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Abstract 

Representation can be critical in enabling agents to interact effectively. Alternative 
methods for representing and reasoning about the world can radically affect the ability 
of agents to reach cooperative solutions. Focal points are examined as a particularly 
compelling example of the importance of representation; we consider the algorithms 
that might be used by resource-constrained agents in discovering prominent solutions 
of their interaction . 

• Kraus is also affiliated wit.h the Graduate School for Library Studies. 
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1 Introduction 

There are various kinds of interactions that sophisticated human agents can easily handle, 
and yet whose formal representation is problematic. The inability to formally represent 
crucial features causes difficulties for conventional interaction techniques. For example, . 
humans are often able to recognize a particular structure b a problem that helps them 
coordinate their actions to mutual benefit. There is sometimes a "special" attribute of a 
coordinated act, and both agents, in recognizing the specialness, can choose their actions 
suitably. Schelling [13] ca.lled these prominent coordinated actions "focal points." Intuitively, 
a focal point is a conspicuous point of agreement to which inter<:.cting agents gravitate. 

In this paper, we discuss the concept of focal points, emphasizing how they could be dis
covered by an automated agent and used by several to coordinate their actions. A number of 
other researchers in Distributed Artificial Intelligence (DAI) have also recognized represen
tation issues as critic:al for effective interaction, including Durfee [4], Werner [15], Singh [14], 
and Cohen and Lev~sque [1]. 

In Section 2 we present the notion of focal points, including illustra.tive examples, and in 
Section 2.2 we discuss their properties at greater length. Standard representations (such as 
those of game theor') are unable to exploit focal points in finding coordinated actions, and 
we examine ,his problem in Section 3. Central to the idea of focal points is the ease with 
which they <Te found; this suggests that it is important to take into consideration the time 
that passes as agents carry out t.heir reasoning. In order to capture the passage of time, we 
make use of Step Logic [6], discussed in Section 4. 

In Section 5 we present our focal point algorithm, along with the specific rules by which 
focal points are discovered. Because the algorithm will not necessarily result in a single 
candidate fücal point, there is a need to reduce the candidate set as much as possible. 
The resolutif)n of multiple solutions is discussed in Section 5.4. Finally, in Section 6, we 
discuss how t.he presence or absence of knowledge among the agents affects their focal point 
com pu tation. 

2 Focal Points 

2.1 Examples of Focal Points 

Schelling proposes no formal definition of focal points. We follow his lead by demonstrating 
the concept via examples. 

Imagine two players on a TV game show. The emcee explains to the players the simple 
rules of the game: each is to go to a separate, private room, where they will be handed a pile 
of 100 $1 bills. They are each, in isolation, to divide the single pile into two piles, A and B, 
with any distribution of bills between the piles. Then their distributiops will be announced, 
and if they are identical (i.e., the players' A piles are the same size, and their B piles are the 
same size) , they will each win a Mercedes. If their distributions are not identical, they will 
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receive the consolation prize (a horne version of the game). 
Readers may, at this point, wish to consider for a moment what choice they themselves 

would make if they were playing this particular game. 
Schelling [13] discussed his experiments with agame of this type, and found that the 

overwhelming majority of players chose to divide the 100 $1 bills into two equal piles, 50 
bills in each. Informal runs of thisga~e, done by this paper's authors, seem to point to the 
same conclusion: most people are drawn to the 50-50 split, even though there are another 
100 possi ble choices (i f we allow the empty pile). The reasoning goes something like this: 
"Since success in the game requires us only to anticipate each other's choice, and since at 
one level of analysis all t.he choices are cquivalent, I must look for any uniqueness tha.t will 
distinguish a particular option in both of our minds, and rely on the other agent 's doing 
likewise." In this case, equivalence between piles is a property that is true only of the 50-50 
split, making it, in Schelling's vocabulary, a focal point. Intuitively, as was mentioned above, 
a focal point is a prominent point of agreement to which inten~.cting agents gravitate. 

A slmilar example has two contestants asked to write down, secretly, "some positive 
integer," with a prize to be awarded if they both write down the same positive integer. 
Although there are infinitely many winning solutions to this interaction, Schelling found 
that most people tended (llnsurprisingly) to write down the number 1. Given the range of 
choices, this nllmber has the unique property that it is the only one withollt a predecessor 
in the set. Thus, it is a focal point. 

Focal points can also arise in non-numeric domains, as in the following example. You 
have parachuted into the countryside represented by Figure 1 (the bent lines represent roads, 
the small boxes are houses, and there is a river, spanned by a bridge, horizontally bisecting 
the middle of the picture). Another person whom you want to join up with has parachuted 
into the area also, but you are (unexpectedly) out of communication with her. Where do 
you go to meet up with one another? 

Most people, when presented with this case, are reported by Schelling to choose the 
bridge as a meeting place. There is no guarantee that your partner will go through the same 
line of reasoning, but the bridge is a prominent solution, a focal point, and one towards 
which participants gra.vitate. 

2.2 Competing Focal Points 

There are a number of intuitive properties that seem to qualify a given agreement as a focal 
point. Among these properties are uniqueness, symmetry, and extremeness. Our formal 
solution below will encode these intuitions into a logie that could be used by an agent. 

Even when we consider these special properties, more must be done to identify focal 
points. There are bound to be competing potential focal points, since there is something 
unique about any sohdion. Another fairly strong contender for a solution in the original 
game presented above is the choice of 0 bills in A, and 100 bills in B (01' vice versa). Of 
-:ourse, it is precisely the "vice versa" aspect of this solution that makes it appear less 
appealing in comparison with the 50-50 split. 
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Figure 1: The Parachute Problem 

Any solution, though, will have something to recommend it-but the less obvious that 
something is, the less attractive the alternative becomes, precisely because it becomes less 
obvious that the other agent will duplicate our line of reasoning. For example, the cho:ce of 
10-90 recommends itself, since it is the only choice where the number of tens in both piles 
is a perfect square (1 squared and 3 squared), and where at the same time the first pile is 
sm aller than the second. And of course, we might choose 16-84 as our split, reasoning that 
our partner will realize, as we did, that these are the only years in the 20th century (whose 
last two digits add up to 100) that have seen the election of United States presidents with 
the same number of letters in their last names (Wilson in 1916 and Reagan in 1984). 

This is a farfetched example, but the point should be clear: a focal point is produ~ed 
not only because it satisfies one of the intuitive principles mentioned above, but because it 
seems computationally more accessible-it seems more likely that the other agent will also 
recognize the point than that he will recognize competing points. 

2.3 The Role of Communication 

One way of altering the prominence of a focal point, or creating a new one, is through 
communication. Schelling presents two communication scenarios of his TV game show. In the 
first, one contestant shouts out "60-40!" as he is being led to his isolation booth. The emcee 
decides not to stop the game, hut wams the players against any further communication. 
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The second contestant is now faced with a new prominence. While it is true that 50-50 is 
an attractive alterna.tive, it is given real competition by the 60-40 possibility. Especia.lly if 
the other player knows that the content of the shout could be understood, they both have 
reason to ascribe prominence to this solution point. 

Another of Schelling's scenarios has the emcee doing the communication. Imagine that 
no shouting has occurred on stage, but after you are in your isolation booth you are visited 
by the emcee. He says, "I have visited the other player, and I am giving you the same advice 
that I gave hirn: choose 37-63." With that, he departs. Again, a new piece of information 
has been introduced, and with it the possibility that the other agent will settle on this 
suddenly prominent option. 

What has happened in both these communication scenarios is that the very act of co m
munication, even though it is extremely limited, has given new prominence to particular 
solu tions. After all, in the first scenario, the 60-40 spli t became the only solution wi th the 
property of having been broadcast by the other player. In the second scenario, the 37-63 
split became the only solution with the property of having been advised by the emcee. This 
is similar to the prominence attached to the 50-50 split in our first example, the only solution 
with the property that the piles are equivalent. 

In this paper, we will not be discussing communication in focal point interactions; this 
is a subject for future research . 

2.4 Automated Agents and Focal Points 

Although the concept of focal points was originally introduced with regard to human inter
actions, they have relevance for automated interactions as weil. From a machine's point of 
view, a focal point is an instantiation of a variable in a statement or action. When automated 
agents are designed to operate in realistic domains, they will need to analyze interactions 
in a sophisticated way. Groups of agents might find focal points useful because it can help 
coordinate actions when communication is difficult or impossible. 

For example, consider the case of automated agents that are working together on i\fars, 
but have lost communication with one another (e.g., their radio frequency has developed 
interference). They would like to meet again so as to reestablish their line of communication, 
but need to independently decide where the meeting will take p!ace. The agents could not 
establish an apriori protocol for how to get back together, because they did not have 
sufficient information about what the terrain would be like. The search for a focal point 
meeting place would be a natural mechanism for solving this problem. 

In addition, if an automated agent needs to interact with humans it will be helpful to act 
in a "natural" way that the human can also anticipate and coordinate with . For example, 
one of the Mars workers above migr.t be a human, and the automated search for a focal 
point meeting place mirrors his own thought processes. Another case might be that of a 
robot cleaning up an auditorium, coming across a left article, and having to reason about 
where to put it so that it will be found by the owner the following day. 

More fundamentally, focal points provide a test case for representation and reasoning in 
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multi-agent domains. They are a hard problem that conventional techniques cannot address. 
By studying focal points, we ga.;n insights into representing and reasoning about multi-a.gent 
encounters. 

3 The Failure of Standard Representations 

Focal points are an interesting interaction probiem to study precisely because they provide 
clear examples of the failure of simple interaction representations. 

Consider the original problem given above, with two contestants on a TV J?;anLe show. 
The problem of dividing up a stack of 100 $1 bills can be represented very easily using a 
payoff matrix, with $40,000 marked in all the boxes down the diagonal and zero everywhere 
else. The failing of this representation is that it does not allow the agents to reason about 
anything other than the relationships among the payoffs, and these relationships are wholly 
uninteresting. There are 101 payoffs of $40,000, but there is no other way of reasoning about 
why one action is better than any other. 

Reasoning about the matrix layrmt, which might help in this case, is wholly outside of 
Game Theory's use of the payoff mürix [10]. In fact, one agent (in Game Theory) cannot 
be sure that the other agen" sees tl.e matrix in exactly the same way that he does. That 
is, there is so me mapping b _~tween the other agent 's choices and the matrix, but we don't 
know what that mapping is--the $40,000 payoffs may be scattered throughout his personal 
representation of the matrix (as long as there is only one per row and one per column). 

The same issue arises in. the problem where the agents are to choose a positive integer: 
one representation would have high payoffs down the diagonal and zeros everywhere else, 
but other functionally equiva,lent representations would have the payoffs scattered around the 
matrix, and the agents can't (in Game Theory) use a rule like "choose the upper left-hand 
corner." There is no common view of the matrix. 

The solution to the problem cannot simply be to introduce an ordering on the matrix, 
because in real-life encounters the matrix really isn't commonly perceived by the agents: it is 
the interaction that is commonly perceived, and the matrix is only an internal representa: ion 
of an external reality. If, for example, two agents (A and B) meet, and each agent has two 
potential actions, A lift , Abreak, Bpush , Bclean then who can say that A's internal representation 
will match B's, and how safely could they hope to employ any simple rule that relies on the 
particular ordering they have attached to these moves? 

Standard logic also fails to provide the solution to focal points. Computational complexity 
seems central to identifying focal points. Not only must a solution to a given problem satisfy a 
property like uniqueness in order to qualify as a focal point, it must also be easier to find than 
other solutions with similar properties. It is therefore necessary to model the computational 
process itself in the reasoning procedure as we search for focal points. Classical first order 
logic does not model the computational process. Weturn, instead, to a modification of 
first order logic, called .<;tep logic, that neals explicitly with the passage of time as an agent 
reasons. 
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There is some related work in artificial intelligence that addresses the issues of the passage 
of time during the reasoning process. In [8], [7], and [12], decision-theoretic approaches a.re 
used to optimize the value of computation under uncertain and varying resource limitations. 
In these works, deadlines and the passage of time while reasoning are taken into consider
ation in computing the expected computational utility. Dean and Boddy [2J formulated an 
algorithmic approach to solution of time-dependent planning problems by introducing "any
time algorithms" that capture the notion that utility is a monotonie function of deliberation 
time. 

Although we have chosen not to use these tools in examining focal points, it appears that 
they might someday be modified appropriately for the task. Using decision-theoretic tech
niques to find focal points might be especially suitable in cases where alternative outcomes 
have natural associated utilities. This is left for future research. 

4 Discussion of Step Logic 

Our current project employs the formalism of "step-Iogics," introduced by EIgot-Drapkin, 
Miller, and Perlis ([3, 6, 5]) where inferences are parameterized by the time taken for their 
inference, and in which these time parameters themselves can playa role in the specification 
of the inference rules and axioms.1Step-logics offer a natural representation of the evolving 
process of reasoning itself. A step is a fundamental unit roughly characterized by the time 
it takes the agent to draw a single inference. 

Observations, which are inputs from the external world, may arise at the beginning of a 
discrete time-step. When an observation appears, it is considered a belief in the same time
step. Apart from his observa.tions at the beginning of step i, the only information available 
to the agent is a snapshot of his deduction process completed up to and including step i - 1. 
During step i the agent applies all available inference rules in parallel, but only to beliefs at 
step i -1 (denoted by Factsi_l); new beliefs thus generated through applications of inference 
rules are not available for use in further inference until step i + 1. For example, consider the 
following reasoning (shown is an application of modus ponens) from step i to step i + 1. 

