. Deutsches Document
\ 1 Forschungszentrum
" < far Kanstliche D-91-10
, Intelligenz GmbH

MAAMAW’91

Pre-Proceedings of the
3rd European Workshop on
“Modeling Autonomous Agents
and Multi-Agent Worlds”

Donald D. Steiner, Jiirgen Miiller (Eds.)

August 1991

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern D-6600 Saarbriicken 11
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kinstliche Intelligenz

The German Research Center for Atificial Intelligence (Deutsches Forschungszentrum fiir
Kinstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarbriicken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atias, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using Al methods - implement a problem

solution for a selected application area. Currently, there are the following research areas at the
DFKI:

Intelligent Engineering Systems
Intelligent User Interfaces

Intelligent Communication Networks
Intelligent Cooperative Systems.

ooood

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

MAAMAW’91 Pre-Proceedings of the 3rd European Workshop on “Modeling
Autonomous Agents and Multl-Agent Worlds”

Donald D. Steiner, Jiirgen Miiller (Eds.)

DFKI-D-91-10

© Deutsches Forschungszentrum fir Kinstiiche Intelligenz 1981

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a license with payment of fee to Deutsches Forschungszentrum fir Kinstliche Intelligenz.

MAAMAW ‘91

Third European Workshop on
Modeling Autonomous Agents and Muliti Agent Worlds

5 - 7 August 1991
Dorint Hotel, Kaiserslautern, Germany

The purpose of this workshop is to stimulate exchange and discussion of research in the
field of multi-agent systems. A multi-agent system consists of at least two agents that are
engaged in some tasks that may require coordination, cooperation and/or competition. An
autonomous agent has its own goals, capabilities and knowledge. The actions of an agent
occur in the context of other agents that may have structures and strategies different from
the agent’s own. Multi-agent problems arise when several autonomous agents share a com-
mon environment. These problems may result from limited resources, shared or competing
goals, etc. While classical Distributed Artificial Intelligence (DAI) was mainly concerned
with distributed problem solving leading to a common global goal, DAI has recently been
moving closer to a multi-agent perspective, allowing agents to have unrelated goals. How-
ever, we emphasize multi-agent systems of all sorts from simple to complex agents and
agent organizations.

PROGRAM CHAIRMEN
Yves Demazeau (F - LIFIA/IMAG/CNRS) Eric Werner (D - University of Hamburg)
PROGRAM COMMITTEE
John Campbell (UK - University College of London) Frank Martial (0- GMD Sankt Augustin)
David Connah (UK - Philips Research Laboratory) Jean-Pierre Muller (CH - IMI University of Neuchatel)
Rosaria Conte (- CNR Rome) Jiirgen Miiller (O - DFKI Kaiserslautem)
Mauro Di Manzo (- University of Ancona) Martin Nilsson (S - Swedish Institute for CS, Stockholm)
Jean Erceau (F - ONERA Chatilion Bagneux) John Perram (DK - University of Odense)
Jacques Ferber (F - LAFORIA/University of Paris 6-7) Nigel Seel (UK - STC Technology Lid. Harlow)
Julia Galliers (UK - University of Cambridge) Genevieve Teil (F - CSI/Ecole des Mines de Paris)

Heikki Hammainen (SF- Helsinki University of Technology)
Walter Van De Velde B - Al-Lab / VUB University of Brussels)

LOCAL ORGANIZERS
Donald Steiner (Siemens AG / DFKI) Jiirgen Miiller (DFKI)

SPONSORS
Deutsche Forschungsgesellschaft (DFG)
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (DFKI)
Daimler-Benz AG
Siemens AG

17:

19:

10:

10:

11:

11:

12.

15:

15:

16:

16:

17:

18:

21:

30

00

:00
: 30
.00

00

45

00

45

30

00

45

30
45
30
30
30

PROGRAM

Third European Workshop on
Modeling Autonomous Agents and Multi Agent Worlds

5=-7 August 1991
Dorint Hotel, Kaiserslautern, Germany

Sunday, 4 August 1991 |

|
Registration

Reception

Monday, 5 August 1991

+ — 4

& =ik

Registration
‘ntroduction and Welcome

THE ROLE OF REPRESENTATION IN INTERACTION: DISCOVERING FOCAL POINTS
AMONG ALTERNATIVE SOLUTIONS

Jeffrey Rosenschein (invited speaker) & Sarit Kraus
Hebrew University, Jerusalem (IS)

SANP : A COMMUNICATION LEVEL PROTOCOL FOR NEGOTIATIONS
Man Kit Chang & Carson C. Woo
University of British Columbia, Vancouver (CDN)

- Break -

SOCIAL PLANS : A PRELIMINARY REPORT

Anand S. Rao, Michael P. Georgeff & Elizabeth A. Sonenberg
Australian AI Institute (AUS) & University of Melbourne (AUS)
COLLABORATIVE PLAN CONSTRUCTION FOR MULTIAGENT MUTUAL PLANNING
Ei-Ichi Osawa & Mario Tokoro

Sony Computer Science Laboratory Inc., Tokyo (J)

- Lunch -
COQOPERATIVE PROBLEM-SOLVING GUIDED BY INTENTIONS AND PERCEPTION
Birgit Burmeister & Kurt Sundermeyer
Daimier-Benz AG Research Institute, Berlin (D)
A MULTI-AGENT ANALOGICAL REPRESENTATION FOR PHYSICAL OBJECTS
Lucia Maria Gambardella & Marc Haex
IDZIA, Lugano (CH)
Discussion
- Break -
Departure from hotel to Edenkoben

Winetasting and Dinner

Return to hotel

Tuesday, 6 August 1991

+— +

+— +

9:00 VARIABLE COUPLING OF AGENTS TO THEIR ENVIRONMENT: COMBINING SITUATED
AND SYMBOLIC AUTOMATA
George Kiss (invited speaker)
The Open University, Milton Keynes (UK)

10:00 TOWARD AN ‘ARCHITECTURE FOR ADAPTIVE, RATIONAL, MOBILE AGENTS
Innes A. Ferguson
University of Cambridge (UK)

10:45 - Break -

11:00 ECO-PROBLEM-SOLVING MODEL: RESULTS OF THE N-PUZZLE
Alexis Drogoul & Christophe Dubreuil
LAFORIA - Universite Paris VI, Paris (F) & CERT-ONERA, Toulouse (F)

11:45 EXPLOITING EMERGENT BEHAVIOUR IN MULTI-AGENT SYSTEMS
Peter Wavish
Philips Research Laboratories, Redhill (UK)

12:30 - Lunch -
15:00 HOW TO MOVE (PHYSICALLY SPEAKING) IN A MULTI-AGENT WORLD
Jean—-Claude Latombe (invited speaker)
Stanford University (USA)
16:00 A DISTRIBUTED ARTIFICIAL INTELLIGENCE VIEW ON GENERAL PURPOSE
VISION SYSTEMS
Olivier Boissier & Yves Demazeau
LIFIA, Grenoble (F)
16:45 - Break -
17:00 REAL-TIME PERFORMANCE OF INTELLIGENT AUTONOMOUS AGENTS
Anne Collinot & Barbara Hayes-Roth
LAFORIA/IBP Universite Paris VI (F) & Stanford University (USA)
17:45 Discussion
18:30 Departure from hotel to Ritterkeller, Frankenstein
19:00 Banquet

22:00 Return to hotel

9:

10:

10:

11l:

12:

15:

15:

16

17

00

30

45

30
00

45

: 30

:00

45

+

Wednesday, 7 August 1991

+— 4

I
-

PANEL

THE DYNAMICS OF KNOWLEDGE AND ORGANIZATION IN MULTI-AGENT
SYSTEMS

- ORGANIZATIONAL ACTIVITY 'HROUGH CONVERSATION IN OPEN SYSTEMS
Chisato Numaoka
Sony Comput.er Science Laboratory Inc. (J)

- A SYSTEM FOR BELIEF REVISION IN A MULTI-AGENT CONTEXT
Aldo Franco Dragoni
University of Ancona (I)

~ ON BEING RESPONSIBLE
Nick Jennings
University of London (UK)

- Break -

PLURALITY: EXPLAINING WHY DAI SYSTEMS WORK AND WHY THEY DON'T.
Les Gasser (invited speaker)
Universite de Paris VI and CSI/Ecole des Mines (F)

TOWARDS A SEMANTICS OF DESIRES
Georges Kiss & Han Reichgelt
The Open University, Milton Keynes (UK) & University of Nottingham (UK

- Lunch -

DEPENDENCE RELATIONS AMONG AUTONOMOUS AGENTS
Christiano Castelfranchi & Maria Miceli & Amedeo Cesta
CNR Institute of Psychology, Rome (I) & University of Rome (I)

A GAME THEORETIC APP?ROACH TO DISTRIBUTED ARTIFICIAL INTELLIGENCE
AND THE PURSUIT PROBLEM

Ran Levy & J.S. Rosenschein
Hebrew University, Jerusalem (IS)

Discussion & Conclusion

End

The Role of Representation in Interaction:
Discovering Focal Points among Alternative
Solutions

Sarit Kraus*

Jeffrey S. Rosenschein
Computer Science Department
Hebrew University
Givat Ram, Jerusalem, Israel
sarit@cs.huji.ac.il, jeff@cs.huji.ac.il

June 27, 1991

Abstract

Representation can be critical in enabling agents to interact effectively. Alternative
methods for representing and reasoning about the world can radically affect the ability
of agents to reach cooperative solutions. Focal points are examined as a particularly
compelling example of the importance of representation; we consider the algorithms
that might be used by resource-constrained agents in discovering prominent solutions
of their interaction.

“Kraus is also affiliated with the Graduate School for Library Studies.

1 Introduction

There are various kinds of interactions that sophisticated human agents can easily handle,
and yet whose formal representation is problematic. The inability to formally represent
crucial features causes difficulties for conventional interaction techniques. For example, -
humans are often able to recognize a particular structure f> a problem that helps them
coordinate their actions to mutual benefit. There is sometimes a “special” attribute of a
coordinated act, and both agents, in recognizing the specialness, can choose their actions
suitably. Schelling [13] called these prominent coordinated actions “focal points.” Intuitively,
a focal point is a conspicuous point of agreement to which interacting agents gravitate. -

In this paper, we discuss the concept of focal points, emphasizing how they could be dis-
covered by an automated agent and used by several to coordinate their actions. A number of
other researchers in Distributed Artificial Intelligence (DAI) have also recognized represen-
tation issues as critical for effective interaction, including Durfee [4], Werner [15], Singh [14],
and Cohen and Levesque [1].

In Section 2 we present the notion of focal points, including illustrative examples, and in
Section 2.2 we discuss their properties at greater length. Standard representations (such as
those of game theor) are unable to exploit focal points in finding coordinated actions, and
we examine .his problem in Section 3. Central to the idea of focal points is the ease with
which they «re found; this suggests that it is important to take into consideration the time
that passes as agents carry out their reasoning. In order to capture the passage of time, we
make use of Step Logic [6], discussed in Section 4.

In Section 5 we present our focal point algorithm, along with the specific rules by which
focal points are discovered. Because the algorithm will not necessarily result in a single
candidate focal point, there is a need to reduce the candidate set as much as possible.
The resolution of multiple solutions is discussed in Section 5.4. Finally, in Section 6, we
discuss how the presence or absence of knowledge among the agents affects their focal point
computation.

2 Focal Points

2.1 Examples of Focal Points

Schelling proposes no formal definition of focal points. We follow his lead by demonstrating
the concept via examples.

Imagine two players on a TV game show. The emcee explains to the players the simple
rules of the game: each is to go to a separate, private room, where they will be handed a pile
of 100 $1 bills. They are each, in isolation, to divide the single pile into two piles, A and B,
with any distribution of bills between the piles. Then their distributiors will be announced,
and if they are identical (i.e., the players’ A piles are the same size, and their B piles are the
same size), they will each win a Mercedes. If their distributions are not identical, they will

receive the consolation prize (a home version of the game).

Readers may, at this point, wish to consider for a moment what choice they themselves
would make if they were playing this particular game.

Schelling [13] discussed his experiments with a game of this type, and found that the
overwhelming majority of players chose to divide the 100 $1 bills into two equal piles, 50
bills in each. Informal runs of this game, done by this paper’s authors, seem to point to the
same conclusion: most people are drawn to the 50-50 split, even though there are another
100 possible choices (if we allow the empty pile). The reasoning goes something like this:
“Since success in the game requires us only to anticipate each other’s choice, and since at
one level of analysis all the choices are cquivalent, I must look for any uniqueness that will
distinguish a particular option in both of our minds, and rely on the other agent’s doing
likewise.” In this case, equivalence between piles is a property that is true only of the 50-50
split, making it, in Schelling’s vocabulary, a focal point. Intuitively, as was mentioned above,
a focal point is a prominent point of agreement to which interacting agents gravitate.

A similar example has two contestants asked to write down, secretly, “some positive
integer,” with a prize to be awarded if they both write down the same positive integer.
Although there are infinitely many winning solutions to this interaction, Schelling found
that most people tended (unsurprisingly) to write down the number 1. Given the range of
choices, this number has the unique property that it is the only one without a predecessor
in the set. Thus, it is a focal point.

Focal points can also arise in non-numeric domains, as in the following example. You
have parachuted into the countryside represented by Figure 1 (the bent lines represent roads,
the small boxes are houses, and there is a river, spanned by a bridge, horizontally bisecting
the middle of the picture). Another person whom you want to join up with has parachuted
into the area also, but you are (unexpectedly) out of communication with her. Where do
you go to meet up with one another?

Most people, when presented with this case, are reported by Schelling to choose the
bridge as a meeting place. There is no guarantee that your partner will go through the same
line of reasoning, but the bridge is a prominent solution, a focal point, and one towards
which participants gravitate.

2.2 Competing Focal Points

There are a number of intuitive properties that seem to qualify a given agreement as a focal
point. Among these properties are uniqueness, symmetry, and extremeness. Our formal
solution below will encode these intuitions into a logic that could be used by an agent.

Even when we consider these special properties, more must be done to identify focal
points. There are bound to be competing potential focal points, since there is something
unique about any solution. Another fairly strong contender for a solution in the original
game presented above is the choice of 0 bills in A, and 100 bills in B (or vice versa). Of
course, 1t is precisely the “vice versa” aspect of this solution that makes it appear less
appealing in comparison with the 50-50 split.

u \pé/
~

-_—

— e = - ‘__é\/

Figure 1: The Parachute Problem

Any solution, though, will have something to recommend it—but the less obvious that
something is, the less attractive the alternative becomes, precisely because it becomes less
obvious that the other agent will duplicate our line of reasoning. For example, the choice of
10-90 recommends itself, since it is the only choice where the number of tens in both piles
is a perfect square (1 squared and 3 squared), and where at the same time the first pile is
smaller than the second. And of course, we might choose 16-84 as our split, reasoning that
our partner will realize, as we did, that these are the only years in the 20th century (whose
last two digits add up to 100) that have seen the election of United States presidents with
the same number of letters in their last names (Wilson in 1916 and Reagan in 1984).

This is a farfetched example, but the point should be clear: a focal point is produced
not only because it satisfies one of the intuitive principles mentioned above, but because it
seems computationally more accessible—it seems more likely that the other agent will also
recognize the point than that he will recognize competing points.

2.3 The Role of Communication

One way of altering the prominence of a focal point, or creating a new one, is through
communication. Schelling presents two communication scenarios of his TV game show. In the
first, one contestant shouts out “60-40!" as he is being led to his isolation booth. The emcee
decides not to stop the game, but warns the players against any further communication.

The second contestant is now faced with a new prominence. While it is true that 50-50 is
an attractive alternative, it is given real competition by the 60-40 possibility. Especially if
the other player knows that the content of the shout could be understood, they both have
reason to ascribe prominence to this solution point.

Another of Schelling’s scenarios has the emcee doing the communication. Imagine that
no shouting has occurred on stage, but after you are in your isolation booth you are visited
by the emcee. He says, “I have visited the other player, and I am giving you the same advice
that I gave him: choose 37-63.” With that, he departs. Again, a new piece of information
has been introduced, and with it the possibility that the other agent will settle on this
suddenly prominent option.

What has happened in both these communication scenarios is that the very act of com-
munication, even though it is extremely limited, has given new prominence to particular
solutions. After all, in the first scenario, the 60-40 split became the only solution with the
property of having been broadcast by the other player. In the second scenario, the 37-63
split became the only solution with the property of having been advised by the emcee. This
is similar to the prominence attached to the 50-50 split in our first example, the only solution
with the property that the piles are equivalent.

In this paper, we will not be discussing communication in focal point interactions; this
1s a subject for future research.

2.4 Automated Agents and Focal Points

Although the concept of focal points was originally introduced with regard to human inter-
actions, they have relevance for automated interactions as well. From a machine’s point of
view, a focal point is an instantiation of a variable in a statement or action. When automated
agents are designed to operate in realistic domains, they will need to analyze interactions
in a sophisticated way. Groups of agents might find focal points useful because it can help
coordinate actions when communication is difficult or impossible.

For example, consider the case of automated agents that are working together on Mars,
but have lost communication with one another (e.g., their radio frequency has developed
interference). They would like to meet again so as to reestablish their line of communication,
but need to independently decide where the meeting will take place. The agents could not
establish an a priori protocol for how to get back together, because they did not have
sufficient information about what the terrain would be like. The search for a focal point
meeting place would be a natural mechanism for solving this problem.

In addition, if an automated agent needs to interact with humans it will be helpful to act
in a “natural” way that the human can also anticipate and coordinate with. For example,
one of the Mars workers above migkt be a human, and the automated search for a focal
point meeting place mirrors his own thought processes. Another case might be that of a
robot cleaning up an auditorium, coming across a left article, and having to reason about
where to put it so that it will be found by the owner the following day.

More fundamentally, focal points provide a test case for representation and reasoning in

multi-agent domains. They are a hard problem that conventional techniques cannot address.

By studying focal points, we gain insights into representing and reasoning about multi-agent
encounters.

3 The Failure of Standard Representations

Focal points are an interesting interaction problem to study precisely because they provide
clear examples of the failure of simple interaction representations.

Consider the original problem given above, with two contestants on a TV game show.
The problem of dividing up a stack of 100 $1 bills can be represented very easily using a
payoff matrix, with $40,000 marked in all the boxes down the diagonal and zero everywhere
else. The failing of this representation is that it does not allow the agents to reason about
anything other than the relationships among the payoffs, and these relationships are wholly
uninteresting. There are 101 payoffs of $40,000, but there is no other way of reasoning about
why one action is better than any other.

Reasoning about the matrix laynut, which might help in this case, is wholly outside of
Game Theory’s use of the payoff matrix [10]. In fact, one agent (in Game Theory) cannot
be sure that the other agen*‘ sees tl.e matrix in exactly the same way that he does. That
is, there is some mapping b :tween the other agent’s choices and the matrix, but we don’t
know what that mapping is-—the $40,000 payoffs may be scattered throughout his personal
representation of the matrix (as long as there is only one per row and one per column).

The same issue arises in the problem where the agents are to choose a positive integer:
one representation would have high payoffs down the diagonal and zeros everywhere else,
but other functionally equivalent representations would have the payoffs scattered around the
matrix, and the agents can’t (in Game Theory) use a rule like “choose the upper left-hand
corner.” There is no common view of the matrix.

The solution to the problem cannot simply be to introduce an ordering on the matrix,
because in real-life encounters the matrix really isn’t commonly perceived by the agents: it is
the interaction that is commonly perceived, and the matrix is only an internal representaiion
of an external reality. If, for example, two agents (A and B) meet, and each agent has two
potential actions, A, Abreak,; Bpush, Belear, then who can say that A’s internal representation
will match B’s, and how safely could they hope to employ any simple rule that relies on the
particular ordering they have attached to these moves?

Standard logic also fails to provide the solution to focal points. Computational complexity
seems central to identifying focal points. Not only must a solution to a given problem satisfy a
property like uniqueness in order to qualify as a focal point, it must also be easier to find than
other solutions with similar properties. It is therefore necessary to model the computational
process itself in the reasoning procedure as we search for focal points. Classical first order
logic does not model the computational process. We turn, instead, to a modification of
first order logic, called step logic, that deals explicitly with the passage of time as an agent
reasons.

There is some related work in artificial intelligence that addresses the issues of the passage
of time during the reasoning process. In [8], [7], and [12], decision-theoretic approaches are
used to optimize the value of computation under uncertain and varying resource limitations.
In these works, deadlines and the passage of time while reasoning are taken into consider-
ation in computing the expected computational utility. Dean and Boddy [2] formulated an
algorithmic approach to solution of time-dependent planning problems by introducing “any-
time algorithms” that capture the notion that utility is a monotonic function of deliberation
time. -

Although we have chosen not to use these tools in examining focal points, it appears that
they might someday be modified appropriately for the task. Using decision-theoretic tech-
niques to find focal points might be especially suitable in cases where alternative outcomes
have natural associated utilities. This is left for future research.

4 Discussion of Step Logic

Our current project employs the formalism of “step-logics,” introduced by Elgot-Drapkin,
Miller, and Perlis ([3, 6, 5]) where inferences are parameterized by the time taken for their
inference, and in which these time parameters themselves can play a role in the specification
of the inference rules and axioms.!Step-logics offer a natural representation of the evolving
process of reasoning itself. A step is a fundamental unit roughly characterized by the time
it takes the agent to draw a single inference.

Observations, which are inputs from the external world, may arise at the beginning of a
discrete time-step. When an observation appears, it is considered a belief in the same time-
step. Apart from his observations at the beginning of step z, the only information available
to the agent is a snapshot of his deduction process completed up to and including step ¢ — 1.
During step ¢ the agent applies all available inference rules in parallel, but only to beliefs at
step :— 1 (denoted by Facts;_;); new beliefs thus generated through applications of inference
rules are not available for use in further inference until step « + 1. For example, consider the
following reasoning (shown is an application of modus ponens) from step ¢ to step ¢ + 1.

12 White(c271); House(c271); White(e99); House(e99); House(e31);
Now(z); White(2) A House(z) — Big(z) ...

¢ + 1: Big(c271); Big(e99);
White(c271); House(c271); White(e99); House(e99); House(e31);
Now(z + 1); White(z) A House(xz) — Big(z) ...

In effect, step-logics are first-order logics suitably modified to include a Now(z) predicate,
where the value of ¢ changes at the end of a time-step.

!Step logics have also been used for planning in deadline situations [9)].

5 The Focal Point Algorithm

The intuition behind our focal point algorithm is that the agent, at each step 7, will look for
candidates in the domain that have certain properties (like uniqueness). If something in the
domain has the property, it is a focal point at step i. As time goes on, new beliefs are derived
(e.g., through modus ponens), and the domain over which the sea.ch is being conducted also
expands (through observations or consideration of new conjunctive properties). Then the
search for candidate focal points is repeated—and an old focal point may, given the new
information, no longer be one. The search for focal points is cut-off at some depth of
computation, depending on time constraints, at which point the agent resolves competing
focal points to the best of his ability.

Let us now consider the details of the above process. We first consider the way in which
the agent models the (changing) domain, then the rules that qualify a candidate as a focal
point. Finally, we consider the ways in which an agent resolves competing focal points.

5.1 Domain of Consideration

Before the process starts the agent is given two finite sets enumerating the domain constants
(one, Pred, is a set of predicates, and the second, Térm, is a set of term constants) over
which the focal point computation is going to be done initially. Both lists can grow as the
computation progresses.

TV Show Example: The vectors that sum to 100, with no element less than 0, can be
given as an initial finite domain over which properties will be discovered.

It should be noted that these finite sets represent the ezplicit knowledge of the agent,
not its implicit knowledge. For example, an agent may implicitly be aware of the infinite
set of positive ir:tegers, but for the moment only be considering the finite set of integers
from 1 to 500. As time goes on, numbers above 500 may come under the explicit scope of
consideration.

5.1.1 Addition of Term Constants

There are two mechanisms for adding new explicit terms. The first is observation, where
new term constants are observed over time (e.g., a new bridge is observed). The second
mechanism is the use of inductive rules, such as a successor rule that generates new integers
or a rule that generates new primes.

Example 1: At step ¢, the domain includes Bridge(C125). At step ¢ + 1 we have
Observe{Bridge(C237)}. At step ¢ + 2 we then have C237 in Term.

Example 2: If Int(z) — Int(z + 1) is a rule at step 7, and Int(5) is known at step ¢,
then at step z + 1 the agent will know In¢(5+ 1). Assuming that the agent has the requisite
procedure attached to the symbol +, he will (in step 7 + 2) add the term 6 to Term.

5.1.2 Addition of Predicate Constants

Consider an agent searching for focal points. When he starts, he considers attributes that
might be held by only a single object in his domain. For example, there might be only one
object that is Red. However, if such a unique object does not exist, then he may consider
conjunctions of attributes. For example, there might be only one House that is Red. We
want to capture this intuition in our algorithm.

When the process starts, Pred is equal to the finite set of predicates provided to the agent.
At the second step, the agent considers binary conjunctions of predicates from the original
list. At step three, he considers ternary conjunctions of predicates from the original list, and
so on. The following lines describe the evolution of Pred through successive steps.

step 1: Pred; = {domain constant predicates and their negations} = {P,,~P,, P2, P; ...}

step 2 : Pred; = {binary combinations of predicates of Pred;} =

{Pl/\Pz,Pl/\P3,P2/\P3,...}UPT€d1

step 3 : Preds = {ternary combinations of predicates of Pred;} =

{Pl/\P2/\Pg,Pz/\Pg/\P4,...}UPT6d2

5.1.3 Explicit and Easily Computed Knowledge

We want agents, in their search for focal points, to consider both explicit knowledge and
“obvious” knowledge that is easily computed from their databases. For example, if “less
than” is a predicate that the agent is considering, and both 5 and 6 are terms of which he is
aware, then we want the agent to use the knowledge that 5 is less than 6, even though this
fact is not explicitly represented in his database.

We therefore use a special notation to signify that a fact is “known” at the previous level.
We write €% to mean that the fact is either explicitly listed in Ficts at level 7, or that it can
be simply computed over the constant terms Térm known at level .

The question of what can be simply computed is domain dependent, as well as agent
dependent. There is an analogy here with the idea of “operational” in the Explanation Based
Learning literature [11]. Checking “less than” might be operational in some machines; in
other machines, deciding in a game of chess whether a given board position is reachable from
the current state might be operational because of specialized hardware.

5.2 Focal Point Rules

In this section we present the actual rules by which an agent identifies candidates for focal
points. We make no claims for completeness here. These rules provide good coverage of the
Focal Point examples in [13], but additional rules may be appropriate in other cases.

Identification of focal points is a two stage process. First the agent identifies candidates
by locking for meta-characteristics of objects, such as uniqueness. Second, the agent resolves

competing candidates to the best of his ability (using other rules) and decides on one or more
focal points.

5.2.1 Uniqueness

An object may be a focal point if it is the only object with a given propurty. Formally, if in
1 — 1 we have P € Pred;_,, and there exists an z € Term,_; such that

P(z) € Facts;_\Vy € Term,y # z[P(y) ¢ Facts;_1],

then in step 1 we will have
Unique(z, P,).

Note that Unique is a “meta-predicate” that does not itself appear in the Pred set. Note
also that the term z is considered unique with respect to the predicate P; this will be
important later when competing focal points must be resolved.

Examyle: This rule would be applicable in the case where we know about only one
Bri ige, namely C125.

Both x and y can be vectors, in which case they will be denoted by [z] and [y]. Another
example of uniqueness (using equality on elements of a vector) is the following: P([z,y]) =
z = y where the domain is defined to be vectors such that Sum([z,y]) = z + y = 100. This
causes us to choose the vector [50,50] over all others whose elements sum to 100.

5.2.2 Uniqueness Complement

Lack of information can also cause a solution to be prominent.
An object may be a focal point if it is the only object without a given property. Formally,
if in 2 — 1 we have P € Pred;_,, and there exists an = € Term,..; such that

P(z) & Factsi—\Vy € Term,y # z[P(y) € Factsi—],
then in step ¢ we will have
Unique-Comp(z, P, 1).

Example: This rule would be applicable in the case where we know that everybody
in the domain is a member of the Democratic Party, except that we have no information
one way or the other about John. Although we don’t know whether or not John is also a
member, this lack of knowledge causes him to be prominent.

10

5.2.3 Centrality

Another meta-predicate is the concept of Centrality, the intuitive property of a central point
around which a domain (or sub-domain) is symmetric.

An object may be a focal point if it is a central object within a given domain. Formally,
if in 2z — 1 we have P € Pred;_,, and there exists an z € Term;_; such that

P(z) € Factsi—,

Vy € Term,y # ¢ A P(y) € Facts;_1, -
Jz € Term,z # y A P(z) € Facts;_,
such that y —z =2 — 2

then in step ¢ we will have

Central(z, P, 1).

Example: In the range between 0 and 100, the number 50 is Central (where P is the
predicate Integer).

5.2.4 Extreme

An object can sometimes be prominent because it is the highest object, or the tallest, or the
smallest, among the elements of the domain.

An object may be a focal point if it is an extreme object in a totally-ordered domain.
Formally, if in 7z — 1 we have P € Pred;_;, and there exists an ¢ € Term;_; such that

Yy € Term;_1,y # x,(P(z,y) € Facts;—1 A P(y,z) & Factsi_1),

then in step : we will have

Extreme(z, P,).

Example: In the range between 1 and 10000, the number 1 is Extreme-Total (with the
predicate P being “less than”).

5.3 Dealing with Functions

All of the rules above can be generalized by using, instead of z and y, f(z) and f(y), functions
that return values given the z and y terms or vectors. First, we must assume that the agent
has been given a third finite list (in addition to Pred and Téerm) that enumerates the domain
of functions: Func. Then, as an example, we could write the Extreme property as follows:
ifin ¢+ — 1 we have P € Pred;_, and function f € Func;_;, and there exists an z € Term;_;
such that

Yy € Term,_1,y # =, (P(f(z), f(y)) € Facts;i_y A P(f(y), f(z)) & Facts;_,),

i

then in step ¢ we will have
Extreme(z, P,).

The original rule above is then the case when the function f is the identity function.
Consider the following example:

Famous(Smith), Famous(Jones), Famous(Brown), Famous(Father-of(Smith))

Using our original focal point rules, neither Smith, Joncs, nor Brown would be a promi-
nent solution. However, extending the technique using functions, Smith becomes a prominent
solution (since he is the only one with a famous father).

The set of functions Func will grow over time both through observation, and through
composition. When the process starts, Func is equal to the finite set of functions provided to
the agent. At the second step, the agent considers binary compositions of functions from the
original list. At step three, he considers ternary compositions of functions from the original
list, and so on.

step 1: Func; = {domain constant functions} = {Fy, F,...}
step 2 : Fune,; = {binary combinations of functions of Func,} =

{FloFg,Fl OF3,F20F3,...}UFUTLC]

step 3 : Funcg = {ternary combinations of functions of Func,} =

{FlOFQOF3,F20F3OF4,...}UFUT7.C2

5.4 Computing Focal Points—The Resolution Rules

The rules above specify when an object is unique, or extreme, etc.; they do not relate directly
to the question of when the object is actually a focal point. We thus need a rule to use in
tying together these attributes with the notion of focal point.

The most straightforward approach is to relate each of the meta-predicates above with
the focal point attribute:

¢ : Unique(z, P,1)
t+1: FocalPoint(z,?)

¢: Unique-Comp(z, P,)
t+1: FocalPoint(z,1)

v: Central(z, P,¢)
t+1: FocalPoint(z,1?)

12

¢: Extreme(z, P,1)
1+ 1: FocalPoint(z,?)

These rules of course may not supply us with a unique focal point, since there could be
a term that satisfies Unique, another that satisfies Unique-Comp, etc. There could even be
two separate terms that are Unique with respect to different predicates. There is still utility
for the agent in discovering the set of focal points, since even if the choice is made among
them probabilistically, there is an increased chance for coordination among the agents.

We will not attempt here to provide additional rules that guarantee a single focal point.
Instead, we illustrate that one could introduce additional rules so as to reduce the size of
the focal point set.

It is critical to resolve among focal points so that ones that are discovered more easily
have higher priority. Step logic provides us with a natural tool for dealing with this. Using
step logic, there are several mechanisms for relating priority to complexity; we here present
one.

A focal point might be generated (given the above rules) at a given level, then not be a
focal point at a subsequent level. The agents look for focal points only up to a certain level k.
At this level, there might be several competing focal points that are still valid (e.g., arising
from different rules, or from different predicates). As an initial winnowing mechanism, the
focal points that were generated earliest are kept and the others discarded.

Example: In the range between 1 and 10000, the number 1 is Extreme-Total (with the
predicate P being “less than”), and 10000 is Extreme-Total (with the predicate P being
“greater than”), after the first step.

If the domain of considered integers grows at each step, 1 will still be extreme while 10000
will no longer be extreme. Thus, at the end of the process, 1 will be chosen since it has been
“extreme” for the longest period. This disambiguates between the two extreme ends of a
finite domain that is growing in only one direction.

The algorithm only considers “term-property” pairs; if a term was a focal point because
of some property at level i, then was no longer a focal point because of that property at
level 1+1, then again became a focal point because of a different property at level i+2 (and
remains a focal point until the end), then it is considered to have been generated at level
14-2.2

The intuition is that, since the other agent may not go as deep in the deduction as we
have in looking for a focal point, we are more likely to match the other agent by taking the
earliest focal point. It is the solution that we still believe in most likely to have been reached
by the other agent.®

*The idea behind looking at term-property pairs in order to establish the first appearance of a focal point
1s that once a focal point has disappeared because of other terms with the same property, its prominence
because of that original property is completely negated.

30ther approaches present themselves, such as considering the coverage of a focal point e.g., if a term is
a focal point for much of the deduction, though it is not at the final step, we would still consider it a likely

13

We may also choose to introduce rules that assign a priority to the meta-predicates (like
Unique) so that, for example, a unique object gets priority as a focal point over an extreme
object.

5.4.1 The Relation of Actions to Focal Points

There is an important relationship between the actions that are to be coordinated by inter-
acting agents, and the focal points in a domain. This relationship can help agents resolve
competing focal points. ,

Consider the following example (due to Schelling). Five candidates, Smith, Jones, Brown,
Robinson, and White, are running for public office. In the first round of voting, the following
results occurred:
f(Smith) =19
f(Jones) = 28
f(Brown) = 15
f(Robenson) = 29
f(Whzate) =9

You are now to choose whom to vote for, given that you will win money if your choice
wins the election, and that you have no other interest in the outcome.

Considering our focal point rules (with the function modification), there are two Extreme
candidates for focal points: Extreme(W hite, <,7) and Extreme(Robinson, >,). It seems rea-
sonable that in choosing whom to vote for, the “greater-than” relation is of greater relevance
than the “less-than” relation (Schelling’s own experiments confirm this). We would like to
capture this intuition in our Focal Point algorithm.

Other examples might assign “tallest” as the predicate most relevant to choosing a promi-
nent basketball player, and “shortest” as the predicate most relevant to choosing a prominent
jockey. There might also be relevant predicates used for the uniqueness property. For exam-
ple, we might have a group of people, one of whom will be chosen to help us move furniture.
We must choose one of the group, matching someone else’s choice. It turns out that only
one person is a swimmer, and only one (other) person is blond. Although the uniqueness
criterion applies to both, being a swimmer is more relevant than hair color to the assignment
of someone for a physical task.

Obviously, the representation of relevance is intimately connected with our representation
of action. The details of this connection are beyond the scope of the current paper, and are
left for future work.

solution. We could also then probabilistically weight the steps of the deduction, so that (for example) earlier
steps receive more weight than later steps. These methods are left for future work.

14

6 Interesting Knowledge Categories

In the full paper, we will consider several different cases involving varying degrees of knowl-
edge among agents, and the consequences that these different knowledge conditions impose
on the search for focal points. It will sometimes be necessary (or simply appropriate) to
modify the algorithm presented above so as to exploit the particular knowledge situation
- that exists.
Among the knowledge conditions that we will examine are the following:

1. There is common knowledge on everything, including the original axioms, run-time
observations, the domain of predicates, terms, and functions, and the agents’ compu-
tational “power” (i.e., how deep the search for focal points will go). We consider cases
where the agents search to the same depth, and where they do not search to the same
depth. In the case where search depth is identical, we show that if there is a set of
focal points, the set will be generated identically by both, i.e., the procedure above is
deterministic. With minor modification, the algorithm generates the same set for both
even when the search depth is not identical, but is known.

o

There 1s common knowledge about everything other than the power of computation
(i.e., how deep the focal point searc1 will go). We then consider whether the set of
focal points is monotonic, and whether the agents will reach the same focal point under
certain conditions.

3. The agents have implicit common knowledge: the explicit expression (syntax) of the
knowledge is not identical, but the closure under deduction is the same. We will
examine whether the agents, under certain conditions, reach the same focal point.

7 Conclusions

We have presented the concept of focal point solutions to interaction problems, and discussed
why conventional representation techniques are insufficient for focal point discovery. An
algorithm was developed that allows for the uncovering of focal points through the use of
step-logic, special inference rules, and sets of predicates, functions, and terms that change
over time. The technique is particularly well-suited for modeling the time-dependent nature
of focal point search. Further work is needed to characterize the knowledge situations when
these techniques will converge, and for integrating theories of utility into the focal point
calculation.

8 Acknowledgments

This research has been partially supported by the Israel National Council for Research and
Development (Grant 032-8284), and by the Center for Science Absorption, Office of Aliya

15

Absorption, the State of Israel.

References

(1]

2]

3]

(4]

[10]

1]

Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3), 1990.

Thomas Dean and Mark Boddy. An analysis of time-dependent planning. In Proceedings,
AAAISS, pages 49-54, 1988. ‘

J. Drapkin, M. Miller, and Donald Perlis. Life on a desert island. In Proc. Workshop
on The Frame Problem in Artificial Intelligence, pages 349-357. American Association
for Artificial Intelligence, 1987.

Edmund H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic
Publishers, Boston, 1988.

J. Elgot-Drapkin. Step-Logic: Reasoning situated in time. PhD thesis, Univ. of Mary-
land, 1988.

J. Elgot-Drapkin and D. Perlis. Reasoning situated in time: basic co wcepts. Journal of
Ezperimental and Theoretical Artificial Intelligence, 1990.

E. Horvitz, G. Cooper, and D. Heckerma. Reflection and action under scare resources:
Theoretical principles and empirical study. In Proceedings of [JCAI-89, pages 1121-
1127, Detroit, Michigan, 1989.

E. J. Horvitz. Reasoning under varying and uncertain resource constraints. In Proceed-
ing, AAAISS, pages 111-116, 1988.

S. Kraus, M. Nirkhe, and D. Perlis. Toward fully deadline-coupled planning. In Proc.
1990 DARPA Workshop on Innovative Approaches to Planning, Scheduling, and Con-
trol, 1990.

R. Duncan Luce and Howard Raiffa. Games and Decisions, Introduciion and Critical
Survey. John Wiley and Sons, New York, 1957.

T. M. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation-based generalization: A
unifving view. Machine Learning, 1(1):47-80, January 1986.

S. Russell and E. Wefald. Principles of metareasoning. In Proceedings of the First

International Conference on Principles of Knowledge Representation and Reasoning,
pages 400-411. Morgan-Kaufman, 1989.

Thomas C. Schelling. The Strategy of Conflict. Oxford University Press, New York,
1963.

16

[14] Munindar Singh. Group intentions. In Proceedings of the Tenth International Workshop
on Distributed Artificial Intelligence, Bandera, Texas, October 1990.

[15] Eric Werner. Toward a theory of communication and cooperation for multiagent plan-
ning. In Proceedings of the Second Conference on Theoretical Aspects of Reasoning about
Knowledge, pages 129-143, Pacific Grove, California, March 1988.

17

SANP: A Communication Level Protocol for

Negotiations

Man Kit Chang and Carson C. Woo
University of British Columbia®

Abstract

Organizations are distributed open systems where agents (workers, department, etc.) co-
operate with one another to achieve organizational goals. However, conflict is also an inherent
component of the process. In designing computer systems which aim to automate organiza-
tional activities, the conflicts among agents and how to resolve them need to be considered.
Distributed Artificial Intelligent (DAI) researchers have long been interested in the question of
how to resolve conflicts among cooperative agents in distributed problem solving environments.
Negotiation has been suggested by many researchers as an important technique to resolve con-
flicts. However, most of the existing negotiation protocols used in DAI systems are inflexible.
Actual protocols rarely take into account the result from negotiation research. In this paper, we
propose a negotiation protocol, SANP (Speech Act based Negotiation Protocol), that is based on
Ballmer and Brennenstuhl’s speech act theory, and on the negotiation analysis literature from
other disciplines. SANP is a flexible protocol that supports multi-level negotiations between
two parties. In addition, SANP also allows third party arbitration if the parties involved in the
negotiation cannot resolve the conflict themselves.

1 Introduction

Organizations are open systems that are composed of many interdependent and interconnected
subsystems [17,18]. To accomplish organizational goals, work has to be distributed among agents
(i.e., employees, departments, etc.) and their effort has to be coordinated in the direction of
reaching the goals. However, each agent may have his own goals that may be inconsistent with goals
of others. In an open system, agents receive incomplete and inconsistent information from outside
of the system or from different parts within the system, and they develop their own viewpoints
and beliefs that may be incompatible with the beliefs of other agents. Agents may also have
different interpretations of the same situation caused by different personal knowledge and beliefs
[15]. Hence, conflict is inevitable. Different kinds of conflict may arise: (1) conflict of interest
when two agents compete for scarce resources; (2) conflict of value; (3) cognitive conflict when two
agents differ in their thought processes or perceptions; and (4) goal conflict when desired outcomes
of two agents differ [24]. This paper investigates the computer communication support needed for
resolving conflicts by negotiation.

Distributed Artificial Intelligence (DAI) researchers have long been interested in how to resolve
conflict among cooperative agents in distributed probiem solving environments. However, Galliers

“Authors’ address: Faculty of Commerce and Business Administration, The University of British Columbia, 2053
Main Mall, Vancouver, B.C., Canada V6T 1Z2. INTERNET: Carson_-Woo@mtsg.ubc.ca for Carson Woo.

[13] points out that most existing DAI research projects avoid dealing with the problem of conflict
among agents by assuming that cooperative agents are benevolent, agree with each other, and ready
to adpot each other’s goals. On the other hand, most of the projects that consider conflict assume
the existence of a centralized authcrity for making decisions. In open systems, however, we cannot
make this assumption.

Many methods have been proposed to reconciliate” disparities among agents [5]. We are in-
terested in the application of negotiation which has been suggested by many researchers as an
important method to resolve multiagent conflicts in open systems [5,9,15,17,18,29]. Negotiation
is a process of communication between agents in which conflicting goals are reframed, conflicting
issues are identified and narrowed, alternative solutions are proposed, attacked, and defended, and
agreements are reached and confirmed [23]. All these functions should be provided if we want to
support negotiation between agents to resolve conflicts in an organizational information system.
It is important that agents can present arguments that support their beliefs and goals, so that
the other party in the negotiation process can understand the rationale of the beliefs or claims.
The articulation of the arguments may help to identify issues on which the parties disagree and
subsequently to solve the problem.

However, most existing negotiation protocols do not support all these functions of negotiation.
Most of them are inflexible and are designed only to coordinate the execution of tasks. The primary
aim of our research is to develop a flexible negotiation protocol that supports organizational work.
SANP (Speech Act based Negotiation Protocol) is based on Ballmer and Brennenstuhl’s speech
act classification. SANP incorporates se reral strategies that the parties can employ in negotiation,
such as “delay” and “appeal”. In the rext section, we shall review the related research projects
that use negotiation to coordinz ;e distributed problem solvers. Section three describes Ballmer and
Brennenstuhl’s speech act classification. Our proposed negotiation protocol is presented in section
four. An example application will be given in section five. Section six outlines the usage of our
protocol and future research work.

2 Related Work

The need for a communication protocol was recognized by researchers in the DAI field. Campbell
and D’Inverno [6], for example, suggest that communication protocols can be used to control
excessive communication between agents that uses a great deal of computer resource. Several
researchers have proposed negotiation protocols and frameworks to support the cooperation of
distributed problem solvers or agents. Some of these are Contract Net Protocol [9,19,29], Multistage
Negotiation Protocol [8], Partial Global Planning [11,12], and PERSUADER [30].

Most of these protocols (except PERSUADER) view negotiation as a process of exchanging
contracts or plans that result from planning or reasoning processes. In this case, each agent will
have a better idea of what other agents plan to do and adjust their plans accordingly. These
protocols suffer the problem of inflexibility in that they only allow agents to negotiate at a fixed
level. That is, agents cannot negotiate the selection of a particular action, assumptions, and criteria
of decision making. In addition, the design of these protocols is not based on any theory or model of
negotiation, nor does it result from an analysis of negotiation processes. They are only designed to
solve the problem at hand, and they are not general enough to be used in other problem domains.
In particular, it is difficult to apply these protocols to the organizational environment to support
the negotiation of distributed workers. Fc: example, while establishing policies or constructing
budgets, it may not be easy to gain consensus by only exchanging plans.

PERSUADER ([30] does allow negotiation to be done at different levels (i.e., slightly more flex-
ible). It uses a mediated negotiation model based on an integration of case-based reasoning and
multiattribute utility theory to generate proposal and counterproposal based on the feedback from
the other party. The most important feature is that it can generate persuasive argumentation to
change the other party’s mind. Although the system provides a good support for negotiation, it is
not exactly a negotiation protocol, it functions more like a negotiation support system. Further-
more, it does not support many strategies that can be used in negotiation, such as delaying the
discussion.

3 Speech Act Theory

The central idea of the speech act theory [2,25,26] is that someone uttering a sentence is not
just saying things (i.e., describing a state of affairs), but he is actually doing somethings [20]. For
example, when somebody says “I promise to come”, he is not only uttering the statement “I promise
to come”, but he actually commits himself an action to be performed in the future.

3.1 Searle’s Speech Act Classification

Searle’s speech act classification is the most fully developed and widely used classification. Some
researchers have applied it to the computer domain [7,34,35,36,38]. Others use Searle’s taxonomy to
analyze natural discourse (e.g., van Eemeren and Grootendorst [32] use it to analyze argumentative
discussion). Searle [26] suggests that there are five basic kinds of actions that can be performed in
speaking. He bases his classification on the goal that a speaker wants to achieve by his utterance
and comes up with five categories:

Assertive: which commits the speaker to the truth of the expressed proposition.
Directive: which are attempts by the speaker to get the hearer to do something.
Commissive: which commits the speaker to some future course of action.
Expressive: which expresses the psychological state about the state of affairs.
Declarative: which brings about change by virtue of the content of the utterance.

However, this classification is being criticized as “lack a principle basis, contrary to Searle’s claims, it
is not even build in any systematic way on felicity conditions” [20]. Another shortcoming of Searle’s
work is that he only analyzes the speech act fiom the speaker’s point of view, there is no analysis
of interaction between the speaker and the hearer (i.e., the analysis is basically unidirectional). It
is difficult to use this taxonomy to analyze natural discourses because most of these are interactive
in nature. Another difficulty in using Searle’s classification is that no matter what the function of
a speech act is, we have to put it in one of the five categories. It overloads the semantic of the
categories and makes it difficult to comprehend what the speaker really wants. Therefore, another
classification is needed if this theory is to be useful to constructing a communication protocol.

3.2 Ballmer and Brennenstuhl’s Speech Act Classification

Ballmer and Brennenstuhl [3] were interested in classifying all German speech act verbs into Searle’s
speech act categories. They experienced enormous difficulties, however, because the classification
required constant revision with the addition of more verbs. This caused a re-analysis of all previ-
ously classified speech act verbs and, hence, this process seemed endless.

To overcome this problem, Ballmer and Brennenstuhl employed a bottom-up approach, instead
of the top-down approach suggested by Searle, to classify speech act verbs. This approach considers
all speech act verbs in a German verbs dictionary, and groups the verbs that are similar in meaning
into semantic categories. For example, the category “Dissent” has speech act verb like “have words
with someone”, “quarrel”, etc. Semantic categories are grouped into models according to semantic
similarity. For instance, the Struggle Model consists of the categories “Attack” and “Dissent”. The
categories in a model and the models themselves form a natural order based on temporal relation
and degree of effectiveness. For example, “Defense” is temporall: ordered after “Attack”, and
“Threatening” is more effective than “Warning”.

The models are related to each other as well. They can be grouped into four linguistic functions:
(1) Expression, (2) Appeal, (3) Interaction, and (4) Discourse. The Expression linguistic function
contains speech act verbs for expressing emotional states. Appeal is a linguistic function directs
towards to a hearer and try to affect his course of action. Interaction is the linguistic function that
two parties engage in some form of negotiations. Discourse is the linguistic function which involves
a more organized verbal interaction between two parties.

For our purpose of censtructing a negotiation protocol, we are most interested in the Interaction
linguistic function. We will base largely on the Struggle Model and partly on Institutional Model
(mainly the appeal to authority). The Struggle Model contains speech act verbs that are used ia
various stages of negotiation. If the parties involved in the negotiation cannot reach agreement by
themselves, they can require arbitration from a higher authority which is handled in the Institutional
Model.

3.3 The Struggle Model

The struggle model covers the semantic area of verbal struggle. The struggle starts by the attacker
making a claim and by attacking an addressee if he disagrees with the claim. Then both parties
engage in a competitive verbal fight, argue with each other which may result in the victory of one
and the defeat of the other or in a compromise [3]. In the course of struggle, both parties can
employ tactics such as postponing the discussion or requesting arbitration.

Figure 1 exhibits the categories in the Struggle Model and Institutional Model that we use to
construct our protocol. Notice that we do not include all the categories in the models. We leave
out categories that describe:

physical action (e.g., crash into),

emotional reaction after loosing a negotiation (e.g., retaliate, refusing to admit defeat) ,
coalition attempts with third parties,

nonserious behavior (e.g., play a trick on), and

emotional tactics (e.g., insult).

ol ol

Speech act verbs related to physical actions and emotional reaction after loosing a fight are not
applicable to machine-machine communication in an organizational setting. The last two items are
difficult to support and their intended outcome can be modelled using other speech act categories.
Coalition with a third party is left for future work.

We also made minor changes to the remaining categories. First, we combine some categories
because the low level distinction is not necessary for our protocol. For example, it is not necessary
to distinguish different linke of claim (make justifiable claims, make negative viewed claim). Second,
we rename some categories to reflect the functionality of the categories. For example, the category

- CoDE CATEGORY NAME EXAMPLE SPEECH ACT VERBS

KA_3, unacquainted status be strange, be unknown

KA_;, make claim ask, assert, claim opinion

KA_,, agree agree, share the same opinion
KA_,. dissent break with someone, have words with someone
KA_,; withdraw abandon, abstain from, give up

E Aoj argumentative attack affirm, claim, confront

KAype postpone adjourn, delay, hold up, postpone
KAy admit defeat admit, agree to, give in, give way

K Ayp.q argumentative defense bring counterarguments, contradict, disprove
K Aieqp pinning down fix, pin down, tie down

KA.« repeated attack claim, iterate, repeat

KAi.p insisting persist in, press, pursue

KAy retreat > KA_14q

K A4 force concession force, overrule

KA4yq offer compromise make a contract, make an agreement
K A4y, one-sided compromise admit, consent to, agree

KAsp. counter offer accept in part, make stipulation

K A44q accept compromise accept, agree with, approve of

N Ogo appeal appeal to someone, bring forward

N Oeg. examining hear, question

NOgqq testify give testimony, show proof

NOz, make decision arbitrate, decide, settle

Figure 1: Example speech act verbs in selected categories.

name of K Ajpp, is “evasive manoeuvre without loss for defender”. However, the functionality of
the speech act verbs in the category (e.g., adjourn, delay, hold up, postpone, put off) can be better
described as “postponing”.

We want to mention here that the label attached to each category represents the meaning of
the speech act verbs. K A is the model name derived from the German word “Kampfmodell” which
means struggle model. The subscript is used to express sequencing and subcategory information.
For example, the category K A; is sequenced before K A,, and K A;, is a subcategory of K A;.

In the following section, we will describe how we use these categories and result from negotiation
research to construct our protocol.

4 SANP: The Negotiation Protocol

4.1 Principles behind SANP

The basis of SANP (Speech Act based Negotiation Protocol), is the Struggle Model. We use the
temporal relations between the categories and the alternative choice provided by the subcategories
to construct the protocol. For example, “Dissent” must appear after “Make Claim”, and there are
two alternatives after the sentence “Make Claim”: “Agree” and “Dissent”. The sequencing infor-

mation is provided by the subscript of the category labels. Note that the sequencing information
ensures that if category Y has to be used after category X, then Y has a subscript number which
is greater than or equal to that of X.

In constructing the protocol, we use the following rules to guide a conversation:

1. After speaking a sentence, the party must wait for the other party to reply before it is allowed
to speak its next sentence.

2. The next sentence spoken is restricted by the choices given at that state in the protocol
diagrams in the appendix.

Results from the negotiation literature are used to decide what should be included in the protocol
and to confirm the validity of the Struggle Model. The processual model of negotiation of Gulliver
[16], strategic choice model of Pruitt [22], ard the analysis of argument structure of Toulmin [31]
are used to support our design decisions.

Gulliver [16] proposes an 8 phase processual model of negotiation which depicts the develop-
mental progress of the negotiation process from the initial recognition of the dispute to some kind
of outcome. His model only cover two parties negotiation without the intervention of third party.
The 8 phases are described as follow:

Search for arena: Parties agree on the location where negotiation may occur.

Agenda Setting: Parties agree on the issués to be negotiated.

Exploring the field: parties try to establish maximal limits to the issues in dispute.

Narrowing the difference: the parties begin to look for the possibilities of approaching actual

outcomes and try to narrow their differences.

5. Preliminaries to final bargaining: parties search for a viable bargaining range, refine persisting
difference, test trading possibilities, and construct a bargaining formula.

6. Final bargaining: parties exchange specific and substantive proposals and counter proposals.

7. Ritual affirmation

8. Execution of the agreement

badl ol

Our protocol is not intended to support the entire process of negotiation described by Gulliver.
We make a number of assumptions: the negotiation platform is computers, there are specific issues
to be negotiated, and when a compromise is made it is automatically affirmed. Therefore, our
protocol will only support the negotiation phases 4 to 6. More specifically, we would like to provide
facilities for exchanging information among agents to iacrease the understanding of each other, for
narrowing down differences, and for settling the dispute.

Pruitt [22] proposes a Strategic Choice model of negotiation. The model states that parties
involved in a negotiation have to make strategic choice at every point in time. The choices include:

1. concede unilaterally
2. stand firm and employ pressure tactics (e.g., persuasive arguments, threat)
3. collaborate with other parties in search of a mutually acceptable solution.

Maynard [21] in his research on the structure of discourse in misdemeanor plea bargaining
finds that bargaining results in three outcomes: reaching compromise, postponing discussion, and
appealing to higher authority. Requests for postponement are used to collect more information or
to put pressure on the other party. -

In addition to reaching a compromise, SANP is designed to support both “Delay” and “Appeal”
functions. We also support all the strategies stated in the Strategic Choice model. We allow agents

to make concessions by offering one-sided and two-sided compromise, and to persuade other agents
by providing arguments.

Toulmin [33] proposed a simple model of argument structure which is depicted by the following
diagram:

Data =----> so: Claim
|
since
|

Warrant

In Toulmin’s analysis, the first step in an argument is that one party expresses an opinion, which
Toulmin calls a “Claim”. If the claim is challenged, it has to be defended by adducing of “Data”
which supports the claim. If the challenger is not satisfied with the accuracy of the data, the
objection has to be removed by “Preparatory Argument”. However, even if the accuracy of the
data has not been questioned, the challenger can require further support for the claim. In this case,
a “Warrant” which states the relation between the “Data” and “the Claim” has to be given [33].
An Example of the structure is:

It is raining ~---> so: the playground must be wet
(Data) I (Claim)
since
I
If it rains, the playground will be wet
(Warrant)

From this simple structure, we conclude that arguments are recursive. We need to justify the
accuracy of the “Data” by another argument. We need to do the same thing for the “Warrant”,
we can question its validity and require a justification.

SANP is designed to handle the recursive properties of argumentation. It supports multi-level
negotiations so that the participants can identify and narrow down their differences more easily.

4.2 A Communication Level Protocol for Negotiation

In this section, we shall discuss a communicatiolevel negotiation protocol, SANP, that incorporates
the requirements discussed in the previous section.
The format of a sentence in SANP consists of the two components:

<function><content>

where <function> is a speech act category name and <content> is the representation of domain
knowledge (an example domain knowledge representation is given in section 5). Figures in the
appendix are the protocol diagrams. The state of a conversation is represented by a node. The “-”
and “4” signs labelled with the arc in the diagram are used to indicate the sentences spoken by the
attacker and the defender, respectively. The “?” indicates the sentences spoken by the arbitrator.
For example, “—K A_2,” means the attacker speaks “Make Claims”. The arcs originating from
a node is the allowable response in that stage of negotiation. For example, in “Dissent” state,
the attacker has two choices: “Retreat (—K Ag)” or “Argumentative Attack (—K Ao;)”. The
rectangular box indicates the name of the subdiagram to be used at that point. “End” is used

to terminate the conversation. A detailed description of the protocol is provided in the appendix.
The following discussion will highlight some important points in the protocol.
Basically, there are 6 main stages in the protocol:

1. Starting situation: The agents establish a common understanding of the topic and decide
whether they have the necessary knowledge to enter into a discussion.

2. Making a claim and receiving dissent: The attacker starts by presenting his claim. It can
be a plan, a request for action, or just an assertion. The defender then reasons whether he
agrees with it or not.

3. Attacking: If the defender disagrees with the claim, the attacker will start attacting the
defender by providing argument.

4. Tactical phase: The defender begins by defending his position,.the attacker attacks the de-
fender’s argument. This process continues until they identify their differences and try to
narrow them down. They can employ different tactics: request to delay, offer compromise,
and insist on their own arguments. This phase corresponds to phase 4 and 5 of Gulliver’s
model.

5. Entering into a settlement: Both parties begin to offer compromise and counter on other’s
proposal. This phase correspond to phase 6 of Gulliver’s model.

6. End result: The result of the negotiation can be an one sided compromise, mutual compromise,
delay, or appeal tc higher authority.

Initially, bot\ parties are in the “Idle” state, the attacker needs to specify or declare the topic of
discussion. If th defender does not have the necessary knowledge, the converation ends. Otherwise,
both parties should have all the necessary background to understand each other (e.g., the same
variable will mean the same thing to both of them). The term “ack” (used in the protocol diagram
in the appendix) means the defender agrees to discuss the topic.

In the tactical phase, the protocol supports multi-level arguments by providing a looping be-
tween the “Being attacked” and “Defending” states. Therefore, both parties can request and pro-
vide deeper and deeper level of support to their arguments. This looping also aims at identifying
and narrowing tae differences between the views of the parties. For implementation consideration,
we only allow a maximum of 100 times of looping to avoid infinite looping. We believe this number
is sufficient in an ordinary argument. Moreover, if the number of iterations on the same point at
the same level exceeds 5, the looping is also terminated. We handle the looping between “Offer a
compromise” and “Modify the compromise” in a similar way.

Our protocol also supports the delay tactic suggested by Maynard [21]. An agent can request
to delay a discussion if he does not have enough information to continue the discussion. It must
be emphasized that the date of postponement is also settled by negotiation. The other party can
even deny the request if he is in a higher position of authority.

Appeal to a higher authority is also supported. If the parties find that they cannot settle the
dispute by themselves, they can request an arbitration. The arbitration process is simple, each party
presents his own arguments and the arbitrator will make a decision based on this information. We
assume that the arbitrator is either a human being or a system that has the necessary knowledge
to make the decision.

In designing this protocol, we always put flexibility in high priority so that it can be applied to
wide variety of situations. In the following section, we will give an example use of our protocol.

5 An Example Application

In this section, we shall describe how the proposed communication protocol is used to support
the preparation of budgets. Consider two organizational workers where the attacker is responsible
for preparing the departmental budget and the defender is an employee who prepares part of the
- departmental budget. The attacker feels that the “labor cost” budgeted by the defender is too
high.
Before presenting the dialogue, we need a representation of the domain knowledge:

1. knowledge and rules are represented as equations. For example
labor cost = total hours x salary x number of worker
2. facts are represented using variables and their corresponding values.
3. A “?” in an equation means the agent does no know the value of a variable.

We intentionally make the representation simple so that we can demonstrate our ideas easily.

In Figure 2, we present three scenarios for negotiation. The attacker begins the conversation by
declaring the topic as “Next year’s budget”. The defender knows the topic, so he agrees to discuss
it. The attacker claims that the “labor cost” should be $91,520 and the defender disagrees with
the attacker. The defender provides arguments why he disagrees in line 4. In line 5, the attacker
disagrees with the value of “hourly wage” and “total yea.rly hours” and provides his argument.
There are three possible scenarios after this.

In the first scenario, the defender offers a compromise in line 6. He agrees on “hourly wage”
but requires to keep the number of employee to be 5. The attacker consider this compromise to be .
acceptable, so he accepts $§114,400 as the labor cost.

In the second scenario, the defender does not know the value for “%increase”, he requests to
postpone the discussion to 6/30/91. However, in line 10, the attacker wants the discussion to be
resumed earlier, so he counter offers an earlier date and the defender accepts this new date.

In the third scenario, the defender agrees with the percentage of wage increase (%increase).
However, he disagrees with the value of “#employee”, so he presents his own calculation. In line
14, the attacker in turn disagrees with the value of “workload”. However, the defender insists that
the value of “workload” is 10,000 hours. Since they cannot resolve the conflict among themselves,
the attacker requests an arbitration in line 16. In line 17 to 20, the attacker and the defender
present their arguments to their superior. Based on his knowledge, the superior makes a decision
in line 21 that is in favor of the defender.

These example scenarios show that in SANP agents can present their supporting evidence
in the negotiation process and they can discover the reasons for their conflict. For instance, in
scenario three, the agents finally identify the cause of disagreement on the “labor cost” to be their
different assessment on the value of “workload”. In addition, agents can utilize strategies such as
postponement and arbitration in SANP.

6 Conclusion

We have proposed a communication level negotiation protocol, SANP, based on the Struggle Model
and partly on the Institutional Model in Ballmer and Brennenstuhl’s speech act classification. In
designing the protocol, we also draw on the results of negotiation research. Our aim is to provide
a flexible protocol which can be applied to various areas in DAI and to automate organizational
work. The protocol provides the ability to multiple level negotiations and supports many tactics

1 A: Declare topic “Next year’s budget”
2 D: Ack
3 A: Make claim (K A_3,) labor cost = $91,520
4 D: Dissent (K A_1.) labor cost = $124,800
(Reason:)
laboi cost = hourly wage x total yearly hours
hourly wage = $12
total yearly hours = 10400 hrs
5 A: Argumentative hourly wage = $11
attack (K Ao;) total yearly hours = 8320 hrs

(Reason:)
hourly wage = last year wage x (1+%increase)
last year wage = $10
%increase = 10%
total yearly hours =#employee x 2080

#employee = 4
After here, there are three scenarios:
Scenario 1: Compromise
6 D: Offer compromise labor cost = $114,400
(K Agcba) %increase = 10%
#employees = 5
7 A: Accept compromise labor cost = $114,400
(KA4cda)
8 D: End

Scenario 2: Postpone

10 D: Postpone (K Aispa) Date = “6/30/91”
(Reason:) %increase = ?

11" A: Counter offer Date = “6/27/91”
(KA4cbc)

12 D: Accept compromise Date = “6/27/91”
(KA40da)

13 A: End

Legend: “A” is the attacker, “D” is the defender.l

Figure 2: An example dialogue for the budgeting example (part 1 of 2)

10

Scenario 3: Arbitration

14 D: Argumentative Disagree: #employee = 5
defense (K Ajyped) (Reason:)

#employee = round(workload/2080)
workload = 10,000 hrs

15 A: Repeated attack (KAjca) Disagree: workload = 8,000 hrs

16 D: Insisting (K Aycch) workload = 10,000 hrs

17 A: Appeal (NOgp)

18 S: Examining attacker (N Oeg,)

19 A: Testify (NOgqq) labor cost = $91,520

(Reason:) '
labor cost = hourly wage x total yearly hours
hourly wage = 11
total yearly hours = #employee x 2080
#employee =
round(workload/yearly hours per employee)

workload = 8,000 hrs

20 S: Examining defender (N Oe.)

21 D: Testify (NOgda) Labor cost = $114,400
workload = 10,000 hrs
22 S: make decision (NOz,) workload = 10,000 hrs

labor cost = $114,400
23 S: End

Legend: “A” is the attacker, “D” is the defender, and “S” is the arbitrator/superior.

Figure 2: An example dialogue for the budgeting example | part 2 of 2)

which are well recognized in negotiation literatures. At the communication level, all the reviewed
negotiation protocols in section 2 can be captured in our protocol.

It is necessary to mention that our protocol is only a communication level protocol, users
need to provide their own representation and reasoning mechanism for the domain knowledge.
For example, the output of a negotiation support system is a good input to our protocol. Some
argument comprehension system (such as OpEd [1]) can also be attached to our protocol.

It is also possible to automate some semi-structured negotiation in an organization by providing
a set of tools to the agents. See [37] for a detailed discussion of this direction of application.

We plan to implement a prototype of SANP as a generic platform for negotiation using the
Strudel package [28]. Strudel provides a set of generic tools that enable conversation and action
management. In Strudel, messages contain conversational moves, such as “Make claim” in our
protocol, and we can restrict the possible next moves in the message. Small programs can be written
in Winterp, an objected-oriented Lisp, to process the message automatically. Other researchers
can then attach their own representations or models, rules of negotiation, and problem solving
algorithms of their interested problem domains to this platform to fulfill their specific needs of

11

negotiation.

Future work will include application of SANP to specific problem domains (e.g., budgeting)
to investigate the usefulness and limitation of the protocol. We hope to gain insight from these
experiences to improve the protocol.

Our protocol can be extended in several ways. First, our treatment of the appeal function is
very simple. In fact, the appeal function can be viewed as another negotiation with a mediator.
The Institutional model provides a good base for developing such a protocol. Second, the detailed
process of arguing, such as requesting more information and criticizing opponent’s argument, has
not been incorporated into the protocol. The “Arguing Devices” in Ballmer and Brennensthul’s
classification can be used for this purpose. Third, the protocol can be extended to involve a third
party in the negotiation. This party is not the arbitrator, but an agent that collaborates with one
of the parties in the conflict.

SANP is not meant to be complete. Many improvements have yet to be made. The validity
of the protocol is derived in part by the match between the negotiation literature and the speech
act classification. The final assessment of the protocol should be based on its usefulness when it is
applied to differnt problem domains.

Acknowledgement

The authors are members of the Institute for Robotics and Intelligent System (IRIS) and wish to
acknowledge the support of the Networks of Centres of Excellence Program of the Government of
Canada, the Natural Science and Engineering Research Council, and the participation of PRE-
CARN Associates Inc.

