10).

Irregular restrictions of instruction-level parallelism and interdependencies be-
tween instruction scheduling and resource usage also increase the complexity of
the code generation problem. Such restrictions are modelled by integer linear con-
straints generated automatically from logical conditions specified in the machine
description (see Sec. 8.4). Often the same constraints are generated for the SILP
and the OASIC model such that a similar performance degradation can be expected
in both formulations. Explicitly preventing two operations from being executed in
parallel however can be modelled more efficiently in the OASIC model than in
the SILP model. In the SILP formulation it is necessary to generate disjunctive
constraints which leads to the insertion of additional binary variables. In the OA-
SIC formulation no disjunctive constraints and no additional binary variables are
required (see Sec. 8.4).

To summarise we can conclude that the SILP model allows an efficient integra-
tion of the register assignment problem and is well suited for irregular architectures
where the resource competition is high. For architectures with a high degree of
instruction-level parallelism and a large number of alternative resource types each
operation can be mapped to, the time-based OASIC formulation is better suited.

80

6. ILP-Based Approximation
Techniques

Since register assignment and instruction scheduling are NP-complete problems
even when addressed in isolation there is an upper bound on the size of the code
sequences for which a provably optimal solution can be computed in practicable
time. This bound depends on several factors. One important factor is the prob-
lem dimension, i.e. the number of tasks among instruction scheduling, functional
unit binding and register assignment that are addressed simultaneously. Other
important factors are the architectural restrictions of the target machine and the
characteristics of the input programs, e.g. the number of precedence constraints
or overlapping life ranges.

In order to be able to address code sequences exceeding this bound we have
developed approximative methods that cannot guarantee an optimal solution but
lead to a significant reduction of computation time while still obtaining a high
solution quality. The basic idea of the approximations is to iteratively solve partial
relaxations of the original problem. After the solution of one partial relaxation has
been computed certain parts of the solution that are guaranteed to be integral are
extracted. The corresponding variables are fixed to their current value by addi-
tional equality constraints. In subsequent iterations they are treated as constants
and do not contribute to the problem complexity any more. Then the next partial
relaxation is addressed. In the end an integral solution is obtained. There is no
analytically determined performance guarantee that holds for all possible prob-
lem instances. Our experimental results however show that in most cases optimal
solutions can be obtained.

The approximation techniques proposed in this thesis require solving integer lin-
ear programs that are partial relaxations of the original problem in each iteration
step. While there is no polynomial time bound for the approximations they allow a
significant reduction of computation time in comparison with the original problem.
The obtained code quality is very high. The approximations can take advantage of
sophisticated solution techniques developed for integer linear programming. More-
over they can be applied to the integrated code generation problems even in the
presence of additional constraints modelling irregular architectural restrictions.

A naive approximation method from this class is the approximation by rounding
[Zha96, K&s97, KL.98] that can be applied to both the time-indexed OASIC model
and the order-indexed SILP formulation. First, a partial relaxation of the problem

81

6. ILP-Based Approximation Techniques

is solved where the x-variables are allowed to take non-integral values. From the
solution of the relaxation a relaxed variable with a non-integer value and a minimal
distance to the nearest integer is selected. A new constraint is added to the mixed
integer linear program (MILP) where the variable is fixed to that integer and the
resulting MILP is solved. This is repeated until an integral solution is obtained.
The basic idea of this approximation is that a close distance from an integer might
be interpreted as a hint that this integer will be the optimal value of the variable.
However this is a blind guess since no knowledge about the target architecture and
about the semantics of the decision variables is exploited. In consequence it cannot
be excluded that the fixations make the MILP infeasible. Therefore backtracking
mechanisms have to be implemented that allow undoing variable fixations. Pre-
vious studies [Kds97, KL98] have shown that indeed the guesses are often wrong.
The resulting code quality is not satisfactory and due to the need for backtracking
the computation can take longer than the calculation of an exact solution. Thus
more elaborate approaches are required.

In the following, approximation algorithms are presented for the SILP and the
OASIC models. The order-indexed SILP formulation allows more efficient approx-
imations than the time-indexed OASIC formulation. The reason is that in the
order-indexed formulation the problem can be better decomposed to allow a grad-
ual solution refinement until a feasible solution is obtained. After a flow variable
of the SILP formulation x}; has been fixed, the ordering of 7 and j and the resource
type ¢ and j are assigned to is fixed. The starting times of the operations however
remain variable; if necessary they can change in any subsequent approximation
step. Since the decision variables in the OASIC formulation specify the resource
assignment and the starting time of the operations, no flexibility remains after a
variable z¥ has been fixed. Then operation 7 must start at control step n and must
be executed by an instance of resource type k.

In Sec. 6.1 a short overview of search-based approximation techniques is given.
Sec. 6.2 deals with the ILP-based approximations for the SILP formulation while
the approximations for the OASIC model are presented in Sec. 6.3. In the pseu-
docode representation of the algorithms it will be assumed that the information
about the mixed integer linear programs to be solved is globally available such that
it has not to be passed as a parameter. The modifications of the mixed integer
linear programs are described in an informal way.

6.1. Related Work

For several classes of scheduling problems approximation algorithms have been de-
veloped that have polynomial time complexity and whose result is guaranteed to
be at most € times optimal (e-approximations) [SUW97, Goe97, Sch96b, Sch96a].
The basic idea of many of these algorithms is to use results of LP relaxations as
criteria for making scheduling decisions. Mostly however they are restricted to
“simple” classes of scheduling problems [SUW97, Sch96b, Sch96a]. In [Goe97] a

82

6.1. Related Work

2-approximation algorithm is presented for the problem of scheduling jobs with
release dates on one machine such as to minimise the weighted sum of the com-
pletion times of the jobs scheduled. In [Sch96a] a 3-approximation algorithm has
been presented that additionally takes precedence constraints into account and a
7-approximation algorithm that can deal with several parallel identical machines.
However, for some combinatorial problems it can be proved that there is no hope
of finding an approximation algorithm of specified accuracy unless P=NP [GJ79).
To our knowledge no e-approximation for the instruction scheduling problem as
presented in Chap. 2.2.3 has been developed yet. Further complications are that
additionally the control flow structure of the programs and the phase-coupling be-
tween instruction scheduling, functional unit assignment and register assignment
have to be taken into account. Moreover the instruction scheduling problem itself
depends on the target architecture with respect to important parameters as the
number of functional unit types (machines), the number of instances of each func-
tional unit type, and the execution times of operations. Since the e-approximations
are tailored to special problem classes more general approaches are required.

In [BEP*96] an overview of more general search-based heuristic algorithms is
given; important methods are simulated annealing, tabu search, and evolution-
ary algorithms. Simulated annealing has originally been inspired by the cooling of
solids after they have been heated to their melting point. The algorithm starts with
a feasible solution and changes non-deterministically to another feasible solution
depending on the value of a cost function. The probability for accepting a new
solution increases with the cost reduction but in order to avoid getting trapped
in a local optimum a deterioration of the objective function can also be accept-
able. The procedure stops if the objective function remains constant in a certain
number of consecutive iterations, or if the number of iterations becomes too large.
Experimental results in [Mic94] indicate that the results of simulated annealing
for instruction scheduling problems is comparable to the result of list scheduling,
however at the cost of a possibly much higher computation time.

One of the central ideas of tabu search is to guide deterministically the search
process out of local optima. The algorithm changes from one feasible solution to
another if this change leads to the smallest deterioration of the objective function.
In order to prevent oscillating, a dynamic list containing forbidden transitions is
maintained, called the tabu list. Tabu search can be extended by intensification
and diversification. Regional intensification restricts the search to the subset of
feasible solutions sharing some salient characteristics of the best solutions found in
some phase of the procedure. The opposite idea is at the base of diversification: if
all solutions discovered in some phase of the algorithm share some common features
this may indicate that other regions of the search space have not been sufficiently
explored.

Another class of search-based algorithms are the evolutionary algorithms that
have recently also been used for code generation tasks. Evolutionary algorithms, as
e.g. genetic programming are probabilistic search algorithms applying the princi-
ples of natural evolution (selection and random variation) to a random set of points

83

6. ILP-Based Approximation Techniques

in the search space [Bli96, ZT99]. The application of evolutionary algorithms to
system synthesis has been investigated in [Bli96]; [ZT99] gives an overview (cf.
Chap. 11). While evolutionary algorithms are well suited for multicriteria op-
timisation problems and support parallel algorithms, they typically require high
computational effort and do not guarantee to find an optimal solution. They are
very sensitive to the adjustment of the internal parameters and the definition of
the fitness function [Bli96].

6.2. Approximations for the SILP Formulation

The approximations developed for the SILP formulation start with an initial relax-
ation where the integrality restrictions of all flow variables associated with func-
tional units and abstract register resources are removed. The set X" denotes the
set of all relaxed flow variables, i.e. of all flow variables that are explicitly specified
as integers in the original ILP formulation. It is necessary to distinguish between
resources representing functional units and and result buses. If the target architec-
ture requires a synchronisation of the result bus in addition to the synchronisation
of functional units the flow variables associated with the result bus are not relaxed.
The values of the flow variables of functional units determine the value of the flow
variables associated with the result bus. Thus the synchronisation of the result bus
must be fully taken into account when synchronisating the functional units.

6.2.1. Stepwise Approximation

The algorithm of the stepwise approximation is based on an approximative method
sketched in [Zha96]; in Fig. 6.1 the algorithm of the stepwise approximation is
shown in pseudocode notation. It consists of two phases; first the flow variables
of the execution units are addressed and then the register flow variables. Each
phase starts with computing an optimal solution of the current relaxed mixed
integer linear program (M;); in case of the resource flow variables this is the initial
relaxation. The core of each phase is a loop that iterates over all control steps
¢ until an upper bound for the execution time of the input program is reached.
Separately addressing the resource and register flow variables can cause the number
of available registers to be exceeded in the result of the approximations such that
additional data moves have to be inserted (see Sec. 7.4.3). In our experimental
evaluation however this has never been necessary.

Let X be the set of all flow variables xfj € X" such that k is a functional unit
typek € N, ti+zi—1> ¢, t; <c¢, tj+2z;—1 > ¢, and t; < ¢ in the solution of M;.
Then in the current schedule both operations ¢ and j use functional units of type
k such that those are not ready to accept new data inputs in control step c. All
variables contained in Xy are specified as binary and the resulting mixed integer
linear program M, is solved. The effect of this strategy is that flow variables are
only specified as binary where this is inevitable in order to prevent violations of

84

6.2. Approximations for the SILP Formulation

procedure ApprozAstep(XTe)

{

Asteplterate({a:fj € X | ke NE);
Asteplterate({xf] € X" | k€ Nj);

}

procedure Asteplterate(L")

{

Solve the relaxed MILP (M;);
for ¢ =1 to Mteps{
Xp = {af| (ti+z—1>cAt;<c)A
(tj+zj—1>cAt; <c)A
xfj € L™ A fived (zfj) = false}
Declare all a:fj € Xg as binary;
Solve the modified MILP (My);
forall z}; € X {
i ((at = 1) A (=€) V (1 =) A (fsed(aly) = false)) {
Add the constraint xfj =1;
ﬁxed(wfj) = true;
}
}
}

forall xfj € L™
if (ﬁxed(xfj) = false)
Specify J;fj as binary;

}
Solve the modified MILP;

}

Figure 6.1.: Stepwise Approximation.

85

6. ILP-Based Approximation Techniques

the serial constraints with respect to the current control step c.

Then, if several conditions are met, the variables xfj € Xp are fixed to the
value they have in the solution of M,. In subsequent optimisation steps they can
be considered as constants and do not contribute to the problem complexity any
more. One necessary condition is that they have the value 1 in the solution of Ms.
Fixing a variable xfj then means adding the equation xfj =1 to the mixed integer
linear program. Fixing variables z}; € X where z}; = 0 can lead to infeasibility
since non-integral values of other variables might shadow violations of the flow
constraints produced by this setting. If in a later step those variables are specified
as binary, the MILP becomes infeasible. When fixing only the variables with value
1, this problem cannot occur due to the structure of the flow constraints. The
other presupposition is that only variables xfj can be fixed that are associated with
an operation scheduled to control step c¢ in the solution of Ms. If both operations
7 and j are scheduled to later control steps, additional serial constraints might be
affected such that they have to be addressed in a later step. Since the definition
of Xg implies that the algorithm can only fix flow variables between independent
operations the fixations do not lead to violations of the precedence constraints.
Thus the feasibility of the modified MILP is ensured.

The proceeding of the algorithm is exactly the same for functional resources
and abstract register resources. In both cases the function Asteplterate is used; the
appropriate set L™ of relaxed variables is passed as a parameter. After traversing
all control steps, it is still possible for some variables xfj € L™ to have non-integral
values. Therefore all flow variables of L™ that have not been fixed to an integer
up to now are specified as binary and the resulting MILP is solved. This solution
is guaranteed to be integral since all previously relaxed variables have been fixed
to an integral value, or have been respecified as binary.

In the main loop of the algorithm only operations whose current scheduling
violates the serial constraints are specified as binary. This way the number of vari-
ables simultaneously specified as integers is reduced. Then an optimal solution of
the resulting mixed integer linear program is computed and the ordering among
the colliding operations is fixed. In addition to further reducing the number of
variables simultaneously specified as binary the fixations have the effect that serial
constraints are transformed into precedence constraints. As detailed in Chap. 5,
deviations of the SILP polytope from the integral polytope are mostly caused by
the serial constraints. Thus with each fixation one serial constraint is effectively
eliminated such that the resulting polytope approximates the integral polytope
more closely. In consequence a significant reduction of computation time can be
achieved. In each iteration an optimal solution with respect to the collisions oc-
curring at the current control step is computed. Therefore it can be assumed that
while significantly reducing the computation time the stepwise approximation still
leads to a good overall solution. This is confirmed by the experimental results (see
Chap. 10).

86

6.2. Approximations for the SILP Formulation

procedure ApprozAIFlow(X")

{
Solve the relaxed MILP (M;);

ResourceList = SortResources(NE, N#);
forall k € ResourceList {
forall zf; € X rel {
if (k =k)
Specify z7; as binary;
}

Solve the modified MILP (M>);
forall z7; € X rel {
if (k=k) {
Fix :zzfj to its current value;
Relax zf;
}
}
}
}

Figure 6.2.: Approximation of Isolated Flows.

6.2.2. Isolated Flow Analysis

In the SILP formulation a separated flow network is generated for each resource
type. The concept of resource flows offers a natural method of problem decomposi-
tion that is at the basis of the approximation of isolated flows: The resource types
of the target processor are addressed iteratively; only the flow variables associated
with the current resource type are specified as binary. This way the number of
variables that are simultaneously specified as binary can be significantly reduced.
The algorithm for the isolated flow analysis is shown in Fig. 6.2.

In the initial relaxation, all flow variables acfj € X" are relaxed. In the main
loop of the algorithm the hardware resources of the target processor are traversed.
In each iteration, the flow variables associated with the current resource type k are
specified as binary and the modified MILP is solved. Then the flow variables xfj of
the current resource type k are fixed to the value they have in the solution of M,
by additional equality constraints and the next resource type is addressed. This
is repeated for all resource types, so a feasible integral solution is obtained in the
end.

In each iteration only the flow variables of the current resource type k are
specified as binary. The variables of the other resource types either have been
addressed in a previous iteration and can be considered as constants or they are
still relaxed (see Fig. 6.3).

0<af;<1 Vaf €L™ where k #k A fived(z;;) = false
zi; € {0,1} Vazf; € L™ where k = k A fized(z;;) = false

87

6. ILP-Based Approximation Techniques

ko k k k
xix0l,.. e {0,1} 0< x,2,x,%,...<1

Figure 6.3.: Isolated flow analysis.

The order in which the resource types of the target processor are traversed is
based on the number of flow variables zf; associated with each resource type k.
First the resource types with the lowest number of flow variables are addressed.
This way the search space for the largest subproblems (in terms of associated flow
variables) is reduced due to the fixations of the preceding iterations. There are
other possible heuristics that could be applied; however this is subject of future
research.

In each iteration of the algorithm an optimal solution with respect to the cur-
rent resource type is computed. Since no constraints are omitted the complete
problem information is used such that the solution is also influenced by the ef-
fects on other resource flows. While no optimal solution can be guaranteed a high
solution quality can be expected since the overall solution is composed of the in-
dividually optimal solutions of all subproblems. The experimental results indicate
that in fact an optimal solution is obtained in most cases. The computation time is
reduced significantly since only the flow variables associated to one resource type
are considered as binary at a time and the search space is tightened after each
approximation step.

6.2.3. Stepwise Approximation of Isolated Flows

The stepwise approximation of isolated flows is a combination of the two previously
presented algorithms. Again all resource types of the target processor are traversed,
but instead of exactly solving the decomposed problem as in the approximation of
isolated flows, in each iteration the stepwise approximation is used for the variables
of the current resource type. Thus for each resource type, all control steps are
traversed in an inner loop until an upper bound for the execution time of the
input program is reached. In each iteration of the inner loop the variables of
the current resource type are specified as binary if they cause violations of serial
constraints with respect to the current control step c. Fixations of variables induce
a partial ordering among the operations and reduce the number of active serial
constraints. After all control steps have been traversed, feasible resource flows
have been computed for the current resource type. After all resource types have
been traversed, a feasible integer solution results. The algorithm of the stepwise

88

6.2. Approximations for the SILP Formulation

procedure ApprozASIF(X")

{
Solve the relaxed MILP;

ResourceList = SortResources(NE, N#);
forall k € ResourceList {
el .— @;
forall z7; € X rel{
if (v = k)
Insert z7; into Lrel,
}

J
Asteplterate(L™);
forall zf; € X rel{
if (k=k) {
Fix :1:;‘] to its current value;
Relax z%;:

}
}
}
}

Figure 6.4.: Stepwise Approximation of Isolated Flows.

approximation of isolated flows is shown in pseudocode in Fig. 6.4.

The setup overhead of this approximation is larger than that of the previously
presented approximations so that the computation times for small input programs
are higher. For larger input programs however experimental results show that
in most cases the stepwise approximation of isolated flows leads to the shortest
computation time while producing solutions of very high quality (see Chap. 10).

6.2.4. Approximation of Isolated Operations

The approzimation of isolated operations has been developed for architectures
where the set of alternative functional units an operation can be mapped to is
large. In this case, a reduction of complexity can be achieved when in a first pass
only the assignment of operations to resources is determined. This assignment
can be used to eliminate the variables that describe possible assignments of each
operation to other resources. The resulting MILP can be solved either exactly or
by using any of the previously presented approximations.

The algorithm of the approximation of isolated operations is shown in Fig. 6.5.
First for each operation of the input procedure the number of functional units it
can be mapped to is determined. Then the operations are traversed where those
with the smallest number of alternative functional units are addressed first. All
flow variables associated with the current operation are specified as binary and the
resulting mixed integer linear program M, is solved. Then the functional unit &
is determined to which the variable is assigned in the solution of M;. The mixed

89

6. ILP-Based Approximation Techniques

procedure ApprozAIOP(X™)
{
Insert all operations of the input procedure in a list Oplist;
Sort Oplist such that i < j & |{k|(i, k) € Er}| < [{k|(j,k) € Er}|;
forall o € Oplist {
forall :vfj € Xl
if(i=o0Vj=o0)
Specify mfj as binary;
}

Solve the modified MILP (M);
Determine £ € N% such that 3 zj; = 1 where (i =0V j = o);
Add the constraint &% =1 to the MILP;
Add the constraint ¥ = 1 to the MILP;
forall xfj € Xl
if(k#rkN(i=0Vj=0)){
Add the constraint a:fj = 0 to the MILP;

forall xfj €eX ’"el{
if(i=oVvVji=o){
Relax .
}

i
¥
Solve the modified MILP exactly or by calling
ApproxAStep, ApprozAIFlow, or ApprozASIF (Ms);

Figure 6.5.: Stepwise Approximation of Isolated Operations.

90

6.3. Approximations for the OASIC Formulation

integer linear program is extended by additional constraints that force the incoming
and outgoing resource flow of the current operation with respect to k£ to be equal
to one. All variables associated with the current operation and another functional
unit type than k are set to 0. Then all variables are relaxed again and the next
operation is addressed.

After all operations have been traversed, the assignment of operations to func-
tional units has been determined. The resulting mixed integer linear program M,
then can be solved either exactly, or by using the approximative algorithms of
Sec. 6.2.1 — Sec. 6.2.3. The effect of the approximation of isolated operations is
that the task of functional unit allocation is partially decoupled from instruction
scheduling and register assignment. However phase-coupling effects are still taken
into account since the complete problem information is used and no constraints are
omitted when computing the functional unit assignment of each operation.

6.3. Approximations for the OASIC Formulation

As mentioned at the beginning of this chapter, problem decomposition is more
difficult in the OASIC formulation than in the SILP formulation. This is due to
the choice of the decision variables; the consequence is that the development of
efficient approximations is impeded. In the OASIC model each decision variable
z¥ describes the starting time of an operation and the functional unit it is assigned
to. After fixing a variable z¥ , the starting time of the operation, its completion
time and the functional unit it is assigned to become invariant.

If a flow variable xfj of the SILP formulation is fixed, the assignment to func-
tional units and the relative ordering of the operations ¢ and j are fixed; the starting
time however may vary. If the resource flows are addressed iteratively, after each
iteration the flow variables associated with one resource type are fixed. This in-
duces a partial ordering of the operations but still the distance between them can
be changed, if this is necessary due to the sequentialisation of operations of other
resource types.

i, rl=ri+1
i, r2=r1*2
i, r3=r1*3 e G
i, rd4=r2+r3

Figure 6.6.: Fixation problem for OASIC models.

If a variable z¥, of the time-based OASIC formulation is fixed, its starting

91

6. ILP-Based Approximation Techniques

procedure ApprozOAstep(XT,1)

{
Solve the relaxed MILP (M;);

for ¢ =1 to Meps{
X ={zk |2k € X" A n=c A fized(zk)) = false} ULA(l,¢);
Declare all J;fc € X as binary;
Solve the resulting MILP (Ms);
forall z¥ € X{
if ((2f = 1) A fized(zk) = false){
Add the constraint a:fc =1;
k*(i) :== k;
fized(zk) == true;
}
forall z¥, € X{
if (k#k*(i) A n#c){
Add the constraint z¥, = 0;
fized(zk) = true;
g
Relax a:fc;
}
¥
}

Figure 6.7.: Stepwise Approximation in OASIC.

time cannot be changed later on. The immediate consequence is that a problem
decomposition based on resource types is not possible. This can be illustrated
by a simple example. Consider the situation of Fig. 6.6. Assume that the target
architecture disposes of one ALU and one multiplier. If only variables associated
with the ALU are specified as binary, it would be possible to set ¢;, = ¢ and
t;, = ¢+ 2. The necessary sequentialisation of iy and i3 will only become apparent
in the next iteration when the multiplier variables are specified as binary. But then
there would be no feasible solution any more while in the SILP formulation the
modification of the starting time would still be possible.

Thus among the approximations presented in Sec. 6.2.1 — Sec. 6.2.3 only the
stepwise approximation can be applied to the OASIC formulation. The algorithm
of the stepwise approximation of the OASIC model is shown in pseudocode in
Fig. 6.7. Similarly to the SILP approximations, if the target architecture requires
a synchronisation of the result bus the decision variables associated with the result
bus are not relaxed. Fixing the starting time of an operation to control step c
implicitly determines the time at which the operation accesses the result bus and
vice versa. Thus the synchronisation of the result bus must be fully taken into
account when synchronising the functional units.

A difference to the stepwise approximation of the SILP formulation is the usage
of the lookahead set L“(1, ¢) where [is a lookahead value and ¢ denotes the current

92

6.3. Approximations for the OASIC Formulation

control step. The lookahead can be specified as a command line parameter in the
PROPAN-system. For a lookahead of [cycles the set L“(l, c) is defined as follows:

LA(Lc) = {aF | 2F € X" : alap(i) < c+ 1}

It contains the relaxed decision variables associated with all operations whose latest
possible starting time is reached before [cycles from the current control step. Those
variables are specified as binary.

In the time-indexed OASIC formulation for each control step n where the ex-
ecution of an operation ¢ may be started a dedicated variable x% is introduced.
The set of feasible control steps is determined by asap/alap analysis with the help
of an upper bound of the execution time of the input program. No variable will
be generated that allows an operation to be scheduled after its alap control step.
However it is a reasonable approach to use the execution time of the schedule of the
input program as an upper bound and enforce this upper bound by an additional
constraint in the generated integer linear programs. But then suboptimal decisions
during the approximation could force an operation to be scheduled after its alap
control step which leads to infeasibility. The lookahead can be used to prevent that
situation. In the experimental results a lookahead of two cycles has been sufficient.

The algorithm works similarly as the algorithm of Fig. 6.1. First the initial
relaxation is solved where all variables % associated with functional units of type
k € NE are relaxed. Then all control steps are traversed until an upper bound
for the execution time of the input program has been reached. In each iteration a
set X is computed that contains all relaxed variables associated with the current
control step ¢ and the variables of the lookahead set L*(l, c). The variables 2t € X
are specified as binary and the modified mixed integer linear program M, is solved.
Then for all variables ¥, € X where z¥, = 1 in the solution of M, a constraint
is added to the MILP fixing that variable to 1. Additionally all other variables
from the set X that are associated with operation ¢ can be set to 0. Finally all
variables z¥, € X are relaxed again and the next control step is addressed. The
fixed variables are treated as constants in the next iteration and do not contribute
to the problem complexity any more.

Again in each iteration variables are only specified as binary where this is
inevitable in order to obtain a feasible solution. The number of variables that
are simultaneously specified as binary is reduced such that the computation is
significantly accelerated. As the experimental results show in most cases an optimal
result is obtained.

93

6. ILP-Based Approximation Techniques

94

7. Superblock-Based Code
Optimisation

A number of studies have established that the typical size of single basic blocks
is about 5 to 20 instructions on the average [RF93]. In consequence the available
parallelism inside of basic blocks is limited. For this reason, global scheduling
algorithms have been developed that can jointly schedule multiple basic blocks.
These algorithms can be classified as cyclic or acyclic scheduling strategies. Acyclic
scheduling methods do not allow operations to be moved across loop back edges.
Popular algorithms of this class are trace scheduling [Fis81, ElI86], superblock
scheduling [HMC*93], region scheduling [GS90], or mutation scheduling [Nic85,
NNO94]. Cyclic global scheduling methods attempt to directly optimise the sched-
ule across loop back edges as well; they are concerned with unrolling and overlap-
ping different loop iterations. The most prominent algorithms of this category are
loop unrolling and software pipelining algorithms [Lam88, NN92, EM92, BGS94,
HHRI7].

While most of the global approaches are based on graph-based heuristic de-
cisions, virtually all exact scheduling methods are limited to single basic blocks
[Leu97, HD98, WGHB95, Zha96]. In order to overcome this restriction, we have
developed a method to incorporate the control flow structure of a code sequence
into an integer linear program. The resulting scheduling strategy can be cate-
gorised as global acyclic scheduling in terms of the classification mentioned above.
Since an important goal of this thesis is the exact coupling of different code gen-
eration phases, a further extension of the problem dimension by incorporating
cyclic scheduling strategies does not seem to be promising for reasons of complex-
ity [RGSLI6].

The optimisation phase of PROPAN works on superblocks that are constructed
by appropriately grouping the basic blocks of the input program. The basic blocks
contained in each superblock are optimised jointly. The construction of the su-
perblocks is performed by a modified version of the trace construction algorithm
of Fisher [Fis81]. In contrast to trace scheduling code movements are only allowed
between control equivalent basic blocks that are contained in the same superblock.
If code movements between basic blocks that are not control equivalent are to be
supported, it becomes necessary to insert compensation code in order to preserve
program semantics. This can be done in a dedicated bookkeeping phase after the
optimisation proper. The necessary extensions are straightforward, but are not part

95

7. Superblock-Based Code Optimisation

of the current implementation. An extension with respect to the trace scheduling
algorithm is the transgression of loop boundaries that is motivated by the phase
integration of instruction scheduling, register assignment and resource allocation.
Apart from increasing the available parallelism the superblock mechanism has the
function of permitting global allocation decisions. The register assignment and
resource allocation performed in one basic block can have significant consequences
for the optimisation of other basic blocks. By generating one integer linear program
per superblock the effects of the allocation decisions on all contained basic blocks
are precisely modelled. Since the superblocks can be extended across loop bound-
aries it becomes also possible to consider interdependencies of allocation decisions
between different loops. Since the loops usually represent the most important parts
of an algorithm, this can have a significant impact on the resulting code quality,
especially in case of nested loops.

Similar to the traces of [Fis81] it is not allowed to incorporate disjoint control
flow paths in the same superblock. Moreover, in order to limit the complexity of
the individual integer linear programs it may be advisable to stop the superblock
construction process if a certain code size threshold is reached. Thus the input
program can be represented by several superblocks. The allocation and scheduling
decisions of one superblock then have to be respected during the subsequently
addressed superblocks. In order to restrict the negative consequences of those
interdependencies to less important program parts, the superblocks of the input
routine are optimised in the order of decreasing execution frequency, similarly to
the trace scheduling algorithm.

The remainder of this chapter is organised as follows: the basic concepts of the
superblock mechanism and the algorithms for computing the superblocks are pre-
sented in Sec. 7.1. Sec. 7.2 details the extensions of the ILP formulations that are
necessary for modelling the global register assignment problem, i.e., if operations
from different loops have to be represented by the same integer linear program.
Further extensions to the ILP formulations that are required for correctly per-
forming instruction scheduling across loop boundaries are presented in Sec. 7.3.
Sec. 7.4 deals with the constraints that make the scheduling and allocation de-
cisions of previously addressed superblocks of the input program visible. Those
constraints have to be respected in order to obtain a globally feasible schedule.
In Sec. 7.5 approaches for completing the register assignment in the presence of
multiple superblocks is presented.

7.1. The Superblock Graph

In this section the concepts of superblock and superblock graph are defined and
the algorithm for computing the superblocks is presented. The algorithm consists
of two parts: first it determines an initial covering of the basic blocks in the input
routine by superblocks where the superblock construction stops at loop bound-
aries. After that a merging algorithm is performed that aims at extending the

96

7.1. The Superblock Graph

superblocks across loop boundaries. By suppressing the merging step, any enlarge-
ment of superblocks across loop boundaries can be prevented such that each loop
is separately optimised.

Definition 7.1 (Superblock) Let a basic block graph G be given. A superblock
s 1s a subgraph of Gg, s = (Ns, Es,ba, bq) such that Ny C Ng, E; C Eg, and
E; C Ny x N;. The block by 1s the uniquely determined entry block b of s such that
AV € Ny : (V',b) € Eft. b is the uniquely determined exit block b of s such that
AV € N, : (bb) € Ef.

Definition 7.2 (Superblock Graph) Let a basic block graph G be given. The
superblock graph Gs = (Ns, Es, sa, Sq) s generated from G g by grouping the nodes
for individual basic blocks and the edges between them into superblocks. An edge
e = (si,s;) € Es connects two superblocks s; and s; if there is a block b, € Nj,
and a block by, € N, such that (bn,bm) € Ep. The set Ng represents a partition
of Npg, i.e. the node sets of the superblocks are pairwise disjoint (Vs;,s; € Ng :
Ng; NN, = () and the union of their node sets is the node set of the basic block
graph U,cy, Ns = Np.

7.1.1. Superblock Covering

In the superblock covering phase, the basic block graph is partitioned into a set of
disjoint control flow paths. The central idea is to group basic blocks that represent
a frequently executed program path to one superblock. The information about
how often the basic blocks are executed can be derived from profiling information,
or from heuristic estimates. In the covering phase it is not allowed to extend
superblocks across loop boundaries.

The algorithm starts with selecting the most frequently executed basic block of
the input routine as the seed of the first superblock. For each loop header block an
individual superblock is created; the enlargement of those superblocks is addressed
in the merging stage. If the seed block is no loop header, the algorithm tries to
enlarge the superblock by adding additional basic blocks. The basic blocks that
are inserted into a superblock s must always form a connected path p in the basic
block graph Gg. Candidates for being inserted into s are all predecessor blocks
of the entry block b4(s) of s and all successor blocks of its exit block bq(s) in the
reduced transitive hull G} of the basic block graph. Additional conditions are that
they have not been assigned to a superblock yet and that by the enlargement, no
loop boundaries are crossed. In consequence there are never disjoint control flow
paths in the same superblock since extensions along side entrances or side exits
of s are prevented. It is, e.g., excluded that both the then- and the else-part of
a conditional statement are contained in the same superblock. The enlargement
is stopped if the candidate list is empty, or if an optional code size threshold
is exceeded. Then the most frequently executed basic block that has not been
assigned to a superblock yet is selected as the seed of a new superblock that will

97

7. Superblock-Based Code Optimisation

subsequently be enlarged as much as possible. This process is repeated until all
basic blocks of the routine have been covered by superblocks.

An example basic block graph, and the superblocks that will have been con-
structed at the end of the covering stage are shown in Fig. 7.1.

Figure 7.1.: Superblock graph after covering phase.

7.1.2. Superblock Merging

After the basic block graph has been covered by superblocks, a merging algorithm
is performed with the goal of extending the superblocks across loop boundaries.
Before the algorithm is described in more detail, some definitions have to be given.

The priority m(s) of a superblock s is defined as the maximum of the execution
frequencies of all basic blocks contained in s: 7(s) = maxpen,((b). The directly
enclosing loop of a superblock s is defined as the loop [with the largest nesting
depth such that all basic blocks b € N; are contained in the body of [. A superblock
that only contains sequential code, i.e. that does not contain a loop header block,
is called sequential superblock. Let a superblock s be given that contains a set
B C N of basic blocks from the body of a loop I = (N, Ej,), i.e., B C N,. Then
s is called a primary trace of [if the blocks in B represent a complete path through
one loop iteration of [. If the blocks in B do not represent a complete path through
[, s is called fragmentary trace of [.

The algorithm does not allow the merging of sequential superblocks or primary
loop traces with fragmentary traces. Fragmentary traces of a loop [can only
be merged with other fragmentary traces of [. This restriction prevents basic
blocks from outside a loop from being contained in the same superblock as the
basic blocks of the loop body unless those represent the most frequently executed

98

7.1. The Superblock Graph

S
Fragmentary
Trace
A 4 v
[
S
bs
C
unmergeable mergeable

Figure 7.2.: Examples for unmergeable/mergeable superblocks.

path through the loop. An illustration is given in Fig. 7.2. If the superblocks
s1 and sy were merged the scheduling and allocation decisions for block b; could
prevent an efficient scheduling of b, since one integer linear program is generated
per superblock. This way the optimisation of the combined superblock of s; and
s9 would impose restrictions to more important program parts since the scheduling
of b, affects each path through the loop body. By merging the superblocks s3 and
sy however a higher code quality can be achieved since the interdependencies of
scheduling and allocation decisions for all operations in one superblock are precisely
taken into account. The block b; is scheduled in the best way that allows an optimal
scheduling of the most frequently executed path through the loop. A performance
degradation can only result for the rarely executed block b3. If it is explicitly
required that no decisions from outside a loop are allowed to affect the optimisation
of the loop body, the merging stage can be suppressed. This way, any enlargement
of superblocks across loop boundaries is prevented so that each loop is separately
optimised.

The algorithm for superblock merging is illustrated in Fig. 7.3 in pseudocode
notation. It starts with selecting the superblock s with the highest priority 7 (s)
from the current superblock graph G and attempts to enlarge s by performing
merge operations with preceding or succeeding superblocks. Candidates for merg-
ing are the superblocks sp whose exit block bq(sp) is a predecessor of the entry
block of b4 (s) of s and the superblocks ss whose entry block b (ss) is a successor of
the exit block bq(s) of s. Two superblocks s and s” can only be merged if several
conditions are satisfied:

e s’ contains only the header h; of a loop I and by inserting h; into s”, s”

becomes a primary trace of [, or

e s’ and s” are primary loop traces, or

99

7. Superblock-Based Code Optimisation

procedure MergeSuperblock(Gg)

{
repeat {
foreach s € Ny in priority order {
repeat {
CList := SelectMergingCandidates(s);
Sort CList in priority order;
foreach s’ € CList until (merging_done = true) {
if (MergingFeasible(s,s') = true) {
Merge(s, s');
merging_done = true;
}
}
} until s cannot be further enlarged (L;);
¥ (L2)
} until Gg is stable (Ls3);
}

Figure 7.3.: Superblock Merging.

e s and s” are fragmentary loop traces of the same loop [, and

e the new superblock obtained by merging s’ and s” does not exceed the code
size threshold.

These restrictions are checked by the function MergingFeasible and ensure that no
superblock contains disjoint control flow paths and that the less important program
parts do not impose constraints to more important parts.

The algorithm terminates if there are no superblocks left that can be enlarged
by merge operations. If the input routine contains n basic blocks at most n merge
operations can be performed. A new iteration of the loop Lj is only started if there
has been a merging operation in the previous iteration. Since each merging step
reduces the number of superblocks at least by one there are at most @ iterations
of the loop L;. Due to the sorting algorithm the worst case time complexity for an
iteration of L; is O(nlogn) yielding a worst case time complexity of O(n?logn)
for the complete algorithm. Since most basic blocks of structured programs have
one or two successors respectively predecessors, it can be expected that in each
iteration of Ly several merging operations are performed so that the average case
complexity can be assumed to approach linearity. In Fig. 7.4 the proceeding of the
merging algorithm is visualised for the initial superblock graph of Fig. 7.1.

7.1.3. Partitioning

In the general case it cannot be excluded that the input routine contains basic
blocks that are too large for an ILP solution to be calculated in acceptable time.
This may, e. g., occur if the input program has been generated using techniques like

100

7.1. The Superblock Graph

Figure 7.4.: Proceeding of the merging algorithm.

101

7. Superblock-Based Code Optimisation

if-conversion [PS91, DT93]| or extensive loop unrolling. In order to allow an efficient
ILP-based optimisation those blocks have to be partitioned. In the following two
simple partitioning algorithms are presented. Alternative approaches have been
proposed in the literature [MP97]; an integration of those algorithms might be a
promising topic for future research.

Order-based Partitioning

Order-based partitioning takes advantage of the ordering of the operations in the
input routine which is a reasonable approach in a postpass framework. Each ba-
sic block exceeding the code size threshold is subdivided into a minimal set of
subblocks of equal size such that no subblock exceeds the threshold. When con-
structing the subblocks it has to be ensured that all machine operations that have
been scheduled to one long instruction in the input program are contained in the
same subblock. Dedicated edges are added to the basic block graph that connect
consecutive subblocks. We will denote the transformed graph as weak basic block
graph since the blocks are not necessarily operation sequences of maximal length
any more as required by Def. 2.3. The weak basic block graph is used as the input
of the superblock construction algorithm; each of the newly created blocks will be
contained in a separate superblock.

Dependence-based Partitioning

Another possibility is to use the data dependence graph Ep of the input program
as the basis for partitioning.

Let a basic block b be given that has to be partitioned. First, an empty block
bs is allocated. For each operation ¢ of the original basic block b, a priority is
calculated as the maximal length of any path in Gp from 7 to another operation
from the same basic block; this corresponds to the highest level first criterion often
used in list scheduling algorithms [LDS80]. Then the operations of b are traversed
in the order of decreasing priority. For each operation ¢ the algorithm collects all
transitive predecessors of 7 in Gp that have not yet been inserted into a subblock
of b and inserts them into by together with 7. If the number of operations in b, has
reached the code size threshold, a new subblock is allocated. This is repeated until
all operations of b have been transferred into smaller subblocks. Again, successive
subblocks are connected by edges in the resulting weak basic block graph that is
used as the input of the superblock construction algorithm and each of the newly
created blocks will be contained in a separate superblock.

The effect of the dependence-based partitioning is that the instruction schedul-
ing of large basic blocks exceeding the code size threshold can be considered as
an enhanced version of list scheduling. The highest-level-first heuristic is used to
redistribute the operations of the input program in a set of scheduling windows.
Each window corresponds to a superblock that contains one part of the original
basic block. The operations of each scheduling window can be scheduled optimally

102

7.2. The Global Register Assignment Problem

by integer linear programming.

7.2. The Global Register Assignment Problem

In Chap. 5 it was described how the basic SILP and OASIC models can be extended
to incorporate the register assignment problem on basic block level. In this section
the modelling extensions are presented that are necessary to cope with optimisation
scopes comprising multiple basic blocks and possibly crossing loop boundaries.
Since our previous studies [Kds97, KL98, KL99] indicate that the incorporation of
the register assignment in the OASIC modelling cannot be considered promising
for complexity reasons we will exclusively focus on the SILP formulation during
the remainder of this section.

This section is structured as follows: first a global register renaming algorithm
is presented that undoes the register assignment of the input program and can
cope with heterogeneous register files. Subsequently the modelling of variable life
ranges in the presence of multiple definitions reaching individual uses is explained.
If superblocks are extended across loop boundaries this modelling plays an essential
role for preserving the semantics of the input program.

7.2.1. Global Heterogeneous Register Renaming

Since PROPAN has been designed as a framework for postpass optimisations the in-
put consists mainly of assembly programs that have been generated by traditional
compilers or by hand. In consequence the task of register assignment has already
been addressed when generating the assembly files that are used as the input of
PROPAN. The register assignment of the input program induces false dependences
that do not reflect data dependences imposed by the program semantics but are
caused by the reuse of physical registers. Most output and anti dependences are
false dependences that can be removed without changing the program semantics.
In consequence they artificially limit the available parallelism of the input program.
The impact of false dependences is illustrated in Fig. 7.5. There is an anti depen-
dence from operation y to z that is caused by the reuse of register r1. Assume that
each operation is executed in one clock cycle and that an addition and a multipli-
cation can be parallelised. Because of the anti dependence, the third operation z
is transitively dependent on x and cannot precede y. Now assume that register ré
is available; then using r6 as the destination of z allows x and z to be executed in
parallel such that one clock cycle is saved.

It is obvious that the register assignment of the input program has to be undone
before the optimisation is started in order to not artificially restrict the optimisation
opportunities. The algorithm used for this purpose is called register renaming. In
the literature, the term register renaming has been used in different contexts:
register renaming on source level and register renaming on hardware level. In
the scope of this thesis we will refer to register renaming as the task of replacing

103

7. Superblock-Based Code Optimisation

x: (rl)=r2 +r3; xz: (rl]=r2 + r3,[6)= r5 * r9;
y: r3=[r1)+r4; y: r3=[r]+r4;
z: = r5 * r9;

Figure 7.5.: Effects of false dependences.

references to physical registers by references to virtual registers while preserving
the program semantics. Since the number of virtual registers can be considered
infinite, registers are reused only if the reuse is dictated by the program semantics.
This approach is similar to the usage of virtual registers in [Bra91].

Our work differs from previous register allocation and assignment algorithms
in two aspects. Since the optimisation scope is extended across basic block bound-
aries there may be more than one definition that reaches the same use. It has to be
ensured that in the resulting machine code all those definitions write to the same
physical register. In high-level code generation systems, the programs are usually
converted into Static Single Assignment form (SSA-form) in order to deal with this
problem [CFRWO1]. Intuitively, in SSA-form each variable definition is assigned
a unique destination; those destinations can be considered as virtual registers. If
there are uses which are reached by several definitions, all reaching definitions are
merged into a new location by the so-called ®-nodes. Different register allocation
algorithms propose different ways to handle ®-nodes. The Yorktown Register Al-
locator [Cha82] and improvements of it (cf. [Bri92, BCT94]) unify all life ranges
reaching a given use thus coalescing life ranges at control flow joins. Since all def-
initions are represented by the same node, it is guaranteed that they are assigned
to the same physical register. The probabilistic register allocation of [PF92] is an
example of an approach where the ®-nodes are first translated to a set of register
moves or load/store operations. Subsequently the algorithm tries to detect un-
necessary data transfer operations and remove them in a way that allows for the
greatest increase in efficiency. However both approaches cannot directly be applied
in the setting of this thesis. Since instruction scheduling and register assignment
are addressed jointly, all definitions reaching the same use must be modelled as
separate operations, i.e. they cannot be coalesced. The insertion of additional
operations has to be avoided, since the goal of the optimisation phase is to com-
pact the code sequence for reducing code size and speeding up program execution.
Moreover if the ILP model was extended by an additional code selection to insert
new data transfer operations or remove data transfers that become superfluous due
to a skilful register assignment the complexity of the modelling and the required
computation time would rise significantly (cf. [WGB94]). Thus the integer linear
programs are formulated with the goal of determining an optimal solution for the
given set of machine operations that is considered to be invariant. The register
renaming algorithm has to use the same virtual register for all definitions of a
variable that reach the same use. In the ILP modelling, additional synchronisation

104

7.2. The Global Register Assignment Problem

constraints have to be generated to ensure that the sharing of the result register
is respected among all concurrent definitions. Those constraints are detailed in
Sec. 7.2.4.

The second extension is due to the fact that embedded processors often dispose
of heterogeneous register files. The renaming algorithm must be aware of that
heterogenicity in order to ensure that always registers of an appropriate register file
are selected and in order to allow restricting the renaming to registers of individual
register files. Comparable extensions to graph colouring algorithms have been
suggested in [BCT94]. The effects of heterogenicity can be illustrated with the
example of the Analog Devices ADSP-2106X SHARC. The SHARC disposes of
several special purpose register files, e. g. an index and an offset register file used for
memory addressing. However the effect of the special purpose register assignment
on the available parallelism can be neglected in the ILP-based optimisations; only
the assignment of general purpose registers has a significant impact. Therefore the
special purpose register assignment of the input program can be kept while the
general purpose register assignment should be undone. This way, the complexity
of the optimisation phase is reduced. If the register reassignment was computed for
all register files, the ILP formulation would be significantly more complex without
holding a prospect of improving the solution quality.

In the following, the register renaming algorithm shown in Fig. 7.6 is described
in detail. For each physical register file subject to renaming, a dedicated vir-
tual register file of unconstrained capacity is introduced. The information about
which registers should be renamed is specified by dedicated attributes in the TDL-
description of the target processor so that the renaming process can be fully au-
tomated. The algorithm traverses the operations of each basic block in backward
direction. For each use of a physical register that is to be renamed all reaching
definitions are collected and inserted in a set D. If none of these operations have
already been assigned to a virtual register a new register of the appropriate virtual
register file is allocated and is marked as the destination for all operations in D. If
there is exactly one virtual register among the destinations of the operations in D,
this register is used as the destination of all operations in D. However if there is
more than one virtual register among the destinations of D a new virtual register
v is allocated. Then the algorithm replaces all references to the virtual registers
used as destinations for operations in D by v. This is necessary to ensure that all
concurrent definitions write to the same virtual register.

Subsequently the register renaming algorithm addresses the procedure calling
conventions. The registers used for procedure parameters and return values must
be preserved by the register renaming which is ensured by the function Address-
CallingConventions. In the virtual registers allocated for parameter and return
values the corresponding mandatory physical registers are annotated. This in-
formation is taken into account when generating the integer linear programs and
computing the modified register assignment. Memory access operations used for
saving the values of caller-saved registers before a call operation and restoring them
after the call has returned are excluded from the register renaming process. Those

105

7. Superblock-Based Code Optimisation

procedure RenameRegisters(Gc¢)
{
Generate VirtualRegisterFiles(Resource Table);
foreach basic block b € N¢{
foreach operation i € b in reverse order {
foreach use of a register r subject to renaming by operation i {
D = CollectReachingDefinitions(i,r);
V' = CollectVirtualDestinations(D);
if (V] = 1) {
v = head(V);
AdaptDestinations(D,v);
}
else {
v = Allocate Vreg(T);
AdaptDestinations(D,v);

}
}
}
}

AddressCallingConventions(G¢);
foreach basic block b € N¢ {
foreach operation i € b {

AdaptUses(i);
}
}
}

Figure 7.6.: Register Renaming Algorithm.