2: \Vhite(c271)j House(c271); \Vhite(e99)j House(e99); House(e31)j 
Now(i); White(x)!\ House(x) --t Big(x) ... 

i + 1: Big(c271); Big(e99); 
White( c271); House( c271); White( e99)j House( e99); House( e31); 
Now(i + 1); White(x) !\ House(x) --t Big(x) ... 

In effect, step-Iogics are first-order logics sui tably modified to include a N ow( i) predicate, 
where the value of i changes at the end of a time-step. 

I St.ep logics have also been used for planning in deadline situations [9]. 
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5 The Focal Point Algorithm 

The intuition behind our focal point algorithm is that the agent, at each step i, will look for 
candidates in the domain that have certain properties (like uniqueness). If something in the 
domain has the property, it is a focal point at step i. As time goes on, new beliefs are derived 
(e.g., through modus ponens), and the domain over which the sea:.-:h is being conducted also 
expands (through observations or consideration of new conjunctive properties). Then the 
search for candidate focal points is repeated-and an old focal point may, given the new 
information, no longer be one. The search for focal points is cut-off at some depth of 
computation, depending on time constraints, at which point the agent resolves competing 
foca.l points to the best of his ability. 

Let us now consider the details of the above process. We first consider the way in which 
the agent models the (changing) domain, then the rules that qualify a candidate as a foca.l 
point. Finally, we consider the ways in which an agent resolves competing focal points. 

5.1 Domain of {jonsideration 

Before the process starts the agent is given two finite sets enumerating the domain constants 
(one, Pred, is a ,et of predicates, and the second, Term, is a set of term constants) over 
which the focal !>oint computation is going to be done initially. Both lists can grow as the 
computation progresses. 

TV Show Example: The vectors that sum to 100, with no element less than 0, can be 
given as an initial finite domain over which properties will be discovered. 

It should be noted that these finite sets represent the explicit knowledge of the agent, 
not its implicit knowledge. For example, an agent may implicitly be aware of the infinite 
set of positive iLtegers, but for the moment only be considering the finite set of integers 
from 1 to 500. As time goes on, numbers above 500 may come under the explicit scope of 
consideration. 

5.1.1 Addition of Term Constants 

There are two mechanisms for adding new explicit terms. The first is observation, where 
new term constants a.re observed over time (e.g., a new bridge is observed). The second 
mechanism is the use of inductive rules, such as a successor rule that generates new integers 
or a rule that generates new primes. 

Example 1: At step i, the domain includes Bridge( C125). At step i + 1 we have 
Observe{Bridge(C237)}. At step i + 2 we then have C237 in Term. 

Example 2: If Int(x) --+ Int(x + 1) is a rule at step i, and Int(5) is known at step i, 
then at step i + 1 the agent will know Int(5 + 1). Assuming that the agent has the requisite 
procedure attached to the symbol +, he will (in step i + 2) add the term 6 to Term. 
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5.1.2 Addition of Predicate Constants 

Consider an agent searching for focal points. When he starts, he considers attributes that 
might be held by only a single object in his domain. For example, there might be only one 
object that is Red. However, if such a unique object does not exist, then he may consider 
conjunctions of attributes. For example, there might be only one House that is Red. We 
want to capture this intuition in OUf algorithm. 

When the process starts, ?red is equal to the finite set of predicates provided to the agent. 
At the second step, the agent considers binary conjunctions of predicates from the original 
list. At step three, he considers ternary conjunctions of predicates from the original list, and 
so on. The following lines describe the evolution of Pred through successive steps. 

step 1: Predl = {domain constant predicates and their negations} = {PI, -'PI, P2 , -,P2 ... } 

step 2 : Pred2 = {binary combinations of predicates of Predl } = 

{PI 1\ P2 , PI 1\ P3 , P2 1\ P3 , • •• } U Pred1 

step 3 : Pred3 = {ternary combinations of predicates of Pred l j = 

{PI 1\ P2 1\ P3 , P2 1\ P3 1\ P4 , ••• } U Pred2 

5.1.3 Explicit and Easily Computed Knowledge 

We want agents, in their search for focal points, to consider both explici t knowledge and 
"obvious" knowledge that is easily computed from their databases. For example, if "less 
tha,n" is a predicate that the agent is considering, and both 5 and 6 are terms of which he is 
aware, then we want the agent to use the knowledge that 5 is less than 6, even though this 
fact is not explicitly represented in his database. 

We therefore use a special notation to signify that a fact is "known" at the previous level. 
We write E* to mean that the fact is either explicitly listed in mets at level i, or that it can 
be simply computed over the constant terms Term known at level i. 

The question of what can be simply computed is domain dependent, as well as agent 
dependent. There is an analogy he re with the idea of "operational" in the Explanation Based 
Learning literat ure (11]. Checking "less than" might be operational in some machines; in 
other machines, deciding in agame of chess whether a given board position is reachable from 
the current state might be operational because of specialized hardware. 

5.2 Focal Point Rules 

In this section we present the actuaI rules by which an agent identifies candidates fOl foca.! 
points. We make no claims for completeness here. These rules provide good coverage of the 
Focal Point examples in [13], but additional rules may be appropriate in other cases. 
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Identification of focal points is a two stage process. First the agent identifies candidates 
by locking for meta-characteristics of objects, such as uniqueness. Second, the agent resolves 
competing candidates to the best of his ability (using other rules) and decides on one or more 
foca.! points. 

5.2.1 Uniqueness 

An objeet may be a foeal point if it is the only objeet with a given propt;rty. Formally, if in 
i - 1 we have P E 'Predi_1 , and there exists an x E Termi_l such that 

P(x) E* Faclsi_lVy E Term,y i= x[P(y) tf.* Faclsi_l], 

then in step i we will have 
Unique(x, P, i). 

Note that Unique is a "meta-predicate" that does not itself appear in the Pred set. Note 
also that the term x is considered unique with res~ect to the predicate P; this will be 
important later when competing focal points must be resolved. 

Exam}'le: This rule would be applicable in the case where we know about only one 
Bri ige, namely C125 . 

. 
Both x and y can be vectors, in which case they will be denoted by [xJ and [yJ. Another 

example of uniqueness (using equality on elements of a vector) is the following: P([x, yJ) == 
x = y where the domain is defined to be vectors such that Sum([x, yJ) == x + Y = 100. This 
causes us to choose the vector [.50,.50J over all others whose elements sum to 100. 

5.2.2 Uniqueness Complement 

Lack of information can also cause a solution to be prominent. 
An objecl may be a foeal point lJ it is the only objecl without a given property. Formally, 

if in i - 1 we have P E 'Predi_l , and there exists an x E Termi. -I such that 

P(x) tf.* Faclsi_lVy E Term, y i= x[P(y) E* Faelsi_l], 

then in step i we will have 
Unique-Comp(x, P, i). 

Example: This rule would be applicable in the case where we know that everybody 
in the domain is a member of the Democratic Party, except that we have no information 
one way or the other about John. Although we don't know whether or not John is also a 
member, this lack of knowledge causes hirn to be prominent. 
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5.2.3 Centrality 

Another meta-predicate is the concept of Centrality, the intuitive property of a central point 
around which a domain (or sub-domain) is symmetrie. 

An object may be a focal point if it is a central object within a given domain . Formally, 
if in i - 1 we have P E Pl'edi_1 , and there exists an x E Termi_l such that 

then in step i we will ha.ve 

P(x) E* Factsi_l 

Vy E Term, y =J:. x I\. P(y) E- Facts i-I , 

3z E Term, z =J:. y 1\ P(z) E* Factsi_l' 

such that y - x = x - z 

Central(x, P, i). 

Example: In the range between 0 and 100, the number 50 is Central (where P is the 
predicate Integer). 

5.2.4 Extreme 

An object can sometimes be prominent because it is the highest object, or the tallest, 01' the 
smallest, among the elements of the domain. 

An object may be a focal point if it is an extreme object in a totally-ordered domain . 
Formally, if in i - 1 we have P E Predi_1 , and there exists an x E Termi_l such that 

Vy E Termi_l,y =J:. x,(P(x,y) E* Factsi_ll\. P(y,x) rt* Factsi-t}, 

then in step i we will have 
Extreme(x, P, i). 

Example: In the range between 1 and 10000, the number 1 is Extreme-Total (with the 
predicate P being "less than"). 

5.3 Dealing with Functions 

All of the rules above can be generalized by using, instead of x and y, f(x) and f(y), functions 
that return values given the x and y terms or vectors. First, we must assume that the agent 
has been given a third finite list (in addition to Pred and Term) that enumerates the domain 
of functions: ?unc. Then, as an example, we could write the Extreme property as follows: 
if in i - 1 we have P E Predi_1 a.nd function f E Funci-l, and there exists an x E Termi-l 
such that 

Vy E Termi_l,y =J:. x, (P(f(x),f(y)) E* Factsi_ll\. P(f(Y) , f(x)) rt* Factsi_l), 
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then in step i we will have 
Extreme(x, P, i). 

The original rule above is then the case when the function f is the identity function. 
Consider the following example: 

Famous(Smith), Famous(Jone.~), Famous(Brown), Famous(Father-of(Smith)) 

Using our original focal point rules, neither Smith, Jon.;s, nor Brown would be a promi
nent solution. However, extending the technique using functions, Smith becomes a prominent 
solution (since he is the only one with a famDUS father). 

The set of functions Func will grow over time both through observation, and thr01.1gh 
composition. When the process starts, Func is equal to the finite set of functions provided to 
the agent. At the second step, the agent considers binary compositions of functions from the 
original list. At step three, he considers ternary compositions of functions from the original 
list, and so on. 

step 1: Ftmcl = {domain constant functions} = {F1 , F2 , . •• } 

step 2 : Func2 = {binary combinations of functions of Funcd = 

{F1 0 F2, F1 0 F3, F2 0 F3, ... } U Funcl 

step 3 : Func3 = {ternary combinations of functions of Funcl} = 

{F1 0 F2 0 F3, F2 0 F3 0 F4 , ••• } U Func2 

5.4 Computing Focal Points-The Resolution Rules 

The rules above specify when an object is unique, or extreme, etc.; they do not relate directly 
to the question of when the object is actually a focal point. We thus need a rule to use in 
tying together these attributes with the not ion of focal point. 

The most straightforwarcl approach is to relate each of the meta-predicates above with 
the focal point attribute: 

2: Unique(x, P, i) 

i + 1: FocalPoint( x, i) 

2: Unique-Comp(x, P, i) 

i + 1: FocaIPoint(x, i) 

2: Central(x,P,i) 

i + 1: FocaIPoint(x, i) 
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z: Extreme(x, P, i) 

i + 1: FocalPoint( x, i) 

These rules of course may not supply us with a unique focal point, since there could be 
a term that satisfies Unique, another that satisfies Unique-Comp, etc. There could even be 
two separate terms that are U nique with respect to different predicates. There is still utility 
for the agent in discovering the set of focal points, since even if the choice is made among 
them probabilistically, there is an increased chance for coordination among the agents. 

'vVe will not attempt here to provide additional rules that guarantee a single focal point. 
Instead, we illustrate that one could introduce additional rules so as to reduce the size of 
the focal point set. 

lt is critical to resolve among focal points so that ones that are discovered more easily 
have higher priority. Step logic provides us with a natural tool for dealing with this. Using 
step logic, there are several mechanisms for relating priority to complexity; we he re present 
one. 

A focal point might be generated (given the above rules) at a given level, then not be a 
focal point at a subseqllent level. The agents look for focal points only up to a certain level k. 
At this level, there might be several competing focal points that are still valid (e.g., arising 
from different rules, or from different predicates). As an initial winnowing mechanism, the 
focal points that were generated earliest are kept and the others discarded. 

Example: In the range between 1 and 10000, the number 1 is Extreme-Total (with the 
predicate P being "less than"), and 10000 is Extreme-Total (with the predicate P being 
"greater than"), after the first step. 

If the domain of considered integers grows at each step, 1 will still be extreme while 10000 
will no longer be extreme. Thus, at the end of the process, 1 will be chosen since it has been 
"extreme" for the longest period. This disambiguates between the two extreme ends of a 
finite domain that is growing in only one direction. 

The algorithm only considers "term-property" pairs; if a term was a focal point because 
of some property at level i, then was no longer a focal point because of that property at 
level i+l , then again became a focal point because of a different property at level i+2 (and 
remains a focal point lIntil the end), then it is considered to have been generated at level 
i+2. 2 

The intuition is that, since the other agent may not go as deep in the deduction as we 
have in looking for a focal point, we are more likely to match the other agent by taking the 
earliest focal point. Tt is the solution that we still believe in most likely to have been reached 
by the other agent. 3 

2The idea behind looking at term-property pairs in order to establish the first appearance of a focal point 
is that once a focal point has disappeared because of other terms with the same property, its prominence 
because of that original property is completely negated. 

30ther approaches present themselves, such as considering the coverage of a focal point e.g ., if a term is 
a focal point for much of the deduction . though it is not at the final step, we would still consider it a likely 
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We mayaiso choose to introduce rules that assign a priority to the meta-predicates (like 
Unique) so that, for example, a unique object gets priority as a focal point over an extreme 
object. 

