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Abstract

Knowledge graphs have seen wide adoption, in large part owing to their schema-

less nature that enables them to grow seamlessly, allowing for new relationships

and entities as needed. With this rapid growth, several issues arise: (i) how to

allow users to query knowledge graphs in an expressive and user-friendly man-

ner, which shields them from all the underlying complexity, (ii) how, given a

structured query, can we return satisfactory answers to the user despite possi-

ble mismatches between the query vocabulary and structure and the knowledge

graph, and (iii) how to automatically acquire new knowledge, which can be fed

into a knowledge graph. In this dissertation, we make the following contributions

to address the above issues:

– We present DEANNA, a framework for question answering over knowledge

graphs, allowing users to easily express complex information needs using

natural language and obtain tuples of entities as answers thereby taking

advantage of the structure in the knowledge graph.

– We introduce TriniT, a framework that compensates for unsatisfactory re-

sults of structured queries over knowledge graphs, either due to mismatches

with the knowledge graph or the knowledge graph’s inevitable incomplete-

ness. TriniT tackles the two issues by extending the knowledge graph using

information extraction over textual corpora, and supporting query relax-

ation where a user’s query is rewritten in a manner transparent to the user

to compensate for any mismatches with the data.

– We present ReNoun, an open information extraction framework for ex-

tracting binary relations mediated by noun phrases and their instances

from text. Our scheme extends the state-of-the-art in open information

extraction which has thus far focused on relations mediated by verbs.

Our experimental evaluations of each of the above contributions demonstrate

the effectiveness of our methods in comparison to state-of-the-art approaches.
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Kurzfassung

Der Einsatz von Wissensgraphen erfreut sich großer Beliebtheit, die vor allem

der schemafreien Natur der Graphen geschuldet ist. Diese ermöglicht ein rei-

bungsloses Anwachsen des Graphen, so dass neue Relationen und Entitäten je

nach Bedarf hinzugefügt werden können. Durch dieses rapide Anwachsen des

Graphen treten allerdings auch einige Fragestellungen auf: (i) Wie kann man

Nutzern ermöglichen, Wissensgraphen in einer ausdrucksstarken und zugleich

nutzerfreundlichen Weise anzufragen, die die Nutzer von der zugrundeliegenden

Komplexität abschirmt, (ii) wie können für eine strukturierte Suchanfrage trotz

möglicher Diskrepanzen in Vokabular und Struktur zwischen Suchanfrage und

Wissensgraph zufriedenstellende Antworten geliefert werden, und (iii) wie kann

neues Wissen automatisiert akquiriert werden, um es in einen Wissensgraphen

zu integrieren? In der vorliegenden Dissertation werden die folgenden Beiträge

entwickelt, um die obigen Problemstellungen zu adressieren:

– Wir präsentieren mit DEANNA ein Frage-Antwort-System für Wissens-

graphen, das Nutzern ermöglicht, auf einfache Art und Weise komplexe In-

formationsbedürfnisse natürlichsprachlich auszudrücken. Die Struktur des

Wissensgraphen wird dabei dahingehend ausgenutzt, das die Antworten als

Entitätentupel ausgegeben werden.

– Mit TriniT entwickeln wir ein Framework, dass unbefriedigende Ergebnisse

für strukturierte Suchanfragen auf Wissensgraphen kompensiert. Dabei

werden sowohl Fehltreffer als auch unvermeidbare Lücken im Wissens-

graphen berücksichtigt. Beide Probleme werden durch TriniT dadurch

angegangen, dass der Wissensgraph mithilfe von Methoden der Informa-

tionsextraktion aus Textkorpora erweitert wird, und dass Suchanfragen re-

laxiert werden. Dafür wird die Suchanfrage eines Nutzers auf transparente

und für den Nutzer nachvollziehbare Weise umgeschrieben, um Fehltreffer

auszugleichen.

– Außerdem stellen wir ReNoun vor, ein Framework für Open Information

Extraction zum Extrahieren von binären Relationen, die durch Nominal-

phrasen ausgedrückt werden. Unser Schema erweitert dabei den aktuellen
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Forschungsstand im Bereich der offenen Informationsextraktion, da bislang

der Fokus auf verbalen Relationen lag.

Unsere experimentellen Evaluierungen der oben genannten Methoden und Sys-

teme verdeutlichen die Effektivität unserer Methoden im Vergleich zu State-of-

the-Art Ansätzen.
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1. Introduction

1.1. Motivation

Traditionally, users interact with search engines by providing them with keywords

and getting a list of documents that best match these keywords. While this style

of querying is satisfactory in simple settings, it often leaves more to be desired.

The two major shortcomings of this paradigm concern answer granularity and

query expressiveness. Now, more than ever before, these two issues need close

consideration.

Documents are not always the appropriate way to answer a query. Often, a user

is interested in more focused answers. Entity search (ES) has been proposed as an

extension of traditional corpus-based document retrieval in response to keyword

queries. While this has shown rapid progress in the last five years, it is limited

in two fundamental and closely tied ways. First, in entity search a query result

is a set of individual entities. This means that queries asking for entity pairs

that stand in a certain relationship, such as “former regulatory agency members

who works for a lobbying organization”, cannot be answered by ES systems. The

second limitation of ES, which can also be seen in the example we just gave,

comes from its reliance on keyword queries that have limited expressiveness as

we detail below.

Keyword queries are highly “telegraphic” (Sawant and Chakrabarti, 2013),

which means that they have limited expressiveness. With this limitation, users

cannot express complex information needs. Even for seemingly simple queries,

telegraphic queries cannot capture the subtleties related to semantics. A tele-

graphic query asking for “john kennedy predecessor” issued to a typical ES system

will have equal chances of returning LyndonJohnson, whom Kennedy preceded,

and DwightEisenhower, who preceded Kennedy. Traditionally, question an-

swering has been proposed to overcome this problem. Here, queries are natural

language questions. Past research has focused on the problem of factoid question

answering where a question has one or few answers that can be, crucially, found

in a single textual document.

What is needed is systems that can take complex information needs in the
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2 CHAPTER 1. INTRODUCTION

form of questions and return focused answers possibly in the form of tuples of

entities. For the example above, we would like a system to take the question

“Which former regulatory agency members work for a lobbying organization?”

and return two answers: (MichaelPowell, NCTA) and (MeredithBaker, CTIA).

The need to support such information needs has been brought on by the new

modalities for interacting with search engines. For example, people using their

mobile devices to query verticals have very limited space to view answers, and

therefore prefer crisp answers in the form of entities. Digital assistants embedded

in smartphones and cars are built around voice interaction where users can, with

minimal effort, express complex information needs and, again, expect precise and

concise answers.

As a first step towards satisfying complex information needs, organizations

maintain knowledge graphs: collections of facts expressed in the form of triples

composed of a subject and an object, connected by a predicate. Examples are:

IngridBergmann actedIn Casablanca(movie)

and

NCTA head MichaelPowell.

Knowledge graphs get their power from their ability to express crisp relationships

that hold between entities, which allows them to be the source of crisp answers.

Such knowledge graphs have become ubiquitous. They form the backbone of

social networks like Facebook, Twitter, and Yelp, specialized databases such as

IMDB and Last.fm, and general knowledge such as Freebase, DBpedia, and Yago.

Web search engines are capable of returning answers to very simple telegraphic

queries from these knowledge graphs (e.g., “casablanca actors”, “Saarbrücken

restaurants”). This is done by translating such simple queries to a formal query

language used to query their underlying knowledge graph.

This trend poses research challenges along several dimensions:

• Query Language: While telegraphic queries cover a significant portion

of queries observed by Web search engines, they are inherently unable to

express more complex relationship-centric information needs. Moreover,

telegraphic queries are unnatural in certain modalities such as voice-based

interaction. For these scenarios, natural language is the most appropriate

mode of interaction with search engines. This requires a framework for

translating potentially complex user queries posed as questions to a formal

representation that can be answered by the knowledge graph.
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• Query Processing: In an ideal setting, evaluating a formal query corre-

sponding to a user’s information need over a knowledge graph will result

in the desired answers. In practice, however, this is often not the case.

Knowledge graphs have gaps in their knowledge, which means that a per-

fectly formulated query might not return all the expected results, if any

at all. Moreover, formulating the correct formal query, either manually

by an expert user, or automatically by a machine, is a non-trivial error-

prone task. This requires that the engine evaluating formal queries be able

to account for these problems by adjusting the user’s query and utilizing

external data sources to return the desired answers.

• Knowledge Acquisition: Both the translation of a question to a formal

representation and subsequent adjustment of the formal query require re-

sources external to the knowledge graph. These include dictionaries that

connect natural language utterances to knowledge graph entities and facts,

and new sources of facts to remedy any incompleteness in the knowledge

graph. While much research has gone into building such resources, there

are shortcomings that still need to be addressed. One such shortcoming is

in the extraction of relations mediated by noun phrases (e.g., ‘country of

origin’ ) following the open information extraction paradigm.

1.2. Contributions

This dissertation presents three contributions that address the research chal-

lenges outlined above:

• Query language: In order to ensure accessibility and expressiveness, we

allow users to issue queries in the form of natural language questions. We

cannot assume that the average user of a search engine has the technical

competence to formulate a query in a formal language that expresses her

information need. Even in the case of a technically competent user, the

sheer size of a typical knowledge graph and the lack of a schema mean that

formulating such a formal query can be a daunting task. Natural language

allows users to express complex queries with multiple predicates and join

conditions in an unambiguous manner for humans (a whole different story

for machines).

To accommodate natural language questions as a query language, we present

DEANNA: a system for translating natural language questions to formal
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queries over a knowledge graph. DEANNA uses the select-project-join sub-

set of SPARQL as its target query language. The translation boils down to

solving three forms of ambiguity in query segmentation, mapping segments

to knowledge graph primitives, and determining the dependencies between

these primitives. As the solution to each of the three forms of ambiguity

can inform the solution to the other two, we perform the disambiguation

jointly. We formulate the disambiguation problem as an Integer Linear

Program (ILP), whose solution gives us the intended formal query. Intu-

itively, the ILP looks for the most likely interpretation of the question (the

ILP’s objective function) that makes sense (the ILP’s constraints).

• Query Processing: Ideally, once we have the formal query corresponding

to a question, obtaining the desired answers is a simple matter of evaluating

the query over the underlying knowledge graph. Unfortunately, however,

this is often not the case in practice. One major issue with knowledge

graphs is their inherent incompleteness. Other problems include queries

that contain some incorrect knowledge graph primitives (with respect to

the user’s intention), or queries formulated assuming a schema different

than that of the knowledge graph.

To remedy the problem of semantic queries with unsatisfactory results, we

propose TriniT: a system for relaxed query evaluation and answer scoring

over extended knowledge graphs. TriniT evaluates queries over an exten-

sion of the basic knowledge graph. This extension allows for facts that mix

knowledge graph primitives and textual phrases. Such facts are obtained

through various information extraction schemes with the goal of boosting

recall. TriniT also allows for weighted relaxation rules for reformulating

the original user query so that relevant answers not returned by the orig-

inal query over the original knowledge graph can be returned using the

extended knowledge graph. To accommodate relaxed query evaluation,

TriniT supports answer scoring and top-k query processing. A language-

model based scoring scheme assigns scores to answers, so that users can

consume a limited number of top-scoring results based on their needs. The

top-k query processing scheme ensures that query processing in our setting

terminates as early as possible without the need for exhaustive exploration

of the entire query space introduced by the relaxations.

• Knowledge Acquisition: Semantic query translation and query relax-

ation rely on resources external to the knowledge graph. Two important

resources are additional facts for knowledge graph extension and lexicons
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for connecting the semantic items in a knowledge graph to natural lan-

guage. There has been much research on both problems, with several pub-

licly available datasets that we utilize. However, there is a critical gap that

we need to fill: the extraction of facts centered around noun phrases. We

introduce ReNoun, an open information extraction framework capable of

discovering noun phrases that can serve as relations (e.g., ‘country of ori-

gin’) and extracting facts centered around them from text. ReNoun also

includes a scheme for scoring extracted facts, which reflects the likelihood

that a fact is actually expressed by the text. The facts extracted by Re-

Noun are used for both knowledge graph extension and finding paraphrases

for knowledge graph predicates.

The contributions this dissertation makes lie at the intersection of natural lan-

guage processing, information retrieval, and database systems. This dissertation

is based on results presented at the following conferences:

• WSDM 2016 (Yahya et al., 2016)

• EMNLP 2014 (Yahya et al., 2014)

• CIKM 2013 (Yahya et al., 2013)

• EMNLP 2012 (Yahya et al., 2012b)

• WWW 2012 (Yahya et al., 2012a)

1.3. Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 introduces the general frame-

work of knowledge graphs, how they can be queried, and how they can be ex-

tended by means of knowledge acquisition. It also presents the state-of-the-art for

each of these topics. Chapter 3 presents DEANNA, our framework for question

answering over knowledge graphs. In Chapter 4 we present TriniT, a framework

that allows for flexible querying of knowledge graphs by remedying any mis-

matches between a structured query and the knowledge graph. TrinT works by

combining knowledge graph extension and query relaxation. Knowledge graph

extension results in facts automatically extracted from textual documents being

used to make up for any incompleteness in the knowledge graph. Query relax-

ation provides the means to automatically rewrite a user’s query to align it with

the underlying extended knowledge graph ensuring better effectiveness through

improved recall.
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Chapter 5 focuses on the problem of knowledge acquisition whereby knowledge

graphs can be extended with new facts. More concretely, it tackles the problem

of open information extraction for relations mediated through noun phrases.

Finally, in Chapter 6 we conclude this dissertation, recap its main contributions

and present possible avenues for future investigation.



2. Background and Prior Work

With the abundance of data publicly available on the Web or privately held

by organizations and individuals comes the problem of effectively querying and

exploring this data. To quote John Naisbitt, “we are drowning in information

but starved for knowledge” (Naisbitt, 1982). This dissertation is focused on

giving people access to the knowledge in this data. The dissertation presents

three contributions towards this end on the topics of question answering, query

evaluation, and knowledge acquisition. This chapter introduces the concepts

needed in the rest of this dissertation, motivates each of our contributions, and

places these contributions in their context in the relevant research communities.

We start in Section 2.1 by presenting the triple-based data model we adopt

for expressing knowledge, that of knowledge graphs, and how data in this model

can be queried using triple pattern queries. We also introduce three concrete

knowledge graphs that we use in the rest of this dissertation.

We next introduce the concept of knowledge acquisition in Section 2.2, focusing

on two concrete tasks: named entity recognition and disambiguation, and fact

extraction. This section shows how knowledge graphs, introduced in the previous

one, can be constructed.

In Section 2.3, we look at the general problem of querying for knowledge.

Here, we consider the various alternatives, focusing on their expressiveness and

usability.

2.1. Knowledge Graphs

In our setting, the goal of a knowledge graph is to describe a set of entities

E, which are uniquely identifiable things such as Rome, IngridBergaman, or

Casablanca(movie). This is achieved by connecting them to other entities in E

or to literals L using a set of predicates P (e.g., bornIn, bornOn), or by grouping

them into classes C (e.g., actor, movie, ItalianCity). Each such connection

or grouping is called a fact, which is the basic unit of knowledge in our model.

Definition 2.1 (Fact). Given a set of entities E, classes C, predicates P , and

7



8 CHAPTER 2. BACKGROUND AND PRIOR WORK

literals L, a fact f is a triple f ∈ E ∪C × P ×E ∪C ∪ L. The components of a

triple, in order, are called the subject, predicate, and object.

Entities, classes and predicates in a KG are collectively called semantic items:

Definition 2.2 (Semantic Item). Given a KG, a semantic item s is a member

of the set S = E ∪ C ∪ P .

We discuss the various types of semantic items we deal with in this disser-

tation below. Literals are constant values used to describe semantic items, but

themselves are not described by a knowledge graph, hence, they do not appear as

subjects in a fact. Typical examples of literals are numbers, strings, and dates.

We will interchangeably refer to facts as triples in this dissertation. We call this

model for representing knowledge the subject-predicate-object (SPO) model or

triples model. This model serves as the basis for the RDF data model. Figure

2.1(a) shows examples of facts.

A collection of distinct facts is called a knowledge graph, as given in Defini-

tion 2.3

Definition 2.3 (Knowledge Graph). A knowledge graph (KG) is a set of facts,

KG ⊆ E ∪ C × P × E ∪ C ∪ L.

Knowledge graphs are also called knowledge bases. A fact in a KG can be

viewed as a labeled edge (the predicate) connecting two nodes (the subject and

object), with a collection of facts forming a graph, hence the name knowledge

graph. Figure 2.1(a) shows an example KG, part of which is depicted graphically

in Figure 2.1(b).

2.1.1. Entities

Entities are the central semantic item of a KG. In fact, the goal of a KG is to

describe entities by connecting them to other entities, classes, or literals using

predicates, as we stated above. What constitutes an entity can be debated and

is often domain and application specific (Sowa, 2000). For this dissertation,

the following definition fits our needs: “any abstract or concrete thing that is

uniquely identifiable is an entity” (Suchanek, 2009).

For entities, like other semantic items, it is important to point out the distinc-

tion between an entity’s id and its names. For example, the 1942 movie directed

by Michael Curtiz has the unique id Casablanca(movie). This movie can be

referred to by multiple names such as ‘Casablanca’ and ‘Casablanca the movie’.

The name ‘Casablanca’ is shared between this entity and the entity Casablanca,
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# Subject Predicate Object

1 IngridBergman bornIn Stockholm

2 IngridBergman spouse RobertoRossellini

3 RobertoRossellini bornIn Rome

4 IngridBergman actedIn Casablanca(movie)

5 IngridBergman bornOn ‘1915-08-29 ’

6 RobertoRossellini type writer

7 IngridBergman type actor

8 HumphreyBogart type actor

9 Casablanca(movie) type movie

10 Casablanca type city

11 writer isA person

12 actor isA person

13 person isA entity

14 IngridBergman label ‘Ingrid ’

15 IngridBergman label ‘Ingrid Bergman’

16 RobertoRossellini label ‘Gastone Rossellini ’

(a)

Stockholm Rome

RobertoRosselliniIngridBergman

actor writer

person

entity

HumphreyBogartCasablanca(movie)

‘1915-08-29’

‘Ingrid’

movie

isA
isA

isA

type

bornInbornIn

type

type

actedIn

spouse

label

bornOn

acte
dIn

isA

type

(b)

Figure 2.1.: An example of a knowledge graph in (a) tabular and (b) graph form

(only a fragment is shown).
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Morocco’s largest city. The name of an entity, which it can share with other

entities, is also called a surface form, and is used by humans to refer to an entity

in natural language utterances.

Entities are interesting in several applications. Entity-seeking queries form a

significant part of Web search queries, with no less than 50% of Web queries in

one study asking for entities (Pound et al., 2010b). Entity annotations in textual

corpora have been used for search (Bast and Buchhold, 2013; Bast et al., 2014;

Hoffart et al., 2014b), faceted search (Li et al., 2010), and analytics (Hoffart

et al., 2014a), among other applications.

2.1.2. Classes

Classes, also referred to as types or categories, are named sets of entities. In

the example KG of Figure 2.1 we have six distinct classes. The class actor, for

instance, contains two entities: IngridBergman and HumphreyBogart. Exactly

two predicates can be connected to a class in a KG. The first, type (often called

instanceOf), connects entities to classes to which they belong. The second,

isA (often called subclassOf), expresses hyponymy/hypernymy relations, and

is used to organize classes of a KG into a directed acyclic graph shaped class

hierarchy. The type person in our example KG has two subtypes (actor and

writer), a single supertype (entity), and transitively contains a total of three

entities.

Instances of these two predicates collectively form the ontology within the KG

(facts 6-13 in Figure 2.1(a)) which we define as follows:

Definition 2.4 (Ontology). Given a knowledge graph KG, its ontology is the

set of facts whose subject or object is a class C. The predicates in such facts are

restricted to either type or isA.

Pound et al. (2010b) reports that 12% of Web queries are “type queries”,

asking for instances of a specific class. Classes can often express multiple predi-

cates in one shot, which makes them particularly valuable for information-seeking

tasks. For example, the Yago KG (Suchanek et al., 2007) contains the classes

ItaliaNobelLaureates and RepublicanVicePresidentsOfTheUnitedStates.

In logics terminology, classes can be seen as unary predicates, so we will oc-

casionally use the notation c(e) to denote that entity e is a member of class c

(i.e., (e type c)).
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2.1.3. Predicates

Predicates in our setting are binary relations, whose first and second arguments

are called the subject and object, respectively. Predicates are often referred to as

relations or attributes. In the KG setting, relation is used to refer to predicates

connecting pairs of semantic items. This is in contrast to an attribute, which is

used to connect a semantic item to a literal (e.g., GDP, hIndex).

Predicates have a type signature, which gives the most general class of entities

that can occupy each of the subject and object arguments of a predicate. We can

write facts as triples in line with Definition 2.1 (e.g., (IngridBergman bornIn

Stockholm)) or in logical form (e.g., bornIn(IngridBergman,Stockholm)).

The power of the triples model lies in the flexibility it offers for cases where

the data is evolving. This model, compared to the classical relational model,

does not require a schema to be defined upfront. Instead, new predicates can be

defined as needed and populating them simply means appending new triples to

the KG.

2.1.4. Concrete Knowledge Graphs

In this dissertation, we work with three concrete knowledge graphs, which we

briefly present here.

Yago (Hoffart et al., 2013; Suchanek et al., 2007) combines two resources:

Wikipedia and WordNet (Fellbaum, 1998). Yago taps into Wikipedia’s infoboxes

for facts linking entities to each other and to literals. The ontology in Yago is

obtained from Wikipedia’s assignment of entities to categories (for instances of

the type predicate), and a mapping of these categories to noun synsets in Word-

Net (for instances of the isA predicate). Yago adopts a rule-based extraction

scheme, with each predicate having one or more hand-crafted extractors. Yago

is distinguished by its high accuracy extractions and its comprehensive type hi-

erarchy.

DBpedia (Auer et al., 2007), like Yago, is based on Wikipedia. DBpedia’s

extraction scheme is more liberal than that of Yago, compromising accuracy for

recall. Whereas Yago contains about 100 predicates, DBpedia contains thou-

sands. These are generally taken over as-is from the infoboxes in Wikipedia with

minimal normalization or sanity checking. DBpedia includes Yago’s ontology

within it.

Freebase (Bollacker et al., 2008) is a collaboratively edited knowledge graph

maintained by Google. Freebase forms an important part of Google’s Knowledge

Graph, which is actively used for providing concrete answers in response to Web
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queries, whenever possible. Although not directly extracted from Wikipedia,

Freebase entities are linked to their corresponding Wikipedia entries when one

is available.

2.1.5. Triple Pattern Queries

Triple pattern queries are used to query knowledge graphs. The triple pattern

query language we adopt here is based on the SPARQL standard for querying

RDF. In what follows we present this model formally. The basic building block

here is a triple pattern. For this, we require variables, which stand for semantic

items or literals that need to be returned by the query. Variables are always

prefixed with a question mark (e.g., ?x).

Definition 2.5 (Triple Pattern and its Answers). Given a set of variables V

distinct from semantic items and literals, a triple pattern q is a member of the

set V ∪ E ∪ C × V ∪ P × V ∪ S ∪ L. An answer (a) to a triple pattern over a

KG is a total mapping of variables in q to (S ∪ L) such that the substitution of

the variables with their mappings, denoted a(q), results in a triple t in the KG.

An example of a triple pattern is (?x spouse RobertoRossellini), which

asks for the spouse of RobertoRossellini. From fact #2 in Figure 2.1(a) we

can obtain the answer a = {(?x, IngridBergman)}. We say that fact #2 matches

the triple pattern.

Definition 2.6 (Triple Pattern Query). A triple pattern query, or simply a query

is a set of triple patterns Q = {q1, ..., qn} and a projection set P (Q) of variables.

We require the join graph of Q, where qi’s are vertices and an edge exists between

every pair of vertices sharing a common variable, to be a connected graph (to

avoid computing Cartesian products). P (Q) is a (usually proper) subset of the

variables in Q, defining the output structure, typically tuples of entities.

We also refer to the triple pattern set Q as a query when the projection set is
not relevant for the discussion. An example of a triple pattern query is
SELECT ?x WHERE { ?x actedIn Casablanca(movie) . ?x spouse ?y} ,

which is composed of two triple patterns and a single projection variable, P (Q) = {?x}.
The definition of an answer to a query is a natural extension of an answer to a single

triple pattern.

Definition 2.7 (Query Answer). For query Q = {q1, ..., qn} an answer (a) over KG

is a total mapping of the variables in Q to (S ∪ L) such that ∀i ∈ [1..n] : a(qi) ∈ KG.

The restriction of a query answer to variables in P (Q) is called the projected answer,

denoted aP .
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For the above query and the KG of Figure 2.1(a), the query has a single answer:

a = {(?x, IngridBergman), (?y, RobertoRossellini)}, from which we can obtain the

projected answer aP = {(?x, IngridBergman)}, where a was restricted to the projec-

tion variable ?x.

While we define an answer as a mapping of (projection) variables to semantic items

and literals, we can also view it as a tuple of semantic items and literals, in a manner

consistent with relational algebra. When presenting the answer as a tuple, rather than

a mapping, we take the convention that the elements of the tuple are ordered according

to the lexicographical order of the variables they originate from. For the above example,

we can present the answer as a = (IngridBergman, RobertoRossellini), and the

projected answer aP = (IngridBergman).

A query can match multiple subgraphs in the KG, each one producing a distinct

answer. The set of answers found for a query in a KG is the query result:

Definition 2.8 (Query Result). The result of a query Q = {q1, ..., qn} over a KG is a

set of answers A = {a1, a2, ...} such that ∀ai ∈ A : ai is an answer to Q over the KG.

A query result is also called an answer set.

An interesting class of queries is relationship queries:

Definition 2.9 (Relationship Query). Let V ars(Q) be the set of variable in Q. A

query Q is called a relationship query if |V ars(Q)| ≥ 2.

Relationship queries allow us to express information needs where an answer con-

tains multiple semantic items (i.e., |P (Q)| ≥ 2). Even when we want (projected)

answers composed of individual semantic items, relationship queries allow us to for-

mulate queries with multiple ungrounded semantic items. Figure 2.2 shows an example

of a relationship query which asks for the “actress who played in Casablanca and was

married to a writer born in Rome”. Relationship queries stand in contrast to tradi-

tional entity search queries which are conceptually restricted to a single variable both

in the body of the query and its projection set (i.e., |P (Q)| = 1). If we were to answer

the query of Figure 2.2 using traditional entity search, we would need to first manually

find the set of writers born in Rome, and then, for each such writer, ask for actresses

who played in Casablanca and were married to the specific writer.

In Section 2.1.3 we discussed the flexibility offered by the RDF model in modeling

emerging data. Modeling knowledge using the subject-predicate-object triples model

results in the typical triple pattern query being composed of multiple stars, each cen-

tered around a variable, with the stars connected to each other by chains. The query

of Figure 2.2 is composed of two stars and a chain connecting them.
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SELECT ?x WHERE {
?x type actor . ?x actedIn Casablanca(movie) .

?x spouse ?y .

?y type writer . ?y bornIn Rome

}

(a)

Rome

?y?x

actor writer

Casablanca(movie)

type

bornIn

type

actedIn spouse

Rome

RobertoRosselliniIngridBergman

actor writer

Casablanca(movie)

type

bornIn

type

actedIn spouse

(b)

Rome

?y?x

actor writer

Casablanca(movie)

type

bornIn

type

actedIn spouse

Rome

RobertoRosselliniIngridBergman

actor writer

Casablanca(movie)

type

bornIn

type

actedIn spouse

(c)

Figure 2.2.: A triple pattern query corresponding to the question “Which actress

played in Casablanca and was married to a writer born in Rome?”

in (a) and its graphical representation (b) composed of two stars

connected by a chain. The query is matched by the subgraph of the

KG shown in (c).
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2.2. Information Extraction

In the previous section we presented knowledge graphs. An important question is

how can we obtain such knowledge graphs in the first place? This is the topic of this

section. Most of human knowledge is available in textual form, be it on the Web, in

books, newspapers, or manuals, mostly as free text, possibly with some tags to provide

lightweight structure (i.e., semistructured data). The goal of information extraction is

to extract semantic information from text and put it in a structured machine-readable

format – a knowledge graph in our setting (Jurafsky and Martin, 2009).

Information extraction is a very broad area whose ultimate goal is to distill human

knowledge into a format that machines can consume and process to facilitate upstream

tasks such as language understanding, question answering, and analytics.

2.2.1. Named Entity Recognition and Disambiguation

The purpose of a KG as introduced in Section 2.1 is to describe entities. Named entity

recognition (NER) is one of the basic information extraction tasks that serves as the

building block for extracting more elaborate information to populate a KG. The task

involves finding mentions of named entities in text and classifying them into one of

several types. NER systems usually classify entity mentions into one of a handful of

coarse types such as person, organization, and location.

Most general-purpose NER systems are trained on data created for shared tasks.

The two most prominent are those from the Message Understanding Conference (MUC)

(Grishman and Sundheim, 1996) and the Computational Natural Language Learning

Conference (CoNLL) (Sang and Meulder, 2003). The data provided by both MUC

and CoNLL is based on newswire texts, which use clear well-formed language. The

resulting systems, such as the Stanford NER (Finkel et al., 2005), produce very good

results on test data with similar characteristics. This system views the problem as

one of sequence labeling, deploying conditional random fields to tackle it. However,

models trained from the above data do not generalize well when it comes to texts

from different domains, or informal texts such as forum posts, tweets, and Web search

queries, leading to more recent work tackling the NER task in such texts (Downey

et al., 2007; Guo et al., 2009; Ritter et al., 2011). Nadeau and Sekine (2007) gives a

comprehensive overview of the NER task.

Complementary to the NER task is that of named entity disambiguation (NED),

also called entity linking. The task here is to map ambiguous named entity mentions

in a text to a repository of canonical entities. The mentions to be mapped are usually

detected using an NER system.

In Section 2.1.1 we listed several applications where entities play a prominent role.

These include entity search (Balog et al., 2011), entity-relationship search (Li et al.,

2012), search in entity annotated documents (Bast and Buchhold, 2013; Bast et al.,
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The incident with 
Columbia led 
President Bush 
to announce 
plans to retire 
NASA’s space 
shuttle fleet 

Columbia(University)

Columbia Pictures

Columbia(Shuttle)

NASA

Nasa(mountain)

GeorgeW.Bush

GeorgeH.W.Bush

0.5

0.5

0.9

0.1

0.5

0.2

0.3

Entity Context
NASA space, mission, shuttle, astronaut,…

Columbia(shuttle) space, crash, 2003, mission, nasa,…
Nasa(mountain) sweden, cottage, silver, mining,…

… …

Figure 2.3.: Named entity disambiguation example. Each highlighted entity

mention maps to a KG entity with a prior. The table at the bottom

shows the context signature for each entity. Coherence edges shown

in blue for two entity pairs only.

2014; Hoffart et al., 2014b), faceted search (Li et al., 2010), and analytics (Hoffart

et al., 2014a). Recognizing the importance of entities, there has been a resurgence in

interest in named entity recognition and disambiguation (NERD), with most recent

works focusing on Wikipedia or KGs connected to it (e.g., Freebase, Yago) as their

reference entity repositories. These works rely on a mixture of priors for a surface form

standing for a specific entity, the mutual coherence between candidate entities, and the

similarity between a candidate entity’s context signature and the disambiguation con-

text (Hoffart et al., 2011). The disambiguation of entities in these works is performed

in a joint manner, that is, the decision of which entity each mention in a text maps

to is done at once for all entities. Joint disambiguation is crucial as the disambigua-

tion of entity mentions in a text can be mutually informative. Figure 2.3 shows an

example disambiguation instance using this framework. Hoffart (2015) gives a more

detailed overview of approaches to NED and discusses extensions to the basic NED

task such as cross-document coreference resolution and out-of-KG entity detection.

Weissenborn et al. (2015) extends joint entity disambiguation to joint disambiguation

of named entities and common nouns.

Realizing the value of corpora annotated with entities, multiple organizations have

released corpora with annotations of disambiguated entities. Google released Freebase
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annotations of the ClueWeb’09 and ClueWeb’12 Corpora (FACC1),1 the TREC KBA

stream corpus (FAKBA1), and the TREC Million Query track and Web track queries.2

Yahoo! released a sample of its query log annotated with Wikipedia entities.3 We use

some of these corpora in our work.