The authors also wish to thank Marius A. Janson for his constructive criticisms and useful
suggestions for the presentation and the content of this paper.

References

(1] Alvarado, S. J., Dyer, M. G. and Flower, M., “Editorial Comprehension in OpEd Through
Argument Units”, Proceedings AAAI-86, (Philadelphia, PA, August 11-15, 1980), 205-256.

[2] Austin, J. L., How to Do Things with Words, Oxford University Press, 1962.

[8] Ballmer, T. and Brenneustuhl, W., Speech Act Classification: A Study in the Lezical Analysis
of English Speech Activity Verbs, Springer-Verlag, Berlin, Heidelberg, 1981.

[4] Bond, A. H. and Gasser, L., eds., Reading in Distributed Artificial Intelligence, Morgan Kauf-
mann Publishers, Inc., San Mateo, California, 1988.

[5] Bond, A. H. and Gasser, L., “An Analysis of Problems and Research in DAI”, in Reading
in Distributed Artificial Intelligence, A. H. Bond and L. Gasser, eds., Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1988, 3-35.

[6] Campbell, J. A. and D’Inverno, M. P., “Knowledge Interchange Protocol”, in Decentralized
A.I, Y. Demazeau and J. P. Muller, eds., Elsevier Science Publishers B. V., Amsterdam,
Netherlands, 1990, 63-80. _

[7] De Cindio, F., Simone, C., Vassallo, A., and Zanaboni, A., “CHAOS: A Knowledge-Based
System for Conversing within Offices”, in Office Knowledge: Representation, Management,
and Utilization, W. Lamersdorf ed., Elsevier Science Publisher B. V., Holland, 1988, 257-276.

12

(8] Conry, S. E., Meyer, R. A., and Lesser, V. R., “Multistage Negotiation in Distributed Plan-
ning”, in Reading in Distributed Artificial Intelligence, A. H. Bond and L. Gasser, eds., Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1988, 367-384.

[9] Davis, R. and Smith, R. G., “Negotiation as a Metaphor for Distributed Problem Solving”,
Artificial Intelligence, Vol. 20, No. 1, 1983, 63-109.

(10] Demazeau, Y. and Muller, J. P., eds., Decentralized A.lL, Elsevier Science Publishers B. V.,
Amsterdam, Netherlands, 1990.

(11] Durfee, E. H. and Lesser, V. R., “Using Partial Global Plans to Coordinate Distributed Prob-
lem Solvers”, in Reading in Distributed Artificial Intelligence, A. H. Bond and L. Gasser, eds.,
Morgan Kaufmann Publishers, Inc., San Mateo, California, 1988, 285-293.

(12] Durfee, E. H. and Lesser, V. R., “Negotiation Task Decomposition and Allocation Using Partial
Global Planning”, in Distributed Artificial Intelligence, Volume II, L. Gasser and M. N. Huhns,
eds., Pitman, London, 1989, 229-243.

(13] Galliers, J. R., “The Positive Role of Conflict in Cooperative Multiagent Systems”, in De-
centralized A. I, Y. Demazeau and J. P. Muller, eds., Elsevier Science Publishers B. V.,
Amsterdam, Netherlands, 1990, 33-46.

[14] Gasser, L. and Huhns, M. H., eds., Distributed Artificial Intelligence, Volume II, Pitman,
London, 1989.

(15] Gerson, E. M. and Star, S. L., “Analyzing Due Proczss in the Workplace”, ACM Transactions
on Office Information Systems, Vol. 4, No. 3, July 1986, 257-270.

(16] Gulliver, P. H., Disputes and Negotiations: A Cross-Cultural Perspective, Academic Press,
New York, 1979.

[17] Hewitt, C., “Offices Are Open Systems”, ACM Transactions on Office Information Systems,
Vol. 4, No. 3, July 1986, 271-287.

(18] Hewitt, C., “Open Information Systems Semantics for Distributed Artificial Intelligence”, Ar-
tificial Intelligence, Vol. 47, No. 1, 1991, 72-106.

[19] Koo, Charles C., “A Commitment-based Communication Model for Distributed Office Envi-
ronments,” Proceeding of Conference on Office Information System, (Palo Alto, California,
March 23-25, 1988), 291-298.

[20] Levinson, S. C., Pragmatics, Cambridge University Press, New York, 1983.

[21] Maynard, D. W., “The Structure of Discourse in Misdemeanor Plea Bargaining”, Law &
Society Review, Vol. 18, No. 1, 1984, 75-104.

(22] Pruitt, D. G., Negotiation Behavior, Academic Press, New York, 1981.

(23] Putman, L. L. and Poole, M. S., “Conflict and Negotiation”, in Handbook of Organizational
Communication: An Interdisciplinary Perspective, F. M. Jablin, et al., eds., Sage, Newbury
Park, CA, 1987, 549-599.

[24] Rahim, M. A., Managing Conflict in Organization, Praeger, New York, 1986.

[25] Searle, J. R., Speech Acts: An Essay in the Philosophy of Language, Cambridge University
Press, New York, 1969.

[26] Searle, J. R. “A Taxonomy of Ilocutionary Acts”, In Language, Mind and Knowledge, Min-
nesota Studies in the Philosophy of Science, Vol. 7, K. Gunderson, ed., University of Minnesota
Press, Minneapolis, 1975, 344-369.

13

[27] Searle, J. R. and Vanderveken, D., Foundation of Illocutionary Logic, Cambridge University
Press, London, 1985.

[28] Shepherd, A., Mayer, N., and Kuchinsky, A., “Strudel - An Extensible Electronic Conversation
Toolkit”, CSCW 90 Proceedings, (Los Angeles, California, October 7-10, 1990/, 93-104.

[29] Smith, R. G., “The Contract Net Protocol: High Level Communication and Control in a
Distributed Problem Solver”, IFEE Transactions on Computing, Vol. C-29, No. 12, December
1980, 1104-1113.

[30] Sycara, K., “Multiagent Compromise via Negotiation,” in Distributed Artificial Intelligence,
Volume II, L. Gasser and M. Nuhns, eds., Pitman Publishing, London, 1989, 119-137.

(31] Toulmin, S. E., The Uses of Argument, Cambridge University Press, Cambridge, 1969. .

[32] van Eemeren, F. H. and Grootendorst, R., Speech Acts in Argumentative Discussions, Foris
Publication, Dordrecht, 1983. :

[33] van Eemeren, F. H, Grootendorst, R., and Kruiger, T., The Study of Argumentation, Irvington
Publishers Inc., New York, 1984.

[34] Winograd, T. and Flores, F., Understanding Computers and Cognition, Addison-Wesley, NJ,
1986.

[35] Woo, C. C., “SACT: A Tool for Automating Semi-Structured Organizational Communication”,
Processing of Office Information System, (Cambridge, Massachusetts, April 25-27, 1990), 89-
98. i

[36] Woo, Carson. C. and Zeng, Tao, “An Application Layer Communication Protocoi for Sup-
porting Organizational Work”, Working Paper 90-MIS-019, University of British Columbia,
Vancouver, Canada, Auguest 1990.

[37] Woo, Carson C., “Communication Tools for Facilitating the Automation of Semi-Structure and
Recurring Negotiations in Organizations”, Working Paper 91-MIS-006, University of British
Columbia, Vancouver, Canada, January 1991.

[38] Zeng, T., An Organizational Communication Protocol Based on Speech Acts: Design, Verifi-
cation and Formal Specification, M.Sc. thesis, Department of Computer Science, University of
British Columbia, Vancouver, Canada, 1990.

Appendix: Descriptions of the SANP Protocol

The detail of the protocol is described in this appendix. Symbols and notations used in the protocol
diagram is given in section 4.2. The title of the sections and subsections (in italic) corresponds to
the subdiagram names and nodes, repectively.

Opening Stage
Idle

At the beginning of the conversation, parties involved should establish common understanding.
They need to agree on the topic of discussion and make sure they both have the knowledge for that
topic. Attacker begins the conversation by saying “Declare topic” with the topic as content.

14

Opening

If the defender has the knowledge of the topic, speaks “ack”, which means it agrees to discuss the
topic.
If the defender does not have any knowledge of the topic, speaks “end” to end the conversation.

Make Claim
Ready to make claim

The attacker speaks “make claim” with the claim as content. The claim can be a statement or a
request for action, as well as a plan. In an organization most conversations will be requests for
action [34] and solicitation of commitments. For every request for action, the final result should be
either having a commitment, may be in the form of a contract, or rejecting the request.

Claim made

If the defender agrees with the claim of attacker, speaks “agreement”.
Otherwise, speaks “dissent” with the reasoning steps used to disprove the attacker’s claim as
the content.

Dissent

If the attacker agent:1) agrees with defender, or 2) does not have necessary information to continue
the discussion, or 3) does not have any supporting argument, speaks “withdraw” to withdraw the
claim.

If the attacker disagrees with the argument of the defender, speaks “argumentative attack” with
information of what he disagrees together with argument to support them as content.

Agreement

The attacker speaks “offer compromise” with the claim as its content. The content may be in the
form of a contract so that both parties can keep track of the commitment made (as in [19]).

Attacker offers compromise

The defender speaks “accept compromise” and enter the contract into its knowledge base.

Tactical Phase
Being attacked

If the defender agrees with the attacker’s argument, he should speak “admitted defeat”, and enters
into an agreement with the attacker. The process will be described in the “Defender Admitted
Defeat” section.

If the defender does not have necessary information or knowledge, speaks “postpone” to require
a postponement of the discussion.

If the defender does not agree with the attacker’s argument, speaks “argumentative defense”
with what he disagrees and supporting argument as the content.

15

If 1) the defender runs out of argument or 2) the number of iterations between Being attacked
and Defending on the same point exceeds five, or 3) the total iterations between Being attacked
and Defending on the whole argument exceeds 100, the defender can either speak 1) “insisting”
with his argument as content or 2) “offer compromise” with the compromise specified by the user
as content.

Defending

If the attacker agrees with the argument of the defender, it should speak “withdraw” with empty
content.

If 1) the attacker runs out of argument or 2) the number of iterations between Defending and
Being attack on the same point exceeds five, the attacker can either speak 1) “insisting” with his
argument as content or 2) “offer compromise” with the compromise as content.

i

Defender Requests Postponement
Defender requests postponement

If the attacker agrees with the date of postponement, speaks “accept compromise”.

If the attacker agrees to postpone but with different date, speaks “counter offer” with the new
date as content.

If the attacker is in higher authority, it can speak “forcing ct ncession” with the postpone date
as the content.

If both parfies cannot reach an agreéement on the pustpone date, attacker can speak “appeal”
to require an arbitration from higher authority.

If the attacker is in higher authority, it can speak “pinning down” to force a compromise from
the defender.

However, if the number of iterations between Defender requests postponement and Attacker
modify date exceeds five, attacker is forced to choose other responses.

Attacker modify date

If the defender agrees with the date, it should speak “accept compromise” with the date as content.

If the defender want a different date, it should speak “counter offer” with the new date as
content.

If the defender is in higher authority, it can speak “forcing concession” with the postpone date
as the content.

If both parties cannot reach an agreement on the postpone date, defender can speak “appeal”
to require an arbitration from higher authority.

Pinning down

The defender has to search for a compromise in its knowledge base. It should speaks “offer com-
promise” with the compromise in the knowledge base, or if there isn’t any, with the attacker’s
argument as content.

16

Defender Admitted Defeat
Defender admitted defeat

The attacker speaks “offer compromise” with the claim as its content. The content may be in the
form of a contract so that both parties can keep track of the commitment made (as in [19]).

Attacker offers compromise

The defender speaks “accept compromise” and enter the contract into its knowledge base.

Defender Offers Compromise
Defender offers a compromise

If the attacker agrees with the compromise, speaks “accept compromise” with the compromise as
content.

If the attacker agrees only partly with the compromise, it can speak “counter offer” with the
modified compromise as content.

If the attacker is in higher authority, it can speak “forcing concession” with its proposed com-
promise as content.

The attacker can also speak “appeal” to require an arbitration from higher authority.

However, if the number of iterations between Defender offers compromise and attacker modify
compromise exceeds five, the attacker is forced to choose other response.

Attacker modify the compromise

If the defender agrees with the compromise, speaks “accept compromise” with the compromise as
content.

If the defender agrees only partly with the compromise, it can speak “provisos in compromise”
with the modified compromise as content.

If the defender is in higher authority, it can speak “forcing concession” with its proposed com-
promise as content.

The defender can also speak “appeal” to require an arbitration from higher authority.

Attacker Offers Compromise

Similar to Defender Offers Compromise.

Defender Insists On Argument
Defender insists on argument

If there is alternative in the knowledge base, speaks “offer compromise” with the alternative as
content or if there isn’t any, uses the defender argument as the content.

The attacker can speak “appeal” to require an arbitration from a higher authority.

If the attacker is in higher authority, it can speaks “forcing concession” with its own argument
as content.

17

Attacker Insists On Argument
Similar to Defender Insists On Argument.

Request Arbitration
Arbitration requested

The arbitrator speaks “examining attacker” to ask the attacker to testify.

Aﬁacker being questioned

T_ﬁe attacker speaks “testifying” with its argument as content.

Attacker testified

The arbitrator speaks “examining defender” to ask the defender to testify.

Defender being question

The defender speaks “testifying” with its argument as content.

Defender testified

The arbitrator speaks “make decision? with its decision as the content.

Defender Forcing a Concession
Defender forcing a concession
If the defender has not changed its initial position, speaks “withdraw” to withdraw the claim.
If the defender has changed its initial position, speaks “one-sided compromise” with the de-
fender’s argument or proposai as content.
Attacker Forcing a Concession
Attacker forcing a concession

The defender speaks “one-sided compromise” with the proposal of the attacker as content.

Retreat
Withdraw claim

The defender speaks “end” to end the conversation.

18

egiwoidwod
18))0
leyoely

wewnBre
uo sisIsu)
10yoelly

1esiloy

(pady)v -

(q221)wx-

(ag)vy-

MEIpYIM =

yoele sanejuewnsre =

(ag)wvy
woelne poieede) = (e30|)yy
esuejop ealeluswnBie = (P2qi)vy
osiwoidwod 8o = (pqap)vy
Bunsisup = (qa21)vy

evodisod = (eqql)vy

leajop poinwpe = (Qqqilvy
(lo)vyt

(e221)y)-

Buipusjeq

1epuejeq

1wewsuodisod
sigenber
1epuejeq

(Poqi)w+

osiwordwod
1ep0 (paovp)vy+
J0pUBJB(Q
JuewnBre
uo sISISUl Y

[CEEIZ
poyoeye
Bueg

(eaqi)yy+

1eejop
pemwpe
sopueied {aaativy+

JSVHd TVJIIDVI

-
(lo)wx-

eseyd
resnaeg

leeney

{folwx-

wessiq

esiwoidwos 1decor = (pop)wy
esiwoidwod 180 = (pqop)yy
mepyiim = (ag)vy

woeite eanejuewnBre = ([0)w)
lwessip = (91-)¥)

ooiBe = (e1-)vy

wre eyew = (e2-)vy

(L)wvn+

{e1-)vy+

(ez-)wy- HoE

WIVTD DIV

snie)s
pelurenborun = (eg-)wN

wreiy
oen

JueweAjoAuy Jos)

21doy
srejdep-

(eg-lwy+

dNVS 10j sweibeig 1090)0id

19

jeedde = (09)ON
UDISSEOU0D 8230} = (qed)VN

10))0 101UN0D = (oQOPIVH (09)ON-
esiwoidwos 1dedse = (epop)yH volenqie | o
1senbey
smwadwoo (epap)yy+
ndasoe
pue- DY UO|SSeU0 (qep)vy-
Buioso)
jeyoRNY
(0gop)yy+ fosnuorduic
smjjo
voneniqre (09)ON+ =PePd/ (paop)vys
1senbey >srwoxdwoo
Appowt
ey (29¥)¥)-
UOISSEU0D r N
Buroio) pr=— exdooon
qep 4
lepuejeq vl py>mY (epay)v -

pue+

asiwoidwod 1dedoe = (pop)y)
os1woidwos 1ejj0 = (padply)

1e0)0p
pelnnupe
1epusjeQq

(PQap) V- (qaqi)vx+

uoneniqe 1senbes = (09)ON
estwoidwos 1e)jo = (Pqop)wy
umop Buwuid = (qeot)yy
UDISSEOUDD 8210) = (qeRN)VH
18)J0 18JUNOD = (3QOP)VYN
esjwoidwos 1decor = (epop)yy

8siwosdwos
10)j0
JepuejeQ

(PqQap)yy+ {qeat)wy-

————

uoleniqre

s1sanbeyy

U0|$382U0D
Buralo)
lepuejeq

vonenique | (09JON-

s1senbey

(epay)yy+

(qev)vy-

UoISSBUOD
Bujai0)
1949811y

(oqap)yn+

(09)ON*+

{eqat)vy+

{2qo¥)y -

(qep)vy+

(epay)wy-

< —
pues

20

UoISSesU0d
Buaro)

Uo|5500U00 B250) = (qep)YH
esiwosdwos sejjo = (pqoy)yX
reedde = (09)ON

esnoidwos
Jop0
JepuejeQ

usesnqry
1senbey

(qep)yy+

| ———
(pasp)yx+ [CEEIRIS R

(09)ON+

UoISSOoUSD 03J0) * (qQeplvy
osnwosdwods se)jo = (pqop)yy

feedde = (09)ON

U0I8569U0d
Buinioy
jexoelly

eswosdwod
Jop0
Jexoeny

usnesiqiy

rsenbey

i

(qep)yy-

(padr}vyy- [CE-TH A

(09)ON-

reedde = (0g)ON

UoISS82U0d 8210} = (qQeplvy
10jJ0 J61UN0d = (3qop)wy
osiwosdwos 1desor = (epop)vy

(epaplyy-

pue-

(09)ON-
uoneljqre

1senbey

Uo|3S8IUCD
Buiaiop
19)0eNY

pue-

+
uoleriqIe (osloN
1sonbey
U0JSSB2U0D (aeplvyi+
Bujoiop
lepuejeq

(2Q2¥)¥)-

(0qop)wy+

(epop)y+

(pasp)vy-

21

pue+

(>eqplvy-
-

<+
(ag)wx-

Iv3gisdg

esiwoidwos pepts-auo = (eqop)yy

(eQoyy)+

esiwordwod poprs-euo = (eqab)yy

MepyIM =

(oray)yy

ieelioy

(oeqplv -

(eqop)vy-

{aep)vy+

(>9)ONL

uoisioep exey = (eJON
Ansej = (ep9)ON
Suiiwex3 = (29)ON

peijnset (e2)ONL pusg
Jepuejeqy uonenqiyj—»
(epg}ON- (>9)ONL (09)ON-/*

peimse j
18)9eNY

22

Social Plans: A Preliminary Report*

Anand S. Rao Michael P. Georgeff
Australian Artificial Intelligence Institute Australian Artificial Intelligence Institute
Carlton, Victoria 3053, Australia Carlton, Victoria 3053, Australia
Email: anand@aaii.oz.au Email: georgeff@aaii.oz.au

Elizabeth A. Sonenberg
The University of Melbourne
Parkville, Victoria 3052, Australia
Email: eas@cs.mu.oz

Abstract

The formalization of multi-agent autonomous systems requires a rich ontology for capturing a
variety of collective behaviours and a powerful semantics for distinguishing between collective agents
having, executing, and jointly intending a sccial plan. In addition, success and failure executions of
plans should be distinguished. In this paper, we introduce the notion of social agents and social plans,
formalize some of the above issues, and briefly discuss how social agents can perform hierarchical
planning.

1 Introduction

Situated agents are systems embedded in dynamic environments; they continuously sense their envi-
ronment and effect changes to it by performing actions. These agents have to balance the time they
devote to thinking against the time they take acting. Also, they need to balance the need to react to
new situations against the need to continue pursuing long-term purposes and goals.

One of the critical considerations in the design of situated agents is that these agents are resource
bounded; that is, they must reason and act urder possibly stringent constraints on time and informa-
tion. According to Bratman [1], the intentions of the agent play a crucial role in such cases. Viewed
as a commitment to present and future plans, intentions constrain the deliberation and planning pro-
cess and hence reduce the time spent reasoning. Systems (formal or implemented) that give primary
importance to the notion of intention are called Belief-Desire-Intention (BDI) architectures [2].

Although individual situated agents can be adequately modeled within the BDI framework, mod-
eling of a group of such agents involved in a collaborative activity requires a number of additional
notions. In particular, we need an understanding of mutual beliefs, joint goals, joint intentions, social
plan structures, social roles, negotiation, communication, and organizational structures. While the
formalization of a comprehensive multi-agent BDI-architecture is still an open problem, in this paper
we attempt to set some of the foundations of such a theory.

*This research was in part supported by a Generic Industry Research and Development Grant from the Department
of Industry, Technology and Commerce, Australia and in part by the Australian Civil Aviation Authority.

2 Overview

Joint actions among a group of agents often involves a commitment from all members of the group that
each one do their respective parts. Such commitments are often formalized as joint intentions among
a group of agents. For example, if two agents want to jointly lift a table, each needs to individually
intend to lift one end of the table and believe that the other person will lift the other end. Also, the
group needs to mutually believe in the above [17]. However, even before the two agents can form a
joint intention to lift the table, they need to share an abstract specification of how to lift a table jointly.
In other words, even before forming joint intentions, the agents require recipes or abstrac* structures
that specify how and in what order joint actions should be carried out.

The distinction between plans as abstract structures and plans as a meatal attitude that the agent
is committed to bringing about is very important [11, 10, 5]. The former, which we shall call social
plan structures, corresponds to the english usage “I have a plan to ...”. The latter, called intended
plans or intentions, corresponds to the usage “I plan to ...”.

It is also important to distinguish between successful and failure executions of plan structures.
This distinction is especially important for situated agents because of the stringent synchronization
conditions required for joint actions and the possibly serious side-effects arising from failed attempts
to perform a given action [4]. For example, when two agents are jointly lifting a glass table and one of
them loses his grip on th: table, he may not have the opportunity to reattempt the task because either
the table may have been ~mashed or the other agent may not be able to continue holding on to his end.
Thus, agents net d to track the success or failure of their planned actions and inform their partners if
something goes vrong. Levesque et. al. [9] discuss how agents should give up their joint commitment
when one of the partners has succeeded in the joint action or finds it impossible to accomplish it.

A great variety of human joint actions involve hierarchical social organizations. Thus, a group of
agents may consist not only of individual agents but also of other groups. This hierarchical organization
of agents needs to be reflected in social plan structures. We do this by introducing the notion of a
social agent which is an abstract entity denoting a collection of other individual or social agents. For
example, a long table may require three teams of two agents each to lift it, a team for each of the
ends and one at the center. One needs to represent the synchronization of actions between the three
different teams and the synchronization within each team.

The outline of the paper is as follows. First, we describe the ontology of social plans and illustrate
its expressive power by providing examples of social plans and we informally describe their execution.
Then, we present an expressive branching-time logic based on CTL* [3]. With the help of these two
logics we introduce a semantics for successful and failure executions of social plans. We then extend
the standard possible-worlds model to provide the semantics of mutual beliefs, joint goals, and joint
intentions. Finally, we briefly describe how such a formal theory of social plans can be used within a
multi-agent BDI-architecture. We conclude with a brief description of related work in existing multi-
agent and autonomous systems.

3 Syntax

3.1 Social Plans

Social plan structures are syntactic entities that are invoked by a group of agents in particular situations
to satisfy certain ends. These ends are achieved by different agents synchronizing their actions as
specified by the social plan structure. We adopt standard first-order logic and modal temporal logic to
describe situations and a variation of dynamic logic [7] to describe social plan structures.

Having a plan—as distinct from intending or executing a plan—involves not only specifying how
to carry out the plan, but also knowing under what conditions such a plan can be [usefully] executed.
This collection of information is called a social plan structure. The method of carrying out the plan is
called the body of the plan structure, and the circumstances under which the plan can be executed is
called the precondition of the plan structure. In addition, it is necessary to know which agent has the
plan, and what the plan accomplishes. Syntactically, we write this as has-plan(p z), where p denotes
a social plan structure and z denotes both what the plan accomplishes and who has the plan.

The precondition ‘of a social plan structure is specified by a well-formed state formula, defined in
the next subsection. The bedy is specified by a social plan expression. Social plan expressions are
similar to formulas in dynamic logic, except that we explicitly specify the agent who is to carry out
the plan 2nd introduce some-additional plan operators. We also distinguish between plan types and
the events or actions that occur in the real world. Intuitively, a plan typeis an abstract structure that,
when executed by an agent, results in the occurrence of an action in the real world.

More specifically, a primitive plan ezpression is a pair consisting of a primitive plan type and an
agent. As in dynamic logic, we introduce more complex plan expressions by means of plan operators.
These include operators for sequencing (;), parallelism (||), and non-deterministic choice (|). We also
allow the operators 7 and !, which operate on well-formed state formulas to convert them into plan
types. Intuitively, 7a is a plan type that tests if the condition a is true and !a is a plan type that
achieves a.

We consider two types of agents — individual agents and social agents. Social agents are abstract
entities that denote more than one agent. Examples of social agents include team, organization, family,
and friends. Social agents refer to a set of other constituent social or individual agents. Thus we have
a recursive notion of social agents which is more expressive than the notion of a group of agents.!

More formally, well-formed social plan expressions can be defined as follows:

Definition 1

e If pis a (primitive or non-primitive) plan type and y is an individual or social agent, then (p y)
is a well-formed social plan expression;

o If a is a well-formed formula and y is an individual or social agent, then (!a y) and (Ta y) are
well-formed social plan expressions; and

o If z; and z, are well-formed social plan expressions, then (z,;z2), (z1||z2), and (z1|z2) are well-
formed social plan expressions.

Note that the above definition is general enough to cover individual plan expressions, i.e., plan
expressions involving only individual agents.

We also need to be able to describe ezecutions of plans by agents. As the execution of a plan by an
agent results in the occurrence of an action, we call such descriptions action formulas. These action
formulas describe whether the execution was a success or a failure, and whether it occurred in the past
or will occur in the future.

Definition 2 If z is a well-formed social plan expression, then <z>, <z>;, <z>y, [z], [z]s, and [z]
are well-formed action formulas.

YA group or set of individual agents has been used to illustrate concepts such as common knowledge, everyone in the
group knows, someone in the group knows and so on [6].

The first three action formulas denote immediate future executions and the last three indicate im-
mediate past executions. The subscripts “s” and “f” denote success and failure executions, respectively.
Without the subscript, the execution can either be a success or a failure.

3.2 Temporal and Modal Operators

An agent who has social plan structures as described above must be capable of executing these social
plans in the real world. Hence, the temporal model of the real-world must be expressive enough to
capture the different operations on plan types.

We use a formalism similar to Computation Tree Logic, CTL* [3], to describe the temporal struc-
tures. The temporal structure in CTL" is a tree with branching futures and a single past. A distinction
is made between state formulas and path formulas: the former are evaluated at a specified time point
in a time tree and the latter over a specified path in a time tree. We introduce two modal operators,
optional and inevitable, which operate on path formulas. A path formula % is said to be optional if, at
a particular time point in a time tree, 1 is true of at least one path emanating from that point; it is
inevitable if ¢ is true of all paths emanating from that point.? The standard temporal operators O
(next), O (eventually), and O (always) operate over state and path formulas.

Unlike CTL", we introduce two types of arcs between time points: success arcs and failure arcs.
An arc connecting two time points is labeled by a primitive plan type. If the arc is a success arc, the
srimitive plan type is said to be a successful; if it is a failure arc, the primitive plan type is considered
.2 have failed.

The modal operators BEL, GOAL, and INTEND are used to denote individual beliefs, goals, and in-
tentions. The corresponding joint attitudes— namely, mutual beliefs, joint goals, and joint intentions—
are denoted by MBEL, JGOAL, and JINTEND, respectively. We also use the operators EBEL, EGOAL,
and EINTEND to denote the beliefs, goals, and intentions of all the members of a social agent. All
joint propositional attitudes are defined in terms of the individual propositional attitudes. The detailed
definitions are given later.

Now we can formally define the notion of well-formed state and path formulas. The former are
defined as follows:

e any first-order formula is a state formula;

o if $; and ¢, are state formulas and z is an individual or plan variable, then —¢,, ¢; V ¢2, and
Jz ¢1(z) are state formulas;

o if ¢ is a well-formed action formula then ¢ is also a state formula;

o if ¢ is a state formula and y is an individual agent then BEL(y ¢), GOAL(y #), and INTEND(y
¢) are state formulas; and

e if ¢ is a state formula and y is a social agent then MBEL(y), JGOAL(y ¢), JINTEND(y ¢),
EBEL(y #), EGOAL(y ¢), and EINTEND(y ¢) are state formulas; and

e if ¥ is a path formula, then optional(%) and inevitable(y) are a state formulas.
A path formula can be defined as follows:

e any state formula is also a path formula; and

e if ¥, and 1, are path formulas, then =y, 91 V o, Oy, O are path formulas.

2In CTL*, E and A are used to denote these operators.

4 Examples

In this section, we provide different examples to illustrate the expressive power of the formalism.

Cooperative and competitive sequences of actions among multiple agents: In this example, we assume
multiple agents perform sequences of actions in parallel, in which only the start of the sequences need
be synchronized; primitive plans within the sequence need not be synchronized.

A plan for such cases can be given as ((e; a1) ; (e2 a1) ; (e3 1)) || ((e1 az2) ; (e2 az2) ; (e3 az2)).

A concrete example of this plan type would be a triathlon-race in which two agents have to cycle,
swim and run, in that sequence. Although the agents have to synchronize at the start of the race, the
subsequent primitive plans need not be synchronized. In other words, we can distinguish between a
triathlon-contest and a sequence consisting of a cycle race followed by a swimming race and finally a
running race. .

Cooperative and competitive activities among teams: In this case we have multiple social agents
involved in a cooperative or competitive activity. Further, each social agent refers to a set of individual
agents, who are also involved in some cooperative or competitive activity.

For example, if s; and s, are two social agents who want to achieve a in parallel, the top-level plan
structure would be ('a s;) || (‘e s2). A possible body for the social plan structure for (la sy) is the
plan expression of the form (e; «1) ; (e1 @2) ; (e1 a3). A similar social plan structure can be defined
for s, to achieve a.

A concrete example of this type is a relay race with two teams. A team running is equivalent to
three members of the team running one after the other. Note that we have used the same primitive
plan e, for all individuals only to match with the concrete example—in general they can be different
primitive plan types.

Partial planning: Using the achievement plan expression and the notion of social plan structures,
we can illustrate how an agent can decompose a higher-level goal into lower-level sub-goals, which again
can be decomposed into further lower-level sub-goals, until one finally reaches primitive plan types.
Thus the agent can execute a social plan with his future goals at different levels of abstraction.

Consider a plan of the form (!a a). A social plan structure whose purpose is ('@ a) and body is (o
a);('aq a) allows decomposition of the top-level goal into two sub-goals. Each one of these sub-goals
can be further decomposed.

A concrete example of this is the means-end reasoning involved in getting to an airport: in order
to get to the airport the agent has to get out of the building and hire a cab; in order to get out of the
building the agent has a plan which might require him to find the route and follow it; and so on.

Tracking the success or failure of one’s own actions: For certain critical tasks, autonomous agents
need to test and verify the success or failure of their executions and take appropriate measures based
on these tests.

Consider a plan expression of the form (e; a;) ; ((?[e1 a1]s a1) ; (e2 1)) | (?[e1 a1]f a1) ; (e1 a1))).
This plan expression states that the agent a, does e; and then tests if it was successful or not. If it is
successful,he proceeds with es: if it fails, he repeats the primitive plan e;.

For example, an autonomous robot trying to put out a fire tests if it has been successful or not. If
it has been successful, it goes alead with some other task; otherwise, it repeats the act.

Tracking the success or failure of other’s actions: This is in principle very similar to the previous
example. When multiple agents have joint goals they need to continuously track the success or failure
of other agent’s actions that have a direct influence on their own actions.

Consider a plan expression of the form (ey a1) ; ((?[ex a1]s a2) ; ((e2 a1) || e3 a2)) | (?[ex a1 a2)
; ((eq a1) || (e5 a2))). This plan expression states that the agent a; does e; and then agent a; tests if

a; was successful or not. If it was successful, a; does e; in parallel with a; doing e3; otherwise a; does
e4 in parallel with a, doing es.

A concrete example of this is the case in which a; is a student and a, a teacher. The teacher tests
the student on a particular lesson. If the student is successful, the teacher goes on to teach the next
lesson while the student listens; if unsuccessful, the teacher repeats the previous lesson with the student
listening.

Accepting annther agent’s beliefs: This illustrates how an agent can test if some other agent believes
in a certain formula and, if successful, accept the other agent’s beliefs as one’s own.

A formula that illustrates this is-{? BEL(a; @) a;)]; D BEL(a; #). Note that this statement is
much stronger than agent a; believing that a; believes in ¢ and thereby changing his beliefs. This
involves an active act of verification by agent a; which is absent in the case of beliefs about beliefs.

Mutually verified common goal being sufficient for forming a joint goal: This provides a weaker
condition for forming joint goals. It states that if each agent can verify that the other agent has the
goal to achieve a state ¢ then they can together adopt it as a joint goal.

This can be represented by the formula [(? GOAL(a; <!¢ a1>;) a2]s A [(? GOAL(a; <!¢ az>,) a1,
D JGOAL(a <!¢ a>,), where a; and a; are members of the social agent a.

Helping other agents by informing them of the futility of their actions: This illustrates the use of
temporal operators and their interaction with social plans. If an agent believes that it is inevitable
that sometime in the future the other agent is going to fail in his action, an helpful agent can form a
plan to convince the other agent to believe about the futility of such an action.

The formula corresponding to this is BEL(a inevitableOe; a1]f) O <! BEL(a1 inevitableCley a;]y)
aAr>4.

5 Semantics

5.1 Logical Preliminaries

We first define an interpretation that is an extension of a standard Kripke interpretation of possible
worlds. The extension involves each possible world being a temporal structure.

Definition 3 : An interpretation M is defined to be a tuple, M = (W, IA, SA, PP, P, PLANS,
MEMBERS, T, <, U, SPS, PSA, B,G, I, ®). Wis a set of worlds, IA is a set of individual agents,
SA is a set of social agents, PP is a set of primitive plan types, P is a set of plan types, T is a set
of time points, < a binary relation on time points,® U is the universe of discourse, and SPS is the set
of all social plan structures. PSA is a plan structure assignment function that maps a plan type to
a social plan structure. PLANS is a function from individual or social agents to a set of plan types.
Intuitively, this function provides the plan library of the agent. MEMBERS is a relation between
social agents and other social and individual agents. More formally, MEMBERS C SA x {SA UIA}.
The accessibility relations, B, G, and Z map an individual agent’s current situation to his belief-, goal-,
and intention-accessible worlds, respectively. More formally, B C IA x W x T x W and similarly for
G and Z. ® is a mapping of first-order entities to elements in U for any given world and time point.

Definition 4 : A social plan structure is a tuple (@pre Pbody), Where ¢pre is any well-formed formula
and peody is any well-formed plan expression. We also have the functions pre and body which, given a
plan type, returns the appropriate argument of the above tuple.

3We require that the binary relation be total, transitive and backward-linear to enforce a single past and branching
future.

Definition 5 : Each world w of W, called a time tree, is a tuple <T, <w, Sw, Fuw>, Where T, C T is
a set of time points in the world w and <., is the same as <, restricted to time points in Ty,. A fullpath
in a world w is an infinite sequence of time points (g, t1,...) such that Vi (¢, tiy1) € A,. We use the
notation (wy,, wy,,...) to make the world of a particular fullpath explicit. The arc functions S,, and 7,
map time points to a primitive plan type. More formally, S,: Ty X Ty +— 2FP and similarly for F,.
The domains of S, and F,, are disjoint. Intuitively, for any two time points for which the arc function
Sy is defined, its value represents the primitive plan that successfully occurred (or was performed by

agent(s)) between those time points. Similarly, the value of the arc function F,, represents the failure
of a primitive plan occurring between those time points.

5.2 Semantics of Temporal Modalities

The semantics of temporal modalities is straightforward. Both Q% and ¢ are path formulas and are
evaluated over a particular path. The formula optional(%) is a state formula and is true if there is at
least one path where % is true. More formally, we have:

M, v, (W, wyy, ...) E Qv iff M, v, (w,, ...) E .
M, v, (W, wyy, ...) = O iff Ik, £2>0 such that M, v, (wy,, ...) E ¥.
M, v, wy, = optional(®) iff there exists a fullpath (wy,, w,,...) such that M, v, (we,, wyy,...) = .

The formula inevitable(+) is defined as —optional(=%) and O% is defined as =O-h.

5.3 Semantics of Social Plan Executions

A social or individual agent has a library of social plans. All plans serve a purpose, which is either to
achieve a certain condition (as in !a) or to test for a certain condition (as in ?a).
We say that an agent y has a plan type p to achieve the condition « if whenever the plan has

been successfully executed, the condition & holds. We also require that the plan be in the agent’s plan
library.

M, v, wy = has-plan(p (lo y)) iff
(a) p € PLANS(y) and
(b) M, v, wyy |= inevitableO([(p y)]s D a).

Having a plan to test for a certain condition is very similar. We say that an agent y has a plan
type p to test for condition « if, prior to the successful execution of the plan, the condition « holds.
As before we require that the plan be in the agent’s plan library.

M, v, wy = has-plan(p (Ta y)) iff
(a) p € PLANS(y) and
(b) M, v, wy, = inevitableO(<(p y)>; D a).

Next we consider what it means for an agent to execute a plan type. We say that an agent y

successfully executes a plan type p if the precondition of the plan is satisfied and the body is executed
successfully.

M, v, (W, Wiy yer) B <(p y)>, iff
M7 v, (wtoa wt17"') |= pre(p) A <b0dy(p)>s

The past execution of plans is somewhat more complicated to specify. We say that a plan type p
has been successfully executed by agent y if the body of the plan has been executed successfully, the
precondition held at some time in the past when the execution of the body started, and there was no
other successful execution of the body in between.

M, v, w, = [(p y)]s iff ’
(a) 3to, to < tn such that M, v, (wy,,...) = pre(p) A <(p y)>s;
(b) M, v, wy, = [body(p)]s; and
(c) Ati, to < ti < tn, such that M, v, wy, = [body(p)]s.

The body of a plan could contain an expression to achieve or test for a certain condition. An agent
y is said to achieve successfully the condition « if there is a plan type p whose purpose is to achieve a,
and the plan is executed successfully. Similarly for testing a condition. More formally, if z stands for
(la y) or (Ta y), we have:

M, v, (wyy, Wy, ,...) = <>, iff there exists an plan type p such that
(a) M, v, wy, = has-plan(p z) and
(b) M’ v, (wtov We, 5) f: <(P y)>s-

We say that a sequence of two primitive plans is successfully executed if each on2 of them is
executed successfully one after the other. Two parallel primitive plans are successfully executed if both
of them are successfully executed at the same time, i.e., both label the same arc. Two non-c eterministic
primitive plans are successfully executed if either one of them is successfully exec ited. More formally,
the successful future executions can be stated as follows:

M, v, (W, wy,...) E <(e1 a1) ; (e2 az)>, iff

M, v, (W, wy,,...) E <(e1 a1)>; and M, v, (wy,,...) E <(ez2 az)>,.
M, v, (wy, wy,...) E <(e1 a1) || (e2 az)>, iff

M, v, (W, Wy, ,...) | <(€1 a1)>, and M, v, (wyy, We,,-..) | <(€2 a2)>s.
M, v, (e, we,,...) = <(€1 a1) | (e2 az)>; iff

M, v, (W, Wy, ,...) E <(e1 a1)>5 or M, v, (g, Wyy,...) | <(€2 a2)>;.

The failure executions and past executions of a sequence of primitive plans, parallel primitive plans,
and non-deterministic primitive plans can be stated in a similar manner.

Finally, we consider the success or failure executions of primitive plan types. This is straightforward:
a primitive plan is successfully executed if it labels a success arc and fails if it labels a failure arc. If e
is a primitive plan type then we have the following semantics:

M, v, (wyy, wy,, ...) | <e>; iff for some ¢, e€ S,,(to t1)
M, v, wy, [[e]; iff for some tg, €€ Sy (to t1)

M, v, (W, wy,, ...) |E <e>y iff for some t;, e€ Fy(to t1)
M, v, wy, [= [e]y iff for some tg, e€ Fyu(to t1).

We define attempting an execution as either a successful execution or a failure execution, i.e., <e> =
<e>, V <e>; and similarly for past executions.

Using these definitions we can distinguish between having and executing a social plan. More
formally, the following formulas are satisfiable in our logic:

e having a plan and not executing the body of the plan:
has-plan(p =) A =<body(p)>; and

e executing the body of the plan but not executing it successfully:
<body(p)> A =<body(p)>;.

In the above case z can be a plan expression to achieve or test a certain condition. The last property
is the same as execution failure of the body of p.

5.4 Semantics of Mutual Beliefs and Joint Goals

Belief'is modeled in the conventional way. That is, instead of one world we have a set of different possible
worlds. A particular time point in a particular world is called a situation. For each situation we associate
a set ‘of belief-accessible, goal-accessible, and intention-accessible worlds; intuitively, those worlds that
the agent believes to be possible, desires to bring about, or commits to achieving, respectively. Unlike
most conventional models of belief, however, each belief-, goal-, and intention-accessible world is a time
tree. Multiple possible worlds result from the agent’s lack of knowledge about the state of the world.
But within each of these possible worlds, the branching future represents the choice of actions available
to the agent. Moving from belief to goal to intention worlds amounts to successively pruning the paths
of the time tree; intuitively, to making increasingly selective choices about one’s future actions.

The belief relation maps a possible world at a time point for a particular agent to a set of belief-
accessible worlds. We say that an agent a has a belief ¢, denoted BEL(a ¢), at time point ¢ if and only
if ¢ is true in all the belief-accessible worlds of the agent at time ¢t. We use B}”(a) to denote the set of
belief-accessible worlds of agent a from world w and time ¢, i.e., B{(a) = { v’ | B(a w t w')}.

The semantics for beliefs can be defined formally as follows:

M, v, w, = BEL(a ¢) iff VW' € B}*(a) M, v, w} | ¢.

The semantics of goals and intentions are defined analogously by using the relations G and Z [14].

The main semantic constraint imposed on the belief, goal, and intention relation is that for each
belief-accessible world there exists a sub-world which is goal-accessible and, in turn, for each goal-
accessible world there exists a sub-world which is intention-accessible. This semantic constraint is
called strong realism and is formalized elsewhere [14]. Defining O-formulas to be well-formed formulas
that contain no positive occurrences of inevitable (or negative occurrences of optional) outside the scope
of belief, goal, or modal operators, we have the following axiom of strong realism.

Strong Realism Axiom: INTEND(a %) D GOAL(a %) D BEL(a %), where % is any O-formula.

This axiom states that, if the agent intends optionally to do an action, he should have a goal that
optionally he is going to do the action and also believe that he will optionally do it. Weaker forms of
this axiom and their corresponding semantic conditions are discussed by us elsewhere [12].

Now we can show that having an intention towards the body of a plan is different from having a
plan and also different from ezecuting the body of the plan. In other words, having a plan does not
entail intention to execute the body of the plan structure and executing the body of the plan structure
does not entail an intention to do so. More formally, the following formulas are satisfiable in our logic:

e having a plan and not intending to execute the body of the plan:
has-plan(p (o a)) A =INTEND(a <body(p)>); and

o executing the body of the plan and not intending to execute the body of the plan:
<body(p)> A ~INTEND(a <body(p)>).

Next we examine the semantics of all members of a social agent believing a formula. The formula
EBEL(y ¢) is satisfiable iff all members of the social agent y believe in ¢. If the member is an individual

agent, he believes in it; if the member is another social agent, all members of that social agent believe
in it. Thus, unlike previous work [6], the definition of “everyone believes” is recursive.

EBEL(y ¢) = /\{a | members(y a) and a € [A} BEL(a ¢) A
/\{z | members(y z) and z € SA} EBEL(Z ¢)

The satisfaction of EGOAL and EINTEND are defined likewise.

Now we can define the mutual belief ¢ of a social agent as being all members of the social agent
believing ¢ and all of them believing that ¢ is mutually believed. Joint goal ¢ of a social agent is
defined to be all members of the social agent having the goal ¢ and mutually behevmg that ¢ is held
as a joint goal. Joint intentions are defined in the same way as joint goals.

MBEL(y ¢) = EBEL(y ¢) A EBEL(y MBEL(y ¢))
JGOAL(y ¢) = EGOAL(y ¢) A MBEL(y JGOAL(y ¢))
JINTEND(y ¢) = EINTEND(y ¢) A MBEL(y JINTEND(y ?)).

Note the asymmetry between the definitions of MBEL and JGOAL; while MBEL allows arbitrary
nestings of BEL operators, JGOAL allows arbitrary nestings of BEL operators with the innermost
operator being a GOAL operator. However, there is a symmetry between the definitions of JGOAL and
JINTEND; both allow arbitrary nestings of BEL operators with the innermost operator being GOAL
and INTEND, respectively.

The above definitions together with the strong realism ac<iom yields the following important theo-
rem.

Theorem 1 : = JINTEND(y v) D JGOAL(y w) D MBEL(y %), where % is any O-formula.

This theorem states that, if a social agent jointly intends an O-formula, the social agent also has
it as a joint goal and also mutually believes it. Note that this multi-agent version of strong realism
is a consequence of our definitions of joint propositional atiitudes and the strong realism axiom for
individual agents; it need not be defined as an axiom.

Consider the interesting case where ¥ is <(e a);(f b)>. If a social agent y, consisting of members
a and b, jointly intends this formula, we have the following formulas being true:

e individual beliefs, goals, and intentions:

INTEND(a <(e a);(f b)>);
INTEND(b <(e a);(f b)>
GOAL(a <(e a)i(f b)>)
GOAL(b <(e a);(f b)>
BEL(a <(e a);(f b)>); and
BEL(b <(e a);(f b)>);

R

e beliefs about individual beliefs, goals, and intentions:

1. BEL(a INTEND(b <(e a);(f b)>));
2. BEL(6 INTEND(a <(e a);(f 6)>));
3. BEL(a GOAL(b <(e a);(f b)>));

4. BEL(b GOAL(a <(e a);(f b)>));
5. BEL(a BEL(b <(e a);(f b)>)); and
6. BEL(b BEL(a <(e a);(f b)>)).

This nesting of beliefs can repeat itself up to an arbitrary depth. Thus, by adopting the strong realism
axiom for individual propositional attitudes and defining social propositional attitudes in the above
manner, we are able to derive all the important conditions for joint action.

As with individual intentions, we can show that having a joint intention towards the body of a
social plan is different from having a social plan and also different from ezecuting the body of the social
plan. More formally, the following formulas are satisfiable in our logic:

¢ having a plan and not jointly intending to execute the body of the plan:
has-plan(p (a y)) A ~JINTEND(y <body(p)>); and

o executing the body of the plan and not jointly intending to execute the body of the plan:
<body(p)> A ~JINTEND(y <body(p)>). '

6 Multi-Agent BDI-Architecture

In this section, we briefly discuss how one can make use of the above formalism in designing a multi-
agent BDI-architecture. First, we consider the single agent scenario.

We would like to model the means-end reasoning of a single agent within a BDI-architecture. We
can do this in a number of different ways. We first present the minimal version that all rational agents
need to satisfy and then a strong version satisfied by strongly-committed rational agents.

We can say that, whenever an agent intends the body of a plan structure, then he must have a goal
towards the purpose of the plan and the preconditions must be believed.

= has-plan(p (e a)) A INTEND(« <body(p)>) O GOAL(a <('a a)>,) A BEL(a pre(p))

However, this requirement alone is not sufficient for the agent to form intentions and act based on
them. We need additional constraints that would force the agent to form intentions.

The stronger version of the means-end reasoning axiom can be stated as follows: If an individual
agent has a plan p and has acquired the goal towards the purpose of this plan, and believes in the
precondition of the plan, he will intend to execute the body of the plan. The body of the plan may
contain other achievement plan expressions. An agent intending such an achievement plan expression
would then be forced to have a goal to achieve it (by the strong realism axiom). This goal may result
in further intentions to execute the body of other social plan structures. This hierarchical planning
proceeds until the agent has executed the body of his top-level plan structure. Thus, for an individual
agent a we have the following axiom for means-end reasoning:

= has-plan(p ('a a)) A GOAL(a <('a a)>;) A BEL(a pre(p)) O INTEND(a <body(p)>)

Note that, whenever the premise of the axiom is true, the agent is going to intend the body of
the plan structure. However, the agent may not act on all such intentions; an agent acts only if his
immediate intention is towards a non-deterministic action [14]. In other words, if the agent has multiple
present-directed intentions, he needs to deliberate and choose the best possible action before acting.
The agent is allowed to have multiple future-directed intentions as he can keep postponing deliberation
until he is forced to act.

The scenario for multiple agents is very similar — one considers joint attitudes rather than individual
attitudes. Thus, if a social agent has a social plan p and has acquired the joint goal towards the purpose
of this plan, and mutually believe in the precondition of the plan then the agent will jointly intend
to execute the body of the plan. This joint intention would trigger the social agent to acquire other
joint and individual goals which might trigger further joint intentions, and so on. As before, if the
social agent has successfully executed the body of the social plan structure, we can say that the social
agent mutually believes the postcondition. Thus for a social agent y we have the fo’owing axiom for
hierarchical planning;

= has-plan(p (‘o y)ij A JGOAL(y <(la y)>;) A MBEL(y pre(p)) D JINTEND(y <body(p)>)

The above axioms also hold when the agent has a plan to test for a certain condition.

In this section we have illustrated a simple design of rational agents that can perform hierarchical
planning by having social plans and adopting joint goals and joint intentions. This, however, should
be viewed only as a preliminary step; one needs to formalize how the deliberation and negotiation of
agents lead to the formation of joint intentions (similar to the single-agent case discussed elsewhere
[13]); when and how agents reconsider tleeir joint and individual intentions; how the social roles and
commitments affect the joint goals and joint intentions of agents.

7 Related Work and Conclusion

In this section, we briefly descr-be related work on the formalization of joint intentions. One key
question to be considered is: What is needed to characterise collective intention in addition to the
conjunction of individual intentions? There is no general agreement as to the answer to this question.

In the work of Tuomela and Miller [17] and Grosz and Sidner [5], joint intentions are reduced to
intentions-in-action of individual agents and mutual beliefs about such intentions. Others, such as
Searle [15] and Hobbs [8], argue that joint intentions are not reducible in this way. A central example
used to discuss the reducibility question is the MBA example introduced by Searle [15]. All MBA
graduates are (successfully) taught that each can serve humanity by pursuing his own selfish interests.
If each agent intends to serve humanity by pursuing his own interests, each agent believes that every
other MBA graduate would do the same, and there is a mutual belief to this effect, then under the
definitions given by Tuomela and Miller, and Grosz and Sidner, the MBA graduates would be said to
have a joint intention. However, Searle argues that, in this scenario, there is no joint intention and,
further, that the ideology of the particular business school, accepted by all graduates, is that there
should not be a joint intention. In our formalization, a social agent (all MBA graduates) who jointly
intends to serve humanity must also have a joint goal to serve humanity. This joint goal could have
been obtained by some form of prior communication (like all the MBA graduates meeting together on
graduation day and jointly adopting the goal to serve humanity). If there is no such joint goal, there
is no joint intention.

In his analysis, Hobbs recasts Searle’s position in the language of beliefs, goals, and plans. He
argues for a notion of a collective agent and the need for joint intentions to be related to the attitude
of joint goals and appropriate mutual beliefs. Hobbs also reiterates the importance of concepts such
as commitment, which creates mutual belief in a collective plan, and responsibility, which holds each
agent to his part, to a more complete understanding of the concept of joint intention.

Commitment is the core of the formalization adopted by Levesque, Cohen, and Nunes [9] in their
approach to joint intention. In particular, they capture the commitment of an individual agent to
communicate his private belief about the success or failure of a joint goal to other members involved in

the joint activity. This formalization does not suffer from some of the drawbacks discussed by Searle
and Hobbs. However, the logic is not expressive enough to capture some important types of collective
behaviour — mainly because of the lack of a collective agent and the notion of an plan types.

Singh [16] adopts a different approach to defining joint intentions, one which does not explicitly
invoke other propositional attitudes. He presents a theory of the intentions of a group of agents in terms
of the actions done by the members of the group of agents and their social structure, as it emerges from
their interactions. To address the side-effect prcilem, Singh recognizes the desirability of distinguishing
between a strategy and the purpose of that strategy. In Singh’s theory, intentions are ascribed from
observation of agent interactions. The formalism does not allow explicit reasoning about the attitudes
of other agents.

Werner [18] provides a comprehensive theory of social structures, social groups, and social roles.
Intentions and joint intentions are an integral part of his theory. In Werner’s approach an intentional
state is a class of strategies that guide the actions of a given agent. A strategy is a mapping from
(partial) histories or information states to alternative (partial) histories. These strategies include the
individual, collective and communicative actions of agents.. Werner provides a theory of communication
which enables one to formalize how messages affect the intentions of an agent and also addresses
important issues such as the (possibly changing) roles of agents within a group setting.

In conclusion, the primary contributions of this paper are: (a) the introduction of collective agents,
called social agents; (b) an ontology for social plan structures; (c) provision of a semantics of successful
and failure executions of such social plans; (d) semantics of collective attitudes such as mutual belief,
joint goal, and joint intention; and (e) the foundations for a theory of multi-agent BDI-architecture
that can reason with the above entities. As a result of this, we can distinguish a social agent having a
social plan from a social agent exzecuting a social plan from a social agent jointly intending to execute
a social plan.

References

[1) M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, Massachusetts,
1987.

[2] M. E. Bratman, D. Israel, and M. E. Pollack. Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349-355, 1933.

(3] E. A. Emerson and J. Srinivasan. Branching time temporal logic. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, pages 123-172. Springer- Verlag, Berlin, 1989,

[4] M. P. Georgeff and A. L. Lansky. Procedural knowledge. In Proceedings of the IEEE Special Issue
on Knowledge Representation, volume 74, pages 1383-1398, 1986.

[5] B.J. Grosz and C. L. Sidner. Plans for discourse.’ In P. R. Cohen, J. Morgan, and M. E. Pollack,
editors, Intentions in Communication. MIT Press, Cambridge, Ma., 1990. .

[6] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment.
Journal of the Association for Computing Machinery, 37:549-587, 1990.

[7] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, Vol II, pages 497-604. D. Reidel Publishing Co., New York, New York, 1984.

(8]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

J. R. Hobbs. Artificial intelligence and collective intentionality: Comments on Searle and on Grosz
and Sidner. In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication.
MIT Press, Cambridge, Ma., 1990.

H. J. Levesque, P. R. Cohen, and J. lI. T. Nunes. On acting together. In Proceedings of the Eighth
National Conference on Artificial Intelligence (AAAI-90), pages 94-99, 1990.

D.J. Litman and J. Allen. Discourse processing and commonsense plans. In P. R. Cohen, J. Mor-
gan, and M. E. Pollack, editors, [ntentions in Communication. MIT Press, Cambridge, Ma., 1990.

M. E. Pollack. Plans as complex mental attitudes. In P. R. Cohen, J. Morgan, and M. E. Pollack,

editors, Intentions in Communication. MIT Press, Cambridge, Ma., 1990.

A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear time and
branching time intention logics. In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence (IJCAI-91), 1991.

A.S. Rao and M. P. Georgeff. Deliberation and its role in the formation of intentions. In To appear
in the Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence (UAI-91),
1991.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI- rchitecture. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the Second iaternational Conference on Prin-
ciples of Knowledge Representation and Reasoning. Morgan Kaufmann Publishers, San Mateo,
1991.

J. R. Searle. Collective intentions and actions. In P. R. Cohen, J. Morgan, and M. E. Pollack,
editors, Intentions in Communication. MIT Press, Cambridge, Ma., 1990.

M. P. Singh. Group Intentions. In Proceedings of the 10th International Workshop on Distributed
Artificial Intelligence (DAI-10). MCC Technical Report ACT-A%-355-90, 1990.

R. Tuomela and K. Miller. We-intentions. Philosophical Studies, 53:367-389, 1988.

E. Werner. Cooperating agents: A unified theory of communication and social structure. In
L. Gasser and M. N. Huhns, editors. Distributed Artificial Intelligence: Volume II. Morgan Kauf-
mann Publishers, 1990.

Collaborative Plan Construction for Multiagent
Mutual Planning

Ei-Ichi Osawa Mario Tokoro!

e-mail: osawa@csl.sony.co.jp, mario@csl.sony.co.jp

Sony Computer Science Laboratory Inc.
Takanawa Muse Building,
3-14-13 Higashi-gotanda, Shinagawa-ku,
Tokyo, 141 JAPAN

Abstract

In multiagent planning an agent sometimes needs to collaborate with others to construct complex
plans, or to accomplish large organizational tasks which he cannot do alone. Since each agent in a
group may have incorrect beliefs about the world, and because agent’s abilities differ, construction of
a coordinated plan can be confounded. In this paper we propose a scheme for constructing plans for
collaborating agents from their, possibly incorrect, beliefs and partial knowledge of the world. In the
proposed scheme, when agents want to accomplish a goal together, each agent first proposes a possibly
incomplete individual plan based on his own beliefs and skills. Then the agents use their individual
plans to mutually construct a collaborative plan to accomplish the goal. A collaborative activity can
be a composite action involving parts to be done by one agent, parts to be done concurrently. by
agents, and parts to be done jointly. The proposed method makes it possible for each agent to decide,
without excessive communication, what actions he should take in collaboration.

1 Introduction

In multiagent systems, intelligent relatively small systems called agents interact to solve problems in
a cooperative way. In such a system, agents pool their skills to achieve complex goals by dynamically
forming an organization or a group. Recent developments in open distributed environments [Tokoro 90]
show that using a multiagent approach to construct systems in an open distributed environments is
promising from several points of view [Gasser and Huhns 89].

Some issues in multiagent systems are not yet well understood. One of these is mutual plan
construction through multiagent cooperative planning. In multiagent cooperative plan construction,
several agents mutually generate collaborative plans by means of inference based on their own, possibly
incorrect, beliefs and partial knowledge about the world. Mutual planning is confounded by disparities
among goals and intentions, as well as inconsistencies in world knowledge.

In a multiagent system an agent may have a goal or task which he cannot do alone. Contract-
net protocol [Davis and Smith 83] provides a way for an agent who needs help (this agent is called a
manager) to dynamically decompose the task into subtasks, and to allocate the subtasks to other agents
(contractors) through negotiation. The contract-net protocol also provides dynamic and opportunistic
control.

In open distributed environments, services, processing capacity, and the connection topology of
computing elements are continuously changing. At the same time, the granularity of agents and
plans are changing dynamically. Also agents are heterogeneous. Although the contract-net type
organization schemes are usually preferable in open distributed environments because of its dynamic
nature, a multiagent system embodies additional complexity which makes application of the contract-
net difficult.

'also with Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 JAPAN

Two such problems in the contract-net occur in decomposition and task allocation. When the
manager first decomposes the task, his fixed decomposition of the task may not suit the open dis-
tributed environment. Not only may he not know what agents are currently availablc, but he also
may not know the changing skills of potential contractors. The manager then selects one agent per
subtask through negotiation, and allocates the subtask to that agent. No single agent may have a plan
to achieve the subtask by himself. Even though subcontracting is possible, this fixed -task allocation
strategy which assigns a subtask to only one agent may results an ineffective hierarchy of subcontracts.

If we apply the contract-net protocol to hierarchical multiagent planning, the problems become
more serious. Tle manager wants some agent to accomplish a goal, but if he does not have sufficient
knowledge to decompose a complex goal properly in an open distributed environment, he cannot ask
auy single agent to achieve the goal. His task allocation strategy fails. Therefore we need a more
flexible strategy for selecting contractors. -;

Suppose the manager can somehow select several agents as collaborative contractors. Here some
questions arise. What information should he provide those contractors? In other words, what infor-
mation is necessary for the contractors to mutually construct collaborative plans? Also, hov' should
the mutual plan construction be coordinated and organized?

In this paper we first describe our agent model, and then characterize our dynamic organization
scheme. We are developing an experimental environment for a multiagent planning system. In this
system we call the model of an agent, SocioAgent [Osawa and Tokoro 90]. If an agent needs help, he
organizes a cooperative group using the dynamic organization scheme. In this process, he ‘nitially
plays the role of manager, selecting agents and allocating goals to them, but he can ¢so be a member
of the collaborating group. We then propose a strategy and algorithm for select:ng collaborative
contractors. In selecting contractors, information for collaboration, which we call suggestions for
collaboration, is generated by the manager. The contractors are said to be given a collaborative award,
when they receive these suggestions for collaboration. Then we characterize mutual plan construction
by contractor agents in terms of elaboration of individual plans. Elaboration of a individual plan
involves inference based on each agent’s partial view of the world and the suggestions for collaboration
given by the manager. A contractor agent infers plans of other collaborating agents.

The organization of this paper is as follows. In Section 2 we give a concrete example of multiagent
planning which illustrates the problems discussed above. Section 3 gives our basic agent model. In
Section 4 we propose a strategy and algorithm for selecting collaborative agents. Then we characterize
the mu*ual plan construction, and describe an algorithm for collaborative plan construction. Section 5
gives the relationship between our scheme and other work in this area, and Section 6 contains our

conclusions.

2 Problems of Cooperative Planning in Multiagent System

Activities by two or more agents can be viewed as a composite action involving: (1) actions to be done
concurrently by two or more agents; (2) actions to be done by either agent sequentially; and (3) actions
to be done by both or many agents together. The first and second cases, in which agents act in a
synchronous manner to cooperate and avoid conflicts, are well studied in [Georgeff 83] as coordinating
performed plans. In coordinating performed plans agents are not necessarily contributing to the same
goal. In collaborative activities each agent helpfully (or positively) contribute its own skills to the
successful achievement of organizational tasks. In this paper we will focus on collaborative activities
which subsumes above mentioned three cases.

An agent’s possibly incorrect beliefs and partial knowledge of the world can cause various difficulties
when several agents collaborate to accomplish a goal. To examine the difficulties in detail, we give
the following example. The goal in the example is for agent g3 to have block b in room 73 (figure 1).

In this example we assume that each agent, g1, g2, g3, has the action rules and beliefs about the
world given in the Appendix. We add to a first-order language with equality the operator B to model

room: r, room: r,. room: r

& door: dy, door: dyy

agent: g, door: d,, agent: g, door: d,,
() block: b 8 I @) —%

Figure 1: Moving a block along adjacent rooms

a agent’s beliefs. B(g,p,t) says that agent g has a belief p at a time point ¢. For the belief operator B
we assume axioms inspired by [Halpern and Moses 85] and a frame assertion axiom (details are given
in Section 3). From now on, in logical formulae, arguments which begin with upper case letters and
lower case letters represent variables and ground instances, respectively.) Note that in this section,
constructors such as “” ,”||” are used for convenience to compose a sequence of actions, concurrent
actions, respectively. In the following section these constructs are excluded by introducing constraints
on the temporal ordering of actions.

Agent g3 wants to have block b in room r3. He knows that by performing trans(Agent, g3, b), he
can hold block b. However, since some parts of the precondition of the action, i.e.
(holding(Agent,b),in(Agent,r3)), don’t hold at this moment, he necds to ask other agents to achieve
this goal, conditioned by the fact that block b is not in room r3 at this moment.

The contract-net provides for allocation of the goal to other agents by communication. In this
case, agent g3 plays the role of manager and announces the goal status as a task. If the two agents
g1 and g individually respond to the announcement, and each can successfully generate a plan, then
both give their plans to g3 . This is called a bid. g3 collects bids from potential contractors, evaluates
them, and awards the task to one of the contractors.

In this example, because g; and g, have only partial knowledge of the situation, neither of them
is able to generate a complete plan to achieve the goal. Therefore, if the manager requires that a
bid be complete, neither returns a bid for the contract. If the manager does allow incomplete bid
plans?, agents g; and g, may return the incomplete individual plans, P, and P, respectively.3
Individual plan construction is described in the next section. These individual plans are constructed
by a DCOMP-type backward production [Nilsson 80].

¥

Py = {pickup(g1,b)
move(g1,b,71,72);
move(gl, b, T2, 1‘3)
precond: boundary(Door,r,,13), open(Door)}.

Py, = {{open(g2,d23);
trans(Agent, g2, b)
precond: holding(Agent,b),in(Agent,rs)};
move(gz, b,72,73)}.

Both Py, and P,, are incomplete plans, and the operators move(gy,b,72,73) in P, and pickup(gz,b)

2An incomplete plan is a plan which includes operators with unknown preconditions. These operators are called
incomplete operators.
3Bach of these incomplete individual plans is one of many incomplete alternatives of agents g1 and gz.

in P,, are incomplete operators.

In the contract-net, after manager g3 receives these bids, he would select one contractor, and
allocate the task to that contractor assuming that incomplete operators will be later resolved by
subcontracts. However, in this case, both bids are incomplete, so it is not possible for the manager to
determine which bid is better, since he also does not have complete knowledge of the situation.

The contract-net provides a general protocol for decomposing a task and awarding the subtasks
to contractors. This decomposition is from the manager’s point of view. Since managers in the
contract-net award each task to one contractor, the allocation may not be optimal in an open dis-
tributed environment. Even though subcontracting is possible, since the granularity of agents and
plans constantly changes, the fixed task allocation strategy may not be sufficient.

In the given example, if the manager selects g, the incomplete operator trans(Agent, gz,5) in P,
can be resolved with subcontract between g, and g,. In this case, the complete plan will be in the
form;

{{open(g2,d23) || {pickup(g1,b); move(g1,b,r1,72)}; trans(g1, g2,b)}; move(gz,b,72,73)}.

However, if we have a whole view of the situation, we see that the plan is less efficient than the
following plan, C Py, .

C P, 4, = {{open(gz,da3) || {piciup(g1,b); move(gy,b,71,72)}}; move(g1,b,72,73)}.

If g; is selected, he still nee‘s a subcontractor to open door dz3, since he does not have the
skill. Since contracting is compusationally expensive in a multiagent system, the above mentioned
collaboration, C' Py, 4,, is cheaper than subcontracting.

In the following sections, we describe construction of incomplete individual plans based on partial
knowledge of the world. We then propose a protocol for forming dynamic organizations and a method
for mutual collaborative planning.

3 SocioAgent Model

We have developed an experimental environment for multiagent planning based on an agent model
called SocioAgent. In this section we describe communication primitives, communicative actions,
and the planning mechanism of SocioAgent. SocioAgent, hereafter simply called agent, has two plan
construction phases. The first is individua! plan construction. In this phase, an agent generates a
individual plan to achieve a given goal. This is an action sequence based on his beliefs and partial
knowledge of the world. Therefore, a individual plan can be incomplete. The second phase is collab-
orative plan construction. This process occurs when agents are to achieve an organizational goal. In
this process eacl: collaborating agent elaborates on his own initial individual plan. We characterize
collaborative plan construction in the next section as a part of the organizational scheme we propose.