106

7.2. The Global Register Assignment Problem

operations have to be considered as a part of the call and their original physical
register assignment is kept. Callee-saved registers are saved at procedure entry and
restored at procedure exit. Since those operations depend on the set of registers
used within the procedure it is assumed in the current implementation that they
are identified before the optimisation phase and not passed to the ILP-based op-
timisations. After the optimisation phase the necessary operations are inserted by
user-supplied functions. An alternative solution is to except callee-saved registers
whose value is not saved in the input code from the register renaming process and
keep the original save and restore operations. While this is not part of the current
implementation the necessary extensions are straightforward.

Finally, the function AdaptUses performs a last pass over the control flow graph
to rename all uses to the corresponding virtual registers. Since the information
about reaching definitions is available when the algorithm is started (see Sec. 9.1),
the worst case time complexity of the algorithm is O(n?) where n is the number
of operations in the input program.

7.2.2. \Virtual Registers and Abstract Resources

In the SiLP formulation, the problem of register assignment is modelled as a register
flow problem. In the register flow graph the node of a variable definition is con-
nected to the resource nodes that represent the abstract register files the value can
be stored in. The programmer is responsible for the mapping of physical register
files to abstract register files. This mapping is propagated to the register renaming
phase where the references to physical registers of the input routine are replaced
by references to virtual registers. The register flow graph is constructed after the
register renaming phase. Thus for each virtual register the set of abstract register
files it can be mapped to has to be known. The register renaming algorithm has
to ensure that this information is propagated to the optimisation phases. In the
following, the relationship between physical, virtual and abstract register files is
detailed in a mathematical formulation.

Let R be the set of all physical register files subject to renaming, let V be the
set of all virtual register files, and let A be the set of all abstract register files.
Then the following functions are derived from the TDL-description of the target
processor:

e The assignment of abstract resources to physical register files is described
by the function f4 : R — P(A). Each operation that defines a physical
register is associated with a set of abstract register files that represent the
storage locations that are available for the destination operand.

e The mapping of physical register files to virtual register files is expressed by
the function fir : R — V. For each physical register file subject to renam-
ing exactly one virtual register file is allocated, such that fy is a bijective
function.

107

7. Superblock-Based Code Optimisation

e Each register file can be considered as an ordered set of element registers; each
register is contained in exactly one register file. The assignment of virtual
registers to abstract resources is described by the function f; : V — P(A)
where fi(V) = fa(f;,'(V)). For each r € f,;/(V) = R a virtual register
v € V= fy(R) is allocated during register renaming.

The virtual register files are assumed to have infinite capacity. In the solution
of the integer linear program to be generated, each definition of a virtual register
v € V is mapped to exactly one abstract register file A € f;(V) and is finally
associated with a physical register r € R where A € f4(R). As a summary, the
interaction of those functions can be described in the following diagram:

In order to illustrate these definitions, the resource functions f4, fy, and f;
of the Analog Devices ADSP-2106X SHARC will be shown. The ADSP-2106X
SHARC has one general purpose register file that serves as a fixed-point and as
a floating-point register file. The assembly representation of the general purpose
registers depends on whether they are used as fixed or as floating point registers:
fixed point registers are denoted rx, floating point registers are denoted fx. In
consequence, both views have to be separately incorporated into the hardware
description. For each of these views a separate virtual register file is created, V;,
resp. Vy, that is assumed to have infinite capacity in order to allow the removal
of the false dependences of the input program. In the ILP modelling both views
have to be mapped to the same set of abstract register files since they physically
refer to the same register file. The general purpose register file is no homogeneous
register file but consists of 4 groups that have to be distinguished during instruction
scheduling. ALU and multiplier can only be executed in parallel if all operands are
located in uniquely defined groups within the register file as shown in Fig. 7.7.

For each of these groups one dedicated abstract register file is introduced such
that their different properties can be fully taken into account in the generated in-
teger linear programs. During ILP optimisation each variable definition is assigned
to one of the abstract resources representing the register groups. Let R; denote
the integer view of the general purpose register file, ¢ the floating-point view, V;
the virtual register file generated for R; and V; the virtual register file generated
for R;. The abstract register files representing the four register groups are denoted
A, Ay, A., Ay Then the resource functions are defined as follows:

108

7.2. The Global Register Assignment Problem

Register File

RO - FO
R1-F1
R2 - F2
R2 - F2

Multiplier

R4 - F4
R5 - F5
R6 - F6
R7-F7 Any Register

<«

>
Any Register RS- F8

R9 - F9
R10 - F10
R11-F11

R12 - F12
R13 - F13
R14 - F14
R15 - F15

Figure 7.7.: Register groups of the ADSP-2106X SHARC.

ALU

fA : {RZ:Rf} — P({Aa:AbaAchd})
fA(RZ) = {Am Ab7 Aw Ad}
fA(Rf) = {As Ay, Ac, Aa}

fV{Rz:Rf} — {‘/;7Vf}
() = Vi
fV(Rf) = Vi

fr=Ffao it A{Vi,Vi} — P({Ad, A, Ao, Ag})
fV(‘/z) = {AaaAbaAc;Ad}
fV(Vf) = {Aa)AbaAcaAd}

7.2.3. \Virtual Definitions and Virtual Uses

For each superblock of the input routine an individual integer linear program is
generated. Usually the input routine cannot be represented by a single superblock.
Since computing the register assignment requires global liveness information, in-
formation about variable lifetimes that do not begin or end within the superblock
currently being optimised have to be available.

Consider the situation of Fig. 7.8. There the life range of variable v, begins
with the definition in instruction d, and ends with the use in instruction u,. Thus
variable vy is alive across superblock s without any definitions or uses of v appearing
inside of s. In the register flow graph as defined in Sec. 5.2.2, the modelling of
variable lifetimes is based on the defining operations. Since no definition of the

109

7. Superblock-Based Code Optimisation

variable v, is contained in superblock s, it is not represented in the generated
register flow graph. In consequence, the number of variables simultaneously alive
could be underestimated leading to an infeasible register assignment.

v

[d] Vo=

S

A

4
[u] ..=v

Figure 7.8.: Superblock-external life ranges.

In order to prevent this situation each basic block b inside a superblock s is
associated with a set Vp(b) of virtual definitions and a set Vi (b) of virtual uses.
All variables living at the exit of a predecessor block of b that is not contained
in s are represented by a virtual definition. Let p} denote the program point
corresponding to the entry of block b and p? be the program point immediately
after the last operation inside of b.

Vo(b) = {d, | 3(t',b) € Ep : b ¢ N, A v alive at p%}

Similarly, if a variable is alive at the end of a block b but not at the entry of its
successor block b inside of s, it is represented by a virtual use.

Vir(b) = {u, | v alive at p’A A(b, 1) € Ep: b' € N, Av alive at p} }

In the ILP formulation the virtual definitions are treated like normal definitions
with the exception that their starting time is not subject to the ILP optimisation.
Instead it is fixed to a time earlier than the starting time of all regular operations
of the superblock. The virtual definitions ensure that the life ranges of externally
defined variables are visible inside the superblock. The virtual uses ensure that
externally used variables are alive along each path to an external use inside the
superblock. The virtual definitions also play an important role in synchronising
the solutions of the individual superblocks (see Chap.7.4). In this context, they
contribute to preventing inconsistent register group assignments.

7.2.4. Global Lifetime Modelling

Extensions of the modelling presented so far are required if there is more than one
definition in the same superblock that reaches the same use of a register variable.
This situation can be caused by loops and by conditional statements. One problem
is the representation of variable life ranges. Consider the situation of Fig. 7.9. If

110

7.2. The Global Register Assignment Problem

the loop is not executed the life range of the variable v defined by d; reaches the
use in uy but if there is at least one loop iteration, it is the definition dy of v that
reaches uy. The life range constraints (5.16) however would prevent the reuse of
the physical register assigned to d; if its life range would extend until us. Therefore
for the representation of the life ranges we will assume that each loop is executed
at least once and dedicated synchronisation constraints are generated that ensure
a consistent modelling that is also correct if the loops are not traversed.

Figure 7.9.: Multiple reaching definitions.

Definition 7.3 (Concurrent Definitions) Two operations i and j performing a
write access to a register are called concurrent definitions, if both operations define
the same destination register and there is a use of that register that is reached by
both definitions.

The operations d; and ds of Fig. 7.9 are examples of concurrent definitions;
both define the virtual register v and reach the use in u;. The first definition d;
supplies the initial value of the variable while dy defines its value in all subsequent
loop iterations. Then it must be ensured that both definitions d; and d, write to
the same physical register.

If there is only one register in the corresponding register group, this can be
done in a simple way: the assignment to the abstract resource is equivalent to an
assignment to the physical register itself. Thus it is sufficient to enforce both op-
erations to write to a register of the same abstract register file. This can always be
achieved by introducing one dedicated resource for each individual register. When
considering the example of the ADSP-2106X SHARC, instead of declaring four
abstract resources A,, Ay, A, Ag, it would be necessary to introduce 16 abstract
resources A,,...,A,,. However then the number of binary variables required for
modelling the register assignment problem would be 4 times larger and the number
of constraints would increase. In consequence, the complexity of the formulation
increases and one important advantage of the flow modelling, the unified modelling
of equivalent resources, is given away.

111

7. Superblock-Based Code Optimisation

In the remainder of this section, the resource path constraints are presented
that allow an exact modelling of concurrent definitions. Since the resource path
constraints can significantly increase the complexity of the overall ILP formulation,
we have developed two mechanisms to reduce the complexity. In the first one, the
superblock construction is stopped at loop boundaries; then an exact modelling
of concurrent definitions is possible without significant increase of complexity. In
the second one, the user can restrict the maximal length of the resource paths to
be considered. This way, the additional complexity is reduced. The experimental
results show that usually a low bound of the path length can be chosen without
preventing the calculation of an optimal solution. Thus only a moderate increase
in complexity is required.

Note that no explicit modelling is required if the definitions are located in
different superblocks. Since different superblocks are optimised one after another
the abstract resource assignment calculated for the superblock that is optimised
first is mandatory for the second superblock (see Sec. 7.4). Only if the concurrent
definitions are contained in the same superblock, explicit constraints are required
in the integer linear program to force them to write to the same register. The
reason of this is that in the flow-based SILP formulation the sharing of individual
physical registers is a dynamic property: An operation j writes its result to the
same register of an abstract register file r as a preceding operation ¢ if and only if
there is an active path from 7 to j in the register flow graph, i.e.

i=k —---— kyn=j, where zj =1 V1<I<m-1.

ki1
In general, it cannot be decided statically which path in the register flow graph
from ¢ to j will be chosen, if any. Therefore it is necessary to explicitly enforce
that in each feasible solution of the integer linear program there is an active path
from 7 to j in the register flow graph. This means that the problem of selecting
one path from the set of all possible paths between ¢ and j has to be incorporated
into the generated integer linear programs. If the target architecture does not
support predicated execution® ([PS91, DT93]), the worst case number of paths to
be considered can be bounded by the following lemma.

Lemma 7.1 If two operations i and j form a pair of definitions reaching the same
use k inside a superblock s then the ordering of i and j can be statically determined.

Proof: Let b; denote the basic block containing ¢ and b; be the basic block
containing j. If 4 or j is a virtual definition the proof is trivial since the starting
time of virtual definitions is fixed to the start of the surrounding basic block. So
in the following we assume that neither ¢ nor j are virtual definitions. The proof
can be done in three steps.

ITn predicated code, control dependences have been converted to data dependences so that
operations from originally disjoint control flow paths can be contained in the same basic
block.

112

7.2. The Global Register Assignment Problem

(¢) First we will show that ¢ and j must belong to different basic blocks, i.e. b; # b;.

Assume that b; = b;. Since both operations ¢ and j define the same resource,
they cannot be contained in the same instruction; otherwise the result of the
instruction would not be well-defined. All instructions of a basic block are
executed consecutively, so there must be a data dependence between 7 and j.
In consequence their relative ordering inside the basic block is fixed. But this
means that one of the operations will precede the other one on every path to
the use in operation k, so they cannot both reach k.

(it) The basic blocks b; and b; are not control equivalent.

Assume that b, and b; are control equivalent. Then every program path
through b; will also traverse b;. But then again there must be a data depen-
dence between ¢ and j; again one of the operations will precede the other one
on every path to k, so they cannot both reach the use in £.

(74i) In consequence, i and j must belong to basic blocks that are not control equiv-
alent. Yet, since a superblock does not contain mutually exclusive control
flow paths there must be an edge (b;,b;) € Ej;. But then there must also be
a path from ¢ to j in the control flow graph. Since ¢ and j both define the
same resource, j is transitively dependent on 7. Furthermore we know that
this dependence is not classified as a loop-carried dependence since i Ei> J

D

and (b;,b;) € Ef. Then, by construction, an edge from i to j is introduced
in the register flow graph and there is no path from j to ¢. In consequence,
the ordering of 7 and j can be statically determined.

Using this lemma we can derive an upper bound of the number of alternative
paths to be considered between 7 and j.

Lemma 7.2 Let i,j be a pair of concurrent definitions reaching a given use k and
let n be the number of register flow nodes which are transitive successors of i and
transitive predecessors of j different from i and j in the register flow graph Gz,

n = {mENZ\iLmi)j/\m#i/\m#j}‘. Then the number of paths
Gy Gy

from i to j in the register flow graph is bounded by Brpa(n) =, _, (nﬁ—'k),

Proof: Induction over the maximal number n of nodes that are successors of ¢
and predecessors of 7 in G .

n = 0: j is the only immediate successor of ¢ in the register flow graph.

O Q@

113

7. Superblock-Based Code Optimisation

0!

Bgrc(0)

n = 1: There is one possible intermediate node.

n — n+1: Assume that the number of intermediate paths for n nodes is Brpg(n)

=" (nf—'k), Now we are considering an additional intermediate node and

n+l (nt1)!
k=0 (n+1—k)!"

Consider the set of additional paths that have to be considered due to the
insertion of the additional intermediate node ¢,,1. This is exactly the set
of paths containing the newly added node. In order to construct a path of
length k£ which contains 7,1 we select £ —1 nodes from the previous node set
and consider all (k — 1)-permutations of those n elements. Since the number
of those permutations is ﬁ'ﬂ), and there are k£ positions where we can insert
node 7,1, the number of newly added paths of length £ is & - (

have to prove that Brpg(n + 1) =

n!

Thus we get
n+1 n,
Brrg(n+1) = BRFG(”)+Zk'm
s n ! n+1 k-n
- ;(nﬁk)'_‘_;(n—k—i—l)'
_ i(n—kJrl)-n!-i—k-n! (n+1)-n!
ar (n—k+1)! (n+1-(n+1)!
B i (n+1)!
c (n+1-k)!

Since >y, (n’_’—'k), =Y okl (}) > 35 (F) = 2" there are Q(2") possible paths.
However while this is a feasible upper bound, it is nevertheless very pessimistic.
It can only be reached if all intermediate nodes on the path from ¢ to j are inde-
pendent of one another since any ordering among those nodes is considered. In
real-life input programs there will be dependences among intermediate operations

7.2. The Global Register Assignment Problem

‘Program‘D‘n‘ P ‘

waveletk | 1 | 2 2
fir 4 |1 4
dft 51 2 8
waveleti | 4 | 2 12
dmatrix1 | 1 | 5 20
dmatrix2 | 1 | 10 | 1728
cascade | 4 | 5 | 1967
histo 5| 8 | 4636
dfir2dim | 2 | 14 | 20000

Table 7.1.: Statistics on Path Constraints for the ADSP-2106X SHARC.

and life ranges that can be statically determined to overlap, so that the number
of path alternatives will be significantly smaller. If we assume that there are de-
pendences between all potential intermediate nodes, each set of k£ nodes has to be
counted exactly once since there is only one possible ordering of them. In that
case we get Brpg(n) = >, (Z) = 2", such that the complexity is bounded by
O(2"). While the complexity seems prohibitive, usually the number of possible
intermediate nodes is relatively small since these nodes represent operations that
can be scheduled between ¢ and 7 without any overlapping of the corresponding life
ranges. Among a total of 23 input programs evaluated for the ADSP-2106X SHARC
processor, path constraints have only been required for 9 programs. In order to
give an impression of the average case complexity, Tab. 7.1 shows the number D of
pairs of concurrent definitions, the maximal path length n, and the total number
P of alternative paths for those input programs.

For each pair of concurrent definitions a set of ILP constraints has to be gener-
ated that force exactly one path from 7 to j to be taken. Similarly to the modelling
of the control flow structure (see Sec. 5.4) a set of disjunctive constraints is gener-
ated among which exactly one constraint has to be satisfied. Let k£ paths between
two operations 7 and j be given and let P be the set of those paths, |P| = k.
Furthermore, let d be a unique number identifying the operation pair (4, j) and let
R ={r| (i,r) € E4 A (j,r) € Ea}. Then for each path p,, € P, 1 < m < k
of length [(where the length is defined as the number of edges on this path) the
following constraint is generated:

Z'/E;lkz + ZxZQkS + -t Zxkl_lklr + lcf,in Z l (71)

reR reER reER

The c-variables are binary integers, c¢, € {0,1}, which are used in the following
constraint to force exactly one of those paths to be taken:

Y o =k-1 (7.2)

m=1

115

7. Superblock-Based Code Optimisation

The flow conservation and assignment constraints ensure that the same abstract
register file is used consistently along each active path. This way, a correct mod-
elling is ensured.

The intermediate nodes which can appear on a path from 7 to 7 in the register
flow graph correspond to the nodes of variable definitions that can be scheduled
between 7 and j without any intersection of the corresponding life ranges. Al-
though this number will usually be small compared to the total number of variable
definitions in a program an exact modelling cannot always be guaranteed. Calcu-
lating all feasible paths is a problem of exponential time complexity that has to
be performed at the generation time of the integer linear programs. Generating
the path disjunctions can lead to an exponential space consumption and finally,
since for each alternative path a dedicated binary variable has to be introduced
the computation time required for solving the generated integer linear programs
can increase exponentially, too. Therefore it is necessary to develop methods that
allow computing a solution even if no exact modelling is possible.

Complexity Reduction by Loop Barriers

The first approach to reduce complexity is straightforward: if, similar to [Fis81,
HMC*93] the superblocks are not allowed to be extended across loop boundaries,
the modelling is simplified. Since each superblock contains at most one loop, the
length of the paths to be considered for path constraints is reduced. Since the most
frequently executed program parts are optimised first, negative effects can occur,
but are restricted to less important program parts. This situation is illustrated in
Fig. 7.10; if there are no redefinitions of v and v3 path constraints have only to be
generated for the virtual definition representing d,, and .

Complexity Reduction by Bounding Path Lengths

The second approach does not prevent the extension of superblocks across loop
boundaries. Instead it takes a user-specified upper bound on the length of any
path in the register flow graph between concurrent definitions. The resource path
constraints force two operations to write into the same register by formulating a
disjunction over all feasible paths between the two operations in the register flow
graph. When specifying an upper bound on the path length, only the shortest
paths are considered in the resource path constraints; in consequence, the resource
path constraints discard all paths exceeding the given bound from the solution
space. With increased path length, the register reuse increases that limits the
available parallelism. So by specifying an upper bound on the path length, only the
paths leading to the highest degree of instruction level parallelism are considered.
However since this can prevent a feasible solution from being found, this parameter
has to be chosen carefully. In our experimental analyses for the ADSP-2106X
SHARC a maximal path length of 3 has always been sufficient for an optimal solution
to be found. Thus the required increase in complexity is only moderate and the

116

7.3. Global Timing Constraints

|

di1v= ...
(] %= ..
[ds]vy= ...

]

[dy] ¥= e
[dy] %= ..
[dy] Vo= .

\ S

[idw=wv+v,

[i)] vy=v+ v3

i v= ...

J

Figure 7.10.: Concurrent definitions in restricted superblocks.

path constraint modelling can be considered as practicable. The total number of
path constraints with an upper bound of 3 for the programs of Tab. 7.1 is shown
in Tab. 7.2.

7.3. Global Timing Constraints

Since superblocks can comprise complete loop nests, loop-carried data dependences
and loop-carried timing constraints have to be respected during optimisation. The
incorporation of such cyclic scheduling constraints is the subject of this section.

7.3.1. Inter-lteration Data Dependences

Consider the situation of Fig.7.11. The operation d; defines an operand of that
instance of operation u,; that is executed during the next loop iteration. It has to
be ensured that in any loop iteration all operands used by wu; are available when
the execution of u; is started. This can only be done by incorporating loop-carried
data dependences into the ILP model.

Let s be the superblock currently being optimised. For each loop-carried data
dependence (4, j, r,t) where 7 is contained in basic block b; € N, and j is contained
in b; € N, the set P of all acyclic paths from b; to b; is calculated. For each path
p € P, a lower bound [, of the required execution time is determined. The bound
l, can be determined to have a positive value, if p traverses basic blocks that have
already been scheduled due to preceding superblock optimisations. The path p™"
with the smallest lower bound l;"i" is selected. If that lower bound is greater than

117

7. Superblock-Based Code Optimisation

‘ Program ‘ D ‘ P ‘

waveletk | 1 2
fir 4 4

dft 5 8
waveleti | 4 | 12
dmatrixl | 1 | 12
dmatrix2 | 1 | 76
cascade | 4 | 203
histo 5 | 76
dfir2dim | 2 | 165

Table 7.2.: Statistics on Path Constraints for the AbDsP-2106X SHARC with max-
imal path length of 3.

Figure 7.11.: Loop-carried dependences.

118

7.3. Global Timing Constraints

the execution time of 7, i.e. l;’”” > w;, the destination operand of 7 is definitively
available when operation j is reached in the next loop iteration and no additional
constraints are required. Otherwise, two basic blocks b, and b, are selected from
p. The block b, is the first block of p that is a predecessor of b; in G} and that
is contained in superblock s or b; itself if there is no predecessor in s. Similarly,
b, is the last block on p that is a successor of b; in Gg and that is contained in
s or b; itself if there is no successor in s. Let t% denote the starting time of the
first operation in block b, and t7, the starting time of the last operation in block
b;. Then the following precedence constraint is generated:

tj— G+t — b > w — 1" (7.3)

Intuitively, this constraint splits the path from 7 to j in two parts: the path from
i to the end of the loop, and the path from the beginning of the loop to operation
j. The sum of the execution times of both parts must be large enough for the
execution of ¢ to finish when j is reached.

7.3.2. Inter-lteration Latency Constraints

Loop-carried timing constraints are required to prevent latency violations in sub-
sequent loop iterations. Consider the situation of Fig. 7.12. Assume that there is
only one instance of resource r used by two operations ¢ and j; then ;7 must be
scheduled in a way that the time between the start of ¢ and the start of j in the
next loop iteration is at least the latency of r.

i
/latency
i

Figure 7.12.: Inter-iteration latency constraints.

In the general case this is a flow problem that is closely related to the path
synchronisation problem of Sec. 7.2.4. The minimal distance has to be enforced
only when the same instance of a functional unit is used by both operations. Thus,
in the SILP formulation additional constraints are required that become active only
if there is an active path from ¢ to j in the resource flow graph. The complexity
of the modelling is comparable to Sec. 7.2.4. Since the concept of resource flows
is not represented in the OASIC formulation a mechanism similar to the register
crossing constraints (equation 5.40) is required for an exact modelling.

Inter-iteration latency constraints only have to be generated for functional unit
types that have a latency of several machine cycles and keeping track of the resource

119

7. Superblock-Based Code Optimisation

flow is only necessary for functional units of which several instances exist. In
contemporary hardware architectures, there is a trend to fully pipelined functional
units with single-cycle latency. When functional units with multi-cycle latency are
employed, it can be expected that there is only one instance of them. Therefore
we have implemented a simplified modelling that is analogous to the modelling of
loop-carried data dependences and that is identical in the SILP and the OASIC
formulation. For each resource that has a multiple-cycle latency, the set L of all
operations that may be the last to be executed by any instance of during a single
loop iteration is calculated. Similarly all operations that may be the first to be
executed by any instance of r during a single loop iteration are collected in a set
F. Similarly to the previous section, for each pair (7,5) € L x F, the set P of all
acyclic paths from 7 to j is calculated. For each path p € P, a lower bound [, of the
required execution time is determined and the path p,,;, with the smallest lower
bound l;”i" is selected. If the latency L, of the resource r is greater than l;”m, two
blocks b, and b, are determined where b, is the first block of p that is a predecessor
of b; in G and that is contained in superblock s or b; if there is no predecessor
in 5. The block b, is the last block on p that is a successor of b; in G and that is
contained in s, or b; if there is no successor in s. Then the following constraint is
generated:

ty — 14+t —t; > Ly — """ (7.4)

This is a pessimistic modelling since it may enforce a minimal distance between
two operations that are executed independently by different instances of the same
functional unit. As long as there is only one instance of each multi-cycle latency
resource, the modelling is exact. For the target architectures modelled so far, this
assumption holds so that no feasible solution is excluded from the solution space.

7.4. Superblock Synchronisation

The control flow graph of the input program is partitioned into a set of superblocks
that are optimised one after another. In order to obtain a feasible global solution,
it is necessary to synchronise the optimisation results of the individual superblocks.
In this context, timing synchronisation, lifetime synchronisation and resource syn-
chronisation can be distinguished. After the schedules of all superblocks have been
computed, they are composed to form the final result schedule. Timing synchro-
nisation is required in order to ensure that the latencies of the functional units
are also respected in the composed schedule. Lifetime synchronisation is required
to guarantee that the minimal distance between definitions and all corresponding
uses is respected in the composed schedule. Additionally, resource synchronisa-
tion is required since the allocation decisions made during the optimisation of one
superblock have to be respected during subsequent superblock optimisations.

120

7.4. Superblock Synchronisation

7.4.1. Timing Synchronisation

Consider the situation of Fig. 7.13. Let s’ be a superblock that has already been
scheduled and let s be the superblock currently being optimised. If there is an
operation 7 in block b’ € Ny that is executed by a functional unit » with a multi-
cycle latency L, it must be ensured that the distance to operations from superblock
s that use the same resource is larger than L,. This must be taken into account
when calculating the schedule of s.

Figure 7.13.: Timing synchronisation.

For each basic block b € N,, the sets Pred, and Succy of all immediate pre-
decessor and successor blocks in the control flow graph that have already been
scheduled is determined. If there is a basic block b € N, where Pred, # (), the
set of all acyclic paths from the program entry point through one of the blocks in
Pred, to b is determined. For each instance r;, of r, all previously scheduled opera-
tions that have been assigned to r; and that may be the last to be executed by 7y
before the program flow reaches block b are collected. Based on the execution time
that has been determined for the previously scheduled blocks, a lower bound of the
minimal distance of those operations to b is computed. If this lower [, bound is
larger than the latency of 7, we know that the latency will always be respected and
no dedicated constraints are required. Otherwise, a virtual operation is inserted
into b whose starting time is fixed to the starting time of b and that is associated
with a latency of L, — [,. In the SILP formulation the virtual operation is taken
into account when generating the register flow graph and causes additional serial
constraints to be generated. In the OASIC formulation, the virtual operation leads
to the generation of additional resource constraints. This way, an exact modelling
of the inter-superblock latency dependences is achieved. Analogous constraints are
generated for the control flow successors s; of b.

As an alternative to the exact modelling we have developed a simplified ap-
proach to address the timing synchronisation. All virtual operations that have
been inserted into a block b in order to provide a synchronisation with the blocks
in Pred;, with respect to a resource r are traversed and the maximal remaining
latency ["** among them is determined. The virtual operations are not considered
when generating the serial constraints respectively the assignment constraints. In-
stead for each operation ¢ of s that can be executed by r the following constraint

121

7. Superblock-Based Code Optimisation

is generated:
t; — t? > l;’naz V(Z,T) € Fg (75)

Analogous constraints are generated for the control flow successors succ, of b.
The effect of these constraints is that no operation that can be executed by r may
be scheduled at a control step where any instance of r may still be busy due to the
execution of an operation from a previously scheduled superblock. If there is only
one instance of r, the approach is equivalent to the proceeding described above. If
there are multiple instances of r, none of those instances can be used in the first
I, control steps of block b such that feasible solutions may be discarded from the
solution space. This simplification is motivated by the fact that there is a tendency
to fully pipelined functional units with single-cycle latency. If there are functional
units with multi-cycle latency, it can be expected that there is only one instance
of them. In the current implementation (see Chap. 9) the simplified method is
applied. For the target architectures modelled so far, the assumption holds, so
that no feasible solution is discarded from the solution space and the modelling is
exact.

7.4.2. Lifetime Synchronisation

Let s be the superblock currently being optimised. Then, dedicated lifetime syn-
chronisation constraints are required for operations that use a value defined by an
operation of a previously scheduled superblock; an illustration is given in Fig. 7.14.

Figure 7.14.: Lifetime synchronisation.

As described in Sec. 7.2.3 the external definitions are represented by virtual
definitions inside of s. Let an operation j of a block b € N, be given such that there
is a data dependence (3, j, r,t) where i is an operation from a previously scheduled
block ' € Ngy. Then the set of all acyclic paths from b; to b; is determined.
Based on the execution time that has been determined for the previously scheduled
blocks, a lower bound of the minimal distance between ¢ and j is computed. If
this lower bound [;; is larger than the execution time of ¢, no additional constraints
are required. Otherwise, a dedicated precedence constraint between the virtual
definitions introduced for 7 and j is generated:

tj —1; > lij (76)

122

7.4. Superblock Synchronisation

Similarly, the definitions from basic blocks of s that have previously scheduled
external uses must be accounted for. For those operations, dedicated precedence
constraints to the virtual uses at the end of the appropriate exit block of s are
inserted.

7.4.3. Resource Synchronisation

The decisions made in one superblock can have effects on the subsequently op-
timised superblocks. Those effects concern not only the timing of the operation
execution but also the assignment of abstract resources to virtual registers, if in-
struction scheduling and register assignment are addressed jointly. Since this in-
tegration is not addressed for the OASIC formulation, we will only refer to the
SILP-based formulation in the remainder of this section. If during the optimi-
sation of a superblock s; a virtual register v; has been mapped to an element
register of an abstract register resource g, this mapping has to be respected in all
subsequently optimised superblocks where v, is alive. In all those superblocks s
a virtual definition d¥ of v; has been introduced. In order to prevent d¥ to be
assigned to another abstract register resource than g; during the optimisation of
sk the following constraint is added to the ILP representation of sg:

@g}gl =1 (7.7)
If the constraint was omitted, dfl could be mapped to any other register resource
during the optimisation of s; so that there would not exist a feasible global sched-
ule. The resource path constraint mechanism of Sec. 7.2.4 guarantees that the
concurrent definitions share the same physical register. Thus the previously deter-
mined assignments to abstract resources are incorporated into the integer linear
program of the current superblock so that inconsistencies can be prevented.

Unfortunately there are situations where the constraints (7.7) lead to the gen-
eration of infeasible integer linear programs. This can happen, if in different su-
perblocks some independent decisions are made that are locally correct but whose
common effect on superblocks to be optimised subsequently leads to contradictions.
To give an example, consider the situation of Fig. 7.15.

Let a set G of abstract register resources be given and assume that ¢, € G
represents a register group with two element registers, |g;| = 2. Further assume
that the superblocks are optimised in the order sy, so, s3. Let the virtual registers
vy and v3 be not alive in superblock s, and v, be not alive in sy. The virtual register
vy will be assigned to an abstract register resource during the optimisation of si;
assume that the register group g; is chosen. Similarly, let the virtual registers v,
and vz also be mapped to register group g; during the optimisation of superblock
sg. All these assignments are feasible, since no life ranges are violated: v, only
lives in s;, and v;,v3 only in sy. However at the entry of superblock s; all three
virtual registers are alive and the number of available registers of register group ¢,
is exceeded. So while no conflicts arise during the isolated optimisation of s; and

123

7. Superblock-Based Code Optimisation

g = 2
St Sz
Ve > 8 |1 [dy] = [dy]vi= ... Vi 8
[dv3] V3= Vi > &

V|,V;,V4—> gl

Figure 7.15.: Resource synchronisation.

s9, the aggregated effects of the scheduling and allocation decisions of s; and s,
prevent a feasible solution to be calculated for superblock ss.

Before presenting our approach to deal with this problem, we will analyse the
conditions for this situation to occur. Evidently there must be a superblock that
combines data flow information of other superblocks, i.e. the error situation can
only occur in superblocks that contain a join node of the control flow graph. Fur-
thermore the superblocks of the control flow paths adjacent to the join block must
be optimised before the superblock of the join block. Therefore the situation shown
in Fig. 7.16 is not critical, since the superblocks are always optimised in the order
of decreasing execution frequency. In sequential code, the execution count of a

=

—

S3

Figure 7.16.: Non-critical situation.

join block is always higher than the execution frequencies of the incident, mutually
exclusive blocks. So another necessary condition is that the execution frequency
of the incident superblocks must be higher than that of the superblock containing
the join block. This is the case in the situation of Fig. 7.17. But also this situ-
ation is not critical, since inconsistent resource assignments can be prevented by
simply forbidding this situation during superblock construction: If there are two
superblocks s; and s, representing mutually exclusive control flow paths that are
both incident to a join block b;, this join block b; is forced to be added either to s;
or to so. The only critical situation occurs when there are more than two incoming
edges to a join node in the control flow graph, e.g. due to switch statements (see
Fig. 7.18).

It can be assumed that the probability for this situation to occur in real input
programs is very low. Nevertheless it is necessary to develop a method that can deal

124

7.4. Superblock Synchronisation

Figure 7.17.: Non-critical situation.

Figure 7.18.: Critical situation.

125

7. Superblock-Based Code Optimisation

with inconsistent resource assignments and allows to calculate a feasible solution.
The key idea is not to completely forbid inconsistent resource assignments, but
to prevent them whenever possible. In consequence the objective function is not
scalar any more; instead we have to deal with a vectorial objective function. This
extension is also necessary since the separated optimisation of resource and register
flows by the ILP-based approximations of the SILP model can increase the number
of overlapping life ranges, as mentioned in Chap. 6. Although in our experimental
evaluation this situation did never occur, it has to be properly modelled. Let a
vectorial decision problem be given:

maz{z(z)|z € X} (7.8)

z1(z)
z(z) =
zx ()
The component functions zi,...zx are independent, possibly even contradicting
goals that are simultaneously pursued. In order to solve vectorial decision problems,
several compromise models have been developed [DK96]. A well-known model is
the goal weighting model; there the objective function of the compromise model is
composed from the weighted sum of the individual objective functions.

maz{ V(z(z)) |z e X} (7.9)

] : RX - R
2z) o U(z(z) = opa(z)

where o, >0 V k=1,..., K. In order to prevent violations of register resource
bounds, multiple goals have to be formulated: the required execution time is to be
minimised and the number of instances should not be exceeded for any abstract
resource. When using the compromise model, this can be considered as declaring
a penalty for exceeding register resource restrictions. The new objective function
is defined as follows:

S
. Sg1 =
min ¥ , =5+ ZB - Sg, (7.10)
: =1
Sgx
For each abstract register resource ¢ € N# = {g1,...,9k}, a dedicated integer

variable s, € IN is introduced that indicates the amount by which the capacity of
register group g is exceeded. The register resource constraints (equation 5.21) are
reformulated:

Y @l <Ry+s, Vg € Nj (7.11)

(9:3,9)€Ez

126

7.4. Superblock Synchronisation

The value B is a large constant that must be an upper bound of the execution
time of the complete input program. This way, overflows of register groups can
be detected without infeasibility of the generated integer linear program. However
the question remains how a feasible global register assignment can be found when
an overflow has occurred. This is the subject of the remainder of this section.

Repairing Overflows of Abstract Register Files

A straightforward approach of dealing with resource overflows is to introduce ad-
ditional register-to-register moves such that diverging register file assignments in
different superblocks can be arranged to fit together. Since the most frequent su-
perblocks are optimised first, the additional operations will only be inserted into
less important program parts. Nevertheless this is not a satisfactory solution; if pos-
sible the insertion of additional operations should be avoided. In order to achieve
this goal, we have developed two heuristic methods, collision-based repairing and
exclusion-based repairing. First the collision-based approach is employed; if that
does not lead to a feasible solution without resource overflows, exclusion-based re-
pairing is attempted. If still no feasible solution without resource overflows can be
determined within the given time frame, the insertion of register moves takes place
as a fallback solution. Both heuristic methods lead to reoptimisations of the com-
plete program, so that the increase in calculation time can be significant. Therefore
the number of reoptimisations induced by those methods can be restricted by a
command line parameter in our implementation. In the following the two repair-
ing heuristics are presented and then the insertion of register-move operations is
outlined.

Definition 7.4 (Register Flow Chain) Let € Z" denote the solution of the
integer linear problem generated for a superblock s in the SILP formulation. Let
Gy be the register flow graph generated for s and let Nj be the set of abstract
register files. Then a register flow chain ¢ of an abstract register file g € N3 is
defined as a path 1 — -+ — 1 in Gz such that ig,...,ix represent operations
and xfﬁl =1 Vi€0,...,K. The value K, i.e. the number of edges on this
path, is called the length of ¢, l(c) = K.

Collision-Based Repairing. If the number of available element registers of an
abstract register file is exceeded in the solution of an ILP there must be previous
assignments of virtual registers to abstract resources that affect the optimisation of
the current superblock. Let g be an abstract register file with k£ element registers
(lg] = k) whose capacity is exceeded in the solution of the ILP generated for a
superblock s. The collision-based algorithm searches for two colliding definitions
(dq,dy) of virtual registers that both have been assigned to g during preceding
superblock optimisations and that appear in different register flow chains of g.
This situation is illustrated in Fig. 7.19. Belonging to different flow chains
of the same abstract register file means that the operations write their result to

127

7. Superblock-Based Code Optimisation

Figure 7.19.: Resource flow chains.

different registers of the same abstract register file. The basic idea of the collision-
based repairing is that if d; and ds had been prevented from both being fixed
to the same abstract resource, there would have been a better chance of finding a
global solution without resource overflows. The algorithm traverses the register flow
chains of the current solution that are associated with g in the order of increasing
length. All operations in the same register flow chain use the same destination
register. Therefore the smaller the length of an individual chain is, the better is
the chance of getting a feasible solution when some of its operations are transferred
to other abstract register files. All operations associated to g are analysed and a
pair (dq,ds) of colliding definitions is determined where the lengths of the flow
chains containing d; and dy are minimal.

If a suitable pair of colliding definitions has been found, a new constraint is
generated that prohibits d; and ds from being assigned to the same abstract register
file in any feasible solution

o) +0) <1 (7.12)

This constraint is registered in all superblocks where the virtual registers defined
by di or dy are alive. Then all previously determined solution information ex-
cept for the constraint (7.12) is discarded and the optimisation is restarted for all
superblocks of the program. The probability of suffering a violation of abstract
register constraints is reduced since it is excluded that during the optimisation of
any superblock d; and dy are mapped to the same abstract register file.

In the worst case, this heuristic can lead to n? complete optimisation passes,
where n is the number of superblock-crossing register lifetimes. The method ter-
minates, if a feasible solution has been found, or if no suitable pair of external
resource fixations can be found.

Exclusion-based Repairing. If there is no pair of external resource fixations satis-
fying the conditions described above, the algorithm for exclusion-based repairing is
invoked. Again the flow chains of the abstract register file whose capacity has been
exceeded are traversed in the order of increasing length. The algorithm searches
for an operation whose destination register has been fixed to g by a preceding su-
perblock optimisation, and that could also be assigned to other abstract register

128

7.4. Superblock Synchronisation

resources. If such an operation d is found, a constraint is generated that prevents
d from being assigned to the abstract resource g and the traversal is ended.

o9 =0 (7.13)

Then all previously determined solution information except from the constraints
(7.12) and (7.13) is reset and the program optimisation is restarted. The effect of
constraint (7.13) is that the operation d will be mapped to another register resource
than ¢g during the next program optimisation so that it cannot contribute to an
overflow of g. The probability of getting an overflow of g is reduced. On the other
hand the exclusion-based repairing can have feasible solutions being excluded from
the solution space.

The worst case number of recomputations induced by this method is in the
order of O(n) where n is the number of virtual registers alive in more than one
superblock. The method terminates if a feasible solution has been found, the
problem is infeasible, or the iteration limit is reached. If the method terminates
without providing an overflow-free solution, the spill code insertion is done as
fallback solution. Certainly more elaborate heuristics can be applied here; however
this is subject of future research.

Inserting Register Moves. If the collision-based and the exclusion-based heuris-
tics cannot determine a feasible overflow-free solution, the partial solution of the
ILP generated for superblock s before invoking the collision-based repairing is re-
stored and is used as the basis for inserting spill code. Each routine of the input
program is associated with an individual virtual register table; each superblock of
that routine is associated with a local view of the virtual register table. The assign-
ment of virtual registers to abstract registers can differ in local and global views.
For each differing assignment, additional operations have to be inserted into the
superblocks whose local views differ from the global one. After the optimisation
of each individual superblock, the virtual registers that previously had not been
assigned to an abstract register file are collected and the assignment information
of the local view of the virtual register file is copied to the global view.

In the following an algorithm for inserting additional register moves is proposed.
An implicit assumption is that the number of available registers is always sufficient
for transferring the values to the required locations. If no free registers are available
as temporary storage locations, it could be necessary to spill some values to memory
by inserting additional load/store operations.

The result of the algorithm for the situation of Fig. 7.15 is shown in Fig. 7.20.
Let g1 be the abstract resource whose instance number has been exceeded in the
solution of the ILP generated for superblock s3. The resource overflow is caused by
the resource assignments determined by the previously optimised superblocks s;
and s9. The flow chains of the abstract register file g; are traversed in the order of
increasing length and an operation d is determined whose destination register has
been fixed to ¢g; by a preceding superblock optimisation. Assume this destination

129

7. Superblock-Based Code Optimisation

‘gl‘: 2

S1

v 8 | [dy] ve= e

Vi &

Vi > &

Figure 7.20.: Insertion of register moves.

register to be the virtual register vz in Fig. 7.20. Then a new virtual register v;
is introduced locally for superblock s3. Along the edge from superblock s; to s3 a
new empty basic block is created and a register move v§ = vs is inserted. Similar
operations have to be inserted along control flow edges leaving superblock s3 where
the value from vj is transferred to vs again. All references to vz inside of superblock
sg are changed to v;. The fixation of v to the abstract register file g3 does not
hold for the local copy v3 so that now an assignment to other abstract register files
becomes feasible. The data dependence graph and the flow graphs are modified to
incorporate the new operations and a new integer linear program for superblock
s is generated. This step is repeated until a feasible solution has been found; the
existence of a feasible solution is guaranteed due to the feasibility of the input
program.

The additional operations that have been inserted can affect the overall solu-
tion quality. However since the most important superblocks are optimised first,
the negative effects of the newly inserted operations will mainly concern the less
important superblocks in the program. After the phase-coupled optimisation of
all superblocks has been finished, an additional instruction scheduling phase is re-
quired that preserves the previously determined register assignment and searches an
efficient global schedule taking into account the additional register moves. However
in our experimental evaluation the insertion of additional data transfer operations
has never been required.

7.5. Completing the Register Assignment
In the previous section it has been described how the assignment of abstract re-

sources can be synchronised among the solutions of different superblocks. If all
abstract register resources correspond to exactly one physical register the solu-

130

7.5. Completing the Register Assignment

tion of the ILP also determines the final physical register assignment. For abstract
resources that represent several physical registers with the same architectural prop-
erties, the physical register assignment is represented implicitly in the calculated
register flow. The solution of the ILP determines which operations write into the
same register, i.e. which operations are part of the same register flow chain, and
which ones write to different registers. The decision to which physical register a
given register flow chain is mapped still has to be taken. This is a reasonable
approach since all elementary registers of one abstract register file share the same
properties. In consequence, the exploitation of architectural irregularities does
not require them to be distinguished. Due to interdependencies between alloca-
tion decisions of different superblocks however a greedy assignment of the register
flow chains to physical registers is not sufficient and a more elaborate approach is
required. This will be detailed in the following.

Consider the situation of Fig. 7.21 that visualises the result of an ILP solution.
The operations i1, 9, 73, J1, jo have all been assigned to the same abstract resource
g1; 11,19, 13 share one register of g; and ji, jo share another one. If there are two

iy e

9 :/
@J

Figure 7.21.: Mapping of register flow chains.

element registers r; and 9 of g; there are two possible physical register assignments:
either 41, 19,73 are mapped to r; and ji, jo to 75 or iq,19,73 are mapped to r, and
ji, jo to r1. This detailed mapping is not part of the ILP formulation.

In order to determine the mapping of register flow chains to physical registers,
an interference graph is built from the solution of the integer linear program gen-
erated for a given superblock s. Each node represents a register flow chain i.e.
a sequence of definitions writing into the same physical register. Edges connect
nodes that are associated with the same abstract register resource but have to be
mapped to different physical registers.

Definition 7.5 (Interference Graph) Let a superblock s be given and let D be
the set of operations in s that perform write accesses to virtual registers. Let
C C P(D) be a partition of D, i.ec;Neca =0 VY ci,62 € C, Uee ¢ = D. Finally
let f.: C — Nz be a function that assigns each ¢ € C uniquely to one abstract

131

7. Superblock-Based Code Optimisation

register file r € N#. Then the interference graph Gz(s) of the superblock s is
defined as Gz(s) = (N7, E7) where each ¢ € C is represented by a node n, € Nz
and there is an edge (c1,¢0) € Ez, iff c1 # ca N fo(c1) = fe(ca).

The partition C and the function fo are derived from the solution of the ILP
generated for superblock s that models the instruction scheduling and register
assignment problem. C'is the set of all register flow chains computed for s, i.e.,
for each ¢ € C with f.(c) = r the following condition holds: if d;, dy are elements
of ¢ there is a path in Gz from d; to do such that dy = ky — --- — k,, = ds
and zy, 1,41 =1 Vi=0,...,m—1 in the solution of the integer linear program
for superblock s. A set ¢ = {di,...,d,} € C denotes a set of definitions sharing
the same physical register. In the interference graph there is an edge between two
nodes n., and n., if ¢; and ¢, are different register flow chains associated with the
same abstract register file. Fig. 7.22 shows the interference graph for the example

of Fig. 7.21.

Figure 7.22.: Interference graph for Fig. 7.21.

In order to compute the physical register assignment we have developed two
alternative algorithms. In the first approach, the aggregated register mapping, the
interference graphs of all superblocks are merged after the ILP optimisation of all
superblocks has been finished. Then a graph colouring algorithm is used to deter-
mine a feasible colouring, i. e., a feasible assignment of physical registers to register
flow chains. No extension of the ILP formulations is required; however it cannot
be guaranteed that the resulting graph is colourable if the input program consists
of more than one superblock. Therefore it may be necessary to insert additional
register moves in order to obtain a feasible colouring. In the second approach, the
incremental register mapping, the individual interference graphs of each superblock
are coloured separately after its ILP-based optimisation has been completed. Ad-
ditional constraints are generated in subsequently optimised superblocks in order
to take into account the previously determined register mappings. This way the
resulting graphs will always be colourable.

Aggregated Register Mapping. After the individual interference graphs of all
superblocks have been computed, they are unified to an aggregated interference

132

7.5. Completing the Register Assignment

graph G = (U,cs Vi, U, cs E4)- This graph consists of disjoint subgraphs for each
superblock and for each abstract register resource. The number of nodes is bounded
by |[N$| = |S] *geng |9/, the number of edges by |ES| = |S] -deNg(|g|2). Since
it is possible for the same variable definition to be visible in different superblocks,
it is necessary to merge some nodes of G3. All nodes containing a definition of the
same virtual register are merged and all edges adjacent to the original node are
associated with the newly created node.

The synchronisation constraints of Sec. 7.4.3 only guarantee that the definitions
are mapped to the same abstract resource. Thus two virtual definitions may be
contained in the same register flow chain in the solution of one superblock but
in different flow chains in the solution of another superblock. Merging the cor-
responding interference nodes will produce a node with an edge to itself in the
interference graph, i.e., (¢;, c;) € E¥. Since this prevents a feasible colouring, no
merging operation is admitted that would lead to a zero-length cycle in the inter-
ference graph; the original nodes are kept, but are explicitly marked. During graph
colouring, these nodes can be mapped to different physical registers. In order to
maintain global consistency for these nodes, data transfer operations have to be
inserted similarly to Sec. 7.4.3.

