
U-AIDA: a Customizable System for
Named Entity Recognition,

Classification, and Disambiguation

Mohamed Amir Yosef

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken
2015

Dean Prof. Dr. Markus Bläser

Colloqium 11.12.2015
Saarbrücken

Examination Board

Supervisor and Reviewer Prof. Dr.-Ing. Gerhard Weikum

Reviewer Prof. Dr. Klaus Berberich

Reviewer Prof. Dr. Marc Spaniol

Chairman Prof. Dr. Dietrich Klakow

Research Assistant Dr. Johannes Hoffart

Abstract

Recognizing and disambiguating entities such as people, organizations, events or places in
natural language text are essential steps for many linguistic tasks such as information
extraction and text categorization. A variety of named entity disambiguation methods
have been proposed, but most of them focus on Wikipedia as a sole knowledge resource.
This focus does not fit all application scenarios, and customization to the respective
application domain is crucial.

This dissertation addresses the problem of building an easily customizable system for
named entity disambiguation. The first contribution is the development of a universal
and flexible architecture that supports plugging in different knowledge resources. The
second contribution is utilizing the flexible architecture to develop two domain-specific
disambiguation systems. The third contribution is the design of a complete pipeline
for building disambiguation systems for languages other than English that have poor
annotated resources such as Arabic. The fourth contribution is a novel approach that
performs fine-grained type classification of names in natural language text.

i

Kurzfassung

Das Erkennen und die Disambiguierung von Entitäten wie etwa Personen, Organisationen
oder Orte in natürlichsprachigem Text sind wertvolle Hilfsmittel für zahlreiche linguisti-
sche Aufgaben Biespielanwendungen sind Informationsextraktion oder die Kategorisierung
von Texten. In diesem Kontext sind eine Vielzahl von Verfahren zur Disambiguierung
erforscht worden. Allerdings basieren die meisten dieser Verfahren lediglich auf dem
aus Wikipedia extrahierbaren “Wissen”. Diese Fokussierung eignet sich jedoch keines-
wegs für alle Anwendungsszenarien, weshalb eine Anpassung an die jeweils vorliegende
Anwendungsdomäne besonders wichtig ist. Diese Dissertation befasst sich daher mit
dem Entwurf eines Universell einsetzbaren und individuell konfigurierbaren Systems zur
Disambiguierung von Entitätsnamen.

Der erste Beitrag dieser Arbeit ist die Entwicklung einer universell einsatzfähigen und
anpassbaren Architektur, die das Einbinden unterschiedlicher Wissensquellen ermöglicht.
Darauf aufbauend wird die Flexibilität der vorgestellten Architektur mittels zweier
domänen-spezifischer Anwendungen belegt. Darüber hinaus wird die Vielseitikeit des
Verfahrens durch den Entwurf eines kompletten Verarbeitungsprozess für resourcenarme
Sprachen am Beispiel der arabischen Sprache gezeigt. Abschließend wird ein neuartiger
Ansatz zur feingranularen Typisierung von benannten Entitäten in natürlichsprachigem
Text vorgestellt.

ii

Summary

Discovering mentions of named entities such as people, events, location or organizations
and linking them to canonical entities registered in a knowledge resource is a valuable
asset in many linguistic tasks such as semantic search and information extraction. The
English Wikipedia is the most widely used knowledge resource in the literature for
performing named entity disambiguation. However, the English Wikipedia is only suitable
for disambiguating general English text such as English news articles. Developing a
disambiguation system for other domains and languages requires major adaptation to fit
the specific application scenarios. In addition, the Wikipedia editions for many languages,
such as Arabic, are an order of magnitude smaller than the English Wikipedia. Therefore,
it is crucial to exploit cross-language evidences to enrich the non-English resources. Finally,
some names cannot be disambiguated because they denote entities that do not exist in
the underlying knowledge resource. This dissertation makes the following contributions
to address the problem of building a universal and customizable disambiguation system.

U-AIDA Architecture: We developed a universal architecture called U-AIDA for building
named entity disambiguation solutions. The architecture is flexible and supports plugging
in multiple knowledge resources to be used as the underlying repository for named entities.
U-AIDA can be easily customized to fit various application scenarios.

Domain-Specific Disambiguation Systems: We leveraged the flexibility of U-AIDA
architecture to build two domain-specific systems. The first is developed to handle
German documents from the German National Library. It combines a general-purpose
knowledge base with a domain-specific knowledge base developed by the German National
Library. The second system is geared towards social streams. It considers Twitter as a
use case and accordingly adapts different components of U-AIDA.

Disambiguating non-English Text: We designed a complete pipeline for building named
entity disambiguation systems capable of processing text of languages with poor annotated
resources such as Arabic. We exploited cross-language evidences to enrich these poor
resources with the English counterpart. In addition, we incorporated statistical machine
translation techniques to translate some of the English resources into the target language.
We implemented the system within the U-AIDA framework and tested it on Spanish,
Italian and Arabic. Experiments showed up to 8% improvement in precision and recall
after applying our data enrichment techniques for the Arabic languages. For Spanish and
Italian the improvement was around 4% because of their relatively richer Wikipedias.

iii

Named Entity Classification: Texts from recent news article may contain newly emerg-
ing entities that are unknown to the named entity disambiguation system. We developed a
machine-learning based approach, called HYENA, to classify names of entities under a fine
grained hierarchy of 505 semantic types. We tested our system on different data sets and
compared it to state-of-the-art systems. HYENA outperformed other systems on various
data sets. In addition, we conducted an extrinsic study on named entity disambiguation to
analyze the reduction in search space when applying type-based pruning on the candidate
list. Our experiments showed that 17% reduction in search space could be achieved with
only 2% drop in precision.

iv

Zusammenfassung

Das Erkennen und die Disambiguierung von Entitäten wie etwa Personen, Organisationen
oder Orte in natürlichsprachigem Text sind wertvolle Hilfsmittel für zahlreiche linguisti-
sche Aufgaben. Die englische Version der Online-Enzyklopädie Wikipedia ist dabei die am
häufigsten verwendete Quelle für die Disambiguierung. Allerdings ist die englischsprachige
Wikipedia im wesentlichen “nur” dazu geeignet, englische Nachrichtenartikel zu disambi-
guieren. Die Entwicklung eines Disambiguierungssystems für andere Szenarien und/oder
Sprachen erfordert daher umfassende Anpassungen an das jeweilige Anwendungsgebiet.
Zudem ist Wikipedia in vielen anderen Sprachen, wie z.B. dem Arabischen, um (mehrere)
Größenordnungen kleiner als die englische Wikipedia. Von daher ist es oftmals erforderlich,
inter-linguale Evidenzen zu nutzen, um Wikipedia für weniger verbreitete Sprachen mit
den Quellen aus der englischen Wikipedia zu verknüpfen. Schlussendlich gibt es auch noch
benannte Entitäten, die überhaupt nicht disambiguiert werden können, weil zu diesen
überhaupt kein Eintrag in der Wissensquelle vorhanden ist. Diese Dissertation befasst
sich daher mit dem Entwurf eines Universell einsetzbaren und individuell konfigurierbaren
Systems zur Disambiguierung von Entitätsnamen.

U-AIDA Architektur: Die universelle U-AIDA Architektur wurde für ein adaptives Di-
sambiguierungssystem dazu entwickelt. Diese Architektur ist flexibel ausgelegt und erlaubt
die Einbindung beliebiger Wissensquellen, welche benannte Entitäten enthalten. Zu diesem
Zweck kann U-AIDA vielseitig konfiguriert und an nahezu beliebige Anwendungsszenarien
angepasst werden.

Domänenspezifische Disambigiguierungssysteme: Die Flexibilität von U-AIDA wurde
dazu genutzt, um zwei domänenspezische Systeme zu entwickeln. Das rste System wurde
dazu verwendet, deutschsprachige Dokumente der deutschen Nationalbibliothek (DNB)
zu bearbeiten. Dazu wird eine allgemeine Wissensbasis mit einer bibliothekarischen
Wissenquelle der DNB kombiniert. Das zweite System zielt auf soziale Netzwerke ab. Im
konkreten Fall handelt es sich dabei um eine Anpassung von U-AIDA zum Monitoring
des Twitter-Nachrichtendiensts.

Disambiguierung nicht englischsprachiger Texte: Um Texte in ressourcenarmen Spra-
chen wie etwa dem Arabischen zu disambiguieren, haben wir einen vollständigen Verarbei-
tungsprozess entwickelt. Dazu wurden inter-linguale Evidenzen genutzt, um Wikipedia für
weniger verbreitete Sprachen mit den Quellen aus der englischen Wikipedia zu verknüpfen.
Zudem wurden statistische Verfahren des maschinellen Lernens dazu eingesetzt, dedizierte

v

englischsprachige Ressourcen in die ressourcenarme Sprache übersetzt. Zu diesem Zweck
wurde das U-AIDA System in Arabisch, Italienisch und Spanisch getestet und evaluiert.
Experimente zeigen dabei bis zu 8% Steigerung in Präzision und Ausbeute für Arabisch.
Für Italienisch und Spanisch wurde, bedingt durch deren größeren Ausgangsdatenbestand,
immerhin noch eine Verbesserung von nahezu 5% erzielt.

Klassifikation benannter Entitäten: Nachrichtenartikel enthalten häufig Entitäten, die
aufgrund ihrer erstmaligen Nennung noch nicht in den zugrundeliegenden Wissenbasen
registriert sind. Um auch solche Entitäten typisieren zu können, wurde HYENA entwickelt.
HYENA basiert auf maschinellem Lernen und ist dazu geeignet, Entitäten in einer
feingranularen Hierachie von 505 Typen zu klassifizieren. Das System wurde im Vergleich
mit anderen Referenzsystemen evaluiert. Weiterhin wurde HYENA in einer extrinsischen
Studie dazu eingesetzt, den Suchraum der Kandidaten bei der Disambiguierung auf die
von HYENA vorgegebenen Typen zu reduzieren. Experimente zeigten dass sich bei einer
Reduzierung des Suchraums von 17% die Güte der Präzision der Disambiguierung lediglich
um 2% reduziert.

vi

To my parents

Acknowledgments

I want to show my deep gratitude to my supervisor Gerhard Weikum for his continuous
support throughout my doctoral studies. He always provided me with visionary ideas
that made this dissertation possible. In addition, he was understanding of my personal
life. I want thank the International Max Planck Research School for Computer Science as
well as the Max Planck Society for funding this work and for doing their best to make my
research process easier.
I am grateful to Marc Spaniol for his scientific guidance as well as valuable support

on the personal level. I want to thank Johannes Hoffart for our collaboration on the
AIDA project. He is among the best people I have worked with. I am grateful to other
people who contributed to the AIDA project, especially Yusra Ibrahim and Mohamed
Gad-Elrab, and to Asia Biega and Fabian Suchanek for their valuable help in developing
the multilingual aspect of U-AIDA. I want to thank my colleagues at the Databases and
Information Systems group for their friendly environment, most notably, Klaus Berberich,
Adam Grycner, Stephan Seufert, and Mohamed Yahya .

Most importantly, I want to thank my parents, Mervat Tawfik and Amir Mansour,
and my wife Walaa Ammar. I owe my parents who I am today, they were always super
motivating and supporting before and during my PhD. My wife was courageous enough
to accept to marry me during my first year in my PhD. She has shared both cheerful and
stressful moments with me, and was the best support I got throughout my PhD.

viii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Terminology . 2
1.3. Challenges . 4
1.4. Contributions . 6
1.5. Organization . 7

2. Background and Related Work 9
2.1. Knowledge Bases . 9
2.2. Named-Entity Recognition and Disambiguation 11
2.3. NED: State-of-the-art . 13
2.4. Background and Prior Work on Named Entity Classification (NEC) 14
2.5. The AIDA System . 15

2.5.1. AIDA in a Nutshell . 15
2.5.2. Data and Measures . 15
2.5.3. Model and Algorithm . 18

3. U-AIDA Architecture of a Customizable NERD Framework 19
3.1. Overview . 19
3.2. Named Entity Recognition . 19
3.3. Input Text Representation . 22
3.4. Knowledge Base . 24

3.4.1. Entity Repository . 24
3.4.2. Entity Global Prominence . 26
3.4.3. Name-Entity Dictionary . 27
3.4.4. Entity-Characteristic Keyphrases 28
3.4.5. Entity-Entity Semantic Relatedness 29

3.5. Disambiguation Techniques . 30
3.6. Summary . 31

ix

Contents

4. Applications of the U-AIDA Architecture 33
4.1. Domain-Specific Named Entity Disambiguation 33

4.1.1. Introduction . 33
4.1.2. Multi-Knowledge-Base Architecture 34
4.1.3. The Case of the German National Library 35
4.1.4. Experiments and Evaluation . 37

4.2. Named-Entity Disambiguation for the Social Stream 38
4.2.1. Introduction . 38
4.2.2. Adapting U-AIDA to Tweets . 38
4.2.3. Experiments . 41

5. U-AIDA for Languages with Poor Annotated Resources 43
5.1. Overview . 43
5.2. Entity Catalog . 45
5.3. Name-Entity Dictionary . 45

5.3.1. External Resources . 46
5.3.2. Statistical Machine Translation . 47
5.3.3. People Name Transliteration . 49

5.4. Entity Descriptions . 49
5.5. Implementation . 52
5.6. Experiments and Evaluation . 52

6. HYENA: Named Entity Type Classifier 57
6.1. Introduction . 57
6.2. Computational Model and Feature Set . 59

6.2.1. Fine-grained Type Hierarchy . 59
6.2.2. Feature Set . 60

6.3. Classifier . 62
6.3.1. Hierarchical Classifier . 62
6.3.2. Meta Classifier . 63

6.4. Experiments . 63
6.4.1. Setup . 64
6.4.2. Multi-label Classification . 66
6.4.3. Meta-Classification . 69
6.4.4. HYENA Feature Analysis . 70

6.5. Extrinsic Study on Named Entity Disambiguation 71
6.6. System Implementation . 73

6.6.1. Overview . 73

x

Contents

6.6.2. Sparse Models Representation . 73
6.6.3. Sparse Models Classification . 74

7. Conclusion 75
7.1. Contributions . 75
7.2. Outlook . 76

7.2.1. Adaptive U-AIDA . 76
7.2.2. Multi-Genre Joint NERD . 76
7.2.3. Disambiguating Comparable Corpora 76
7.2.4. Hybrid Named Entity Classification 77

A. HYENA Type Hierarchy 87

xi

List of Figures

2.1. Example from YAGO Knowledge Base . 10
2.2. Example for AIDA Mention-Entity Graph 16

3.1. The Architecture of the U-AIDA NER Component 20
3.2. U-AIDA Approach for Combining Knowledge Bases 25

5.1. Character-level Training Data Point Example 49
5.2. General Architecture for Building an NED System for Arabic 51

6.1. Fine-grained entity type classification . 58
6.2. Modified system architecture designed for handling sparse models 74

xiii

List of Tables

4.1. Results of Running U-AIDA on a Sample Corpus of DNB Documents . . . 38

5.1. Terminology Used for Building an NED System for a Language λ 44
5.2. Entities Context Sources when Building an NED System for Language “λ” 51
5.3. Data Sets Used to Evaluate U-AIDA++ per Language 53
5.4. Experimental Results of Running U-AIDA on Arabic, Spanish and Italian 56

6.1. Top 20 Subtypes of the 5 Top-Level Types 60
6.2. Summary of Features Used for Classification 62
6.3. Properties of Training and Testing Data 65
6.4. Overall Experimental Results for HYENA on Wikipedia 10000 articles . . 66
6.5. Results of HYENA vs HOVY (trained and tested on Wikipedia 10000

articles) . 67
6.6. Results of HYENA vs FIGER (trained on Wikipedia and tested on FIGER-

Gold) . 68
6.7. Results of HYENA vs NG (tested on BBN Corpus) 69
6.8. Performance gain in precision by meta-classifaction 70
6.9. Meta-classifier impact on the 5% worst-performing classes 70
6.10. Micro-average impact of varying the number of Wikipedia articles used for

training . 71
6.11. Impact of Varying Type Prediction Confidence Threshold on NED Results 72

xv

1. Introduction

1.1. Motivation

Named Entity Recognition and Disambiguation (NERD) is the problem of spotting
mentions of named entities such as PERSONS, LOCATIONS and ORGANIZATIONS in natural
language text and linking them to canonical entities registered in a Knowledge Base (KB).
Consider this example:

Page is one of the co-founders of Google

NERD identifies “Page” as a mention of a person, and links it to “Larry Page” as the
correct entity to which the sentence refers.

The problem of NERD has been widely discussed in the literature. However, research
has focused more on producing better disambiguation algorithms and techniques, and
less on the customizability of NERD systems to work for different domains as well as
different languages. Most of the available NERD systems are tested against English
corpora extracted from the news or Wikipedia articles. However, NERD is not a “one-size-
fits-all” problem; instead, application-specific solutions are required. In order to design an
architecture for a universal NERD framework that can be easily customized to different
languages and domains with small effort, different design aspects need to be considered.
For example, unlike English, Arabic is a morphologically rich language that requires

more sophisticated processing. Hence, the architecture should allow plugging in different
language processing components for different languages.

In addition, most NERD systems are using Wikipedia or a Wikipedia derived KB such
as YAGO [25] or Freebase [6] as the underlying KB. While Wikipedia is a compelling choice
when disambiguating general news articles, it is by far not adequate for disambiguating
text from more specific domains such as health or music. Building a NERD system for
different domains requires plugging in one or more KBs other than Wikipedia.
Finally, a universal NERD system should also be able to handle mentions referring

to entities that do not exist in the underlying KBs. While they cannot be linked to

1

1. Introduction

any entity in the KB, they could be classified under the type hierarchy of the KB. For
example, when processing a sports report about a football match, some players might not
be prominent enough to appear in Wikipedia or a similar KB. Nevertheless, the context
is rich enough to flag them not only as persons, but as athletes or even football players.
Mention classification is of high value for known entities as well. Being able to classify a
mention as an athlete helps to reduce the search space when applying NERD by filtering
out all non-athlete entities from the candidate list. Not only does this potentially improve
NERD quality, but it also improves the runtime of NERD methods.

1.2. Terminology

Various technical terms are used throughout the dissertation. Below is a listing of the
most important ones.

Named Entity refers to a uniquely identified item in a set of other items that share one
or more attributes. For example, “Angela Merkel” is a uniquely identified person in
the set of people.

Knowledge Base (KB) is a collection of named entities such as PERSONS, LOCATIONS
and ORGANIZATIONS. Each entity is uniquely identified within the KB. There
exist semantic relations among entities, and entities are organized under a type
hierarchy.

Mention is a surface form that denotes one specific named entity out of a set of potential
candidate named entities.

Named Entity Recognition (NER) is the task of spotting mentions of named entities in
text without linking them to canonical entities. NER involves classifying mentions
into classes such as PERSON, ORGANIZATION, LOCATION and EVENT.

Named Entity Classification (NEC) is the problem of inferring semantic type labels
for mentions of named entities in natural language text. Types can be coarse-
grained such as PERSONS, LOCATIONS, ORGANIZATION or EVENTS, or
fine-grained such as SCIENTISTS, EDUCATIONAL INSTITUTION or NATURAL
CATASTROPHE.

Named Entity Disambiguation (NED) is the process of linking already annotated men-
tions of named entities to canonical entities registered in a Knowledge Base (KB).
The problem is also known in the literature as entity linking.

2

1.2. Terminology

Named Entity Recognition and Disambiguation (NERD) refers to the complete pipeline
that does both NER, NEC and NED. It takes as input a natural language text
without any mention annotations. As output, NERD systems yield both mention
boundaries and links to canonical entities in a KB.

Entity Catalog is the part of the KB that contains a collection of uniquely identified
canonical entities.

Name-Entity Dictionary is a many-to-many relation between surface forms and canonical
entities. It contains potential names of entities, and hence it can be used to retrieve
a list of candidate entities that a surface form can denote.

Entity Keyphrases is a set of characteristic phrases that describe a named entity.

Contextual Similarity is a measure for how similar an input document is to the description
of an entity. It is estimated by comparing a statistical model for entity keyphrases
against the input text by measures such as cosine similarity, KL divergence or
weighted Jaccard distance.

Inverse Document Frequency (IDF) is a numerical score that reflects how specific or
generic a word is. IDF value decreases proportionally to the number of documents
that contain it. The more the documents that contain the word, the less characteristic
it is.

Mutual Information (MI) between a keyword and an entity is a measure for how related
or dependent they are, and how much knowing one of them increases the probability
of predicting the other.

Entity-Entity Semantic Coherence is measure for semantic similarity or relatedness
between named entities. For example, David_Beckham is more semantically coherent
with Manchester_United club than with the White_House.

NERD Repository NERD requires an entity catalog, a name-entity dictionary, entity
keyphrases and entity-entity coherence measures to solve the NERD problem.
Therefore, NERD systems leverage data available in a KB to obtain these data
components. However, preprocessing steps are often needed such as noise removal
and statistics computation. The output of the preprocessing is stored in a NERD
repository.

3

1. Introduction

1.3. Challenges

Building a domain-specific NERD solution cannot be achieved by solely replacing the
underlying KB. Similarly, supporting different languages does not merely entail translating
all underlying text-oriented resources (e.g. entity name dictionaries). A truly versatile
NERD system should be designed carefully in order to allow for replacing different NERD
components. Below are the challenges that a customizable NERD architecture should
address.

Multi-domain Text: Applying NED to general text such as news articles can be per-
formed against general knowledge bases such as YAGO. However, domain-specific texts
such as text about movies, music or books require specialized KBs such as IMDb, last.fm
or LibraryThing, respectively. Furthermore, such text may span more than one domain
and may also include entities that are captured only by general-purpose KBs. It is
therefore mandatory to build an NED framework that is capable of disambiguating text
against one or more knowledge bases collectively. The NERD architecture should address
challenges that arise from combining different KBs that have potentially different schemas
or different entity identification systems.

Limited KB Coverage: The union of KBs is a good first attempt to build an application-
specific KB. But in realistic scenarios it is often required to combine different parts of
different KBs. For example, consider the case of combining Wikipedia together with
IMDb to build a NERD system geared for text about movies. IMDb has a very good
coverage of actors and movies, but so does Wikipedia. However, since Wikipedia is not
a perfect KB, it is better to ignore all movie entities in Wikipedia, and include only
non-movie related entities. Therefore, a flexible architecture should allow for combining
only parts of KBs together, ideally based on entity semantic types.

Combining Multiple KBs: Many prominent entities exist in multiple KBs. Therefore,
combining different KBs introduces the risk of having redundant entities in the final entity
repository. While it is not the focus of this work to detect equivalent entities across KBs,
the architecture of the NERD framework should take this situation into consideration.
Furthermore, the architecture should utilize the information about shared entities to build
a consistent and comprehensive NERD system.

NERD Repository: State-of-the-art NED techniques require various data. This includes
a mention-entity dictionary and a catalog of entity descriptions. Approaches that perform

4

1.3. Challenges

a collective disambiguation of entities require an additional notion of entity-entity relat-
edness, which is usually computed using co-occurrence statistics. Those data components
together form the entity repository, and are necessary for performing the NERD task.
Wikipedia is a rich resource that classifies entities into categories, contains anchor links
across articles, and provides dictionaries in the form of disambiguation pages and redirects.
Together, these features facilitate the extraction of the data required for the NED task.
Many other KBs are less expressive in that aspect, and many do not capture entity
occurrences. A universal NERD architecture should be flexible enough to consume data
from KBs and build dictionaries and contextual descriptions of entities. It should allow
extracting keyphrases from free text, or utilize non-entity occurrence-based methods to
estimate the relatedness between entities.