5.4.1 The Relation of Actions to Focal Points 

There is an important relationship between the actions that are to be coordinated by inter
acting agents, and the focal point.s in a domain. This relationship can help agents resolve 
competing focal points. 

Consider the following example (due to Schelling). Five candidates, Smith, Jones, Brown, 
Robinson, and White, are running for public office. In the first round of voting, the following 
results occurred: 
j(Smith) = 19 
j(Jones) = 28 
j(Brown) = 15 
j( Robinson) = 29 
j(vVhite) = 9 

Vou are now to choose whom to vote for, given that you will win money if your choice 
wins the election, and that you have no üther interest in the outcome. 

Considering our focal point rules (with the function modification), there are two Extreme 
candidates for focal points: Extreme(W hite, <, i) and Extreme(Robinson, >, i). It seems rea
sonable that in choosing whom to vote for, the "greater-than" relation is of greater relevance 
than the "less-than" relation (Schelling's own experiments confirm this). We would like to 
capture this intuition in our Focal Point algorithm. 

Other examples might assign "tallest" as the predicate most relevant to choosing a promi
nent basketball player, and "sho'rtest" as the predicate most relevant to choosing a prominent 
jockey. There might also be relevant predicates used for the uniqueness property. For exam
pIe, we might have a group of people, one of whom will be chosen to help us move fun'liture. 
We must choose one of the group, matching someone else's choice. It turns out that only 
one person is a swimmer, and only one (other) person is blond. Although the uniqueness 
criterion applies to both, being a swimmer is more relevant than hair color to the assignment 
of someone for a physical task. 

Obviously, the representation of relevance is intimately connected with our representation 
of action. The details of this connection are beyond the scope of the current paper, and are 
left for future work. 

solution, We could also then probabilistically weight the steps of the deduction, so that (for example) earlier 
steps receive more weight than later steps. These methods are left for future work. 
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6 Interesting Knowledge Categories 

In the full paper, we will consider several different cases involving varying degrees of knowl
edge a.mong agents, and the consequences that these different knowledge conditions impose 
on the search for focal points. It will sometimes be necessary (or simply appropriat.e) to 
modify the algorithm presented above so as to exploit the particular knowledge situation 

.. that exists. 
Among the knowledge conditions that we will examine are the following: 

1. There is common knowledge on everything, including the original axioms, run-time 
observations, the domain of predicates, terms, and functions, and the agents' compu
tational "power" (i.e., how deep the search for focal points will go). We consider cases 
where the agents search to the same depth, and where they do not search to the same 
depth. In the case where search depth is identical, we show that if there is a set of 
focal points, the set will be generated identic:ally by both, i.e., the procedure above is 
deterministic. \Vith minor modification, the algorithm generates the same set for both 
even when the search depth is not identical, but is known. 

2. There is common knowledge about everything other than the power of computation 
(i.e., how deep the focal point searCl will go). We then consider whether the set of 
focal points is monotonic, and whether the agents will reach the same focal point under 
certain conditions. 

3. The agents have implicit common knowledge: the explicit expression (syntax) of the 
knowledge is not identical, but the closure under deduction is the same. We will 
examine whether the agents, under ,ertain conditions, reach the same focal point. 

7 Conclusions 

We have presented the concept of focal point solutions to interaction problems, and discussed 
why conventional representation techniques are insufficient for focal point discovery. An 
algorithm was developed that allows for the uncovering of focal points through the use of 
step-Iogic, special inference rules, and sets of predicates, functions, and terms that change 
over time. The technique is particularly well-suited for modeling the time-dependent nature 
of focal point search. Further work is needcd to characterize the knowledge situations when 
these techniques will converge, and for integrating theories of utility into the focal point 
calculation. 
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SANP: A Communication Level Protocol for 
Negotiations 
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Abstract 

Organizations are distributed open systems where agents (workers, department, etc.) co
operate with one another to achieve organizational goals. However, conflict is also an inherent 
component of the process. In designing computer systems which aim to automate organiza
tional activities, the conflicts among agents and how to resolve them need to be considered. 
Distributed Artificial Intelligent (DAI) researchers have long been interested in the question of 
how to resolve conflicts among cooperative agents in distributed problem solving environments. 
Negotiation has been suggested by many researchers as an important technique to resolve con
flicts. However, most of the existing negotiation protocols used in DAI systems are inflexible. 
Actual protocols rarely take into account the result from negotiation research. In this paper, we 
propose a negotiation protocol, SANP (fu>eech Act based Negotiation ~rotocol), that is based on 
Ballmer and Brennenstuhl's speech act theory, and on the negotiation analysis literature from 
other disciplines. SANP is a flexible protocol that supports multi-level negotiations between 
two parties. In addition, SANP also allows third party arbitration if the parties involved in the 
negotiation cannot resolve the conflict themselves. 

1 Introd uction 

Organizations are open systems that are composed of many interdependent and interconnected 
subsystems [17,18]. To accomplish organizational goals, work has to be distributed among agents 
(i.e., employees, departments, etc.) and their effort has to be coordinated in the direction of 
reaching the goals. However, each agent may have his own goals that may be inconsistent with goals 
of others. In an open system, agents receive incomplete and inconsistent information from outside 
of the system or from different parts within the system, and they develop their own viewpoints 
and beliefs that may be incompatible with the beliefs of other agents. Agents may also have 
different interpretations of the same si tuation caused by different personal knowledge and beliefs 
[15]. Hence, conflict is inevitable. Different kinds of confiict may arise: (1) conflict of interest 
when two agents compete for scarce resources; (2) conflict of value; (3) cognitive conflict when two 
agents differ in their thought processes or perceptions; and (4) goal conflict when desired out comes 
of two agents differ [24]. This paper investigates the computer communication support needed for 
resol vi ng confli cts by negotiation. 

Distributed Artificial Intelligence (DAI) researchers have long been interested in how to resolve 
conflict among cooperative agents in distributed problem solving environments. However, Galliers 
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[13] points out that most existing DAI research projects avoid dealing with the problem of conflict 
among agents by assuming that cooperative agents are benevolent, agree with each other, and ready 
to adpot each other's goals. On the other hand, most of the projects that consider conflict assurne 
the existence of a centralized authcrity for making decisions. In open systems, however, we cannot 
make this assumption. 

Many methods have been proposed to reconciliate' disparities among agents [5J. We are in
terested in the application of negotiation which has been suggested by many researchers as an 
important method to resolve multiagent conflicts in open systems [5,9,15,17,18,29] , Negotiation 
is a process of communication between agents in which conflicting goals are reframed, conflicting 
issues are identified and narrowed, alternative solutions are proposed, attacked, and defended, and 
agreements are reached and confirmed [23J. All these functions should be provided if we want to 
support negotiation between agents to resolve conflicts in an organizational informa~ion ci~'stem . 

It is important that agents can present arguments that support their beliefs and goals, so that 
the other party in the negotiation process can understand the rationale of the beliefs or claims. 
The articulation of the arguments may help to identify issues on which the parties disagree and 
subsequently to solve the problem. 

However, most existing negotiation protocols do not support all these functions of negotiation. 
Most of them are inflexible and are designed only to coordinate the execution of tasks. The primary 
aim of our research is to develop a flexible negotiation protocol that supports organizational work. 
SANP (Speech Act based Negotiation:e.rotocol) is based on Ballmer and Brennenstuhl's sp~ech 
act classification. SANP incorporates se "er al strategies that the parties can employ in negotiation, 
such as "delay" and "appeal". In the next section, we shall review the related research projects 
that use negotiation to coordina;e distributed problem sol vers. Section three describes Ballmer and 
Brennenstuhl 's speech act classification. Our proposed negotiation protocol is presented in section 
four. An example application will be given in section five. Section six outlines the usage of our 
protocol and future research work. 

2 Related Work 

The need for a communication protocol was recognized by researchers in the DAI field. Camphell 
and D'Inverno [6J, for example, suggest that communication protocols can be used to control 
excessive cornmunication between agents that uses a great deal of computer resource. Several 
researchers have proposed negotiation protocols and frameworks to support the cooperation of 
distributed problem sol vers or agents. Some of these are Contract Net Protocol [9,19,29], Multistage 
Negotiation Protocol [8], Partial Global Planning [11,12], and PERSUADER [30]. 

Most of these protocols (except PERSUADER) view negotiation as a process of exchanging 
contracts or plans that result from planning or reasoning processes. In this case, each agent will 
hav~ a better idea of what other agents plan to do and adjust their plans accordingly. These 
protocols suffer the problem of inflexibility in that they only allow agents to negotiate at a fixed 
level. That is, agents cannot negotiate the selection of a particular action, assumptions, and criteria 
of decision making. In addition, the design of these protocols is not based on any theory or model of 
negotiation, nor does it result from an analysis of negotiation processes. They are only designed to 
solve the problem at hand, and they are not general enough to be used in other problem dom.1.ins. 
In particular, it is difficult to apply these protocols to the organizational environment to support 
the negotiation of distributed workers. r.:. .. example, while establishing policies or constructing 
budgets, i t may not be easy to gain consensus by only exchanging plans. 
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PERSUADER [30] does allow negotiation to be done at different levels (Le., slightly more flex
ible). 1t uses a mediated negotiation model based on an integration of case-based reasoning and 
multiattribute utility theory to generate proposal and counterproposal based on the feedback from 
the other party. The most important feature is that it can generate persuasive argumentation to 
change the other party's mind. Although the system provides a good support for negotiation, it is 
not exactly a negotiation protocol, it functions more like a negotiation support system. Furt her
more, it does not support many strategies that can be used in negotiation, such as delaying the 
discussion. 

3 Speech Act Theory 

The central idea of the speech act theory [2,25,26] is that someone uttering a sentence is not 
just saying things (Le., describing astate of affairs), but he is actually doing sometbings [20]. For 
example, when somebody says "I promise to come", he is not only uttering the statement "I promise 
to come", bu t he actually commits himself an action to be performed in the future. 

3.1 Searle's Speech Act Classification 

Searle's speech act classification is the most fully developed and widely used classification. Some 
researchers have applied it to the computer domain [7,34,35,36,38]. Others use Searle's taxonomy to 
analyze natural discourse (e.g., van Eemeren and Grootendorst [32] use it to analyze argumentative 
discussion). Searle [26] suggests that there are five basic kinds of actions that can be performed in 
speaking. He bases his classification on the goal that a speaker wants to achieve by bis utterance 
and comes up with five categories: 

Assertive: 
Directive: 
Commissi ve: 
Expressive: 
Declarati ve: 

which commits the speaker to the truth of the expressed proposition. 
which are attempts by the speaker to get the hearer to do something. 
wbich commits the speaker to some future course of action. 
which expresses the psychological state about the state of affairs. 
which brings about change by virtue of the content of the utterance. 

However, this classification is being criticized as "lack a principle basis, contrary to Searle's claims, it 
is not even build in any systematic way on felicity conditions" [20]. Another shortcoming of Searle's 
work is that he only analyzes the speech act Cl om the speaker's point of view, there is no analysis 
of interaction between the speaker and the hearer (i.e., the analysis is basically unidirectional). It 
is difficult to use this taxonomy to analyze natural discourses because most of these are interactive 
in nature. Another difficulty in using Searle's classification is that no matter what the function of 
a speech act is, we have to put it in one of the five categories. It overloads the semantic of the 
categories and makes it difficult to comprehend what the speaker really wants. Therefore, another 
classification is needed if this theory is to be useful to constructing a communication protocol. 

3.2 Ballmer and Brennenstuhl's Speech Act Classification 

Ballmer and Brennenstuhl [3] were interested in classifying all German speech act verbs into Searle's 
speech act categories. They experienced enormous difficulties, however, because the classification 
required constant revislon with the. addition of more verbs. This caused a re-analysis of all previ
ously classified speech act verbs and, hence, this process seemed endless. 

3 



To overcome this problem, Ballmer and Brennenstuhl employed a bottom-up approach, instead 
of the top-down approach suggested by Searle, to classify speech act verbs. This approach considers 
all speech act verbs in a German verbs dictionary, and groups the verbs that are similar in meaning 
into semantic cate!;ories. For example, the category "Dissent" has speech act verb like "have words 
with someone", "quarrel", etc. Semantic categories are grouped into models according to semantic 
similari ty. For instance, the Struggle Model consists of the categories "Attack" and "Dissent". The 
categories in a model and the models themselves form a natural order based on temporal relation 
and degree of effecti veness. For example, "Defense" is temporall~- ordered after "Attack", and 
"Threatening" is more effective than "Warning". 

The models are related to each other as weil. They can be grouped into four linguistic functions: 
(1) Expression, (2) Appeal, (3) Interaction, and (4) Discourse. The Expression linguistic function 
contalns speech act verbs for expressing emotional states. Appeal is a linguistic function directs 
towards to a hearer and try to affect his course of action. Interaction is the linguistic function that 
two parties engage in so me form of negotiations. Discourse is the linguistic function which involves 
a more organized verbal interaction between two parties. 

For our purpose of constructing a negotiation protocol, we are most interested in the Interaction 
linguistic function. We will base largely on the Struggle Model and partlyon Institutional Model 
(malnly the appeal to au.thority). The Struggle Model contains speech act verbs that are used i.:l 
various stages of negotiation. If the parties involved in the negotiation cannot reach agreement by 
themselves, they can requ.ire arbitration from a higher authority which is handled in the Institutional 
Model. 