2.2.2. Fact Extraction

With documents annotated with named entities, the next logical step is to extract

relations that hold between these entities (i.e., facts) or relations connecting them

to literals and classes. This task is called fact extraction, but it is common to refer

to this specific task as information extraction as well. The result of this process is a

knowledge graph as described in Section 2.1. There are different approaches to tackling

fact extraction, based on what sources are available for fact extraction and whether the

set of relations is known a priori. Consequently, fact extraction systems are typically

classified according to the amount of supervision they require, as we detail below.

Supervised Information Extraction

The earliest systems for fact extraction worked by matching hand-crafted lexico-

syntactic patterns over textual corpora. Prominent among these are Hearst patterns

(Hearst, 1992) for extracting hyponym/hypernym pairs (i.e., instances of isA and

type relations in a KG setting). Many large-scale knowledge graphs are the result of

a similar process that relies on hand-crafted patterns. In Section 2.1.4 we presented

Yago, DBpedia, and Freebase, which rely (at least in part) on manually specified

rules for extracting facts from Wikipedia, primarily focusing on the semistructured

infoboxes. Manually specifying extraction patterns does not scale when the number of

relations for which we want to perform extraction increases. To deal with this issue,

focus shifted to building extraction systems that need less supervision.

Semisupervised Information Extraction

In bootrapping, supervision is achieved by providing the extraction system with a

small number of example instances of the relations for which we desire to extract facts.

DIPRE (Brin, 1998) and Snowball (Agichtein and Gravano, 2000) are two prominent

examples of such systems. Mintz et al. (2009) extends this approach to distant super-

vision where bootstrapping is done from a large knowledge graph of facts that serves as

the source of supervision. In the process of bootstrapping, distant supervision assumes

that a sentence containing a pair of entities that appear in a fact in the reference knowl-

edge graph is expressing that fact. A classifier is trained on these spotted instances

1http://lemurproject.org/clueweb09/FACC1/,

http://lemurproject.org/clueweb12/FACC1/
2http://lemurproject.org/clueweb09/TREC%20Freebase%20Queries,%20v1.1.zip
3http://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=66

http://lemurproject.org/clueweb09/FACC1/
http://lemurproject.org/clueweb12/FACC1/
http://lemurproject.org/clueweb09/TREC%20Freebase%20Queries,%20v1.1.zip
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=66
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to recognize each occurrence of a relation. Using large knowledge graphs and large

text copora allows for very expressive features. The classifier also requires negative

examples, these are usually generated from entity pairs that do not appear together in

the reference knowledge graph.

PROSPERA (Nakashole et al., 2011) is an extension of distant supervision that

can automatically generalize extraction patterns and uses constraint-based reasoning

for controlling the quality of patterns and facts. Pattern generalization, achieved

through frequent itemset mining, allows for higher recall. By using MaxSat reasoning,

PROSPERA can control the quality of the resulting extractions by checking for their

mutual consistency. PROSPERA builds on SOFIE (Suchanek et al., 2009) but is more

scalable and provides higher recall.

Open Information Extraction

In all the above approaches, the set of relations for which we extract facts is defined

upfront, along with a set of examples for each relation. Defining what relations are

interesting in a specific domain and coming up with examples for each requires effort

by humans. Once the relations in a domain need to be extended, or the domain is

changed altogether, the existing data will not be very useful, and manual effort has

to be invested again. This does not scale well when the data is continuously evolving,

and with it the set of interesting relations.

Open Information Extraction (OpenIE) was proposed as a solution to the problems

above. The goal of OpenIE is to perform fact extraction without the need for any

domain-specific modeling in a scalable manner on large Web-scale corpora (Etzioni

et al., 2004). The initial work on OpenIE, KnowItAll, supported open-ended infor-

mation extraction by providing a framework where extraction rules can be manually

defined in a domain-independent manner. These rules would trigger Web search engine

queries that allow KnowItAll to find documents to which these rules can apply. The

Web search engine is also queried to automatically asses the quality of an extraction

by aggregating evidence for that extraction. The successor framework, TextRunner,

extracted facts by finding spans of text in a large corpus connecting two noun phrases

(corresponding to the arguments of a fact) and using a classifier to score such extrac-

tions (Banko et al., 2007; Etzioni et al., 2008; Yates et al., 2007). WOEparse (Wu and

Weld, 2010) extends this work by using dependency parsing to connect the argument

noun phrases along with a similar scoring scheme.

ReVerb (Fader et al., 2011), one of the most widely used OpenIE systems, relies

on a small set of patterns over part-of-speech tags to detect relations, and then looks

to the left and right of the relation for noun phrases corresponding to its arguments.

Subsequently, extractions are tested against a lexical constraint where relations that

don’t occur with a sufficient number of distinct arguments are eliminated. The resulting

extractions are finally scored using a confidence classifier. OLLIE (Mausam et al.,

2012) bootstraps ReVerb by using its extractions as seeds for finding dependency parse
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Scheme E U NS

Keywords 7 X X
Questions X X X
Structured queries X 7 7

Table 2.1.: Comparison of keywords, natural language questions and structured

querying along the dimensions of expressiveness (E), usability (U),

and a user’s ability to formulate queries without schema knowledge

(NS).

patterns expressing facts.

In Chapter 5 we present an approach to OpenIE that focuses on extracting facts

centered around noun phrases, which other systems have neglected, and which can

extract the arguments of a relation in a semantically meaningful and consistent manner.

2.3. Querying for Knowledge

We now discuss how we can query for knowledge. The starting point for a user is an

information need for which she would like to obtain answers (Büttcher et al., 2010).

The user generates a query (or possibly a sequence of queries) from this information

need. For a given information need, the query will differ based on the system to which

it will be issued.

In this section we look at three querying schemes relevant to this dissertation: key-

word querying, structured querying, and question answering. The schemes differ along

three main dimensions: expressiveness, usability in terms of the technical knowledge

needed to formulate a query, and how much familiarity is required with the data to

pose a query. Table 2.1 gives a comparison of the three query schemes along the three

dimensions, we elaborate on this below.

2.3.1. Keyword Querying

Most people are familiar with keyword querying through the use of Web search engines.

A keyword query is generally considered a bag of terms, that is, the order in which they

are provided by the user is arbitrary.4 In the typical setting where keywords are used,

a user will issue a keyword query to an engine and expect a ranked list of documents,

each possibly corresponding to an entity as we discuss below. Other settings have also

been explored where keyword queries are used to retrieve tuples from databases or

trees from XML documents.

4This assumes that a term refers to an atomic concept, see Metzler and Croft (2005)
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Document retrieval has been a major focus of information retrieval systems since

the earliest days of the field (Croft et al., 2009). Here, most of the focus has been

on ranking textual documents (Web pages, emails, books, scholarly publications) in

response to keyword queries. While the roots of the field go as far back as the mid

1960s, the field saw rapid progress since the mid-1990s due to the popularity of Web

search engines and driven in large part by the various tracks of the Text REtrieval

Conference (TREC), which was started in 1992. Among the successful approaches for

ranked document retrieval is language modeling (Ponte and Croft, 1998; Zhai, 2008)

and query expansion (Xu and Croft, 1996) which inspire some of the work in Chapters

3 and 4.

Motivated by the familiarity of users with keyword querying, primarily through their

interaction with Web search engines, researches have worked on adapting this form of

querying for problems other than document retrieval. Most relevant for our setting

of knowledge querying is work on entity search and keyword search over knowledge

graphs (and databases in general). In entity search, the goal is to return an entity or

a set of entities in response to a keyword query. State-of-the-art approaches map the

problem of entity search to the classical document retrieval setting by constructing

per-entity documents and retrieving these documents in response to an entity query.

Entity documents are usually fielded, with fields capturing the various facets of an

entity. Extensions of this approach allow for fielded queries, minimally with a field for

specifying the types to which an entity belongs, and another for a description (with

relations or entities) (Balog et al., 2011).

Another class of systems answers keyword queries over databases typically for the

purpose exploratory search, with some systems specifically focusing on knowledge

graphs. Such systems are a fundamental component for verticals (e.g., Amazon.com),

which are predominantly driven by a database containing the topics they offer and

their information. Tran et al. (2009) generates the top-k triple pattern queries that

best correspond to a keyword query over a specific knowledge graph. Each structured

query is derived from a subgraph of the knowledge graph that can connect elements in

the knowledge graph mentioned in the keyword query. Elbassuoni and Blanco (2011)

adopts an IR-inspired approach, where a set of subgraphs matching a keyword query

are retrieved and subsequently ranked based on a statistical language model. In con-

trast to the first approach, the second one returns answer subgraphs to the user rather

than structured queries. Yu et al. (2009) gives a comprehensive overview of the area

of keyword search over relational, graph and XML databases.

Keywords inherently have very limited expressiveness, which means that they cannot

be used to fully exploit the structured data available to us in knowledge graphs. For

example, the information need expressed by the question shown in Figure 2.2: “Which

actress played in Casablanca and was married to a writer born in Rome?”, is hard

to capture in its full semantics in a keyword query such as ‘actress played casablanca

married writer born in rome’. Moreover, even if the user were to provide a keyword-
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querying engine with the full question, she would not benefit in terms of result quality

as the engine is not designed to exploit the expressiveness of natural language, making

the effort not worthwhile.

An interesting extension of such systems is QUICK (Pound et al., 2010a), which

allows structured keyword queries. Such queries are meant to be a compromise between

keyword queries and structured queries for describing an entity. Using this query

language, our example might be formulated as:

“actress, played in(casablanca), married to(writer, born in(rome))”

The various keywords in the structured keyword query are mapped to candidate se-

mantic items in the underlying knowledge graph, and the goal becomes finding the set

of top-k scoring subgraphs, each of which correponds to a distinct triple pattern query.

A subgraph is scored using a combination of syntactic similarity between its items

and keywords in the query, and semantic similarity between these items. The top-k

matching subgraphs are found efficiently using an top-k enumeration scheme based on

rank-joins (Ilyas et al., 2003). However, even such queries can be hard for the average

user to formulate.

2.3.2. Structured Querying

Structured querying over knowledge graphs is on the other extreme from keyword

querying. In Section 2.1.5 we presented triple pattern queries for querying knowledge

graphs. Here, the information need is expressed unambiguously. Moreover, very com-

plex queries can be expressed, particularly relationship queries which in the classical

IR setting would require combining cues from multiple documents to obtain an answer.

For instance, our running example can be answered using the following query, which

we have seen in Figure 2.2(a):

SELECT ?x WHERE {
?x type actor . ?x actedIn Casablanca(movie) .

?x spouse ?y .

?y type writer . ?y bornIn Rome

}
Using structured querying suffers from three major problems. First, formulating

structured queries in a formal language such as SPARQL is not a trivial task for the

average person, who will have no experience in formal languages. Second, even a

user experienced at formulating structured queries might struggle to find the correct

knowledge graph terms and structure needed to formulate her query. This is due to the

large size of a knowledge graph and its underlying vocabulary, and the lack of a schema.

Finally, because knowledge graphs are continuously evolving without a fixed schema,

the information need underlying a structured query might have multiple answers in
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the knowledge graph. However, each answer might require a slightly different query to

obtain.

We have already seen how keyword querying was proposed as a way to tackle the

issues above and the limitations of keyword querying, particularly when it comes to

expressiveness. In this dissertation we tackle the problems above in two ways. In

the first, we allow for full fledged natural questions as an alternative for keyword

querying. Natural language allows users to express very complex queries without any

technical know-how (Chapter 3). In the second, we assume that a structured keyword

query is already at hand – either formulated by a user, or automatically generated

by a question answering or keyword querying system. We present a triple pattern

querying framework that takes a triple pattern query and can automatically adjust it

to bridge any gap between the query and the KG. An important component of the

second approach is that it allows for processing queries on an extended version of the

knowledge graph obtained through information extraction (Chapter 4).

2.3.3. Natural Language Questions

Natural language questions as a query language present an ideal compromise between

keyword and structured querying. Questions can be used to express complex informa-

tion needs that cannot be expressed as keywords without a significant loss in structure

and semantics. Natural language questions are the most intuitive way of formulating an

information need, and any human can formulate questions to express their information

needs. Moreover, with voice seeing wider adoption as a modality for human-computer

interaction, support for questions as a query language will become a must.

The idea of machines answering human questions goes back to the earliest days of

computer science. Turing’s scheme for testing whether machines exhibit intelligence,

the Truing test, is based on a machine answering questions in a manner indistinguish-

able from humans (Turing, 1950). While achieving this goal seems unlikely in the near

future, the problem has been tackled from different angles in the past 65 years.

Starting from the mid 1990s, and for a period of about 10 years, question answer-

ing saw a revival, primarily in the information retrieval community. This revival was

mainly driven by the Web and the availability of large query logs from major search

engines at the time (e.g., MSN search and Ask Jeeves). The main driver of QA re-

search during this period was NIST’s TREC-QA track, which made available questions

donated by Web search engines and corpora in which answers to these questions were

to be located.

IBM’s Watson system is one of the milestones in the history of natural language

question answering (Ferrucci, 2012; Ferrucci et al., 2010). Watson successfully com-

peted against humans at the Jeopardy! television game show. Work on Watson focused

on three main topics: question answering (finding answers), strategy (deciding when

to answer and how much to bet on a question), and efficiency (answering fast). On the
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question answering front, Watson relied mainly on textual corpora, with limited use

of knowledge graphs for answering question fragments that can be mapped to a KG

with high confidence (Chu-Carroll et al., 2012) and type-checking answer candidates

for pruning of spurious answers (Kalyanpur et al., 2011).

In recent years, there has been a resurgence of interest in question answering, this

time primarily in the natural language processing and database communities with the

goal of question answering over databases, with particular interest in knowledge graphs.

In contrast to early work described above, the recent approaches operate over much

larger data, and rely heavily on statistical methods rather on purely logical ones. Liang

and Potts (2015) gives an overview of the field. We also give a more comprehensive

overview in Chapter 3.

In terms of usability, questions are a more accessible medium for expressing com-

plex information needs. Most users lack the technical know-how needed to formulate

a structured query. Additionally, as discussed in Section 2.1, knowledge graphs are

usually large, continually evolving, and lack a schema. This means that finding the

right query can be a challenging task, possibly requiring multiple iterations of query

reformulation to find the correct query. Natural language questions can relieve the user

from this burden by moving it to the machine, which will be responsible for under-

standing the question with respect to the underlying data. We present our framework

for natural language question answering for knowledge graphs in Chapter 3.





3. DEANNA: Natural Language

Question Answering over

Knowledge Graphs

3.1. Introduction

3.1.1. Motivation

The availability of large knowledge graphs presents a challenge and an opportunity

that are, in some sense, duals of each other. The challenge lies in how to make this

abundance of knowledge easily accessible to humans. Only a fraction of potential

consumers of this knowledge will be versed in formulating triple pattern queries that

express their information needs. Even for such people, the sheer size of the data and

the lack of a schema means that the task of formulating a triple pattern query can be

a challenging task, requiring multiple rounds of tedious query reformulation.

A solution to the above problem is to allow users to query knowledge graphs by

posing natural language questions. These questions are subsequently interpreted with

respect to the specific KG at hand by mapping them to a triple pattern query, which

can be issued to the KG, returning the desired answers to the user.

This new setting of large knowledge graphs presents an opportunity to tackle the

question answering problem using new approaches. By working against a knowledge

graph, crisp entities can be returned as answers. By exploiting the structure provided

by the KG, one can also answer complex questions that require multiple joins, corre-

sponding to paths in the KG. In these cases, a KG can be used to return answers that

are proper tuples of entities, rather than singletons. Moreover, users will be able to

ask for how an answer was derived by looking at the query that produced it.

3.1.2. Problem Statement

The high-level problem we deal with in this chapter is that of question answering over

a knowledge graph. Given a knowledge graph KG and a question u (for utterance),

our task is to return a result A = {a1, a2, ...}, where each answer in the result is an

n-tuple of entities, ai = (e1, e2, ..., en). Figure 3.1 shows an example of a question and

25
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u =“Who played in Casablanca and was married to a writer born in Rome?”

A ={(IngridBergman, RobertoRossellini)}

Figure 3.1.: An example question and the corresponding result that contains a

single answer composed of an entity pair.

its result containing a single answer composed of a pair of entities. We elaborate on

the problem description in what follows.

Our task is called question answering over knowledge graphs. We operate with a

very broad definition of a question. For us, a question is a natural language utterance,

hence the symbol u, that expresses an information need. These can be questions formed

with interrogative words (e.g., “Who was born in New York City?”), yes/no questions

(e.g., “Was Obama born in Hawaii?”) and utterances intended as questions, but do

not look as such (e.g., “Presidents born in Hawaii.” which is simply a shorter form

for asking “Which presidents were born in Hawaii?”).

An answer in our setting is an n-tuple of entities from the KG. In Figure 3.1 we give

an example of such an answer. This is in contrast to the classical IR setting, includ-

ing the entity-retrieval task (Pound et al., 2010b), where an answer is an individual

document (possibly corresponding to a single entity).

While an answer is a tuple of entities from the KG, our definition of the problem does

not force us to be able to explain an answer by the facts within the KG. We will assume

that the decision about the relevance of an answer in response to a question is done

independent of the KG. In this manner, systems working on this task have the freedom

to use whatever means and resources necessary to focus on the end task of answering

the question at hand, and are not restricted by the unavoidable incompleteness in any

KG.

Related to the above point, we focus on the end-to-end task of question answering

over a KG. Therefore, our end goal is not to generate the correct triple pattern query

in response to a question. In other words, our task is that of question answering rather

than semantic parsing. Evaluating the correctness of a query, rather than an answer,

is not a well-defined task. A seemingly correct query might miss some or all correct

answers due to KG incompleteness. On the other hand, there might be multiple correct

queries that capture a question, which produce overlapping or complementary sets of

answers. Notwithstanding this discussion, an important component of our QA pipeline

is the translation of a question into a triple pattern query.

3.1.3. Contributions & Overview

We present DEANNA, a two-stage end-to-end framework for natural language question

answering over knowledge graphs. In the first stage, DEANNA maps a user’s question
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to a triple pattern query. In the second stage, it extends and relaxes this query with

textual conditions inspired by traditional IR to compensate for any shortcomings in

the first part or incompleteness in the KG. Figure 3.2 shows the full pipeline that takes

us from a question to its answers, we elaborate below.

In the first stage, DEANNA generates a triple pattern query from the question. For

the example question in Figure 3.1, DEANNA would generate the query:

SELECT ?x WHERE {
?x type person . ?x actedIn Casablanca(movie) .

?x spouse ?y . ?y type writer .

?y bornIn Rome }
Generating a triple pattern query from a question is a two-stage process. First,

DEANNA constructs a disambiguation graph from the question, which essentially cap-

tures all possible interpretations of the question with respect to the KG. To obtain the

correct interpretation among these, multiple ambiguities have to be resolved: the seg-

mentation of a question into phrases that can be individually mapped to semantic

items in the KG, the actual mapping, and connecting these semantic items together

in order to construct triple patterns. As the solution to each of the three ambiguities

above can inform the resolution of the other ambiguities, we resort to a joint model

of disambiguation. Our model utilizes a judiciously designed Integer Linear Program

(ILP) for joint disambiguation. The ILP, composed of an objective function and a

set of constraints, captures the intuition that we are looking for the most likely inter-

pretation of the question (the objective) that also makes sense (the constraints). The

constraints make use of the semantic knowledge in the knowledge graph, requiring, for

instance, that the arguments of a predicate in a triple pattern match its type signature.

The result of the first stage is a triple pattern query.

In the second stage, the triple pattern query is extended with text conditions. These

conditions serve two purposes. The first is to account for any parts of the question

that could not contribute to the triple pattern query, either due to issues with the

interpretation framework or the underlying KG. The second purpose of this extension

is to allow for the relaxation of the triple pattern query whenever it is unable to return

satisfactory results. We deem a result to be satisfactory when it is non-empty. Triple

pattern queries extended with text conditions are evaluated over a combination of the

KG and a textual corpus of entity descriptions. Query relaxation is interleaved with

query evaluation, and continues until a query returns satisfactory answers to the user.

For our running example, we can imagine a KG where the bornIn predicate is sparsely

populated, and where the triple pattern query above results in an empty answer set.

We would relax the culprit query condition ?y bornIn Rome to into a textual condition

associated with ?y’s type constraint: ?y type writer ‘born in rome ’.

DEANNA answers questions over knowledge graphs composed of entities, predicates,

and classes. In this chapter we work over a combination of DBpedia and Yago, two

knowledge graphs constructed from Wikipedia as described in Section 2.1.4. The
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connection to Wikipedia is crucial, as it allows us to both create the dictionaries

and compute the statistics needed by DEANNA. Yago serves as our ontology, while

DBpedia provides instance data.

In the following, we first survey related work in Section 3.2. We then describe

disambiguation graph construction in Section 3.3. Next, we present our ILP-based

joint disambiguation framework for question interpretation in Section 3.4, and how

the result is translated to a triple pattern query in Section 3.5. In Section 3.6 we

describe our query extension and relaxation framework, and describe answer scoring,

which is required to cope with the potentially large number of results returned from

relaxation. Finally, we present an experimental evaluation of DEANNA in Section 3.7.

Question

Answers

Phrase 
Detection Phrase Mapping Dependency 

Generation

Joint 
Disambiguation

Extended Query 
Generation

Query 
Relaxation

Query 
Evaluation

Disambiguation Graph 
Construction

Query 
Generation

Query
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Figure 3.2.: Architecture of DEANNA.
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3.2. Related Work

Question answering (QA) has been one of the holy grails of computer science research

since its early days. It has been tackled by the natural language processing community,

the IR community, and, to varying degrees, by the database and logics communities.

In what follows we present an overview of the field.

3.2.1. IR-based Question Answering

The 1990s and early to mid 2000s saw a plethora of work on IR-based approaches to

questions answering (IR-QA). Progress in this area was mainly driven by the TREC

question answering track, which ran annually between 1999 and 2007 (Dang et al.,

2007). Here, the focus was mainly on list, factoid, and definition questions posed over

text corpora. Over the years, both newswire and blog corpora were used. An answer in

this setting was a pair with an answer string and the id of the document where it was

found (or ‘NIL’ when none can be found). Answer strings were usually constrained to a

predefined number of bytes. Crucially, if an answer could be found for a question, then

it was expected to be fully contained within a single textual document. DEANNA,

by supporting complex join questions, is able to answer questions that conceptually

require evidence from multiple documents by working with structured data.

Most IR-QA systems preprocess the document corpus at hand using the typical IR

preprocessing pipeline primarily composed of tokenization, normalization and indexing

(Manning et al., 2008). Some systems perform further preprocessing and analysis. For

example, the START system (Katz, 1997) uses the parse trees of sentences in a corpus

to create ternary subject-predicate-object expressions. These expressions are indexed

for use during question answering. Other systems, however, perform such sophisticated

analysis at question answering time over the subset of the corpus thought to contain

the answer, as we detail below.

The majority of IR-QA systems divide the question answering task into the following

subtasks: (i) question analysis, (ii) query formulation, (iii) document retrieval, (iv)

passage retrieval, and (v) answer generation.

The most important step in question analysis is determining the expected answer

type. For this, IR-QA systems maintain a type taxonomy. For example, Webclopedia

(Hovy et al., 2002) uses a taxonomy 140 types manually compiled from analyzing a

large question repository. Pasca and Harabagiu (2001) uses a type taxonomy with 8707

so-called concepts, which include verbs and adjectives, that are connected to WordNet

noun synsets that correspond to answer types. To determine the answer type of a

question, a combination of syntactic parse analysis, template matching, and machine

learning are deployed (Li and Roth, 2002; Ravichandran and Hovy, 2002). Such type

taxonomies are also important in our setting of question answering over knowledge

graphs, and are usually part of the knowledge graph. Knowledge graphs such as
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DBpedia and Yago, both of which we use in our work, offer hundreds of thousand of

types, some of which are taken over from WordNet, while others are very fine grained

(e.g., RepublicanUnitedStatesVicePresidents) and come from Wikipedia.

Query formulation takes the question and formulates a query that can be issued to

the IR system, which serves as the interface to the document corpus. The primary

consideration here is to create a query that is likely to find relevant matches in the

underlying corpus. This is achieved by a combination of question reformulation and

query expansion. In question reformulation, the goal is to take the question, a inter-

rogative sentence, and recast it into a declarative sentence or clause that can better

match the underlying corpus. Reformulation generally requires linguistic analysis of

the question, which includes, among others, identifying the predicate-argument struc-

ture of the question and named entity mentions in it. Query expansion (Xu and Croft,

1996; Voorhees, 1994) is a typical query preprocessing step in IR, where the goal is

to bridge any terminological gap between the query and the underlying corpus. Here,

morphological, lexical, and semantic expansions are used, often relying on WordNet

(Hovy et al., 2000; Pasca and Harabagiu, 2001).

This query is used to retrieve an answer from the underlying corpus in several steps.

First, document retrieval is performed, where the goal is to retrieve a relatively small

set of documents where the answer is likely be found. By restricting ourselves to a

subset of the corpus using document retrieval, we can afford to apply more detailed,

and therefore expensive, analysis of these documents. Such analysis includes parsing,

phrase chunking and named entity recognition and typing (Kwok et al., 2001; Srihari

and Li, 1999). These annotations are used to perform passage retrieval (Salton et al.,

1993; Tellex et al., 2003), where passages in the documents that are expected to bear

the desired answer are retrieved.

Subsequently, these passages are scored using a host of features, including their

overlap with the question and the match of the named entities they contain with the

expected answer type. In the final step, answers are extracted from the top-scoring

passages. Here, both templates (Hovy et al., 2002; Lin, 2007) and n-gram mining and

tiling are used (Brill et al., 2002). In the latter, n-grams from high-scoring passages

are collected and scored, in part based on how well they match the expected answer

type of the question. Overlapping n-grams are coalesced, with their scores combined,

and the highest scoring ones are emitted as answers.

Hirschman and Gaizauskas (2001) and Jurafsky and Martin (2009) give a more

detailed overview of the field of IR-QA.

3.2.2. Question Answering over Databases & Semantic

Parsing

The earliest work on question answering focused on answering questions from a database.

For example, BASEBALL (Green et al., 1961) answered questions about baseball
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games and their statistics. LUNAR (Woods et al., 1972) answered questions about

the Apollo 11 mission to the moon. These systems were rule-based and operated over

what would nowadays be considered very small databases. More importantly, each sys-

tem was designed to deal with a specialized domain, and could not be easily extended

to operate on a different domain.

Providing natural language interfaces to databases (NLIDB) has been one driver

of research on question answering (Popescu et al., 2003). The early systems dis-

cussed above were driven by this goal. This problem has been seeing a revival in

the database community, with work on various forms of structured data including re-

lational databases (Li and Jagadish, 2014) and XML (Li et al., 2007). These systems

are driven by the desire to make structured data more accessible to those users not

well versed in formal languages. The approaches they follow generally map predfined

syntactic patterns to specific query patterns. These systems are interactive in that

they rely on humans to help resolve ambiguities that arise along the way and allow

humans to iteratively refine the resulting query.

The task of question answering over knowledge graphs, or databases in general,

is directly related to the task of semantic parsing. In fact, question answering has

been one of the main drivers of progress in the area of semantic parsing. The goal of

a semantic parser is to translate a natural language utterance to some logical form.

This can be lambda calculus, robot commands, or a database query as we do in this

work. NLIDB systems like the ones above can be seen as semantic parsers, but many

others were developed with an immediate focus on the semantic parsing task, mostly

using machine learning and statistical approaches. Such systems vary along several

dimensions, most notably what kind of supervision they require and what kind of

logical form they produce.

One class of semantic parsers relies on learning from utterance-logical form pairs

(Kwiatkowski et al., 2010; Zelle and Mooney, 1996; Zettlemoyer and Collins, 2007,

2009). Owing to the complexity of coming up with utterances annotated with logical

forms for training, these early systems operated on fairly small databases. One reason

is that such systems learn both how to derive a logical form and the necessary mappings

of phrases to logical constants at once. Cai and Yates (2013) presents a system that

allows working with larger databases by extending such systems with schema matching

and lexicons learned independently.

One way of overcoming the problem above is to exploit utterance-answer pairs rather

than utterance-logical form pairs for training, as the former are easier to obtain — in

the semantic parsing setting what we call an answer is referred to as a denotation

and is obtained by executing the logical form (Liang and Potts, 2015). This scheme

is followed by several recent works including Berant et al. (2013), Berant and Liang

(2014), Clarke et al. (2010), and Liang et al. (2011). In general, these works rely on a

component that can generate logical forms for a given utterance-answer pair, and train

a system that can later generate queries, which remain latent from the perspective of
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the end-user.

DEANNA and several other recent systems works including Adolphs et al. (2011),

Cabrio et al. (2012), Unger and Cimiano (2011), Unger et al. (2012a), and Wang

et al. (2015) rely on having a domain-independent grammar combined with a domain-

specific lexicon for mapping phrases in the questions to entities and predicates in

the KG. These systems greatly resemble some of the earliest approaches for QA over

databases. However, a crucial difference is that the recent systems heavily harness

statistics, backed by very large annotated corpora, to score candidate queries and

decide on the one that best captures a question. These systems are valuable for flexibly

deploying QA systems across domains, especially when there is a lack of training data

as described above to learn a semantic parser.

Recently, approaches were proposed for question answering in what is called an

open predicate setting. This is in contrast to the closed predicate setting which in-

cludes all the systems described above. Question answering in an open predicate

setting is tied closely to the notion of open information extraction, where facts are

extracted from text and each word or phrase has its own distinct meaning with the

goal of achieving more coverage than closed predicate knowledge graphs. Within this

setting, Fader et al. (2013, 2014) propose an approach for question answering over a

combined database of curated and automatically extracted knowledge graphs. The

power of the method proposed comes from the size and diversity of the underlying

knowledge graph and a multi-stage paraphrasing scheme for both questions and struc-

tured queries. Krishnamurthy and Mitchell (2015) learns a probabilistic database that

defines a probability distribution over answer entities for each textual predicate using

a corpus of entity-linked text and probabilistic matrix factorization. At query time,

answers are determined by inference where marginals are computed for each potential

candidate entity. By essentially embedding entities and facts in a latent space, this

approach does not easily lend itself to providing explanations for answers it returns.

The questions answered by the above approaches are fairly simple.

In DEANNA we rely on combining structured facts with their textual context to

allow for flexible question answering whenever the knowledge graph is incomplete or the

triple pattern query fails to fully capture a question. QUETAL (Frank et al., 2007) has

also looked at combining structured and unstructured sources for question answering,

albeit in a manner different than what we do in this work, with the structured and

textual sources serving as complementary sources of answers.

3.2.3. IBM Watson

IBM’s Watson question answering system is the most successful example of a deploy-

ment of a question answering system. Watson was designed to play the Jeopardy!

game show, and in 2011 won the IBM Jeopardy! challenge (Ferrucci, 2012). Watson is

an example of a system that combines both IR and KGs to perform question answering.
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Analyzing Jeopardy! questions (called clues), reveals that they tend to be struc-

turally very simple in comparison to the questions DEANNA can cope with. The

complexity mostly comes from the quiz nature of the questions where the answers are

not necessarily entities that would be found in a typical knowledge graph. In fact,

analysis reveals that only 2% of Jeopardy questions could be answered by exclusively

utilizing structured sources (Ferrucci et al., 2010).

Watson starts out by analyzing a question, which includes deciding whether it is a

factoid question or if it falls into on of a number of predefined question classes that

can benefit from special handling (e.g., definition or etymology question). The special

questions collectively constitute nearly 40% of Jeopardy questions (Lally et al., 2012).

As we do in DEANNA, Watson relies on parsing the question to capture its structure

and transform it into a predicate-argument structure similar to our notion of phrase

dependencies (McCord et al., 2012).

Watson utilizes unstructured resources for answer retrieval, putting great value on

specific textual corpora such as Wikipedia, where page titles contain answers to the

majority of Jeopardy! questions (Chu-Carroll et al., 2012).