Type Hierarchies of KBs: Each KB organizes its entities under a type hierarchy. Un-
fortunately, there is no universal type hierarchy under which all entities across KBs are
organized. NERD architectures should allow entities classified under different hierarchies
to co-exist in the NERD schema. Furthermore, multiple type hierarchies should be
supported during the NERD process.

Scarce Resources for non-English Languages: NERD requires comprehensive and
precise resources that assist its machinery towards finding the correct mapping of mentions
to entities. Examples for resources are name dictionaries of potential surface forms that
can denote an entity. NED also requires characteristic description. Since such resources
can be extracted from Wikipedia, they are relatively rich for the English language. For
other languages, however, they are less comprehensive. Furthermore, for languages such as
Arabic, for which Wikipedia has an order of magnitude smaller size than the English one,
the available resource is far from complete and harms the quality of the NED process. It is
mandatory to exploit existing English resources to enrich NERD methods for non-English
languages.

Fine-grained Entity Type Classification: Knowledge bases organize entities under type
taxonomies that are more fine-grained than the classical PERSON, LOCATION, ORGANIZATION,
EVENT, MISC classification. Classifying entities to fine-grained taxonomies that distinguish
between football players and basketball players (with both being athletes) is a challenging
problem. For such sophisticated classification, machine-learning is a promising option.

5

1. Introduction

1.4. Contributions

The contributions of this dissertation are focused on the problem of building a universally
applicable and customizable NERD framework that supports processing text from different
domains and languages. This work addresses that problem by introducing the U-AIDA
architecture. U-AIDA is named after AIDA[60], a state-of-the-art NERD system. “U”
serves to denote a double meaning: it signals the fact that this is a universal architecture
suitable for different domains and languages, and “U” is also interpreted as your AIDA,
indicating that you are able to customize it to build your own NERD system that fits
your application scenario.

The contributions can be summarized as follows:

U-AIDA: A Universal Architecture for Building NERD Solutions. We developed U-
AIDA, a universal and flexible NERD architecture that supports plugging in different KBs
and components. U-AIDA supports customization to fit different application scenarios
and handle text covering various domains.

Domain-Specific NERD Solution. We utilized U-AIDA to build a domain-specific
NERD solution for disambiguating documents from the German National Library (DNB).
Our solution combines the YAGO KB together with the KB developed by DNB. In addition,
we exploited U-AIDA to build a custom NERD solution geared towards social streams.
Using the system developed for social streams, we participated in the #Microposts2014
Challenge [61].

NERD for Languages with Poor Entity-Resources. We designed and implemented
a complete pipeline for building a NERD solution for languages other than English,
incorporating resource enrichment techniques. The pipeline has been tested for three
languages (Spanish, Italian and Arabic) and can be applied to other languages. The
system has been implemented within the U-AIDA framework. A first version without
data enrichment techniques focused on Arabic and has been published in the ANLP 2014
EMNLP Workshop [62]. The complete pipeline has been published in the ESAIR 2015
CIKM Workshop [20].

HYENA System for NEC. We developed a machine learning based approach to classify
mentions of named entities in natural language text under a fine-grained type hierarchy
of 505 semantic classes. This work has been published in the COLING 2012 Conference
[58] and demonstrated in the ACL 2013 Conference [59].

6

1.5. Organization

1.5. Organization

The rest of the thesis is organized as follows. Chapter 2 gives the general background
about the problem of NERD and state-of-the-art NERD systems. Chapter 3 explains
the customizable U-AIDA architecture for NERD systems. In Chapter 4, we discuss
the problem of building a domain specific NED solution within the proposed framework.
Chapter 5 discusses the challenges of applying NED for languages with scarce resources
such as Arabic, and our proposal to automatically enrich such resources. A machine-
learning approach for entity type classification is presented in Chapter 6. We finally make
concluding remarks in Chapter 7.

7

2. Background and Related Work

2.1. Knowledge Bases

The general definition of a knowledge base (KB) is a set of facts and rules stored in a
machine readable format. KBs enable computers to solve problems that require background
information. For example, to build a medical system for automatic diagnosis, a KB about
different diseases and their symptoms is required. Natural language question-answering
systems depend on a KB of general knowledge to retrieve the answers of different questions.

Wikipedia is the most prominent general-purpose knowledge resource available publicly.
It contains information about Named Entities such as PERSONS, LOCATIONS, ORGANIZATIONS
and EVENTS. In addition, there are articles about general concepts such as the definition
of a “Programming Language”, or the theory behind how airplanes work.

Most of the data in Wikipedia is in the form of natural language text. In addition, it
has structured data such as infoboxes, the category system, and the graph representing
the links in Wikipedia.

Many knowledge bases, such as YAGO [25], are derived from Wikipedia. Such KBs are
more machine-friendly in the sense that they store information in a formal representation
composed of semantic relations between entities. For example,

<Albert_Einstein> wasBornIn <Ulm>

is a fact between a PERSON and a CITY using the semantic relation wasBornIn. In
addition, many KBs organize entities under a hierarchy of semantic types, and store this
information in the form of facts as well:

<Albert_Einstein> isA <Physicist>

KBs are abundantly used in online services. Google has a Knowledge Graph that helps
the company to improve the quality of its services such as search and recommendations.

9

2. Background and Related Work

Ahmed Zewail

is
A

Chemist

Person

graduated
from

Alexandria
University

has won
prize

Nobel Prize

is
A

Award

su
b

cl
as

s

Artifact

is
A

Educational
Institution

su
b

cl
as

s

Organization

Entity

sub class

su
b

cl
as

s
su

b
cl

as
s

sub class

Figure 2.1.: Example from YAGO Knowledge Base

Similarly, Apple and Microsoft leverage unpublished KBs to enable their voice assistance
services.
In addition to such general-purpose KBs, many specialized ones exist. For example,

IMDb contains a comprehensive KB about the movie business. It contains entities about
different movies, actors, directors, etc. Similarly, last.fm has a large KB about songs
and artists. LibraryThing uses a KB that is built especially for books. The German
National Library offers the GND1: its own KB with a huge collection of works, authors
and publishing organizations for the German language.
While all these KBs share the property of storing data in the form of facts, they

vary significantly in the semantics that they capture. For example, while IMDb has
semantic relations such as directedBy and producedIn, LibraryThing uses relations such
as hasAuthor and hasCitation.

Every KB comes with a schema that defines the set of relations between entities, as well
as the type hierarchy under which entities are classified. Figure 2.1 depicts a snapshot of
the YAGO KB.

1http://www.dnb.de/gnd

10

http://www.dnb.de/gnd

2.2. Named-Entity Recognition and Disambiguation

2.2. Named-Entity Recognition and Disambiguation

Mentions of named entities such as people, places, organizations, etc. appear frequently
in sources such as web pages, news articles, and other Internet content. Most of the
names have more than one potential meaning, and are therefore ambiguous. Consider
this example:

Paris is a nice city

The mention “Paris” might refer to the French capital, or a small city in the US. Never-
theless, with so little context, it mostly refers to the French capital, since it is way more
prominent. This is an easy example. Consider the following example:

A new book about Paris has been published

The mention “Paris” here does not necessarily denote a city; it may refer to the famous
character in the Greek mythology. Hence the problem is more complex and requires
careful consideration for other data ingredients like the input context.
Named Entity Recognition and Disambiguation (NERD) is the problem of spotting

mentions of named entities in an input text and mapping them onto canonical entities
registered in a Knowledge Base. Consider a more complex example:

Mike and his colleagues Rowe and Wong were the
architects of the relational system Ingres developed at

Berkeley

Going for the most prominent entity will wrongly map the mention “Berkeley” to the
American city instead of the university. Similarly, we should be able to tell that “Mike”
refers to the computer scientist Michael Stonebraker and not to the tennis player Mike
Bryan or the pop singer Michael Jackson, and that “Ingres” is a database system rather
than the french painter Jean-Auguste-Dominique Ingres.
The key here is to consider the context of the mention to be mapped, and compare

it - by some similarity measure - to contextual information about the potential target
entities. Given our example sentence, clues like “architects”, and “developed” should be

11

2. Background and Related Work

considered when building the mention context, and guide the system to pick entities that
are computer related because such entities will potentially have similar keywords in their
description in contrast to other candidates. In other words, we can build a sequence-of-
words model for the input text, and another model for each candidate entity, built on
top of the characteristic words in their Wikipedia articles, for example. By comparing
both models (using measures such as cosine similarity, weighted Jaccard distance or KL
divergence), we can pick the candidate entity with the highest similarity score to be
the correct entity. Other approaches such as training a multi-way classifier from labeled
training data, or exploiting part-of-speech tags or dependency-parsing paths can also be
used to address the Named Entity Disambiguation (NED) problem.
The previously discussed approaches are local in the sense that mentions are disam-

biguated one at a time. Local methods might work well for sufficiently long and relatively
clean input text, such as predicting the link target of a Wikipedia anchor text [39]. How-
ever, for less clean text such as arbitrary Web pages, or shorter text such as microblogs,
relying only on contextual similarity will not yield high disambiguation quality.

One last key ingredient to further improve the disambiguation quality is to incorporate
a joint disambiguation model by collectively considering multiple mentions in the input.
The model should consider the semantic relatedness among entities. Considering our
example, “Mike”, “Rowe”, “Wong” and “Ingres” are mentions that should be collectively
disambiguated together with “Berkeley”. The underlying assumption here is that the
text is thematically homogeneous in the sense that all entities mentioned in the text are
semantically related or coherent.

In summary, there are three major approaches to perform the NED task.

• Prominence-based approaches that ignore the surrounding context of the mention,
and assume that the most prominent candidate is the correct solution.

• Local methods that pick the entity with the characteristic description that is
most similar to the input context of the mention.

• Collective methods that assume the input text is semantically coherent and hence
take into account the semantic relatedness between entities.

The rest of this chapter discusses prior work on NED and NEC. Finally, we briefly
explain AIDA[26], a state-of-the-art system for NERD, that incorporates all of the three
ingredients to improve robustness.

12

2.3. NED: State-of-the-art

2.3. NED: State-of-the-art

Several NED systems have been developed for the English language such as DBpedia
Spotlight [38], Tagme2 [17], AIDA [26, 60], and Babelfy [40]. Only few of those systems
are capable of processing input in other languages. Furthermore, up to our knowledge,
only Babelfy has support for Arabic NED.

Babelfy is a multilingual system that combines both the Word Sense Disambiguation
(WSD) and the NED tasks. They use BabelNet[43] as their underlying KB, and leverage
machine translation to translate only Wikipedia concepts into several other languages.
However, they excluded named entities from translation.

McNamee et al. [37] developed a cross-language entity linking approach. They used the
English Wikipedia entities, extracted under TAC KBP [57], as their reference knowledge
base. Their proposed solution was to transform the problem to a monolingual English
problem. Therefore, they translated the input to English before applying NED. They
also developed a persons-only cross-language ground truth to evaluate their approach,
exploiting parallel corpora and crowd-sourcing [36]. However, applying NED for other
languages cannot be performed by simply translating the problem to the English language.
One issue is the errors due to the automatic machine translation. Another drawback is
the entity repository. Text of language L mostly refers to entities that are specific to the
region where this language is spoken. Therefore, it requires different entity set other than
used when applying NED on English text.

Many research efforts have been conducted to enhance the quality of Named Entity (NE)
translation. Huang et al. [28] introduced the usage of phonetic and semantic similarity in
order to improve NEs translation. Azab et al. [4] developed a classification technique to
decide whether to translate or transliterate named-entities when translating full text from
English to Arabic. They used combination of the token-based, semantic and contextual
features in the classification model. Also, Lee et al. [31] proposed including the part-of-
speech tagging information in the translation process to enhance the translation of person
names in text.

Furthermore, most of the existing systems disambiguate to Wikipedia or a KB built
from it. AGDISTIS [54, 53] is a KB-agnostic NED framework, however, it has been tested
against two general purpose KBs, YAGO [25] and DBpedia [3], and only one KB at a
time.

13

2. Background and Related Work

2.4. Background and Prior Work on Named Entity
Classification (NEC)

There is little prior work on the task of classifying named entities, given in the form of
(still ambiguous) noun phrases, onto fine-grained lexical types. The following methods
are also considered in our experiments as state-of-the-art baselines.

[19] has been the first work to address type granularities that are finer than the handful
of tags used in classical NER work (person, organization, location, date, money, other –
see, e.g., [55, 2, 10, 18]). It considered 8 sub-classes of the Person class, and developed
a decision-tree classifier based on the following features: unigrams and bigrams in the
mention and surrounding text; topic signatures derived from the general words occurring
in mention contexts for each class and weighted by class-discriminative scores; and an
expanded variant of the latter using words from WordNet synonyms and hypernyms,
again with clever weighting.

[13] considered 141 subtypes of the WordNet class Person, and developed a maximum
entropy classifier using word-level features from the mention contexts. In addition to the
words themselves, these include POS tags, capitalization, word lengths, special tokens like
digits, and Lesk-style expansion with WordNet glosses [32]. Their experimental results
are flagged as non-reproducible in the ACL Anthology.

[52] considered a two-level type hierarchy consisting of 29 top-level classes and a total
of 92 sub-classes. These include many non-entity types such as date, time, percent,
money, quantity, ordinal, cardinal, etc. The method uses a rich set of features: separating
context words from context verbs, prefixes and suffixes of compound noun phrases, tags
given by the Stanford NER tagger, POS tags, capitalization, presence of words in eight
different gazetteers for coarse-grained classes (person names, location names, etc.), and
WordNet senses of noun-phrase head words in mention contexts. The latter required
manual sense-tagging (evaluation is on an already sense-tagged corpus); however, the
experiments in [52] showed that this kind of feature did not contribute well to accurate
results. The feature representation of test instances was fed into a two-level hierarchical
classifier – with the limitation that the classifier was designed to assign only one type
label to each instance (for each of the two levels). The method employed a simple form of
collective inference by enforcing that multiple identical mentions in the same input text
are assigned the same type label: the one with the highest joint evidence.
[21] proposed an SVD-based latent topic model with a semantic kernel that captures

word proximities. The method was applied to a set of 21 different types; each mention is
assigned to exactly one type.

The very recent work of [34] considered a two-level taxonomy with 112 tags taken from

14

2.5. The AIDA System

the Freebase knowledge base, forming a two-level hierarchy with top-level topics and
112 types (with entity instances). [34] trained a CRF for the joint task of recognizing
entity mentions and inferring type tags. The feature set included the ones used in
earlier work (see above) plus patterns from ReVerb [14]. This is the only prior work that
could assign multiple type labels to the same mention. In the reported experiments, 562
entity mentions from 434 sentences were given a total of 771 tags – a modest amount of
multi-label tagging.

2.5. The AIDA System

2.5.1. AIDA in a Nutshell

Solving the NERD problem is crucial to enable harvesting knowledge from large data and
text collections [56]. Therefore, many approaches have been introduced in the literature
that address this problem. AIDA is a NERD system that leverages knowledge bases
(such as YAGO) as a repository of entities classified under a semantic type hierarchy.
In addition, AIDA exploits the semantic relations among entities to compute similarity
and coherence measures that are integrated into a collective graph-based disambiguation
approach. AIDA uses the English Stanford Named Entity Recognizer [18] to annotate
mentions of named entities in the input text.

AIDA casts the disambiguation problem into a graph. The graph contains two types of
nodes: mention nodes and entity nodes, and two types of edges, edges between a mention
and a candidate entity (m-e edges), and edges between entities (e-e edges). All edges in
the graph are weighted where m-e edge weights capture the contextual similarity between
the input text and the candidate entity, and e-e edge weights capture the semantic
relatedness or the coherence between entities. The goal is to identify a dense sub-graph
that contains exactly one candidate entity connected to every mention, yielding the most
likely problem solution.

Figure 2.2 illustrates an example mention-entity graph for an input text with highlighted
mentions (left) and candidate entities (middle) based on a knowledge base (right). The
thickness of edges between entities depicts different edge weights.

2.5.2. Data and Measures

Entity Candidates: In order to build the list of potential candidates denoted by a
mention, AIDA uses the YAGO knowledge base to retrieve the list of potential entities
denoted by a name. Entity names in YAGO are available via the means relation which in
turn is extracted from Wikipedia disambiguation pages, redirects and anchor texts.

15

2. Background and Related Work

University of
California, Berkeley

Jean Auguste
Dominique Ingres

Ingres (Database)

Berkeley, California

Michael Stonebraker

Michael J. Franklin

The World of
Suzie Wong

PostgreSQL

Berkeley DB

computer scientist

relational databases

the Berkeley years

relational database system

UC Berkeley

open-source SQL

American university

Turing awards

San Francisco Bay Area

Mike

and his colleagues

Rowe and Wong

were the architects of the

relational system Ingres,

developed at Berkeley.

Postgres

and

Berkeley DB

also came out of

UC Berkeley.

Figure 2.2.: Example for AIDA Mention-Entity Graph

Entity Prominence: AIDA estimates entity prominence using a probabilistic prior for
mapping a name to an entity. AIDA computes this probability via Wikipedia-based
frequencies of names in link anchor texts referring to specific entities. The output for
this is an estimate for the most natural addressed entity for a specific mention. For
example, “Berkeley” refers to Berkeley (the city) in 62.6% of all occurrences and in 21.4%
to University of California, Berkeley.

Context Similarity: AIDA builds a sequence-of-words representation of the input text
that is considered as the mention’s context. On the entity side of the mapping, each entity
is associated with a set of characteristic phrases or salient words. Entity keyphrases are
harvested from anchor texts in Wikipedia articles. In addition, Wikipedia category names
as well as titles of pages with incoming links are added to the keyphrase set of an entity.

Tokens of a keyphrase are refereed to as keywords. Keyphrase and keywords are assigned
global specificity weights based on their global prominence in Wikipedia. Global specific
scores of keywords are estimated using Inverse Document Frequency (IDF) scores where
each entity is considered a document, and a keyword belongs to an entity if it exists in
its set of keyphrases. More specifically, it is defined as:

IDF (w) =
|{e : w ∈ KP (e)}|

N

16

2.5. The AIDA System

where KP (e) is the set of keyphrases of an entity e, and N denotes the total number of
entities. Global specificity score of a keyphase is defined to be the summation of scores of
its keywords.
In addition, keywords are assigned per-entity specificity weights based on the Mutual

Information (MI) between an entity and a keyword. Mutual Information between an
entity e and a keyword w is defined as:

MI(e;w) =
∑

y∈{W,W̄}

∑
x∈{E,Ē}

p(x, y) log

(
p(x, y)

p(x) p(y)

)
where W (or W̄) denotes the event that a keyword w occurs (or does not occur) in a
document. Similarly, E (or Ē) denotes that an entity e occurs (or does not occur) in a
document. A document is defined as a Wikipedia page of an entity. A keyword w occurs
in an entity document if it matches any of the tokens of the entity keyphrases. An entity e
occurs in an entity document if there is an outgoing link from that entity Wikipedia page
to e. The co-occurrence probability between an entity e and a keyword w is calculated as
follows:

p(e ∧ w) =
|{e′ ∈ {e ∪ INe} : w ∈ KP (e′)}|

N
where KP (e) is the set of keyphrases of an entity e. This reflects how frequently w
appears in the keyphrase set of e or any of the keyphrase sets of an entity linking to e,
IN(e), with N denoting the total number of entities. The joint probabilities for the cases
p(e, w̄), p(ē, w), p(ē, w̄) are calculated accordingly.
MI scores are computed between entities and keywords instead of keyphrases. The

reason is that AIDA uses a weighted partial matching model between the input text and
the entity context to compute the contextual similarity between a mention and one of its
candidate entities [26].

Coherence among Entities: AIDA estimates the semantic relatedness between entities
using the Wikipeida link structure. The more frequent two entities co-occur in Wikipedia,
the higher their semantic relatedness score should be. Therefore, AIDA estimates the
entity-entity coherence using the inlink overlap by the approach refined by Milne and
Witten [39] that takes into account the total number N of entities as follows:

mw_coh(e1, e2) =

1− log (max(|INe1 |, |INe2 |))− log(|INe1 ∩ INe2 |)
log(N)− log (min(|INe1 |, |INe2 |))

where INe is the set of entities linking to an entity e.

17

2. Background and Related Work

Overall Objective Function: AIDA combines the prominence score, contextual similarity
and semantic coherence to build a combined objective function as follows: For each mention
mi, i = 1..k, select entity candidates eji , one per mention, such that

α ·
∑
i=1..k

prior(mi, eji)+

β ·
∑
i=1..k

sim(cxt(mi), cxt(eji))+

γ · coh(ej1 ∈ cnd(m1) . . . ejk ∈ cnd(mk)) = max!

where α+ β + γ = 1, cnd(mi) is the set of possible meanings of mi, cxt(.) denotes the
context of mentions and entities, respectively, and coh(.) is the coherence function for a
set of entities.

2.5.3. Model and Algorithm

AIDA casts the NED task to a graph problem by constructing a weighted undirected graph
with mentions and candidate entities as nodes. Edges between mentions and entities are
weighted with a linear combination of prominence score and similarity measure. Edges
between entities are weighted based on the Wikipedia-link overlap.

The objective of AIDA is to compute a dense sub-graph that contains all mention nodes
and exactly one mention-entity edge per mention. In order to achieve high accuracy for
the long tail of less prominent entities by capturing the weak links in the overall graph, it
defines the density of the sub-graph to be the minimum weighted degree among its nodes,
where the weighted degree of a node is the total weight of its incident edges. The final
objective of the algorithm is to find the subgraph with the highest minimum weighted
degree satisfying the one-entity-per-mention constraint. AIDA adapts an approximation
algorithm to solve the dense subgraph problem.

For mentions that denote entities that do not exist in the underlying KB, AIDA adds a
per-mention placeholder Out-of-KB entity node in the graph. The keyphrase model for
such nodes is extracted from the web [23]. In addition, AIDA applies a keyphrase-based
entity-entity relatedness measure [24].

18

3. U-AIDA Architecture of a
Customizable NERD Framework

3.1. Overview

Building a Named Entity Recognition and Disambiguation (NERD) system that is capable
of processing inputs from different text genres and languages requires a flexible architecture
that supports adding and removing building blocks easily. For example, processing a piece
of text from a special domain cannot be performed by solely replacing the knowledge
base. Instead, it entails many other design changes.

Different NER techniques are suitable for different genres of text. For example, a Named
Entity Recognition (NER) system developed and optimized for recognizing mentions
in news articles will perform poorly on user-generated content in social media such as
Twitter.

Furthermore, given a specific domain, different application scenarios entail different
processing approaches. For example, a NERD system that is geared for high recall will
apply NERD techniques differently from those optimized for precision. A truly flexible
architecture should allow such on-the-fly configurations.
In addition, different kinds of input text require different input representation. For

example, disambiguating a 140-character tweet is handled differently from a 100-page
book. Each requires optimized representations and techniques to obtain the best trade
off between quality and performance.

The rest of this chapter is dedicated to explaining how AIDA is architected such that
it supports processing documents from different domains and languages and of different
styles. The whole NERD pipeline is revisited and each stage is discussed in details.