3.3 The Shuggle Model 

The struggle model covers the semantic area of verbal struggle. The struggle starts by the attacker 
making a claim and by attacking an addressee if he disagrees with the claim. Then both parties 
engage in a competitive verbal fight, argue with each other which may result in the victory of one 
and the defeat of the other or in a compromise [3]. In the course of struggle, both parties can 
employ tactics &uch as postponing the discussion or requesting arbitration. 

Figure 1 exhibits the categories in the Struggle Model and Institutional Model that we use to 
construct our protocol. Notice that we do not include all the categories in th€: models. We leave 
out categories that describe: 

1. physical action (e.g., crash into), 
2. emotional reaction after loosing a negotiation (e.g., retaliate, refusing to admi t defeat) , 
3. coalition attempts with third parties, 
4. nonserious behavior (e.g., playatrick on), and 
5. emotional tactics (e.g., insult). 

Speech act verbs related to physical actions and emotional reaction after loosing a fight are not 
applicable to machine-machine communication in an organizational setting. The last two items are 
difficult to support and their intended outcome can be modelled using other speech act categories. 
Coalition with a third party is left for future work. 

We also made minor changes to the remaining categories. First, we comhine some categories 
because the low level distinction is not necessary for our protocol. For example, it is not necessary 
to distinguish different link~ Jf claim (makejustifiable claims, make negative viewed claim). Second, 
we rename some categories to reflect the functionality of the categories. For example, the category 
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CODE CATEGORY NAME EXAMPLE SPEECH ACT VERBS 

KA_3a unacquainted status be strange, be unknown 
KA-2a make claim ask, assert, claim opinion 
KA_1a agree agree, share the same opinion 
KA_1c dissent break with someone, have words with someone 
KA_Id withdraw abandon, abstain from, give up 
EAoj argumentative attack affirm, claim, confront 
K Albba postpone adjourn, delay, hold up, postpone 
KAlbbb admit defeat· admit, agree to, give in, give way 
KAlbcd argumentative defense bring counterarguments, contradict, disprove 
KA!cab pinning down fix, pin down, tie down 
KAlcca repeated attack claim, iterate, repeat 
KAlccb insisting persist in, press, pursue 
KA3b retreat !:!! KA_ld 
KA4ab force concession force, overrule 
KA4cbd offer compromise make a contract, make an agreement 
KA4cba one-sided compromise admit, consent to, agree 
KA4cbc counter offer accept in part, make sti pulation 
K A4eda accept compromise accept, agree with, approve of 
N060 appeal appeal to someone, bring forward 
N06e examining hear, question 
N06da testify give testimony, show proof 
N07a make decision arbitrate, decide, settle 

Figure 1: Example speech act verbs in selected categories. 

name of K Albba is "evasive manoeuvre without loss for defender". However, the functionality of 
the speech act verbs in the category (e.g., adjourn, delay, hold up, postpone, put off) can be better 
descri bed as "postponing". 

We want to mention here that the label attached to each category represents the meaning of 
the speech act verbs. KAis the model name derived from the German word "Kampfmodell" which 
means struggle model. The subscript is used to express sequencing and subcategory information. 
For example, the category KAI is sequenced before K A2, and K Ala is a su bcategory of KAI. 

In the following section, we will describe how we use these categories and result from negotiation 
research to construct our protocol. 

4 SANP: The Negotiation Protocol 

4.1 Principles behind SANP 

The basis of SANP (.fu>eech Act based Negotiation Protocol), is the Struggle Model. We use the 
temporal relations between the categories and the alternative choice provided by the subcategories 
to construct the protocol. For example, "Dissent" must appear after "Make Claim", and there are 
two alternatives after the sentence "Make Claim": "Agree" and "Dissent". The sequencing infor-
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mation is provided by the subscript of the category labels. Note that the sequencing information 
ensures that if category Y has to be used after category X, then Y has a subscript number which 
is greater than or equal to that of X. 

In constructing the protocol, we use the following rules to guide a conversation: 

1. After speaking a sentence, the party must wait for the other party to reply before it is allowed 
to speak its next sentence. 

2. The next sentence spoken is restricted by the choices given at that state in the protocol 
diagrams in the appendix. 

Results from the negotiation literature are used to decide what dhould be included in the protocol 
and to confirm the validity of the Struggle Model. The processual model of negotiation of Gulliver 
[16], strategie choice model of Pruitt [22], ar.d the analysis of argument structure of Toulmin [31] 
are used to support our design decisions. 

Gulliver [16] proposes an 8 phase processual model of negotiation which depicts the develop
mental progress of the negotiation process from the initial recognition of the dispute to some kind 
of outcome. His model only cover two parties negotiation without the intervention of third party. 
The 8 phases are described as follow: 

1. Search for arena: Parties agree on the location where negotiation may occur. 
2. Agenda Setting: Parties agree on the issues to be negotiated. 
3. Exploring the field: parties try to establish maximal limits to the issues in dispute. 
4. Narrowing the difference: the parties begin to look for the possibilities of approaching actual 

out comes and try to narrow their differences. 
5. Preliminaries to final bargaining: parties search for a viable bargaining range, refine persisting 

difference, test trading possibilities, and construct a bargaining formula. 
6. Final bargaining: parties exchange specific and substantive proposals and counter proposals. 
7. Ri tual affirmation 
8. Execution of the agreement 

Our protocol is not intended to support the entire process of negotiation described by Gulliver. 
We make a number of assumptions: the negotiation platform is computers, there are specific issues 
to be negotiated, and when a comprornise is made it is automatically affirmed. Therefore, our 
protocol will only support the negotiation phases 4 to 6. More specifically, we would like to provide 
facilities for exchanging information among agents to bcrease the understanding of each other, for 
narrowing down differences, and for settling the dispute. 

Pruitt [22] proposes a Strategie Choice model of negotiation. The model states that parties 
involved in a negotiation have to make strategie choice at every point in time. The choices include: 

1. concede unilaterally 
2. stand firm and employ pressure tactics (e.g., persuasi ve arguments, threat) 
3. collaborate with other parties in search of a mutually acceptable solution. 

Maynard [21] in his research on the structure of discourse in rnisdemeanor plea bargaining 
finds that bargaining results in three outcomes: reaching comprornise, postponing discussion, and 
appealing to higher authority. Requests for postponement are used to collect more information or 
to put pressure on the other party. 

In addition to reaching a comprornise, SANP is designed to support both "Delay" and "Appeal" 
functions. We also support all the strategies stated in the Strategie Choice model. We allow agents 
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to make concessions by offering one-sided and two-sided compromise, and to persuade other agents 
by providing arguments. 

Toulmin [33] proposed a simple model of argument structure which is depicted by the following 
diagram: 

Data ----> so: Claim 

since 

Warrant 

In Toulmin 's analysis, the first step in an argument is that one party expresses an opinion, which 
Toulmin calls a "Claim". If the claim is challenged, it has to be defended by adducing of "Data" 
which supports the claim. If the challenger is not satisfied with the accuracy of the data, the 
objection has to be removed by "Preparatory Argument". However, even if the accuracy of the 
data has not been questioned, the challenger can require further support for the claim. In this case, 
a "Warrant" which states the relation between the "Data" and "the Claim" has to be given [33]. 
An Example of the structure is: 

It is raining 
(Data) 

----> so: 

since 

the playground must be wet 
(Claim) 

If it rains, the playground will be wet 
(Warrant) 

From this simple structure, we conclude that arguments are recursive. We need to justify the 
accuracy of the "Data" by another argument. We need to do the same thing for the "Warrant", 
we can question its validity and require a justification. 

SANP is designed to handle the recursive properties of argumentation. It supports multi-level 
negotiations so that the participants can identify and narrow down their differences more easily. 

4.2 A Communication Level Protocol for Negotiation 

In this seetion, we shall diseuss a communicatiollevel negotiation protocol, SANP, that ineorporates 
the requirements diseussed in the previous seetion. 

The format of a sentence in SANP consists of the two components: 

<funetion> < eontent> 

where <funetion> is a speech act eategory name and <eontent> is the representation of domain 
knowledge (an example domain knowledge representation is given in seetion 5). Figures in the 
appendix are the protoeol diagrams. The state of a conversation is represented by anode. The "-" 
and "+" signs labelled with the are in the diagram are used to indieate the sentenees spoken by the 
attacker and the defender, respeetively. The "?" indieates the sentenees spoken by the arbitrator. 
For example, "-K A-2a" means the attacker speaks "Make Claims". The arcs originating from 
anode is the allowable response in that stage of negotiation. For example, in "Dissent" state, 
the attaeker has two choiees: "Retreat (-K A3b)" or "Argumentative Attack (-K Aoj)". The 
reet angular box indicates the name of the subdiagram to be used at that point. "End" is used 
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to terminate the conversation. A detailed description of the protocol is provided in the appendix. 
The following discussion will highlight some important points in the protocol. 

Basically, there are 6 main stages in the protocol: 

1. Starting situation: The agents establish a common understanding of the topic and decide 
whether they have the necessary knowledge to enter into a discussion. 

2. Making a claim and receiving dissent: The attacker starts by presenting his claim. It can 
be aplan, arequest for action, or just an assertion. The defender then reasons whether he 
agrees with it or not. 

3. Attacking: If the defender disagrees with the claim, the attacker will start attac:'dng the 
defender by providing argument. 

4. TacticaL phase: The defender begins by defending his positiön,-,the a.ttacker attacks the de
fender's argument. This process continues until they identify their differences and try to 
narrow them down. They can employ different tactics: request to delay, offer compromise, 
and insist on their own arguments. This phase corresponds to phase 4 and 5 of Gulliver's 
model. 

5. Entering into a settlement: Both parties begin to offer compromise and counter on other's 
proposal. This phase correspond to phase 6 of Gulliver's model. 

6. End result: The result of the negotiation can be an one sided comyromise, mutual compromise, 
delay, or appeal tc higher au thori ty. 

Initially, bot\ parties are in the "ldle" state, the attacker needs to specify or declare the topic of 
discussion. If th defender does not have the nec.essary knowledge, the converation ends. Otherwise, 
both parties should have an the necessary background to understand each other (e.g., the same 
variable will mean the same thing to both of them). The term "ack" (used in the protocol diagram 
in the appendix) means the defender agrees to discuss the topic. 

In the tactical phase, the protocol supports multi-level arguments by providing a looping be
tween the "Being attacked" and "Defending" states. Therefore, both parties can request and pro
vide deeper and deeper level of support to their arguments. This looping also aims at identifying 
and narrowing tde differences between the views of the parties. For implementation consideration, 
we only allow a maximum of 100 times of looping to avoid infinite looping. We believe this number 
is sufficient in an ordinary argument. Moreover, if the number of iterations on the same point at 
the same level exceeds 5, the looping is also terminated. We handle the looping between "Offer a 
compromise" and "Modify the compromise" in a similar way. 

Our protocol also supports the delay tactic suggested by Maynard [21]. An agent can request 
to delay a discussiQn if he does not have enough information to continue the discussion. It must 
be emphasized that the date of postponement is also settled by negotiation. The other party can 
even deny the request if he is in a higher position of authority. 

Appeal to a hlgher authority is also supported. If the parties find that they cannot settle the 
dispute by themselves, they can request an arbitration. The arbitration process is simple, each party 
presents his own arguments and the arbitrator will make adecision based on this information. We 
assume that the arbitrator is either a human being or a system that has the necessary knowledge 
to make the decision. 

In designing this protocol, we always put fiexibility in high priority so thatit can be applied to 
wide variety of situations. In the following section, we will give an example use of our protocol. 
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5 An Example Application 

In this section, we shall describe how the proposed communication protocol is used to support 
the preparation of budgets. Consider two organizational workers where the at tacker is responsible 
for preparing the departmental budget and the defender is an employee who prepares part of the 

- departmental budget. The attacker feels that the "labor cost" budgeted by the defender is too 
high. 

Before presenting the dialogue, we need a . representation of the domain knowledge: 

1. knowledge and rules are represented as equations. For example 
labor cost = totäl hours X salary X number of worker 

2. facts are represented using variables and their corresponding values. 
3. A "?"I'i in-an equation means the agent does no know the value of a variable. 

We intentionally make the representation simple so that we can demonstrate our ideas easily. 

In Figure 2, we present three scenarios for negotiation. The at tacker begins the conversation by 
declaring the topic as "Next year's budget". The defender knows the topic, so he agrees to discuss 
it. The attacker claims that the "labor cost" should be $91,520 and the defender disagrees with 
the attacker. The defender provides a.rguments why he disagrees in line 4. In line 5, the at tacker 
disagrees with the value of "hourly wage" and "total yearly hours" and provides his argument. 
There are three possi ble scenarios after this. 

In the first scenario, the defender offers a comprorrllse in line 6. He agrees on "hourly wage" 
but requires to keep the number of employee to be 5. The attacker consider this compromise to be ' 
acceptable, so he accepts $114,400 as the labor cost. 

In the second scenario, the defender does not know the value for "%increase", he requests to 
postpone the discussion to 6/30/91. However, in line 10, the attacker wants the discussion to be 
resumed earlier, so he counter offers an earlier date and the defender accepts this new date. 