Watson also uses knowledge graphs and other forms of structured data for answer-

ing. It relies on recognition grammars for recognizing occurrences of KG predicates in

a question. Since these grammars are manually crafted, they are only created for the

most frequent predicates (Chu-Carroll et al., 2012). In addition to obtaining answers

directly, using structured data allows Watson to support certain types of reasoning

such as temporal and spatial reasoning (Kalyanpur et al., 2012). Watson also extracts

its own large-scale lexicalized relation source from text called Prismatic, which is es-

sentially a knowledge graph with textual phrases rather than semantic items, i.e., an

open predicate KG (Fan et al., 2012).

Watson relies on so-called type coercion, where a potential answer is scored by a

specialized component based on how well it can be coerced into a type compatible with

the one the question is asking for (Murdock et al., 2012). This is needed due to the

wide variety of question classes in Jeopardy!. Some type coercion components used in

Watson rely on knowledge graphs that DEANNA also utilizes, including Yago (backed

by WordNet), and DBpedia. These can give a strong (positive or negative) signal for

factoid questions where answers are entities.

In addition to the question answering component we outlined above, Watson also

has a game strategy component that guides it in its decisions on when to attempt to

answer, how much to wager, and which question category to choose and with what

monetary value. This is based on a combination of learning from historical game data

for human players, Watson’s own history, and the analysis of the other players in

the game. Interestingly, Watson can produce a score reflecting its confidence in its

answers and uses this score to decide whether to attempt a clue (Tesauro et al., 2012).

Watson owes its performance in the Jeopardy! challenge to both its question answering

and game strategy components in equal measures. Watson is backed by an enormous
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amount of computational power that allows it to answer questions in interactive times

(Epstein et al., 2012).

3.2.4. Keyword Querying over Databases

The topic of keyword search over various forms of structured data such as relational

databases and graph data (including knowledge graphs) has been proposed as a means

of providing easy access for users to databases (Agrawal et al., 2002; Bhalotia et al.,

2002; He et al., 2007; Hristidis and Papakonstantinou, 2002; Yu et al., 2009). To

answer such queries, parts of the query are matched with the attributes and contents

of relational records. Foreign-key relationships are subsequently used to compute a

connected result graph explaining how the various keywords relate to each other.

Pound et al. (2010b) introduces the task of ad-hoc object retrieval over data graphs

(in contrast to the well-established ad-hoc document retrieval task over textual docu-

ment corpora). Here, queries are formulated as a bag of keywords, and the result is a

ranked list of entities. Queries are divided into entity (e.g. ‘eiffel tower ’), type (e.g.,

‘tourist attractions’), attribute (e.g., ‘germany gdp’), and relation queries. This work

also shows that such queries collectively constitute more than 55% of the queries in a

representative query log of a major search engine.

Joshi et al. (2014) presents an approach for segmenting short telegraphic queries

(short ill-formed questions) and mapping segments onto entities, predicates, or types in

a KG or considering them a contextual segment. The focus here is on obtaining answer

entities to queries, and therefore multiple segmentations and corresponding mappings

are considered when scoring an answer entity. Answer scoring is performed using an

undirected graphical model where some potentials roughly correspond to DEANNA’s

notion of prior and coherence. Other potentials rely on statistics collected from an

entity-annotated corpus and provide a form of relaxation to make up for incomplete

knowledge graphs. This work is an extension of Sawant and Chakrabarti (2013), which

mapped segments onto semantic types or considered them as contextual segments.

Pound et al. (2010a) presents an approach for querying knowledge graphs using

structured keyword queries, which are an extension of traditional keyword queries.

Such queries can be used to recursively describe a single entity using a mixture of

entities, relations, and classes, and a combination of these (all expressed through

keywords). These queries are automatically translated to SPARQL queries using a

disambiguation approach similar in spirit to the one used by DEANNA. To disam-

biguate such queries, a disambiguation graph is constructed based on the structure of

the query. Subgraphs of this graph, which correspond to SPARQL queries, are scored

using a combination of syntactic similarity between its items and keywords in the query

and semantic similarity between these semantic items. The top-k matching subgraphs

are found efficiently using a top-k enumeration scheme based on rank-joins (Ilyas et al.,

2003). By requiring that the user provide the structure, such queries can be hard for
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the average user formulate. The question in our running example is captured by the

following structured keyword query:

“actress, played in(casablanca), married to(writer, born in(rome))”.

3.3. Disambiguation Graph Construction

DEANNA starts out by constructing a disambiguation graph from the natural language

question. A disambiguation graph is a way of compactly encoding all possible ways a

question can be interpreted with respect to the underlying knowledge graph. Figure 3.3

shows an example disambiguation graph corresponding to the question “Who played

in Casablanca and was married to a writer born in Rome?”. In this section we will

introduce the notion of a disambiguation graph and show how it is constructed. We

first give a formal definition of disambiguation graphs and interpretations obtained

from them. We then move to detailing how a disambiguation graph is constructed in

this section, and in Section 3.4 we detail how interpretations are obtained from them.

Definition 3.1 (Disambiguation Graph). Given a question u and a knowledge graph

KG, let:

• Vp be the set of phrases in u,

• Vs be the set of semantic items in KG with surface forms in Vp,

• Vd be a set of nodes, each corresponding to a dependency between a triple of

phrases in Vp,

• Ecoh ⊆ Vs×Vs be a set of weighted coherence edges connecting pairs of semantic

items,

• Epri ⊆ Vp×Vs be a set of weighted prior edges connecting a phrase to a semantic

item,

• Edep ⊆ Vd × Vp be a set of dependency edges connecting a dependency node to

a phrase and labeled with one of rel, subj, or obj,

the disambiguation graph of u over KG, G(u,KG) = (V,E), is a labeled weighted

multigraph where V = Vp ∪ Vs ∪ Vd and E = Ecoh ∪ Epri ∪ Edep.

In Figure 3.3, phrases in Vp are shown in the center, dependency nodes in Vd are on

the left and semantic nodes in Vs are on the right. We omit coherence edges between

pairs of semantic items and the labels of other edges for readability.

We will elaborate on the details of the disambiguation graph and how it is con-

structed in the following sections. Before doing so, we first formalize the notion of an

interpretation of a question. We do so at this stage to allow the reader to see the big

picture of what we are trying to achieve with disambiguation graphs.
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Definition 3.2 (Question Interpretation with Respect to a KG). Given a question u,

a KG, and a disambiguation graph G(u,KG) as defined above, an interpretation of

the question with respect to the KG is a subgraph of G(u,KG).

An interpretation is essentially a decision about which edges and nodes should be

kept in the disambiguation graph and which should be removed. Understanding a

question with respect to a knowledge graph boils down to finding the right interpre-

tation. Figure 3.4 on page 49 shows one possible interpretation obtained from the

disambiguation graph of Figure 3.3. Moreover, not all interpretations are plausible,

some interpretations are nonsensical. For instance an interpretation where a phrase

maps to multiple entities, for example ‘Rome’ mapping to both Rome and SydneRome,

is not a plausible one. A plausible interpretation is one that allows us to generate a

meaningful SPARQL query. We will concern ourselves with how to generate such an

interpretation from a disambiguation graph and how to map it to a SPARQL query

in Sections 3.4 and 3.5, respectively. In the rest of this section, we are concerned with

how a disambiguation graph is constructed.

3.3.1. Phrase Detection and Mapping

The first stage in the construction of a disambiguation graph from a question is to

find phrases in the question that can potentially refer to semantic items in the final

interpretation of the question. In Figure 3.3, phrases are shown in rounded rectangles

in the center of the figure. We first formalize this subtask by formally defining what a

phrase is and what it means for a phrase to refer to a semantic item.

Definition 3.3 (Phrase). Given a natural language utterance u = (t1, t2, ...) and

its dependency structure parse(u) in the form of a tree, a phrase p is either (i) a

subsequence of u or (ii) a subtree of parse(u).

Phrases come from viewing the question as both a sequence and a labeled tree of

tokens. The latter view allows us to construct phrases from non-contiguous spans of

tokens. For example, in the question “Countries in which Nobel Prize winners were

born” this definition allows us to isolate the subtree with the tokens ‘were born in’

as a distinct phrase. In principle, defining phrases using the dependency structure

should suffice. However, because dependency parses can contain inaccuracies, particu-

larly when it comes to subtrees corresponding to named entities (e.g., ‘Saving Private

Ryan’), we also look at subsequences of tokens as phrases as well. In this work we

operate with a tree version of the Stanford dependency parse of an utterance (Marneffe

et al., 2006).

The KG contains semantic items that are simply unique identifiers. To mention a

semantic item in a question, we need a way to refer to that semantic item in natural

language. The following definition allows us to do so:
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dp1

dp3

played in

played

Casablanca

a writer

was born in

born

Rome Rome

Sydne_Rome

Born(movie)

Max_Born

bornOnDate

writer

WhiteHouse

Casablanca

Casablanca(movie)

Played(movie)

actedIn

hasMusicalRole

bornIn

dp2

was married to

married to

married

Who
person

married_person

Married(series)

spouse

Figure 3.3.: A disambiguation graph corresponding to the question “Who played

in Casablanca and was married to a writer born in Rome?”. Se-

mantic coherence edges between semantic items and weights of prior

edges are not shown.



38 CHAPTER 3. DEANNA

Definition 3.4 (Surface Form and Mention). Given a semantic item s, a surface form

is a phrase p that can be used to refer to the semantic item. We say p is a mention of

s in u if the phrase p intended to refer to s.

A surface form of a semantic item is one possible way of referring to it. Surface

forms can be ambiguous in that the same surface form can correspond to multiple

semantic items in the KG. For example, the surface form ‘Casablanca’ might refer to

both the Moroccan city (s = Casablanca) or the 1942 film (s = Casablanca(movie)).

This kind of ambiguity is one of the core issues we deal with in DEANNA.

A surface form used in an utterance that leaves no room for ambiguity regarding the

intended semantic item is called a mention of that semantic item. Given a surface form

without its context, some semantic items are more likely than others. The notion of

a prior captures this. For instance, given the surface form ‘Rome’, the Italian capital

(Rome) has a higher prior than the city in New York (Rome(NY)) and the actress

SydneRome.

We use a set of chunkers for finding potential mentions, driven by the category of

semantic item we are after (entity, class, or predicate). The result of phrase detection

is a set of phrases P = {p1, p2, ...}. Once a phrase p is found, a mapper generates

the set of semantic items whose surface form is p, along with the prior weight for this

mapping. The result of this process is Vs, Vp and Epri in the disambiguation graph. In

what follows we discuss how chunking and mapping is performed for entities, classes,

and predicates.

Entities

For entities we derive a comprehensive dictionary of surface forms from Wikipedia

following Hoffart et al. (2011). For each entity e, we consider its corresponding

Wikipedia page Wiki(e). We take as surface forms of e the text of all links to Wiki(e)

in Wikipedia. To assign a prior weight for this specific surface form p mapping to e,

we compute the fraction of times that p was linked to Wiki(e) in Wikipedia.

It is important to note that we experimented with using third-party named entity

recognizers for this task. However the results were not satisfactory as these recognizers

are geared towards a very narrow class of entities (persons, locations, and organiza-

tions), and are unable to handle others that are important for our task such as movies,

songs, and bands, resulting in very low recall (see Mendes et al. (2012)). In our setting,

missing an entity mention can be detrimental to correctly interpreting the question at

hand.

We run a dictionary-based chunker over the question using the weighted dictionary

described above. Here, we restrict ourselves to phrases that are a contiguous sequence

of tokens (see Definition 3.3). For each detected surface form, we produce the corre-

sponding set of entities along with the prior weight for this mapping.
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Classes

In the knowledge graph we consider, the type system is that of Yago, where classes

are a combination of WordNet noun synsets (Fellbaum, 1998) and Wikipedia categories.

The prior weight for this mapping is obtained form a corpus where words are annotated

with their WordNet synsets. For classes corresponding to WordNet synsets, we con-

struct a dictionary of surface forms by taking all words in a synset as surface forms for

the corresponding class. For Wikipedia categories such as RepublicanUnitedStates-

VicePresidents, we use the category’s name (e.g., ‘Republican United States Vice

Presidents’) as its surface form. For the latter, the prior weight is set to 1.0.

Similar to entities, we use a dictionary-based chunker with the above dictionary for

finding potential mentions of classes in a question.

Predicates

Compared to how entities and classes are detected above, detecting phrases poten-

tially corresponding to predicates is more involved due to the wide variety in which

predicates can be expressed in text. Here, we rely on a combination of the part-of-

speech tag patterns used by Fader et al. (2011) in ReVerb and our own set of manually

defined dependency parse patterns. The latter set of patterns is shown in Table 3.1,

where we use the Semgrex syntax (Chambers et al., 2007). Moreover, we rely on a

manually-compiled dictionary of common noun phrases mapped to predicates.

To map the phrases detected above to KG predicates, we rely on approximate match-

ing against a dictionary of phrases to predicates compiled using PATTY (Nakashole

et al., 2012). To support approximate matching we index the dictionary using Lucene,

where we apply lemmatization to dictionary phrases. When a candidate predicate men-

tion is detected, we query the index first with the lemmatized version of the phrase. If

no match is found, we additionally perform stop-word removal and repeat the query.

We also define a set of patterns for latent predicate phrases, which potentially corre-

spond to predicates that occur without an explicit mention. Formally, a latent phrase

is a phrase composed of zero tokens induced by an explicit phrase, called the generat-

ing phrase. In our setting, latent predicate phrases are generated for demonyms and

adjectives referring to locations. For example, the phrase ‘American’ in the question

“American actors” would induce a latent predicate phrase with ‘American’ being its

generating phrase. Latent predicate phrases are mapped to a special relation called ANY

which in the final query appears as a variable, allowing us to map the above question

to the query ?x ?r UnitedStates.

3.3.2. Phrase Dependencies

With phrases identified and the semantic items they could potentially map to enu-

merated, we move to the problem of finding the dependencies among the phrases. We
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Name Pattern

POSS ({pos:/N.*/}=pred ?>nn {pos:/N.*/}=nnmod ?>amod {pos:/JJ/}=adjmod)
>poss {pos:/N.*/}=obj

NOUN {pos:/N.*/}=pred >prep ({pos:/IN|TO/}=prep >pobj {}=obj)
VERB {pos:/V.*/}=pred ?>/aux.*/ {pos:/VB.*/}=aux ?>prep

{pos:/IN|TO/}=prep >/nsubj.*|dep|advmod/ {}=subj
[>/dobj|dep|advmod/ {}=obj | >/prep/ ({} >/pobj/ {}=obj)]

Table 3.1.: Dependency patterns for detecting predicate chunking and argument

detection.

define a phrase dependency as follows:

Definition 3.5 (Phrase Dependency). Given an utterance u, a phrase dependency

is an assignment of a triple of phrases in u to the roles pred, subj and obj, denoted

dp = ppred(psubj , pobj).

A phrase dependency is a grouping of phrases into a proposition, more specifically,

an interrogative proposition. A phrase dependency within a disambiguation graph

allows us to read one or more semantic dependencies:

Definition 3.6 (Semantic Dependency). Given an utterance u and a phrase depen-

dency dp = ppred(psubj , pobj) in the corresponding disambiguation graph G with the

mappings ppred 7→ spred, psubj 7→ ssubj , and pobj 7→ sobj , a semantic dependency is an

assignment of the three semantic items spred, ssubj , and sobj into the roles pred, subj

and obj, denoted ds = ppred(psubj , pobj).

Once the different phrases are mapped to their intended semantic items, phrase

dependencies give us the intended semantic dependencies from which we can form

triple patterns to query the KG. An example of a phrase dependency in Figure 3.3 is

‘was born in’(‘a writer ’,‘Rome’), with one corresponding semantic dependency being

bornIn(writer,Rome) — this happens to be the intended semantic dependency.

To form phrase dependencies, we start by finding triploids. A triploid is a triple of

tokens assigned the roles pred, subj, and obj, denoted tpred(tsubj , tobj).

Since DEANNA is designed to deal with potentially complex questions that translate

into multiple triple patterns joined with each other, it is important that we are able

to capture long range dependencies in the question. For this reason, we resort to

using the dependency parse of a question (Marneffe et al., 2006) for finding triploids.

The dependency patterns in Table 3.1, which allow us to detect potential relation

phrases, also allow us to capture the core token in these relations using the named

token pred and the arguments of these relations using the named tokens subj and obj.

These tokens are usually, though not necessarily, the lexical heads of the corresponding

phrases in a phrase dependency. We form a triploid from each such token.
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We form a phrase dependency by overlaying the tokens of a triploid obtained from

the above patterns with the detected phrases (Section 3.3.1). In doing so, we ensure

that each component of a phrase dependency pattern maps to one or more phrases

found using the appropriate chunker. Namely, phrases in the pred component must

originate from a predicate chunker, while those in the subj and obj roles must originate

from one of the entity or class chunkers. The phrase dependency above is obtained

from the triploid ‘born’(‘writer ’,‘Rome’).

3.3.3. Semantic Item Coherence

The disambiguation graph also includes coherence edges connecting pairs of semantic

items that can potentially contribute to the same triple pattern (i.e., connected to

a common dependency node). Semantic coherence Cohsem(s1, s2) captures to what

extent two semantic items s1 and s2 occur in the same context.

In our disambiguation framework coherence acts to counter the influence of the prior

by allowing the disambiguation context to be taken into consideration. For instance, a

prior would favor the Moroccan city Casablanca over the movie Casablanca(movie)

for the phrase ‘Casablanca’. However, a mapping of another phrase in the context to

the predicate actedIn would be an indicator that the movie is the intended semantic

item for the phrase ‘Casablanca’.

To compute the coherence between semantic items we characterize a semantic item

by the set of entities that are connected to it. In essence, the larger the intersection of

the two such sets for a pair of semantic items, the higher their coherence. We formalize

this using the notion of inlinks. Since we operate with DBpedia and Yago, whose

entities are grounded in Wikipedia, for an entity e with its corresponding Wikipedia

page Wiki(e):

inlinks(e) = {e′ |Wiki(e′) links to Wiki(e)}.

We extend this to classes and predicates as follows. For a class c,

inlinks(c) =
⋃

e|c(e)∈KG

inlinks(e).

For a predicates pred, we define:

inlinks(pred) =
⋃

(e1,e2)|pred(e1,e2)∈KG

inlinks(e1) ∩ inlinks(e2).

The intuition behind the latter is that if the two arguments of a relation occur, then

the relation is being expressed in the context of the links.

We define the semantic coherence between two semantic items s1 and s2 to be the

Jaccard coefficient of their sets of inlinks:

Cohsem(s1, s2) =
|inlinks(s1) ∩ inlinks(s2)|
|inlinks(s1) ∪ inlinks(s2)|

.
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3.4. Optimization Model for Joint Question

Disambiguation

The disambiguation graph constructed in the previous section encodes the various ways

a question can be interpreted with respect to the underlying KG. We call a subgraph

of this disambiguation graph an interpretation of the corresponding question. Some

interpretations might be more likely than others, while other interpretations might be

completely nonsensical. In this section we present our framework for disambiguating

the question with respect to the KG.

Disambiguating a question in our setting means finding the correct segmentation of

the question into phrases (i.e., selecting the correct phrase nodes in the disambigua-

tion graph), mapping these phrases to the correct semantic items, and grouping the

semantic items appropriately to form triple patterns resulting in a query that captures

the question. As the solution to each of these problems can inform the solution of

the others, we jointly resolve these ambiguities in the spirit of such works as Hoffart

et al. (2011) for joint entity disambiguation and Weissenborn et al. (2015) for joint

named entity and noun word sense disambiguation. The crucial difference to the latter

work is that our setting additionally requires the disambiguation of predicate mentions

and the semantic structure of the question. To this end, we devise an Integer Linear

Program (ILP).

The intuition behind the ILP can informally be described as: find (i) the most likely

interpretation of the question with respect to the knowledge graph that (ii) makes

sense. The first part is captured by the objective function of the ILP, while the second

is captured by its constraints.

In light of the disambiguation framework presented above, with DS being the set

of semantic dependencies in G(u,KG), the output of the ILP is (i) a selected subset

of phrases V ∗P ⊆ VP , (ii) a functional mapping of selected phrases to semantic items

V ∗P → VS , and (iii) a set of semantic dependencies D∗S ⊆ DS . Collectively, these three

define an interpretation. We start by introducing the notation needed for the ILP.

3.4.1. ILP Notation

Ours is a binary (0/1) linear program, where variables can take on the values 0 or

1. We deal with two types of symbols: variables, whose values are determined by the

solution of the ILP, and constants, which are provided to the ILP and serve the role

of indicators of membership in a particular set.

We first introduce our variables whose assignment defines an interpretation:

• Xi indicates whether phrase pi is in an interpretation,

Xi = 1↔ pi is selected, i.e., pi is part of the interpretation of the question.
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• Yij indicates whether phrase pi maps to the semantic item sj in an interpretation,

Yij = 1↔ (pi 7→ sj).

• Zk indicates whether sk ∈ S appears in the image of the chosen mapping in an

interpretation,

Zk = 1↔ sk appears the image of V ∗P → VS .

• Zk,l indicates whether the coherence of sk and sl contributes to the objective

function, which is the case iff both sk and sl are chosen in an interpretation

(i.e., Zk = Zl = 1), as detailed in the constraints below.

• Qmnd indicates whether the phrase pn is chosen as part of the phrase dependency

dm ∈ Dp for the role d ∈ {predicate, subject, object} in an interpretation.

• Tt indicates for semantic dependency spredt(ssubjt , sobjt) whether all three com-

ponents are chosen in an interpretation, i.e., Zpredt = Zsubjt = Zobjt = 1, and the

corresponding SPARQL triple pattern has a non-empty result in the underlying

data.

The result of the ILP is a 0/1 assignment of the X,Y, Z,Q, and T variables, from

which a mapping V ∗P → VS and a set of semantic dependencies D∗S can be induced.

The Q and T variables couple the choice of phrases and their mapping to semantic

items with the dependencies among phrases and semantic items. This ensures that the

output consists of meaningful triple patterns, rather than mapping individual phrases

to semantic items independently. Moreover, T variables also encode whether a semantic

dependency in the output actually produces answers over the underlying knowledge

graph when the corresponding triple pattern (on its own) is executed on the data. The

objective function below rewards decisions leading to non-empty answers.

We also need the following 0/1 constants (indicators) for our ILP, whose values are

given to the ILP:

• Cj indicates whether the semantic item sj is a class.

• Ej indicates whether the semantic item sj is a entity.

• Rj indicates whether the semantic item sj is a predicate.

• trc indicates whether the predicate sr and the concept (an entity or a class) sc
are type compatible.

In the above, ∀sj ∈ S : Cj +Ej +Rj = 1, i.e., a semantic target is either a class, an

entity, or a predicate.

Finally, we define the notation needed for sets of phrases. P(t) is the set of phrases

containing the token (word) t. The set of latent phrases is Plat, and each latent

phrase plat ∈ Plat is generated by a phrase p = gen(plat). For example, in the ques-

tion “...Australian organization”, a latent relation phrase plat1 is generated from the
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‘Australian’ as described in Section 3.3.1 with the purpose of capturing the relation

between Australia and organization in the final query. In this case, gen(plat1) =

‘Australian’.

3.4.2. Objective Function

The objective of the ILP is to maximize the following function:

α
∑
i,j

s(i, j)Yi,j + β
∑
k,l

r(k, l)Zk,l + γ
∑
m,n,d

Qm,n,d + δ
∑
t

Tt

The first term of the objective looks for maximizing the weight of the phrase to

semantic item mappings. The second term seeks to maximize the coherence between

the chosen semantic items. The third term forces the ILP to generate phrase depen-

dencies whenever possible, given the constraints. Finally, the last term gives a way of

preferring triple patterns that have non-empty answers.

The intuition of the objective is that it seeks an interpretation of the question that

balances the prior mapping scores and the coherence among chosen semantic items

while preferring non-empty interpretations whenever possible. The constraints, pre-

sented below, make sure that the final solution of the ILP results in a meaningful

disambiguation from which a meaningful executable triple pattern query can be gen-

erated.

3.4.3. Constraints

Our constraints seek to prevent any nonsensical interpretations. Some of these con-

straints come from linguistic knowledge, others utilize the semantic knowledge in the

underlying KG, while others serve to prefer interpretation with non-empty answers,

all else being equal. We introduce the constraints used by DEANNA in what follows

using the notation above, and explain the intuition behind each constraint.

1. A phrase maps to one semantic item at most:

∀i :
∑
j

Yi,j < 1.

We disallow a phrase to map to more than one semantic item. There is an

exception to this constraint, which we overcome by using latent phrases presented

in Section 3.3.1 above.

2. If a mapping pi 7→ sj is chosen, then the target node must also be chosen:

∀j : Yi,j ≤ Xi.



3.4. OPTIMIZATION MODEL FOR JOINT QUESTION
DISAMBIGUATION 45

3. If a mapping pi 7→ sj is chosen, then no phrase that overlaps with pi can be

chosen:

∀t ∈ u,
∑

i∈P(t)

Xi ≤ 1

4. Zk,l is 1 iff both Zk and Zl are both 1:

∀Zk,l : Zk,l + 1 = Zk + Zl.

This constraint is used to decide which Zk,l variables affect the objective function.

By having this constraint, we allow the coherence of a pair of semantic items to

affect the objective function only if they are chosen in the final interpretation.

5. A phrase pk and a semantic item sl are chosen iff Yk,l is 1:

∀Yk,l : Yk,l + 1 = Xk + Zl.

6. Each phrase dependency can contribute to each role at most once:

∀m, d :
∑

Qm,n,d

Qm,n,d ≤ 1.

This constraint ensures that if a phrase dependency has multiple phrases as can-

didates for a role (subject, predicate, or object), at most one of these can be

chosen. The need for this constraint comes from the manner in which phrase

dependencies are generated using dependency parse patterns between individ-

ual tokens. These tokens are subsequently aligned with the detected phrase,

resulting in multiple phrases being candidates for the same role.

7. For Qm,n,d to be selected, the corresponding pn must be selected:

∀m, d : Qm,n,d ≤ Xn.

This constraint ensures that roles are chosen in a meaningful manner. By link-

ing Q and X variables, this constraint also links Q and Y variables through

constrains #2.

8. Each chosen phrase dependency (encoded in the Q variable) must include a

relation phrase:

∀m,n, r, d = rel : Rr ≥ Qm,n,d +Xn + Ynr − 2.

9. Each semantic triple should have at least one class:

∀m,n1, n2, r, c1, c2, d1 = arg1, d2 = arg2 :

Cc1 + Cc2 ≥ Qm,n1,d1 +Xn1 + Yn1c1+

Qm,n2,d2 +Xn2 + Yn2c2 − 5.
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This constraint is applied only to questions that expect a tuple of entities as a

result. It is necessary since a semantic dependency in an interpretation needs

to generate variables that allow for (i) joins, or (ii) projection of entities. All

variables in our setting come from type mentions in the question. In our running

example, the semantic dependency writer bornIn Rome will generate the triple

patterns ?y type writer and ?y bornIn Rome. This constraint is not applied

to yes/no questions such as “Was John F. Kennedy assassinated in Dallas?”.

10. If any two Q variables have a token as part of two different mentions, then at

most one of these two Q variables can be chosen:

∀n, n′, d, d′,m 6= m′, t ∈ pn, t ∈ pn′ , pn 6= pn′ : Qm,n,d +Qm′,n′,d′ ≤ 1

This constraint is most relevant when two dependency parse patterns for gen-

erating phrase dependencies place a token in two different roles such as subject

and predicate, possibly within two different phrases.

11. Each predicate in a chosen semantic dependency (encoded in the values of the

Q and Y variables) must have a type signature compatible with the types of its

left and right arguments (classes or entities) in the semantic dependency:

∀m,n1, n2, n3, r, c1, c2, d1 = pred, d2 = subj, d3 = obj :

trc1 + trc2 ≥ Qm,n1,d1 +Xn1+Yn1r+

Qm,n2,d2 +Xn2+Yn2c1+

Qm,n3,d3 +Xn3+Yn3c2 − 7.

12. A latent phrase pl (see Section 3.3.2) can be selected only if the generating phrase

p is also selected:

∀pl ∈ Plat, p = gen(pl) : Xl ≤ Xr.

13. If a T variable is 1 then all X,Y, Z and Q variables in the semantic dependency

it encodes are chosen:

∀t,Xi s.t. pi 7→ sj and sj part of Tt : Tt ≤ Xi

∀t, Zk s.t. sk part of Tt : Tt ≤ Zk

∀t, Yi,j s.t. pi 7→ sj and sj part of Tt : Tt ≤ Yi,j
∀t, i, d s.t. pi 7→ sjd and sjd part of Tt in role d : Tt ≤ Qt,i,d

14. T variables corresponding to triple patterns with no matches in the data are set

to 0:

∀spredt(ssubjt , sobjt) /∈ KG : Tt = 0.
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Semantic dependencies can be encoded using Q and Y variables, but we resort

to the above way of expressing them for readability. This constraint biases the

ILP to prefer semantic dependencies with matches in the KG, without forbidding

those that do not, by having T variables show in the objective.

3.5. Query Generation

We obtain a subgraph of the disambiguation graph (an interpretation as per Defini-

tion 3.2) from the 0/1 assignments of the ILP variables. Each of the X,Y, Z, and Q

variables assigned to 1 results in the corresponding node or edge being in the resulting

interpretation, while all those assigned 0 are not. Figure 3.4(a) shows the result of

a correct disambiguation of the question whose disambiguation graph was shown in

Figure 3.3. Opaque nodes and edges are part of the interpretation, while all others are

not.

The triple pattern query will naturally fall out from an interpretation generated by

our ILP. Each semantic dependency results in one, two, or three triple patterns:

• Each class in a semantic dependency in the resulting interpretation will induce

a triple pattern expressing a type constraint on a variable. During this process,

we take care that each class originating from a distinct phrase in the question is

mapped to a distinct variable. For example, the question “Who is married to a

person born in Honolulu?” should result in two type-constrained variables, ?x

type person and ?y type person from the distinct phrases ‘Who’ and ‘person’.

In this manner, we are able to obtain the correct joins between triple patterns.

• Each semantic dependency in the resulting interpretation will produce a triple

pattern where were a non-ontological predicate (i.e., a predicate other than type

and isA) has as its arguments zero, one or two variables. For an existential

question with no joins such as “Is Barack Obama married to Michelle Obama?”

both arguments of the relation are entities. For the example question “Who is

married to a person born in Honolulu?”, two triple patterns with non-ontological

predicates are generated: ?x spouse ?y and ?y bornIn Honolulu.

Figure 3.4(b) shows the triple patterns corresponding to the interpretation in Figure

3.4(a).

What remains afterwards is to select the correct projection variables if the question

is not an existential one. In our concrete implementation, we work with questions

which have a single target (i.e., a single projection variable). Additionally, we allow

users to view the bindings of all variables in the generated query whenever they ask

for an explanation of an answer (i.e., an answer tuple).

We use a set of heuristics to find the head word of the phrase corresponding to the

answer type, and thereby the semantic answer type:
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1. if a question word like ‘who’, ‘where’, or ‘which’ with a modifier is present, it

determines the answer type e (i.e., person, location, etc., or the type of the

modifier),

2. without such words, the head noun of the question’s subject determines the

answer type unless this is determined by the disambiguation model to be part

of an entity phrase, in which case,

3. the first common noun occurring in the sentence that maps to a class determines

the answer type.

In our running example, this is the variable ?x, which was induced by the phrase

‘Who’, resulting in the following query:

SELECT ?x WHERE {
?x type person .

?x actedIn Casablanca(movie) .

?x spouse ?y .

?y type writer .

?y bornIn Rome }

We also allow users interested in explanations of answers to view the complete

variable bindings by projecting all variables that appear in the body of the query.

3.6. Query Extension and Relaxation

In the previous section we saw how we can obtain a structured triple pattern query

from a given question. This query, however, might fail to fully capture the question,

and even if it does, it might not return any answers either due to incompleteness in

the KG, or due to mistranslation of one or more parts of the question.

To overcome these issues we resort to extending triples in our knowledge graph and

triple patterns in the query with a textual (X) component following Elbassuoni et al.

(2009), resulting in SPOX queries. We start by presenting the SPOX query model,

and then discuss how we utilize it in our setting.

3.6.1. SPOX Query Model

The SPOX model builds on the triples model introduced in Chapter 2, which we adopt

for knowledge graphs. Here, each fact in the KG is extended with a textual context.