3.2. Named Entity Recognition

This section addresses the following research issues:

19

3. U-AIDA Architecture of a Customizable NERD Framework

Input
Text

NER 1

NER 2

NER n

Mentions 1

Mentions 2

Mentions n

A
nnotations R

econciliation

Mentions

Figure 3.1.: The Architecture of the U-AIDA NER Component

• Mention recognition is language-specific.

• Different text genres require different NER techniques.

• For high recall, we need to invoke multiple NER methods and combine their
outputs.

NER is Language-Specific. The very first stage in a NERD system is to spot the
mentions of named entities in the input text. NER is a language-specific component.
State-of-the-art NER systems developed for the English languages utilize many linguistic
features such as capitalization. For languages such as Arabic (which lacks any notion of
capitalization) or German (where capitalization denotes another interpretation), different
NER techniques should be applied. In other words, an NER system developed and opti-
mized for the English language is not directly applicable to Arabic or German for example.
Furthermore, many special domains (such as the medical domain) needs custom-made
NER systems that incorporate comprehensive dictionaries of named entities. U-AIDA
addresses this by isolating the NER component from the rest of pipeline. Accordingly,
for different applications scenarios, different NER systems are integrated in the NERD
solution.

20

3.2. Named Entity Recognition

NER for Different Text Genres. In addition to language and domain, text style influ-
ences the NER task. NER systems geared for polished texts such as news articles will
perform poorly on less formal texts such as blog posts, in which for instance grammatical
mistake are more likely to occur. Dealing with different text styles requires non-standard
NER techniques.

For example, microposts from social streams include extra clues for recognizing mentions
of named entities. Considering Twitter as an example, tweets use the character ’@’ to refer
to other Twitter users. While such users may or may not exist in our entity repository,
the ’@’ character is a strong clue that the following is a named entity (e.g. a person or
organization). Similarly, the ’#’ characters denotes a hashtag which mostly refer to a
specific event or a person. Hence, an NER system developed for Twitter or a similar
social stream should handle such characters differently.

Given the flexibility of the U-AIDA architecture, it is possible to plug in a custom NER
technique without affecting the rest of the pipeline. Our custom-made NER component
developed for Twitter is discussed in Section 4.2.

U-AIDA provides a suite of different NER techniques suitable for most of the standard
use cases including Stanford NER [18]. Depending on the application scenario, U-AIDA
can be configured to invoke one of provided NER techniques, or a custom one can be
plugged into the NERD pipeline.

Multiple NER Systems are Required Together. There exist multiple NER techniques
even for the same text language and genre. For example, Stanford NER tagger [18],
Apache OpenNLP1, Illinois NETager [44] and GATE [11, 10] are all capable of recognizing
mentions of named entities in English text. However, they do not necessarily output
the same set of annotations. When different taggers are run on the same input text,
their output annotations can be combined together to produce annotations with higher
precision or higher recall.

As depicted in Figure 3.1, U-AIDA takes as an input a configurable set of NER taggers
and invokes all of them on the input text. By default, U-AIDA is geared for high recall
when compiling the final set of mention annotations by taking the union of all annotations
produced by different NER taggers. U-AIDA reconciles overlapping annotations by
merging them into the longest possible mention. For example, given this sentence:

Chancellor Angela Merkel and President Barack
Obama are closely monitoring the Greek debt crisis

1http://opennlp.apache.org/

21

http://opennlp.apache.org/

3. U-AIDA Architecture of a Customizable NERD Framework

if one tagger produces the following mentions “Angela Merkel”, “Barack Obama” and
“Greek debt crisis”, and another annotates “Chancellor Angela Merkel”, “President Barack
Obama” and “Greek”, the final set of mentions will be reconciled as “Chancellor Angela
Merkel”, “President Barack Obama” and “Greek debt crisis”.

3.3. Input Text Representation

This section addresses the following research issues:

• For some input genres, mentions can be represented in forms other than
what explicitly appears in the input text.

• For some application scenarios, input context should be expanded using
background knowledge.

The standard input to a NERD system is a natural language text represented as a sequence
of tokens. The input text is fed into the NER stage to spot the mentions of named entities
that are provided to other stages in the NERD pipeline. Depending on the nature and
language of the input text, a preprocessor is invoked to do proper text normalization and
segmentation. In Arabic for example, it is crucial to remove the “Kashida” elongation
character used to stretch the text to align both the left and right ends of the line (in
contrast to white-space being the elongation character in English). In addition, languages
that incorporate a nature of clitics2 should be segmented carefully. For example, proclitics
(such as “je t’aime” in French) or enclitics (such as “Olen kiinnostunut kvanttifysiikasta”
in Finnish) should be properly segmented from their host words. Arabic is also very rich
language in terms of clitics.
While such representation of the input as a sequence of tokens and a set of mentions

is suitable for the general case, it requires extensions for more specialized cases. Our
architecture supports extending the representation of both the input text as well as the
set of mentions as explained below.

Mentions. A mention is a span in the input text that contains one or more tokens
that together denote a named entity. For example, the following are all mentions that
(may) refer to the same entity Barack_Obama: “Obama”, “Barack Obama”, “Mr. Obama”,

2https://en.wikipedia.org/wiki/Clitic

22

https://en.wikipedia.org/wiki/Clitic

3.3. Input Text Representation

“President Obama”, “Barack Huessin Obama”. In each case the mention string is used
to query the entity names dictionary to build the list of candidate entities. But such an
approach is not suitable for all application scenarios.

Consider Twitter for example. As explained earlier, hashtags and Twitter user mentions
are good candidates for named entities. Consider the following tweet:

U.S. Team and @SeattleReignFC midfielder @mPinoe
throws out ceremonial pitch at #Mariners game.

#WorldCup2015

Applying the standard mention representation would result in the following mention
“#WorldCup2015”. This representation contains an extra ’#’ character which does not
exist in the name entity dictionary. Furthermore, another form can be automatically
extracted by removing the ’#’ character and splitting it based on capitalization. This
will suggest “World Cup 2015” as a potential mention which is more suitable when
querying the name entity dictionary. However, some names should not be split such as
the English lexical database “WordNet” and the music album “The ConstruKction of
Light”3. Therefore, before actually solving the disambiguation problem, it is not possible
to decide whether the name should be split or not. Hence, at this stage, both forms (split
and non-split) are potential mentions.

U-AIDA addresses this problem by associating a set of potential mention representations
with each explicit mention. All implicit mentions are used when querying the dictionary
to build the list of the candidate entities. More details are discussed in the Twitter use
case in Section 4.2.

Input Context. The context of a mention is in general the sequence of its surrounding
tokens. It is crucial to get the context right because this is the key for all similarity-based
disambiguation methods. Considering all surrounding tokens as the mentions context
is suitable for the general case such as news article. But building a flexible NERD
framework that is capable of processing text from different sources requires going beyond
the surrounding tokens. Namely, the framework should support expanding the mention
context beyond the input text, and such context extension should be dealt with in the
same way as the original input context apart from the fact that it does not go through
the NER stage.

3https://en.wikipedia.org/wiki/The_ConstruKction_of_Light

23

https://en.wikipedia.org/wiki/The_ConstruKction_of_Light

3. U-AIDA Architecture of a Customizable NERD Framework

To justify the usefulness of this form of context expansion, let us consider two examples.
The first is Twitter, where it is very challenging to correctly disambiguate mentions of
named entities given the 140-character long input context alone. Many approaches in
the literature such as [29] incorporate context extensions by clustering tweets, resolving
URLs in the tweet, and leveraging hashtag definition gazetteers. Another example, is
to disambiguate a whole book. It is infeasible to consider the whole book as the input
context, mainly for performance reasons. However, the introduction section or the first
paragraph of every chapter might be useful when disambiguating other passages in the
book. It can be useful to extend the context of a chapter with the first paragraph of other
chapters, for example.

To this end, the architecture should support extending the input context by other text
passages. Such an extended context is provided for other stages in the pipeline to enhance
similarity-based measures. It is up to the specific application to decide on the context
extension technique it adopts.

3.4. Knowledge Base

The Knowledge base is one of the most important and influential components in any NERD
system. It contains the entity catalog and hence determines the set of entities a NERD
framework can assign mentions to. In addition, it provides most of the data required for
performing the NERD. A knowledge base contains the name-entity dictionary, entity-
characteristic keyphrases, and potentially other data required to compute prominence
scores for entities and specificity scores for keywords. Furthermore, the KB has the
statistics to estimate the semantic relatedness between entities.
Replacing the knowledge base does not merely imply plugging in another set of facts

into the NERD framework where relations have different names. A flexible system should
consider all potential variations in providing each of the required data ingredients and
provide the downstream applications the support for turning different data pieces ON or
OFF during the disambiguation process. The rest of this section discusses in detail each
of the data components and what design decisions we have taken in order to support as
much customizability as possible.

3.4.1. Entity Repository

This section addresses the following research issues:

24

3.4. Knowledge Base

KB 1 KB 2 KB n

Type
Filter 1

Type
Filter 2

Type
Filter n

Entity Equivalence Information

K
now

ledge B
ase M

erger
NED
KB

Figure 3.2.: U-AIDA Approach for Combining Knowledge Bases

• It may be necessary to disambiguate against multiple knowledge bases.

• Knowledge bases share entities.

• Entities in different knowledge bases are organized under different type.
hierarchies.

NED against Multiple Knowledge Bases. The general case for building a NERD system
assumes a comprehensive underlying knowledge base where all entities exist. Such an
approach places most of the critical work on the knowledge base building stage. For
example, to disambiguate against entities from Wikipedia and IMDb, it is first necessary
to build one large entity repository that contains the union of entities existing in each
resource. Combining entity catalogs cannot be done by simple aggregation. Many entities
exist in more than one KB. Therefore, simple aggregation will produce entity repository
that contains many redundant entities.

The U-AIDA architecture takes care of that by merging all equivalent entities into one
canonical entity. U-AIDA assumes that entity equivalence information is already provided
as an input, but it leverages such information to avoid any entity redundancy.

Different KBs exhibit different Type Hierarchies. Most of the knowledge bases organize
entities under a semantic type hierarchy. Each knowledge base defines its own type

25

3. U-AIDA Architecture of a Customizable NERD Framework

hierarchy, which is not necessarily compatible with other type hierarchies defined by other
knowledge bases.

The U-AIDA architecture allows entities originated from different knowledge bases to
be classified under different type hierarchies. U-AIDA does not make any assumptions
about the input knowledge bases. U-AIDA achieves that by fully identifying semantic
types taking into account the source KB. Considering IMDb and Wikipedia example,
both knowledge resources contain a semantic type for movies. U-AIDA distinguishes
between both types by their source. Hence, a movie entity originating from Wikipedia
will be assigned the type “WIKIPEDIA:MOVIE” and a movie from IMDb will be tagged
with “IMDB:MOVIE”. This provides downstream applications with complete control over
the entity repository and eliminates any side effects of combining incompatible type
hierarchies.

3.4.2. Entity Global Prominence

This section addresses the following research issues:

• For different knowledge bases, there exist different approaches to estimate
entity prominence.

• For good quality, different entity prominence scores should be combined to
produce one prominence score.

One of the simplest yet most influential clues for NERD is entity prominence. “Barack”
almost always denotes the US president, and “Paris” denotes the French capital. Entity
prominence can be estimated using many different ways. One is to consider Wikipedia
page lengths, page update frequencies, the numbers of incoming or outgoing links, or
the existence in other Wikipedia languages. For applications that process up-to-date
information such as tweets, it has been shown that time-varying prominence estimation
delivers the best quality [29]. Such time-varying prominence can be estimated from
Wikipedia page view counts, for example.

It is rarely the case that one prominence measure is universally appropriate. U-AIDA
takes as an input a suite of entity prominence measures. The final prominence score is
computed via a configurable linear combination of all available prominence scores using a
weight function that can be determined at run-time.

26

3.4. Knowledge Base

3.4.3. Name-Entity Dictionary

This section addresses the following research issues:

• Entity names are extracted from different sources of different qualities.

• Type-based candidate filtering is crucial.

The name-entity dictionary is key to building the entity candidate list for applying NERD
to an input document. A noisy dictionary will add many wrong candidates that will make
the NERD problem unnecessarily harder. On the other hand, an incomplete dictionary
will miss potentially correct candidates.

U-AIDA has a carefully designed component for querying the dictionary. In order to
build the list of candidates entities for a mention, U-AIDA requires three pieces of data:

1. A Set of Surface Forms: set of potential mention presentation including the
original mention string.

2. Types White List: list of potential semantic types of a mention. Only entities
belonging to one of those types are retrieved.

3. Sources White List: list of name sources. Only entries that are extracted from
one of those sources are retired.

The retrieved name-entity entries must satisfy the following three criterion: the name
exists in the set of surface forms, the entity is typed with one of the semantic types in
the types white list, and the entry has been extracted using one of the extraction sources
in the sources while list.

Each of the input data plays an important role in building a universal candidate entity
retrieval component. As explained in Section 3.3, U-AIDA associates each mention with
a set of potential representations that are compiled in the set of surface forms. In
addition, U-AIDA allows per-mention type white list. For example, for a mention that
is known to be a person (using techniques such as HYENA introduced in Chapter 6)
it makes sense to exclude non-person entities from the candidate list. For example, for
a mention “Gate” that has been tagged as a person by some entity type classification
system, we should exclude the entity GATES_FOUNDATION from the entity candidate list.

Furthermore, typically, entries in the dictionary originate from multiple sources such as
Wikipedia redirects or disambiguation pages. Different dictionary entry sources exhibit

27

3. U-AIDA Architecture of a Customizable NERD Framework

different levels of quality. For example, Wikipedia page titles are on average of better
quality than anchor texts. Based on the application scenario, only subset of those sources
are considered using the sources white list.

3.4.4. Entity-Characteristic Keyphrases

This section addresses the following research issues:

• According to the underlying knowledge base, different techniques are incor-
porated to extract keyphrases.

• Keyphrases are extracted from various sources of different qualities.

• According to the application scenario, sources should be penalized or totally
discarded.

Once a list of candidate entities is extracted, the next step is to find the most similar
entity to the input context. This is performed by building a textual representation of
each of the potential target entities, and comparing it to the input context. Depending
on the underlying knowledge base, different data ingredients are included in the set of
entity characteristic phrases. For example, for a well-structured and organized knowledge
resource such as Wikipedia, category names as well as anchor texts of an entity are potential
keyphrases that contribute to the textual representation of an entity. For knowledge
bases such as Freebase, semantic relations such as “graduated_from”, “capital_of” and
“acted_in” are potential relations for building entities context. In addition, keyphrases
can also be extracted from natural language text such as the first paragraph in Wikipedia
pages.

Keyphrases are extracted differently from various knowledge bases. U-AIDA gives
downstream applications full control on deciding what pieces of data are suitable to be
included in the keyphrases set. Therefore, the U-AIDA architecture does not impose
any hard assumptions on keyphrases extractions. It adopts a generic definition of entity
keyphrases to be a list of phrases. Downstream applications are required to provide
keyphrases extractors that output per-entity list of phrases.
In principle, any keyphrase extractor can be plugged into the pipeline. U-AIDA

is equipped with extractors capable of processing Wikipedia and extract structured
information from YAGO. In addition, U-AIDA contains an extractor that goes beyond

28

3.4. Knowledge Base

structured data and extracts keyphrases from natural language text. It applies a pattern-
based extraction on POS tags to extract all noun phrases. It is easy to plug in further
types of extractors.

Keyphrases - as well as keywords - are assigned Inverse Document Frequency (IDF) and
Mutual Information (MI) scores (or weights) that reflect their specificity and correlation
with different entities, respectively. U-AIDA uses the same score computation techniques
as the original AIDA system that are detailed in Section 2.5.

Computing MI scores requires co-occurrence statistics between entities and keywords.
To this end, we need a corpus with document level entity annotations. Wikipedia
articles, for example, are annotated with hyperlinks to other entities. Hence, it is possible
to compute how frequently an entity and a keyword co-occur in the same article. If
the underlying knowledge base does not provide any notion of entity occurrence in a
corpus, U-AIDA computes only global IDF score for the different keywords. During the
disambiguation process, U-AIDA exploits whatever scores it could compute to deliver the
best possible disambiguation quality.

Different keyphrase sources are of different qualities. In general, keyphrases are
extracted from multiple sources. Consider Wikipedia for example: keyphrase are extracted
from anchor texts, citation titles, Wikipedia category names, and titles of pages with
incoming links. Usually, the first two are of lower quality than the rest, and hence some
could be ignored depending on the precision-recall trade-off requirements. To provide the
maximum flexibility to downstream applications, U-AIDA supports run-time selection
of keyphrases to be considered when computing the contextual similarity. In case an
application does not want to completely disregard a keyphrase, but merely decrease its
impact on the final decision, U-AIDA additionally supports assigning per-source global
weights that are used to alter the importance of a specific keyphrases source.

3.4.5. Entity-Entity Semantic Relatedness

This section addresses the following research issues:

• Different knowledge bases provide different measures of entity-entity relat-
edness.

• Few corpora contain entity-level annotations.

29

3. U-AIDA Architecture of a Customizable NERD Framework

All modern NERD systems incorporate a notion of entity-entity coherence into their NED
techniques. U-AIDA supports two approaches from computing entity-entity semantic
coherence:

Co-occurrence-based approach: Entity-entity co-occurrence in the same document
signals semantic relatedness between those entities. Co-occurrence statistics are computed
from corpora with entity-level annotations. It requires documents where mentions are
disambiguated to canonical entities (such as Wikipedia). To this end, U-AIDA takes as
an input the entities occurring in each document and computes entity-entity relatedness
scores using Milne and Witten [39] formula explained in Section 2.5.

Keyphrases-based approach: In order to overcome the absence of corpora with entity-
level annotations, other approaches have been introduced that rely only on purely textual
data. KORE [24] leverages overlap in keyphrases to estimate entity-entity relatedness.
U-AIDA can be configured to use KORE to compute entity-entity relatedness using the
set of keyphrases associated with each entity in the repository.

3.5. Disambiguation Techniques

NERD is never a one-size-fits-all problem. In the same way that different data ingredients
may be necessary, different techniques and algorithms can be suitable. For short text that
does not contain enough contextual words, coherence is a strong clue. In contrast, for
books, for example, employing a coherence measure may significantly penalize the speed
without significant improvement in the quality.

U-AIDA is equipped with a suite of disambiguation techniques, and allows adding others
when needed. U-AIDA supports disambiguating entities using only prominence scores or
considering contextual keyphrases in addition. More specifically, U-AIDA supports two
families of disambiguation techniques:

Local Techniques: They solve the NED problem one-mention at a time where each
mention is disambiguated independently from other mentions. U-AIDA is equipped with
two local techniques. The first considers only entity global prominence. The second is
the contextual similarity-based approach introduced in [26].

Joint Techniques: They solve the NED by collectively considering all mentions in the
input document. Those approaches require a notion of entity-entity semantic relatedness.
U-AIDA is equipped with two joint NED techniques: U-AIDA has an implementation of

30

3.6. Summary

the graph algorithm in [26]. In addition, it provides an implementation of the Integer
Linear Programming (ILP) approach introduced in [30].

3.6. Summary

In this chapter, we discussed all stages in the NERD pipeline, showing how U-AIDA
provides a flexible architecture that supports plugging in different pieces of data as well as
incorporating different approaches during the NERD process. In addition, U-AIDA can
be configured to combine different data pieces according to the application scenario. This
allows each U-AIDA application to build a custom-made NERD solution. In Chapter 4,
we will show the power of this flexible architecture by synthesizing NERD systems for
two completely different tasks beyond the standard “English News” use case.

31

4. Applications of the U-AIDA
Architecture

In this chapter, we leverage the U-AIDA architecture introduced in Chapter 3 that allows
building a NERD system from a mix of general and domain-specific KBs. We show the
viability of the architecture by two use-cases. First, we synthesize NERD solution on
top of two KBs, YAGO (built from Wikipedia) and GND (covering German authors and
literature), and test it on a German corpus obtained from the German National Library.
Second, we exploit the U-AIDA architecture to build a system to disambiguate tweets.
We participated in the #Microposts Challenge 2014 [61], and the U-AIDA system reached
the fourth place out of eight participants [7].

4.1. Domain-Specific Named Entity Disambiguation

4.1.1. Introduction

Depending on the input text, the mentioned entities may belong to multiple domains,
and entities are not always covered in Wikipedia. However, they might very well be
present in domain-specific KBs. For example, news articles contain prominent entities
that can mostly be found in Wikipedia, and hence can be disambiguated against any
Wikipedia-based KB. When disambiguating movie reviews, however, IMDb1 has a higher
coverage of entities like movies, actors, and directors. Consider this example text:

The Square is a Netflix production documentary
movie starring Ahmed Hassan, Khalid Abdalla
and Magdy Ashour that depicts the Egyptian

Revolution

While the entities The Square and Khalid Abdalla exist in both IMDb and Wikipedia,
Netflix and The Egyptian Revolution exist only in Wikipedia, and only IMDb is aware

1http://www.imdb.com

33

http://www.imdb.com

4. Applications of the U-AIDA Architecture

of the actors Ahmed Hassan and Magdy Ashour. Therefore, it is essential to build custom
NERD systems where the entities are registered in multiple KBs.

4.1.2. Multi-Knowledge-Base Architecture

Combining Knowledge Bases: In order to disambiguate text that spans multiple do-
mains, and to achieve high coverage, it is essential to combine different KBs to form a
single entity repository.

Our architecture deals with this by defining one KB as reference KB, and all others are
mapped KBs. For two entities eKB−ref and eKB−map that belong to the reference and
a mapped KB, respectively, where eKB−ref ≡ eKB−map, only eKB−ref is added to the
entity repository to avoid duplication. The equivalence mapping of entities is assumed
to be provided as additional input per KB. Entity equivalence information is provided
during the stage of building the NED entity repository as well as other data pieces such
as name-entity dictionary or entity keyphrases. U-AIDA expects the mapping data to be
provided in the format of Java interface that contains one method:

String mapId(String id);

Downstream applications are expected to provide their own implementation of that
interface.

U-AIDA automatically leverages the mapping information to resolve dictionary entries
and keyphrases to the proper canonical entity. For example, given eKB−ref ≡ eKB−map
and a dictionary entry “name” → eKB−map, U-AIDA adds to the name-entity dictionary
this entry “name” → eKB−ref instead.

Filtering Entities by Type: Often, only parts of a reference or mapped KB should be
included. For example, IMDb models actors, directors, and all other persons involved in
the movie business with more sophistication than Wikipedia does. Thus, all entities of
type actor, director, etc. should be taken only from IMDb. On the other hand, some
domain-specific KBs still have entities pertaining to general world knowledge, e.g. persons
or locations, which are usually captured better in Wikipedia.
As explained in Section 3.4, during run time, U-AIDA supports including only parts

of KBs based on the semantic types of entites: for example, when building the list of
candidate entities, U-AIDA leverages a Type White List to take all entities of type actor
from IMDb and all organizations from Wikipedia, thus bringing together the best of
both worlds.