3.1 Communication Primitives
Agents have two communication primitives: send and receive. If agent Sender executes

send({Sender}, Recipient, Message),

the message (Sender, Recipient, M essage) is sent from agent Sender to agent Recipient. If Sender
is omitted, it is, by default, filled in with name of the agent executing the message sending primitive.

The message receiving primitive receive reads a message from the incoming message queue of the
receiving agent. If an agent executes

receive({Sender}),

the first message sent by agent Sender is retrieved in the form (Sender, Message) from the incoming
message queue. If no Sender is specified in a receive primitive, the first message in the queue is
retrieved and removed. This selective message receive primitive is necessary because while an agent
is collaborating with other agents, he may want to receive messages only from other group members.
Also, while he is waiting for a message from a specific agent about an urgent matter, he may not want
to be disturbed by messages from other agents.

3.2 Communicative Actions
By sending the message
request(Sender, Recipient, ToDo),

Sender indicates that he requires Recipient to perform the action ToDo.
In the following message, Agent asks Recipient to tell him whether or not he knows the truth
value of P. If Agent is not specified, then by default, Agent is the sender of this message.

request({ Agent}, Recipient, inform(Recipient, { Agent}, P))

3.3 Belief Model

We assume that every agent has a set of beliefs about the world, which may include beliefs about
other agents’ beliefs. We add to a first-order language with equality the operator B. B(g,p,t) says
that agent g has a belief p at a time point t*. The B operator is assumed to satisfy the following
axioms, where P and Q are scheme variables ranging over propositions, G ranges over agents, and T
ranges over time points.

1. B(G,P,T)A B(G,P > Q,T) D> B(G,Q,T)

2. B(G,P,T) > B(B(G,P,T))

3. -B(G,P A-P,T)

4. VT(> T') AT"(T > T" > T")B(G, P,T') A B(G,~P,T") D B(G, P,T)

3.3.1 Belief Revision

Each agent maintains a database as its belief space. An agent may revise its beliefs after executing
actions, and in the course of interaction with other agents. When an agent executes an action, he
adds effects of the action to his belief database. A belief B(G’, P,T) obtained in the course of inter-
action with an agent G’ is also added to belief database as its own belief B(G, P,T), if P satisfies the
following condition without utilizing the frame assertion.

AT'(> T)B(G,~P,T)

3.4 Individual Plan Construction

The action rules of SocioAgent are as follows.
This plan scheme is similar to that of STRIPS [Fikes and Nilsson 71] except that, in SocioAgent,
each operator is associated with a temporal variable and an execution time cost which is the sum

*A time point is obtained from the virtual clock of the agent. Precisely speaking, a virtual clocks do not indicate
the global time, but indicates the local times of the agent. However we assume that these virtual clocks are periodically
adjusted, so that they maintain times which are sufficiently precise for the inference and planning process of agents.

operatorHead(Agent, ParametersList, T, T)
precond: B(Agent,P,,T),---,B(Agent, P,,T)
body: ActionSequence
effect: B(Agent,Q,,T),---,B(Agent,Qm,T)

of the predicted costs of the actions in the body of the operator. The cost of a primitive action is
predicted from an agent’s working environment.

Individual plan construction is done by a DCOMP-type backward production [Nilsson 80]. In the
backward plan construction, if all preconditions become trivial, i.e. all preconditions are compatible
with the agent’s beliefs, the sequence of actions obtained in the production process is regarded as a
plan [Nilsson 80]. In SocioAgent, this plan is called complete. Certain incomplete plans can also form
a individual plan of an agent.

In conventional plan synthesis, if an agent discovers an incomplete operator, he discards it. How-
ever in SocioAgent, an agent continues to construct a plan even though it may contain incomplete
operators. Plan: P, and P, in the previous section are examples of incomplete plans in SocioAgent.
A individual pla- of SocioAgent is generally given in the following form.

{O,(Agent,Objects;, Ty, 1), +,0n(Agent,Objectsn, T,)} C(Th, -+, Th, ;'1, ceeyTn)

where C(Ty,+++,Tn,m1,+**,Tn) denotes a set of constraints on temporal ordering of actions.

Plans can be viewed as directed acyclic graphs, whose nodes are labeled with operator headers and
propositions; when a node is labeled with a proposition P, it denotes any action that would achieve
P. A temporally ordered partial sequence of actions in a plan is called a partial plan.

Using this form, the plan P, given in the previous example can be expressed as follows.

P.']l = {pickup(gl y b’ 11]" 7;;q|'1ckup)’
move(gl, b, 3f7'1 T2, T_‘i+1v T#oue)’
move(gl, b,rs, r3, 142, Tgllovc)
precond: B(g1,boundary(Door,rs,13),T;+2), B(g1,0pen(Door),T;42)}.

Tj + T:ilckup & TH—lv T+ e € Tj+2

If we allow this sort of planning, an agent can generate many incomplete plans in his plan search
process. Some incomplete plans are useful, and can be successfully completed through collaboration,
and some are irrelevant and, thus useless. How can an agent choose from the incomplete plans found in
its search process? We propose two criteria for selecting the preferable incomplete plan: the specificity
of the plan and the cost. In order to characterize these two aspects of a plan, we address the rationality
of agents.

3.5 Rationality

Rationality and its role in reasoning is discussed in [Doyle 90]. In a multiagent system, the notion of
rational choice is of great significance. Choices among alternative plans and among potential contract
agents occur frequently. In a society of SocioAgents, we require every agent to be individually and
organizationally rational. This rationality not only makes it possible for every agent to make good

choices among alternative plans in individual plan construction, but it also enables agents to expect
certain decisions and behavior from other agents in a collaborative activity. We discuss organizational
rationality in the next section.

An agent rationally chooses a plan partly by comparing costs of alternative partial plans or oper-
ators. Cost is a numerical utility function which ranks alternatives according to degree of desirability.
The other criteria is the specificity of the plan. If an agent has two incomplete plans as alternatives
in a plan construction process, he chooses the one which is more specifically synthesized. For instance
agent gz can construct the following individual plan Py, in the example in Section 2.

P, ={open(gs,dz3, T, 752,,),
mOVC(gz, nil,ra, 1y, L1y Trgtzovc)’
pickup(g2,6, Tit2, Tyiokyp)

precond: B(g,,o0nfloor(b,r1),Ti+2),
move(ga, b, 71,72, Ti+3, 7%,),
move(gq, 0,72, 73, Ti+4, T925,) }
T 72n < Tipdy By + 7800 < Tiga,
Ti+2 + an?ckup < Ti+3, Ti+3 + ngzovc < TH""
This individual plan is also incomplete. However, it is much more specific than 7, given in

Section 2, since P,, contains only one unknown condition, while Py, has two. In general we canrot

say that a more specific plan is better than a less specific plan, since choices are based ox both cost

and specificity of alternative plans.

4 Organizational Scheme and Collaborative Plan Construction

SocioAgent dynamically forms an organization according to the protocol described below, using the
communication primitives and communicative actions given in the previous section. The outline of
the dynamic organizational scheme we propose is similar to the contract-net up to the point at which
a manager collects bids (in SocioAgent an announced task is called a request for proposal or RFP).
Evaluation by the manager, awarding, and task allocation in our scheme, however, are different because
we include the possibility of collaboration among contractor agents.

4.1 Dynamic Organization Scheme

In a society of SocioAgents there are special agents called bulletin boards. Bulletin board agents
receive RFPs from ordinary agents and save them until an expiration time. Bulletin boards also send
saved RFPs to requesting agents. There can be many bulletin boards in a society and all do not
necessarily contain the same information. Any given agent is designed to know at least one buliletin
board.

An agent that needs to request the help of other agents to achieve a goal first sends an RFP to a
bulletin board. The RFP specifies the goal, an expiration time, and the manager’s name. The bulletin
board agents do not execute parts of RFPs, they only save them, and reply to send requests from
ordinary agents. A free agent, i.e. one without a current task, can request the bulletin board to send
a saved RFP to him.

When the agent receives the RFP, if he can construct a individual plan, even if it is incomplete,
he sends that plan directly to the manager of the RFP. This is a bid as in the contract-net.

Upon expiration of the RFP, if the manager receives bids from more than one agent, he investigates
the possibility of collaboration of all or some of these agents according to the algorithm described
in the next subsection. (If he receives only one bid, he selects that bidding agent as contractor.)

If collaboration seems possible, he computes suggestions for collaboration, and gives bidding agents
collaborative awards with his suggestions. In this way he requests the contractors to mutually construct
a collaborative plan as elaboration of the initial individual plans, and to execute the collaborative plan
to achieve the goal. If the manager finds that collaboration is not possible, he selects one agent based
on his evaluation of the bids.

4.2 Collaborative Award and Suggestion for Collaboration

In this section we specify an algorithm for selecting collaborative awards, in case of multiple bid
submission, and for computing suggestions for collaboration. The Figure 2 describes for two bidding
agents for simplicity. Agents G and G, propose individual plans Pr(= {Oz(1);***;Oz(n)}Cz) and
Py(= {Oy(l);- - Oy(m)}Cy), respectively. Before manager G,, computes the algorithm, he needs to
eliminate those bids whose cost exceeds his requirements for plan execution time. (In the contract-net
this evaluation is implemented as an eligibility test.)

1. Copy P, to P, and empty suggestion lists S; and S,,.
2. Let i = 1. While ((1 £ < n)and P is not empty), do;
If O,(;) matches (see the note described below) O,;)(1 < j < m), then
Add O,;) and O,(j), with associated preconditions in case of an incomplete operator, to
Sy and Sz, respectively.
Remove O;) from P.
Increment .
3. If S; and S, are not empty, then
Delete all matching operators from S, and S, which are inconsistent
with respect to the temporal ordering of actions obtained from C, and C,.
4. If S; and S, are not empty, then
Send the collaborative awards (see below), CA, and C 4y, to agents G, and G, respectively.
Else
Compare cost of P, and Py, and allocate the task to the agent whose individual plan is cheaper.

Note: 1. In matching of two operators, difference of agents and costs are ignored.

Figure 2: An algorithm for computing suggestions for collaboration and selecting collab-
orative awards

Collaborative awards C A, and C Ay in the algorithm are given in the following forms.

C A; = request(Gy,, G, collaborate(G, suggestion(S;), P;)).
C Ay = request(G,,, Gy, collaborate(G,, suggestion(S,), P)).

CA,, for instance, states that agent G,, requests G, to collaboratively perform P, with the
suggestion S;. A suggestion for collaboration given to a contractor agent includes: (1) Explicit
obstacles of the other agent which collaboration may be able to resolve; (2) Actions which both
collaborating agents can perform. If agents g; and g, return individual plans P, and F,, as given in
Section 2 and 3, suggestions for collaboration S, and S,, are as follows:

4.3 Mutually Collaborative Plan Construction

An agent who is given a collaborative award tries to construct a cooperative plan for collaboration. He
does this through inference based on his initial individual plan, and the suggestions for collaboration
given in the award. '

Sgl = {PiCkup(g2'7 b7 Ti+27 Tg?ckup)

precond: B(gz,o0n floor(b,11), Ti+2),
move(gg, b7 T1,72, Tl'+31 T#?O!IC)’
move(gg, b7 T2,T3, Tl'+4, Tgfwc)}

Tiv2 + Toipkup < Titas Tita + 8200 < Tiga

ng — {pickup(glyb7Tj1T:ilckup)’
move(gl y b, T1,T2, TJ'+15 Tr'glloue)’
move(g1,b,72,73, Tj4+2, TI00e)
precond: B(gy,boundary(Door,rs,73),Tj+2), B(g1,0pen(Door),T;12)}

T; + Tgilckup L T4 Tigr + Tloue € T,’+2.

In such collaborative plan construction, each agent needs to elaborate his initial individual plans
to produce efficient collaborative plans for the given goal.

Activities by two agents can be a composite action involving: (1) actions to be done concurrently
by two agents, s.t. {a(Gz,Tz),a(Gy,Ty)}; (2) actions to be done by either agent sequentially, s.t.
{a(Gz, Tr),a(Gy, Ty)}(T: < Ty); and (3) actions to be done by both agents together, s.t. a(Gz, Gy, T).
The first and second cases, in which two agents act in a synchronous manner to cooperate and avoid
conflicts, are well studied in [Georgeff 83]. In this paper we will focus on collaborative activities by
two agents which subsumes these cases.

We raise three significant questions involved in collaboration. First, if the collaborating agents
know that both of them can do the same parts of a collaborative activity, how does each agent decide
which actions to perform? Second, even though some operators of the initial individual plan of one
agent, e.g. Gz, are incomplete, the other agent, Gy, may be able to perform actions which render
that individual plan complete. If that is the case, is it possible for Gy, to infer that he should do these
actions? If so, how is this inference made? Also, is it possible for G, to infer that G, will perform
these actions to make G;’s individual plan executable? Third, is it possible for the two agents to
mutually believe that these actions will be performed in a cooperative way? We now characterize
factors which affect the inference in the collaborative plan construction.

In Section 3 we discussed the role of an agent’s rationality in individual planning. In this section
we again emphasize the need for rationality of agents collaborating to achieve a goal. If there are
several possible collaborative plans, the collaborating agents mutually believe that each agent will
always choose the most effective plan with respect to execution cost.

To decide which actions will be performed by each agent in a collaborative plan, we look at
three factors: obstacle elimination; workload balancing; and cost effectiveness. We then describe the
algorithm for action decision.

(1) Obstacle Detection and Elimination

Unsatisfied preconditions of incomplete operators can be regarded as explicit obstacles to the
agent’s plan. The agent, say G, believes that these conditions have not been met or that he cannot
satisfy them by himself. The other agent, say Gy, may also include some of these operators in his
individual plan. If he knows that the preconditions do hold or that he can act to make them hold,
these operators in his individual pan are complete. This information is also included in the suggestions
for collaboration given to G.. Therefore, after G, receives the award, he believes that the conditions
are satisfied or will be eventually. In the suggestion sent to agent Gy, it is specified that G, does not
believe these preconditions are satisfied. So if G can satisfy, i.e. he has a partial plan which satisfies
these preconditions, he acts to remove these obstacles for G;. For instance, in the individual plan P,
of the example given in Section 2, open(Door) is an obstacle to agent g;. So when agent g, receives

a collaborative award, he knows that this is an obstacle to agent g;. Therefore, even though agent
g2 does not perform any other actions in collaboration, he believes that he must perform at least
open(gz,du,T;,rgge"). If agent G believes that the obstacle precondition will never be satisfied, he
must inform agent G, of that belief.

(2) Balancing Workload among Collaborating Agents

As stated above, a collaborative activity by two agents can be a composite action involving se-
quentiai, concurrent, and conjoined parts. If these parts form partial plans which can be performed
concurrently, and also if both agents are able to execute those partial plans, then the agents must
mutually agree on an allocation of actions which will evenly balance the workload. Performing these
partial plans concurrently will reduce the execution time of the collaborating plan.

(3) Cost Effectiveness in Collaboration
In the example given in Section 2, there are two alternative collaborative plans to move block b
form room r; to room rj3, if agent g; and g; return individual plans P, and P, respectively. (We

ignore the action to open door da3 for a while.) These plans, C Py ., and CP;’1 g20 are as follows:

’ .
CPglgg = {plckup(gl, b’TJ" Tg:ckup)’ move(glvb’ T1,7T2, 7}'+1’T#tlovc)’ move(gly b, T2, 7‘31Tj+2’ Trguloue)}
: 1 . . .
T) + T;)qickup < T.'2+17 TJ+1 + Trgllove < TJ+2'
"o _ . . : A g2 .
CP91-92 - {move(g2’ nll,Tg, 1, T'+17 T;Zx.zovc)’ plCKUP(gz, b7 T'l+21 TPickup)’ move(g2, b1 T1, T2, 2":-{-3, Tr“r’?ovc)’

move(g2, 0,72, 73, Tita, THue) }

Tiy1 + Tgx’oue < T"+27 Ti+2 + 7-::'2ckup < Ti+31 Ti'+3 + T#?oue < T"+4'
These two plans are actually incomplete. However, if they were complete, by comparing the ex-
ecution cost of the common actions in C P, ,, and CPp, , and summing the cost of each operator,
an agent can determine which plan is cheaper to execute. Therefore, in general, by comparing the
execution cost of common partial plans, agents can decide which agent should perform the partial

plans.

Taking these three factors into account, each agent elaborates his initial individual plan to decide
which actions to perform using the algorithm described in Figure 3. As a result, he constructs a
collaborative plan. In the algorithm described for agent G, with collaborating agent G, cases CC,
CI, IC, and IT indicate the states of completeness of an operator as it appears in the agent’s individual
plan P, and the suggestion for collaboration S, given to him. (These operators are also shared
operators.) For instance, if an operator Oy in Py is IC, it is incomplete, while the shared operatcr
Oy(;) in the suggestion S, is complete. Note that in the algorithm, the shared operator is written as
Ox(;) and Oyj).

The elaborated individual plan, obtained by executing the algorithm, is called a collaborative
operator and written C'P;. Similarly G constructs C'P,. Agents g; and g, of the example in Section 2
construct collaborative plans CP,, and C P,,, respectively.

C Py, = {pickup(g1,b,Tj, Tgilckup)’
move(gl, b, T1,T2, Tj+l ’ Tr%‘oue)’
move(g1,b,72, 73, Tjt2, Toove)}

Tj + Tgx'lckup < Tj+1’ TJ'+1 + TRove < Tj+2'

CP92 = {open(gg, d23a L, Tg;en)}
Tf + Tg;en < Tj+2-
Combining C'P,, and CP,, in a proper temporal order which satisfies the given time constraints

results in the optimal collaborative plan C Py, 4, given in Section 2.

10

1. Let ¢ = 1. While (1 < ¢ < n), do;
If Oy is conjoined , then
If(bz(,-) is II, then
Remove unsatisfied preconditions not shared by O.(;y and O;).
Else if O(;y is IC or CI, then
- Remove all unsatisfied preconditions from Og;) and Oyj).
Ise
IfO,(,-) is CC, then
Find the same partial plans of successive shared but non conjoined operators,
Priiivk) in Pr and Py(;iyk) in Sz, and
Compute costs TP ieh) and TPyi.ieh) of these partial plans;
I TR, ivny > TPyiseny thED
Remove P, rx) from Py, and
emove Pp; i) from Pr, an
Reflect the removal upon preconditions of subsequent operators of P;.
(See the note about the reflect operation described below)
Elsele Tpx(‘..'.‘j;) < pr(f.'ﬁk), then
emove Py .,y from Sz, and
- Reflect the removal upon preconditions of subsequent operators of S;.
se
Communicate with G, to decide who will perform the partial plan.
Else if it is CI, then
Remove O, ;) from S, and
Reflect the removal upon preconditions of subsequent operators of S,.
Else if it is IC, then
Remove O,;) from P, and
Reflect the removal upon preconditions of subsequent operators of P;.
Else if it is II, then
Compute costs of TO.) and 10
Ifroz(l.) > T0,;)» then
emove O from P, and
Reflect s: e removal upon preconditions of subsequent operators of P.
Else if Ty < TOy5) then
Remove O, ; gom Sz, and
- Reflect the removal upon preconditions of subsequent operators of S.
se
Communicate with G, to decide who will perform the partial plan.
Increment 3.

2. Remove all operators including non shared ones which are no longer needed to complete the goal.
(Operators needed for obstacles elimination are left unremoved.)

3. If incomplete operators are left in P, then
Send RFP to bulletin board(s) listing preconditions of incomplete operators as a goal.

y(:’);

Note: In this algorithm, the reflection of removal of operators upon the preconditions of subsequent
operators should be the effect specific to his states, since the other agent will perform the partial plan
which achieves some sharable states.

Figure 3: Individual plan elaboration and collaborative plan construction algorithm

11

5 Relation to Other Work

In open distributed multiagent systems, agents are continuously changing with respect to their skills
and availability, being born, and dying. The contract-net protocol ([Davis and Smith 83]) provides a
way for an agent who needs help to dynamically decompose a task into subtasks and allocate these
subtasks to other agents through mutual selection. This protocol provides dynamic and opportunistic
control in multiagent systems. However, in a open distributed environment each manager have limited
knowledge to draw on for task decomposition and allocation, and this approach may not be effective.
The collaborative awards proposed in this paper make decomposition and allocation of tasks much
more flexible. They allow managers to investigate possible collaboration among potential contractors.
Complex tasks which are executed in a subcontrasct hierarchy in the contract-net, can now be performed
by means of collaboration among agents at the same hierarchy level. Our scheme provides a better
way to accomplish organizational tasks, since tasks are decomposed and allocated based not on only
one agent’s point of view. Many collaborative plans are investigated among agents, and the optimal
one can be selected and performed.

The generalization of centralized planning techniques to accommodate multiple and distributed
centers of planning control is investigated on the basis of Sacerdoti’s NOAH planning systems in
[Corkill 79]. His paper mainly concerns resolving conflicts in distributed hierarchical planning. The
top-down decomposition of a conjunctive goal is used to divide the goal into subgoals. Each subgoal
is also assigned to distributed planning elements. We are mainly concerned that fixed top-down
decomposition of complex goals and fixed top-down assignment of subgoals are not promising in open
systems for reasons described in this paper. Our scheme provides dynamic and opportunistic control
for generating collaborative plans for complex goals. Furthermore it allows cooperation - individual
plan elaboration and collaboration - among planning elements in plan generation.

Coordinating plans in a system is one significant issue in multiagent planning. [Georgeff 83] ad-
dresses the issue of combining individual plans in such a way that avoids interference among the
agents. In his scheme, appropriate synchronization actions are inserted in original plans. Our method
for mutual planning focuses on collaboration among agents. It emphasizes constructing mutually co-
operative plans to collaborate from agents’ initial, possibly incomplete, individual plans. These two
approaches need to be combined for optimal mutual planning.

Obstacle detection and elimination in plan recognition is first introduced in [Allen and Perrault 80],
in order to provide a helpful response in discourse. Allen’s paper discusses a method for detecting
and eliminating implicit obstacles which can be derived by applying knowledge plan inference rules
1o each step in the plan. In discourse, problems arise from the fact that the entire plan of the
speaker may not be inferred. Allen proposes a couple of specific strategies for controlling inference
in obstacles detection. In this paper we discuss how to eliminate both explicit and implicit obstacles
when observed by other agents having more complete knowledge about the world. In our scheme, the
goals of collaborating agents are known to each member of the group, and agents can detect some
implicit obstacles in others’ plans.

Rationality of an agent is needed to construct a well organized society of agents, since it allows
agents to choose among alternatives under uncertainty. [Doyle 90] emphasizes the need for rationality
in reasoning. As he pointed out, not only logical rationality, but also economic rationality is of great
importance. Rational agents are essential in multiagent systems because their actions are predictable.

|[Rosenschein and Genesereth 85] and [Rosenschein et al. 86] discuss deals among rational agents.
Remarkably, [Rosenschein et al. 86] concludes that it is possible to coordinate decisions without com-
munication using explicit models of values and possible choices of other agents under a variety of
strong assumptions. In our scheme, an agent given a suggestion for collaboration dynamically sets
up a partial model. Since it provides him with predictions of other agents’ decisions, communication
among agents can be reduced to some extent.

Martial has investigated how planning agents can positively cooperate in distributed environments

12

[Martial 90]. Many previous papers.on distributed coordinated planning mainly focus on how to resolve
conflicts [Corkill 79] [Georgeff 83], however Martial precisely studies situations where a positive effect
can be reached as modeled by his favor relation. We also focus on the,same aspect of cooperation
in terms of collaborative plan construction. In Martial’s method, agents broadcast their plans at any
time and different levels of abstraction, so that they may refine their plans in a coordinated way.
His method is based on the assumption that there is a collection of autonomous intelligent agents
which communicate about planned actions ahead of time. In our scheme, the investigation of possible
positive cooperation - collaboration - is taken into account, when need for help actually arises. It is
basically designed to provide opportunistic collaboration to distributed planning.

6 Concluding Remarks

In this paper, we have presented an organizational scheme of collaboration in muitiagent planning
systems, and discussed strategies for collaborative plan construction by group members.

Large, multiagent systems can be viewed as open distributed environments. Thus, agents have
inconsistent and partial world views. In multiagent cooperative plan construction, several agents
mutually generate collaborative plans by inference based on their own beliefs, and partial knowledge
about the world. Therefore, mutual planning is confounded by disparities in agents’ world knowledge.

In the proposed scheme, an agent who needs help, dynamically organizes a group. He first an-
nounces a request for proposals by sending a message to bulletin boards. Agests who read the RFP
and who can construct a, possibly incomplete, individual plan for theirequest; send their individual
plans to the manager. Each operator in the plan is associated with «a cost estimated by the agent.
The manager, then, investigates possible collaboration of potential contractors. If collaboration seems
possible, the manager gives collaborative awards along with computed suggestions for collaboration.
A suggestion for collaboration given to a contractor agent contains: (1) Explicit obstacles of the
other collaborating agents which the agent may possibly resolve; (2) Actions which both collaborating
agents can perform. Since this sets up a partial model for predicting the other agent’s actions, com-
munication among collaborating agents can be reduced. Using this suggestion, along with his initial
individual plan and beliefs, each collaborating agent constructs a collaborative plan through inference.
In collaborative plan construction, each collaborating agent decides the actions he should perform, the
actions the other agent should perform, and the actions both agents do jointly. In the process, each
agent takes three factors into account: the elimination of obstacles of other agent; balancing workload
among agents; and cost effectiveness.

We are currently working on the following extensions: (1) Extending the algorithm for selecting
collaborative awards and computing suggestions for collaboration to include collaboration among more
than two agents; (2) Implementing the proposed scheme on a society of SocioAgents; (3) Combining
the proposed scheme with an approach which avoids interference among the agents for optimum mutual
planning; (4) Incorporating a learning capability into agents, so that successful collaboration can be
reutilized again without the overhead of organizing a group.

Acknowledgments

We would like to give great thanks to the other members of Sony CSL for their helpful comments and
supports.

13

References

[Allen and Perrault 80] James F. Allen and C. Raymond Perrault. Analyzing Intention in Utterances.
Artificial Intelligence, Vol. 15, No. 3, pp.143-178, 1980.

[Corkill 79] Daniel D. Corkill. Hierarchical Planning in a Distributed Environment. In Proceedings of
The Sizth International Joint Conference on Artificial Intelligence. IJCAI, 1979.

[Davis and Smith 83] Randall Davis and Reid G. Smith. Negotiation as a Metaphor for Distributed
Problem Solving. Artificial Intelligence, Vol. 20, pp.63-109, 1983.

[Doyle 90] John Doyie. Rationality and its Roles in Reasoning. In Proceedings of The Eighth National
Conference on Artificial Intelligence in 1990. AAAI 1990.

[Fikes and Nilsson 71] R. E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence, Vol. 2, No. 3, pp.189-205, 1971.

[Gasser and Huhns 89] Les Gasser and Michael N. Huhns, editors. Distributed Artificial Intelligence,
volume II. Morgan Kaufmann Publishers, Inc., 1989.

[Georgeff 83] Michael P. Georgeff. Communication and Interaction in Multi-Agent Planning. In
Proceedings of The Third National Conference on Artificial Intelligence in 1983. AAAI, 1983.

[Halpern and Moses 85] J. Y. Halpern and Y. O. Moses. A Guide to the Modal Logics of Knowledge
and Belief. In Proceedings of Nineth International Joint Conference on Artificial Intelligence, Los
Angeles, CA, August 1985. IJCAI, Inc.

[Martial 90] Frank von Martial. Coordination of Plans in Multiagent Worlds by Taking Advantage of
the Favor Relation. In Proceedings of The Tenth International Workshop on Distributed Artificial
Intelligence. AAAI, 1990.

[Nilsson 80] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., 1980.

[Osawa and Tokoro 90] Ei-Ichi Osawa and Mario Tokoro. SocioAgent: A Society of Rational Speech
Actors. In Proceedings of 7th Conference of Japan Society for Software Science and Technology,
October 1990. also appeared in SCSL-TR-90-011 of Sony Computer Science Laboratory Inc. (in
Japanese).

[Rosenschein and Genesereth 85] Jeffery S. Rosenschein and Michael R. Genesereth. Deals Among
Rational Agents. In Proceedings of Nineth International Joint Conference on Artificial Intelligence,
pp. 91-99, Los Angeles, CA, August 1985. [JCAI, Inc.

[Rosenschein et al. 86] Jeffery S. Rosenschein, Matthew L. Ginsberg, and Michael R. Genesereth.
Cooperation Without Communication. In Proceedings of The Fifth National Conference on Artificial
Intelligence in 1986. AAAI, 1986.

[Tokoro 90] Mario Tokoro. Computational Field Model: Toward a New Computing Model/Method-
ology for Open Distributed Environment. In Proceedings of the 2nd IEEE Workshop on Future
Trends in Distributed Computing Systems, September 1990. also appeared as Technical Report
SCSL-TR-90-006.

14

Appendix: Beliefs and skills of agents in the example

The followings are beliefs and action rules of each agent which appear in the example in Section
2. Details about the formalization of beliefs and action rules are given in Section 3. For simplicity,
names of agents are ommitted from the beliefs of each agent. A time point obtained from a virtual
clock has a concrete value, however in the following it is parametrized, assuming that for any time
points ¢; and t;, if < ¢, then ¢; < ¢;.

agent: g1
belief:
B(block(b),to). B(handempty(g,),t1). B(room(ry),ts). B(room(rz),t7). B(in(g1,71),1s)-
B(on floor(b,r1),ts). B(boundary(diz,r1,7z),t6). B(—open(dazy),t7).
B(boundary(dia, r1,72),t7). B(boundary(day,rs, Ry),t7). B(open(diz),t7).
B(boundary(D, Ry, Rz) D boundary(D, Rz, Ry),t0). B(hodling(G,0bj) D ~handempty(G),t).
action rule:
pickup(G,0bjs,T, Tgilckup)
precond: B(handempty(G),T), B(in(G, R),T), B(on floor(Obj, R),T)
effect: B(-handempty(G),T + 7} s..,), B(-~on floor(Obj, R), T + 7Ji.,...),
B(holding(G,0b3),T + Tgilckup)'
putdown(G,0bj, T, 7as;)
precond: B(hodling(G,0bj),T), B(in(G,R),T)
effect: B(~holding(G,0bj5),T + 75s,), B(handempty(G),T + 7ay,), B(onfloor(Obj, R),T + 755,).
move(G,0bj, R, R,, T, 78} ...)

precond: B(in(G, R;),T), B(hodling(G,0bj),T), B(boundary(Door,R., R,),T), B(open(Door),T)

effect: B(—in(G,R;), T + 13%,.), B(in(G, Ry), T + 7,,.)-

trans(Gz, Gy, 0b7, T, Torans)
precond: B(hodling(G.,0bj),T), B(in(G, R),T), B(in(Gy, R),T), B(handempty(G,),T)
effect: B(~handempty(Gy),T + Titns), B(~holding(G.,0b3),T + 73k 0s),

B(hOIding(Gy’ ObJ)aT + 1??::113)1 B(handempty(Gr)aT + Ttgrlans *

15

agent: g7
belief:
B(block(b),to). B(handempty(ge),t1). B(room(r1),t2). B(room(rz),t3). B(room(ra),ts).
B(in(g2,72),t5). B(boundary(dyz,ry,72),1t3). B(boundary(des,rs,73),ts). B(open(di2),t3).
B(~open(das), ts).
B(boundary(D, Ry, Rz) D boundary(D, Rz, Ry),t). B(hodling(G,0bj) D ~handempty(G), to).
action rule:
P'CkuP(G?Ob]v T) T;;qizckup)
similar with that of agent g,.
move(G,0bj, R, R,, T, 792, .)
similar with that of agent g, .
trans(Gg, Gy, 0bj, T, 72,)
similar with that of agent g, .
open(G, Door, T, 782,,,)
precond: B(in(G, R),T), B(boundary(Door,R,X),T), B(~open(Door), '), B(hundempty(G),T)
effect: B(open(Door),T + 132.,).

agent: g3
belief: 5
B(block(b),to). B(handempty(gs),t1). B(room(rs),t7). B(in(gs,r3),t7). B(—open(dys),tr).
B(open(daz), te)-
action rule:
trans(G,G,, 005, T, 72 ..)
similar with that of agent g.

16

COOPERATIVE PROBLEM-SOLVING
GUIDED BY INTENTIONS AND PERCEPTION

Birgit Burmeister Kurt Sundermeyer
++30-39982-202 ++30-39982-236
bur@b?21.uucp sun@b21.uucp

Daimler-Benz AG Research Institute Berlin
Alt-Moabit 91b
W-1000 Berlin 21
Germany
Fax: ++ 30-39982-107

Abstract

We describe a domain independent control structure for cooperating problem solving both at the level of
concepts and of realization (system architecture and implementation), and in terms of an example. The
concepts are rooted in a generic agent model based upon intentions, behavior and resources of agei.ts.
Agents are motivated to act by their long term goals, desires, preferences, responsibilities and the like,
within their perceived surrounding, that is other agents and the environment they exist in.

1. Introduction

Although the scope of DAI is not yet clearly defined, some main streams can be distinguished.

- The editors of /BG/ divide DAI into the primary areas 'Distributed Problem Solving’ and
'Multi-Agent Systems’. Distributed problem solving "... considers how the work of solving a
particular problem can be divided among a number of modules ... that cooperate at the level of
dividing and sharing knowledge about the problem and about the developing solution”.
Multiagent systems are "... concerned with coordinating intelligent behavior among a
collection of ... autonomous intelligent 'agents’ how they coordinate their knowlcdge, goals,
skills and plans jointly to take action or to solve problems”.

- Recently has developed a debate between proponents of ‘contemplative’ and of 'reactive’
systems, e.g. /Br/. In a contemplative system knowledge about other agents and the
environment is explicitly represented such that the agent is able to reason how to arrive at
some goal. A reactive system simply behaves on a stimulus-response basis within its
perceived surrounding.

The point of view taken in this article is predominantly within contemplative multi-agent systems.
Thus we deal with modeling scenanos with more or less sophisticated systems ("agents”)
interacting in some environment. Each agent perceives its surrounding. It has intentions and
some degree of autonomy and cooperativeness. To realize intentions an agent needs
resources, which in general are limited and have to be shared. An agent eventually undertakes
steps to realize intentions. The interaction among the agents consists of their mutual perception
and of coordinating activities.

Our aim is to cover a wide span of these kinds of scenarios with general control structures and
communication strategies for cooperative problem-solving. The main aspect of this article is a
control structure. The concepts are introduced in section 2. They are based on a general agent
model. This, as well as the problem solving and cooperation strategy of an agent, is based upon
its intentions, resources and behavior. The realization of the concepts is described in section 3
from the point of a system architecture, in which the cognitive skills of an agent are realized as a
knowledge-based system, and a test-environment for knowledge-based systems. In order to
illustrate the cooperative problem solving concepts we give an example from traffic securing and
optimizing systems in section 4. We conciude with an outlook in section 5.

2. Concepts

In this section we give a short overview of our agent model, as described in/Su/. The model is the
base of an agent architecture, the treatment of the cognitive skills of an agent, a testbed, and the
control structure for problem-solving and cooperation. Moreover we introduce a formal
description of the agent model and of the cognitive actions of an agent as it is the thorough
underpinning of the realization.

2.1 Agent Model
Overview

We think of a DAI scenario as a set of agents which exist in an environment and which interact

with each other and with the environment.

An agent perceives its surrounding, i.e. the environment and other agents, acts in accordance

with its intentions and needs resources for performing perception or actions.

— As for perception we distinguish between whether more than one agent is explicitly involved
(receiving messages from other agents) or not (sensing other agents and/or the
environment).

. — Whereas perception happens unintentionally and on a continuous basis, actions are

intended and can actively be planned and executed by an agent to any dasired moment.

We differentiate cognitive actions from effectoric actions. Cognitive actions of an agent can

not be directly perceived by other agents. They only become apparent by effectoric actions

they may initiate.

The effectoric actions are further divided into sending and acting.

Sometimes itis convenient to talk of behavior as comprising both actions and perception. The

complete taxonomy of behavior is shown in Fig.1.

behavior

actions

) cognitive effectoric
perception actions actions

sensin{\ /\acting

receiving sending

Fig.1: Taxonomy of 'behavior’

- Therole of intentions has recently been investigated in depth by e.g. /CL/, /W/. In accordance
with this work we distinguish long-term intentions, like superior goals, preferences, interests,
responsibilities as strategic intentions from tactical intentions (short- and mid-term intentions,
like subgoals, plans, and plan-steps). The difference can be seen in that tactical intentions
are directly bound to actions in contrast to strategic intentions.

— The technical term resources is used in a very broad sense and covers everything that is
needed for executing perception or actions. Thus resources may be divided into sensing
resources (physical sensors, the content of buffers, ...), sending and receiving resources
(communication hardware, low-level protocols, bandwidth message-queues, ...), acting
resources (robot arms, time, space, energy, ...), and cognitive resources (knowledge and
belief).

Intentions, behavior and resources are intimately tied together: Every intention is associated
with the necessary resources for realizing it, every realized intention is an action, and every type
of behavior needs and/or provides its typical resources. This interplay is exploited by other
authors too (e.g. /BIP/, /Is/), and more commonly covered under the topic "beliefs, goals, and
actions”.

The interaction among agents consists of their mutual perception and their coordination of
activities: comparison of intentions (to identify goal conflicts and common interests), adjustment
of resources (in case of resource conflicts and resource sharing) and synchronization of actions.

By our broad usage of the term resources this lastly amounts to the exchange of resources
among the agents and among an agent and the environment.

Formal Description

The agent model is formalized in terms of sets, relations and mappings.

As notation for the DAl scenario we introduce Scen = <AG, Env>, where AG is the set of agents
and Env the environment. Env and every element Ag; of AG are pairs themselves. The first
element of each pair is the generic description of the object, the other one the description of its
actual state. This distinction of descriptions holds throughout for all objects introduced in the
sequel.

An agent Ag; is characterized by the tuple <PERC;, ACTF;, INT;, RES;>.

The set PERC;, representing the perceptive behavior of agent Ag;, is divided as PERC; =
SENSING; U RECEIVING;.

For the actions we denote ACT;=CognACT; U EffACT; and EffACT= ACTING; U SENDING;.
For each agent Ag; the respective sets of intentions are INT;, StratINT;, and TactINT; with INT;
=StratINT; UTactINT;. The one-to-one correspondence between tactical intentions and actions
(realized intentions are actions and every action can be intended) gives rise to an isomorphism
between TactiNT; and ACT,;.

The setof resources RES; is the union of the sets of resources needed for executing the different
behavior types: SensingRES;, ActingRES;, SendingRES;, ReceivingRES;, and CognRES;. There
is a relation Execute(r,a) withr € RES; and a € ACT;, relating actions to the resources for
executing them. By the isomorphism of ACT; and TactINT,; a similar relation Realize(r,i) holds for
re RES; and ie TactINT;, relating the tactical intentions with the resources for realizing them.

The environment is completely characterized by its resources which it consumes or provides.

All elements of PERC; and ACT; are seen as mappings among resources (always referring to the
state description of the resources involved).

The elements sensing;, (the further index 'a’ numbering the elements in the respective set) of
SENSING; are mappings from the environment and from the acting resources of a subset AGg
of AG (these are those agents within the sensor range of the respective agent) to the sensing
resources of AG;

sensingia: Env x ActingRESgs— SensingRES;

and receivingixse€ RECEIVING; are mappings from the sending resources of an agent AG to the
receiving resources of agent Ag;:
receivingia: SendingRES, — ReceivingRES; .

Similarly
sendingika: SendingRES; — ReceivingRES,

The elements of ACTING; are mappings which invoive the acting resources of Ag;, and possibly
of the environment, and of other agents from subsets AGa and AGa- of AG. -

actingia: ActingRES; x ActingRESA x Env — ActingRES; x ActingRESa- x Env
The cognitive actions of Ag; only involve resources of this agent. These actions are described in
the following section.

2.2 Cognitive Actions

Cooperative problem-solving from our point of view is identical to cognitive actions. Informally it
subsumes the tasks o,
- analyzing observations (passive recognition of other agents and the environment by sensory
mears, receiving messages from other agents)
- moulding and reformulating tactical intentions
- checking resources
- considering actions
- preparing messages (determining receivers and formulating questions, demands and
informations).
A common treatment of all these different types of cognitive actions would have the advantage of
a standard frame of terms. However these tasks seem so different from each other, that a
common treatment is unfeasible. The basic distinction between unaware perception and
intended actions discussed in section 2.1 and the observation that the different tasks above can
be grouped as those analyzing perception, those preparing actions, and those providin¢, the
necessary resources, suggests the partition of the cognitive actions as
CognACT; = ANALYZE; U PREPARE; LU PROVIDE;
(In the sequel we drop the index 'i’ for the agent, since cognitive actions refer to only one agent,
per se.)

Cognitive Actions and Perception

Those cognitive actions which are concerned with the analysis of perceived data, i.e. the
elements of ANALYZE, are not treated explicitly by intentions of an agent. The functions
'analyze’ (here we drop also the index 'a’ numbering the functions) take the actual perceptive
resources arid turn these into a model of the perceived surrounding (Perc):

analyze: SensingRES x ReceivingRES — Perc < CognRES .

Cognitive Actions and Effectoric Actions

Those cognitive actions which deal with preparing effectoric actions (PREPARE) and with
providing the resources for acting and sending (PROVIDE) are treated explicitly by the tuple
<ACT, INT, RES>, since each agent aims to actin a percelved world according to its intentions
and on behalf of available resources.

The idea behind our treatment is the following: Each agent has a repertoire of generic actions
whichitis aware of. Generic actions are partially ordered in the sense that some have recourse to
others in form of execution procedures. At the top of this ordering are 'strategic’ actions StratACT
which only make sense in specific world situations. At the bottom of the ordering are 'primitive’
actions PrimACT.

The strategic intentions and the knowledge (or rather belief) of the state of the world (world model
WM with PERC < WM < CognRES) determine the chosen tactical intention of an agent.
adopt: WM x StratINT — adoptINT € TactiNT .
Committing to an adopted intention means to follow the partial ordering of the tactical intentions
(the ordering being inherited from the ordering of the elements in EffACT) and adopting
recursively intentions lower in the ordering
follow: TactINT — TactiNT
where the domain of the first mapping in this sequence is adoptiNT, and the sequence
terminates with those tactical intentions which correspond to the actions in PrimEffACT. -

in order to successfully follow a tactical intention, that is to have a chance to realize it, the agent
needs resources. So following an intention i means to obtain the necessary resources in
Realize(r,i). If the resources for an intention are available it is called executable, ExecINT <
TactiNT.

If the agent has the necessary resources at its disposal, the tactical intention can be realized
immediately. If resources are not immediately at the agents disposal they possibly may be
obtained frorn the environment or from other agents. This amounts to intending further generic
acting or sending processes with their necessary resources, etc. If resources are available, but
also needed by others, agents have to negotiate. Negotiation steps are also treated like generic
actions. If the resources are not available at all, the agent has to drop its originally chosen
intention, to adopt another one, follow it, and so forth.

The mappings in PREPARE are compositions of adopt and follow mappings,

prepare = adopt o follow* o [prepare] , :
where various follow mappings may be applied according to the recursive process mentioned
above and where this possibly has to be interrupted to start another prepare. Thus ultimately
prepare are mappings

prepare: WM x StratINT — primexecINT € TactINT .

Finally each provide mapping projects from Realize(r,execINT) those resources r which are
needed for the realization of the intention.

3. Realization

In this section we describe the realization of the concepts presented in the previous chapter. The
system architecture with its modular structure and the realization of the cognitive skills of an
agent as a knowledge-based system are described in sections 3.1 and 3.2, respectively. We
further briefly present our test-environment for cooperating knowledge-based systems in
section 3.3. -

3.1 Agents and their Modules

The features of agents which have been discussed in section 2.1 can be transformed aimost
uniquely into a modular system architecture with modules COGHMITION, responsible for
"cognitive actions”, SENSORS, responsible for "sensing”, ACTUATORS, responsible for
"acting”, COMMUNICATION, responsible for the connected pair of "receiving” and "sending”,
and INTENTION representing only strategic intentions, since, as discussed in section 2.2,
mouiding and revising tactical intentions is counted as cognitive actions.

The model of the DAI scenario is completed by a module ENVIRONMENT. The full architecture
is shown in Fig.2.

’1 SENSORS | COGNITION- B[ACTUATORS|—

A IR

ENVIRONMEN V

Fig.2: AGENTs and their Modules

The further system details of the modules largely depend on the specific application. Since we
are interested in modelling the cognitive skills of an agent we can specify COGNITION if we
decide on some paradigm.

3.2 COGNITION as a Knowledge-Based System

We decided to realize each module COGNITION as a knowledge-based system. Besides a
knowledge-base and a problem-solving component (as they are standard for isolated
knowledge-based systems), it contains a cooperation component.

-~ The knowledge base KB represents the cognitive resources of the agent.

— The problem-solving component PC performs those cognitive actions which an agent can
perform without coordination with other agents.

— The cooperation component CC is responsible for negotiation processes, suitable selecticn
of message types, resource allocation, and the like.

COGNITION has interfaces to the other modules as shown in Fig.3.

Knowledge Base

The knowledge which is explicitly represented in KB is;both the generic description of CognRES
(generic knowledge) and the actual state of CognRES; (actual knowledge).

As for structuring the knowledge we found the most natural and efficient way in a tree-like
decomposition with a number of composite objects. KB is composed of parts ’self’,
'other_agents’ and 'environment’. Each of these parts is divided into generic and actual
knowledge, and these in turn into knowledge about behavior, intentions and resources (except
for ‘environment’, which is solely described by resources).

— The part 'KB-self-generic-behavior’ contains knowledge about the agent’s repertoire of
generic behavior, except for cognit.on. (Although this would be an avenue to meta-levels of
problem-solving and cooperation we leave this out at present to avoid things like "intending to
adopt an intention”, or "obtain resources for adopting”.)

In our object-oriented implementation the data structure 'generic_behavior’ is a super-class
of other classes. It defines the slots with the name, an initial condition, an execution
procedure, and parameters of a generic behavior.

Only the class 'generic_effectoric_action’ contains as an additional slot the tactical intention
to which its instances are related (by the isomorphismy). Their initial conditions are matched
against entries within the knowledge base.

In contrast (but in accordance with the considerations in section 2.2) ‘generic_perception’ is
initialized by either message queues (for 'generic_receiving’) or sensor queues (for
'generic_sensing’).

— 'KB-self-generic-intentions’ contains knowledge both about strategic and tactical intentions.
The part with knowiedge about strategic intentions relates these to favorable strategic
generic behaviors. Knowledge about tactical intentions incorporates knowledge of resources
needed for realizing these intentions, that is Realize(r,i).

— 'KB-self-generic-resources’ describes each resource by its source (self, others,
environment), to which module it belongs and by which process it can be gained. If the source
is not 'self' this process is formulated as a negotiation protocol. - .

— The part 'KB-self-actual’ contains the knowledge about the intentions the agent is currently
trying to achieve, the behavior it is executing and the resources it has at its own disposal.

— 'KB-others-generic’ contains genetic knowledge about the typical behavior, intentions and
resources of the other agents in the scenario, whereas 'KB-others-actual’ is the knowledge
about those agents that are actually interacting with the agent. This knowledge is often called
knowledge about 'acquaintances’,e.g. in MACE /GBH/ or in the actor model.

— Knowledge about the environment is knowledge about the resources provided by the
environment, typically ('KB-environment-generic’) and actually ('KB-environment-actual’).

Y

Fig.3: COGNITION and its Interfaces

Problem-Solving Component

The task of PC is the analysis of sensing and the preparation of acting together with the provision
of its necessary resources. To simplify the wording we simply write 'actions’ for the elements of
ACTING, since as discussed, cognitive actions are not treated in this form, and since the
preparation of sending is delegated to the cooperation component.

The data flow within the problem-solving component is described as follows (comp. Fig.4).

P

»

]

gpdate / E
: Lworld model J

order determine
@ . \

| possible actions |

‘ decid

intended action |

commit

execute | tactical intention |

‘ obtain resources = order
resources I

PC : |

‘i execute
|

Fig.4: Data Flow within the Problem-Soiving Component

. The agent acts according to a default behavior, which directly derives from its strategic

intentions. This behavior is performed as long as nothing else happens, if the performance of
a generic action is interrupted or as long no new one has been chosen.

By analyzing new sensor data the models for the environment and for the other agents within
KB are updated.

. Possible actions are determined from the set of generic actions by comparing the world model

with the initial conditions of the generic actions.
If several possible actions exist, a decision for one of them is made by the strategic intentions.

. The agent commits itself to perform the chosen action.
. To realize the tactical intention i its necessary resources r from Realize(r,i) are checked:

— Ifthe necessary resources are immediately present, i.e. if they are at the agents disposal,
the adjoined generic action can be executed according to the execution procedure; see
step 7.

— If the necessary resources are not immediately available, the agent aims to get the
resources from the environment or from other agents.

The task to obtain resources from other agents is delegated to the cooperation component
CC; see next paragraph.

- Ifthe necessary resources cannotbe made available, the tactical intention is notrealizable

and a commitment to another generic action is to be made.

. A generic action is executed by following an execution procedure. In generz! this leads again

to a commitment to a tactical intention of an action lower in the partial order. The execution of
primitive_acting directly happens by calling the interface function to ACTUATORS.

Step 2 realizes part of the analyze mapping, steps 3 and 4 the adopt mapping, and steps 5 to step
7 the follow and provide mappings, as introduced in sect. 2.2.

Aside from following the seven-step procedure above, PC can be initiated on the level of
determining possible actions by an order from CC due to a request by another agent.

Cooperation Component

The two tasks of the cooperation component CC are to obtain resources from and to provide
resources to other agents. To fulfill these tasks CC negotiates (and for this communicates) with
other agents, i.e. prepares sending actions for COMMUNICATION and analyses receiving
messages from COMMUNICATION. According to our attitude of treating effectoric actions
different from perception, 'sending’ is described in terms of tactical intentions in contrast to
'receiving’.

Negotiation and communication follows protocols, like the contract net protocol /Sm/ or
knowledge interchange protocols /Cl/. As mentioned before, these protocols are represented as
generic_behavior.

CC is initiated by either an order from PC to obtain or provide resoﬁrces or by an incoming
message from another agent for providing resources.

a) If CC is initiated by PC to obtain a certain resource, CC takes the following steps (comp.

Fig.5a):

1. CClooks up the generic description of the resource in KB, where it finds ageneric_sending
which must be executed to obtain the resource.

2. This generic_sending is treated just like generic-acting within the problem-solving
component, namely by committing to a tactical intention, by checking and obtaining
necessary resources and by following an execution procedure, which eventually leads to a
primitive_generic_sending, i.e. a function which directly can be executed by
COMMUNICATION. ,

The resources (address of receiver etc.) are in our first approach assumed to be at the
agent's disposal, to prevent a recursive call of CC to itself.

b) dealing with incoming messages

a) dealing with an order by PC

S eneric resource
L9 | />| chosen receiving | —
ordel extract order

| |
execuU execute

|
intended sending <&
commit | world model J
Y
ﬁactica! intention J
execute obtaii
rcas
resou | cC
Y exacute
(R

Fig.5: Data Flow within the Cooperation Component

b) Otherwise CC 'observes’ the message queue, in order to handle incormning messages (comp.

Fig.5b):

1. There is generic_receiving that deals with incoming messages. Protocols specify special
receiving behavior for every message type they include. CC follows the respective
execution procedure.

2. The execution of primitive_receiving can have different effects: The content of the
received message can complete or change the world model as part of KB, the received
message can initiate (or follow) a negotiation as described in a) or it can determine an
acting behavior to be prepared (and executed) by PC.

As basic message types we presently use INFORM (where a reaction of the receiving agent is
not expected), QUERY (where the receiver is expected to send an answer), and DEMAND
(where an acting behavior of the receiver is expected). In accordance with the work of other
authors, e.g. /NT/, we will build dialogue structures from these three types.

3.3 Test-Environment

The knowledge-based systems, representing the cognitive component of the agents involved,
are embedded in our "Development And Simulation Environment for Distributed Intelligent
Systems” (DASEDIS). DASEDIS supports a realistic simulation and provides instruments for
implementing, inspecting, and observing interacting knowledge-based systems.

The architecture of this experimental t2ol is derived from the modular architecture of an agent.
Everything besides the knowledge-based systems, namely the modules SENSORS,
ACTUATORS, COMMUNICATION, INTENTION, ENVIRONMENT, is modeled within the
simulation component of DASEDIS. These modeis are exchangeable both within an application
as well as for a domain. The simulation can be visualized in the DASEDIS user interface. The
visualization is largely determined by the application. The other (application independent) tasks
of the interface are the integration-and connection of the simulation component and the
development component. The development component serves as basis for the implementation
of the various components of the knowledge-based systems, for the inspection of the knowledge
bases, and for the observation of the problem-solving and the cooperation component.
DASEDIS provides methods for implementing agents, control and communication strategies by
basic data structures.

4. Example

Our first application is drawn from the area of traffic securing and optimizing systems. This can
be road bound or unbound two-dimensional traffic (cars or ships), or three-dimensional traffic
(air planes or space vehicles). We presently concentrate on road-bound traffic in our project
COroad. A comparable application is described in /L/.

In this seclion we introduce a scenario and describe the solution of a simple overtaking
maneuver using the problem solving and cooperation mechanisms described before.

L

4.1 The COroad-Scenario

We started with a very simple scenario, in which two to ten agents (with possibly different
performances and intentions) move on a two or three-lane highway. They change lanes and
overtake, or they enter or leave convoys. Each agent has partial knowledge about parameters
(for example velocities, vehicle type), relative position (distance, lane) and intentions of other
agents. Each agent decides with respect to the perceived world and with respect to its strategic
intentions of whether it should drive with a certain speed, adopt the speed of another agent,
overtake, or interrupt an overtaking maneuver. These correspond to strategic generic behavior
"ride”, "follow”, "overtake”, "interrupt-overtaking”. The default generic behavior is "ride”, which is
performed if no other agent is involved.

The vehicle model in ACTUATORS describes the rough geornetry of the vehicle, its velocity, its
acceleration/braking behavior. Different vehicle types are characterized by their maximal
velocity and their power/weight ratio. The simulation functions are "drive”, "brake”, "accelerate”,
"change lane”. Thus these are the primitive acting types. The driver model in INTENTION
describes the attitudes and long term goals of a driver, such as driving cautiously, economically,
fast. SENSORS "measure” the relative position of other vehicles. COMMUNICATION simulates
the communication between vehicles. ENVIRONMENT describes the road in its topology, its
qualities, as well as restrictions due to speed regulations and the like.

The knowledge base KB contains generic knowledge like the "driving school knowledge”,
models of other typical agents (ordinary cars, trucks etc.) and of the typical environment
(two-lane, three-lane highway) as well as actual knowledge like parameters describing the
environment, the current own data (velocity etc.), the actual problem solving state with respect to
intentions, behavior,, and resources, as well as the state of other agents (this however being
incomplete).

The DASEDIS user interface allows the user to input vehicle data and driver’s strategic
intentions. As output it shows the scenario in a graphical form (vehicle symbols moving on a road
drawn on the visualization window) and parameters of selected vehicles.

4.2 An Overtaking Maneuver

Bonnie is a time-saving driver. She likes to drive as fast as possible. If no other agent is within her
'zone of relevance’ on the highway she adopts the default behavior "ride” with the maximum
power.

(def-generic-acting ride
zinit-cond .default
;exec ((drive :speed (resource vehicle-max-speed)))

:tact-intention ‘to-ride)
(In italic letters we state in a CommonLISP and CLOS like notation those pieces of generic
knowledge which Bonnie uses).

At a certain moment her SENSORS register another agent (Clyde) on the same lane before her
and with a decreasing distance. As soon as the distance becomes smaller than a trigger distance
Bonnie has to decide what to do. Her problem-solving component determines two kinds of
(strategic) generic acting behaviors to be applicable in this situation, namely 'overtake’ and
‘follow’.

(def-generic-acting overtake
;init-cond (and (same-lane-before-p $vehic-before-me $self)
(distance-decreasing-p $vehic-before-me $self)
(< (distance $vehic-before-me $self)
(trigger-distance)))
:exec ((change-lane direction :left)
(pass-by)
(change-lane :direction :right))
Atact-intention 'to-overtake)

(def-generic-acting follow
;init-cond (and (same-lane-before-p $vehic-before-me $self)
(distance-decreasing-p $vehic-before-me $seff)
(< (distance $vehic-before-me $self)
(trigger-distance)))
:exec ((drive (resources desired-speed-follow)))
tact-intention ‘to-follow)

Matching these with her strategic intention to drive time-saving Bonnie decides to overtake:
(def-generic-strategic-intention drive-time-saving
:favorable-behavior ‘'(overtake))

(det-generic-strategic-intention drive-economic
:favorable-behavior ‘(follow))

So, Bonnie commiits to the tactical intention 'to-overtake’.

(def-generic-tactic#l-intention to-overtake
‘resources '(ok-to-overtake))

(def-gene ic-resource ok-to-overtake
‘provic *d-where :others
.proviaad-by $vehic-before-me
-provided-how ’((send-demand :content ‘stay-on-lane
:receiver $vehic-before-me)))

The only resource needed for overtaking is an 'ok’ by Clyde. This resource is provided by :others
and is provided through sending a demand to Clyde that he should stay on his lane. Assuming for
simplicity that Clyde answers "ok” to this demand, Bonnie’s cooperation component inserts this
answer into the knowledge base. As soon as the resource 'ok-to-overtake’ is available Bonnie
can execute the behavior 'overtake’.

The first action to take (as stated in the :exec-attribute of overtake) is to change to the leftlane. A
tactical intention 'to-change-lane’ is formulated:

(def-primitive-generic-acting change-lane

:exec 'simu:change-iane
:tact-intention 'to-change-lane
.params (.direction))
(def-generic-tactical-intention to-change-lane
resources (new-lane-no range (road new-lane-no range)))

(def-generic-resource road
provided-where :environment
provided-by :environment)

Here Bonnie needs as resource a certain range on the new lane to be free. Assuming that in
checking this resource she finds in her own actual knowledge (in the part :environment), that the
road on the new lane is free (the knowledge about the environment coming from her SENSORS).
So the execution procedure of ‘change-lane’ can be followed. Since itis a simulation function, itis
directly executed in AC 'UATORS.
The next step in the execution procedure of ‘overtake’ is 'pass-by’.

(def-generic-acting pass-by

:exec ((drive :speed (resource desired-speed-pass-by)))
:tact-intention 'to-pass-by
Jparams (:direction))

(def-generic-tactical-intention to-pass-by
:resources (desired-speed-pass-by))

(def-generic-resource desired-speed-pass-by
;provided-where :self
.provided-by .cognition)
So in order to pass-by, Bonnie needs to know the speed by which she wants to pass by.
Assuming a flying overtaking (and a flat highway) this is her current speed, knowledge of which is
in her own KB. She can execute 'pass-by’, which is finally to drive with a given speed.
(def-primitive-generic-acting drive
:exec simu:drive
:tact-intention ‘to-drive
Jparams (:speed))

(def-generic-tactical-intention to-drive
resources (desired-speed-drive
(> vehicle-max-speed desired-speed-drive)))

(def-generic-resource desired-speed-drive
.provided-where :self
Jprovided-by :cognition)

(def-generic-resource vehicle-max-speed
:provided-where :self
.provided-by :actuators)
The only resource of drive is that this speed is not allowed to be than the maximal speed the
vehicle can drive. Drive, being a primitive acting behavior, is executed by ACTUATORS.

The last step of overtaking is to change back to the right lane. Again the resource 'road’ is
checked, as long as the road on the right lane is not free, Bonnie keeps on driving on her current
lane, when she has passed by Clyde the resource 'road’ is available again and she can change
to the right lane. Bonnie has overtaken Clyde. Afterwards she returns to the default behavior
"ride” with her favorable speed.

What is demonstrated in this example is the interplay between the selection of a (strategic)
generic behavior, the forming of the corresponding tactical intention, the checking and obtaining
of resources and finally the execution of the behavior in a recursive manner until a primitive
behavior, i.e. a simulation function is reached.

5. Conclusion and Outlook

The work described in this article is part of our COSY project /BS/. The aim within COSY
(COoperating SYstems) is to arrive at a systematics for the design of cooperating systems. We
pick up the loose ends from existing theoretical and empirical research results in DAl and
investigate concepts in carefully directed experiments.. The concepts are implemented and
evaluated in order to find out control structures and communication strategies most appropriate
for large classes of applications.

For the purpose of testing and comparing existing results and for refining and extending them a
very general agent model and a very broad concept of cooperative problem-soiving is needed.

As argued elsewhere /Su/, our agent model being based on intentions, resources and behavior,
covers other approaches like state-, actor-, role-, and organization-oriented ones.

Also the data and control flow presentedin this article is meant to set ageneral frame for specific

types of cooperative problem solving.

— The control structure in the problem-solving component allows to mix methods of classical
planning (where resources are to be seen as STRIPS-like preconditions) with script-based
planning (where generic actions are tied to stereotyped situations), which allows a quick
solution for complex problem-solving.

— By techniques to be described in a forthcoming publication, we are able to give reactive
abilities to the cooperative planning process.

— The control flow within the cooperation component can subsume different cooperation
strategies. We want to demonstrate and utilize this by forming various cooperation strategies
as "prefabricates” of the development component in DASEDIS.

The advantage of our approach should be seen in that the original paradigm of knowledge-
based systems, namely the separation of domain knowledge from a general problem solving
procedure, is extended to interacting knowledge-based systems including cooperation.

Lastly, by the basic assumption that agents are motivated to act by some sort of intention
influenced by their perceived surrounding gives the conceptual framework a good chance to

investigate the interplay of goals, belief and actions and its refation to ability, organizations and
roles.

References

/BG/ A.H.Bond, L.Gasser (eds.): "Readings in Distributed Artificial Intelligence”, Morgan
Kaufmann, 1988

/BIP/ M.E.Bratman, D.J.Israel, M.E.Pollack: "Plans and resource bounded practical
reasoning”, Comput. Intell. 4 (1988) 349-355

/Br/ R.A.Brooks: "Intelligence without representation”, Artif. Intell. 47 (1991) 139-159

/BS/ B.Burmeister, K.Sundermeyer: "COSY: A Project for the Methodology of Multi-Agent
Systems”, Draft Proc. CKBS, Univ. Keele, Oct.90

/Cl/ J.A.Campbell, M.P.D’lverno: "Knowledge Interchange Protocols”, in: Y.Demazeau, *
J.P.Mdller (ed.), Decentralized A.l. (Proc. MAAMAW °'89), Elsevier/North-Holland,
1990, pp. 63-80

/CL/ P.R.Cohen, H.J.Levesque: "Intention is Choice with Commitment” Artif. Intell. 42 (1990)
213-261

/GBH/ L.Gasser, C.Braganza, N.Herman: "MACE: A Flexible Testbed for Distributed Al
Research”, in: M.N.Huhns (ed.), "Distributed Artificial intelligence”, Pitman & Morgan
Kaufmann, 1987

/Is/ T.Ishida: "CoCo: A Multi-Agent System for Concurrent and Cooperative Operation
Tasks”, in: M.Benda (ed.), Proc. 9th Woritsshop on Distributed Artificial Intelligence,
1989, pp.197-213

v P.Levi: "Verteilte Aktionsplanung fiir Autonome Mobile Agenten”, in: K.v.Luck (ed.),
"Kinstliche Intelligenz”, Informatik Fachberichte 203, Springer, 1989

/NT/ Ch.Numaoka, M.Tokoro: "Conversation among Situated Agents”, in: M.N.Huhns (ed.),
Proc 10th Workshop on Distributed Artificial Intelligence, chapter13

/Sm/ R.Smith: "A Framework for Distributed Problem Solving”, UMI Research Press,
1979,1981

/Su/ K.Sundermeyer: "Modellierung von Szenarien Kooperierender Akteure”, in:
H.Marburger (ed.), German Workshop ¢n Atrtificial Intelligence: GWAI-90, Springer,
Berlin, 1990, pp.11-18

W/ E.Werner: "Social Intentions”, Proc. ECAI-88, pp.719-723

A Multi-Agent Analogical Representation
for Physical Objects*

Luca Maria Gambardella and Marc Haex

IDSIA, Istituto Dalle Malle di Studi sull’Intelligenza Artificiale
Corso Elvezia 36 - CH - 6900 Lugano
Phone: +41 91 22 88 81 Fax: 441 91 22 89 94

Email: luca@idsia.uu.ch marc@idsia.uu.ch

Abstract

The topic of this paper is a representation model
for solid objects used for physical simulation pur-
poses and for planning in a robot assembly sys-
tem. The system combines analogical representa-
tion and multi-agent modelling, using a bottom-
up representation for objects based on analogical
agents. We call these agents analogical because
they are mapped into, interact with and reason
directly on the workspace representation, which is
a discrete grid. The agents contain local geomet-
rical and physical constraints and they cooperate
to satisfy them while moving in the direction of an
external force and interacting with other objects in
the workspace. An emergent functionality of the
simulation of a block moving in a complex environ-
ment is the solution to various stability problems.

1 Introduction

Simulation is a frequently used technique in many
fields. In planning systems it is a valuable method
to check whether the execution of the planned ac-

*This research is supported by Swiss National Project
NFP23 “Au.omatic Assembly based on Artificial Intelli-
gence”. The project is a collaborative effort of Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (Lugano),
Institut de Microtechnique Ecole Polytechnique Federale de
Lausanne and Institute de Mathematiques et Informatique
Universite de Neuchitel.

tions will lead to a successful state without hav-
ing to try them in the real environment. This
paper deals with the simulation of physical ob-
jects, i.e. objects moving according to some force
and colliding with other objects in the environ-
ment. Consider for instance an object falling
onto the edge of a table: it will hit the table,
rotate around some pivot touch point and fall
further down until it hits another object or the
ground. In this paper we will present a system
modeling this kind of behaviour in 2 dimensions
with polygonic solid shapes. We will describe a
bottom-up representation for these objects, con-
sisting of autonomous agents, and show how the
global behaviour emerges from the interaction of
these agents. We will call these agents analogical
because they are mapped into, interact with and
reason directly on the workspace representation.

This kind of analogical simulation has previ-
ously been applied to other physical systems like
liquids [DKS91] [GM89] and strings [GGMS89].
The use of analogical representation is fostered by
the nature of the problem. Simulating complex
physical systems using exclusively symbolic infor-
mation would result in low accuracy when detailed
spatial knowledge is needed.

A key example of an analogical simulation pro-
gram is WHISPER, described in [Fun80]. It is
able to detect and simulate instabilities in a blocks
world using diagram representations. WHISPER

has similar functionalities to those of our system
but uses centralized high-level reasoning on low-
level distributed analogical representation to cre-
ate the envisionment of object configurations. Our
system tries to avoid this global centralized con-
trol by distributing among the constituent agents
the necessary local behaviour to obtain a correct
global result. We will obtain the same result, with-
out explicitly describing the movement of an ob-
ject; the required functionality emerges from in-
ternal communications and interaction with the
environment. The importance of the use of ana-
logical representations in autonomous agent orga-
nizations is explained in [Ste89).