In the third scenario, the defender agrees with the percentage of wage increase (%increase). 
However, he disagrees with the value of "#employee", so he presents his own calculation. In line 
14, the at tacker in turn disagrees with the value of "workload". However, the defender insists that 
the value of "workload" is 10,000 hours. Since they cannot resolve the confiict among themselves, 
the attacker requests an arbitration in line 16. In line 17 to 20, the attacker and the defender 
present their arguments to their superior. Based on his knowledge, the superior makes adecision 
in line 21 that is in favor of the defender. 

These example scenarios show that in SANP agents can present their supporting evidence 
in the negotiation process and they can discover the reasons for their confiict. For instance, in 
scenario three, the agents finally identify the cause of disagreement on the "labor cost" to be their 
different assessment on the value of "workload". In addition, agents can utilize strategies such as 
postponement and arbitration in SANP. 

6 Conclusion 

We have proposed a communication level negotiation protocol, SANP, based on the Struggle Model 
and partlyon the Institutional Model in Ballmer and Brennenstuhl's speech act classification. In 
designing the protocol, we also draw on the results of negotiation research. Our aim is to provide 
a flexible protocol which can be applied to various areas in DAI and to automate organizational 
work. The protocol provides the ability to multiple level negotiations and supports many tactics 
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1 
2 
3 
4 

5 

A: Declare topic 
D: Ack 
A: Make claim (K A_2a ) 

D: Dissent (K A_ lc ) 

A: Argumentati ve 
attack (K Aoj ) 

"Next year's budget" 

labor cost = $91,520 
labor cos t = $124,800 
(Reason:) 

labm cost = hourly wage x total yearly hours 
hourly wage = $12 
total yearly hours = 10400 hrs 

hourly wage = $11 
total yearly hours = 8320 hrs 
(Reason:) 

hourly wage = last year wage X (1+%increase) 
last year wage = $10 
%increase = 10% 
total yearly hours =#employee x 2080 
#employee = 4 

After here, there are three scenarios: 

Scenario 1: Compromise 

6 

7 

8 

D: Offer compromise 
(K A4cbd) 

A: Accept compromise 
(K A4cda) 

D: End 

Scenario 2: Postpone 

10 D: Postpone (KAlbba) 

11 I A: Counter offer 
(K A4cbc ) 

12 D: Accept compromise 
(K ~cda) 

13 A: End 

labor cost = $114,400 
%increase = 10% 
#em ployees = 5 
labor cost = $114,400 

Date = "6/30/91" 
(Reason:) %increase = ? 
Date = "6/27/91" 

Date = "6/27/91" 

Legend: "A" is the attacker, "D" is the defender. 

Figure 2: An example dialogue for the buugeting example (part 1 of 2) 
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Scenario 3: Arbitration 

14 

15 
16 
17 
18 
19 

20 
21 

22 

D: Argumentative 
defense (K Albcd) 

A: Repeated attack (KAleca ) 

D: Insisting (K A lecb ) 

A: Appeal (N 0 60 ) 

S: Examining attacker (N06c) 
A: Testify (N06da) 

S: Exarnining defender (N06e ) 

D: Testify (N06da) 

S: make decision (N07a ) 

23 S: End 

Disagree: #employee = 5 
(Reason:) 

#employee = round(workloadj2080) 
workload = 10,000 hrs 

Disagree: workload = 8,000 hrs 
workload = 10,000 hrs 

labor cost = $91,520 
(Reason:) 

labor cost = hourly wage x total yearly hours 
hourly wage = 11 
total yearly hours = #employee x 2080 
#employee = 

round(workloadjyearly hours per employee) 
workload = 8,000hrs 

Labor cost = $114,400 
workload = 10,000 hrs 
workload = 10,000 hrs 
labor cost = $114,400 

Legend: "A" is the attacker, "D" is the defender, and "s" is the arbitratorjsuperior. 

Figure 2: An example dialogue for the budgeting example ,:part 2 of 2) 

wruch are weil recognized in negotiation literatures. At the communication level, all the reviewed 
negotiation protocols in section 2 can be captured in our protocol. 

It is necessary to mention that our protocol is only a communication level protocol, users 
need to provide their own representation and reasoning mechanism for the domain knowledge. 
For example, the output of a negotiation support system is a good input to our protocol. Some 
argument comprehension system (such as OpEd [1]) can also be attached to our protocol. 

It is also possible to automate some serni-structured negotiation in an organization by providing 
a set of tools to the agents. See [37] for a detailed discussion of trus direction of application. 

We plan to implement a prototype of SANP as a generic platform for negotiation using the 
Strudel package [28J. Strudel provides a set of generic tools that enable conversation and action 
management. In Strudel, messages contain conversational moves, such as "Make claim" in our 
protocol, and we can restrict the possible next moves in the message. Small programs can be written 
in Winterp, an objected-oriented Lisp, to process the message automatically. Other researchers 
can then attach their own representations or models, rules of negotiation, and pnblem solving 
algorithms of their interested problem domains to this platform to fulfill their specific needs of 
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negotiation. 
Future work will include application of SANP to specific problem domains (e.g., budgeting) 

to investigate the usefulness and limitation of the protocol. We hope to gain insight from these 
experiences to improve the protocol. 

Our protocol can be extended in several ways. First, our treatment of the appeal function is 
very simple. In fact, the appeal function can be viewed as another negotiation with a mediator. 
The Institutional model provides a good base for developing such a protocol. Second, the detailed 
process of arguing, such as requesting more information and criticizing opponent's argument, has 
not been incorporated into the protocol. The "Arguing Devices" in Ballmer and Brennensthul's 
classification can be used for this purpose. Third, the protocol can be extended to involve a third 
party in the negotiation. This party is not the arbitrator, but an agent that collaborates with one 
of the parties in th~ conilict. 

SANP is not meant to be complete. Many improvements have yet to be made. The validity 
of the protocol is derived in part by the match between the negotiation literature and the speech 
act classification. The final assessment of the protocol should be based on its usefulness when it is 
applied to differnt problem domains. 
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Appendix: Descriptions of the SANP Protocol 

The detail of the protoeol is deseribed in this appendix. Symbols and notations used in the protoeol 
diagram is given in seetion 4.2. The title of the seetions and subseetions (in italic) eorresponds to 
the subdiagram names and nodes, repeetively. 

Opening Stage 

Idle 

At the beginning of the eonversation, parties involv~d should establish eommon understanding. 
They need to agree on the topic of discussion and make sure they both have the knowledge for that 
topic. Attacker begins the conversation by saying "Declare topic" with the topic as content. 
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Opening 

If the defender has the knowledge of the topic, speaks "ack", which means it agrees to discuss the 
topic. 

If 'the defender does not have any knowledge of the topic, speaks "end" to end the conversation. 

Make Claim 

Ready to make claim 

The attacker speaks "make claim" with the claim as content. The claim can be a statement or a 
request for action, as weil as a plan. In an organization most conversations will be requests for 
action [34] and solicitation of commitments. For every request for action, the TI:::lal result should be 
either having a commitment, may be in the form of a contract, or rejecting the request. 

Claim made 

If the defender agrees with the claim of at tacker , speaks "agreement". 
Otherwise, speaks "dissent" with the reasoning steps used to disprove the attacker's claim as 

the content. 

Dissent 

If the attacker agent :l) agrees with defender, or 2) does not have necessary information to continue 
the discussion, or 3) does not have any supporting argument, speaks "withdraw" to withdraw the 
claim. 

If the attacker disagrees with the argument of the defender, speaks "argumentative attack" with 
information of what he disagrees together with argument to support them as content. 

Agreement 

The attacker speaks "offer compromise" with the claim as its content. The conte nt may be in the 
form of a contract so that both parties can keep track of the commltment made (as in [19]). 

Attacker offers compromise 

The defender speaks "accept compromlse" and enter the contract into its knowledge base. 

Tactical Phase 

Being attacked 

If the defender agrees with the attacker's argument, he should speak "admitted defeat", and enters 
into an agreement with the attacker. The process will be described in the "Defender Admitted 
Defeat" section. 

If the defender does not have necessary information or knowledge, speaks "postpone" to require 
a postponement of the discussion. 

If the defender does not agree with the attacker's argument, speaks "argumentative defense" 
with what he disagrees and suppvrting argument as the content. 

15 



If 1) the defender runs out of argument or 2) the number of iterations between Being attacked 
and Defending on the same point exceeds five, or 3) the total iterations between Being attacked 
and Defef1!1ing on the whole argument exceeds 100, the defender can either speak 1) "insisting" 
with his argument as content or 2) "offer cotnpromise" wita the compromise specified by the user 
as content. 

Defending 

If the attacker agrees with the argument of the defender, it should speak "withdraw" with empty 
content. 

If 1) the attacker runs out of argument or 2) the number of iterations between Defending and 
Being attack on the same point exceeds five, the attacker can either speak 1) "insisting" with his 
argument as content or 2) "offer compromise" with the compromise as content. 

Defender Requests Postponement 

Defender requests postponement 

If the attacker agrees with the date of postponement, speaks "accept compromise". 
If the attacker agrees to postpone but with different date, speaks "counter offer" with the new 

date as content. 
If the attacker is in higher au thori ty, i t can speak "forcing Cf ll.cession" wi th the postpone date 

as the content. 
If both partl~s cannot re ach an agreement on the P(Jstpone date, attacker can speak "appeal" 

to require an arbitration from higher authority. 
If the attacker is in higher authority, it can speak "pinning down" to force a compromise from 

the defender. 
However, if the number of iterations between Defender requests postponement and Attacker 

modify date exceeds fi ve, attacker is forced to choose other responses. 

Attacker modify date 

If the defender agrees with the date, it should speak "accept compromise" with the date as content. 
If the defender want a different date, it should speak "counter offer" with the new date as 

content. 
If the defender is in higher authority, it can speak "forcing concession" with the postpone date 

as the content. 
If both parties cannot reach an agreement on the postpone date, defender can speak "appeal" 

to require an arbitration from higher authority. 

Pinning down 

The defender has to search for a compromise in its knowledge base. It should speaks "offer com
promise" wi th the com promise in the knowledge base, or if there isn 't any, wi th the attacker's 
argument as content. 
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Defender Admitted Defeat 

Defender admitted defeat 

The attacker speaks "offer compromise" with the claim as its content. The content may be in the 
form of a contract so that both parties can keep track of the commitment made (as in [19]). 

Attacker offers compromise 

The defender speaks "accept compromise" and enter the contract into its knowledge base. 

Defender Offers Compromise 

Defender offers a compromise 

If the attacker agrees with the compromise, speaks "accept compromise" with the compromise as 
content. 

If the attacker agrees only partly with the compromise, it can speak "counter offer" with the 
modified compromise as content. 

If the attacker is in higher authority, it can speak "forcing concession" with its proposed com
promise as content. 

The attacker can also speak "appeal" to require an arbitration from higher authority. 
However, if the number of iterations between Defender offers compromise and attacker modify 

compromise exceeds five, the attacker is forced to choose other response. 

Attacker modify the compromise 

If the defender agrees with the compromise, speaks "accept compromise" with the compromise as 
content. 

If the defender agrees only partly with the compromise, it can speak "provisos in compromise" 
with the modified compromise as content . 

If the defender is in higher authority, it can speak "forcing concession" with its proposed com
promise as content. 

The defender can also speak "appeal" to require an arbitration from higher authority. 

Attacker Offers Compromise 

/ Similar to Defender Offers Compromise. 

Defender Insists On Argument 

Defender insists on argument 

If there is alternative in the knowledge base, speaks "offer compromise" with the alternative as 
content or if there isn 't any, uses the defender argument as the content. 

The attacker can speak "appeal" to require an arbitration from a higher authority. 
If the attacker is in higher authority, it can speaks "forcing concession" with its own argument 

as content. 
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Attacker Insists On Argument 

Similar to Defender Insists On Argument. 

Request Arbitration 

Arbitration requested 

The arbi trator speaks "examining attacker" to ask the attacker to testify. 

A ttacker being questioned 

The atta.cker speaks "testifying" with its argument as. content. 

A ttacker testified 

The arbi trator speaks "examining defender" to ask the defender to testify. 

Defender being question 

The defender speaks "testifying" with its argument as content. 

Defender testified 

The arbitrator speaks "make decisionl1 with its decision as the content. 

Defender Forcing a Concession 

Defender forcing a concession 

H the defender has not changed its initial position, speaks "withdraw" to withdraw the claim. 
H the defender has cha.n~ed its initial position, speaks "one-sided compromise" with the de

fender's argument or proposal as content. 

Attacker Forcing a Concession 

Attacker forcing a concession 

The defender speaks "one-sided compromise" with the proposal of the attacker as content. 

Retreat 

Withdraw claim 

The defender speaks "end" to end the conversation. 
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Abstract 

The formalization of multi-agent autonomous systems requires a rich ontology for capturing a 
variety of collective behaviours and a powerful semantics for distinguishing between collective agents 
having, executing, and jointly intending a social plan . In addition, success and failure executions of 
plans should be distinguished. In this paper, we introduce the notion of social agents and social plans, 
formalize some of the above issues , and briefly discuss how social agents can perform hierarchical 
planning. 