34

4.1. Domain-Specific Named Entity Disambiguation

Mining Entity Descriptions: Each entity requires a contextual description, e.g., in the
form of a set of characteristic keyphrases. These keyphrases are then matched against the
context of a mention in the input text to compute a similarity score. Keyphrases can be
mined easily from Wikipedia in the form of anchor texts and categories. Domain-specific
KBs sometimes lack this kind of description, and almost always come without any semi-
structured markup like href anchors or category tags. Still, keyphrases can be mined
from some of the relations in the KB. Keyphrases of an actor should include the titles of
all movies he actedIn. Similarly, given a movie, names of all actors that actedIn in it
should be part of its contextual description. In addition, keyphrases can be mined from
natural language text such as textual description of entities by extracting all nounphrases
or proper nouns. In IMDB, for example, each movie has a plot description that contains
entity and characteristic keywords, and hence, can be used to mine keyphrases. In
addition, keyphrases can be extracted from general resources such as the social media by
extracting nounphrases. U-AIDA combines keyphrases extracted from different sources
into the NED entity repository.

Scoring Keyphrases: Keyphrases are assigned scores based on their importance for an
entity. Weights can be global inverse document frequencies (IDF) computed from all
keywords. If the KB provides a notion of entity occurrence, our architecture leverages it
to compute mutual information scores, which are more informative than IDF scores.

Computing Entity Coherence: Coherence is usually computed on the basis of entity
co-occurrence in a corpus. Wikipedia readily provides these co-occurrence statistics by
its hyperlinks. In domain-specific KBs, though, this is often not present, and coherence
needs to be computed differently, e.g. by keyphrase-overlap [24].

4.1.3. The Case of the German National Library

The German National Library (DNB) contains a huge collection of German documents
including newspapers, books, and dissertations. They contain many entities that do not
exist in the English or the German Wikipedia. The Gemeinsame Normdatei (GND) 2

(Integrated Authority File) is a catalog of entities that is cooperatively supported by
many institutions including DNB. The GND contains all German works available in the
DNB, together with their authors and publishing organizations. Unsurprisingly, many
entities are not prominent enough to appear in the German Wikipedia. However, a NERD
solution for disambiguating the documents in the GND should consider all such entities.

2http://www.dnb.de/gnd

35

http://www.dnb.de/gnd

4. Applications of the U-AIDA Architecture

Entities in the GND are organized under seven main classes: PERSON, FAMILY, SUBJECT
HEADING, CORPORATE BODY, CONFERENCE OR EVENT, WORK, PLACE OR GEOGRAPHIC NAME.
Many prominent entities in the GND have equivalent counterparts in the German
Wikipedia. Wikipedia is a rich source for extracting different potential names of entities.
In addition, Wikipedia helps to build a more comprehensive keyphrases catalog.

Both GND (the more comprehensive entity catalog), and Wikipedia (the rich knowledge
resource) should be considered to achieve the best disambiguation quality. In order to
disambiguate documents in DNB, we have synthesized a custom-NERD system on top of
Wikipedia and GND.

Entity Catalog: Our entity repository picks entities from both the German Wikipedia
and the GND. We included locations and organizations from the German Wikipedia
because of its high coverage and good level of granularity. All other entities haven been
extracted from the GND since it is more comprehensive for other entity types. Specifically,
the following entity types have been extracted from the GND: PERSON, FAMILY, SUBJECT
HEADING, CONFERENCE OR EVENT, and WORK.
The entity catalogs of both The GND and the German Wikipedia are not mutually

exclusive, many entities are shared among both such as prominent persons. However, we
enrich our entity repository with data from both knowledge resources regardless from our
entity selection. For example, persons are included only from the GND. However, for
persons in the GND that exist in Wikipedia as well, we leverage Wikipedia to add more
name-entity dictionary entries as well as keyphrases using the same standard extraction
techniques of building AIDA out of Wikipedia.

Entity Name Dictionary: The dictionary is created from entity names in YAGO (ex-
tracted from Wikipedia), together with potential names of GND entities. Person names
in the GND are extracted from two relations, preferredNameEntityForThePerson and
variantNameEntityForThePerson. For non-persons, names are extracted from relations
preferredName and variantName.

Entity Context: For Wikipedia entities, we follow the same approach of the original
AIDA framework by extracting anchor texts, Wikipedia category names, and titles of
incoming links as set of characteristic phrases for an entity.

For GND entities, keyphrases are extracted as follows:

1. The GND: We extracted keyphrases from different relations in GND. For example,
for an author, we harnessed all titles of works written by him. Two relations have

36

4.1. Domain-Specific Named Entity Disambiguation

been excluded from keyphrases extraction oldAuthorityNumber and gndIdentifier
because they do not hold adequate keyphrases.

2. Title Data: In addition, keyphrases have been extracted from tables of contents
as well as abstracts of different works in the GND and associate them with the
respective authors. We applied regular expression on part-of-speech patterns to
extract proper noun phrases. The patterns are taken from [41].

e-e Coherence: Semantic-relatedness between entities has been estimated using overlap
between keyphrases. We applied the KORE technique introduced in [24].

4.1.4. Experiments and Evaluation

Setup: We synthesized a U-AIDA solution out of around 200K entities from the German
Wikipedia and around 10M entities from GND including the explained entity filter. We
randomly sampled paragraphs out of the electronic documents submitted to the DNB in
2014. Documents have been manually annotated by two fluent German-speaking students.
Conflicts have been resolved by another native German speaker. All in all, this test corpus
has 171 documents having 1572 mentions that span 13 main domains.

Results and Discussion: We computed the confidence score as introduced in [23]. Simi-
larity scores are normalized on a per mention basis as follows:

normscore(m, e) =
score(m, e)∑

ei∈Em
score(m, ei)

where Em is the set of candidate entities for a mention m.
The confidence of correctly mapping a mention m is computed as follows:

confnorm(m) = normscore(m, arg max
e∈Em

score(m, e))

We threshold the mapping on different levels of confidence. All mappings of lower
confidence scores are ignored. We evaluated the system at different confidence levels using
micro precision and recall. Recall reflects the number of mentions that have been mapped
with confidence score higher than the confidence threshold. The precision represents the
percentage of correct mappings out of the mappings with confidence higher than the
threshold.
The micro precision and recall are given at different levels of confidence as shown in

Table 4.1. The overall performance is worse than news articles, the typical benchmark for

37

4. Applications of the U-AIDA Architecture

Precision Recall

NED 58.86 100
NED (Conf >0.2) 65.14 53.33
NED (Conf >0.5) 70.85 44.27

Table 4.1.: Results of Running U-AIDA on a Sample Corpus of DNB Documents

NED. This is due to the fact that the entity repository of the GND is much larger and
thus more ambiguous than Wikipedia, but at the same time provides less features to be
used for the actual disambiguation. However, the experiments show the applicability of
the architecture on combining completely different KBs.

4.2. Named-Entity Disambiguation for the Social Stream

4.2.1. Introduction

Microblogs present a rich field for harvesting knowledge, especially Twitter with more
than 500 million tweets per day [27]. However, extracting information from short informal
microposts (tweets) is a difficult task due to insufficient contextual evidence, typos,
cryptic abbreviations, and grammatical errors. By exploiting the U-AIDA architecture,
we managed to synthesize a robust NERD solution to handle short microposts by adding
additional components for named entity recognition, name normalization, and extended
candidate entity retrieval. We also integrate data harvested from the Twitter API into
our model to cope with context sparsity. Moreover, we tuned the AIDA parameters to
accommodate the brief informal nature of tweets.

4.2.2. Adapting U-AIDA to Tweets

Named Entity Recognition: AIDA originally uses the Stanford Named Entity Recog-
nition (NER) tagger, with a model trained on newswire snippets, a perfect fit for news
texts. However, it is not optimized for handling user generated content with typos and
abbreviations. Hence, we employ two different components for mention detection: The
first is Stanford NER with models trained for case-less mention detection; the second is a
dictionary-based NER tool [5]. The dictionary-based NER is performed in two stages:

1. Detection of named entity candidates using dictionaries of all names of all entities in
our knowledge base, using partial prefix-matches for lookups to allow for shortening
of names or little differences in the later part of a name. For example, we would

38

4.2. Named-Entity Disambiguation for the Social Stream

recognize the ticker symbol “GOOG” even though our dictionary only contains
“Google”. The character-wise matching of all names of entities in our KB is efficiently
implemented using a prefix-tree data structure.

2. Filtering the large number of false positives using a collection of heuristics, e. g.
the phrase has to contain a NNP tag or it has to end with a suffix such as “Ave” in
“Fifth Ave”.

Mention Representation: We exploit the flexible input representation of the U-AIDA
architecture to automatically assign potential name variants to each mention. For example,
the hashtag “#BarackObama” should be normalized to “Barack Obama” before matching it
against the dictionary. Furthermore, many mentions of named entities are referred to in
tweets by their Twitter user ID, such as “@EmWatson”, the Twitter account of the British
actress “Emma Watson”. Because the Twitter user IDs are not always informative, we
access the account metadata, which contains the full user name.
We attach to each mention string a set of potential mention representations and use

all of them to query the dictionary. For example, “@EmWatson” will have the following
potential representations:

1. “EmWatson” : The original mention string without the “@” character.

2. “Em Watson” : The original mention string after adding a blank space before every
uppercase characters.

3. “Emma Watson” : The name in the Twitter profile data. It is automatically
obtained using the Twitter API.

Therefore, this is the set of the potential mention representations {“EmWatson”, “Em
Watson”, “Emma Watson”}, and each of them will be matched against the dictionary to
retrieve the set of candidate entities.
The original AIDA system incorporates prior probability as a measure for entity

prominence. Prior probability is a function of both the mention and the entity. Since
each mention mi is now a set of potential representations N(mi), we adapt the prior
probability measure as follows. The prior probability of an entity ei given a mention mi:

prior(mi, ei) = max
m′∈N(mi)

prior(m′, ei)

where N(mi) is the set of potential mention representation of mi. The maximum is taken
in order not to penalize an entity if one of the normalized mentions is rarely used to refer
to it.

39

4. Applications of the U-AIDA Architecture

Approximate Matching: This step is employed if and only if the previous normalization
step does not produce candidate entities for a given mention. For example, it is not
obvious how to automatically split a hashtag like “#londonriots”, and hence its potential
representations set is {“londonriots”}. Querying the name-entity dictionary with this
name “londonriots” does not retrieve any candidate entities.

We address this by representing both the mention strings and dictionary keys as vectors
of character-trigrams. We use trigram matching to assess the similarity between a mention
string and a name in the name-entity dictionary. For example, considering the mention
“londonriots”, it is represented as the vector:

〈lon,ond,ndo,don,onr,nri,rio,iot,ots〉

Similarly, a dictionary key “London Riots” will be represented as the vector:

〈Lon,ond,ndo,don,on ,n R, Ri,Rio,iot,ots〉

We compute the cosine similarity between both vectors (in this case 0.66667). If the
similarity score is above a certain threshold (experimentally determined as 0.6), we
consider the mention string and the dictionary key similar, and we assign all candidate
entities of the dictionary key to the mention string.

Computing cosine similarity between vectors of character trigrams is computationally
expensive. Therefore, we only use this as a fallback option when the mention has no
candidate entities assigned to it. Furthermore, we use the Postgres pg_trgm module 3

that creates the appropriate indexes for fast searching for similar strings. We use the
Postgres implementation for computing the similarity. It creates the trigrams in a slightly
different way: it considers the string to be prefixed by two spaces and suffixed by one
space when determining the set of trigrams. For example, the set of trigrams in the string
“riots” is

〈 r, ri,rio,iot,ots,ts 〉

3http://www.postgresql.org/docs/9.1/static/pgtrgm.html

40

http://www.postgresql.org/docs/9.1/static/pgtrgm.html

4.2. Named-Entity Disambiguation for the Social Stream

Unlinkable Mentions: Some mentions should not be disambiguated to an entity, even
though there are candidates for it. This is especially frequent in the case of social media,
where a large number of user names are ambiguous but do not refer to any existing KB
entity – imagine how many Will Smiths exist besides the famous actor. We address this
problem by thresholding on the disambiguation confidence as defined in [23], where a
mention is considered unlinkable and thus removed if the confidence is below a certain
threshold (experimentally estimated as 0.4).

4.2.3. Experiments

Data

We conducted experiments on the dataset provided in the #Microposts2014 Challenge
[7]. The data comprises 3,505 tweets extracted from a collection of over 18 million tweets.
The tweets are extracted in the period from 15th July 2011 to 15th August 2011 (31
days). They cover events such as the death of Amy Winehouse and the London Riots;
these are likely to include named entities.
The challenge evaluates both extraction and disambiguation of entities. 70% of the

tweets are used for training and released to the participants together with the ground
truth entities. The training set contains 2,340 tweets, with 41,037 tokens and 3,819
mentions of named entities. The test set contains 1,165 tweets, with 20,224 tokens and
1,458 mentions of named entities.

Setup

We carried out experiments with three different setups:

1. First, we used Stanford NER trained for entity detection, along with mention prior
probability and key-phrases matching for entity disambiguation.

2. In the second experiment, we added coherence graph disambiguation to the previous
setting.

3. The third setting is similar to the first one, but we use the dictionary-based NER
instead of Stanford NER for entity detection.

Since the data has mentions of numbers annotated, we automatically annotate all
digit-only tokens as mentions using a regular expression.

41

4. Applications of the U-AIDA Architecture

Parameter Settings

In the original AIDA framework, the weight of a mention-entity edge is computed by a
linear combination of different similarity measures. In order to estimate the coefficients
of the linear combination, we further split the released tweets training dataset into TRAIN
and DEVELOP chunks. We used the TRAIN chunk for estimating the coefficients of the
linear combination. We estimated further hyper-parameters for our algorithm (like the
importance of mention-entity vs. entity-entity edges) on DEVELOP.

Results and Discussion

On the DEVELOP part of the training data, our experiments achieved around 51% F1. We
submitted three runs on the TEST data. The challenge moderators reported only the result
for the best run which in our case is the third variant which utilizes dictionary-based
NER and incorporates coherence measures. The precision, recall and F1 scores of the
U-AIDA system on the TEST data are 53.28%, 39.51%, and 45.37% respectively.

The scores are relatively low because NERD problem on tweets is significantly harder
than on news. In addition, the evaluation is strict in the sense that a mention is counted
as true positive only if both the mention span matches the ground truth perfectly and
the entity label is correct.

42

5. U-AIDA for Languages with Poor
Annotated Resources

In this chapter, we address the NED problem for languages with limited amounts of
annotated corpora and entity-structured resources such as Arabic. We present a method
that leverages structured English resources to enrich the components of the language-
agnostic U-AIDA framework and enable effective NED for other languages. We achieve
this by fusing data from several multilingual resources and the output of automatic
translation/transliteration systems. We show the viability and quality of our approach by
synthesizing NED systems for Arabic, Spanish and Italian.

5.1. Overview

While the English Wikipedia is relatively large and suitable for producing sufficiently
large dictionaries and entity descriptions, this is not the case for other languages such as
Arabic which has an order of magnitude smaller Wikipedia. This dramatically affects the
size of the aforementioned resources necessary for the NED task. For example, compiling
an Arabic dictionary of entity names only from the Arabic Wikipedia produces a small
dictionary that misses names of many prominent entities.
Nevertheless, such scarcity of semi-structured Arabic data is accompanied with huge

growth in the online Arabic content such as blogs and news articles. Arabic is among the
most widely spoken languages on the Internet. However, it is a resource-poor language in
the sense that there exist only small annotated corpora and entity-structured resources.

Our approach to overcome these bottlenecks is based on enriching the following NED
building blocks:

1. Entity Catalog.

2. Name-Entity Dictionary.

3. Entity Keyphrases Catalog.

The following sections discuss each of the three buildings blocks and how they can
be enriched to improve the performance of NED on languages with limited resources.

43

5. U-AIDA for Languages with Poor Annotated Resources

λ A language in Wikipedia
L Set of all languages in Wikipedia

een An entity originated from the English Wikipedia
eλ An entity originated from the λ Wikipedia
e An entity in the final entity repository
E Set of all entities

Caten(e) Set of categories names of an entity e in the English Wikipedia
Catλ(e) Set of categories names of an entity e in the λ Wikipedia

Inlinken(e) Set of Incoming Links to an entity e in the English Wikipedia
Inlinkλ(e) Set of Incoming Links to an entity e in the λ Wikipedia
Trans(S)

en→λ
Translation of each element in S from English to λ

Table 5.1.: Terminology Used for Building an NED System for a Language λ

Terminology used throughout this chapter is introduced in Table 5.1. Although this
chapter discusses Arabic as an example, our techniques are language-agnostic in the sense
that they can be applied to any other language as shown in the experiments section.

Let us consider this hypothetical Arabic sentence:

B éK. A
�
J» 	á« é

�
Kñ

	
«

�
è 	Q

KAg. ÉJ

	
JË ú

	
GQ

�
®Ë @

	
�

�A« iJ

�
�Q

�
K Õ

�
æK
 Y

�
¯

	
à 	Qm�

�
'

and written in English for clarity as:

Aaidh Al-Qarni might get nominated for
Goethe Prize for his book La Tahzan

This sentence has three named entities: the writer Aaidh Al-Qarni, the prize Goethe
Prize and the book La Tahzan. We will show how we can adapt different data components
of an NED framework to be able to correctly disambiguate all of them.

44

5.2. Entity Catalog

5.2. Entity Catalog

The writer entity in the example is famous enough to exist in both the English and Arabic
Wikipedias. Nevertheless, the book itself exists only in the Arabic Wikipedia. On the
other hand, the prize is not known to the Arabic Wikipedia and exists only in the English
Wikipedia (as of 01 May 2015).

In order to build a system capable of disambiguating this sentence, we need to make
sure our entity repository contains all of those entities. This is done by considering
inter-wiki links. If an entity in language λ ∈ L− {en} has an English counter part, the
English one is kept instead of that in language λ, otherwise, the original entity is kept.
For example, in our repository, the entity used to represent Egypt is “Egypt” coming from
the English Wikipedia instead of “ar/Qå�Ó” coming from the Arabic Wikpedia. However,

the entity that refers to the western part of Cairo is identified as “ar/ �
èQëA

�
®Ë @ H. Q

	
«” because

it has no counterpart in the English Wikipedia.
Considering our example, the following entries are added to the entity repository.

Available Entities Entity ID in the final repository

Aaidh_Al-Qarni, ar/ú

	
GQ

�
®Ë @

	
�

�A« → Aaidh_Al-Qarni

Goethe_Prize → Goethe_Prize
ar/ 	

à 	Qm�
�
' B → ar/ 	

à 	Qm�
�
' B

In general, for building an NED system for a language λ, we combine the Wikipedia
entities for en and λ. This captures prominent entities from the English side and local
entities that are peculiar only to this language or culture from the λ Wikipedia. We used
YAGO3[35] as our back-end KB which is constructed from Wikipedia entities of different
languages.

5.3. Name-Entity Dictionary

Considering the Arabic example above, in order to disambiguate it correctly we need a
dictionary that is aware of the Arabic names of all the three entities. Our system knows,
at least, one Arabic name only for entities that exist in the Arabic Wikipedia (their
Wikipedia page titles).

For constructing the dictionary, we harness Wikipedia page titles, disambiguation pages,
redirects, and anchor text. Since we are building an Arabic dictionary of entity names,
we restricted our extraction to the Arabic Wikipedia. Due to the small size of the Arabic

45

5. U-AIDA for Languages with Poor Annotated Resources

Wikipedia, the dictionary extracted from it is very incomplete. Not only does it miss
Arabic names for prominent entities (which do not exist in the Arabic Wikipedia) but it
additionally misses important Arabic name variations for other entities. Therefore, it is
crucial to enrich and extend the dictionary by adding entries other than those extracted
from the Wikipedia.

We have developed three approaches to extend the name-entity dictionary of our system
as explained below.

5.3.1. External Resources

The entities that exist only in the English Wikipedia lack Arabic names, but their English
name is available. The most straightforward approach is to leverage name dictionaries
so-called gazetteers, that are designed to translate named entities (as opposed to concepts)
from English to Arabic. More specifically, we aim at including potential entity names
mentioned in unstructured web resources. Therefore, we harvested entity mentions from
two kinds of external resources.

Entity-aware dictionaries: We harness names linked to entities through manually cre-
ated anchors linking to Wikipedia pages. Spitkovsky and Chang, 2012 [47] created a
multilingual bi-directional dictionary from strings, including non-Wikipedia web anchors,
to Wikipedia articles. Each mapping between the strings and the associated article has
conditional probability P (URL|string) defined as the ratio of the number of hyperlinks
into a Wikipedia URL having anchor text “string” and the total number of anchors with
text “string”.
Strings with conditional probability less than a threshold (experimentally picked to

0.01) were filtered out. This excludes the common non-expressive strings such as “read
more” and “Wikipedia”. We used the language detection module developed by [46] to
extract strings of the target language. A further token-level cleaning is applied to remove
URL strings and to remove stop words, punctuation and other common marker prefixes or
suffixes from the strings such as “Wikipedia page” in “Germany Wikipedia page”. Finally,
names are associated to entities through Wikipedia URLs.

Entity-free dictionaries: There are several multilingual name dictionaries (gazetteers)
that are manually (or semi-manually) populated from parallel or comparable corpora.
Names in these resources are not mapped to specific entities. Therefore, the targeted
language mentions are associated with all entities that have a matching English name.
More specifically, given a name-entity dictionary entry (nameen ⇒ e) denoting that

46

5.3. Name-Entity Dictionary

“nameen” is a potential English name for the entity e, and a multilingual dictionary entry
(nameλ ≡ nameen), we add (nameλ ⇒ e) to the name-entity dictionary.

We used JRC-Names [48] as a lookup dictionary to generate variants for the English
names in the target language. In addition, we leveraged the parallel entity names harvested
by Azab et al. 2013 [4] from parallel news wires corpora using a semi-automated approach.

5.3.2. Statistical Machine Translation

While gazetteers and hyperlinks extracted from the web provide Arabic names for some
English entities, many are still nameless in the Arabic world. There is a need to generate
Arabic names instead of only extracting them.

Several off-the-shelf translation services have been trained with huge amounts of data
(e.g. Google Translate and Microsoft Translator). However, these services are not geared
for translating entity names. Instead, they are designed to achieve good translation quality
on natural language text where “Green” is mostly a color and “North” is a geographic
direction. Neither of them would be considered as a family name. More specifically, unless
the name to translate has appeared in the English-Arabic parallel training data (which is
seldom the case for not so prominent entities), the translation quality is not satisfactory
[1, 22, 4].

We trained an SMT system on carefully selected parallel corpora of names. The intuitive
idea of our approach is the following. If our KB knows the names of “Eric Schmidt” and
“Christian Dior” in Arabic script, our system should be able to automatically learn the
Arabic name of “Christian Schmidt”.

SMT System: We used cdec [12]: a full fledged SMT system. We configured cdec to
use the default word aligner and model optimizer.

Training Data: We trained an SMT system on an English-Arabic parallel corpus of
names. We obtained the corpus from the following resources:

1. External Resource: We included the dictionary provided by [4].

2. Wikipedia: We automatically built a parallel corpus using interwiki links. For
every entity that exists in both the English and Arabic Wikipedia, its English and
Arabic names are added to the training corpus. Obviously, this approach is not
limited to Arabic and can be applied to any other language.

5% of the training data were used for tuning the parameters of the cdec decoder.

47

5. U-AIDA for Languages with Poor Annotated Resources

Approach: Recent techniques for translating named entities within natural language
context trained a classifier on contextual and linguistic features including the coarse-
grained type tags (PERSON, LOCATION, ORGANIZATION) [4]. We also took type information
into consideration when translating names as explained below.