The next section describes the different kinds
of agents that our representation consists of. The
third one explains how agents cooperate to obtain
the desired behaviour. This is followed by a dscus-
sion of the main characteristics,lim ts and passible
applications of the analogical agen.s approach.

2 Agent Architecture

Before explaining the different kinds of agents, it is
important to notice that the underlying workspace
is a discrete grid; this means a two dimensional ar-
ray of cells. Each object occupies a number of cells
according to its size and shape. Objects are con-
sidered to be two-dimensional, solid, non-elastic
polygons. The cells making up the contour of the
polygon contain two kinds of agents, namely node
agents on the nodes of the polygon and contour
agents on the edges between the nodes. These two
kinds of agents are organized in a two-level hierar-
chy in which the contour agents are subordinated
to the node agents in the sense that they serve
as analogical sensors and their position depends
on the geometrical information contained in the
node agents. Node agents contain the necessary
local rules that determine the geometrical shape
and the non-elasticity property of the objects. For
reasons of efficiency, the cells that fill up the poly-
gon remain empty. A third kind of agent which is
not a real part of an object, but which is physically
attached to it is the force agent. It represents the

Heovannaa: aa

Figure 1: A node agent and its geometrical infor-
mation.

qualitative force acting on the object and will play
an important role in the simulation behaviour of
the agents. By a qualitative force, it is meant that
it only gives an indication of the direction of the
force. Notice that the granularity of the workspace
grid influences the accuracy of our model, because
it determines the unit of the size that an agent
can move. The following paragraphs will describe
these agents, giving their knowledge and positional
constraints.

2.1 Node Agents

Node agents are positioned on the angular points
of the polygonal object. The necessary geomet-
rical information about the object is distributed
over these agents. Each node agent n contains the
following information slots (see Figure 1):

e A position (z,y) denoting a cell in the
workspace grid.

e Links to the two neighbouring node agents:
Npy and ny.

e The distances d; and d, from n to resp. np
and ny2.

¢ The angle a between the two neighbouring
node agents.

o The orientation ¢ of the latter angle. This is
a variable.

¢ A link to the two direct contour agents of n,
as described in the next paragraph.

d;, do and « are set at creation time and re-
main constant all the time. They represent the
constraints for a node agent and they are used to
describe the geometrical shape of the object. The
constant angle o expresses the non-elasticity con-
straint for the object and dj, d, tell that the object
is not extensible. The angle ¢ describes the ori-
entation of the fixed angle in the workspace. At
each time step the angle and the distances between
n and its two neighbour agents have to be equal
to a and to d; and d;. Each node agent checks
its constraint by asking the two neighbour node
agents for their position and from computing the
actual distances dj, d3 and angle a’. When these
constraints are not satisfied the agent can correct
them by changing its position or by asking n;; or
ngg to adapt their position in order to obtain the
correct value for d}, d} and angle /. Another con-
straint is that each cell normally contain a single
agent (i.e. a node or contour agent), which implies
that the node agent will always check a cell before
it tries to occupy it.

2.2 Contour Agents

Contour agents are positioned on the edges be-
tween the node agents. Each contour agent ¢ con-
tains the following information slots (see Figure 2):

¢ A position (z,y) denoting a cell in the
workspace grid.

¢ A link to the two neighbouring contour agents
¢y and c¢yo.

¢ A link to the two node agents n; and n, at
the ends of the edge on which ¢ is positioned.

Figure 2: A contour agent and its geometrical in-
formation.

o A distance d to one of the two node agents
mentioned in the previous slot.

The constant d represents a positional constraint
for the agent. Each time the object moves, the
contour agents have to recompute their new po-
sition using the constant distance d and the links
to the node agents. When it tries to change po-
sition it will make sure that it does not occupy
a cell already occupied by another object. The
purpose of contour agents is to act as analogical
sensors, i.e. to detect contact between the object
and other objects represented as filled cells in the
workspace.

2.3 Force Agent

The force acting on an object is represented by a
force agent, which is positioned at the cell con-
taining the point of application of a force. For
instance, for an object falling under gravity this
will be the center of mass. The knowledge of a
force agent f is contained in the following slots
(see Figure 3):

e A position (z,y) denoting a cell in the
workspace grid.

Figure 3: A force igent and its geometrical infor-
mation.

¢ A qualitative force vector f denoting the di-
rection of the force.

e A constant angle ¢ and distance d denoting
the relative position of the force agent to the
object.

The force agent’s positional constraint is relative
to that of the node agent and is contained in the
constants ¢ and d. After each timestep the actual
values for this angle and distance are computed
and if necessary the agent’s position is corrected.
The force vector can be either static or can be
changed by an external controller. Also, in order
to consider multiple moving objects, a force prop-
agation protocol between colliding obstacles could
be considered.

2.4 The communication protocol

In order to satisfy their constraints and their goal,
which we will describe in the next section, com-
munication between the agents will be necessary.
Between node agents and contour agents this oc-
curs according to an actor protocol, which means
that agents can only communicate directly with

those agents that they know about, and that com-
munication is done by message passing. These
communication abilities are called links in the pre-
vious paragraphs. Notice that between the node
agents a doubly linked circular list exists, as for
the contour agents. Node agents have links with
their direct neighbouring contour agents, which
implies that by message passing each node or con-
tour agent can reach every other node or contour
agent. Contour agents can use a shortcut link to
the node agents of their edge, for performance rea-
sons. The force agent can communicate with every
other agent and vice versa.

3 Agent Behaviour

In this chapter we will describe the behaviour of
the agents to obtain global movement of an object
according to a force applied to it. We will con-
sider one object moving in the workspace contain-
ing static obstacles. The point at which the force
is applied is considered to be the center of mass
of the object. Forces applied at points other than
the center of mass result in a torque and rotational
movement, even in free space.

3.1 Unconstrained Translation

When a force is applied to an object a force agent
is created and attached to it. Now, the goal of
the node agents is to try to move in the direc-
tion of the force. The node agents will try to oc-
cupy the neighbouring cell in the workspace grid
according to the required direction, consequently
the contour agents will change their position in or-
der to remain on the correct edge position. If ev-
ery agent successfully changes position, i.e., does
not try to occupy a filled cell, the result will be a
one cell translation of the object. The positional
constraints of the node agents will remain satisfied
and no complicated communication will be needed
to resatisfy them and the force agent will start a
new movement instruction.

3.2 Stability Problem

When an agent tries to occupy a cell that is already
occupied by another object, it will not change po-
sition. If this happens for one or more agents the
-agent configuration will not conform to the object
" initially modeled. At this point the agents will
" have to negotiate to satisfy their local constraints
and to obtain a new configuration conforming to
the initial geometry and the movement caused by
the force. Because we deal with only one mov-
ing block in a workspace, containing only static
obstacle blocks, we can distinguish two situations.
The first is that the moving object is completely
blocked by the others. The second possibility is
that the object is only partially blocked and it will
start rotating around a pivot touch point, which
is the touch point closest to the center of mass.
This is the so-called stability problem. We will
show how we obtain this global behaviour, with-
out really having the high-level notion of stability
or rotation around a pivot point, but by coopera-
tion among the agents in the bottom-up represen-
tation. The general idea is that two agents will be
selected, one on each side of the force vector (see
Figure 4 and 5), from which the reconstruction
protocol will be initiated.

These two agents are called selected and are
found in the following way. First each contour
agent which wss unsuccessful in trying to occupy-
ing its desired cell, looks to see whether both its
neighbours are in the same condition. If this is not
the case the agent knows that it is the last one in
a series of touching agents (and thus candidate for
a pivot point).

In Figures 4.2 and 5.a these are the contour
agents which are marked black.

These candidate pivot points communicate with
the force agent and compute their distance from
the force vector. For each side of the force vector
the agent having the shortest distance is marked
as selected. In Figures 4 and 5 this leads to the
marking of the contour agent which is labeled f;.

If this results in two selected agents a reconstruc-
tion protocol is started. In the case of only one

f2

(b)

——0

Figure 4: An unstable situation. 4.a Shows an
agent configuration after a collision with a static
obstacle. Agents fi is first chosen ta be the selected
agents, Node agent f; is chosen to be the second
selected agent. 4.b shows the resulting configura-
tion after the reconstruction.

selected agent the nearest node agent at the other
side of the force vector is chosen to be the second
selected agent (Node agent f; in Figure 4).

These two agents determine how the positions of
the rest of the agents are corrected. This is done
in the following way: the selected agents communi-
cate to their neighbours to change their position in
a way to satisfy the constraints. These in turn do
the same with their neighbours. When the loop is
closed all constraints are satisfied and a new move-
ment can be started. Notice that the first case of
finding two selected contour agents, each on one
side of the force vector, agrees with a stable sit-
uation while the second case means an unstable
situation. Examples of resulting configurations af-
ter this correction are shown in Figures 4 .b and
5 .b.

(2)

(b)

Figure 5: A stable situation. 5.a Shows an agent
configuration after a collision with a static obsta-
cle. Agents f1 and f; are chosen to be the selected
agents. 5.b shows the resulting configuration after
the reconstruction.

4 Characteristics, Applications
and Limits of the System

The main difference between our multi-agent ap-
proach and high-level approaches, like the WHIS-
PER system by Funt [Fun80] , is that we do uot
explicitly code the global physical behaviour, but
it emerges from the interaction between agents.
In WHISPER a high level reasoner first checks a
blocks configuration for instabilities, choses a pivot
point and simulates the rotation explicitly. Our
system does not have an idea of instability or ro-
tation, agents always apply the same behaviour
of moving in a certain direction and if necessary
recover from an abnormal situation. In order to
distinguish between a stable or unstable configu-
ration the global behaviour must be interpreted
externally by looking at the workspace grid or in-
ternally by monitoring the behaviour of individ-
ual agents. For stability, it is sufficient to observe
the movement of the agents. This explains the

need for an interpreter module to extract informa-
tion relating to the status of a simulation system
which uses distributed representation and control.
In [Gam91] the use of an analogical string simula-
tion in an automatic assembly system applying a
planning, simulating and interpreting loop is de-
scribed.

A possible application of this physical block sim-
ulation in robot assembly could be the simulation
of an object following a path, defined by the plan-
ner and represented as a series of forces in the
workspace. The system could monitor the object,
evaluate the success of the result using as a basis
for recovery planning or execution of the plan in
the real 2nvironment.

For this kind of application the current func-
tionality will be sufficient. For other applications
it will be necessary to cover more complex func-
tionalities like velocity, acceleration ob ject surface
properties and other dynamic features of a phys-
ical object. To be able to take these features
into account for simulation the current qualitative
knowledge of the agents needs to be extended with
a more quantitative one.

5 Conclusions

We have described a model of physical ob jects for
simulation purposes which relied on autonomous
agents, bottom-up descriptions, constraint satis-
faction and the use of local and analogical infor-
mation.

The result of the simulation of 2 moving block
in a complex environment implicitly solves the sta-
bility problem, not by global reasoning, but by co-
operation between autonomous agents.

Analogical representations are used to represent
both the workspace and the changes that are made
in it.

We mixed this strength of analogical representa-
tions with the power of autonomous agent systems
which lies in the capabilities of agents to cooperate
and communicate to satisfy their local constraints.

An implementation of the model serves as a ba-
sis for further research. One goal is to expand the

model to cover multiple moving ob jects and prop-
agation of forces. Another goal is to use the model
in robot assembly, in which we simulate a grasped
object moving in its workspace.

[DKS91]

(Fun80]

[Gam91]

[GGMS9]

[GMS89]

[Ste89]

References

Jo Decuyper, Didier Keymeulen, and
Luc Steels. A qualitative model for the
behavior of liquids in daily-life circum-
stances. In First European Workshop
on Qualitative Reasoning About Phys-
ical Systems, Genova, Italy, January
1991.

Brian V. Funt. Problem-solving with di-
agramm atic representations. Artificial
Intellige nce, 13(3):201-230, 1980.

Luca Maria Gambardella. Simulation
and planning with multiple represen-
tations. In Al, Simulation and Plan-
ning in High Autonomy Systems, Cocoa
Beach, Florida, April 1991.

Luca Maria Gambardella, Francesco
Gardin, and Bernard Meltzer. Ana-
logical representation of naive physics.
In Second Workshop on Qualitative
Physics, Paris, France, 1989.

Francesco Gardin and Bernard Meltzer.
Analogical representations of naive
physics. Artificial Intelligence, March
1989.

Luc Steels. Cooperation between dis-
tributed agents through self - organi-
sation. In Yves Demazeau and J.P.-
Miiller, editors, Decentralized A.IL., Pro-
ceedings of the First European Work-
shop on Modelling Autonomous Agents
in a Multi-Agent World, Cambridge,
England, August 1989.

Variable Coupling of Agents to their Environment:
Combining Situated and Symbolic Automata

Extended Abstract

George Kiss
The Open University
Walton Hall, Milton Keynes
MK7 6AA
England
Email: gr_kiss@vax.acs.open.ac.uk

The paper identifies generality and power (processing work per unit time) as two major
but conflicting requirements for the design of autonomous intelligent agents. A
separation of these two concerns leads to the notion of a variable degree of causal
coupling between parts of a mechanism and its envircnment in terms of space and time.
Recent controversies surrounding sub-symbolic processing, symbol-grounding,
situated agents and reactive architectures can all be interpreted as manifestations of the
pressure towards power by close coupling to the environment. Classicai Al
approaches based on symbolic processing, planning, general problem solving
methods, the use of logic can all be interpreted as manifestations of the pres: are
towards generality by loose coupling or decoupling from the environment. An
implementation strategy for variable coupling can be a layered architecture, where the

decoupled higher layers support generality and the close coupled lower layers support
power.

The consequences of these distinctions for the choice of representations and
processing strategies is discussed and illustrated.

Some historical precedents and current implementation efforts towards such
architectures are reviewed.

It is postulated that the topmost layer of such an architecture continues the layering
indefinitely by having reflexive capabilities. It is also assumed that the distributed
structure of this layer also supports the availability of "common information" at each of
its components.

It is then shown that this layer is associated with phenomena of the agent's self,
consciousness, subjectivity and "free" will.

The availability of common information at each component of the layer enables
coordinated action and thus produces the unitary nature of the agent's self.

The role of consciousness is to support generality by being a modality-independent
representation system in the architecture. Representations within this layer correspond
to the subjective meaning extracted from the incoming information.

If there are nonlinearities present, the reflexive processing is capable of chaotic modes
of behaviour. It is proposed that the unpredictability of agent action and hence the
impression of free will are due to the fact that chaotic processes act as generators of
information. This resolves the ontological conflict between determinism and free agent
action. Chaotic processes are deterministic but are informationally decoupled and
hence opaque, unpredictable, from an observer's point of view.

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 1

Toward an Architecture
for Adaptive, Rational, Mobile Agents!

Innes A. Ferguson

Computer Laboratory
University of Cambridge,
Cambridge CB2 3QG, UK

Tel.: +44 223 334421

Fax: +44 223 334678
E-mail: iaf@cl.cam.ac.uk

July 7, 1991

Abstract

It is becoming widely accepted that neither purely reactive nor purely delibera-
tive control techniques are capable of producing the range of behaviours required of
intelligent agents in dynamic, unpredictable, multi-agent worlds. We present a new
architecture for controlling autonomous, mobile agents - building on previous work
addressing reactive and deliberative control methods. The proposed multi-layered
control architecture allows a resource-bounded, goal-directed agent to react promptly
to unexpected changes in its environment; at the same time it enables the agent to
reason predictively about potential conflicts by constructing and projecting theories
which hypothesize other agents’ intentions.

The line of research adopted is very much a pragmatic one. A single, common
architecture has been implemented which, being heavily parameterized, allows an
experimenter to study functionally- and behaviourally-diverse agent configurations. A
principal aim of this research is to understand the role different functional capabilities
play in constraining an agent’s behaviour under varying environmental conditions. To
this end, an experimental testbed comprising a simulated multi-agent world has also

been constructed. Some preliminary experience with the new control architecture is
described.

'This work was supported by a Bell-Northern Research Postgraduate Scholarship and a CVCP Overseas
Research Student Award. I would also like to thank William Clocksin and Julia Galliers for their helpful
advice and support, and Barney Pell for many fruitful and enjoyable discussions.

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 2

1 Introduction

In order to survive and thrive in complex, real-world domains, future robotic agents will
need to be made considerably more robust and adaptive than they are at present. Such
domains (e.g. factory floors or space stations) are likely to be populated by multiple agents,
each pursuing any number of goals. Because agents have incomplete knowledge about
the world, it is inevitable that some of these goals will conflict. In real-world domains
agents typically perform complex tasks requiring some degree of attention to be paid to .
computational resource bounds, temporal deadlines, and the impact their shorter-term:
actions might be having on their longer-term goals. On the other hand, time never stops
or slows down for agents to deliberate upon all possible courses of action for every world
state. Intelligent agents will require a range of skills to respond promptly to unexpected
events, while simultaneously being able to carry out pre-programmed tasks and resolve
unexpected conflicts in a timely and efficient manner. Not surprisingly, it is becoming
widely accepted that neither purely reactive nor purely deliberative control techniques are
capable of producing the range of robust, ilexible behaviours desired of future intelligent
agents.

In this paper we present a new multi-le.yered architecture for controlling autonomous,
mobile agents or TOURINGMACHINES whi-h combines capabilities for producing a range
of reactive and deliberative beha+iours in dynamic, unpredictable domains. This new
approach is influenced on the one nand by recent work on reactive and behaviour-based
agent architectures [Bro86, Fir87, Kae87], and on the other by more traditional Al endeav-
ours such as planning, diagnostic theory formation [PGAB86], resource-bounded reasoning
[PIB87], and belief and intention modelling [Bra87, GLS87, PIB8&7].

Our research adopts a fairly pragmatic approach toward understanding how complex,
dynamic environments might constrain the design of agents and, conversely, how different
functional capabilities within agents might combine to generate different behaviours. To
evaluate the TOURINGMACHINE architecture we have implemented a multi-agent simu-
lation testbed. By varying parameters constraining agents’ functional capabilities (e.g.
sensing characteristics, attentional powers, degree of reactivity, world modelling powers)
or parameters characterizing the environment itself (e.g. number of agents and obstacles,
ratio of cpu time to simulated-world time), we can study a number of tradeoffs vis-a-vis
how much reacting, planning, and predicting resource-bounded agents should be doing in
order to behave rationally with respect to their goals.? In many ways, our approach to eval-
uating agent designs resembles the empirical approaches used in the Phoenix [CGHHB89]
and Tileworld [PR90] projects.

In our example domain we consider one or more agents, each with the task of following
a different route from some starting location to some goal location within certain time
bounds. Each agent starts with some geographical knowledge of the world (e.g. locations
of paths and path intersections), but has no prior knowledge regarding other agents’
locations or goals or static obstacles it might encounter along its route. An agent can
communicate its intentions to turn or overtake by signalling - much like a driver does
in a car — and can only consume up to some fixed number of computational resources
per unit of simulated world time. Before discussing specifics of the TOURINGMACHINE
architecture, its implementation, and its simulation testbed, we consider some important
requirements for intelligent agency.

*The definition of rational behaviour used here is borrowed from Pollack et al. [PIB87)] and corresponds
to “the production of actions that further the goals of an agent, based upon [its] conception of the world.”

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 3

2 Intelligent Agency

In recent years there has been considerable growth of interest in the design of intelligent
agent architectures for dynamic, unpredictable domains. One popular design approach
- whose resulting architectures we’ll call deliberative — attempts to endow agents with
sophisticated control by embedding in these a number of general Al capabilities such as
means-end reasoning, epistemic modelling [PIB87], plan recognition [Wo090], or natural
language understanding [VB90]. Influenced principally by the fruits of classical Al plan-
ning research, deliberative architectures have been designed both to handle complex goals
(e.g. those involving action-at-a-distance, resource constraints, or multiple agents) and
to operate flexibly in unpredictable or novel situations (e.g. by performing contingency
planning or analogical reasoning). This generality, however, exacts a price; by virtue of
having to maintain complete, up-to-date world models, deliberative architectures can be
resource-intensive and are usually slow at making critical decisions in real-time situations.

Breaking with the traditionally held belief that “complex” architectures are required
to produce intelligent agent behaviours, a number of non-deliberative (e.g. reactive [Fir87],
situated [AC87, Mae90], and behaviour-based [Bro86, Kae87]) architectures have recently
been proposed. These architectures are characterized by a more direct coupling of per-
ception to action, increased decentralization of control, and relative simplicity of design.
Because they perform localized search, the time spent deciding which action to effect in
any given situation can be minimized. At the same time, however, these architectures run
the risk of generating sub-optimal action sequences precisely because they operate with
minimal memory or state information [Fir87]. Also, because non-deliberative agents are
essentially hardwired to effect a particular action sequence in each given situation, they
can be ineffective when confronted with situations which are either novel or which do not
provide immediate access to the complete set of environmental stimuli needed for deter-
mining subsequent action sequences. Indeed, to date, there has been little evidence to
suggest that pure non-deliberative architectures are capable of handling multiple, com-
plex, resource-bounded goals in any sophisticated manner [Kir91, GLS87, Mae90]. Like
their deliberative cousins, non-deliberative agents will require that their environments be
reasonably cooperative if they are to achieve their goals satisfactorily [Bro86].

Operating in the real world means having to deal with multiple events at several levels
of granularity — both in time and space. So, while agents must remain reactive in order to
survive, some amount of strategic or predictive decision-making will be required if agents
are to handle complex goals while keeping their long-term options open. Agents, however,
cannot be expected to model their surroundings in every detail as there will simply be too
many events to consider, a large number of which will be of little or no relevance anyway.
What is required, in effect, is an architecture that can cope with uncertainty, react to
unforseen events, and recover dynamically from poor decisions. All of this, of course, on
top of accomplishing whatever tasks it was originally programmed for.

3 Touring Machines

For almost all practical purposes, an autonomous robotic agent must be adaptive - it must
be capable of carrying out its intended goals in dynamic, unpredictable environments. To
do this, we believe, the agent must be capable of exhibiting a range of different behaviours.
First, it will need to be reactive to deal with events which it might not have had sufficient
time or resources to consider. Secondly, since the agent’s main task, in our case, will

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 4

be to get from some starting location to some goal location in some specified time, it
should be capable of rational, resource-bounded, goal-directed behaviour. And thirdly,
since it will inhabit a world populated by other entities (about which very little will be
known in advance) it must be able to reason about what events are taking place around it,
determine what effect these events could have on its own goals, and, where possible, predict
what is-likely to happen in the near future so as to be bett2r informed when choosing
and effecting subsequent actions. Because these skills have such disparate characteristics
and requirements, the most sensible way of realizing them, it would seem, is as separate
activity-producing behaviours in a layered framework. We have adopted this approach in
designing and implementing TOURINGMACHINES.

Reactive Layer (R)

Action

Planning Layer (P)
&4y Effectors

ENSors

Modelling Layer (M)

Figure 1: The TOURINGMACHINE architecture.

TOURINGMACHINES comprise three concurrently-operating, independently motivated,
activity-producing layers: a reactive layer R, a planninglayer P, and a reflective-predictive
or modelling layer M (see Figure 1). Each models the agent’s world at a different level
of abstraction and each is endowed with different task-oriented capabilities. The TouRr-
INGMACHINE framework is, in fact, hybrid, as it may incorporate several functional or
horizontal faculties within a given task-achieving or vertical layer. For example, hypothet-
ical reasoning and focus of attention are both realized in layer M.

The main principle behind vertical decomposition is to create activity-producing sub-
systems each of which directly connects perception to action and which can independently
decide if it should or should not act in a given world situation. Frequently, however, one
layer’s proposed actions will conflict with those of another: a layer is an approzimate
machine and thus its abstracted world model is necessarily incomplete. Because of this,
layers need to be mediated by an enveloping control policy (Figure 1) if the agent, as a
single whole, is to behave appropriately in each different world situation.

Implemented as a combination of inter-layer message-passing and context-activated
control rules, the control policy’s mediation enables each layer to examine data from other
layers, inject new data into them, or even remove data from the layers. (The term data

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 5

here covers sensed input to and action output from layers, the contents of inter-layer
messages, as well as certain rules or plans residing within layers.) This has the effect of
altering, when required, the normal {low of data in the affected layer(s). So, for example,
the reactive rule in layer R to prevent an agent from straying over lane markings can, with
the appropriate control rule present, be overridden by layer M should the agent embark
on a plan to overtake the agent in front of it.

Inputs to and outputs from layers are generated in a synchronous fashion, with the
context-activated control rules being applied to these inputs and outputs at each synchro-
nization point. The rules, thus, act as filters between the agent’s sensors and its internal
layers, and between its layers and its action effectors. Mediation remains active at all
times and is largely “transparent” to the layers: each layer acts as if it alone were con-
trolling the agent, remaining largely unaware of any “interference” (either by other layers
or by the rules of the control policy) with its own inputs and outputs. The overall control
policy is such that while striving to service the agent’s high-level tasks (e.g. exit-path) it
is sensitive also to its low-level, high-priority goals (e.g. avoid-collision).

The TouRINGMACHINE layered {ramework is strongly influenced by Brooks’ subsump-
tion architecture [Bro86]. This comprises several concurrently-operating, task-achieving
behaviours which are implemented as fixed-topology networks of finite-state machines
along with various registers and timers. Layers communicate via fixed-length messages
over “wires” and are mediated by suppression and inhibition mechanisms which can alter
the flow of inter-layer messages to produce the correct action for the situation at hand.

Besides several technical differences, the main distinction between the two architectures
is that TOURINGMACHINES store and manipulate explicit representations of, among other
things, beliefs, desires, and intentions in order to perform such cognitive tasks as reflection
and prediction (see below). Brooks’ agents have not to date been used to solve such
high-level tasks, and it’s not at all clear whether his architecture could be scaled up
indefinitely without ever resorting to the use of internal representations [Kir91]. Aspects
of the ToURINGMACHINE framework also bear some resemblance to the 2-layered (roughly
R and P) Phoenix architecture [CGHH89]. The following sections describe each layer in
some more detail.3

3.1 Layer R (reactive)

The purpose of this layer is to provide an agent with fast, reactive capabilities for coping
with events it hasn’t previously planned for or modelled. A typical event, for example,
would be the sudden appearance of some hitherto unseen agent or obstacle. Layer R
provides the agent with a series of rules for avoiding obstacles, walls, kerbs or other agents,
and for preventing it {rom straying over path lane markings. For example, the two rules
for avoiding collisions with other agents are:

rule-4: if is-in-front(Other, Observer) and
speed(Other) < speed(Observer) and
separation(Other, Observer) < Front.Threshold
then
reduce-speed-by(Observer, speed(Observer) - speed(Other))

rule-5: if is-behind(Other, Observer) and
speed(Other) > speed(Observer) and

*Due to space restrictions much detail will, in fact, be omitted and presented elsewhere [FerIP].

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 6

separation(Other, Observer) < Rear.Threshold
then
increase-speed-by(Observer, speed(Other) - speed(Observer))

where Front.Threshold and Rear.Threshold are parameters associated with the agent
Observer. As we shall see below, an agent can be made variably reactive or inert by
-noosing appropriate values for these (and other) parameters.

Rules are stimulated solely and directly by input they receive from the agent’s sen-
sors. When a given rule fires, an appropriate action (e.g. accelerate or turn-wheel) is
immediately sent to the agent’s effectors.* Clearly, actions effected at this level cannot be
guaranteed to be rational since rules are memoryless and fire on the agent’s sensory infor-
mation alone. Consequently, each time a reactive rule fires, layer M (modelling) must be
flagged (sent a message by layer R) so that it can assess whether the resulting unplanned
state change will require further processing. In particular, layer M will need to determine
if any actions effected by layer R are likely to prevent the agent from achieving its planned
tasks.

3.2 Layer P (planning)

The purpose of this layer is to generate and execute plans. Since an agent’s main task typ-
ically involves relocating to some destination within certain pre-specified time bounds, i
makes sense for the agent to do some amount of forward planning (e.g. locate-destination,
calculate-cruise-speed). However, since the agent is very likely to encounter other enti-
ties unexpectedly, complete, detailed plans are undesirable if replanning is to be kept to
a minimum. Layer P, therefore, is realized as a linear, hierarchical, partial planner which
can interleave plan formation and execution, and defer committing to specific subplan ex-
ecution methods or temporal orderings of subplans until absolutely necessary. Also, since
ToOURINGMACHINES have limited computational resources, the planner is designed so that
its operation can be pre-empted and its state suspended for subsequent use. The plan elab-
oration scheme employed is akin to the partial elaboration method of PRS [GLS87] and
the lazy skeletal expansion scheme used in Phoenix agents [CGHH89]. In essence, we take
Bratman’s view [Bra87] that plans are useful for constraining the amount of subsequent
deliberation an agent will need to perform.

The planner manipulates and instantiates template plans or schemas which it retrieves
from a schema library (Figure 2). Schemas are procedural structures consisting of a body,
a set of preconditions, a set of applicability constraints (e.g. temporal ordering), a set of
postconditions, and an associated cost in terms of computational resources. Schemas are
either primitive or composite. Primitive schemas can either submit physical actions to be
effected (e.g. turn-wheel, signal-left) or perform various arithmetic or geometric calcu-
lations (e.g. calculate-stopping-distance). Composite schemas trigger library searches
and subplan expansion. The planner also has access to a database of topological facts
about its task domain.

The planner uses a fixed, combined depth-first and best-first search strategy for con-
structing single-agent plans. Apart from occasionally generating sensory acts to determine
the location of, say, a fixed landmark, the planner remains largely “unaware” of what’s

*Several reactive rules could fire simultaneously but only one is allowed to submit its corresponding
action; currently the rule triggered by the (spatially) nearest environmental stimulus is chosen. Other
selection policies may be considered in the [iture.

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 7

|

R Sens?\iS._ Partial Action
esource Monuitor, Planner Effectors
Other Layers

Figure 2: Layer P.

going on around it. In particular, it dos not consider what other agents are doing, this
task being left to layer M which, in effect, is the only part of the agent that has any
reasoned view of what other events are taking place in the world. So, while the planner
is capable of some limited backtracking (e.g. to try an alternative execution method if
the chosen one has failed or to try to re-satisfy an applicability constraint), initiation of
dynamic (re-)planning (e.g. overtake-agent) is the responsibility of layer M. Layer P,
then, is able to take on new goals and abandon old ones if layer M so dictates. In this
manner, layer P keeps abreast of changes in the agent’s environment.

3.3 Layer M (modelling)

The main purpose of layer M is to provide an agent with reflective and predictive ca-
pabilities. The agent realizes such capabilities by constructing models of world entities,
including itself, which it uses as a platform for explaining observed behaviours and making
predictions about possible future behaviours.> The potential gain in this approach is that
by making successful predictions about other entities’ activities the agent should be able
to detect potential goal conflicts earlier on. This would then enable it to make changes
to its own plans in a more effective manner than if it were to wait for these conflicts to
materialize. Goal conflicts can occur within the agent itself (e.g. the agent’s projected time
of arrival at its destination exceeds its original deadline or the agent’s layer R effects an
action which alters the agent’s trajectory) or in relation to another agent (e.g. the agent’s
trajectory intersects that of another agent).

Other functions made available to the agent through this layer (see Figure 3) include a
heuristic focus of attention module for creating closures within which to perform inferenc-
ing and a goal conflict detection/resolution facility for dealing with intra- and inter-agent
conflicts. Like every module in the TOURINGMACHINE architecture, each function in layer
M is resource-bounded, thus ensuring a degree of reactivity in the agent as a whole.

*We assume TOURINGMACHINES can readily identify various physical properties of world entities such
as type, size, Cartesian location, speed, acceleration, orientation, and communicated information. This
concords with most other simulated agent environments [CGHH89, DM90, PR90, SH88, VB90, Wo090].

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 8

/

Focus of Mod.el Conflict
Attention Fonr}augn & Detection
Projection
Sensors, Action
Resource Monitor, Effectors
Other Layers

Figure 3: Layer M.

The structures used by an agent to model an ertity’s belaviour are time-indexed
4-tuples of the form (C, B, D,I), where C is the entity’s Configuration, namely, (z,y)-
location, speed, acceleration, orientation, and signalled communications; B is the set of
Beliefs ascribed to the entity; D is its ascribed list of partially-ordered goals or Desires;
and [is its ascribed plan or Intention structure.® The models used by an agent are, in fact,
filled-in instances of model templates which the agent obtains from a library (Figure 3).
While all templates have the same basic 4-way structure, they can be made to differ in such
aspects as the depth of information that can be represented (e.g. a particular template’s
B component might not permit nested beliefs), initial default values provided, and cost.
The last of these will subsequently be taken into account each time the agent makes an
inference from the chosen model.

Reasoning from a model of an entity essentially involves looking for discrepancies
between the entity’s actual behaviour and that predicted by its model or, in the case of a
self-model, between the agent’s actual behaviour and that desired by the agent. Predictions
are formed by temporally projecting those parameters that make up the modelled entity’s
configuration vector C, in the context of the current world situation and the entity’s
ascribed intentions. Noticing a discrepancy between actual and predicted (or desired)
behaviours, however, need not on every occasion force the agent into a wholesale revision
of its “faulty” model. This is because associated with each of the parameters of a model’s
C-vector are upper- and lower-bounds whose sizes can be chosen by the testbed user.
The agent doing the modelling, then, will become “aroused” only if the entity’s observed
configuration parameters fall outside the corresponding C-vector bounds in its model of the
entity. Clearly, different settings for these parameter bounds will affect both *he amount of
environmental change perceptible to the agent and the amount of time the agent will need
to spend revising its models. Studying such tradeoffs in TOURINGMACHINES is a focus of

SPlan ascription or recognition has been realized in TOURINGMACHINES as a process of scientific the-
ory formation which employs an abductive reasoning methodology similar to that of the Theorist de-
fault/diagnostic reasoning system [PGAS86].

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 9

current study. Achieving the optimal level of sensitivity to environmental change has also
been recognized as a critical issue in Sanborn and Hendler’s Traffic World system [SH88]
and - through the use of plan-monitoring envelopes — in the Phoenix project [CGHH89).

4 Experimental Testbed

To validate TOURINGMACHINES, we have implemented our control architecture in SICStus
Prolog and are experimenting with it in a simulated 2-dimensional world occupied by,
among other things, other TOURINGMACHINES, obstacles, walls, paths, and assorted infor-
mation signs. World dynamics are realized by a discrete event simulator which incorporates
a plausible world updater for enforcing “realistic” notions of time and motion, and which
creates the illusion of concurrent world activity through appropriate action scheduling.
Other processes handled by the simulator include a facility for tracing scenario parame-
ters, a statistics-gathering package for agent performance analysis, and several text and
graphics windows for displaying output.

Single-agent Scenario

Exit #2

Exit #1

| ® (Obstacle

@ Agent

Time: 735,5”

Figure 4: Graphical output from the testbed showing
‘a scenario involving one agent and several obstacles.

Our testbed also provides a scenario definition facility which allows us to generate
scenario instances from a fairly rich collection of agent- and environment-level parameters.
So, for example, we can configure a TOURINGMACHINE to be variably reactive by altering
parameters defining such things as the distribution of computational resources within its
three control layers, the amount of forward planning it performs, the sensitivity of its

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 10

reactive rules, or the frequency with which it senses or models the world. In a similar
fashion, we can experiment with the TOURINGMACHINE’S tolerance to environmental
uncertainty by adjusting its sensing horizon, by tightening its initial goal deadline, by
populating its world with many other fast-moving agents, or by varying the ratio of cpu
to simulated world time used in the scenario. This last one affects the amount of time the
TOURINGMACHINE has to deliberate between clock ticks.

The TOURINGMACHINE testbed has been designed to enable controlled, repeatable
experimentation and to facilitate the creation of diverse agent scenarios for subsequent
user analysis. Based on some very early tests, we are satisfied that our agents can be-
have robustly in the presence of unexpected obstacles while successfully accomplishing
time-constrained, relocation-type goals (see Figure 4). But this is just the beginning.
Ultimately, through the design and analysis of more complex scenarios, we hope to gain’
more insight into the behavioural ecology — to use Cohen’s terminology [CGHH89] - of
ToOURINGMACHINES. In other words, we are interested in studying, and eventually dis-
covering general rules that describe, the relationships and tradeoffs that exist between an
agent’s design (in other words, the particular configuration of its functional capabilities
and knowledge sources), its environment, and the repertoire of demonstrable behaviours
that the agent is capable of. So, for example, we are interested in understanding how well a
given TOURINGMACHINE configuration might perform across a range of environments and
also how the behaviours of different cor‘igurations of TOURINGMACHINES compare when
placed in a single common environment Criteria with which to evaluate the performance
of our agents have already been identified and include, among others, resource consump-
tion and utilization, wasted planning effort (e.g. amount of backtracking or replanning
required), number of successful/unsuccessful actions effected, ratio of successful to un-
successful model-based explanations or predictions, number of model revisions performed,
and delay in arriving at a target destination.

5 Conclusions

We have presented a new, robust control architecture for resource-bounded, goal-directed,
mobile agents operating in dynamic environments. Qur layered, activity-producing ar-
chitecture integrates both deliberative and non-deliberative control features enabling a
TOURINGMACHINE to produce a range of reactive, goal-oriented, reflective, and predictive
behaviours as demanded by the agent’s goals and environmental situation. This empow-
ers agents to deal with events and tasks at different levels of granularity (e.g. avoiding
collisions, accomplishing complex goals. predicting world behaviour). We have also briefly
described a feature-rich simulation testbed within which we have started to study design-
behaviour-environment tradeoffs.

By using a highly parameterized, layered architecture we have benefited greatly in
terms of our effort to design, implement, and test different agent configurations. Our
experience so far has demonstrated that TOURINGMACHINES can be configured to behave
“sensibly” in dynamic environments. The work presented here is ongoing: future work
will include functionally extending our current implementation (e.g. adding more agent
plans and model templates, enhancing inter-layer control), as well as experimenting with
multiple, heterogeneous agents in diverse environments. We believe this will provide us
with important clues about how best to design adaptive, rational, autonomous agents.

MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 11

References

[AC87]

[Bra87]

[Bro86]

[CGHHS9]

[DM90]

[FerlP]

[Fir87]

[GLS87]

[Kae87]

[Kir91]

[Mae90]

[PGABS6]

[PIB87]

[PRIO]

Philip E. Agre and David Chapman. Pengi: An implementation of a theory of
activity. In Proceedings Conference of the American Association for Artificial
Intelligence, pages 268-272, 1987.

Michael E. Bratman. Intention, Plans, and Practical Reason. Harvard Uni-
versity Press, Cambridge, MA, 1987.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14-23, 1986.

Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe.
Trial by fire: Understanding the design requirements for agents in complex
environments. Al Magazine, 10(3):32-48, 1989.

Edmund H. Durfee and Thomas A. Montgomery. A hierarchical protocol for
coordinating multiagent behaviours. In Proceedings Conference of the Ameri-
can Association for Artificial Intelligence, pages 86-93, 1990.

Innes A. Ferguson. Touring Machines: An Architecture for Adaptive, Rational,
Mobile Agents. PhD thesis, Computer Laboratory, University of Cambridge,
Cambridge, UK. (In preparation.)

James R. Firby. An investigation into reactive planning in complex domains. In
Proceedings Conference of the American Association for Artificial Intelligence,
pages 202-206, 1987.

Michael P. Georgeff, Amy L. Lansky, and Marcel J. Schoppers. Reasoning and
planning in dynamic domains: An experiment with a mobile robot. Technical
Note 380, SRI International, Menlo Park, CA, April 1987.

Leslie Pack Kaelbling. An architecture for intelligent reactive systems. In
M.P. Georgeff and A.L. Lansky, editors, Reasoning about Actions and Plans
- Proceedings 1986 Workshop, pages 395-410. Morgan Kaufmann Publishers,
Inc., Los Altos, CA, 1987.

David Kirsh. Today the earwig, tomorrow man? Artificial Intelligence, 47:161-
184, 1991.

Pattie Maes. Situated agents can have goals. Robotics and Autonomous Sys-
tems, 6(1&2):49-70, 1990.

David L. Poole, Randy G. Goebel, and Romas Aleliunas. Theorist: A logi-
cal reasoning system for defaults and diagnosis. Research Report CS-86-06,
University of Waterloo, Waterloo, Ont., February 1986.

Martha E. Pollack, David J. [srael, and Michael E. Bratman. Toward an archi-
tecture for resource-bounded agents. Technical Note 425, SRI International,
Menlo Park, CA, July 1987.

Martha E. Pollack and Marc Ringuette. Introducing the Tileworld: Exper-
imentally evaluating agent architectures. In Proceedings Conference of the
American Association for Artificial Intelligence, pages 183-189, 1990.

MAAMAW-91, August 5-7 1991, Naiserslautern, Germany 12

[SH88] J. Sanborn and J. Hendler. A model of reaction for planning in dynamic
environments. International Journal of Artificial Intelligence in Engineering,
3(2):95-102, 1988.

[VB90] Steven Vere and Timothy Bickmore. A basic agent. Computational Intelli-
gence, 6(1):41-60, 1990.

[Wo090] Sharon Wood. Planning in a Rapidly Changing Environment. DPhil thesis,
University of Sussex, Brighton, UK, 1990.

Eco-Problem-Solving model:
Results of the N-Puzzle

Alexis DROGOUL!, Christophe DUBREUIL?

Abstract

Eco-Problem-Solving (EPS) is a new approach to problem solving based on the
paradigms of Distributed Artificial Intelligence and founded on interacting agents. We
show the way to decomposing the n-puzzle problem into EPS agents, the behaviors with
which they are provided and some general mechanisms. Then, we show how simple
interactions between agents can lead to the solving of the problem of the edges. We
prove that our solving method is guaranteed always to find a solution if there is one. We
also prove that the method is more than complete and becomes decidable. Evidence of
completeness and decidability are formulated. Finally, we propose some empirical
results to show that the EPS implementation of the n-puzzle can effectively solve
significantly larger problems than have previously been solvable using traditional
heuristic search methods.

1 Université Pierre et Marie Cu..¢ - LAFORIA
Tour 46-0 - 2&me étage
4, Place Jussieu 75252 PARIS Cedex 05 FRANCE
drogoul@Ilaforia.ibp.fr

2 CERT-ONERA
B.P. 4025
2, Avenue Ed. Belin 31055 Toulouse Cedex FRANCE
dubreuil@tls-cs.cert.fr

1) Introduction

Our aim in this paper is to show that Eco-Problem-Solving, based on the paradigms
of Distributed Artificial Intelligence and interactive agents, is able to solve any size of n-
puzzle without planning,.

Section 2 approaches n-puzzle vis 2 vis classical planning. The model of Eco-
Problem-Solving is presented in Section 3. Section 4 describes the agents involved in the
n-puzzle solving and Section 5 algorithms used in their behaviors. In order to see exactly
how it works, Section 6 shows the solving of the standard problem of the edges, thanks
to snapshots of the system in progress. The completeness and the decidability of our
method are proved in Section 7. Then, Section 8 presents empirical results for several
sizes or n-puzzle.

2) N-Puzzle and Heuristic Search

N-puzzle consists of a square frame containing N square t'les and an empty position
called the "blank". Authorized operations slide any tile adjacent to the blank into the
blank position. The task is to rearrange the tiles from some ra:idom initial configuration
into a particular designed goal configuration.

ll_il
4|5]3
7]8]6
15[2}[]2 12
Amd |[BEBBEE
718]6 (71816} 7]8]6
T3y]2
al5 HE
71816§[7[8]6

Fig. 1 - Initial state and goal state of a N-Puzzle; Example of a search tree

N-Puzzle is the common example of a problem that requires the use of heuristic search
algorithms to be solved. In fact, the set of operators, the initial and goal states can be
easily defined as well as the entire set of states of the problem.

A* [7] is the best known of these algorithms. Many of its implementations use the
Manhattan Distance function for estimating the relative merits of different states of the
puzzle relative to the goal state. A* has the property of always finding an optimal
solution to the n-puzzle, given a fine heuristic function. But it needs in practice both
exponential space and time to run, so its applicability is restricted to relatively small
problems (8-puzzle for A*, 15-puzzle for IDA* [10]).

To overcome this drawback, latest approaches have sacrificed solution optimality for
the benefit of a limited search horizon, in order to solve larger puzzles than have
previously been solvable using A*. The major items in terms of results are the Real-

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 1

Time-A* and the Learning-Real-Time-A* algorithms [11]. It seems now possible to
solve as far as the 24-puzzle in a reasonable time (i.e. less than a human).

But even these works appear to be limited with respect to the greater sizes of n-
puzzles. First, the search horizon to obtaining good solution lengths (in terms of moves
of the tiles) seems exponentially to increase with the size of the puzzle (92 states on
average for the 8-puzzle, 2622 for the 15-puzzle). Secondly, both A* and RTA* need to
be specially adapted to each size of puzzle, given the fact that the heuristic functions are
not necessarily the same. ;

Considering these limits, we think it is now time to question :'the heuristic search
paradigm and to explore other ways of solving. —.

3) Eco-Problem-Solving (EPS) model

This model is based on the paradigm of "computational eco-systems" [8]. Problem
solving is seen as the production of stable states in a dynamic system, where evolution is
due to the behaviors of simple agents. A problem is then defined by a population of
interacting agents.

EPS is twofold: a domain independent kernel where behaviors of the agents are
described and a domain dependent application where their actions are coded. We already
used this to solve various Al problems (e.g. cubes world, hanoi towers) [4].

EPS agents are actor-based and use Agha's model of continuations [1]. An agent
possesses another agent as goal and acquaintances. It only takes decisions from its local
informations, without knowing about any global state of the world. It has a simple
behavior which can be compared to a basic "biological" pattern: satisfaction, flight.

Note that our approach differs from connectionism: our agents are not statically
linked together and they behave independently. It also differs from other distributed
approaches, such as "distributed planning" [S] or "planning for multiple agents" [9]
where solution is obtained by coordination of the agents local plans. The actions of our
agents follow the three principles below3:

a) The will to be satisfied: This corresponds to the description of the goal. A
function in the kernel called TrySatisfaction handles it. This function calls two domain-
dependent actions: doSatisfaction (if the agent can be satisfied) or satisfactionAggression
(if it must attack other agents to seek satisfaction). A satisfied agent does not seek
satisfaction anymore, unless it is provided with a new goal.

b) The will to be free: Before trying to act, an agent has to be free. Freeing itself

consists in attacking its jailers (acquaintances that prevent it from acting) and in telling
them to flee.

c) The obligation to flee: Fleeing is the answer to an attack. It makes the agent
change its position in the problem to avoid conflicts. The function flee handles it and
leads to two domain-dependent actions: doFlee (if there is a way to flee) or
fleeAggression (if it must attack other agents to flee). A flee message is often supplied

3 Depending on the characteristics of the problem, agents may have additional knowledge about their
environment and domain-dependent behaviors that are not described in the kernel.

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 2

with a constraint (another agent) given by the attacker. The fleeing agent, then, will not
have the possibility to attack this constraint.

A problem in EPS is defined by describing its initial state (the acquaintances of the
agents are initialized) and its final state (a goal is given to each agent) [6]. The allocation
of a goal to an agent creates a slave-master relationship between the agent and the goal.
The agent becomes a dependency of its goal and is at the same time the master of its
own dependencies. Dependencies will see their satisfaction only after that of their goal
(when an agent has reached its goal it informs its dependencies by sending them a
TrySatisfaction message).

N-Puzzle has been implemented under the EPS kernel called EcoTalk. It is based cn
the kernel defined by Jacques Ferber [3], and Actalk, a language of actors under
Smalltalk-80 [2]. Each of the problem entities is represented by a class of actors which
has the actions seen above. Their ancestor is a class named EcoAgent which defines the
kernel methods (so all the agents will inherit these behaviors).

Fig.2A - EcoTalk

4) N-puzzle Agents

4.1) Decomposition

N-puzzle has been decomposed into three different types of agents: N+1 EcoSquares,
N EcoTiles and the EcoPuzzle. Squares are the locations on which tiles move. Problem

solving begins by giving each agent its goal and acquaintances, and asking the
EcoPuzzle to seek satisfaction.

e
]

- EcoSquare
I
E E(E EcoTile

El . EcoPuzzle

Fig.2B - N-Puzzle decomposition into Eco-agents

2]
[]

HEE)E]

[[EEIEE

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 3

4.2) Behaviors of the EcoSquares

The acquaintances of an EcoSquare are: the tile lying on it (its on) and the squares
adjacent to it (its adjacents). An EcoSquare is always satisfied and not able to flee. It can
free itself by sending a "flee" message to its on. An EcoSquare can also be locked or
unlocked, depending on the behavior of its on .

Fig. 2C - Acquaintances of the EcoSquares and of the EcoTiles

4.3) Behaviors of the EcoTiles

The acquaintances of an EcoTile consist in the EcoSquare on which it lies (its under),
the square on to which it has to move (its goal) and the puzzle. Its satisfaction is called
incremental. The agent searches among the adjacents of its under the nearest unlocked to
its goal . If the square is not free, the tile tells it to free itself and moves on it. When
freeing it, an EcoTile can transmit two possible constraints to the tile that will have to
flee: its goal (if it is an edge square), or the under of the previous satisfied tile (in order
to preserve its satisfaction).

The flight behavior of a tile consists in searching the nearest square to the blank,
different from the constraint and unlocked, among the adjacents of its under . If the goal
of the tile is found among them, it is prioritarly chosen. If no suitable squares are found,
the tile takes the nearest one to the blank and tells the puzzle to unlock all the squares.
The tile tells the chosen square to free itself and moves on to it.

A tile locks its under when it tells another square to free itself or when it becomes
satisfied. That means it gives indirect information to the other agents whose meaning is:
"I am already attacking or satisfied, so do not attack me unless no other choice can be
made". This square is unlocked when the tile moves.

4.4) Behavior of the EcoPuzzle

The acquaintances of the EcoPuzzle are the squares, the tiles and a goal . It follows
satisfaction behavior that consists in determining in which order the tiles will try to
satisfy themselves and telling the first tile in this list to do it (see Section 5.1 for details).

A puzzle also possesses general mechanisms such as the computation of the distance
between two squares, or the ability to lock/unlock its lines and columns. The next
section presents some of these because of their importance in the solving.

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 4

S) General Mechanisms
5.1) Serializing the attempts of tile satisfaction

Tiles cannot satisfy themselves together at the same time. A sole blank location does
not allow two tiles to move concurrently. Therefore, it is necessary to serialize their
attempts of satisfaction. A relationship is provided by EPS between an-agent and its
goal. Unfortunately, the goals of the tiles are not relative (a tile) but absolute (a square).
Consequently, there are no direct slave-master relationships between the: tiles. An
indirect slave/master relationship between the tiles is then generated by creating a
relationship between the squares (this creation has been realized using EPS [4]).

4lalalsals All the squares are ordered in a
list by their distance to the blank
4131313|3 * in the final state (3.A). Squares at
413121212 | the same distance are chained
= together (3.B). Then (3.C), these
43121111 i1 _v_ * lists are linked up.
413 12,1
—
Fig. 3.A Fig. 3.B Fig. 3.C

When the ordered list of squares has been obtained, the next step consists in giving
the right goals to the puzzle and the squares (The future blank location is not in the list).
The goal of the first square becomes the puzzle. The goal of each square is the tile whose
goal is the previous square in the list. The goal of the puzzle is the tile whose goal is the
last square in the list.

PUZZILE |

S1 S2 83 The puzzle has received the message

: TrySatisfaction. It is already satisfied
and so informs its dependencies that
they can satisfy themselves. The first
square, S1, whose goal was the puzzle,
is also satisfied (a square is always
satisfied) and informs the tile T1 that it
can try to satisfy itself. Once satisfied,
this tile informs in turn its
dependencies (i.e. the square whose goal
was T1), and so on. When Tn, the last
tile, has been satisfied, it informs the
puzzle that it can satisfy itself again.

Sn= l“! The loop has been completed and the
= solving stops.
nw
PUZZLE

Fig. 4 - Ne.; Slave/Master relationship
5.2) Distance computation
The algorithm used for calculating the right distance between squares is based on the

Manbhattan distance algorithm and Voronoi's diagram [12]. A distance is calculated
between a target-square and a list of start-squares. The target is asked by the puzzle to

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 5

generate a wave by transmitting the value 1 to its adjacents . This wave is then
transmitted to their adjacents with a value increased by one. Squares cannot transmit the
wave to locked neighbors (the wave breaks on "obstacles") and already valued squares.
Once the start-squares have been reached, the wave stops.

Tile A has attacked Tile B, which has attacked Tile
C, etc... And Tile H has been asked to flee. Before
fleeing, Tile H chooses a square on which to move.
This square must be the nearest of its square'’s adjacents
to the blank. Tile H then asks the puzzle to calculate
the distance between these squares and the blank. The
wave generated by the blank square breaks on the
squares whose tiles are already fleeing. Once the two
squares adjacent to Tile H have been reached, the puzzle
gives them back ordered by their value to the tile
which will choose the square whose "value"” is the
smallest.

Fig.5A - Distance Computation

This system can be seen as a sort of gradient whose value equals the distance at which
it has been generated. It allows tiles to know the right distance between two squares in
terms of "real" moves and illustrates the appeal of square locking.

The complexity of this method is in the worst case in O(n), where n is the number of
unlocked squares. As a matter of fact, it is easy to see that an unlocked square only
transmits one value to its neighbors and can not be reached again by the wave.

5.3) Locking columns and lines

The EcoPuzzle also possesses another mechanism that allows it to lock definitively an
entire line/column of the puzzle when all the agents making up this line/column are
satisfied. When an EcoTile has reached its goal, it just asks the puzzle to verify if its
line/column can be locked. It may be locked if it is on the border of the puzzle or if an
adjacent line/column has already been locked. The agents (EcoTiles and EcoSquares)
making up this line/column are killed and this line/column will no longer be disturbed by
the other agents. The purpose of this mechanism is to reduce dynamically the size of the
puzzle during the solving in order to accelerate the distance calculations. For instance, a
24-puzzle becomes a 15-puzzle once a line and a column have been locked.

Xp<gxpo

cqD
X[X
XX
XX

cl~l=1=1>

B
b4
X
X
. X

Fig.5B - Locking a line and a column

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 6

6) Emergence of complex behaviors

The underlying paradigm of our solving system is to make the solution of a problem
emerge from local interactions. As an instance of emergence, the solving of the problem
of the edges is described in this section. This problem is as follows: how can a tile
whose goal is an edge of the puzzle satisfy itself without disturbing the satisfied tiles that
make up the line or the column including this edge ?

General planning systems apply special heuristics to overcome this difficulty. In
contrast, EPS solves it without requiring any special behaviors and the solution simply
emerges from the interactions between the tiles and the constraints they transmit when
attacking other agents. Figure 6 shows how it works in a 24-puzzle.

Tiles B,C and D are
~ already satisfied and A
tries to satisfy itself.
Therefore, it attacks E
with the square of B as
constraint (B is the
previous satisfied tile). E
then atiacks A in order to
flee (it cannot attack B)
and tells the puzzle to
unlock all the squares
(All its adjacent squares
................. are locked).

i o nC oo P e O s eaco A flees on the blank

. ‘Bl and tries 10 satisfy itself
again by attacking E
with its goal as
constraint.

E autacks F, which
attacks I, which attacks
K and so on up to B. B
then flees on the blank
(the previous constraint

‘Bl was only valuable for E),
............................ 1 followed by all the
IR fleeing tiles.

A moves on the blank
and attacks B which lies
on its goal. The
transmitted constraint is
the goal of A (because B
is no longer satisfied). B
attacks C, which attacks
G (C does not flee on the
blank but on its goal). G
attacks K. K flees on the
: blank, followed by all
T T T the ﬂeeing tiles. And A
Fig. 6 - The problem of the edges can now satisfy itself by
moving on its goal.

Constraint

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 7

7) Completeness and decidability
7.1) Completeness

The proof of the completeness of our problem solving method for any size of n-puzzle
will be made in three steps: first, proving the fact that, given a puzzle whose dimensions
are N x N (N > 1), we can reduce it to a (N-1) x (N-1) puzzle. Secondly, proving that
we can solve the 1-puzzle (1 x 1). Finally concluding on the proof that we can solve any
size of n-puzzle with the same agents.

We assume that the serialization of the squares is the same as in Figure 1, Section 5.1.
We also assume that the lines and columns are numbered from 1 to N, starting from the
blank position in the final goal state. Thus, the first tiles that will try to satisfy
themselves will be those making up the line N.

Theorem 1: The N-1 first tiles of line N can satisfy themselves without
being shifted by an external attack.

Proof: The first tile can satisfy itself and lock its square without disturbing any other
tiles. Let us now assume that the ith tile (1 < i < N-1) has satisfied itself and locked its
square without disturbing the previously satisfied ones. Can the (i+1) tile reach its goal
without shifting the previous tiles ? .

A tile can be pushed out of its square for two reasons: (1) An adjacent tile tries to
satisfy itself and attacks it; (2) An adjacent tile tries to flee and attacks it. But a tile on a
locked square can never be attacked (see Section 4.3). So the i previously satisfied tiles
cannot be shifted unless their squares are unlocked.

Squares can only be unlocked when a fleeing tile has found no place to flee because
all its adjacent squares were locked (Section 4.3). Can this happen? The answer is no,
thanks to the distance computation, a tile never attacks a square that leads to a dead-end
because the blank or the goal would not be reachable from this square (Section 5.2).

Moreover, as the goal of the (i+1)" tile is not a corner (only the first and the N tiles
have corners as goals), it never transmits any constraints to the tiles it attacks. So a
fleeing tile is always able to choose a square from which the blank is reachable and never
asks the puzzle to unlock all the squares.

We have proved that, given i satisfied tiles on line N (1 < i < N-1), the (i+1)h tile
can satisfy itself without disturbing them. We have also showed that the first tile can
satisfy itself without disturbing any other. The proof of the theorem by a simple
induction on i is straightforward.

Theorem 2: When the N'h tile of the line N seeks satisfaction, it may
destroy some previous satisfactions but puts them back in place when
reaching its goal.

Proof: When trying to reach its goal, the N*h tile can meet three situations: (1) Its
goal is blank and the N'h tile is adjacent to it: it just moves on it without destroying any

satisfactions (2) Its goal is occupied by another tile and the N*h tile is adjacent to it: this
is the situation described in Section 6. Some satisfactions are destroyed but, when the

tile moves on its goal, it necessarily attacks the (N-1)' tile. As a fleeing tile primarily
moves on its goal when it is adjacent (see Section 4.3), the (N-1)th tile attacks the (N-

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 8

1)th square (which can make the (N-2)*h tile flee at its rn on its goal, and so forth until
all the satisfactions have been re-established). (3) Its goal is blank and there is another

tile T between the Nt tile and its goal: the N'h tile attacks T with the blank as constraint.

T cannot flee because the other square adjacent to the blank contains the (N-1)h tile and
is locked. It then asks the puzzle to unlock all the squares and attacks the tile below the

(N-1)th tile. Whatever occurs after that does not matter because we are back to situation
2.

These two theorems nrove that, given a N x N puzzle, we are able to build the line
number N. The same proofs, once columns and lines have been exchanged, show that
we are also able to build the column number N.

Section 5.3 explains that entirely satisfied lines or columns can be definitively locked
and no longer used in the problem. Then, we lock line N and column N and consider
their agents as dead. And doing this creates a new puzzle, whose dimensions are (N-1) x
(N-1). So the system can always reduce the solving of an N x N puzzle to the solving of
an (N-1) x (N-1) puzzle, whatever N > 1 may be .

1-puzzle is easy to solve with our system. It is decomposed into an EcoPuzzle and an
EcoSquare. The solving begins by sending the puzzle the message TrySatisfaction. The
puzzle tries to create the list of ordered squares, but, as no squares other the blank
location can be found, obtains an empty list. Thus, it stops. It has found the solution.

An N x N puzzle (N > 1) can be solved only if the (N-l)x(N-l) puzzie
(obtained by locking a line and a column of the previous one) can be
solved and the 1 x 1 puzzle is solved. The method is then correct for
solving any size of n-puzzle.

Consequently, whatever may be the size of the puzzle to be solved, the behaviors of
the agents do not have to change.

7.2) Decidability

The other important consequence of this proof is the decidability of the solving
method: It finds the solution when there is one and stops with acceptance. Where there is
none, it also stops but with no acceptance. How does it stop ?

Theorem 3: If a satisfied tile is attacked, and if the goal of the tile that
seeks satisfaction is not an edge, the puzzle is not solvable.

Proof: We assume that the puzzle is greater than 2. Theorems 1 & 2 prove that
satisfied tiles cannot be shifted unless the goal of the current tile that seeks satisfaction is
an edge. So, if a satisfied tile is attacked while the goal of the current tile is not an edge,
there is something wrong with the puzzle.On the other hand, a wrong initial state should
generate loops among the tiles. Loops can only occur between tiles that seek satisfaction
and make the other one flee at each turn. But it would necessarily mean that one of them
has reached its goal (two tiles cannot seek satisfaction concurrently). And that is the
situation to which theorem 3 applies.

Pratically, a way to stop when this situation is met is as follows: Everytime a tile
seeks satisfaction, it informs the puzzle of the current goal. Everytime a satisfied tile is
attacked, it asks the puzzle if the current goal is an edge. If not, the tile does not answer
the attack and the solving stops, leaving the puzzle in a wrong state.

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW91 page 9

8) Empirical Results

EPS system is able to solve very large puzzles. The n-puzzle has been tested on the 8
up to the 168-puzzle. Some of them were as yet unsolved because of the cost of the
computation. Figure 7 shows the average solving times and the average solution lengths
in terms of moves.

All the results have been registered with the EcoTalk kernel written in Smalltalk-80
release 2.5, running on a Macintosh IIfx. They have been obtained by making the
average over a hundred random problem instances of each size.

It is important to notice that we do not look for optimality in solving. The lengths of
the solutions obtained for the 8 and 15 puzzles in terms of moves are approximatively a
little more than the double of the optimal ones (respectively 22 and 53 moves, as
computed by A*). While no practical techniques exist for computing optimal solutions
for greater puzzles, we cannot conclude on their performances. But the system solves
them in a reasonable time.

Size Average ime Average Average
(in seconds) | number of moves| moves per tile

8 !TS 51 6,4
15 5,6 - 133 8,9
24 18,5 298 12,4
35 49,3 525 15,0
48 91,2 802 16,7
63 160,5 1155 18,5
80 300,4 1712 21,4
99 484,8 2273 22,9
120 665,7 2830 23,6
143 830,4_ 3132 21,9
168 1020,5 3624 21,5

Fig. 7 - Performances of the EPS implementation of the n-puzzle

The other interesting fact is that the average number of moves a tile needs to be
satisfied increases very slowly and even decreases for the biggest sizes of n-puzzles.
This means that the quality of the solution in terms of moves increases with the size of
the puzzle.

9) Conclusion

We present a new approach to Distributed Problem Solving. We show that the EPS
model, based on agents provided with satisfaction and flight behaviors, solves the n-
puzzle problem without using a heuristic search approach, but as the result of the
interactions between agents.

Then, we prove that the solving method generated by EPS is correct, complete and
decidable for any size of n-puzzle (n > 2). That means the solving always stops: with the
solution if there is one and in a wrong state if there is none.

Finally, we present empirical results that demonstrate that the EPS implementation is
effective at solving larger problems than have previously been solvable with heuristic
search algorithms because combinational explosion has been drastically reduced.

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 10

We are currently working on extensions of the n-puzzle problem, and our purpose
will be to show that a few changes should allow the actual implementation to solve any
kind of n-puzzle: any frame (not necessarily a square), any number of blank locations.

Acknowledgements

The EPS implementation of the n-puzzle problem have been produced in collaboration
with Jacques Ferber. We are sincerely grateful to Anne Collinot and Eric Jacopin for the
valuable comments they have provided in drafting this paper.

References

[1]1 G. Agha "Actors - A model of Concurrent Computation for Distributed Systems"
MIT Press, 1986.

{2] J.-P. Briot "From Objects to Actors, study of a limited symbiosis in Smalltalk-8G"
LITP Report 88-58RXF, September 1988.

[3] C. Delaye, J. Ferber & E. Jacopin "An interactive approach to problem solvirg"
in Proceedings of ORSTOM'90, November 1990.

[4] A. Drogoul & C, Dubreuil "EPS Implementations of classical Al prok:lems” -
LAFORIA Technical Report, LAFORIA 1990 (in French).

[5] E.H Durfee, V.R. Lesser, D.D. Corkill "Cooperation through communication in a
distributed problem solving network"
in "Distributed Artificial Intelligence”, M. Huhns (Ed) Pitman Publishing,1987.

[6] J. Ferber & E. Jacopin "The Framework of Eco problem solving”
in Proceedings of MAAMAW 90, page 103-114, 1990.

[7]1 P.E. Hart, N.J. Nilsson and B. Raphael, "A formal basis for the heuristic determination of
minimum cost paths”
IEEE Trans. Syst. Sci. Cybern. 4, 1968.

(8] B.A. Hubberman & T. Hogg, "The behavior of Computational Ecologies”
in "The Ecology of computation”, B.A. Huberman, Ed. North Holland, 1988.

[9] M.J Katz & J.S. Rosenschein, "Plans for muiltiple agents”
Workshop on Distributed Artificial Intelligence (Preliminary Papers), Lake Arrowhead USA, 1988.

[10] R.E. Korf, "Depth-First iterative-deepening: An optimal admissible tree search”
in Artificial Intelligence 27, 1985.

[11] R.E. Korf, "Real-Time Heuristic Search”
in Artificial Intelligence 42, 1990.

[12] M.L. Shamos & D. Hoey "Closest point problems"
in Proceedings of the 16th IEEE Symposium on Foundations of Computer Science”

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMAW'91 page 11

Exploiting Emergent Behaviour in Multi-Agent Systems

Peter Wavish

Philips Research Laboratories,
Redhill, Surrey, England, RH1 SHA
wavish@prl.philips.co.uk

Abstract

This paper addresses the question of how to exploit emergent behaviour in the design of
multi-agent systems. The method advocated is to design the individual agents so that they
maintain symbolic representations of emergent behaviour which can then be used as a
basis for building higher level behaviours. The paper falls into four parts: a description of
behaviour-based agents, a discussion of emergent behaviour, a description of a
methodology for developing agents which exploit emergent behaviour, and a practical
example of the application of these idcas to the development of a simulated multi-agent
system.

1. Introduction

Emergent behaviour is an issue in multi-agent systems in two respects. Firstly, the
behaviour of a system or group of agents is emergent from the behaviour of individual
agents [e.g. Steels, 1990]. Secondly, the architecture of an individual agent can itself rely
on emergent behaviour [e.g. Brooks, 1989]. In either case emergent behaviour is to be
valued as an efficient and robust way of producing behaviour.