1 Introduction 

Situated agents are systems embedded in dynamic environmentsj they continuously sense their envi
ronment and effect changes to it by performing actions. These agents have to balance the time they 
devote to thinking against the time they take acting. Also, they need to balance the need to react to 
new situations against the need to continue pursuing long-term purposes and goals. 

One of the critical considerations in the design of situated agents is that these agents are resource 
boundedj that is, they must reason and act ur~der possibly stringent constraints on time and informa
tion. According to Bratman [1], the intentions of the agent playa crucial role in such cases. Viewed 
as a commitment to present and future plans, intentions constrain the deliberation and planning pro
cess and hence reduce the time spent reasoning. Systems (formal or implemented) that give primary 
importance to the not ion of intention are called Belief-Desire-Intention (BDI) architectures [2]. 

Although individual situated agents can be adequately modeled within the BDI framework, mod
eling of a group of such agents involved in a collaborative activity requires a number of additional 
notions. In particular, we need an understanding of mutual beliefs, joint goals, joint intentions, sodal 
plan structures, social roles, negotiation , communication, and organizational structures. While the 
formalization of a comprehensive multi-agent BDI-architecture is still an open problem, in this paper 
we attempt to set so me of the foundations of such a theory. 

°This research was in part supported by a Generic Industry Research and Development Grant from the Department 
of Industry, Technology and Commerce, Australia and in part by the Australian CiviI Aviation Authority. 
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2 Overview 

Joint actions amone a group of agents often involves a commitment from all members of the group that 
each one do their respective parts. Such commitments are often formalized as joint intentions among 
a group of agents. For example, if two agents want to jointly lift a table, each needs to individually 
intend to lift one end of the table and believe that the other person will lift the other end. Also, the 
group needs to mutually believe in the above [17J. However, even before the two agents can form a 
joint intention to lift the table, they need to share an abstract spedfication of how to lift a table jointly. 
In other words, even before forming joint intentions, the agents require redpes or abstrac: structures 
that specify how and in what order joint actions should be carried out. 

The distinction between plans as abstract structures and plans as a. mt:i~~al attitude that the agent 
is committed to bringing about is very important [11, 10, 5]. The former, which we shall call social 
plan structures, corresponds to the english usage "I have a plan to ... ". The latter, called intended 
plans or intentions, corresponds to the usage "I plan to ... ". 

It is also important to distinguish between successful and failure executions of plan structures. 
This distinction is espedally important for situated agents because of the stringent synchronh;ation 
conditions required for joint actions and the possibly serious side-effects arising from failed attempts 
to perform a given action [4]. For example, when two agents are jointly lifting a glass table and one of 
them loses his grip on th~ table, he may not have the opportunity to reattempt the task because either 
the table may have been "mashed or the other agent may not be able to continue holding on to his end. 
Thus, agents nel j to track the success or failure of their planned actions and inform their partners if 
something goes v/rang. Levesque et. al. [9] discuss how agents should give up their joint commitment 
when one of the partners has succeeded in the joint action or finds it impossible to accomplish it. 

A great variety of human joint actions involve hierarchical sodal organizations. Thus, a group of 
agents may consist not only of individual agents but also of other graups. This hierarchical organization 
of agents needs to be reflected in sodal plan structures. We do this by introdudng the not ion of a 
sodal agent which is an abstract entity denoting a collection of other individual or sodal agents. For 
example, a long table may require three teams of two agents each to lift it, a team for each of the 
ends and one at the center. One needs to represent the synchronization of actions between the three 
different teams and the synchronization within each team. 

The outline of the paper is as follows. First, we describe the ontology of sodal plans and illustrate 
its expressive power by providing examples of social plans and we informally describe their execution. 
Then, we present an expressive branching-time logic based on CTL" [3J. With the help of these two 
logics we introduce a semantics for successful and failure executions of sodal plans. We then extend 
the standard possible-worlds model to pravide the semantics of mutual beliefs, joint goals, and joint 
intentions. Finally, we briefly describe how such a formal theory of sodal plans can be used within a 
multi-agent BDI-architecture. We conclude with abrief description of related work in existing multi
agent and autonomous systems. 

3 Syntax 

3.1 Social Plans 

Sodal plan structures are syntactic entities that are invoked by a group of agents in particular situations 
to satisfy certain ends. These ends are achieved by different agents synchronizing their actions as 
specified by the sodal plan structure. We adopt standard first-order logic and modal temporallogic to 
describe situations and a variation of dynamic logic [7J to describe sodal plan structures. 



Having a plan-as distinct from intending or executing a plan-involves not only specifying how 
to carry out the plan, but also knowing under what conditions such a plan can be [usefullYl executed. 
This collection of information is called a social plan structure. The method of carrying out the plan ~s 
called the body of the plan structure, and the circumstances under which the plan can be executed is 
called the precondition of the plan structure. In addition, it is necessary to know which agent has the 
plan, and what the plan accomplishes. Syntactically, we write this as has-plan(p x), where p denotes 
a social plan structure and x denotes both what the plan accomplishes and who has the plan. 

The precondition 'of a sodal plan structure is specified by a well-formed state formula, defined in 
the next subsection. The ber.d.y is specified by a social plan expression. Social plan expressions are 
similar to formulas in dynamic logic, except that we explicitly spedfy the agent who is to carry out 
the plan <"nd introduce some ' additional plan operators. We also distinguish between plan types and 
the events or actions that occur in the real world. Intuitively, a plan type 'is an abstract structure that, 
when executed by an agent, results in the occurrence of an action in the real world. 

More specifically, a primitive .plan expression is a pair consisting of a primitive plan type and an 
agent. As in dynamic logic, we introduce more complex plan expressions by me ans of plan operators. 
These include operators for sequencing (;), parallelism (11), and non-deterministic choice (I). We also 
allow the operators? and !, which operate on well-formed state formulas to convert them into plan 
types. Intuitively,?o: is a plan type that tests if the condition 0: is true and !o: is a plan type that 
achieves 0:. 

We consider two types of agents - individual agents and social agents. Sodal agents are abstract 
entities that denote more than one agent. Examples of social agents include team, organization, jamily, 
and jriends. Sodal agents refer to a set of other constituent sodal or individual agents. Thus we have 
a recursive notion of sodal agents which is more expressive than the notion of a group of agents. t 

More formally, well-formed social plan expressions can be defined as follows: ' 

Definition 1 

• If pis a (primitive or non-primitive) plan type and y is an individual or social agent, then (p y) 
is a well-formed sodal plan expression; 

• If 0: is a well-formed formula and y is an indi vid ual or social agent, then (!o: y) and (? 0: y) are 
well-formed social plan expressions; and 

• If XI and X2 are well-formed sodal plan expressions, then (XI;X2), (xlllx2), and (XdX2) are well
formed social plan expressions. 

Note that the above definition is general enough to cover individual plan expressions, Le., plan 
expressions involving only individual agents. 

We also need to be able to describe executions of plans by agents. As the execution of a plan by an 
agent results in the occurrence of an action, we call such descriptions action jormulas. These action 
formulas describe whether the execution was a success or a failure, and whether it occurred in the past 
or will occur in the future. 

Definition 2 If x is a well-formed social plan expression, then <x>, <x>s, <x>!' [x], [xl s , and [xl! 
are well-formed action formulas. 

1 A group or set of individual agents has been used to illustrate concepts such as common knowledge, everyone in the 
group knows, someone in the group knows and so on [6) . 



The first three action formulas denote immediate future exeeutions and the last three indieate im
mediate past exeeutions. The subseripts "s" and "f" denote sueeess and failure exeeutions, respeetively. 
Without the subseript, the exeeution ean either be a sueeess or a failure. 

3.2 Temporal and Modal Operators 

An agent who has social plan struetures as deseribed above must be eapable of exeeuting these socia! 
plans in the real world. Hence, the temporal model of the real-world must be expressive enough to 
eapture the different operations on plan types. 

We use a formalism similar to Computation Tree Logic, CTL" [3], to deseribe the temporal strue
tures. The temporal structure in CTL" is a tree wit.h branching futures and a single past. A distinetion 
is made between state formulas and path formulas: the former are evaluated at a specified thne point 
in a time tree and the latter over a specified path in a time tree. We introduee two modal operators, 
optional and inevitable, whieh operate on path formulas. A path formula 'IjJ is said to be optional if, at 
a partieular time point in a time tree, 7f; is true of at least one path emanating from that point; it is 
inevitable if 'IjJ is true of all paths emanating from that point.2 The sta.ndard temporal operators 0 
(next), 0 (eventually), and 0 (always) operate over state and path formulas. 

Unlike CTL", we introduee two types of ares between time points: sueeess ares and failure ares. 
\n are eonneeting two time points is labeled by a primitive plan type. If the are is a sueeess are, the 
)rimitive plan type is said to be a sueeessful; if it is a failure are, the primitive plan type is eonsidered 
0,') have failed. 

The modal operators BEL, GOAL, and INTEND are used to denote individual beliefs, goals, and in
tentions. The eorresponding joint attitudes- namely, mutual beliefs, joint goals, and joint intentions
are denoted by MBEL, JGOAL, and JINTEND, respeetively. We also use the operators EBEL, EGOAL, 
and EINTEN D to denote the beliefs, goals, and intentions of all the members of a social agent. All 
joint propositional attitudes are defined in terms of the individual propositional attitudes. The detailed 
definitions are given later. 

Now we ean formally define the notion of well-formed state and path formulas. The former are 
defined as follows: 

• any first-order formula is astate formula; 

• if <PI and <P2 are state formulas and x is an individual or plan variable, then '<PI, <PI V </J2, and 
3x <PI (x) are state formulas; 

• if <P is a well-formed action formula then <P is also astate formula; 

• if<p is astate formula and y is an individual agent then BEL(y <p), GOAL(y <p), and INTEND(y 
<p) are state formulas; and 

• if<p is astate formula and y is a social agent then MBEL(y <p), JGOAL(y <p), JINTEND(y <p), 
EBEL(y <p), EGOAL(y <p), and EINTEND(y <p) are state formulas; and 

• if 7f; is a path formula, then optional( 7f;) and inevitable( 'IjJ) are astate formulas. 

A path formula ean be defined as follows: 

• any state formula is also a path formula; and 

• if 7f;I and 7f;2 are path formulas, then .7f;1, 7f;I V 7f;2, 07f;I, 07f;1 are path formulas. 

2Yn CTL', E and Aare used to denote these operators. 



4 Examples 

In this section, we provide different examples to illustrate the expressive po'ver of the formalism. 
Coopemtive and competitive sequences of actions among multiple agents: In this example, we assume 

multiple agents perform sequences of actions in parallel, in which only the start of the sequences need 
be synchronized; primitive plans within the sequence need not be synchronized. 

A plan for such cases can be given as ((eI ad ; (e2 ad ; (e3 ad) 11 ((eI a2) ; (e2 a2) ; (e3 a2)). 
A concrete example of this plan type would be a triathlon-race in which two agents have to cycle, 

swim and run, in that sequence. Although the agents have to synchronize at the start of the race, the 
subsequent primitive plans need not be synchronized. In other words, we can distinguish between a 
triathlon-contest and a sequence consisting of a cycle race followed by a swimming race and finiilly a 
running race. 

Cooperative and competitive activities among teams: In this case we have multiple sodal agents 
involved in a cooperative or competitive activity. Further, each sodal agent refers to a set of individual 
agents, who are also involved in so me cooperative or competitive activity. 

For example, if SI and S2 are two sodal agents who want to achieve Q in parallel, the top-level plan 
structure would be (!Q sd 11 (!Q S2). A possible body for the social plan structure for (!Q sd is the 
plan expression of the form (eI ad ; (eI a2) ; (eI a3)' A similar sodal plan structure can be defined 
for 82 to achieve Q. 

A concrete example of this type is a relay race with two teams. A team running is equivalent to 
three members of the team running one after the other. Note that we have used the same primitive 
plan el for all individuals only to match with the concrete example-in general they can be different 
primitive plan types. 

Partial planning: U sing the achievement plan expression and the notion of social plan structures, 
we can illustrate how an agent can decompose a higher-Ievel goal into lower-Ievel sub-goals, which again 
can be decomposed into further lower-Ievel sub-goals, until one finally reaches primitive plan types. 
Thus the agent can execute a social plan with his future goals at different levels of abstraction. 

Consider a plan of the form (!Q a). A social plan structure whose purpose is (!Q a) and body is (!Ql 
a);(!Q2 a) allows decomposition of the top-level goal into two sub-goals. Each one of these sub-goals 
can be further decomposed. 

A concrete example of this is the means-end reasoning involved in getting to an airport: in order 
to get to the airport the agent has to get out of the building and hire a cab; in order to get out of the 
building the agent has a plan which might require hirn to find the route and follow it; and so on. 

Tracking the success or failure of one's own actions: For certain critical tasks, autonomous agents 
need to test and verify the success or failure of their executions and take C).ppropriate measures based 
on these tests. 

Consider a plan expression of the form (eI ad ; ( (?[el ads ad ; (e2 ad) 1 (?[el al]/ ad ; (eI ad))· 
This plan expression states that the agent al does el and then tests if it was successful or not. If it is 
successful,he proceeds with e2: if it fails, he repeats the primitive plan el. 

For example, an autonomous robot trying to put out a fire tests if it has been successful or not. If 
it has been successful, it goes ahead with some other task; otherwise, it repeats the act. 