Every name pair in our training data has type information. The dictionary obtained from
[4] classified names into standard coarse-grained classes (PERSON, LOCATION, ORGANIZATION,
MISC). The training data obtained from Wikipedia are extracted from entity names, and
hence their semantic types are known via their entity semantic types.

Training data have been split into two sets: PERSONS that contains the names typed as
persons, and NON-PERSONS that contains the rest of the training data. We have trained
three SMT systems:

1. PERSON-SMT: It is an SMT system trained only on the names in the training data
typed as PERSON.

2. NON-PERSON-SMT: It is an SMT system trained only on the names in the training
data typed as NON-PERSON.

3. BOTH-SMT: It is an SMT system trained on all names in the training data.

Given an entity of type PERSON, we translate its English name using the system
PERSON-SMT. Only if no translation is not found, we invoke the BOTH-SMT system. Similarly,
a NON-PERSON entity name, is first translated using the NON-PERSON-SMT system. If it fails,
it is translated using the BOTH system. The BOTH-SMT is only used as fallback system.
The intuitive idea behind this approach is that names of different types are treated

differently. Consider, for ease of explanation, translating names from English to German.
The word “Green”, for example, has two different German translations in the names “John
Green” and “East German Green Party”. The former is a person, and “Green” would stay
as is. The latter is a political party, and “Green” will be translated to “Grün”. Training
the SMT system on per-type data sets allows it to learn the most common translation for
“Green”, for example, in each type. We did not do any further type-based data splitting
(e.g. ORGANIZATION vs LOCATION) in order to maintain a reasonable amount of training
data.
If the type-specific SMT system is not able to translate the name, we switch to the

fallback system trained on all training data. The intuition here is that for non-person
entities like “Goethe Prize”, we are able to translate it using the fallback system which
learned to translate “Goethe” from the PERSON part of the training data, and “Prize” from
the NON-PERSON part.

48

5.4. Entity Descriptions

5.3.3. People Name Transliteration

e i n s t e i n ||| 	
à ø

@

�
H

�
�

	
à ø

@

Figure 5.1.: Character-level Training Data Point Example

Many entities can be assigned one or more Arabic names using external resources
and/or SMT. However, some entities are still left without any names. Furthermore, due
to different dialects and non-unique transliteration variants, some potential entity names
are missing. For example, the entity Angela Merkel has only “É¿Q�
Ó CJ
m.

�
	
'

@” as an Arabic

name. Other variations such as “É¿Q�
Ó CJ

	
ª

	
K

@”, which may appear in news articles, should

be automatically generated. Transliteration is the key to be able to generate other forms
of names. We use cdec SMT system trained on the same parallel corpus of English-Arabic
name pairs that was used for translation. However, we train it on the character level
in order that it learns the potential equivalent Arabic letter for each English letter. An
example is shown in Figure 5.1.

In order to avoid adding noisy entries to the dictionary, we apply transliteration only
for entities of type PERSON. Applying transliteration for entities of type ORGANIZATION for
example will produce wrong entries by transliterating entities such as United_Nations
instead of translating them. The reason is that most of organization names need partial or
full translation (as opposed to transliteration) when generating names in other languages.

5.4. Entity Descriptions

NED requires textual description of each entity in language λ that gets matched against
the input text to compute a similarity score between this entity and the input text. We
adapted the standard approaches to extract entity contexts as follows:

• Anchor Text: We extract all anchor texts in an entity page in the λ Wikipedia
under the assumption that all anchor texts in a λ Wikipedia are of language λ.
Nevertheless, for languages with small Wikipedia such as Arabic, many entities
are missing. Those missing entities do not receive any Arabic keyphrases from this
source.

49

5. U-AIDA for Languages with Poor Annotated Resources

• Inlink Titles: In AIDA, the set of the titles of the pages that has links to an
entity were considered among the keyphrases of such an entity. We pursue the same
approach here, and fuse incoming links to an entity from both the English and the λ
Wikipedias. Then, we translate the titles that are not of language λ using interwiki
links. For those entities that do not have a counter part in the λ Wikipeida, their
names cannot be translated using interwiki link. Therefore, we invoke an SMT
system trained on a parallel corpus of entity names built from interwiki links, to
translate them. Formally, the set of keyphrases extracted from incoming links are
as follows:

Inlink(e) = Inlinkλ(e) ∪ Trans
en→λ

(Inlinken(e))

• Category Names: For an entity, we include the category names in both the
English and the λ Wikipedias. We exploit the interwiki links among categories
to translate the English categories into language λ. This comes with two benefits.
First, we use the category mappings which result in fairly accurate translation in
contrast to machine translation. Second, we enrich the category system of the λ
Wikipedia with categories from English for entities that have corresponding English
counterparts. Similar to incoming links, for those category names that cannot be
translated using interwiki links, we use an SMT to translate them. However, the
SMT system is trained on a parallel corpus of category names built from interwiki
links. Formally, the set of keyphrases extracted from category names are computed
as follows:

Cat(e) = Catλ(e) ∪ Trans
en→λ

(Caten(e))

Table 5.2 summarizes which context resource has been translated and/or enriched from
the English Wikipedia.

The aforementioned approaches leverage cross-lingual evidences, such as category names,
to enrich the set of entity keyphrases in a language with relatively small Wikipedia. This
enables our system to deliver a NERD solution for language λ with name-entity dictionary
and entity keyphrases with coverage close to the English counterpart. We maintain
quality by relying first on interwiki links that deliver more accurate translation than that
obtained by SMT systems.

50

5.5. Implementation

Context Source λ Wikipedia English Wikipedia

Anchor Text + -
Categories + +

Title of Incoming Links + +

Table 5.2.: Entities Context Sources when Building an NED System for Language “λ”

YAGO3

English
Wikipedia

Arabic
Wikipedia

YAGO
Extractor

Entities
Dictionary

Categories
Dictionary

En+Ar
U-AIDA
NERD

Repository

Translator Language
Filter

The Pipeline for Building
an English U-AIDA NERD Repository

Extraction Building U-AIDA NERD Repository Translation Filtration

Standard
U-AIDA Builder

En+Ar
U-AIDA
NERD

Repository

Arabic
U-AIDA
NERD

Repository

Figure 5.2.: General Architecture for Building an NED System for Arabic

51

5. U-AIDA for Languages with Poor Annotated Resources

5.5. Implementation

Figure 5.2 illustrates the general architecture of building an NED solution for the Arabic
language. The pipeline is divided into four stages:

1. Extraction: In this stage, the entity catalog is built from the English and Arabic
Wikipedias taking equivalent entities into account. In addition, dictionaries for
entity names and category names are extracted from the interwiki links.

2. Building the NERD Repository: In this stage, all data ingredients required for
NERD, such as anchor texts, page titles, disambiguation pages, are extracted from
both Wikipedias. The output is a NERD repository that contains a mix of English
and Arabic entity names and keyphrases.

3. Translation: Data extracted in the second stage are then translated using interwiki
links, external dictionaries, and SMT systems. In addition, person names get
transliterated.

4. Filtration: In this stage, data are cleaned to remove any text that could not be
translated in the previous stage. The output is a purely Arabic NERD repository.

5.6. Experiments and Evaluation

Setup

We evaluated the quality of our methods for enriching the NED repository by running
experiments with and without the enrichment. We tested our approach on Arabic, Spanish
and Italian languages. We built U-AIDA systems referred to as U-AIDA-Arabic, U-
AIDA-Spanish, and U-AIDA-Italian. We used YAGO3 as our backend KB built from
the English Wikipedia dump as of 12 January 2015 combined with language specific
Wikipedias. For Arabic, Spanish and Italian, we used the latest dumps available for each
language, namely, 18 December 2014, 08 April 2015, and 25 April 2015, respectively.
The same configuration was used as in the original AIDA local similarity technique

[26]. Hyperlinks among entities exhibit different densities in different Wikipedias. Since
e-e coherence is estimated using overlap in incoming links, different densities produce
coherence scores that are incomparable. Therefore, we did not include coherence measures
in our experiments to be able to precisely assess the impact of data enrichment.

52

5.6. Experiments and Evaluation

Language Dataset Type #docs # non-null
mentions

unique
non-null
mentions

Arabic
LDC2014T05 news 702 14413 3109

LDC2014T05 web 74 1385 514

Spanish
SemEval 2015 web 4 29 21

ProjSynd news 683 743 427

Italian
SemEval 2015 web 4 33 22

Europarl v.5 news 922 1051 434

Table 5.3.: Data Sets Used to Evaluate U-AIDA++ per Language

Datasets

For Arabic, we created our own benchmark to overcome the lack of annotated data. We
used LDC2014T05 [33] corpus with news articles and web pages in English and Arabic
where the latter was manually translated and word-aligned. We automatically created
pseudo ground-truth by applying the original AIDA system optimized for English on the
English text and projecting the annotations onto the Arabic corpus using the token level
alignment information. We manually sampled 106 mention annotations. 22 mentions
were mapped to null. Out of the other 84 mentions that were assigned entities, 70 were
correctly disambiguated for a mapping precision of 83.3%.

In addition, we ran tests with the data of the Spanish and Italian SemEval-2015 Shared
Task 13. Since the task is designed for both Word Sense Disambiguation and Named
Entity Disambiguation, we tested only for the latter part. Finally, we evaluated our
methods on the Spanish ProjSynd and the Italian Europarl news commentary data. In
both data sets, person mentions have been manually annotated by [36]. We excluded all
documents without mentions annotation from our experiments. Table 5.3 summarizes the
properties of the data sets used in this evaluation.

Baselines

We compared three systems:

1. U-AIDA-λ: language-specific instance of U-AIDA without data enrichment.

53

5. U-AIDA for Languages with Poor Annotated Resources

2. U-AIDA-λ++: language-specific instance of U-AIDA with data enrichment.

3. Babelfy: via a web service.

We built systems for Arabic, Spanish and Italian, referred to as U-AIDA-Arabic, U-
AIDA-Spanish, and U-AIDA-Italian that only contain data from Wikipedia without
any data extension approaches. We built similar systems (referred to as U-AIDA-
Arabic++, U-AIDA-Spanish++ and U-AIDA-Italian++) with the entity names
dictionary and entity keyphrases extended with additional entries using the data enrich-
ment approaches explained above.

For Babelfy, we used the web service. It offers two modes: named entities full matching
and partial matching. We ran both using a predefined set of mentions and report the
better results. We limited the candidate space to Wikipedia named entities.

Evaluation

For the Arabic benchmark, we considered only mentions with non-null pseudo ground
truth annotations for evaluations. For fair comparison, annotations returned as null by all
systems were considered to be wrong. We computed both per-mention average precision
and per-document average precision. Precision is computed as the ratio of the number of
correct annotations and the number of all annotations returned by the respective system.
Results of our experiments are shown in Table 5.4.

Discussion

U-AIDA-λ++ delivered better precision than all other systems under test. The scores
are generally higher for Spanish and Italian than for Arabic, because of their more
comprehensive Wikipedias. Babelfy does not implement entity name translation [43]
which explains its poor performance on the Arabic data. The impact of NED repository
enrichment is less expressed for the news corpus compared to the web corpus because
many entities in the news corpus are prominent and already exist in the Arabic Wikipedia.
Due to technical issues of the Babelfy web service, we could not report its scores on the
Europarl data set. Furthermore, U-AIDA-λ++ consistently managed to map, at least, the
same number of mentions that U-AIDA-λ could map across different data sets, indicating
that data enrichment improved both precision and recall.
In order to assess the impact of different system components, we sampled the Arabic

results for mentions that were correctly disambiguated only after applying the enrichment
techniques. Arabic is the most challenging among our test languages and has the smallest
Wikipedia. The outcome is quite promising. For example, names “ñ	

Kñ
�
Kñ»

�
éJ

�
¯A

	
®
�
K @” and

54

5.6. Experiments and Evaluation

“ÉJ

	
J�

�
J
	
�� 	á� @YK
PñÊ

	
¯

�
HðA�” were correctly linked to “Cotonou Agreement”, and “Sun-

Sentinel newspaper” respectively, although neither has an Arabic Wikipedia page. Some
English names have different potential forms in Arabic. In such cases, transliteration
produced all possible forms. For example, the Arabic Wikipedia page of the Nobel prize
winner “José Saramago” lists his name as “ñ

	
«AÓ@PA� éK

	Pñk. ”. However, in our news corpus,

the name “ñ 	
«AÓ@PA� éJ
�ñ

	
k” was used instead. Our system could acquire both forms and

correctly disambiguate this mention.

55

5. U-AIDA for Languages with Poor Annotated Resources

Dataset System
Mention
Precision

Document
Precision

Non-null
Entities

A
ra
b
ic

LDC news
U-AIDA-Arabic++ 73.23 71.34 94.69

U-AIDA-Arabic 69.07 67.26 87.19

Babelfy 30.32 31.16 39.75

LDC web
U-AIDA-Arabic++ 68.16 60.10 93.86

U-AIDA-Arabic 62.02 52.48 85.56

Babelfy 22.33 21.13 38.62

S
p
an

is
h

SemEval
U-AIDA-Spanish++ 86.20 69.60 93.10

U-AIDA-Spanish 82.76 68.04 93.10

Babelfy 79.31 66.47 79.31

ProjSynd
U-AIDA-Spanish++ 86.91 88.04 89.98

U-AIDA-Spanish 84.71 86.27 87.90

Babelfy 79.30 86.27 79.94

It
al
ia
n

SemEval
U-AIDA-Italian++ 87.88 88.39 87.87

U-AIDA-Italian 84.84 86.60 87.87

Babelfy 75.75 49.11 78.78

Europarl
U-AIDA-Italian++ 75.38 75.29 85.53

U-AIDA-Italian 71.62 71.77 81.20

Babelfy n.a n.a n.a

Table 5.4.: Experimental Results of Running U-AIDA on Arabic, Spanish and Italian

56

6. HYENA: Named Entity Type
Classifier

U-AIDA architecture enables building multi-knowledge base NERD solutions. However,
Named-Entity Disambiguation (NED) assigns some mentions to null indicating that the
entities denoted by those mentions do not exist in any of the underlying knowledge bases.
The reason can be an incomplete knowledge base or a newly emerging entity. In such
cases, U-AIDA can infer the lexical type labels for those mentions using the HYENA
system.

Inferring the lexical type labels is an important asset for NLP tasks like semantic role
labeling and named entity disambiguation. Prior work has focused on flat and relatively
small type systems where most entities belong to exactly one type. In this chapter,
we address the more demanding case of fine-grained types organized in a hierarchical
taxonomy, with several hundreds of types at different levels. We present the HYENA
method that uses a multi-label hierarchical classifier to solve this problem. HYENA
exploits gazetteer features and accounts for the joint evidence for types at different levels.
Experimental comparisons to the best prior methods and an extrinsic study on named
entity disambiguation demonstrate the practical viability of the HYENA method.

6.1. Introduction

Motivation: Web contents such as news, blogs and other social media are full of named
entities. Recognizing them and disambiguating them has been intensively studied (see,
e.g., [18, 9, 39, 26, 45]). Each entity belongs to one or more lexical types associated with
it. For instance, an entity such as Bob Dylan should be assigned labels of type Singer,
Musician, Poet, etc., and also the corresponding supertype(s) (hypernyms) in a type
hierarchy, in this case Person. Such fine-grained typing of entities and entity mentions in
texts can be a great asset for various NLP tasks including semantic role labeling and sense
disambiguation. Most notably, Named Entity Disambiguation (NED) can be boosted
by knowing or inferring a mention’s lexical types. For example, noun phrases such as
“songwriter Dylan”, “Google founder Page”, or “rock legend Page” can be easily mapped

57

6. HYENA: Named Entity Type Classifier

with 100,000$, Google wasFunded" founded by Brin and Page "

his firstplayed on" guitar in 1952Page "

Business_people
Entrepreneur

Entertainer
Musician

Figure 6.1.: Fine-grained entity type classification

to the entities Bob Dylan, Larry Page, and Jimmy Page if their respective types Singer,
BusinessPerson, and Guitarist are available. Figure 6.1 shows an illustrative example.

Problem Statement: State-of-the-art tools for Named Entity Recognition (NER) sys-
tems like the Stanford NER Tagger [18] compute such lexical tags only for a small set
of coarse-grained types: Person, Location, and Organization (plus tags for non-entity
phrases of type time, money, percent, and date). There is little literature on fine-grained
typing of entity mentions [19, 13, 52, 34], and these approaches are pretty much limited
to flat sets of several dozens of types. Because of the relatively small number of types,
an entity or mention is typically mapped to one type only. The goal that we address is
to extend such methods by automatically computing lexical types for entity mentions,
using a large set of types from a hierarchical taxonomy with multiple levels. In this
setting, many entities naturally belong to multiple types. For example, a guitarist is also
a musician and a person, but may also be a singer, an actor, or even a politician as well.
So we face a hierarchical multi-label classification problem [51].

Contribution: We introduce the HYENA method (Hierarchical tYpe classification for
Entity NAmes). HYENA is a multi-label classifier for entity types based on hierarchical
taxonomies derived from WordNet [16] or knowledge bases like YAGO [49] or Freebase [6].
Our approach uses a suite of features for a given entity mention: neighboring words and
bigrams, part-of-speech tags, and also phrases from a large gazetteer derived from state-
of-the-art knowledge bases. Moreover, we carefully consider the hierarchical structure
of the type space by exploiting the relatively large amount of training instance in the
top-level types, in order to filter our clearly wrong instances. Based on our classifiers, we

58

6.2. Computational Model and Feature Set

also extend a state-of-the-art joint-inference method for entity disambiguation and show
that type labels for entity mentions can improve NED performance.

Our salient contributions are the following:

• The first method for entity-mention type classification that can handle multi-level
type hierarchies with hundreds of types and multiple labels per mention.

• Extensions to consider cross-evidence and constraints between different types, by
developing a meta-classifier.

• Experimental comparisons to three state-of-the-art baselines, demonstrating the
superiority of HYENA.

• An extrinsic study on boosting NED by harnessing type information.

The rest of this chapter is organized as follows. Section 6.2 presents our computational
model and feature sets. Section 6.3 introduces our hierarchical multi-label classifier, and
its extensions into a meta-classifier. Section 6.4 discusses our experiments on type tagging.
Section 6.5 presents an extrinsic study on NED. Section 2.4 reviews related work. Section
6.6 presents implementation details.

6.2. Computational Model and Feature Set

We apply a supervised machine learning approach to train a set of classifiers for labeling
entity mentions (i.e., noun phrases denoting entities) with lexical types. This section
describes the type system and the text features we are using for classification. Section 6.3
will explain the algorithmic aspects of the classifiers.

6.2.1. Fine-grained Type Hierarchy

We have systematically derived a very-fine-grained type taxonomy from the YAGO
knowledge base [49, 25] which comes with a highly accurate mapping of Wikipedia
categories to WordNet synsets. We start with five broad classes namely PERSON, LOCATION,
ORGANIZATION, EVENT and ARTIFACT. Under each of these superclasses, we pick 100
prominent subclasses. The selection of subclasses is based on the population of the
classes: we rank them in descending order of the number of YAGO entities that belong
to a class, and pick the top 100 for each of the top-level superclasses. This results in a
very-fine-grained reference taxonomy 505 types, organized into a directed acyclic graph
with 9 levels in its deepest parts. Table 6.1 lists the top 20 subtypes under each of the 5
top-level types. The full type hierarchy is listed in Appendix A.

59

6. HYENA: Named Entity Type Classifier

PERSON LCOATION ORGANIZATION EVENT ARTIFACT

contestant location institution social event instrumentality
athlete region unit act medium
player geographical area company show structure
leader district educational institution movie creation
entertainer administrative district school activity product
intellectual tract association contest album
performer site musical organization diversion facility
communicator point club action building
scholar structure enterprise group action movie
alumnus geographic point secondary school change station
creator address business change of state conveyance
football player residence military unit game vehicle
worker home team beginning device
writer populated place senior high school introduction work
skilled worker village administrative unit game publication
artist settlement army unit computer game terminal
adult facility party vote railway station
politician urban area carrier election way
actor municipality line military action craft
musician building league speech act broadcasting station

Table 6.1.: Top 20 Subtypes of the 5 Top-Level Types

We are not aware of any similarly rich type hierarchies used in prior work on NER and
entity typing. Our approach can easily plug in alternative type taxonomies, either derived
from other knowledge bases like Freebase or DBpedia as in [34], or from hand-crafted
resources such as WordNet.

6.2.2. Feature Set

For a general approach and for applicability to arbitrary texts, we use only features that
are automatically extracted from input texts. We do not use any features that require
manual annotations, such as sense-tagging of general words and phrases in training
documents. This discriminates our method from some of the prior work which used
WordNet senses as features (e.g., [52]). In the following, we briefly discuss each group of
features and how they are derived. Table 6.2 summarizes our feature set.

Mention String: We derive four features from the entity mention string. The mention
string itself (a noun phrase consisting of one or more consecutive words) is one feature.

60

6.2. Computational Model and Feature Set

The other three features are unigrams, bigrams, and trigrams that overlap with the
mention string.

Sentence Surrounding Mention: We also leverage the sentence where the mention
appears. Four features are derived from a bounded-size window around the mention: all
unigrams, bigrams, and trigrams in the sentence along with their distance to the mention,
and all unigrams along with their absolute distance to the mention. Distance captures
whether features occur left or right of the mention, whereas absolute distance reflects
only the number of words between feature and mention. This set of features is limited by
the size of the window around the mention, a parameter of our method. In experiments,
we set this to a conservative value of 3 words.

Mention Paragraph: We further consider the entire paragraph within which the mention
appears. This may give additional topical cues about the mention type (e.g., if the
paragraph talks about a music concert, this is a cue for mapping people names to musician
types). We create three features here: unigrams, bigrams, and trigrams without including
any distance information. Again, we can control the width of influence of these features,
by limiting the size of the window around the mention (truncated at the paragraph
boundaries). In our experiments we set the boundaries of the paragraph features to a
window of 2000 characters before and 2000 characters after the mention.

Grammatical Features: There are four features of this kind. First, we use part-of-speech
tags of the tokens surrounding the mention within a bounded-size window of tokens before
and after the mention. The also come in distance, and absolute distance versions. Second
and third, we create a feature for the first occurrence of a “he” or “she” pronoun in the
same sentence and in the subsequent sentence following the mention, along with the
distance to the mention. Finally, we use the closest verb-preposition pair preceding the
mention.

Gazetteer Features: For each type of our taxonomy, we build a type-specific gazetteer of
words occurring in names of entities of a type. This is derived from the YAGO knowledge
base, which has an extensive dictionary of name-entity pairs extracted from Wikipedia
redirects and link-anchor texts. An alternative source for this kind of information is the
recently released Google corpus of Web links to Wikipedia [47]. We then construct, for
each type, a binary feature that indicates if the mention contains a word occurring in this
type’s gazetteer. Note that this is a fully automated feature construction, and it does by
no means determine the mention type(s) already, as most words occur in the gazetteers

61

6. HYENA: Named Entity Type Classifier

Input Derived Features

Mention String

MENTION
UNIGRAM_MEN
BIGRAM_MEN
TRIGRAM_MEN

Mention Sentence

UNIGRAM_REL
UNIGRAM_ABS
BIGRAM_REL
TRIGRAM_REL

Mention Paragraph
PARA_UNIGRAM
PARA_BIGRAM
PARA_TRIGRAM

Grammatical Features

POS
Stanford NER Tagger
FIRST_HE_SHE_SAME_SENT_AFT_MEN_REL
FIRST_PRP_HE_SHE_NEXT_SENT_REL
LAST_VERB_PREP_TUPLE_BEF_MEN

Gazetteer Features
OCCURS_TYPE1_WORDS
OCCURS_TYPE2_WORDS
. . .