A central problem with designing systems with emergent behaviour is to produce the
desired emergent behaviour in the first place. Existing methods include careful design
[Brooks, 1989] and machine learning [Maes & Brooks, 1990]. In this paper, however, we
will set aside the problems involved in creating emergent behaviour and concentrate
instead on how the emergent behaviour can be made use of in the design of multi-agent
systems.

The problem is that emergent behaviours, in their nature, have no symbolic representation
and so cannot easily be used to build higher level behaviours. This is particularly the case
for agents which are designed and implemented entirely as sets of interacting symbolic
representations of behaviour.

The paper is organised as follows. Section 2 describes behaviour-based agents and the
behaviour representation language we have developed for implementing them. Such
agents consist of a set of symbolic representations of behaviour which correspond to their
actual behaviour as perceived by the designer.

Section 3 starts with a definition of emergent behaviour. It then shows how the problem
referred to above can be overcome by creating and maintaining, within the agent, new
symbolic behaviours which are maintained so that they correspond to the emergent
behaviours and so can be used as a basis for building further behaviours.

Section 4 presents a methodology for developing systems of behaviour-based agents
which maintain internal representations of emergent behaviour. This methodology is
based on the use of a simulation of the multi-agent world.

Finally, section 5 describes the application of this methodology in a simulated mobile
robot domain.

2. Behaviour-based agents

Whereas much Artificial Intelligence work is based on the explicit representation of
knowledge, our approach to multi-agent systems is based on the explicit representation of
behaviour [Brooks, 1985]. This is because we believe that the activity of an agent is
produced primarily by the interplay between the agent and its environment, not by
reasoning processes (such as planning) occurring entirely within the agent [Suchman, 1987,
Agre & Chapman, 1987; Rosenschein & Kaelbling, 1986]. By representing behaviour
explicitly it is possible to model the agent, its environment and their causal interactions
within a single coherent framework.

One of the consequences of representing behaviour explicitly is that, knowing the current .
behaviour of a system, it is possible to predict its immediate future behaviour. Rer zatedly
predicting future behaviour in this way gives rise to a simulation of the system. This makes
it possible to design programming languages whose source code consists of declarative
symbolic representations of behaviour and whose mode of execution is discrete event
simulation. We have designed a programming language which works in this way called
ABLE (Agent Behaviour LanguagE) and a real-time variant of it called RTA (Real Time
ABLE) [Wavish & Connah, 1990; Graham & Wavish, 1991; Wavish 1991]. Both languages
are summarised in figure 1.

From a programming language perspective, atomic and simple behaviours correspond to
simple fzcts in PROLOG, licences and schemas are different kinds of forward chaining
production rule, functions correspond to PROLOG predicates, and worlds correspond to
partitions of the temporal database. The main distinctions between ABLE and traditional
production rule languages are that rules (i.e. licences, schemas and functions) execute in
parallel, they are dynamic and can be arbitrarily nested, and they can be time-annotated
with the times for which components of the condition must be present and the durations for
which newly created behaviours must persist.

From a representational perspective, atomic behaviours usually represent objects or
agents, simple behaviours usually represent attributes of objects (the way they are
currently behaving), licences and schemas represent different kinds of causal links
between behaviours, and worlds represent different realities which are largely causally
independent. The overall computation mimics the way that cause and effect appear to
operate in the real world. Changes propagate independently and concurrently in a way
that depends on the structure of the symbolically represented behaviour through which the
changes are propagating. Interactions between different trains of cause and effect depend
critically on their timing relative to the time-line of the simulated world.

_2 -

Atomic behaviour agenti
Simple behaviour agent(agent1)

Licence - predicts independent behaviour
agent(A) & say(B,U)/0.1 =>

hear(A,say(B,U))/0.5
Schema - predicts dependent behaviour
agent(A) =
{
object(A),

hear(A,say(B,U))/0.2 & agent(B) —>
look_at(A,B)
}

Function - defines ‘virtual’ behaviour
together(A,0) <=
(at(A,P) & at(O,P))/0.1
World - self-contained set of behaviour
goal(agent1,goal_world:at(agenti,place3))

Figure 1: Behaviour constructs in ABLE and RTA

The existing ABLE interpreter is quite slow, and this has in the past prevented us from
running multi-agent simulations such as [Connah & Wavish, 1990] and [Hickman &
Shiels, 1991] in real time. This is a problem both because it prevents the designer from
making free use of the simulation for trying out ideas, and because it restricts the class of
real agents which can be implemented in ABLE. To overcome this problem, we have
defined a compilable variant of ABLE called RTA (Real Time ABLE) which is fast enough
to operate in real time. RTA texts are compiled into C code which can then be compiled
either for the host workstation or for a target microprocessor. The compiled code is
typically hundreds of kilobytes in size and executes at 10,000 events per second on a typical
workstation. Itsinternal time-line is locked to the real time clock of the computer. RTAis
therefore effective both for simulating agents in real time and for actually implementing
them.

The particular way that RTA is restricted compared with ABLE is that the set of possible
behaviours is finite and is determined at compile time. In practice this means that licences
and schemas cannot contain unbound variables, so building and decomposing structure at
run time is not possibie. The effect of this from the programmer’s viewpoint is to force a
style of representation similar to that used in Pengi [Agre & Chapman, 1987]. For instance,

.

the representation of another agent saying something is not, as it is in ABLE, the simple
behaviour:

hear(agenti,say(agent2,”hello”)) % agent1 hears agent2 say "hello”

because variables would be needed to decompose this structure. Instead, while agent2 is
actually uttering and agent1 is hearing, the following set of behaviour will be active in
agentl:

{

hear(agent1,”hello”), % agent1 hears "hello” being said
see(agenti,agent2), % agenti is looking at agent2
see_speaking(agent1) % agent1 sees something speaking
}

In other words the binding between the components of a complex behaviour is provided
not by their incorporation into a single data structure but by their co-occurrence at a
particular moment in time. An agent encoded in RTA can be viewed as a large, fixed set of
such behaviours, of which only a small subset will be active at any one time. These
behaviours are linked together by a network of logical oper: iors and delays which
determine how the behaviours are interrelated. In fact, agents are represented by the RTA
compiler as asynchronous digital logic circuits, where behaviours are implemented as
registers, logical operators as logic gates, and delays as monostables. This level of
representation is however normally hidden from the designer, in contrast with
hardware-oriented approaches such as [Agre & Chapman, 1987].

When agents of this kind interact with each other or witii their environment in general,
their overall behaviour, and also the behaviour of the system of which they form part,
emerges from interactions between their explicitly represented behaviours. This emergent
behaviour is not represented directly, nor is it represented by any simple function of the
behaviours that are actually represented. In the next section we focus on this kind of
emergent behaviour.

3. Emergent Behaviour

A good introduction to emergent functionality is given in [Steels, 1991]. For the purposes
of this paper, however, we will define emergent behaviour in a way which is relevant to the
concerns of a designer programming in ABLE or RTA. Such a designer has a vocabulary of
behaviour descriptions V1 with which behaviour of a system can be described, and a much
smaller subset V2 which is actually used in the written texts describing and ultimately
generating the behaviour of the system. Emergent behaviour is that behaviour which is
produced by behaviour describable by V2, but which is not itself describable by V2,
although 1t is describable by V1.

To see how this definition is applied, consider the emergent walking behaviour of Brook’s
six-legg.d robot [Brooks, 1989]. Walking is not easily describable in terms of the explicitly
represented behaviours (such as moving a leg forward) from which it emerges, but it is

-4 -

immediately obvious to the observer that the robot is exhibiting walking behaviour and
‘walking’ is already part of the designer’s vocabulary. ’

Stable emergent behaviour is valuable both because it can be produced much more
economically than explicitly programmed behaviour and because it is typically very robust.
The problem with emergent behaviour within a behaviour programming framework is that
because, by definition, it is not explicitly represented, it is difficult to make use of it to build
higher level behaviours. For example, the designer may wish to add another behaviour to
the six-legged robot which depends on (or controls) whether it is walking or not, but if
there is no explicit representation of walking behaviour, this cannot easily be done.

The basis of a solution to this problem is for the designer to add a new symbolic behaviour
SB1 that represents the real emergent walking behaviour EB1. This behaviour must be
maintained so that it is “on” when the real walking behaviour exists and is “off”” when real
walking behaviour is absent. It is then possible to add further behaviour B2 which
apparently depends on the real emergent behaviour EB1 but is actually causally linked to
its symbolic representation SB1. This state of affairs can be depicted as follows:

Additional behaviour B2

T~

Emergent behaviour EB1 Symbolic behaviour SB1

Basic behaviour B0

a

Figure 2: Maintaining a symbolic representation of emergent behaviour

In figure 2, bold lines represent causal links between behaviours which may run in either
(or both) directions, and the broken line represents emergence. The emergence link is also
bi-directional in the sense that emergent behaviour EB1 couples back to affect the basic
behaviours B0 which produce it (for instance, the emergent walking behaviour of Brooks’
robot coordinates the individual move-leg-forward behaviours). Notice that there is no
direct link between EB1, the emergent behaviour, and B2, the additional behaviour which
is apparently built on top of it.

The diagram glosses over the distinction between real behaviour and symbolic
representations of behaviour at the level of basic behaviour BO. The symbolic behaviour
BO represents only a subset of the rea/ behaviour BO. This in practice restricts the causal
links that can be established by the designer between B0 and SB1. However, in order to
simplify the following discussion, it will be assumed that there is a direct correspondence

-5

between real behaviours and their symbolic representations at this level, so we can think of
B0 in terms of either real or symbolic behaviour as appropriate. -

The strategy for building B2 on top of SB1 by causally linking it to SB1 only works if the
symbolic behaviour correlates well with the emergent behaviour EB1, i.e. one does not
exist without the other. Since the causal and emergent relations shown in the diagram are
bi-directional, there are two ways of achieving this:

1) the basic behaviours B0 and the corresponding emergent behaviour EB1 already
exist, and the symbolic behaviour SB1 is caused by the behaviours in BO which
indicate the presence of EB1.

2) the symbolic behaviour SB1 indirectly givesrise to emergent behaviour EB1 through
its direct causal links to the set of basic behaviours BO which create the conditions
for emergence.

In either case, the behaviours EB1 and SB1 will be correlated with each other, but in the
first case the emergent behaviour ‘drives’ the symbolic behaviour, whereas in the second
case the symbolic behaviour ‘drives’ the emergent behaviour. Although we will focus on
these two cases, there is also a third case which is the superposition of the first two cases, in
which the emergent behaviour EB1 and :1e symbolic behaviour SB1 both drive each other
and so are locked together in a.mutually supportive loop.

In the first case, the symbolic behaviour SB1 needs to be turned “on” when the emergent
behaviour starts, and turned “off” when it finishes. The designer’s task is to determine
what particular configurations of basic behaviours BO are associated with the existence of
the emergent behaviour EB1, and to devise a network of behaviour which allows the basic
behaviours B0 to determine the state of SB1 appropriately. Relevant behaviours in BO
include those which are known to give rise to the emergent behaviour and those which
indicate its presence.

In the second case, the emergent behaviour EB1 needs to be produced when the symbolic
behaviour SB1 is turned “on”, and removed when it turns “off”. The designer’s task is to
find some subset of basic behaviours B0 which, in conjunction with other existing basic
behaviours, will give rise to the emergent behaviour EB1, and to devise a network of
behaviours which allows the state of the symbolic behaviour SB1 to determine the
existence of the appropriate basic behaviours.

So far, we have implicitly been considering the behaviour of a single agent (in other words,
even though the emergent behaviour will normally depend on the effect of the agent’s
environment, it is predominantly the behaviour of the agent itself). In the typical
multi-agent situation, however, the emergent behaviour EB1 may be largely outside the
agent itself and may emerge from the concurrent activity of a number of agents. The
symbolic representation SB1, however, is still located within the agent (because that is the
only place where the designer can actually put symbolic representations). Figure 3 shows
the relation between the agents and its environment.

A further difference is that the set of basic behaviour B0 is effectively split into the subset
ABO, which is the basic behaviour of the agent, and the subset WBO0, which is the basic

-6 -

Agent’s

. Agent
environment
Additional behaviour B2
Emergent behaviour EB1 Symbolic behaviour SB1
Environment’s basic behaviour ——.Agent’s basic behaviour
WBO0 ABO

Figure 3: The relation between the agent and its environment

behaviour of its environment or world. These two subsets are however causally linked.
This makes the designer’s problem of maintaining a high correlation between the symbolic
behaviour SB1 and the real emergent behaviour EB1 much more difficult, because the
agent has direct access only to ABO, and not to WBO0, although it is the union of these sets
that is responsible for the existence of EB1.

In the first case we have been considering, where the emergent behaviour EB1 drives the
symbolic behaviour SB1, the agent’s basic behaviour is influenced by the emergent
behaviour both directly and indirectly through WBO0. Typically nothing can be done to
strengthen the direct link, so in order to improve the correlation between EB1 and SB1 the
indirect link through WBO0 must be strengthened. This can be done either by adding
sensors to the agent or by increasing its level of activity so that it interacts more frequently
with behaviours in WB0. In either case, the whole process of maintaining SB1 in
correspondence with EB1 can be regarded as a process of perception.

In the second case, where the symbolic behaviour SB1 drives the emergent behaviour EB1,
the basic behaviour of the agent ABO is part of the behaviour in the world from which the
emergent behaviour EB1 emerges. The basic behaviour of the agent ABO also affects
behaviour in its environment WBO0 which also contributes to the emergence of EB1. The
designer must consider both paths in order to determine how.the emergent behaviour EB1
1s to be produced. The whole process of creating and maintaining emergent behaviour in
the world according to the state of the symbolic behaviour SB1 can be regarded as action.
It should be remembered, however, that the point of this action is not just to affect the
behaviour of the world, but to make it correspond to the agent’s representation of it.

We have presented a picture of how an agent can maintain its internal representation of
emergent behaviour in correspondence with real emergent behaviour in its environment.
The purpose of the internal representation is to provide a ‘handle’ on the emergent
behaviour so that the agent can behave appropriately in its presence. There are at least

-7~

three general ways in which the emergent behaviour may be related to the agent’s current
interests and hence to its behaviour:

1) The emergent behaviour is beneficial with respect to the agent’s current interests, in
which case the agent’s behaviour is designed to support the continued existence of
the emergent behaviour.

2) The emergent behaviour is damaging with respects to the agent’s current interests,
in which case its behaviour is designed to suppress the emergent behaviour.

3) The emergent behaviour is neutral with respect to the agent’s current interests, in
which case the agent may make use of its representation of the emergent behaviour
to ensure that its behaviour in general is appropriate to the presence of the emergent
behaviour.

This completes cur account of emergent behaviour. The central idea is to maintain a
correspondence between real emergent behaviour in the world and a symbolic
representation of that behaviour in the agent. The technical problems are to do with
maintaining that correspondence. The reason for taking the trouble to solve these
technical probleris is that it then becomes possible to build higher levels of behaviour
apparently (but n~t really) on top of the emergent behaviour. In the next section we will
put forwa d a methodology for developing multi-agent systems in this way.

4. Methodology

This picture of the relation between emergent behaviour and its symbolic representation
within the agent gives rise to a particular way of developing multi-agent systems based on
simulatior. of the system. The designer depends heavily on the simulation to reveal
spontaneously occurring emergent behaviour, to test out ideas for creating emergent
behaviour, and to optimise the causal pathways within the agent that maintain the
correspondences between the real emergent behaviour and its symbolic representation.

The overall development cycle is edit, compile, run, and observe what happens. Four
interesting situations can be singled out:

1) Expected and wanted emergent behaviour is present. Adjust the causal chain of
behaviour WB0 - ABO - SB1 to optimise the correlation between EB1 and SB1 and
to optimise the stability of EB1 with respect to changesin ABQ. This keeps the system
‘in tune’.

2) Expected and wanted emergent behaviour is absent. Check and if necessary redesign
the causal chain of behaviour SB1 - AB(Q - WBO0 so that ABO and WBO0 provide the
right conditions for EB1 to emerge. This makes SB1 available for future use.

3) Unexpected emevgent behaviour is present. Create a new causal chain of behaviour
EB1 - WBO0 - ABO to maintain the new symbolic behaviour SB1. This makes SB1
available for future use.

4) Unwanted emergent behaviour is present. Design a new causal chain of behaviour
SB1 - ABO - WBO0 which removes the conditions necessary for the emergent
behaviour EB1 to exist. This suppresses EB1 whenever it occurs.

- 8-

As the development progresses, the vocabulary of behaviour available will become
extended by the process of maintaining representations of newly observed behaviours and
so provide an increasingly rich base for creating further new behaviour. It should perhaps
be pointed out that this process results in the agent acquiring explicit representations of
behaviours which are attributed to the system by the designer. While this is not necessarily
the optimal way for a simple agent to view the world, it is much easier for the designer if the
agent and the designer share a common conceptualisation of what is going on.

This process may be compared with the original subsumption architecture approach
[Brooks, 1985] where once a layer of behaviour is defined, its implementation is frozen. In
the present approach, the implementation of any-oehaviour may be freely changed as the
development progresses provided it remains correlated with the real behaviour it
represents as perceived by the designer. This ensures that higher levels of behaviour can
be built on a solid foundation. In fact, as higher levels of behaviour are built, lower levels
tend to go ‘off tune’, and it is normally necessary to review their design from time to time.

S. An example

This methodology has been tried out in a simulated mobile robot domain. One robot, the
‘dog’, has the task of herding five other robots, the ‘sheep’ into a ‘pen’ consisting of a
number of obstacles arranged in a partial ring, as shown below. The obstacles can be
rearranged to create different problems for the agents. A ‘shepherd’ agent whose position
can easily be controlled by the user is also provided.

Each robot can move in any of eight directions, and has two means of sensing,
corresponding roughly to sight and touch. Both the robot’s touch surface and its field of
view are divided into eight sectors, in each of which it senses either the presence or the
absence of an object. In the case of sight, the class of object to which the sight sensor is
sensitive can be predetermined. This means that when the dog is visually sensing the
sheep, it can tell where in its visual field the sheep are but cannot for example identify
individual sheep or even tell how many sheep there are. In addition to this, the dog can see
whether it is facing the shepherd or not (in other words, whether the shepherd is in any of
the three forward facing visual sectors).

Much of the basic behaviour of the dog and sheep is concerned with dealing with collisions
and visually seeking objects. Two behaviours of the dog will be singled out here because
they correspond to the two ways of maintaining the correspondence between the emergent
and the symbolic behaviours described in the previous section. The first behaviour is that
of being trapped, which illustrates how a behaviour which is apparent to the designer hasa
behaviour representation maintained for it which is then used to influence further
behaviour of the dog. The second behaviour is that of the dog driving the sheep across the
field, which is built from a pair of emergent rounding—up behaviours, and illustrates how
emergent behaviour is produced in response to symbolic behaviour.

The trapped behaviour of the dog occurs when the dog is surrounded by obstacles which
block its forward progress. Notice that the trap itself is usually perceived as a trap by the

-9

human observer who sees the configuration of the obstacles, but it does not exist as an
object within the simulation, and is not perceived as such by the dog. A blocked behaviour
for the dog is maintained so that it exists when the dog is being touched on any of its front
three faces (touching behaviour for each of the dog’s eight faces is maintained by software
which computes the distance and relative orientation of objects within the simulated two
dimensional world). The normal behaviour of the dog in response to being blocked is to
turn in the appropriate direction vntil it is no longer blocked. If the dog happens to be
surrounded by obstacles, it will repeatedly move forward, become blocked, turn, move
again and so on. trapped behaviour is maintained so that it starts to exist when the dog has
been repeatedly blocked for some period of time, and ceases when the dog has not been
blocked for some time.)

It can be argued that being-trapped behaviour, as described, is not emergent, on the
grounds that it is (almost) compositionally related to touching and being-blocked
behaviours. It is therefore worth saying why we consider it to be emergent. We are
distinguishing in this paper between the vocabulary of behaviouvr which is used to generate
the behaviour of the agents, and the considerably larger vocabulary available to the
designer. It is a matter of fact that when the dog is surrounded by obstacles and is
repeatedly being blocked, turning and moving forward again, it is strongly perceived (by
human observers) as being trapped even though there is no symbolic representation of its
being-trapped behaviour. The behaviour observed is not describable within the
vocabulary so far used by the designer which includes touching, being blocked, and
turning. Being trapped isrelated to other concepts such as escaping which are at a different
conceptual level.

Having defined and maintained a symbolic behaviour trapped which correlates well with
the perceived being-trapped behaviour, it becomes easy to program the dog so that it
behaves appropriately. For example, if the dog is visually seeking an object when it
becomes trapped, it will tend to stay in the corner of the trap nearest its objective, so
preventing a search for a way out of the trap. trapped behaviour is therefore used to
suppress goal-seeking behaviour of this kind so that the dog is free to escape from the trap.
A further behaviour of the dog in this situation is to start howling, so drawing the attention
of another agent (such as the human observer) to its predicament.

A different way of viewing trapped behaviour is that it is one component of the dog’s
overall model of its situation, and it is maintained by what is normally termed a process of
perception. This is broadly correct, but it is the activity of the whole dog in turning, moving
and becoming blocked that is used to maintain trapped behaviour, so this is much closer to
Neisser’s account of perception [Neisser, 1976] than to the traditional information
processing model.

Having described how a symbolic representation of behaviour is maintained to correspond
with spontaneously occurring emergent behaviour, we will now examine emergent
behaviour which is driven by its symbolic representation. Figure 4 shows the tracks of the
dog and the five sheep as the dog rounds up the sheep and drive them towards the
shepherd.

- 10 -

Yiew: plan Scale ¢ 1.001384 screen pixnls per metre

Current time: 554.416528 seconds eoono . ’ D B D

.....................................

00000000008 00b400
b
o]
(o]
o

©E0000000A0000000N 0000024000 C000

o . 00000000000
o Ka °

o
[}
-

o
©000ad00000006000000000°

o
°u°noouuunnnnoooocooooo &

Figure 4: The dog rounding up and driving the sheep

The behaviour drive_sheep corresponds to the dog’s ability to drive the sheep towards the
shepherd. This is built compositionally from two complementary behaviours,
round_up_sheep_left and round_up_sheep_right. The overall operation of driving sheep
istoround_up_sheep_left until the dogis facing the shepherd on one side of the flock, and
then round_up_sheep_right until the dog is facing the shepherd on the other side of the
flock. These behaviours take place alternately, with the dog weaving to and fro behind the
flock, so that the flock as a whole is driven towards the shepherd. The coherence of the
flock during drive_sheep behaviour is derived from the round_up_sheep left and
round_up_sheep_right behaviours, both of which have the effect of making the sheep
gather into a flock.

The two rounding up behaviours are emergent (in the sense used in this paper) from the
behaviours of the individual agents. The sheep run away from the dog when it gets too
close, and the dog, by running round the flock in circles, tends to drive the sheep towards
each other. The dog’s circling behaviour is very simple: in round_up_sheep_left
behaviour it changes direction so as to keep its front visual sector free of sheep and its front
left visual sector showing sheep. The resulting emergent behaviour of the sheep, that they
tend to gather together into a flock, is very stable, but depends on parameters of the basic

-11 -

behaviour of both the dog and the sheep, for example their relative speeds and certain
timing considerations.

In this particular case, it is a single agent, the dog, who initiates and maintains these
behaviours, so they are represented symbolically as behaviours of the dog. These
behaviours produce relatively low level behaviours of the dog which are linked (by causal
processes in the world) to similarly low-level behaviours of the sheep. The behaviour of
gathering together into a flock is emergent from all of these low-level behaviours.

Just as the maintenance of the symbolic behaviour trapped to conform with the observable
being-trapped behaviour was viewed as perception, the -way the real rounding-up
behaviour is produced in accordance with the symbolic rounding _up sheep left
behaviour can be viewed as action. But whereas traditional accounts of action deal with
changes of state of objects in the environment of the agent, action in this case involves a
collective activity of a group of agents which is sustained by the behaviour of the individual
agents. During this activity, a new entity (the flock of sheep) comes into being whose
existence is maintained by the activity of the agents. The agentis then further able to acton
this emergent entity by driving it across the field.

An alternative way of viewing the behaviour of the dog is to ascribe to it the belief that it is
trapped or the objective of moving the sheep towards the shepherd. The internal state of
the dog contains components corresponding to this, namely the trapped and drive_sheep
behaviours. The dog is not however designed to conform with any logic of beliefs and
action. Relations between components of its internal state are determined by the causal
processes which maintain its internal behaviour representations consistent with real
behaviours in the world. It is interesting that this process results in behaviour which is
naturally describable in intentional terms, and we hope to investigate the way that
intentional behaviour can be made to emerge from concrete behaviour in future work.

6. Conclusions

The main point of this paper is to describe a practical methodology for building agents out
of emergent behaviour centred around the notion of maintaining symbolic representations
of the emergent behaviour. This methodology has been tested by developing a simple
multi-agent demonstrator.

The discussion in this paper has concentrated mainly on an individual agent embedded ina
multi-agent world. A natural extension to this work would be to consider groups of agents
such that the individual agents all have internal symbolic representations of the emergent
behaviours of the group. This would appear to provide a good basis for supporting
cooperative behaviour.

Acknowledgement

This work was done in collaboration with David Connah, Michael Graham and Steve
Hickman.

-12 -

References

[Agre & Chapman, 1987]
[Philip E. Agre and David Chapman, ‘“Pengi: an Implementation of a Theory of
Activity”, Proc. 6th National Conference on Artificial Intelligence, Morgan Kaufmann,
Los Altos, CA, 1987.

[Brooks, 1985]
Rodney A. Brooks, “A Robust Layered Control System for a Mobile Robots”, Journal
of Robotics and Automation, Volume RA-2, Number 1.

[Brooks, 1989]
Rodney A. Brooks, “A robot that walks: Emergent behavior from a carefully evolved
network”, Neural Computation I (2), 1989.

[Connah & Wavish, 1990]
D.M. Connah and PR. Wavish, “An Experiment in Cooperation”, Proceedings 1st
European Workshop on Modeling an Autonomous Agent in a Multi-Agent World, ed.
Y. Demazeau and J-P Muller, Elsevier Science Publishers B.V. (North-Holland),
Spring 1990.

[Connell, 1989]
Jonathan Connell, “A Colony Architecture for an Artificial Creature’, MIT Artificial
Intelligence Laboratory Technical Report No. AI-TR 1151, August 1989.

[Graham & Wavish, 1991]
Michael Graham and Peter Wavish, “Simulating and Implementing Agents and
Multiple Agent Systems”, Proceedings of the 1991 European Simulation
Multi-Conference, Copenhagen, June 1991.

[Hickman & Shiels, 1991]
S.J. Hickman and M.A. Shiels, “Situated Action as a Basis for Cooperation”,
in Decentralised Artificial Intelligence 2, Proceedings of the 2nd European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, Paris, 1991.

[Maes & Brooks, 1990]
Pattie Maes and Rodney A. Brooks, “Learning to Coordinate Behaviors”, Proc. 8th
National Conference on Artificial Intelligence, AAAI Press / The MIT Press, 1990.

[Neisser, 1976]
Ulric Neisser, “Cognition and Reality”’, W.H.Freeman & Co., San Francisco, 1976.

[Rosenschein & Kaelbling, 1986]
Stanley J. Rosenschein and Leslie Pack Kaelbling, “The synthesis of digital machines
with provable epistemic properties”, in Proceedings of the Conference on Theoretical
Aspects of Reasoning About Knowledge, ed. Joseph Halpern, Monterey, CA, 1986.

[Steels, 1990]
Luc Steels, “Cooperation between Distributed Agents through Self-Organisation”,
Proceedings of the 1st European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, ed. Y. Demazeau and J-P Muller, Elsevier Science Publishers B.V.
(North-Holland), Spring 1990.

- 13 -

[Steels, 1991]
Luc Steels, “Towards a Theory of Emergent Functionality”. in “From Animals to
Animats”, Proceedings of the 1st International Conference on Simulation of Adaptive
Behaviour, ed. Jean-Arcady Meyer and Stewart W. Wlison, Bradford Books, 1991, pp.
451-461.

[Suchman, 1987]
Lucy Suchman, “Plans and Situated Actions: The Problem of Human-Machine
Communication”, Cambridge University Press, 1987.

[Wavish, 1991] ~
P.R. Wavish, “Real Time ABLE”, Philips Research Laboratories Annual Review 1990,
1991.

[Wavish & Connah, 1990]
P.R. Wavish and D.M. Connah, “Representing Multi-agent Worlds in ABLE”, PRL
Technical Note No. 2964, October 1990.

~14 -

MAAMAW 1991

A Distributed Artificial Intelligence View on General Purpose Vision Systems
Olivier Boissier Yves Demazeau

Laboratoire LIFTA/IMAG - 46 av Félix Viallet
F-38031 Grenoble Cx - FRANCE

tel +33 76574745 tel +33 76574604
fax +33 76574602 fax +33 76574602
boissier@lifia.imag.fr demazeau@lifia.imag.fr

Abstract

A General Purpose Vision System (GPVS) is an open and domain-independent system that is
able to build, maintain, and use an internal representation of the external world from data
provided by physical sensors such as cameras. The experience in constructing the Vision As
Process (VAP) and SATURNE systems at LIFIA using a Distributed Artificial Intelligence
(DAI) approach has enabled us to compare, from a DAI point of view, these two systems with
other major existing GPVS's. This work represents the first large-scale comparison between
GPVS's at the module and module-integration levels using a DAI formalism. This has lead us
to the identification of several basic common features within the systems studied. Furthermore
we think these common features are essential for the construction of a GPVS, namely : 1/ the
distribution of the knowledge representation provides level-agents that denote the same
knowledge at a given level of representation 2/ the distribution of the knowledge processing
provides focus-agents which realize the system'’s "focus of attention” 3/ intersection of level-
agents and focus-agents determines the active basic-agents that explicitly or implicitly constitute
the system at a given time. The description of GPVSs in terms of basic agents is a novel feature
of our approach and may also be applicable to other domains such as robotics.

1. Introduction

A General Purpose Vision System (GPVS) is an open and domain-independent system that is
able to build, maintain, and use an internal representation of the external world from data
provided by physical sensors such as cameras. This representation is built in order for example
to be used by other systems acting in the same external world but lacking in perceptual
capabilities. Such systems may interact with the vision system through an exchange of data or
of goals the vision system has to satisfy. Its internal activity is realized by the chaining of
specific processes it contains, or in collaboration with other systems with which it interacts.
The experience in constructing the Vision As Process (VAP) and SATURNE systems at LIFIA
using a Distributed Artificial Intelligence (DAI) approach, has enabled us to compare, from a
DAI point of view, these two systems with the major existing GPVS's. After the definition of
the vocabulary and concepts we use in the field of DAI, we try to identify the main concepts
involved in the building of a GPVS, and we propose a methodology to analyse the whole
system, as well as its functioning. Then we will also show that the DAI approach allows a
unified description of all GPVSs while from a computer vision perspective such systems are
generally extremely difficult to compare. We finally use the DAI formalism in section 6 to
describe one of the GPVSs developed at LIFIA, the VAP system (Vision As Process), built in
the framework of the European ESPRIT Basic Research Project BRA3038.

2. Distributed Artificial Intelligence

The description of a system using a DAI formalism can be made according to two points of
view [BOI 89] [DM 90] : 1) a macro level taking into account the building t!ocks of the system

MAAMAW 1991

as individuals having knowledge, limited resolution abilities and interacting together. At this
level we consider the system as a society of agents. The degree of homogeneity of the society
changes depending of the degree of homogeneity or heterogeneity of the agents that build it as
well as the number of these agents (from few to many). 2) a micro level considering the system
or each building block as a whole entity that has a problem to solve with its knowledge and its
resolution abilities. In this case, we focalise our attention on the agent. The grain of the agents
covers the range from coarse to fine.

In DAIT all systems may be represented using these two levels of description: We will use the
agent and society models figured in [DM 90].. Additionally we use concepts from current work
carried out at Grenoble in the framework of the PLEIAD group [GDA 91].

2.1. Agent

Agents are the dynamic entities acting in the world. The effect of their actions is perceived in it
by the production of events that correspond to modifications of the environment, and to
communication acts. Agents can vary in complexity, from ants to robots. We mean by agent an
entity that acts rationally and intentionally according to its own goals and to the current state of
its knowledge. We say that agents are autonomous or exhibit intelligence if they are capable of
flexibility and adaptiveness, of setting up thclr own goals based on their interests and of
achieving these goals by exficient actions.

An agent can be split into two main parts. The first one, which is a static aspect, defines the
architecture of the agent. This aspect, which commonly termed knowledge represeniation, deals
with the definition of the types of knowledge available to the agent and how it is represented.
The second aspect is the dynamic processing that takes place on the agent's architecture. We
call this aspect the processing methods.

Static aspect

The type of knowledge an agent has which is relevant to its existence in a society may be
divided into :

» explicit and abstract world representation in which the agent lives.

* abilities : what an agent can offer to others; topics of interest, what an agent is
interested in, and its representation of other agents' abilities.

» explicit and abstract representation of the problems or goals that the agent has to solve,

» plans to be executed, -

* choices or decisions taken.

Dynamic aspect

Processing methods are the way a dynamic aspect is added to this static structure, these may be
divided into :

* reasoning capabilities including communication planning, detection of incoherences,
integration (combination of data), use of data, reasoning on the others' knowledge and
behaviours,

* choice and decision making mechanism, or decision capabilities.

The control consists of the transformation and the inclusion in an agent's processing methods
of global constraints due to the society of agents. It also includes inherent constraints of the
processing methods that are used within each agent.

2.2. Society of Agents

Taking the same way of description for the society the agents build, we have a static and
dynamic aspects.

MAAMAW 1991

Static aspect

The society of agents is organized according to a network that can be heterarchical, hierarchical,
or market-like. This exhibits links of communication that can be a priori defined between two
agents. Basic interactions deal with what is exchanged using these links : knowledge, goals,
plans or choices. Agents can know each others and exchange data namely - direct
communication - or they can communicate without knowing each other by posting and taking
data according to predefined characteristics - indirect communication -. These three features
statically define the game rules, or what can be done inside the society.

Dynamic aspect

We have to define the manner and the moment to use the network, given the game rules that
have been settled. Given what is effectively exchanged on the network - knowledge, goals,
plans or choices - the links between agents are used either for simple communication or for
control influence. Deduced from the content of the exchange and from the eventual protocol of
communication that can take place between the agents, we can speak of cooperation,
competition or cohabitation.

The control at this level deals with the settling and the regulation of the different data exchanges
described above. It can be distributed over the agents in case of entire autonomous agents or
may also be centralised somewhere in one agent.

3. General Purpose Vision Systems

The research dealing with the construction of a GPVS is generally concerned with : 1) design of
explicit models of a visual problem domain, 2) methods for extracting features from a
representation of the perceived scene (image, 2D description, 3D description for example), 3)
methods for matching these features to models by using a suitable control structure. A GPVS
has to be able to perform a non trivial set of visual tasks using a set of such models and
methods in an imperfectly known environment. This definition leads us to require that such a
system must be an open system in the sense that new functionalities to solve new kinds of
problems can be easily added to it. Moreover it has to be a domain-independent system to be
used in any environment.

In the late 70's, several proposals for General Vision architectures were reported [HR 78].
From this time onward few researchers have tried to bring together a large set of methods
covering all the processing chain. Almost all research has been focused on smaller parts of the
whole problem. Each time, in order to solve a particular subset of problems, it was assumed
that solutions to other related subproblems were known. Few attempts were made to build
domain-independent vision systems. Almost all systems were well suited for a specific domain,
such as SPAM [MWH 87] for airport scenes or MESSIE [GGM 89] for aerial images.

More recently new efforts were made to integrate visual modules or processing methods in the
context of a General Vision System. The first class of GPVSs are aimed at processing single
static images from several types of image properties (SCHEMA [DCB 89], SATURNE [DEM
86] [DEM 90], SKIDS [ABH 89]). Others introduce in addition a Focus Of Attention
dimension on the control of the perceptual process. Such systems incorporate several aspects :
spatial, temporal, and semantic. Moreover an added dynamic dimension corresponding to the
use of sequences of images, dealing with the tracking of objects, puts such systems in the trend
of Active Vision [AWB 87]. The MEDUSA [ALO 90], Rochester system [CM 87][BAL
89][WB 90][BAL 91], Vision As Process (VAP) [CCE 89] [CG 90], are the main systems
following such an approach.

4. Analysing General Purpose Vision Systems

The main problem of visual perception is the interpretation of an enormous amount of
inherently ambiguous symbolic and numeric data. To simplify the representation it is natural to

MAAMAW 1991

define intermediate levels of representation between the information coming from the sensors
and the final description of the scene in the context of the system's goals. On another hand the
structuration of the whole processing taking place in a GPVS appears also necessary. Indeed
such systems are implicitly structured by the global goals they have to satisfy and by the
designers themselves. Finally, the functioning of GPVSs exhibit two main behaviours. The
first is a preattentive or understanding behaviour consisting of a continuous and permanent
activity driven by a set of intrinsic goals. The second behaviour, resolutive or recognition , is
much more discrete and punctual since it is driven by the satisfaction of extrinsic goals.

The current trend in the construction of GPVSs consists of using general principles from the
design of complex systems, namely to divide the system into different components. The
splitting use the two structurations presented above. The resulting components are then
regrouped or integrated inside the system by the addition of a communication language and an
interaction protocol. An horizontal splitting enables us 1/ to structure the levels of
representation, 2/ to identify the basic transformations between levels and 3/ to install both the
preattentive and resolutive behaviours. A further vertical splitting enables 1/ the definition of the
focus of attention of the system and to predefine privileged vertical links within the system, 2/
the identification of the basic agents of the system and 3/ the envisionment of a common internal
structure of these standard agents. These points will be discussed in more details in the
following sections.

4.1. Horizontal Splitting into levels of representation (level-agents)

The levels inherited by the horizontal splitting are those that were clearly identified in the 80's
[HR 78]. A great deal of work has been done on the several proposed different hori zontal
splittings. However from the point of view of the knowledge representation, there is still a
strong need to discover what are the most suitable representations at a given level. This is
particularly the case at the higher levels. Setting this horizontal splitting on a GPVS defines
different entities in the system that we call level agents.

The different levels of representation are used in GPVSs for organizing the large amount of
information with which they are faced. The informations - data and goals - are transformed and
then gathered in subsets according to several criteria : degree of abstraction on the shape
(abstraction), expression in different spatial and temporal systems of reference (decentration)
[MAR 82] [DEM 86]. Abstraction is a classical notion that we will not discuss here [HR 78]
[MAR 82]. Decentration has two aspects : a spatial and a temporal one. The spatial aspect
consists of expressing the features at each level according to different points of view : viewer-
centered, image-centered, object-centered or scene-centered. These points of view are used
because of their suitability for the processing taking place on the representation in this reference
frame. The temporal aspect deals with how features evolve with time. As we go up in levels of
representation - with higher decentration - this sensitivity to time decreases. For instance, the
edges belonging to an object observed in the scene exhibit a high degree of temporal instability.
However the edge information at a given time maybe sufficient to maintain the object
hypothesis within the system. As a consequence of these definitions, decentration is made up of
only the spatial aspect in systems that do not include the maintenance of the scene representation
over time.

4.2. Vertical Splitting according to Foci of Attention (focus-agents)

Despite of this first structuration, it now appears that the obtained level-agents are too coarse-
grained to be considered as basic processing units. There appears to be no general structure for
each level agent that could actively produce the entire description of the scene at a given level.
As a consequence, there is a even stronger need of structuring again these level-agents, splitting
them into several subparts. We propose here some key concepts for both the inter comparison
of GPVSs as well as for analysing them namely, the Focus of Attention dimension. In fact, a
GPVS is implicitly vertically structured by the global goal it has to satisfy and by the designer
himself. That is to say, at a given moment, the processing of the system is focused either on a

MAAMAW 1991

location, on an object, on a task, or on a feature - the focus of attention -. More drastically, we
can observe that this focalisation of the processing exists at each level of representation on
which the system is distributed. This leads to an observable vertical splittingof a GPVS into
groups according to a focus of attention at a given moment. These resulting groups can
physically exist in the system such as SATURNE , or can be dynamically defined by grouping
the different activated subparts of the system at a given moment along the levels of
representation, as for example in the VAP system. We call these groups the focus-agents.

4.3. The society of Agents : the static aspect

Basic Agents : The horizontal splitting provides level-agents that denote the same knowledge
at a given level of representation. The vertical splitting provides focus-agents that denote the
same focus of attention through the levels. The intersection of these two kinds of agents defines
the active basic units that constitute the system at a given time. These are what we call the basic
agents.

Network : Both splittings define too the different links of interactions between the basic
agents. This defines what we call the interaction network. In GPVSs we have mainly two kinds
of links : horizontal ones that allows the basic agents to exchange informations within the same
level of representation and vertical ones that links basic agents belonging to the same focus
agent. This latter kind of link favours obviously control influences inside the society between
basic agents because of the focus of attention attached to the concept of focus agent The levels
of representation are the main interaction media of the society.

4.4. The society of agents : Dynamic aspect -

Basic Interactions : Among the different informations that are manipulated by a GPVS, we
can distinguish two subsets :

« informations used on the same level, concerned with the enrichment aspect if produced
inside a basic agent. They can give rise also to interactions that we call communication if they
resulted from an exchange between basic agents inside the same level agent.

« informations leading to the production of new data on an other level: This is the result
of either, a perceptual act, interaction between basic agents that do not belong to the same level

agent, or an inference that is internal to a basic agent.

Vertical Knowledge Interchange Protocols : We will illustrate the knowledge
interchange protocols only with the perception aspect. However, we have to take in mind that a
knowledge interchange protocol also exists for the communication aspect. This intra-level
protocol is currently poorly studied. For instance it exists in the SCHEMA. system where
objects' schemas within the same high level of representation communicate through a
blackboard. This protocol is less well defined than the vertical one dealing with the perception.
The process of perception has been for a long time considered as the skilled combination of two
functions : segmentation and interpretation acting on the lower and higher levels respectively.
This combination was realised by a feedback from the high level processes to the lower levels.
Representation levels were refined as the predict and verify processing mode from one level to
another [LUX 85]. It can be also formulated as : glvcn a model in a representation at one level
and data in an other representation at another level, is there an instance of the model in this latter
representation. The prediction phase corresponds to the transformation of the data issued from a
representation into more abstract data representation. The verification phase consists of using
knowledge or models of this more abstract representation in order to match it wiia the
incoming data. This phase can also trigger a feedback to the lower level in order to confirm the
hypotheses. This feedback takes place after the transformation of the verification data in the
lower levels of representation (projection step).

MAAMAW 1991

On this basic cycle takes place a an other interaction protocol that uses it. Tsotsos [TSO 89,
TSO 90] defines the visual search taking place in the visual processing, as having two aspects :
1) a bottom-up - data driven - that consists of transition from lower levels to upper, 2) a top-
down - goal-directed - corresponding to transitions from upper to lower levels. In the bottom-
up case, the goals are either unknown in advance either known but not used except to determine
when the search ends. The top-down case makes use of goals to assist in optimizing the
solution to the problem. In fact, depending on the complexity of the task, the large amount of
manipulated data, an exclusively data driven resolution could lead to a combinatorial explosion.

This mixture between both modes of internal functioning - bottom-up and top-down - has led to
the emergence of many resolution cycles depending on the extend of this mixture [TSO 87][RJ
88]. These are for example the perceptual cycle by Crowley [CRO-90] (figure 1) or Kanade
[KAN 80] that explicitly presents the two main levels used (figure 2). For an excellent review
of the different cycles the reader is reffered to [TSO 87] or [LUX 85]. This wide range of
cyctl)es in GPVSs shows that the structuring of the processing of a GPVS is quite a difficult
problem.

Figure 2 "The Perceptual Cycle from [RJ 88] and Kanade's cycle [KAN 80]"

Behaviour of the society

The global processing that takes place within a GPVS consists of a cycle of a close interaction
between two main behaviours : the resolutive and preattentive ones.

Resolutive behaviour : The resolutive behaviour is a discrete and punctual functioning of
the GPVS. It is driven by the satisfaction of extrinsic goals, such as the answering to a request
coming from a robot arm to locate some particular object. As far as the resolutive behaviour of

MAAMAW 1991

the system is concerned, the vision task can be described as a search one : look for an instance
of one model in one set of data.

Preattentive behaviour : However, a GPVS must be open to the external world, it is
observing. So it must permanently pay attention to the external events or data in a preattentive
mode. This second main behaviour of a GPVS consists of a continuous and permanent activity
driven by a set of intrinsic goals. Here again, the kind of unexpected events or data to which the
system is sensitive can either be explicitly programmed inside the system either result from the
data, satisfying some implicit goal such as understand.

Mixed behaviour : A GPVS must be adaptative and flexible, allowing it to reconcile these
two types of behaviours. Even though the resolutive behaviour seems to be much more top-
down while the preattentive behaviour seems to be more bottom-up. As a consequence each
basic agent will have the task of either resolving a particular subproblem, resolutive aspect,
either to execute their own processing independently of any external goal, preattentive mode.
Both behaviours are implemented using the predict and verify loop between the several levels of
representation that are addressed while solving the current problem. They are implemented in
addition with a combination of top-down and bottom-up processing.

4.5. The agent : static and dynamic aspects

To enable such behaviours, GPVSs have to incorporate in their basic agents different
functonalities as well as several kinds of knowledge, analytical, geometrical and physical. In
addition to such knowledge of the real environment that is classically found in such systems,
temporal, relational, functional and communicational knowledge of the behaviours of the basic
agents within the systems has also to be included. These last knowledge sources come directly
from multi-agent studies. Basic agent's internal structures are specific to each GPVS. So, no
standard description of such a structure is given in this paper. As an example, in the last
section, we will describe the VAP system in more details providing such kind of a description.

5. Review of General Purpose Vision Systems with these Analysis Principles

S5.1. The SCHEMA system

The Image Understanding Architecture [WLH 87] (figure 3) is a general Vision System whose
goal is the recognition and the localisation of objects in the scene together with their
relationships. This system uses an architecture the principle of which lies in the decomposition
of the vision process into different layers and processes that are hierarchically organized.
Physically the system is organized as three sets of processors that are respectively dedicated to :
image processing, manipulation of events and features extracted from the image, and symbolic
processing. This system is specialized in static scenes and does not incorporate the means to
control its sensors.

Horizontal splitting : The SCHEMA system does not have an explicit definition of levels.
The levels are continuous in the sense that they depend on the amount of detail used, and on the
knowledge organization needed inside the object model Schema by the different processing
methods. Therefore the number of levels in the system depends on the object model that is
considered. Nevertheless on a large scale three levels may be distinguished in this system :
image, intermediate level, scene description - equivalent to the scene interpretation of the VAP
system -. The intermediate level has a variable extension : it embodies the levels between image
and symbolic scene interpretation in the VAP System.

MAAMAW 1991

(Rmm.a GLOBAL BLACKBOARD (Folinge
Object Hypothesis | Object Hypothesis || Object Hypothesis
\ Obj : Tree Obj : Road Obj : Foliage /
Conf : belief Conf : belief Conf : no-evidence
Area : (regian6) Area : (region240 | Area : (regionl2
region241 region241
line4980 ...} sia)
Coaflict
Aroce : region241
Partyl : Road-instance
/ Party2 : Foliage-instance R("ai-Scene
e — nstance
Backpointer _lele
b (Troo: 5
Tree-instance regian12 : (Faliage-instance)
regian240 : (Road-instance)
region241 : (Road-i Foliage-i) D Schema Instance

Figure 3 "The SCHEMA System [DCB 89]"

Vertical Splitting : In the SCHEMA system, the focus-agents are issued from a Object
model splitting (figure 10). There exists dynamically a focus-agent for each object that can exist
in the scene. The representation levels are not explicitly taken into account. A focus-agent
corresponds to a processing cone covering all the representation levels. This cone is
dynamically generated by the use o inter-level processing methods communicating between
them inside the cone on the representition level they need. .

Basic Agents : As previously mentioned, the basic agent of this system are the object models
organized within a blackboard.

| GLOBAL BLACKBOARD

OHM LOCAL BLACKBOARD

Road-Instance y

Schema instance
Figure 4 "Agent Model of the SCHEMA System [DCB 89]"

Behaviours : In the SCHEMA system, the functioning mode is resolutive. The system is
initiated with an hypothesis that the different agents have to verify. The SCHEMA system can
also be described as a Distributed Problem Solving system in the sense that each agent is built

to satisfy a particular goal.

MAAMAW 1991

Each time an hypothesis on the existence of an entity has to be made, the Schema dedicated to
the interpretation of this entity is triggered. The architecture used is a Blackboard in which the
triggered Schemas interact according to two modes : cooperation and competition.

The processing methods building a focus-agent do not communicate directly with the
processing methods of an other focus-agent. The only exchange of data that takes place is on
the higher level through the blackboard between the basic agents.

Internal Structure : Within the SCHEMA system, one agent is a specialized vision system
that can recognize one type of entity. Several general vision processing methods coexist in the
system. A set of strategies makes it possible to apply or to choose the Knowledge Source that
has to be activated according to the conditions in which the interpretation of the entity has to
take place. The internal activity of each agent as well as each focus-agent-includes the
prediction-verification cycle (figure 4).

At the highest level the deductive knowledge is organized in Knowledge Sources or Schemas
each consisting of one or more dedicated strategies relevant to the interpretation of particular
entity such as "tree", "road"”, "foliage". This modularity principle is inherited from the
incremental development of the Knowledge Base [DCB 87]. On the other levels there are
procedures called by the different Schemas.

5.2. The SATURNE system

The main objectives of the SATURNE system, currently under construction, is the
development of the notion of levels of representation based on the two principles abstraction
and decentration. This system is mainly composed of a number of Shape-from methods that
are able to communicate with each other and with other intelligent agents (figure 5). The
current limitation of the system lies in the fact that it is conceived to ensure an instantaneous
passive understanding without taking into account the temporal dimension. The architecture
itself is independent of the Computer Vision application field since it is suited to the integration
of other robotics or AI modules.

S
< % g Shape from X
3 =) § Meh
§ —'§ é E‘? epresentation
= levels

T scene

=
F:- abiet
=
_,F

£=
_F__

scene features

i

T— image features

. +— image

LI
AAAHH -

[asent | privileged links

Figure 5 "The SATURNE System"

Horizontal splitting : The SATURNE system has explicit levels of representation on which
it makes use of a distributed representation. In the SATURNE system, we have five levels that

MAAMAW 1991

are Image, Image Features, Scene Features, Object and Scene. This structuration is mostly
inspired by D. Marr’s levels [MAR 82] : Image, Primal sketch, 2,5 sketch, 3D Model.

Vertical Splitting : The SATURNE System uses an explicit vertical splitting based on the
features (contours, highlights, shading, texture, motion, stereo) on which the system can be
focussed. This decomposition is due to Marr [MAR 82]. Each focus-agent includes the basic
agents that are specialized in the processing of the same feature (figure 10). Focus-agents can
be explicitly represented and constitute the built-in shape-from methods in the system. The
currently available focus-agents include : shape-from contours, shape-from highlights, shape-
from range data and a grasping module. Other shape-from methods : shape-from- shadows,
shape-from shading, shape-from motion, shape-from texture, are scheduled for construction
and integration. The action field of such an agent covers the set of reprcsentation available along

a specific property of the image.

Basic Agents : A basic agent is defined as the intersection of a representation level and a
Shape-from method. Moreover, they explicitly constitute the agents that compose the society at
its finest grain. Every basic agent is specialized in representing and processing a certain kind of
feature at a given level of representation.

Behaviours : The design and the basic functioning of this system - understanding :
preattentive and permanent - is characteristic of a multi-agent system. The second behaviour -
recognition : resolutive and punctual -, more directed by an extrinsic goal, is much more typical
of a Distributed Problem Solving system. Recognition behaviour is an extension and a
particular use of the multi-agent architecture through the implementation of particular decision
capabilities for each of the shape-from modules.

Perception is provided by basic agents of the same focus-agent while communication is
available with agents of the same level-agent. Links of communication between the basic agents
are dynamically set according to some instantaneous goal provided by an external agent. It is
hoped that the system can be used in any environment, under any condition which results
would not be affected, but the global functioning of the system, using general shape-from
methods as focus-agents for all the goals may be hard to adjust especially if we want it to be
robust.

Internal Structure : The basic agents of the SATURNE system are called intentional ones
(figure 6) [DM 90]. At a given level, the agent has a representations of the world called its
knowledge . This knowledge can be inherent or acquired through percepricn (at a lower level)
or communication (at the same level) with other agents. To communicate with a lower or higher
level, the agent transforms its representation into the target representation. Each reception of
information is assumed to be communicated to the receiver at its level of representation. Goals
are abstracted from the observation of the behaviour of the agent. These goals do not need to
exist explicitly within the agent. In the context of its knowledge and goals, an agent can be
thought of as having to consider a set of possible solutions if the goal is to solve a problem. An
agent does not need to be able to derive all the possible solutions but only a part of these
depending on its reasoning capabilities. When various possible solutions are potentially
applicable, a decision must be made among them to choose the best one - the choice - from the
point of view of the agent.

Knowid @
| Teriln e s

Figure 6 "Model of an Agent in SATURNE"

10

MAAMAW 1991

5.3. The "Vision As Process" system

The aim of the Vision As Process project [CCE 89] is to investigate focus of attention
techniques for the control of the perceptual process in an integrated vision system (figure 7).
The major effort in this project is aimed at system integration. The characteristics of such a
system are active sub-systems such as movable cameras operating in a dynamic environment
under real time constraints. These characteristics have a major effect on the control of the
system. The first version of this system, currently under construction, is composed of the
following modules : Camera Control Unit, Image description processes operating at multiple
resolutions, Processes for extracting 3D description of the scene from sequences of images,
Process for dynamically maintaining a symbolic description of the scene using information
from the other processes and a priori knowledge about the scene. All these modules were
developed independently with the aim of integration using a skeleton, the SAVA system [DCR
90][BC 91]. The control of the system is the task of a supervisor module. The operating cycle
reproduces the traditional approach taken in building a GPVS : close interaction between a
given module and its direct successor.

,mm—mm - o Supervisor :

[}
]
L = = parception
' ' - = dua
= e | HE
-l 1 |]
- Scens = = . data flow 1 !
: e coMMrOI flOW UPDATE : A
i Extraction Dageu ' L'
- of 3 MATCH PREDICT
- Description ‘T
] i
]
- fmage
- Description TRANSFORM PROJECTION
] 1
L 1 .

Control Unit |]ﬂ - '
Figure 7-"The VAP system [CG 90] Figure 8 "The VAP Agent Model"

Horizontal splitting : The VAP systems uses explicit levels of representation. The four
used levels are : image, 2D image description, 3D image description, Symbolic Scene
Interpretation.

Vertical Splitting : A focus-agent is defined as being composed of the union of the
processing -units that transform a representation into a successive one for a given Region of
Interest (ROI). The ROI is the spatial area, temporal slice and its semantic bucket - set of
objects or features - within the focus agent processes and builds its representation (figure 10).

Basic Agents : At each moment of the processing a basic agent can be dynamically defined :
this is the level-agent to which is affected the ROI expressed at this level of representation. In
this way, we have on the same level a dynamic definition of several homogeneous basic agents
corresponding each one to a different ROI. Currently, just one agent of this kind is active at a
given time on a given level. We envision a parallel processing mode at each representation level
in which several ROIs will be defined. This feature may for example be used for the tracking of
features or objects in the scene as in [CKB 90] or [TM 89].

Behaviours : The system exhibit mainly a resolutive behaviour : its activity is directed

towards the satisfaction of goals given to the supervisor. This mode of functioning is illustrated
in figure 1 using the cycle described in [CRO 89].

11

MAAMAW 1991

No communication between basic-agents is currently settled because of the impossibility of
having more than one basic-agent at the same time on the same level of representation. In some
way, the communication between basic-agents occurs when it integrates results provided by a
previous Region of Interest, stored on the level of representation. The perception aspect is the
major mode of interaction between basic agents within the same focus agent.

Internal Structure : In VAP, the functioning of the system is based on the cycle Match-
Update-Predict added to the internal cycle inherited from the Prediction and Verify [LUX 85]. It
incorporates also a temporal prediction that enables the system to integrate its results over time
(figure 8). At the input level of the agent the transformation function makes it possible to go
from one representation to another at a higher level. At the output level the verification phase is
accompanied by a projection function ihat makes it possible to go from one representation to
another one at a lower level. As a consequence, every agent is able to- transform the
representation at a lower level into another one at its level and reciprocally.

5.4. The MEDUSA system

MEDUSA is an active vision system (figure 9) which is built with an active camera system,
inertial sensors, a hand which is visible from the camera and a sub—system that allows it to
move around in the environment. This system works on multiple images accumulating them
while moving. There are two main data structures used by every component of the system :
images and normal flow fields extracted from the images. A first module is dedicated to the task
of the extraction of normal flow fields from the sequences of images. A second module of the
system is a central controller which has a global view of the resolution, and controls all the
activation and execution of the other modules within the system. Apart from these two modules
the other components of MEDUSA are task dedicated. For instance, one module is able to
determine if something is moving independently of the system and is able to locate it. The task
of another module will be to detect objects getting closer to the system.

C F

2-D

2-D : From the series of images finds a series of normal flow fields

A : answers the fol question for Medusa : [s there anything moving independently of
me ? Yes or No ? And if Yes is it in the image ?

B : Answers the following question : hmumovmgomeemngckuaofme'!Orwhnch
phcummenmgemnspondbpmormemwhnh closer to 7

Figure 9 "The MEDUSA System [ALO 90]"

Horizontal splitting : The MEDUSA system seems to lack of homogeneous number of
levels. Levels of representation seems to be gathered inside modules and depend also on the

12

MAAMAW 1991

need of the different methods used inside each one. This description could be incomplete or
erroneous due to the partial information we currently have on this system.

Vertical Splitting : Aloimonos considers vision problems as being composed of two

_ particular tasks that interact without being completely independant of each other : localisation
and description. This dichotomy is developed by introducing the purposive vision concept [AS
89, ALO 90] : the vision system has to be cut in different modules according to the basics goals
the system has to satisfy. Thus, the MEDUSA system is vertically splitted along Task focus of
attention criteria (figure 10). A focus-agent in Medusa is a particular instanciation of shape-from
method to satisfy a dedicated task.

Basic Agents : Basic-agents are-the result of intersection of task-dedicated focus-agents and
level-agents. However, focus-agents are built with a fixed set of basic agents that are linked
rigidly.

Behaviour : The aim of such a system is to organize its processing methods along the
different tasks it is able to process such as obstacle detection or object tracking. The behaviour
of the system seems to be able to include both modes, resolutive and preattentive, event though
the purposive vision concepts tends to use it in a resolutive way.

In this centralized system, no communication takes place between modules. Only the controller
can communicate with the others : it is the main channel of communication allowing it to have a
global view of the state of the system and a control on its evolution.

Internal Structure : As previously said for MEDUSA, several processing focus-agents are
built in MEDUSA by using the task similarity criteria to merge the different processing units.
The links between the units is fixed. It is not clear if these processing units are duplicated into
the several focus-agents or if they are shared, defining by this way some agents. The lack of
information does not able us to tell about the internal structure of the basic units.

level of representation

or level-agent
Focus Agent Focus Agent Focus Agent
caracteristics Region Of Interest Tasks

1

basic agents agents level agenis basic agents
Schema Saturne VAP Medusa
object model splitting caracteristic splitting ~ R.O.I splitting task splitting
+ resolutive mode * reactive mode

Figure 10 "Vertical Splitting of the GPVS"

13

MAAMAW 1991

6. A DAI Description of the VAP System

We are currently finishing the first step of the “Vision As Process” Project. In this section, we
will describe what has been realized. We will discuss also some of the extensions that are
planned to upgrade the system in the light of the first realized experiments. The VAP system is
currently built with five heterogeneous modules, plugged inside the same system. Their
integration is made in order to allow the system to actively work in a dynamic environment. We
have set an additional constraint on this system, that is to have loosely coupled agents. We also
integrate an other parameter related to the movement of the sensors themselves or due to events
occuring in the scene. Aloimonos (AWB 87] showed that this additional parameter can increase
the robustness of the vision methods. It can be used for example to decrease the uncertainty of
an interpretation or to constrain problems. However, it has also some drawbacks and especially
for the movement of sensors, it introduces an additional control parameter : the system has to
decide where to look and to execute the move of the sensors.

The VAP system is written in C and Lucid Common Lisp 4.1. We have developed the
framework in which agents are plugged in C under Sun OS Version 4.1. This communication
skeleton SAVA [DCB 90] allows the agents to run on different machines that are Sun 3/260 or
Sun 4 Sparc Station by using the Socket mechanism in Unix BSD 4.3. The Man Machine
Interfaces are written in X Windows v 11R4 using the MOTIF programming system.

6.1. The agents

As defined above, a basic agent is a particular instanciation of a level agent with a region of
interest. So It is a group of processing methods that acquire and improve the scene description
on a given level of representation. The level-agents of our system are (figure 7)

* Camera Control Unit : execution of the moves, the focus, vergence and zoom of the
camera

* 2D Image description : build the 2D description of the image in terms of edges.

* 3D scene description : maintenance and building of a three dimensional object models.

* interpretation : building of a symbolic scene description

* supervision : control of the system according to goals fixed by the user.

Static Aspect

Each agent has a different representation - understanding - of the same phenomenon that
constitutes the scene itself. Each agent translates a perception of the scene in the representation
at one level. The agent will then send it to an other agent. Depending of the agent, the
representation is built from models of primitives of the domain such as edges, perceptual
groupings, or geons [BIE 85]. These models represent prototypical concepts of the domain that
have to be instanciated by the data sensed by the agent. Concepts are organised along a
specialization hierarchy and a composition one [TSO 87]. The aim of an agent's representation
is to describe the perceived world. As a consequence, we have spatial, temporal and functional
links between the different primitives used by the agent.

The knowledge present in each agent can be regrouped in three classes :

» the model : information produced by the agent itself. It is the scene description at the
representation level on which the agent acts. Relationships are linking the objects together.

» the perceptual data : information belonging to an other agent's model and sent to the
agent. They are expressed in the sender’s representation. They are used by the agent to build its
own representation.

« the control data : These are parameters set defining the behaviour of the agent. A main
control parameter consists of the Region Of Interest - the spatial area, temporal slice and the
semantic bucket, in which to process -. These parameters are also thresholds for the
processing, timeouts and so on. The control data are splitted in two subsets : one dealing with
the internal behaviour constraining the internal processing. In this subset we find the way to

14

MAAMAW 1991

add dynamically new tasks to the agent according to different goals during a certain number of
processing cycles. The other subset gathers all the parameters defining the external behaviour of
the agent in the society, especially its sensitivity to the exchange of messages with other agents.
This latter aspect allows to set a variable bandwidth of communication for each agent. This will
be done in order to study the importance and impact of communication on the internal
processing. Currently we are also studying the way to add to one agent : 1) knowledge about
the other agents, 2) capabilities of the agent such as to provide images, particular features,
objects and 3) field of interest of one agent. This latter aspect deals with the explicit expression
of the agent's needs. Further work has to be done to explicitly express the interests and
competences of an agent in order to allow some adaptability of the behaviour.

Control parameters are not defined only by default in the agent itself, but may be settled also by
agents from the upper levels.

Dynamic Aspect

The prediction-verification cycle is present in each agent with a more or less degree of
explicitness. The prediction phase produces hypotheses through a transformation operation on
the perceived data. The verification phase tries to verify constraints directly on these hypotheses
or to search for further perceived data to confirm them. This leads to the generation of goals for
other agents consisting of requests for finding or verifying the existence of hypotheses in their
model.

Our system is able to act in a dynamic environment. So it has to handle data evolving in time.
This is done by defining in each agent a cycle allowing to do temporal prediction on-the
hypotheses and to update its model with these new hypotheses. The old ones in the mdel
which predicted position matches the new ones allow to track the different features in the
representation and to maintain the description of the scene in the agent.

The basic steps of the cycle added on the prediction-verification set are :

* match : matching of the predictions with the new incoming data.

* update : new data in the model are added and their confidence factor is updated. When
this confidence factor is to low, the data is removed from the model in order to keep the size of
the model reasonable. This constraint of keeping always a small amount of data to process
comes from the realtime aspect of our project.

epredict : use of a temporal behaviour model of the data in order to do a prediction on
their future location.

Each agent has an incomplete perception of the other agent because of the difference of
processing time scale. This effect is due to the fact that each VAP basic agent belongs to a
different level agent, having thus a time decentration on its representation.

On the figure (figure 8), the prediction step of the cycle and the verification step of the
processing cycle are merged in the same box, identified by predict.. Communication of data
involves a change in the levels of representation. So, there exist a transformation phase that
translates data from a given level into understandable terms for the upper level. The inverse
transformation is the projection phase.

Currently, the existing agents do not have a lot of explicit decision abilities. For instance, they
are unable to change their Region Of Interest on their own. This change is driven by the state of
the representation and by the goals of the system. But given this goal, the ROI is refined and
changed according to the new representation. To modify its behaviour without setting an
incoherent processing mode in the system, the agent needs to have some global idea of the
resolution. We have seen that the verification on the data produced by an agent is made by the
upper agent that have the models and knowledge to look for more data or detect incoherences.

15

MAAMAW 1991

6.2. The Society of Agents

Static Aspect

From the data point of view, everybody can communicate to everybody as soon as the agent is
able to process the information it receives.

From the control point of view, the agents are organized along a hierarchy. The supervisor
controls the highest modules, that is the symbolic interpretation module. Currently, the upper
agent dcfines the ROI for a lower agent but also the different resolution parameters such as
thresholds or constants for its internal processing.

Inspired by the preattentive mode of the SATURNE system, further work involves settling a
heterarchical control so that the system will be much more suited to react to the events. We
project to investigate the way to distribute the control in each agent, allowing it to define itself
the reasoning parameters it needs for processing the data. By the already explicit representation
of control data in one agent, this will lead to add some reasoning capabilities to reason on its
own behaviour.

Dynamic Aspect

Communication acts are currently very primitive in the system. This is mainly due :o the fact
that the society is composed of heterogeneous agents that do have their specific well-defined
tasks and that the society is hierarchically organised. As a consequence, we only dei_ned a set
of requests to allow agents to ask each other for some information having certain kinds of
features. For instance, the 2-D description module can be asked to discovei some perceptual
groupings present in the scene in a given Region of Interest. This perceptual grouping could be
to find orthogonal edges and which one of their extremities is located at the same place.

The communication acts is splitted in two parts :

e data request dealing with the data exchange. They allow the definition of
instantaneous goals for an agent through the asking for data satisfying a set cf constraints in its
model. The process of answering gives rise either to a specific processing m=thod in the agent
(perceptual grouping for example), either to a simple interrogation of the internal model issued
from its usual behaviour. The set of messages is :

* Find : looks for a particular item already identified, according to a list of
matching parameters for the primitive. Answers by giving the list of identity of primitives
feeting the matching parameters.

* Get : Given an id, it will return the set of parameters that defines the primitive.

* Verify : It will seek to match a specified primitive to the current contents of the
model.

* Put : It allows an external agent to change the internal model of an agent by
putting some primitives in it.