Formally:

Definition 3.7 (SPOX Knowledge Graph or Keyword-Augmented Knowledge Graph).

A SPOX knowledge graph (SPOX–KG) is a knowledge graph where each triple is
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dp1

dp3

played in

played

Casablanca

a writer

was born in

born

Rome Rome

Sydne_Rome

Born(movie)

Max_Born

bornOnDate

writer

WhiteHouse

Casablanca

Casablanca(movie)

Played(movie)

actedIn

hasMusicalRole

bornIn

dp2

was married to

married to

married

Who
person

married_person

Married(series)

spouse

(a)

1. ?x type person .

2. ?x actedIn Casablanca(movie) .

3. ?x spouse ?y .

4.?y type writer .

5. ?y bornIn Rome

(b)

Figure 3.4.: The result of applying disambiguation to the disambiguation graph

in Figure 3.3 in (a) graphical, and (b) triple pattern query forms.

Semantic coherence edges between semantic items and weights of

prior edges are not shown.
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Subject Predicate Object X

AmyWinehouse type singer ‘troubled, deep vocals,

alcohol poisoning,...’

AmyWinehouse won GrammyAward ‘guiness record, ... ’

AmyWinehouse bornIn London ‘chase farm hospital,

jewish parents,...’

Figure 3.5.: An example SPOX–KG.

augmented with a textual document w, resulting in a set of quads of the form t =

(s, p, o,w).

The textual extension of a triple is intended to represent the context in which this

fact was mentioned. Fact spotting in text is not an easy problem (Tylenda et al.,

2014), so we resort to constructing this document based on keywords associated with

the subject and object entities of a fact as we detail below. In this work we view w as

a bag of words and reflect this in our scoring functions. Figure 3.5 shows an example

SPOX–KG, with each fact having a textual extension from the context it was found

in.

A SPOX–KG can be queried by means of a SPOX query:

Definition 3.8 (SPOX Query (Keyword-Augmented Query)). A SPOX Query Q =

{q1, ..., qn} is a set of keyword-augmented triple patterns of the form qi = (sqi , pqi , oqi ,wqi)

where wqi is a bag of words.

For the SPOX–KG of figure 3.5, the SPOX triple pattern ?x won GrammyAward

{‘guiness record ’} can be used to ask for people who won a Grammy award result-

ing in them entering the Guinness Book of Records.

Definition 3.9 (SPOX Query answer). Given a SPOX knowledge graph and a SPOX

query Q = {q1, ..., qn}, an answer of the query over the SPOX knowledge graph θ is

and answer of the corresponding triple pattern query over the corresponding knowledge

graph as per Definition 4.2.

The above definition of an answer operates on the structured parts of the query

and the SPOX–KG. Importantly, it does not take into consideration the keywords

augmented to both the query and the KG. The role of the keywords is to rank the

answers produced. The text augmenting a triple pattern query can be seen as a

keyword query issued over the text of the corresponding triple in the SPOX–KG.

We use a query likelihood approach to rank the answers matching a query, and

follow an approach inspired by Elbassuoni et al. (2009, 2011). We also factor in the
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salience of the entities in the answer as well as textual relevance for a general model.

We define the probability of generating the query Q from an answer θ as:

P (Q|θ) =
n∏

i=1

p(qi|θ(qi)),

thus assuming that triple patterns are generated independently. The probability of

generating the triple pattern qi = (sqi , pqi , oqi) from the corresponding triple ti =

(sti , pti , oti) in the answer is defined as

P (qi|θ(qi)) = P (qi|ti) = P (sqi , pqi , oqi |sti , pti , oti)× P (wqi |wti).

Here we assume, for tractability, that the structured and textual components are gen-

erated independently.

For the generation of the structured part, we define

P (sqi , pqi , oqi |sti , pti , oti) = (1− β)P (sti) + βP (oti).

The probabilities P (sti) and P (oti) reflect the salience of the subject and object. The

parameter β ∈ [0, 1] is set according to whether sqi and/or oqi are variables in the

triple pattern.

We use a unigram bag-of-words language model for the generation of the textual

part and define

P (wqi |wti) =
∏

w∈wqi

P (w|wti)

as the probability of generating the bag of keywords associated with the SPOX triple

pattern qi from its counterpart in the keyword-augmented triple ti.

In our implementation we estimate P (sti) and P (oti) using Wikipedia’s link struc-

ture, based on the number of incoming links to sti and oti . The bag of keywords wti in

the keyword-augmented triple ti is a concatenation of the documents associated with

its subject and object entities. We associate with each KG entity a textual document

that consists of its Wikipedia page (including infoboxes and categories) as well as the

text of all links pointing to its Wikipedia page. All probabilities are smoothed by

considering the global dataset statistics.

The final answer shown consists of a ranked list of bindings of projection variables

with duplicates filtered out (we only report the highest ranked binding in case of

duplicates). Intuitively, for a (relaxed) query with keyword-augmented triple patterns,

our model returns results that match the (relaxed) structured part of the query ranked

in a manner that favors results with relevant keywords and salient entities.

We next show how the SPOX model is utilized in DEANNA for the purpose of query

extension and relaxation.
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3.6.2. Text Extension

The first use of the SPOX model in DEANNA is to account for tokens in the question

that could not be captured by the structured query. Such words can be meaningful

towards finding the correct answer. These might not have been placed in the correct

structure either due to a shortcoming in the ILP framework, or because the KG does

not contain the information necessary to formulate that part of the question in an SPO

triple pattern. It is also possible in our framework to generate triple patterns that are

not connected to the output variable(s) (the SELECT clause) of the final query via a

join. To avoid computing Cartesian products and hard-to-interpret results, such triple

patterns are discarded leading to “left over” phrases.

In the cases above, the words are attached as keywords to the triple pattern express-

ing a type constraint on a variable. The triple pattern to which they are attached is

determined from the dependency parse of the question, where we attach a keyword to

the type closest to the phrase that induced a type constraint. For example, given the

question “Which troubled singers won a Grammy?”, the notion of ‘troubled ’ cannot be

captured by the KG , hence, the following SPOX query would be generated:

?x type singer {‘troubled ’} .

?x won GrammyAward

This results in someone like AmyWinehouse being ranked above JohnLegend.

3.6.3. Empty Result Relaxation

Text extension, as presented above, entails creating SPOX queries before there is an

attempt to evaluate the query based on the “left over” words. Empty-result relaxation,

on the other hand, is interleaved with query evaluation and its goal is to remedy the

issue of queries with an empty answer set.

An SPO condition with no matches in the knowledge graph can indicate either a

disambiguation error or an overly specific query that lacks coverage in the underlying

knowledge graph due to poorly populated classes or relations. While our ILP gives

preference to generating triple patterns with non-empty answers in the underlying

KG, triple patterns with empty answers are still possible. It is also possible that every

single SPO condition produces answers, which is what the ILP considers, but their

conjunction yields and empty result.

We compute this form of relaxation is two steps:

1. Initially, each triple pattern is evaluated independently against the knowledge

graph, and we check whether the set of matching triples is empty. If this is

the case, we map this triple pattern back to its surface form in the question

and append the resulting keywords to the triple pattern(s) expressing the type
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constraint of the variables in the unmatched triple pattern (since all of our types

are populated, the type-restriction on its own is always matched in the KG).

2. In the second step, we perform relaxation iteratively. We start with the triple

pattern encoding the answer type: ?x type <class>. We then iteratively add

triple patterns that have a join variable (initially ?x) in common with the pre-

viously added triple patterns. We check if the resulting query has an empty

result. If this is the case, the last triple pattern added is removed. This pro-

cedure continues until all triple patterns have been exhausted. Triple patterns

removed in this procedure are mapped back to their surface form in the question

and are added as keywords to the type constraints on the variables they contain,

or the type constraint of the projection variable if these have been removed by

relaxation.

For example, for a question asking for “Publishers of books software written in Clo-

jure” might be translated to the query:

?x type person . ?y author ?x .

?y type OpenSourceProgram . ?y programmingLanguage Clojure

If, however, we do not have information about software written in Clojure in our KG,

the SPOX query

?x type person . ?y author ?x .

?y type OpenSourceProgram ‘Clojure ’

can return relevant answers.

Extreme Relaxation: The final technique we consider is to cast the entire question

into a text condition with an additional type filter on the result. The latter is derived

from the answer-type heuristics (Section 3.5). The iterative procedure described above

for empty-result relaxation degrades into extreme relaxation if none of the queries

considered produces answers. Extreme relaxation is also used when the ILP does not

produce any SPO triple patterns at all. Extremely relaxed queries can still be highly

beneficial, most notably when the query expresses a complex class in the knowledge

graph. For example, a question asking for “American rock bands that...” can be

answered by

?x type AmericanRockMusicBands {‘... ’}.

3.7. Experimental Evaluation

3.7.1. Benchmark

As our main test case, we adopt the QALD-2 benchmark (QALD-2, 2012), which

consists of 200 natural language questions of two flavors: factoid and list questions,
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with one half designated as training and the other half designated as test questions.

We discard questions that require counting or ask for literals rather than entities

as answers, resulting in 18 factoid questions that are supposed to return exactly one

correct answer and 30 list questions that are supposed to return proper sets of answers.

Examples are “What is the capital of Canada” for the former, and “people who were

born in Vienna and died in Berlin” for the latter. The QALD-2 questions we use in our

experiments are listed in Table A.1. QALD-2 comes with manually compiled golden

standard queries. In the case of factoid questions we take these as our ground truth.

In the case of list questions, this is what we refer to as the QALD ground truth. Some

of the methods returned additional answers that are correct, but not included in the

QALD-2 ground truth. We manually assessed the correctness of these extra answers,

establishing an extended ground truth.

In addition, we experimented with the 48 telegraphic queries used by Pound et al.

(2012). 19 of these are not real questions, but are merely entity lookups and were

therefore discarded. They essentially give an entity surface form and ask for the right

entity. The queries we use from the benchmark of Pound et al. (2012) are all listed in

Table A.2.

3.7.2. Data

The QALD-2 benchmark was designed for DBpedia 3.7, which we combine with Yago2

(Hoffart et al., 2013) to form our knowledge graph. DBpedia provides relations between

entities, while Yago provides the type system (an ontology). Yago and DBpedia entities

both come from Wikipedia, a fact that we exploit to merge the two KGs into one. As

explained in Section 3.6, we use the Wikipedia pages of entities to construct the textual

components of triples. We use PostgreSQL for storing KG triples and Lucene for

indexing text, with proper linkage across the two. DBpedia contributes more than 400

million facts to our combined KG, with Yago adding another 300K from its ontology.

The combined knowledge graph contains a total of 2.6M entities.

3.7.3. Performance Measures

All the systems in our primary effectiveness evaluation return a ranked list of answers

A = (a1, ..., an), where a1 is the highest-ranked answer. Let rel(ai, u) be the relevance

indicator function which returns 1 if ai is relevant to question u and 0 otherwise. For

factoid questions with a single correct answer we use the established notion of mean

reciprocal rank (MRR) as our main measure of quality (Büttcher et al., 2010), where

the reciprocal rank (RR) is defined as follows:

RR(u,A) =

|A|∑
i=1

rel(ai, u)

i
.
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Additionally, we report on precision at a rank cut-off of 10, where precision at a specific

cut-off rank k is computed as follows:

Precision(u,A, k) =
1

k

min(|A|,k)∑
i=1

rel(ai, u).

For list questions we mainly report on the normalized discounted cumulative gain

(NDCG) as a measure combining both precision and recall with geometrically decreas-

ing weights of ranks (Järvelin and Kekäläinen, 2002). For a question u, its correspond-

ing answer list A, and a rank cut-off of k, NDCG is computed as follows:

NDCG(u,A, k) = Zk

k∑
i=1

2rel(ai,u) − 1

log2(i+ 1)
,

where Zk is a normalization factor corresponding to the ideal answer list A∗ (up to

the k ranked answer) such that NDCG(u,A∗, k) = 1. Additionally, we give numbers

for precision at different cut-off ranks.

QALD adopts set-based measures, whereas our system performs ranked retrieval

to compensate for relaxation. To allow for a comparison with other systems that

participated in QALD-2, we compare the results of these systems with ours at various

cut-off thresholds k. We computed the recall with respect to the size of the ground

truth result set, regardless of k. This generally results in penalizing our system as, for

example, at most 10 relevant results can be returned for k = 10, regardless of the total

number of relevant results out there. We define recall at a specific cut-off rank k as

follows:

Recall(u,A, k) =
1

|golden(u)|

min(|A|,k)∑
i=1

rel(ai, u),

where golden(u) is the set of ground truth answers for u.

We use the F1 score to combine the precision and recall into a single score, their

harmonic mean:

F1(u,A, k) = 2× Precision(u,A, k)×Recall(u,A, k)

Precision(u,A, k) +Recall(u,A, k)
.

3.7.4. Methods under Comparison

We compare the performance of three configurations of our system in addition to a

natural baseline with a strong IR flavor.

• SPOX+Relax: This is our full-fledged method with text extension, relaxation,

and ranking based on statistical language modeling, as detailed in Section 3.6.

The results obtained here are for the end-to-end task of question answering,

where we combine our joint disambiguation and query extension and relaxation

frameworks.
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• SPO: This is our main baseline, which involves the generation and execution

of purely structured queries with no extension or relaxation. While keeping in

mind that our end-goal is to perform question answering, this baseline serves

as a measure of the quality of our ILP disambiguation framework presented in

Section 3.4 (the semantic parsing component).

• SPO+Relax: In the second baseline we restrict our framework to generate

structured SPO queries, without the textual X component in SPOX+Relax

above. In this case, the relaxation techniques can still choose to partially cover

the question to avoid being overly specific, but this baseline does not include

any keyword conditions. In both SPO and SPO+Relax, our ranking approach

will rely on salience as there are no keywords. Including this baseline helps us

see the effect of adding keyword-based scoring in SPOX+Relax.

• Type+KW: This is the simplest system we consider in this experiment. Here,

we cast the question into a keyword search returning entities and combine this

with a filter on the semantic type of the answer entity. This corresponds to

enforcing extreme relaxation in our framework where a generated query has

the form ?x type <class> {‘w1 w2 ... ’}. To obtain a stronger baseline, we

manually specified the semantic type of the answer entity. For this special case,

we rank answers based on Lucene’s tf-idf score of the keyword query, which gave

better results in this setting, with very minimal structure.

We tuned the parameters of the ILP and the SPOX scoring scheme using the QALD-

2 training set.

3.7.5. Results

Tables 3.2 and 3.3 show the results over the QALD-2 list and factoid questions, re-

spectively. The results show that our basic method, SPO, which reflects the result of

the joint disambiguation performed by our ILP-based framework detailed in Section

3.4 considerably outperforms the pure IR baseline KW+type.

However, SPO sometimes misses some search conditions from the input question

or generates overly specific queries. In other cases, the disambiguation process will

contain errors resulting in empty results. This is the justification for moving towards

the extension and relaxation framework of Section 3.6. SPO+Relax does not improve

on SPO, demonstrating the importance of considering the keywords corresponding to

the unmapped part of the question or the relaxed part of the generated query in the

ranking of answers. SPOX+Relax gives the best results in our setting as it evaluates

the structured query while still taking into consideration the parts of the question that

could not be mapped.

As an example, take a the list question asking for “Swedish professional skateboard-

ers”. We initially map it to the SPO query
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NDCG Precision

@10 @100 @10 @100

QALD ground truth

SPOX+Relax 0.51 0.53 0.49 0.46

SPO+Relax 0.41 0.43 0.46 0.44

SPO 0.41 0.42 0.46 0.44

KW+Type 0.24 0.29 0.15 0.10

Extended ground truth

SPOX+Relax 0.60 0.54 0.60 0.48

SPO+Relax 0.42 0.42 0.49 0.46

SPO 0.42 0.41 0.49 0.45

KW+Type 0.30 0.41 0.23 0.13

Table 3.2.: Results for QALD-2 list questions.

MRR Precision@10

SPOX+Relax 0.72 0.55

SPO+Relax 0.54 0.50

SPO 0.53 0.50

KW+Type 0.15 0.02

Table 3.3.: Results for QALD-2 factoid questions.

SELECT ?x WHERE {
?x type Skateboarder .

?x type professional .

?x ?r1 Sweden

}
Although the query captures the question properly, it returns no results as the class

professional is sparsely populated. Relaxation results in the SPOX query

SELECT ?x WHERE {
?x type Skateboarder {‘professional ’} .

?x ?r1 Sweden

}
which returns a satisfactory result.

The second part of Table 3.2 shows the result over the extended ground truth, which

was created by pooling the results of all four systems in this experiment. While the

numbers for SPO and SPO+Relax, the two methods with no textual component in

the query, remain practically the same, the numbers for SPOX+Relax and KW+Type
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Precision Recall F1

List

SPOX+Relax @ k = 1 0.50 0.15 0.23

SPOX+Relax @ k = 10 0.49 0.41 0.45

SPOX+Relax @ k = 100 0.46 0.48 0.47

SPOX+Relax @ k = 500 0.44 0.58 0.50

SemSek 0.28 0.29 0.29

MHE 0.26 0.36 0.30

QAKis 0.15 0.16 0.15

Factoid

SPOX+Relax @ k = 1 0.68 0.68 0.68

SPOX+Relax @ k = 10 0.61 0.74 0.67

SPOX+Relax @ k = 100 0.58 0.79 0.67

SPOX+Relax @ k = 500 0.55 0.79 0.65

SemSek 0.71 0.78 0.74

MHE 0.52 0.57 0.54

QAKis 0.26 0.26 0.26

Table 3.4.: Comparison with other systems participating in QALD-2 based on

the QALD-2 ground truth.

invariably increase. This result is interesting in that it shows how the combination

of structured and unstructured data yields the best results, mostly for being able to

make up for missing knowledge in the KG, and, to a lesser degree, for compensating

for erroneous disambiguations of a question.

For factoid questions, the general trends are the same. SPO offers significant im-

provement over KW+type. SPO+Relax offers no improvement over SPO alone, but

the SPOX extension with relaxation shows significant improvement over all other con-

figurations.

We also compare our results against the systems participating in QALD-2: Sem-

Sek (Aggarwal, 2012), MHE (Unger et al., 2012b), and QAKis (Cabrio et al., 2012).

Among the three systems, SemSek is the one most similar to DEANNA. SemSek uses

the dependency parse of a question to induce phrases that can map to semantic items

in the KG. To find the dependencies among these phrases, SemSek creates a list of

phrases that starts with the phrase determined to correspond to an entity, and expands

the list by adding connected phrases in the dependency parse of the question. For map-

ping phrases to semantic items, SemSek relies on semantic relatedness captured using

Explicit Semantic Analysis (ESA) (Gabrilovich and Markovitch, 2007) over Wikipedia

(similar to our notion of coherence). MHE first annotates phrases in the question with
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candidate entities or relations they can map to. From those, MHE constructs possi-

ble subgraphs as query interpretations and matches them against the knowledge graph

(Lopez et al., 2013). Finally, QAKis is the simplest of all three systems. It is restricted

to questions with a single entity connected to the answer via exactly one predicate.

QAKis first determines the types of the question and answer entities and then matches

the question against typed relation patterns to retrieve the most likely predicate. It

is important to note that the official QALD-2 evaluation considers “partially right”

answers as good enough.

On list questions, SPOX+Relax clearly outperforms all other systems on all mea-

sures. Questions vary between those that have a couple of relevant answers and those

that have more than a hundred answers. As more relevant answers are viewed, there

is rapid gain in recall for each cut-off threshold with little sacrifice in precision, which

speaks for the ranking approach. For factoid questions, our systems is outperformed by

SemSek, but with a margin smaller than the gains we make in list questions. The main

issue DEANNA faced here is properly disambiguating the answer types. Sometimes,

the prior weights for certain types are so high that the coherence cannot bias the map-

ping towards the correct type. For example, for the question asking “Who developed

Skype?”, we could not return SkypeTechnologies as the prior for ‘Who’ mapping

to the type person was simply too high. Not getting the answer type correctly is

detrimental for DEANNA, as even relaxation would not work in this case.

Finally, for the telegraphic query workload of Pound et al. (2012), SPOX+Relax

again turned out to be the best method in our experiments. For factoid questions we

achieve an MRR of 0.83 and for list questions a precision@10 of 0.73. These numbers

are similar to the ones reported by Pound et al. (2012). We note that the results are

not directly comparable, as that prior work used an old, smaller version of Yago as

the underlying KG and reported the combined numbers of all questions, regardless of

their nature (simple entity lookups, factoid questions, and the generally more difficult

list questions).

Table 3.5 shows the results we obtained for some questions. The first two questions

are from QALD-2, and the third is from the telegraphic query workload of Pound et al.

(2012). For the first two, we show the query generated initially, the relaxed query, the

number of results in each of the two ground truths we consider, and the number of

relevant results in the top 10 answers with respect to each of the two ground truths

(both return more than 10 answers). We also show an example of a correct answer

that was not part of the original QALD-2 ground truth, but was added with the new

ground truth (indicated with a +). Moreover, for each QALD question we give an

example of a correct (3) and incorrect (7) answer returned by SPOX+Relax. We

discussed the first question earlier. The second one results in a SPOX pattern query

that includes a keyword component, as the system could not map the verb ‘dwelt ’ to

an appropriate relation. This query returns satisfactory results to the user. For the

last query, despite the fact that the query generated fully captures the user’s intention,
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no results are returned by DBpedia, hence the need for relaxation. The precision at

rank 10 (again, this query returns more than 10 results) is equal to 1.0, which means

that all returned answers are Grammy-awarded guitarists.

3.8. Discussion

We presented DEANNA, a framework for natural language question answering over

knowledge graphs. DEANNA aims to make the abundance of data in knowledge graphs

available to ordinary users by providing them with an expressive interface to the knowl-

edge graph that shields them from dealing with all its potential complexities.

DEANNA works in two stages. In the first, a user’s question is automatically

mapped to a triple pattern query. Here, the main problem is ambiguity, both structural

and terminological. We formulate the disambiguation problem as an integer linear pro-

gram where an objective function allows us to look for the most likely interpretation

of the question, and a set of constraints make sure that the chosen interpretation is

one that makes sense. In the second stage, unsatisfactory queries are dealt using query

extension and relaxation where facts in the knowledge graph are extended with textual

context, and crisp query conditions can be relaxed to keyword matching against this

context.

While the relaxation and extension framework helps take care of shortcomings in the

disambiguation performed by our ILP framework, it is important to understand the

sources of these shortcomings. We already discussed the issue with the prior weights

for some types being too high, preventing coherence from properly playing its role in

the disambiguation process. This suggests the need for further investigation of the

computation of these weights, and the resources that can be used to this end.

Another important issue is the dictionaries used to both find and map potential

mentions to the corresponding semantic items. While these are comprehensive for

entities and simple types (e.g., actor, director, movie), they contain gaps when it

comes to more sophisticated types such as ScientistsOfItalianOrigin, and predi-

cates. For these sophisticated types, which in our setting come from the Wikipedia

categories, there is very little prior work on finding their paraphrases, a research topic

we are currently pursuing. For relations, we rely on paraphrases extracted from a large

entity-annotated textual corpus following PATTY (Nakashole et al., 2012). There are

two issues here: (i) the coverage of the specific corpus, and (ii) the discrepancy between

how relations are expressed in (declarative) text and (interrogative) questions. As an

example, consider the question “What does Tom Hanks do?”, and the discrepancy be-

tween how the question expresses the job relation, and how it would be expressed in

text (the source of our predicate paraphrases).

DEANNA is an important first step in our effort towards question answering over

knowledge graphs. There are several natural extensions to DEANNA along the fol-
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lowing dimensions: (i) support for more expressive queries, and (ii) support for wider

variety of natural language input. In terms of expressiveness, we want to support such

operations as aggregation, sorting, and functions (particularly temporal and spatial

ones). As for language variety, our dependency parse patterns for capturing the struc-

ture of the question have assumed well-formed questions, relying on relaxation to take

care of issues that could arise from ill-formed questions.

We envision a system that tackles the above problems by automatically mining

question-query templates from large question repositories such as community question

answering (CQA) sites. By using questions coupled with their corresponding queries

(or answer, through which queries can be obtained), we can generate such templates

with the expressiveness needed by users. Since these are based on questions issued by

normal users, we can expect such templates to account for ill-formed language. There

are many issues to tackle towards this goal, making it an interesting research direction.

DEANNA is a domain-general framework. It supports functionality that is not de-

pendent on the particular domain of the underlying knowledge graph as long as it

fits within the KG framework presented in Chapter 2. To allow for flexible domain

specialization, we need to carefully consider the architecture of DEANNA. The core

issue in domain specialization seems to be the handling of domain-specific concepts

and the semantic functions they evoke (e.g., “revenue” in the financial domain). Here,

it seems natural that a framework will have domain-general and domain-specific com-

ponents. The details of how each should be designed, how the two interface, and how

disambiguation happens in this setting are all directions to explore.

The approach we presented has specific components which we instantiate. These

include chunkers for phrase detection, surface form dictionaries, and prior and coher-

ence scoring. Their instantiations in this work mostly make use of the contents and

structure of Wikipedia, because we work with knowledge graphs based on Wikipedia.

An important question is how these components can be instantiated for other knowl-

edge graphs. The general problem is that we need a resource annotated with semantic

items in the KG to allow us to compute certain statistics about these semantic items.

This problem is faced by other works that rely on a setting similar to ours. A general

solution for this problem is not possible. However, it would be interesting to see how

these components could be instantiated in different settings (e.g., through access to

query logs and click-through data).

The relaxation framework, while improving DEANNA’s effectiveness, sacrifices part

of the structure in the question to improve recall. It does this by casting some SPO

query conditions into a textual X component in a SPOX query. An important question

is how to perform relaxation by falling back onto text without sacrificing this structure.

We address this problem in the next chapter.



4. TriniT: Relationship Queries over

Extended Knowledge Graphs

4.1. Introduction

4.1.1. Motivation

Knowledge graphs have seen rapid adoption by organizations for storing their data.

This is, in large part, due to the ease with which they can be extended, particularly

when it comes to predicates, owing to their schema-free nature as discussed earlier in

Section 2.1. Additionally, by maintaining relationships between entities in the form of

facts, knowledge graphs allow for very sophisticated triple pattern queries about enti-

ties and the relationships between them. The expressiveness offered by such queries is

beyond what corpus-based IR systems can offer. However, the sheer size of a knowl-

edge graph, the diversity of the vocabulary used, coupled with the lack of a schema

means that querying a knowledge graph can be a challenging task. The result is that

oftentimes a triple-pattern query issued over a knowledge graph will fail to return

satisfactory answers to the user.

In a best-case scenario, a user might be able to retrieve the results she was looking

for in the knowledge graph after multiple rounds of tedious query reformulation. The

problem here is that the user is initially unfamiliar with the terminology and structure

of the knowledge graph. For instance, are players in LaLiga (the Spanish football

league) directly connected to it in the KG, or are they connected to the teams they

play in using a relation like playsFor relation, and these teams, in turn, are connected

to the league? Depending on how the KG grows, it is even possible that both are true

as is the case in Figure 4.1. Here, two complementary triple pattern queries would be

needed to articulate the information need asking for LaLiga players:

SELECT ?x WHERE {?x playsIn LaLiga},

and

SELECT ?x WHERE {?x playsFor ?y . ?y league LaLiga}.

Formulating multiple queries can be a tedious task. In reality, a user might not be

aware of the fact that multiple complementary queries are needed to get the complete

set of results she expects.
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JamesRodríguez LaLiga

FilipeLuís

RealMadrid

playsFor

playsIn

league

Figure 4.1.: An example of two ways a player could be connected to the league

they play in, complicating query formulation.

Another common problem that we touched on in the previous chapter is the in-

completeness of knowledge graphs. The knowledge graph’s vocabulary might not be

sufficient to formulate the desired query. Even when it is, the KG might lack some

necessary predicate instances to provide some or, in the extreme case, all desired an-

swers. Despite the large size of a typical knowledge graph, incompleteness is inevitable

as the world changes rapidly.

In all cases, the end result is the same: users left with partial or empty results in

response to their queries. The two issues above, the vocabulary and structure gap be-

tween a KG and a query, and the incompleteness of knowledge graphs, are addressed

in this chapter. What is needed is a system that can take a user’s query and automat-

ically relax it until relevant answers can be returned. Furthermore, to compensate for

incompleteness in the knowledge graph, its contents need to be extended from external

sources. This chapter presents TriniT, a framework designed for flexible querying of

extended knowledge graph. In contrast to earlier approaches such as SPOX presented

in the previous chapter, TriniT overcomes the above problems without sacrificing the

structure that is integral to the expressiveness of triple pattern queries.

4.1.2. Problem Statement

The problem we deal with in this chapter is satisfactorily answering triple pattern

queries over knowledge graphs, as defined in Section 2.1.5, while accounting for possible

mismatches between a user’s query and the data in the knowledge graph, and missing

data in the knowledge graph. We elaborate on the problem definition in what follows.

A satisfactory query result is one with good precision and recall, i.e., it includes as

many of the relevant answers as possible and as few irrelevant ones as possible. Because

we deal with potentially incomplete knowledge graphs, a point we elaborate on below,

some answers might be relevant while not strictly adhering to the specifications of the

query. In judging the relevance of an answer we assume that the query is simply one

possible expression of an information need, and that the judgment of relevance of an

answer is based on the information need, rather than the query.
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A mismatch between a query and the underlying knowledge graph can be termi-

nological or structural. A terminological mismatch occurs when a semantic item or

literal in a query does not occur at all in the KG, or the intended one is expressed

differently from the one in the query. In general, these are mismatches that prevent a

single triple pattern in the query from matching a single (potential) triple in the KG.

A structural mismatch occurs when considering relations between semantic items in

the query that do appear in the KG and are connected to each other in it, but the

path connecting the two does not match that in the query. We gave an example of

this above, with the connection between football players and the leagues they play in

possibly going through teams. Put differently, a structural mismatch occurs when a

set of triple patterns in the query is intended to match a set of triples in the KG, with

the two sets being of different sizes.

In saying that a KG can be incomplete, we assume that it is attempting to model

some domain by casting as much as possible of that domain into facts. However,

due to various factors such as stringent quality controls or insufficient human and

computational resources, the knowledge graph may lag behind. The full knowledge is

buried in documents such as Web pages, technical reports, spreadsheets, emails, etc.

Such knowledge can be exposed using some form of information extraction, possibly

at lower accuracy than the KG. Missing data in the knowledge graph can take various

forms. An entity, predicate, or class in the query might not exist in the knowledge

graph at all. Alternatively, a fact relevant for a query might be missing. In this case,

all individual resources relevant to the query, including potential answers, exist in the

KG, but are not connected in a manner that allows a match with the query.

4.1.3. Contributions & Overview

We make two contributions towards a solution to the problems outlined above. First,

we extend the traditional KG model (see Definition 2.3) to accommodate general tex-

tual triples obtained using various forms of information extraction (see Section 2.2.2).

The justification for doing so is that knowledge graphs typically constitute a small

fraction of the information maintained by an organization. What information makes

its way into a knowledge graph is generally a matter of judgment and is constrained

by limitations on manpower and computational power and quality requirements. The

complete knowledge an organization has at hand is usually available in much less crisp

textual form, such as manuals, Web pages, tables, etc. Such documents are often anno-

tated with links to the knowledge graph. We extend the KG model to allow for facts

extracted from such documents. This extension of the data model also requires an

extension of the query model of Section 2.1.5 so that the extended KG can be queried.

Our second contribution is a query evaluation framework over the extended KG

that can dynamically relax queries by automatically rewriting query conditions. Since

query relaxation results in a query returning a large number of answers, we need to
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assign scores to answers. We take a language modeling approach to scoring answers

of a given query in isolation. Relaxation of a query is done by invoking weighted

relaxation rules at query processing time. The relaxation weight essentially captures

the semantic drift between the query condition being relaxed and its relaxation, and

the scores of answers of the resulting query are attenuated by these relaxation weights.

We present a scheme for aggregating the scores of answers obtained through different

relaxations. Our score aggregation scheme is judiciously designed to allow for efficient

top-k-style query processing where a query relaxation is invoked at query processing

time only if it can realistically contribute to the top-k scoring answers. Adopting a

top-k approach relieves the query processor from the need to explore the entire space

of queries that can be induced by the relaxations, which can be prohibitively large.