There are also other situations where merging operations can lead to an un-
colourable graph. Consider Fig. 7.23 for an example. The graph is colourable with
two colours, but it is not possible to merge the two nodes n; and ns and colour
the resulting graph with two colours. In those cases again data transfer operations
have to be inserted. Fortunately it can be expected that such cases will not often
occur; in our experimental analysis the insertion of additional register moves has
never been required. In the incremental register mapping algorithm described in
the next paragraph the colourability of the interference graphs is guaranteed at the
cost of higher calculation times of the individual integer linear programs.

Figure 7.23.: Not colourable with 2 colours after merging n; and ns.

Incremental Register Mapping. In the incremental approach there is no merging
of interference nodes. After the solution of the ILP generated for one superblock
has been determined, its individual interference graph is generated and a colouring,
i.e. a mapping of register flow chains to physical registers is determined. In

133

7. Superblock-Based Code Optimisation

order to guarantee consistency, the results of previously computed physical register
assignments have to be incorporated into the generated 1LPs.

When generating the integer linear program for a superblock s, it is checked for
each abstract register resource 7 € N7 whether there are two virtual definitions
associated with r whose virtual destination register has already been assigned to
a physical register. Let 7 and j be such a definition pair. If both operations
have been mapped to the same physical register, resource path constraints are
generated between i and j as described in Sec. 7.2.4. If they have been mapped
to different physical registers, they must be prevented from being assigned to the
same register flow chain when solving the ILP generated for s. Similarly to the
resource path constraints, all paths between ¢ and j must be considered. Let
1=ky — --- — k,, =7 be a path from 7 to j in the register flow graph Gz. Then
at least one edge must be inactive, i.e., 3o € {1,--- ,m —1} : 2} ., = 0. Let
l(p) denote the length of path p, then the following constraint is generated for each
path p from ¢ to j in Gz:

Y ali<ip) Vg:(ig) € Ea A(jg) € Ea (7.14)

(4,5)€p

These constraints guarantee that the results of all superblock optimisations are
consistent: if two virtual registers are mapped to the same physical register in
the solution of one superblock, this mapping is respected in the solution of all
subsequently optimised superblocks. As a consequence, the interference graphs of
all optimised superblocks are colourable.

Proof: In the incremental register mapping no merging of interference nodes
is performed. Edges connect nodes that represent different flow chains of the
same abstract resource. The number of colours available for each abstract resource
corresponds to the number of element registers of that resource.

The interference graph is based on the register assignment determined by the
optimisation of the integer linear program for the current superblock. Assume
that there are n colours. Then each node can only be adjacent to n — 1 nodes,
since otherwise the number of available registers would have been exceeded by
the solution of the ILP — but this would be no feasible solution. (Exceedings of
abstract resources are temporarily allowed, but lead to the insertion of additional
operations. The final solution of the ILP optimisation phase is guaranteed not to
exceed the resource constraints of any resource.) In consequence there will be a
free register, i.e. a free colour, available for each node of the interference graph.

The assignment of the register flow chains to physical registers is done by a
colouring algorithm that is performed separately for the interference graphs of each
individual superblock. Previously determined register mappings are respected by
the colouring. The constraints (7.14) in connection with the resource synchronisa-
tion constraints (7.7) guarantee that a feasible solution can be found.

134

7.5. Completing the Register Assignment

The Colouring Algorithm. The problem of computing a feasible register assign-
ment for a given input routine is modelled as the problem of finding a k-colouring
of its interference graph.

Definition 7.6 (k-Colourability) Let G = (N, E) be a graph with a set N of
nodes and a set E C N x N of edges. Furthermore, let there be a set of k colours.
G is colourable if there is a function f: N — {1,...,k} such that f(u) # f(v) for
all (u,v) € E.

Computing a k-colouring is known to be an NP-complete problem for & > 2
[GJ79]. However when analysing the definition of the interference graph (Def. 7.5)
it becomes apparent that, in contrast to the interference graphs for register al-
location [Cha82, BCT94|, the size of the graph only depends on the number of
superblocks generated for the input routine and the hardware architecture. The
number of operations does not influence the size of the interference graph. If there
is more than one abstract resource, each of them is represented by disjoint sub-
graphs of the interference graph further limiting the complexity of the colouring.
Therefore the size of the interference graph can be expected to be sufficiently small
to justify using an algorithm to compute an exact solution of this problem (see,
e.g., Fig. 7.21 and Fig. 7.22).

The exact graph colouring algorithm works in a straightforward way: the nodes
of the interference graph are traversed and to each node a colour is assigned that
is different from the colours of all its neighbours. If no free colour is available,
backtracking is performed so that in the worst case all combinations of nodes and
colours are traversed. The node selection is based on the number of adjacent edges:
the nodes with a high degree are coloured first.

If the size of the interference graph grows too large, a modified version of the
optimistic graph colouring of [Bri92, BCT94] is performed. All nodes whose degree
is smaller than the number of element registers of the corresponding abstract file
are removed from the graph in arbitrary order and are pushed to a stack. If all
of the remaining nodes have a degree larger than k, one of them is selected. The
algorithm assumes optimistically that the node will be colourable in spite of its
degree because of some neighbours sharing the same colour. So the node is marked
as a spill candidate, and pushed on the stack. After all nodes have been removed
from the graph, they are successively popped from the stack and a colour is selected
that is different from the colours of all its neighbours. If there is a node for which
no colour is available, the nodes that have been generated by merging operations
are traversed. First those that have been marked as spill candidates are considered.
If such a node can be found, its merging is undone and the colouring algorithm is
restarted for the resulting interference graph. If no such node can be found, the
colour that occurs the most rarely among the neighbours is selected and is used for
the current node. In this case, the insertion of data transfer operations is necessary.
In the experimental evaluation the size of the interference graphs always allowed
the colouring to be computed by using the exact algorithm.

135

7. Superblock-Based Code Optimisation

136

8. The Target Description Language
TDL

TpL (Target Description Language) is a descriptive language that allows to con-
cisely specify the hardware resources and the assembly language of the processor to
be modelled. A TDL specification provides all information about the target archi-
tecture that can influence program analyses and optimisations. This includes the
properties of the relevant hardware resources, the syntax and semantics of the ma-
chine operations and additional information as, e. g., timing characteristics. TDL is
easily extendible and flexible in use which is a presupposition for modelling a wide
range of target architectures and for supporting different kinds of optimisations
and analyses.

TDL can be classified as a mixed structural /behavioural description formalism
[MGO95]. The resources are declared in a structural style while the machine oper-
ations are mainly described from the view of the operation behaviour, i.e. their
semantics. A TDL description has a modular structure. It can comprise a specifi-
cation of the hardware resources, a description of the instruction set, a constraint
section, and an assembly section. Specification parts that are not needed for the
target applications can be omitted. In the resource section the relevant hard-
ware resources are introduced and their properties are specified by an extendible
attribute mechanism. The instruction set section contains a definition of the in-
struction set in the form of an attribute grammar. Each operation is represented
by a rule of this grammar. A flexible attribute mechanism allows the identification
of important operation properties including the assembly representation, the set of
source and destination operands, timing information, and the operation semantics.
Information stored in attributes can be easily accessed by target applications; thus
retrieving architecture-specific information does not implicitly require interpreting
the specification of the operation semantics. The semantics of the operations is de-
clared in a dedicated register transfer language (RTL). By functional abstraction
the semantics specification can be modularised and different views of the instruc-
tion set can be expressed. The constraint section is composed of a set of logical
conditions that have to be respected in order to preserve correctness during code
transformations. The conditions specify interactions between different operations,
interdependencies of operand locations and the parallelisation of operations, etc.
An automatic translation of the logical conditions into integer linear constraints
allows them to be precisely incorporated into ILP-based code optimisations. The

137

8. The Target Description Language TDL

assembly section deals with instruction and operation delimiters, assembly direc-
tives and comments. Each TDL description is checked for semantical consistency
so that input errors and inconsistencies in the machine description are detected
early.

From a TDL specification several ANSI-C files are generated containing data
structures representing the specified information and various access and manipu-
lation functions. The generated files can be compiled and linked with any target
application. Second, a parser for the assembly language is automatically generated.
The parser reads the input programs and calculates their control flow graphs that
are represented in the generic format CRL (Control Flow Representation Language)
[Lan99]. The CrL-representation of the control flow graph constitutes the interface
to all optimisation and analysis algorithms and allows the flexible incorporation
of additional user-supplied program analyses and optimisations in the PROPAN
system (see Sec. 9.1).

This chapter is organised as follows: first an overview of related work in the
field of hardware description languages is given. Then the different sections of a
TDL description are presented in detail in the sections 8.2-8.5. Sec. 8.4.1 addresses
the transformation of the logical expressions of the constraint section into integer
linear constraints. The detailed language definition of TDL is given in [K&s99b|.

8.1. Related Work

Hardware description languages are used for a variety of application areas: for ar-
chitectural synthesis, hardware simulation, code generation and program analysis.
In consequence, a large number of different hardware description formalisms has
been developed. In the area of processor modelling and simulating, widely used
languages are VHDL [LSU93| and Verilog [TM95]; well-known approaches used
in code generation are Isps [Bar81], MARIL [BHE91, Bra91|, the MiMOLA lan-
guage [Now87], the SALTO language [BCRS97], SLED [RF97], and nML [FVPF95].
Languages currently under development are LisA [PHZM99| aiming at generating
cycle-accurate simulators for architectures with complex pipelines, IsSpL [Had98],
ExpPREsSSION [HGG99], and A—RTL [DR9S].

Hardware description languages can be categorised as behavioural, structural or
mixed behavioural /structural languages [MG95]. A behavioural description speci-
fies the instruction set of the target processor and focuses on the semantics, i.e. the
behaviour of the machine operations. Structural specifications typically are close
to the gate-level and describe the hardware modules of the processor with their
interconnections. Many hardware description languages used for code generation
incorporate aspects of both views and are classified as mixed-level approaches.

MARIL is a [BHE91, Bra91] machine description language designed for RISC ar-
chitectures. Each M ARIL-description consists of three sections. In the first section,
hardware resources like registers, pipeline stages, and memories are declared. In the
second section the runtime model is specified indicating which registers are used as

138

8.1. Related Work

stack pointer or frame pointer, and which registers are callee-saved or caller-saved
registers. The third section describes the instruction set of the target processor.
Each instruction is listed with its mnemonic, the operands, a C-expression de-
scribing the mapping to a node of the intermediate representation, a reservation
table specifying the resource usage, and timing parameters. There is no extendible
attribute mechanism and no mechanism to specify complex architectural irregular-
ities. MARIL does not support a detailed specification of the semantics of machine
operations and there is no semantical analysis of the machine description itself.
A detailed specification of the assembly language including assembly directives or
macros is not possible.

The SALTO system [BCRS97] has been developed to provide the user with
an environment that allows to implement tools for analyses and transformations
of low-level code. From the description of the target machine and the assembly
language a parser is generated that reads assembly programs and calculates their
control flow graph. Only a restricted set of assembly languages is supported; lan-
guages, e.g., with infix notation as the assembly language of the ADSP-2106X
SHARC [Ana95] are not accepted. The user is offered an object-oriented interface
to access and manipulate the data structures representing the control flow graph.
In the first part of the machine description the hardware resources of the target
processor are introduced and their properties are specified by a restricted set of
predefined attributes. The instructions are specified by defining their assembly
representation and their resource access sequence. Apart from a coarse classifica-
tion of control flow operations no specification of operation semantics is supported.
An attribute mechanism for specifying additional properties of machine operations
is not available. It is not possible to specify constraints for modelling complex
interactions among operations or interdependencies between scheduling and allo-
cation decisions. Finally there is no semantical analysis of the machine description
file, such that it is not possible during the parsing of the machine specification to
inform the user of errors and inconsistencies.

SLED [RF97] is a specification language for encoding and decoding that is used
in the New Jersey Machine Toolkit generating bit-manipulating code for applica-
tions that process machine code. It is intended to support, e.g., the development
of debuggers, linkers, execution time analysers, or run-time code generators. Since
the focus is the specification of instruction representations, it is not possible to
declare hardware resources, there is no attribute mechanism and no mechanism to
specify the semantics of the machine instructions. The SLED language is part of
the CspL (Computer Systems Description Languages) language family [DR98]. In
order to specify the semantics of machine operations a dedicated language called
A-RTL is currently being developed within the CspL family [DR98]. A-RTL is a
higher-order functional language, based on SML. The effect of each machine oper-
ation is specified as a register-transfer list (RTL) that describes the change to the
machine state induced by the operation. Specification writers can introduce new
RTL functions. However due to the functional specification style it is difficult to
support generating cycle-accurate instruction-set simulators.

139

8. The Target Description Language TDL

IspL [Had98] has been designed to support a wide range of tools, from code
generators, disassemblers up to instruction set simulators. Since assemblers and
disassemblers are automatically generated, ISDL can make simplifying assumptions
on the structure of the assembly language. It is not possible to specify assembly
directives or assembly comments. Only storage resources from a set of predefined
resource types can be declared; there is no possibility for introducing user-defined
resource types. As an example declaring functional units is not possible such
that the problem of functional unit allocation cannot be addressed on the basis
of an ISDL description. ISDL offers a constraint specification mechanism to model
restrictions of the available parallelism; the constraints are based on the operation
syntax. ISDL does not provide an attribute mechanism for specifying the properties
of hardware resources or machine operations. Thus retrieving hardware-specific
information in optimisation and analysis algorithms mostly requires interpreting
the complete semantical specification of each operation. There is no semantical
analysis of the machine description such that input errors and inconsistencies are
not detected when parsing the machine description.

The machine description language nML [FVPF95] is used in the retargetable
compiler CHEss [LVPK™95]. The instruction set is modelled as an attribute gram-
mar; each terminal of the grammar corresponds to a valid instruction. In addition
to the instruction set grammar, an nML-description can contain declarations for
storage objects, data types, constants and macros. Resource declarations are only
possible for storage objects; declarations of functional units or caches are not sup-
ported and there is no possibility of introducing additional, user-defined resource
types. Each instruction of the target processor is defined by specifying its seman-
tics, the assembly representation and its binary representation. There is no generic
way of describing the timing behaviour of operations. Moreover the VLIW machine
model, i. e., the composition of long instructions from independent operations is not
explicitly supported. Attributes are declared implicitly in nML without specifying
a domain for the feasible attribute values. It is not possible to check the feasibility
of attribute settings; there is no semantical analysis of the machine description it-
self. No constraint mechanism is available to model complex dependences between
operations. A specification of the syntax of assembly expressions, comments, or
directives is not supported.

EXPRESSION [HGG199] is a mixed-level language for supporting architectural
design space exploration for embedded systems-on-chip and automatic generation
of a compiler/simulator toolkit. Structural information is given by specifying the
hardware resources of the architecture, the pipeline mechanism, and the data trans-
fer paths. Each operation is described by declaring its opcode, the operands and
the mapping to generic operations of an intermediate representation. The compo-
sition of operations to long instructions is specified by instruction templates. A
fixed set of attributes is available to declare the properties of storage resources;
an extendible attribute mechanism however is not provided. Reservation tables
to specify the resource usage of operations are extracted automatically from the
structural specification on a per-operation basis. This allows resource constraints

140

8.2. The Resource Specification

to be respected in the code generation process but limits the flexibility of the spec-
ification language. In [HGG199, GHK 98] no information about the specification
of the detailed semantics of machine operations is given.

8.2. The Resource Specification

Hardware-sensitive program analyses and optimisations require knowledge about
the hardware resources of the target processor. This includes, e.g., its functional
units, and the available register sets, memories and caches. As a rule of thumb,
all hardware components that are important for the target application have to
be declared as resources in the TDL description. TDL offers a set of predefined
resource types whose properties can be described by a predefined set of attributes.
Each of these attributes is associated with a domain and a scope of its own. The
domain represents the feasible attribute values; its scope denotes the resource types
the attribute can be associated with. The predefined resource types comprise
functional units, register sets, memories and caches. Attributes are available to
describe the bit width of registers, their default data type, the size of a memory,
its access width, alignment restrictions, etc.

An implicit assumption of the machine model of TDL is that all resources of
different types can work in parallel. If there are functional unit types with multiple
instances it is assumed that those can work in parallel, too. This way, the VLIW
machine model is supported. Architectures without instruction-level parallelism
can be considered as a special case of VLIW architectures where only one (possibly
virtual) execution unit is available. Most architectures do not have a fully orthog-
onal instruction set, i.e. the parallelism of functional units is restricted. Such
restrictions of the parallelism can be modelled in the constraint section. Currently
TDL cannot be used to completely specify architectures with superscalar pipelines.
However there is ongoing work to develop a specification mechanism for complex
superscalar pipelines and integrate it into TDL.

The designer can extend the domain of the predefined attributes and declare
user-defined attributes if additional properties have to be taken into account. Sim-
ilarly to the predefined attributes, each user-defined attribute must be associated
with an explicitly declared domain and scope. Those declarations are used dur-
ing the semantical analysis of the machine description. The attribute domains are
restricted to simple numerical types (integer and floating-point), character strings
and references to previously declared resource types.

It is important to support different views of physical hardware resources. As
an example the same register file could be used as an integer and a floating-point
register file where one view is associated with fixed-point operations, the other with
floating-point operations and the assembly representation of both views differs.
Different views of hardware resources are supported in TDL by a dedicated alias
mechanism. The attribute settings of aliased resources can differ.

Finally the designer can introduce additional resource types and describe their

141

8. The Target Description Language TDL
Resources-Section

FuncUnit ALU replication=2;

Register gpr "r%d’ [0:31] size=32, type=signed<32>;

SetProperties gpr[30] usage=SP;

RegisterAlias dreg "d%d” gpr mapping=[2:1]|, type=float<56,8>;

Memory DM type=data, align=16, access=32;

DefineAttribute Replacement {"LRU”,” FIFO”} associated to Cache;

Cache InstrCache assoc=2, size=256, linesize=32, type=instr,
Replacement=LRU;

Figure 8.1.: Example of a Resource Section.

properties by dedicated attributes. This allows for maximum flexibility with re-
spect to the range of supported hardware architectures and target applications.

An example of a resource section is shown in Fig. 8.1. Keywords are printed
in typewriter font. The keyword Resources-Section marks the beginning of the
resource section. Each resource type is assigned an unambiguous name that is used
to identify the resource type in the target applications. First a functional unit type
with unambiguous name ALU is declared of which two instances exist. This means
that the target architecture disposes of two functionally equivalent ALUs that do
not have to be distinguished during analyses and optimisations. Subsequently a
register file named gpr is declared that consists of thirty-two 32-bit registers. The
width of the element registers is given by the predefined attribute size; the value
of the predefined attribute type indicates that by default the registers are used
to store 32-bit two’s complement numbers. The assembly representation of each
element register is declared in the notation of C format strings; in the example
the element registers of gpr are represented by r0,..., r31. The SetProperties
statement allows to modify or extend the attribute setting of previously declared
resources. In the example, the register gpr[30] is declared as the stack pointer.
Subsequently the alias mechanism is used to declare another view of the register
file gpr. Two successive integer registers are combined to form one 64-bit floating-
point register. The assembly representation of the combined registers is declared
as dO, ..., d15. The following declaration introduces a data memory named DM
that supports 32-bit accesses that have to be aligned on 16-bit boundaries. The
example concludes with declaring a two-way set-associative instruction cache with
256 lines of 32 byte length. The replacement strategy is an example of a user-
defined attribute: its domain consists of the two strings LRU and FIFO and its
scope is the resource type Cache.

8.3. The Specification of the Instruction Set

The central part of a TDL specification is the description of the instruction set of
the target processor. The assembly representation of all machine operations, their

142

8.3. The Specification of the Instruction Set

timing behaviour and their semantics have to be known and the specification of
additional information must be supported. As already mentioned the execution
model of TDL corresponds to that of a VLIW architecture. Each instruction can
be composed of several machine operations that are executed in parallel.

The definition of the instruction set is given in the form of an attribute grammar.
Each operation is represented by a rule of this grammar; orthogonal operation parts
are encapsulated in rules of their own. The terminals of the grammar represent the
feasible machine operations. In the following, some fundamental concepts of the
theory of attribute grammars presented in [WM95] are summarised; in [WM95] a
comprehensive survey can be found.

Definition 8.1 (Attribute Grammar) Let G = (Ny, Nr, P, S) be a context-
free grammar whose pth production in P is written asp : Xo — X;... X, X; €
Ny U Np, 0 <1< n, An attribute grammar AG over G consists of

e an association of two disjoint sets Inh(X), the set of inherited attributes and
Syn(X) the set of synthesised attributes, with each symbol of Ny U Np. We
let Attr(X) = Inh(X) U Syn(X) denote the set of all attributes of X. If
a € Attr(X;) then a has an occurrence in production p at the occurrence of
X;, which we write as a;. Let V(p) be the set of all attribute occurrences in
production p.

Inh= |J Wh(X); Syn= |J Syn(X); Attr =InhU Syn

XeENNUNT XeNNUNT

o the specification of a domain D, for each attribute a € Attr containing all
potential values;

e a semantic rule

a; = fp,a,i(bjl'la LB (0< 5 <01 <1< k)

7k

for each attribute a € Inh(X;) (1 <i<n,) and each a € Syn(Xy) in every
production p, where b5 € Attr(X;,)(0 < j; <np)(1 <1< k). Thus, fpa; is a
function from Dy X --- X Dy to D,.

An attribute is always viewed as an attribute of one nonterminal or terminal;
that is, the assignments Inh and Syn can be viewed as injective functions from
the set Ny U Nr into the set of attributes. This does not mean that attributes for
different nonterminals and terminals cannot have the same name. This is sensible
when they are carriers of the same type of information. The semantic rules of
the attribute grammar represent the functional dependences between the values
of occurrences of attributes in the productions of the grammar. Such a functional
dependence can be viewed as a computational prescription specifying how the value
of the occurrence of an attribute is calculated from the values of other occurrences
of attributes of the same production.

143

8. The Target Description Language TDL

Let a syntax tree t of the underlying context-free grammar be given and let n
be a node of t. Let symb(n) € Ny U Nr be the symbol labelling n. If symb(n) €
Ny, then let prod(n) be the production applied at n. For every attribute a €
Attr(symb(n)) there exists an attribute instance a, at n. This instance should be
assigned a value from its domain D,. Let val(a,,) be the value of the instance of
a for the node m. If a; = fp,a,i(b}l, cel bfk) is a semantic rule of prod(n) = p, then
it induces the following relation between values of attribute instances:

Ual(ai) = fp,a,i (?}Gl(b;l), SRR Ual(bfk))

The structure of an attribute grammar representing the instruction set of a
target processor is simple. There are no inherited attributes; all attributes declared
to specify the properties of machine operations are synthesised attributes. The
domain of each user-defined attribute is given in the attribute declaration of TDL.
Their domains are restricted to numerical types, character strings and references
to previously declared resources. All attributes used for specifying properties of
machine operations are associated with each symbol of the attribute grammar.

The designer can provide placeless semantic rules that represent external rules
for computing the values of instances of attributes for the symbols of the attribute
grammar. Apart from those placeless rules there is no mechanism for introduc-
ing user-defined semantic rules. The semantics of the attribute grammar of the
instruction set is the representation of all relevant information about the machine
operations. It is sufficient to have two generic semantic rules f4 and fg for evalu-
ating the values of attribute occurrences. The generation of user-defined attribute
evaluators is not supported in the current implementation.

Assume that the values of all attribute instances are initialised to a special
value | representing an undefined value. Let p : Xo — X; ... X, be a production
of the underlying context-free grammar, X; € Ny U Ny (1 < i < n,), 9 € Ny.
Then there is one semantic rule ag = fa(a1,...,an,) for each attribute a € Attr =
Attr(Xy) = Syn(Xy) that induces the function

val(aj), ifval(a;) # L A

val(ag) = L Vk # 3
1, ifval(a;) = L Vk
T, else

val(a,) = fa(val(ar), ..., val(an,)) =

The user has to ensure that the value of each attribute instance is “computed”
at most once on any path from the root of a syntax tree for an operation to a leaf.
The value T is treated as an error symbol; if this value is encountered, the TDL
parser reports an error and does not accept the specified attribute grammar. If the
value of an instance of an attribute a is defined at a node m of a syntax tree, the
function f4 propagates the value of a,, to the root of the tree for this operation
and ensures that there is no contradictory setting of a.

Let [denote the semantics-attribute of an operation which represents the
specification of the operation semantics. The semantic rule used to determine the

144

8.3. The Specification of the Instruction Set

value of [is essentially a string substitution function. The specification of the
operation semantics is treated as a character string. Let p: Xo — X;... X}, be a
production of the attribute grammar, X; € Ny U Ny (1 < i < n,), 29 € Ny. Let
v be a string provided by the user as external definition of the defining occurrence
of the attribute [in rule p. Then there is one semantic rule o = fs([i,..., [»,) for
this attribute [y € Attr = Attr(X,) = Syn(Xy) that induces the following function:

val(fo) = fs(val(fr), ..., val(fm)) = V[X1.[/val([1), ..., Xn,.[/val([n,)]

The operation semantics is specified in a register transfer language (RTL) that is
presented in Sec. 8.3.1 in more detail. It has to be ensured that the composition of
the values of the applied occurrences [i, ... [, yields a feasible RTL code sequence.
This is checked by the TDL parser; if this condition is not fulfilled, an error is
reported. It is obvious that the system of equations induced by the attribute
grammar for any syntax tree is non-cyclic. Thus it is ensured that the attribute
grammar is well-formed.

TpL assumes the following execution model: each operation is executed by one
resource of the target processor and the timing behaviour can be described by the
two parameters execution time and latency. The execution time denotes the num-
ber of control steps the operation execution takes and the latency describes the
minimal number of clock cycles between two successive inputs of the appropriate
functional unit. The completion time of an operation can optionally be associated
with a dedicated resource type that models a write-back bus of the target archi-
tecture. This way the number of simultaneous accesses on the result bus can be
restricted independently from the starting time of the operations.

With each operation, at least two attributes are associated: its timing behaviour
and the operation semantics. The timing behaviour of an operation is specified in
TDL by a simple reservation table mechanism: all hardware resources that can be
used to execute an operation are specified together with the appropriate execution
time and latency. Additionally a dedicated resource for result synchronisation can
be given. The semantics of the operations is described by a dedicated register
transfer language; this is described in detail in Sec. 8.3.1.

A dedicated set of attributes is available for specifying the operands of the ma-
chine operations. The attributes srcy, srco, ... represent the set of source operands
and indicate the storage locations that are feasible for each operand. Likewise,
the attributes dstq, dsto, ... represent the set of destination operands and indicate
which storage locations are feasible for each of them. Additional predefined at-
tributes are available for describing frequent memory access modes, jump targets,
etc. The designer can also introduce user-defined attributes with explicitly de-
clared domains for specifying further operation properties that are important for
the target application.

An example for an operation declaration is shown in Fig. 8.2. In the example
a machine operation with unambiguous name IAdd is declared. This name is
followed by the definition of the assembly representation of the operation. The

145

8. The Target Description Language TDL

DefineAttribute guarded {"true","false"} associated to Operation;
DefineOp IAdd "%!(optguard) %s = %s + %s"

{dst1="$2" in {gpr}, src2="$3" in {gprl}, src3="$4" in {gpr}},

{ALU(exectime=1, latency=1);},

{unsigned<1> gval;

optguard.semantics;

if ((guarded = true)&&(gval<0>=1)) { dstl:=src2+src3;}};
OpNT optguard "if %s" {src1="$1" in {gpr}, guarded=true},{;},

{gval:=src1<0>;}

| "if !%s" {src1="$1" in {gpr}, guarded=true},{;},

{gval:=!src1<0>;}

| "" {guarded=falsel},{;},{};

Figure 8.2.: Example Operation Declaration

assembly representation is specified in a syntax similar to C format strings. The
expression %! (optguard) represents an occurrence of a non-terminal “optguard”.
The productions for non-terminals are introduced by a dedicated keyword OpNT
in order to distinguish them from complete operations. In the definition of the
assembly representation, the %s directive represents a sequence of characters. The
expression dstl = "$2" in {gpr} represents an external rule describing how the
value of the occurrence of the attribute dst1 at the rule for operation IAdd is
computed. Its meaning can be described as follows: the second placeholder in
the format string corresponds to the assembly representation of a register that
is modified by the current operation. The set of feasible storage locations for
this operand is restricted to the registers of the register file gpr. This way the
information of the resource section is reused in the instruction set description.
The resource section can be viewed as a special part of the attribute grammar
of the instruction set that contains dedicated rules for representing the resources
of the target processor. As a consequence the description is shortened and, more
importantly, a semantical analysis of the operation definitions becomes possible. It
is checked that all referenced resources have been declared and that the semantical
specification is type-correct.

The other operands are declared as source operands by using the attributes
srcl, src2, src3. The attribute guarded of Fig. 8.2 is an example of a user-
defined attribute. First the unique attribute name is introduced, followed by the
specification of the domain of all potential values. Finally the scope of the attribute
is declared to be the set of all machine operations. The attribute guarded is used as
a flag indicating whether the operation is guarded by an additional source operand
(predicated execution). The operation part corresponding to the optional guard is
represented by the non-terminal optguard. Its assembly representation can be an
empty string, if the operation is not guarded (see last line of Fig. 8.2). In this case,
the guard-attribute of the operation is set to false. Otherwise, the operation is
introduced by the string if followed by a reference to a register of gpr, possibly
with a leading exclamation mark. Then, the guard-attribute is set to true and

146

8.3. The Specification of the Instruction Set

the register used as a guard represents an additional source operand. If a condition
register is specified (with a leading exclamation mark) the operation is executed
only if the least significant bit of that register has the value 1 (0).

The subsequent two blocks represent the timing and the semantics of the oper-
ation. The reservation table specification of Fig. 8.2 indicates that the operation
IAdd is executed by an instance of the resource type ALU and that both execution
time and functional unit latency take one clock cycle.

It must be distinguished between the declaration of operations in the attribute
grammar of the instruction set and the representation of the operation instances of
an input procedure. For each operation the attribute grammar defines a template
denoting all feasible operation instances. Assume that the destination operand of
an operation is defined by the expression dst1="$1" in {gpr}. Each operation
instance of the input program will have concrete register operands, i.e. the value
of the attribute instance of dst1 for this operation instance is the physical register
that is used. The value of the attribute instance of dst1 of the operation template
defined by the attribute grammar denotes all feasible storage locations. This dis-
tinction is important in order to be able to efficiently perform register renaming or
to change the assignment of operations to functional units.

The attribute mechanism plays an important role in supporting different views
of the instruction set. When computing the data dependences of an input proce-
dure, it must be known for each operation which storage locations are read and
which ones are modified. It is not necessary to know how storage locations are
modified, the information that they are modified is sufficient. If the machine de-
scription is used as the basis of a value analysis, or constant propagation, the
information about how the result of an operation is computed is essential. Finally,
if an instruction set simulator is to be generated from the machine description, it
must additionally be known at which clock cycles the effects of an operation take
place. All those views are supported by TDL in an efficient way. As an example,
the calculation of the generic data dependence graph is based on the values of the
attribute instances of the operation instances of the input program as, e.g., dst;
and src;. It is not necessary to interpret the detailed specification of the operation
semantics.

8.3.1. The Specification of the Semantics

The semantics of an operation describes how the execution of the operation affects
the machine state. Components of the machine state are the storage resources
of the processor, i.e. memory and register cells, condition codes, and so on. In
[Die95] the semantics of the operations are specified in C. This is a flexible approach
suited for the generation of instruction set simulators. If, however, analysis and
optimisation algorithms have to be supported this approach is not feasible due to
the difficulty of analysing the semantical specification itself. In most approaches,
e.g. nML [FVPF95], IspL [Had98|, \-RTL [DR98], register transfer lists are used
to specify the operation semantics. A register transfer represents the transfer of

147

8. The Target Description Language TDL

RTLPryg — (RTLStat)*
RTLStat — RTLAsgn | RTLIfStat | RTLForStat | RTLWhileStat
| RTLSwitchStat | RTLVStorageDecl | RTLPreFunc
| RTLCanFunc | RTLBlock i
RTLBlock — { RTLStat}
RTLAsgn — AsgnLHS := RTLEzpr ;
IfStat — if (RTLEzpr) RTLBlock [else RTLBlock | ;
ForStat — for (RTLStat ; RTLExpr s RTLStat) RTLBlock ;
WhileStat — while (RTLExpr) RTLBlock ;
SwitchStat — switch (RTLEzpr) { SwitchCaseList SwitchOptDef };
RTLEzpr — RTLEzpr BinOp RTLEzpr | UnOp RTLExpr
| RTLCanFunc | RTLPreFunc | IntConst
|_Fl0atConst | StorageRef | AttribRef;
BinOp = L&~ %]==]=]<|>]<=]>=
| <<[>[+]-[*]/
UnOp - =y
RTLCanFunc — ID (RTLParalist)

Figure 8.3.: Skeleton of the RTL grammar in BNF form.

a value into a storage location and thus a change of the machine state. Register
transfers contained in the same list are assumed to take simultaneously effect.

In TpL the semantics is specified by a dedicated register transfer language
(RTL) that is similar to the mechanism of register transfer lists. Similarly to A-RTL
the language has been designed with the goal of supporting type-checking of the
machine description. The register transfer language of TDL is statement-oriented.
The main reason is to retain the flexibility for generating cycle-accurate instruction
set simulators. Statements can be grouped; each group of statements is assumed
to take simultaneously effect. In contrast to the functional approach of A-RTL the
execution of an operation can be viewed as a sequence of effects spanning several
control steps. All effects can be explicitly assigned to the appropriate control step.
A skeleton of the RTL grammar is shown in Fig. 8.3 in BNF form; the complete
definition is given in [K#s99b].

The semantics of each machine operation is specified by an RTL program con-
sisting of a sequence of statements. The RTL program may contain declarations
of virtual storage locations that are helpful in describing the semantics of complex
operations. The scope of virtual storage declarations is the complete RTL pro-
gram, i.e. the complete specification of the semantics of one machine operation.
Feasible statements are assignments, conditional statements, loops, and function
calls. Statements can be grouped to blocks. Values are computed by expressions
without side effects. This means that there are no implicit modifications of storage
locations; all changes have to be explicitly given. Expressions may be numerical
or string constants, attribute values, references to storage locations, or applica-

148

8.3. The Specification of the Instruction Set

tions of operators or RTL functions to expressions. Attribute references in the
RTL language always represent references to the attribute instances of operation
instances. All storage resources that are referenced in RTL statements must have
been declared in the resource section or by preceding virtual storage declarations
in the same RTL program. The operators include the set of arithmetic and logical
operators known from the C language. Those are assumed to produce no side ef-
fects. Additionally there is a set of predefined RTL-functions for common functions
that offer the possibility of explicitly specifying side effects, as e.g. the setting of
condition codes, overflow flags, etc.

The designer has the possibility of declaring user-defined “canonical” functions.
This way the specification can be modularised and shortened. Additionally, the
canonical functions can be used to express different views of the instruction set. If
the function body is not of interest for a target application, the function can be
considered as a black box. All parameters passed to functions can be thought of
bit sequences with optionally a given type constructor. In the declaration of the
formal parameters it must be annotated whether the parameters are read-only, or
can be modified within the body of the function.

RTL expressions are typed. This facilitates analysing properties of machine
operations and is helpful in finding bugs in the machine description. Since register
transfers represent operations on machine level, the basic data types of RTL are bit
sequences of a given length, denoted by the keyword storage. When specifying the
semantics of an operation it must be clear how the contents of a storage location
are to be evaluated. Often the type of a storage location depends on special
conditions or mode settings. As an example the contents of the same register might
be interpreted as signed integer in two’s complement representation, as unsigned
integer, as a fractional value or even a floating-point number. In order to allow
for maximum flexibility, RTL provides the possibility of annotating a type to each
storage location. These annotations do not represent conversion functions but
can be seen as explicit type constructors. The basic data types of RTL are the
following:

e signed<n> denotes an n-bit signed integer in two’s complement representa-
tion.

e unsigned<n> denotes an n-bit unsigned integer.

e float<m,n> denotes an IEEE floating point value with an m-bit mantissa
and an n-bit exponent.

e fract<n> denotes fractional values. Let a = (ag,a1,...,a,_1) be an n-bit
number of type fract<n>. Then its value is defined as (a) = —2°+ 37" a;-
2—1'

e storage<n> denotes a storage location of length n whose type can be any of
the previously mentioned.

149

8. The Target Description Language TDL

TDL uses a polymorphic type inference algorithm; if an explicit type con-
structor is used, the inferred type is overridden. An example is the expression
_signed(dstl, 32) that requires the destination to be interpreted as a 32-bit
two’s complement value. The polymorphism of the RTL language is restricted; it
is similar to the subtype rule in object-oriented languages. If the formal parameter
of a function has been declared to be of type storage, it is also feasible to pass
storage locations whose contents have been inferred to be of signed or unsigned
type. In most cases the polymorphism is concerned with the width of storage loca-
tions. As an example consider the predefined function _iabs that has the following
prototype:

signed<T> _iabs (signed<T>, unsigned<1>, unsigned<1>%).

The first parameter can be a signed integer of any length; then the result is a signed
integer of the same length. If the bit passed as second parameter has the value 1,
saturation is performed; then in the case of positive (negative) overflow the largest
positive (smallest negative) number of the appropriate bit width is returned. If an
overflow occurs, the bit passed as third parameter is set to 1. All parameters except
the last are read-only parameters; the symbol * indicates that this parameter is
modified by the function.

The RTL operators as, e. g., *, +, -, & are provided as default operators; they are
overloaded. If the types of the operands do not match, the result type is determined
by the conversion rules shown in Tab. 8.1. The following type variables are used:
t; € {signed, unsigned, float}, t, € {signed, unsigned}, and ¢ € {signed,
unsigned, float, storage}.

Operand 1 Operand 2 Result

storage<m> t;<n> storage<mazx(m,n)>
float<m,n> to<u> float<m,n>
signed<m> unsigned<n> signed<max(m,n + 1)>

float<mg,n;> float<mag,ns> float<max(my,ms), max(ny,ns)>

Table 8.1.: Automatic Type Conversion.

Special attention has to be paid for constants. Integer constants are always
treated as 32-bit two’s complement values, floating-point constants as 32-bit num-
bers with 24-bit mantissa and 8-bit exponent. If another representation is required,
this must be explicitly annotated by an appropriate type constructor. Binary and
hexadecimal values are always exactly represented.

8.4. The Constraint Section

The basic execution model of TDL assumes that all functional units declared in the
resource section work in parallel. However especially in irregular architectures there
are restrictions of instruction-level parallelism. Such restrictions can be caused by
resource constraints or by encoding constraints. The restricted parallelism of ALU

150

8.4. The Constraint Section

and multiplier in the ADSP-2106x SHARC (see Sec. 10.1.1) is due to encoding
restrictions: ALU and multiplier can operate in parallel but the instruction word
is too short to allow each operand to be located in any of the 16 general purpose
registers. By restricting each operand to a set of 4 registers all four source operands
can be specified with 8 bits.

There are only few behavioural or mixed-level hardware description languages
used for code generation that allow irregular hardware constraints to be specified.
In the EXPRESSION [HGG'99] language hardware resources are modelled in a
structural way. While this allows to model resource constraints, the incorporation
of encoding restrictions is not directly possible. In ISDL [Had98] restrictions of
instruction-level parallelism and resource usage are modelled by specifying boolean
expressions over the assembly representation of the machine operations.

In the constraint section of TDL, restrictions of instruction-level parallelism
and resource usage as well as interdependencies between scheduling and allocation
are modelled by specifying a set of rules. The rules are composed from boolean
expressions that refer to the properties of the hardware resources and machine
operations specified in the preceding sections of a TDL description. This way the
rules are independent from the assembly syntax and allow a semantical analysis of
the machine description. The resulting representation is more concise, more flexible
and less error prone than in the ISDL language and it allows modelling resource and
encoding restrictions in a uniform way. The most important property of the rule-
based approach of TDL is that the specified rules can be transformed into integer
linear constraints. This way, irregular hardware properties can be modelled in a
generic way and can be incorporated into a homogeneous problem description.

The constraint section of TDL can be viewed as a constraint store containing
the specified rules. The rules represent conditions that have to be respected to
preserve correctness during program transformations. Each rule is composed of
a premise and a consequent. The premise is a boolean expression that can be
statically evaluated, i.e. when the TDL description is processed. It represents the
condition under which the boolean expression of the consequent must be satisfied.
The condition specified in the premise must describe operation properties that
are invariant with respect to scheduling and allocation decisions. An example is
a test whether an operation belongs to a certain operation class. The consequent
represents a condition that must be dynamically evaluated, i.e. during the runtime
of the optimisation phases. Since the focus is on instruction scheduling, register
assignment and functional unit allocation, this includes conditions over the usage of
storage resources or execution units, parallel execution of operations, and operation
sequencing. In order to support additional optimisations to be based on TDL, it is
also possible to incorporate conditions that are static with respect to instruction
scheduling, register assignment and functional unit allocation. During these phases
the conditions are treated as static information. The TDL parser checks whether
the premise can be statically evaluated; if this is not the case an error is reported.

From the constraint section, C functions are generated that can be invoked by
the target application in a generic way in order to take into account the speci-

151

8. The Target Description Language TDL

CRule — CEzpr : CExpr ;
CEzpr — CEzpr | CTerm | CTerm
CTerm — CTerm & CFactor | CFactor
CFactor — | V' (CEzpr) | (CEzpr)
| ResAttribref in ResRefs
T id in OpOrOpClassList
| id && id | id ->(n) id | id ->>(n) id
| COpnd CRel COpnd
CRel — ==|1=|>|<|<=]|>=
COpnd — id. AttribName | Const

ResAttribRef — id .srcl|id .sTC2 |-
| id .dstl|id .dst2|... | id . exec

Figure 8.4.: Excerpt of the grammar of the constraint language in BNF form.

fied architectural restrictions. For each rule, two functions are generated, one for
the use in ILP-based optimisation, the other for the use in a generic list schedul-
ing algorithm. The first function traverses the operations of each input program
in a nested loop and for each set of operations that satisfy the condition of the
premise, ILP constraints that are equivalent to the consequent of the rule are
generated. These constraints can be integrated into integer linear programs in the
SILP or OASIC formulation generated for the input program. This way, additional
hardware-specific information can be flexibly incorporated into the integer linear
programs. The second function is a support function for generic list scheduling
algorithms that is called in order to decide whether the scheduling of an operation
to a given control step does not violate irregular hardware properties. Additional
user-supplied optimisation phases have to individually analyse the representation
of the rules and extract the information relevant for them.

The syntax of the constraint language is shown in Fig. 8.4 in BNF form. The
constraint section is introduced by the keyword Constraint-Section and consists
of a set of rules. Each rule consists of two boolean expressions separated by a
colon. These expressions represent the premise and the consequent of the rule. In
the premise unbound variables for operations can be introduced. These variables
are bound to operation instances of each input program during the runtime of
the generated optimisers. The boolean expressions are constructed by the boolean
operators disjunction, conjunction, and negation from a predefined set of atomic
expressions. The atomic expressions describe relations between the resource usage
and scheduling properties of machine operations. Atomic expressions are available
to check whether an operand is located in a given set of storage locations, whether
an operation belongs to a given operation class, whether two operations are exe-
cuted in parallel, and whether one operation is executed exactly (at least) n cycles
after another. Additionally the values of operation attributes can be compared; the
feasible comparisons depend on the type of the attribute values (character strings

152

8.4. The Constraint Section
Constraints-Section

/* Parallelisation Restrictions */

op in {C0}: op.dstl = op.srci;

opl in {C1} & op2 in {C2}: !(opl && op2);

opl in {CAluFixed} & op2 in {CMulFixed}:
! (opl && op2) | opl.srcl in {iregC} & opl.src2 in {iregD}
& op2.srcl in {iregA} & op2.src2 in {iregB};

Figure 8.5.: Exemplary constraint section.

and resource references can only compared for (in)equality, numerical values also
for the relations <, >, >, <).

Some exemplary rules are shown in Fig. 8.5. The first one enforces the first
source operand to be identical to the destination operand for all operations of the
operation class C'0. The second rule prevents any operation of operation class C'1
to be executed in parallel with an operation of operation class C2. The last rule
models the restricted parallelism of ALU and multiplier of the Analog Devices
ADsP-2106X SHARC. There some operations can only be executed in parallel if
all operands reside in uniquely defined register groups within the general purpose
register file. If the operands use other registers, the resulting operations are valid
but cannot be grouped into one instruction (see Sec. 10.1.1). So the rule states
that an operation of the operation class AluOps and an operation of MulOps can
only be executed in parallel if all operands are located in the appropriate register
groups.

8.4.1. Generating Integer Linear Constraints

The premise of each rule is mapped to C code checking for a given set of operations
of the input program if the condition of the premise is met (see Fig. 8.6). If
this is the case, a set of integer linear constraints is generated that is equivalent
to the boolean expression of the consequent. The effect of these constraints is
that a point = € ZP" is only feasible for the generated integer linear program if
the assembly program represented by z satisfies the logical condition. Before the
integer linear constraints are generated, the consequent of each rule is transformed
into disjunctive normal form [Bal98].

Definition 8.2 Let an alphabet A = {X1,...,X,} be given and let B(A) be the
set of boolean expressions over A. A boolean expression b € B(A) is in disjunctive
normal form if it has the form

where x;; € {X1,..., Xn, 2 X1,...,2 X}

153

8. The Target Description Language TDL

opl in OpClassl & op2 in OpClass2: !(opl && op2)

4

int ConstrFun (/* InputOps is an array with n entries containing

representations of all operations of the input
program */)

{
/* Declarations */
for (i=0; i<n; i++) {
opl = InputOpl[il;
for (j=0; j<m; j++) {
op2 = InputOpl[jl;
if (OpContainedInOpClass(opl, "OpClassl") &&
OpContainedInOpClass(op2, "OpClass2")) {
/* Generate ILP-Constraint */
}
}
}
}

Figure 8.6.: Example of a rule and the generated C-code for generating ILP-
constraints.

154

8.4. The Constraint Section

The goal of this transformation is to achieve a high efficiency of the generated
integer linear constraints. A boolean expression in disjunctive normal form is a dis-
junction of monoms where each monom is composed from negated or non-negated
atomic expressions. For the generation of ILP-constraints each negated atomic ex-
pression is considered as an atomic expression of its own with a transformation rule
of its own. The generation of integer linear constraints for atomic expressions can
take advantage of the complete information about the target architecture and the
underlying domains. If we allowed composed boolean expressions to be negated
this would have to be modelled only by exploiting equivalence transformations of
boolean expressions leading to more complex ILP constraints. In [Bal74b, Bal74a]
the problem of obtaining valid cutting planes from arbitrary logical conditions
brought to disjunctive normal form has been addressed. In [Bal98] the properties
of the convex hull of the feasible points of a disjunctive program are studied and
the facets of the convex hull are characterised. These results can be exploited in
order to efficiently solve integer linear programs with disjunctive constraints.

In the following an inductive proof is given that the boolean expressions in the
consequent of a rule can be transformed into an equivalent set of ILP constraints.
The proof is constructive, i.e., it represents the algorithm that is used to generate
the ILP constraints. In the following we assume that the consequent is composed
from atomic expressions representing conditions that are dynamic with respect to
the instruction scheduling, the register assignment, or the functional unit assign-
ment. The following atomic expressions and their negations are considered:

e op.attribref in {ry,...,ri}
e op; && op,

e op; —>(n) opy

e op; —=>(n) ops

e op;.attribref = ops.attribref

Let L be the language containing all expressions of those types that can be gen-
erated by the grammar of Fig. 8.4.

Theorem 8.1 Let Bpyr(C) be the set of boolean expressions in disjunctive normal
form over the alphabet L as defined above. Then for each b € Bpyr(Lc) there is
a set of integer linear constraints that is equivalent to b.

Proof: First we have to show that the atomic expressions as well as their negated
form can be translated to integer linear constraints. The induction step shows how
the representation of boolean expressions formed from those literals is obtained.