* control request dealing with the specification or adjustments of the control parameters
of the other agent or requests for having information on it : Region of Interest, Parameters of
Extraction, Processing Time, Behaviour. Such requests affects the decision capabilities of the
agent as well as some of its reasoning capabilities. As an example, a behaviour request
corresponds to the fact that one agent orders to another one to regularly communicate some kind
of information at a certain frequency and during a certain while, without being further requested
to do so. This installs some preattentive behaviour inside the agent. The set of messages is :

* Get : gets the value of the specified parameter.

* Set : Sets the specified parameter to the specified value
The current existing communication is a direct one. The success of the cooperation between
these agents is strongly dependent from the communication protocol that is settled in the
society. Further work is being performed to install a strong communication protocol. This will
mainly be done in order to test several modes of cooperation.

16

MAAMAW 1991

7. Conclusion

In this paper, we have identified a number of important concepts involved in the construction of
~ a GPVS. We have also proposed a methodology for the structuring of the whole system into
standard modules, as well as for its functioning. This has been possible because of the
existence of the VAP system that constitutes a testbed for experimenting with these concepts.
The current release of VAP is not sufficiently open or flexible. The ideas expressed in this
paper will contribute to redefine and improve both the VAP and SATURNE systems,
particularly with respect to a common organisation and communication structure. Both systems
are de facto quite different at the levels of the basic and focus agents. Nevertheless, we think
the needs in communication of data and control requests are the same.

We believe that the DAI analysis of the currently on-going GPVSs projects we have presented
is one of the first attempts to compare these systems using this approach. We will go on our
work by analysing other systems such as the Rochester one [BAL 91] or Skids [ABH 89].
More generally, DAI can be used as a tool to analyze any complex systems. DAI is also a
natural description for the conceiption of complex systems and we will keep on working on a
general methodology for the construction of GPVSs. Computer Vision field is a particular
application area for Al studies. Therefore we think that the concepts inherited from our Vision
Problems, like the Focus of Attention, or Preattentive or Resolutive Behaviours, can probably
be extended at the Al level to help the modelling of Autonomous Agents in a Multi-Agent
World, independantly of the type of the agent.

In the light of the experience gained from developing the VAP and SATURNE systems, we are
convinced that the DAI field approach is an excellent aid to both the integration of visual
modules, and the study of control of perception in such systems. : —

8. Bibliography
[ABH 89] A. Ayoun, C. Bur, R. Havas, N. Touitou, J. M. Valade, "A Real Time Perception
Architecture : the Skids Machine", in Multi Sensor Fusion and Environment

modelling, Toulouse France, October 1989

[ALO 90] J. Y. Aloimonos, "Purposive and Qualitative Active Vision", Workshop on Active
Vision European Conference on Computer Vision, April 1990

[AS 89] J. Y. Aloimonos, D. Shulman, "Integration of Visual Modules, an extension of the
Marr Paradigm”, Academic Press, 1989

[AWB 87] J. Y. Aloimonos, I. Weiss, A. Bandyopadhyay, "Active Vision", International
Conference on Computer Vision, pp 35--54, 1987

[BAL 89] D.H. Ballard, "Reference Frames for Animate Vision", in IJCAI, pp 1635--1641,
1989

[BAL 91] D.H. Ballard, "Animate Vision", in Artifial Intelligence, february 1991.

[BBF 77] D.H. Ballard, C.H. Brown, J.A. Feldman, "An approach to Knowledge Directed
Image Analysis”, in [JCAI, pp 664--670, 1977

[BBF 78] D.H. Ballard, C.H. Brown, J.A. Feldman, "An approach to Kncwledge Directed
Image Analysis", in Computer Vision Systems, Hanson and Riseman Editors,
1978

[BC91] S. Berthet, V. Caviggia, "SAVA 2.0", Technical Report, June 1991

17

MAAMAW 1991

[BIE 85] I. Biederman, "Human Image Understanding : Recent Research and a Theory",
Computer Vision, Graphics, and Image Processing, 32, pp 29--73, 1985

[BOI 90] O. Boissier, La Coopération entre Systémes a Base de Connaissances", Research
Report, RR811-I-IMAG-96-LIFIA, LIFIA-IMAG, France, February 1990

[BRO 86] R. Brooks, "A robust Layei'cd Control System for a mobile robot", IEEE journal of
Robotics and Automation, Vol RA-2, 1, 1986

[CCE 89] J. L. Crowley, A. Chehikian, J.O. Eklundh, J. Kittler, J. lllingworth, G. Granlund,
J. Wiklund, E. Granum, H. 1. Christensen, "Technical Annex for ESPRIT Basic
Research Action 3038, Vision As Process"”, Aalborg, March 1989

[CG 90] H.1. Christensen, E. Granixm, "Initial Control Specification”, IR.E.1.1. VAP Internal
Report, 1990

[CKB 90] A. Califano, R. Kjeldsen, R. M. Bolle, "Data and Model Driven Foveation",
Computer Vision Pattern Recognition proceedings, pp 1--7, 1990

[CM 87] D.J. Coombs, B.D. Marsh, "ROVER : A prototype Active Vision System", TR 219,
University of Rochester, August 1987

[CP 84] J. L. Crowley, A. C. Parker, "A representation for'shape based on peaks and ridges
in the difference of low-pass transform, IEEE PAMI, march, 1984

[CRO 89] J. L. Crowley, "Knowledge, Symbolic Reasoning and Perception”, pp 501-515, in
Intelligent Autonomous Systems, T. Kanade, F.C.A. Groen, L.O. Hertzberger
editors.

[DCB 90] C. Discours, J.L Crowley, O. Bernard, F. Charton, "Specification of Skeleton
system for Demonstrator”, DR.G.1.1, VAP Internal Report, 1990

[DCB 89] B. A. Draper, R. T. Collins, J. Brolio, A. R. Hanson, E. M. Riseman, "The
SCHEMA System", International Journal of Computer Vision, vol 2, pp 209--
250,1989

[DCB-87] B. A. Draper, R. T. Collins, J. Brolio, J. Griffith, A. R. Hanson, E. M. Riseman,
"Tools and Experiments in the Knowledge Directed interpretation of Road Scenes",
DARPA Image Understanding Workshop, pp 178--193, 1987

[DEM 86] Y. Demazeau, "Niveaux de représentation pour la vision par ordinateur. Indices
d'image et indices de scene", These INP Grenoble, 1986

[DEM 90] Y. Demazeau, "A multi agent approach to integration of visual modules"”, European
Working Week on Vision, Heraklio, September 1990.

[DM 90] Y. Demazeau, J.P. Miiller, "Decentralized Artificial Intelligence", in Decentralized Al,
Elsevier North Holland, July 1990

[DM 91] Y. Demazeau, J.P. Miiller, "Internal and External~descriptions of intentional or
reactive architectures”, in Decentralized AI 2, Elsevier North Holland, to appear

[GDA 91] Grenoble Working Group on DAI, Internal Working Paper, 1991.

18

MAAMAW 1991

[GGM 89] P. Garnesson, G. Giraudon, P. Montesinos, "Messie : Un syst¢me multi
spécialistes en vision. Application a I'interprétation en imagerie aérienne, Technical
Report Inria number 1012, April 1989

" [HR 78] A. R. Hanson, E. M. Riseman, Computer Vision Systems, Academic Press, 1978

[KAN 80] T. Kanade, "Region Segmentation : Signal vs Semantics", Computer Graphics and
Image Processing, 13, pp 279--297, 1980

[LUX 85] A. Lux, "Algorithmique et controle en vision par ordinateur, theése d'état, INPG
Grenoble, septembre, 1985

[MAR 82] D. Marr, "Vision", Freeman, San Francisco, 1982

[MIN 85] M. Minsky, "The Society of Mind", Simon and Shuster, New York, 1985

[MWH 87] D. M. McKeown, Jr. Wilson, A. Harvey, "Automating Knowledge Acquisition for
Aerial Image Interpretation”, DARPA, Image Understanding Workshop, pp 205-
226, February 1987

RJ 88] A. R. Rao and R. Jain, "Knowledge representation and Control in Computer “/ision
Systems, IEEE Expert, pp 64--79, spring 1988

[TER 83] A. Terry, "The CRYSALIS Project : hierarchical control of produc ‘on systzms”,
Technical Report, HPP-83-19, Computer Science Dept, Stanford Un.versity, 1983

[TM 89] C.L. Tan, W.N. Martin, "An analysis of a distributed multiresolution vision system",
in Pattern Recognition, vol 22, 3, pp 257--265, 1989

[TSO 87] J. K. Tsotsos, "Image Understanding”, The Encyclopedia of Artificial Intelligence",
S. Shapiro and D. Eckroth editors, Wiley and Sons, 1987

[TSO 88] J.K. Tsotsos, "A Complexity Level Analysis of Vision", International Journal of
Computer Vision, vol 1, num 4, pp 303--420, 1988

[TSO 89] J. K. Tsotsos, "The complexity of Perceptual Search Tasks", JICAI, pp 1571--
1577, 1989

[TSO 90] J. K. Tsotsos, "Active vs. Passive Visual Search : which is more efficient",
technical report RBCV-TR-90-34, University of Toronto, September 1990

[WB 90] S. D. Whitehead, D.H. Ballard, "Learning to Perceive and Act", Technical Report,
Rochester University, 1990

[WLH 87] C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, "The image

understanding architecture”, DARPA Image Understanding Workshop, pp 483--
496, 1987

19

Real-Time Performance of Intelligent Autonomous Agents

Anne COLLINOT!
LAFORIA /IBP
Université Paris VI
Tour 46-00 - 2¢me étage
4, Place Jussieu
75252 Paris Cedex 05
France

collinot@laforia.ibp.fr
(1) 44-27-43-32

Barbara HAYES-ROTH
Knowledge Systems Laboratory
Stanford University
701 Welch Road, Building A
Palo Alto, CA 94304
U.S.A.

bhr@sumex-aim.stanford.edu
(415) 725-0506

Abstract

In a multi-agent world, several agents act simultaneoulsly, competitively or
cooperatively. In many situations, an intelligent autonomous agent must interact with the
other agents or the physical environment in real time. Because it cannot predict all the
events that will occur in the physical environment or result from other agents reasoning, it
must notice and control its responses to unanticipated events. However, insuring execution
of the best possible operation conflicts with meeting deadlines, especially as the event rate
and the number of known operations increase. Rater than engineer agents to meet deadlines
under particular parameter values, we aim to build autonomous agents that control their
reasoning so as to guarantee real-time performance despite increases in parameter values.
We propose a satisficing algorithm. To control response time, it triggers only a limited
number of operations and interrupts triggering to execute the best one available whenever it
triggers a "good enough" operation or a deadline occurs. To insure that it can execute high-
priority operations when interrupts occur, it uses:-dynamic control plans to trigger
operations roughly "best-first." In this paper, we describe the satisficing algorithm,
informally analyse the behavior of an agent under this algorithm, and present experimental
results.

1 The research was conducted while Anne Collinot was a Post-Doctoral Fellow at Stanford.

1. The Problem

In a multi-agent world, several agents act simultaneously, competitively or
cooperatively. In many situations, an intelligent autonomous agent must interact with
the other agents or the physical environment in real-time (e.g., [Decker and Lesser,
1990; Howe et al., 1990]). Because it cannot predict all of the events that will occur in
the physical environment or result from other agents reasoning, it must notice and
respond to important unanticipated events. On the other hand, because it has limited
resources, the agent must be selective in its responses, so as to achieve its most
important goals. In general, the urility of an agent's behavior is a function of the
criticality of the events to which it responds and the value of its responses to them.
Moreover, because other agents or physical processes in the environment have their
own temporal dynamics, the value of an agent's response to an event depends rot only
on its response quality (the correctness of the response and perhaps other features such
as completeness or precision), but also on its response latency (the delay between
occurence of the event and the response). Different situations may impose different
constraints on response latency. We focus on deadlines, including both soft deadlines,
whose violation reduces response value incrementally, and hard deadlines, whose
violation reduces response value directly to 0.

In addition to being individually challenging, these requirements conilict. In
particular, identifying and choosiag the best among all possible operations (commonly -
called the "match process” and “conflict resolution" [Forgy, 1982]) conflicts with
meeting deadlines becau:e it entails unbounded response latencies. A given event can
trigger (satisfy the conditions of) multiple reasoning operations and a given operation
can be triggered by multiple events. If n is the number of events the agent notices and k
is the number of operations the agent knows, in the worst case, the time to trigger all
executable operations is O(nk). Each of these operations must be rated so that the best
one can be chosen. If m is the number of executable operations triggered and r is the
number of rating criteria, the time spent rating and choosing among these operations is
O(mr). This is not acceptable in agents that must produce high quality responses to
important events in real tiine.

In this paper, we address this problem in the context of autonomous deliberative
agents, that is agents that reason about their actions to achieve goals. Deliberative
architectures [Corkill et al., 1982; Erman et al. 1980; Georgeff and Lansky, 1987;
Hayes-Roth, 1985; McDermott and Forgy, 1978; Newell, 1973] iteratively enumerate
possible responses to new events and execute the best one. When augmented with
multiple processors [Gupta et al., 1989; Laird et al., 1987], they match events to all
known operations in parallel and -guarantee bounded cycle time. The use of multiple
processors permits to solve the immediate problem of bounding response latencies for a
particular application by engineering the agent architecture for associated values of the
two complexity parameters. This approach handles anticipated increases in these
parameters with additional processors, but the demand for processors has the same
complexity as latency has on a single processor. It cannot handle unanticipated
increases in event rate or number of known operations. But, in any practical multi-agent
world, we have to assume some limit on an agent's computational resources and a
reasonable probability that event rate or number of known operations occasionally or
eventually will exceed its resources.

A more flexible approach is to apply the concept of “anytime algorithms" [Dean
and Boddy, 1988]. On each reasoning cycle, the triggering of reasoning operations is
interrupted and the best available one is executed whenever a deadline occurs, thereby
guaranteeing bounded latency. The longer triggering is allowed to continue, the higher
the expected value and the longer the latency (both up to some maximum) of the
operation. Thus, an agent can make strategic trade-offs between response quality and
latency. In particular, it can sacrifice quality as necessary to bound latency while event
rate and number of known operations increase. The question is, of course, how will

necessary sacrifices in quality impact utility? As we shall see, strategic interruption of
triggering is a key feature of the proposed "satisficing algorithm". With additional
features, however, it gives better performance than an anytime algorithm with respect to
both quality and latency of response.

In this paper we describle a "satisficing approach" and report experimental
results of its performance. The satisficing algorithm is designed to permit intelligent real
time control of reasoning within a deliberative agent architecture. As we shall see, real
time control of reasoning plus several additional features enable-an agent to execute
high quality operations in bounded time, despite increases in environmental complexity
and number of known operations.

2. A Satisficing Approach

Our approach replaces an exhaustive search for the optimal operation on each
cycle with a non-exhaustive search for a satisficing operation. To bound latency, it
triggers only a limited number of operations and interrupts triggering to execute the best
operation available when either it finds one that is "good-enough" or a deadline occurs.
To insure that it can execute high-priority operations (high-quality responses to high
criticality events) with short latency, it uses dynamic control plans to trigger operations
roughly "best-first". In this section, we describe our agent architecture and the
satisficing algorithm.

2.1 The Agent Architecture

We assume a deliberative agent architecture comprising asynchronous systems
for perception, reasoning and action [Hayes-Roth, 1990]. The perception system
senses the environment, labels each event by relevance, criticality, and urgency, and
gives it an overall priority. It orders events in the reasoning system's input buffer by
priority [Washington and Hayes-Roth, 1989; Washington et al. 1990]. The reasoning
system iterates the satisficng algorithm (discussed below): (a) it uses perceived and
internally generated events, along with the current control plan, to trigger a limited
number of reasoning operations roughly best-first; and (b) when interrupted by a good-
enough operation or a deadline, it executes the highest priority triggered operation with
respect to the current control plan. Executed operations produce reasoning results,
modify the control plan, or place intended actions (including communication actions) in
output buffers. The action system retrieves intended actions from the output buffers and
executes them in the environment.

Control plans are central to the architecture. They focus an agent's perception of
the environment, enable it to coordinate opportunistic and goal-directed reasoning, and
guide its execution of high-priority reasoning operations in bounded time under the
satisficing algorithm. Accordingly, we briefly explain control plans and their use, with
illustrations from Guardian, an experimental agent that monitors simulated intensive-
care patients [Hayes-Roth et al., 1989].

A control plan is a data structure comprising a number of decisions, each of
which describes a class of operations to be performed during some time period. For
example, given an observation of high PIP (peak inspiratory pressure) at time t4,
Guardain makes decision D7 in Figure 1, "Quickly react to high PIP." Based on
knowledge of different types of operations and events, it evaluates the degree to which
each subsequently triggered operation matches D7. Thus, it prefers to execute "quick”
operations (e.g. associative, rather than model-based reasoning) that “react to"
(diagnose or correct) problems related to the high PIP, until those problems are solved
at t5.

An agent generates control decisions with general control reasoning operations
within the basic reasoning cycle. Consider this example:

Name: Urgent-Reaction

Trigger: Critical Observation O

Prescription: Quickly react to O

Criticality: Criticality of O

Goal: Diagnose problems related to O are corrected

This operation is triggered and its parameter, O, is instanciated whenever the perception
system delivers an observation with high criticality (such as high PIP). When executed,
it generates a control decision favoring "quick" reasoning operations that "react to" O,
as in D7, and gives it the same criticality of O. The decision is deactivated when its goal
is achieved, namely that all diagnosed problems related to O have been corrected.

Using a small set of general operations to generate a variety of specific
decisions, an agent constructs control plans that are appropriate to its situation and
changes those plans as the situation changes [Hayes-Roth, 1985; Johnson and Hayes-
Roth, 1987]. At each point in time, the agent executes the highest-priority triggered
reasoning operation that matches one of the active control decisions, with its pricrity
being the product of degree of match and criticality of the decision.

D1. Respond to critical events
D2. Update control plans

D3. Respond to user requests

e
D4. Investigate low temperature
DS. Plan actions to comrect PaC0O2
D6. Explain how temp & rate => PaCO2
D7. Quickly react to high PIP
EEE—
10 12 3 14 15 16 7 18 ﬁme

Figure 1. lustrative Guardian control plan. Horizontal lines signify active time
interval and criticality of decisions.

(a) At time 10, Guardian has made three moderately critical control decisions, D1-D3, to
respond to critical events, update control plans, and respond to user requests. During
t0-t1, it executes triggered reasoning operations that match any of D1-D3, ignoring
others.

(b) At t1, Guardian perceives the patient's low temperature, a moderately important
abnormality. It executes a triggered control operation to introduce D4, favoring
investigation of this problem. It begins to execute triggered operations that diagnose
the low temperature (post-operative status), predict its course (spontaneous warming),
and infer consequences (low, but rising partial pressure of CO2 in the arterial blood
(PaCO2)). Because newly perceived events are delivered asynchronously to its event
buffers, Guardian remains sensitive to new events and can execute triggered operations
that match D1-D3.

(c) At t2, Guardian infers that the patient currently has low PaCQO2, which will rise as
. temperature rises, a moderately important abnormality. It executes a triggered control
operation to introduce D3, favoring planning of corrective actions. It begins to execute
triggered operations that plan corrective changes to breathing rate, while continuing its
diagnosis, prediction, and causal inference and remaining sensitive to new events.

(d) At t3, Guardian perceives a request for explanation of its predictions that low
temperature will cause low PaCO2. It executes a triggered control opeartion to
introduce D6, favoring construction of the requested explanation. It begins to execute
triggered operations for explanation, while continuing its other tasks and remaining
sensitive to new events.

(e) At t4, Guardian perceives the patient's high PIP, a critical abnormality with a
deadline on the order of minutes. It executes a triggered control operation to introduce
D7, favoring quick reaction to the high PIP. It executes triggered operations that
diagnose the underlying problem (pneumothorax, a hole in the lung that allows inspired
air to escape into the chest cavity, preventing subsequent inflation of the lung) and
recommend a corrected action (insertion of a chest tube). During this interval it ignores
less critical ongoing tasks, but remains sensitive to possibly critical new events.

(f) At t5, Guardian completes diagnosis and correction of problems underlying the high
PIP and executes a triggered control operation to deactivate D7. It resumes its
interrupted tasks. When they are completed at t6, t7, and t8 it deactivates D6, D4, and
D5 in a similar fashion and continues executing triggered operations that match D1-D3.

2.2 The Satisficing Algorithm

Now let us turn to the focus of this paper, an agent's use of its control plans to
trigger and execute high-priority operations in bounded time. Figure 2 shows the
proposed satisficing algorithm. As discussed below, control plans play a key role in the
algorithm.

The satisficing algorithm uses the current control plan to trigger and prioritize a
limited number of executable operations roughly best-first by selecting a limited number
of events and operation types for consideration best-first.

The satisficing algorithm considers a limited number of events, which it
rewieves best-first from its buffer. Most events are placed in the buffer by the
perception system, which uses the current.control plan to prioritize them. For example,
under D7 in Figure 1, Guardian's perception system gives high priority to observations
of PIP and to events of the same type, "breathing measurements." Some reasoning
operations executed under D7 instruct the perception system to give high priority to
other relevant types of events, for example interpretations of lung x-rays. Events
generated by reasoning operations also are prioritized. The satisficing algorithm ignores
some events (possibly even high-priority events) that overflow the buffer worst-first or
are not yet retrieved when an interrupt occurs.

The satisficing algorithm considers a limited number of known operation types,
using the current control plan to retrieve them best-first from memory. For example,
under D7, Guardian gives high priority to: operations of the specified type, "react,"
including its subtypes, "diagnose” and act;" and "associative" operations, which are
"quicker” than the alternative "model-based” operations. For a given event, the
satisficing algorithm retrieves operations best-first, stopping when it retrieves one that
is "bad-enough," that is, does not match its control decision well enough. It also
ignores some operations (possibly even high-priority operations) that are not yet
retrieved when an interrupt occurs.

Taking these two factors together, the satisficing algorithm attempts to trigger
high-priority operations with high-priority events before attempting to trigger lower-
_priority operations with lower-priority events. For example, under D7, Guardian first
tries to trigger "associative diagnosis" and "associative action" operations with PIP
events. Given the possibility of partial matches between executable operations and
control decisions (some degree of match to some number of variables in some number
of control decisions), the algorithm triggers and prioritizes operations roughly, but not
always exactly, best-first. It inserts and orders executable operations in a limited-
capacity agenda, from which the best available operation is chosen for immediate
execution whenever an interrupt occurs. Most executable operations (possibly even
high-priority ones), eventually overflow the agenda as newly triggered, higher-priority
operations are inserted.

Untll an interrupt condition occurs
(a "good enough"” operation, a deadline, or no more events)
Identify & prioritize executable operations best-first
Retrieve the highest-priority event, e, from the event buffer
Until a limiting condition occurs
(a "bad enough” operation or no more operations)
Retrieve the highest-priority operation, o, from memory
It all of 0's triggering conditions are satisfied by e,
Then trigger and prioritize 0-e on the agenda

Execute the highest-priority operation on the agenda

Figure 2. The Satisficing Algorithm

The satisficing algorithm uses interrupt conditions in the current control plan to
interrupt its triggering of operations and immediately execute one that is "good enough”
or the "best available.”

Interrupt conditions are of three types:

(1) If a newly triggered operation is "good-enough" with respect to the current
control plan, the agent executes it. For example, under D7, an associative diagnosis
operation triggered by the observed high PIP would perfectly match a highly critical
control decision and, therefore, be good enough for Guardian to execute immediately.
With interruption by a "good-enough” operation,” the algorithm puts a floor under the
quality of reasoning and, within that constraint, reasons as fast as possible.

(2) If a deadline occurs, the agent executes the "best available" operation. For
example, under D7, Guardian might execute a model-based operation for diagnosing
the high PIP if an associative operation were not triggered within a few seconds. With
interruption by a deadline, the algorithm puts a ceiling on the latency of reasoning and,
within that constraint, reasons as well as possible.

(3) If all events and operations are processed, the agent executes the "best
available" operation. This is like an exhaustive search for the optimal operation, but
takes longer with the satisficing algorithm than with an algorithm optimized for that
purpose. In addition, the satisficing algorithm may lose critical events through buffer
and agenda overflows. With exhaustive processing, the agent reasons as well as
possible, regardless of latency.

Although different interrupt conditions are better under different circumstances,
we offer two general observations. First, an agent should avoid using interrupt (3)
because it has high cost and uncertain benefit. Second, interrupts (1) and (2) make a
powerful combination because they allow an agent to reason as fast as possible at a
criterial level of quality, compromising quality only when necessary to meet deadlines.

3. Behavior under the Satisficing Algorithm

For a given pattern of events and repertoire of operations, an agent's behavior
under the satisficing algorithm is determined by its control plan and interrupt
conditions. Consider two classes of control plans. Non-discriminative control plans
have low to moderate criticality and match many potential operations. Therefore, they
give comparably low priorities to many operations and provide no obvious criterion for
"good enough" operations. By only weakly constraining selection of events and known
operations, they permit only roughly best-first triggering of operations.Very
discriminative control plans have high criticality and match few potential operations.
Therefore, they give distinctively high priorities to few operations and easily identify
"good-enough” operations. By strongly constraining selection of events and known
operations, they permit strongly best-first triggering of operations. Obviously, these
two classes represent a continuum. But they present an interesting contrast, as shown
in the examples from Guardian below. For comparison to the satisficing algorithm, we
also consider: (a) an exhaustive algorithm that uses an efficient Rete-like match process
[Forgy, 1982] and executes the best triggered operations; and (b) an anytime algorithm
that uses the same algorithm, but interrupts triggering to execute the best available
operation on deadline.

140:]
120
100 1

80+

P 60-

40+

20+

1357 911131517192123252729313335373941434547495153555759

Triggered operations

Distribution of priorities on cycie 96.

140
120
100

80

E &0

40
20
0

1357 911131517192123252729313335373941434547495153555759

Number of operations triggered over
time

Expected value of best available operation on cycle 96.

Figure 3. The case of a Non-Discriminative Control Plan. Top panel: Distribution
of priorities among all possible triggered operations on this cycle. Bottom panel:
Expected value of best available operation over time during triggering in random
order (shaded curve) or in roughly best-first order (unshaded curve).

Consider the case of a non-discriminative control plan, such as Guardian's
decision D4: "Investigate low temperature.” D4 is only moderately critical. It perfectly
matches many potential operations (e.g., associative or model-based operations for
diagnosis, prediction, or causal inference triggered by low temperature) and partially
matches many others, giving comparably low priorities to all of them. For example, in
the top panel of Figure 3, D4 gives a relatively flat distribution of low priorities to the
60 operations that could be triggered on reasoning cycle 96 of a typical run. The
exhaustive algorithm triggers all 60 operations and executes the best one. However, its
latency is long and exceeds any reasonable deadline. The anytime algorithm does better.
In the bottom panel of Figure 3, the shaded curve shows how the expected value (in
this case, reflecting the actual value) of the best available operation increases over time
during triggering. When a deadline occurs, the anytime algorithm executes the best
available operation. Thus, it gracefully trades response quality for latency. However,
because the function has a low asymptote and approaches it rapidly, continued
triggering has low, rapidly decreasing marginal utility. The satisficing algorithm does
better. by ordering its triggering of operations, the satisficing algorithm produces an
expected value function (unshaded curve in Figure 3) that has a higher intercept and
reaches asymptote earlier. For any reasonable deadline, the best available operation has
higher value under the satisficing algorithm than under the anytime algorithm. (As
shown below, the time spent ordering the triggering of operations is less than the time
saved by limiting the number of operations triggered.) Although triggering is only
roughly best-first and it is not obvious how to identify a "good enough" operation, the
satisficing algorithm can interrupt triggering early with its own internal deadline and stil
guarantee execntion of an operation with near asymptotic value. Given a non-
discriminative control plan and interruption by short internal deadlines, the satisficing
algorithm makes graceful trade-offs within near-asymptotic quality and latency bounds.

1000
800
600
P 400
200

1 S

1 3 5 7 9 11 13 15 17 19 21 23 25

Triggered operations

Distribution of priorities on cycle 49.

1000
800
600 -
400
200

Number of operations triggered
over time

Expected value of best available operation on cycle 49.

Figure 4. The Case of a Very Discriminative Control Plan. Top Panel: Distribution
of priorities among all possible triggered operations on this cycle. Bottom panel:
Expected value of best availabale operation over time during triggering in random
order (shaded curve) or in roughly best-first order (horizontal line).

Consider the case of a very discriminative control plan, such as Guardian's
decision D7: "Quickly react to high PIP." D7 is highly critical, matches only a few
potential operations (associative operations for diagnosis or action triggered by high
PIP), and gives them distinctively high priorities. For.example, in the top parel of
Figure 4, D7 gives a very high priority to exactly one of the 25 operations that could be
triggered on reasoning cycle 49 of a typical run. The exhaustive algorithm triggers all
25 operations and executes the best one. However, its latency is long and exceeds any
reasonable deadline. The anytime algorithm does not necessarily do better. In the
bottom panel of Figure 4, the shaded curve shows that the expected value of the best
available operation increases roughly linearly over time during triggering. When a
deadline occurs, the anytime algorithm executes the best available operation. However,
in this case, the linear increase in expected value does not reflect a similar increase in
actual value of the best available operation. In fact, actual value is a step function whose
point of discontinuity is unknown. Thus, the anytime algorithm trades expected
response value, but perhaps not actual value, for latency. The satisficing algorithm does
better, as shown by the horizontal line in Figure 4. Because D7 is very discriminative,
the satisficing algorithm triggers the best possible operation first. Interrupting triggering
for an obviously "good-enough" (very high priority) operation, it executes the best
possible operation immediately. Given a very discriminative control plan and
interruption by "good-enough” operations, the satisficing algorithm optimizes both the
quality and latency of response.

4. Experiments

To verify that the satisficing algorithm behaves as intended in a realistic domain,
we evaluated it in Guardian. The predictions are that, despite increases in event rate and
number of known operations, Guardian will: (a) trigger and choose operations for
execution in constant time; (b) respond to most, if not all, critical events correctly; (c)
respond faster with a more discriminative control plan; and (d) produce a high utility
behavior.

4.1 Method

We used the monitoring scenario discussed above, enacted by our patient
simulation in real-time. There are four critical events. Perceived low temperature,
predicted low PaCO2, and perceived request for explanation are moderately critical and
require response. Perceived high PIP is highly critical and requires quick response. In
all cases, complete response entails many reasoning cycles. Other observations of
twenty patient variables and a variety of internally generated inferences have low
criticality and permit response, but do not require any. Critical events occur in the same
order in every simulated run through the scenario. However, normal variability
introduced by the simulation and uncontrollable variation in network communication
times cause the exact timing of events to vary somewhat.

We manipulated the two complexity factors, event rate and number of known
operations. In experiment 1, we held the number of known operations constant at k=39
and manipulated the rate of perceived events entering the reasoning system's buffer to
be: 1r, 2r, 4r. and 8r events per second, r=.15. In experiment 2, we held the event rate
constant at r=.15 events per second and manipulated the number of known operations
to be: 1k, 2k, 4k, and 8k, k=39. In experiment 3, we manipulated both variables: 1r-
1k, 2r-2k, 4r-4k, 8r-8k.

As a standard of comparison, we evaluated the exhaustive algorithm in another
version of Guardian. This gives a measure of the actual computational cost of higher
values of the complexity factors and, therefore, the magnitude of the satisficing
algorithm's achievement in circumventing that cost. In fact, with event rates 4r and 8r,
response time under the exhaustive algorithm is too long to complete the scenario.
Therefore, in experiments 1 and 3, we used a maximum rate of 3r for the exhaustive

algorithm only. Except for their control algorithms, the two versions of Guardian are
identical. They contain knowledge and reasoning operations necessary to perceive
events from the simulator and to construct and follow the control plan in Figure 1. They
contain other knowledge and reasoning operations that have low priority during this
scenario. (In earlier experiments, we evaluated a version of Guardian using the anytime
algorithm described above. However, the trade-offs between response quality and
latency were too precipitous to give good overall performance.)

4.2 Results

Figure 5 shows "agenda time," the time to trigger and choose an operation on
each reasoning cycle, for different experimental conditions. The left column shows
times for the highly critical event, which presents the strongest demand for high
quality, bounded-time response and for which Guardian makes its most discriminative
control decision. Each point plotted in these graphs is averaged over the 21 reasoning
cycles Guardian uses to diagnose and initiate corrective action for the high PIP
problem. The right column shows results for reasoning about the three moderately
critical events, for which Guardian makes less discriminative control decisions. Each
point in these graphs is averaged over the approximately 65 reasoning cycles Guardian
uses to reason about these events.

The most important result is the relation of agenda time t¢: the three
manipulations. With the exhaustive algorithm, as one would expect, agen-a time for
both highly and moderately critical events is a steep linear funci‘on of event rate, a
shallower linear function of number of known operations, and a se:ond-order function
of the two variables together. As mentioned above, beyond an event rate of 3r, agenda
time is too long to complete the scenario. By contrast, as predicted, with the satisficing
algorithm, agenda time is constant regardless of event rate, number of known
operations, or the two variables together.

The satisficing algorithm sometimes ignores moderately critical events in order
to meet deadlines for highly-critical events. For example, in Experiment 3, condition
8r-8k, the perceived high PIP happened to occur shortly after the perceived request for
explanation. While Guardian immediately responded to the high PIP, a proliferation of
highly critical new perceived and internally generated event caused the explanation
request to overflow its event buffer. As a result, Guardian could not trigger explanation
operations even after the high PIP problem was corrected. This occurred in only a few
conditions with high event rates and random temporal clustering of critical events.
Although it is a reasonable kind of trade-off, we are exploring architectural mechanisms
to minimize the loss of critical events. In general, as predicted, the safisficing algorithm
always responds correctly to the highly critical event and nearly always responds
correctly to the moderately critical events.

It is worth noting that the satisficing algorithm is comparatively fast. In all
conditions, agenda time is substantially shorter for the satisficing algorithm than for the
exhaustive algorithm. Thus, the computational cost of triggering operations best-first is
much less than the computational savings form limiting the number of operations
triggered. Although this result is implementation-sensitive, it is likely to hold generally
because the exhaustive algorithm already has been optimized, while the satisficing
algorithm has not.

The Highly Critical Event The Three Moderately Critical Events

160 1 160 -
140 A ® 140 -
120 - 120 -
100 4 100 -
80 1 80 -
60 1 60 -
40 4 40 -
20 ¢ L " . 5 20 4 "
0 —r 0 —o—oa——¢
0 1 2 3 4 5 6 7 8] 1 2 3 4 5 6 7 8
Level of Environmental Level of Environmental
Complexity Complexity
160 160 ¢
140 140 ¢
120 120 ¢+
o
100 * 100 ¢+
80 . 80 ¢
60 ¢+ 60 +
40 40 ¢+ &
201+ & 20 ¢
0 o—o o 0 o—_e/c o
0 1 2 3 4 5 &8 7 8 0 1 2 3 4 5 6 7 8
Level Level
of Knowledge of Knowiedge
600 T 100
&]
500 + 80 -
400 ¢ 60 |
300
200 4 404
100 - 20 - P " o
o_.—-c O
0 O 3 O : v v o 0 g : 2 ¢ ! 3 3 1
0 1 2 3 4 5 6 7 8 0o 1 2 3 4 5 6 7 8
Level of Knowledge Level of Knowledge
X X
Environmental Complexity Environmental Complexity

Figure 5. Experimental Results. Average agenda time (in seconds) under the exhaustive
algorithm (shaded dots) and the satisficing algorithm (unshaded dots) for different levels of
environmental complexity (event rate), knowledge (number of known operations), and the
combination. Note change of scale for agenda time in the bottom two graphs.

10

In addition, as predicted, the satisficing algorithm responds faster with a more
discriminative control plan. In these experiments, Guardian has a more discriminative
control plan for the high PIP event than for the other critical events. In all cases, the
exhaustive algorithm actually produces longer agenda times for the high PIP event than
for the others. This is because the high PIP event is accompanied by a flury of events,
independent of our manipulation, all of which the exhaustive algorithm considers. By
contrast, the satisficing algorithm produces shorter times for the high PIP event than for
the others. It ignores low-priority events, no matter how many occur and, as suggested
by our informal analysis, a very discriminative control plan enables the satisficing
algorithm to identify and execute the best possible operation immediately, while less
discriminative control plans entail more triggering time.

Finally, as predicted, the satisficing algorithm maintains high utility despite
increases in event rate and number of known operations. Recall that an agent's utility is
a function of the criticality of the events to which it responds and the value (quality and
latency) of its responses. Under any reasonable combining function, Guardian's utility
under the exhaustive algorithm is low. Although it eventually produces the correct
response to every key event, its latencies are excessive, especially for the highly-critical
high-PIP event with its short deadline and life-threatening consequences. By contrast,
Guardian's utility under the satisficing algorithm is high in all conditions because it
naturally favors correct, timely responses to- critical events. It always responds
immediately to the highly-critical high-PIP event and responds promptly to most other
critical events as well.

5. Conclusions

The satisficing approach is designed to enable an intelligent autonomous agent
to guarantee real-time performance despite increases in environmental complexity and
number of known operations. Three factors determine its actual effectiveness: a good
satisficing algorithm, an effective control plan, and appropriate interrupt conditions.
The approach also relies on architectural mechanisms, such as the perceptual process,
which prioritizes and filters events, and the reasoning system's limited-capacity event
and agenda buffers, which strictly bound the number of events and operations under
consideration at any point in time. The present results provide a proof of concept using
a simple version of the algorithm and control plans and interrupt conditions previously
developed for Guardian. In our experiments, the satisficing approach maintains high
utility by responding correctly to highly and moderately critical events in constant time,
despite substantial increases in event rate and number of known operations. Only in
extreme cases (co-occurence of several critical events in the context of a high overall
event rate) must it ignore a moderately critical event in order to give a timely response to
a highly critical event.

In ongoing research, we are investigating formal properties of control plans and
interrupt conditions and their implications for behavior of agents under the satisficing
cycle. We also wish to investigate the use of control plans for controlling
communication [Bouron, 1991] among several agents. In order to guarantee real time
performance, intelligent autnomous agents must also adapt their communication activity
so as to meet deadlines associated with the agents goals. Knowing about control plans
of other agents should enable an agent to decide what to communicate at appropriate
times.

11

Acknowledgements

This research was supported by NASA contract NAG 2-581 under DARPA Order 6822
and Boeing Computer Services contract W289988. The Guardian system was
developed in collaboration with Adam Seiver, Richard Washington, David Ash,
Rattikorn Hewett, Luc Boureau, and Angel Vina, with additional funding by NIH
contract 5 P41 LM05208-18 and EPRI contract RP2614-48. We thank Edward A.
Feigenbaum for sponsoring the work in the Knowledge Systems Laboratory.

References

Bouron, T. COMMAS: A communication model for multi-agent systems. Proceedings
of the 1991 European Simulation Multiconference, Denmark, 1991.

Corkill, D.D., Lesser, V.R., and Hudlicka, E. Unifying data-directed and goal-directed
control: An example and experiments. Proceedings of the National Conference on
Artificial Intelligence, 143-147, 1982.

Dean, T., and Boddy, M. An analysis of time-dependent planning. Proceedings of the
Seventh National Conference on Artificial Intelligence, 1988.

Decker K., and Lesser V.R. A scenario for cooperative distributed problem solving.
Proceedings of Tenth International Workshop on Distributed Artificial Intelligence,
1990.

Forgy, C.L. RETE: A fast algorithm for the many pattern/many object pattern matching
problem. Artificial Intelligence, 19:17-32, 1982.

Erman, L.D., Hayes-Roth, F., Lesser, V.R., and Reddy, D.R. The Hearsay-II
speech-understanding system: Integrating knowledge to resolve uncertainty.
Computing Surveys 12:213-253, 1980.

Georgeff, M.P., and Lansky, A.L. Reactive reasoning and planning. Proceedings of
the Sixth National Conference on Artificial Intelligence, 1987.

Gupta, A., Forgy, C., and Newell, A. High-speed implementations of rule-based
systems. ACM Transactions on Computer Systems, 7:119-146, 1989.

Hayes-Roth, B. A blackboard architecture for control. Artificial Intelligence, 26:251-
321, 198s.

Hayes-Roth, B. Architectural foundations for real-time performance in intelligent
agents. The Journal of Real-Time Systems, 2:99-125, 1990.

Hayes-Roth, B., Washington, R., Hewett, M., Hewett, R., and Seiver A. Intelligent
monitoring and control. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, 1989.

Howe, A.E., Hart, D.M., and Cohen P.R. Addressing real-time constraints in the
design of autonomous agents. The Journal of Real-Time Systems, 2:81-97, 1990.

Johnson, M.V., and Hayes-Roth, B. Integrating diverse reasoning methods in the BB1
blackboard control architecture. Proceedings of the Sixth National Conference on
Artificial Intelligence, 1987.

Laird, J.E., Newell, A., and Rosenbloom, P.S. SOAR: An architecture for general
intelligence. Artificial Intelligence, 33, 1987.

12

McDermott, J., and Forgy, C. Production system conflict resolution strategies. In
Waterman, D.A., and Hayes-Roth, F. (eds), Pattern-Directed Inference Systems,
Academic Press, 1978.

Newell, A. Production systems: models of control structures. In Chase W.G. (ed.),
Visual Information Processing, Academic Press, 1973.

Washington, R., and Hayes-Roth, B. Managing input data in reai-time Al systems.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
1989.

Washington, R., Boureau, L., and Hayes-roth, B. Using knowledge for real-time
input data management. Technical report, Stanford University, 1990.

13

Conversation for Organizational Activity

(A Panel on The Dynamics of Knowledge and Organization in Multi-Agent Systems)

Chisato Numaoka
Sony Computer Science Laboratory Inc.
Takanawa Muse Building,
3-14-13 Higashi-gotanda, Shinagawa-ku,
Tokyo, 141 JAPAN
TEL: +81-3-3448-4380 FAX: 481-3-3448-4273
E-mail: chisato@csl.sony.co.jp

Abstract

In this paper I address the issues of how an organization such as a group or a hierarchical society can be formed
and how organizational knowledge (e.g. a contract) can be acquired through conversation among situated agents.
A special interest group (SIG) has the most fundamental style of every organization. Through conversation,
situated agents can join any SIG and act as a member in order to individually profit from group activity. On the
basis of SIGs, we can formulate markets and hierarchies which are organizations of different styles. Conversation

is key to the organizational activity of situated agents in these organizations. "

1 Introduction

Various in management science (e.g. [Malone 87,
Marschak and Radner 72, Baligh and Richartz 67]) use
the concepts of market and hiserarchy as organizational
structures in human economic activity. The action of each
human in an economic community is based on a payoff
function for the organization to they belong. Situated
agents ! with goals are similar to humans in the sense
that both pursue activities for their own benefit. Here,
I investigate how an agent forms various useful organi-
zational structures using conversation, and what benefits
agents get from belonging to these organizations.

In our analysis, both the market and the hierarchy
are represented as special interest groups in which every
member benefits from the group. The master/slave rela-
tionship is fundamental to the hierarchy, while the mar-
ket is based on a suppliers/buyers relationship. Further-
more, the hierarchy pursues benefits for the organization
whereas the market provides a field in which each mem-
ber can pursue its own benefits. The rest of this paper
describes characteristics of three organizational structures
(viz. SIG, market, and hierarchy) and conversational ac-
tivity of agents in these organizations.

2 Well-formed Plans

Situated agents perform physical actions based on logical
plans. Plans can not only be constructed by a situated

!Situated agents are autonomous and self-contained agents who
can reflect their behavior on situations.

agent itself but also be affected by information received
through conversation with other agents. The most funda-
mental plans are called well-formed plans. Here I list up
well-formed plans used in this paper:

e Atomic plans, whose goals are to perform any primi-
tive action of functional 2<tion units.

e (SERIAL WFP, ... WFPF,): to perform WFP,, ...,
and W F P, serially.

e (NDOR WFP, ... WFP,): to perfform WFP,, ...,
or W F P, non-deterministically.

e (TEST F(?V4,...,7V,)): to test whether or not there is
F in a belief and, if exists, to bind objects to variables
(this sentence is not so clear. what F?) (?V1,...,7V,).

Other constructs of WFP are as follows:

o (SKIP) ' (TEST true).

e (ABORT) %' (TEST (NOT true)).
def
o (CASE F WFPrye W FPrise WFP,nknown) =

(NDOR (SERIAL (TEST F) W F Pyyye)
(SERIAL (TEST (NEG F)) WFPc,)

(SERIAL (TEST (UNKNOWN F)) WF P, inown)

o (IF-THEN-ELSE F WFP, WFP;) &

(NDOR (SERIAL (TEST F) WFP)
(SERIAL (TEST (NOT F)) WFP,)).

Representative

\s@x

Figure 1: Organizational Structures (1): Special Interest
Group

o (IF-THEN F WFP) &’
(IF-THEN-ELSE F WFP (SKIP)).

e (DO-FOR-ALL F WFP): As long as there is F which is
not tested, perform WFP. (should be ”an F”, maybe?
1 still don’t understand what "F” is.)

3 Special Interest Group

In this section, I formally define the characteristics of a
special interest group (henceforth SIG), an organization in
which every member has the same interests. A SIG can be
viewed as a conceptually bounded field through which each
member of the group can share information with others
and can cooperate with others to do a job (See Figure 1).
In order for all members to be equal, restrictions, such as
group specific rules, will be given equally to all members.

A SIG is a mapping function from a group name de-
fined by an agent to a set of agents. A SIG has a set of
restrictions on information acquired through group com-
munication. The followings are definitions related to SIG:

Definition 3.1 (Special Interest Group (SIG)) A
SIG is a mapping function from an agent identifier and
a group name (defined by a representative of the SIG) to
a set of agents and a set of restrictions on the SIG.

Definition 3.2 (Representative of an SIG) A repre-
sentative of an SIG is an agent who defines a framework
for the SIG. A representative is not privileged within the
group, and its only special role is to tell the group name
and restrictions to agents wanting to join the SIG.

An agent must have the following information to join an
SIG:

e The grc1p name of the SIG,
e Protocols for joining the SIG, and

e Services provided by the SIG.

Obviously, if an agent does not know the advantages of
being a member of a SIG, it does not have any reason to
join that SIG. Thus, knowing services provided by a SIG is
an important matter. Every member of an SIG has a right
to vote on new members. In addition, the representative
of the SIG has the authority to make a final decision based
on the voting. Requirements for joining a SIG are defined
by the representative and given to the members.

3.1 Group Formation

Expressing a Desire to Join an SIG When an agent
wants to join an SIG, it has to make an utterance to in-
troduce itself to the representative. This utterance must
include an agent’s identifier A;. Suppose the protocol for
joining an SIG is (TRUE join (Agent-ID 4;)) and the
identifier of the representative is R. Thus, this utterance
should be:

(INFORM A; R (TRUE Join A:) R)

Voting :he representative gives voting plans to every
member of the SIG. We may do this as follows:

(INFORM A B
(TRUE (WFP (Voting ?agent-id)
(SERIAL
(TEST (TRUE Preference ?agent-id ?x))
(TEST (TRUE Preference-Average ?y))
(IF-THEN-ELSE (< ?x ?y)
(INFORM B A (TRUE against) A)
(INFORM B A (TRUE for) A)))))
B).

Here, Preference is a relation which shows the degree of
preference for an agent assigned to variable fagent-id and
Preference-Average is a relation to show an average value
in the preference spectrum. This utterance means that
if representative A REQUESTS including a formula (Vot-
ing agent-id) to agent B then agent B should say (TRUE
against) if its preference is less than average or (TRUE
for) otherwise.

When representative A believes that B knows how to
vote, the voting procedure is as follows:

Step 1 Request (Voting agent-id) to every member of the
group. Agent-id indicates the agent identifier of an agent
who wants to join the SIG is assigned.

Step 2 According to the well-formed plan of the composite
action (Voting agent-id), every member Informs A (TRUE
for) or (TRUE against).

Step 3 A decides based on the vote and ils own judgment,
whether the agent can join the SIG.

Notification of New Members A notification of ap-

proval is send by the representative to the new agent using
INFORM as follows:

(INFORM R A;
(TRUE Group-members (Group-name name)
Member’s-list
Aj).

This notification comes in the form of a members’ list.
In addition, the new member is also told voting plans.

Leave an SIG When an agent wants to leave an SIG,
it does this according to the protocol of leaving for that
SIG. The agent sends to another member of the SIG with
the group name of the SIG indicated as Interpreter. 2 An
example is:

(INFORM A: A,
(TRUE Leave A; (Group-name gname)) A4;).

3.2 Group Communication

Here I give a rule describing the FORWARD action in the
case that a group name is indicated as the Interpreter.

Rule 3.1 If the Interpreter of an uiterance is a name of
group, that utterance is FORWARDed to every member of
the group, gname.

According to this rule, the above utterance will be for-
warded to each member of the group, gname. When an
agent receives this utterance, it deletes the name of the
agent who wants to leave gname from the SIG’s group
member list. After all, members of the SIG receive the
utterance, services supplied by the SIG are not available
to the departed agent. 3

Every group communication follows Rule 3.1. That is,
notification is given to a group by specifying the group
name as Interpreter.

Principle 3.1 Every member of a group has the opportu-
nity lo receive all information sent {0 the group.

This principle is a direct application of the definition of
INFORM.

2Interpreter is a special concept we introduced in Situated Con-
versation Model [Numaoka 90]. In Situated Conversation Model, an
agent who should interpret an utterance is not always a hearer of
the utterance and Interpreter indicates an agent who should inter-
pret utterances finally. This is shown in each INFORM, QUERY, or
REQUEST formula as its last argument.

3[Maruichi et al. 89] has shown that an environment which facili-
tates speaking to unspecified hearers is useful for group communica-
tion. Since an environment us a kind of group and the environment
knows all members of the group, if an agent makes an utterance
to the environment, the environment can send the utterance to all
group members on behalf of the speaker. In Situated Conversation
Model, this task is achieved without environment by situated agents
knowing the notion of group.

Automatic Reporter

Figure 2: An Automatic Reporter

3.3 Shared Resources among SIG Mem-
bers :

In an SIG, members share resources, including situated
agents and well-defined objects supplied by the represen-
tative of the SIG. Some shared resources may have to used
in an exclusive manner due to internal restrictions. For

-example, an agent of type telephone can be accessed by

only one user at a time, so there must be a mechanism
to guarantee exclusive access. Telephones are, of course,
unnecessary in Situated Conversation Model since a sit-
uated agent can always receive messages. However, the
telephone answering machine is a good approximation of
the mechanism agent uses to receive messages. Therefore,
necessary is proxy of an automatic reporter such as a tele-
phone answering machine which notify a current status of
an agent and inform a request of the agent to senders of
messages to it (see Figure 2). The notion of an insensitive
actor [Agha 86] is useful for this purpose. An insensitive
actor is one which is insensitive to incoming messages un-
til it is sent a become communication specifying a replace-
ment behavior. 4 Since whenever a message is received by
an actor, it executes the request as soon as possible, if an
actor does not want to accept messages while performing
a task, it assigns another actor to deal with the incoming
messages.

How can we implement an agent with this ability in
Situated Conversation Model? Consider the example of
a Japanese SIG having telephone agents capable of con-
necting with telephone agents in another SIG in the U.S.
Agents who want to phone the SIG in the U.S. must be-
long to an SIG in Japan with this ability. Thus, the rep-
resentative of an SIG must have the ability to inform SIG
members of the agent identifiers of phone agents able to
connect with telephone agents in the U.S.

The agent identifier of such an agent should identify
itself as a receptionist. That is, there is an automatic

1In the actor model, the actor can explicitly specify the behav-
ior it would like for its next task. The behavior specified is called
replacement behavior.

reporter contained in the OBJECT level of this agent.
An automatic reporter is a well-defined object without a
META level. Its abilities are:

e To forward received utterances to an agent, and

e To make an utterance specified by the agent when it
is in an insensitive state and not to forward received
utterances. 9

Thus, an antomatic reporter can change its role according
to the sensitivity of an agent. For example, if a telephone
is occupied, it changes its state from sensitive to insen-
sitive and reports this change to its automatic reporter.
This frees the agent from being bothered with incoming
utterances.

3.4 An Example SIG

In this section, I give an example of a SIG for shariug a
meeting room. Invariants ® for the meeting room are as
follows:

Invariant 1 Only one agent at a time can use the mec ing
room, R.

¥ (LAND (TRUE occupies A; R)
(TRUE occupies A; R))
where i # j.

Invariant 2 The room is utilized whenever there is a re-
quest.

Invariant 3 Chances to use the meeting room are fairly
given to every member of the SIG.

For this invariant, the meeting room agent follows the def-
imition and principle given below:

Definition 3.3 (Fair Assignment of a Room) Ifitis
an agent’s turn to use the room and it requires the room,
the room is assigned to that agent. If agent A; requires
the room when it is not his turn, it is assigned the room
if and only if il is guaranteed that no agent between the
current agent and agent A;_,, in cyclic order of the group
member’s list, requires the room.

Principle 3.2 A meeting room agent with a group mem-
ber’s list in cyclic order can guarantee that the room is
assigned to members of the SIG as fairly as possible.

Suppose (Ay,...,Ai,...,Aj,...,An) is the group mem-
ber’s list. There are three cases.

3Whether the automatic reporter stores these received utterances
or not should be defined by the designer of the agent.

¢ We use the term Invariant for indicating the formula which can-
not remain in any belief space. That is, if a formula which is con-
tradictory to the formula represented by an invariant appears in any
belief space, then any truth maintenance mechanism will cause any
physical action in order to resolve the situation.

Figure 3: Organizational Structures (2): Market

Case 1: It is A;’s turn, and it requests the room. A; is
assigned the room, and the next turn goes to Ai4.

Case 2: It is A;’s turn, and A; requests the room.. The
meeting room agent asks agent i through j-1, in order,
whether any of them need the room. If not, the room
is assigned to A; and A; takes A;’s place in the order.
If some agents do need the room, the agent closest in
line to A; is assigned the room, and A; then takes the
other agent’s place in the order.

Case 3: The same as Case 2 but i is exchanged for j.

4 Market

A market is an another kind of organization. In a mar-
ket, there are suppliers, task processors for various types
of tasks, and buyers, agents needing the services of any
supplier. In a sense, the buyers are “product managers.”
They know all suppliers and can choose the best one for
their needs. In a market, buyers contract some task di-
rectly with suppliers whose products they need (See Fig-
ure 3).

The relationships of master with slaves and buyers with
suppliers differ in that, in the former, the master assigns
tasks to slaves based on their ability, in the latter, a buyer
assigns tasks based on which supplier can best do the task
not simply which supplier has the ability. The master in a
hierarchy is the coordinator of an organization as well as
being a part of that organization. A buyer in a market,
however, is the user of an organizational functionality and
is not necessarily part of the organization.

In a market, a group of suppliers is modeled as an SIG.
Therefore, we can say a market is represented by a pair
consisting of a buyer and an SIG. The advantage of a
market is that if a new agent is developed with a better
implementation, the benefit of the agent is available for
all members of a SIG, a group of suppliers, immediately
when the agent joins the SIG.

4.1 Example: Contract Net Protocol cre-
ated through Conversation

The Contract Net Protocol is a protocol for assign-
ing tasks to suppliers called contractors using bidding
[Davis and Smith 83]. In this protocol, users are called
managers and a manager begins a contract process by
broadcasting an announce message. Every contractor re-
ceiving an announce message replies with a bid message to
the manager if it has the ability to perform the task indi-
cated in the announce message. The manager then selects
a contractor from the bits received and it sénds a contract
message to the selected contractor. :

Following is an implementation of Contract Net Proto-
col on a market. A group of suppliers is defined to be an
SIG. Let its name be construct (€ A'). The SIG construct
should contain certain requirements for members of the
SIG. Suppose these requirements are as follows:
(Primitive Actions)

(Estimate Spec): .An action for estimating the
cost for a construction specified by Spec.
(Construct Spec): An action for perform a con-
struction specified by Spec.

(Internal States)

estCost: The estimated cost of a construction.
estTerm: The estimated term of a construction.
possible(Spec): a formula created by the result
of an action (Estimate Spec).

The SIG representative establishes these requirements,
which every member of the supplier SIG must satisfy.
Therefore, a designer of a supplier must satisfy the repre-
sentative agent’s specifications.

Another possibility is to assume that every supplier in
the SIG construct has these abilities and can reply to ques-
tions about its internal states. The Contract Net Protocol
for a market whose suppliers form SIG constructs is imple-
mented with conversational action protocols as follows: 7
(Defining ANNOUNCE and BID using Conversation)

(INFORM A B
(TRUE (WFP (Announce ?spec)
(SERIAL

(TEST (TRUE Self-ID ?c))

(Estimate ?spec)

(IF-THEN-ELSE (TEST (TRUE Possible ?spec))
(INFORM ?c A (TRUE Bid dueCost dueTerm) A)
(ABORT)))))

(Group-name construct)).

By performing this action, B forwards the utterance
to all members of the SIG. As a result, they will know
the interpretation of utterance (Announce spec). In the
above utterance, ?c is replaced by the agent identifier of
the hearer receiving the utterance. If an estimation fails,

"Here, the authors presuppose that buyer A knows supplier B, a
member of the SIG construct.

Slaves
,L\ ™

Lo e \.

Figure 4: Organizational Structures (3): Hierarchy

&

using ABORT causes the action corresponding to well-
formed plan (Anncunce spec) to fail, and the agent utters
a failure REPORT.

(ANNOUNCE and CONTRACT a Construction) After
performing the INt'ORM action, A REQUESTSs B, a sup-
plier of S:G construct, to announce a construction speci-
fied by spec as follows:

(REQUEST A B (Announce spec)
(Group-name construct)).

B then forwards the utterance to all members of the SIG
construct. Then, A will wait for bids and choose a con-
tractor based on those bids. It then utters the following
REQUEST that ?c constructs a building as described in
the full specification, fullSpec:

(REQUEST A ?c (Construct fullSpec) ?c).

These examples show that conversational action pro-
tocols are enough strong to express any other protocol,
including Contract- Net Protocol, if an organization can
be modeled as an SIG, hierarchy, or market.

5 Hierarchy

A hierarchy is designed as a kind of SIG (See Figure 4),
which has a name, a representative, and some other orig-
inal group members. A representative is called a mas-
ter and other members are called slaves. Here is a mas-
ter/slave relation. This is the relative relation for a hierar-
chy. Thus, a slave may be a master of other hierarchy. A
hierarchy is an organization to deal with large-scale tasks.
Since it is difficult for an agent to perform a large-scale
task, the task is divided into smaller tasks. These tasks
are assigned to slaves. In order to monitor the status of
tasks, a manager is required. This is a master agent. A
master has an authority controlling slave agents and must

know all functionalities of its slave agents to assign sub-
tasks. Since a hierarchy is an SIG, an agent can join the
hierarchy. A master also has an authority to decide to
allow a new agent to join by its own preference.

The duty of a slave is to comply with every request its
master makes. For example, after beginning an assigned
task, if the slave is required to change some parts of the
task, it must obey even if the changes mean it will have
to do the task over again. An agent designed as a slave
must know all the actions performed by its master of the
hierarchy. It must use these actions to define how the
master can use it so that the master can understand how
the slave performs tasks.

The advantage of a hierarchy is that when a master gives
part of an organizational goal, and gives permission to use
the resources of the hierarchy, to each slave, it forces the
slaves to give their best effort to achieve these organiza-
tional goals. The biggest problem in hierarchy is that the
master must know in advance how many agents he will
require. Because of this, a market system, which ensures
finding agents appropriate to a given task, is often a better
system.

5.1 Exam: .le: Recruiting Agents

A hierarchy is an example of distributed problem solving,
decomposing a problem into smaller problems and assign-
ing each to a slave. If there is no slave available to be in
charge of a task, the master recruits a slave by issuing an
invitation. However, since the number of agents the mas-
ter knows is limited, it can ask the agents it does know
to forward the invitation message to all the agents they
know. This is not just a simple FORWARD action, so the
master must first use the following INFORM to define how
to distribute the invitation:

(INFORM A B
(TRUE (WFP (Recruit ?message)
(SERIAL
(TEST (TRUE Seli-ID ?al))
(DO-FOR-ALL (TRUE Agent-ID ?a2)
(SERIAL
(TEST (TRUE WFP (Recruit 7msg) ?body))
(INFORM ?al 7a2
(TRUE WFP (Recruit ?msg))?body
?a2)
(REQUEST ?al ?a2
(Recruit message)
?a2)))
;s RECRUITING PLAN)))
B).

In this action, DO-FOR-ALL is a well-formed plan, for
all agents 7a2 whose agent ids B knows, perform the action
shown in a formula (SERIAL ...). TEST finds a formula
which matches the given formula including variables, and
Self-ID is an agent own identifier. After issuing the IN-
FORM above, master A takes the following action:

(REQUEST A B (Recruit message) B).

message contains all that is required to carry out the
task.

6 Conclusion

In this paper I have classified organizational structures
into three categories: Special Interest Group, market, and
hierarchy. Situated agents can use these organizations
through conversation in Open Systems. In addition, I have
discussed the relationship between conversation and these
structures.

A special interest-group (SIG) is a fundamental orga- .
nization for implementing both hierarchies and markets.
A SIG allows its members to share information and/or re-
sources. In a market, a buyer is designed to select the best
of many possible suppliers for a job. New suppliers are de-
signed to do tasks better than the existing suppliers in a
market. In a sense, all agents represent suppliers in a mar-
ket. If a supplier is developed by redesigning an existing
supplier, it can join a market by joining with the origi-
nal supplier. Then the original supplier will notify buyers
to the new supplier. A hierarchy is for systematic or-
ganizations where a master coordinates sub-organizations
that autonomously carry out tasks under the direction of
a master of the sub-organization.

An agent can simultaneously belong to various kinds
of organizations and, as a result, must play various roles.
This means a situated agent has to work within the re-
strictions of various kinds of organization. The analysis of
this problem is left for future work.

References

[Agha 86] Gul Agha. ACTORS: A Model of Concurrent Com-
putason in Distributed Systems. The MIT Press, 1986.

[Baligh and Richartz 67] H.H. Baligh and L. Richartz. Vertical
Market Structures. Allyn and Bacon, Boston, 1967.

[Davis and Smith 83] R. Davis and R.G. Smith. Negotiation
as a metaphor for distributed problem solving. Journal of
Artificial Intelligence, Vol. 20, No. 1, pp.63-109, 1983.

[Malone 87] Thomas W. Malone. Modeling Coordination in
Organizations and Markets. Management Science, Vol. 33,
No. 10, pp.1317-1332, 1987.

[Marschak and Radner 72] J.G. Marschak and R. Radner.
Economic Theory of Teams. Yale University Press, 1972.

[Maruichi et al. 89] T. Maruichi, M. Ichikawa, and M. Tokoro.
Modeling Autonomous Agents and Their Groups. In Pro-
ceedings of European Workshop on Modeling an Autonomous
Agent in a Multi-agent World, Augnst 1989.

[Numaoka 90] Chisato Numaoka. A Conceptual Framework for
Modeling Conversation in Open Distributed Systems. PhD
thesis, Keio University, December 1990.

A MODEL FOR
BELIEF REVISION IN A MULTI-AGENT ENVIRONMENT

Aldo Franco Dragoni
University of Ancona, Computer Sciences Institute
via Brecce Bianche 60131 ANCONA (Italy)
" tel. +39-71-2204832; fax +39-71-2204474
e-mail luca@anvax2.cineca.it

INTRODUCTION. -

In a Multi-Agent setting it became necessary to enlarge the traditional concept
of Belief Revision. For detecting contradictions and. identifying their sources it is suf-
ficient to maintain informations about what -has been told; but to "solve" a
contradiction it is necessary to keep informations about who said it or, in general,
about the source where that knowledge came from. We can take as certain the fact that
an agent gave an information, but we can take the given information only as a
revisable assumption. The Belief Revision system can't leave the sources of the
informations out of consideration because of their relevance in giving the additional
notion of "strength of belief" [Galliers 89]. In fact, the reliability of the source affects
the credibility of the information and vice-versa. It is necessary to develop systems
that deal with couples <assumption, source_of_the_assumption>. In [Dragoni 91] we
propose a system that moves in this direction. Here we give a short description of that
system. In part one we describe the agent's knowledge processing structure with a
partivular characterization of the "Assumption Based Belief Revision" concept; in part
two wve outline the project of an embedded device that enables the overall system to deal
with couples <assumption,source>.

1.1 PRELIMINARIES.

By "Belief Revision" we mean the process of detecting contradictions, identifying
the assumptions from which they came out and readjusting the knowledge base to
remove the contradictions. Beliefs are assumed to be expressed as sentences of first
order logic stored in the agent's memory. There are two kinds of sentences: those
introduced as assumptions and those deductively derived as logical consequences of the
assumptions. We need an Assumption Based Truth Maintenance System [De Kleer 86]. We
use the following modified version of the Supported Wff of Martins and Shapiro [Mar-
Shap 86] (the rationalities for the multi-agent topic are in part two):

SWM=<A,050,081,..,08n,0SE RS>
where A is an F.O.L sentence; among the assumptions really used in the derivation of A
OSO contains those whose source is an observation, OSi contains those whose source is a
comunication received from the agent i and OSE contains those introduced ipothetically
by the agent himself; OS = OSO U XiOSj u OSE is the Origin Set of A; RS is the Restriction
Set; it contains all the sets of assumptions that unioned with the OS produce a strongly-
inconsistent set (see below).

An assumption is an SWM whose OS contains only the SWM's sentence. We define
contradiction, a couple of SWMs <A,0S;,RS1> and <~ A,0S2,RS2>. The set OS;u0S3 from
which has been derived the contradiction is defined to be a strongly-inconsistent set. A
weakly-consistent set is a not strongly-inconsistent one.

The Knowledge Base KB(t) is the set of all the assumptions introduced by the Rea-
soner (see below) up to t. The Knowledge Space KS(t) is the set of all the sentences de-
ductively derived from KB(t) by the Reasoner up to t. A Belief Base BB(t) is a subset of
KB(t) such that it is weakly-consistent and it is maximal with respect to KB(t) (if aug-
mented with whatever else assumption of KB(t) it becomes a strongly-inconsistent set).
The Belief Space BSBpB(1)(t) joined with a Belief Base BB(t) is the set of all the sentences
derived from BB(t) up to t.

1.2 THE BELIEF REVISION SYSTEM.
With reference to the picture we sketch here the entire system.

(O\
Chooser

D O_O OBS Generator | [LIClass Select

Ra
)

Endotheses Reasoner

.