We start by placing TriniT in the context of earlier work in both the IR and database

communities in Section 4.2. In Section 4.3 we formally define extended knowledge

graphs and discuss how they can be constructed and queried. Section 4.4 presents

our framework for triple pattern query relaxation, and discusses concrete relaxations

considered in this work. As relaxations can result in a potentially large query space

to explore and large results, we present in Sections 4.5 our scheme for answer scor-

ing. In Section 4.6 we present our query processing scheme and elaborate on how

it interacts with our scoring model to allow for efficient query execution using top-k

query processing. Finally, in Section 4.7 we present experiments demonstrating the

effectiveness of TriniT in comparison to earlier state-of-the-art systems for both entity

and entity-relationship search.

4.2. Related Work

4.2.1. Entity Search

Starting with the initial work of Fang and Zhai (2007), Nie et al. (2007), Serdyukov and

Hiemstra (2008), and Vallet and Zaragoza (2008), the methods for entity search over

large text corpora have been greatly advanced (Balog et al., 2012). In these models,

a query is a bag of keywords, and the result of a query is a ranked list of individual

entities, each of which is an answer. Some methods use knowledge graphs for feature

expansion (Dalton et al., 2014), but stick to the same query-and-answer model. One

of the currently best methods is that of Balog et al. (2011), which is based on entity

language models and harnesses entity categories (i.e., semantic types) for ranking and

for restricting answers to the desired type – so it can, for example, ensure that a

query returns only songs, not movies, albums, or singers. However, the model is still

limited to computing a single list of single entities. So unlike TriniT, there is no way

of returning tuples of entities, such as song-movie pairs, as answers. We included the

method of Balog et al. (2011) as a state-of-the-art baseline in our experiments.
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4.2.2. Query Relaxation

In IR, the classic case for query relaxation is query expansion for keyword queries

(Xu and Croft, 1996) or recommendations for query reformulation (Boldi et al., 2011).

Some works along these lines have explored the use of thesauri or knowledge graphs

to generate semantically related terms for a given query (e.g., Theobald et al. (2005)

and Voorhees (1994)). For completely structured data, generating relaxed queries has

been explored by Chaudhuri et al. (2004), Mottin et al. (2013), and Zhou et al. (2007)

for relational data and by Elbassuoni et al. (2011) for RDF data. For tree-structured

XML data, a number of works have developed structural relaxation techniques, such

as rewriting an XPath child condition into a descendant condition (Amer-Yahia et al.,

2004, 2005; Cohen et al., 2003). Theobald et al. (2008) integrated semantic-relatedness-

based relaxations for content terms in XPath queries. However, none of these is suitable

for the combination of graph-structured data and text corpora.

4.2.3. Search on Knowledge Graphs

There is plenty of work on querying RDF databases and Linked-Open-Data with

SPARQL (see, e.g., Heath and Bizer (2011), Huang et al. (2011), Neumann and

Weikum (2008), and Tummarello et al. (2010)). However, this is exact-match querying

on structured data emphasizing efficiency and scale while disregarding ranking or re-

laxation. Keyword-based graph search has also been extensively studied for relational

databases (Yu et al., 2009). These include ranking, but are limited to structured data

and do not consider full documents attached to graph nodes.

The most notable works on ranking answers of SPARQL queries are Elbassuoni et al.

(2009) and Kasneci et al. (2008), using statistical language models and supporting

entity-tuple answers. Our approach is largely inspired by these models. The model of

Elbassuoni et al. (2009) is the basis for the SPOX model used for query extension and

relaxation in DEANNA as we detailed in Chapter 3. This prior work associates teXtual

keywords with each triple in the KG and allows users to add textual conditions to each

triple pattern in a query — hence the X in SPOX. The textual keywords associated

with a KG triple come from the extraction context of a fact. A query is answered

in this setting by first matching its structured SPO components against the KG and

subsequently ranking the answers by how well their textual components match those

in the query. We use this model as one baseline in our experiments and elaborate on

it in Section 4.7. In contrast, our extended KG setting allows for text-based triples,

which means that text can be used to express crisp structure and relationships rather

than simple bag of words matches.

The same limitation holds for work on graph query languages such as Sagiv (2013),

Wood (2012), and Yang et al. (2014), but they do feature path relaxation techniques.

Finally, there are methods for searching and ranking over RDF-structured Linked Data

and KGs with queries that combine keywords and entity examples (e.g., Bron et al.
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(2013)) or interpret telegraphic text queries on the underlying structured data (e.g.,

Pound et al. (2012)). Again, this does not extend to our more demanding case of an

extended knowledge graph.

4.2.4. Querying Entity-Annotated Text

Searching and exploring text corpora that are annotated with entities and/or linked to

a KG has been addressed in various projects, most notably the Broccoli system (Bast

and Buchhold, 2013; Bast et al., 2014), Facetedpedia (Li et al., 2010), ERQ (Li et al.,

2012), and STICS (Hoffart et al., 2014b). Albeit not based on SPARQL, these are very

expressive and powerful search engines. However, except for ERQ (see below) they do

not provide any non-trivial ranking of results.

The work of Joshi et al. (2014) and Sawant and Chakrabarti (2013) addresses tele-

graphic text queries over combinations of text and structured data, reminiscent of our

notion of extended knowledge graphs. The approach here is to jointly learn the seg-

mentation, the entity, class and predicate interpretation of the input query (in text

form), and the ranking of candidate results. There is no notion of structured queries,

though, and the more advanced queries that our model allows are beyond the scope of

that prior work. Most importantly, queries that need to test for multiple relationships

and return tuples of entities are not supported. Another model that addresses seman-

tic similarity measures over entity-annotated text corpora is that of Schuhmacher and

Ponzetto (2014). However, that work is not about search, there is no query language.

Closest to our approach is the ERQ system by Li et al. (2012). This work inte-

grated text conditions into a structured query language with typed variables for both

entities and entity pairs (i.e., relationships). Albeit primarily addressing richer entity-

relationship search over Wikipedia, the ERQ method could be applied to our notion

extended knowledge graphs. We therefore include it as a baseline in our experimental

studies.

4.3. Data Model and Query Language

4.3.1. Extended Knowledge Graphs

Our starting point is a knowledge graph, which, as given in Definition 2.3, is a collection

of facts in the RDF SPO data model. To recap, the elementary components of a

knowledge graph are semantic items S and literals L. Semantic items are canonical

objects encoded as URIs and can be further divided into entities, classes and predicates.

Literals correspond to such things as dates, numbers, and strings. Predicates P are a

special type of semantic item which can be thought of as binary relations connecting

a subject and an object.
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Knowledge graphs are never complete and will not be able to fully cover the domain

they are intended to describe. This can be due to limitations in man power and compu-

tational power, stringent quality control requirements or the inherent delay in updating

the KG to reflect the current state of the world. The result is usually KGs which are

missing entities, predicates or facts and therefore users with queries for which they

cannot obtain satisfactory answers. The information missing from an organization’s

KG, however, will exist in some textual source, which we can use to extend the KG

with new entities, classes, predicates, and facts. To do this, we combine our KG with

textual corpora annotated with entities, predicates, and classes, some of which might

already exist in the KG whereas others might be missing. New facts are extracted

using Information Extraction (IE) techniques, and become additional knowledge used

to bridge the gap between a user’s information need and the KG. More specifically, we

use OpenIE methods (see Section 2.2.2 and Chapter 5) to extract triples that consist

of two noun phrases (S and O) that are connected by a noun phrase or a verb phrase.

We additionally employ methods for Named Entity Disambiguation (NED) like that

of Hoffart et al. (2011) to map the two noun phrases to entities in the KG whenever

possible. This process is error prone, but can be tuned to favor precision over recall.

As an example, Figure 4.2(a) shows the original KG we start with. OpenIE identifies

further triples shown in Figure 4.2(b), where some of the SPO components are mere

text phrases as they could not be mapped to a canonical entity, class, or predicate.

The union of the triples in both tables of Figure 4.2 forms the extended knowledge

graph, XKG for short. In an XKG, we no longer refer to semantic items and literals,

but instead collectively refer to these simply as tokens T .

Definition 4.1 (Extended Knowledge Graph (XKG)). An extended knowledge graph

(XKG) is a bag of triples over tokens; that is, triples from T × T × T .

We note that as opposed to the the KG (Definition 2.3), the XKG is a multi-set,

which takes into account that the IE process can produce the same fact multiple times

from different documents. We exploit this redundancy later in our ranking model.

4.3.2. Triple Pattern Queries

We now define the triple pattern query language for querying XKGs. The query

language is a modification of the triple pattern query language defined in Section

2.1.5. In addition to tokens T used to construct the XKG, we need a set of variables V

that are distinct from tokens and are prefixed with a question mark. These variables

will serve as placeholders for tokens the user is asking for.

Definition 4.2 (Triple Pattern and its Answers). A triple pattern q is a member of

the set V ∪T ×V ∪T ×V ∪T . An answer a to a triple pattern over an XKG is a total

mapping of variables in q to T such that the substitution of the variables with their

mappings, denoted a(q), results in a triple t in the XKG.
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S P O

BangBang type song

SpaceOddity type song

KillBill type movie

WalterMitty type movie

SpaceOddity usedIn WalterMitty

SpaceOddity performedBy DavidBowie

KillBill hasSoundtrack KillBillAlbum

KillBillAlbum contains BangBang

(a)

S P O

DavidBowie ‘born and lives in’ UK

DavidBowie won ‘best British singer ’

BangBang ‘by ’ NancySinatra

‘Sinatra’s daughter ’ bornIn USA

NancySinatra ‘is an’ ‘American’

‘Lonely Shepherd ’ ‘appears in’ KillBill

‘Lonely Shepherd ’ performedBy ‘Zamfir ’

‘Zamfir ’ bornIn Romania

(b)

Figure 4.2.: Example triples in (a) a KG and (b) additional triples resulting from

information extraction. The combination of both tables in the XKG.
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SELECT ?s ?m WHERE {
?s type song . ?m type movie . ?s usedIn ?m .

?s performedBy ?x . ?x bornIn UK

}

(a)

SELECT ?m ?s ?x WHERE {
?s type song . ?m type movie .

?m hasSoundtrack ?a . ?a contains ?s .

?s performedBy ?x . ?x ?p ‘American ’

}

(b)

Figure 4.3.: Example queries over the XKG of Figure 4.2.

Triple patterns are the building blocks of queries. The definition of a query we give

here is the same as that of Definition 2.6 except that the nature of triple patterns

has changed by introducing the notion of tokens. We restate the definition here for

completeness.

Definition 4.3 (Query). A query Q = {q1, ..., qn} is a set of triple patterns qi and a

set of projection variables P (Q). We require that the join graph whose vertices are qis

and where an edge connects each pair of triple patterns with a common variable to be

a connected graph (i.e., no cross products). P (Q) is a (usually proper) subset of the

variables in Q, defining the output structure (typically entity tuples).

We also restate the definition of relationship queries first given in Definition 2.9

since they serve as a crucial motivation for our framework distinguishing it from more

traditional IR tasks such as document or entity retrieval.

Definition 4.4 (Relationship Query). Let V ars(Q) be the set of variables in Q. A

query Q is called a relationship query if |V ars(Q)| ≥ 2.

Finally, we define query answers in light of the change in our data and query model.

Definition 4.5 (Query Answer). For query Q, an answer (a) is a mapping of the

variables in Q to tokens in T . Applying an answer (a) to a triple pattern qi ∈ Q

results in the triple ti, we denote this by a(qi) = ti. The restriction of a query answer

to bindings of variables in P (Q) is called a projected answer, denoted aP .

Examples

Figure 4.3 shows examples of two queries over the XKG of Figure 4.2. The query in
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Figure 4.3(a) asks for movies with British songs. This query, issued over the KG in

Figure 4.2(a) only (without the extension), would have no results as the last triple

pattern cannot be matched, whereas the XKG has the information needed to obtain

the desired result tuple (WalterMitty, SpaceOddity).

The second example query in Figure 4.3(b) asks for movies with American songs

and their singers. This query requires the elaborate use of long paths in the XKG (i.e.,

join chains) and directly makes use of text-based triples in the XKG.

Formulating such sophisticated queries is awfully hard for a user who does not know

the details of the underlying XKG. A seemingly perfect query, as is the case for the

first query, can result in no answers being returned. A small change in the formulation

of the second query could have easily resulted in a similar problem. We next show

how such sophisticated queries that return answers can be generated automatically by

rewriting user queries based on query relaxation rules.

4.4. Query Relaxation

Moving from the KG to the XKG is only one component in our scheme for coping

with queries that cannot be answered from the KG in a satisfactory manner. The

second component is query relaxation, where the goal is to automatically rewrite one

or more triple patterns in a query in order to obtain answers that will satisfy the user’s

information need but could not be returned by the original query. As we discussed

earlier, the need for query relaxation can be shown by contrasting the XKG of Figure

4.2 with the query of Figure 4.3. Having motivated the need for query relaxation, we

present our framework for query relaxation in what follows.

4.4.1. Relaxation Framework

We first formally define our framework for query relaxation and then discuss the specific

choices of relaxation rules.

Definition 4.6 (Relaxation Rule). Given a query Q = {q1, ..., qn}, a relaxation rule

is a triple r = (q,q′, w), where q ⊆ Q is the non-empty domain of the relaxation rule,

q′ is a set of triple patterns called the range, and w ∈ [0, 1] is a relaxation weight that

captures the closeness between q and q′.

For readability, we also use the notation r : q→ q′(w) for the rule r = (q,q′, w).

Definition 4.7 (Relaxation Rule Application and Relaxed Query). Given a query

Q = {q1, ..., qn} and a relaxation rule r = (q ⊆ Q,q′, w), the application of r to Q

results in the query Q′ = r(Q) = (Q \ q) ∪ q′ with P (Q′) = P (Q).

Given a query Q and a sequence of relaxation rules r = (r1, ..., rm), a relaxed query

is a query Q′ = rm(...r1(Q)).
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The restriction that the set of projection variables does not change before and after

a relaxation is applied means that no relaxation can result in the complete removal of

a projection variable from the body of the query. Additionally, as per Definition 4.3,

a relaxation cannot result in a cross product, as queries must have a connected query

graph.

We do not allow for recursive application of relaxations. That is, a triple pattern

obtained through a relaxation is not subject to subsequent relaxation. This is in line

with established practice in query rewriting and expansion in IR systems. Moreover, it

ensures efficient query processing and the scoring scheme we present below is unlikely

to produce high-scoring answers from recursive relaxation.

Going back to our example XKG in Figure 4.2 and the query for movies with British

songs in Figure 4.3(a), the original query will not be able to return all the relevant

answers (as a matter of fact it returns no answers at all). One possible way to handle

this would be to simply drop the culprit triple pattern talking about birth in the UK.

This, however, would result in losing part of the intention of the user’s query. A better

alternative is to relax the overly restrictive predicate bornIn to the textual predicate

‘born’ or by a variable that can be matched by any predicate or token. Likewise,

it is possible that a relaxation for the entity UK is needed, where we could generate

such tokens as ‘British’, ‘English’, or ‘Scottish’, or entities (which are also tokens) like

England and Scotland. Our framework generates these variants automatically.

Some relaxations will drift away from the original query more than others. For

example, ‘from’ is a cruder approximation for the predicate bornIn than the token ‘born

in’. Similarly, ‘Scottish’ can be seen as a cruder approximation of UK than ‘English’.

Replacing a token by a variable in both cases is an even cruder approximation. In

our framework, the cruder an approximation is, the lower the weight assigned to the

corresponding relaxation rule.

The order in which relaxations are applied results in different queries. In Sections

4.5 and 4.6 we discuss our query ranking and processing schemes. The two are designed

to incrementally explore relaxations only if they can contribute to the top-k-scoring

answers. This approach avoids the need for explicit enumeration of all possible relaxed

versions of a query, which is usually prohibitively expensive.

4.4.2. Concrete Relaxations in TriniT

TriniT provides a programmatic interface for users or KG administrators to implement

their own relaxations. Implementations of this interface can tap into any resources

needed such as the KG itself, third party lexicons and dictionaries, and Web services.

In this dissertation, we consider two concrete forms of relaxation: structural relax-

ations and predicate paraphrasing. Structural relaxations result in replacing a triple

pattern with a set of triple patterns that conceptually denote a path. We apply this re-

laxation to spatial predicates that connect an entity with a location (e.g., (?x bornIn



74 CHAPTER 4. TRINIT

UK) to (?x bornIn ?y . ?y locatedIn UK)).

Predicate paraphrasing is the most important type of relaxation we consider in

this dissertation. We generate paraphrases for XKG predicates using the XKG itself.

For each predicate (e.g., graduatedFrom), we generate paraphrases (e.g., ‘went to’)

and inverse paraphrases (e.g., alumnus) by considering the overlap between predicate

arguments in the XKG. Given two predicates, including textual ones, p1 and p2, where

args(pi) = {(s, o)|(s, pi, o) ∈ XKG} (i.e., subject-object pairs linked in the XKG by

pi), the weight assigned to the relaxation

r = ({?x p1 ?y}, {?x p2 ?y}, w)

is:

w =
|args(p1) ∩ args(p2)|

|args(p2)|
.

Inverse paraphrases are generated and weighed in the same manner as above, by

matching the XKG with an inverted version of itself, where the subject and object

components of triples are switched. In our experiments, we do not consider paraphrases

that are stop words, as these consistently hurt results. Table 4.1 shows examples of

paraphrases and inverse paraphrases (the latter indicated by the superscript −1) for

both KG and textual predicates extracted from our XKG.

Predicate Paraphrase

graduatedFrom ‘graduated from’

graduatedFrom ‘went to’

graduatedFrom ‘alumnus ’ 1

‘performed by ’ ‘recorded by ’

‘performed by ’ ‘singer ’

‘performed by ’ ‘performance of ’ 1

Table 4.1.: Example predicate paraphrases.

Note that the number of relaxed queries possible is exponential in the number of

triple patterns in the query.

4.5. Answer Ranking

With the XKG and relaxation rules defined, we now present our scoring model that

allows for flexible answering of queries with support for relaxation. TriniT’s scoring

model is based on a language model (LM) for individual triple patterns, the basic

building block of a query. The scores obtained for the retrieved triples need to be
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subsequently aggregated to come up with scores for complete answers to a query. Our

setting, with multiple variables and joins is very different from the established setting of

scoring keyword queries over textual corpora using language models, including existing

work on entity search (Balog et al., 2011). Moreover, our work treats triples obtained

from free text using OpenIE as first-class citizens, therefore differing from existing

language models for ranking and relaxation in knowledge graphs (Elbassuoni et al.,

2009, 2011).

4.5.1. Answers for Individual Triple Patterns

In analogy to the traditional IR setting, we can view a triple pattern as a document

which generates individual triples. In this generative setting, we define a language

model for each such triple pattern using a mixture model as follows:

P (t | qi) = λ
#t

|qi|
+ (1− λ)

#t

|XKG |
, (4.1)

where #t denotes the number of occurrences of triple t in the XKG, |qi| is the total

number of triples matching qi in the XKG. Likewise, |XKG | is the total size (i.e.,

number of triples) of the XKG and λ is a tunable parameter between 0 and 1. The

first term is defined to be non-zero only if t matches qi. The above defines a proper

probability distribution: for each qi, summing up over all triples in the XKG will

always give us 1.

There are some subtle differences between this setting and the traditional IR setting.

Smoothing with a background model (the XKG in our case) serves two purposes in

traditional IR, namely to avoid zero probabilities and to attain an idf -like effect (Zhai

and Lafferty, 2004). In our setting, since we only consider triples t that match the triple

pattern qi, zero probabilities are not an issue. Further, a relative weighting of triple

patterns, corresponding to the idf -like effect, is already obtained by considering triple-

pattern selectivities |qi|, that is, how many matching triples exist. For our mixture

model, the parameter λ thus controls whether the probabilities P (t|qi) are only based

on the number of occurrences of t (for λ = 0) or also consider triple-pattern selectivities

(for λ > 0), resulting in a relative weighting of triple patterns in the query.

4.5.2. Answers for Entire Queries

With the score for an answer to a single triple pattern defined, we now move on to

defining the score for an answer a for a composite query Q:

score(a,Q) =
∏
qi∈Q

P (a(qi)|qi), (4.2)

where a(qi) is the triple resulting from applying the answer a to the triple pattern qi,

as defined earlier.
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Multiple answers can produce the same projected answer aP , which is the final result

the user is interested in. The query may contain, for example, variables corresponding

to a movie, songs in its soundtrack, and their singers, but the user may only be

interested in movie-singer pairs, and hence project on the two corresponding variables,

with the song being “projected away”. This projection can result in duplicate movie-

singer pairs.

Thus, for each binding of the projection variables we need to define how to aggregate

the scores of the individual results (with bindings for all three variables in the example

above) for the whole group of duplicates. While summing up scores seems a natural

choice, it incurs two problems: i) inflating the score of answers with frequently occur-

ring entities (e.g., artists with many songs in many movies), and ii) forcing the query

processing to retrieve all duplicates for each projected answer as they contribute to

the scoring. Especially the second point would be critical from an efficiency perspec-

tive and rule out early pruning when scanning posting lists during query processing.

Therefore, we opt to use the maximum score for each group rather than the sum over

all duplicates, and define the score of a projected answer of a query as

score(aP , Q) = max
a:aP⊆a

score(a,Q). (4.3)

4.5.3. Scoring with Relaxation

We finally extend our scoring model to account for query relaxation. Starting with

a user-provided query, Q, we relax it in one or more steps by applying a sequence of

relaxation operators r1, ..., rn to obtain Q′ = rn(...r1(Q)). Each relaxation operator rl
carries a relaxation weight wl ∈ [0, 1] which reflects how much a relaxed query drifts

away from the previous query.

The score of an answer obtained from a relaxation is defined as:

score(a,Q,Q′) =
n∏

l=1

wl × score(a,Q′). (4.4)

Intuitively, the score of a with respect to Q′ is attenuated to reflect the divergence

of Q′ from the original query Q. For the special case where n = 0, i.e. Q′ = Q,

with no relaxation operators invoked, score(a,Q,Q′) = score(a,Q). It is important to

note that the relaxation weight applies to the entire relaxation, and not to each triple

pattern contained in it.

Because it is possible to generate the same answer through multiple distinct relax-

ations, we define the score of an answer with respect to the original query and the

space of all possible relaxations R as:

score(a,Q,R) = max
Q′=rn(...r1(Q)),

rl∈R

score(a,Q,Q′). (4.5)
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Here, an answer is assigned the maximum score it can obtain from any of the possible

relaxations of the query (including the original query). The rationale for this design

decision is analogous to the above score aggregation over duplicates when variables

are projected away and in line with Theobald et al. (2005): we want to avoid unduly

inflating the influence of seeing the same answer many times in different contexts and

allow for early pruning in query processing.

Finally, the score of a projected answer in a setting with relaxation is defined as the

maximum score of the projected answer obtained through any relaxation.

score(aP , Q,R) = max
a:aP⊆a

score(a,Q,R). (4.6)

We next discuss how we can efficiently evaluate queries in this setting, where our main

concern will be to find the top-k projected answers for a query while exploring as little

as possible of the relaxation space.

4.6. Query Processing

Query processing in TriniT is a natural fit for the top-k paradigm (Fagin et al., 2003;

Ilyas et al., 2008) where the goal is to produce the k projected answers with highest

scores, without necessarily computing the complete set of answers. This approach has

been shown effective in similar IR settings (Anh and Moffat, 2006; Theobald et al.,

2005) involving query relaxation and rewriting, where the space of possible queries

blows up rather quickly.

Our query processing scheme is an adaptation of that of Ilyas et al. (2003) and

Theobald et al. (2005). The first provides the framework for top-k evaluation in a

setting with joins, while the second provides the framework for dynamically relaxing a

query during query processing using the answer scores and relaxation weights to guide

the process and avoid exploring the entire relaxation space. The focus of our work pre-

sented in this chapter is on retrieval effectiveness, while allowing for efficient retrieval.

In this section we present our implementation the TriniT, but leave comprehensive

evaluation of this aspect of TriniT to future work.

Basic Top-k Query Processing

A top-k query processing scheme applies to a setting where the score of an answer

(projected query answer in our setting) is computed from aggregating the scores of its

constituents (triple pattern answers in our setting). As stated above, the goal is to

compute the set of k answers with the highest scores without necessarily computing

all possible answers. To achieve this, a top-k query processing scheme maintains an

upper bound on the scores of uncomputed answers, and can therefore stop whenever
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this bound is lower than the scores of the answers already computed. To be able to

establish such a bound, two restrictions need to apply to the query processing setting:

1. the function used to aggregate triple pattern answer scores into a single (pro-

jected) query answer score must be monotonic, and

2. for a given triple pattern, its answers must be retrieved in descending order of

their scores.

Our answer scoring scheme satisfies the first requirement. Equation 4.2 used to

aggregate the scores of triple pattern answers into a single score for a query answer is

monotonic. Moreover, by choosing max to aggregate scores of equivalent answers and

projected answers, we relieve ourselves from the need to generate all possible answers

of a triple pattern query.

As for the second requirement, by retrieving triple pattern answers in descending

order of their scores, we are always able to establish an upper bound on the scores

of unseen triple pattern answers, and therefore an upper bound on the aggregation of

these scores (as the aggregation function is monotonic).

In Algorithm 4.1, we present the Hash Rank Join algorithm for computing top-k

join results. We adapt it for our setting from Ilyas et al. (2003). For simplicity, we

describe the algorithm for the case of two triple patterns. The input to the algorithm

is the two triple patterns, a left one qL and a right one qR, and for each of the two a

list of its matching triples in the XKG in descending order of their scores p(t|q), and

k, the number of desired answers.

The priority queue of answers PQ allows access to already produced answers, with

their priority determined by their score. The two offsets keep track of the next position

to read from in the answers lists of the two triple patterns. top and bottom keep track

of the upper and lower bounds of the scores of the observed answers for a specific

triple pattern, respectively. top is assigned only once, when the first answer of a triple

pattern is read (lines 18–19), while bottom is assigned each time a new answer for the

corresponding triple pattern is read (line 20), and its value is therefore monotonically

non-increasing.

The outer loop in the algorithm (lines 7–28) runs until k answers have been obtained

or both triple pattern answer lists run out (lines 12–13), in which case l < k answers

will be returned. The second inner loop (lines 14–28) is responsible for producing new

join results and updating the threshold, which is an upper bound on yet-unseen join

results. Each iteration of this loop reads from one of the two inputs L or R, updates

the corresponding score bounds, and computes a threshold based on these bounds (line

22).

The intuition behind the threshold computation is as follows. At any point, the

threshold should give an upper bound on the score of yet unseen join results (query

answers). If we fix one of the inputs, say L, then we know that the maximum score
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achievable by a yet-unseen join result induced by reading the next triple pattern answer

from qL is aggr(bottomL, topR), since this yet-unseen answer can potentially come from

joining the next triple pattern from L with the highest scoring triple pattern answer

from qR. If we now decide to fix R, then the argument is analogous, resulting in the

threshold computation on line 22.

On line 23, a hash table for the triple pattern under consideration is updated with

the triple pattern answer, and this same answer is used to probe the hash table of the

other triple pattern, with the join results produced placed in the priority queue for

consumption by the first inner loop.

The first inner loop simply queries the priority queue for answers with scores higher

than the threshold until the answer list has k answers or the priority queue has no

more such answers to offer.

Adding Relaxation

We add relaxation to the basic scheme for obtaining the top-k join results following

the approach of Theobald et al. (2005). Relaxation is guided by the scoring scheme,

specifically Equations 4.5 and 4.6, where we are interested in the distinct top-k pro-

jected answers. By choosing max to aggregate the scores of an answer across the entire

query relaxation space, it is sufficient to access answers of triple patterns and their re-

laxations in descending order of their contribution to the score of a query answer. The

incremental merge approach of Theobald et al. (2005) allows us to do just this.

Conceptually, incremental merge coalesces multiple score-sorted lists of answers into

a single score-sorted list. In practice, however, this merging is not done in one shot, but

incrementally to allow for more efficient query processing, hence the name. We formally

describe the incremental merge operation below when we discuss the incremental merge

operator as part of the discussion of the implementation of TriniT.

Implementation

We implement the scheme described above using three database-style operators or-

ganized into a tree. Each operator supports three methods: Open, which performs any

initialization needed, GetNext which returns a scored answer each time it is called,

and Close which performs any necessary cleanup. An operator is specified by its in-

puts and the specification of the output of it’s GetNext function. These operators are

organized in a tree, called a query plan, where each operator serves as input to its

parent operator. Figure 4.4 shows an example query using all three operators we need

in our setting: scan operators, incremental merge operators, and rank join operators.

We describe each of the three operators starting from the scans which appear as leafs

of the operator tree:

Scan Operator: Each triple pattern in the query or a relaxation requires a scan.

Successive calls to a scan’s GetNext return triple pattern answers (see Definition 4.2)

in descending order of their score, P (a(q)|q).
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Algorithm 4.1: Hash Rank Join Algorithm.
input : qL, qR: two triple patterns,

ML,MR: triples matching qL and qR respectively

in descending order of P (t|q),
k the size of the output list

// Initialization

1 PQ is an empty priority queue;

2 A is an empty answer list;

3 HL, HR are empty hash tables;

4 offsetL, offsetR := 0;

5 topL, topR :=∞;

6 bottomL, bottomR :=∞;

7 threshold :=∞;

// Processing

8 while true do

9 while size(A) < k ∧ PQ not empty ∧ PQ.top.score ≥ threshold do

10 tuple = PQ.top;

11 remove tuple from PQ;

12 A.add(tuple);

13 if size(A) = k ∨ (offsetL = |ML| ∧ offsetR = |MR| ) then

14 break ; // Finished processing

15 while true do

16 next is one of L or R;

17 tuple = Mnext[offsetnext];

18 offsetnext = offsetnext + 1;

19 if offsetnext = 0 then

20 topnext = tuple.score;

21 bottomnext = tuple.score;

// agg is the score aggregation function of Equation 4.2

22 threshold = max(agg(topL, bottomR), agg(bottomL, topR));

23 insert tuple in Hnext;

24 probe other hash table with tuple;

25 foreach valid join combination do

26 compute the score of the join result;

27 insert the result in PQ;

28 if PQ not empty then

29 break;

30 return A
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 ⋈rank

Scan(q3’) Scan(q3’’)Scan(q3)Scan(q1’)Scan(q1)

Scan(q2)
Incr. 
Merge

Incr. 
Merge

Q = {q1, q2, q3} 

ra=({q1},{q1'},wa) 
rb=({q3},{q3'},wb) 
rc=({q3},{q3''},wc)

Figure 4.4.: Example query plan with relaxation.

Incremental Merge Operator: Conceptually, the role of an incremental merge

operator is to coalesce multiple sorted lists of scored answers, each provided by a

different input operator, into a single sorted list of scored answers. Moreover, the

operator allows for providing for an attenuation factor w ∈ [0, 1] for each of its input

operators. The score answer retrieved from the corresponding operator is attenuated

by a factor of w. This operator is adapted from Theobald et al. (2005), to account for

the different nature of answers in our setting (variable bindings to XKG tokens rather

than single-document ids).

More concretely, the input to an incremental merge operator is a list of operators

(OP0, ..., OPl) that each produce answers in descending order of their scores and a

list of relaxation weights (w0, ..., wl). Conceptually, let Mi be the full list of answers

returned by OPi and offseti is the current position in that list initialized with 0, the

offset of the first answer with the highest score. Each call to an incremental merge

operator’s GetNext will:

1. return the answer a = Mi[offseti] where

i = arg max
i′∈[0,..,l]

wi′ × score(Mi′ [offseti′ ])

assigned a score of wi × score(Mi[offseti]), and

2. increment offseti by 1.
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In our setting, we construct an incremental merge operator for each set of triple

patterns q ⊆ Q that occurs in the domain of a relaxation rule r = (q,q′, w). In

the relaxation rules we use in our experiments (see Section 4.4), we only deal with

|q| = 1. The list of input operators to the incremental merge operator is constituted

of operators corresponding to q (a scan since we restrict ourselves to q = 1) and one

operator for each of its relaxations, with the weights provided accordingly. In our

setting, this is a scan if |q′| = 1 and a rank join operator (see below) if q′ ≥ 2 (i.e., a

structural relaxation).