155

8. The Target Description Language TDL

Induction Basis

(i) op.attribref in {ry,...,7}

156

The following attribute references are feasible: src; (i € IN) denoting a source
operand, dst; (i € IN) denoting a destination operand, and ezec denoting the
functional unit executing the operation. The TDL-parser checks that operand
references are always associated with a set of storage locations and the exec-
attribute with a set of execution units. First we consider the cases that the
attribute reference denotes a source or destination operand. If no register
assignment is performed no allocation decisions have to be formulated as
integer linear constraints. In this case it is sufficient to check whether the
condition is satisfied by the current allocation. If so, the constraint 1 =1 is
generated, otherwise the constraint 1 = (. Generating these constraints al-
lows a uniform implementation; they are removed in the preprocessing phase
of the ILP solver [ILO99).

If the task of register assignment is addressed, the SILP formulation must
be used. It is necessary to distinguish between references to source and
destination operands.

(1.1) The expression op.src, in {rq,...,r;} means that the source operand
src, must be located in one of the abstract register resources ry, ..., 7.
Let 5 be the operation currently bound to op. Since the register assign-
ment is formulated as a register distribution problem in the SILP for-
mulation it is necessary to determine a definition of the source operand
src,. This can be done using the data dependence graph. If there is
more than one definition reaching the use in operation 7, one of these def-
initions is selected to generate the ILP constraint. The synchronisation
of several definitions reaching the same use is described in Sec. 7.2.4.

Let d be a definition of the source operand src, of operation j. Then
the following constraint is generated:

S Y -t

r€{ri,...,rx} (m,d,r)EEZ

This constraint guarantees that d uses a register from the set {r, ..., 7z}
as its destination. In consequence the source operand src, of operation
j is located in a register from the set {rq,...,rx}, too.

(i.2) The expression — (op.src, in {ry,...,r;}) means that the source ope-
rand src, must not be located in any of the registers represented by
r1,...,T,. Again let j be the operation currently bound to op and let
d be a definition of the source operand src, of j. The constraint to be
generated is analogous to (i.1):

)OI DAY

re{ri,...,rx} (m,d,r)€Ez

8.4. The Constraint Section

The destination of d must not be located in any of the registers repre-

sented by rq,..., 7.
(1.3) The expression op.dst, in {r1,...,r;} means that the destination ope-
rand dst, must be located in one of the storage resources ry,...,r;. Let

j be the operation currently bound to op. Then the following constraint

is generated:
Do D wy=1

r€{r1,...,7x} (m,j,r)EEz

(1.4) The expression — (op.dst, in {ri,...,r;}) means that the destina-
tion operand dst, must not be located in any of the storage resources
ri,...,7k. Let j be the operation currently bound to op. Then the
following constraint is generated:

> Y @ =0

TE{TI 7'"1’”9} (m,jar)EEZ

If the attribute reference denotes the functional unit used to execute opera-
tion j currently bound to op, it is necessary to distinguish between the SILP
and the OASIC formulation.

(1.5) The expression op.exec in {ri, ..., 7y} forces one of the resources r1, . . .,
rr to be used as the execution unit for op. The following constraints are
generated:

e SILP: There must be exactly one operation that passes an instance
of one of the resource types {ry,...,rx} to operation j.

> D =1

TE{Tla---a"'k} (majﬂ"')eEF

e OASIC: The execution of operation j must be started by exactly
one instance of one of the resource types {r1,...,7%}.

2. 2 T=l

7€{T1,...,r, } REN(J)

(1.6) The expression — (op.exec in {ry,...,r;}) prevents any of the resources
ri,-..,T, to be used as the execution unit for op. The following con-
straints are generated:

e SILP: There must be no operation that passes an instance of any
of the resource types {ry,...,r;} to operation j.

> Y. =0

r€{r1,..,Tk} (M,J,r)EER

157

8. The Target Description Language TDL

e OASIC: The execution of operation 7 must not be started by an
instance of any of the resource types {r1,..., 7}

> D T
TE{’I"l, ,rk}nEN .7)
(i) op1 && op,

Let op; be bound to operation ¢z and opy be bound to operation j in the
current iteration.

(13.1) The expression op; && op, forces the operations 7 and j to be executed
in parallel. This is modelled by the following constraint:

ti—t;=0

The same constraint is valid for the SILP and the OASIC formulation
since in both cases the starting point for the execution of an operation
is denoted as t;.

(73.2) The expression — (op; && opy) prevents the operations i and j from be-
ing executed in parallel. In the SILP model an integer linear constraint
has to be generated that is equivalent to

tz?ét = (tz <tj)\/(ti >tj)

Disjunctive constraints are formulated with the help of binary variables.
This mechanism is described in 5.4.1 on page 76.

In the OASIC formulation no disjunctive constraints are necessary; in-
stead the following constraints are generated:

Yooah 4+ Y b, <1VneN@GHNN(y)

k:(ki)eER k:(k.j)€ER

(73i) opy —> (n) opy
Let op; be bound to operation 7 and opy be bound to operation j in the
current iteration.

(73i.1) The expression opy —> (n) op; forces the the execution of j to be
started exactly n control steps after the starting of operation i. The
following constraint is generated:

tj=ti+’n,

The same constraint is valid for the SILP and the OASIC formulation
since in both cases the starting point for the execution of an operation
1 is denoted as ¢;.

158

8.4. The Constraint Section

(13i.2) The expression — (ops —> (n) op1) prevents the execution of j to be
started n cycles after starting the execution of 7. Here an integer linear
constraint has to be generated that is equivalent to

tj#ti-i-n = (tj<ti+n)v(tj>ti+n)

Disjunctive constraints can be formulated with the help of binary vari-
ables. This mechanism is described in Sec. 5.4.1 on page 76.

(iv) op; —=>(n) opy
Let op; be bound to operation 7 and op; be bound to operation j in the
current iteration.

(1v.1) The expression ops —> (n) op; forces the the execution of operation
j to be started at least n control steps after the starting of operation .
The following constraint is generated:

tjzti—i-n

The same constraint is valid for the SILP and the OASIC formulation.

(173.2) The expression —1(opy —>> (n) op;) forces the execution of j to be
started earlier than n cycles after starting the execution of 7. The fol-
lowing constraint is generated in the SILP and the OASIC formulation:

tjgti+n—1

(v) opy.attribref | = opy.attribref

The atomic expressions op,.attribref | = op,.attribref, and = (op,.attribref
' = op,.attribref,) are equivalent so that they can be handled in the same
way. Let 7 denote the operation bound to op; in the current iteration and
let j denote the operation bound to opy. If the attribute references denote
operands of the instructions, i.e., attribref |, attribref, € {src,,dst,|v € Ny}
and no register assignment is performed, constant integer linear constraints
are generated similarly to (7). Again it has to be distinguished between
operand references and references to execution units.

First we consider the case that the attribute reference denotes a source or
destination operand. If the task of register assignment is addressed, the
SILP formulation must be used. If the attribute denotes a source operand,
a defining operation has to be determined similarly to (i). Define d; = i
if attribref; = dst,, and d; = d if attribref; = src, where d is a definition
reaching the use of attribref, in i. Let d; be defined analogously for j and
attribrefs. Then it is necessary to guarantee that d; and d; both refer to
the same physical register. In the SILP formulation this can only be done by
generating path constraints as explained in Sec. 7.2.4. Define R = {r|(d;,r) €

159

8. The Target Description Language TDL

E4 A(dj,r) € E4}. Let k paths between 7 and j be given and let P be the set
of these paths, |P| = k. Furthermore, let o be a unique number identifying
the operation pair (4,7). Then for each path p, € P,1 < m < k of length [
the following constraint is generated:

ZxZﬂcz + Z‘rZZka toeee Tt Zxkl—lklr + lcfn > 1

r€ER r€ER r€ER

Additionally a constraint is required which forces exactly one of these paths

to be taken: \
Z o =k—1
m=1

The c-variables have to be binary integers, i.e. ¢2, € {0,1} Vm Vo.

If no upper bound on the length of path constraints has been specified this
can lead to an exponential number of additional constraints.

Now let the attribute references denote the functional unit type used to exe-
cute the operations i and j. The expression op;.exec = opy.ezec (— (op;.exec
! = opy.ezec)) means that the functional unit type used to execute op; and
op, must be the same®. Let R be the set of all functional units 7 that can be
used to execute ¢ and j. Different constraints have to be generated for the
SILP and the OASIC formulation:

e SILP: Both operations must receive an instance of the same resource
type. This is guaranteed by the following constraint:

O -3 =0 VreR

e OASIC: The execution of operations 7 and j must be started by an
instance of the same resource type. This is guaranteed by the following

constraint:
> al— Y a,=0 VreR

neN(i) neN(j)

(vi) opy.attribref!= opo.attribref

Again let 7 denote the operation bound to op; in the current iteration and
let j denote the operation bound to opy. If the attribute references denote
operands of the instructions, i.e., attribref |, attribref, € {src,, dst,|v € Ny}
and no register assignment is performed, constant integer linear constraints
are generated similarly to (v).

In the following we assume that the task of register assignment is addressed
and that the attribute references denote a source or destination operand. Let

!Note that (in contrast to the usage for registers) this does not necessarily mean that the same
instance of a resource type is used to execute ¢ and j.

160

8.4. The Constraint Section

R, d; and d; be defined as in (v). Then it is necessary to prevent d; and d;
from referring to the same physical register. In the SILP formulation this
can be done as explained in Sec. 7.5. Let p = (i=k; — -+ > kp,=J) be a
path from 7 to j in the register flow graph. Then at least one edge must be
inactive, i.e. o€ {1,--- ,m—1} : 27 .., = 0. Let I(p) denote the length of
path p, then the following constraint is generated for each path p:

Y @l <l(p) VreNg

(i,4,7)€ED

Again the number of constraints to be generated may be exponential, but
can be bounded by the methods presented in Sec. 7.2.4.

Now let the attribute references denote the functional unit type used to exe-
cute the operations 7 and j. The expression op;.ezec! = ops.exec (— (op;.exec
= opy.ezec)) means that the functional unit type used to execute op; and
op, must not be the same. Let R be the set of all functional units r that can
be used to execute ¢ and j. Different constraints have to be generated for the
SILP and the OASIC formulation:

e SILP: It is excluded that both operations receive an instance of the same
resource type. This is guaranteed by the following constraint:

O+ <1 VreR

e OASIC: The execution of operations ¢ and j must not be started by
instances of the same resource type. This is guaranteed by the following

constraint:
> al,+ > a4, <1 VreR

neEN (i) neN(j)

Induction Step Since the boolean expressions are given in disjunctive normal
form, it is sufficient to analyse the boolean operators V and A. Assume that for
each of the boolean expressions ej,..., e, a set C(e;) of equivalent integer linear
constraints has already been generated.

(i) Consider the boolean expression e = e; A --- A e,. Then a set of integer linear

constraints equivalent to e is
k
Lc(e)
i=1

since all constraints must be satisfied.

(ii) Consider the boolean expression e = e;V- - -Ve,. In that case, the constraints in

C(e1),...C(ex) have to be modified. The mechanism to represent disjunctive
constraints as integer linear constraints has been presented in Sec. 5.4.1. Let

161

8. The Target Description Language TDL

¢i(em); -, Cny(em) be the constraints contained in C(ey,), let c(en,) denote
the left hand side of constraint c;(en), and cj(e,) the right hand side of
¢j(em). Then, the resulting constraints read as follows:

der) < di(er) + Myq,

Cnl (61) S C:ll (61) + Myal
cile2) < cf(ea) + Mya,
Cny(€2) < ¢, (e2) + My,
ciler) < ci(er) + Myq,
CiLk (ex) < o (ex) + Myq,
< k-1

k
D Yo
=1

At least one of the constraint sets C(ey), . ..C(ex) has to be satisfied.

8.4.2. Generating Support Functions for List Scheduling

An overview of the list scheduling algorithm has been given in Sec. 2.2.3. The
PROPAN framework offers a generic implementation of the list scheduling with
highest-level first heuristic.

The generation of the list scheduling support functions from the TDL descrip-
tion of the target processor is straightforward. The boolean expressions are directly
translated into C code. In the generic list scheduling algorithm an operation from
the data ready list is tentatively scheduled in the current instruction. Subsequently
the generated support functions are invoked to check whether this leads to a vi-
olation of a condition specified in the constraint section of the TDL description.
If the condition of the premise of a rule is fulfilled, the condition of the conse-
quent is checked. In order for the operation to be schedulable to the control step
corresponding to the current instruction, no constraints must be violated, i.e.,
all generated functions must return false. If the scheduling is not correct, the
tentative scheduling of the current operation is undone. This allows the specified
resource and encoding restrictions to be incorporated into the list scheduling algo-
rithm in a generic way. The generated functions have been designed for simplicity;
more efficient implementations are possible, but as the experimental results show,

162

8.5. The Assembly Section

the computation times required for the list scheduling in the current implementa-
tion are always very low. An example of a generated support function is shown in
Fig. 8.7.

opl in OpClassl & op2 in OpClass2: !(opl && op2)

4

int ConstrFun (/*InputOps is an array with n entries containing
representations of all operations of the input
program; cstep is the current control step. */)

{
/* Declarations */
for (i=0; i<n; i++) {
opl = InputOpl[i];
for (j=0; j<mn; j++) {
op2 = InputOpl[jl;
if (OpContainedInOpClass(opl, "OpClassi") &&
OpContainedInOpClass(op2, "OpClass2")) {
if ((opl.slot == cstep)&&(op2.slot == cstep))
return 1;

return O;

Figure 8.7.: Example of a rule and the generated list scheduling support function.

8.5. The Assembly Section

The assembly section deals with syntactic details of the assembly language such as
instruction or operation delimiters, assembly directives, etc. In order to perform
semantic-preserving transformations of an assembly program it must be possible
to distinguish between machine operations and assembly directives. Among the
existing machine specification languages, the only approach that supports this dis-
tinction is the description language of the SALTO system [BCRS97]. While the
specification of the syntax of assembly directives would also be possible in other
languages as, e.g., nML [FVPF95] those could not be distinguished from regular
machine operations. In the SALTO system, the user has to provide dedicated C++-
classes for parsing and interpreting the assembly directives. In TDL, similarly to
the specification of the instruction set, the language of the assembly directives is

163

8. The Target Description Language TDL

given in the form of an attribute grammar. Again there is a set of predefined at-
tributes, each with a dedicated domain. The predefined domains can be extended
by the user, and new attributes with explicitly specified domains can be declared.
The assembly parser generated from the TDL description reads the assembly direc-
tives and builds an internal representation that contains all specified information.
The user is responsible for the correct interpretation of the assembly directives via
a dedicated interface to include user-defined C-functions. An example of a sim-
ple directive declaration is shown in the following; more details can be found in
[K&s99b].

DefineDirective DirGlobVar ".global %s;"
{type = GlobalDecl, name="$1"};

164

9. The Implementation of the
PROPAN Framework

In this chapter an overview of the implementation of PROPAN is given. First
the structure of the PROPAN system is explained, then the generic algorithms for
computing the program representations are presented. The generic list scheduling
and resource allocation algorithm is outlined in Sec. 9.3 and Sec. 9.4 presents the
algorithm for computing the asap and alap control steps. In Sec. 9.5 the most
important command-line parameters of the generated optimisers are summarised.

9.1. The Structure of PROPAN

An overview of the implementation of the PROPAN system is given in Fig. 9.1.
For each target architecture a TDL specification has to be developed. From this
machine description, the TDL parser generates the assembly parser for the spec-
ified target architecture and the architectural database that consists of ANSI-C
files providing the hardware-specific information to the PROPAN core system. The
PROPAN core system comprises the generic functions for computing the program
representations, generating the integer linear programs and solving the specified
optimisation problem. For each target architecture the architectural database is
linked with the PROPAN core system yielding a dedicated hardware-sensitive op-
timiser. The core system of PROPAN can be extended by additional user-supplied
optimisation and analysis algorithms. These can be invoked before or after the
phase-coupled optimisations using the CRL language as central interface.

The assembly parser reads the input programs and calculates their control flow
graph that is represented in the generic CRL language [Lan99]. The input format
is not restricted to assembly files; it is also possible to specify the output format
of disassemblers reading executable files, or textual representations of compiler-
specific intermediate formats. From the control flow graph, the data and control
dependence graphs are computed by generic algorithms. If required, register re-
naming is performed and the data dependence information is updated. Then the
input routines are covered by superblocks and the asap and alap control steps
which are needed to generate the integer linear programs are computed for each
operation. For each superblock, an individual integer linear program is generated
that models the code generation problems to be considered. Either the SILP, or

165

9. The Implementation of the PROPAN Framework

Target 1

User-Supplied
Functionality

Architecture
Specification (TDL)

Architecture
Database

Assembly
Parser

Architecture
Database

Assembly
Parser

Architecture
Specification (TDL)

User-Supplied
Functionality

Target 2

Figure 9.1.: The implementation structure.

166

9.2. Computing the Program Representations

the OASIC modelling is used, depending on command-line parameters of the post-
pass optimiser. If register reassignment is part of the optimisation problem, the
SILP model has to be used. As an alternative to the ILP-based methods, a generic
list scheduling algorithm that performs resource allocation on the fly is available.
If ILP-based methods are chosen, the solutions of the integer linear programs are
interpreted to build the optimised assembly code. The output of the postpass
optimiser is the transformed assembly file.

9.2. Computing the Program Representations

All required program representations are calculated in a generic way: the control
flow graph, the data dependence graph, the control dependence graph and the
superblock graph. The necessary information about the target architecture is pro-
vided by the data structures and functions generated from the TDL-description.
Each input program can consist of several routines or functions; those are detected
during the reconstruction of the control flow graph. The program representations
are calculated individually for each routine of the input program. PROPAN of-
fers an interface to the graphical visualisation system aiSee [San94, San96, San99,
Abs00b]. Visualisations are available for all program representations, the instruc-
tion set of the target architecture, and the resource and register flows computed by
the ILP optimisation phases. While the algorithms involved in the computation of
the superblock graph have been detailed in Chap. 7, the algorithms used to gener-
ate the control flow graph, the data dependence graph and the control dependence
graph are presented in the remainder of this section.

9.2.1. The Control Flow Graph

The control flow graph (see Sec. 2) is at the base of most code generation and op-
timisation phases and constitutes the starting point of the flow-sensitive program
analyses [Mar99]. The process of calculating the control flow graph in a post-
pass framework is different from the situation in a high-level language compiler.
When generating code for a high-level language program, the control flow usually
is represented explicitly in the input program. In assembly programs there are no
high-level statements; as an example loops are mostly represented as a sequence
of branch instructions. Therefore dedicated algorithms are required in order to
reconstruct the control flow from the sequence of machine operations.

The reconstruction of the control flow graph requires information about the
instruction set of the target processor. The parser generated from the TDL-
description calculates a generic representation of the input program in a dedicated
control flow representation language CRL (Control Flow Representation Language)
[Lan99]. First the machine operations of the input program are recognised and
attribute values that depend on each individual operation instance as, e.g., the
storage locations of source and destination operands are listed in the form of key-

167

9. The Implementation of the PROPAN Framework

value pairs. The output of this phase is a sequential list containing the generic
representation of each operation in the input program. This operation list is the
input of the control flow reconstruction algorithm that represents the second phase
of the assembly parser.

A detailed description of the control flow reconstruction process is given in
[The00]; here only a short overview is presented. The operation list produced by
the parser can be considered as a single basic block. This basic block is stepwise
split at control flow operations and the new basic blocks are connected by control
flow edges according to the type of the operations. In the TDL specification of the
target machine the type of each operation is declared; there are dedicated types for
explicit or computed branches, calls, returns, etc. The control flow reconstruction
algorithm currently is based on the values of this type classification; where this is
not sufficient to compute the control flow, user-supplied target-dependent functions
can be invoked by a dedicated interface. However there is ongoing work to develop
a fully generic control flow reconstruction mechanism where the effect of each
operation on the control flow is reconstructed from the specification of the operation
semantics. The last stage of the control flow reconstruction is the detection of loops
that is based on the algorithm presented in [LT79].

routine: fir

8 = f0 * 4
£12 = 0 * 14

f0 = dm C i0 , m0)

lentr = rl , do macs until lce

f8 = f8 + f12
12 = f0 * f4

8 = 8 + 12
12 = £0 * £4
0 = 8 + 12

f0 =dn C i0 , m0)

Figure 9.2.: Visualisation of a control flow graph.

168

9.2. Computing the Program Representations

9.2.2. The Data Dependence Graph

Since the scope of the optimisations of the PROPAN system is not restricted to
basic block level, it is necessary to compute a global data dependence graph. The
data dependence information is computed against the control flow sense by a two-
stage algorithm. In the first stage for each basic block b the resource accesses from
operations of other basic blocks are registered that can induce data dependences
with operations from b. In the second stage the operations of each basic block
are traversed and the data dependences are registered. The first stage is based
on two backward data flow analyses: the analysis of exposed definitions (def-use
chains) and the analysis of active uses [ASU86]. The two-stage approach allows
the data flow analyses to be performed on basic block rather than microoperation
level which leads to a reduction of computation time. In the following we will
use the term of symbolic variables to denote the storage locations accessed by the
operations of the input program. For each symbolic variable v the analysis of
exposed definitions computes the set of all definitions of v that can be reached on a
program path starting from program point p without other intermediate definitions
of v. Similarly the analysis of active uses computes for each symbolic variable v
the set of all uses of v that are upwards exposed, i.e. that can be reached on a
path from program point p without intermediate definitions of v. The basic idea
of data flow algorithms is to merge information about different control flow paths
at control flow joins; this way the exponential computation time for analysing each
path separately can be avoided (see also the more general framework of abstract
interpretation) [ASU86, WM95, NNH99.

In order to compute the data dependences of an assembly program it is nec-
essary to distinguish between microoperations and instructions. We assume that
each instruction J is composed of a set of microoperations ji,...,jx € J whose
execution is started in parallel. If there is no instruction-level parallelism, each in-
struction contains exactly one microoperation. Let Def(j) be the set of all storage
resources modified by operation j, Use(j) the set of all storage resources whose
contents are read by operation j and let N; be the set of all operations of the
input program. Similarly we define for an instruction J Def;(J) as the set of all
storage resources modified by any operation contained in J, and Use(J) as the set
of all storage resources whose contents are read by operations contained in J. The
ordering of the instructions of each basic block b induces a relation <, C N; x N;

where i <y j & i,5 € NPAT 2y J where I is the instruction containing operation
Go

¢ and J the instruction containing j.
For a program point ¢ the dataflow analyses maintain two sets D() and U(€)
that are defined as follows:

e D(£) contains all definitions exposed to program point &. It is the set of all
pairs (i,7) € Ny xR such that there is a path p starting from program point £
on which 7 is the first operation to define resource r. Let J; be the instruction
immediately following program point &; then D(§) can be formally defined

169

9. The Implementation of the PROPAN Framework

as
D) ={G,r)|Ip=(J1,...dx,I) ;i €I N1 € Def(i) Ar & Def ;(J;),l =
1,...,k}

e U(&) contains all active uses visible from program point £. It is the set of
all pairs (i,7) € Ny x R such that i uses resource r and there is a path p
from £ to ¢ that does not contain a definition of r. Let J; be the instruction
immediately following program point &; then U(&) can be formally defined as

Uu)=A{@r)|Ip=(h,...dx,I) i €I N1 € Use(i) AN r & Def,(J),l =
1,...,k}.

Let a basic block b with n instructions be given and let N? be the set of micro-
operations of b. The entry point of b is denoted p}, the program point between two
instructions 7 and 7+ 1 is denoted p? and the exit point is denoted p?. The dataflow
analyses of exposed definitions and active uses compute the sets D(p%) and U (p?)
for the exit points p? of all basic blocks b in the program. As described in [ASUS6],
dataflow information can be calculated by formulating and solving a system of re-
cursive equations which correlate information about different program points. For
the analyses of exposed definitions and active uses, the dataflow equations have
the following form:

in(b) = gen(b) U (out(b) — kill(b))
out() = | J in(¥)

b G—; v
The meaning of these equations can be described as follows: The information
at the entry of a basic block b is either generated inside of b, or it is available at
the exit of b and has not been destroyed inside of . The information at the exit
of b corresponds to the union of the information at the entries of all successors b’
of b in the basic block graph G.
The gen and kill sets for the analyses of exposed definitions (gen p, killp) and
active uses (geny, killyy) are defined as follows:

e gen,(b) is the set of all pairs (i,7) such that ¢ is the first operation of basic
block b to define resource r.

genp(b) = {(i,r) € N° xR | r € Def(i)A Aj € NP :j <y i Ar € Def(5)}

e geny(b) is the set of all pairs (i, r) such that ¢ uses resource r and there is no
definition of in b which precedes 1.

170

9.2. Computing the Program Representations

geny(b) = {(i,7) € N. x R | r € Use(i)A Aj € N2 : (j <yi Ar € Def(j))}

e killp(b) is the set of all pairs (i,7) € Ny x R such that i is an operation that
defines resource r and does not belong to b and there is a definition j of 7 in
b.

killp(b) = {(i,r) € (N; — N?) x R | r € Def (i) A 3j € N! :r € Def(j)}

o Fkilly(b) is the set of all pairs (4,r) € Ny x R such that 7 is an operation that
uses resource r and does not belong to b and there is a definition j of r in b.

Eilly(b) = {(i,7) € (N; = N?) x R|r € Use(i) A 3j € N :r € Def(5)}

The solution of this system of recursive equations is determined by a fixed point
computation based on a workset algorithm [Mar99]. The exit point p? of a basic
block b is represented by a node n,. A node ny of a basic block b will be contained
in the workset if for one of its successors b’ the value out(ny) has changed since the
last computation of out(n,). In each iteration a node ny is selected and removed
from the workset and a new value for n, is computed. Then it is checked whether
this value has changed since the last computation. If it has changed, the value is
propagated again to all predecessors of b by entering them into the workset. The
iteration ends when no more nodes are contained in the workset. The ordering
of the nodes in each workset is based on a topological ordering of the strongly
connected components, i.e., of the loops of the basic block graph. The nodes
within each strongly connected component are sorted in the order of the inverse
reduced transitive hull of the basic block graph.

After the fixed point computation has terminated the data dependences are
computed by an extended version of the algorithm of [WM95]. The algorithm
is shown in Fig. 9.3 in pseudocode. The input of the algorithm consists of the
basic blocks of the input program that are associated with the information about
exposed definitions and active uses at their exit point. Each instruction of the
input program can be composed of several microoperations whose execution is
started from the same machine state. The instructions of each basic block are
traversed in backward direction. The algorithm traverses all microoperations of
the current instruction and registers the data dependences to the operations of
previously processed instructions and other basic blocks. After all operations of
the current instruction have been traversed, the data dependences among them are
registered and only then the machine state is updated. Then the next instruction
is addressed and the algorithm iterates until all instructions of the basic block have
been traversed.

The function RegisterInterInstructionDeps(i,r, D(p;),U(p;)) registers all de-
pendences of an operation ¢ with respect to a resource r according to the definition

171

9. The Implementation of the PROPAN Framework

procedure CalculateBBDDG (Basic block b)

{
EzpDefs :== D(pl);
ActUses := U(p%);
foreach instruction ins of b in backward direction {
EDjps := Q);
AUjps == @;
foreach operation i of ins {
EDjys := EDjps U{(i,7) € Nt x R | (i,7) € Def (i) };
AUips = AUjps U {(i,7) € Nt x R | (i,7) € Use(i)};
foreach r € Def (i) U Use(i)
RegisterInterInstructionDeps (i,r, ExpDefs, ActUses);
}

}

RegisterIntralnstructionDeps (ins, ED;,s, AUipns);

EzpDefs :== EzpDefs — {(j,7) € Nt x R | (j,r) € EzpDefs N
3(@, ’I") € EDzns} U EDijys;

ActUses := ActUses — {(j,r) € Nt X R | (j,r) € ActUses A
(i,7) € EDjps} U AUjps;

Figure 9.3.: Computation of the Data Dependences.

of the data dependence graph in Sec. 2.1. The parameters D(p;) and U(p;) repre-
sent the sets of last definitions and exposed uses at the program point immediately
following the instruction containing ¢. The following cases are distinguished:

e There is a true dependence (i, j, 7, t) from ¢ to j with respect to r if 7 defines
r and j is an active use of r ((4,7) € U(p;))-

e There is an anti dependence (4, j, 7, a) from 7 to j with respect to r, if i uses
r and j is an exposed definition of ((4,7) € D(p;)).

e There is an output dependence (i, j,7,0) from i to j with respect to r, if
defines r, j is an exposed definition of r ((j,7) € D(p;)) and there is no active
use of r (A(k,r) € U(p;)) between the instructions containing i and j.

We assume that between operations of the same instruction there are no true and
no output dependences. There is an intra-instruction anti dependence (i, J, 7, a)
from ¢ to j with respect to r, if ¢+ uses r, j defines r and both operations are
contained in the same instruction.

The worst-case time complexity of the algorithm of Fig. 9.3 is O(np - n2)
where npg is the number of basic blocks in the input program and n,, is the maximal
number of operations per basic block. The algorithm does not differentiate between
data dependences in control flow sense and loop-carried data dependences. The
detection of loop-carried dependences is addressed in a subsequent pass over the

172

9.2. Computing the Program Representations

operations of the input program. FEach dependence (i,j,7,7) € Ep where the
instruction containing ¢ is no predecessor of the instruction containing j in the
reduced transitive hull of the control flow graph ((I,J) ¢ EZ) is a loop-carried
dependence. In a last step the transitive closure of the data dependence graph is
computed [K&s97].

The modelling of data dependences with respect to memory accesses is conser-
vative; each memory access is assumed to access the same memory cell, so there are
dependences between each memory access. The set of dependences can be reduced
by analysing the memory accesses in the program; if two accesses can be guar-
anteed to access different memory cells, no dependences are registered [ZABT00].
There is ongoing work to integrate this refinement of the data dependence analysis
into the PROPAN-framework. The basic idea is to perform a value analysis for the
address registers of the target machine in order to statically compute the address
of a memory reference. This way it is possible to disambiguate memory accesses on
assembly level. Other extensions are required in the context of predicated execu-
tion [PS91, DT93]. In some architectures, the execution of the operations depends
on the values of explicitly specified registers. Then it is possible for operations that
are not control equivalent to be contained in the same instruction, and operations
contained in consecutive instructions are not necessarily executed consecutively.
For those architectures the data dependence analysis presented above and the life
range modelling of Sec. 7.2.4 have to be extended. A value analysis of the predicate
registers can be used to detect operations from the same basic block that are not
control equivalent. Based on the result of this analysis the control flow graph is
refined and the additional control flow information is considered when calculating
the data dependences. This is also subject of ongoing work.

9.2.3. The Control Dependence Graph

In order to decide whether code movements between basic blocks are feasible with-
out the necessity of inserting compensation code the control dependences of the
input program have to be known. In [FOWS87] an algorithm for computing the
control dependence graph is presented that is summarised in the following.

Let a basic block graph Gg = (Ng, Ep,ba, ba) be given. First the set P(b) of
the postdominators for each node b € Np is calculated by the algorithm shown in
Fig. 9.4 [ASU86]. Since the set P(b) of line (*) is a subset of the set P(b) from the
previous loop iteration the algorithm is guaranteed to terminate.

Let F be the set of all edges (b;, b;) in the basic block graph such that b; does not
postdominate b;. The algorithm for computing the control dependences traverses
all edges (b;,b;) € F. Let [be the earliest common predecessor of b; and b; in the
postdominator tree. Then two cases can be distinguished:

e [is a predecessor of b; in the postdominator tree. Then all nodes in the
postdominator tree on the path from [to b; are control dependent on b;
except for [.

173

9. The Implementation of the PROPAN Framework

procedure PostDominatorTree (G¢)

{
P(bQ) = {bQ}7
foreach b € Ng — {ba} {
P(b) := Ng;
}

while there are changes in any P(b){

foreach b € Ny — {bo} {
Let S be the set of all successors of b.

} P(b) :=(,cs P(s) U {b}; (%)
}
foreach b € Np {
} P(b) := P(b) — {b};

}

Figure 9.4.: Computing the Postdominator Tree.

routine: :Anon_0

L

Figure 9.5.: Visualisation of a basic block graph.

174

9.3. Generic List Scheduling and Resource Allocation

o [= b;: All nodes in the postdominator tree on the path from b; to b; including
b; and b; are control dependent on b;. This way loop dependences are taken
into account.

For each edge (b;,b;) the algorithm traverses the postdominator tree starting from
b; backwards until a predecessor p of b; is reached. All nodes visited before reach-
ing p are marked as control dependent on b;. If [is a predecessor of b; in the
postdominator tree, b; is not contained in the path to [and is not marked. The
time complexity of this algorithm is O(n?) where n is the number of nodes of the
basic block graph [FOWST7].

A basic block graph is shown in Fig. 9.5 and Fig. 9.6 shows the corresponding
control dependence graph.

ba8 E

Figure 9.6.: Visualisation of a control dependence graph.

9.3. Generic List Scheduling and Resource
Allocation

In order to be able to compare the ILP-based optimisations to a conventional
graph-based approach, a generic list scheduling algorithm has been implemented
in the PROPAN system. The list scheduling uses the highest level first heuristic and
has been extended to perform resource allocation on the fly. In consequence the
algorithm allows a heuristic coupling of scheduling and allocation decisions. The
algorithm is shown in pseudocode in Fig. 9.7.

The basic blocks of the input program are traversed in the order of decreasing
execution frequency; the operations of each block are scheduled by the function
ListScheduleBlock. First a priority is calculated for each operation of the current
basic block using the highest-level-first heuristic [Bea91]. It is assumed that one
instruction is issued per control step. The data ready set drs contains all oper-
ations whose operands are available in the current control step; it is maintained
by the function UpdateDRS. The algorithm starts with an empty list of microop-
erations and iterates until all operations of the block have been scheduled. Each

175

9. The Implementation of the PROPAN Framework

procedure ListScheduleBlock(Basic block b, CFG c¢)
{
CalculateOperationPriorities(b);
insnlist := (;
drs := {;
UpdateDRS (b, drs);
while (not all operations of b have been scheduled) {

cinsn := AllocateInstruction();
foreach operation i € drs {
r := SelectAvailRes(i, cinsn, b);
if (r # null) {
Assign i to hardware resource r;
Append i to cinsn;

}

if (cinsn = 0)

Append nop to cinsn;
UpdateDRS (b, drs);
Append cinsn to insnlist;

}

AdjustEzit(b, c);

FillDelaySlots(b);
}

Figure 9.7.: Computation of the Data Dependences.

176

9.4. Computing the ASAP and ALAP Control Steps

iteration starts with an empty instruction. The operations of the data ready set
are traversed in highest-level-first order and for each operation ¢ the function Se-
lectAvailRes is called. This function checks whether there is an available execution
resource to which 4 can be assigned. The latencies of the functional units and the
resource constraints of write-back buses have to be respected. SelectAvailRes also
checks whether appending operation ¢ to the current instruction leads to violations
of the conditions specified in the constraint section of the TDL description. For
this purpose the generated support functions described in Sec. 8.4.2 are used. If
there is an available hardware resource r to which 7 can be assigned such that
the insertion of ¢ into the current instruction is possible, SelectAvailRes returns
r, otherwise it returns null. If the insertion is possible, the selected resource r
is registered for 7, and 7 is appended to the current instruction cinsn. Then the
data ready set is updated, the current instruction is appended to the instruction
list and a new instruction is allocated. After all operations have been scheduled
it is checked whether additional nops have to be executed before leaving the basic
block. This can be caused by inter-iteration data dependences and inter-iteration
resource conflicts. Moreover data dependences and resource conflicts with previ-
ously scheduled successor blocks of b have to be addressed (cf. Sec. 7.3). The basic
algorithm always schedules control flow operations to the end of the basic blocks
and fills delay slots with nops. The function FillDelaySlots attempts to move in-
structions of the blocks into the delay slots of the branch operations. The worst
case complexity of the algorithm is O(n?) where n is the number of operations in
the input program.

9.4. Computing the ASAP and ALAP Control Steps

Generating the integer linear programs in the SILP and the OASIC formulations
requires an interval to be calculated for each operation 7 that contains all control
steps in which the execution of i can be started in any feasible schedule. This
interval is defined as N(i) = {asap(i),...alap(:)} [Fou81]. The computation of
the asap and alap control steps is partitioned into two phases. First for each
operation 7 a preliminary value s(i) of asap(i) and a preliminary value [(i) of
alap(i) are determined based on computing longest paths in the data dependence
graph. The second phase tries to improve these bounds by taking the number of
available hardware resources into account. In our implementation the longest paths
are computed by the Bellman Ford Algorithm [CLR90]; it is shown in Fig. 9.8 in
pseudocode.

Let a weighted graph G = (N, E) with a set S C N of start nodes be given.
The algorithm computes the longest paths from the nodes in S to all nodes n € N.
The weight of an edge (u,v) € F is denoted w(u,v). At the end of the algorithm,
d(n) represents the length of the longest path from any node in S to n and II(n) is
the immediate predecessor of n on this path. The function Relazx checks for each
edge (u,v) if the largest distance d(v) found so far can be improved by considering

177

9. The Implementation of the PROPAN Framework

procedure LongestPaths(G = (N, E), S)

{

foreach (n € N) {
d(n) := —o0;
II(n) := null;

}

foreach (n € 9)
d(n) := 0;

repeat |N| — 1 times {
foreach (u,v) € E

Relaz (u,v);
}

foreach (u,v) € E
if (d(v) < d(u) +w(u,v))
ezit(Failure);

}

procedure Relaz(u,v)

if

Figure 9.8.: The Bellman Ford Algorithm.

the path consisting of the longest path to u and the edge (u,v). If there are cycles
in the input graph, they are detected and the algorithm reports an error. The
worst case time complexity is O(|N| - | E|).

The value s(i) for an operation i is calculated as the length of the longest
path to ¢ in the data dependence graph that starts from an operation with no
dependence predecessors. The value [(7) is computed by inverting the edges of
the data dependence graph and determining the longest path in the inverse graph
starting from an operation without data dependence successors. For each operation
i the computed distance d(i) is subtracted from an upper bound U of the execution
time of the input program yielding the value /(i) = U — d(7).

The weights of the dependence edges depend on the types of the data depen-
dences. Let (i,7,7,7) € Ep, then the weight w(7, j) is defined as follows:

w;, if T=1
w(i,j) =qw, —w; +1, if T=o0 (9.1)
0, if T=a

In [CCK97] bounds are presented that take the available hardware resources of
a regular r-issue processor into account. In the following these bounds are extended

178

9.5. The Optimisation Interface

to consider functional unit latencies of multiple clock cycles and operations that

can be mapped to different resource types. Let R(:) denote the set of resource

types, an operation ¢ can be mapped to, i.e. R(:) = {k € N5 | (i,k) € Eg}. Let

an operation ¢ be given and let p; denote the number of predecessors in the data

dependence graph that can be executed by exactly the same set of resource types

as operation i, i.e. p; = |{j | j EL> i N R(i) = R(j)}|. Similarly define f; as the
D

number of successors in the data dependence graph that can be executed by exactly
the same set of resource types as operation i, i.e. f; = |{j | i — j A R(i) = R(j)}|.
Ep

Define r as the number of all instances of the resource types ¢ can be mapped to
and L; as their minimal latency. Then the asap(i) and the alap(i) control steps
are computed as follows:

asap(i) = max {s(i), Q%D <L + 1} (9.2)

wrty = min {100~ (|2]) - 1.-1) 03

This way, resource restrictions are conservatively taken into account when comput-
ing the superset of possible control steps for each operation.

9.5. The Optimisation Interface

For each input program the generated optimisers compute the control flow graph,
the control dependence graph and the data dependence graph. If the task of register
reassignment is addressed the register renaming algorithm of Sec. 7.2.1 is invoked
to replace references to physical registers by references to virtual registers. The
register renaming algorithm is followed by a recomputation of the data dependence
graph that is based on the virtual registers and does not contain spurious data
dependences any more. Figures 9.9 and 9.10 show examples of a data dependence
graph before and after renaming. It is obvious that a large number of dependence
edges is removed by the renaming process.

Subsequently the superblock graph is computed. The algorithms for construct-
ing the superblocks have been described in Sec. 7.1. The information about the
execution frequencies of the basic blocks is assumed to be given by annotations
in the CRL representation of the input program. The developer can influence
the superblock construction and optimisation process by several parameters of the
generated optimisers. Dedicated command line parameters are available for

e enabling/disabling superblock enlargement beyond loop boundaries (see
Sec. 7.1.1).

e providing a code size threshold that stops the superblock enlargement if the
threshold is reached and causes basic blocks of the input program exceeding
the threshold to be split (see Sec. 7.1.3).

179

9. The Implementation of the PROPAN Framework

=

Figure 9.10.: Visualisation of the data dependence graph from Fig. 9.9 after re-
naming.

180

9.5. The Optimisation Interface

e providing an upper bound for the maximal length of paths to be considered
in the resource path constraints of Sec. 7.2.4.

e enabling/disabling the integration of the register assignment problem.

e choosing between SILP modelling, OASIC modelling and generic list schedul-
ing.

e choosing between exactly solving the generated integer linear programs or
using any of the approximations presented in Chap. 6.

e specifying an explicit upper bound for the execution time of the input pro-
gram to be optimised. This bound is used in the computation of the alap
control step and can increase the efficiency of the ILP solution process.

e specifying an upper bound for the solution time of the generated integer
linear programs. If the bound is exceeded the ILP solution process returns
the best feasible solution found so far.

e selecting the repairing mode to cope with capacity violations of abstract reg-
ister files. Either collision-based or exclusion-based repairing can be chosen
(see Sec. 7.4.3).

e choosing between exact or heuristic graph colouring for constructing the phys-
ical register assignment from the solution of the generated integer linear pro-
grams (see paragraph 7.5).

Finally the CRL representation of the optimised program is generated from which
the final assembly file is constructed.

181

9. The Implementation of the PROPAN Framework

182

10. Experimental Results

The PROPAN framework has been retargeted to several different target architec-
tures. It has been used to generate ILP-based postpass optimisers for two widely
used contemporary digital signal processors with considerably different hardware
characteristics, the Analog Devices ADSP-2106X SHARC [Ana95] and the Philips
TriMedia TM1000 [Phi97]. Additionally the PROPAN system is part of a retar-
getable framework for calculating worst-case execution time guarantees for real-
time systems [FKL199]. One hardware architecture investigated in this framework
is the Infineon TriCore pC/DSP [Inf00]; the relevant target-specific information is
provided by a TDL specification. Furthermore PROPAN has been used as a plat-
form to implement hardware-specific postpass optimisations for the Infineon C16x
[Sie96] microprocessor family that are part of a commercial postpass optimiser
[Abs00a]. TDL descriptions for the TI320C6x [Tex97] and for the Intel Embedded
Pentium are currently under construction. In the following sections the perfor-
mance of the ILP-based optimisers generated for the Analog Devices ADSP-2106X
SHARC and the Philips TriMedia TM1000 is evaluated. Each section is introduced
by a brief overview of the hardware architecture, followed by the presentation of
the experimental results; a summary of the experimental evaluation is given in
Sec. 10.3.

In [ZVSM94] the dspstone benchmark suite has been presented as a basis
for comparing the performance of digital signal processors for typical applications.
Part of the suite is a collection of C-programs representing typical DSP kernels, i. e.
functions often used in digital signal processing algorithms. The collection com-
prises computations of digital filters, matrix multiplications, convolutions, vector
products, complex arithmetic, etc. The computation routines of this kernel bench-
mark are used as input programs for the generated ILP-based optimisers of both
the ADSP-2106X SHARC and the TriMedia TmM1000. Additionally hand-crafted
assembly programs are investigated that also represent typical applications of dig-
ital signal processing. The experiments have been performed under SunOS 5.7 on
a SPARC Ultra-Enterprise 10000; the generated mixed integer linear programs are
solved by the CPLEX library [ILO99].

183

10. Experimental Results

10.1. Analog Devices ADSP-2106x SHARC
10.1.1. Architecture

The ADSP-2106X SHARC is a 32-bit digital signal processor for speech, sound
graphics and imaging applications. Its cycle time is 25 ns, the clock frequency 40
MHz, and its instruction rate is 40 MIPS. As a floating-point DSP the ADsP-2106X
SHARC supports the 32-bit IEEE floating point format, 32-bit integer and fractional
formats, and extended-precision 40-bit IEEE floating-point format. An overview
of the architecture is given in Fig. 10.1. The core processor of the ADSP-2106X
SHARC consists of the data register file, three computation units, the control unit,
two address generators DAG1 and DAG2, the timer and the instruction cache.

ﬁ Core Processor ﬁ Dual-Ported SRAM
INSTRUCTION JTAG
TIMER CACHE
32 x 48-BIT Two Independent,
Dual-Ported Blocks TEST &
@ Emulation
L> PROCESSOR PORT 110 PORT
PROGRAM ADDR DATA DATA ADDR
DAG 1 DAG 2
8x4x32| [8x4x24 SEQUENCER
{} & o4 External Port
N
! PM Address Bus (PMA) o ‘ EMA\ ggg' 32
L DMA Mux
DM Address Bis (DMA)
MULTIPROCESSOR
INTERFACE
BUS PM Data Bus (PMD) 48
PMD Data 48
= CO{‘,‘;’}‘SCT > owpte s w0y 32/40 ‘ T = W#
‘ ‘ ‘ ‘ HOST INTERFACE

N
1T
—

DATA H H 2 g 8 g Q% %

A 2 DMA U

’7 REGISTER K CONTROLLER [
BARREL 0P

MULTIPLIER| | o oir| [SHIFTER ALU REGISTERS 6
SERIAL PORTS >

conry (9SO T
ﬁ ﬁ} Status & =

\ / Data Buffers

LINK PORTS 3

o BT Jo—

1/0 Processor

Figure 10.1.: ADSP-2106x SHARC block diagram.

The ADSP-21060 contains 4 MBit of on-chip SRAM consisting of two 2 Mbit
blocks. The blocks are dual-ported to support independent accesses from core
processor and from I/O processor or DMA controller in one cycle. Each block can
be configured for different combinations of code and data. Instructions are fetched
over the 48-bit PM bus or from the instruction cache. Data can be accessed over
both the 40-bit DM bus (using DAG1) and the PM bus (using DAG2). DAGI1
supplies 32-bit addresses over the DM bus, DAG2 supplies 24-bit addresses for PM
bus data accesses. Both blocks of memory can be accessed simultaneously if one

184

10.1. Analog Devices ADSP-2106x SHARC

access uses the DM bus and the other one the PM bus. Accesses to memory can
be made for 16-bit, 32-bit, or 48-bit words.

The general purpose register file consists of sixteen 40-bit registers that can be
used for fixed-point and floating-point computations. Additionally there are four
types of registers used for data addressing: index registers (I), modify registers (M),
base registers (B) and length registers (L). Each data address generator contains
8 registers of each of those types where the registers of DAG1 are 32-bit wide and
those of DAG2 are 24-bit wide. The following addressing modes are supported:
direct addressing, indirect addressing with pre- and post-modify and circular ad-
dressing. The I registers are used as pointers to memory, the M registers contain
the increment value for advancing the pointers. B and L registers are only used for
circular data buffers. Each B register holds the base address of a circular buffer,
and the corresponding L register the length of the buffer.

There are three independent computation units: an ALU, a multiplier with
fixed-point accumulator and a shifter. ALU and multiplier can perform fixed-point
and floating-point operations. The shifter executes logical and arithmetical shifts,
as well as special bit manipulation operations on 32-bit operands. The ADSP-
2106x SHARC has a load/store architecture; memory accesses are dedicated to
special load/store operations. All instructions have a fixed length of 48 bit. There
are instructions for computing the arithmetic mean, the minimum and maximum
of two operands, for clipping, multiply /accumulate, bit extraction and insertion,
shifts and rotates. Most operations can optionally be guarded; then their execution
depends on the value of certain bits in control and status registers that have been
set by preceding operations.