Table 6.2.: Summary of Features Used for Classification

of many different types. For example, “Alice” occurs in virtually every subclass of Person
but also in city names like “Alice Springs” and other locations, as well as in songs, movies,
and other products or organizations.

6.3. Classifier

6.3.1. Hierarchical Classifier

Based on the feature set defined in the previous section, we build a set of type-specific
classifiers using the SVM software liblinear [15, 8]. As our YAGO-based type system
integrates WordNet and Wikipedia categories, we obtain ample training data from

62

6.4. Experiments

Wikipedia effortlessly, simply by following all Wikipedia anchor texts to the corresponding
YAGO entities.

For each type, we consider Wikipedia mentions (and their surrounding sentences and
paragraphs, see feature model) of the type’s instances as positive training samples. For
discriminative learning, we use all siblings in the type hierarchy as negative samples. That
is, the classifier considers one type against all other types that have the same parent type
(e.g., Artist vs. Politician, Athlete, etc. – all under the same parent). As the subclasses
of a given type t do not necessarily cover all entities of t, we add a subclass Others to
each non-leaf type. The positive samples for Others are those instances of a type t that
do not explicitly belong to any of its subclasses. Conversely, the classifiers for non-leaf
nodes include all instances of their subtypes as positive samples (with full weight).
When presented with a new test input, HYENA runs this through the hierarchy of

type-specific classifiers in a top-down manner. At each level of the hierarchy, we invoke all
classifiers that have the same parent. The test mention is assigned to all types for which
the corresponding classifier signals confidence of acceptance or rejection. Only when a
mention is accepted for type t, it is presented to all children classifiers of t.

6.3.2. Meta Classifier

The HYENA method outlined above uses a global threshold θ for accepting test mentions
to a class. Using a single parameter for all types is not fully satisfying, as different types
may exhibit very different characteristics. So the optimal acceptance threshold may be
highly type-dependent.

To overcome this limitation, we devised a meta classifier that ranks the types for each
test mention by decreasing confidence values and then predicts the “right” number of top-n
labels to be assigned to a mention. Our approach to this end follows the methodology of
[50]. We use the confidence values of the type-specific classifier ensemble as meta-features,
and train a multi-class logistic regression classifier to whose output is a suitable value of
n for given features.
We combine the base classifiers and the meta classifier by first running the entire

ensemble top-down along the type hierarchy, and then letting the meta model decide on
how many of the highest-scoring types we accept for a mention.

6.4. Experiments

In the following subsections we describe the experiments conducted to evaluate HYENA.
First, we will introduce the experimental setup. Then we will describe our experiments on
different ground truth datasets geared for high precision and high recall. Afterwards we

63

6. HYENA: Named Entity Type Classifier

will introduce results based on employing a meta-classifier in order to improve precision
for quality-sensitive use cases. Finally, we analyze the impact of various features employed
by HYENA.

6.4.1. Setup

System: The described methods have been implemented in the HYENA framework. The
Stanford NLP tools have been used to identify mentions of named entities and to extract
the grammatical features from the surrounding context. We used the YAGO2 knowledge
base to construct the gazetteer features.
Data: We used the English Wikipedia edition as of 2012-05-02. In order to obtain
ground-truth type labels, we exploited the links pointing to other Wikipedia articles by
resolving them to their corresponding YAGO2 entity and retrieving their semantic types
from YAGO2. For example from the Wikipedia markup

“In June 1989, Obama met [[Michelle Obama|Michelle Robinson]] when
he was employed as a summer associate at the Chicago law firm of [[Sidley
Austin]]”

the following YAGO2 entities are determined:

• Michelle Robinson → http://yago-knowledge.org/resource/Michelle_Obama

• Sidley Austin → http://yago-knowledge.org/resource/Sidley_Austin

HYENA is trained on a randomly selected set of 50,000 Wikipedia articles, containing
around 1.6 million entity mentions. 92% of the corresponding entities belong to at least
one of our 5 top-level types, with 11% belonging to at least two top-level types. Testing
of HYENA was performed on 10,000 randomly selected Wikipedia articles, withheld from
the same Wikipedia edition and disjoint from the training data. Some properties of
training and test data are summarized in Table 6.3. All our experimental data is available
on our Web site http://www.mpi-inf.mpg.de/yago-naga/hyena/.
Performance Measures: In order to measure the performance of entity type classifica-
tion by HYENA, we perform micro- and macro-evaluation of our approach for precision,
recall and F1 scores. To this end, we define the measures as follows:
Let T be the set of all types in our hierarchy, and let It be the set of instances tagged with
the type t, and Ît the set of instances that are predicted to be of t. Then, micro-evaluation
measures are:

64

http://yago-knowledge.org/resource/Michelle_Obama
http://yago-knowledge.org/resource/Sidley_Austin
http://www.mpi-inf.mpg.de/yago-naga/hyena/

6.4. Experiments

data property training testing

of articles 50,000 10,000

of instances (all types) 1,613,340 253,029

of location instances 489,003 (30%) 86,936 (34.4%)

of person instances 426,467 (26.4%) 62,446 (24.6%)

of organization instances 219,716 (13.6%) 38,293 (15.1%)

of artifact instances 204,802 (12.7%) 31,899 (12.6%)

of event instances 176,549 (10.9%) 28,952 (11.4%)

instances in 1 top-level class 1,131,994 (70.2%) 179,240 (70.8%)

instances in 2 top-level classes 182,508 (11.3%) 33,399 (13.2%)

instances in more than 2 top-level classes 6,492 (0.4%) 828 (0.3%)

instances not in any class 292,346 (18.1%) 39,562 (15.6%)

Table 6.3.: Properties of Training and Testing Data

Precisionmicro =

∑
t∈T

∣∣∣It ∩ Ît∣∣∣∑
t∈T

∣∣∣Ît∣∣∣ and Recallmicro =

∑
t∈T

∣∣∣It ∩ Ît∣∣∣∑
t∈T |It|

and macro-evalution measures are:

Precisionmacro =
1

|T |
∑
t∈T

∣∣∣It ∩ Ît∣∣∣∣∣∣Ît∣∣∣ and Recallmacro =
1

|T |
∑
t∈T

∣∣∣It ∩ Ît∣∣∣
|It|

Competitors: From literature, we identified those prior methods that target fine-grained,
multi-level type classification and used publicly available corpora on which we could run
HYENA for direct comparison. These are the methods of [19] referred to as HOVY), [52]
referred to as NG), and FIGER by [34]. We preferred experiments on the competitors’

65

6. HYENA: Named Entity Type Classifier

Macro Micro

Prec. Rec. F1 Prec. Rec. F1

5 Top-level Types 0.941 0.922 0.932 0.949 0.936 0.943

All 505 Types 0.878 0.863 0.87 0.913 0.932 0.922

Table 6.4.: Overall Experimental Results for HYENA on Wikipedia 10000 articles

datasets to avoid re-implementation and to give our opponents the benefit of their original
optimization and tuning.

6.4.2. Multi-label Classification

In the following subsections we will present our multi-label experiments that are geared
for high precision and high recall in detail. To this end, we present results against
ground truth coming from Wikipedia, the BBN Pronoun Coreference Corpus and Entity
Type Corpus (LDC2005T33)1 and the FIGER-Gold dataset. Baseline for all HYENA
experiments are the predictors trained on the 50,000 Wikipedia articles as mentioned
above. When applying HYENA to a different dataset than Wikipedia, we will present
results for HYENA configurations adopted for those settings as well.

HYENA experiments on Wikipedia

HYENA is trained on a randomly selected set of 50,000 Wikipedia articles, containing
around 1.6 million entity mentions. Testing of HYENA was performed on 10,000 randomly
selected Wikipedia articles, withheld from the same Wikipedia edition and disjoint from
the training data. The results for HYENA are shown in Table 6.4. As can be seen
from the table, HYENA achieves very high F1 scores of around 94% for its 5 top-level
types. Evaluated against the entire hierarchy, F1 scores are still remarkably high with
F1 scores of 87% and 92% for macro and micro evaluations, respectively. The slightly
weaker results for the macro evaluation are explainable by our fine-grained hierarchy,
which also contains “long-tail types”. However, the overall micro results show that these
types contain relatively instances only.

1http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005T33

66

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2005T33

6.4. Experiments

Macro Micro

Prec. Rec. F1 Prec. Rec. F1

5 Top-level Types
HOVY 0.522 0.464 0.491 0.568 0.51 0.537

HYENA 0.941 0.922 0.932 0.949 0.936 0.943

All 505 Types
HOVY 0.253 0.18 0.21 0.405 0.355 0.378

HYENA 0.878 0.863 0.87 0.913 0.932 0.922

Table 6.5.: Results of HYENA vs HOVY (trained and tested on Wikipedia 10000 articles)

In order to compare against HOVY, we emulated their method within the HYENA
framework. This was done by specifically configuring the feature set, and using the same
training and testing instances as for HYENA. The results of this experiment are shown in
Table 6.5. HYENA significantly outperforms HOVY. HOVY shows decent performance
for the 5 top-level types, similar to the original results reported in in [19]. However, it
becomes obvious that HOVY has not been designed for such a fine-grained type hierarchy
as its performance sharply drops for more subtypes at deeper levels.

HYENA Experiments on FIGER-GOLD

The FIGER-GOLD dataset consists of 18 news reports from a university website, as well
as local newspapers and specialized magazines. All data was manually annotated based
on the type system of 112 types as reported in [34]. The test dataset was annotated with
at least one label per mention. This resulted in a total of 434 sentences with 562 entities
having 771 labels coming from 42 out of the 112 types.

For comparison against FIGER we performed a mapping onto the hierarchy of HYENA.
In order to achieve comparability between the levels of types being mapped, we focused on
the 5 top-level types. Since the FIGER-GOLD dataset does not come with null mappings,
we ran HYENA in two configurations. In the first configuration, HYENA was used
without any special consideration as in the previous experiment. Here the classifier was
trained to deal with abstract concepts (e.g. Chinese Philosophy) that are of generic
type ENTITY_OTHER only and do not belong to any specific type in our hierarchy. In a
second configuration, referred to as “no null tags”, we executed HYENA based on the

67

6. HYENA: Named Entity Type Classifier

Macro Micro

Prec. Rec. F1 Prec. Rec. F1

FIGER 0.75 0.743 0.743 0.828 0.838 0.833

HYENA 0.745 0.631 0.686 0.815 0.645 0.72

HYENA (no null tags) 0.724 0.801 0.75 0.788 0.814 0.801

Table 6.6.: Results of HYENA vs FIGER (trained on Wikipedia and tested on FIGER-
Gold)

same classifier as before, but enforced the assignment of at least one label for a specific
type.

Results for both configurations are shown in Table 6.6. In the standard configuration,
HYENA shows precision scores close to FIGER. However, HYENA suffers from the training
against abstract concepts. In the second configuration, both systems achieve results in
the same range with slight advantages for FIGER on micro-average and overall better
results of HYENA on macro-average. The overall 10% drop of HYENA’s performance
compared with the experiments on Wikipedia are due to the nature of the FIGER-GOLD
dataset, which comes with short sentences so that context features of HYENA are not
that effective. Furthermore, 771 type labels for 562 entity mentions (not entities) is only a
very moderate amount of multi-label classification. This is disadvantageous for HYENA,
which has been designed for data where number of labels per mention is higher (e.g.
Wikipedia).

HYENA Experiments on BBN

The BBN Pronoun Coreference and Entity Type Corpus (LDC2005T33) corpus consists
of 2311 manually annotated documents, including entity type classification. Since NG
exploits the word sense number for disambiguation, the corpus is restricted to those 200
documents (160 training, 40 testing) that have corresponding annotations.
For comparison against NG we performed a mapping onto the hierarchy of HYENA.

[52] reports results for 16 types for the NG data. These types include 8 non-entity
types: Date, Money, Percent, Quantity, Cardinal, NORP [Nationality, Religion, etc.],
Ordinal and Substance. Furthermore, there are 5 descriptor types (_DESC) that cannot

68

6.4. Experiments

Macro Micro

Prec. Rec. F1 Prec. Rec. F1

NG (trained on BBN) 0.859 0.864 0.862 0.812 0.871 0.84

HYENA (trained on Wikipedia) 0.943 0.406 0.568 0.932 0.371 0.531

HYENA (trained on Wikipedia, no null tags) 0.818 0.671 0.737 0.835 0.632 0.719

HYENA (trained on BBN) 0.916 0.909 0.911 0.919 0.881 0.899

Table 6.7.: Results of HYENA vs NG (tested on BBN Corpus)

be mapped. This resulted in mapping the 3 top-level types: Person, Organization and
GPE (country, city, states, etc.). As before, the BBN corpus does not come with null
mappings and the NG method has been trained on a different corpus, we ran HYENA in
three configurations. In the first configuration (“trained on Wikipedia”), HYENA was
used as it is. In the second configuration (“trained on Wikipedia, no null mapping”), we
enforced at least one type label to be assigned as in the previous experiment. Finally,
we also trained HYENA on the NG training set in the third configuration (“trained on
BBN”).

Results for experiments on the BBN dataset are shown in Table 6.7. HYENA exhibits
high precision already with its standard configuration. However, it suffers from low recall
in this setting, which is due to its training against abstract concepts that result in not
assigning any type. When enforcing HYENA to assign at least one tag, we recognize a
strong improvement in F1 scores similar to the experiments on FIGER-Gold. In the third
configuration, the fairest side-by-side comparison, we clearly outperform NG.

6.4.3. Meta-Classification

In application use-cases for type labeling, such as named entity disambiguation, precision
is often more important than recall. This is particularly critical and demanding for types
that suffer from data sparsity (less prominent and/or less populated types) on the deeper
levels of the type hierarchy. For example, when disambiguating named entities, it may
be crucial to distinguish a Painter from a Musician. In order to improve the precision
of fine-grained type labeling, we applied a meta-classifier as described in Section 6.3.2.
The meta-classifier adjusts, per level, the threshold for the number of types that an

69

6. HYENA: Named Entity Type Classifier

Technique Macro Micro

Prec. Rec. F1 Prec. Rec. F1

All 505 HYENA 0.878 0.863 0.87 0.913 0.932 0.922

Types HYENA + meta-classifier 0.89 0.837 0.862 0.916 0.914 0.915

Table 6.8.: Performance gain in precision by meta-classifaction

Macro Micro

Prec. Rec. F1 Prec. Rec. F1

HYENA 0.673 0.638 0.644 0.659 0.681 0.67

HYENA + meta-classifier 0.693 0.619 0.638 0.674 0.66 0.667

Table 6.9.: Meta-classifier impact on the 5% worst-performing classes

individual mention should have. Typically this results in a more conservative behavior of
the classifier.
Table 6.8 shows the overall performance gain achieved by applying HYENA’s meta-

classifier. As can be seen from the table, meta classification helps to improve the
macro-precision over all 505 types by more than 1%. When specifically focusing on
the 5% types that performed worst with the HYENA base classifiers, we even gained
more than 2% in precision, as shown in Table 6.9. The top-5 winners in this group
are (in ascending order) Tour, Pageant, Presentation, Battalion and Ghost Town with
performance gains ranging from 5% up to 13%.

6.4.4. HYENA Feature Analysis

In addition to a comprehensive set of features, the HYENA method exploits two additional
assets that contribute to its very good performance: a large amount of training data
derived from the linkage between Wikipedia and YAGO, and the gazetteer features

70

6.5. Extrinsic Study on Named Entity Disambiguation

Size of training set (#
of articles)

5 Top-level Types All 505 Types

Prec. Rec. F1 Prec. Rec. F1

50,000 0.949 0.936 0.942 0.913 0.932 0.922

20,000 0.937 0.924 0.93 0.893 0.917 0.905

10,000 0.929 0.915 0.922 0.881 0.907 0.894

5,000 0.92 0.903 0.912 0.869 0.89 0.879

50,000 (without gazetteers) 0.915 0.825 0.868 0.82 0.718 0.766

Table 6.10.: Micro-average impact of varying the number of Wikipedia articles used for
training

derived from YAGO. To assess the impact of each of these two extra assets, we ran
experiments with varying numbers of training instances and with enabling or disabling
gazetteer features. The influence of the number of training instance is shown in Table
6.10. Precision and recall improve with adding more training data, and the improvement
is most significant for the deeper levels of the type hierarchy where sparseness is a concern.
When gazetteer features are disabled, the performance dropped significantly, which shows
the strong benefit from the gazetteers.

6.5. Extrinsic Study on Named Entity Disambiguation

In this section we present an extrinsic study on harnessing HYENA for named entity
disambiguation (NED). Specifically, we consider a state-of-the-art NED tool, AIDA,
provided by the authors of [26]. This NED method uses a combination of contextual
similarity and entity-entity coherence for joint inference on how to map a set of entity
mentions in an input text onto canonical entities registered in a knowledge base. It uses
advanced graph algorithms which are computationally expensive. Alternative methods
with similarly strong results would be based on machine learning with probabilistic factor
graph which is equally if not more expensive. Therefore, it is desirable to prune the
search space of potentially relevant candidate entities as much as possible and as early as
possible.

71

6. HYENA: Named Entity Type Classifier

Threshold % dropped
entities

% of unsolv-
able mentions

Avg. Docu-
ment Precision

Avg. Mention
Precision

0.0 49.2 16.1 0.659 0.639

−0.5 45.7 12.3 0.738 0.713

−1.0 37.9 7.6 0.781 0.76

−1.5 28.8 4.7 0.791 0.779

−2.0 22.3 3.1 0.8 0.792

−2.5 17.7 2.2 0.802 0.798

AIDA 0 0 0.82 0.823

Table 6.11.: Impact of Varying Type Prediction Confidence Threshold on NED Results

In the following experiment, we use the type predictions by HYENA to identify
candidate entities that are unlikely to be among the true entities for the given mentions.
For example, for a sentence like “He was born in Victoria”, once we restrict the possible
types of the mention “Victoria” to Location or perhaps even to City and Region, we
could drop all entities of type Person or River and Lake from the candidate space and
thus speed up the NED computation.
We use the confidence scores of HYENA to remove entities of types with type scores

below some threshold θ. Our technique proceeds in three steps:

1. Invoke HYENA on the mention to obtain the predicted types for this mention as
well as their confidence scores.

2. Generate entity candidates using AIDA and its underlying name-entity dictionary.

3. For each candidate, if there is no overlap between the entity types and the predicted
mention types with confidence greater than or equal to θ, drop the candidate.

4. Run AIDA on the reduced candidate space.

When dropping entities from the candidate space, there is a risk of dropping the correct
entity. In this case, we consider the mention as unsolvable. We study the effect of varying
the relaxation parameter θ on the fraction of dropped entities (i.e., the search space

72

6.6. System Implementation

reduction) and the fraction of mentions that are rendered unsolvable. We varied θ from
−2.5 up to 0 with step size 0.5, and also compared to the variant without any pruning
(θ = −∞) We performed our experiment on the extended CoNLL 2003 NER dataset with
manual entity annotations from [26]. The results are shown in Table 6.11.
We see that with a pruning threshold of θ = −1, we can prune almost 40% while

rendering less than 8% of the mentions unsolvable. Also, the overall precision of the NED
results drops only by a small amount compared to the variant without pruning. This
holds for both averaging over all documents and averaging over all mentions. The search
space reduction of 40% actually results in a much larger saving in run-time because the
graph algorithm that AIDA uses for NED has super-linear complexity (NP-hard in the
worst case, but typically O(n log n) or O(n2) with appropriate approximation algorithms.

6.6. System Implementation

6.6.1. Overview

As described in Section 6.2, HYENA classifies mentions of named entities onto a hierarchy
of 505 types using large set of features. A random subset of the English Wikipedia has
been used for training HYENA. By exploiting Wikipedia anchor links, mentions of named
entities are automatically disambiguated to their correct entities. Each Wikipedia named
entity has a corresponding YAGO entity labeled with an accurate set of types, and hence
we effortlessly obtain a huge training data set (cf. data properties in Table 6.3).

We build type-specific classifiers using the SVM software LIBLINEAR (cf. http:
//liblinear.bwaldvogel.de/). Each model comes with a comprehensive feature set.
While larger models (with more features) improve the accuracy, they significantly affect
the applicability of the system. A single model file occupies around 150MB disk space
leading to a total of 84.7GB for all models. As a consequence, there is a substantial setup
time to load all models in memory and a high-memory server (48 cores with 512GB of
RAM) is required for computation. An analysis showed that each single feature contributes
to the overall performance of HYENA, but only a tiny subset of all features is relevant
for a single classifier. Therefore, most of the models are extremely sparse.

6.6.2. Sparse Models Representation

There are several workarounds applicable to batch mode operations, e.g. by performing
classifications per level only. However, this is not an option for on-the-fly computations.
For that reason we opted for a sparse-model representation.

73

http://liblinear.bwaldvogel.de/
http://liblinear.bwaldvogel.de/

6. HYENA: Named Entity Type Classifier

LIBLINEAR model files are normalized textual files: a header (data about the model
and the total number of features), followed by listing the weights assigned to each feature
(line number indicates the feature ID). Each model file has been post-processed to produce
2 files:

• A compacted model file containing only features of non-zero weights. Its header
reflects the reduced number of features.

• A meta-data file. It maps the new features IDs to the original feature IDs.

Due to the observed sparsity in the model files, particularly at deeper levels, there is a
significant decrease in disk space consumption for the compacted model files and hence in
the memory requirements.

Input
Text

Feature
Extractor

Classification
Models

Sparse Models
Meta-Data

Sparse Model
Representation

Post
Processing

Feature Vector

Classifier
Decision

Model-Specific
Feature Vector

Figure 6.2.: Modified system architecture designed for handling sparse models

6.6.3. Sparse Models Classification

By switching to the sparse model representation the architecture of the whole system is
affected. In particular, modified versions of feature vectors need to be generated for each
classifier; this is because a lot of features have been omitted from specific classifiers (those
with zero weights). Consequently, the feature IDs need to be mapped to the new feature
space of each classifier. The conceptual design of the new architecture is illustrated in
Figure 6.2.

74

7. Conclusion

7.1. Contributions

This dissertation addressed the problem of building a customizable Named Entity Recog-
nition and Disambiguation (NERD) framework. The contributions are summarized as
follows.

The first contribution is U-AIDA: a universal architecture for building NERD solutions.
U-AIDA supports building a multi-knowledge base NERD solution. In addition, it provides
downstream applications with run-time customization by enabling and disabling various
data components.
The second contribution is the development of two domain-specific NERD solutions

within the U-AIDA framework. The first is a system for disambiguating German doc-
uments in German National Library (DNB). The underlying entity catalog has been
obtained from the general knowledge resource, German Wikipedia, together with a special-
ized KB created by the DNB. The second system is a NERD solution for disambiguating
tweets. While the first system shows the power of U-AIDA with respect to integrating dif-
ferent knowledge resources, the second highlights the U-AIDA customizability to address
a different style of text.

The third contribution is a complete pipeline for building non-English NERD solutions.
We focused on languages with poor entity-annotated resources such as Arabic. We
leverage external dictionaries as well as statistical machine translation to enrich the
NERD repository with cross-language evidences. Experiments showed that our enrichment
techniques delivered improvements in both precision and recall.