Rank Join Operator: This is where answers from the different triple patterns and

their relaxations are joined to form the actual answers to the original query. We follow

the provably optimal approach of Ilyas et al. (2003) which guarantees early termination

when the aggregation function used to combine the incoming triples is monotonic (as

in our case).

We adopt the Hash Rank Join (HRJN) as a physical operator in our implementa-

tion. This operator’s GetNext function is a natural extension of Algorithm 4.1, where

instead of adding a tuple to the answer list to accumulate the top-k answers we return

this answer so that the next operator can consume it. In this manner, successive calls

to GetNext return answers in descending order of their scores. Rank joins are used to

produce the final answer of the query as well as for structural relaxations where the

domain of the relaxation has multiple triple patterns.

4.7. Experimental Evaluation

We now present experimental results to demonstrate the effectiveness of query answer-

ing in TriniT.

4.7.1. Methods

We compare two different configurations of TriniT with three natural state-of-the-art

baselines. Figure 4.5(c) shows an example query for each system. The first TriniT

configuration (TriniT-Relax) processes queries without considering relaxations. We

contrast this to TriniT+Relax where TriniT has access to relaxations that it can au-

tomatically invoke as needed during query processing.

The first baseline we consider (ES) is based on the work by Balog et al. (2011) for

entity search. Here, an entity is represented by two fields containing the semantic types

it belongs to and a textual description. We use Model 4, which is the most effective

one that allows us to enforce type constraints that are crucial for good results. The

ES approach cannot return tuples in response to relationship queries, so we formulate

queries to ask about a single entity (a single variable).

The second baseline (ERS) is that by Li et al. (2012) for entity-relationship search.
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Here, queries are evaluated over an entity-annotated corpus. The score of a match of a

query condition (a textual description of a typed variable or textual relation connecting

two such variables) depends on the proximity of phrases in the condition and variable

bindings.

Finally, we compare TriniT with SPOX(SPO+teXt), an extended version of the

approach by Elbassuoni et al. (2009). Each SPO triple pattern in the KG is associated

with textual keywords taken from the context in which this fact is expressed. For

example, the triple RusselCrowe actedIn ABeautifulMind would be associated with

the set of keywords {‘john’, ‘nash’, ‘true’, ‘story ’, ‘princeton’, ‘australia’ ...}. On

the query side, SPO triple patterns can optionally come with teXtual conditions that

specify (soft) constraints which cannot be expressed in structured SPO form over the

KG. For example, the SPOX pattern ?x actedIn ?y[‘true story ’] is used to search

for actors in a movie based on a true story. During query answering, the SPO parts of

the query are first matched against the KG, and the answers are subsequently ranked

using language models that consider witness counts of KG triples as well teXtual

keyword conditions with their frequencies. The original SPOX approach includes a

form of relaxation in which entities or relations in a query are replaced by variables.

We improve on this by moving these entities or relations to the X component of a

triple instead of completely discarding them. This way they can still influence the

final ranking of answers. We report results from this improved approach. We do not

consider Elbassuoni et al. (2011) as a baseline since relaxations here are performed

by replacing KG entities and relations with other KG relations, which almost always

results in semantic drift, as KGs rarely contain redundancy.

4.7.2. Benchmarks

Existing entity-search queries tend not to be relationship-centric. A contribution of

this work is a new set of 70 inherently relationship-centric information needs, referred

to as COMPLEX queries here (e.g., “Programming languages invented by people who

won the Turing Award.”). We next describe how these queries were generated. A

query was constructed starting from a chain of entities, for example:

[ALGOL -- JohnBackus -- TuringAward],

where some entities become part of the query and others serve as an answer. These

chains are automatically sampled from domains within the XKG, where a domain is

the set of entities that fall within a specified set of semantic types. The domains we

consider are cinema, music, books, sports, computing, and military conflicts. The

cinema domain, for example, includes entities of the types actor, show, director,

award, and producer. Within each domain, we iteratively sample entities starting

from a pivot entity to form a chain. The first pivot entity (ALGOL in our example) is

sampled non-uniformly based on a popularity prior from the domain. Next, we find
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[ALGOL--JohnBackus--TuringAward]

(a)

“Programming languages invented by a Turing Award winner.”

(b)

TriniT:

SELECT ?x ?y WHERE {
?x type programming language . ?y type person .

?y "invented" ?x . ?y won TuringAward }
ES:

type:(programming language)

text:(programming language invented by a turing award winner)

ERS:

SELECT ?x ?y

FROM programming language ?x, person ?y

WHERE ?x:["won", "turing award"] AND ?x,?y:["invented"]

SPOX:

SELECT ?x ?y WHERE {
?x type programming language . ?y type person .

?x ?r ?y ["invented"] . ?y won TuringAward }

(c)

Figure 4.5.: Generation of COMPLEX queries: (a) an example chain used to gen-

erate (b) a COMPLEX question and (c) the corresponding queries

for the various systems under consideration.

the 20 entities in the domain that have the highest coherence with the current pivot

by the Wikipedia-link measure of Milne and Witten (2008). We then sample these

entities non-uniformly, based on the number of XKG facts connecting them to the

pivot to choose the next pivot. This process is repeated to obtain chains of size 2-4

(determined randomly). A human annotator then constructs a question from the chain

asking for the first entity while containing multiple unknowns corresponding to other

entities in the chain. An annotator can discard a chain if she thinks no interesting

question can be generated from it. Figure 4.5(a) shows an example of a chain, and

(b) shows the corresponding question formulated by the human annotator. While the

question is constructed by considering a single chain, it can have many answers. In the

example of Figure 4.5, (Pascal,NiklausWirth) and (Smalltalk,AlanKay) are two

possible answers among several others. Table B.3 shows all 70 COMPLEX queries.
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We additionally ran experiments with two benchmarks from previous work. The

first, ESQ, is a set of 485 entity-centric queries compiled by Balog and Neumayer

(2013). We remove from this dataset SemSearch ES and INEX LD queries as they

do not fit our setting. SemSearch ES contains queries such as “YMCA Tampa” and

“nokia e73”, which refer to a specific entity with no relations at all. INEX LD, is

highly keyword-centric (e.g., “allegedly caused World War I”) with a very noisy gold

standard (e.g., Aerial bombing of cities is considered a relevant entity for the above

query). This leaves us with 255 queries from which we remove 37 involving aggregation

(e.g., “Books by William Goldman with more than 300 pages”, “movies with eight or

more Academy Awards”) as these are beyond the capability of all the systems in this

experiment, leaving us with 218 queries. Unlike our COMPLEX queries, ESQ queries

ask for individual entities rather than tuples, and are usually expressed in the form

of a type (e.g., “EU countries”) or a type with a description that contains a single

relation (e.g., “movies directed by Francis Ford Coppola”). The full list of ESQ queries

used in our experiments is shown in Table B.1.

The other benchmark from prior work, which we call ERQ, is constructed by Li

et al. (2012) and consists of 28 queries. 22 of the queries in this dataset are similar to

the ones in ESQ, with 6 only asking for pairs of entities. The ERQ queries are shown

in Table B.2.

System Input Generation: TriniT and each of the three baselines described in

Section 4.7.1 expects a specific form of query as shown in Figure 4.5(c). For our

experiments, it is important that we generate these queries systematically to facilitate

a fair comparison of the approaches. We create these queries in a two-step process. In

the first step, an information need in the form of a question (Figure 4.5(b)) is shown

to a human annotator who is asked to translate it into a proto-query. In the second

step, the proto-query is used to automatically create queries for the four systems using

a set of rules described below. The annotator, after being shown four examples of

Figure 4.6.: Proto-query interface, with input for the question in Figure 4.5(a).
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question-to-proto-query translation, is presented with the UI shown in Figure 4.6.

Here, each row provides SPO fields for specifying SPO triple patterns. Each field

provides auto-completion functionality for KG entities (S and O) and predicates (P).

The annotator is asked to express the given question in SPO form, and is instructed

to use the auto-completion suggestions when appropriate, or resort to textual tokens

if necessary.

For ES, the type field is filled with the type associated with the first variable in the

proto-query, and the text of the question is used in the text field. For ERS and SPOX,

variable type-constraints are maintained. ERS cannot deal with KG predicates in the

query (it only returns entity tuples as results), so they are mapped to their textual

form. SPOX can only deal with entities and predicates in the S and P components,

respectively, but not textual tokens. To accommodate this, we extend an SPO triple

pattern in the proto-query with an X component and move the S/O textual component

there – note that this is not the same as SPOX relaxation described above, which is

part of query processing. In real life, we envision a system used by professionals such

as journalists and researchers willing to invest some learning effort in exchange for the

more expressive querying they get in return from the different types of queries, with

support from appropriate UIs.

4.7.3. Data

We finally describe the data we use for TriniT and the various baselines we consider.

We note that we run our own implementations of the baselines on a scale two orders

of magnitude larger than what was previously reported.

We use as our KG Yago2s (yago-knowledge.org), whose predicates connect entities

from Wikipedia to other entities (e.g., TomHanks actedIn ForrestGump), to literals

(e.g., TomHanks birthDate 1956-7-9), or to semantic types (e.g., TomHanks type

actor), with a total of 48M triples (44M class assignments, and 4.4M relations and

attributes).

As a text corpus, we use the FACC1 dataset, which annotates text spans in the

ClueWeb’09 corpus (lemurproject.org/clueweb09/) with entities linked to Wikipedia

entities (via Freebase) with a precision and recall estimated to be 80-85% and 70-85%,

respectively.

For TriniT, we construct the XKG by combining the KG described above with the

result of a simple yet effective open information extraction scheme over the annotated

ClueWeb’09 corpus as follows. We look for pairs of entity annotations in the same

sentence separated by a string of at most 50 characters, and create a triple where

the two entities are the subject and object, and the separating string is the relation

connecting them. In this way we obtain 392M extractions, resulting in 65M unique

triples. By sampling, we estimate the accuracy of the XKG to be around 70-80%. For

predicate paraphrases, we run the predicate paraphrasing scheme described in Section

yago-knowledge.org
lemurproject.org/clueweb09/
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4.4.2 on top of the XKG to generate 172M pairs of scored predicate paraphrases like

those in Table 4.1.

Originally, ERS was designed for entity-relationship search over Wikipedia. While

the original paper comes with a demo (idir.uta.edu/erq/), we could not use it to

evaluate our queries as it is restricted to a subset of Wikipedia as a corpus annotated

with entities from 10 semantic types. We therefore use the annotated ClueWeb’09 cor-

pus for ERS as we did for TriniT. In addition, ERS takes type associations from our

KG, ensuring ERS has data comparable to that used by TriniT. We attempted to eval-

uate the three benchmarks on the ERS online demo (idir.uta.edu/erq/). However,

it contained only a subset of the entities and types needed to answer COMPLEX and

ES queries, preventing a fair comparison with other systems. For SPOX, we use the

annotated ClueWeb’09 corpus to associate keywords with entities and subsequently

KG triples. To do this we find all words that occur in the same sentence as an entity

and keep those with a positive association (using normalized PMI) with the entity.

SPOX uses the same KG as TriniT, Yago2s.

In ES we use an entity’s Wikipedia page to populate its textual description, in line

with Balog et al. (2011). We tried to extend this by adding to this field sentences from

the annotated ClueWeb’09 corpus that mention the entity. However, this resulted in

worse retrieval effectiveness. We populate the semantic type field for an entity from

the types it is associated with in the KG.

4.7.4. Results and Analysis

Table 4.2 shows our experimental results. Following earlier work, we use precision@5,

NDCG@5 (with binary relevance), and recall as quality measures (see Section 3.7.3 for

the definitions of these quality measures). For queries with an empty results list, we

define all measures to be 0.

For ESQ queries, we use the gold standard provided with the benchmark. For ERQ

and COMPLEX no gold standard is given, so we crowdsource relevance judgments

and determine the relevance of an answer by a majority vote of three judges. Note

that since the XKG contains noise, human annotators were instructed to base their

judgments on the real world rather than on the XKG. Inter-annotator agreement was

measured using Fleiss’ kappa to be 0.837 indicating almost perfect agreement. In all

cases we use binary relevance.

ERQ and COMPLEX queries do not easily lend themselves to computing the com-

plete set of relevant results, with queries such as “NBA teams married to actresses,

and the teams they play for” (COMPLEX) or “people born in Spain” (ERQ). To com-

pute NDCG and recall, we use pooling from the various systems to create a golden

standard. Since ES returns single entities and not tuples, we project all answers on the

same dimension as the one used for the ES query and compute the golden standard

over that dimension.

idir.uta.edu/erq/
idir.uta.edu/erq/
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“Spouses of actors who graduated from an Ivy League university.”

Query:

SELECT ?x ?y ?z WHERE { ?x type person .

?y type actor . ?z type university .

?y graduatedFrom ?z . ?x marriedTo ?y .

?z "member of" IvyLeague }

XKG:

ChristopherReeve graduatedFrom JuilliardSchool

ChristopherReeve "went to" CornellUniversity

...

Relaxations:

(?w graduatedFrom ?z)→(?w "went to" ?z): 0.066

Relevant answers:

-TriniT-Relax: φ

-TriniT+Relax:

{(DanaReeve, ChristopherReeve, CornellUniversity)}

Figure 4.7.: Anecdotal example of results - I.
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“Lieutenant governors of the province where Ottawa is located.”

Query:

SELECT ?x ?y WHERE {?x type province .

?y type person . Ottawa locatedIn ?y .

?x "lieutenant governor of" ?y }

XKG:

Ottawa locatedIn NationalCapitalRegion

NationalCapitalRegion locatedIn Ontario

Ontario "lieutenant governor" DavidOnley

HilaryWeston "lieutenant governor of" Ontario

...

Relaxations:

(?w locatedIn ?z)→(?w locatedIn ?u . ?u locatedIn ?z): 1.0

(?w locatedIn ?z) → (?w "part of" ?z): 0.073

(?w "lieutenant governor of" ?z)→
(?z "lieutenant governor" ?w): 0.259

Relevant answers:

-TriniT-Relax: φ

-TriniT+Relax: {(DavidOnley, Ontario), (HilaryWeston, Ontario)}

Figure 4.8.: Anecdotal example of results - II.
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ESQ (218)

P@5 NDCG@5 R

ES 0.183 0.211 0.093

ERS 0.182 0.232 0.119

SPOX 0.249 0.336M 0.188

TriniT-Relax 0.158 0.192 0.093

TriniT+Relax 0.218 0.287 0.156

ERQ (28)

P@5 NDCG@5 R

ES 0.492 0.489 0.236

ERS 0.408 0.387 0.177

SPOX 0.577 0.580 0.248

TriniT-Relax 0.467 0.502 0.174

TriniT+Relax 0.637 0.692 0.267

COMPLEX (70)

P@5 NDCG@5 R

ES 0.132 0.172 0.115

ERS 0.249 0.322 0.234

SPOX 0.243 0.250 0.134

TriniT-Relax 0.370 0.419 0.258

TriniT+Relax 0.603M 0.775M 0.613M

Table 4.2.: Experimental results.

Figures 4.7 and 4.8 give illustrative examples from our COMPLEX queries set, with

the relaxations invoked to answer them, and the relevant results produced. We discuss

the results by benchmark next.

ESQ Queries: Here SPOX outperforms all systems. On these non-relationship-

centric queries, SPOX boils down to an improved version of ES. If a query can be

formulated in a structured manner, then this tends to be reflected in SPOX query for-

mulations, resulting in SPO only queries, without the X components. When this is not

possible, most of the query conditions end up in the X component of a type-constraint

triple pattern either by formulation or through the improved SPOX relaxation scheme

we described above.

TriniT is penalized against SPOX on queries that can be satisfactorily answered

M Significant improvement (two-tailed paired t-test, p < 0.01).
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with keywords without the need to establish crisp relationships, as TriniT requires.

For example, the query “Nordic authors known for children’s literature” is reduced

in the SPOX model to ?x type author[‘nordic children’s literature ’]. Here,

looking at the co-occurrences of an author and the keywords suffices to return good

answers. On the other hand, the SPO query formulation used for TriniT, with P set

to ‘known for ’, could not find matches in the XKG, even with relaxation. This result

demonstrates that keyword based querying is an effective paradigm for a certain class

of queries. Once we move to more relationship-centric queries below, we start observing

the advantage of TriniT’s approach. TriniT could in principle define a special predi-

cate hasKeywords that allows the association of entities with keywords when a crisp

relation cannot be formulated (e.g., ?x hasKeyword ‘children’s literature ’). In

this work we are interested in truly relationship-centric queries, so we leave this for

future work.

We can already observe the advantages of relaxation at this stage. For example,

on a simple query asking for “Italian Nobel winners”, the TriniT query uses the KG

predicate won. While this looks reasonable, the KG only lists winners of specific Nobel

prizes (e.g., NobelPrizeInLiterature). Only by relaxing won to the inverse textual

predicate, ‘winner ’ 1, is the TriniT query able to return the correct answers from

triples like (NobelPrize ‘winner ’ EnricoFermi).

It is also interesting to observe the relatively close performance of ES and ERS. For

most ESQ queries, ERS will reduce to ES, with a type constraint and a set of keywords

describing the target entity, but with different scoring schemes.

ERQ Queries vary in how relationship-centric they are. The majority of ERQ

queries (22/28) ask about a single entity, not a tuple, requiring no joins. The rest,

while they ask for a tuple, can all conceivably be answered from an individual document

describing a relevant entity. ERQ queries like “films starring Robert de Niro, and their

directors” and “Novels and their Academy Award winning film adaptations” issued to

the ES system in search for movies/novels, respectively, return satisfactory results.

TriniT, when answering such questions is able to return tuples with an explanation

of the precise relations that hold between the various entities in a tuple (either those

part of the user’s query, or matched through relaxation).

Seemingly simple ERQ queries which ask for a list of individual entities, not tuples,

can be easily mishandled due to a lack of relation awareness. Results from ES and ERS

for the query “football players who were FIFA Player of the Year” include the entities

DavidBeckham and ThierryHenry, both of whom were runners-up for the award, but

never actually received it. TriniT is able to handle this query correctly.

For this class of queries SPOX starts to suffer when the desired relationships con-

necting the two variables are either not sufficiently populated or unavailable in the

KG.

COMPLEX Queries are the most interesting: they require combining factual

knowledge from multiple sources and establishing the existence of the relation specified
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in the query. TriniT with relaxations significantly outperforms all other systems on this

dataset. Figure 4.7 helps understand why. It would be rare to find documents where

keyword matching would correctly answer this query. Even then, we cannot expect to

obtain a complete list of results. This query is inherently relationship-centric, a perfect

fit for TriniT. The original TriniT query contains one textual XKG predicate ‘member

of ’, as no KG relation covers it. However, the KG relation graduatedFrom lacks suffi-

cient coverage, as the fact (ChristopherReeve graduatedFrom CornellUniversity)

is missing. The XKG compensates for this through the textual relation ‘went to’ (see

Table 4.1), which is exploited by an automatically-invoked relaxation to facilitate the

return of the relevant answer shown. For ES, this query, like most others in the bench-

mark, is too challenging: the evidence needed to answer is multiple hops away from

a relevant entity. As in earlier examples, ERS can be brittle when establishing the

existence of a relation in the query is critical for answering it. ERS scores entities

in an answer based on their proximity to each other and to query terms expressing

relations that must hold. This can be detrimental due to the complexities of natural

language: e.g., “private and public universities including Ivy League members, MIT,

VanderbiltUniversity, SwarthmoreCollege , CalBerkeley...” is incorrectly taken as ev-

idence of SwarthmoreCollege’s membership in the IvyLeague. Figure 4.8 shows an

example of a COMPLEX query where multiple relaxations are triggered, including a

structural relaxation of the spatial locatedIn predicate, a predicate paraphrase and

inverse paraphrase. On this query, SPOX fails as it contains no relation connecting a

pair of entities that can serve as correct bindings of ?x and ?y, both of which have to

be projected to the user. In this case, SPOX’s relaxation scheme is not helpful. Here,

ERS turns out to be more effective than SPOX as it relies on a less rigid scheme for

answering queries.

4.8. Discussion

We have presented TriniT, a framework for the evaluation relationship queries over

knowledge graphs in a flexible manner that automatically compensates for mismatches

between a query and the underlying KG, possibly due to incompleteness in the KG.

TriniT extends the basic KG model to allow for facts extracted from texts, with tex-

tual tokens possible in any of their SPO components. It automatically takes care of

mismatches between the query and the data, including the extended knowledge graph,

by means of automatically mined weighted relaxation rules which are automatically

invoked at query processing time. TriniT’s scheme for scoring answers ensures that

answers to the original query are preferred over those generated from relaxations un-

less there is strong evidence for the latter. The scoring scheme also allows for efficient

top-k query processing, thereby avoiding the need to fully explore the potentially huge

space of query relaxations.
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In contrast to earlier work on query relaxation in the knowledge graph setting,

TriniT does not sacrifice the structure of the query when performing relaxation. This

makes sure that the expressiveness of the query is not lost in the process of relaxation.

We presented an experimental evaluation to study the effectiveness of TriniT in

comparison with several natural baselines using established benchmarks. Moreover,

we created our own benchmark of relationship-centric to demonstrate the effectiveness

of TriniT on this challenging and interesting class of queries. On relationship-centric

queries, TriniT+Relax outperforms the baselines by a clear margin. This most pro-

nounced for the COMPLEX benchmark with relationship-centric queries – the very

point that our research aims to address. Here the gains are high in all metrics.

It is also important to understand the limitations of TriniT and why it fails on

some queries. Simpler entity queries can often be answered satisfactorily using tradi-

tional keyword-based approaches, as we have seen for SPOX over ESQ. Here, TriniT’s

relationship-centric approach is crucial only when keyword matches are misleading

and crisp relations must be established. For TriniT+Relax, we observe that losses are

mostly due to incorrect XKG facts and semantic drift in the relaxations. Such incor-

rect facts arise from incorrect entity annotations, or shortcomings in the extraction

scheme. Generally, incorrect facts matching a triple pattern are less frequent than

correct ones, which also means that the answers obtained through these have smaller

weights. This is usually a problem for queries with a small number of expected correct

answers, where the correct answers rank highest, and incorrect ones are at the bottom

of the list.

The second source of incorrect answers is relaxations that drift from the original

query intention. Again, this is mostly an issue in queries where few correct answers

are expected compared to the number of answers actually returned, and can often be

pruned away by observing a sudden drop in answer scores. This is why the scoring

scheme presented in Section 4.5 uses max rather than sum for score aggregation.

The focus of this work has been on effectiveness, while having a framework that

allows for efficient performance. A comprehensive efficiency evaluation as well as a

more in-depth investigation of the relevant systems issues is necessary. In ongoing

work we are looking at obtaining good performance for TriniT to allow for interactive

querying times. This extension lies at the intersection of IR and database systems.

Here, we are developing models for predicting when relaxations are unlikely to be

invoked (i.e., the original query can return satisfactory results). These models would

drive speculative query plans that resort top-k style processing only when necessary,

thereby reducing the overhead of such operators in the case where they are not needed.

We presented two types of relaxation rules in this work. The choice of rules was

motivated by the specific benchmarks we are working with. The problem of generating

such rules and weighing them also needs further investigation.





5. ReNoun: Fact Extraction for

Noun-mediated Relations

5.1. Introduction

5.1.1. Motivation

An important development in the field of information extraction is Open Information

Extraction (OpenIE) (Etzioni et al., 2008), where the goal is to extract facts without

any specific knowledge about the domain of the documents on which the extraction

process is running. We have already seen a very simple scheme for doing this in

the previous chapter, where the end goal was to extend a knowledge graph and find

paraphrases for its predicates.

OpenIE schemes function by first having a small set of general-purpose patterns

over some linguistic representation (e.g., part-of-speech tags or dependency parses)

that capture how relations are expressed. When invoked, these patterns generate large

numbers of facts, which, in turn, could be used to learn additional patterns. Existing

OpenIE schemes make the assumption that nouns represent concepts (entities or unary

predicates), and verbs represent relations (binary predicates). This notion can be seen

in several natural language processing systems, and is so well established that even the

official specification of the RDF turtle syntax grammar calls predicates verbs (Beckett

et al., 2014).

In practice, as we show in Section 5.3, this is not the case. Nouns and noun phrases

can express very interesting and diverse relations which are rarely found in verb (or

verb phrase) form. For example, the noun phrase ‘legal affairs correspondent ’ is a

relation connecting a news outlet with a specific correspondent. What the state-of-

the-art in OpenIE is missing is a scheme for extracting instances of such relations from

text.

5.1.2. Problem Statement

Given a large textual corpus, our goal is to extract instances of binary relations medi-

ated through noun phrases from the long tail with high recall, following the principles

of OpenIE. Each instance has the form (S,R,O), where R is the relation, and S and O

95
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are its subject and object arguments, respectively. For our purposes we define a noun

phrase to be a phrase headed by a noun and does not start with an auxiliary verb.

Our focus here is exclusively on extracting triples where the relation connecting the

subject and object is a noun phrase. Furthermore, we restrict ourselves to relations,

whose arguments are concrete entities (see Section 2.1.1) such as ‘wife’, ‘protege’, and

‘chief economist ’. We do not consider attributes, whose arguments are literals (e.g.,

‘GDP ’, ‘population’) that are better extracted from (Web) tables (Cafarella et al.,

2008) and vague attributes (e.g., ‘culture’, ‘economy ’) whose value is a narrative.

By extracting triples, the facts we produce are in line with the triple-based knowledge

graph representation introduced in Chapter 2. However, the problem we deal with here

does not involve linking noun phrase relations to existing predicates in a reference KG.

Fat head
daughter, headquarters

president, spokesperson,

Long tail
chief economist, defender,

philanthropic arm, protege

Table 5.1.: Examples of fat head and long tail relations.

By high recall we mean extracting facts for as many noun phrase mediated relations

as possible, and as many correct instances of these as possible. Following OpenIE

principles means that we do not need our relations to be defined upfront. Instead,

the system discovers new relations as part of the fact extraction process. While the

framwork presented in this chapter can discover relations on its own, we resort to

working with a predefined set of noun phrases that can serve as relations. These can

be collected using the methods described by Gupta et al. (2014), Lee et al. (2013), and

Pasca and Durme (2007). The justification is that this allows us to analyze the recall

of our approach. In our experiments, we will use Biperpedia (Gupta et al., 2014),

a repository of noun phrase relations automatically extracted from Web text and a

query log of a major search engine. Since the relations themselves are the result of an

extraction algorithm, the may include false positives (i.e., nonsensical relations).

Aiming for high recall means extracting facts in a fairly liberal manner, which will

inevitably introduce a great deal of noise. To offset this, fact extraction is followed by

a fact scoring stage where correct extractions are given higher scores than incorrect

ones, and the consumer of these facts can make use of these scores for their particular

application.

We will make an important distinction between the fat head and the long tail of

relations. Our focus in this work will be on the long tail, as existing knowldege graphs

and OpenIE schemes perform poorly on it while performing satisfactorily on the fat

head as we show later in our experiments. To define the two sets, we order the relations

in Biperpedia in descending order of the number of their occurrences in a large textual
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corpus (see Section 5.7.1). We define the fat head to be the relations until the point N

in the ordering such that the total number of occurrences of relations before N equals

the number of total occurrences of the relations after N . In our corpus, the fat head

has 218 relations (i.e., N = 218) and the long tail has 60K relations. Table 5.1 shows

examples from both. This distinction will become important when we compare the

recall of ReNoun to existing OpenIE schemes.

By working with large Web-scale corpora, OpenIE can exploit redundancy in how

facts are expressed both for learning extraction patterns and subsequently scoring

extractions. We exploit rich syntactic and linguistic cues by processing the documents

in the corpus with a natural language processing pipeline comprised of dependency

parsing, noun phrase chunking, named entity recognition, coreference resolution, and

entity resolution to Freebase. The chunker identifies noun phrases in the text that

include our relations (but the annotation process is independent of our specific setting).

All these annotations are exploited in the various stages of our extraction pipeline.

5.1.3. Contributions & Overview

This chapter presents ReNoun, an OpenIE scheme for finding and extracting instances

of binary relaions mediated by noun phrases from text. The novel contributions of

ReNoun are a bootstrapping scheme for extracting facts centered around noun phrases,

and a scoring scheme for facts that benefits from the redundancy in patterns that

extract a certain fact.

For fact extraction, ReNoun starts by defining a small set of high-precision patterns

for extracting facts centered around noun phrases. These patterns will extract noun

phrase relations and instances of these relations at the same time. With these facts in

hand, we proceed to looking for sentences where the same facts occur, but expressed in

a less direct way using long-range dependencies. These dependencies are extracted and

generalized to patterns, which can then be matched against a large corpus to produce

even more facts, most of which will not have been observed in the initial seed fact

extraction stage.

The second component of ReNoun is a scheme for scoring facts by considering the

set of patterns that produces each fact. The fact extraction scheme we outlined above

generally aims for high recall in terms of fact extraction. Each stage of the extraction

process can introduce noise. Observing that the same fact is usually extracted multiple

times by different dependency parse patterns, and that patterns differ in how prone

they are to admitting noisy extractions, we design a scheme that scores a fact based

on the set of dependency parse patterns from which it was extracted. Our approach

essentially quantifies the trustworthiness of each pattern, and then aggregates these

numbers to quantify the confidence in an extracted fact. An application consuming

the facts extracted by ReNoun can take the score associated with each fact either as a

signal in some complex machinery, or simply set a cutoff threshold based on its specific
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requirements.

Moreover, we present extensive experimental analysis of existing knowledge graphs

to motivate the need for accounting for relations expressed through noun phrases and

analyze the extractions of existing OpenIE systems to demonstrate their deficiency for

this specific case. The scheme described here is already in active use in a major search

engine.

We start by presenting related work in the field of information extraction in Section

5.2. In Section 5.3 we back the motivation given above with concrete experimental

results showing (i) the use of noun phrases as relations is integral to existing knowl-

edge graphs, and (ii) the inadequacy of existing OpenIE methods for extracting facts

centered around noun phrases. In Sections 5.4 and 5.5 we present our approach to seed

fact extraction, their use for dependency parse pattern generation, and the deployment

of these patterns to generate candidate facts that are passed to our scoring system.

Our approach to fact scoring based on extraction pattern coherence is explained in

Section 5.6. In Section 5.7, we present extensive experiments and analysis that fur-

ther demonstrate the need for ReNoun, show the quality of facts from each stage of

ReNoun’s pipeline, and show places where ReNoun misses.

5.2. Related Work

5.2.1. Open Information Extraction

Open Information Extraction (OpenIE) was introduced by Etzioni et al. (2004) as

an information extraction paradigm designed to allow for domain-independent dis-

covery of relations and extraction of their instances from Web-scale text corpora in

a scalable manner. This is in contrast to systems that are domain specific and are

designed to extract instances of a predetermined set of relations. The first OpenIE

framework, called KnowItAll, allowed for the manual specification of extraction rules

in a domain-independent manner. These rules would subsequently trigger Web search

engine queries both to find documents against which these rules can be matched and

to automatically assess the quality of the resulting extractions. Later work introduced

TextRunner (Banko et al., 2007; Yates et al., 2007), an OpenIE system that finds

relations by looking for the text separating two noun phrases in a sentence and uses

a classifier to judge the trustworthiness of an extraction. WOEparse (Wu and Weld,

2010) extends this work by using dependency parsing to connect the subject and ob-

ject. Both systems assume that the relation is located between its arguments, an

assumption that ReNoun drops as it is unsuitable for noun phrase relations.

Closest to our work are ReVerb (Fader et al., 2011) and OLLIE (Mausam et al.,

2012). ReVerb uses POS tag patterns to locate relations mediated by verbs, and then

looks for noun phrases to the left and right of the relation for arguments. OLLIE uses

ReVerb extractions as its seeds to train dependency parse patterns that can extract
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more triples. While OLLIE’s patterns themselves are not limited to verb relations, the

ReVerb seeds are limited to verbs, which makes OLLIE’s coverage on noun relations

also limited. In contrast, ReNoun takes a noun-centric approach from the start and

extracts many that do not exist in OLLIE.

ClausIE (Corro and Gemulla, 2013) is an OpenIE framework that exploits knowledge

about English grammar and linguistic structure to find clauses in a sentence using

its dependency parse. The clauses are subsequently used to generate extractions at

multiple levels of granularity, possibly with more than triples. While ClausIE comes

with a predefined set of rules on how to extract facts from a dependency parse, ReNoun

learns such rules from its seed facts (albeit for extractions composed of triples only).