The ADSP-2106X SHARC has a three-stage instruction pipeline consisting of
fetch, decode and execute cycle. In the fetch cycle the instruction is read from
the program memory PM or from the instruction cache, in the decode cycle it is
decoded and in the execute cycle the instruction is executed. In sequential program
flow while one instruction is fetched the instruction fetched in the previous cycle
is decoded and the instruction fetched two cycles before is executed. Thus the
throughput is one instruction per clock cycle. Jumps, calls and returns can be
delayed or non-delayed. In a delayed branch the two instructions immediately after
the branch instruction are executed before the branch takes effect; in a nondelayed
branch, the program sequencer suppresses the execution of these two instructions
and performs nops instead. Furthermore there is a zero-overhead loop instruction
that can be used to execute counter-based loops.

The instruction-level parallelism of the ADSP-2106X SHARC is restricted. Data
accesses to program memory and data memory can be executed in parallel if the
address of the DM access is specified by DAG1 registers and the address of the PM
access by DAG2 registers. Many arithmetic operations can be executed in parallel
to memory accesses and some control flow operations can be executed in parallel
to arithmetic operations. Additionally there is a restricted parallelism between
ALU and multiplier. Some ALU and multiplier operations can be combined to
a multifunctional instruction and can then be executed in parallel. This however

185

10. Experimental Results

requires that each of the four input operands is located in a dedicated group of
four register locations within the general-purpose register file (see Fig. 10.2). If
any operand is located in another register the operation is feasible but cannot be
part of a multifunctional instruction.

Register File

RO - FO
R1-F1
R2 - F2
R2-F2

Multiplier

R4 - F4
R5 - F5
R6 - F6
R7-F7 Any Register

<«

—>
Any Register RS - F8
R9 - F9
R10 - F10
R11 - F11

ALU

R12 - F12
R13 - F13
R14 - F14
R15 - F15

Figure 10.2.: Input registers for parallel execution of ALU and multiplier.

10.1.2. Performance of the Optimiser

For each machine operation of the ADSP-2106X SHARC the functional unit assign-
ment is uniquely determined so that the resource allocation problem has not to be
considered. Thus the optimiser generated for the ADSP-2106X SHARC performs
integrated instruction scheduling and register reassignment. All target-specific in-
formation is provided by the TDL specification. The restrictions of instruction-level
parallelism and the interdependencies between register assignment and operation
parallelisation are incorporated into the ILP models by the integer linear con-
straints derived from the constraint section. These constraints model the restricted
parallelism of ALU and multiplier as well as explicit parallelisation prohibitions be-
tween microoperations. Since previous studies [Kds97, KL.98] have shown that the
integration of the register assignment in the OASIC formulation is not promising for
complexity reasons, in the following we will concentrate on the SILP formulation.

The computation routines of the dspstone benchmark are compiled to assembly
code by the gcc-based g21k compiler. Tab. 10.1 lists the number of machine
operations and the number of compacted instructions of the input programs. The
number of basic blocks and the number of loops of each program are given in the last
two columns. In addition to the dspstone kernels, another matrix multiplication
(mamu2) and a routine from the whetstone benchmark (whetp3) are compiled to
assembly code by the g21k and used as input programs. The g21k-generated
input programs contain between 14 and 55 microoperations and usually consist of

186

10.1. Analog Devices ADSP-2106x SHARC

several basic blocks representing (possibly nested) loops. Apart from the g21k-
generated input programs, some hand-crafted assembly programs are evaluated
whose characteristics are shown in the lower part of Tab. 10.1. They comprise
a discrete fourier transformation (dft), a finite impulse response filter (fir), a
histogram (histo), a cascaded infinite impulse response filter (cascade), and two
routines from a wavelet transformation (waveletk, waveleti). The hand-crafted
assembly programs contain between 18 and 49 microoperations. Because of an
efficient code selection, they offer a high degree of parallelism. They are written as
sequential code, so that the available instruction-level parallelism is not exploited.
Performing the scheduling and register assignment to exploit the parallelism is left
to the generated optimiser. The alap control steps of each operation are computed
using the execution time of the input program as an upper bound for the length
of any feasible schedule.

‘ Name ‘ Operations | Instructions ‘ Blocks ‘ Loops ‘
dbiquadn 20 44 4 1
dbiquado 30 30 1 0
dcompmul 20 20 1 0
dcompupd 38 36 1 0
dconvolu 17 17 4 1
ddotprod 22 21 4 1
dfir2dim 95 52 14)
dmatrix2 38 33 10 3
dfir 22 18 4 1
dlms 36 35 7 2
dmat1x3 24 23 7 2
dmatrixl 38 37 10 3
dncompup 42 38 4 1
dnrealup 25 24 4 1
drealup 14 13 1 0
mamu?2 o1 48 10 3
dft 26 26 7 2
fir 18 18 4 1
histo 44 44 8 2
cascade 23 23 4 1
waveleti 49 49 16 5
waveletk 39 39 10 3
whetp3 26 22 1 0

Table 10.1.: Statistics about the input programs of the ADSP-2106X SHARC.

187

10. Experimental Results

Optimisations restricted to Loop Boundaries

The experimental evaluation is partitioned into two phases. In the first phase, the
superblock construction is stopped at loop boundaries. The generated superblocks
correspond to the traces of the trace scheduling algorithm [Fis81]. Most programs
are represented by several superblocks each of which is modelled by an individual
integer linear program. The result of the optimisations are summarised in Tab. 10.2
and Tab. 10.3. Column m denotes the computation method; a; corresponds to the
approximation of isolated flows, as to the stepwise approximation of isolated flows,
asz to the stepwise approximation and e to the exact, i. e. provably optimal solution.
Since the assignment of operations to functional units is uniquely defined, the ap-
proximation of isolated operations is not investigated. Column S shows the number
of superblocks generated for each input program. The total measured CPU-time
is listed in column ¢, column I shows the number of compacted instructions in the
result of each method.

The programs dbiquado and dcompupd consist of a single basic block which is
too large for an ILP-based solution to be obtained in less than 8 hours. Thus a
threshold value of 25 operations for the maximal superblock size has been used to
split the basic blocks into two parts each of which is represented by a dedicated
superblock. For all optimisations a time limit of 8 hours has been specified as an
upper bound for any computation of the ILP solver. After 8 hours, the best feasible
solution found so far is returned; the optimality of that solution cannot be guar-
anteed. For the approximative methods the total computation time can exceed 8
hours since during the iterative process the ILP solver is called several times. In
the following, the computations where this time limit leads to premature termina-
tions of the ILP solver are marked by ’(p)’. Among the 23 investigated programs a
premature termination of approximative methods only occurs for dfir2dim; here
only the stepwise approximation with a computation time of 4 hours and 48 min-
utes stays under the time limit. All programs with the exception of cascade are
optimised with a maximal length of 3 for the paths to be modelled by path con-
straints (see Sec. 7.2.4). Because of the large number of path constraints required
for cascade an upper bound of 2 has been chosen to limit the computation time.

The ILP-based solutions are compared to the result of the generic list schedul-
ing algorithm with highest-level first heuristic (Fig. 9.7). The support functions
of the list scheduling modelling the restrictions of instruction level parallelism and
interactions between instruction scheduling and register assignment are generated
from the TDL description. In order to allow a conservative comparison, the register
assignment in the input programs of the list scheduling algorithm is already opti-
mal while it is explicitly recomputed in the ILP-based methods. Tab. 10.4 shows
the computation time of the list scheduling algorithm and the generated number
of compacted instructions for each input program. Column I, lists the optimal
number of instructions (verified by hand), in column A, the percentage deviation
of the result of list scheduling from the optimal solution is listed and the number

188

10.1. Analog Devices ADSP-2106x SHARC
Name m ‘S‘ t ‘IHName m‘S‘ t ‘I‘
dbiquadn a 3 1’ 15.56” | 43 || dfir a | 3 1.35” | 17
as 4’ 11.3” | 43 a9 3.9 | 17
as 3 11.64” | 43 as 2.117 | 18
e 3h 53’ 12.36” | 43 e 1.84” | 17
dbiquado | ap, t25 | 2 17 21.58” | 24 || dlms a; | 5 44.19” | 32
asz, t25 17 31.57" | 24 Qo 17 26.677 | 32
as, 25 1" 11.87" | 24 as 4.59” | 33
e, 125 247 34.17" | 24 e 6’ 41.6” | 32
dcompmul aq 1 35.347 | 17 || dmat1x3 | a; | 5 2.28” | 22
ao 19.11”7 | 17 ao 4.06” | 22
as 10’ 7.03” | 17 as 1.177 | 22
e 14’ 2217 | 17 e 2.35” | 22
dcompupd | ay, t25 | 2 1h 2’ 4.01” | 34 || dmatrixl |a; | 7 26’ 50.9” | 36
as, £25 1h 4’ 8.17" | 34 ao 17 20.44” | 36
as, 25 8h 31.84” | 34 as 1 25.45" | 36
e, 125 8h 34’ 58.7”7(p) | 34 12 6h 15’ 26.6” | 36
dconvolu ay 3 0.82” | 14 || dncompup | a1 | 3 3’ 18.33” | 37
Qs 1.227 | 14 ao 4’ 14.85” | 37
as 0.42” | 14 as 13.01” | 38
e 0.53” | 14 e 47 34.0” | 37
ddotprod ay 3 6.93” | 20 || dnrealup | a; | 3 27 43.26” | 23
as 18.65” | 20 a9 4’ 15.83” | 23
as 1.57”7 | 20 as 4.33” | 23
e 19.02” | 20 e 48’ 13.69” | 23
dfir2dim a 9| 8h6 1.077 (p) | 51 || drealup |a | 1 2.46” | 12
as 8h 9 18.28” (p) | 51 as 488" | 12
as 4h 47 41.36” | 51 as 3.67" | 12
e 8h 8 36.91” (p) | 51 e 5.94” | 12
dmatrix2 a1 7 3.8” | 32 || mamu2 a | 7 8 31.42” | 46
as 3.98” | 32 aso 8’ 58.41” | 46
as 1.277 | 32 a3 32.57” | 46
e 2.35” | 32 e 2h 5’ 25.77 | 46

Table 10.2.: Performance of the SILP-based optimisations for the ADsP-2106X
SHARC not exceeding loop boundaries (1).

189

10. Experimental Results

‘Name ‘m‘S‘ t ‘IHName ‘m‘S‘ t ‘I‘
dft a | b 1.32” | 14 || waveleti | a; | 9 1.63” | 35
as 3.01” | 14 as 2.83”7 | 35
as 1.54” | 14 as 1.69” | 35
e 0.54” | 14 e 1.28” | 35
fir a1 | 3| 045 8 || waveletk | a; | 7 1.737 | 29
as 0.7 | 8 as 3.83”7 | 29
as 047 | 8 as 1.577 | 29
e 0.36” | 8 e 1.01” | 29
histo ap | O 7.6” | 31 || whetp3 a; | 1 15’ 2.88” | 19
as 16.52” | 31 as 22’ 22.71” | 19
as 31.17 | 33 as 12h 37’ 58.47” | 19
e 14.66” | 31 e 8h 14’ 1.43”(p) | 21
cascade | a; | 3 | 44.74 9
as 59.09” | 9
as 10.61” | 9
e 1.27 | 9

Table 10.3.: Performance of the SILP-based optimisations for the ADSP-2106X
SHARC not exceeding loop boundaries (2).

of instructions of the input program is listed in column I;,. The hand-crafted as-
sembly programs that have not been compacted before using them as input to the
optimisations are marked by an asterisk (*).

In Fig. 10.3 — Fig. 10.6, a visualisation of the experimental results is given.
In Fig. 10.3 and Fig. 10.4 the number of compacted instructions in the result of
the ILP-based methods is compared to the schedule of the g21k-generated input
programs and to the result of the list scheduling algorithm. The vertical axes
show the number of compacted instructions, the horizontal axes the computation
methods with the abbreviations introduced above. Fig. 10.5 and Fig. 10.6 compare
the measured computation times on a logarithmic scale. The CPU-time measured
in seconds is shown on the vertical axes, the horizontal axes represent the solution
methods. Computations prematurely terminated because of the time limit are
marked by an asterisk (*).

We can see that for all input programs, the approximation by isolated flows (a;)
and the stepwise approximation of isolated flows (ay) produce an optimal result.
The code produced by the stepwise approximation(as) exceeds the optimal number
of instructions by one for three input programs and by two for one program; for
82.6% of the evaluated programs it produces an optimal result. The result of the
list scheduling algorithm exceeds the optimal number of instructions in more than
43% of all cases. The maximum overhead has been measured for whetp3 where
it exceeds the optimal number of instructions by 21.05%. The programs where

190

191

Analog Devices ADSP-2106x SHARC

10.1.

(L[]
E £ =4 =4
AEENENEE
K] K] K]
= L]
2 3 o ¥ e o o
s | JIII]]] s & £ 2 .
nmv e © o £ L © = ©
o 3 © £ - © <
s LT °
¥))
AEENENEE
© K ©
§ & 8 8 9 ° fdgss o sdidgee v
£ E = £ =
EENEEN
8 £ @ @2
B haaaann
m o o m 2) m. o)
2 2 | LI 3 £ 3 s
a ? o E £ ? £ ? ?
= i EEEEEN e © ©
¥ ¥ ¥ o
EEEEEN
® w w ©
g & & € € 5 ° § & £ ¢ » ° § & £ ¢ % ° § & 8 £ ¢ 5 °
L I
EEEEEE
»
ENEEEE
] .m. P £ *e W o
5 »
g g | TLLLLT] 3 2 - :
o] & @] 8 m
° s | T[] []] e 5
M
o~
©
EEEEEN ,
©
g€ 8 ¢ 8 8 € °

for the ADsP-2106X SHARC within loop boundaries (1).

Figure 10.3.: Compacted instructions produced by the SILP-based optimisations

10. Experimental Results

dmat1x3 0.48 | 22 | 22
dmatrixi 1.90 | 36 | 36

23 || whetp3 0.86 |23 | 19| 21.05| 22
37

Name | i[sec] | I | I, | AJ%] | Iin || Name | ¢[sec] | I | I, | AJ%] | Lin |
dbiquadn | 3.67 | 43 | 43 0| 44 || dncompup | 2.29 | 37 | 37 0| 38
dbiquado 09|25 |24 4.16 | 30 || dnrealup | 0.61 | 23 | 23 0] 24
dcompmul | 0.24 | 18 | 17 9.88 | 20 || drealup 0.10 | 13 | 12 83| 13
dcompupd | 2.02 | 35 | 34 2.94 | 36 || mamu2 3.97 | 46 | 46 0] 48
dconvolu | 0.19 | 14 | 14 0 17 || dft 046 | 14 | 14 0| 26*
ddotprod | 0.39 | 20 | 20 0 21 | fir 017 91| 8 12.5 | 18*
dfir2dim | 5.35 | 51 | 51 0| 52 || histo 225 | 32|31 3.2 | 44%*
dmatrix2 | 1.54 | 32 | 32 0| 33 | cascade 034 10| 9 11.1 | 23*
dfir 0.38 | 17 | 17 0| 18 || waveleti | 2.76 | 37 | 35 5.7 | 49*
dlms 1.43 | 32 | 32 0| 35| waveletk | 1.41 |32 |29 | 10.34 | 39*

0

0

Table 10.4.: Results of list scheduling.

histo cascade waveleti

whetp3

Figure 10.4.: Compacted instructions produced by the SILP-based optimisations
for the ADsP-2106X SHARC within loop boundaries (2).

192

10.1.

dbiquadn

100000.

10000-

1000.

100

10

=Y
[
N
o
w
@
2

dbiquado

dcompmul

dcompupd

100000,

10000.
1000.
100

1

’

°

dconvolu

ddotprod

100

dfir2dim

g

dims

1000.

100.

2 . 3
o
o
N
o
[
@
o

100000-

10000-

1000-
al a2 a3 e Is

dncompup

10000-

2 . 3 8 8
[
fo)
N
o
w
@
&

10000.

mamu2

10000-

2 . 3 8 8
[
O
N
o
w
o
@

Analog Devices ADSP-2106x SHARC

10.5.: CPU-time in seconds of the SILP-based optimisations for the ADSP-
2106X SHARC within loop boundaries (1).

193

10. Experimental Results

histo cascade waveleti

al a2 a3 e Is

waveletk whetp3

01 01
al a2 a3 e Is at a2 a3 e* Is

Figure 10.6.: CPU-time in seconds of the SILP-based optimisations for the ADSP-
2106X SHARC within loop boundaries (2).

the list scheduling algorithm produces an optimal result mostly offer only little
parallelism. The g21k-generated input code could be improved in all cases; on
average, it exceeds the optimal number of instructions by 8.2%.

When analysing the measured computation times we can see that for the smaller
input programs the exact ILP-based solution takes less time than the ILP-based
approximations which is due to the setup overhead of the approximations. For the
larger input programs however the computation time can be reduced significantly.
The time required for the stepwise approximation strongly varies with the input
programs; for some programs it is the fastest approximative method, for others
it is the slowest. The performance of the approximation of isolated flows and of
the stepwise approximation of isolated flows is comparable for the investigated
input programs. With the exception of dcompupd, dfir2dim and whetp3, ILP-
based approximations can be obtained for each input program within less than two
minutes. The fastest ILP-based solution of dcompupd resp. whetp3 is obtained by
the approximation of isolated flows in 1 hour and 2 minutes resp. in 15 minutes.
For dfir2dim the stepwise approximation is the fastest method; it produces its
result in 4 hours and 48 minutes. Only for dbiquado and dcompupd this required
splitting the largest basic block into two parts which are separatedly optimised.
If the maximal computation time has to be decreased this can be achieved by
specifying smaller upper bounds for the maximal length of the superblocks.

Optimisations across Loop Boundaries

In the following the second phase of the experimental evaluation is investigated.
Here the superblocks have been maximally extended so that all input programs
are modelled by a unique integer linear program. In Tab. 10.5 the most important
characteristics of the generated integer linear programs are shown. Column z

194

10.1. Analog Devices ADSP-2106x SHARC

Name | =] r] V| p| U] s| rs| C| sizeKB]|
dbiquadn || 404 982 | 1697 99 | 22 | 181 | 262 | 2023 252.22
dbiquado || 171 | 610 | 948 83 | 19 | 135 | 175 | 1220 156.92

dcompmul 69 | 226 | 376 52 | 15| 85| 64| 596 6.78
dcompupd || 253 | 676 | 1130 || 105 | 20 | 253 | 169 | 1672 191.27
dconvolu 37 40 | 134 25| 4| 31| 10| 344 20.47
ddotprod 80 | 128 | 303 36 | 7| 56| 32| 558 45.0
dfir 58 | 124 | 284 38| 6| 52| 31| 550 45.01

dmat1x3 95 | 128 | 343 39| 7| 64| 32| 652 49.72
dmatrix2 || 209 | 600 | 1117 || 143 | 19 | 132 | 150 | 1408 167.99
dncompup || 324 | 780 | 1298 85 20| 130 | 195 | 1458 198.06

dnrealup || 121 | 172 | 417 41 | 8| 80| 43| 677 61.18
drealup 35 76 | 151 32| 5| 33| 19| 280 24.87
dft 106 | 408 | 647 93 [22| 93 |102 | 883 103.68
fir 23 | 382 | 458 38 | 16 | 12 | 118 | 507 77.14
histo 358 | 1684 | 2224 || 161 | 33 | 200 | 421 | 1832 359.46

cascade 49 | 699 | 892 | 314 | 21| 36 | 189 | 1111 153.73
waveleti || 481 | 1820 | 2719 98 | 36 | 393 | 521 | 3114 435.19
waveletk || 330 | 1020 | 1584 63 | 28 | 276 | 303 | 2043 256.49
whetp3 153 | 1376 | 1749 41 | 41 | 81 | 413 | 2213 438.92
dfir2dim || 615 | 1075 | 2336 || 292 | 28 | 615 | 286 | 3436 362.01

dlms 198 | 426 | 813 63 | 18 | 198 | 138 | 1252 119.64
mamu?2 750 | 684 | 1902 || 166 | 33 | 750 | 198 | 4101 331.82
dmatrix1 || 312 | 394 | 998 77| 18 | 312 | 109 | 1791 148.5

Table 10.5.: Characteristics of the ILPs generated for the ADSP-2106X SHARC in
the SILP formulation across loop boundaries.

respectively r shows the number of resource flow variables respectively register
flow variables that are explicitly specified as binary. The number of all integer
variables is presented in column V. In column p the numbers of the generated
precedence constraints (equations 5.9 —5.11) are listed. Column / shows the number
of life range constraints (equation 5.16), column s the number of serial constraints
(equation 5.12) and column rs the number of register serial constraints (equation
5.17). The total number of generated constraints is given in column C, and the last
column shows the size of the generated integer linear programs in the uncompressed
CPLEX LP-format [ILO99]. The total number of binary variables ranges from 134
to 2719, the number of constraints from 280 to 4101, and the size of the integer
linear programs ranges from 6.78 KBytes to 438.92 KBytes.

For the largest input programs (dncompup, histo, dfir2dim, mamu2 and for
dmatrix1l) the time limit of 8 hours leads to premature exits of the ILP-based
methods when the complete input program is modelled by a single integer linear
program. In order to achieve lower computation times for those programs the
optimisation scope should remain restricted to loop boundaries. The information

195

10. Experimental Results

about the programs only consisting of one basic block (dbiquado, dcompmul,
dcompupd, drealup, whetp3) is the same as in Tab. 10.2 and Tab. 10.3. In
Tab. 10.6, the results of the ILP-based optimisations across loop boundaries are
shown for the remaining 13 programs. Again column m represents the solution
method where a; denotes the approximation of isolated flows, as the stepwise ap-
proximation of isolated flows, a3 the stepwise approximation and e the exact, i.e.
provably optimal solution. In column ¢ the measured computation times are listed
and column I shows the number of compacted instructions in the result of each
method. Again a time limit of 8 hours is specified for each input program. The
computations where the time limit leads to a premature return of the ILP solver are
marked by ’(p)’ in Tab. 10.6. The upper bound on the length of path constraints
is set to three for all input programs except for cascade where the maximal path
length is set to two.

The results are visualised in Fig. 10.7 and Fig. 10.8 where Fig. 10.7 compares
the number of compacted instructions for each solution method and Fig. 10.8 shows
the computation times on a logarithmic scale. For 67% of the programs where the
exact ILP-based method is terminated after 8 hours, the best feasible solution
found up to this point of time is already optimal. Due to the premature exit
however the optimality of the result is not guaranteed. In nearly all cases, i.e. in
37 of the 39 approximative computations, the ILP-based approximations give an
optimal result (the optimality was always verified by hand). It becomes apparent
that for the large input programs the stepwise approximation of isolated flows is
faster than the approximation of isolated flows while the computation time of the
stepwise approximation again is subject to significant variations depending on the
input program. For dlms, e.g., it is the fastest approximation while for dbiquadn
no result is obtained within 12 hours. For most of the programs listed, a result
can be produced by an ILP-based approximation in less than 10 minutes (except
for dbiquadn where the fastest result is produced by the stepwise approximation
of isolated flows in about 3.5 hours) while the computation time for an exact
solution exceeds 8 hours for 46% of the input programs. The maximal speed-up is
in the order of several magnitudes. Another observation is that no improvement
could be achieved over the optimisation restricted to loop boundaries. This can
be explained by several reasons: first the input programs offer few opportunities
of moving operations between basic blocks. Moreover, since all operations can be
executed in one clock cycle and the assignment of operations to resource types
is uniquely defined, there are no interdependencies between the scheduling and
resource allocation of different superblocks. Interdependencies are only caused by
the register usage; in the optimisations restricted to loop boundaries however no
disadvantageous decisions have been made due to the relatively low number of
overlapping life ranges.

196

10.1. Analog Devices ADSP-2106x SHARC
Name | m | 9] i T Name [m][9] i i
dconvolu | a7 | 1 4.2” | 14 || dnrealup | a1 | 1 1h 13’ 18.76” | 23
as 8.7 | 14 as 48’ 40.19” | 23
as 3.29” | 14 as 6 22.13” | 23
e 5.01” | 14 e 8h 1’ 42.4”(p) | 23
ddotprod | a1 | 1 37 21.03” | 20 || dft a; | 1 10.4” | 14
a 3’ 8.09” | 20 as 30.63” | 14
as 2 10.05” | 20 as 58.56” | 14
e 1h 24’ 18.21” | 20 e 7.67" | 14
dfir ar | 1 84.62” | 17 || fir ar | 1 2.65” 8
as 2’ 8.59” | 17 as 8.14” 8
as 2.7 |17 as 443 | 8
e 31’ 25.88” | 17 e 1.3” 8
dmatix3 | a7 | 1 50.23” | 22 || waveleti | a1 | 1 4h 16’ 44.84” | 35
a 49.78” | 22 as 2’ 51.13” | 36
as 3’ 34.87" | 22 as 1h 45’ 2.53” | 35
e 7 42,67 | 22 e 8h 1’ 57.46” (p) | 39
dmatrix2 | a1 | 1 44’ 57.99” | 32 || cascade a; | 1 5’ 32.54” 9
as 9’ 22.32” | 32 as 2’ 45.43” 9
as 5 10.64” | 32 as 27.95” 9
e 8h 1’ 8.65”(p) | 32 e 3.66” | 9
waveletk | a1 | 1 9 25.9” | 29 || dbiquadn | a1 | 1 | 9h 58’ 8.62”(p) | 43
a 40.22” | 29 as 3h 35’ 59.23” | 43
as 2’ 58.6” | 29 as >12h| -
e 8h 1’ 8.33”(p) | 30 e 8h 4’ 18.0”(p) | 43
dlms ar | 1 27 11.41”7 | 32
as 157 12.94” | 32
as 1’ 16.78” | 32
e 8h 32’ 25.97(p) | 32
Table 10.6.: Performance of the SILP-based optimisations for the ADsP-2106X

SHARC across loop boundaries.

197

10. Experimental Results

dconvolu

ddotprod

dfir

at a2 a3

dmat1x3 dmatrix2

waveletk

dims

dnrealup

waveleti

cascade

Figure 10.7.: Compacted instructions produced by the SILP-based optimisations
for the ADSP-2106X SHARC across loop boundaries.

198

10.1.

Analog Devices ADSP-2106x SHARC

dconvolu

10,00

.
4

atl a2 a3 e

ddotprod

10000,00.

1000,00.

100,00.

10,00

1,00

0,10

at a2 a3 e

dfir

10000,00,

1000,00.

100,00.

10,00.

1,00.

0,10.
al a2 a3 e

dmat1x3

dmatrix2

100000,00.

10000,00.

waveletk

100000,0

100000

1000,00- 1000,00-

100,00 100,00.

10,00. 10,00-

1,00. 1,00-

0,10 0,10

al a2 a3 e*
dims dnrealup dft
100000,0(100000,00-
10000,00; 10000,00.
1000,00. 1000,00-
100,00. 100,00
10,00- 10,00.
1,00 1,00.
0,10 0,10.
al a2 a3 e*
waveleti cascade

100000,00.
10000,00.
1000,00.
100,00.
10,00

1,00

010

EY a2 a3 e*

dbiquadn

100000,0
10000,00]
1000,00.

100,00.

2106X SHARC across loop boundaries.

Figure 10.8.: CPU-time in seconds of the SILP-based optimisations for the ADSP-

199

10. Experimental Results

10.2. Philips TriMedia TM1000

10.2.1. Architecture

The TriMedia TM1000 is a media processor for high-performance multimedia ap-
plications such as real-time processing of audio, video, graphics and communi-
cations datastreams. It contains in a single chip a 100 MHz VLIW CPU (the
DSPCPU), DMA-driven multimedia input/output units, DMA-driven multimedia
coprocessors that operate independently and in parallel with the DSPCPU, a high-
performance bus, and the memory system. The block diagram of the TM1000 is
shown in Fig. 10.9.

SDRAM
H
Main I‘Vk‘amory
Interface
Video In —> «—» VLD Coprocessor
Audio In > Video Out T
-« Audio Out [> Timers

Synchronous

7 IClnterface Serial Interface

Instr. 1 le——» Image
Cache Coprocessor

VLIW CPU

Data
Cache [«—» [«—» PCI Interface [«

Figure 10.9.: Philips TriMedia TM1000 block diagram.

The DSPCPU is a 32-bit VLIW processor containing 128 general-purpose regis-
ters. The registers are not separated into banks; operations can use any register for
any operand. The registers are named r0 ...r127; the register r0 always contains
the integer value 0, and the register r1 the integer value 1. The DSPCPU contains
separate 16-KB data and 32-KB instruction caches. The data cache is dual-ported
to allow two simultaneous accesses, and both caches are eight-way set-associative
with a 64-byte block size. The memory is byte-addressable.

The architecture supports unsigned integers, signed integers in two’s comple-
ment representation and single-precision IEEE-compliant floating-point arithmetic.
The TriMedia has a load/store architecture; memory accesses are restricted to
dedicated load/store operations. The instruction set includes common RISC op-
erations, multimedia operations accelerating standard video compression and de-
compression algorithms, special DSP operations that perform SIMD functions and
IEEE-compliant floating-point operations. Multimedia operations are defined for

200

10.2. Philips TriMedia TM1000

32-bit, 16-bit and 8-bit operands. As an example the dspuquadaddui operation
implements four eight-bit additions; it treats the first operand of each addition as
unsigned, the second as signed, and produces an unsigned result for each addition.
The execution time of the operations ranges from one clock cycle for the most
common operations up to 17 clock cycles.

The DSPCPU issues one long instruction every clock cycle. Each instruction
word is composed of five microoperations that are issued simultaneously. Certain
restrictions exist in the choice of what operations can be packed into one instruc-
tion. For example, the DSPCPU allows no more than two load/store operations
to be packed into a single instruction; a detailed overview of the feasible operation
groupings is given in Tab. 10.7. Also, no more than five results can be written dur-
ing any one cycle. There are 27 functional units including integer and floating-point
arithmetic units and data-parallel digital signal processing units. A schematic view
of this architecture is given in Fig. 10.10.

SDRAM

‘ Instruction Cache ‘

‘ Issue Slot 1 ‘ ‘ Issue Slot 2 ‘ ‘ Issue Slot 3 ‘ ‘ Issue Slot 4 ‘ ‘ Issue Slot 5 ‘

CCCECEEEEEL

Functional Units

Figure 10.10.: Issue slots and functional units of the DSPCPU.

In the TM1000 architecture, most operations are optionally guarded. A guarded
operation executes conditionally depending on the value of an explicitly specified
general purpose register. Guarding controls the effect on the whole programmer
visible state of the system, i.e. register values, memory content and device state.

10.2.2. Performance of the Optimisers

Since the DSPCPU disposes of a homogeneous general-purpose register file, the
register assignment does not influence the available parallelism and thus can be
neglected. However the instruction scheduling interacts with the resource allo-
cation problem. Each operation has to be explicitly assigned to an issue slot of
the instruction word. The TriMedia TmM1000 architecture imposes restrictions on
the way operations can be placed within an instruction. The operations can be
grouped into several categories that are implemented by a certain functional unit
type. The feasible mappings of those categories to issue slots are summarised in
Tab. 10.7; the individual mapping determines the functional unit binding. Thus in

201

10. Experimental Results

Functional Unit Type ‘ Slot1 ‘ Slot2 ‘ Slot3 ‘ Slot4 ‘ Sloth ‘

const X X X X X
alu X X X X X
dmem X X
dmemspec X
shifter X X

dspalu X X

dspmul X X

branch X X X

falu X X

ifmul X X

fcomp X

ftough X

Table 10.7.: Mapping between operation categories and issue slots.

the TDL description the issue slots are defined as virtual resources and the resource
allocation problem is concerned with mapping the microoperations to issue slots.
Moreover, the operations have to be synchronised with respect to the result bus;
no more than five operations may write their result simultaneously on the bus.
Since not all microoperations have the same execution time, an explicit synchro-
nisation is necessary. Thus for the TriMedia Tm1000 the phase coupling problem
between instruction scheduling and resource allocation has to be addressed. The
corresponding optimisers are generated automatically from the TDL-description;
the exact ILP-based methods allow an optimal solution of the problem of phase-
coupled instruction scheduling and resource allocation with respect to the given
code selection and the optimisation scope.

The computation routines of the dspstone benchmark are compiled to assembly
code by the highly optimising Philips tmcc compiler. Additionally two hand-crafted
assembly programs, dctk and fidctk, are evaluated which are excerpts of a discrete
cosine transform and an inverse discrete cosine transform. In Tab. 10.8 an overview
of the characteristics of the input programs is given. For each input program the
number of machine operations and of compacted instructions are listed together
with the number of basic blocks and the number of loops. The number of basic
blocks and loops differs from the figures of Tab. 10.1 which is due to the loop
unrolling and if-conversion algorithms employed by the tmcc compiler. The input
programs contain between 9 and 95 microoperations; the hand-crafted assembly
programs use special digital signal processing operations of the TriMedia TM1000
and offer a high degree of available parallelism.

The experimental results show that for the TriMedia TmM1000 the time-indexed
OASIC formulation is better suited than the order-indexed SILP formulation. In
the following first the results of the optimiser using the OASIC modelling are

202

10.2. Philips TriMedia TM1000

‘ Name ‘ Operations ‘ Instructions ‘ Blocks ‘ Loops ‘
dbiquadn 41 18 2 1
dbiquado 21 13 1 0
dcompmul 19 11 1 0
dcompupd 19 11 1 0
dconvolu 47 21 2 1
ddotprod 13 10 1 0
dfir2dim 76 76 2 1
dfir 20 17 2 1
dlms 73 25 3 2
dmat1x3 31 29 2 1
dmatrixi 73 45 2 1
dmatrix2 74 o1 3 1
dncompup 33 14 2 1
dnrealup 41 15 2 1
drealup 9 9 1 0
mamu?2 62 20 3 1
whetp3 11 34 1 0
dctk 95 21 1 0
fidctk 74 15 1 0

Table 10.8.: Statistics about the input programs for the TriMedia Tm1000.

203

10. Experimental Results

summarised; then the optimiser using the SILP formulation is presented.

OASIC-based Optimiser

Due to the significant instruction-level parallelism of the TriMedia Tm1000 it
is reasonable to exploit the schedule of the input program when computing the
alap values of each operation. Since the code produced by the tmcc compiler
often is already optimal, for the optimiser using the OASIC formulation the length
of the input schedule is incremented by the longest execution time of any input
operation and this value is used as a heuristic upper bound for the computation
of the alap control steps. This way, the knowledge about the input schedule is
exploited and there is enough scheduling freedom for efficiently computing the
ILP-based approximation.

Optimisations restricted to Loop Boundaries. Again in a first phase the op-
timisations are evaluated where the superblock enlargement is stopped at loop
boundaries. Tab. 10.9 summarises the result of the optimisations. The computa-
tion method is listed in column m, where a denotes the stepwise approximation,
e the exact solution when the schedule of the input programs is used as a start
solution and n the exact solution when no start solution is used. Column S shows
the number of generated superblocks for each program, column ¢ the total required
CPU-time and the number of compacted instructions in the result of each method
is shown in column /. The input programs dfir2dim and matrixl have basic
blocks that are too large to allow the computation of an ILP-based solution within
a time limit of 8 hours. Therefore for those programs a threshold of 50 operations
for the maximal size of any superblock is specified (see Chap. 7).

Again the ILP-based solutions are compared to the result of the generic list
scheduling algorithm presented in Sec. 9.3. The list scheduling is heuristically
coupled with the resource allocation and selects an available functional unit on
the fly when scheduling a machine operation. The results of the list scheduling
algorithm are shown in Tab. 10.10. The optimal number of instructions (verified
by hand) is listed in column I,,, the number of instructions produced by the list
scheduling algorithm is shown in column 7, the percentage deviation of it from the
optimal solution in column A, and the number of instruction of the input program
is listed in column I;,.

The figures Fig. 10.11 — Fig. 10.14 give a visualisation of the experimental re-
sults. In Fig. 10.11 and Fig. 10.12 the number of compacted instructions in the
result of the ILP-based methods is compared to the schedule of the input pro-
grams and the result of the list scheduling algorithm. Again the vertical axes show
the number of compacted instructions, the horizontal axes the different compu-
tation methods. A visualisation of the computation time is given in Fig. 10.13
and Fig. 10.14; for each input program and each solution method the measured
computation time in seconds is shown on a logarithmic scale.

204

10.2. Philips TriMedia TM1000

Name ‘ m ‘S‘ t ‘IHName ‘ m ‘B‘ t ‘I‘
dbiquadn a 3 1.59” | 18 || dmatrixl | a, t50 | 4 27 4.01” | 38
e 2.93” | 18 e, t50 27 28.91” | 37
n 20.91”7 | 18 n, t50 4’ 52.44” | 37
dbiquado a 1 6.23” | 13 || dmatrix2 a 5 33’ 55.28” | 45
e 0.377 | 13 e 5 9.33” | 45
n 0.73” | 13 n 5 10.8” | 46
dcompmul a 1 4.34” | 11 || dncompup a 3 21.77 | 14
e 0.48” | 11 e 1.42” | 14
n 227 | 11 n 28.57"7 | 14
dcompupd a 1 4.29” | 11 || dnrealup a 3 34.46” | 15
e 0.477 | 11 e 1.92” | 15
n 1.77] 11 n 1.917 | 15
dconvolu a 3| 544.79” | 21 || drealup a 1 1.09” | 9
e 5’ 34.95” | 21 e 0.21” | 9
n 107 30.82” | 21 n 0.24” | 9
ddotprod a 1 1.817 | 10 || mamu?2 a 4 176.32” | 19
e 0.26” | 10 e 10.25” | 19
n 0.36” | 10 n 2’ 30.29” | 19
dfir2dim | a, t50 | 4 | 24’ 19.14” | 58 || whetp3 a 1 172.98” | 34
e, t50 3’ 3.18” | 58 e 24”7 | 34
n, t50 27 9.38” | 58 n 3.64” | 34
dfir a 3| 1746.17” | 17 || dctk a 1 9’ 30.25” | 22
e 174.9” | 17 e 30.217 | 21
n 37 26.56 | 17 n 1h 20’ 7.75” | 21
dlms a 41 1°49.03” | 26 || fidctk a 1 370.22” | 16
e 4.17 | 25 e 6.93” | 15
n 4’ 22.0”7 | 27 n 18’9.06” | 15
dmat1x3 a 3| 1741.44” | 25
e 16.16” | 25
n 26.23” | 25

Table 10.9.: Performance of the OASIC-based optimisations for the TriMedia

TM1000 not exceeding loop boundaries.

205

10. Experimental Results

dcompmul

dbiquado

dbiquadn

° ~
o X Y
5 2 £ 3 %
3 £] 3 1
e} ° £ 5 °
-] -]
-
3 X 5 3
= £ 3
W = s.m % £
-] < £
g 5 5 3
3 L]
2 o
)
g £ x 2 g
- 3
o S = £
€ X © 5 £
] & £]
= o
o o ° < E
o <

Figure 10.11.: Compacted instructions produced by the OASIC-based optimisa-

tions for the TriMedia TM1000 within loop boundaries (1).

206

10.2. Philips TriMedia TM1000

Name ‘ t[sec] ‘ I ‘ 1, ‘ A[%) ‘ I, H Name ‘ t[sec] ‘ I ‘ 1, ‘ Ao[%) ‘ I,
dbiquadn | 0.33 | 20 | 18 11.1 | 18 || dmatrixl | 1.89 | 42 | 37 | 13.51 | 45
dbiquado | 0.06 | 14 | 13 7.7 | 13 || dmatrix2 | 1.83 | 46 | 45 22| 51
dcompmul | 0.05 | 11 | 11 0| 11 || dncompup | 0.20 | 14 | 14 0| 14
dcompupd | 0.05 | 11 | 11 0| 11 || dnrealup | 0.31 | 16 | 15 6.67 | 15
dconvolu | 0.48 | 21 | 21 0| 21 || drealup 002, 9| 9 0| 9
ddotprod | 0.03 | 10 | 10 0| 10 || mamu2 1.14 | 19 | 19 0 20
dfir2dim | 1.95 | 57 | 57 0| 76 || whetp3 0.04 | 34 | 34 0| 34
dfir 0.56 | 19 | 17 | 11.76 | 17 || dctk 3.89 |30 | 21 | 42.85| 21
dlms 1.67 | 29 | 25 16 | 25 || fidctk 1.87 | 19 | 15 | 26.67 | 15
dmat1x3 0.17 | 25 | 25 029

Table 10.10.: Results of list scheduling.

fidctk

Figure 10.12.: Compacted instructions produced by the OASIC-based optimisa-

tions for the TriMedia TM1000 within loop boundaries (2).

207

10.

Experimental Results

dbiquadn

100.

: . 3
[N
o
5
@

dbiquado

dcompmul

s
2 <

[

@

El

@

dcompupd

[
@
El
@
s
3 ° a
2 2 - 3
[
@
El
2

dconvolu

ddotprod

dfir2dim

2 .3 8
o
o
=3
7
2 . 3 8
o
o
=3
&

dims

1000.

dmat1x3 dmatrix1 dmatrix2
1000- 10000- 10000-
100. 1000- 1000.
100. 100.
10-
10. 10.
! 1 1
01 01 0,1
a e n Is a e n Is a e n Is
dncompup dnrealup drealup

100.

° N
= = 3
[
()
>
@
a2 2
o
@
El
@
°
=} ° 2
2 2 N 3
[
@
El
@

0,

mamu2

1000.

10

° N
2 . 3 8

o

@

El

@

dctk

10000.

1000.

2 .3 8
o
]
=]
@

Figure 10.13.: CPU-time in seconds of the OASIC-based optimisations for the Tri-

208

Media TM1000 within loop boundaries (1).

10.2. Philips TriMedia TM1000

fidctk

Figure 10.14.: CPU-time in seconds of the OASIC-based optimisations for the Tri-
Media TM1000 within loop boundaries (2).

In most cases the ILP-based approximation produces optimal results, only for
26% of the input programs (dfir2dim, dlms, dmatrix1, dctk, and fidctk) the
number of compacted instructions exceeds the optimal number of instructions by
one. Another observation is that for dlms, and dmatrix2 the exact ILP-based
solution without using a start solution does not produce a globally optimal result.
This effect is due to the isolated optimisation of several superblocks. During the
optimisation of a superblock s the impact of the scheduling and allocation decisions
on subsequently addressed superblocks is not visible. Thus an optimal scheduling
and allocation of one superblock may not be optimal if the whole program is
considered. For dlms and dmatrix2 the input schedule corresponds to the globally
optimal solution. When using this schedule as a start solution the ILP optimisation
(method e) states its optimality and reports it as an optimal solution. If the input
schedule is not used as a start solution (method n), another solution is computed
that is locally optimal for all the superblocks but does not represent a globally
optimal solution. For both input programs, the scheduling and allocation decisions
of the stepwise approximation lead to a better overall solution than method n.
For dfir2dim all ILP-based optimisations exceed the globally optimal number of
instructions by one while the list scheduling can produce an optimal result. In this
case the suboptimality is due to the splitting of the largest basic block into two parts
which is required to limit the computation time. In this case an improvement can
be achieved by more elaborate partitioning algorithms for splitting basic blocks
which is a topic of future research. So the notion of optimality has to be used
carefully; the exact ILP-based methods produce optimal results with respect to
the optimisation scope and the incorporated code generation problems.

The schedule produced by the generic list scheduling algorithm exceeds the
optimal number of instructions on average by 7.29%. The programs where it gives
an optimal result offer not enough instruction-level parallelism for the allocation
decisions to negatively affect the code quality. The two hand-crafted assembly
programs however offer a high level of parallelism and make use of special DSP
operations that can only be assigned to few issue slots. For those programs, the
interaction between instruction scheduling and resource allocation has a significant
effect which becomes apparent in the result of the list scheduling algorithm. The
optimal number of instruction is exceeded by more than 25% respectively more
than 42%. The computation time of the ILP-based approximation has properties

209

10. Experimental Results

similar to the SILP-based approximations. Due to the approximation setup time,
for the smaller input programs the exact ILP-based solution takes less time than
the ILP-based approximation. With increasing size of the superblocks however the
computation time is reduced compared to the exact solution (method n). For all
investigated programs, an ILP-based solution could be obtained within less than 6
minutes. Another observation is that using the schedule of the input code as a start
solution can speed up the calculation of the exact solution significantly (method
e). Thus proving a given solution to be in fact optimal can be done comparatively
fast. The list scheduling algorithm again produces its results within some seconds.

Optimisations across Loop Boundaries. In this paragraph the results of the op-
timisations when superblocks are maximally extended across loop boundaries and
each input program is modelled by an individual integer linear program are shown.
In Tab. 10.11 the most important characteristics of the generated integer linear
programs are shown. Column z shows the number of binary variables associated
with functional unit resources, and column w the number of binary variables as-
sociated with the result bus. Column V lists the total number of binary variables.
The number of precedence constraints is given in column p, the total number of
constraints in column C, and the last column lists the sizes of the generated integer
linear programs in the CPLEX LP-format [ILO99]. Since the size of the integer
linear program generated for dfir2dim exceeds 500 MB the sizes of the ILPs of
each superblock are shown when no loop boundaries are crossed!. The total num-
ber of binary variables ranges from 198 to 11562, the number of constraints from
307 to 68432, and the size of the integer linear programs ranges from 32.52 KB to
166.2 MB.

The optimisation results of the input programs consisting of one basic block
(dbiquado, dcompmul, dcompupd, ddotprod, drealup, whetp3, dctk, and fidctk)
are the same as in Tab. 10.9. No ILP-based solution could be obtained within 8
hours for the ILPs modelling the complete input program in the case of dmatrix2,
dfir2dim, dlms, and dmatrixl. In order to achieve lower computation times for
those programs the optimisation scope should remain restricted to loop boundaries.
For the remaining programs the results of the optimisations exceeding loop bound-
aries are shown in Tab. 10.12. Column m lists the computation method where «a
denotes the stepwise approximation, e the exact solution when the input schedule
is used as start solution and n denotes the exact solution computed from scratch.
Column ¢ shows the measured CPU-time and column I the number of compacted
instructions in the result of each method. The results are visualised in Fig. 10.15
and Fig. 10.16, where Fig. 10.15 displays the number of instructions in the result
code and Fig. 10.16 compares the measured computation times in seconds on a
logarithmic scale.

The results show again a high solution quality of the ILP-based approximation;

1One superblock corresponds to the exit block which for this program is empty; thus only three
superblocks are listed (cf. Tab. 10.9).

210

10.2. Philips TriMedia TM1000

Name | 2| w| V] »p] C | size[KB] |
dbiquadn || 1465 | 349 | 1815 | 480 | 4366 2361.78
dbiquado 283 94 378 86 660 81.59
dcompmul 363 95 459 98 782 102.70
dcompupd || 318 95 414 114 7 105.09
dconvolu || 2334 | 677 | 3012 | 1181 | 11098 7096.57
ddotprod 201 60 262 34 422 46.49
dfir2dim 228 48 276 0 323 40.47

2970 | 671 | 3641 || 876 | 13125 || 19255.58
1609 | 449 | 2058 | 595 | 5448 2121.04
dfir || 1834 | 469 | 2304 | 980 | 7111 2617.14
dlms || 3560 | 918 | 4478 || 2274 | 18693 | 11308.50
dmat1x3 || 2069 | 502 | 2572 | 7880 625 8404.96
dmatrix1 || 8312 | 1801 | 10113 || 3102 | 55754 || 124782.44
dmatrix2 || 9419 | 2142 | 11562 || 3595 | 68432 || 170159.07
dncompup || 1264 | 311 | 1576 || 478 | 3808 1556.68
dnrealup || 1447 | 372 | 1820 || 674 | 4918 2022.52
drealup || 154 43 198 16 307 32.53
mamu2 || 3733 | 888 | 4622 || 1336 | 13785 9886.20
whetp3 || 695 | 245 941 | 222 | 2942 1640.54
detk || 1998 | 915 | 3312 || 891 | 6212 1404.74
fidctk || 1557 | 388 | 1945 || 585 | 3996 1084.44

Table 10.11.: Characteristics of the ILPs for the TriMedia TM1000 in the OASIC
formulation.