1.2.1 The REASONER.

Its essential task is to clock simulated time providing the assumption of a new
SWM in KB(t), or the deduction of a new SWM in KS(t). The first activity is intended to
model forms of plausible reasoning [Davis 90] (abduction, induction, default reasoning
[Gen-Nils 87] etc.); the second activity is intended to model the limited deductive ability
of a real reasoning agent. KB(t)QKS(t) because assumptions are logical consequences of
themselves. No sentences will ever be removed from KS(t). We call Current Belief Base
CBB(t) the particular Belief Base chosen by the Chooser (defined below) as the pre-
ferred one. We call Current Belief Space the set CBS(t)=BScBB(t)(t). The intended mean-
ing for CBS(t) is to be the most believable and maximal piece of knowledge actually
available for the reasoning agent. Probably, for best results, it would be preferable to
limit at CBS(t) (instead of at the entire KS(t)) the input of the Reasoner (as depicted in
the picture) but we see no serious advantages to be so drastic.

J/

1.2.2 The Belief Bases' GENERATOR.

For our purpose, it would be very desirable for the agent's belief base CBB(t) to be
consistent. Unfortunately, practical FOL-based systems have to restrict themselves to
consider only limited forms of Consistency because of the indecidibility of the validity
problem. Previously defined Weak-Consistency is our limited form of Consistency. It
seems also desirable for an agent to use as more informations as possible in its reason-
ing. Hence our choice to impose maximality for CBB(t). Notice that this maximality is
intended with respect to all the assumptions in KB(t) and not, as usually, with respect of
all the sentences of the Language; this is because we give no importance to the sen-
tences not already introduced in the memory. Each event is a clock pulse for the Context
Generator. It searches all over KS(t) for a contradiction If it succeeds it records the dis-
covery of the strongly-inconsistent set and redefines the Situation S(t) of all the Belief
Bases in KB(t) (see the Updating Restriction Set rule in [Mar-Shap 87] for details).

2

1.2.3 The CHOOSER.

After the discovery of a new contradiction the agent is in a position to revision
its beliefs. It is not the case to select which belief is to be thrown away to remove the
contradiction, but, quite more generally, to choose which is the new preferred Belief
Base among them in S(t). This is what we mean by "Belief Revision” and this is the task
of the Chooser; it is an appropriate machine that takes S(t) as input and gives the new
preferred Context CBB(t) as output. We think the Chooser as the cascade of two compo-
nents: the Classifier and the Selector. The Classifier takes KB(t) as input an gives as out-
put the list of all the assumptions in KB(t) ordered according to some specific criteria.
The Selector takes as input the list passed from the Classifier and the situation S(t)
passed by the Generator and gives as output CTBB(t).

This system shows both foundational and coherence nature. From [Galliers 89]:
"Foundation theory considers new beliefs are only to be added on the basis of other jus-
tified beliefs, and beliefs no longer justified are abandoned”, this is the case of beliefs
corresponding to the deductively derived sentences which are in CBS(t) and are added
only on the basis of the set of assumptions CBB(t); "Coherence theory represents a con-
servatism whereby justification is only a requisite condition of believing if there is a
special reason to doubt a belief”, this is the case of beliefs corresponding to the as-
sumptions whose permanence in CBB(t) is only due to their being not - strongly-incon-
sistent with the others in the same Belief Base; the assumptions in a Belief Base are
there because there isn't a valid reason for their not being there.

In order to produce the list of the assumptions, the Classifier needs not only some
credibility-importance criteria to judge them but also a strategy to manage those crite-
ria. These could in fact be used at least in two different ways:

a) they could be sorted according to their importance (the importance of the criteria
themselves) and used in cascade as selective filters on the assumptions, or

b) it could be assigned a weight to each one of them according to their importance and
then they could be used as tests score on the assumptions, reporting the degree with
which they are satisfied.

We have developed some algorithms based on the first (non-numeric) strategy.

2.1 THE MULTI-AGENT SETTING.

We distinguish at least three kinds of sources:

- perception (typically vision) gives a first direct information about the state of
the world (objects' and agents' spatial positions etc.) and about spatial events or occur-
ring actions;

- communication: each agent is able to exchange informations employing a cer-
tain physical channel and appropriate communication protocols; agents are not neces-
sarily sincere and competent;

- reflection: for the sake of realism we admit the presence of assumptions engen-
dered by some forms of hypothetical reasoning internal to the agent; we call them En-
dothesis and we discuss below a problem with them.

In addition we see the presence of "a priori” assumptions that, for our purpose,
could be though as innate to the agent; they represent, typically, the rules (causal or
not) of the knowledge domain under consideration but we think them as not removable,
therefore, not assumptions at all.

2.2 SOME CRITERIA FOR JUDGING ASSUMPTIONS IN A MULTI-AGENT SETTING.

The following is a proposal list.

1. Assumptions derived from observation are stronger then those derived from
communication. Observation is taken as a sort of Super-Agent.

1b. Assumptions derived from communication which are in contrast with sets of
assumptions all derived from observation have no strengh at all.

2. The sources multiplicity confirms the assumption.

3. The more the conflicts with other assumptions, the weaker the assumption.

4, The OSs of SWMs with the same wff confirm each others because of their mu-

3

tual coherence.

Two criteria modelling psychological attitudes.

5. Belief Conservativeness: it is stronger the assumption supporting more SWMs.

6. Goals Conservativeness: it is stronger the assumption supporting more goals
(assuming a planner working on the system).

It is important to consider also the reliability of the agents.

7. The less reliable the agent who made a communication, the weaker the as-
sumption derived from it . We could estimate the agent's reliability by:

- Self-Inconsistency (he made communications mutually inconsistent)

- «verage of Inconsistency of the assumptions derived from communications re-
ceived from that agent with respect of all the other assumptions derived from observa-
tions in KB(t) (we choose to not consider the conflicts with other assumptions in order
not to punish competency).

We c¢mphasize the importance of the 4! criterion in giving a prize to coherence.
Let Th(K¢) represent a scientific theory based on a set of assumptions K; not derived
from observation and let Ko be a set of assumptions all derived from observation; if
there is a couple of SWMs in KS(t), named S and 7, where wff(S)=wff(7T), 0S(5)=K; and
OS(T)=K,, then K5 could be intended to represent the experimental evidences of the sci-
entific theory so that it is justified its reinforcement over K;.

The 70 criterion could be sten as a preprocessor that gives a weight to each as-
sumption derived from communication. The criteria 1-4 should be able to manage these
weights.

2.3 THE ENDOTHESES.

Realistic situations require much complex treatments. Among other considera-
tions, we endorse the need for assumptions "intermal" to the agent; we think them as
auxiliary beliefs, functional to the reasoning process which is going on. That's the ra-
tionality for the Endotheses. They could be the result of the application of some sort of
plausible inference rules, it may be "induction" (i.e. from o and B infer a—>f3) or
"abduction" (i.e. from P and a—p infer &) or a non-monotonic default rule. These En-
dotheses are treated normally by the Generator; that is, an Endothesis o belongs to ev-
ery Belief Base not containing a subset that is strong-inconsistent with o. This implies
that an Endothesis o hypothetically derived from a set of assumptions {ai,..,ai} in a Be-
lief Base, can as well belong to other Belief Bases not containing {oj,..,aj}. This could
seem strange but it is in accord with the Principle of Positive Undermining [Harman
86]: the lack of justification is not a good reason to remove a belief; we think that this
principle is more appropriate for beliefs plausibly derived from a set of assumptions
than it is for beliefs which are logical consequences of the set of assumptions. The real
problem with the Endotheses is that it isn't clear how they are to be treated by the
Chooser; because of the arbitrarity with which they can be introduced we can't fix cri-
teria for the Chooser to process them. The problem is that their introduction is again a
casual element in the reasoning story and we are no more favourably disposed towards
such casualness. We've been well disposed towards the casualness inherent the story of
the introduction of assumptions from the outside of the agent (by communication and
observation). They are regarded as "interrupts” to be processed, and the change of the
deductive theory following the arrive of one of them is justified by the real change of
the agent's cognitive state. We've been not so well disposed tovsards the casualness in-
herent the story of the derivations of new SWMs in KS(t). However, if the Inconsis-
tency of a set is revealed in its being strong-inconsisten depends on the story of the de-
ductions made by the Reasoner. But Strong-Inconsistency itself does not depend on that
story. So, if the property that defines a Belief Base is Weak-Consistency (not Consis-
tency) then we have nothing to worry about the casualness of the deductions.

But now, we are not well disposed towards the casualness inherent the story of
the intrcduction of assumptions from the inside of the agent (the Endotheses). It could
be objected that these events too could be regarded as interrupts changing the agent's

4

cognitive state and we've just accepted the fact that casual elements internal to the
Reasoner activity (deductions) can affect the agent's cognitive state. However, our
resolution is to reduce this casualness simply giving the lowest importance to the En-
dotheses when subjected to the Chooser's processing.

CONCLUSIONS.

This paper deals with the concept of Assumption Based Belief Revision in a Multi-
Agent environment, that is how to consider also the sources of the information (i. e.
who gave it) in the general belief revision process. We have briefly presented:

a) a rather innovative general framework for assumption based Belief Revision

b) some abstract criteria to deal with an agent's knowledge base built upon ob-
servations, internal hypotheses and several other agent's informative contributions.

The former topic is based on

- choosing a new preferred Belief Base versus removing the beliefs causing the
contradiction,

- achieving our defined Weak-Consistency versus achieving Consistency

The latter topic covers:

- the definition of very general criteria to associate each agent advise (or agent.
himself) with an implicit credibility factor

- the discussion of a criterion to judge the (our defined) Endotheses, that is as-
sumptions derived internally to the agent

- the discussion of strategies that use these criteria to compute the new
preferred context

The overall system exhibits an enviably anthropomorphous behaviour.

WHAT IS MISSING.

This research belongs to a Multi-Agent planning project, but several examples
show that the system fits as well in police investigations or detective stories. The system
could also be seen as a module in expert systems regarding not well established knowl-
edge with multiple experts contrasting contributions. The real limitation of this ap-
proach is that it doesn't reason about why an agent gave an information; we don't take
explicity in count the intention [Cohen 90] of the agents or their dependence relations
[Castelfranchi 91] as usefull elements to judge their utterances. The key element is only
consistency with the observation. It's too little for some pourpose.

REFERENCES.

[Castelfranchi 91]: Cristiano Castelfranchi & Maria Miceli & Amedeo Cesta, Dependence
Relations among Autonomuos Agent, in this proceedings.

[Cohen 90]: Philip Cohen & Jerry Morgan & Martha Pollack, Intentions in Communication, The
MIT Press, Cambridge, Mass., 1990.

[Davis 90]: Ernest Davis, Representation of Commonsense Knowledge, Morgan Kaufmann
Publisher, san Mateo, Calif, 1990 ;

[De Kleer 86]: Johan de Kleer, An Assumption Based Truth Maintenance System, Artificial
Intelligence 28, pp. 127-162, 1986.

{Dragoni 91] Aldo Franco Dragoni, A Model for Belief Revision in a Multi-Agent Environment,
Tech. Rep., Computer Sciences Inst., University of Ancona (Italy) 1991.

[Galliers 89]: Julia Rose Galliers, Modelling Autonomous Belief Revision in Dialogue, Tech
Rep. Cambridge University Comp. Lab., Cambridge (England), 1989.

[Gen-Nils 87]: Michael Genesereth, Nils Nilsson, Logical Foundations of Artificial
Intelligence, Morgan Kaufmann Publisher, san Maieo, Calif, 1987

(Harmann 86]: G. Harman, Change in View - Principles in Reasoning, The MIT Press,
Cambridge, Mass., 1986.

{Mar-Shap 86]: Joao P. Martins, Stuart C. Shapiro, Theoretical Foundations of Belief Revision,
in: J.Y. Halpern ed., Theoretical Aspects of Reasoning about Knowledge, (Morgan Kaufmann, Los
Altos, CA, 1986).

[Mar-Shap 87]: Joao P. Martins, Stuart C. Shapiro, A Model for Belief Revision, Artificial
Intelligence 35 (1), pp. 25-79, 1988.

5

On Being Responsible1

N.R.Jennings
Dept Electronic Engineering,
QMW, University of London,
Mile End Road,
London E1 4NS
UK.
n_jennings@eurokom.ie

1 Joint Action: An Introduction

Within a multi-agent environment, there are numerous possibilities for the way in which community
members can operate and interact. The aim of this paper is to produce a behavioural framework for social
interactions in which groups of (semi-)autonomous agents decide they wish to solve a particular problem
together and then collaborate to attain the desired state (this activity will be referred to as group/joint
problem solving,. The framework defines prerequisites for joint action and also how agents should
behave (both in their own problem solving and with respect to other group memb:rs) once they have
agreed to participate in joint problem solving.

Typically in a community of autonomous agents, one of the primary motives ‘or such joint action is when
no individual within the community is capable of achieving a desired objecti e alone; only by combining
with others in a structured manner can the target be reached (contrast this with objectives such as load
balancing). It is typically a reciprocal process in which participating agents augment their objectives and
problem solving to comply with those of others - hence it is a fairly sophisticated form of cooperation. It
requires greater knowledge, awareness and reflection by an agent both with respect to its own problem
solving objectives and about their compatibility with the objectives of others (contrast with task and
result sharing [1]).

Joint action, by definition, requires an objective the group wishes to achieve - it is the “glue” which binds
the team together. As a consequence of the autonomous nature of the agents, each team member will only
participate if it can derive some benefit from the interaction. This differs from the more traditional
approach in which agents are assumed to enter into interactions merely if they are requested to do so (i.e.
they are benevolent [2,3]). However merely having a common objective is not sufficieat for obtaining a
collective goal - agents also need to agree upon a means of reaching the target state. Imagine trying to lift
a heavy object if the lifting positions of the participants and the relative forces exerted by each participant
had not been agreed upon beforehand! Agreeing such a solution may be done in an incremental fashion,
nevertheless such a solution must be agreed at a certain level of abstraction. As activity progresses the
solution may be refined or modified to better fit prevailing circumstances. Having a common objective
and solution means participant’s actions can be phrased in terms of “doing their bit” [4]. In the collabora-
tive lift example, an agent lifts the object at one erd as a means of contributing to the group objective of
lifting the object.

Previous work on collaborative problem ‘solving [4,5,6,7,8] has been deficient because it failed to
describe the complete mental state of the participants. This state, which we call joini responsibility,
internalises for each team member the notion of being in a group. It provides beliefs about how others

1. The work described in this paper has been partially supported by the ESPRIT II project P2256 (ARCHON) whose
partners are: Krupp Atle; Elektronik, JRC Ispra, Framentec, Labein, QMW, IRIDIA, Iberduero, ERDC, Amber,
Technical University of Athens, University of Amsterdam, Volmac, CERN and University of Porto.

1

will act, both in performing their intentions and in participating in collaborative interaction per se. Such
guidelines are especially important in dynamic and complex environments in which agents’ aims and
objectives are likely to alter during the course of a cooperative interaction. In addition to providing
behavioural guidelines joint responsibility defines the pre-requisites which need to be satisfied before
joint action can commence. In the remainder of this paper the notion of joint responsibility as a pre-requi-
site for joint action is developed. Section two describes an example problem domain in which joint prob-
lem solving by a team of autonomous agents is beneficial to all participants and also enhances the quality
of the output to the user. Section three introduces, using a logic-based formalism, the notions of joint
responsibility and provides pointers to where previous work in this field has been deficient.

2 Fault Recovery in Electricity Distribution Networks

The domain upon which the principles related to joint action will be illustrated is that of fault recovery in
electricity distribution networks2. The described scenario involves three pre-existing agents each of
which has a set of clearly defined goals and is capable of sophisticated problem solving in its own right.
The agents, together with an indication of the message flows between them, are shown below.

FAULT :LANNED ACTIONS _| RESTORATION
DIAGNOSIS CAULTS PLANNING
FAULT EVOLUTION SIDE EFFECTS
FAULTS INITIAL PLAN
NETWORK
SIMULATION
Figure 1

The fault diagnosis agent’s role in this example is to indicate to the other two agents that a fault has been
detected in the network. The restoration planning agent (RA) is responsible for constructing a mainte-
nance plan once faults have been detected - such a plan will instruct the operator to perform certain
sequences of operations in a well defined order. The network simulation agent (NSA) is capable of run-
ning and explaining what-if simulations of the network based on the settings of certain key parameters.
The joint action which can be instantiated between the NSA and RA is in the area of producing restora-
tion plans whose actions will not cause further parts of the network to fail (i.e. “sensible” restoration
plans). As a standalone system, the plans suggested and devised by the RA may lead to further faults as
the specified operations may result in overloading a currently working component, causing it to fail.
However if the RAs tentative restoration plan is sent to the NSA then its effects can be predicted, prob-
lem areas highlighted and the RA informed. If major problems are identified and the RA decides to sig-
nificantly revise the original restoration plan then there may be further interaction with the NSA before an
acceptable plan can be generated. If only minor modifications are made, or the PA deems the highlighted
risks acceptable, then the restoration plan may be slightly altered and because of the relatively minor
nature of the changes no further interaction is undertaken with the NSA.

2. The example is loosely based on an ARCHON application [9,10].

2

3 Joint Responsibility

Joint responsibility defines a behavioural framework for participants who wish to engage in collaborative
problem solving. It defines the conditions which need to be satisfied before joint action can be initiated
and a code of conduct specifying how agents should react when the joint action becomes unsustainable.
Joint responsibility will be defined using a logical formalism, similar to that described in [11]. This for-
malism has the usual connectives of a first order language (* AND, v OR, ~NOT) - as well as operators
for propositional attitudes. BEL(x, p) and GOAL(x, p) mean agent x has p as a belief and a goal respec-
tively, MB(x, y, p) that x and y mutually believe p. Dynamic logic constructs are also used: (Jp means p
is always true and Op that p will eventually be true. p?;a means “action a with p holding initially”, and
analogously for a;p?. As stated previously, this analysis will be exemplified using two agents (the restora-
tion agent (RA) and the network simulation (NSA)) for simplicity, although it can of course be applied to
communities of arbitrary size.

3.1 Common Goals and Joint Persistence

The first step to achieving Jomt action is that a group of two (or more) agents realize that they have a
common objective (1ntent10n) and that this intention can only (best) be fulfilled by collaborating with
others. Once this is mutually believed by all participants, a common goal exists and each individual par-
ticipant becomes committed [11] to achieving that cbjective. However as Levesque et al. point out this is
not a sufficiently sturdy foundation upon which robust joint a tion can be based [8]; it is particularly frag-
ile if agents intentions change (i.e. they reach a state in whieh they are no longer committed to attaining
the common objective). To rectify these problems, they propose the notion of joint persistent goals (JPGs)
[8] in which groups of agents become jointly committed to a common aim. The properties of JPGs can
best be illustrated using an example. Suppose the RA and the NSA have established a JPG of producing a
“sensible” restoration plan and then at some later stage one of the agents (say the NSA) no longer desires
this objective (because the user has asked it to run a what-if question on the network as a very important
task). Should it simply drop the common goal without informing the RA?, meaning that the RA will be
left waiting indefinitely. Clearly not! Therefore in the interests of robust group problem solving, a JPG
requires that the NSA adopts the goal of informing the RA of its change of intention. Thus, JPGs define
the conditions under which a joint commitment to a goal can be dropped and also how participants should
act when they find themselves in such a situation.

3.2 Solution Commitment

Contrary to the claims of Levesque et al. [8], having a JPG is not sufficient for obtaining joint action.
JPG’s only specify that agents have a common desire to reach a target state, they do not specify how
agents are to reach this state. Agreeing upon a means of reaching the state is nearly as important as the
desire to reach the state itself. Therefore although NSA and RA may be able to agree that they want to
produce a restoration plan together, unless they can agree upon a means of achieving this then joint action
will not follow. In some circumstances, such agreement may be impossible because of the autonomous
nature of the agents involved; both agents are likely to have several objectives at any one time and these
must be balanced with the desire to produce a sensible restoration plan. If they have insufficient resources
to devote to the problem or it conflicts with their other intentions then it may be impossible for them to
converge upon the necessary common plan even though they shee a common objective.

. . . - .4
At this stage we are not concerned with the mechanisms used for achieving the common solution™ (eg one
agent may derive the plan and pass it to others who obediently adopt it or the participants may compile

3. Intentions have been ascribed a variety of differing meanings (eg [11, 12, 13])- within this context they specify a
desired or target state without consideration of how that state is to be attained.

3

separate plans and then coordinate them, [14,15]); rather we are concerned with the fact that they must
agree upon the principle that a common plan is needed to tackle the joint problem.

Before this intuition can be formalised, a simple plan representation language needs to be defined. In a
multi-agent environment not only do the actions to be performed need to be specified, but also the agent
which will perform the action needs to be given [16]. In order to stress that several agents are working
together towards a common objective it is convenient to represent intentions in terms of the agents which
will work together to achieve them, rather than the other way around. Therefore the fact that a set of
agents {Q;,..,0) will work together in order to try and reach state ¢ will be represented as follows: <
{01,..,0}, G >. Let the set of all agents existing in the environment be denoted by A; unless stated to the
contrary, all groups of agents are just a subset of the members of A.

In any complex environment, intentions will typically be composed of sub-intentions which are them-
selves decomposable - the solution graph for ¢ being represented by 5. The nodes without successors

(when the graph has been fully expanded) correspond to atomic units of activity which are executable by
individual agents. The various stages of intention “execution™ can be expressed as follows:

EXECUTE/EXECUTING/EXECUTED(< {ay,..,0q}, 6 >, Z5) ,

which respectively mean that X5 will be executed next, is being executed now or has been executed, for
the purpose of attaining ¢ by agents {Q.y,..0,}. Underlying this definition is the assumption that-at least
one team member (or a subset of them) is (are) capable of realising the constituent sub-intentions and that
team members will not attempt actions which they cannot execute to some degree.

Typically the solution of a joint action will.require actions which need to be coordinated (i.e. a relation-
ship exists) with those of other agents and some which can be executed independently of the activities of
other agents. Solutions are therefore likely to contain interrelated components:

ZO' = {0'1 9{1’2 G2, O3 9(3,4 0'4,....}

931'2 defines the relationship between ¢; and 0'26. This will usually be temporal (eg BEFORE, AFTER,
SIMULTANEOUSLY) although it may also express constraints. Such relationships are an integral com-
ponent of the solution specification and if they are not satisfied then the desired objective cannot be guar-
anteed by solution Z;. Hence fulfilling an intention means reaching the desired state and satisfying any
relationships which exist between that intention and others’:

(V <{oy .. 0}, Gi> € Zg) (A <{aty ... 05}, 0> €) R;j D
MB({a, ... o}, R; ;)2 EXECUTE(<{0 ... 0k}, G;>, Zg5)

To illustrate this formalism, the intention of producing a sensible restoration plan can be expressed as fol-
lows: 6 =< {RA, NSA}, SENSIBLE-RESTORATION-PLAN> and one solution for achieving this is:

X5 = {<RA, TENTATIVE-RESTORATION-PLAN> BEFORE
<NSA, CHECK-PLAN-FOR-OVERLOADS>

<NSA, CHECK-PLAN-FOR-OVERLOADS> BEFORE
<RA, REFINE-RESTORATION-PLAN>}

4. A common solution should be understood in a broad context, it is intended to embrace both agreeing upon a strat-
egy or plan for coming to a common set of actions as well as the set of actions themselves.

5. Execution in this context corresponds to expansion of those nodes without successors if a node is expandable or
processing of atomic units if not.

6. ‘Rl 2 * 9‘2‘}

7. Typically fulfilling relationships is a process requiring communication and synchronization between the responsi-
ble agents. However details of how this is achieved are beyond the intended scope of this paper

4

The success of a solution in reaching its desired objective is the final component of the plan representa-
tion language:

* ACHIEVE(<{Qy,..,%,}, 0>, Z5) < ~0 » EXECUTE(<{y,..,00}, 0>, Z5); 67

meaning if Ly is executed next ¢, which did not hold before this sequence of actions, will hold as a direct
consequence of performing the specified actions.

It is now possible to express the first pre-condition for joint action, namely- that the participants must
agree upon the principle that a common solution is needed if the objective is to be achieved:

NEED-COMMON-SOLUTION (<{0y,..,0t}, 0>) &
MB({ay,..,03}, 0 35 EXECUTE(<{Q1,..,0}, 0>,) v O~0)

This notion that joint action requires a common solution is also expressed in the work of Grosz and Sid-
ner [5,6]. In addition to the shortcomings of their work expressed in [4,16], their formulation is also lack-
ing in the following key areas:

« it does not explicitly address the problem of interrelated intentions (actions)

« it does not specify how team members should react if (for whatever reason) they believe the plan is
no longer appropriate for rzaching the common objective

* at no stage is one common so'ution adopted for attaining the common objective, it merely states that
there is mutual bel.ef abour a means of achieving the desired state

« it is possible for agents which are unable to contribute anything to the overall objective to be
involved in the common plan

All of these shortcomings are tackled by the joint responsibility definition; the first by the plan formula-
tion language chosen and the last in the next section. This section concentrates on the second and third
points, describing a framework which specifies under what conditions an agent can become uncommitted
to the agreed plan and what actions should be undertaken in such circumstances.

There are several circumstances in which the commonly agreed plan may be inappropriate, illustrations
are taken from the sensible restoration plan example:

« the plan’s objective may already hold

eg the NSA may calculate that the proposed tentative plan will cause no additional problems in
the network - therefore the joint objective of producing a sensible restoration plan has already
been met and no additional work is required

« following the plan steps may no longer result in the desired state (due to changed circumstances, for
example) - INVALID plan

eg the NSA is informed by the diagnosis agent that the network status has changed substantially
since the simulation to judge the effect of the tentative restoration plan was started. This means
the analysis produced will be out of date (it is missing important new information) and hence it is
impossible to tell whether the restoration plan is safe or not without redoing the simulation. It will
not be worth redoing the simulation because the tentative restoration plan will be completely
altered to take the new information into account, therefore following the agreed solution may not
produce the desired result.

» one of the specified plan steps may no longer be achievable - UNATTAINABLE plan

eg the operator (who has higher priority than the RA) requests the NSA to run a very time—co‘n-
suming simulation. Carrying out this user request means that the NSA will not be able to meet its

5

agreed action of analyzing the tentative plan (in computational terms the notion of “never” corre-
sponds to at least for the foreseeable future).

» one of the plan steps which should have been performed has not been performed, or a relationship
between plan steps has not been upheld - VIOLATED plan

eg the RA has sent a tentative plan to the NSA which has run a simulation and highlighted poten-
tial problem areas. However because a major incident has occurred on the network and many
more faults have been generated the RA decides that rather than refining the tentative plan it is
better to try and generate a new plan because the information will be that much more up-to-date.
In this case, the RA has violated the agreed plan by not performing the refinement task.

These notions can be formalised in the following manner:

* INVALID (<{ay,..0p}, 6>, Z5) & U~ACHIEVE(<{Qy,..,0}, 0>, Zg)

« UNATTAINABLE (<{0t},..03}, 0>, Zg) < (3 <{0typ-,04)}, 07> € Zg5) -0
where [{oy,..,04) S {0f,..,00)] |

* VIOLATED (<{ay,..0}, 6>, Z5) & ~EXECUTED(<{t[,..,0,}, 0>, Z)

If the joint plan is to be successful, all participants must be committed (i.e. endeavour to perform actions
they are obliged to). However there are circumstances in which it would be rational for an agent to stop
being committed - this-includes those outlined above and the case in which one (or more) of the other
team members is no longer committed. Unless these conditions prevail, an individual agent (o) remains
committed (I-COMMIT-CONDS) to solution Z as a means of achieving o:

[-COMMIT-CONDS(ct, <{0ly,..0p)}, 0>, Z5) & [x e {0o,.,00)]
BEL(a, ~0) A
BEL(at, ~INVALID(<{0t{,..0}, 0>, Zg)) A
BEL(a, ~UNATTAINABLE(<{a,..a,}, 0>, Z5)) A
BEL(a, ~VIOLATED(<{0t1,..0t1}, 6>, Zg)) A
BEL(at, (Vo € {0y,..,0t,} FCOMMIT-CONDS(¢t;, <{t[,..0t}, 0>, Zg5)))

Once an agent becomes uncommitted to a solution (for any of the reasons outlined) it cannot simply
ignore its future responsibilities or carry on as if nothing had happened. Rather it must endeavour to
inform other team members that it is no longer committed to the solution. When other agents receive this
message a re-planning phase may be initiated or the overall objective may be altered, however we are not
concerned with this behaviour here. It is now possible to formalize our intuitions about how individuals
within the team should act once a common solution has been derived and agreed upon - this behaviour
will be called individual solution commitment (ISC):

ISC(a, <{0t},..00), 0>, Zg) & [a € {o,...00)]
UNTIL ~I-COMMIT-CONDS(ct, <{0.;,..0t}, 0>, Zq),
(V <{Oyp-0g}, G> €) A (X € {Cype. Oy }) D [{ OtypersOg) S {1ee0tn }]

BEL(a, OEXECUTE(<{0yp..0x }, G;>, Z5i)) A *
EXECUTE(<(0ty,..0y }, G, Zi5i)
WHEN GOAL(x, MB({a},..0,}, ~[FCOMMIT-CONDS(a, <{ay,..00}, 0>,).“.(,)))8

8. UNTIL p,q WHEN r: until p is true, q will remain true. When (if) p becomes true, r will become true

6

From this definition it is apparent that a group member will try and fulfil its obligations specified in the
agreed solution whilst it is still committed to that solution as a means of achieving the desired result - on
becoming uncommitted it endeavours to inform others of this fact. This behaviour ensures that whenever
the chosen solution is unsustainable every effort is made to ensure that all team members are made aware
of this fact so that computational effort is not wasted.

Combining the results of this section there are clearly two facets concerned with actions for achieving a
target state: there is the principle of agreeing to the need for = common solution and also a definition of
how group members should behave once such a solution has been agreed upon. These two components
can be joined together into a single proposition called solution commitment:

SOLUTION-COMMITMENT(<(0l},..,0}, 0>) & -
MB({0!},..,0 }, NEED-COMMON-SOLUTION(<{0t,..,05}, 0>)) A
Vo5 € {o,..0) ISC(0, <[@},..0p), 0>, Zgp))

Returning to our example, this means the RA and the NSA have to agree upon the principle that a com-
mon plan is needed for producing a sensible restoration plan. Once such a solution has been agreed, both
agents will endeavour to do their parts (eg the RA will generate a tentative plan, the NSA will highlight
any potential problem areas and the RA will then refine its tentative plan based on this information). They
will continue to d» this until either the task is completed satisfactorily or one of them finds the agreed
solution unsustain. ble or one of them discovers the other is no longer committed to the solution.

3.3 Contrébutions

One attribute completely missing from all descriptions of joint actions is that of group minimality; to be
included in a group an agent must be able to contribute something positive to that group’s activity. This
facet differs from previous attributes in that it is pragmatic rather than conceptually essential. In our res-
toration plan example, the joint action is between the RA and the NSA and as the scenario is described it
makes no sense for any other agent (eg the fault diagnosis agent) to be involved because it is unable to
carry out useful problem solving in the context of producing a sensible restoration plan. As we ha\(e
alluded to, coordinating group problem solving may be a time consuming activity and because cost 1s
proportional to the size of the group it makes sense to only include those agents which carry out activities
beneficial to the group’s objectives.

There are two ways in which an agent can contribute to the attainment of a group goal: it can perform an
act which is part of the agreed solution (positive contribution) or it may refrain from performing an action
which would interfere with the agreed solution (non-negative contribution). Imagine a team of agents try-
ing to stack blocks B1, B2 and B3 - a positive contribution could be putting B2 onto B1, a non-negative
one not unstacking B2. However due to space limitations we will only consider positive contributions.

Firstly we need to define exactly what it means for a sub-intention to contribute to the attainment of an
intention. At this stage, as no definite solution has been agreed upon, a sub-intention can be said to con-
tribute to the overall objective if it is a component of any solution (however inefficient or cumbersome)
which reaches the target state:
CONTRIBUTES (<{ocj,..,oq(}, o>, <{ay,..,.0q), 0>) &
(3 5 ACHIEVE(<({0ty,...0x }, 0>, Zg) A <{ .00}, Op> € L5

where [{0y, 0x} S {01,000}] and [{0,..,04} S {Otygmes Oy }]

The first step in being involved in group problem solving activity is for the individual to believe that it is
capable of offering something to the group. Once an individual is convinced of this fact, it then has to
convince others that it’s inclusion will be to the group’s benefit. Concentrating on the former, an agent 1s

7

capable of contributing to the group goal if it can solve to a sub-intention which is a component of a
potential overall solution:

CAN-CONTRIBUTE(at, <{0.y,..,0 }, 0>) <>
ACHIEVE(<({Oty.., 0y}, 7, Zg5) A [{OtypenrOe} S {00007}]
CONTRIBUTES(<{yp-.,0x }, 0;>, <{01,..,00}, O>) [€ {Oyn.-04)]

The ability of being able to contribute to the attainment of a goal is useless, unless the individual actually
intends to participate in the problem solving process:

WILL-PARTICIPATE(q, <{Q},..,0}, G>) & [a € {ay,.-00)]
O0SOLUTION-COMMITMENT(<{0},..,00)}, G>)

As stated above, an agent will only be admitted into joint problem solving activity if all group members
are firstly convinced that the agent is capable of contributing to the objective and secondly that they
believe it will actually participate:

MAY-CONTRIBUTE(a, <{a,..,0,}, 0>) & [€ {all,..an}]
MB({ay,..,00}, CAN-CONTRIBUTE(e, <{,..,0t;},) A
MB({ay,..,0q}, WILL-PARTICIPATE(a, <{t},..,0}, 0>))

This is a conservative approach to setting up groups of cooperating agents, in that all other members must
agree to the participation of others at this early stage (even before a solution has been developed). A mpre
liberal approach is to weaken this condition and allow agents to participate in the subsequent solution
development phase on the basis that they alone believe they can contribute.

3.4 Responsibility At Last!

We are now in a position of being able to draw together all the work specified in this_ section and fully
describe the complete mental state which a group of agents must adopt if they are to jointly solve a com-
mon problem together:

JOINT-RESPONSIBILITY (<(Qy,..,0,,}, G>) <
MB ({ay,..,0,}, JPG(<[0},..,0,], 5>)) A
MB ((0,..,0t,), SOLUTION-COMMITMENT (<{0.},..,0.}, G>)) A
MB ({0y,..,0.,), (V o; € (a),..00,] MAY-CONTRIBUTE (1, <[0t},..,0tp}, C>))

4 Conclusions

The work presented in this paper is a synthesis and extension of previous work in the fields of multi-agent
planning and joint intentions and provides a foundation upon which robust and sophisticated collabora-
tive problem solving can be based. The notion of joint responsibility offers, for the first time, a sufficient
definition of the conditions which must be satisfied before joint action can begin and also defines hgw
participants in such actions should behave whilst problem solving. It defines the conditions under- \fvhu.:h
commitment to solutions can be dropped and what an agent should do when it finds itself in a position in
which the solution is unsustainable. This type of mental state and behavioural description is important if
robust and sophisticated cooperation is to succeed in dynamically changing environments.

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]
(10]
[11]
(12]
[13]

(14]
[15]

[16]

References

R.G.Smith & R.Davis, (1981), “Frameworks for Cooperation in Distributed Problem Solving”,
IEEE SMC, 11, 1, pp 61-70

J.S.Rosenschein & M.R.Genesereth, (1985), “Deals Among Rational Agents”, ICAI, pp 91-99.

J.R.Galliers, (1989) “The Positive Role of Conflict in Cooperative Multi-Agent Systems”, Proc
MAAMAW 1989.

J.R.Searle, (1990), “Collective Intentions and Actions”, in Intentions in Communication, (eds
P.R.Cohen, J.Morgan & M.E.Pollack), pp 401-416, MIT Press

B.J.Grosz & C.L.Sidner, (1990), “Plans for Discourse”, Intentions in Communication, (eds
P.R.Cohen, J.Morgan & M.E.Pollack), pp 417-444, MIT Press

K.E.Lochbaum, B.J.Grosz & C.L.Sidner, (1990), “Models of Plans to Support Communication”,
Proc AAAI 90, pp 485-490.

R.Tuomela & K.Miller, (1988), “We-Intentions”, Philosophical Studies 53, 367-389.
H.J.Levesque, P.R.Cohen & J.H.Nunes, (1990), “On Acting Together”, Proc AAAI 94-99.

C.Roda, N.R.Jennings & E.H.Mamdani, (1990), “ARCHON: A Cooperation Framework for
Industrial Process Control”, in Cooperating Knowledge Based Systems 1990, (ed S.M.Deen) pp
95-112, Springer Verlag.

N.R.Jennings, “ARCHON: An Architecture for Cooperating Systems” in Artificial Intelligence
and Simulation of Behaviour Quarterly, Special Issue on Distributed Al, 76.

P.R.Cohen & H.J.Levesque, (1990), “Persistence, Intention and Commitment” Intentions in Com-
munication, (eds P.R.Cohen, J.Morgan & M.E.Pollack), pp 33-70, MIT Press

E.Wemer, (1989), “Cooperating Agents: A Unified Theory of Communication & Social Struc-
ture”, in Distributed Artificial Intelligence Vol I, (eds Gasser & Huhns), pp 3-36.

M.E.Bratman, (1990), “What is Intention?”” Intentions in Communication, (eds P.R.Cohen, J.Mor-
gan & M.E.Pollack), pp 15-33, MIT Press

J.S.Rosenschein, (1982), “Synchronization of Multi-Agent Plans”, Proc AAAI, 115-119.

E.H.Durfee & V.R.Lesser, (1987), “Using Partial Global Plans to Coordinate Distributed Problem
Solvers”, Proc ICAI 1987, pp 875-883.

J.R.Hobbs, (1990), “Artificial Intelligence and Collective Intentionality”, Intentions in Communi-
cation, (eds P.R.Cohen, J.Morgan & M.E.Pollack), pp 445-460, MIT Press.

Towards a Semantics of Desires

George Kiss Han Reichgelt
HCRL Department of Psychology
The Open University University of Nottingham
Milton Keynes Nottingham
England England
Tel: +44 908 652568 Tel: +44 602 484848
Fax: +44 908 653169 Fax: +44 602 590339
Email: gr_kiss@uk.ac.open.acs.vax Email: han@uk.ac.nott.psyc

Abstract

As part of an effort to define a unified formal semantics for beliefs, desires and action,
this paper sketches a model theory for the axiological aspects of agent theory: hedonic
states, likes, goals and values. It pays particular attention o modelling the intensity of
likes. The main intuition underlying the model theory is that the axiological aspects
of agent theory can be modelled through computational generalisations of physical
dynamics. Computational analogues of force, mass and potential are offered.

Introduction

An important part of agent theory appears to be the notion of desires. Several
formulations of agent theory have adopted beliefs, desires and intentions as a set of
basic notions (the so-called BDI models). However, to our knowledge, so far
relatively little has been said explicitly in the Al literature about a theory of desires
(Cohen and Levesque, 1985 and in press; Moore, 1985a; Kiss, 1988; Shoham, 1989).

This paper takes some initial steps towards the explicit formulation and formalisation
of such a theory. We concentrate on axiological issues, covering hedonic states, likes,
goals and values (Kiss, 1988, 1990).

Among the many issues surrounding desires, we select the question of the intensity of
the attitude of liking for detailed treatment. We think that likes are not the only
attitudes that have an intensity aspect. It is common to talk about the strength of
beliefs too. We hope to extend our approach to those other attitudes as well in the
future.

Differences between the intensities of likes are often called preferences in the
literature of decision theory, economics and psychology. Preferences are usually
taken as the primary, primitive, notions in the sense that preferences are directly
manifested in the choices made by an agent. Likes are therefore treated as relative,
comparative attitudes. Few disciplines enquire into the mechanisms that might
determine such choices and it is usually assumed that it is preferences that are directly
available to the agent. Absolute values of liking are usually recovered from
behaviourally expressed preferences by some analytical computations from these
preferences.

We would like to proceed in the opposite direction and take absolute likes as primary
and use t.ese to determine preferences. Our intuition is that an agent has
representations of how far it likes various_things and when faced with a choice,
compares the intensities of its likes to compute a preference. This need not of course
exclude mechanisms of context dependence and interaction effects.

Our longer-term research objective is to formulate a unified formal semantics for
beliefs, desires and action and to lay foundations for implementation work. This short
paper has limited aims. Our main concermn is to refine the set of intuitions which were
outlined in Kiss (1988, 1990, 1991) and sketch the model theory for a modal logic of
liking. The model theory also lends itself for a treatment of modal epistemic
operators in the style of Halpern and Moses (1990), although in this paper we will
restrict ourselves to axiological issues. We also defer the definition of the syntax and
semantics of the logical language, the statement of axioms and the derivation of
theorems for another paper.

The main intuition we wish to convey is that the axiological aspects of agent theory
are best interpreted in terms of concepts that are computational generalisations of
physical dynamics. Demazeau (1991) similarly argues for the importance of concepts
borrowed from dynamics for agent design. Traditionally in physics dynamics deals
with changes of state in a system and with the causes of these changes, usually
conceptualised as forces. Modern developments have turned dynamics into a more
abstract area of study, as we shall briefly sketch below.

We propose that dynamics has a natural place in agent theory, since that theory is
vitally concerned with (mental) states, their properties, and with the dynamics of
sequences of changes in mental state. The interpretation of knowledge and belief as a
state of the agent has recently been gaining ground (Rosenschein, 1986; Halpern and
Moses, 1985). There have been increasing efforts also in forging a link between
knowledge and action, (Moore, 1985b; Cohen and Levesque, in press), thereby
introducing a dynamic element, because of the changes caused by action. While these
authors have been concerned with agent dynamics, they have not attempted to link
their logics to dynamical systems in the physical sense. In this paper we hope to do
so and we propose a model theory which is very close to actual dynamic systems.
Apart from the fact that we believe that this model theory gives us an intuititvely
more appealing way to take about agent-theoretic notions, we also believe that the
model theory is close enough to actual physical systems to allow specifications
formulated in cur logic to be directly implemented.

The rest of the paper is organised as follows. We first review some relevant concepts
from abstract dynamics. Next, we discuss how agent-theoretic concepts can be
interpreted in such terms. Finally, we formulate computational generalisations of

physical concepts like potential, force, velocity, etc., and indicate how they can
provide a framework in which to interpret axiological concepts in agent theory.

Concepts of Abstract Dynamics

The main concepts of recent developments in dynamics deal with the structure of state
spaces. Abstractly, the theory can be formulated in terms of functional iteration. The
functions which define dynamical systems map states in the state space into other
states in the same state space. They are also called mappings or maps. The main
concern of the abstract theory is with the asymptotic behaviour of iterative mappings.
The iteration of a function is a discrete process. If the process is continuous, the
description is often given in the form of differential equations to describe the
behaviour of the solution over time.

In a geometric interpretation, the iterative process maps points into points. The points
correspond to the states of the process. The process is then said to go through a
trajectory or orbit of points. The main concern of dynamics is to understand the
nature of all trajectories of a system and to classify them as moving to a fixed point,
being periodic, asymptotically periodic, etc. We shall now turn to an informal
summary of some of these concepts. For more detail, see, for example, Abraham and
Shaw (1981), Devaney (1986), Thompson and Stewart (1986) or Cvitanovic (1984).
Cvitanovic also contains an extensive bibliography. The field is developing very
rapidly under the designation of chaos theory, which is a specialised branch of
dynamics.

The state space of a system is generally a topological surface (manifold) on which the
possible states of the system are located. This can be just three-dimensional space, or
some curved surface, for example, like a doughnut (torus).

It is normally assumed that there is a force vector field acting at all points of the state
space. This vector field determines the dynamics of the system by constraining the
trajectories to certain directions at each point of the state space. When typical or
many trajectories of the system have been drawn, we get a phase portrait of the
system.

Closed trajectories produce cyclic behaviour. Trajectories can otherwise take many
shapes, like spirals, straight lines or any kind of curve.

The focus of interest is in the asymprotic behaviour of trajectories. Limit sets of state
spaces are sets of points towards which the trajectories move asymptotically. Limit
sets may be solitary points, or cycles, or more complicated distributions of points.
Limit sets which are solitary points, are called fixed points.

Fixed points of functions are points x for which f{x)=x. That is, the fixed points are
mapped into themselves by the function. Fixed points are important in dynamics,
because they correspond to equilibrium (steady) states of systems. Once a system has
somehow got to a state which is a fixed point, it will not move from that state under
the iteration of the function f.

It is of interest to ask how a system may get to a fixed point. The simplest case is that
the system may start from an initial state that is a fixed point, and there will be no
further change. More interestingly, trajectories starting at other states may lead to a

fixed point after a number of transitions. In such cases we say that the fixed point
attracts the trajectory. The set of states from which trajectories lead to an attractive
fixed point are called the basin of attraction of the fixed point. It turns out that a
fixed point is attractive if the slope (derivative) of the function f is less than 1 at the
fixed point. The magnitude of the slope characterizes the strength of the attractor: the
greater the strength, the faster the trajectory approaches the fixed point.

A periodic point is a generalisation of the concept of the fixed point to the case when
a trajectory cyclically visits a point after every » iterations of the function f.

If the iteration is run backwards, trajectories would appear to diverge from an
attractive fixed point. In this situation the fixed point is called a repellor. Such fixed
points correspond to unstable equilibria in physical systems. Slight disturbance from
the equilibrium starts the system on a trajectory leading away from the equilibrium
state. Conversely, attractive fixed points correspond to stable equilibria.

Agent Attributes and Dynamics

We now briefly review how to interpret the agent-theoretic concepts of interest in this
paper in terms of abstract dynamics.

Compositionality.

We assume that complex agents are architecturally compositional, both structurally
and behaviourally. The complex agent structure is produced by :ssembling simpler
component elements. Complex agent behaviour is produced through the (often
nonlinear) interactions between the simpler component behaviours. Concurrency,
parallelism and distributed systems become important issues.

The agent as controller.

We assume that the agent acts as a controller with respect to the world state. The
agent exerts control by taking actions!. We include "doing nothing" as an agent
action. Taking an evolutionary point of view, we assume that ultimately this control
is in the interest of fitness for survival. Fitness for survival is dependent on the
existence of certain world states, or on keeping them within permissible bounds. We
assume that environmental events produce disturbances in the agent's internal state by
causal effects conveyed through inputs. Agent action attempts to counteract such
disturbances. An agent can control the world state either by changing its internal state
or by attempting to change the external state. For example, the ageit may change its
beliefs or it may locomote to another location.

IThere have been numerous discussions in philosophy on the exact definition of the
notion of an agent action. Rather than attempt a definition of our own, we will simply
rely on the intuitions of the reader. Agent actions are those actions that an agent
performs qua agent, and over which he or she has direct and voluntary control (or at
least has the impression). Thus, actions like making a decision, deciding to raise
one's arm are agent actions, whereas such actions as sneezing or reflex actions in the
physiological sense of the word are not.

We want to distinguish between a system's natural dynamics (might also be called the
free dynamics) which is operating when the agent is executing the "null" action, and
the constrained dynamics that results from the compositien of the free dynamics with
the control dynamics produced by the non-null agent actions. The distinction is
motivated by recognising that only some events in the world are produced by agent
actions.

Axiological aspects of agents

Axiological issues are concerned with the directional nature and asymptotic behaviour
of agent dynamics. The teleological (goal-directed) nature of agent behaviour is one
of the central examples of such issues. In terms of dynamic system theory, the
dynamics can be described in terms of the movement of the system state rowards
stable equilibrium states and away from unstable equilibrium states. Teleological
agent behaviour is to be identified with movement towards stable equilibria which are
in this sense preferred states of the system: we shall say that the agent "/ikes" to be in
these states. Aversive agent behaviour is to be identified with movement away from
unstable equilibria which are in this sense disliked by the agent. In the terminology of
dynamic system theory, these states are artractors and repellors. Unstable equilibria
arise mainly through competition between attractors and represent boundaries
between the basins of attraction of those attractors. Attractors and repellors determine
the direction of movement, i.e. the direction of agent action. It is natural to interpret
the pro- and anti-attitudes of agents with this kind of directionality. We assume that
due to the physiological structuring of living organisms attractors and repellors are
created in their behavioural space. By analogy, it'should be possible to create
attractors and repellors in non-living computational systems through appropriate
construction or programming.

A related point of view is found in optimisation theory. In this approach the main
underlying idea is that the states and trajectories of a dynamic system are governed by
some principle that can be expressed mathematically as finding the stationary value
(usually maximisation or minimisation) of an "objective" (or goal) function. There is
a great deal of work on the application of such optimality principles to evolutionary,
~ecological, economic and behavioural processes. We wish to look upon this approach
“in the same spirit and regard the extrema of the objective function as specifications of
the attractors and repellors of the state space. In its application to the description of
behavioural or economical processes the objective function is usually called utility.
Note that utility is here a descriptive aspect, revealed by the observation of behaviour.
In other applications to evolutionary processes the objective function is taken to be
fitness for survival. We are of course more concerned with individual agent
behaviour and hence with utility in this paper. In summary, from the viewpoint of
optimality theory, the agent is maximising utility.

In a utilitarian framework utility would be some function of hedonic states, i.e.
pleasure and pain. One might speculate that pleasure and pain are related to fitness
and have been incorporated in the architecture of organisms to make available to the
individual some state variable that can be used as an indicator of fitness. Such an

interpretation would not be unnatural in the case of pain as an indicator of damage
and hence loss of fitness and pleasure as an indicator of health and hence of
maximisation of fitness. For the time being, we adopt this utilitarian framework and
assume that the agent is maximising a hedonic function.

Thevalues of an agent correspond to global (high-dimensional) attractors and
repellors of the composite dynamics. We think of values as global attractors which
may never be reached or closely approached by trajectories, due to the topological
structure of the state space created by the competition between them. In complex
agents explicit representations of values form a value system.

A goal of an agent corresponds to a local (low-dimensional) attractor in a basin of
attraction of the composite dynamics. We think of goals as attractors which are
reached or closely approached by nearby trajectories.

. To support our intuitions, we wish to use a mechanical analogy. According to this
analogy the intensity of a desire (liking) should correspond to some abstract "force of
. attraction" acting on the agent, producing acceleration of state change.

Similar conceptual frameworks have already been used in mechanical engineering
and in robotics (see Koditschek, 1989 for a review). In mechanics it is well known
that the total energy of a dissipative system (expressed by the Hamiltonian) will
monotonically decrease and will be asymptotically stable. A known technique in
robot contrcl engineering is to use feedback control which amounts to following the
gradients of total energy. This technique has been used for robot arm control. Direct
utilisation of the potential field has been used for path planning with obstacle
avoidance in mobile robots (Barraquand and Latombe, in press).

In our mechanical analogy too, the forces.would be derived from a potential field and
the agent is assumed to follow the gradients of the potential. From the point of view
of optimisation theory, the objective function is used as the potential. The description
of such a potential therefore amounts to the specification of a goal which is the
asymptotically stable equilibrium state of the agent. We can also represent a value
system in this analogy as additional potentials, with opposite sign, superimposed on
the potential created by the goal. In the robot navigational applications such
potentials are used to represent obstacles to be avoided while moving towards the goal
state. In our analogy these obstacles cerrespond to elements of the value system,
expressed as "prohibitions”. The analogy is reasonable in the light of value systems
often being expressed in the form of prohibitions (laws, regulations, etc). Presumably
positive values (obligations) could always be re-expressed in a negated form.

Model theory

In this section we review some of the fundamental concepts that we need for our
model theory: space, time, state, and process (trajectory). Our formulation draws on
and extends previous work by Rosenschein and Kaelbling (1986) on agents as
situated automata and by Halpern and Moses (1990) on knowledge in distributed
systems. Our main concern is the formal characterisation of a process (or trajectory).
For this, we need formal notions of time, space and state. We describe each in turn
briefly.

Time is analysed as consisting of a set of instants T and a total ordering relation <
over T2,

Space will be regarded as a set of locations L. We shall not assume any specific
topology over L, but wish to partition L into subsets, which we shall call systems.

Agents are considered as special types of system. Whereas normal systems may
overlap, agents never overlap. That is, there is a set of locations which are part of
exactly one agent, and which are not part of any other system. We call such locaions
agent locations. All other locations are called non-agent locations.

States are defined as functions from locations to data values. We assume that for
every location / in L, there is a set of data values D; that this location can take. We -
distinguish between global and local states as follows. Global states are functions
which assign to every location / a data value from the appropriate set D;. Given a set
of locations L, we define GSL to be the set of possible global states. Clearly, if the

aumber of locations is n then GSL can be regarded as an n-dimensional space. If g is
a global state, then g(/) denotes the data value assigned to location / by g.

A local state is a function which assigns appropriate data values to a subset Loc of the
set of locations, i.e. to a system. The set of all possible local states over Loc is
denoted LSLoc,

Processes are defined as temporal sequences of states. Since the concept of state is
tied to that of space througl: locations taking on data values, it is natural to regard
processes as occupying a spatio-temporal region. Following Rosenschein and
Kaelbling (1986), we capture these intuitions in two steps. First, at each instant in
time a process can be regarded as occupying a set of locations. Second, each
occupied location takes on a specific data value. We thus have two functions. The
first is a function from T to subsets of L determining the occupied locations, while the
second assssociates data values with these locations. We can thus generalise the
notion of state to processes. The state of a process at time ¢ is determined by the set
of locations occupied at ¢ and their data values.

Just as we did with states, we distinguish global and local processes. Global
processes are temporal sequences of global states. Thus, global processes occupy,
and assign data values to, all locations at every instant in time. Halpern and Moses
call such a global process a "run" of a system. A global process or run can be
regarded as one possible way the world can unfold over time, or a "possible world".

Formally, a run is a function from T into GSL. We denote the set of all runs by R and

an individual run by r. Then r(z) gives the state of the run r at ¢, and r(r)(/) gives the
data value of location / assigned by the run r to [.

Local processes occupy only a subset of L at each instant in time and are thus a
sequence of local states. Local processes can also be thought of as subprocesses of

2Nothing hinges on this definition of time. In particular, we also could have adopted an instance-based
definition of time. However, this would have made the remaining presentation considerably more
complicated. Given that this paper is not primarily concemed with a temporal logic, we have opted for
the simpler temporal ontology.

aglobal process. Formally, the spatial region occupied by a local process is a
functionw from T and R into Powerset(L). The state of the process is then given by a

function s(w,r,t), which is a set of location data-value pairs: {</, r(¢)()> 1l en(r, 1)}.
This notation emphasizes that the data values of the local process depend on the run
of which it is a subprocess.

The foregoing define processes in a very general way. For many applications simpler
special cases are sufficient and are conceptually easier to handle. For the purposes of
the rest of this paper we introduce fixed-location processes, which occupy the same
locations at every instant in time. Thus, fixed-location processes do not move
spatially and the only change that takes place at successive instants of urne is that the
fixed locations take on different data values. :

Under this picture, complex agents are simply fixed-location processes, where all the
the locations involved are agent locations.

Our model theory can accommodate the notion of an "accessible world"”, which
allows us to construct a modal logic of beliefs along similar lines to Halpern and

Moses (1990). A process & only occupies a subset of the set of all locations at time ¢..
It is therefore possible for different runs to assign the same state to & at . We shall
call such runs alternative runs with respect to « at time ¢. Thus, the runs r and rare

alternative runs with respect to process & at time ¢z if s(w,r,t) = s(w,r’,t). If we identify

a process with #n agent situated in the world, then we can regard alternative runs as
different states of affairs which are indistinguishable as far as the state of the agent is
concerned. This construction gives us a way to interpret the epistemic operator in our
logic.

Transition functions

In order to calculate a run of a system, we need to define a transition function for each
location. A transition function for a location [is simply a function which calculates
the next data value of / based on its present value and the data values of other
locations. Although we do not wish to put any strong constraints on which locations
can influence the next value of location /, typically the new state of location / will
depend not on all locations in the L but only on a subset of them. Cellular automata
are typical in this respect: the transition function for each location takes as input only
the values of the immediate neightbours of that location. For logic circuits too, the
transition functicn is usually defined as a function of a small subset of specified
locations. Interestingly, in the latter case, the present value of the location is
irrelevant for computing its next value.

By defining a transition function for each individual location, and allowing a
location's transition function to take as input the values of other locations as well, we
can reformulate the usual picture of a distributed, concurrent computing system in
our proposal. In such a system, the component processes interact with each other
through constraint relationships, implemented as message or signal passing.
Connectionist architectures can be seen as an example. In this case, the messages are
values, usually in the real nnmber or boolean data domains. Under our proposals, we
simply see interaction between location / and !’ as indicating that the transition
function for / has the value of /" as one of its inputs, and vice versa.

Earlier, we distinguished between agent locations and non-agent locations. We can
now distinguish between three types of agent locations. The first distinction depends
on whether an agent location's transition functions is dependent only on other agent
locations, or whether they also receive as input the values of non-agent locations. We
will call the first type of agent locations pure agent locations. We shall refer to the
latter as Input locations for obvious reasons: Input locations are the places where the
state of the external environment exerts influence on the agent. Note that /npur
locations are still agent locations. There are of course also some non-agent locations
whose transition function takes as input values of agent locations. These are the
places where agent exert influence on the world. We will therefore call those agent
locations whose value is used as input to the transition function of a non-agent
location Qutput locations3.

We postulate a difference between the nature of the transition functions for agent and
non-agent locations. In the case of agent locations, we assume that the transition
function is chaotic and hence non-predictable, whereas for non-agent locations it is
entirely prediciable. The reason for this distinction is that it allows us to give a more
intuitive account of the notion of agent action. We define an event as a state change
of a location. Clearly, it is then natural to assume that an agent action is a state
change of an agent location. Now, if we assumed that the transition function for a
agent location was a completely predictable function, then this would go counter to
the free will intuition, the intuition that agents have control over their own actions.
On the other hand, one would also like to avoid the possiblity of having to explain
free will as involving some kind of "magical” process. We claim that by postulating
that transition functions for agent locations are chaotic we avoid both horns of this
dilemma. Agents's actions remain unpredictable and hence seem to involve some
notion of voluntary control, while remaining completely deterministic, and hence
non-magical®.

There are a number of further aspects of our model that we would like to draw
attention to. First, we can define different "flavours"” of agent action. On the one
hand, we have pure agent actions, events that take place in pure agent locations. On
the other hand, there are non-pure agent actions, events in agent locations that are
partly under the influence of non-agent locations. Events that take place in input
locations are of course the primary example of non-pure agent actions. Also, we can
distinguish between pure physical events, events in locations whose transition
functions take as input only the values of other non-agent locations., and non-pure
physical events, events that happen in non-agent locations whose transition function
also takes as input values from agent locations.

Second, although agents can directly influence only a small subset of non-agent
locations, namely only those whose transition functions receive tnput from output

31f we stick to the assumption that only neighbouring locations influence each other, then clearly the
sets of output and input locations overlap. However, nothing in our model theory forces us to accept
this assumption.

4Clearly, the use of chaotic functions is directly inspired by dynamics as well. Thus, we not only rely
on dynamics for our main intuitions, it also provides some of the mathematical machinery that we can
use in our model-theory.

I

locations, agents can of course indirectly influence other events as well. In particular,
non-agent locations that are directly connected to an agent's output locations can in
their turn influence other non-agent locations. It is through such chains that agents
can influence locations whose transition functions are not directly influenced by the
agent's output locations. In particular, such chains allow us to explain how an agent
can influence another agent: in order for this to take place, there must some chain
from the first agent's output locations to the second agent's input locations.

State Transition Functions and State Space

Although we could formulate the rest of our proposals in terms-of transition functions
for individual locations, it will be more straightforward to do so in terms of state
transition functions, transition functions for the entire set of locations. It is of course
a relatively trivial matter to construct state transition functions from the transition
functions for individual locations: if ff,...,sf" are the transition functions for the
locations /,...,I" in L, the transition function can simply be obtained by applying the
local transition functions to each location. We will call such a transition function a
state transition functions

The set of possible runs has been denoted R. Trajectories in R are generated by the
iterated application of a transition function f, s;+1 = f(s;). The transition function f
represents the changes brought about by the agent's actions, including doing nothing.
Recall that the changes may be either internal or external to the agent.

We want our state transition functions to be nonlinear functions f which have
attractive limit sets. In the case of a limit set which is just a single point, we have a

fixed point Sfizeq, such that f(sfixeqd) = (S{'ixed- Here sfixeq is an attractor. For all
attractors there is an open set, called the domain of attraction D, such that for all states

s € D the iterated application of f eventually carries the state into Sfixed.

We distinguish global attractors from local attractors. The transition function may
assign the same state to a subset of locations at different times. We call such a local
fixed state a local attractor. By analogy to global domains of attractions we can
define a local domain of attraction in a straightforward manner.

Hedonic Functions

In order to use the model theory for the interpretation of desires, we introduce hedonic
functions. Intuitively, the hedonic function specifies the amount of pleasure or pain

an agent experiences in some state. The hedonic function AT of a process © maps
states into hedonic data values. The domain of hedonic data values H is a partially
ordered set, containing a distinguished element neurral, corresponding to a neutral
hedonic data value. All other hedonic data values are either hedonically greater than
or smaller than neutral. The hedonic relational operator will be denoted by <yeq4. We
shall assume that the hedonic state of an agent depends only on the local state of the
agent. As indicated below, we will interpret the hedonic state as a computational
analogue of potential field, with a potential of zero corresponding to the hedonic
neutral.

The hedonic state results from the superposition of attractive and repelling potentials
at the point corresponding to the current state. These potentials are produced by the
agent's value system and by the current goal. The contributions of individual

attractors and repellors can be separately computed as A™(s,Sg,4.)» Where Sg. . is the
i i
fixed point state corresponding to attractor i.

As is usual in utilitarian agent theories, we assume that an agent acts in order to
maximise its hedonic state. The computation the agent executes to determine its
action is therefore the optimisation of the hedonic function. Maxima of the hedonic
function correspond to limit sets in the state space of the agent.

Computational Analogues of Force, Mass and Potential

We assume that for each point s'in GSL we can define the distance
d(s, Sfixed) as the distance between the point s and the fixed point Sgyeq. If we regard
GSLas an n-dimensional space, then this could be euclidean distance. If we interpret
each function iteration of the transition function f as a unit of time then we can define
the velocity at s as the distance d(s, f(s)), since this will be the distance travelled in
unit time. The definition of a force vector F acting at the point s follows the
mechanical analogy and is the product of acceleration arid mass. It is natural to
interpret mass in our computational domain as some measure of the size of the state s.
For example, we can take the number of locations occupied by the agent process, 7, as
this measure. Then,

F(S, Sﬁxed) =n- d(s,f(f(S))) - d(s,f(S))

The -analogy can then be even further extended by defining force, as in physics, as the
gradient of a potential, F = grad H.

The joint effect of two or more fixed points at s can then be reflected by vector
addition of the forces acting at s. Let us denote two such forces by F; and F) for two
different fixed points. The joint effect is then

F=F;®F;
where @ denotes vector addition.

We can now assess the relative strengths of two attractors by comparing the
magnitudes of the two forces and say that Greater(s, S,y > Sfixea) if IFil > Fjl.
i J

The intuitive agent theoretic interpretation of these concepts is then as follows. As
stated before, the potential is interpreted as the hedonic state. Components of the
potential correspond to the values of the agent. The forces correspond to the intensity
of liking. The concept of relative intensity, or preference, is based on the comparison
of forces. We model the activity of the agent as following gradients in a potential field
produced by the superposition of all the forces, i.e. values, acting on the agent.
Gradient following corresponds to hedonic maximisation.

Conclusions

We have described some intuitions about the interpretation of axiological aspects of
agent theory in terms of concepts from physical dynamics. The first steps have been

taken towards formalisation by sketching a model theory. This model theory can be
used straightforwardly for the construction of a logical language in which to reason
about an agent's hedonic state, likes, goals and values. We believe that the model
theory can also be used for an integrated interpretation of axiological, epistemic and
praxiological aspects of agent theory.

As indicated in Kiss (1991), such a model theory can also offer a link between
concerns for formalisation and concerns for implementation strategies. As shown by
Rosenschein's work on situated automata theory and the implementation language
REX, there is a complementary relationship between a mathematical model and a
physical phenomenon, both of whici. can be taken as alternative interpretations of a
logic. When this is the case, the logic can be used for reasoning about a design, the
mathematical mode: provides the semantics of that reasoning, while the physical
phenomena (or their computational analogues) can be used for the implementation of
the design. Thus, by adopting a model theory that is much closer to the physical
world than is the case in for example a possible world model, we hope that the step
for design (and a logical analysis of this design) to an actual implementation is
considerably reduced.

References

Abraham, R. H. and Shaw, C. D. (1981). Dynamics, the Geometry of Behavior, Parts
1-4 . Santa Cruz, CA: Aerial Press.

Barraquand, J. and Latombe, J.-L. (In press). Robot motion planning:a distributed
representation approach. /nternational Journal of Robotics Research.

Cohen, P. R. and Levesque, H. (1985). Speech acts and rationality. Proceedings of
the 23rd Annual Meeting of the Association for Computational Linguistics.

Cohen, P.R. and Levesque, H. (in press). Rational interaction as a basis for
communication. In P. R. Cohen, J. Morgan, & M. E. Pollack (Ed.),
Intentions in Communication Cambridge, Massachusetts: MIT Press.

Cvitanovic, P. (1984). Universality in Chaos. Bristol: Adam Hilger,

Devaney, R. L. (1986). An rntroduction to Chaotic Dynamical Systems . Menlo Park,
CA: Benjamin/Cummings.

Demazeau, Y. (1991) Coordination patterns in multi-agent worlds applications to
computer vision and robotics. [EE Colloquium on Intelligent Agents.

Halpern, J. Y. and Moses, Y. (1985). A guide to the modal logics of knowledge and
belief: preliminary draft. Proceedings of the 9th IJCAI. Los Altos, CA:
Kaufmann.

Halpern, J. Y. and Moses, Y. (1990). Knowledge and common knowledge in a
distributed environment. Journal of the Association for Computing
Machinery, 37(3), 549-587.

Kiss, G. R. (1988). Some aspects of agent theory Report HLD/OU/WP/GRK/24,
HCRL, The Open University.

attractors and repellors can be separately computed as A™(s,S5,,4), Where Sg,, ;. is the
¢ i
fixed point state corresponding to attractor i.

As is usual in utilitarian agent theories, we assume that an agent acts in order to
maximise its hedonic state. The computation the agent executes to determine its
acton is therefore the optimisation of the hedonic function. Maxima of the hedonic
function correspond to limit sets in the state space of the agent.

Computational Analogues of Force, Mass and Potential

We assume that for each point s‘in GSL we can define the distance
d(s, Sfixed) as the distance between the point s and the fixed point Sgzeq. If we regard
GSLas an n-dimensional space, then this could be euclidean distance. If we interpret
each function iteration of the transition function f as a unit of time then we can define
the velocity at s as the distance d(s, f(s)), since this will be the distance travelled in
unit time. The definition of a force vector F acting at the point s follows the
mechanical analogy and is the product of acceleration and mass. It is natural to
interpret mass in our computational domain as some measure of the size of the state s.
For example, we can take the number of locations occupied by the agent process, n, as
this measure. Then,

F (s, Sfized) = n * d(s, fif(s))) - d(s, f(5)).

The analogy-can then be even further extended by defining force, as in physics, as the
gradient of a potential, F = grad H.