Tracking the success or failure of other"s actions: This is in principle very similar to the previous 
example. When multiple agents have joint goals they need to continuously track the success or failure 
of other agent 's actions that have a direct influence on their own actions. 

Consider a plan expression of the form (eI ad ; ( (?le! aI]s a2) ; ((e2 ad 11 e3 a2)) 1 (?[el al]/ a2) 
; ((e4 ad 11 (es a2))). This plan expression states that the agent al does el and then agent a2 tests if 



al was successful or not. If it was successful, al does e2 in parallel with a2 doing e3; otherwise al does 
e4 in parallel with a2 doing es. 

A concrete example of this is the case in which al is a student and a2 a teacher. The teacher tests 
the student on a particular lesson. If the student is successful, the teacher goes on to teach the next 
lesson while the student listens; if unsuccessful, the teacher repeats the previous lesson with the student 
listening. 

Accepting anl}ther agent 's beliefs: This illustrates how an agent can test if some other agent believes 
in a certain formula and, if successful, accept the other agent's beliefs as one's own. 

A formula that illustrates this is~[{? BEL(al cjJ) a2)]" :J BEL(a2 cjJ). Note that this statement is 
much stronger than agent a2 believing that al belleves in cjJ and thereby changing his bellefs. This 
involves an active !l.ct of verification by agent a2 which is absent in the case of bellefs about bellefs. 

Mutually verified common goal being sufficient for forming a joint goal: This provides a weaker 
condition for forming joint goals. It states that if each agent can verify that the other agent has the 
goal to achieve astate cjJ then they can together adopt it as a joint goal. 

This can be tepresented by the formula [(? GOAL(al <!cjJ al>") a2]" 1\ [(? GOAL(a2 <!cjJ a2>") al]" 
:J JGOAL(a <!cjJ a>,,), where al and a2 are members of the sodal agent a. 

Helping other agents by informing them of the futility of their actions: This illustrates the use of 
temporal operators and their interaction with social plans. If an agent believes that it is inevitable 
that sometime in the future the other agent is going to fail in his action, an helpful agent can form a 
plan to convince the other agent to believe about the futility of such an action. 

Theformula corresponding to this is BEL(a2 inevitableO[el al]f) :J <! BEL(al inevitableO[el adf) 
a2>,,· 

5 Semantics 

5.1 Logical Preliminaries 

We first define an interpretation that is an extension of a standard Kripke interpretation of possible 
worlds. The extension involves each possible world being a temporal structure. 

Definition 3 : An interpretation M is defined to be a tuple, M = (W, IA, SA, PP, P, Pf..ANS, 
MEMBERS, T, -<, U, SPS, PSA, B, 9, I, ~). W is a set of worlds, IA is a set of individual agents, 
SA is a set of social agents, PP is a set of primitive plan types, P is a set of plan types, T is a set 
of time points, -< a binary relation on time points,3 U is the uruverse of discourse, and SPS is the set 
of all social plan structures. PSA is a plan structure assignment function that maps a plan type to 
a sodal plan structure. P f..AN S is a function from individual or sodal agents to a set of plan types. 
Intuitively, this function provides the plan library of the agent. MEMBERS is a relation between 
sodal agents and other sodal and individual ageI'.ts. More formally, MEMBERS ~ SA X {SA U IA}. 
The accessibillty relations, B, 9, and I map an individual agent's current situation to his bellef-, goal-, 
and intention-accessible worlds, respectively. More formally, B ~ IA x W x T x Wand similarly for 
9 and I. ~ is a mapping of first-order entities to elements in U for any given world and time point. 

Definition 4 : A sodal plan structure is a tuple (cjJpre Pbody), where cjJpre is any well-formed formula 
and Pbody is any well-formed plan expression. We also have the functions pre and body which, given a 
plan type, returns the appropriate argument of the above tuple. 

JWe require that the binary relation be total, transitive and backward-linear to enforce a single past and branching 
future. 



Definition 5 : Each world W of W. calied a time tree. is a tuple <Tw• -<w, Sw. Fw>, where Tw ~ T is 
a set of time points in the world wand -<w is the same as -<, restricted to time points in Tw. A jullpath 
in a world W is an infinite sequence of time points (to, t1,''') such that Vi (ti, ti+l) E A w . We use the 
notation (Wto, Wt\ , ..• ) to make the world of a particular fullpath explicit. The are functions Sw and Fw 
map time points to a primitive plan type. More formally, Sw: Tw X Tw 1-+ 2PP and similarly for Fw. 
The domains of Sw and Fw are disjoint. Intuitively, for any two time points for which the are function 
Sw is defined, its value represents the primitive plan that successfully occurred (or was performed by 
agent(s)) between those time points. Similarly, the value of the are function F w represents the fa.ilure 
of a primitive plan occurring between those time points. 

5.2 Semantics of Temporal Modalities 

'i'he semantics of temporal moda.lities is straightforward. Both O'lj; and O'lj; are path formulas and are 
evaluated over a particular path. The formula optional{'lj;) is astate formula and is true if there is at 
least one path where 'lj; is true. More formally, we have: 

M, V, (Wto' Wtp .•. ) 1= O'lj; iff M, v, (Wt\, ... ) 1= 'lj;. 
M, V, (Wto, Wtll .•. ) 1= O'lj; iff 3k, k?.O such that M, v, (Wtk' ... ) 1= 'lj;. 
M, V, Wto 1= optional('lj;) iff there exists a fullpath (Wto, Wtp ... ) such that M, v, (Wto, Wtll"') 1= 'lj;. 

The formula inevitable( 'lj;) is defined as -,optional( -,'lj;) and o'lj; is defined as -,O-,'lj;. 

5.3 Semantics of Social Plan Executions 

A social or individual agent has a library of social plans. All plans serve a purpose, which is either to 
achieve a certain condition (as in !a) or to test for a certain condition (as in ?a). 

We say that an agent y has a plan type p to achieve the condition a if whenever the plan has 
been successfully executed, the condition a holds. We also require that the plan be in the agent's plan 
library. 

M, V, Wto 1= has-plan(p (!a y» iff 
(a) p E PLANS(y) and 
(b) M, V, Wto 1= inevitableO([(p y)]s :J a). 

Having a plan to test for a certain condition is very similar. We say that an agent y has a plan 
type p to test for condition a if, prior to the successful execution of the plan, the condition a holds. 
As before we require that the plan be in the agent's plan library. 

M, V, Wto 1= has-plan(p (?a y» iff 
(a) pEP LANS(y) and 
(b) M, V, Wto 1= inevitableO( «p Y»s :J a). 

Next we consider what it means for an agent to execute a plan type. We say that an agent y 
successfully executes a plan type p if the precondition of the plan is satisfied and the body is executed 
successfully. 

M, v, (Wto, Wtl"") 1= «p Y»s iff 
M, v, (Wto. Wtl"") 1= pre(p) /\ <body(p»s' 



The past execution of plans is somewhat more complicated to specify. We say that a plan type p 
has been successfully executed by agent y if the body of the plan has been executed successfully, the 
precondition held at some time in the past when the execution of the body started, and there was no 
other successful execution of the body in between. 

M, V, Wt n F [(p Y)]s iff 
(a) 3to, to -< tn such that M, v, (Wto,.· . ) F pre(p) 1\ «p Y»s; 
(b) M, V, Wt n F [body(p)]s; and 
(c) ,t!ti, to -< ti -< tn, such that M, v, 'Wtj F [body(p)ls. 

The body of a plan could contain an expression to achieve or test for a certain condition. An agent 
y is said to achieve successfully the condition a if there is a plan type p whose purpose is to achieve a, 
and the plan is executed successfdly. Similarly for testing a condition. More formally, if x stands for 
(!a y) or (?a y), we have: 

M, v, (Wto, Wtl' •.. ) F <x>s iff there exists an plan type p such that 
(a) M, v, Wto F has-plan(p x) and 
(b) M, v, (Wto, Wtll ... ) F «p Y»s. 

We say that a sequence of two prImitive plans is successfully executed if each on~ of them is 
executed successfully one after the other. Two parallel primitive plans are successfully exer:uted if both 
of them are successfully executed at the same time, i.e., both label the same arc. Two non-( eterministic 
primitive plans are successfully executed if either one of them is successfully exec Jted. More formally, 
the successful future executions can be stated as follows: 

M, v, (Wto, Wtll.··) F «eI ar) ; (e2 a2»s iff 
M, v, (Wto, Wtll .. ·) F «eI ad>s and M, v, (Wt!' ... ) F «e2 a2»s. 

M, v, (Wto, Wtll ... ) F «eI ar) 11 (e2 a2»s iff 
M, v, (Wto, Wtl , ... ) F «ei ad>s and M , v, (Wto, Wt 1 ,···) F «e2 a2»s. 

M, v, (Wto, Wtll ... ) F «eI ad I (e2 a2»s iff 
M, v, (Wto, Wtll.··) F «ei ad>s or M, v, (Wto, Wtll· · ·) F «e2 a2»s· 

The failure executions and past executions of a sequence of primitive plans, parallel primitive-plans, 
and non-deterministic primitive plans can be stated in a similar manner. 

Finally, we consider the success or failure executions ofprimitive plan types. This is straightforward: 
a primitive plan is successfully executed if it labels a success arc and fails if it labels a failuie arc. If e 
is a primitive plan type then we have the following semantics: 

M, v, (Wto, Wtll . . . ) F <e>s iff for some t 1, eE Sw(to td 
M, v, Wtl F [els iff for some to, eE Sw(to td 
M, v, (Wto, Wtll ... ) F <e>f iff for some t l , eE Fw(to td 
M, v, Wtl F [elf iff for some to, eE Fw(to tr). 

We define attempting an execution as either a successful execution or a failure execution, i.e., <e> == 
<e>s V <e> fand similarly for past executions . 

Using these definitions we can distinguish between having and executing a soda! plan. More 
formaliy, the· following formulas are satisfiable in our logic: 

• having a plan and not executing the body of the plan: 
has-plan(p x) 1\ -,<body(p»; and 



• executing the body of the plan but not executing it successfully: 
<body(p» /\ -,<body(p»s. 

In the above case x can be a plan expression to achieve or test a certain condition. The last property 
is the same as execution failure of the body of p. 

5.4 Semantics of Mutual Beliefs and Joint Goals 

Beliefis modeled in the conventional way. That is, instead of one world we have a set of different possible 
worlds. A partieular time point in a particular world is called a situation. For each situation we assodate 
a set :of belief-accessible, goal-accessible, and intention-accessible worldsj intuitively, those worlds that 
the a;gent believes to be possible, desires to bring about, or commits to achicving, respectively. Unlike 
most conventional models of belief, however, each belief-, goal-, and intention-accessible world is a time 
tree. Multiple possible worlds result from the agent's lack of knowledge about the state of the world. 
But within each of these possible worlds, the branching future represents the choice of actions available 
to the agent. Moving from bellef to goal to intention worlds amounts to successively pruning the paths 
of the time treej intuitively, to making increasingly selective choices about one's future actions. 

The belief relation maps a possible world at a time point for a particular agent to a set of belief
accessible worlds. We say that an agent a has a belief 4>, denoted BEL(a 4», at time point t if and only 
if 4> is true in all the belief-accessible worlds of the agent at time t. We use B;"( a) to denote the set of 
belief-accessible worlds of agtnt a from world wand time t, i.e., B;"(a) = { w' I ß(a w t w')}. 

The semanties foT' beliefs can be den.ned formally as folIows: 

M, v, Wt F BEL(a 4» iffVw' E ß;"(a) M, v, w~ F 4>. 

The semantics of goals and intentions are defined analogously by using the relations 9 and I [14]. 
The main semantic constraint imposed on the belief, goal, and intention relation is that for each 

belief-accessible world there exists a sub-world which is goal-accessible and, in turn, for each goal
accessible world there exists a sub-world which is intention-accessible. Trus semantic constraint is 
called strong realism and is formalized elsewhere [14]. Defining O-formulas to be well-formed formulas 
that contain no positive occurrences of inevitable (or negative occurrences of optional) outside the scope 
of belief, goal, or modal operators, we have the following axiom of strong realism. 

Strong Realism Axiom: INTEND(a 'ljJ) :) GOAL(a 'ljJ) :) BEL(a 'ljJ), where 'ljJ is any O-formula. 
This axiom states that, if the agent intends optionally to do an action, he should have a goal that 

optionally he is going to do the action and also believe that he will optionally do it. Weaker forms of 
this axiom and their corresponding semantic conditions are discussed by us elsewhere [12]. 

Now we can show that having an intention towards the body of a plan is different from having a 
plan and also different from executing the body of the plan. In other words, having a plan does not 
entail intention to execute the body of the plan structure and executing the body of the plan structure 
does not entail an intention to do so. More formally, the following formulas are satisfiable in our logie: 

• having a plan and not intending to execute the body of the plan: 
has-plan(p !(O' a)) /\ -,INTEND(a <body(p»); and 

• executing the body of the plan and not intending to execute the body of the plan: 
<body(p» /\ -,INTEND(a <body(p»). 

Next we examine the semantics of all members of a social agent believing a formula. The formula 
EB EL(y 4» is satisfiable iff all members of the sodal agent y believe in <p. If the member is an individual 



agent, he believes in it; if the member is another sodal agent, all members of that sodal agent believe 
in it. Thus, unlike previous work [6], the definition of "everyone believes" is recursive. 