211

10. Experimental Results

dbiquadn dconvolu

dmat1x3 dncompup dnrealup

Figure 10.15.: Compacted instructions produced by optimisations across loop
boundaries.

dbiquadn dconvolu dfir

10000
10000. 1000.
1000.

100.

o1

dncompup dnrealup

1000.

100.

o1

mamu2

.2 8
o 23 &
2 .338¢8%8
[
@
=]

Figure 10.16.: CPU-time in seconds of optimisations across loop boundaries.

212

10.2. Philips TriMedia TM1000

Name [m][9] i [7]
dbiquadn | a | 1 3 31.73” | 18
e 5.23” | 18
n 4’ 33.11”7 | 18
dconvolu | a | 1 43’ 37.78”7 | 21
e 11h 27 25.42” | 21
n 19h 47’ 20.76” | 21
dfir a |1 18’ 39.23” | 18
e 32°0.28” | 17
n 1h 30’ 15.15” | 17
dmat1x3 a |1 9’ 22.64” | 25
e 4’ 12.53" | 25
n 6’ 6.25”7 | 25
dncompup | a | 1 4’ 0.16”7 | 14
e 11.92” | 14
n 5 9.81” | 14
dnrealup | a | 1 9’ 52.27” | 16
e 4’ 47.33” | 15
n 127 11.56” | 15
mamu?2 a | 1| 2h 32 22.36” | 20
e 4h 50’ 34.95” | 19
n 5h 33’ 4.93” | 19

Table 10.12.: Performance of the OASIC-based optimisations for the TriMedia
Twm1000 across loop boundaries.

213

10. Experimental Results

for 4 input programs it produces an optimal result and for three input programs,
the optimal number of instructions is exceeded by 1. It becomes apparent that for
large input programs the computation time of the ILP-based approximation can
be reduced significantly when compared to the exact ILP-based solutions. For 4
of the 7 input programs, an ILP-based solution could be obtained within less than
10 minutes; for the largest input program, mamu2, whose ILP contains 4622 binary
variables and 13785 constraints, the approximative ILP-based solution could be
obtained in 2.5 hours.

SILP-based Optimiser

In the following the evaluation of the optimiser using the SILP formulation is
presented for the TriMedia TmM1000. For most operations several issue slots are
available that are modelled by different resource types in the generated integer
linear programs. The consequence for the SILP formulation is that there is a large
number of alternative resource flows for each operation. Thus a large number
of binary variables is required which results in high computation times. In the
experimental evaluation presented in the following the performance of the SILP-
based optimiser is investigated when the superblocks are maximally extended across
loop boundaries. Since for the larger input programs this results in computation
times of several hours, only the results of the shorter programs are listed. By
explicitly specifying an upper bound U for the execution time of the input program
when calculating the alap control steps for each operation, U is imposed as an
upper bound for the length of any feasible schedule produced by the ILP-based
approximations. Starting from the length of the input schedule, this bound is
incremented for each ILP-based approximation until it finds a feasible schedule
not exceeding this bound.

The characteristics of the generated integer linear programs are shown in
Tab. 10.13 where x denotes the number of flow variables for functional units, w the
number of flow variables associated with the result bus, and V' the total number
of binary variables. The number of precedence constraints is listed in column
p, column s shows the number of serial constraints for functional units, ws the
number of serial constraints for the result bus and column C' lists the size of the
generated ILPs. It is obvious that the number of flow variables and of constraints is
significantly larger than those generated by the ADSP-2106X SHARC-optimiser for
comparable program sizes (cf. Tab. 10.5). Moreover we can see that the required
number of binary variables also is considerably larger than in the integer linear
programs of the OASIC formulation (cf. Tab. 10.11).

The results of the experimental evaluation are shown in Tab. 10.14. Again,
column m shows the computation method where a; denotes the approximation
of isolated flows, a; the stepwise approximation of isolated flows, as the stepwise
approximation and e the exact solution. Additionally the combinations of the
approximations aj, as and az with the approximation of isolated operations (a4)
are investigated. The required CPU-time is shown in column ¢, the number of

214

10.2. Philips TriMedia TM1000

Name | 2] w]| V] p| s]| ws] C || size[KB] |
dbiquado || 2120 | 206 | 2327 || 38 | 216 | 206 | 2508 277.89
dcompmul || 2467 | 167 | 2635 || 34 | 201 | 167 | 3282 332.41
drealup 522 | 34| 557 || 12| 43| 34 641 59.81
dmat1x3 7983 | 546 | 8529 || 60 | 668 | 546 | 24609 || 1644.99
ddotprod || 1000 | 82 | 1083 || 21 | 91 | 82 1075 124.68
dcompupd || 1969 | 160 | 2130 || 42 | 181 | 160 | 2822 274.90
whetp3 558 | 54| 613 || 17| 62 | 54 576 68.67

Table 10.13.: Characteristics of the ILPs generated for the TriMedia TmM1000 in
the SILP formulation across loop boundaries.

compacted instructions in the result of each method in column 1.

When analysing the results of the ILP-based approximations we can see that
the stepwise approximation produces the best results for the TriMedia Tm1000;
for all listed input programs an optimal result is computed. Due to the large
number of alternative functional units between which a selection has to be made,
the efficiency of the approximations based on the resource flows decreases. Since
the approximation of isolated flows and the stepwise approximation of isolated
flows address the resource types one after another, the operations are often fixed
as late as possible to a resource type, i.e. when the iteration reaches the last
resource type available for the operation. If this is the last available resource
type for many different operations, they will all be assigned to that resource type,
although a more efficient resource usage would have been possible. Since there is
exactly one instance of each resource type, i.e. of each issue slot, this results in
lower instruction-level parallelism. For dbiquado, both approximations exceed the
optimal number of instructions by one, for dcompmul even by three. For the other
input programs they produce an optimal result.

When combining the approximation of isolated flows (a;) or the stepwise ap-
proximation of isolated flows (as) with the approximation of isolated operations
(a4) the code quality is improved for dbiquado and dcompmul but is decreased for
ddotprod. The approximation of isolated operations iterates through all opera-
tions of the input program and decides which resource each operation should be
mapped to. This results in a greedier resource assignment which, depending on
the input program, can lead to a code improvement or deterioration. The results
indicate that the combination of the stepwise approximation with the approxima-
tion of isolated operations is not profitable; for most input programs it leads to a
decrease of code quality. Due to solving an individual mixed integer linear program
for each operation prior to approximation a;, as or as, the computation time of
the combined approximations is usually higher than without this combination.

For the example programs shown in Tab. 10.14 an ILP-based approximative
solution could always be obtained less than one minute. For the smaller input
programs the approximation of isolated flows and the stepwise approximation of

215

10. Experimental Results

Name m t ‘ I H Name m t ‘ I ‘
dbiquado ay 3.12” | 14 || ddotprod ay 1.077 | 10
a1+ aq 19.94” 13 a1 + aq4 3.52” 11
as 15.817 | 14 as 3.42” | 10
as + ay 25.66” | 13 as + aq 517" | 11
as 12.00” | 13 as 4.88” | 10
a3 + ay 22.56” | 13 a3 + a4 4.48” | 11
e 2.117 | 13 e 2.17" | 10
dcompmul ap 11.57” | 14 || dcompupd ay 6.077 | 11
a1+ ay 22.45” | 12 a1 + aq 16.377 | 11
as 22.96” | 14 as 27417 | 11
as + ay 26.70” | 12 ao + ay 23.887 | 11
as 53.69” | 11 as 17877 | 11
az + ay 25.20” | 13 as + aq4 19.78” | 11
e 4h 21’ 38.08” | 11 e 7h 14’ 9.87" | 11
drealup ay 0.45” | 9 || whetp3 a; 0.44” | 34
a; + ay 0.97” 9 a; + ag 1.30” | 34
as 1.077 | 9 as 1417 | 34
a9 + a4 1.43” 9 Ao + Q4 2.177 | 34
as 0.747 | 9 as 3.80” | 34
as + ay 1.17 9 as + a4 2.40” | 34
e 0.30" | 9 e 0.35” | 34
dmat1x3 a1 54.84” | 25
a1+ ay 5 23.87” | 25
as 2" 1.37 | 25
a9 + a4 4 21.717 25
as 6’ 21.12” | 25
a3 + ay 6’ 19.31” | 26
e 5 8.63” | 25
Table 10.14.: Performance of the SILP-based optimisations for the TriMedia

216

TM1000 across loop boundaries.

10.3. Summary

isolated flows mostly require more time than the stepwise approximation; for the
largest input program, dmat1x3, however they are almost 7 times faster. dcompmul
and dcompupd show that the ILP-based approximations can reduce the compu-
tation in the order of several magnitudes in comparison with the exact solution.
With increasing program size however the computation time of the SILP-based
optimisations increases fast so that also the approximative methods take several
hours.

10.3. Summary

Because of the exponential space consumption of the OASIC model when integrat-
ing the register assignment, the optimiser for the ADSP-2106X SHARC is based
on the SILP modelling. Our experimental results suggest that input programs up
to a size of 30-50 machine operations can be modelled by a single integer linear
program. For input programs exceeding this size it is advisable to stop the su-
perblock enlargement at loop boundaries or to specify an explicit upper bound on
the maximal superblock size. Then the program is covered by several superblocks
each of which is modelled by an individual integer linear program. This can also
imply splitting single basic blocks exceeding the code size threshold so that each
partition is represented by a single superblock. In our experimental evaluation,
solving the integer linear program that modelled the complete input program led
to a computation time of more than 8 hours for 6 out of 23 investigated programs.
For those programs the superblock construction was stopped at loop boundaries;
then in most cases an ILP-based solution could be obtained within a few min-
utes. A splitting of basic blocks was only required for two input programs in order
to restrict the optimisation time. In the experimental evaluation, bounds for the
maximal superblock size have only been specified if the computation time would
have exceeded several hours. The computation times can further be reduced by
choosing smaller size limits. An additional speed-up can be achieved by specifying
a time limit for the ILP-solver after which the best feasible solution found so far
is returned.

The variation of the maximal superblock size for which a fast ILP-based solu-
tion can be obtained is caused by the individual properties of the input programs.
Here the number of precedence constraints, overlapping life ranges and irregular
hardware constraints like the explicit parallelisation prohibition of machine oper-
ations have to be considered as well as the number of generated path constraints.
The maximal length of the paths modelled by path constraints can be bounded by
an explictly specified parameter. Our results indicate that small bounds can be
chosen without causing infeasibility. Thus the number of path constraints can be
assumed to be very small in spite of their exponential worst case number.

The experimental evaluation shows that ILLP-based approximations can reduce
the computation time by orders of magnitude compared to the exact solution. In
most cases the approximations produce an optimal result; the optimal number of

217

10. Experimental Results

instructions was only exceeded in 5 of 108 approximative computations and in
one case the stepwise approximation could not produce its result within 12 hours.
Four of the suboptimal results were produced by the stepwise approximation, one
by the stepwise approximation of isolated flows. So for the ADSP-2106X SHARC
the approximation of isolated flows which always produced an optimal result and
the stepwise approximation of isolated flows which produced an optimal result
in all but one case are superior to the stepwise approximation. For larger input
programs, the computation time required by the stepwise approximation of isolated
flows is considerably smaller than that of the approximation of isolated flows.
The computation time of the stepwise approximation strongly depends on the
input program and is subject to large variations. Another observation is that the
limitation of the superblocks to loop boundaries did not negatively affect the code
quality. This can be explained by the fact that all operations have an execution time
of one clock cycle and the assignment of operations to functional units is uniquely
determined. Thus interdependencies between the superblocks are only caused by
the register assignment. For the investigated programs the number of overlapping
life ranges was small enough so that an optimal register assignment could always be
found, also when the input program was covered by several superblocks. The list
scheduling algorithm is usually faster than the ILP-based methods; it produces its
results in a few seconds. Although the register assignment in the input programs for
the list scheduling algorithm is always optimal, its code quality is lower than that
of the ILP-based methods. The largest deviation in the investigated programs is
21.05%; with a suboptimal register assignment of the input program this difference
can grow significantly larger. The code produced by the gcc-based g21k compiler
exceeds the optimal number of instructions on average by 8.2%.

The architecture of the TriMedia TmM1000 is close to the worst-case architecture
for the SILP formulation. There is a large number of alternative resource types
(modelling the issue slots) between which a selection has to be made and of which
exactly one instance exists. This leads to a large number of flow variables so that
the computation time of the SILP-based optimiser for the TriMedia Tm1000 is
comparatively high. Although no register assignment is incorporated the code size
limit in which fast ILP-based solutions can be obtained is 30-40 microoperations.
Due to the overlapping resource usage (e.g. shift operations can be assigned to
issue slots 1 and 2, dspalu operations to slot 2 and 3), the code quality of the
approximation of isolated flows and the stepwise approximation of isolated flows
decreases; they exceed the optimal number of instructions in two of seven input
programs. The combination of these approximations with the approximation of
isolated operations led to an improvement of code quality in two cases, in one case
to a deterioration. The effect of the combined approximations is a greedier resource
assignment whose efficiency depends on the input program. For the TriMedia
TM1000, the stepwise approximation of the SILP formulation produced the best
results; it gave optimal results for all investigated programs.

For the TriMedia TM1000, the OASIC modelling outperforms the SILP for-
mulation. With tight upper bounds on the execution time of the input program

218

10.3. Summary

the number of binary variables of the integer linear programs in the OASIC for-
mulation is significantly lower than in the SILP formulation. The experimental
evaluation indicates that input programs containing up to 70-100 microoperations
can be modelled by a single integer linear program with acceptable computation
times. For input programs exceeding this size it is again advisable to stop the
superblock enlargement at loop boundaries or to specify an explicit upper bound
on the maximal superblock size. For two of 19 investigated programs a splitting of
basic blocks and for additional two programs a restriction of superblocks to loop
boundaries were required to limit the computation time. Increasing the number of
superblocks covering the input program can lead to a deterioration of the solution
quality; this has been observed in three cases. The reasons are the restrictions
of the resource assignment in combination with the fact that the execution of op-
erations can take several machine cycles. Thus there is a trade off between the
required computation time and the achieved code quality so that within the ILP-
based methods the code quality can be scaled. The experimental evaluation shows
that while the code quality of the tmcc compiler is already very high, in some
cases it could be improved significantly. Another observation is that proving an
optimal input solution to be optimal can be done comparatively fast by exactly
solving the ILPs using the schedule of the input program as a start solution. The
code quality of the ILP-based approximation is high. In 18 of 26 cases it produced
an optimal result; for the remaining programs, the optimal number of instructions
was exceeded only by one. For large input programs the approximative method
allows to reduce the computation time significantly when compared to the exact
solution. The list scheduling algorithm always produced its results in a few sec-
onds; the generated code however exceeded the optimal number of instructions by
up to 42%.

To summarise, the PROPAN system has been successfully retargeted to generate
ILP-based postpass optimisers for two representative standard DSPs. Our experi-
mental evaluation indicates that the ILP-based methods can be applied to realistic
input programs representing digital signal processing kernels. The achieved code
quality is very high. For large input programs exceeding the size of typical DSP
kernels, the computation time can be kept low by restricting the application of
the ILP-based methods to hot code sequences which are often executed and whose
performance is critical, e.g. nested loops. Less important code sequences can be
addressed by faster heuristic approaches.

219

10. Experimental Results

220

11. Related Work

The PROPAN framework has been developed as a system for retargetable code
optimisations and analyses. In this chapter an overview of related work in the
fields of retargetable code generation and code generation for irregular architectures
is given with special emphasis to phase-coupling issues. Additional surveys of
related work are given in individual chapters where specific aspects of PROPAN
are presented in detail. Classical methods for code generation, especially for code
selection, register allocation and instruction scheduling are summarised in Chap. 2.
An overview of publications about the structure of scheduling and code generation
polytopes is given in Chap. 5. Chap. 6 includes a short summary of combinatorial
approximation algorithms and general search-based heuristic algorithms. A survey
of related work in the field of hardware description languages is given in Sec. 8.1.

The following overview is structured as follows: first a summary of historical
and contemporary retargetable compilers and code generators is given. It is only
during the last years that the issues of code generation for irregular architectures
have gained increased attention. Thus the presentation first covers retargetable
compiling for regular architectures and then turns to frameworks developed in the
area of embedded systems. Because of the importance of phase-coupled code gen-
eration a dedicated survey is given that concentrates on phase coupling approaches
based on graph-based heuristic methods. The last part of this overview focuses on
exact, search-based strategies that have been developed for code generation issues,
mostly for arriving at phase-coupled problem descriptions.

11.1. Retargetable Code Generation

One of the earliest retargetable systems in the area of code generation and opti-
misation is the PO system [DF80, DF84]. PO is a retargetable peephole optimiser
that takes assembly files as input. The basic idea of PO is to perform all op-
timisations on a machine-independent representation of the machine operations.
The input program is transformed into sequences of machine-independent register
transfer lists (RTL code). PO considers the combined effect of lexically adjacent
instructions and, where possible, it replaces such pairs with a single instruction
having the same effect. In order to retarget PO a grammar has to be provided that
describes a mapping of machine operations to RTL sequences. Only the operations
that are relevant for the peephole optimisations have to be specified. Descendants

221

11. Related Work

of PO are the vpo-system and the gcc compiler.

In [Gie82] an approach for automatically generating machine specific code op-
timisers is presented. The optimiser generator takes a machine description in an
ISP-like notation [Bar81], generates a machine specific program analyser based on
abstract interpretation, and a code transformer. The generation of the code trans-
former is based on a set of standard rules that are part of the generator, additional
user-defined rules and user-supplied implementation decisions. Supported trans-
formations are, e. g., elimination of redundant instructions, changes of addressing
modes, elementary replacements as in PO, or elimination of jump chains.

vpo [BDS88, BD94] is a portable code improver for RISC and CISC proces-
sors that reads RTL code sequences as an input and performs a set of efficiency-
increasing program transformations as, e. g., dead code elimination, common subex-
pression elimination, loop-invariant code motion, etc. There is no coupling of code
generation phases. A frontend that transforms the source program into the RTL
sequences has to be provided externally to vpo. vpo can be retargeted by specify-
ing how to map the RTL code to machine operations and by implementing a set
of target-specific C functions, e.g. in order to deal with calling conventions, etc.
Additional target specific optimisations can be incorporated into the system.

The GNU gcc [Sta98, Nil98] compiler is a widely used portable compiler that
has been retargeted to various processors. In contrast to vpo, gcc’s frontend and
backend are tightly coupled. The source code is transformed into sequences of
machine-independent register transfer operations (RTL code) that can be extended
by target-specific information. All code optimisations work on the RTL code;
there is no coupling of code generation phases. The code selection is based on
pattern matching. In order to retarget the compiler the user has to specify pattern
matching rules describing how to generate machine operations from the RTL code;
for complex instructions it may be necessary to provide dedicated C functions.
Additional information about the target architecture is provided in the form of C
data structures and macros such as, e.g., endianess, the assembly representation
of registers, delay slots, etc. Since the machine specification of gcc represents
basically the implementation of the code selector, it tends to be very complex. gcc
has been primarily designed for RISCs and CISCs; the code quality for irregular
architectures mostly is not satisfactory [ZSWS95, BL99.

lcc [FH91, FHP92, FH95] is a portable compiler for ANSI-C that has orig-
inally been developed for use in teaching. For the sake of simplicity no global
optimisations and only few local optimisations such as, e.g., the elimination of
common subexpressions are performed. The frontend of the compiler and parts
of the backend are architecture independent; the program parts required for code
generation have to be implemented separately for each target processor. The code
selector is based on tree pattern matching and is generated by the code selector
generator iburg. The developer has to provide a tree grammar for the instruction
set, of the target processor. Further architecture specific functions are required
for procedure calls, parameter passing, memory layout and for register allocation.
The focus of 1cc is on RISC and CISC architectures. Typical features of DSPs

222

11.1. Retargetable Code Generation

like heterogeneous register files are not supported. There is no phase coupling.

MARION [BHE91, Bra91] is a retargetable code generator system designed
specifically for RISC architectures. Modelled target architectures are the MIPS
R2000 [Kan87], the Motorola 88000 [Mot88], and the Intel i860 [Int89]. The code
generators are built from specifications of the target architectures written in the
machine description language MARIL (see Sec. 8.1). MARION uses the lcc front
end; the code selection is done by a recursive-descent tree pattern matcher. The
emphasis of the MARION system is on instruction scheduling, register allocation
and a heuristic phase coupling between both tasks. For instruction scheduling and
register allocation heuristic graph based algorithms are used. Instruction schedul-
ing is implemented by a list scheduling algorithm, and register allocation is based
on graph colouring [Cha82, CH90]. The core of MARION is a code generation pol-
icy called RASE where instruction scheduling and register allocation communicate
with each other. First, a pre-scheduler is invoked which computes schedule cost
estimates that allow the subsequent register allocation phase to quantify the effect
of its allocation choices on the scheduler. Then the final schedule is produced.

The Trimaran system [tri98] has especially been designed to provide a research
platform for code generation issues for VLIW architectures. It is based on a param-
eterisable research architecture called HPL-PD supporting features like speculative
and predicated execution, and compiler-visible cache hierarchy. The architecture
is parameterisable with respect to the sizes of register files, the number of func-
tional units and operation latency values; a dedicated machine description language
MpbEes [GHR96, RKA99] is available to specify the architecture parameters. The
highly optimising frontend IMPACT [HHR97] transforms the input programs into an
extensible intermediate representation. The backend ELCOR is parameterised with
respect to the machine specification and performs instruction scheduling, register
allocation and machine dependent optimisations. Its focus is on transformations
to increase the available parallelism like if-conversion [PS91, DT93] and software
pipelining algorithms [AJLA95].

The SALTO system [BCRS97] to our knowledge is the only existing retargetable
framework explicitly supporting efficiency-increasing transformations on assembly
programs apart from the retargetable peephole optimiser PO [DF80, DF84] and
the PROPAN framework. The basic idea of SALTO is to provide the user with
an environment that allows to implement tools for analyses and transformations
of assembly code. From the description of the target machine and the assembly
language a parser is generated that transforms the input program into a generic
control flow graph. The user is offered an object oriented interface to access and
manipulate the data structures representing the CFG.

While the previously presented frameworks mostly have primarily been devel-
oped for RISC and CISC architectures, the following approaches have been devel-
oped in the area of digital signal processing. MIMOLA [Now87, MS93] is a system for
hardware/software codesign of digital programmable processors. It comprises tools
for hardware synthesis and simulation and a retargetable code generator MSSQ
[Now87]. All components are based on the structural MiMOLA hardware descrip-

223

11. Related Work

tion language. The source language of MSSQ is a hardware-oriented superset of
the PASCAL language; it produces executable code. Code selection and register
allocation are performed locally for each expression tree of the intermediate rep-
resentation. In a subsequent compaction phase the final binary code is generated.
Since there are no global optimisations, the quality of the generated code is not
satisfactory [Leu97].

RECORD [Leu97, LM94, LM97] is a retargetable compiler for fixed point DSPs;
however the only target architecture actually modelled is the TT TMS320C25. The
input language of RECORD is DFL!; it produces executable binary code. The
target architecture is specified by the MIMOLA description language. In a first
stage, the RECORD system extracts the instruction set from the hardware-oriented
processor specification. All transport paths between registers and memory in the
data paths are enumerated yielding a superset of the feasible machine operations.
Additionally the binary encodings of the extracted operations are determined in
order to prevent violations of instruction word restrictions. The extracted machine
operations are represented as tree patterns. An implicit assumption is that all
machine operations can be executed in one clock cycle. From the tree patterns a
tree grammar is synthesised that is used as input of the code selector generator
iburg [FHP92]. The code selection is followed by a register allocation phase and a
dedicated algorithm for calculating the layout of program variables in memory in
order to efficiently use addressing hardware. The subsequent compaction phase is
based on integer linear programming; the task of instruction scheduling is coupled
with the selection among alternative binary encodings for the operations. Apart
from that there is no phase coupling. Encoding restrictions are taken into account
by reusing the information of the instruction set extraction phase.

The retargetable CBC compiler [Fau95, FK93a, FK93b] has mainly been de-
signed for DSPs and ASIPs; the target architectures are specified by the machine
description language nML [FVPF95]. The inputs of the compiler are given in the
form of flowchart descriptions. In the code selection phase the nodes of the interme-
diate representation are mapped to complex machine operations [FHMK94|. Then
a combined data routing and scheduling phase is executed. Data-routing performs
register allocation and delivery path definition, i.e., for each intermediate value
the storage location and the necessary transfer operations are determined. These
decisions are incorporated into a list scheduling algorithm [Har92]. However none
of the published articles gives any results about the quality of the produced code.

CHESS [LVPK™95] is a commercial retargetable code generation framework for
fixed point DSPs. The target processor is modelled by instruction set graphs that
are automatically extracted from an nML-description of the processor [FVPF95].
Source languages of CHESS are C and DFL. A presupposition is that each in-
struction is executed in one machine cycle; there is no pipeline modelling. Code
selection, register allocation, and instruction scheduling are implemented as sepa-
rate modules. After code selection, operations are redistributed among basic blocks

! Data Flow Language

224

11.1. Retargetable Code Generation

in order to balance the functional unit and register utilisation. The register alloca-
tor can take distributed register sets into account by using a data routing algorithm
[LCGDMO94]. The register allocation decisions are guided by estimates about the
effects on instruction scheduling. This way, information is exchanged between the
phases, but there is no true phase integration. Restrictions of instruction-level par-
allelism cannot be modelled. The scheduling is based on an extended list scheduling
algorithm supporting software pipelining and different forms of code hoisting.

The retargetable Flexware system [PLMS95] has been especially developed for
ASIPs and consists of the code generator CodeSyn and the instruction set simulator
Insulin. Insulin is based on a VHDL description while CodeSyn uses a dedicated
description language. The machine description used for CodeSyn consists of three
parts. The first part specifies the mapping of nodes of a fixed intermediate represen-
tation to the machine operations. The second part contains a structural graph that
models the data transfer paths between memory banks, register files and functional
units of the processor. The third part provides a classification of the resources used
in the structural graph that is used, e. g., for register assignment [LMP94]. Prior to
the code generation proper the intermediate representation can be transformed by
peephole optimisations based on a set of user-defined rules [LCS*97]. There is no
phase coupling; code selection, instruction scheduling, and register allocation are
performed in separate phases [LCST97]. The generated code contains on average
20% more instructions than hand-crafted assembly code [PLMS95].

The Surtr library [Sta94] is basically an optimising C frontend. Its intermedi-
ate representation is an extension of the intermediate representation of 1cc where
high level information such as information about loop constructs and array ac-
cesses can be represented. A set of standard optimisations as, e. g., loop invariant
code motion, induction variable detection and elimination or dead code elimina-
tion are available. The SPAM compiler [SPA97, Sud98] uses the SUIF library as an
optimising C-Frontend. The backend, called TwiF, consists of a parameterisable
optimisation library containing typical data structures and algorithms for code
generation problems. The code selector is based on tree-pattern matching and
is generated by the code selector generator OLIVE from a regular tree grammar.
The backend has to be implemented separately for each target processor; in the
implementation the parameterisable algorithms of the Twir-library can be reused.
These include algorithms for computing local data dependence graphs, for regis-
ter allocation, memory bank allocation, and instruction scheduling. However the
SPAM library is primarily designed for strongly encoded fixed-point processors with
limited amount of instruction-level parallelism. There is no phase coupling; code
selection, register allocation, and instruction scheduling are performed in separate
phases. Instruction scheduling is performed by a local list scheduling algorithm;
there are no global optimisations. Moreover due to the design of the system, de-
veloping a new compiler using SPAM requires detailed insight into the internal
behaviour of all library routines. The algorithms of the TWIF library can only be
reused if the target architecture only requires adaptations with respect to numerical
values as, e.g., the number of registers in a register file.

225

11. Related Work

The retargetable code generator Aviv [HD98| is based on the SpAM library.
The target architecture is specified in the machine description language ISDL (see
Chap. 8). Aviv focuses on DSP architectures exhibiting instruction-level paral-
lelism including VLIW architectures. The intermediate representation of the input
program consists of a set of expression DAGs connected by control flow edges. In
a first step, the expression DAGs are extended by hardware-specific information;
the resulting graphs are called split-node DAGs. In the split-node DAG all func-
tional units available to execute an operation and all register sets or memory banks
available to store the operands are explicitly represented. Data transfers between
different register sets or memory banks are represented by dedicated nodes. For
each split-node DAG a heuristically guided search algorithm performs simultane-
ous allocation of functional units, operation grouping, and register bank allocation.
The search algorithm is similar to a branch-and-bound algorithm; however it does
not yield a provably optimal solution since it uses ad-hoc heuristics to prune the
search space. The detailed register allocation is calculated in a separate phase after
the phase-coupled search algorithm; during the search estimations about the avail-
ability of registers are used. Therefore the quality of the generated code depends
to a large degree on the quality of the chosen heuristics. There is no optimisation
of spill code generated during register allocation which can lead to a significant
deterioration of code quality. Each expression DAG is addressed separately; in
consequence parallelising operations from different expression DAGs of the same
basic block is not possible. Extending the compiler by additional optimisation and
analysis algorithms is impeded by the monolithic structure of the code generator.
No experimental results have been reported so far; thus the performance of the
Av1iv compiler cannot safely be judged yet.

In the retargetable compiler Express [HGG99] the information about the hard-
ware is extracted from the machine description language Expression that is also
used to generate a cycle-accurate instruction set simulator. The code generation
phase is initiated by a software pipelining algorithm and an algorithm for global
code motion. Code selection, register allocation and instruction scheduling are
heuristically coupled by mutation scheduling [NN94, NND95]. Each value in the
program is associated with a set of mutations corresponding to different sets of
machine operations computing that value. The decision whether to keep a value in
a register or to store it in memory is considered as a mutation. The mutation sets
can change dynamically during scheduling. All decisions of code selection, register
allocation and instruction scheduling are guided by heuristics. In the machine de-
scription the pipeline paths and all valid data transfer paths are specified. From
this specification reservation tables are automatically generated that can be used
during mutation scheduling to model the resource usage of each machine operation.
This way irregular resource restrictions can be modelled but it is not clear how en-
coding restrictions can be handled. While the Expression language has been used
to model the Texas Instruments TI320C6x, in [NN94, NND95, HGG'99] experi-
ments about the code quality of mutation scheduling have only been reported for
artificial homogeneous VLIW architectures without significant irregularities. De-

226

11.2. Heuristic Phase Coupling

tails about the achieved code quality and the required compilation time have not
been published.

11.2. Heuristic Phase Coupling

There are various approaches aiming at a coupling of code generation phases by
heuristic methods. A comprehensive survey of those methods is given in [Bas95];
in the following only a short overview will be presented.

The phase coupling of instruction scheduling and register assignment is con-
sidered in [EM92, NPWO91, NN93]. The register allocation proper is determined
prior to instruction scheduling. During instruction scheduling, false dependences
are eliminated by dynamic register renaming; thus the register assignment is in-
corporated into the scheduling process.

A large number of publications is concerned with the interaction of instruction
scheduling and register allocation. In the integrated prepass scheduling algorithm
of [GH88] the instruction scheduler precedes the register allocator but attempts
to restrict the number of concurrently living local virtual registers by giving each
basic block a register limit. If needed, the limit can be increased. After scheduling
the register allocator assigns physical registers to the virtual registers and inserts
spills to memory if the limit cannot be met. In the RASE algorithm of the MARION
system [BHE91, Bra91] the decisions of the register allocator are guided by esti-
mates of their effect on the scheduling (see Sec. 11.1). In [FR91] register allocation
is integrated into trace scheduling by a greedy algorithm. In [NP93, Pin93] graph-
colouring algorithms for register allocation are extended by considering aspects of
parallelism. Further publications in this area are listed in [Bas95].

In the approaches listed above, distributed or irregular register sets as well as in-
terdependencies between the usage of functional units and storage resources are not
considered. The BULLDOG compiler [ElI86] and the CBC compiler [Har92] perform
local instruction scheduling with greedy register allocation and data routing where
data routes are selected on the fly. The algorithm of [LCGDM94] implemented
in the CHESS compiler selects between different data routes by estimating their
effect on the schedule quality. In [RH88] and [Har92| local instruction scheduling
is combined with greedy binding of functional units and register allocation on the
fly. In [Hei93] a register allocation algorithm combining the selection of different
data routes with delayed binding of functional units is invoked on the fly by a
trace scheduling algorithm. A heuristically guided phase coupling of code selec-
tion, instruction scheduling, and register allocation is addressed in the mutation
scheduling algorithm [NN94] (see Sec. 11.1).

227

11. Related Work

11.3. Search-Based Methods in Code Generation

Apart from the heuristic approaches, there are also search-based code generation
methods which allow to calculate exact, optimal solutions to the modelled problems
— usually at the cost of higher calculation times.

Exact code generation algorithms have been developed for architectures that
satisfy special conditions. For simple homogeneous architectures, optimal algo-
rithms for simultaneous code selection and register allocation on expression trees
have been presented in [SU70, AJ76]. Other algorithms [AM99, LDKT95, LDK95]
assume that all storage resources, i.e. register files or memory, can be considered
to contain exactly one, or an infinite number of elements (accumulator-based ar-
chitectures). In [AM99] a polynomial algorithm for instruction selection, register
allocation and instruction scheduling on expression trees is presented. An addi-
tional criterion is given that the target architecture has to satisfy in order for the
algorithm to generate optimal code. For the same class of architectures, [LDKT95]
propose an algorithm for optimal code selection that works on expression DAGs
and is based on binate covering. Since binate covering is NP-complete a heuristic
procedure can be used to solve the covering. In [LDK*95] a branch-and-bound
algorithm for instruction scheduling and register allocation is presented that min-
imises the number of accumulator spills.

However there are also approaches that are applicable to broader classes of ar-
chitectures. In the area of architectural synthesis several ILP formulations have
been developed that can be used for phase-coupled code generation. The goal of
architectural synthesis is to design the fastest architecture for a given input al-
gorithm that does not exceed a fixed cost maximum, or to design the cheapest
architecture for the input algorithm that meets a fixed performance criterion. In
order to evaluate the performance capacities of a hardware design it is important
to determine the optimal code sequence for the given input algorithm. The ILP
model used in the ALPS synthesiser [HLH91, BST93] is a time-indexed formula-
tion for instruction scheduling and functional unit allocation. In [GE92, GE93|
an improvement of the ALPS model has been developed by exploiting results of
polyhedral theory in order to provide a tighter description of the feasible region
of the problem and thus increase the solution efficiency. The resulting formula-
tion has been implemented in the OASIC synthesiser and has been extended to
incorporate the register assignment problem. The OASIC formulation represents
one of the starting points of our work and is presented in Sec. 5.3 in more detail.
While all previously mentioned ILP formulations are time-indexed formulations,
in [Zha96] an order-indexed ILP formulation for instruction scheduling, functional
unit allocation and register assignment has been developed. Since this formulation
also plays an important role for this thesis it is presented in Sec. 5.2 in more de-
tail. Modelling irregular restrictions of instruction-level parallelism and encoding
restrictions of a given target architecture is not taken into account since the design
of the architecture is part of the synthesis problem. Another part of the system
synthesis problem where integer linear programming is used is the partitioning and

228

11.3. Search-Based Methods in Code Generation

mapping of algorithms onto processor arrays. Partitioning maps an arbitrary size
algorithm onto a processor array with a restricted number of processing elements
and searches a balance between local memory consumption, and I/O and commu-
nication rate. In [Thi93, Thi95] an ILP-based optimisation model for partitioning
with a constrained number of functional units has been presented. ILP formu-
lations for scheduling of partitioned regular algorithms on processor arrays with
constrained resources have been presented in [Zha96, TTZ96].

An ILP formulation for simultaneous code selection and register allocation is
presented in [Geb97]. The code generation problem is described by logical propo-
sitions in the form of Horn clauses [Hoo88] that are automatically translated to
ILP constraints. Integer linear programs representing a set of horn clauses can
efficiently be solved by a combination of linear programming algorithms with vari-
able rounding. The basic blocks of the input program are represented by data flow
graphs. In a first step a scheduling of data flow nodes, i.e. a total linear ordering
of the nodes in the data flow graph is computed. Then the integer linear program
for the code selection and register allocation is generated. For each set of opera-
tion instances a data flow node can be mapped to, a dedicated binary variable is
introduced. The modelling of the register allocation requires operation instances
that only differ in their register usage to be considered as different. Architectures
with register files containing multiple registers — which is a common property
for contemporary processor architectures — lead to an exponential problem size.
For architectures exhibiting instruction-level parallelism the sequentialisation of the
nodes in the data flow graph can lead to a significant decrease in code quality. Thus
only a restricted class of architectures can be modelled efficiently. The modelling
has been implemented for a subset of the instruction set of the TMS320C2x where,
e.g., only direct memory addressing without using address registers is allowed.

There have been only few approaches to incorporate ILP-based methods into
the code generation process of a compiler. An early approach for local ILP-based
instruction scheduling for vector processors has been presented in [Ary85]. In
the RECORD compiler [Leu97], integer linear programming is used to model local
instruction scheduling and selection among alternative binary encodings of oper-
ations. Both ILP models are time-indexed formulations similar to the OASIC
model [GE92, GE93]. Wilson et al. [MG95] use an ILP-formulation for simulta-
neously performing code selection, scheduling, register allocation and assignment;
movements of operations across basic boundaries however are not addressed. The
complexity of the resulting formulations leads to prohibitive computation times. In
[GWO96] an ILP formulation for the register allocation problem has been presented
that in [KW98] is extended to irregular register architecture. The modelled ar-
chitectural restrictions comprise combined source and destination operands, fixed
combinations of register and memory operands, and overlapping registers. Most
functions of the SPECint92 benchmark can be optimised within a time limit of
1024 seconds. An ILP model for local instruction scheduling and register alloca-
tion has been presented in [CCK97]; experimental results are only reported for some
small example programs and show exhaustive computation times. In [HLWO0] it

229

11. Related Work

is demonstrated that by using a well-structured ILP formulation, an optimal local
instruction scheduling of large basic blocks for regular architectures can be com-
puted in acceptable time. Other ILP-based approaches have been developed in the
context of software pipelining; for more information see e.g. [RGSL96, GAGY6].

The application of evolutionary algorithms (see Sec. 6.1) in the field of hard-
ware and software synthesis is the subject of [TZB99, ZT99, ZTB00]. An overview
of multiobjective evolutionary algorithms is given in [Bli96, ZT99] and the appli-
cability to architectural synthesis is investigated. In the approach of [ZT99] the
individuals of the evolutionary algorithm encode the set of allocated hardware re-
sources and the binding of instructions to resources. The scheduling is performed
by a list scheduling algorithm with loop pipelining. In [TZB99, ZTB00] evolu-
tionary algorithms for software synthesis in rapid prototyping environments are
investigated. A commonly used approach is to store optimised assembly code for
so-called actors in a target-specific library. Then from a restricted data flow graph
whose nodes represent the actors, code is generated by instantiating the actors’
code in the final program. An evolutionary algorithm for the optimisation problem
of minimising program memory usage, data memory usage, and execution time is
presented. Considered are the memory usage, the effects of procedure inlining or
subroutine calls as well as the effect of loop nesting and context switching. The
outcome is a set of optimal trade-offs which consist of all solutions that cannot be
improved in one criterion without degradation in another.

The ICG-compiler [BL99] models the code generation problem as a constraint
satisfaction problem; it is implemented in the constraint logic programming lan-
guage ECLiPSe. The basic blocks of the input program are represented by data
flow graphs. In a first step a covering of each data flow graph by factorised regis-
ter transfers is computed. Fach factorised register transfer represents all machine
operation instances that can be generated for a node in the data flow graph. In-
terdependencies between alternative machine operations and the usage of storage
resources are modelled by dedicated constraints associated with the factorised reg-
ister transfers. The resulting set of all possible coverings of the DFG by machine
operations can be pruned by heuristic methods; when neglecting instruction-level
parallelism, alternatively an optimal covering can be computed. Subsequently a list
scheduling algorithm is executed that performs register allocation and data routing
on the fly. The algorithms work on factorised register transfers such that decisions
of the code selection can be delayed until the scheduling and allocation phase. The
scheduling and allocation decisions are represented by additional constraints. Since
each data flow graph is addressed separately, the parallelisation of operations from
different data flow graphs of the same basic block is not supported. After all data
flow graphs have been traversed a labelling has to be performed in order to check
the global feasibility of the generated schedule and to select machine instructions
from the factorised register transfers. The feasibility check is an NP-complete prob-
lem; however it is necessary since the generated constraints only guarantee local
feasibility. If there is no feasible solution, correction code has to be inserted. The
schedule produced so far does not contain instructions for memory addressing; the

230

11.3. Search-Based Methods in Code Generation

values are bound to memories but not yet to fixed addresses. Thus the address
assignment and the insertion of addressing code is performed in a post-processing
step. In a subsequent compaction phase the additional operations are integrated
into the previously determined schedule. This may lead to a significant decrease in
code quality especially for architectures that do not dispose of dedicated address
register files. Experimental results are presented in [BL99] for the Analog Devices
ADSP-210x2. It is shown that for some code excerpts of the DSPstone benchmark
the code quality of ICG corresponds to the quality of hand-written assembly while
the GNU gcc produces an overhead of 170% on average.

2The ADSP-210x is a fixed-point DSP representing a precursor of the ADSP-2106x family

231

11. Related Work

232

12. Conclusion and Qutlook

In this thesis the PROPAN system has been presented as a retargetable framework
for search-based code optimisations and machine-dependent program analyses at
assembly level. To the best of our knowledge, PROPAN is the first system where
the issues of machine description driven retargetability and of high-quality post-
pass optimisations have been combined. The retargetability concept of PROPAN is
based on the combination of generic and generative mechanisms. We have devel-
oped a novel machine description language called TDL for concisely specifying all
relevant information about the target architecture. Apart from the assembly ori-
entation the main innovation of TDL is the generic modelling of irregular hardware
constraints that allows them to be exploited in generic search-based optimisation
algorithms. The core system of PROPAN has been implemented in a generic way;
if target-specific information is required, the architecture database generated from
the TDL description is referenced. For each target architecture the architecture
database is linked with the generic core system yielding a dedicated hardware-
sensitive postpass optimiser.

The optimisations are based on integer linear programming and allow a phase-
coupled modelling of instruction scheduling, register assignment and resource al-
location taking precisely into account the hardware characteristics of the target
architecture. Two well-structured ILP-formulations have been implemented: an
extension of the order-indexed SILP model and an extension of the time-indexed
OASIC model. The modelling extensions are concerned with adaptations to the
code generation problem, the representation of the control flow structure and the
incorporation of irregular hardware characteristics. The polytope structure of both
models has been investigated and the relationship between the hardware design and
the appropriate ILP modelling style has been worked out. Order-indexed modelling
allows an efficient integration of the register assignment problem and is well suited
for irregular architecture where the resource competition is high. Time-indexed
modelling presents itself for architectures with a high degree of instruction-level
parallelism where a large number of functional unit types is available for the ex-
ecution of each microoperation. In contrast to most previous search-based code
generation methods, the optimisation scope is not restricted to a single basic block.
Instead a novel superblock mechanism allows to exceed basic block and loop bound-
aries.

The integer linear programs can be solved exactly providing provably optimal
solutions with respect to the problem dimension, i.e. the modelled code generation

233

12. Conclusion and QOutlook

tasks, and to the optimisation scope. As an alternative to the exact solution, we
have developed novel ILP-based approximations that are based on the iterative
solution of partial relaxations of the original problem. Experimental results show
that the approximative methods allow to reduce the computation time significantly
compared to the exact solution while producing a very high solution quality. By
specifying upper bounds for the maximal size of code sequences modelled by a
single integer linear program the required computation times can be reduced. This
way the user can choose a suitable trade-off between computation time and code
quality.

The PROPAN framework has been retargeted to several representative stan-
dard processors. It has been used to generate ILP-based optimisers for the Analog
Devices ADSP-2106X SHARC and the Philips TriMedia Tm1000. Practical exper-
iments demonstrate the applicability of the optimisers for typical applications of
digital signal processing. PROPAN has also been used as a platform for generic
program analyses and user-supplied hardware-dependent program optimisations.
It is integrated in a framework for calculating worst-case execution time guaran-
tees for real-time systems; in this context a TDL specification of the Infineon Tri-
Core uC/DSP has been developed. For the Infineon C16x microprocessor family,
PROPAN has been used as a platform for implementing hardware-sensitive postpass
optimisations that are part of a commercial postpass optimiser. Practical experi-
ments and industrial experience have shown that due to the postpass orientation,
PROPAN can be integrated in existing tool chains with moderate effort.

Future research aims at different directions. There is ongoing work to extend the
TbpL language by a modelling of superscalar architectures with complex pipelines.
The control flow reconstruction algorithm is being generalised based on analysing
the specification of the operation semantics in the TDL description. The generation
of cycle-accurate instruction set simulators from the TDL specification is another
goal. There is ongoing work to develop value analyses that allow to disambiguate
memory accesses and remove spurious data dependences in guarded code. Fur-
thermore, the modelling of additional processors is planned. By investigating the
polytope structure of both ILP formulations, the constraints could be identified
that contribute most to the required computation times. Future research will aim
at tightening the formulations in order to further improve the solution efficiency.

234

13. List of Symbols

a, 11 GR, 47
A, 107 Gg, 97
Gz, 55
ba, 9
ba, 9 hr, 12
Ag, 10 kg, 49
A,, 10 ks, 49
Ey, 48 Lk, 48
Eg, 9 I, , 12
Ef, 12 A, 8
Eg, 12
Ec, 8 N(i), 48
Ep, 11 Ny, 48
EY, 11 Nz, 9
Ey, 11 N¢, 8
E, 11 Nep, 11
Ecp, 11 Np, 11
Ep, 49 Ng, 49
Fz, 131 Ny, 47
Ep, 12 N# 55
Er, 47 N?, 170
E,, 97 Nz, 131
Eg, 97 Nyg, 12
Ez, 55 Ng, 47
Nj, 47
Ga, 48 NE, a7
Gg, 9 N, 97
G}, 12 Ng, 97
Ge, 8 Ny, 55
GCD, 11 na, 8
GD, 11 na, 8
Gr, 49
Gz, 131 0, 11
Gy, 12

235

13. List of Symbols

¥, 51
ok, 51

k 48

R, 11, 107
Ry, 48

SA, 97
Sq, 97

¢, 11
t;, 48
T, 11
T, 11
Tis 48
V, 107
wy, 52

Zj, 52

236

A. Appendix

A.l.

Instruction Set of the SHARC

In the following, an overview of the instruction set of the ADSP-2106X SHARC is
given [Ana95]. In Sec. A.1.1 an overview of the terminology is given; Sec. A.1.2 lists
the instruction formats of the ADSP-2106X SHARC. An overview of the compute
operations is given in Sec. A.1.3.

A.l1.1.

Condition Codes.

Notation

Most operations of the ADSP-2106X SHARC can optionally

be guarded; then their execution depends on the value of certain bits in control
and status registers that have been set by preceding operations. In the following
the assembly representation of the available condition codes is listed.

Condition
EQ

NE

LT

GT

AC

NOT AC
AV

NOT AV
MV

NOT MV
MS

NOT MS
SV

NOT SV
TRUE
FOREVER
LCE
NOT LCE
GE

LE

Description
ALU equal zero

ALU not equal zero
ALU less than zero
ALU greater than zero

ALU carry
Not ALU carry
ALU overflow

Not ALU overflow
Multiplier overflow
Not multiplier overflow

Multiplier sign

Not multiplier sign

Shifter overflow

Not shifter overflow

Always true (IF)

Always false (DO UNTIL)

Condition

S7

NOT Sz
FLAGO_IN

NOT FLAGO_IN
FLAGI_IN

NOT FLAGI1.IN
FLAGO_IN

NOT FLAG2_.IN
FLAGO_IN

NOT FLAG3_IN
TF

NOT TF

BM

NBM

Loop counter expired (DO UNTIL)
Loop counter not expired (IF)
ALU greater than or equal zero

ALU less than or equal zero

Description
Shifter zero

Not shifter zero
Flag 0 input
Not flag 0 input
Flag 1 input
Not flag 1 input
Flag 2 input
Not flag 2 input
Flag 3 input
Not flag 3 input
Bit test flag
Not Bit test flag
Bus master

Not bus master

237

A. Appendix

Universal Registers.