The fourth contribution is HYENA: a novel method for fine-grained type classification
of entity mentions. HYENA is essential to classify mentions of entities that do not exist
in the underlying KB. In contrast to prior methods, we can deal well with hundreds of
types in a multi-level hierarchy, and consider that a mention can have many different
types – a situation that does not (likely) occur in prior work with 10 to 100 types on
merely two different levels. In the presented experiments, HYENA outperformed the
baseline competitors even on their original datasets.

75

7. Conclusion

7.2. Outlook

While this dissertation addressed a number of key problems, more research should be
conducted to address the following research issues.

7.2.1. Adaptive U-AIDA

This work provided a customizable and flexible architecture that can be configured accord-
ing to the application requirements. However, it is designed assuming all configuration
will be manually preformed by the application architects. It would be useful to build a
smart system that can automatically adapt itself to the input text and switch on and off
different components accordingly. For example, currently one disambiguation technique is
applied on the whole input text. However, the system should automatically detect when
coherence should be applied to subsets of the mentions of the input text. In addition,
as discussed in this work, different entries in the name-entity dictionary and the entity
keyphrases catalog exhibit different qualities. The system should be able to first use the
data of highest quality and then consider less accurate data if needed.

7.2.2. Multi-Genre Joint NERD

We addressed the problem of disambiguating text with entities originating from different
domains by considering multi-KBs when building the NERD solution. However, we did
not consider the case when the inputs belong to different genres. For example, collectively
disambiguating a professional homepage of a person together with his most recent tweets
and Facebook profile, or disambiguating a book together with the biographies of the
authors. The intuitive idea here is that cross-domain evidence could improve the quality.

7.2.3. Disambiguating Comparable Corpora

This work addressed the problem of a NERD system for different languages. We used
cross-language evidence to enrich the underlying KB. However, the input text is assumed
to be of one language. Using cross-language evidence might also help in improving the
disambiguation quality. For example, performing a joint disambiguation of news articles of
different languages covering the same event, or disambiguating a book and its translation
in another language.

76

7.2. Outlook

7.2.4. Hybrid Named Entity Classification

In this dissertation, we developed a machine learning based classification system. While
we used a comprehensive set of features, the same technique has been applied to all
classes. Other approaches, such as PEARL [42], use salient patterns to classify entities.
One approach cannot handle all types of classes equally well. For example, “graduated
from” is a salient pattern to classify the current entity as a student with probably higher
precision than our approach. However, no trivial pattern can distinguish between football
players and basketball players. It is important to build a hybrid system that leverages
different techniques at different nodes in the type hierarchy.

77

Bibliography

[1] Yaser Al-Onaizan and Kevin Knight. Translating named entities using monolingual
and bilingual resources. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, ACL ’02, pages 400–408, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

[2] Enrique Alfonseca and Suresh Manandhar. An unsupervised method for general
named entity recognition and automated concept discovery. In Proceedings of the 1st
International Conference on General WordNet, India, 2002.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary Ives.
Dbpedia: A nucleus for a web of open data. In Processdings of the 6th International
Semantic Web Conference, ISWC ’07, pages 11–15. Springer, 2007.

[4] Mahmoud Azab, Houda Bouamor, Behrang Mohit, and Kemal Oflazer. Dudley north
visits north london: Learning when to transliterate to arabic. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT ’13, pages 439–444, Atlanta,
Georgia, June 2013. Association for Computational Linguistics.

[5] Artem Boldyrev. Dictionary-based named entity recognition. Master’s thesis, Uni-
versität des Saarlandes, Saarbrücken, 2013.

[6] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: A collaboratively created graph database for structuring human knowledge.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD ’08, pages 1247–1250, New York, NY, USA, 2008. ACM.

[7] Amparo Elizabeth Cano, Giuseppe Rizzo, Andrea Varga, Matthew Rowe, Milan
Stankovic, and Aba-Sah Dadzie. #microposts2014 neel challenge: Measuring the
performance of entity linking systems in social streams. In Proceedings of the
#Microposts2014 NEEL Challenge, 2014.

[8] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines.
ACM TIST, 2(3):27, 2011.

79

Bibliography

[9] Silviu Cucerzan. Large-scale named entity disambiguation based on Wikipedia
data. In Proceedings of the Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 708–716, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[10] Hamish Cunningham. Gate, a general architecture for text engineering. Computers
and the Humanities, 36(2):223–254, 2002.

[11] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan.
GATE: A Framework and Graphical Development Environment for Robust NLP
Tools and Applications. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, ACL’02, Stroudsburg, PA, USA, 2002. Association
for Computational Linguistics.

[12] Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil
Blunsom, Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder,
alignment, and learning framework for finite-state and context-free translation models.
In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, ACL ’10, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[13] Asif Ekbal, Eva Sourjikova, Anette Frank, and Simone P. Ponzetto. Assessing the
challenge of fine-grained named entity recognition and classification. In Proceedings
of the Named Entities Workshop, NEWS ’10, pages 93–101, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[14] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open
information extraction. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pages 1535–1545, Stroudsburg, PA, USA,
2011. Association for Computational Linguistics.

[15] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning
Research, 9:1871–1874, 2008.

[16] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, MA, 1998.

[17] Paolo Ferragina and Ugo Scaiella. Tagme: On-the-fly annotation of short text
fragments (by wikipedia entities). In Proceedings of the 19th ACM International

80

Bibliography

Conference on Information and Knowledge Management, CIKM ’10, pages 1625–1628,
New York, NY, USA, 2010. ACM.

[18] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
non-local information into information extraction systems by gibbs sampling. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
ACL ’05, pages 363–370, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics.

[19] Michael Fleischman and Eduard Hovy. Fine grained classification of named entities.
In Proceedings of the 19th international conference on Computational linguistics -
Volume 1, COLING ’02, pages 1–7, Stroudsburg, PA, USA, 2002. Association for
Computational Linguistics.

[20] Mohamed H. Gadelrab, Mohamed Amir Yosef, and Gerhard Weikum. Named entity
disambiguation for resource-poor languages. In Proceedings of the 8th International
Workshop on Exploiting Semantic Annotations in Information Retrieval, ESAIR ’15.
ACM, 2015.

[21] Claudio Giuliano. Fine-grained classification of named entities exploiting latent
semantic kernels. In Proceedings of the 13th Conference on Computational Natu-
ral Language Learning, CoNLL ’09, pages 201–209, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

[22] Ondrej Hálek, Rudolf Rosa, Ales Tamchyna, and Ondrej Bojar. Named entities
from wikipedia for machine translation. In Prceeding the Conference on Information
Technologies - Applications and Theory, ITAT ’11, pages 23–30, Košice, Slovakia,
2011. Univerzita Pavla Jozefa Šafárika.

[23] Johannes Hoffart, Yasemin Altun, and Gerhard Weikum. Discovering Emerging
Entities with Ambiguous Names. In Proceedings of the 23rd International World
Wide Web Conference, WWW ’14, pages 385–395, 2014.

[24] Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Martin Theobald, and Gerhard
Weikum. KORE: Keyphrase Overlap Relatedness for Entity Disambiguation. In
Proceedings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 545–554, 2012.

[25] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Artificial
Intelligence, 194:28–61, January 2013.

81

Bibliography

[26] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred
Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust
disambiguation of named entities in text. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP ’11, pages 782–792,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[27] Richard Holt. Twitter in numbers, March 2013.

[28] Fei Huang, Stephan Vogel, and Alex Waibel. Improving named entity translation
combining phonetic and semantic similarities. In Processdings of the Conference
on Human Language Technology / North American chapter of the Association for
Computational Linguistics, volume 2004 of NAACL-HLT ’04’, pages 281–288, 2004.

[29] Yusra Ibrahim, Mohamed Amir Yosef, and Gerhard Weikum. Aida-social: Entity
linking on the social stream. In Proceedings of the 7th International Workshop on
Exploiting Semantic Annotations in Information Retrieval, ESAIR ’14, pages 17–19,
New York, NY, USA, 2014. ACM.

[30] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti.
Collective annotation of wikipedia entities in web text. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’09, pages 457–466, New York, NY, USA, 2009. ACM.

[31] Young-Suk Lee. Confusion network for arabic name disambiguation and translit-
eration in statistical machine translation. In Proceedings of the 25th International
Conference on Computational Linguistics, COLING ’14, pages 433–443, 2014.

[32] Michael Lesk. Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone. In Proceedings of the 5th Annual
International Conference on Systems Documentation, SIGDOC ’86, pages 24–26,
New York, NY, USA, 1986. ACM.

[33] et al. Li, Xuansong. Gale arabic-english word alignment training part 1– newswire
and web ldc2014t05, 2014.

[34] Xiao Ling and Daniel S. Weld. Fine-grained entity recognition. In Processings of
AAAI Conference on Artificial Intelligence, AAAI ’12, 2012.

[35] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. Yago3: A knowledge
base from multilingual wikipedias. In Proceedings of the Conference on Innovative
Data Systems Research, CIDR ’15. www.cidrdb.org, 2015.

82

Bibliography

[36] James Mayfield, Dawn Lawrie, Paul McNamee, and Douglas W. Oard. Building a
cross-language entity linking collection in twenty-one languages. In Proceedings of
the 2nd Conference of the Cross-Language Evaluation Forum, CLEF ’11’, pages 3–13.
Springer, 2011.

[37] Paul McNamee, James Mayfield, Dawn Lawrie, Douglas W Oard, and David S
Doermann. Cross-language entity linking. In Proceedings of the 5th International
Joint Conference on Natural Language Processing, IJCNLP ’11, pages 255–263, 2011.

[38] Pablo N. Mendes, Max Jakob, Andres Garcia-Silva, and Christian Bizer. Dbpedia
spotlight: Shedding light on the web of documents. In Proceedings of the 7th
International Conference on Semantic Systems, I-Semantics ’11, 2011.

[39] David Milne and Ian H. Witten. Learning to link with wikipedia. In Proceedings of
the 17th ACM conference on Information and knowledge management, CIKM ’08,
pages 509–518, New York, NY, USA, 2008. ACM.

[40] Andrea Moro, Alessandro Raganato, and Roberto Navigli. Entity Linking meets
Word Sense Disambiguation: a Unified Approach. Transactions of the Association
for Computational Linguistics, 2:231–244, 2014.

[41] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. Scalable knowledge
harvesting with high precision and high recall. In Proceedings of the 4th ACM
International Conference on Web Search and Data Mining, WSDM ’11, pages 227–
236, New York, NY, USA, 2011. ACM.

[42] Ndapandula Nakashole, Tomasz Tylenda, and Gerhard Weikum. Fine-grained
semantic typing of emerging entities. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, ACL ’13, pages 1488–1497, 2013.

[43] Roberto Navigli and Simone Paolo Ponzetto. BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. Artificial
Intelligence, 193:217–250, 2012.

[44] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named en-
tity recognition. In Proceedings of the 13th Conference on Computational Natural
Language Learning, CoNLL ’09, Stroudsburg, PA, USA, 2009. Association for Com-
putational Linguistics.

[45] Lev-Arie Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global
algorithms for disambiguation to wikipedia. In Proceedings of the 49th Annual

83

Bibliography

Meeting of the Association for Computational Linguistics, ACL ’11, pages 1375–1384,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[46] Nakatani Shuyo. Language detection library for java, 2010.

[47] Valentin I. Spitkovsky and Angel X. Chang. A cross-lingual dictionary for english
wikipedia concepts. In Proceedings of the 8th International Conference on Language
Resources and Evaluation, LREC ’12, Istanbul, Turkey, may 2012. European Language
Resources Association (ELRA).

[48] Ralf Steinberger, Bruno Pouliquen, Mijail Alexandrov Kabadjov, and Erik Van der
Goot. Jrc-names: A freely available, highly multilingual named entity resource.
CoRR, abs/1309.6162, 2013.

[49] Fabian Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A core of semantic
knowledge - unifying WordNet and Wikipedia. In Proceedings of the 16th International
World Wide Web Conference, WWW ’07, pages 697–706, Banff, Canada, 2007. ACM.

[50] Lei Tang, Suju Rajan, and Vijay K. Narayanan. Large scale multi-label classification
via metalabeler. In Proceedings of the 18th international conference on World wide
web, WWW ’09, pages 211–220, New York, NY, USA, 2009. ACM.

[51] Grigorios Tsoumakas, Min-Ling Zhang, and Zhi-Hua Zhou. Introduction to the
special issue on learning from multi-label data. Machine Learning, 88(1-2):1–4, 2012.

[52] Md. Altaf ur Rahman and Vincent Ng. Inducing fine-grained semantic classes via
hierarchical and collective classification. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING ’10, pages 931–939, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics.

[53] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder, Daniel Gerber, San-
droAthaide Coelho, Sören Auer, and Andreas Both. AGDISTIS - Graph-Based
Disambiguation of Named Entities Using Linked Data. In Proceedings of the Intern-
taional Conference on The Semantic Web, volume 8796 of ISWC ’14, pages 457–471.
Springer International Publishing, 2014.

[54] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Röder Michael, Sören Auer, Daniel
Gerber, and Andreas Both. Agdistis - agnostic disambiguation of named entities
using linked open data. In European Conference on Artificial Intelligence, page 2.
IOS Press, 2014.

84

Bibliography

[55] Nina Wacholder, Yael Ravin, and Misook Choi. Disambiguation of proper names
in text. In Proceedings of the 5th Conference on Applied Natural Language Pro-
cessing, ANLC ’97, pages 202–208, Stroudsburg, PA, USA, 1997. Association for
Computational Linguistics.

[56] Gerhard Weikum, Johannes Hoffart, Ndapandula Nakashole, Marc Spaniol, Fabian
Suchanek, and Mohamed Amir Yosef. Big data methods for computational linguistics.
IEEE Data Engineering Bulletin, 35(3):46–55, 2012.

[57] Jonathan Wright, Kira Griffitt, Joe Ellis, Stephanie Strassel, and Brendan Callahan.
Annotation trees: Ldc’s customizable, extensible, scalable, annotation infrastructure.
In Proceedings of the 8th International Conference on Language Resources and
Evaluation, LREC ’12, pages 479–485, 2012.

[58] Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart Marc Spaniol, and Gerhard
Weikum. HYENA: Hierarchical Type Classification for Entity Names. In Proceedings
of the 24th International Conference on Computational Linguistics, COLING ’12,
pages pp. 1361–1370, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics.

[59] Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart Marc Spaniol, and Gerhard
Weikum. HYENA-live: Fine-Grained Online Entity Type Classification from Natural-
language Text. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, ACL ’13, pages 133–138, Stroudsburg, PA, USA, 2013.
Association for Computational Linguistics.

[60] Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bordino, Marc Spaniol, and Gerhard
Weikum. AIDA: an online tool for accurate disambiguation of named entities in text
and tables. Proceedings of the Very Large Scale Data Bases Endowment, 4(12):1450–
1453, 2011.

[61] Mohamed Amir Yosef, Johannes Hoffart, Yusra Ibrahim, Artem Boldyrev, and
Gerhard Weikum. Adapting AIDA for tweets. In Proceedings of the 4th Workshop
on Making Sense of Microposts co-located with the 23rd International World Wide
Web Conference, pages 68–69, 2014.

[62] Mohamed Amir Yosef, Marc Spaniol, and Gerhard Weikum. AIDArabic: A named-
entity disambiguation framework for Arabic text. In Proceedgins of the 1st Workshop
on Arabic Natural Language Processing, ANLP ’14), pages 187–195, Dohar, Qatar,
2014. ACL.

85

A. HYENA Type Hierarchy

–- wordnet_entity_100001740
| –- wordnet_artifact_100021939
| | –- wordnet_instrumentality_103575240
| | | –- wordnet_conveyance_103100490
| | | | –- wordnet_vehicle_104524313
| | | | | –- wordnet_military_vehicle_103764276
| | | | | | –- wordnet_warship_104552696
| | | | | | | –- wordnet_destroyer_103180504
| | | | | | | –- wordnet_submersible_104348184
| | | | | | | | –- wordnet_submarine_104347754
| | | | | –- wordnet_craft_103125870
| | | | | | –- wordnet_vessel_104530566
| | | | | | | –- wordnet_ship_104194289
| | | | | | | | –- wordnet_cargo_ship_102965300
| | | | | | | | –- wordnet_warship_104552696
| | | | | | | | | –- wordnet_destroyer_103180504
| | | | | | | | | –- wordnet_submersible_104348184
| | | | | | | | | | –- wordnet_submarine_104347754
| | | | | | | | –- wordnet_shipwreck_104197110
| | | | | | | –- wordnet_boat_102858304
| | | | | | –- wordnet_aircraft_102686568
| | | | | –- wordnet_wheeled_vehicle_104576211
| | | | | | –- wordnet_self0̆02dpropelled_vehicle_104170037
| | | | | | | –- wordnet_motor_vehicle_103791235
| | | | | | | | –- wordnet_car_102958343
| | | | | | | –- wordnet_locomotive_103684823
| | | –- wordnet_medium_106254669
| | | | –- wordnet_album_106591815
| | | | –- wordnet_print_media_106263609
| | | | | –- wordnet_press_106263369
| | | | | | –- wordnet_magazine_106595351
| | | | | | –- wordnet_newspaper_106267145
| | | –- wordnet_device_103183080
| | | | –- wordnet_instrument_103574816
| | | | | –- wordnet_weapon_104565375

87

A. HYENA Type Hierarchy

| | | | | | –- wordnet_gun_103467984
| | | | | | | –- wordnet_firearm_103343853
| | | | –- wordnet_memory_device_103744840
| | | | | –- wordnet_recording_104063868
| | | | | | –- wordnet_sound_recording_104262678
| | | | | | | –- wordnet_soundtrack_104262969
| | | | –- wordnet_machine_103699975
| | | | | –- wordnet_computer_103082979
| | | | | | –- wordnet_web_site_106359193
| | | | | –- wordnet_motor_103789946
| | | | | | –- wordnet_engine_103287733
| | | | –- wordnet_mechanism_103738472
| | | | | –- wordnet_mechanical_device_103736970
| | | | –- wordnet_musical_instrument_103800933
| | | –- wordnet_container_103094503
| | | | –- wordnet_wheeled_vehicle_104576211
| | | | | –- wordnet_self0̆02dpropelled_vehicle_104170037
| | | | | | –- wordnet_motor_vehicle_103791235
| | | | | | | –- wordnet_car_102958343
| | | | | | –- wordnet_locomotive_103684823
| | | –- wordnet_equipment_103294048
| | | | –- wordnet_electronic_equipment_103278248
| | | | | –- wordnet_set_104176528
| | | | | | –- wordnet_receiver_104060647
| | | –- wordnet_system_104377057
| | –- wordnet_structure_104341686
| | | –- wordnet_building_102913152
| | | | –- wordnet_place_of_worship_103953416
| | | | | –- wordnet_church_103028079
| | | | | –- wordnet_temple_104407435
| | | | –- wordnet_skyscraper_104233124
| | | | –- wordnet_house_103544360
| | | | | –- wordnet_residence_104079244
| | | | | | –- wordnet_religious_residence_104073948
| | | | | | | –- wordnet_monastery_103781244
| | | | | –- wordnet_mansion_103719053
| | | | | | –- wordnet_palace_103878066
| | | | –- wordnet_medical_building_103739518
| | | | | –- wordnet_hospital_103540595
| | | | –- wordnet_hotel_103542333
| | | | –- wordnet_theater_104417809
| | | –- wordnet_memorial_103743902

88

| | | –- wordnet_housing_103546340
| | | | –- wordnet_dwelling_103259505
| | | | | –- wordnet_house_103544360
| | | | | | –- wordnet_residence_104079244
| | | | | | | –- wordnet_religious_residence_104073948
| | | | | | | | –- wordnet_monastery_103781244
| | | | | | –- wordnet_mansion_103719053
| | | | | | | –- wordnet_palace_103878066
| | | –- wordnet_building_complex_102914991
| | | | –- wordnet_plant_103956922
| | | –- wordnet_establishment_103297735
| | | | –- wordnet_place_of_business_103953020
| | | | | –- wordnet_mercantile_establishment_103748162
| | | | | | –- wordnet_plaza_103965456
| | | | –- wordnet_institution_103574555
| | | | | –- wordnet_penal_institution_103907654
| | | | | | –- wordnet_correctional_institution_103111690
| | | –- wordnet_stadium_104295881
| | | –- wordnet_obstruction_103839993
| | | | –- wordnet_barrier_102796623
| | | | | –- wordnet_dam_103160309
| | | –- wordnet_area_102735688
| | | | –- wordnet_room_104105893
| | | | | –- wordnet_library_103660909
| | | –- wordnet_tower_104460130
| | | –- wordnet_bridge_102898711
| | –- wordnet_facility_103315023
| | | –- wordnet_station_104306080
| | | | –- wordnet_terminal_104412901
| | | | | –- wordnet_railway_station_104049098
| | | | –- wordnet_broadcasting_station_102903405
| | | | | –- wordnet_radio_station_104044119
| | | | | –- wordnet_television_station_104406350
| | | | | | –- wordnet_channel_103006398
| | | | –- wordnet_power_station_103996655
| | | –- wordnet_military_installation_103763133
| | | | –- wordnet_military_post_103763403
| | | | | –- wordnet_garrison_103420559
| | | –- wordnet_depository_103177349
| | | | –- wordnet_museum_103800563
| | | –- wordnet_airfield_102687992
| | | | –- wordnet_airport_102692232

89

A. HYENA Type Hierarchy

| | –- wordnet_creation_103129123
| | | –- wordnet_product_104007894
| | | | –- wordnet_end_product_103287178
| | | | | –- wordnet_oeuvre_103841417
| | | | –- wordnet_work_104599396
| | | | | –- wordnet_publication_106589574
| | | | | | –- wordnet_book_106410904
| | | | | | | –- wordnet_reference_book_106417598
| | | | | | –- wordnet_periodical_106593296
| | | | | | –- wordnet_magazine_106595351
| | | | –- wordnet_movie_106613686
| | | | | –- wordnet_musical_107019172
| | | | | –- wordnet_documentary_106616806
| | | –- wordnet_art_102743547
| | | | –- wordnet_graphic_art_103453809
| | | | | –- wordnet_painting_103876519
| | –- wordnet_article_100022903
| | | –- wordnet_ware_104550840
| | | | –- wordnet_tableware_104381994
| | | | | –- wordnet_crockery_103133538
| | –- wordnet_commodity_103076708
| | | –- wordnet_consumer_goods_103093574
| | | | –- wordnet_clothing_103051540
| | –- wordnet_way_104564698
| | | –- wordnet_road_104096066
| | | | –- wordnet_highway_103519981
| | | | | –- wordnet_expressway_103306610
| | | | –- wordnet_thoroughfare_104426618
| | | | | –- wordnet_street_104334599
| | | –- wordnet_passage_103895293
| | –- wordnet_covering_103122748
| | | –- wordnet_clothing_103051540
| –- wordnet_event_100029378
| | –- wordnet_act_100030358
| | | –- wordnet_action_100037396
| | | | –- wordnet_change_100191142
| | | | | –- wordnet_change_of_state_100199130
| | | | | | –- wordnet_termination_100209943
| | | | | | | –- wordnet_killing_100219012
| | | | | | | | –- wordnet_homicide_100220023
| | | | | | | | | –- wordnet_murder_100220522
| | | | | | | | | | –- wordnet_slaughter_100223983