The joint effect of two or more fixed points at s can then be reflected by vector
addition of the forces acting at s. Let us denote two such forces by F; and F; for two
different fixed points. The joint effect is then

F=F;®F;
where @ denotes vector addition.

We can now assess the relative strengths of two attractors by comparing the
magnitudes of the two forces and say that Grearer(s, Sgpq. » Sfireq) if 1Fil > IF ji.
i J

The intuitive agent theoretic interpretation of these concepts is then as follows. As
stated before, the potential is interpreted as the hedonic state. Components of the
potential correspond to the values of the agent. The forces correspond to the intensity
of liking. The concept of relative intensity, or preference, is based on the comparison
of forces. We model the activity of the agent as following gradients in a potendal field
produced by the superposition of all the forces, i.e. values, acting on the agent.
Gradient following corresponds to hedonic maximisation. '

Conclusions

We have described some intuitions about the interpretation of axiological aspects of
agent theory in terms of concepts from physical dynamics. The first steps have been

Kiss, G.R. (1990). Value mechanisms in a theory of agents. In J.R. Galliers (Ed),
Proceedings of the first belief representation and agent architectures
workshop. Technical Report 194, University of Cambridge, Computer
Laboratory.

Kiss, G. R. (1991). Autonomous agents, Al and chaos theory. First International
Conference on Simulation of Adaptive Behavior: From Animals to
Animats. 1990. Cambridge: MIT P.ess.

Koditschek, D. E. (1989). Robot planning and control via poteutial functions. In
O.Khatib, J. J. Craig, & T. Lozano-Perez (Ed.), The Robotics Review 1.
Cambridge, Mass.: MIT Press.

Moore, R.C. (1985a). What about desires? Set of OHP films used in a seminar,
personal communication.

Mcore, R. C. (1985b). A formal theory of knowledge and action. In J. R. Hobbs, & R.
C. Moore (Ed.), Formal Theories of the Commonsense World. Norwood,
New Jersey: Ablex.

Resenschein, S. (1986). Formal theories of knowledge in Al and robotics. New
Generation Computing, 3, 345-357.

Rosenschein, S. and Kaelbling, L. (1986). The synthesis of digital machines with
provable epistemic properties. Proceedings of the 1986 Conference on
Theoretical Aspects of Reasoning About Knowledge. Los Altos, CA:
Morgan Kaufmann.

Shoham, Y. (1989). Time for action. Proceedings of the 11th [JCAI. p. 954-959.
Morgan Kaufmann.

Thompson, J. M. T. and Stewart, H. B. (1986). Nonlinear Dynamics and Chaos .
Chichester: Wiley.

DEPENDENCE RELATIONS AMONG AUTONOMOUS AGENTS

Cristiano CASTELFRANCHI, Maria MICELI
Social Behavior Simulation Project
Institute of Psychology, CNR,

Viale Marx 15
[-00137 Rome
ITALY
e-mail: pscs@ irmkant.bitnet

&

Amedeo CESTA
Dept. of Computer and System Sciences
University of Rome "La Sapienza"
Via Salaria 113
[-00198, Rome
ITALY
e-mail: amedeo@irmkant.bitnet

Abstract

The basic thesis of this work is that human interactions are neither unpredictable nor bounded,
but they are undertaken autonomously on the grounds of a number of basic principles and
conditions. Among these, a crucial role is played by the objective dependence relationships
holding among agents. In this paper we report about a first step in providing a computational
theory of dependence as a tool for interaction control. We define non social as well social
dependence, and try to show how dependence relationships are organized into complex patterns
(such as multiparty, multigoal, unilateral, and bilateral dependence). We then show how a given
set of dependence relationships may produce new dependence relationships. Finally, we explore
the relationship between dependence and influencing, describing how one's dependence on
another is predictive of one's goal of influencing the other, as well as of the latter's power of
influencing the former.

1. INTRODUCTION

Communication control has always been a crucial problem in distributed system. The limited
capacity of communication channels represents a bottleneck for the performance of those
systems. In Distributed Artificial Intelligence (DAI), the problem is amplified because of the
~ continuous need for interaction among agents (e.g., for negotiation). The proposed solutions try
either to communicate implicitly using a shared memory (blackboard systems [8]) or, if the
siagle agent is more autonomous, to apply specialized control strategies (see for example [1]).
Both approaches use solutions quite different from the behavior of human beings in similar
situations. Cognitive agents generally find implausible to put a request message in a mailbox and
wait for somebody to answer it; neither do they apply a standard protocol for the interaction,
When an agent needs somebody else for achieving a goal, she reasons about knowledge of
sociality and social relations. Such knowledge is used both in the stage of decision formation and
in actual interaction.

We have been studying human behavior and developing models of it for several years (see
[2, 6]). In this paper we attempt to describe the relations upon which context-dependent human
interaction is based and try to devise some principles controlling it. Our main argument is that
human interactions are neither unpredictable nor bounded but they are undertaken autonomously
on the grounds of a number of basic principles. Those principles are formulated in a quasi-formal
way, and seem to represent a necessary background for a computational model of context-reiated
social interaction.

One of the fundamental notions of social interaction is the dependence relation among
agents. In our opinion, the terminology for describing interaction in a multi-agent world is
necessarily based on an analytic description of this relation. Starting from such a terminology, it
is possible to devise a calculus to obtain predictions and make choices that simulate human
behavior.

In this paper, we present our formalism for dependence relation and describe some
deductions to be made on the grounds of this relation in order to obtain rational choices. In
particular, we distinguish between resource dependence and social dependence, and show
properties and special cases of both. We also give the basic axioms and show which types of
actual interactions are strongly based on dependence. In particular, we try to show the relation
between dependence relationships among agents and the action of influencing of one agent
respect to another as probably the most relevant form of interaction in real social contexts.

The paper is structured as follows: in Section 2, we provide our basic definition of
dependence and describe its properties; in Section 3, we describe some principles for deriving a
dependence relationship from another; in Section 4, we describe the relation between dependence
and influencing; in a concluding Section, we point out some aspect still lacking in our theory.

2. DEPENDENCE AND ITS PROPERTIES

As already argued in [5], dependence is undoubtedly the ground relation upon which the whole
construction of sociality is based. In the following, we first analyze a non social, or pre-social,
form of dependence, namely the one between an agent and a resource. Then we proceed to its
social version, the dependence between two agents, and finally try to describe some types of
social dependence relationships involving more than two agents.

In the paper we mainly refer to the formal apparatus used by Cohen and Levesque in [3]. In the
following x and y denote agent variables with x # y always implicitly stated, a denotes an action

variable, r a resource, and p a well formed formula representing a state of the world. The
predicate (RESOURCE r a) means that r is needed in order to perform a.
(CANDO x a) means that agent x has the action a in his repertoire, that is he is able to do it by
himself. We use the following definition similar to the one in [3]: '

(DONE-BY x a) =def (DONE a) A (AGT x a) whose meaning is quite obvious.

2.1 Non social dependence
Dependence is not necessarily a social notion. A relation of dependence may be said to occur
whenever: a) any object or event in the external world may increase, if used, the probability that a
given state of the world be realized, and b) that world state is represented as a goal by at least one
agent. In such a case, we say that agent to be dependent on the enabling object or event. The
latter will then be called a resource. Resources enter the structures of the actions (see also [9]).
An action can be modeled as a relation holding among agent(s), goal(s), and resource(s). A set of
resources is required for any action to take place. In our notion, cubes, tables and harids are
resources in the block world. In the social world, others may be used as resources (not only in
exploitation but also in prosocial action: in help, in a quite abstract sense, the recipient is a
resource of the action "give help").

Agents are usually dependent on the existence of resources. We call this type of
dependence a resource dependence (described by the R~DEP predicate), to distinguish it from
social dependence, S-DEP, (see below):

D1. (R-DEP x r a p) =def (GOAL x p)
A (RESOURCE r a)
A ((DONE-BY x a) D (EVENTUALLY p))

r is then a resource for x to achieve his goal that p. Thus, for instance, x is resource dependent
or: a hammer for having a nail driven into a wall. *

2.2. Social dependence
Our basic definition of social dependence is as follows [6]:

D2. (S-DEP x y a p) =def (GOAL x p)
A= (CANDO x a)
A (CANDO y a)
A ((DONE-BY y a) D (EVENTUALLY p))

that is: x depends on y with regard to an act useful for realizing a state p when p is a goal of x’s
and x is unable to realize p while y is able to do so. In this context, ¥’s action is a resource for
x's achieving his goal.

* We want to point out the difference between the given definition of R-DEP and the following one where w
denotes a plan for achieving p (or an <action-expression> following [3]):

D1b. (R-DEP x r a p) =def Vw (GOAL x p) A ((ACHIEVE w p) o (IN a w)) A (RESOURCE r a)

which means that x depends only from resources of actions essential to the achievement of his goal. Even if this
definition is reasonable, the one we use in the paper is intended to stress the fact that agents may have a number of
alternative ways to achieve their goals either acting by themselves or asking others to act. Their behavior is the
result of a decision making process. This is true as well in the case of S-DEP.

It should be stressed that, unlike what most DAI work seems to take for granted, social
dependence as well as resource dependence is not fundamentally mental. It is an objective
relationship, in that it holds independently of the agents' awareness of it: x may depend on y
even though they both ignore the fact. However, many relevant consequences may derive from
x's and ¥’s (either unilaterally or mutually) becoming aware of it: to mention just the most salient
ones, x may try to influence y to pursue p, while y may choose whether to-adopt x’s goal or not
(see [6]; see also later on in the text).

Moreover, not only a dependence relationship may be known; it may also be wanted, in
that either x or y may actively "work" on maintaining or strengthening the relationship. And, not
only a dependence relationship may be wanted once established. It may even be created by the
agents, by producing those objective conditions that define a dependence relationship (a certain
goal in x's mind; the lack of a certain power condition, etc.). So, for instance, y may influence x
and induce him to have p as a goal of his own; since p cannot be achieved by x without y’s help,
Yy has created a dependence of x on her by means of an influencing strategy; otherwise,
supposing that x already has p as a goal of his and is also endowed with the power conditions
useiul for achieving it, y may deprive x of some of them (say, by stripping him of a certain
resource), thus making x become dependent on her relative to p.

2.3. Patterns of dependence relationships

Dependence relations set up a social network (that we call the D. .P-net, to stress the fact that it is
a baseline for the socalled contract net [7]) among agents, independent of, and often preceding,
their awareness. Several special cases of net can be recognized:

a) OR-Dependence. Very often, there exist disjunctive compositions of dependence relations; that
is, x may depend on y; OR on y, (or on y3, etc.) for the same p, for at least two possible
reasons:

-- the same action a useful for realizing p is performable by a number of agents (each
independent of the other); so, it is sufficient for x to have a performed by one of them (say, the
most available or willing):

(GOAL x p) A—(CANDO x a)

A (Nizin (CANDO yy a)) A ((Vio1n (DONE y; a)) D (EVENTUALLY p))

-- alternative actions are useful for realizing p, and for each of them x is dependent on a different
agent. In such a case, x's dependence with regard to p varies with the act, and then the agent,
considered.

(GOAL x p) A (Nj-1p—(CANDD x ay))

A (Niz1n (CANDO yy a;)) A ((Vi1 (DONE y; ay)) D (EVENTUALLY p))

b) AND dependence. Two cases may be distinguished in which there is a conjunction of
dependence relations, namely the multiparty and the multigoal dependence:

-- we call multiparty dependence the case in which x depends on more than one agent for
realizing p, this happens when more than one single act is needed for achieving one and the same
goal, and for each act x depends on a different agent: Ai=1,n (S-DEP x y aj p);

-- multigoal dependence happens when x depends on the same agent for realizing a number of
unrelated goals: Aj_y, (S-DEP x y ai pj).

c) Bilateral dependence. So far, just cases of unilateral dependence (of x on y) have been
described. However, dependence may also be bilateral (of x on y and of y on x). Bilaterality
should not be confused with symmetry. The DEP predicate is in fact asymmetrical, in the sense
that x's dependence on y relative to a certain action for a given goal does not imply y's
dependence on x relative to the same action for the same goal, and vice versa. On the contrary, in
bilateral dependence either the actions or both the actions and goals implied are not the same for x
and y. There are in fact two possible kinds of bilateral dependence:

--mutual dependence, which occurs when x and y depend on each other for realizing a common
goal p, which can be achieved by means of a plan including at least two different acts such that x
depends on y’s doing ay, and ¥ depends on x's doing a:

(S-DEP x y a1 p) A (S-DEP y x az p)

as observed in a previous work [6], cooperation is a function of mutual dependence: there is no
cooperation without mutual dependence;

-- reciprocal dependence, which occurs when x amd y depend on each other for realizing
different goals, that is, when x depends on y for realizing x’s goal that p4, while y depends on

x for realizing y’s goal that p2:
(S-DEP x y a3 pi) A (S-DEP y x az pz)
reciprocal dependence is to social exchange what mutual dependence is to cooperation.

3. SOME PRINCIPLES OF A THEORY OF DEPENDENCE

So far we have attempted to provide some definitions of various forms of dependence (resource
dependence vs. social dependence) and of different patterns of dependence relationships. Now, a
number of interesting consequences may be drawn from the above. We do not aim here at
showing all the possible principles according to which a dependence relationship can be derived
from another; we just outline some of the most common ones.

3.1. From resource dependence to social dependence

Resource dependence is likely to produce social dependence. In order to describe this property
we introduce the notion of resource control. An agent x controls a resource r when he is able to
do an action a; by which he allows any other agent to perform all the actions requiring the

resource:

D3. (CONTROL x r) =defVydaj;Vaz (CANDO x a;) n—(CANDO y az)
A (RESOURCE r az)
A ((DONE-BY x aj) D (CANDO y az))

If agent x depends on resource r for a given p, and agent y controls r, then agent x depends on
agent y for using r. So, in this context social dependence (of x on y) is the joint result of
resource dependence (of x on r) and resource control (of y over r):

Al.Ja; ((R-DEP x r a p) A (CONTROL y r)) D (S-DEP x y ai p)

There exist, then, at least two sources of social dependence relationships:
a) x directly depends on some action of ¥'s;
b) x depends on some resource which is controlled by y; hence, he depends on y.

However, (b) can be seen as a sub-case of (a), in that also in (b) x comes to depei.d on
some action of ¥’s: if r is controlled by y, x depends on ¥’s action of "letting x use r".

By the way, CONTROL should be articulated into at least three possible sub-cases, each
implying a particular action by y of "letting x use r"; these cases might be unformally described
as follows:

1) y possesses r; hence, a condition for x's using r is ¥’s permission to use it; ¥’s act on which
x depends is exactly y’s permission;

2) y is using r at the same time when x would like to use it, and r is such a resource that cannot
be used by different agents at the same time. So, x depends on y’s act of stopping using r;

3) ris spatially available 10 y, while it is not available to x, in the sense that r's location
coincides with ¥’s location, and x cannot use x unless y makes r's location change from hers to
x's, that is, unless y gives r to x. "

Thus, it might be concluded that social dependence of x on y relative to p is always a
dependence on y’s actions of two sor:s: either actions which cause r to be available to x for p
(stopping using z, giving r to x, permitting x to use), or actions which directly produce p** .

3.2. Dependence via influencing

Another interesting case of generation of DEP relations implies the mediating role of some
agent's power of influencing another. Our basic definition of the power of influencing,
INFL-POWER, is the following:

D4. (INFL-POWER x y a p) =def (CANDO x a)
A ((DONE-BY x a) DO (EVENTUALLY (GOAL y p)))

That is: x has the power of influencing y if he CANDO such an act that makes y have p as a goal
of her own. As we shall see in Section 4, this action generally implies making y believe
something which is somehow related to p. For instance, an act of that sort might be a threat ("If
you don't pursue p, I will thwart you in g"-- where q is some other goal of ¥’s).

If x depends on y relative to a for realizing p, and z has the power of influencing y to do
a, then x depends also on z for realizing p:

A2, ((S-DEPxya;p) A (INFL-POWER zy a, (DONE-BY y aj;))) >
(S-DEP x z aj p)

** Moreover, a number of distinctions can be done modifying definition D3, which describes an agent as the
administrator of a resource. An agent can be described as the only one able to do something by means of a given
resource:
D3b. (CONTROL x r) =def Vy Va (CANDO x a) A (RESOURCE r a) A =(CANDO y a).
A third and stronger definition describes a controller as the agent who prevents others from using the resource:
D3c. (CONTROL x r) =def Vy JajVap (CANDO x aj) A =(CANDO y a1} A (RESOURCE r a2)

A ((DONE-BY xa1) > -(CANDO y a2))

We will discuss in more detail both the goal and the power of influencing and their relation with
dependence in the next Section.

3.3. Generative power of multiparty dependence

Let us suppose a simple case of AND dependence, where x depends on more than one agent
(say, on y and on z) for realizing p: ((S-DEPxya;p) A (S-DEPx z a,p)). This AND
dependence may generate a further dependence of y on z, in case y is benevolent toward x. In
[2] and [6], we argue against the notion of benevolence, suggesting some further refinement of
it; however, to our current purposes, it is sufficient to refer to a simpler definition, in line with
Cohen & Levesque's [4]:

DS. (BENEVOLENT y xp) =def (BELy (GOAL xp)) D
(EVENTUALLY (GOALyp))

So, if y believes that x has the goal p then also y comes to have the same goal p.

Now, if y is benevolent toward x and believes that x has the goal that p, also y (besides
x) comes to depend on z (provided y is unable to perform aj), since z's action a5 is necessary
for realizing p: '

A3.((S-DEPxya;p) A (S-DEPXxzayp)

A (BENEVOLENTyxp)) A (BELY (GOALXxpP)) D
(S-DEPy z az p)

Of course, if in turn also z is benevolent toward x, y and z will mutually depend on each other
relative to p.

4. PREDICTIVE POWER OF DEPENDENCE RELATIONSHIPS: FROM
DEPENDENCE TO INFLUENCING

One of the most interesting aspects of the DEP relations lays in their predictive power, that is, in

the possibility to predict other social relationships and goals from dependence relationships.

4.1. From dependence to the goal of influencing

Among the social goals predictable from a dependence relationship, a crucial role is played by the
goal of influencing. In our view, one's goal of influencing another is the goal of increasing the
probabilities that the other pursues (or does not pursue) a certain goal that p [2]. However, here
we can propose a simplified version of that definition: so, by x's goal of influencing y,
INFL-GOAL, we mean x's goal that y has a certain goal p:

D6. (INFL-GOAL x y p) =def (GOAL x (GOAL y p))

Let us start from our basic definition of social dependence (see D2). First of all we need that this
objective social relationship between x and y is assumed by x. In fact, one of the ways in which
new goals are acquired implies that people learn they are involved in certain relationships. Now,
by assuming his dependence on y relative to @, x will also assume that he can achieve his goal
that p by means of y’s performing a: (BEL x (S-DEPxy ap)) D (BELx ((DONE-BYy
a) O (EVENTUALLY p)). Then, according to a condition-action rule formulated as follows:

Ad. ((BELx (@D p)) A (GOALxp)) D (GOALx Q)

x will come to have the goal that (DONE-BY y a), in order to achieve his goal that p:

Tl. (BELx (S-DEPxy ap)) D (GOAL x (DONE-BYy a))

So, if x believes he is dependent on y relative to a, then he will have the goal that y performs a.
But given the postulate on rational agenthood, according to which, in order to perform an action,
an agent must want that action, (GOAL x (DONE-BY y a)) is actvally equivalentto (GOAL x
(GOAL y (DONE-BY y a))). Then x's dependence on y, when assumed, will also infply x's
goal that y has the goal to do a:

(BELx (S-DEPxyap)) D (GOALx (GOALy (DONE-BYya)))

Now, being (GOAL x (GOAL y (DONE-BY y a))) nothing but a goal of influencing y
relative to the goal that (DONE-BY y a) (see D6), x's dependence on y relative to a certain a
useful for p will imply, when assumed, x's goal of influencing y to perform a:

T2. (BELx '‘S-DEF xyap)) D (INFL-GOALxy (DONE-BY ya))

So, if an agent assumes to be dependent on another relative to some goal, he will have the goal of
influencing the other to perform the (set of) action(s) that allows him to achieve his goal. And, on
the grounds of a given assumed DEP-net, a network is derivable of possible goals and actions of
influencing (INFL-net).

4.2. From dependence to power of influencing
However, the goal of influencing is not sufficient for an agent to succeed in influencing another.
Also the power of influencing is necessary, that is, the power of making someone do what we
want. We have already provided a simplified definition of the power of influencing (see D4).
Many are the possible bases of one's power of influencing. What we are mainly
interested in here is the power of influencing derivable from a dependence relationship. If xis
(and assumes to be) dependent on y’s performing a certain act in view of p, y is quite likely to
have the power of influencing x relative to some other goal of x's. We will try to describe the
main steps of this derivation, which, it should be stressed, is but a rough derivation, and would
surely benefit from a number of refinements.

4.2.1. Dependence as a basis for the power of influencing
As we know from T1, if x assumes his dependence on y relative to a certain a (say, painting a
wall) useful for p (having the wall painted), x will have the goal that y performs that action:
(GOAL x (DONE-BY y a)), e.g., the goal that y paints the wall.

Now we need some other condition -- some sort of "persuasive" power of y over x about a
means-ends relationship between some action on x's part and y’s action a. Suppose y has an
action a such that x comes to believe that y will do a (painting the wall) if x performs some

other action a, (giving y some money). We can write something like:

A ((DONE-BYy aj;) D
(EVENTUALLY (BEL x ((DONE-BY xaj) D (DONE-BYya)))))

Action a; can be either a communicative act of promise (as in this case) or even threat, or any
"demonstrative” behavior useful for making x believe the means-end relation between x’s action
and y’s.

Suppose also that (DONE-BY y a;) holds. Now, as we know from the condition-action
rule, A4, if x believes that g implies p and has the goal that p, then he will also have the goal
that q. Applying the condition-action rule to x’s goal that (DONE-BY y a), we obtain:

((BELx ((DONE-BY xa;) O (DONE-BYya)))
A (GOAL x (DONE-BYya))) O (GOAL x (DONE-BYx a;))

That is, x will come to have the goal of giving y the money (GOAL x (DONE-BY x ay)), in
order to cbtain that (DONE-BY y a) -- on condition that the value of (DONE-BY y a) be
greater than the cost of pursuing (DONE-BY x a3): only in this case, in fact, x would accept
(PONE-BY x a,) as a goal of his own, in view of (DONE-BY y a). So, y is in fact endowed
with an action aj such that (GOAL x (DONE-BY x a,)). This equals to saying that y, in
virtue of both x's dependence on her and her ability to make x believe the implication
(DONE-BY x a;) O (DONE-BY y a), has the power of influencing x to (DONE-BYX a;):

T3. ((BELx (S-DEPxyap)) A (CANDOyaj)
A ((DONE-BYyaj) D

(EVENTUALLY (BEL x ((DONE-BY x ay;) O (DONE-BYya))))) D
(INFL-POWERy x a; (DONE-BY x ay))™*"*

4.3. The act of influencing: goal plus power of influencing

So far, we have observed that: x (the dependent agent) has the goal of influencing y, while y has
the power of influencing x. But, in this situation, x is the one who is the most interested in
influencing y. And having a goal is a necessary, but not sufficient, condition for pursuing it, that
is, for transforming that goal into an actual intention. A rational agent x, who is interested in
influencing y relative to p, will pursue his goal of influencing y if he believes that goal to be

&Rk

The expression (CANDO y a)) A (DONE y a;) > (EVENTUALLY (BEL x ((DONE x aj) o (DONE vy a)))))
can be seen as an instantiation of a more general case of a relationship between two agents, where the former is
able to make the latter believe something. In other words a new predicate might be introduced, BEL-POWER,
defined as follows:

D7. (BEL-POWER x y a p)= def (CANDO x a) A (DONE-BY x a) o (EVENTUALLY (BEL y p)))

that is: x has the power to make y believe p if he can do an action a (be it a simple communication of a fact p --
for instance, saying "It is raining" -- or a more indirect and sabtle persuasive strategy -- for instance, taking an
umbrella before going out) such that y comes to believe p (for instance, that it is raining). A particular
instantiation of D7 is the case when p corresponds to the implication between x's doing a5 and y's doing a.

So, T3 might be rephrased as follows:

T3b. (BEL x (S-DEP x y a p)) A (BEL-POWER y x a; ((DONE x a5) > (DONE y a)))) D

(INFL-POWER y x a; (DONE x a5))

achievable; in particular, he must believe he has the power of influencing y. Now, what can he
do in order to have that power?

Of course, he can do a lot of things, among which just appealing to y’s benevolence. But,
again, in the context of dependence relationships, the strategy of greatest interest would be trying
to find out some "dependence” of y on him. In other words, x may try to derive his power of
influencing y from y’s dependence on him relative to some goal. The goal in question might
even be the same p relative to which he depends on y~ in that case, x will try to persuade y that p
is a common goal and that they (x and y) are related each other by a mutual DEP-link; as already
observed, this kind of dependence is typical of cooperation. Otherwise, x will try to find out
some other goal q relative to which y may depend on him, and persuade y of their reciprocal
dependence, that is typical of social exchange.

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

In this paper we have tried to move some steps toward a theory of dependence in decentralized
intelligent systems. Our aim has been to clarify how to apply such a theory to the problem of
communication control among agents. We have tried to show that dependence is the basis and the
reason for social interaction. We have sketched how, starting from knowledge about
dependence, it is possible for an agent to devise actions of influencing other agents that are
"realistically” able to do what he needs. In our view, the realism stems from the agent's coming
to believe that he is involved in a dependence relation, and reasons and chooses to act according
to that belief.

The present stage of our study is strongly based on the analysis of human social behavior.
Further efforts must be carried out in order to achieve a satisfactory theory of both formal and
computational aspects. Moreover, a number of interesting aspects have been neglected here, and
should be addressed in a further development of the model.

First of all, one would need an analysis of the criteria for inference control in this model. In
fact, innumerable dependence relationships may stem from all the possible benefits/detriments
any agent may cause to another agent: if ¥’s action repertoire includes an action whose effect
avails or damages a goal of x's, x depends on y relative to that goal. Moreover, dependence
relationships are in principle transient: a dependence relationship between x and y may arise from
Xx's temporary lack of an enabling condition for pursuing a given goal. And the goal itself may be
a very contingent one in x's mind. Hence, the risk that dependence relationships proliferate
without any possible control.

In order to be able to select the most relevant dependence relationships within a given social
world, and to predict various forms of social interaction on the grounds of these relevant
relations, some criteria for the relevance of dependence relationships should be postulated.
Among them, a few criteria might be: the presence vs. absence of x's (the dependent person's)
power of influencing y to perform the action a needed for realizing p; the "importance" of the
goals with regard to which dependence occurs; the frequency of those goals; their being "active",
that is, their entering the agent's actual decision processes, versus "inactive"; the contingency
versus permanence of the lack of power conditions producing dependence.

Some quantitative aspects of dependence relationships would also improve the predictive
power of the model. In particular, dependence may vary in its degree. The degree of dependence
of x on yrelative to p might be defined as the ratio between the strength of a DEP-link, which is
a function of the coefficient of value of the goal that p, and the number of alternatives (agents

10

other than y on which x may depend) available to x. The higher the degree of dependence the
more relevant the dependence relationship in question.

Finally, possible predictions might be put forward about the communicative acts occurring
between agents in a dependence relationship: in fact, various communicative acts (requests,
commands, etc.) might be inferred on the grounds of, say, the type of resource x needs from y
(information, physical action, etc.) and the particular goal x needs to influence y to pursue.

ACKNOWLEDGMENTS
We would like to thank Luigia Carlucci Aiello and Rosaria Conte for their precious comments
and suggestions. The authors are the only ones responsible for any fault still in the paper.

REFERENCES

[1] Campbell, J.A., D'Inverno, M.P., Knowledge Interchange Protocols, in Y.Demazeau,
J.P.Muller (Eds), Decentralized A.l., North Holland, Amsterdam, The Netherlands,
1990.

[2] Castelfranchi, C., Social Power: A Point Missed in Multi-Agent, DAI and HCI, in
Y.Demazeau, J.P.Muller (Eds), Decentralized A.I., North Holland, Amsterdam, The
Netherlands, 1990.

[3] Cohen, P.R., Levesque, H.J., Intention Is Choice with Commitment, Artificial
Intelligence, 42: 213-261, 1990.

[4] Cohen, P.R., Levesque, H.J., Rational Interaction as a Basis of Communication, in
P.R.Cohen, J.Morgan, M.E.Pollack (Eds.), Intentions in Communication, MIT Press,
Cambridge, MA, 1990.

[5] Conte, R., Castelfranchi, C., Mind Is Not Enough. Pre-cognitive Bases of Social
Interaction. Tech. Rep. TR-IP-PSCS-41, Institute of Psychology, CNR, November
1990.

[6] Conte, R., Miceli, M., Castelfranchi, C., Limits and Levels of Cooperation:
Disentangling Various Types of Prosocial Interaction, in Proc. of the 2nd Workshop on
Modelling Autonomous Agents in a Multi-agent World, Paris, France, August 1990.

[7] Davis, R., Smith, R.G., Negotiation as a Methaphor for Distributed Problem Solving,
Artificial Intelligence, 20: 63-109, 1983.

[8] Emman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, D.Raj, The Hersay-II Speech
Understanding System: Integrating Knowledge to Resolve Uncertainty, ACM Computing
Surveys, 12: 213-253, 1980.

[9] Van Dyke Parunak, H., Distributed Al and Manifacturing Control: Some Issues and
Insights, in Y.Demazeau, J.P.Muller (Eds), Decentralized A 1., North Holland,
Amsterdam, The Netherlands,1990.

11

A Game Theoretic Approach to
Distributed Artificial Intelligence and the
Pursuit Problem

Ran Levy
Jeffrey S. Rosenschein
Computer Science Department, Hebrew University
Givat Ram, Jerusalem, Israel
phone:(+972)-2-585-353
fax:(4+972)-2-585-439
ranlevy@shum.huji.ac.il, jeff@cs.huji.ac.il

Abstract

Research in Distributed Artificial Intelligence (DAI) often consid-
ers the problem of how best to utilize multiple automated agents to ac-
complish a given task. A canonical problem, the Pursuit Problem [1],
was suggested as a useful tool for evaluating alternative approaches to
the distribution of knowledge and control among intelligent, cooper-
ative problem-solvers. Work on the Pursuit Problem was carried out
by several researchers; for example, Stephens and Merx [14] compare
alternative approaches to solving the problem.

In [5], a game theoretic model was proposed for DAI in which each
agent works for his own selfish goals. In this paper, we suggest a
method for solving the Pursuit Problem using game theoretic tech-
niques, by incorporating the global goal of a group of agents into their
local interests. Although applied to the Pursuit Problem, the tech-
nique has wider applicability throughout DAI. We present the results
of a simulation of the game theory model for the Pursuit Problem,
and compare results to those of other models.

1 Introduction

Research in Distributed Artificial Intelligence (DAI) often considers the prob-
lem of how best to utilize multiple automated agents to accomplish a given
task. Work in DAI has made use of several approaches to the ‘distribu-
tion of knowledge and control among intelligent, cooperative problem-solvers.
The contract-net model of Davis and Sinith {3] uses bidding and contracting
to achieve cooperation in the assignment of tasks to processors in a multi-
processor system. Malone et al. [10] refined the above framework by intro-
ducing a more explicit economic model to cooperation.

Another direction of research is presented in [1]. It is assumed that co-
operation among agents is a function of their organizational structure and
the way they communicate with one another. Benda et al. examined several
organizational structures, consisting of three basic components (communicat-
ing agents, negotiating agents, and a controlling agent) in connection with a
pursuit problem, first presented in that research.

The Pursuit Problem models a configuration of four intelligent agents,
together performing a given task that requires some sort of coordination (ex-
plicit or implicit). Four blue agents, positioned on different locations over a
grid, are attempting to surround a fifth red agent. See Figure 1. The red
agent moves randomly in any possible direction (i.e., one not blocked by a
blue agent). In addition to the global goal of the system, each agent may have
some local goal of its own. Those local needs may contradict both the com-
mon goal and local goals of other agents. Some sort of negotiation (explicit
or implicit) might be used to achieve a compromise. Benda et al. concluded
that an organization with one controlling agent and three communicating
agents was the best to solve the problem.

Similar conclusions are suggested by Stephens and Merx [14]. They com-
pare the results of using different approaches for solving the Pursuit Problem
(autonomous agents, communicating agents, controlling agent, and negoti-
ating agents), and show that the controlling agent model is superior to the
others. It guarantees capture of the red agent in all 6 test cases, in a rela-
tively small number of moves. They also noted that the autonomous agents
model was the least satisfactory approach, with the explanation that since
each agent has a local goal, they did not work efficiently towards achieving
the global goal, sometimes completely failing to achieve that global goal.

Gasser and Rouquette [4] developed a framework for representing orga-

2

j O

Figure 1: The Pursuit Problem

nizational knowledge, using the pursuit game, to investigate decentralized
coordination mechanisms. Their analysis introduces a six-phase solution,
where each phase involves a different organization of agents. Singh [13] ap-
plied his theory of “group intentions” to the pursuit problem to demonstrate
that theory’s general utility to DAL

Rosenschein et al. [11, 5, 16] analyze various rationality assumptions on
multi-agent system behavior, along with their implications. These results
(such as the existence of dominance analysis, and iterated dominance analy-
sis) suggest that Game Theory techniques, along with appropriate rationality
assumptions, might allow greater flexibility in the autonomous agents model
of coordination. One of the goals of this work is to suggest a method for
incorporating global goals into the local interests of all agents through the
use of Game Theory techniques.

2 Necessary Concepts from Game Theory

In order to clarify our discussion in the following sections, we here give a
brief overview of concepts, definitions and theorems of Game Theory. The
material covered here is mainly due to Von Neumann and Morgenstern, Nash,
Maschler and Davis, and Shapley.

2.1 Non-Cooperative Games

Let N be a set of n players, N = {1,...,n}. Let S* be a finite set of strategies
for player 1, 1 € N. We will denote by S the cartesian product S* x - -+ x S™.

Definition 1 A Finite Non-Cooperative Game in Normal Form is a system
G = (S',...,S™ H',...,H"), where S* is a non-empty set of strategies of
player i, and H' is a payoff function, H' : S — R for playeri, i € N.

One of the interesting questions about non-cooperative games is whether
a player can guarantee his minimal payoff. It is reasonable that a player
might prefer to use a “solid” strategy that provides some guaranteed income
(though minimal), over taking risks for the chance of making a larger profit,
but also with a higher probability of losing. This leads us to the concept
of equilibrium points. Definition 2 states the following about an equilibrium
point: for each player, as long as the other players maintain their same
strategies, his current strategy is the best he’s got.

Definition 2 An n-tuple of strategies s € S is a Nash Equilibrium Point if
for each player i, i € N, and for each strategy s* of player 1,

H'(s|s') < H'(s)
where the strategy s|s' is derived from s by substituting st for st

In pure strategies, such equilibrium points do not always exist, and even
when they do exist, they are not necessarily the best solution for games (the
well-known Prisoners’ Dilemma is an example of this).

2.2 Cooperative Games

Games with side-payments are games in which the participants get immediate
(and transferable) utility (that is, money). In a cooperative game (with
side payments), some players may form a coalition and together design their
strategies so they can increase their total income. This total income then
has to be shared—in some manner—among all the coalition’s members. The
theory of cooperative games (with side-payments) assumes that a coalition
achieves some payment, and deals with the different methods for sharing the
profit.

Definition 3 We define a Cooperative Game in Coalitional Form with side-
payments as a pair (N,v), where N is the set of players, and v : 2V — R is
a payoff function, where v(S) is the payment to coalition S, and v(B) = 0.

4

A cooperative game is therefore stated in terms of the coalitional function
v. Note that no strategies appear in the definition. Once a coalition is formed,
it is of no concern how it gains its utility. A player should take into account
the coalitions he may participate in and their incomes, and decide which
coalition is the best foir him. We will be using the Shapley Value [12] in
order to determine the way in which the income is divided; this technique
provides us with a single payoff vector specifying the income distribution.

Definition 4 A Payoff Vector for N is a function z : N — R.

The 2-th coordinate in the payoff vector z corresponds to the payment for
player i. Let GV be the set of all cooperative games over N.

Definition 5 A solution to cooperative games is a function ¥ : GN — RN.

The function ¢ represents a method for sharing v(N) among all players in
N.

The Shapley value satisfies three properties (see [15]). The symmetry
property guarantees that there is no preference by the solution of one player
over another player. What is important to the solution concept is not the
identity of a player, but the role it plays. Efficiency guarantees that players
cannot get (according to the solution) more than N can afford. Finally,
the marginality principle states that a player’s “value” to the coalition is
measured by his contribution to the coalition.

The Shapley Value may be calculated using the following formula:

po= T moIsi-ush

|
SCN.igS He:

[w(SU {i}) - v(5)]

3 A Model for the Pursuit Problem

From our game theoretic point of view, the Pursuit Problem has two aspects
to be considered. First of all, the players should be given methods for solving
the game, so that they have the ability to cope with problems they face. In
addition, we must also set the payment policy according to which the players
are being paid for their actions. The idea that local interests of the players
should not interfere with the global goal of the group of players should be

incorporated into the payment policy of the game. We are integrating a global
goal into agents’ local goals, not replacing their local goals with a global goal.
Another of our design aims for the system was to have the agents reach a
solution with the minimum amount of communication.

3.1 Payment Policy

The payment policy we suggest incorporates two ideas. First, the conver-
gence to the final state should be as close as possible to optimal (i.e., fast).
Moreover, it should ultimately represent the global interest of the system
(i.e., capture). Therefore, the payoff function is the sum of two distinct
arguments.

For every move, a player is paid an amount of money proportional to
the difference of his distance from the red agent before and after the move.
Distance is measured using city block metrics. This amount of money may be
positive or negative (or zero, if the player decides to remain in his positio::).
This argument of the payoff function causes the agent to prefer moves tl at
tend to bring the player closer to the red agent.

The second argument of the payoff function encourages agents to coordi-
nate their actions and block the red agent.! Given a coordinated strategy of
a coalition S C N, we thus use the following arguments:

o The sum of differences in players’ distance from the red agent (using
the city-block metrics). We denote this sum by y ;cs d'.

e The number of blocked escape directions of the red agent, using the
strategy of S. Let ks designate this number.

In order to emphasize the importance of cooperation among players, it
is suggested that the second argument of the payoff function will be the
ks's power of some number (unless ks is zero, in which case the second
argument will also be zero). There is, however, one point which must be
taken into account: the payoff function should make a distinction between a
cooperative and a non-cooperative coalition. This distinction is essential to

The red agent can move in one of four possible directions. We say that a coalition has
“blocked” an escape direction if some member of the coalition could physically obstruct
that direction were the red agent to choose it. The coalition is rewarded for the number
of directions that are simultaneously blocked as a result of its actions.

Figure 2: An Example With Two Players

characterizing equilibrium points, as discussed in Section 4.1. For example,
consider the second argument to be 2%s. There is no way to distinguish
between a coalition of two players who together block one escape-direction
(the payoff to this coalition should be 2 4+ 2! = 4), and four players moving
separately, blocking no escape-direction (the non-cooperative “coalition” of
four thus gets 4 +0 = 4). A similar argument holds for both 3*s and 4%s. As
shown in Section 4.1, the proof of the characterization lemma ix based on a
base of 5 for ks. Hence it was chosen for the payoff function.

Example. Consider Figure 2, in which only two players appear, for sim-
plicity. IV, therefore, is the set {1,2}, and:

v(0)=0
v({l}) = Y d+50 =1+4+5=6
ie{1}

v({2}) = Y d+5M =1+5=6
i€{2}

v({1,2}) =) d+5fun =245 =217
1€{1,2}

4 Solution Algorithms

We derive a solution that mixes cooperative games with non-cooperative
games. As each player has to make its own decision, without explicit coordi-
nation with the others, each player has to solve a four-player non-cooperative

game with side payments. This game will be denoted by G, and what follows
is a description of how it should be constructed.
The set of agents (or players) is:

N ={1,2,3,4}
Each player : € N has a set of pure strategies, given by:
S* = {South, West, North, East, Stay}
Let S be defined by:

S = H St
ieN
We use H'(s) in order to specify the payoff to player i for a strategy
s € S. Using the payment policy described in the previous section, notice
that each move s € S actually defines a four-player coonerative game with

side-payments in the following manner: let 7 C N be a coalition of players.
Then «

{ Sierd 454 if kr £0
”s(T)‘{ 0 if kr = 0

and

vs(0) =

We refer to this cooperative game as the “local game” for that move.
The amount of utility, represented by v,(/N), will be shared among the four
players in accordance with the Shapley value. Player : (for : € N) will get
¥'(v,), where 9 represents the Shapley value, and

Z d’i(vs) = U,(N)
tEN
Having solved the local game, a player should now return to the “global”
non-cooperative game, and define the payoff function for player i (i € N) for
each move s € S by: A '
H'(s) = 4'(v,)
Hence, we complete the formalism of the non-cooperative game, and let
G be:
G = (S',5%,5%, 5% H'H* H® HY

8

The game G may be constructed, analyzed and solved by each player on
its own. Because of the desirable properties of equilibrium points, we design
our agents so that they choose to play a strategy that corresponds to an
equilibrium point in G.

4.1 Equilibrium Points

In this section we inspect the relation of equilibrium points to what we shall
call “optimal points.” For our purposes, an optimal point represents moves
that are best for the system as a whole. It turns out that the game G defined
above has at least one equilibrium point, depending on the specific scenario.

Definition 6 A coordinated strategy z € S is said to be an optimal point
in G (defined above) if for ally € S the following condition holds:

z(N) =3 hi(e) > D h'(y) = y(N)
1EN teN

At an optimal point, the coalition N gets the maximum amount of utility
it can get in G.

Theorem 1 A point z € S is an equilibrium point in G if and only if z s
an optimal point in G.

For the proof of this theorem and subsequent ones, see [9]. A straightforward
corollary of the theorem is the following:

Corollary 1 G does have an equilibrium point, since surely it has an optimal
point.

There are situations in which there exist more than one equilibrium point.
An example of such a situation appears in Example 4.1.
Example.

Consider Figure 3. Players 3 and 4 have two symmetric directions in
which they can move (regarding distance from the red agent, and blocking
escape-directions). Therefore, every two strategies of the form

(s',s*, EAST,SOUTH)
(s',s*, SOUTH,WEST)

9

Figure 3: A Situation With Two Equilibrium Points

will be equal in worth to each other.

The payment to the group of all players, N, is the same for all optimal
points (this follows immediately from the definition of optimal points). Can
there be different situations in which N receives the same payment, and what
characterizes such situations?

Lemma 1 If at two points in G, N gets the same payment, then:
1. The number of blocked escape directions in the two points is the same.

2. The total difference in the distance of players from the red agent is the
same in the two points.

For the proof, see [9]. The proof uses the constant 5 as the base of the
second argument in the payoff function as a result of the fact that there are
4 blue agents. Were there 5 blue agents, the base would thus need to be 6.

4.2 Scope and Limitations of the Algorithm

One of the main goals of cur system design was to minimize the need for
communication among agents. From our experiments we concluded that in
our model, a general solution without any communication is impossible.?
Consider the left side of Figure 4 in which the two blue agents are at
distance 3 from each other. Agent 1 will surely select SOUT H as his next
move. Agent 2 may choose SOUTH or WEST (ignore for the moment

2QObviously, another model, even one that continues to use Game Theory, might have
different properties, and may well have different limitations as well.

10

Figure 4: Typical Problems, Cases 1 and 2

agents 3 and 4, and the exact equilibrium points). If agents 1 and 2 would
not coordinate themselves via a negotiation process, agent 2 may move to
the WEST and block agent 1, who cannot recover from this afterwards. In
the right side of Figure 4 (distance 2 between agents) coordination is needed
to prevent a situation where both agents move to the same location (agent
1 moves to the SOUTH, agent 2 to the WEST).

Experimental results supported the hypothesis that if the distance be-
tween agents is 3 or less (using city block metrics), explicit negotiation is
needed to synchronize them.

5 Experimental Results

A computer program to implement our model was written in Common Lisp.
Two questions were to be tested and answered by the simulation:

e What are the initial states of the problem for which the model does
provide suitable solutions?

e How does the existence of more than a single equilibrium point affect
the need for communication?

The question of “convergent” initial states, i.e., those states for which
we know the solution to converge, depends on the definition of the payoff
function. Therefore, the following discussion is closely tied to our particular
payoff function. Once a player identifies a single free escape direction, he
does not give it up. If two (or more) players compete over that direction,
the solution will probably not converge. We say “probably” because randorn

11

Figure 5: Step 8 of Case I and Step 7 of Case II

movementis of the red agent may change one situation into the other one,
in which the solution may converge. In other words, if the initial state is
such that resources are available to players, and all they have to do is decide
on the bz2st method to share them, then success is guaranteed (subject to
random lehavior of the red agent). In order to cope with situations in which
1« sources are not directly available, one should correct the payoff function in
a | appropriate way:.

In order to answer the question of how multiple equilibrium points affect
the need for communication, let us turn to an example (the middle of the
game is seen on the left side of Figure 5). The original problem was solved in
11 moves, but from step 8 on, interference of an outside user (who simulates
an inter-agent discussion to resolve symmetrical equilibrium points) is neces-
sary. The answer of the outside user on step 3 and 4 is actually an arbitrary
selection. However, from step 8 in test-case I and step 7 in test-case II (see
Figure 5), a bit of thought must be given in order to prevent the game from
reaching a dead end. This is necessary because in those steps, blue agents
1 and 2 get too close to each other. When agents sense thai they are very
close, they should coordinate via communication, so that they can prevent
themselves from competing over the same resource.

In Section 4.1 we discuss the symmetry of multiple equilibrium points,
and show that this symmetry indicates the existence of equivalent actions by
one or more players. Test cases I and II show that as long as the blue agents
who have symmetric actions are far from each other and from the red agent,
there is no importance to the equilibrium point that is selected. However,
as the blue agents get closer to the red agent (up to a distance of 3 or less
from the red agent), the significance of intra-agent communication grows,

12

and sometimes becomes necessary. These phenomena may also be observed
from other test cases. See [9] for full experimental test results.

One problem that needed to be addressed in the simulation was that
of calculating equilibrium points in non-cooperative games. This subject
is discussed in the literature’ (see, for example, the work of Chin et al. 2],
Harsanyi [6] and Rosenmiiller [7]). There are several mathematical algo-
rithms to find and calculate equilibrium points in such games. In the actual
implementation, however, we used a simple exhaustive search over all points
in the non-cooperative game in order to find equilibrium points. In a more
realistic system, simplicity would be abandoned in favor of efficiency.

6 Comparison and Conclusions

In [14], Stephens and Merx summarize the performance results of four meth-
ods of solution on six different scenarios. They specify three possible out-
comes, capture, stalemate, and escape. We used the six scenarios-as test cases
for our simulation. The results are summarized in Appendix A. In three of
the cases the game ended in the capture of the red agent, and in two others
in stalemate. In one case (scenario 1 of [14]) the simulation did not even
get close to the solution, with all the agents clustered far away from the red
agent and satisfied to remain there. The payoff function was not designed
for that kind of situation and failed to motivate the blue agents to capture
the red agent. Table 1 extends Table 4 in [14] to include our results.

Interestingly, our model fails in scenario 6 where all other models succeed.
This result demonstrates the nature of the underlying model. In the first few
stages of the game, the agents appear to be proceeding correctly. However,
at a particular point near the end of the game, the agents continue in their
rush towards the original capture positions, even though the red agent has
meanwhile scurried away. In Section 5 we pointed out that communication
should be used to select one of several equilibrium points. This example
shows that there are cases in which communication might also be used to
prevent the system agents from taking a misguided path.

Although there are random elements involved (i.e., the movement of the
red agent), we can still reach some preliminary conclusions regarding the
effectiveness of our model. In those cases for whom our payoff function
is known to be appropriate, the results show convergence to the solution,

13

sometimes with a shorter number of moves than in other methods. However,
the definition of the payoff function has the disadvantage of not covering
all cases, as seen by caczs 1, 5 and 6. To its credit, however, agents in
this model do not need to communicate with one another most of the time.
Communication is needed only when agents get close to other agents.

See [9] for the application of these techniques to the real-world problem
presented originally in [8]."

14

A Test Results

Table 1: Comparison Of Performance Results

DAI System Scenario 1 Scenario 2
Moves | Outcome | Moves | Outcome
Autonomous-Agent 10 Escape 10 Stalemate
Limited-Communication | 10 Escape 10 Stalemate
Negotiating-Agent 11 Stalemate || 11 Capture
Controlling-Agent 17 Capture 12 Capture
Game-Theory None | Escape 8 Capture
DAI System Scenario 3 Scenario 4
Moves | Outcome | Moves | Qutcome
Autonomous-Agent 7 Stalemate || 10 Stalemate
Limited-Communicatjon | 7 Stalemate || 10 Stalemate
Negotiating-Agent 8 Capture 11 Capture
Controlling-Agent 10 Capture 12 Capture
Game-Theory 7 Capture 15 Capture
DAI System Scenario 5 Scenario 6
Moves | Outcome | Moves | QOutcome
Autonomous-Agent 7 Stalemate || 7 Capture
Limited-Communication | 7 Stalemate || 7 Capture
Negotiating-Agent 8 Capture 8 Capture
Controlling-Agent 10 Capture 10 Capture
Game-Theory 6 Stalemate || 6 Stalemate

15

References

('] M. Benda, V. Jagannathan, and R. Dodhiawalla. On optimal coopera-

2]

3]

[4]

[5]

[6]

3]

[9]

tion of knowledge sources. Technical Report BCS-G2010-28, Boeing Al
Center, Boeing Computer Services, Bellevue, Washington, August 1985.
Cited in Les Gasser and Nicolas Rouquette, Representing and Using Or-
ganizational Knowledge in Distributed Al Systems. Proceedings of the
1988 Workshop on Distributed Artificial Intelligence, May 1988.

H. H. Chin, T. Parthasarathy, and T. E. S. Rayhaven. Structure of
equilibria in n-person non-cooperative games. International Journal of
Game Theory, 3:1 - 19, 1974.

Randall Davis and Reid G. Smith. Negotiation as a metaphor for dis-
tributed problem solving. Artificial Intelligence, 20(1):63-109, 1983.

Les Gasser and Nicolas Rouquette. Representing and using organiza-
tional knowledge in dai systems. In Les Gasser, editor, Proceedings of
the 1988 Workshop on Distributed Artificial Intelligence, Lake Arrow-
head, California, May 1988.

Michael R. Genesereth, Matthew L. Ginsberg, and Jeffrey S. Rosen-
schein. Cooperation without communication. In Proceedings of The Na-
tional Conference on Artificial Intelligence, pages 51-57, Philadelphia,
Pennsylvania, August 1986. The American Association for Artificial In-
telligence.

J. C. Harsanyi. Oddness of the number of equilibrium points: A new
proof. International Journal of Game Theory, 2:235 — 250, 1973.

J. Rosenmiiller. On a generalization of the lemke-howson algorithm to
noncooperative n-person games. SIAM Journal on Applied Mathematics,
21(1):73-79, 1971.

Yan Jin and Takeo Koyama. Multiagent planning through expectation
based negotiation. In Proceedings of the 10th International Workshop
on Distributed Artificial Intelligence, Bandera, Texas, October 1990.

Ran Levy. A game theoretic approach to distributed artificial intelligence
and the pursuit problem. Master’s thesis, Hebrew University, 1991.

16

(10]

[11]

[12]

[13]

[14]

[15]

(16]

Thomas W. Malone, Richard E. Fikes, and M. T. Howard. Enterprise:
A market-like task scheduler for distributed computing environments.
In B. A. Huberman, editor, The Ecology of Computation, pages 177 -
205. North-Holland Publishing Company, Amsterdam, 1988.

Jeffrey S. Rosenschein and Michael R. Genesereth. Deals among rational
agents. In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, pages 91 — 99, Los Angeles, California, August
1985.

Lloyd S. Shapley. A value for n-Person games. In Alvin E. Roth, editor,
The Shapley Value, chapter 2, pages 31-40. Cambridge University Press,
Cambridge, 1988.

Munindar Singh. Group intentions. In Proceedings of the 10th Interna-
tional Workshop on Distributed Artificial Intelligence, Bandera, Texas,
October 1990.

L. Stephens and M. Merx. Agent organization as an effector of dai
system performance. In Miroslav Benda, editor, Proceedings of the 9th
Workshop on Distributed Artificial Intelligence, pages 263-292, Belle-
vue, Washington, September 1989.

H. P. Young. Individual contribution and just compensation. In Alvin E.
Roth, editor, The Shapley Value, chapter 17, pages 267-278. Cambridge
University Press, Cambridge, 1988.

Gilad Zlotkin and Jeffrey S. Rosenschein. Negotiation and task sharing
among autonomous agents in cooperative domains. In Proceedings of the

FEleventh International Joint Conference on Artificial Intelligence, pages
912-917, Detroit, Michigan, 1989.

17

Deutsches

far Kanstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Vertffentlichungen oder die
aktuelle Liste von erhiltlichen Publikationen
konnen bezogen werden vor der oben angegebenen
Adresse.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

Forschungszentrum

DFKI

-Bibliothek-

PF 2080

6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of
currently available publications can be ordered from
the above address.

The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-90-01

Franz Baader: Terminological Cycles in KL-ONE-
based Knowledge Representation Languages

33 pages

RR-90-02

Hans-Jiirgen Biirckert: A Resolution Principle for
Clauses with Constraints

25 pages

RR-90-03

Andreas Dengel, Nelson M. Mattos: Integration of
Document Representation, Processing and
Management

18 pages

RR-90-04

Bernhard Hollunder, Werner Nutt: Subsumption
Algorithms for Concept Languages

34 pages

RR-90-05

Franz Baader: A Formal Definition for the
Expressive Power of Knowledge Representation
Languages

22 pages

RR-90-06

Bernhard Hollunder: Hybrid Inferences in KL-ONE-
based Knowledge Representation Systems

21 pages

RR-90-07

Elisabeth André, Thomas Rist: Wissensbasierte

Informationspridsentation:

Zwei Beitrige zum Fachgesprich Graphik und KI:

1. Ein planbasierter Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fiir die
automatische Erz~ugung von 3D-
Objektdarstellungen

24 pages

RR-90-08

Andreas Dengel: A Step Towards Understanding
Paper Documents

25 pages

" RR-90-09

Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10

Franz Baader, Hans-Jiirgen Biirckert, Bernhard
Hollunder, Werner Nutt, Jorg H. Siekmann:
Concept Logics

26 pages

RR-90-11
Elisabeth André, Thomas Rist: Towards a Plan-

Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13

Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles

40 pages

RR-90-14

Franz Schmalhofer, Otto Kiihn, Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-15

Harald Trost: The Application of Two-level
Morphology to Non-concatenative German
Morphology

13 pages

RR-90-16

Franz Baader, Werner Nutt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification

25 pages

RR-90-17
Stephan Busemann
Generalisierte Phasenstrukturgrammatiken und ihre

Verwendung zur maschinellen Sprachverarbeitung
114 Seiten

RR-91-01

Franz Baader, Hans-Jiirgen Biirckert, Bernhard
Nebel, Werner Nutt, and Gert Smolka :

On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations

20 pages

RR-91-02

Francesco Donini, Bernhard Hollunder, Maurizio
Lenzerini, Alberto Marchetti Spaccamela, Daniele
Nardi, Werner Nutt:

The Complexity of Existential Quantification in
Concept Languages

22 pages

RR-91-03

B.Hollunder, Franz Baader: Qualifying Number
Restrictions in Concept Languages

34 pages

RR-91-04

Harald Trost

X2MOREF: A Morphological Component Based on
Augmented Two-Level Morphology

19 pages

RR-91-05

Wolfgang Wahister, Elisabeth André, Winfried
Graf, Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation.

17 pages

RR-91-06

Elisabeth André, Thomas Rist: Synthesizing
Dliustrated Documents

A Plan-Based Approach

11 pages

RR-91-07
Giinter Neumann, Wolfgang Finkler: A Head-
Driven Approach to Incremental and Parallel

Generation of Syntactic Structures
13 pages

RR-91-08

Wolfgang Wahlster, Elisabeth André, Som
Bandyopadhyay, Winfried Graf, Thomas Rist

WIP: The Coordinated Generation of Multimodal

Presentations from a Common Representation
23 pages

RR-91-09

Hans-Jiirgen Biirckert, Jiirgen Miiller, Achim
Schupeta

RATMAN and its Relation to Other Multi-Agent
Testbeds

31 pages

RR-91-10

Franz Baader, Philipp Hanschke

A Scheme for Integrating Concrete Domains into
Concept Languages

31 pages

RR-91-11
Bernhard Nebel
Belief Revision and Default Reasoning: Syntax-

Based Approaches
37 pages

RR-91-13

Gert Smolka

Residuation and Guarded Rules for Constraint Logic
Programming

17 pages

RR-91-15

Bernhard Nebel, Gert Smolka

Attributive Description Formalisms ... and the Rest
of the World

20 pages

RR-91-16

Stephan Busemann

Using Pattern-Action Rules for the Generation of
GPSG Structures from Separate Semantic
Representations

18 pages

DFKI Technical Memos

TM-89-01

Susan Holbach-Weber: Connectionist Models and
Figurative Speech

27 pages

TM-90-01

Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse

18 pages

T™-90-02

Jay C. Weber: The Myth of Domain-Independent
Persistence

18 pages

TM-90-03

Franz Baader, Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-

15 pages

TM-90-04

Franz Baader, Hans-Jiirgen Biirckert, Jochen
Heinsohn, Bernhard Hollunder, Jiirgen Miiller,
Bernhard Nebel, Werner Nutt, Hans-Jiirgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic

7 pages

TM-91-01

Jana Kihler

Approaches to the Reuse of Plan Schemata in
Planning Formalisms

52 pages

TM-91-02

Knut Hinkelmann

Bidirectional Reasoning of Horn Clause Programs:
Transformation and Compilation

20 pages

TM-91-03

Otto Kiihn, Marc Linster, Gabriele Schmidt
Clamping, COKAM, KADS, and OMOS:
The Construction and Operationalization

of a KADS Conceptual Model

20 pages

TM-91-04
Harold Boley

A sampler of Relational/Functional Definitions
12 pages

TM-91-05

Jay C. Weber, Andreas Dengel and Rainer
Bleisinger

Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters

10 pages

DFKI Documents

D-89-01

Michael H. Malburg, Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypermedia-
Informationssystem

43 Seiten

D-90-01

DFKI Wissenschaftlich-Technischer Jahresbericht
1989

45 pages

D-90-02

Georg Seul: Logisches Programmieren mit Feature
-Typen

107 Seiten

D-90-03

Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD

36 Seiten

D-90-04

Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: STEP: Uberblick iiber eine zukiinftige
Schnittstelle zum Produktdatenaustausch

69 Seiten

D-90-05

Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: Formalismus zur Reprisentation von
Geo-metrie- und Technologieinformationen als Teil

eini:s Wissensbasierten Produktmodells
66 “eiten

D-50-06)
Andreas Becker: The Window Tool Kit
66 Seiten

D-91-01

Werner Stein , Michael Sintek
Relfun/X - An Experimental Prolog
Implementation of Relfun

48 pages

D-91-03

Harold Boley, Klaus Elsbernd, Hans-Giinther Hein,
Thomas Krause

RFM Manual: Compiling RELFUN into the
Relational/Functional Machine

43 pages

D-91-04

DFKI Wissenschaftlich-Technischer Jahresbericht
1990

93 Seiten

D-91-06

Gerd Kamp

Entwurf, vergleichende Beschreibung und
Integration eines Arbeitsplanerstellungssystems fiir
Drehteile

130 Seiten

D-91-07

Ansgar Bernardi, Christoph Klauck, Ralf Legleitner
TEC-REP: Reprisentation von Geometrie- und
Technologieinformationen

70 Seiten

D-91-08

Thomas Krause

Globale DatenfluBanalyse und horizontale
Compilation der relational-funktionalen Sprache
RELFUN

137 pages

D-91-09

David Po.vers and Lary Reeker (Eds)

Proceedings MLNLO91 - Machine Leamning of
Natural Language and Ontology

211 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-10

Donald R. Steiner, Jiirgen Miiller (Eds.)
MAAMAW 91: Pre-Proceedings of the 3rd
European Workshop on ,,Modeling Autonomous
Agents and Multi-Agent Worlds*

246 pages

(sp3) Jeyiow uebipe ‘Joulels "a preuod

juswnoog «SPHOM Juebvy-pny pue sjusby snowouoiny Buljepop,, uo
oL-L6-a doys>uopm ueedoing pig ey} jo sBuipeesoid-aid L6.MVNVVIN

	D-91-10-1
	D-91-10-0001
	D-91-10-0002
	D-91-10-0003
	D-91-10-0004
	D-91-10-0005
	D-91-10-0006
	D-91-10-0007
	D-91-10-0008
	D-91-10-0009
	D-91-10-0010
	D-91-10-0011
	D-91-10-0012
	D-91-10-0013
	D-91-10-0014
	D-91-10-0015
	D-91-10-0016
	D-91-10-0017
	D-91-10-0018
	D-91-10-0019
	D-91-10-0020
	D-91-10-0021
	D-91-10-0022
	D-91-10-0023
	D-91-10-0024
	D-91-10-0025
	D-91-10-0026
	D-91-10-0027
	D-91-10-0028
	D-91-10-0029
	D-91-10-0030
	D-91-10-0031
	D-91-10-0032
	D-91-10-0033
	D-91-10-0034
	D-91-10-0035
	D-91-10-0036
	D-91-10-0037
	D-91-10-0038
	D-91-10-0039
	D-91-10-0040
	D-91-10-0041
	D-91-10-0042
	D-91-10-0043
	D-91-10-0044
	D-91-10-0045
	D-91-10-0046
	D-91-10-0047
	D-91-10-0048
	D-91-10-0049
	D-91-10-0050
	D-91-10-0051
	D-91-10-0052
	D-91-10-0053
	D-91-10-0054
	D-91-10-0055
	D-91-10-0056
	D-91-10-0057
	D-91-10-0058
	D-91-10-0059
	D-91-10-0060
	D-91-10-0061
	D-91-10-0062
	D-91-10-0063
	D-91-10-0064
	D-91-10-0065
	D-91-10-0066
	D-91-10-0067
	D-91-10-0068
	D-91-10-0069
	D-91-10-0070
	D-91-10-0071
	D-91-10-0072
	D-91-10-0073
	D-91-10-0074
	D-91-10-0075
	D-91-10-0076
	D-91-10-0077
	D-91-10-0078
	D-91-10-0079
	D-91-10-0080
	D-91-10-0081
	D-91-10-0082
	D-91-10-0083
	D-91-10-0084
	D-91-10-0085
	D-91-10-0086
	D-91-10-0087
	D-91-10-0088
	D-91-10-0089
	D-91-10-0090
	D-91-10-0091
	D-91-10-0092
	D-91-10-0093
	D-91-10-0094
	D-91-10-0095
	D-91-10-0096
	D-91-10-0097
	D-91-10-0098
	D-91-10-0099
	D-91-10-0100
	D-91-10-0101
	D-91-10-0102
	D-91-10-0103
	D-91-10-0104
	D-91-10-0105
	D-91-10-0106
	D-91-10-0107
	D-91-10-0108
	D-91-10-0109
	D-91-10-0110
	D-91-10-0111
	D-91-10-0112
	D-91-10-0113
	D-91-10-0114

	D-91-10-2
	D-91-10-1-0001
	D-91-10-1-0002
	D-91-10-1-0003
	D-91-10-1-0004
	D-91-10-1-0005
	D-91-10-1-0006
	D-91-10-1-0007
	D-91-10-1-0008
	D-91-10-1-0009
	D-91-10-1-0010
	D-91-10-1-0011
	D-91-10-1-0012
	D-91-10-1-0013
	D-91-10-1-0014
	D-91-10-1-0015
	D-91-10-1-0016
	D-91-10-1-0017
	D-91-10-1-0018
	D-91-10-1-0019
	D-91-10-1-0020
	D-91-10-1-0021
	D-91-10-1-0022
	D-91-10-1-0023
	D-91-10-1-0024
	D-91-10-1-0025
	D-91-10-1-0026
	D-91-10-1-0027
	D-91-10-1-0028
	D-91-10-1-0029
	D-91-10-1-0030
	D-91-10-1-0031
	D-91-10-1-0032
	D-91-10-1-0033
	D-91-10-1-0034
	D-91-10-1-0035
	D-91-10-1-0036
	D-91-10-1-0037
	D-91-10-1-0038
	D-91-10-1-0039
	D-91-10-1-0040
	D-91-10-1-0041
	D-91-10-1-0042
	D-91-10-1-0043
	D-91-10-1-0044
	D-91-10-1-0045
	D-91-10-1-0046
	D-91-10-1-0047
	D-91-10-1-0048
	D-91-10-1-0049
	D-91-10-1-0050
	D-91-10-1-0051
	D-91-10-1-0052
	D-91-10-1-0053
	D-91-10-1-0054
	D-91-10-1-0055
	D-91-10-1-0056
	D-91-10-1-0057
	D-91-10-1-0058
	D-91-10-1-0059
	D-91-10-1-0060
	D-91-10-1-0061
	D-91-10-1-0062
	D-91-10-1-0063
	D-91-10-1-0064
	D-91-10-1-0065
	D-91-10-1-0066
	D-91-10-1-0067
	D-91-10-1-0068
	D-91-10-1-0069
	D-91-10-1-0070
	D-91-10-1-0071
	D-91-10-1-0072
	D-91-10-1-0073
	D-91-10-1-0074
	D-91-10-1-0075
	D-91-10-1-0076
	D-91-10-1-0077
	D-91-10-1-0078
	D-91-10-1-0079
	D-91-10-1-0080
	D-91-10-1-0081
	D-91-10-1-0082
	D-91-10-1-0083
	D-91-10-1-0084
	D-91-10-1-0085
	D-91-10-1-0086
	D-91-10-1-0087
	D-91-10-1-0088
	D-91-10-1-0089
	D-91-10-1-0090
	D-91-10-1-0091
	D-91-10-1-0092
	D-91-10-1-0093
	D-91-10-1-0094
	D-91-10-1-0095
	D-91-10-1-0096
	D-91-10-1-0097
	D-91-10-1-0098
	D-91-10-1-0099
	D-91-10-1-0100
	D-91-10-1-0101
	D-91-10-1-0102
	D-91-10-1-0103
	D-91-10-1-0104
	D-91-10-1-0105
	D-91-10-1-0106
	D-91-10-1-0107
	D-91-10-1-0108
	D-91-10-1-0109
	D-91-10-1-0110
	D-91-10-1-0111
	D-91-10-1-0112
	D-91-10-1-0113
	D-91-10-1-0114
	D-91-10-1-0115
	D-91-10-1-0116
	D-91-10-1-0117
	D-91-10-1-0118
	D-91-10-1-0119
	D-91-10-1-0120
	D-91-10-1-0121
	D-91-10-1-0122