Register Function

Data Register File

R15-RO Fixed-point registers
F15-F0 Floating-point registers

Program Sequencer

PC Program counter (read-only)

PCSTK Top of PC stack

PCSTKP PC stack pointer

FADDR Fetch address (read-only)

DADDR Decode address (read-only)

LADDR Loop termination address

CURLCNTR Current loop counter

LCNTR Loop count for next nested counter-controlled loop

Data Address Generators

17-10 DAGT1 index registers

MT7-MO DAG1 modify registers

L7-1L0 DAGT1 length registers

B7-B0 DAGT1 base registers

115-18 DAG?2 index registers

M15-M8 DAG2 modify registers

L15-L8 DAG?2 length registers

B15-B8 DAG?2 base registers

Bus FExchange

PX1 PMD-DMD bus exchange 1 (16 bits)
PX2 PMD-DMD bus exchange 2 (32 bits)
PX 48-bit combination of PX1 and PX2
Timer

TPERIOD Timer period

TCOUNT Timer counter

System Registers

MODE1 Mode control and status

MODE2 Mode control and status

IRPTL Interrupt latch

IMASK Interrupt mask

IMASKP Interrupt mask pointer (for nesting)

ASTAT Arithmetic status flags, bit test flag, etc.

STKY Sticky arithmetic status flags, stack status flags, etc.
USTAT1 User status register 1

USTAT2 User status register 2

238

A.1. Instruction Set of the SHARC

A.1.2. Instruction Formats

In the following the instruction formats of the ADSP-2106X SHARC are listed. In-
structions parts printed in italics are optional, capitals represent explicit assembly
syntax. The assembly code itself is case-insensitive. The following abbreviations
are used:

Notation Meaning
; Instruction delimiter

, Operation delimiter

Optionl List of options among which one has to be selected
Option2‘

compute Compute operations (cf. Sec. A.1.3)

cond Condition code (cf. Sec.A.1.1)

term Loop termination conditions (cf. Sec.A.1.1)
ureg Universal register

sreg System register

dreg Data register (register file): R15-R0 or F15-F0
Ia I7-10 (DAG1 index register)

Mb M7-M0O (DAG1 modify register)

Ic 115-18 (DAG2 index register)

Md M15-M8 (DAG2 modify register)

<datan> n-bit constant

<addrn> n-bit address
<reladdrn> n-bit relative address

(DB) Delayed branch
(LA) Loop abort
(CI) Clear interrupt

Instruction Formats

compute, DM (Ia, Mb)=dregl
dregl=DM(Ia, Mb)

PM(Ic, Md)=dreg2|;
dreg2=PM(Ic, Md)

bl

IF cond compute;

IF cond compute, |DM(Ia, Mb)|=ureg;
PM(Ic, Md)

IF cond compute, |DM(Mb, Ia)|=ureg;

239

A. Appendix

IF cond compute, ureg=|DM(Ia, Mb)|;
PM(Ic, Md)

IF cond compute, ureg=DM(Mb, Ia)|;

IF cond compute, |DM(Ia, <data6>)|=dreg;
PM(Ic, <data6>)

IF cond compute, |DM(<data6>, Ia)|=dreg;
PM(<data6>), Ic

IF cond compute, dreg=|DM(Ia, <data6>)|;
PM(Ic, <data6>)

IF cond compute, dreg=|DM(<data6>, Ia)|;
PM(<data6>), Ic

IF cond compute, uregl=ureg2;

IF cond shiftimm,

DM(Ia, Mb)|=dreg;

PM(Ic, Md)

IF cond shiftimm, dreg=|DM(Ia, Mb)|;
PM(Ic, Md)

IF cond compute, MODIFY |(Ta, Mb)|;

(Ic, Md)

IF cond JUMP |<addr24> (DB)
‘(PC, <reladdr24>)| |(LA)
(cij
(DB, LA)
(DB, CI)

IF cond CALL |<addr24> (DB);
(PC, <reladdr24>)

240

A.1. Instruction Set of the SHARC

IF cond JUMP |(Md, Ic) (DB) , |compute ;
‘(PC, <reladdr6>)‘ (LA) ELSE compute
(€I
(DB, LA)
(DB, CI)
IF cond CALL |(Md, Ic) (DB), |compute ;
‘(PC, <reladdr6>)‘ ELSE compute

IF cond JUMP ‘(Md, Ic) , ELSE |compute, DM(Ta, Mb)=dreg)|;

(PC, <reladdr6>)

compute, dreg=DM(Ia, Mb))

IF cond RTS |(DB) , |compute ;
(LR) ELSE compute
(DB, LR)

IF cond RTI (DB), |compute

ELSE compute

7

LCNTR=|<datal6>|, DO |<addr24> UNTIL LCE;
ureg (PC, <reladdr24>)

DO |<addr24> UNTIL term:;
(PC, <reladdr24>)

=ureg;

DM (<addr32>)
PM(<addr24>)

7

ureg=|DM(<addr32>)
PM(<addr24>)

‘DM(<addr32>, Ia)|=ureg;

PM(<addr24>, Ic)

b

ureg=DM(<addr32>, Ia)
PM(<addr24>, Ic)

DM(Ia, Mb)|=<data32>;
PM(Ic, Md)

241

A. Appendix

ureg=<data32>;

BIT |SET | sreg <data32>;
CLR
TGL
TST
XOR

MODIFY ((Ia, <data32>)
(Ic, <data24>)

Y

BITREV |(Ia, <data32>)|;
(Ic, <data24>)
PUSH| LOOP, \PUSH| STS, |\PUSH| PCSTK, FLUSH CACHEF;
POP POP POP
NOP;
IDLE;
CJUMP

function (DB);
(PC, <reladdr24>)

RFRAME;

A.1.3. Compute Operations
ALU Operations

Rn=Rx+Ry Fn=ABS(Fx+Fy)
Rn=Rx-Ry Fn=ABS(Fx-Fy)
Rn=Rx+Ry+CI Fn=(Fx+Fy)/2
Rn=Rx+Ry+CI-1 COMP(Fx, Fy)
Rn=(Rx+Ry)/2 Fn=-Fx
COMP(Rx, Ry) Fn=ABS Fx
Rn=Rx+CI Fn=PASS Fx
Rn=Rx+CI-1 Fn=RND Fx
Rn=Rx+1 Fn=SCALB Fx BY Fy
Rn=Rx-1 Rn=MANT Fx
Rn=-Rx Rn=LOBG Fx

242

Rn=ABS Rx
Rn=PASS Rx
Rn=Rx OR Ry
Rn=Rx XOR Ry
Rn=NOT Rx
Rn=MIN(Rx, Ry)
Rn=MAX(Rx, Ry)
Rn=CLIP Rx BY Ry
Fn=Fx+Fy
Fn=Fx-Fy

Multiplier Operations

A.l

Rn=FIX Fx BY Ry
Rn=FIX Fx
Fn=FLOAT Rx BY Ry
Fn=FLOAT Rx
Fn=RECIPS Fx
Fn=RSQRTS Fx
Fn=Fx COPYSIGN Fy
Fn=MIN(Fx, Fy)
Fn=MAX(Fx, Fy)
FN=CLIP Fx BY FY

Rn | = Rx*Ry (IS| |IS| [F |)
MRF Ul [U] [T
MRB FR
Rn = MRF| + Rx*Ry (IS] [S| |F |)
Rn = MRB Ul |U| [T
MRF = MRF FR
MRB = MRB
Rn = MRF|-Rx*Ry (S| S| |F |)
Rn = MRB Ul Ul
MRF = MRF FR
MRB = MRB
Rn SAT MRF (SI)
Rn = SAT MRB (UI)
MRF = SAT MRF (SF)
MRB = SAT MRB (UF)
Rn = RND MRF (SF)
Rn = RND MRB (UF)
MRF = RND MRF
MRB RND MRB
MRF| =0
MRB
MRxF| = Rn
MRxB
Rn = MRxF
MRxB

Instruction Set of the SHARC

243

A. Appendix

Shifter Operations

Rn=LSHIFT Rx BY Ry Rn=BTGL Rx BY <data8>
Rn=LSHIFT Rx BY <data8> BTST Rx BY Ry

Rn=Rn OR LSHIFT Rx BY Ry BTST Rx BY <data8>
Rn=Rn OR LSHIFT Rx BY «<data8> Rn=FDEP Rx BY Ry
Rn=ASHIFT Rx BY Ry Rn=Rn OR FDEP Rx BY Ry
Rn=ASHIFT Rx BY <data8> Rn=FDEP Rx BY Ry (SE)
Rn=Rn OR ASHIFT Rx BY Ry Rn=Rn OR FDEP Rx BY Ry (SE)
Rn=Rn OR ASHIFT Rx BY <data8> Rn=FEXT Rx BY Ry
Rn=ROT Rx BY Ry Rn=FEXT Rx BY Ry (SE)
Rn=ROT Rx BY <data8> Rn=EXP Rx (EX)
Rn=BCLR Rx BY Ry Rn=EXP Rx

Rn=BCLR Rx BY <data8> Rn=LEFTZ Rx

Rn=BSET Rx BY Ry Rn=LEFTO Rx

Rn=BSET Rx BY <data8> Rn=FPACK Fx

Rn=BTGL Rx BY Ry Fn=FUNPACK Rx

Rn=FDEP Rx BY <bit6>:<len6>

Rn=Rn OR FDEP Rx BY <bit6>:<len6>
Rn=FDEP Rx B> <bit6>:<len6> (SE)
Rn=Rn OR FDEP Rx B> <bit6>:<len6> (SE)
Rn=FEXT Rx BY <bit6>:<len6>

Rn=FEXT Rx BY <bit6>:<len6> (SE)

Multifunctional Operations

The multifunctional operations trigger parallel execution of the ALU and the mul-
tiplier. Each of the four input operands for computations that use both the ALU
and multiplier are constrained to a different set of four register file locations as
explained in Sec. 10.1.1.

Rm=R3-0*R7-4 (SSFR), Ra=R11-8+R15-12
Rm=R3-0¥R7-4 (SSFR), Ra=R11-8-R15-12
Rm=R3-0*R7-4 (SSFR), Ra=(R11-8-+R15-12)/2

MRF=MRF+R3-0*R7-4 (SSF), Ra=R11-8+R15-12
MRF=MRF+R3-0*R7-4 (SSF), Ra=R11-8 R15-12
MRF=MRF+R3-0*R7-4 (SSF), Ra=(R11-84+R15-12)/2

Rm=MRF+R3-0*R7-4 (SSFR), Ra=R11-8+R15-12
Rm=MRF+R3-0*R7-4 (SSFR), Ra=R11-8-R15-12
Rm=MRF+R3-0*R7-4 (SSFR), Ra=(R11-8+R15-12)/2

MRB=MRB+R3-0¥R7-4 (SSF), Ra=R11-8+R15-12
MRB=MRB+R3-0*R7-4 (SSF), Ra=R11-8-R15-12

244

A.2. Excerpts from the TDL Specification of the SHARC

MRB=MRB+R3-0¥R7-4 (SSF), Ra=(R11-84+R15-12) /2

Rm=MRB+R3-0*R7-4 (SSFR), Ra=R11-8+R15-12
Rm=MRB+R3-0*R7-4 (SSFR), Ra=R11-8-R15-12
Rm=MRB+R3-0*R7-4 (SSFR), Ra=(R11-8+R15-12)/2

Fm=F3-0*F7-4, Fa=F11-8+F15-12
Fm=F3-0*F7-4, Fa=F11-8-F15-12
Fm=F3-0*F7-4, Fa=FLOAT F11-8 BY R15-12
Fm=F3-0*F7-4, Fa=FIX F11-8 BY R15-12
Fm=F3-0*F7-4, Fa=(F11-8+F15-12)/2
Fm=F3-0*F7-4, Fa=ABS F11-8
Fm=F3-0*F7-4, Fa=MAX(F11-8, F15-12)
Fm=F3-0*F7-4, Fa=MIN(F11-8, F15-12)

A.2. Excerpts from the TDL Specification of the

SHARC
[mmm */
/* Resources */
[m—m */

Resources—-Section

// Functional Units
FuncUnit ALU 1;
FuncUnit MUL 1;
FuncUnit SHI 1;

// Integer Registers

Register ireg "rid" [0:15] size=40, type=signed<32>, renaming=true;
ResourceClass iregh {ireg[0:3]};

ResourceClass iregB {iregl4:71};

ResourceClass iregC {ireg[8:11]};

ResourceClass iregD {ireg[12:15]};

SetProperties ireg ilpres={iregA, iregB, iregC, iregD};

// Index Registers

Register indreg "iJ)d" [0:15] size=40, type=signed<32>, usage=Index;
SetProperties indreg[6] usage=FP;

SetProperties indreg[7] usage=SP;

// Modify Registers

245

A. Appendix

Register

// Length Registers
"l%d"

Register

mreg

lreg

// Base Registers

Register

breg

Ilm%dll

Ilb“/odll

[0:15] size=40, type=signed<32>, usage=0ffset;

[0:15] size=40, type=signed<32>;

[0:15] size=40, type=signed<32>;

// Floating point registers are aliases of the integer registers

RegisterAlias freg "f%d" ireg mapping=[1:1], type=float<24,8>;

// MR registers, used as accumulators

Register MRFreg "MRJdF" [0:2] size=32, type = signed, usage=accu;
SetProperties MRFreg[2] size=16;

Register MRBreg "MRY%dB"
SetProperties MRBreg[2]

RegisterAlias MRF "MRF"
RegisterAlias MRB "MRB"

size=16;

// Now the control flow registers

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

sPC
FADDR
DADDR
PCSTK
PCSTKP
LSTKP
LADDR
CURLCNTR
LCNTR
MODE1
MODE2
IRPTL
IMASK
IMASKP
ASTAT
STKY
USTAT1
USTAT2

// Data Memory

Memory DM "dm" type=data,

"pC"
"faddr"
"daddr"
"pcstk"
"pcstkp”
"1stkp"
"laddr"
"curlcntr"
"lcntr"
"model"
"mode2"
"irptl"
"imask"
"imaskp"
"astat"
n Stkyll
"ustatl"
"ustat2"

size=24,
size=24,
size=24,
size=24,
size=b,

size=5,

size=32,
size=32,
size=32,
size=32,
size=32,
size=32,
size=32,
size=32,
size=32,
size=32,
size=32,
size=32,

align=16, access=32;

Memory PM "pm" type=mixed, align=16, access=32;

// Cache

246

MRFreg mapping=[3:1], size=80;
MRBreg mapping=[3:1], size=80;

type=signed,
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;
type=signed;

[0:2] size=32, type=signed, usage=accu;

usage=PC;

A.2. Excerpts from the TDL Specification of the SHARC

Cache InstrCache assoc=2, size=32, linesize=6, type=instr;

// Standard-Resource, used for ALU and Shifter in ILP-Modelling
DefineResource Standard "std" 1;

// Resource Classes

ResourceClass nonifreg {indreg,mreg,breg,lreg};

ResourceClass ifreg {ireg, freg};

ResourceClass indregA {indreg[0:71};

ResourceClass indregC {indreg[8:15]};

ResourceClass mregB {mreg[0:7]};

ResourceClass mregD {mreg[8:15]};

ResourceClass sreg {MODE1, MODE2, IRPTL, IMASK, sPC,
IMASKP, ASTAT, STKY, USTAT1, USTAT2};

ResourceClass ureg {ifreg,nonifreg,sreg};

ResourceClass CallerSaved {ireg[0], iregl[l], iregl[2], iregl4],
ireg[8], iregl[12], indreg[4], indreg[12], mreg[4],
mreg[12]};

ResourceClass UsedByCall {iregl[4], iregl8], iregl[12]};

ResourceClass UsedByRet {ireg[0], iregl[1]};

[mmm */
/% Instruction Set */
[h————————————— */

InstructionSet-Section

// User-defined attributes

DefineAttribute condname {"c_eq", "c_1lt", "c_gt", "c_le", "c_ge",
"c_ac", "c_av", "c_ms", "c_mv", "c_sv", "c_sz", "c_flag0O_in",
"c_flagl_in", "c_flag2_in", "c_flag3_in", "c_tf", "c_bm",
"c_lce", "c_not_lce", "c_not_ac", "c_not_av", "c_not_mv",
"c_not_ms", "c_not_sv", "c_ne", "c_not_sz", "c_not_flag0O_in",
"c_not_flagl_in", "c_not_flag2_in", "c_not_flag3_in",
"¢c_not_tf", "c_nbm", "c_forever", "c_true"} associated to
Operation;

DefineAttribute smode {"ssi", "sui", "usi", "uui", "ssf", "suf",
n"ysf" s "auf" s "ggfr" s "gufr" s "usfr" s "qufr" s ngqn s "ai" s

"sf", "uf", "signext", "extexp", "db", "lr", "dblr", "la",

"c¢i", "dbla", "dbci", "ndb"} associated to Operation;

DefineAttribute modtype {"s_simple"} associated to Operation;

247

A. Appendix

// Non-terminal definitions
OpNT flag "eq" {guard=true, condname=c_eq},{;},
{unsigned<1> cond; cond := ASTAT<0>;}
| "ne" {guard=true, condname=c_ne},{;},
{unsigned<1> cond; cond := ASTAT<0>;}
| "1t" {guard=true, condname=c_lt},{;},
{ unsigned<1> cond;
if ((ASTAT<0>==0b0)&& ((ASTAT<2>==0b1) "~ ((ASTAT<1>==0b1)
&% (MODE1<13>==0b0))) | | ((ASTAT<10>==0b1) &&
(ASTAT<2>==0b1) && (ASTAT<0>==0b0))) {
cond := Obl; } else {cond:= 0b0;}}
| "gt" {guard = true, condname=c_gt},{;},
{ unsigned<1> cond;
if ((((ASTAT<0>==0b0)&& ((ASTAT<2>==0b1) ~ ((ASTAT<1>==0b1)&&
(MODE1<13>==0b0))) | | ((ASTAT<10>==0b1) &&
(ASTAT<2>==0b1))) | | (ASTAT<0>==0b1))) {
cond:=0b1;} else {cond:=0b0;}}
| "le" {guard = true, condname=c_le},{;},
{ unsigned<1> cond;
if (((ASTAT<0>==0b0)&& ((ASTAT<2>==0b1)"
((ASTAT<1>==0Db1) && (MODE1<13>==0b0)))
| | C(CASTAT<10>==0b1) && (ASTAT<2>==0b1))) | |
(ASTAT<0>==0b1)) {cond:=0bi;}
else {cond:=0b0;}};

OpNT optguard "if %!(flag) " {guard = true}, {;}, {}
| "" {guard = false}, {;}, {unsigned<i> cond; cond:=0b0;};

OpNT dbmod "(DB)" {smode=db},{PM(slots=2);},{}
| "" {smode=ndb},{;},{};

OpNT jumpmod "%! (dbmod)" {modtype=s_simple},{;},{}
| "C LA)" {smode=la},{;},{}
| "(C CI)" {smode=cil},{;},{}
| "(DB , LA)" {smode=dbla},{PM(slots=2);},{}
| "(DB, CI)" {smode=dbcil},{PM(slots=2);},{};

OpNT retmod "%!(dbmod)" {modtype=s_simplel},{;},{}
["C LR)" {smode=1r},{;},{}
| "(DB , LR)" {smode=dblr},{PM(slots=2);},{};

OpNT imm24_t "%24D" {target="$1" as signed<24>},{;},{}

| "%24X" {target="$1" as signed<24>},{;},{}
| "%s" {target="8%1" as signed<24>},{;},{};

248

A.2. Excerpts from the TDL Specification of the SHARC

OpNT modl "" | "(SI)" {smode=si},{;},{} ["(UI)" {smode=uil},{;},{}
["C SF)" {smode=sf},{;}, {} |"(UF)" {smode=uf},{;},{};

OpNT mod2 "" | "(SSI)" {smode=ssil},{;},{}
["(C SUI)" {smode=suil},{;},{}
["(USI)" {smode=usil},{;},{}
["(UUI)" {smode=uuil},{;},{}
|"(SSF)" {smode=ssf},{;},{}

|"(SUF)" {smode=suf},{;},{

|"(USF)" {smode=usf},{;},{

["(UUF)" {smode=uufl},{;},{

|"(SSFR)" {smode=ssfr},{;},

4}

43

4}

}
» {3
}
|"(SUFR)" {smode=sufr},

|"(USFR)" {smode=usfr},
|"(UUFR)" {smode=uufr},

3
3

) ’

// Definitions of machine operations

DefineOp DMwriteIMif "%!(optguard)dm (%s , %s) = ¥s" {
dst1=DM, base="$2" in {indregA} as signed<32>,
offset = "$3" in {mregB} as signed<32>,
srcl = "$4" in {ifreg}, mode =post},

{DM(latency=1, slots=0, exectime=1);},
{external unsigned<1> cond;
if (cond==1) {base:=base+offset; DM[base] :=srcil;}};

DefineOp PMreadIMf "%!(optguard)¥%s = pm (%s , %s)" {
dst1="$2" in {freg}, base="$3" in {indregC} as signed<32>,
offset = "$4" in {mregD} as signed<32>, srcl = PV,
mode = post}, {PM(latency=1, slots=0, exectime=1);},
{external unsigned<1> cond;
if (cond==1) {base:=base+offset; dstl:=PM[base];}};

DefineOp RegAsgni "%!(optguard)is = %s" {
dst1="$2" in {ireg}, src1="$3" in {ureg}},
{DM(latency=1, slots=0, exectime=1);},
{external unsigned<1> cond;

if (cond==1) {dstl:=srcil;}};

DefineOp LJumpAbs "%! (optguard) jump %! (imm24_t) %' (jumpmod)"
{type=Jmp, noreorder}, {PM(latency=1, exectime=1);},
{external unsigned<1> cond;

if (cond == 1) {sPC:=target;l}};

DefineOp LCallAbs "%! (optguard)call %! (imm24_t) %! (dbmod)"
{dst1=CallerSaved, src1=UsedByCall, noreorder,

249

A. Appendix

type=Call}, {PM(latency=1, exectime=1);},
{external unsigned<1> cond;
if (cond == 1) {PCSTKP:=PCSTKP+1; PCSTK:=sPC;
sPC:=target;}};

DefineOp ImmDMwrite "%!(optguard) dm (%!(anyimm_b)) = %s"
{dst1=DM, srcl = "$3" in {uregl},
{Standard(latency=1, exectime=1, slots=0);},
{DM[base] :=srci;};

DefineOp AluFixedl "%!(optguard)¥s = %s + ’%s"
{dst1="$2" in {ireg}, src1="$3" in {ireg}
, src2="$4" in {ireg}},
{Standard(latency=1, exectime=1, slots=0);},
{dst1:=_iadd(src1, src2, Obl, MODE1<13>, ASTAT<1>);
if(dst1==0) {ASTAT<0>:=0b1;}
if(dst1<0) {ASTAT<2>:=0b1l;}};

DefineOp MulFixedl "%! (optguard)¥%s = %s * %s %! (mod2)"
{dst1="$2" in {ireg}, src1="$3" in {ireg},
src2="$4" in {ireg}},
{MUL (1atency=1, exectime=1, slots=0);},
{unsigned<1> s1; unsigned<1> s2;
if (smode==ssi) {s1:=0b1l;s2:=0b1;}
if (smode==sui) {s1:=0b1;s2:=0b0;}
if (smode==usi) {s1:=0b0;s2:=0b1;}
if (smode==uui) {s1:=0b0;s2:=0b0;}
dstl:=_imul(srcl, src2, si, s2, 32, ASTAT<1>);};

DefineOp Shiftl "% !(optguard)’s = lshift %s by %s"
{dst1="$2" in {ireg}, src1="$3" in {ireg},
src2="$4" in {ireg}},
{Standard(latency=1, exectime=1, slots=0);},
{dst1:=_1sh(srcl, src2); if (dst1==0) {ASTAT<12>:=0b1;}
if (src2>0) {ASTAT<11>:=0b1l;}};

// Definition of operation classes

OperationClass MoveOrModifyClass {DMwriteIMif, DMreadIMi,
DMreadIMf, PMwriteIMif, PMreadIMi, PMreadIMf,
DMwriteIMnonif, DMreadIMnonif, PMwriteIMnonif,
PMreadIMnonif, DMwriteMI, DMreadMIi, DMreadMIf,
DMreadMIo, PMwriteMI, PMreadMIi, PMreadMIf, PMreadMIo,
DMwriteIcon, PMreadIconi, PMreadIconf, PMreadIcono,
PMwriteIcon, DMwriteconIl, DMreadconIli, DMreadconIf,
DMreadconlo, PMwriteconIl, PMreadconIli, PMreadconIf,
PMreadconIo, RegAsgni, RegAsgnf, RegAsgno, Modify};

250

A.2. Excerpts from the TDL Specification of the SHARC

/* The following operation classes are defined additionally:
NonParaDM, NonParaPM, PMClass, DMClass, RAandMoDM,
PrgFlowClass, ParaPrgFlow, NonParaPrgFlow, ShiftClass,
AluClass, MulClass, ComputeClass, MultiAluFixed,
MultiAluFloat, MultiMulFixed, MultiMulFloat */

[m—mm */
/* Constraints */
[m—mm */

Constraint-Section

// Irregular restrictions of instruction-level parallelism

opl in {ShiftClass} & op2 in {MulClass}: !(opl && op2);

opl in {MiscClass} &
op2 in {PrgFlowClass, MulClass, MoveOrModifyClass}:
! (opl && op2);

opl in {ImmediateClass} & op2 in {PrgFlowClass, MulClass,
MoveOrModifyClass}: !(opl && op2);

opl in {NonParaDM} & op2 in {PMClass}: ! (opl && op2);

opl in {NonParaPM} & op2 in {DMClass}: ! (opl && op2);

opl in {RAandMoDM} & op2 in {PMClass}: !(opl && op2);

opl in {PrgFlowClass} & op2 in {DMClass}: !(opl && op2);

opl in {NonParaPrgFlow} & op2 in {AluFixedClass, AluFloatClass,
MulClass}: !(opl && op2);

// Constraints for multifunctional operations

opl in {MultiAluFixed} & op2 in {MultiMulFixed}:
! (opl &% op2) | opl.srcl in {iregC} & opl.src2 in {iregD}
& op2.srcl in {iregA} & op2.src2 in {iregB};

opl in {MultiAluFloat} & op2 in {MultiMulFloat}:
! (opl &% op2) | opl.srcl in {iregC} & opl.src2 in {iregD}
& op2.srcl in {iregA} & op2.src2 in {iregB};

[h————————————— */
/% Assembly Section */
[h————————————— */

Assembly-Section

OperationDelimiter ",";
InstructionDelimiter ";";
AnnotationDelimiter "@";

Comment ("/x", "x/"), ("{", "}");
LineComment "!";

DefineDirective DirSegStartDM ".segment /pm %s;" {type=SegStart,

251

A. Appendix

name=n$2n};
DefineDirective DirSegStartPM ".segment /dm %s;" {type=SegStart,
name="$2"};

DefineDirective DirSegEnd ".endseg;" {type=SegEnd};
DefineDirective DirGecc ".gcc_compiled;" {};

DefineDirective DirGlobVar ".global %s;" {type=GlobalDecl,
opnd1="§1"};

DefineDirective DirExtVar ".extern Js;" {type=ExternDecl,
opnd1="$1"};

A.3. Instruction Set of the TM1000

Each instruction word of the TriMedia TM1000 is composed of five microoperations
that are issued simultaneously (cf. Sec. 10.2.1) [Phi97]. Each operation has the
following format (optional fields are enclosed in brackets ([,])):

[if <guard>] <opcode> [(<modifier>)][<operand_1>] [<operand_2>]
[-> destination]

e guard denotes an optional guard. A guarded operation is executed if and
only if the least-significant bit of the general purpose register specified as
guard is 1. Immediate operations cannot be guarded.

e The optional modifier field is used to indicate shift distances, displacements
for memory accesses, etc.

e Since the TriMedia TM1000 is a load /store architecture, memory accesses are
restricted to explicit load and store operations. The fields guard, operand_1,
operand_2 and destination must be general purpose registers. The registers
are represented as rn where n is the number of the register.

In the following a list of all microoperations of the TriMedia TM1000 is given.
For each operation, the assembly syntax is listed, and the functional unit type used
for executing the operation (cf. Tab. 10.7) is given with the corresponding latency.
The feasible issue slots are enumerated in the last column.

Syntax Execution Time, FU Type Issue Slots
asl srcl src2 — dst 1, shifter 1,2
asli(n) srcl — dst 1, shifter 1,2

252

A.3. Instruction Set of the TM1000

asr srcl src2 — dst 1, shifter 1,2
asri(n) srcl — dst 1, shifter 1,2
bitand srcl src2 — dst 1, alu 1,2,3,4,5
bitandinv srcl src2 — dst 1, alu 1,2,3,4,5
bitinv srcl — dst 1, alu 1,2,3,4,5
bitor src1 src2 — dst 1, alu 1,2,3,4,5
bitxor src1 src2 — dst 1, alu 1,2,3,4,5
carry srcl src2 — dst 1, alu 1,2,3,4,5
cycles — dst 1, fcomp 3
deb(d) srel 3, dmemspec 5
dinvalid(d) srecl 3, dmemspec 5
dspiadd srcl src2 — dst 2, dspalu 1,3
dspidualadd src1 src2 — dst 2, dspalu 1,3
dspidualmul src1 src2 — dst 3, dspmul 2,3
dspidualsub srci src2 — dst 2, dspalu 1,3
dspimul src1 src2 — dst 3, ifmul 2,3
dspisub srcl src2 — dst 2, dspalu 1,3
dspuadd srcl src2 — dst 2, dspalu 1,3
dspumul src1 src2 — dst 3, ifmul 2,3
dspuquadaddui srcl src2 — dst 2, dspalu 1,3
dspusub srcl src2 — dst 2, dspalu 1,3
fabsval src1 — dst 3, falu 1,4
fabsvalflags src1 — dst 3, falu 14
fadd src1 src2 — dst 3, falu 14
faddflags srcl src2 — dst 3, falu 14

fdiv src1 src2 — dst 17, ftough 2
fdivflags srcl src2 — dst 17, ftough 2

feql src1 src2 — dst 1, fcomp 3
feqlflags src1 src2 — dst 1, fcomp 3

fgeq src1 src2 — dst 1, fcomp 3
fgeqflags src1 src2 — dst 1, fcomp 3

fgtr srcl src2 — dst 1, fcomp 3
fgtrflags src1 src2 — dst 1, fcomp 3

fmul srcl src2 — dst 3, ifmul 2,3
fmulflags src1 src2 — dst 3, ifmul 2,3

fneq src1 src2 — dst 1, fcomp 3
fneqflags src1 src2 — dst 1, fcomp 3

fsign src1 — dst 1, fcomp 3
fsignflags src1 — dst 1, fcomp 3

fsqrt srcl1 — dst 17, ftough 2
fsqrtflags srcl — dst 17, ftough 2

fsub srcl src2 — dst 3, falu 1,4
fsubflags src1 src2 — dst 3, falu 1,4
funshiftl src1 src2 — dst 1, shifter 1,2

253

A. Appendix

funshift2 src1 src2 — dst 1, shifter 1,2
funshift3 src1 src2 — dst 1, shifter 1,2
h_dspiabs 70 src2 — dst 2, dspalu 1,3
h_dspidualabs r0 src2 — dst 2, dspalu 1,3
h_iabs 70 src2 — dst

h_st16d(d) srcl src2 3, dmem 4,5
h_st32d(d) srcl src2 3, dmem 4,5
h_st8d(d) srcl src2 3, dmem 4.5
hicycles — dst 1, fcomp 3

iadd src1 src2 — dst 1, alu 1,2,3,4,5
iaddi(n) srcl — dst 1, alu 1,2,3,4,5
iavgonep srcl src2 — dst 2, dspalu 1,3
ibytesel src1 src2 — dst 1, alu 1,2,3,4,5
iclipi srel sre2 — dst 2, dspalu 1,3

iclr

ieql srcl src2 — dst 1, alu 1,2,3,4,5
ieqli(n) srcl — dst 1, alu 1,2,3,4,5
ifirl6 srcl src2 — dst 3, dspmul 2,3
ifir8ii src1 src2 — dst 3, dspmul 2,3
ifir8ui srcl src2 — dst 3, dspmul 2,3
ifixieee src1 — dst 3, falu 1,4
ifixieeeflags src1 — dst 3, falu 1,4
ifixrz srcl1 — dst 3, falu 14
ifixrzflags srcl — dst 3, falu 1,4

iflip srcl src2 — dst 2, dspalu 1,3
ifloat src1 — dst 3, falu 1,4
ifloatflags src1 — dst 3, falu 14
ifloatrz src1 — dst 3, falu 14
ifloatrzflags src1 — dst 3, falu 14

igeq srcl src2 — dst 1, alu 1,2,3,4,5
igeqi(n) srcl — dst 1, alu 1,2,3,4,5
igtr srcl src2 — dst 1, alu 1,2,3,4,5
igtri(n) srcl — dst 1, alu 1,2,3,4,5
iimm(n) — dst 1, const 1,2,3,4,5
ijmpf src1 src2 delay = 3, branch 2,3,4
ijmpi(address) delay = 3, branch 2,3,4
ijmpt srel src2 delay = 3, branch 2,3,4
ild16d(d) src1 — dst 3, dmem 4,5
ild16r src1 src2 — dst 3, dmem 4,5
ild16x src1 src2 — dst 3, dmem 4,5
ild8d(d) src1 — dst 3, dmem 4,5
ild8r src1 src2 — dst 3, dmem 4.5
ileqi(n) srcl — dst 1, alu 1,2,3,4,5
ilesi(n) srcl — dst 1, alu 1,2,3,4,5

254

imax srcl src2 — dst
imin srcl src2 — dst
imul src1 src2 — dst
imulm srcl src2 — dst
ineq srcl src2 — dst
ineqi(n) srcl — dst
inonzero srcl src2 — dst
isub srcl src2 — dst
isubi(n) srcl — dst

izero srcl src2 — dst
jmpf src1 src2
jmpi(address)

jmpt srcl src2

1d32d(d) src1 — dst

1d32r src1 src2 — dst
1d32x src1 src2 — dst

Isr srcl src2 — dst

Isri(n) srcl — dst
mergelsb src1 src2 — dst
mergemsb srcl src2 — dst
pack16lsb src1 src2 — dst
pack16msb srcl src2 — dst
packbytes src1 src2 — dst
quadavg srcl src2 — dst
quadumulmsb srcl src2 — dst
rdstatus(d) srcl — dst
rdtag(d) srcl — dst
readdpc — dst
readpcsw — dst

readspc — dst

rol srcl src2 — dst
roli(n) srcl — dst

sex16 srcl — dst

ubytesel src1 src2 — dst
uclipi srcl src2 — dst
uclipu srcl src2 — dst
ueqli(n) srel — dst

ufirl6 srcl src2 — dst
ufir8uu srcl src2 — dst
ufixieee src1 — dst
ufixieeeflags src1 — dst
ufixrz srcl — dst
ufixrzflags srcl — dst
ufloat src1 — dst

A.3. Instruction Set of the TM1000

, dspalu
, dspalu
, ifmul
, ifmul
, alu

, alu
,alu
,alu

delay = 3, branch
delay = 3, branch
delay = 3, branch

3
3
3

S I I I U U U U S N B N S e e Sy S S UG U R U N S S Gy g g e s

, dmem

, dmem

, dmem
shifter
shifter
alu

alu

alu

alu

alu
dspalu
dspmul
dmemspec
dmemspec
fcomp
fcomp
fcomp
shifter
shifter
alu

alu

, dspalu
, dspalu
1u
dspmul
, dspmul
, falu

, falu

, falu

, falu

, falu

[

I
I

1,3

1,3

2,3

2,3
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
2,3,4
2,3,4
2,34

45

45

45

1,2

1,2
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,3

2,3

1,2,3,4,5
1,2,3,4,5
1,3
1,3
1,2,3,4,5
2,3
2,3
1,4
1,4
1,4
1,4
1,4

255

A. Appendix

ufloatflags src1 — dst
ufloatrz src1 — dst
ufloatrzflags src1 — dst
ugeq srcl src2 — dst
ugeqi(n) srcl — dst
ugtr srcl src2 — dst
ugtri(n) srcl — dst
uimm(n) — dst
uld16d(d) srcl — dst
uld16r srcl src2 — dst
uld16x src1 src2 — dst
uld8d(d) src1 — dst
uld8r src1 src2 — dst
uleqi(n) srel — dst
ulesi(n) srcl — dst
ume8ii srcl src2 — dst
ume8uu srcl src2 — dst
umul srcl src2 — dst
umulm srcl src2 — dst
uneqi(n) srcl — dst
writedpc srcl
writepcsw srcl src2
writespc srcl

Q0 P P PP
H o H = H -
O B e e s
8 w
ot

o QQ Q
8 8 8 3
® ® O O
8B B B B

alu
alu

Q.
[&]
o]
[
[
[«

dspalu
ifmul

ifmul

, alu

1, fcomp

1, fcomp

1, fcomp

R R I I R U U U U e e

1,4
1,4

1,4
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
1,2,3,4,5
4,5

4,5

4,5

4,5

4,5
1,2,3,4,5
1,2,3,4,5
1,3

1,3

2,3

2,3
1,2,3,4,5
3

3

3

A.4. Excerpts from the TDL Specification of the

TM1000
[h—m—mm e —————————————————————————— - */
/* Resources */
[mm—mm e ——————————————————————— */

Resources-Section

// Functional Units
FuncUnit ALU 5;
FuncUnit BRNCH 3;
FuncUnit CONST 5;
FuncUnit DMEM 2;
FuncUnit DMEMSPEC 1;
FuncUnit DSPALU 2;
FuncUnit DSPMUL 2;
FuncUnit FALU 2;

256

A.4. Excerpts from the TDL Specification of the TM1000

FuncUnit FCOMP 1;
FuncUnit FTOUGH 1;
FuncUnit IFMUL 2;
FuncUnit SHIFTER 2;

// General Purpose Registers
Register gpr "r%d" [0:127] size=32, type=signed<32>;

// The general purpose registers rO and rl have fixed values.
SetProperties gpr[0] value=0x00000000;
SetProperties gpr[1] value=0x00000001;

RegisterAlias rrp "rp" gprl[2] mapping=[1:1];
RegisterAlias rfp "fp" gpr[3] mapping=[1:1], usage=FP;
RegisterAlias rsp "sp" gprl[4] mapping=[1:1], usage=SP;
RegisterAlias rrv "rv" gpr[5] mapping=[1:1];

// ... and only the remaining registers are true GPRs.
ResourceClass tgpr {gpr[2:127]1};

// Program Counter
Register tPC "PC" size=32, usage=PC;

// Program Control and Status Word
Register PCSW "pcsw" size=32;

// Destination Program Counter
Register DPC "dpc" size=32;

// Source Program Counter
Register SPC "spc" size=32;

// Clock Cycle Counter
Register CCCOUNT "ccount" size=64;

// Memory
Memory MEM "Mem" access=8, align=8, type=mixed;

// Cache
Cache DataCache assoc=8, size=256, linesize=64, type=data;
Cache InstrCache assoc=8, size=b12, linesize=64, type=instr;

// Resources representing the issue slots, used for ILP-Modelling
DefineResource ISlotl "islotl" 1;
DefineResource ISlot2 "islot2" 1;
DefineResource ISlot3 "islot3" 1;

257

A. Appendix

DefineResource ISlot4 "islot4" 1;
DefineResource ISlotb "islotb" 1;

// Resource for the write-back bus, used for ILP modelling
DefineResource WbBus "Write-back Bus" 5;

InstructionSet-Section

// Examples for macros allowing to shorten the description by
// using the C preprocessor

#define DUALCOMP32 if (templ<O0xffff8000) {templ:=0x00008000;2} \
if (temp2<0xfff£8000) {temp2:=0x00008000;1} \
if (temp1>0x00007fff) {templ:=0x00007fff;} \
if (temp2>0x00007fff) {temp2:=0x00007fff;} \
_bext (dst1,31,16) :=_bext (temp2,15,0); \
_bext (dst1,15,0) :=_bext(templ,15,0);

#define LD32MACRO \
_bext(dst1,7,0):= \
_signed(MEM[tempaddr+_signed(_zext (tempbsxor,32),32)]1,8); \
tempbsxor:=_conc (0b0,tempbs~0b10); \
_bext(dst1,15,8) := \
_signed (MEM[tempaddr+_signed(_zext (tempbsxor,32),32)]1,8); \
tempbsxor:=_conc (0b0,tempbs~0b01); \
_bext(dst1,23,16):= \
_signed (MEM[tempaddr+_signed(_zext (tempbsxor,32),32)]1,8);\
tempbsxor:=_conc (0b0,tempbs~0b00) ; \
_bext(dst1,31,24):= \
_signed (MEM[tempaddr+_signed(_zext (tempbsxor,32),32)],8);

OpNT asmexp "%!(asmexp) %! (binary_asm_operator) %! (asm_opnd)"
{3,431, 43
| "%!(asm_opnd)" {},{;},{};

OpNT binary_asm_operator "+" {},{;},{} | "-" {},{;},{}
Lo 3,463,438

OpNT asm_opnd "%d" {},{;},{} | "%x" {},{;},{}
I "%s" {3, 43,43 | "% (asmexp)) " {},{;},{};

258

A.4. Excerpts from the TDL Specification of the TM1000

OpNT optguard "if %s" {guard=true, src3="$1" in {gpr}},{;},{}
| ""{guard=false},{;},{};

OpNT jtarget "%!(asmexp)" {target="$1"1},{;},{};
OpNT imms7_s1 "%!(asmexp)" {srcl="$1" as signed<7>},{;},{};

DefineOp opNop "%! (optguard) nop" {type=nop},
{ISlot1(exectime=1, latency=1, slots=0)
|[ISlot2(exectime=1, latency=1, slots=0)
|ISlot3(exectime=1, latency=1, slots=0)
[ISlot4(exectime=1, latency=1, slots=0)
|ISlot5(exectime=1, latency=1, slots=0);3},{};

DefineOp opASL "%! (optguard) asl %s %s \[->\]1 %s"
{src1="$2" in {gpr}, src2="$3" in {gpr},
dst1="$4" in {tgprl}},
{ISlot1(exectime=1, latency=1, slots=0)
|[ISlot2(exectime=1, latency=1, slots=0); WbBus},
{if ((guard==true)&&(src3<0>==0b1)) {
signed<6> n; n:=_conc(0Obl,_bext(src2, 4, 0));
dstl:=_ash(srcl,n);} };

DefineOp opDSPIDUALADD "%!(optguard) dspidualadd %s %s \[->\] %s"
{src1="$2" in {gpr}, src2="$3" in {gpr},
dst1="$4" in {tgprl}},
{ISlot1(exectime=2, latency=1, slots=0)
|[ISlot3(exectime=2, latency=1, slots=0); WbBus},
{if (guard==true) {if (src3<0>==0b1) {
signed<32> templ; signed<32> temp2;
templ:=_sext(_signed(_bext(src1,15,0),16),32)+
_sext(_signed(_bext(src2,15,0),16),32);
temp2:=_sext(_signed (_bext(src1,31,16),16),32)+
_sext(_signed(_bext(src2,31,16),16),32);
DUALCOMP32 } } };

DefineOp opDSPUQUADADDUI

"%! (optguard) dspuquadaddui %s %s \[->\1 %s"

{src1="$2" in {gpr}, src2="$3" in {gpr},

dst1="$4" in {tgprl}},

{ISlot1(exectime=2, latency=1, slots=0)

|[IS1lot3(exectime=2, latency=1, slots=0); WbBus},

{if (guard==true) {if (src3<0>==0b1) {
signed<32> i; signed<32> m; signed<32> n;
signed<32> temp; i:=0; m:=31; n:=24;
while(i<4) {

259

A. Appendix

temp:=_zext (_signed(_bext(srcl,m,n),8),32)+
_sext(_signed(_bext(src2,m,n),8),32);

if (temp<0) {_unsigned(_bext(dstl,m,n),8):=0x00;}

else { if (temp>0x000000ff) {

_unsigned(_bext(dstl,m,n),8) :=0xff;}
else { _signed(_bext(dstl,m,n),8):=
_bext(temp,7,0);} }
i:=i+l; m:=m-8; n:=n-8; } } } };

DefineOp opFGTRFLAGS "%!(optguard) fgtrflags %s %s \[->\1 %s"
{src1="$2" in {gpr} as float<24,8>,
src2="$3" in {gpr} as float<24,8>,
dst1="$4" in {tgpr} as float<24,8>},
{ISlot3(exectime=1, latency=1, slots=0);WbBus},
{if ((guard==true)&&(src3<0>==0b1)) {
float<24,8> ftemp; dstl1:=0;
ftemp:=_fgt(srcl,src2,24,8,
round_nearest,_bext(dst1,6,0));} } };

DefineOp opIFIR16 "!(optguard) ifir16 %s %s \[->\] %s"
{src1="$2" in {gpr}, src2="$3" in {gpr},
dst1="$4" in {tgpr}},
{ISlot2(exectime=3, latency=1, slots=0)
|IS1lot3(exectime=3, latency=1, slots=0); WbBus},
{if (guard==true) {if (src3<0>==0b1) {
dst1l:=_sext(_signed(_bext(src1,31,16),16),32) *
_sext (_signed(_bext(src2,31,16),16),32)
+ _sext(_signed(_bext(src1,15,0),16),32) *
_sext (_signed(_bext(src2,15,0),16),32); } } };

DefineOp opIMUL "%!(optguard) imul %s %s \[->\] %s"
{src1="$2" in {gpr}, src2="$3" in {gpr},
dst1="$4" in {gpr}},
{ISlot2(exectime=3, latency=1, slots=0)
[IS1lot3(exectime=3, latency=1, slots=0); WbBus},
{if ((guard==true)&&(src3<0>==0b1)) { signed<64> temp;
temp:=_sext(srcl,64) * _sext(src2,64);
dst1l:=_bext(temp,31,0);} } };

DefineOp opJMPI "%!(optguard) jmpi (%!(jtarget))"

{type=jmp},

{ISlot2(exectime=3, latency=1, slots=3)
|ISlot3(exectime=3, latency=1, slots=3)
[ISlot4(exectime=3, latency=1, slots=3); WbBus},

{if (guard==true) {if (src3<0>==0b1) {

260

A.4. Excerpts from the TDL Specification of the TM1000

if (src1<0>==0b0) {tPC:=src2; } } } };

DefineOp opLD32D "%! (optguard) 1d32d (%!(imms7_s1)) %s \[->\1 %s"
{src2="$3" in {gpr}, dst1="$4" in {gpr}, src4=MEM},
{ISlot4(exectime=3, latency=1, slots=0)
|[ISlot5(exectime=3, latency=1, slots=0); WbBus},

{if (guard==true) {if (src3<0>==0bl) {unsigned<2> tempbs;
signed<32> tempaddr; signed<3> tempbsxor;
if (PCSW<9>==0bl) {tempbs:=0bll;} else {tempbs:=0b00;}
tempbsxor:=_conc (0b0,tempbs~0b11);
tempaddr :=src2+_sext (src1,32); LD32MACRO } } };

OperationClass DMemspecClass {opDCB, opDINVALID, opRDSTATUS, opRDTAG};
OperationClass DMemClass {opH_ST16D, opH_ST32D, opH_ST8D, opILD16D,
opILD16R, opILD16X, opILD8D, opILD8R, opLD32D, opLD32R,
opLD32X, opULD16D, opULD16R, opULD16X, opULD8D, opULD8R};
OperationClass BugClass {opDINVALID, opDCB};