90

| | | | | | –- wordnet_beginning_100235435
| | | | | | | –- wordnet_introduction_100238022
| | | | | –- wordnet_motion_100279835
| | | | | | –- wordnet_travel_100295701
| | | | | | | –- wordnet_journey_100306426
| | | | | | | | –- wordnet_tour_100310666
| | | | | –- wordnet_motion_100331950
| | | –- wordnet_activity_100407535
| | | | –- wordnet_game_100455599
| | | | –- wordnet_diversion_100426928
| | | | | –- wordnet_sport_100523513
| | | | | –- wordnet_celebration_100428000
| | | | | | –- wordnet_festival_100517728
| | | | | | | –- wordnet_film_festival_100517418
| | | | | –- wordnet_entertainment_100429048
| | | | | | –- wordnet_show_100520257
| | | | | –- wordnet_game_100430606
| | | | | | –- wordnet_computer_game_100458890
| | | | –- wordnet_representation_100898518
| | | | | –- wordnet_pageant_100899761
| | | | –- wordnet_use_100947128
| | | | | –- wordnet_application_100949134
| | | | | | –- wordnet_technology_100949619
| | | | –- wordnet_wrongdoing_100732746
| | | | | –- wordnet_transgression_100745005
| | | | | | –- wordnet_crime_100766234
| | | | –- wordnet_procedure_101023820
| | | | | –- wordnet_rule_105846932
| | | | | | –- wordnet_algorithm_105847438
| | | | –- wordnet_work_100575741
| | | | | –- wordnet_investigation_100633864
| | | | | | –- wordnet_examination_100635850
| | | | | | | –- wordnet_survey_100644503
| | | | | –- wordnet_undertaking_100795720
| | | | | –- wordnet_service_100577525
| | | | –- wordnet_sensory_activity_100876737
| | | | | –- wordnet_sensing_100876874
| | | | | | –- wordnet_look_100877127
| | | | | | | –- wordnet_observation_100879759
| | | | –- wordnet_operation_100955060
| | | | | –- wordnet_attack_100972621
| | | | –- wordnet_occupation_100582388

91

A. HYENA Type Hierarchy

| | | | | –- wordnet_profession_100609953
| | | | | | –- wordnet_technology_100949619
| | | –- wordnet_speech_act_107160883
| | | | –- wordnet_description_107201365
| | | | | –- wordnet_label_107202579
| | | | –- wordnet_disagreement_107180787
| | | | | –- wordnet_dispute_107181935
| | | | | | –- wordnet_controversy_107183151
| | | | –- wordnet_informing_107212190
| | | | | –- wordnet_report_107217924
| | | | | | –- wordnet_gossip_107223170
| | | | –- wordnet_command_107168131
| | | | | –- wordnet_order_107168623
| | | –- wordnet_group_action_101080366
| | | | –- wordnet_vote_100182213
| | | | | –- wordnet_election_100181781
| | | | –- wordnet_military_action_100952963
| | | | | –- wordnet_war_100973077
| | | | | –- wordnet_battle_100953559
| | | | | | –- wordnet_naval_battle_100958477
| | | | –- wordnet_social_control_101123598
| | | | –- wordnet_conflict_100958896
| | | –- wordnet_communication_106252138
| | –- wordnet_social_event_107288639
| | | –- wordnet_contest_107456188
| | | | –- wordnet_tournament_107464725
| | | | –- wordnet_championship_107457834
| | | | –- wordnet_match_107470671
| | | | –- wordnet_race_107472657
| | | | –- wordnet_race_107458453
| | | | | –- wordnet_horse_race_107461411
| | | | –- wordnet_game_100456199
| | | –- wordnet_show_106619065
| | | | –- wordnet_broadcast_106619428
| | | | | –- wordnet_serial_106621447
| | | | | –- wordnet_television_program_106620579
| | | | | –- wordnet_game_show_106621061
| | | | –- wordnet_play_107018931
| | | | | –- wordnet_musical_107019172
| | | | –- wordnet_movie_106613686
| | | | | –- wordnet_musical_107019172
| | | | | –- wordnet_documentary_106616806

92

| | | | –- wordnet_attraction_106615561
| | –- wordnet_happening_107283608
| | | –- wordnet_incident_107307477
| | | –- wordnet_trouble_107289014
| | | | –- wordnet_misfortune_107304852
| | | | | –- wordnet_mishap_107314427
| | | | | | –- wordnet_accident_107301336
| | | –- wordnet_beginning_107290905
| | | –- wordnet_ending_107291312
| | –- wordnet_group_action_101080366
| | | –- wordnet_vote_100182213
| | | | –- wordnet_election_100181781
| | | –- wordnet_military_action_100952963
| | | | –- wordnet_war_100973077
| | | | –- wordnet_battle_100953559
| | | | | –- wordnet_naval_battle_100958477
| | | –- wordnet_social_control_101123598
| | | –- wordnet_conflict_100958896
| –- wordnet_organization_108008335
| | –- wordnet_nongovernmental_organization_108009834
| | | –- wordnet_mission_108403225
| | | –- wordnet_denomination_108146782
| | –- wordnet_unit_108189659
| | | –- wordnet_military_unit_108198398
| | | | –- wordnet_army_unit_108190754
| | | | | –- wordnet_regiment_108213817
| | | | | –- wordnet_brigade_108213978
| | | | | –- wordnet_cavalry_108389710
| | | | | | –- wordnet_squadron_108220089
| | | | | –- wordnet_division_108213205
| | | | | –- wordnet_battalion_108214083
| | | –- wordnet_family_108078020
| | | –- wordnet_administrative_unit_108077292
| | | | –- wordnet_agency_108337324
| | | | | –- wordnet_law_enforcement_agency_108348815
| | | | –- wordnet_council_108310949
| | | | –- wordnet_intelligence_108339454
| | | | –- wordnet_division_108220714
| | | | | –- wordnet_department_108114861
| | | | | | –- wordnet_government_department_108119821
| | | | | | | –- wordnet_local_department_108120384
| | | | –- wordnet_committee_108324514

93

A. HYENA Type Hierarchy

| | | –- wordnet_team_108208560
| | | | –- wordnet_baseball_team_108079319
| | | | –- wordnet_hockey_team_108080386
| | | | –- wordnet_basketball_team_108079852
| | | | –- wordnet_football_team_108080025
| | | –- wordnet_political_unit_108359949
| | | | –- wordnet_state_108168978
| | –- wordnet_institution_108053576
| | | –- wordnet_company_108058098
| | | | –- wordnet_broadcasting_company_108002015
| | | | –- wordnet_subsidiary_company_108003935
| | | | –- wordnet_electronics_company_108003035
| | | | –- wordnet_food_company_108003427
| | | | –- wordnet_service_108186047
| | | | | –- wordnet_utility_108185758
| | | | | | –- wordnet_power_company_108186393
| | | –- wordnet_educational_institution_108276342
| | | | –- wordnet_school_108276720
| | | | | –- wordnet_academy_108277805
| | | | | –- wordnet_graduate_school_108282696
| | | | | | –- wordnet_business_school_108281812
| | | | | –- wordnet_private_school_108411170
| | | | | | –- wordnet_seminary_108284994
| | | | | | –- wordnet_boarding_school_108411701
| | | | | –- wordnet_secondary_school_108284481
| | | | | | –- wordnet_senior_high_school_108409617
| | | | | | –- wordnet_preparatory_school_108409969
| | | | | | –- wordnet_comprehensive_school_108413248
| | | | | –- wordnet_grade_school_108412749
| | | | | –- wordnet_public_school_108410282
| | | –- wordnet_financial_institution_108054721
| | | | –- wordnet_depository_financial_institution_108420278
| | | | –- wordnet_foundation_108406486
| | | | | –- wordnet_charity_108406619
| | | | –- wordnet_nondepository_financial_institution_108419984
| | | | | –- wordnet_insurance_company_108070465
| | | –- wordnet_religion_108081668
| | –- wordnet_musical_organization_108246613
| | | –- wordnet_chorus_108187837
| | | | –- wordnet_choir_108188638
| | | –- wordnet_dance_band_108249960
| | | | –- wordnet_rock_group_108250501

94

| | | –- wordnet_ensemble_108188235
| | | –- wordnet_orchestra_108248157
| | –- wordnet_enterprise_108056231
| | | –- wordnet_business_108061042
| | | | –- wordnet_carrier_108057633
| | | | | –- wordnet_line_103671473
| | | | | | –- wordnet_railway_104048568
| | | | | | –- wordnet_airline_102690081
| | | | –- wordnet_chain_108057816
| | | | | –- wordnet_restaurant_chain_108061801
| | | | –- wordnet_manufacturer_108060446
| | | | –- wordnet_firm_108059870
| | | | | –- wordnet_publisher_108062623
| | | | | –- wordnet_law_firm_108064039
| | | | | –- wordnet_corporation_108059412
| | | | –- wordnet_agency_108057206
| | | –- wordnet_commercial_enterprise_108065093
| | | | –- wordnet_cooperative_101100877
| | –- wordnet_association_108049401
| | | –- wordnet_institute_108407330
| | | –- wordnet_league_108231184
| | | | –- wordnet_football_league_108232496
| | | –- wordnet_club_108227214
| | | | –- wordnet_golf_club_108229694
| | –- wordnet_polity_108050385
| | | –- wordnet_government_108050678
| | –- wordnet_party_108256968
| | –- wordnet_force_108208016
| | | –- wordnet_military_service_108198137
| | | | –- wordnet_army_108191230
| | –- wordnet_company_108187033
| | –- wordnet_deputation_108402442
| | | –- wordnet_diplomatic_mission_108402693
| | –- wordnet_union_108233056
| | –- wordnet_alliance_108293982
| –- wordnet_person_100007846
| | –- wordnet_contestant_109613191
| | | –- wordnet_athlete_109820263
| | | | –- wordnet_hockey_player_110179291
| | | | –- wordnet_cricketer_109977326
| | | | –- wordnet_football_player_110101634
| | | | –- wordnet_ballplayer_109835506

95

A. HYENA Type Hierarchy

| | | | –- wordnet_basketball_player_109842047
| | | | | –- wordnet_forward_110105733
| | | | –- wordnet_soccer_player_110618342
| | | –- wordnet_player_110439851
| | | | –- wordnet_hockey_player_110179291
| | | | –- wordnet_football_player_110101634
| | | | –- wordnet_ballplayer_109835506
| | | | –- wordnet_soccer_player_110618342
| | | –- wordnet_winner_110782940
| | | | –- wordnet_medalist_110305062
| | –- wordnet_peer_109626238
| | | –- wordnet_associate_109816771
| | | | –- wordnet_colleague_109935990
| | –- wordnet_intellectual_109621545
| | | –- wordnet_scholar_110557854
| | | | –- wordnet_historian_110177150
| | | | –- wordnet_alumnus_109786338
| | –- wordnet_female_109619168
| | | –- wordnet_woman_110787470
| | –- wordnet_communicator_109610660
| | | –- wordnet_negotiator_110351874
| | | | –- wordnet_representative_110522035
| | | | | –- wordnet_head_of_state_110164747
| | | | | | –- wordnet_sovereign_110628644
| | | –- wordnet_writer_110794014
| | | | –- wordnet_poet_110444194
| | | | –- wordnet_novelist_110363573
| | | | –- wordnet_journalist_110224578
| | –- wordnet_ruler_110541229
| | | –- wordnet_sovereign_110628644
| | –- wordnet_adult_109605289
| | | –- wordnet_professional_110480253
| | | | –- wordnet_educator_110045713
| | | | | –- wordnet_academician_109759069
| | | | –- wordnet_lawyer_110249950
| | | | –- wordnet_health_professional_110165109
| | | | | –- wordnet_medical_practitioner_110305802
| | | | | | –- wordnet_doctor_110020890
| | | –- wordnet_woman_110787470
| | –- wordnet_entertainer_109616922
| | | –- wordnet_performer_110415638
| | | | –- wordnet_actor_109765278

96

| | | | –- wordnet_musician_110340312
| | | | | –- wordnet_singer_110599806
| | –- wordnet_leader_109623038
| | | –- wordnet_spiritual_leader_109505153
| | | | –- wordnet_clergyman_109927451
| | | | | –- wordnet_priest_110470779
| | | | | | –- wordnet_bishop_109857200
| | | –- wordnet_aristocrat_109807754
| | | | –- wordnet_male_aristocrat_110285135
| | | | | –- wordnet_noble_110271677
| | | –- wordnet_politician_110451263
| | | | –- wordnet_legislator_110253995
| | | | | –- wordnet_senator_110578471
| | | | –- wordnet_mayor_110303814
| | | –- wordnet_head_110162991
| | | | –- wordnet_administrator_109770949
| | | | | –- wordnet_director_110014939
| | | | | –- wordnet_executive_110069645
| | | –- wordnet_lawgiver_110249270
| | | | –- wordnet_legislator_110253995
| | | | | –- wordnet_senator_110578471
| | | –- wordnet_trainer_110722575
| | | | –- wordnet_coach_109931640
| | –- wordnet_worker_109632518
| | | –- wordnet_skilled_worker_110605985
| | | | –- wordnet_serviceman_110582746
| | | | | –- wordnet_military_officer_110317007
| | | | | | –- wordnet_commissioned_officer_109942970
| | | | | | | –- wordnet_commissioned_military_officer_109943239
| | | | | | | | –- wordnet_general_officer_110125786
| | | | | | | | | –- wordnet_general_110123844
| | | | –- wordnet_official_110372373
| | | | | –- wordnet_diplomat_110013927
| | | | | –- wordnet_judge_110225219
| | –- wordnet_scientist_110560637
| | –- wordnet_creator_109614315
| | | –- wordnet_producer_110480018
| | | | –- wordnet_film_maker_110088390
| | | | | –- wordnet_film_director_110088200
| | | –- wordnet_artist_109812338
| | | | –- wordnet_musician_110339966
| | | | | –- wordnet_composer_109947232

97

A. HYENA Type Hierarchy

| | | | –- wordnet_painter_110391653
| | –- wordnet_traveler_109629752
| | | –- wordnet_migrant_110314952
| | | | –- wordnet_immigrant_110199489
| | | –- wordnet_absentee_109757653
| | | | –- wordnet_exile_110071332
| | –- wordnet_disputant_109615465
| | | –- wordnet_reformer_110515194
| | | | –- wordnet_militant_110315837
| | –- wordnet_preserver_110466918
| | | –- wordnet_defender_109614684
| | –- wordnet_unfortunate_109630641
| | –- wordnet_expert_109617867
| | –- wordnet_adjudicator_109769636
| | | –- wordnet_judge_110225219
| | –- wordnet_good_person_110138767
| | –- wordnet_authority_109824609
| | | –- wordnet_civil_authority_110541833
| | | | –- wordnet_mayor_110303814
| | –- wordnet_combatant_109939313
| –- yagoGeoEntity
| | –- wordnet_location_100027167
| | | –- wordnet_region_108630985
| | | | –- wordnet_geographical_area_108574314
| | | | | –- wordnet_tract_108673395
| | | | | | –- wordnet_plot_108674739
| | | | | | | –- wordnet_garden_103417345
| | | | | | –- wordnet_site_108651247
| | | | | | | –- wordnet_cemetery_108521623
| | | | | | –- wordnet_park_108615374
| | | | | | –- wordnet_park_108615149
| | | | | | | –- wordnet_national_park_108600992
| | | | | | –- wordnet_subdivision_108674251
| | | | | –- wordnet_urban_area_108675967
| | | | | | –- wordnet_municipality_108626283
| | | | | | | –- wordnet_town_108665504
| | | | | | | | –- wordnet_ghost_town_108671509
| | | | | | | –- wordnet_city_108524735
| | | | | –- wordnet_settlement_108672562
| | | | | | –- wordnet_village_108672738
| | | | –- wordnet_area_108497294
| | | | | –- wordnet_scene_108645963

98

| | | | | | –- wordnet_venue_108677628
| | | | | –- wordnet_section_108648322
| | | | | | –- wordnet_vicinity_108641113
| | | | | –- wordnet_center_108523483
| | | | | | –- wordnet_seat_108647945
| | | | | | | –- wordnet_county_seat_108547143
| | | | –- wordnet_district_108552138
| | | | | –- wordnet_administrative_district_108491826
| | | | | | –- wordnet_state_108654360
| | | | | | –- wordnet_municipality_108626283
| | | | | | | –- wordnet_town_108665504
| | | | | | | | –- wordnet_ghost_town_108671509
| | | | | | | –- wordnet_city_108524735
| | | | | | –- wordnet_country_108544813
| | | | | | –- wordnet_commune_108541609
| | | | | | –- wordnet_township_108672199
| | | | | | –- wordnet_borough_108540532
| | | | | | –- wordnet_school_district_108587709
| | | | | –- wordnet_residential_district_108553535
| | | | | | –- wordnet_suburb_108554440
| | | –- wordnet_space_113910384
| | | | –- wordnet_opening_109379111
| | | | | –- wordnet_crack_109258715
| | | | | | –- wordnet_vent_109470550
| | | –- wordnet_point_108620061
| | | | –- wordnet_position_108621598
| | | | | –- wordnet_landmark_108624891
| | | | –- wordnet_topographic_point_108664443
| | | | –- wordnet_geographic_point_108578706
| | | | | –- wordnet_address_108491027
| | | | | | –- wordnet_residence_108558963
| | | | | | | –- wordnet_home_108559508
| | | | | –- wordnet_workplace_104602044
| | | –- wordnet_region_108630039
| | | | –- wordnet_county_108546183
| | | | –- wordnet_extremity_108568978
| | | –- wordnet_line_108593262
| | | | –- wordnet_path_108616311
| | –- wordnet_structure_104341686
| | | –- wordnet_building_102913152
| | | | –- wordnet_place_of_worship_103953416
| | | | | –- wordnet_church_103028079

99

A. HYENA Type Hierarchy

| | | | | –- wordnet_temple_104407435
| | | | –- wordnet_skyscraper_104233124
| | | | –- wordnet_house_103544360
| | | | | –- wordnet_residence_104079244
| | | | | | –- wordnet_religious_residence_104073948
| | | | | | | –- wordnet_monastery_103781244
| | | | | –- wordnet_mansion_103719053
| | | | | | –- wordnet_palace_103878066
| | | | –- wordnet_medical_building_103739518
| | | | | –- wordnet_hospital_103540595
| | | | –- wordnet_hotel_103542333
| | | | –- wordnet_theater_104417809
| | | –- wordnet_memorial_103743902
| | | –- wordnet_housing_103546340
| | | | –- wordnet_dwelling_103259505
| | | | | –- wordnet_house_103544360
| | | | | | –- wordnet_residence_104079244
| | | | | | | –- wordnet_religious_residence_104073948
| | | | | | | | –- wordnet_monastery_103781244
| | | | | | –- wordnet_mansion_103719053
| | | | | | | –- wordnet_palace_103878066
| | | –- wordnet_building_complex_102914991
| | | | –- wordnet_plant_103956922
| | | –- wordnet_establishment_103297735
| | | | –- wordnet_place_of_business_103953020
| | | | | –- wordnet_mercantile_establishment_103748162
| | | | | | –- wordnet_plaza_103965456
| | | | –- wordnet_institution_103574555
| | | | | –- wordnet_penal_institution_103907654
| | | | | | –- wordnet_correctional_institution_103111690
| | | –- wordnet_stadium_104295881
| | | –- wordnet_obstruction_103839993
| | | | –- wordnet_barrier_102796623
| | | | | –- wordnet_dam_103160309
| | | –- wordnet_area_102735688
| | | | –- wordnet_room_104105893
| | | | | –- wordnet_library_103660909
| | | –- wordnet_tower_104460130
| | | –- wordnet_bridge_102898711
| | –- wordnet_facility_103315023
| | | –- wordnet_station_104306080
| | | | –- wordnet_terminal_104412901

100

| | | | | –- wordnet_railway_station_104049098
| | | | –- wordnet_broadcasting_station_102903405
| | | | | –- wordnet_radio_station_104044119
| | | | | –- wordnet_television_station_104406350
| | | | | | –- wordnet_channel_103006398
| | | | –- wordnet_power_station_103996655
| | | –- wordnet_military_installation_103763133
| | | | –- wordnet_military_post_103763403
| | | | | –- wordnet_garrison_103420559
| | | –- wordnet_depository_103177349
| | | | –- wordnet_museum_103800563
| | | –- wordnet_airfield_102687992
| | | | –- wordnet_airport_102692232
| | –- wordnet_body_of_water_109225146
| | | –- wordnet_stream_109448361
| | | | –- wordnet_river_109411430
| | | –- wordnet_lake_109328904
| | | –- wordnet_bay_109215664
| | –- wordnet_geological_formation_109287968
| | | –- wordnet_beach_109217230
| | | –- wordnet_natural_depression_109366017
| | | | –- wordnet_valley_109468604
| | | –- wordnet_natural_elevation_109366317
| | | | –- wordnet_mountain_109359803
| | | | –- wordnet_hill_109303008
| | | –- wordnet_volcanic_crater_109472413
| | | –- wordnet_range_109403734
| | –- wordnet_way_104564698
| | | –- wordnet_road_104096066
| | | | –- wordnet_highway_103519981
| | | | | –- wordnet_expressway_103306610
| | | | –- wordnet_thoroughfare_104426618
| | | | | –- wordnet_street_104334599
| | | –- wordnet_passage_103895293
| | –- wordnet_land_109334396
| | | –- wordnet_island_109316454

101

	Dedication
	Introduction
	Motivation
	Terminology
	Challenges
	Contributions
	Organization

	Background and Related Work
	Knowledge Bases
	Named-Entity Recognition and Disambiguation
	NED: State-of-the-art
	Background and Prior Work on Named Entity Classification (NEC)
	The AIDA System
	AIDA in a Nutshell
	Data and Measures
	Model and Algorithm

	U-AIDA Architecture of a Customizable NERD Framework
	Overview
	Named Entity Recognition
	Input Text Representation
	Knowledge Base
	Entity Repository
	Entity Global Prominence
	Name-Entity Dictionary
	Entity-Characteristic Keyphrases
	Entity-Entity Semantic Relatedness

	Disambiguation Techniques
	Summary

	Applications of the U-AIDA Architecture
	Domain-Specific Named Entity Disambiguation
	Introduction
	Multi-Knowledge-Base Architecture
	The Case of the German National Library
	Experiments and Evaluation

	Named-Entity Disambiguation for the Social Stream
	Introduction
	Adapting U-AIDA to Tweets
	Experiments

	U-AIDA for Languages with Poor Annotated Resources
	Overview
	Entity Catalog
	Name-Entity Dictionary
	External Resources
	Statistical Machine Translation
	People Name Transliteration

	Entity Descriptions
	Implementation
	Experiments and Evaluation

	HYENA: Named Entity Type Classifier
	Introduction
	Computational Model and Feature Set
	Fine-grained Type Hierarchy
	Feature Set

	Classifier
	Hierarchical Classifier
	Meta Classifier

	Experiments
	Setup
	Multi-label Classification
	Meta-Classification
	HYENA Feature Analysis

	Extrinsic Study on Named Entity Disambiguation
	System Implementation
	Overview
	Sparse Models Representation
	Sparse Models Classification

	Conclusion
	Contributions
	Outlook
	Adaptive U-AIDA
	Multi-Genre Joint NERD
	Disambiguating Comparable Corpora
	Hybrid Named Entity Classification

	HYENA Type Hierarchy