Similar to ClausIE, Angeli et al. (2015) performs OpenIE relying on the clause

structure of sentences. It subsequently uses natural logic (Lakoff, 1972), a proof system

based on the syntax of natural language, to simplify extractions so that they are not

overly specific, and hence more useful in downstream applications, while still entailed

by the original sentence.

5.2.2. Bootstrapping and Distant Supervision

Bootstrapping, as used in this work, goes back to some of the early approaches to

information extraction like DIPRE (Brin, 1998) and Snowball (Agichtein and Gravano,

2000) among others. Bootstrapping is achieved by manually compiling seed tuples or

patterns, and then using these to learn more patterns. The process can proceed in

an iterative manner, with each new set of facts contributing to finding more patterns.

Compared to these works, our patterns are linguistically motivated and are not relation

specific. DARE (Xu et al., 2007) is a framework for extracting instances of n-ary

relations by bootstrapping. The ability to go beyond binary relations to n-ary relations

is made possible by DARE’s recursive and compositional rule framework. DARE learns

these rules automatically from text starting with a set of seed facts.

An extension of the bootstrapping approach is distant supervision proposed by Mintz

et al. (2009). Here, a knowledge graph is used as a source of seed facts for bootstrap-

ping from a corpus. These bootstrapped facts are used to learn classifiers that can

recognize the occurrence of knowledge graph relations in text. The classifier takes

into consideration rich lexical, syntactic and NER features, and conjunctions of these.

For training the classifier, negative examples are also needed. These are generated

from sentences containing entity pairs not connected by the specific relation in the

knowledge graph.

PROSPERA (Nakashole et al., 2011) is an extension of distant supervision that

can automatically generalize extraction patterns and uses constraint-based reasoning

for controlling the quality of patterns and facts. Pattern generalization, achieved

through frequent itemset mining, allows for higher recall. By using MaxSat reasoning,

PROSPERA can control the quality of the resulting extractions by checking for their
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mutual consistency. It builds on SOFIE (Suchanek et al., 2009) but is more scalable

and provides higher recall. This is achieved by moving to so-called n-gram-itemset

patterns rather the phrases or dependency paths for expressing relations.

Blessing and Schütze (2012) introduce crosslingual distant supervision. In this set-

ting, multiple knowledge graphs in different languages are available with linkage among

their entities. For a given relation, a pivot KG is chosen, which is one that provides

good coverage on that specific relation. Using the linkage between the entities in the

different language KGs, it is able to find occurrences of the arguments of a fact from

the pivot KG in text in the target language as is done in traditional distant supervi-

sion. These annotations can subsequently be used to learn extractors for the specific

relation in the target language. By working with multiple languages, this approach

produces high accuracy extractions through crosslingual filtering and achieves higher

coverage in cases where some relations are not covered by certain languages.

5.2.3. Relation Discovery

The system we propose here is not restricted to relations from an existing repository.

Instead, in line with OpenIE, it can discover relations as part of the extraction process.

Other works have focused on the task of relation discovery (or relation extraction).

Patty (Nakashole et al., 2012) presents a scheme for large scale extraction of typed

textual patterns denoting binary relations and organizing them into a subsumption

hierarchy. Other works (e.g., Pasca and Durme (2007, 2008)) mine relational patterns

for specific semantic classes (e.g., movies or musicians). In this setting, the problem is

to determine what the relevant relations for a domain are.

5.2.4. Semantic Knowledge Graphs

In Section 2.1 we introduced the knowledge graphs DBpedia, Freebase, and Yago.

These generally provide very limited coverage when it comes to relations. Additionally,

these knowledge graphs contain predicates (strictly speaking identifiers such as URIs),

but no natural language patterns for them. Such patterns are essential for downstream

applications. One use of OpenIE extractions is to link predicates in a semantic knowl-

edge graph with possible natural language manifestations (see, for example, Nakashole

et al. (2012)) for use in such tasks as entity search, question answering, and semantic

parsing.

5.2.5. Hypernym/Hyponym Extraction

In our work, noun phrase relations, also in combination with their subjects, can be

seen as hypernyms for their corresponding objects (i.e., a hypernym/hyponym pair).

For example, the fact (‘NPR’, ‘legal affairs correspondent ’, ‘Nina Totenberg ’) can also
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be seen as stating that ‘Nina Totenberg ’ is a member of the classes ‘legal affairs corre-

spondent ’ and ‘NPR legal affairs correspondent ’. The seminal work of Hearst (1992)

introduced Hearst patterns for hypernym extraction from free text. The manually

defined patterns we present in Section 5.4 are similar in spirit to Hearst patterns, but

result in triples rather than pairs. By extracting triples, we essentially account for

cases where complex noun phrases denoting the hypernym in the hypernym/hyponym

setting can be decomposed. The work of Venetis et al. (2011) assigns class labels to

Web table columns, obtaining a database of isA relation instances in the process.

5.2.6. Semantic Role Labeling

In principle, the task of extracting noun phrase mediated relations can be compared

to that of semantic role labeling (SRL) for nouns. The task in SRL is to identify a

relation, expressed either through a verb or a noun, map it to a semantic frame, and

map the arguments of the relation to the various roles within the frame. State-of-

the-art SRL systems, such as that of Johansson and Nugues (2008), are trained on

NomBank (Meyers et al., 2004) for handling noun relations, which also means that

they are limited by the knowledge this resource has. ReNoun, on the other hand, can

extract the subject and object roles for a far larger number of noun phrase relations,

as we demonstrate in our experiments. However, being restricted to triples, ReNoun

is unable to extract values for any roles other than those of subject and object.

5.2.7. Applications of OpenIE

OpenIE has been used in several applications. Fader et al. (2013, 2014) used OpenIE

extractions, coupled with KG facts for large-scale question answering. These works,

along with several others (e.g., Berant et al. (2013) and Cai and Yates (2013)) use

OpenIE extractions to find paraphrases for binary predicates in knowledge graphs.

Stanovsky and Dagan (2015) shows significant improvements on the text compre-

hension and word similarity tasks achieved by integrating OpenIE extractions into

existing systems that tackle these tasks.

We used OpenIE extractions in Chapter 4 for creating an extended knowledge graph

(XKG) and paraphrasing KG predicates. The goal there was to allow for flexible

answering of triple-pattern queries by accounting for missing data in the KG and the

terminological and structural gaps between a query and the KG.

5.3. Noun Phrases as Relations

ReNoun’s goal is to extract facts for relations expressed as noun phrases. Two natural

questions to ask are (i) how important are noun phrases as relations, and (ii) how

far prior work on OpenIE goes towards the goal of extracting facts centered around
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Knowledge Graph %Nouns %Verbs

Freebase 97 3

DBpedia 96 4

Table 5.2.: Percentage of relations expressed as nouns phrases among the 100

relations with the most facts.

noun phrases. Answering the first question provides justification for going after noun

phrases as relations, as KGs generally contain relations deemed to be most interesting

because, for example, they answer a large number of user queries in a Web search

setting. The answer to this question also provides some guidance for the case where

we want to exploit OpenIE extractions to populate KG predicates. The answer to the

second question informs us how large of a gap our work needs to fill.

To answer the first question, we look at two major knowledge graphs, Freebase

(Bollacker et al., 2008) and DBpedia (Auer et al., 2007), to see how important noun

phrases are as relations in these knowledge graphs. For this, we consider the top 100

relations in terms of the number of instances they have in each of the two knowledge

graphs. Table 5.2 shows that the vast majority of these fat head relations are noun

phrases. If we consider the long tail of relations in each of the two knowledge graphs,

then the share of relations expressed as nouns increases.

We answer our second question, as to whether existing, verb-centric OpenIE ap-

proaches are sufficient, negatively. We present concrete experimental results to sup-

port this answer. As this requires a detailed explanation of the experimental setup,

we refer the reader to Section 5.7.2. The most interesting conclusion is that on a large

corpus, a state-of-the-art OpenIE scheme extract facts for only 31% of the noun phrase

relations which our work extracts facts for. Here, we notice that as relation names get

longer (e.g., ‘chief privacy officer ’, ‘automotive division’), we are less likely to be able

to extract their instances with verb-based OpenIE schemes.

Given the answers to the two questions, it is clear that a noun-centric OpenIE

scheme is desired. Noun phrases constitute the vast majority of relations in KGs,

which implies that they have great importance as relations. The answer to the second

question clearly shows that existing OpenIE approaches are not sufficient when it

comes to noun phrases as relations.

It is also important to consider what the answers to the two questions mean together.

For this, let’s consider the setting where we want to use existing verb-centric OpenIE

schemes to find more instances of existing KG relations. From the sentence “Obama

advised Merkel on saving the Euro”, an OpenIE scheme will be able to extract the fact

(‘Obama’,‘advised ’, ‘Merkel ’). However, we would not want to use this fact to populate

the advisor predicate in a KG (e.g., (GeorgeBush, advisor, CondoleezzaRice)),

as it does not imply that Obama is an advisor of Angela Merkel in the common sense
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1. the R of S, O – the CEO of Google, Larry Page

2. the R of S is O – the CEO of Google is Larry Page

3. O, S R – Larry Page, Google CEO

4. O, S’s R – Larry Page, Google’s CEO

5. O, [the] R of S – Larry Page, [the] CEO of Google

6. SRO – Google CEO Larry Page

7. S R, O – Google CEO, Larry Page

8. S’s R, O – Google’s CEO, Larry Page

Table 5.3.: High precision patterns used for seed fact extraction along with an

example of each. Here, the object (O) and the relation (R) corefer and

the subject (S) is in close proximity. In all examples, the resulting fact

is (Google, ‘CEO ’, Larry Page). Patterns are not relation specific.

of advisor. Applying existing verb-based OpenIE schemes with the goal of populating

existing KG predicates with more instances would require that we paraphrase these

verb-based extractions to noun-based ones, requiring us to solve the paraphrasing

problem (Madnani and Dorr, 2010).

5.4. Seed Fact Extraction

The input to ReNoun is only relations, without any instances of these relations. The

first stage in ReNoun’s pipeline is to extract a set of high-precision seed facts that

are used to train more general extraction patterns. For seed fact extraction, ReNoun

uses a set of manually crafted patterns over tokens, noun phrase chunks, named entity

annotations, and coreference annotations. Table 5.3 shows the eight patterns ReNoun

uses for extracting seed facts. Each pattern is shown along with an example for how

it applies to the ‘CEO ’ relation. The application of the these patterns is tailored to

our setting of noun phrase relations.

Specifically, when we apply an extraction pattern to generate a triple (S,R,O) we

require that the relation R is a noun phrase, obtained via a noun phrase chunker and

is in our relation repository. The subject S and the object O are both named entities.

Additionally, utilizing the fact that our relations are noun phrases, we require that R

and O corefer. For example, in Figure 5.1, ‘CEO ’ is in our relation set (Biperpedia)

and the coreference resolver annotates ‘CEO ’ and ‘Larry Page’ to be part of the

same coreference cluster (cluster 2). The use of coreference follows from the simple

observation that objects will often be referred to by nominals, many of which are our

relations of interest. Since the sentence matches our sixth extraction pattern, ReNoun

extracts the triple (Google, ‘CEO ’, LarryPage).
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Document:

“[Google]1 [CEO]2 [Larry Page]2 started his term in 2011, when [he]2 succeeded

[Eric Schmidt]3. [Schmidt]3 has since assumed the role of executive chairman of

[the company]1.”

(a)

Coreference clusters:

# Phrases Freebase ID

1 Google, the company /m/045c7b

2 Larry Page, CEO, he /m/0gjpq

3 Eric Schmidt, Schmidt /m/01gqf4

(b)

Figure 5.1.: Coreference clusters: (a) a document annotated with coreference

clusters; (b) a table showing each cluster with the representative

phrases in bold and the Freebase ID to which each cluster maps.

The seed fact extraction patterns are very similar to Hearst patterns in spirit (Hearst,

1992). However, the goal here is different. Whereas Hearst patterns extract pairs (a

noun phrase and its hyponym), our seed patterns extract triples (a relation and its

two arguments). In our extractions, the subject and relation can be considered a

noun phrase and its hypernym, respectively. However, many of our relations (e.g.,

‘daughter ’), are rarely interesting as hypernyms in a larger application.

We rely on a coreference resolver in the spirit of Haghighi and Klein (2009). For

each cluster of coreferring mentions, the resolver also chooses a representative mention,

which is a proper noun or proper adjective (e.g., Canadian). Each cluster is possibly

linked to a Freebase entity with a unique ID. Figure 5.1(b) shows the coreference

cluster from the example document of Figure 5.1(a), with representative phrases in

bold, along with the Freebase ID of each cluster. Note that in this example, the noun

phrase ‘executive chairman’, which is in our relation set, is not part of any coreference

cluster. The fact centered around this relation will not be extracted at this point using

the patterns of Table 5.3, but could be extracted in the next phase. The resulting facts

use Freebase IDs for subject and object (for readability, we will use entity names in

the rest of this chapter).

An important consideration in our seed fact extraction patterns is that they also

specify the assignment of relation arguments to the subject (S) and object (O) roles

based on the semantics of the resulting triple. This is important since it allows us

to correctly make the role assignments for the arguments in our dependency parse

patterns later in Section 5.5.1.

In summary, our seed extraction process proceeds in two steps. First, we find can-
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didate relation-object pairs that corefer and in which the relation is in our relation

repository. Second, we match these sentences against our hand-crafted rules to gen-

erate the extractions. In Section 5.7.4 we show that the precision of our seed facts is

65% for the fat head relations and 80% for the long tail ones.

5.5. Pattern and Candidate Fact Generation

With the seed facts in hand, we can now proceed to generate dependency parse pat-

terns, which we later use for finding new instances of our relations that we have not

observed before in our seed facts. For our purposes, a dependency parse of a sentence

is a directed graph whose vertices correspond to tokens in the sentence and edges

correspond to grammatical relations that hold between these tokens (Marneffe et al.,

2006). A vertex is labeled with a pair of token and part-of-speech tag, and edges are

labeled with one of a predefined set of grammatical relations.

A dependency pattern is a subgraph of a dependency graph where the words in

zero or more vertices have been replaced by placeholder variables, while maintaining

the POS tag (a process called delexicalization of a vertex ). Applying such a pattern

to a sentence results in zero or more subgraphs of the sentence’s dependency parse

that match the pattern, along with assignments of the placeholder variables in the

pattern to concrete tokens. The benefit of using dependency patterns is their ability

to generalize, as they ignore extra tokens in the sentence that do not belong to the

dependency subgraph of interest.

5.5.1. Dependency Pattern Generation

We present the procedure for generating dependency patterns in Algorithm 5.1 along

with an example run in Figure 5.2. The procedure expects as input a set of seed facts

(Section 5.4) and our annotated corpus 5.7.1.

The procedure iterates over sentences in the corpus, looking for a sentence s match-

ing a seed fact f = (S,R,O), where a match occurs if s has a noun phrase matching

R and two entity annotations matching S and O (they belong to a coreference cluster

that maps to the same Freebase entity as the subject and object of f). When a match

occurs, we hypothesize that the sentence s expresses the fact f . Our experiments and

error analysis later in this chapter indicate that this is a reasonable hypothesis. Ad-

ditionally, our scoring scheme presented later will allow us to remove noise obtained

through this assumption.

We now proceed to extract a dependency pattern from the matched sentence. In

practice, a pattern P is composed of two distinct patterns, PSR connecting the subject

to the relation, and POR connecting the object to the relation. In what follows, we

focus on PSR as the generation of POR is analogous. PSR is taken to be the path in

the dependency parse of s connecting the lexical head of the phrase corresponding to
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S with the lexical head of R. To generate a pattern, we delexicalize the two tokens at

the ends of PSR (the lexical heads of S and R) and assign them the variables S and R

corresponding to their roles. Additionally, if the head of the phrase corresponding to

O occurs in PSR, we delexicalize it as well and assign it the variable O. Relations have

nouns as their head words. The subject and object heads can be nouns, adjectives

(e.g., American), or pronouns (e.g., its). We lift all POS tags corresponding to nouns

in the nodes corresponding to the heads of S or O to N.

In principle, the head of the token need not be delexicalized. However, as pattern

matching is an expensive step, we do this to reduce the number of distinct dependency

patterns matched, as many patterns would otherwise differ only at the relation head

vertex. Each pattern is produced with a list of the relations to which it applies.

Algorithm 5.1: Dependency pattern generation.

input : Seed facts I, Corpus D.

1 P := An empty set of dependency pattern-relation pairs.

2 foreach sentence s ∈ D do

3 foreach triple t = (S,R,O) found in s do

4 if t ∈ I then

5 G(s) = dependency parse of s

6 P ′ = minimal subgraph of G(s) containing the head tokens of

S, R and O

7 P = Delexicalize(P ′, S, R, O)

8 P = P ∪ {〈P,R〉}

9 return P

It is important to note that our dependency patterns clearly distinguish the roles of

subject and object. This is facilitated by the manner in which we generate our seed

facts (Section 5.4), which show which argument will take the role of subject and which

will take the role of object. This is in contrast to earlier work (e.g., OLLIE), where the

assignment depends on the order in which the arguments are expressed in text. The

distinction can be crucial for applications that utilize our extracted facts. For exam-

ple, given the sentence “Opel was described as GM’s most successful subsidiary” and

the seed fact (GM, ‘subsidiary ’, Opel), the pattern ReNoun generates will consistently

produce facts like (BMW, ‘subsidiary ’, Rolls-Royce), and not the incorrect inverse.

5.5.2. Dependency Pattern Application

Given the learned patterns, we can now generate new extractions by applying these

patterns. Each match of a pattern against the corpus will indicate the heads of the
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Relations: R ={executive chairman}
Seed fact: I = {(Google, executive chairman, Eric Schmidt) }
Sentence: s = “An executive chairman, like Eric Schmidt of Google,

wields influence over company operations.”

An/DET

executive/NNchairman/NN

det
nn

like/IN

prep

Schmidt/NNPpobj Eric/NNPnn

of/IN
prep

Google/NNPpobj

(a)

chairman/NN like/INprep Schmidt/NNPpobj of/INprep Google/NNPpobj

(b)

{R/N} like/INprep {O/N}pobj of/INprep {S/N}pobj

(c)

Figure 5.2.: Dependency pattern generation using seed facts, corresponding to

Algorithm 5.1: (a) shows the input to the procedure (dependency

parse partially shown); (b) P ′; (c) P .
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potential subject, relation, and object. The noun phrase headed by the token match-

ing the {R/N} vertex is checked against the set of relations to which the pattern is

applicable. If it is found among these relations, then a triple (S,R,O) is constructed

from the relation and the Freebase entities to which the phrases headed by the tokens

corresponding to the S and O nodes in the pattern are resolved. This triple is then

emitted as an extraction along with the pattern that generated it. Figure 5.2(b) and

(c) show two sentences that match the dependency pattern in our running example

and the resulting extractions.

Finally, we aggregate our extractions by their generated facts. For each fact f , we

save the distinct dependency patterns that yielded f and the total number of times f

was found in the corpus by each pattern.

5.6. Fact Scoring

The scheme described above for fact extraction can produce a large number of facts,

some of which can be erroneous either due to the assumption made in Section 5.5 or

simply due to erroneous annotations from the NLP pipeline. Our approach to tackle

this problem is to assign each fact a score that reflects our confidence that the fact

actually holds. A consumer of the facts generated can subsequently use these scores

either as information to a larger learning framework or to impose a cutoff threshold

on the score based on the error tolerance of her application.

ReNoun’s scoring scheme is based on two observations about extraction patterns.

The first relates to pattern frequency, while the second relates to pattern coherence:

1. Pattern frequency: Our observation is that patterns that produce a large

number of extractions will always produce correct extractions (in addition to

incorrect ones). We define pattern frequency as the absolute number of facts a

dependency pattern is able to extract.

2. Pattern coherence: On the other hand, generic patterns that apply to a wide

variety of relations result in more noise than specialized patterns that apply to

a targeted set of relations from a limited domain. To capture this intuition, we

introduce the notion of pattern coherence, which reflects how targeted a pattern

is, based on the set of relations to which it applies. For example, we observed

that if an extraction pattern yields facts for the coherent set of relations ‘ex-wife’,

‘boyfriend ’, and ‘ex-partner ’, then its output is consistently good. On the other

hand, a pattern that yields facts for the less coherent set of relations ‘ex-wife’,

‘general manager ’, and ‘subsidiary ’ is more likely to produce noisy extractions.

Generic patterns that apply to incoherent relations are more sensitive to noise in

the linguistic annotation of a document. Figure 5.3 shows an example pattern

for each case, along with its frequency and coherence, computed as described

next.
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has/VBZ
{S/N}nsubj

children/NNS
dobj

with/INprep {R/N}pobj {O/N}appos

relations: { ex-wife, boyfriend, ex-partner }

frequency(P ) = 574, coherence(P ) = 0.429

Example: “Putin has two children with his ex-wife, Lyudmila.”

(a)

{R/N} {S/N}nn{O/N} nn

relations: { ex-wife, general manager, subsidiary,... }

frequency(P ) = 52349038, coherence(P ) = 0.093

Example: “Chelsea F.C. general manager José Mourinho...”

(b)

Figure 5.3.: Example of two dependency patterns generated by ReNoun along

with the set of relations they apply to, (a) has high coherence and

low frequency while (b) has low coherence and high frequency.

As stated above, the computation of a pattern’s frequency is simply the number

of facts it extracts. We capture the coherence a pattern through the coherence of

the relations to which it applies, based on the intuition outlined above. We compute

the coherence of relations using their distributed vector representations following the

scheme described by Mikolov et al. (2013). This work has shown its effectiveness in

measuring the semantic similarity between words or concepts. We use the skip-gram

model, which is generated by training a neural network to predict the vectors of the

context words given the vector of the current word. The similarity between a pair of

words or phrases can then be measured using the similarity of their respective vector

representations (e.g., using cosine similarity, as is common in the literature).

In our setting, given a dependency pattern P that applies to the relations {R1, ..., Rn},
with each relation Ri having the vector representation v(Ri), we define the coherence

of P to be the average pairwise similarity of the vectors corresponding to the relation

to which it applies:
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coherence(P ) =

∑n−1
i=1

∑n
j=i+1 sim(Ri, Rj)

n(n− 1)
=

∑n−1
i=1

∑n
j=i+1

v(Ri)·v(Rj)
‖v(Ri)‖‖v(Rj)‖

n(n− 1)
.

Finally, we score a fact f by summing the product of frequency and coherence for

each pattern P generating f as follows:

score(f) =
∑

P∈Pat(f)

frequency(P )× coherence(P ),

where Pat(f) is the set of all patterns that generate f , frequency(P ) is the number

of distinct facts generated by P , and coherence(P ) is as defined above.

5.7. Experimental Evaluation

In this section, we present experiments to:

i. demonstrate the need for our noun-centric approach to open information extrac-

tion,

ii. evaluate the quality of the facts obtained at each step of ReNoun’s pipeline, and

iii. demonstrate the effectiveness of our proposed scheme for scoring extractions.

We start by describing our experimental setup.

5.7.1. Setup

We use Freebase as our reference knowledge graph against which named entity mentions

are resolved. It is important to stress that Freebase relations are not used at all, as

we seek to stay within the OpenIE paradigm. We work with a corpus of 400M news

documents which have been annotated offline with noun phrase chunks, dependency

parses, coreference links, and named entities linked to Freebase.

While relations can be discovered as part of ReNoun’s extraction scheme, we chose

to work with an existing repository of relations generated using the scheme described

by Gupta et al. (2014). Doing this allows us to later analyze what percentage of

potentially interesting relations ReNoun can extract facts for.

To define the sets of fat head (FH) and long tail (LT) relations, we order the relations

in descending order of the number of times they occur in our text corpus. We define

cutoff point N as the position in this list where the total frequency of relations above

and below this point is equal. All relations above this cutoff are defined to be in

FH while all those below it are in LT. In our corpus FH contains 218 relations (i.e.,

N = 218) and LT contains 60K relations.
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ReNoun OLLIE (Mausam et al., 2012)

flagship company -

railway minister -

legal affairs correspondent -

spokesperson be spokesperson of

president-elect be president elect of

co-founder be co-founder of

Table 5.4.: Long tail ReNoun relations with and without a corresponding OLLIE

relation.

When evaluating the correctness of facts, we take the majority vote of three hu-

man judges unless otherwise stated. The judges were explicitly instructed to consider

facts with inverted subject/object arguments as incorrect. For example, the fact (GM,

‘subsidiary ’, Opel) is considered correct, while its inverse is not.

5.7.2. Comparison to State-of-the-Art OpenIE

State-of-the-art OpenIE systems such as OLLIE (Mausam et al., 2012) assume that

relations are expressed using verb phrases, which can include a noun phrase within

them. In this experiment, we show that this is not sufficient and that our approach is

required for more comprehensive coverage of noun phrase relations. We compare the

number of attributes covered by ReNoun to those covered by OLLIE. We use a custom

implementation of OLLIE that supports multi-word relations and run it on the same

corpus as ReNoun.

For more insight, we report on results for FH and LT. We randomly sampled each of

the two sets for 100 relations for which ReNoun extracts facts and asked a human judge

to find OLLIE extractions involving a similar relation. We did not require that the

two be exactly the same. For example, the relation ‘advised by ’ should be considered a

match to the ReNoun attribute ‘advisor ’. This is somewhat permissive, as nouns and

their corresponding verbs do not necessarily carry the same meaning, and should not

be considered synonyms. For example, the sentence “Obama advised Merkel on saving

the Euro” does not imply that Obama is Merkel’s ‘advisor ’. This observation suggests

a subtle difference between the meaning of verb and noun-based expressions. This

experiment, therefore, gives us an upper bound on the number of ReNoun relations

OLLIE can cover.

The results show a big discrepancy in OLLIE’s ability to cover the long tail compared

to the fat head of relations. On FH, OLLIE can extract facts for 99 of the 100 randomly

sampled relations. However, for LT, OLLIE manages to extract facts for 31 of the 100

relations sampled, despite our permissive setting. The majority of these relations were
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multi-word noun phrases. Table 5.4 shows examples of LT relations with and without

OLLIE extractions.

We make a similar comparison in the other direction, by sampling random relations

for which OLLIE extracts facts, and checking if ReNoun generates facts for the same

relations. For this, we randomly sampled 100 such relations, and checked them against

ReNoun’s extractions. We only managed to find matches for 48, with 52 having no

corresponding facts in ReNoun. 25 of the 52 missed relations were not in our initial

list of relations, which meant that we cannot extract facts for them. The remaining 27

cases have various explanations. First, some relations express actions that need to be

part of a larger verb phrase (i.e., noun phrases do not suffice). In general, these cannot

be considered relations of the subject entity (e.g., ‘citation of ’ in “Obama’s citation

of the Bible”). Second, some relations have the object, a common noun, embedded

within them (e.g., ‘have microphone in’), and do not have corresponding relations. The

remaining relations either have meaningless extractions or use common noun phrases

as arguments. ReNoun focuses on facts with proper nouns (i.e., entities) for arguments

because facts with common nouns as arguments are rarely interesting without a larger

context. Finally, we note that the majority of the 25 OLLIE relations that are not in

our initial set of relations fall into one of the three categories above.

5.7.3. Comparison to NomBank

In Section 5.2 we presented the task of semantic role labeling (SRL) and contrasted

it with our task. To demonstrate the limitation of having SRL systems trained on

such resources as NomBank (Meyers et al., 2004), we asked a judge to manually search

NomBank for 100 relations randomly drawn from FH and LT for which ReNoun ex-

tracts facts. Again, we take a liberal approach to matching similar to what we did

above with OLLIE to establish an upper bound. We declare a match if the head word

of a relation is found in NomBank. In this way, we could match 80 FH relations and

42 LT ones. For example, we could not find matches for ‘coach’ (FH) or ‘linebacker ’

(LT). This is rather unsurprising given that NomBank contains 4700 relations only.

Looking deeper into NomBank’s frames, some nouns are not associated with frames

that allow the extraction of triples. For example, all frames for the noun ‘member ’

specify one argument only, which means that in the sentence “John became a member

of ACM”, the output relation is the pair (ACM, ‘member ’) instead of the desired triple

(ACM, ‘member ’, John). Of course, some frames in NomBank allow for the extraction

of more than triples, which is beyond ReNoun’s ability.

Finally, similar to what we did for OLLIE, we consider the NomBank nouns for

which ReNoun offers no extractions. Out of a random sample of 100 NomBank nouns,

ReNoun does not extract facts for 29 (four of which are not in our attribute set). The

majority of the missed nouns cannot be used by ReNoun because they expect a single

argument or take a prepositional phrase or common nouns rather than proper nouns
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corresponding to entities as their second arguments.

5.7.4. Seed Fact Quality

We now present an experimental evaluation of the quality of the seed facts extracted

using the manually specified patterns described in Section 5.4. Applying these patterns

to our corpus resulted in 139M extractions, which boiled down to about 680K unique

facts covering 11,319 attributes. We evaluated 100 randomly chosen facts from each

of FH and LT and obtained precisions of 65% and 80%, respectively. We comment on

these findings in what follows.

First, the precision of the LT facts at 80% is high, making it suitable for use as a

building block in a bootstrapping scheme as we will show later. ReNoun, is primarily

interested in LT attributes, which earlier approaches cannot deal with satisfactorily as

we demonstrated in Section 5.7.2.

Second, LT attributes have higher precision than FH ones. One reason is that multi-

word relations (which tend to be in LT) are sometimes incorrectly chunked, causing

only the head to be recognized as the relation and resulting in a fact not actually being

expressed in text. For example, in the phrase “America’s German coach, Klinsmann”,

the correct relation is ‘German coach’ (LT), but incorrect chunking produces the re-

lation ‘coach’ (FH) and the incorrect fact (Germany, ‘coach’, Klinsmann). Another

reason for the lower precision on FH relations is that they are more likely to occur in

a speculative context where the presence of the relation is not necessarily an assertion

of a fact. In principle, both LT and FH attributes can be subject to this problem,

but we observe this much more for FH attributes. For example, before a person is a

‘railway minister ’ (LT), there is little mention of her along with the relation. On the

other hand, before a person is elected ‘president ’ (FH), there is usually media coverage

of her candidacy. Speculative contexts, combined with incorrect linguistic analysis in

some instances, can result in incorrect seed facts. For example, from the sentence

‘Republican favorite for US president, Mitt Romney, visited Ohio’, we extract the fact

(US, ‘president ’, Romney).

5.7.5. Candidate Generation

Using seed facts, we deploy our candidate fact extraction scheme as described in Section

5.5. We call the facts extracted at this stage candidates since they will be subject to

scoring in the next stage, which will affect how upstream applications use them, if at

all. In the first step, we produced a total of 2M unique dependency patterns. A third

of these patterns could extract values for exactly one attribute. Manual inspection

of these patterns showed that they were either noise, or do not generalize. We kept

patterns supported by at least 10 distinct seed facts, yielding more than 30K patterns.

We then applied the patterns to our corpus, resulting in over 460M extractions,
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aggregated into about 40M distinct facts. Of these, about 22M facts were for LT

attributes and 18M for FH. In general, we find that these facts contain a great deal of

noise, which presents a need to score them. We evaluate the quality of these facts in

conjunction with our fact scoring scheme.

5.7.6. Scoring Extracted Facts

ReNoun produces a large number of extractions. However, most of these are noisy. In

Section 5.6 we presented our scheme for assigning scores to facts, which applications

on top of ReNoun can use. In this section we present experiments that demonstrate

the effectiveness of our scoring scheme. We do this by (i) comparing it to other natural

scoring baselines, and (ii) showing the quality of the top-k scored facts produced using

this scheme at various cutoff thresholds k.

In the first experiment on our scoring scheme (which we call FREQ COH), we

compare it against three natural baselines. The first, FREQ scores a fact f based

on the sum of the frequencies of the patterns that extract it. The second baseline,

PATTERN, scores a fact by the distinct number of patterns that extract it. The final

baseline, PATTERN COH, weighs each pattern by its coherence.

Scheme Definition, score(f) = Spearman’s ρ

FREQ
∑

P∈Pat(f) frequency(P ) 0.486

FREQ COH
∑

P∈Pat(f) frequency(P )× coherence(P ) 0.495

PATTERN
∑

P∈Pat(f) 1 0.265

PATTERN COH
∑

P∈Pat(f) coherence(P ) 0.257

Table 5.5.: Scoring schemes.