A e et ettt */
/* Constraints */
[mmm */

Constraints-Section

opl in {DMemspecClass} & op2 in {DMemClass}: !(opl && op2);
opl in {DMemspecClass, DMemClass} & op2 in {BugClass}: ! (opl->(1)op2);

[mmm */
/* Assembly Section */
[———— - ————————————— - .-, - -, -, - -, - . -, ——. .- Y —. */

Assembly-Section

OperationDelimiter ",";
InstructionDelimiter ";";
Comment (" (*x", "*)");

DefineDirective DirData "\[.data\]l" {type=SegStart, name="data"};
DefineDirective DirDatal "\[.datal\]" {type=SegStart, name="datal"};
DefineDirective DirText "\[.text\]" {type=SegStart, name="text"};

DefineDirective DirGlobal "\[.global\] %! (dirExpList)"
{type=GlobalDecl, opndl="$1"};

DefineDirective DirAscii "\[.asciil] %s" {opndi="$1"};
DefineDirective DirAlign "\[.align\] %d" {opndi="$1"};

261

A. Appendix

DirNT dirExp "%s" | "%d";

DirNT dirExpList "%!(dirExp) %! (dirExpList)" | "%!(dirExp)";
DefineDirective DirByte "\[.byte\] %!(dirExpList)" {opndi="$1"};
DefineDirective DirHalf "\[.half\] %!(dirExpList)" {opnd2="$1"};
DefineDirective DirWord "\[.word\] %!(dirExpList)" {opnd3="$1"};

262

Index

abstract register file, 47
addressing
circular, 28
linear, 28
reverse arithmetic, 28
ADSP-2106x SHARC, 184
affinely independent, 32
alap, 48, 177, 187, 204
anti dependence, 11
approximation
€, 82
of isolated flows, 87
of isolated operations, 89
stepwise, 84, 92
stepwise a. of isolated flows, 88
architectural
specialisation, 25
synthesis, 45, 138
architecture database, 4
asap, 48, 177
ASIC, 24
ASIP, 24
ASP, 24
assembly
comment, 138
directive, 138
representation, 137
section, 138, 163
attribute
grammar, 137
inherited, 143
instance, 144
occurrence, 143
synthesised, 143

basic block, 9
basic block graph, 9

behavioural, 138

best bound, 42

best estimate, 42
branch-and-bound, 39
branch-and-cut, 43

C16x, 183
calling conventions, 105
CISC, 23
code
analyses, 138
generation, 138
selection, 7, 13-14
transformation, 137
colourability, 135
common subexpression, 14
compiler-intrinsic functions, 2
compromise model, 126
consequent, 151
consistency
semantical, 138
constraint
section, 137, 150
constraints, 139
assignment, 63
disjunctive, 76
execution, 50
flow conservation, 50
life range, 56
precedence, 54, 64
resource, 52, 63
resource path, 112
serial, 53
control
dependence, 10
dependence graph, 11, 173
equivalent, 11

263

Index

control flow
graph, 8, 167
reconstruction, 168

convex
combination, 32
hull, 32

CPLEX, 183

CRL, 4

cycle
decode, 185
execute, 185
fetch, 185

Dakin, 42
data dependence, 11
data dependence graph, 11
data routes, 19
data type
fractional, 149
definition, 11
concurrent, 113
exposed, 169
delayed branch, 185
dependence
anti, 11
control, 10
data, 11
false, 17
loop-carried, 12, 117
loop-independent, 12
output, 11
true, 11
derivation tree, 13
dimension, 32
disjunctive
constraints, 76
normal form, 153
division, 39
dominator, 10
immediate, 10
DSP, 24
DSPCPU, 200
dspstone, 183
dual, 34

264

duality
strong, 35
weak, 34

dynamic programming, 19

edge
backward, 12
forward, 12
embedded systems, 27

evolutionary algorithms, 83, 230

expression tree, 13

face, 32
facet, 32
false dependence, 103
feasible, 33
region, 33
solution, 33
floating point, 149
fork, 9
frontend, 7
functional unit
SHARC, 185
TM1000, 201
functional unit binding, 8

g21k, 186

gcc, 21, 186, 222
generativity, 3, 138
genericity, 3

GPP, 24

guard, 185, 201, 237

hardware simulation, 138
Harvard architecture, 28

highest-level-first heuristic, 16

if-conversion, 202
instruction, 8, 47
multifunctional, 185
scheduling, 7, 15
instruction set
section, 137, 143
SHARC, 185
TM1000, 200

integer
signed, 149
unsigned, 149
interference, 14
graph, 15, 132
interval matrix, 38
issue slot, 201

join, 9

Land-Doig, 42
lcc, 21, 222
life range, 14
constraints, 56
limit
size, 217
time, 188, 195, 217
linearly independent, 32
list scheduling, 16, 175, 218
live, 14
load/store architecture, 185, 200
lookahead, 92
loop, 12
body, 12
boundaries, 217
counter-based, 185
directly enclosing, 98
nesting depth, 12
unrolling, 202
zero-overhead, 29, 185
LP-relaxation, 37

machine state, 147
microoperation, 47, 201, 252
middle-end, 7

multifunctional instruction, 185

node selection, 42

operation, 8, 47, 137, 201, 252
order-indexed, 46

output dependence, 11
overflow, 150

parameterisable, 21
parser, 138

Index

partition, 39
partitioning, 102
dependence-based, 102
order-based, 102
path, 9
constraints, 112, 217
Pentium, 183
phase-coupling problem, 4
pipeline, 138
instruction-, 185
PO, 221
polyhedron, 32
polymorphism, 150
polytope, 32
portable, 20
postdominator, 10
immediate, 10
tree, 10
postpass
optimisation, 2
optimiser, 183
power consumption, 25
premise, 151
primal, 34
processor
application-specific, 24
general-purpose, 24
pruning, 41

real-time systems, 2, 183
reduced transitive hull, 12
register
allocation, 7, 14
assignment, 7, 14, 71, 103
base, 185
flow chain, 127
flow graph, 55
graph, 47
index, 185
interference graph, 15
length, 185
modify, 185
physical, 105
renaming, 4, 103

265

Index

transfer language, 137
virtual, 105
register file
abstract, 105
physical, 105
virtual, 105
relaxation, 37
repairing
collision-based, 127
exclusion-based, 128
resource
abstract, 105
allocation, 7
constraints, 52, 63
flow graph, 49
graph, 47
section, 141
user-defined, 140
result bus, 214
retargetability, 1, 3, 20
retargetable, 21
RISC, 23

scheduling
instruction, 15
list, 16, 175, 218
precedence constrained, 15
resource constrained, 16
trace, 16, 188
section
assembly, 138, 163
constraint, 137, 150
instruction set, 137, 143
resource, 141
semantical
consistency, 138
semantics, 147
SHARC, 184
simulation, 138
splitting
basic block, 217
storage
location, 149
resource, 149

266

structural, 138

superblock, 5, 97
covering, 97
enlargement, 219
graph, 97
merging, 98
partitioning, 102
sequential, 98

synchronisation
lifetime, 122
resource, 123
timing, 121

term rewriting system, 13
threshold, 188
T1320C6x, 183
time-indexed, 46
timing, 137
TM1000, 200
trace, 188
fragmentary, 98
primary, 98
trace scheduling, 16, 188
tree
grammar, 13
parsing, 14
pattern, 13
TriCore, 183
TriMedia TM1000, 200
true dependence, 11
type
constructor, 149
inference, 150

unimodular, 37
totally, 37
use, 11
active, 169

valid, 32

vertex, 32

virtual
definition, 109
register file, 105
use, 109

Index

VLIW, 8, 23, 200
vpo, 222

worst-case execution time, 183

zero-overhead loop, 29, 185

267

Index

268

Bibliography

[Abs00a]

[Abs00b]

[AG85]

[AGT89]

[AJ76]

[AJLAOS5]

[AJUTT]

[AMO99]

[Ana95]

[Ary85]

[ASUS6]

AbsInt Angewandte Informatik GmbH. aiPop166. Code Com-
paction for the C166/ST10. User Documentation — Version 1.0, 2000.
http://www.absint.com.

AbsInt Angewandte Informatik GmbH. aiSee. Graph Visualization.
User Documentation, 2000. http://www.absint.com.

A.V. Aho and M. Ganapathi. Efficient Tree Pattern Matching: An
Aid to Code Generation. Proceedings of the 12th ACM Symposium
on Principles of Programming Languages, pages 334-340, 1985.

A.V. Aho, M. Ganapathi, and S.W.K. Tjiang. Code Generation Using
Tree Matching and Dynamic Programming. ACM Transactions on
Programming Languages and Systems, 11(4):491-516, October 1989.

A.V. Aho and S.C. Johnson. Optimal Code Generation for Expression
Trees. Journal of the ACM, 23(3):488-501, 1976.

V.H. Allan, R.B. Jones, R.M. Lee, and S.J. Allan. Software Pipelin-
ing. Computing Surveys, 27(3):367-432, September 1995.

A V. Aho, S.C. Johnson, and J.D. Ullman. Code Generation for
Expressions with Common Subexpressions. Journal of the ACM,
24(1):146-160, 1977.

G. Araujo and S. Malik. Optimal Code Generation for Embedded
Memory non-homogeneous Register Architectures. Proceedings of the
1S5S, pages 36-41, 1999.

Analog Devices. ADSP-2106x SHARC User’s Manual, 1995.

S. Arya. An Optimal Instruction Scheduling Model for a Class of Vec-
tor Processors. IEEFE Transactions on Computers, C-34, November
1985.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, 1986.

269

Bibliography

[Bal74a]

[Bal74b]

[Balos]

[Bar81]

[Bas95]

[BCE*98]

[BCRS97]

[BCTY4]

[BDSS]

[BD94]

[Bea91]

[Ben94]

270

E. Balas. Cutting Planes from Logical Conditions. University of
Wisconsin Nonlinear Programming Symposium, April 1974.

E. Balas. Intersection Cuts from Disjunctive Constraints. Technical
Report MSSR. No.330, Carnegie-Mellon University, 1974.

E. Balas. Disjunctive Programming: Properties of the Convex Hull
of Feasible Points. Discrete Applied Mathematics, 89:3-44, 1998. El-
sevier Science.

M.R. Barbacci. Instruction Set Processor Specifications (ISPS): The
Notation and Its Applications. IEEE Transactions on Computers,
C-30(1):24-40, January 1981.

S. Bashford. Code Generation Techniques for Irregular Architectures.
Technical Report 596, University of Dortmund, 1995.

F. Bodin, Z. Chamski, C. Eisenbeis, E. Rohou, and A. Seznec. GCDS:
A Compiler Strategy for Trading Code Size Against Performance in
Embedded Applications. Technical Report 3346, INRIA, January
1998.

F. Bodin, Z. Chamski, E. Rohou, and A. Seznec. Functional Spe-
cification of SALTO: A Retargetable System for Assembly Language
Transformation and Optimization, rev. 1.00 beta. INRIA, 1997.

P. Briggs, K. Cooper, and L. Torczon. Improvements to Graph Col-
oring Register Allocation. ACM Transactions on Programming Lan-
guages and Systems, 16(3):428-455, 1994.

M.E. Benitez and J.W. Davidson. A Portable Global Optimizer and
Linker. Proceedings of the ACM SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation, in SIGPLAN No-
tices, 23(7):329-338, July 1988.

M.E. Benitez and J.W. Davidson. Target-Specific Global Code Im-
provement: Principles and Applications. Technical report, Depart-

ment of Computer Science, University of Virginia, Charlottesville,
1994.

S.J. Beaty. Instruction Scheduling Using Genetic Algorithms. PhD
thesis, Department of Mechanical Engineering, Colorado State Uni-
versity, Fort Collins, Colorado, 1991.

M.E. Benitez. Register Allocation and Phase Interactions in Retar-
getable Optimizing Compilers. PhD thesis, University of Virginia,
May 1994.

[BEP+96]

[BGS94]

[BHE91]

[BLYY]

[BIi96]

[Bra91]

[Bri92]

[BST93]

[Cam98|

[CCK97]

[CFRWO1]

[CH90]

Bibliography

J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling Computer and Manufacturing Processes. Springer-Verlag,
1996.

D. Bacon, S. Graham, and O. Sharp. Compiler Transformations for
High-Performance Computing. ACM Computing Surveys, 4, 1994.

D.G. Bradlee, R.R. Henry, and S.J. Eggers. The Marion System for
Retargetable Instruction Scheduling. Proceedings of the PLDI, pages
229-240, 1991.

S. Bashford and R. Leupers. Phase-Coupled Mapping of Data Flow
Graphs to Irregular Data Paths. Design Automation for Embedded
Systems, pages 1-50, 1999.

T. Blickle. Theory of Evolutionary Algorithms and Applications to
System Design. PhD thesis, ETH Zirich, 1996.

D.G. Bradlee. Retargetable Instruction Scheduling for Pipelined Pro-
cessors. Phd thesis, Technical Report 91-08-07, University of Wash-
ington, 1991.

P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice
University, Houston, Texas, April 1992.

A. Bachmann, M. Schobinger, and L. Thiele. Synthesis of Domain
Specific Multiprocessor Systems including Memory Design. In VLSI
Signal Processing VI, pages 417-425, New York, 1993. IEEE Press.

M.E. Campbell. Evaluating ASIC, DSP, and RISC Architectures for
Embedded Applications. Northrop Grumman Corporation, 1998.

C-M. Chang, C-M. Chen, and C-T. King. Using Integer Linear
Programming for Instruction Scheduling and Register Allocation in
Multi-Issue Processors. Computers and Mathematics with Applica-
tions, 34(9):1-14, November 1997.

R. Cytron, J. Ferrante, B.K. Rosen, and M.N. Wegman. Efficiently
Computing Static Single Assignment Form and the Control Depen-
dence Graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, October 1991.

F.C. Chow and J.L. Hennessy. The Priority-Based Coloring Approach
to Register Allocation. ACM Transactions on Programming Lan-
guages and Systems, 12(4):501-536, 1990.

271

Bibliography

[Cha82]

[Chv83]

[CIP83]

[CLRY0]

[CWMO3]

[CWMO94]

[Dak65]

[Danb1]

[DFS0]

[DF84]

[Die95]

[DK96]

272

G.J. Chaitin. Register Allocation and Spilling via Graph Coloring.
In Proc. SIGPLAN’82 Symp. on Compiler Construction, SIGPLAN
Notices, volume 17(6), pages 201-207, 1982.

V. Chvatal. Linear Programming. Freeman and Company, New York,
1983.

H. Crowder, E. Johnson, and M. Padberg. Solving Large Scale Zero-
One Linear Programming Problems. Operations Research, 31(5):803—
834, 1983.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Al-
gorithms. MIT Press, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, 1990.

S. Chaudhuri, R.A. Walker, and J.E. Mitchell. The Structure of
Assignment, Precedence, and Resource Constraints in the ILP Ap-
proach to the Scheduling Problem. Proceedings of the IEEE Inter-
national Conference on Computer Design: VLSI in Computers and
Processors, pages 25-31, 1993.

S. Chaudhuri, R.A. Walker, and J.E. Mitchell. Analyzing and Ex-
ploiting the Structure of the Constraints in the ILP-Approach to the

Scheduling Problem. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 2(4):456-471, December 1994.

R.J. Dakin. A Tree-Search Algorithm for Mixed Integer Programming
Problems. The Computer Journal, 8:250-255, 1965.

G.B. Dantzig. Maximization of a linear function of variables subject
to linear inequalities. In Tj. C. Koopmans, editor, Activity Analysis
of Production and Allocation, pages 339-347. Wiley, New York, 1951.

J.W. Davidson and C.W. Fraser. The Design and Application of a Re-
targetable Peephole Optimizer. ACM Transactions on Programming
Languages and Systems, 2(2):191-202, April 1980.

J.W. Davidson and C.W. Fraser. Code Selection through Object
Code Optimization. ACM Transactions on Programming Languages
and Systems, 6(4):505-526, October 1984.

T.A. Diep. A Visualization-based Microarchitecture Workbench. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, August
1995.

W. Dinkelbach and A. Kleine. Elemente einer betriebswirtschaftlichen
Entscheidungslehre. Springer, 1996. In German.

[DROS]

[DT93]

[Eis00]

[E1186]

[EM92]

[Emm89]

[Emm92]

[Fau95]

[Fer97]

[FHO1]

[FHO5]

[FHMKO94]

[FHP92]

[Fis81]

Bibliography

J.W. Davidson and N. Ramsey. Machine Descriptions to Build Tools
for Embedded Systems. In Proceedings of the ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Systems,
pages 172-188. Springer LNCS, Volume 1474, June 1998.

J.C. Dehnert and R.A. Towle. Compiling for the Cydra 5. The
Journal of Supercomputing, 1/2:181-228, May 1993.

F. Eisenbrand. Gomory-Chvatal Cutting Planes and the Elementary
Closure of Polyhedra. PhD thesis, Saarland University, 2000.

J.R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,
1986.

K. Ebcioglu and S. Moon. An Efficient Resource Constrained Global
Scheduling Technique for Superscalar and VLIW Processors. MICRO,
December 1992.

H. Emmelmann. BEG - a Back End Generator. GMD
Forschungsstelle an der Universitat Karlsruhe, November 1989.

H. Emmelmann. Code Selection by Regularly Controlled Term
Rewriting. Proceedings of the CODE91 Workshop, 1992.

A. Fauth. Beyond Tool-Specific Machine Descriptions. In [MG95],
chapter 8, pages 138-152. Kluwer, 1995.

C. Ferdinand. Cache Behavior Prediction for Real-Time Systems.
PhD thesis, Saarland University, 1997.

C.W. Fraser and D. Hanson. A Retargetable Compiler for ANSI C.
SIGPLAN Notices, 26(10):29-43, October 1991.

C. Fraser and D. Hanson. A Retargetable C' Compiler: Design And
Implementation. Benjamin/Cummings Publishing Company, Inc.,
1995.

A. Fauth, G. Hommel, C. Miiller, and A. Knoll. Global Code Selection
for Directed Acyclic Graphs. Proceedings of the ACM International
Conference on Compiler Construction, pages 128-142, April 1994.

C.W. Fraser, D.R. Hanson, and T.A. Proebsting. Engineering a Sim-
ple, Efficient Code-Generator Generator. ACM Letters on Program-
ming Languages and Systems, 1(3):213-226, 1992.

J.A. Fisher. Trace Scheduling: A Technique for Global Microcode
Compaction. IEEFE Transactions on Computers, C-30(7):478-490,
July 1981.

273

Bibliography

[Fis92]

[FK93a]

[FK93b]

[FKL+99]

[Fly95]

[Fou81]

[FOWS7]

[FRO1]

[FSW94]

[FVPF95]

[GAGO6]

274

P.C. Fishburn. Induced Binary Probabilities and the Linear Ordering
Polytope: A Status Report. Mathematical Social Sciences, 23:67-80,
1992.

A. Fauth and A. Knoll. Automated Generation of DSP Program De-
velopment Tools Using a Machine Description Formalism. Proceed-
ings of the IEEFE Int. Conf. on Acoustics, Speech and Signal Process-
ing ICASSP ’93, pages 457-460, apr 1993. http://www.techfak.uni-
bielefeld.de/techfak /ags/ti/forschung/publikationen/icassp93.ps.gz.

A. Fauth and A. Knoll. Translating Signal Flowcharts into Microcode
for Custom Digital Signal Processors. Proceedings of the IEEE In-
ternational Conference on Signal Processing, pages 65-68, October
1993.

C. Ferdinand, D. Késtner, M. Langenbach, F. Martin, M. Schmidt,
J. Schneider, J. Theiling, S. Thesing, and R. Wilhelm. Run-Time
Guarantees for Real-Time Systems - The USES Approach. In In-
formatik °99. Informatik uberwindet Grenzen. Jahrestagung der GI,
Informatik Aktuell. Springer, 1999.

M.J. Flynn. Computer Architecture: Pipelined and Parallel Processor
Design. Jones and Bartlett, 1995.

L.R. Foulds. Optimization Techniques: An Introduction. Springer,
1981.

J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program De-
pendence Graph and its Use in Optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319-349, July 1987.

S.M. Freudenberger and J.C. Ruttenberg. Phase Ordering of Reg-
ister Allocation and Instruction Scheduling. In R. Giegerich and
S.L. Graham, editors, “Code Generation - Concepts, Tool, Tech-
niques”, Proceedings of the International Workshop on Code Gener-
ation, Dagstuhl, Germany, 1991, pages 146-172. Workshops in Com-
puting, Springer, 1991.

C. Ferdinand, H. Seidl, and R. Wilhelm. Tree Automata for Code
Selection. Acta Informatica, 31:741-760, 1994.

A. Fauth, J. Van Praet, and M. Freericks. Describing Instruction Set
Processors Using nML. In Proceedings of the European Design and
Test Conference, pages 503-507. IEEE, 1995.

R. Govindarajan, E.R. Altman, and G.R. Gao. A Framework for Re-
source Constrained Rate Optimal Software Pipelining. IEEE Trans-
actions on Parallel and Distributed Systems, 7(11), November 1996.

[Gas89]

[GE92]

[GE93]

[Geb97]

[GGT8]

[GHSS]

[GHK*+98]

[GHR6]

[Gie82]

[GJI79]

[Goe9T]

[Gom63]

Bibliography

F. Gasperoni. Compilation Techniques for VLIW-Architectures.
Technical report, Courant Institute of Mathematical Science, New
York University, March 1989.

C.H. Gebotys and M.I. Elmasry. Optimal VLSI Architectural Synthe-
sts. Kluwer Academic, 1992.

C.H. Gebotys and M.I. Elmasry. Global Optimization Approach for
Architectural Synthesis. IEEFE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, pages 12661278, 1993.

C.H. Gebotys. An Efficient Model for DSP Code Generation: Per-
formance, Code Size, Estimated Energy. In Proceedings of the 10th
International Symposium on System Synthesis, pages 41-47. IEEE
Computer Society Press, 1997.

R.S. Glanville and S.L. Graham. A new Method for Compiler Code
Generation. Proceedings of the 5th ACM Symposium on Principles of
Programming Languages, pages 231-240, January 1978.

J. Goodman and W. Hsu. Code Scheduling and Register Allocation.
Proceedings of the ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, 1988.

P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt, and A. Nico-
lau. EXPRESSION: An ADL for System Level Design Exploration.
Technical Report 1998-29, University of California, Irvine, 1998.

J.C. Gyllenhaal, M.M.W. Hwu, and B.R. Rau. HMDES Version 2.0.
Specification. Technical Report IMPACT-96-3, University of Illinois
at Urbana-Champaign, 1996.

R. Giegerich. Automatic Generation of Machine Specific Code Op-
timizers. In Richard DeMillo, editor, Conference Record on the 9th
Annual ACM Symposium on Principles of Programming Languages,
pages 75—81, Albuquerque, NM, 1982. ACM Press.

M. Garey and D.S. Johnson. Computers and Intractability. A Guide
to the Theory of NP-Completeness. Freemann and Company, 1979.

M.X. Goemans. Improved Approximation Algorithms for Schedul-
ing with Release Dates. Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 591-598, 1997.

R.E. Gomory. An Algorithm for Integer Solutions to Linear Pro-
grams. In R. Graves and P. Wolfe, editors, Recent Advances in Math-
ematical Programming, pages 269-302. McGraw-Hill, 1963.

275

Bibliography

[GS90]

[GW96]

[Had9g]

[Hal97]

[Har92]

[HD89%a]

[HD89D)]

[HD98]

[Hei93]

[Hen84]

[HGG*99]

[HHR97]

276

R. Gupta and M.L. Soffa. Region Scheduling: An Approach for De-
tecting and Redistributing Parallelism. IEEE Transactions on Soft-
ware Engineering, 16(4):421-431, 1990.

D. Goodwin and K. Wilken. Optimal and Near-Optimal Global Reg-
ister Allocation Using 0-1 Integer Programming. Software—Practice
and Ezperience, 26(8):929-965, August 1996.

G. Hadjiyiannis. ISDL: Instruction Set Description Language Version
1.0. Technical report, MIT RLE, April 1998.

L.A. Hall. Approximation Algorithms for Scheduling. In D.S.
Hochbaum, editor, Approzimation Algorithms for NP-hard Problems,
pages 1-43. PWS Publishing Company, 1997.

R. Hartmann. Combined Scheduling and Data Routing for Pro-
grammable ASIC Systems. Proceedings of the European Conference
on Design Automation, pages 486-490, March 1992.

R.R. Henry and P.C. Damron. Algorithms for Table-Driven Code
Generators Using Tree Pattern Matching. Technical Report 89-02-
03, University of Washington, Seattle, 1989.

R.R. Henry and P.C. Damron. Encoding Optimal Pattern Selection in
a Table-Driven Bottom-Up Tree-Pattern Matcher. Technical Report
89-02-04, University of Washington, Seattle, 1989.

S. Hanono and S. Devadas. Instruction Scheduling, Resource Alloca-
tion, and Scheduling in the AVIV Retargetable Code Generator. In
Proceedings of the Design Automation Conference 1998, San Fran-
cisco, California, 1998. ACM.

W. Heinrich. Formal Description of Parallel Computer Architectures
as a Basis of Optimizing Code Generation. PhD thesis, TU Munich,
1993.

R.R. Henry. Graham-Glanville Code Generators. PhD thesis, Uni-
versity of California, Berkeley, 1984.

A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability. Proceedings of the DATFE99,
1999.

R.E. Hank, W.W. Hwu, and B.R. Rau. Region-Based Compilation:
An Introduction and Motivation. International Journal of Parallel
Programming, 25(2):113-146, 1997.

[HLHO91]

[HLWOO]

[HMC+93]

[Hoo88|

[HP96]

ILO99]
[Inf00]

[Int89]

[INS97]

[Kan87]

[Kar84|

[Kas97]

Bibliography

C. Hwang, J. Lee, and Y. Hsu. A Formal Approach to the Scheduling
Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10(4):464-475, 1991.

M. Heffernan, J. Liu, and K. Wilken. Optimal Instruction Scheduling
Using Integer Programming. Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation,
pages 121-133, June 2000.

W.-m. W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J. Warter,
R.A. Bringmann, R.G. Ouellette, R.E. Hank, T. Kiyohara, G.E.
Haab, J.G. Holm, and D.M. Lavery. The Superblock: An Effective
Technique for VLIW and Superscalar Compilation. The Journal of
Supercomputing, Kluwer Academic Publishers, pages 229-248, 1993.

J.N. Hooker. Resolution vs. Cutting Plane Solution of Interference
Problems: Some Computational Experience. Operations Research
Letters, 7(1), 1988.

J.L. Hennessy and D.A. Patterson. Computer Architecture a Quan-
titive Approach. Morgan Kaufmann, San Francisco, 1996.

ILOG S.A. ILOG CPLEX 6.5. User’s Manual, 1999.

Infineon, http://www.infineon.com. TriCore v1.3. Architecture Man-
ual, 2000.

Intel Corp., Santa Clara. 860 64-bit Microprocessor Programmer’s
Reference, 1989.

E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh. Progress
in Integer Programming: An Exposition. Technical Report LEC-
97-02, Georgia Institute of Technology, School of Industrial and
Systems Engineering, Atlanta, CA 30332-0205, January 1997.
http://tli.isye.gatech.edu/reports.html.

G. Kane. MIPS R 2000 RISC Architecture. Prentice Hall, Englewood
Cliffs, 1987.

N. Karmarkar. A new Polynomial-Time Algorithm for Linear Pro-
gramming. Proceedings of the 16th Annual ACM Symposium on The-
ory of Computing, pages 302-311, 1984.

D. Kastner. Instruktionsanordnung und Registerallokation auf der
Basis ganzzahliger linearer Programmierung fiir den digitalen Signal-
prozessor ADSP-2106x. Master’s thesis, Saarland University, 1997.
In German.

277

Bibliography

[Kds99a]

[K#s99b]

[Kas00a]

[K&s00b]

[Kha80]

[KLOS]

[KL99]

[KTO8]

[KT99]

[KWOS]

[KW99]

[Lam88]

278

D. Kastner. TDL - Eine Architekturbeschreibungssprache fiir Post-
passoptimierungen und -analysen. Proceedings of the DSP Deutsch-
land, September 1999. In German.

D. Kéastner. TDL: A Hardware and Assembly Description Language.
Technical Report TDL1.3, Transferbereich 14, Saarland University,
1999.

D. Kastner. PROPAN: A Retargetable System for Postpass Optimisa-
tions and Analyses. Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems, June 2000.

D. Kastner. PROPAN: Ein Retargierbares System fiir Postpassop-
timierungen und -analysen. In K. Mehlhorn and G. Snelting, edi-
tors, Informatik 2000 — Neue Horizonte im neuen Jahrhundert: 30.
Jahrestagung der Gesellschaft fir Informatik. Springer, September
2000. In German.

L.G. Khachiyan. Polynomial Algorithms in Linear Programming
(in Russian). Zhurnal Vychislitel’'noi Matematiki i Matematicheskos
Fiziki, 20:51-68, 1980.

D. Késtner and M. Langenbach. Integer Linear Programming
vs. Graph Based Methods in Code Generation. Technical Report
A/01/98, Saarland University, Saarbriicken, Germany, January 1998.

D. Kastner and M. Langenbach. Code Optimization by Integer Lin-
ear Programming. In Stefan Jahnichen, editor, Proceedings of the

8th International Conference on Compiler Construction CC99, pages
122-136. Springer LNCS 1575, March 1999.

D. Késtner and S. Thesing. Cache Sensitive Pre-Runtime Scheduling.
In Proceedings of the ACM SIGPLAN Workshop on Languages, Com-
pilers and Tools for Embedded Systems, Montreal, CA, June 1998.

D. Késtner and S. Thesing. Cache-Aware Pre-Runtime Scheduling.
Journal of Real-Time Systems, 17:235-256, 1999.

T. Kong and K.D. Wilken. Precise Register Allocation for Irregular
Architectures. Proceedings of the 31st International Microarchitecture
Conference, December 1998.

D. Kastner and R. Wilhelm. Operations Research Methods in Com-
piler Backends. Journal of Mathematical Communications, 1999.

M. Lam. Software Pipelining: An Effective Scheduling Technique
for VLIW Machines. Proceedings of the SIGPLANS88 Conference on

[Lan99]

[LBSL97]

[LCGDMO4]

[LCS*97]

[LD60]

[LDK'95]

[LDKT95]

[LDS80]

[Leu97]

[LLKS85]

[LM94]

Bibliography

Programming Language Design and Implementation, pages 318-328,
June 1988.

M. Langenbach. CRL — A Uniform Representation for Control Flow.
Technical report, TFB 14, Saarland University, November 1999.

P. Lapsley, J. Bier, A. Shoham, and E.A. Lee. DSP Processor Fun-
damentals. Architectures and Features. IEEE Press Series on Signal
Processing. IEEE Press, New York, 1997.

D. Lanneer, M. Cornero, G. Goossens, and H. De Man. Data Routing:
a Paradigm for Efficient Data-Path Synthesis and Code Generation.
Proceedings of the Tth ACM/IEEE International Symposium on High-
Level Synthesis, pages 17-22, May 1994.

C. Liem, M. Cornero, M. Santana, P. Paulin, A. Jerraya, J.-M. Gentit,
J. Lopez, X. Figari, and L. Bergher. An Embedded System Case
Study: the Firm Ware Development Environment for a Multimedia
Audio Processor. 34th Design Automation Conference, 1997.

A H. Land and A.G. Doig. An Automatic Method of Solving Discrete
Programming Problems. Econometrica, 28(497-520), 1960.

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Code Op-
timisation Techniques for Embedded DSP Microprocessors. Design
Automation Conference, pages 599-604, 1995.

S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction Selection
Using Binate Covering for Code Size Optimisation. International
Conference on Computer-Aided Design, pages 393-399, 1995.

D. Landskov, S. Davidson, and B. Shriver. Local Microcode
Compaction Techniques. ACM Computing Surveys, 12(3):261-294,
September 1980.

R. Leupers. Retargetable Code Generation for Digital Signal Proces-
sors. Kluwer Academic Publishers, 1997.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys.
The Traveling Salesman Problem. John Wiley and Sons, New York,
1985.

R. Leupers and P. Marwedel. Instruction Set Extraction from Pro-
grammable Structures. Furopean Design Automation Conference,
pages 156-161, 1994.

279

Bibliography

[LM97]

[LMP94]

[LSU93]

[LT79]

[LVPK*95]

[Mar99]

[Meh8S]

[MG95]

[Mic94]

[Mot88]

[MP97]

[MS93]

[Nic85]

280

Rainer Leupers and Peter Marwedel. Time-constrained Code Com-
paction for DSPs. IEEE Transactions on VLSI Systems, 5(1),
September 1997.

C. Liem, T. May, and P. Paulin. Register Assignment through Re-
source Classification for ASTP Microcode Generation. Proceedings of
the International Conference on Computer-Aided Design, pages 397—
403, 1994.

R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware Description
and Design. Kluwer Academic Publishers, 12. edition, 1993.

T. Lengauer and R.E. Tarjan. A Fast Algorithm for Finding Domina-
tors in a Flowgraph. ACM Transactions on Programming Languages
and Systems, 1(1):121-141, July 1979.

D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen,
and G. Goossens. CHESS: Retargetable Code Generation For Em-
bedded DSP Processors. In [MG95], pages 85-102. Kluwer, 1995.

F. Martin. Generation of Program Analyzers. PhD thesis, Saarland
University, 1999.

K. Mehlhorn. Datenstrukturen und effiziente Algorithmen 1. Teubner,
Stuttgart, 1988. In German.

P. Marwedel and G. Goossens. Code Generation for Embedded Pro-
cessors. Kluwer, Boston; London; Dortrecht, 1995.

G.D. Micheli. Synthesis and Optimisation of Digital Circuits.
McGraw-Hill, Inc., New York, 1994.

Motorola, Inc. MC88100 RISC Microprocessor User’s Manual, 1988.

A. Mignotte and O. Peyran. Reducing the Complexity of ILP Formu-
lations for Synthesis. In Proceedings of the 10th International Sym-
posium on System Synthesis, pages 5864. IEEE Computer Society
Press, 1997.

P. Marwedel and W. Schenk. Cooperation of Synthesis, Retargetable
Code Generation and Test Generation in the MIMOLA Software Sys-
tem. Furopean Conference on Design Automation, pages 63-69, 1993.

A. Nicolau. Uniform Parallelism Exploitation in Ordinary Programs.
In International Conference on Parallel Processing, pages 614-618.
IEEE Computer Society Press, August 1985.

[Nil98]

[NN92]

[NN93]

[NN94]

[NND95]

[NNHO9]

[Now87]

[NP93]

[NPWO1]

[NS92]

[NW88]

[NW89]

Bibliography

H.-P. Nilsson. Porting the GNU C Compiler to the CRIS architecture.
Master’s thesis, Axis Communications AB, August 1998.

A. Nicolau and S. Novack. An Efficient Global Resource Constrained
Technique for Exploiting Instruction Level Parallelism. Proceedings

of the International Conference on Parallel Processing, pages 297
301, August 1992.

S. Novack and A. Nicolau. Trailblazing: A Hierarchical Approach to
Percolation Scheduling. Technical Report TR-92-56, Irvine Univer-
sity, August 1993.

S. Novack and A. Nicolau. Mutation scheduling: A Unified Approach
to Compiling for fine-grain Parallelism. In K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Com-
pilers for Parallel Computing, pages 16-30. Springer LNCS, 1994.

S. Novack, A. Nicolau, and N. Dutt. A Unified Code Generation
Approach Using Mutation Scheduling. In [MG95/, pages 203-218.
Kluwer, 1995.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Anal-
ysis. Springer, Berlin; Heidelberg; New York, 1999.

L. Nowak. Graph Based Retargetable Microcode Compilation in the
MIMOLA Design System. 20th Annual Workshop on Microprogram-
ming, pages 126-132, 1987.

C. Norris and L. Pollok. A Scheduler-Sensitive Global Register Allo-
cator. Proceedings of Supercomputing, 1993.

A. Nicolau, R. Potasman, and H. Wang. Register Allocation, Renam-
ing and their Impact on Parallelism. In Proceedings of the 4th Inter-
national Workshop on Languages and Compilers for Parallel Com-
puting. Springer, 1991.

G.L. Nemhauser and M.W.P. Savelsbergh. A Cutting Plane Algo-
rithm for the Single Machine Scheduling Problem with Release Times.
Combinatorial Optimization: New Frontiers in the Theory and Prac-
tice, NATO ASI Series F: Computer and System Sciences, 82:63-84,
1992. Springer, Berlin.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Opti-
mization. John Wiley and Sons, New York, 1988.

G.L. Nemhauser and L.A. Wolsey. Integer Programming. In G.L.
Nemhauser, A.H.G. R. Kan, and M.J. Todd, editors, Handbooks in

281

Bibliography

[PCLI6]

[Pet8s]

[PF92]

[Phi97]

[PHZM99)

[Pin93]

[PL88]

[PLGSS]

[PLMS95]

[Pot80)

[PRS]

282

Operations Research and Management Science, chapter VI, pages
447-527. North-Holland, Amsterdam; New York; Oxford, 1989.

P. Paulin, M. Cornero, and C. Liem. Trends in Embedded Sys-
tems Technology. In M.G. Sami and G. De Micheli, editors, Hard-
ware/Software Codesign, An Industrial Perspective. Kluwer Aca-
demic Publishers, 1996.

R. Peters. L’ordonnancement sur une machine avec des constraintes
de délai. Journal of Operations Research, Statistics and Computer
Science, 28:22-76, 1988. In French.

T.A. Proebsting and C.N. Fisher. Probabilistic Register Allocation.
In Proceedings of the ACM SIGPLAN 1992 Conference on Program-
ming Language Design and Implementation, pages 300-310, January
1992.

Philips Electronics North America Corporation. TriMedia TM1000
Preliminary Data Book, 1997.

S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA: Machine
Description Language for Cycle-Accurate Models of Programmable

DSP Architectures. Proceedings of the Design Automation Confer-
ence, 1999.

S.S. Pinter. Register Allocation with Instruction Scheduling. Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 248-257, 1993.

E. Pelegri-Llopart. Rewrite Systems, Pattern Matching, and Code
Selection. PhD thesis, University of California, Berkeley, 1988.

E. Pelegri-Llopart and S.L. Graham. Optimal Code Generation for
Expression Trees: An Application of BURS Theory. Proceedings of
the 15th ACM Symposium on Principles of Programming Languages,
pages 294-308, 1988.

P.G. Paulin, C. Liem, T.C. May, and S. Sutarwala. FLEXWARE:
A Flexible Firmware Development Environment for Embedded Sys-
tems. In [MG95], pages 67-84. Kluwer, 1995.

C.N. Potts. An Algorithm for the Single Machine Sequencing Prob-

lem with Precedence Constraints. Mathematical Programming Study,
13:78-87, 1980.

M.W. Padberg and G. Rinaldi. Optimisation of a 532 City Sym-
metric Traveling Salesman Problem by Branch and Cut. Operations
Research Letters, 6:1-7, 1987.

[PS82]

[PS91]

[QS94]

[RF93]

[RF97]

[RGSL6]

[RHSS]

[RKA99]

[Riit98]

[San94]

[San96]

[San99]

Bibliography

C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization,
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, 1982.

J.C.H. Park and M.S. Schlansker. On Predicated Execution. Techni-
cal Report HPL-91-58, Hewlett-Packard Laboratories, Palo Alto CA,
May 1991.

M. Queyranne and A.S. Schulz. Polyhedral Approaches To Ma-
chine Scheduling. Technical Report 408/1994, Technische Universitét
Berlin, Fachbereich 3 Mathematik, 1994.

B.R. Rau and J.A. Fisher. Instruction-Level Parallel Processing: His-
tory, Overview, and Perspective. The Journal of Supercomputing,
7:9-50, 1993.

N. Ramsey and M.F. Fernandez. Specifying Representations of Ma-
chine Instructions. ACM Transactions on Programming Languages
and Systems, 19(3):492-524, May 1997.

J. Ruttenberg, G.R. Gao, A. Stoutchinin, and W. Lichtenstein. Soft-
ware Pipelining Showdown: Optimal vs. Heuristic Methods in a Pro-
duction Compiler. Proceedings of the 1996 ACM SIGPLAN Confer-
ence on Programming Languages Design and Implementation (PLDI
96), 31(5):1-11, May 1996.

K. Rimey and P.N. Hilfinger. Lazy Data Routing and Greedy Schedul-
ing. Proceedings of the 21st Annual Workshop on Microprogramming
and Microarchitecture, 21:111-115, 1988.

B.R. Rau, V. Kathail, and S. Aditya. Machine-Description driven
Compilers for EPIC and VLIW processors. Design Automation for
Embedded Systems, 4(2/3):71-118, 1999.

O. Riithing. Interacting Code Motion Transformations: Their Impact
and Their Complezity. Springer LNCS 1539, 1998.

G. Sander. Graph Layout through the VCG Tool. In R. Tamassia
and I.G. Tollis, editors, Proceedings of the DIMACS International
Workshop on Graph Drawing, pages 194-205. Springer LNCS 894,
1994.

G. Sander. Visualisierungstechniken fur den Compilerbau. PhD the-
sis, Universitat des Saarlandes, Fachbereich 14, 1996. In German.

G. Sander. Graph Layout for Applications in Compiler Construction.
Theoretical Computer Science, 217(2):175-214, 1999.

283

Bibliography

[Sch86]

[Sch93]

[Sch96a]

[Sch96b]

[SCLY6]

[Set75]

[Sie96]

[SN9S]

[SPA9T]

[ST94]

[Sta94]

[Sta9g]

[SU70]

284

A. Schrijver. Theory of Linear and Integer Programming. John Wiley
and Sons, 1986.

H.R. Schwarz. Numerische Mathematik. Teubner, Stuttgart, 1993.
In German.

A.S. Schulz. Polytopes and Scheduling. PhD thesis, Technische Uni-
versitat Berlin, February 1996.

A.S. Schulz. Scheduling to Minimize Total Weighted Completion
Time: Performance Guarantees of LP-Based Heuristics and Lower
Bounds. Proceedings of the 5th International Conference on Integer

Programming and Combinatorial Optimization, pages 301-315, June
1996.

M.A.R. Saghir, P. Chow, and C.G. Lee. Exploiting Dual Data-
Memory Banks in Digital Signal Processors. Proceedings of the Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 1996.

R. Sethi. Complete Register Allocation Problems. SIAM Journal of
Computing, 4(3):226-248, 1975.

Siemens. C165/C168 User’s Manual 10.96 Version 2.0. Siemens AG,
1996. http://www.infineon.com.

M.W.P. Savelsbergh and G.L. Nemhauser. Functional Description
of MINTO, a Mized INTeger Optimizer. Version 3.0. Georgia Insti-
tute of Technology. School of Industrial and Systems Engineering.,
Atlanta, USA, March 1998.

SPAM Research Group, http://www.ee.princeton.edu/spam. SPAM
Compiler User’s Manual, September 1997.

D.L. Springer and D.E. Thomas. Exploiting the Special Structure of
Conflict and Compatibility Graphs in High-Level Synthesis. [EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(7):843-856, July 1994.

Stanford Compiler Group. SUIF Compiler System: The SUIF Li-
brary, 1994.

R. Stallman. Using and Porting GNU CC. Free Software Foundation,
Cambridge/Massachusetts, 1998.

R. Sethi and J.D. Ullman. The Generation of Optimal Code for
Arithmetic Expressions. Journal of the ACM, 17(4):715-728, 1970.

[Sud9g]

[SUWO7]

[Tex97]

[Tex98a)
[Tex98b]

[The00]

[Thi93)]

[Thi95]

[TM95]

[tri98]

[TTZ96]

[TZBYY]

[WGB94]

Bibliography

A. Sudarsanam. Code Optimization Libraries for Retargetable Compi-
lation for Embedded Digital Signal Processors. PhD thesis, University
of Princeton, November 1998.

Martin W.P. Savelsbergh, R.N. Uma, and Joel Wein. An
Experimental Study of LP-Based Approximation Algorithms for
Scheduling Problems. Technical Report LEC-97-11, Geor-
gia Institute of Technology, Atlanta, GA 30332-0205, 1997.
http://tli.isye.gatech.edu/reports.html.

Texas Instruments. TMS320C62zz Programmer’s Guide, 1997.
Texas Instruments. TMS320C5x User’s Guide, 1998.

Texas Instruments. TMS320C62z/C67c CPU and Instruction Set.
Reference Guide., March 1998.

H. Theiling. Extracting Safe and Precise Control Flow from Binaries.
7th International Conference on Real-Time Computing Systems and
Applications, July 2000. To appear.

L. Thiele. Resource Constraint Scheduling of Uniform Algorithms.
Proceedings of the Conference on Application Specific Processor Ar-
rays ASAPY3, pages 29-40, October 1993.

L. Thiele. Resource Constraint Scheduling of Uniform Algorithms.
International Journal of VLSI Signal Processing, 10:295-310, 1995.

D. Thomas and P. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic Publishers, 2. edition, 1995.

TRIMARAN: An Infrastructure for Research in Instruction-Level
Parallelism. http://www.trimaran.org, 1998.

J. Teich, L. Thiele, and Li Zhang. Scheduling of Partitioned Regular
Algorithms on Processor Arrays with Constrained Resources. Pro-

ceedings of the Conference on Application Specific Processor Arrays
ASAPY6, pages 131-144, 1996.

J. Teich, E. Zitzler, and S.S. Bhattacharyya. 3D Exploration of Soft-
ware Schedules for DSP Algorithms. 7th International Workshop on
Hardware/Software Codesign, pages 168-172, May 1999.

T.C. Wilson, G.W. Grewal, and D.K. Banerji. An ILP Solution for
Simultaneous Scheduling, Allocation, and Binding in Multiple Block
Synthesis. In Proceedings of the International Conference on Com-
puter Design : VLSI in Computers and Processors, pages 581-586.
IEEE Computer Society Press, 1994.

285

Bibliography

[WGHB95] T. Wilson, G. Grewal, S. Henshall, and D. Banerji. An ILP-Based
Approach to Code Generation. In [MG 95/, chapter 6, pages 103-118.
1995.

[Wil93a] H.P. Williams. Model Building in Mathematical Programmaing. John
Wiley and Sons, New York, 3. edition, 1993.

[Wil93b] H.P. Williams. Model Solving in Mathematical Programming. John
Wiley and Sons, 1993.

[WMO95] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

[(WMO97| R. Wilhelm and D. Maurer. Ubersetzerbau. Theorie, Konstruktion,
Generierung; zweite, tberarbeitete und erweiterte Auflage. Springer,
Berlin; Heidelberg; New York, 1997. In German.

[WW89] B. Weisgerber and R. Wilhelm. Two Tree Pattern Matchers for
Code Selection (Including Targeting). In D. Hammer, editor, Com-
piler Compilers and High Speed Compilation, pages 215-229. Springer
LNCS 371, 1989.

[ZABTO00] E. Zehendner, W. Amme, P. Braun, and F. Thomasset. Data Depen-
dence Analysis of Assembly Code. International Journal of Parallel
Programming, 28(5):431-467, 2000.

[Zha96| L. Zhang. SILP. Scheduling and Allocating with Integer Linear Pro-
gramming. PhD thesis, Saarland University, 1996.

[ZSWS95] V. Zivojnovic, H. Schraut, M. Willems, and R. Schoenen. DSPs,
GPPs, and Multimedia Applications — An Evaluation Using DSP-
stone. In Proceedings of the International Conference on Signal Pro-

cessing Applications and Technology, pages 1779-1783. DSP Asso-
ciates, October 1995.

[ZT99] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257-271, November
1999.

[ZTB00] E. Zitzler, J. Teich, and S.S. Bhattacharyya. Evolutionary Algorithms
for the Synthesis of Embedded Software. IEEE Transactions on VLSI
Systems, 2000. To appear.

[ZVSM94] V. Zivojnovic, J.M. Velarde, C. Schldger, and H. Meyr. DSPSTONE:
A DSP-Oriented Benchmarking Methodology. In Proceedings of the
International Conference on Signal Processing Applications and Tech-
nology, 1994.

286