We generated 250 random facts with no entity disambiguation errors by the under-

lying annotation pipeline. The justification is that none of the schemes we consider

here is capable of dealing with such errors. To account for such errors would require

the consideration of additional signals from the named entity disambiguator, which

we leave for future work. For each scoring scheme, we compute the Spearman’s rank

correlation coefficient ρ between the scores and the manual judgments (Baeza-Yates

and Ribeiro-Neto, 1999). A larger ρ indicates more correlation. All ρ values were

determined to be statistically significant (p-value ≤ 0.01).

FREQ and FREQ COH dominate, but both have similar performance. This result

shows that considering pattern frequency is very helpful. We observed that coherence

helped in cases where facts have very similar frequencies. In this case, considering

coherence usually helped score the correct fact higher than the incorrect one. This

effect, however, is tempered when we consider a large number of facts.
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FH LT

k Precision #Rel Precision #Rel

102 1.00 8 1.00 50

103 0.98 36 1.00 294

104 0.96 78 0.98 1548

105 0.82 106 0.96 5093

106 0.74 124 0.70 7821

All 0.18 141 0.26 11178

Table 5.6.: Precision of random samples of the top-k scoring facts, along with

the relation yield.

In the second experiment, we evaluate our scoring scheme by considering the pre-

cision of the top-k facts for various cutoff thresholds k. Here, for each value of k we

randomly sample 50 facts from the set of k facts with the highest scores and present

them to our judges for evaluation. We would expect a good scoring scheme to surface

correct facts to the top and incorrect ones to the bottom of the raking it induces. This

means that as the value of k increases, we should expect a drop in precision. Table 5.6

shows the precision values at each cutoff threshold as well as the number of distinct

relations for which facts are found at this threshold (#Rel).

The results show that precision decreases as we increase k, which is the behavior

we would expect from a good scoring scheme. At a cutoff of 1M, we obtain precision

values ≥ 0.70, which is satisfactory compared to other scheme such as that of Fader

et al. (2011) which produces similar numbers at the same cutoff threshold.

There are several sources of error here. First, incorrect dependency parses were

sometimes generated, mainly due to incorrect removal of boilerplate text from web

pages. The second source of errors was incorrect coreference resolution of pronouns.

Incorrect entity disambiguation against Freebase was another source of errors. Finally,

some relations require that we go beyond triples for meaningful extractions. The

‘ambassador ’ relation with two countries as its arguments is an example of such case.

5.7.7. Analysis of missed extractions

As explained above, ReNoun expects a set of relations for which it extracts facts. Out

of 60K relations we use in our experiments, we extract facts for less than 12K. It is

important to understand what extraction opportunities have been missed by ReNoun

in order to extend it in the future. We considered all 77 FH relations for which ReNoun

did not generate any facts (out of a total of 218 FH relations), and a random sample

of 100 LT relations with the same issue. Table 5.7 shows a breakdown of the issues.

The first three categories in Table 5.7 are cases that are currently outside the scope
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Cause FH LT Example

Vague 23 37 ‘culture’

Numeric 4 26 ‘rainfall ’

Object not KG entity 11 6 ‘email ’

Plural 30 15 ‘member firms ’

Bad relation / misspell 3 4 ‘newsies ’

Value expected 6 12 ‘nationality ’

Total 77 100

Table 5.7.: Analysis of relations with no extractions.

of ReNoun: vague relations whose values are long narratives, numeric attributes, and

relations whose values are not modeled as Freebase entities (e.g., ‘email ’). The next

two categories are due limitations in the relation repository we use (Biperpedia). We

take relations as they are in Biperpedia. If they are in plural, we do not attempt to

place them in singular. Additionally, some relations are simply bad, often resulting

from misspelled words. Finally, the “Value expected” category contains relations for

which ReNoun should have extracted instances. This is the most interesting category

of attributes in this analysis. One reason for missing values is that the corpus itself

does not contain values for all relations. Another reason is that some relations are not

verbalized in text. For example, relations like ‘nationality ’ are usually not explicitly

stated when expressed in text.

5.8. Discussion

In this chapter we presented an approach for open information extraction focused on

relations mediated by noun phrases. The goal here was to complement the existing

state-of-the-art which has generally focused on relations mediated through verbs. We

took a bootstrapping approach where an initial set of seed facts is extracted from a

text corpus using a small number of manually specified seed patterns. These seed facts

are subsequently matched against the corpus to find more elaborate ways of expressing

them. From these matches we generate dependency parse patterns that we run over the

corpus to gather before unseen facts. These facts are scored taking into consideration

the frequency with which they were observed and the trustworthiness of the patterns

that extract them, for which we use pattern coherence as a proxy.

We presented comprehensive experiments that show a clear gap in the state-of-

the-art in open information extraction, justifying the need for ReNoun. Moreover,

we presented experiments that demonstrate the effectiveness of ReNoun’s extraction

and scoring scheme, particularly when it comes to the long tail of relations. Finally,
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we presented an analysis of ReNoun’s shortcomings, which were due to a mixture of

fundamental limitations (e.g., numerical attributes) and particularities of the corpus

at hand. The data produced by ReNoun is in active use in a major search engine.

One direction for future research is to move beyond triples while staying within

the OpenIE paradigm. A relation like ‘ambassador ’ needs at least three arguments

(person, represented country, and host country) if not more. The analysis presented

at the end of this work shows some clear directions for extension. One clear direction

is attributes, where the arguments are not entities but rather literals. The main

challenge here will be how to reconcile possibly conflicting numbers and dates and to

recognize when triples are sufficient or when there is clear need go beyond triples (e.g.,

GDP changes yearly). Another class of relations is ones that require a narrative (e.g.,

‘culture’) where the task of OpenIE might intersect with that of text summarization.

An important consideration is how to extend our approach and other similar ap-

proaches beyond English. While we were willing to invest the time to come up with

a handful of patterns for seed fact extraction, even this seemingly simple task can

become a burden if we need to support multiple languages. Can we, for instance, start

with a system designed for a specific language and then rely on parallel copora to auto-

matically learn similar patterns for languages? Faruqui and Kumar (2015) presents an

initial effort towards this goal by performing multilingual OpenIE relying on machine

translation and crosslingual relation projection.

An interesting question is how the data generated here can be used. There are some

clear uses such as extending knowledge graphs or finding paraphrases for relations in

a KG. However, we can think of others, in part inspired by the analysis presented in

our experiments. We saw some shortcomings of a resource like NomBank in our ex-

periments, an interesting question is how our extractions can be used to automatically

extend such a resource – which, in turn, presents a strong case for moving beyond

triples. Using OpenIE extractions to extend linguistic resources can have a big impact

on tasks using these resources. For instance, a task like abstract meaning representa-

tion (AMR) parsing would greatly benefit from the automated extension of NomBank.





6. Conclusion

6.1. Summary

This dissertation presented three contributions to facilitate effective querying of knowl-

edge graphs and acquisition of knowledge. The contributions of this thesis are in the

areas of question answering over knowledge graphs, relaxed knowledge graph querying

combining structured and unstructured data, and open information extraction.

Our first contribution, DEANNA, allows users to query knowledge graphs using

natural language questions. This allows for the expression of sophisticated informa-

tion needs which can be satisfied with crisp answers in the form of tuples of entities.

It also shields users from the complexities of the knowledge graph, which include a

potentially large vocabulary and a continuously evolving structure. The main issue

DEANNA deals with is that of ambiguity in mapping a question to a query. This

ambiguity is both structural and terminological. DEANNA’s contribution here is an

ILP framework that tackles these ambiguities jointly, as the resolution of one informs

the other. Furthermore, to make up for any possible errors in the disambiguation or in-

completeness in the knowledge graph, DEANNA will iteratively relax query conditions

with unsatisfactory answers by casting them into textual conditions that are evaluated

over textual contexts of facts.

Our second contribution, TriniT, tackles the problem unsatisfactory answers for

triple pattern queries over knowledge graphs. The issue here is mismatches between

a query and the knowledge graph, either due to the incompleteness of the knowledge

graph or the user’s lack of familiarity with its terminology. Unlike earlier approaches,

TriniT compensates for these issues without sacrificing the structure in the query,

which is essential for capturing concrete relations between entities. TriniT addresses

the two issues using a combination of knowledge graph extension and query relaxation.

Knowledge graph extension entails extending the data model and the corresponding

query model to allow for facts extracted from text. These facts are allowed to have

textual tokens in any of their SPO components. To allow a user’s query to make

use of this extension, TriniT supports query relaxation, where automatically mined

relaxation rules are used to rewrite query conditions during query evaluation. Our

scoring scheme guides this process, ensuring both effectiveness and efficiency.

Our final contribution in this dissertation is ReNoun, an OpenIE framework tar-

geting relations mediated through noun phrases. ReNoun complements the state of

119
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the art in OpenIE, which has generally been restricted to relations mediated by verbs,

thereby missing a great deal of extraction opportunities, particularly when it comes

to relations in the long tail. ReNoun adopts a bootstrapping approach to extraction,

where a small set of manually specified lexical patterns is used to extract seed facts cen-

tered around noun phrases. These seed facts are subsequently used to find dependency

parse patterns that can express instances of each of the detected relations, allowing

for very elaborate ways of expressing facts to be captured. In contrast to earlier work,

ReNoun takes care in assigning the subject and object roles in a fact, thereby ensuring

consistency, which is crucial for upstream applications. To compensate for noise in the

extraction process, ReNoun assigns scores to each fact, reflecting the confidence in the

fact. A fact is scored by considering the frequency with which it was extracted, and

the trustworthiness of each of the patterns that extract it, which we capture using a

notion of relation coherence.

6.2. Outlook

While the approaches presented in this work go a long way towards facilitating effective

querying and acquisition of knowledge, the problems we tackle in this dissertation are

far from being solved. We addressed the shortcomings and opportunities for extension

of each of our contributions in the respective chapters. We conclude this dissertation by

discussing themes for future research that we believe are crucial for effective querying

and acquisition of knowledge.

Beyond English

The work presented in this dissertation is heavily focused on English in several

ways: question analysis and parsing for DEANNA assume that the question provided

is in English, TriniT relies on large entity-annotated corpora, and ReNoun relies on

English-specific patterns for seed fact extraction and corpora that have been annotated

with dependency parses, which are not universally available for all languages. An

important research question is: how can we extend the work in this dissertation to be

multilingual. The two obstacles in this respect are (i) the availability of NLP tools such

as dependency parsers, noun phrase chunkers, and entity disambiguation systems, and

(ii) the availability of data in the form of dictionaries, and annotated corpora. The

long term goal here would be truly language-agnostic approaches.

Beyond Question/Answer

In both DEANNA and TriniT, as is the case for other similar systems, human and

machine take turns in issuing input on one side, and coming up with an answer on the

other. However, this is unnatural. Machines should be able to ask humans to help

out in resolving ambiguity, they should also be able to ask for more context whenever

this can help the answering process. Humans, on the other hand, should be able to
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see explanations of how machines arrive at an answer. They should then be able to

ask for refinements or modifications based on this information. Achieving this presents

challenges that across several communities including natural language processing, in-

formation retrieval, dialog systems and human-computer interaction. The long term

here would be interactive question answering.
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A. DEANNA Workload

# Query

1 Who was the successor of John F. Kennedy?

2 Who is the mayor of Berlin?

3 Give me all professional skateboarders from Sweden.

4 Give me a list of all trumpet players that were bandleaders.

5 Give me all members of Prodigy.

6 Give me all cars that are produced in Germany.

7 Give me all people that were born in Vienna and died in Berlin.

8 What is the capital of Canada?

9 Who was the father of Queen Elizabeth II?

10 Sean Parnell is the governor of which U.S. state?

11 Give me all movies directed by Francis Ford Coppola.

12 Give me all actors starring in movies directed by and starring

William Shatner.

13 Give me all current Methodist national leaders.

14 Give me all Australian nonprofit organizations.

15 In which military conflicts did Lawrence of Arabia participate?

16 Who developed Skype?

17 Give me all companies in Munich.

18 List all boardgames by GMT.

19 Who founded Intel?

20 Who is the husband of Amanda Palmer?

21 Give me all breeds of the German Shepherd dog.

22 Which cities does the Weser flow through?

23 Which countries are connected by the Rhine?

24 Which professional surfers were born on the Philippines?

25 In which UK city are the headquarters of the MI6?

26 Which other weapons did the designer of the Uzi develop?

27 Give me all Frisian islands that belong to the Netherlands.

28 What is the ruling party in Lisbon?

29 Which Greek goddesses dwelt on Mount Olympus?

30 Give me the Apollo 14 astronauts.
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31 What is the time zone of Salt Lake City?

32 Give me a list of all lakes in Denmark.

33 Which instruments did John Lennon play?

34 Which ships were called after Benjamin Franklin?

35 Who are the parents of the wife of Juan Carlos I?

36 In which U.S. state is Area 51 located?

37 List the children of Margaret Thatcher.

38 Who was called Scarface?

39 Which books by Kerouac were published by Viking Press?

40 Give me a list of all American inventions.

41 Who created the comic Captain America?

42 What is the largest city in Australia?

43 Who composed the music for Harold and Maude?

44 Where is the residence of the prime minister of Spain?

45 Who wrote the lyrics for the Polish national anthem?

46 Who painted The Storm on the Sea of Galilee?

47 Which country does the creator of Miffy come from?

48 Who produces Orangina?

Table A.1.: QALD-2 Questions

# Query

1 birthplace stephen hawking

2 canada’s capital

3 capital australia

4 director of pulp fiction

5 richard feynmans advisor

6 author of the waste lands

7 awarded guitarists

8 barcelona artists

9 chicago comedians

10 coastal cities

11 companies based in silicon valley

12 corporate execs born in sydney

13 emmy award actors

14 guitarists awarded a grammy

15 ivy league school US presidents

16 lead guitarists

17 physicists that won the nobel physics prize
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18 protest song musician

19 reggae rock trios

20 spanish painters

21 turing award mathematicians

22 woody allen awards

Table A.2.: Telegraphic query workload of Pound et al. (2012)





B. TriniT Workload

# Query

INEX XER-100 Operating systems to which Steve Jobs related

INEX XER-108 State capitals of the United States of America

INEX XER-114 Formula one races in Europe

INEX XER-115 Formula One World Constructors’ Champions

INEX XER-116 Italian nobel prize winners

INEX XER-128 Bond girls

INEX XER-129 Science fiction book written in the 1980

INEX XER-130 Star Trek Captains

INEX XER-133 EU countries

INEX XER-136 Japanese players in Major League Baseball

INEX XER-140 Airports in Germany

INEX XER-141 Universities in Catalunya

INEX XER-143 Hanseatic league in Germany in the Netherlands Circle

INEX XER-144 chess world champions

INEX XER-64 Alan Moore graphic novels adapted to film

INEX XER-81 Movies about English hooligans

INEX XER-88 Nordic authors who are known for children’s literature

INEX XER-95 Tom Hanks movies where he plays a leading role.

INEX XER-96 Pure object-oriented programing languages

INEX XER-99 Computer systems that have a recursive acronym for

the name

INEX XER-106 Noble english person from the Hundred Years’ War

INEX XER-109 National capitals situated on islands

INEX XER-110 Nobel Prize in Literature winners who were also poets

INEX XER-113 Formula 1 drivers that won the Monaco Grand Prix

INEX XER-117 Musicians who appeared in the Blues Brothers movies

INEX XER-119 Swiss cantons where they speak German

INEX XER-124 Novels that won the Booker Prize

INEX XER-125 countries which have won the FIFA world cup

INEX XER-126 toy train manufacturers that are still in business

INEX XER-127 german female politicians
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INEX XER-132 living nordic classical composers

INEX XER-134 record-breaking sprinters in male 100-meter sprints

INEX XER-135 professional baseball team in Japan

INEX XER-138 National Parks East Coast Canada US

INEX XER-139 Films directed by Akira Kurosawa

INEX XER-147 Chemical elements that are named after people

INEX XER-60 olympic classes dinghy sailing

INEX XER-62 Neil Gaiman novels

INEX XER-63 Hugo awarded best novels

INEX XER-65 Pacific navigators Australia explorers

INEX XER-67 Ferris and observation wheels

INEX XER-72 films shot in Venice

INEX XER-73 magazines about indie-music

INEX XER-74 circus mammals

INEX XER-79 Works by Charles Rennie Mackintosh

INEX XER-86 List of countries in World War Two

INEX XER-87 Axis powers of World War II

INEX XER-91 Paul Auster novels

INEX XER-94 Hybrid cars sold in Europe

INEX XER-97 Compilers that can compile both C and C++

INEX XER-98 Makers of lawn tennis rackets

QALD2 te-2 Who was the successor of John F. Kennedy?

QALD2 te-21 What is the capital of Canada?

QALD2 te-27 Sean Parnell is the governor of which U.S. state?

QALD2 te-28 Give me all movies directed by Francis Ford Coppola.

QALD2 te-33 Give me all Australian nonprofit organizations.

QALD2 te-35 Who developed Skype?

QALD2 te-40 List all boardgames by GMT.

QALD2 te-42 Who is the husband of Amanda Palmer?

QALD2 te-43 Give me all breeds of the German Shepherd dog.

QALD2 te-51 Give me all Frisian islands that belong to the Netherlands.

QALD2 te-55 Which Greek goddesses dwelt on Mount Olympus?

QALD2 te-58 What is the time zone of Salt Lake City?

QALD2 te-59 Which U.S. states are in the same timezone as Utah?

QALD2 te-6 Give me all professional skateboarders from Sweden.

QALD2 te-60 Give me a list of all lakes in Denmark.

QALD2 te-77 Who was called Scarface?

QALD2 te-82 Give me a list of all American inventions.

QALD2 te-87 Who composed the music for Harold and Maude?
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QALD2 te-88 Which films starring Clint Eastwood did he direct himself?

QALD2 te-89 In which city was the former Dutch queen Juliana buried?

QALD2 te-90 Where is the residence of the prime minister of Spain?

QALD2 te-91 Which U.S. State has the abbreviation MN?

QALD2 te-95 Who wrote the lyrics for the Polish national anthem?

QALD2 te-98 Which country does the creator of Miffy come from?

QALD2 te-99 For which label did Elvis record his first album?

QALD2 te-100 Who produces Orangina?

QALD2 te-14 Give me all members of Prodigy.

QALD2 te-17 Give me all cars that are produced in Germany.

QALD2 te-19 Give me all people that were born in Vienna and died

in Berlin.

QALD2 te-22 Who is the governor of Texas?

QALD2 te-24 Who was the father of Queen Elizabeth II?

QALD2 te-29 Give me all actors starring in movies directed by and

starring William Shatner.

QALD2 te-3 Who is the mayor of Berlin?

QALD2 te-31 Give me all current Methodist national leaders.

QALD2 te-34 In which military conflicts did Lawrence of Arabia

participate?

QALD2 te-39 Give me all companies in Munich.

QALD2 te-41 Who founded Intel?

QALD2 te-44 Which cities does the Weser flow through?

QALD2 te-45 Which countries are connected by the Rhine?

QALD2 te-46 Which professional surfers were born on the Philippines?

QALD2 te-48 In which UK city are the headquarters of the MI6?

QALD2 te-49 Which other weapons did the designer of the Uzi develop?

QALD2 te-53 What is the ruling party in Lisbon?

QALD2 te-57 Give me the Apollo 14 astronauts.

QALD2 te-63 Give me all Argentine films.

QALD2 te-64 Give me all launch pads operated by NASA.

QALD2 te-65 Which instruments did John Lennon play?

QALD2 te-66 Which ships were called after Benjamin Franklin?

QALD2 te-67 Who are the parents of the wife of Juan Carlos I?

QALD2 te-72 In which U.S. state is Area 51 located?

QALD2 te-75 Which daughters of British earls died in the same place

they were born in?

QALD2 te-76 List the children of Margaret Thatcher.

QALD2 te-8 To which countries does the Himalayan mountain
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system extend?

QALD2 te-81 Which books by Kerouac were published by Viking Press?

QALD2 te-84 Who created the comic Captain America?

QALD2 te-9 Give me a list of all trumpet players that were bandleaders.

QALD2 te-97 Who painted The Storm on the Sea of Galilee?

QALD2 tr-10 In which country does the Nile start?

QALD2 tr-21 Which states border Illinois?

QALD2 tr-22 In which country is the Limerick Lake?

QALD2 tr-3 Who is the daughter of Bill Clinton married to?

QALD2 tr-36 Through which countries does the Yenisei river flow?

QALD2 tr-41 Give me all soccer clubs in Spain.

QALD2 tr-42 What are the official languages of the Philippines?

QALD2 tr-43 Who is the mayor of New York City?

QALD2 tr-44 Who designed the Brooklyn Bridge?

QALD2 tr-54 Who was the wife of U.S. president Lincoln?

QALD2 tr-63 Give me all actors starring in Batman Begins.

QALD2 tr-65 Which companies work in the aerospace industry

as well as on nuclear reactor technology?

QALD2 tr-70 Give me all films produced by Hal Roach.

QALD2 tr-77 Which music albums contain the song Last Christmas?

QALD2 tr-78 Give me all books written by Danielle Steel.

QALD2 tr-79 Which airports are located in California, USA?

QALD2 tr-8 Which states of Germany are governed by the

Social Democratic Party?

QALD2 tr-85 In which films did Julia Roberts as well as

Richard Gere play?

QALD2 tr-87 Who wrote the book The pillars of the Earth?

QALD2 tr-89 Give me all soccer clubs in the Premier League.

QALD2 tr-9 Which U.S. states possess gold minerals?

QALD2 tr-1 Give me all female Russian astronauts.

QALD2 tr-15 Who created Goofy?

QALD2 tr-16 Give me the capitals of all countries in Africa.

QALD2 tr-18 Which museum exhibits The Scream by Munch?

QALD2 tr-23 Which television shows were created by Walt Disney?

QALD2 tr-25 In which films directed by Garry Marshall was

Julia Roberts starring?

QALD2 tr-28 Which European countries have a constitutional monarchy?

QALD2 tr-29 Which awards did WikiLeaks win?

QALD2 tr-31 What is the currency of the Czech Republic?

QALD2 tr-32 Which countries in the European Union adopted the Euro?
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QALD2 tr-35 Who is the owner of Universal Studios?

QALD2 tr-38 Which monarchs of the United Kingdom were married

to a German?

QALD2 tr-4 Which river does the Brooklyn Bridge cross?

QALD2 tr-45 Which telecommunications organizations are located

in Belgium?

QALD2 tr-49 Give me all companies in the advertising industry.

QALD2 tr-52 Which presidents were born in 1945?

QALD2 tr-53 Give me all presidents of the United States.

QALD2 tr-55 Who developed the video game World of Warcraft?

QALD2 tr-6 Where did Abraham Lincoln die?

QALD2 tr-62 Who created Wikipedia?

QALD2 tr-64 Which software has been developed by organizations

founded in California?

QALD2 tr-68 Which actors were born in Germany?

QALD2 tr-71 Give me all video games published by Mean

Hamster Software.

QALD2 tr-72 Which languages are spoken in Estonia?

QALD2 tr-73 Who owns Aldi?

QALD2 tr-74 Which capitals in Europe were host cities of the

summer olympic games?

QALD2 tr-80 Give me all Canadian Grunge record labels.

QALD2 tr-82 In which programming language is GIMP written?

QALD2 tr-83 Who produced films starring Natalie Portman?

QALD2 tr-84 Give me all movies with Tom Cruise.

QALD2 tr-86 Give me all female German chancellors.

SemSearch LS-10 did nicole kidman have any siblings

SemSearch LS-14 gods who dwelt on Mount Olympus

SemSearch LS-17 houses of the Russian parliament

SemSearch LS-19 kenya’s captain in cricket

SemSearch LS-2 Arab states of the Persian Gulf

SemSearch LS-20 kublai khan siblings

SemSearch LS-24 matt berry tv series

SemSearch LS-29 nations where Portuguese is an official language

SemSearch LS-3 astronauts who landed on the Moon

SemSearch LS-30 orders (or ’choirs’) of angels

SemSearch LS-32 presidents depicted on mount rushmore who died of shooting

SemSearch LS-34 ratt albums

SemSearch LS-35 republics of the former Yugoslavia
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SemSearch LS-42 twelve tribes or sons of Israel

SemSearch LS-43 what books did paul of tarsus write?

SemSearch LS-44 what languages do they speak in afghanistan

SemSearch LS-46 where the British monarch is also head of state

SemSearch LS-5 books of the Jewish canon

SemSearch LS-50 wonders of the ancient world

SemSearch LS-7 Branches of the US military

SemSearch LS-1 Apollo astronauts who walked on the Moon

SemSearch LS-11 dioceses of the church of ireland

SemSearch LS-12 first targets of the atomic bomb

SemSearch LS-13 five great epics of Tamil literature

SemSearch LS-16 hijackers in the September 11 attacks

SemSearch LS-18 john lennon, parents

SemSearch LS-21 lilly allen parents

SemSearch LS-22 major leagues in the united states

SemSearch LS-25 members of u2?

SemSearch LS-26 movies starring erykah badu

SemSearch LS-31 permanent members of the UN Security Council

SemSearch LS-33 provinces and territories of Canada

SemSearch LS-36 revolutionaries of 1959 in Cuba

SemSearch LS-37 standard axioms of set theory

SemSearch LS-38 states that border oklahoma

SemSearch LS-39 ten ancient Greek city-kingdoms of Cyprus

SemSearch LS-4 Axis powers of World War II

SemSearch LS-41 the four of the companions of the prophet

SemSearch LS-49 who invented the python programming language

SemSearch LS-6 boroughs of New York City

SemSearch LS-8 continents in the world

SemSearch LS-9 degrees of Eastern Orthodox monasticism

TREC Entity-11 Donors to the Home Depot Foundation.

TREC Entity-14 Authors awarded an Anthony Award at Bouchercon in 2007.

TREC Entity-20 Scotch whisky distilleries on the island of Islay.

TREC Entity-4 Professional sports teams in Philadelphia.

TREC Entity-5 Products of Medimmune, Inc.

TREC Entity-6 Organizations that award Nobel prizes.

TREC Entity-9 Members of The Beaux Arts Trio.

TREC Entity-1 Carriers that Blackberry makes phones for.

TREC Entity-10 Campuses of Indiana University.

TREC Entity-12 Airlines that Air Canada has code share flights with.
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TREC Entity-15 Universities that are members of the SEC conference

for football.

TREC Entity-16 Sponsors of the Mancuso quilt festivals.

TREC Entity-17 Chefs with a show on the Food Network.

TREC Entity-18 Members of the band Jefferson Airplane.

TREC Entity-19 Companies that John Hennessey serves on the board of.

TREC Entity-2 Winners of the ACM Athena award.

TREC Entity-7 Airlines that currently use Boeing 747 planes.

Table B.1.: Questions from ESQ workload

# Query

1 Find novels written by Jane Austen.

2 Find football players who were FIFA Player of the Year.

3 Find companies acquired by Oracle.

4 Find films directed by Steven Spielberg.

5 Find US Open champions.

6 Find Turing Award recipients.

7 Find Eagles songs.

8 Find staring Robert De Niro.

9 Find computer game companies.

10 Find football players who transfered to Real Madrid.

11 Find capitals of states in the US.

12 Find persons born in Spain.

13 Find Celine Dion songs.

14 Find Pulitzer Prize for Drama winners.

15 Find province capitals in China.

16 Find companies in Silicon Valley.

17 Find Turing Award recipients who are affiliated with IBM.

18 Find US presidents who graduated from Harvard.

19 Find Brazilian football players who played for Real Madrid.

20 Find Australian actors who won some Best Actress award.

21 Find computer game companies acquired by Microsoft.

22 Find Nobel Prize winners and Big Ten universities. The winners held

professorship in the universities.

23 Find films starring Robert De Niro and please tell directors of these films.

24 Find films and Australian actors. The film are an Academy Award

winning film staring the actors.

25 Find companies and their founders. The company must be in
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Silicon Valley and the founders are Stanford University graduates.

26 Find football players and Italian football clubs. The player was an FIFA

Player of the Year and joined the clubs sometime.

27 Find NBA champion teams and their leading players who won the

NBA final MVP.

28 Find novels and their Academy Award winning film adaptations.

Table B.2.: Questions from ERQ workload

# Query

1 Which albums won an award which Barbra Streisand was nominated for?

2 Who starred in a movie directed by Hal Ashby?

3 Who acted in films in which an actor starring in Kuffs acted?

4 Who starred in a movie directed by Guinevere Turner’s writing partner?

5 Which awards were won by movies Dev Patel starred in?

6 Which film did the actor who directed The Mirror Has Two Faces star in?

7 Which awards were won by actors who starred in Charly?

8 Which rock band was the lead singer of Death Cab for Cutie a member of?

9 Who is the lieutenant governor of the province where Ottawa is located.

10 Archbishop of the fourth largest city of Germany.

11 Currency of the country whose president is James Mancham.

12 Who is the drummer for the band Brian Fair is a vocalist for?

13 Albums by the rock band Chad Smith is a drummer for?

14 Scientists who won the same award as Linus Pauling.

15 Physicist who won the same award as Paul Dirac.

16 Departments at the university where Ernest Rutherford worked.

17 Professors at the university where Enrico Fermi worked.

18 Computer scientists who are professors at the university where Frederick

Terman was a professor.

19 Computer scientists who worked at an institute Albert Einstein worked at.

20 Computer scientists who are professors at the university the

inventor of Pascal worked at.

21 Programming languages created by professors at the university the

inventor of Pascal worked at.

22 Who founded the university which Randy Pausch taught at?

23 Computer scientists who worked at the same organization as

Richard Hamming.

24 Programming language invented at the organization

Richard Hamming worked at.

25 Who established an award won by The New Yorker?
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26 Editors of magazines which won an award established by Joseph Pulitzer?

27 Awards won by magazines edited by William Shawn.

28 Who was married to a person who won the Nobel Peace Prize?

29 Awards the husband of Tipper Gore won?

30 Which author was the stepbrother of Jacqueline Kennedy Onassis?

31 Writers who won an award named after Hugo Gernsback

32 Which spiritual leader won the same award as a US vice president?

33 Computer games created by the same company that created

Castle Crashers.

34 Who was the governor of the state Bernie Sanders represented?

35 Who directed a movie in which the actor who played Jack Sparrow acted?

36 Awards won by Bill Clinton’s vice president.

37 Which director was married to an actor from the country where IKEA

was founded?

38 Which German federal state borders a country that borders Italy?

39 Who is the chancellor of the university that awarded an honorary PhD

to Nick Cave?

40 Kings of the city which led the Peloponnesian League.

41 Who is the mayor of the city where The Scream was stolen?

42 Governor of the state where Johns Hopkins University is based.

43 Who is married to an actor who went to an Ivy League university?

44 Which airports are named after a physicist who influenced Isaac Newton?

45 Which radio show is hosted by a graduate from an Ivy League university?

46 What Museums are located in the city where the Fritz Haber Institute

of the MPG is located?

47 Who starred in a film in which Kevin Kline acted?

48 Who was the wife of the brother of Joseph Smith?

49 Where was the brother of Joseph Smith killed?

50 Who was the chief minister of the state whose capital is Chandigarh?

51 Which newspaper has writers who won a Pulitzer Prize?

52 Which universities were computer scientists who invented a

programming language professors at?

53 Which football player played for a team in the city where Prada is located.

54 Which states were represented by senators who became presidents of

the United States.

55 Which baseball players were born in the same city as a US president.

56 Which programming languages were invented by people who won

the Turing Award.

57 Mayor of the largest city in Texas.
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58 Computer games released by the same company that created

The Legend of Zelda

59 Representatives from the same state as senator John McCain.

60 Movies by the director of Apocalypse Now

61 Economists influenced by Karl Marx

62 Computer games created by a subsidiary of Electronic Arts.

63 Which movie does the ex-wife of Brad Pitt star in?

64 Programming languages created by programmers who worked

at Sun Microsystems.

65 Universities in the same city as Emory University.

66 Universities in the capital of Georgia (USA).

67 Companies founded by the creator of Star Wars.

68 Companies the creator of Tetris works at.

69 Companies headed by George Bush’s vice president.

70 Who was the child of the successor of Neville Chamberlain?

Table B.3.: Questions used for COMPLEX benchmark
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