EBEL(y <1» == I\{a I members(y a) and a E LA} BEL(a <1» t\ 

I\{z I members(y z) and z E SA} EBEL(z <1». 

The satisfaction of EGOAL and EINTEND are defined likewise. 
Now we can define the mutual belief <I> of a sodal agent as being all members of the sodal agent 

believing <I> and all of them believing that <I> is mutually believed. Joint goal <I> of a sodal agent is 
defined to be all members of the social agent having the goal <I> and mutually believing that <I> is held 
as a joint goal. Joint intentions are defined in the same way as joint goals. 

MBEL(y <1» =: EBEL(y <1» t\ EBEL(y MBEL(y <1») 

JGOAL(y <1» == EGOAL(y <1» t\ MBEL(y JGOAL(y <1») 

JINTEND(y <1» == E/NTEND(y <1» t\ MBEL(y JINTEND(y <1»). 

Note the asymmetry between the definitions of MBEL and JGOAL; while MBEL allows arbitrary 
nestings of BEL operators, JGOAL allows arbitrary nestings of BEL operators with the innermost 
operator being a GOAL operator. However, there is a symmetry between the definitions of JGOAL and 
JINTEND; both allow arbitrary nestings of BEL operators with the innermost operator being GOAL 
and INTEND, respectively. 

The above definitions together with the strong realism a dom yie!ds the following important theo
rem. 

Theorem 1 : F= JINTEND(y 'tjJ) :J JGOAL(y 1p) :J MBEL(y 7/J), where 7/J is any O-formula. 

This theorem states that, if a social agent jointly intends an O-formula, the sodal agent also has 
it as a joint goal and also mutually believes it. Note that this multi-agent version of strong realism 
is a consequence of our definitions of joint propositional atLitudes and the strong realism axiom for 
individual agents; it need not be defined as an axiom. 

Consider the interesting case where 7/J is <Ce a);(J b». If a sodal agent y, consisting of members 
a and b, jointly intends this formula, we have the following formulas being true: 

• individual beliefs, goals, and intentions: 

1. INTEND(a «e a);(J b»); 

2. INTEND(b <Ce a);(J b»); 

3. GOAL(a <Ce a);(J b»); 

4. GOAL(b <Ce a);(J b»); 

5. BEL(a <Ce a);(J b»); and 

6. BEL(b <Ce a);(J b»); 

• beliefs about individual beliefs, goals, and intentions: 

1. BEL(a INTEND(b «e a);(J b»)); 

2. BEL(b INTEND(a <Ce a);(J b»)); 

3. BEL(a GOAL(b <Ce a);(J b» )); 



4. BEL(b GOAL(a «e a);(J b» )); 

5. BEL( a BEL( b « e a );(J b» )); and 

6. BEL(b BEL(a «e a);(J b» )). 

This nesting of beliefs can repeat itself up to an arbitrary depth. Thus, by adopting the strong realism 
axiom for individual propositional attitudes and defining sodal propositional attitudes in the above 
manner, we are able to derive all the important conditions for joint action. 

As with individual intentions, we can show that having a joint intention towards the body of a 
sodal plan is different from having a social plan and also different from executing the body of the sodal 
plan. More formally, the following formulas are satisfiable in our logic: 

• having a plan and not jointly intending to execute the body of the plan: 
has-plan(p !(a y)) 1\ ,JINTEND(y <body(p»); and 

11 executing the body of the plan and not jointly intending to execute the body of the plan: 
<body(p» 1\ ,JINTEND(y <body(p»). 

6 Multi-Agent BDI-Architecture 

In this section, we briefly discuss how one can make use of the above formalism in designing a multi
agent BDI-architecture. First, we consider the single agent scenario. 

We would like to model the means-end reasoning of a single agent within a BDI-architecture. We 
can do this in a number of different ways. \\Te first present the minimal version that all rational agents 
need to satisfy and then a strong version satisfied by strongly-committed rational agents. 

We can say that, whenever an agent intends the body of a plan structure, then he must have a goal 
towards the purpose of the plan and the preconditions must be believed. 

F has-plan(p (!a a)) 1\ INTEND(a <body(p») :) GOAL(a «!a a»,,) 1\ BEL(a pre(p)) 

However, this requirement alone is not suffident for the agent to form intentions and act based on 
them. We need additional constraints that would force the agent to form intentions. 

The stronger version of the means-end reasoning axiom can be stated as follows: If an individual 
agent has a plan p and has acquired the goal towards the purpose of this plan, and believes in the 
precondition of the plan, he will intend to execute the body of the plan. The body of the plan may 
contain other achievement plan expressions. An agent intending such an achievement plan expression 
would then be forced to have a goal to achieve it (by the strong realism axiom). This goal may result 
in further intentions to execute the body of other social plan structures. Trus hierarchical planning 
proceeds until the agent has executed the body of his top-level plan structure. Thus, for an individual 
agent a we have the following axiom for means-end reasoning: 

F has-plan(p (!a a)) 1\ GOAL(a «!a a»s) 1\ BEL(a pre(p)) :) INTEND(a <body(p») 

Note that, whenever the premise of the axiom is true, the agent is going to intend the body of 
the plan structure. However, the agent may not act on all such intentions; an agent acts only if his 
immediate intention is towards a non-deterministic action [14J. In other words, if the agent has multiple 
present-directed intentions, he needs to deliberate and choose the best possible action before acting. 
The agent is allowed to have multiple future-directed intentions as he can keep postponing deliberation 
until he is forced to act. 



The scenario for multiple agents is very similar - one considers joint attitudes rat her than individual 
attitudes. Thus, if a social agent has a social plan p and has acquired the joint goal towards the purpose 
of this plan, and mutually believe in the precondition of the plan then the agent will jointly intend 
to execute the body of the plan. This joint intention would trigger the sodal agent to acquire other 
joint and individual goals which might trigger further joint intentions, and so on. As before, if the 
sodal agent has successfully executed the body of the sodal plan structure, we can say that the sodal 
agent mutually believes the postcondition. Thus for a sodal agent y we have the foJ.'.nwing axiom for 
hierarchical planning: 

1= has-plan(p (!a y}) /\ JGOAL(y «!a y»s) /\ MBEL(y pre(p)) ~ JINTEND(y <body(p») 

The above axioms a:.lso hold when the agent has a plan to test for a certain condition. 
In this section we have illustrated a simple design of rational agents that can perform hierarchical 

planning by having sodal plans and adopting joint goals and joint intentions. This, however, should 
be viewed only as a preliminary step; one needs to formalize how the deliberation and negotiation of 
agents lead to the formation of join tintentions (similar to the single-agent case discussed elsewhere 
[13]); when and how agents reconsider t!-(eir joint and individual intentions; how the sodal roles and 
commitments affect the joint goals and joint intentions of agents. 

7 Related Work and Conc lusion 

In this section, we briefly descl' be related work on the formalization of joint intentions. One key 
question to be considered is: What is needed to characterise collective intention in addition to the 
conjunction of individual intentions? There is no general agreement as to the answer to this question. 

In the work of Tuomela and Miller [17] and Grosz and Sidner [5], joint intentions are reduced to 
intentions-in-action of individual agents and mutual beliefs about such intentions. Others, such as 
Searle [15] and Hobbs [8], argue that joint intentions are not reducible in this way. A central example 
used to discuss the reducibility question is the MBA example introduced by Searle [15]. All MBA 
graduates are (successfully) taught that each can serve humanity by pursuing his own selfish interests. 
If each agent intends to serve humanity by pursuing his own interests, each agent believes that every 
other MBA graduate would do the same, and there is a mutual belief to this effect, then undH the 
definitions given by Tuomela and Miller, and Grosz and Sidner, the MBA graduates would be said to 
have a joint intention. However, Searle argues that, in this scenario, there is no joint intention and, 
further , that the ideology of the particular business school, accepted by all grad uates, is that there 
should not be a joint intention. In our formalization, a social agent (all MBA graduates) who jointly 
intends to serve humanity must also have a joint goal to serve humanity. This joint goal could have 
been obtained by some form of prior communication (like all the MBA graduates meeting together on 
graduation day and jointly adopting the goal to serve humanity). lf there is no such joint goal, there 
is no joint intention. 

In his analysis, Hobbs recasts Searle's position in the language of beliefs, goals, and plans. He 
argues for a notion of a collective agent and the need for joint intentions to be related to the attitude 
of joint goals and appropriate mutual beliefs. Hobbs also reiterates the importance of concepts such 
as commitment, which creates mutual belief in a collective plan, and responsibility, which holci.s each 
agent to his part, to a more complete understanding of the concept of joint intention. 

Commitment is the core of the formalization adopted by Levesque, Cohen, and Nunes [9] in their 
approach to joint intention. In particular, they capture the commitment of an individual agent to 
communicate his private belief about the success or failure of a joint goal to other members involved in 



the joint activity. This formalization does not suffer from some of the drawbacks discussed by Searle 
and Hobbs. However, the logic is not expressive enough to capture so me important types of collective 
behaviour - mainly because of the lack of a collective agent and the notion of an plan types. 

Singh [16J adopts a different approach to defining joint intentions, one which does not explicitly 
invoke other propositional attitudes. He presents a theory of the intentions of a group of agents in terms 
of the actions done by the members of the group of agents and their sodal structure, as it emerges from 
their interactions. To address the side-effect prc~lem, Singh recognizes the desirability of distinguishing 
between a strategy and the purpose of that strategy. In Singh 's theory, intentions are ascribed from 
observation of agent interactions. The formalism does not allow explicit reasoning about the attitudes 
of other agents. 

Werner [18J provides a comprehensive theory of social structures, sodal groups, and sodal roles. 
Intentions and joint intentions are an integral part of his theory. In Werner's approach an intentional 
state is a dass of strategies that guide the actions of a given agent. A strategy is a mapping from 
(partial) histories or information states to alternative (partial) histories. These strategies indude the 
individual, collective and communicative actions of agents. Werner provides a theory of communication 
which enables one to formalize how messages affect the intentions of an agent and also addresses 
impürtant issues such as the (possibly changing) roles of agents within a group setting. 

In condusion, the primary contributions of this paper are: (a) the introduction of collective agents, 
ca1l0!d social agents; (b) an ontology for social plan structures; (c) provision of a semantics of successful 
and failure executions of such soda.l plans; (d) semantics of collective attitudes such as mutual belief, 
joint. goal, and joint intention; and (e) the foundations for a theory of multi-agent BDI-architecture 
that can reason with the above entities. As a result oT this, we can distinguish a social agent having a 
sodal plan from a sodal agent execllting a sodal plan from a sodal agent jointly intending to execute 
a sodal plan. 
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Abstract 

In multiagent planning an agent sometimes needs to collaborate with others to construct complex 
plans, or to accomplish large organizational tasks which he cannot do alone. Since each agent in a 
group may have incorrect beliefs about the world, and because agent's abilities differ, construction of 
a coordinated plan can be confounded. In this paper we propose a scheme for constructing plans for 
collaborating agents from their, possibly incorrect, beliefs and partial knowledge of the world. In the 
proposed scheme, when agents want to accompllsh a goal together, each agent first proposes a possibly 
incomplete individu'al plan based on his own bellefs and skills. Then the agents use their individual 
plans to mutually construct a collaborative plan to accomplish the goal . A collaborative activity can 
be a composite action involving parts to be done by one agent, parts to be done concurrently, by 
agents, and parts to be done jointly. The proposed method makes it possible for each agent to decide, 
without excessive communication, what actions he should take in coHaboration. 

1 Introduction 

In multiagent systems, intelligent relatively small systems called agents interact to solve problems in 
a cooperative way. In such a system, agents pool their skills to achieve complex goals by dynamically 
forming an organization or a group. Recent developments in open distributed environments [Tokoro 90] 
show that using a multiagent approach to construct systems in an open distributed environments is 
promising from several points of view [Gasser and Huhns 89]. 

Some issues in multiagent systems are not yet well understood. One of these is mutual plan 
construction through multiagent cooperative planning. In multiagent cooperative plan construction, 
several agents mutually generate coHaborative plans by means of inference based on their own, possibly 
incorrect, beliefs and partial knowledge about the world. Mutual planning is confounded by disparities 
among goals and intentions, as weH as inconsistencies in world knowledge. 

In a multiagent system an agent may have a goal or task which he cannot do alone. Contract
net protocol [Davis and Smith 83] provides a way for an agent who needs help (this agent is called a 
manager) to dynamically decompose the task into subtasks, and to allocate the subtasks to other agents 
(contractors) through negotiation. The contract-net protocol also provides dynamic and opportunistic 
contro!. 

In open distributed environments, services, processing capacity, and the connection topology of 
computing elements are continuously changing. At the same time, the granularity of agents and 
plans are changing dynamically. Also agents are heterogeneous. Although the contract-net type 
organization schemes are usually preferable in open distributed environments because of its dynamic 
nature, a multiagent system embodies additional complexity which makes application of the contract
net difficult. 

lalso with Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 JAPAN 
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Two such problems in the contract-net occur in decomposition and task allocation. When the 
manager first decomposes the task, his fixed decomposition of the task may not suit the open dis
tributed environment. Not only may he not know what agents are currently availabk, but he also 
may not know the changing skills of potential contractors. The manager then selects one agent per 
subtask through negotiation, and allocates the subtask to that agent. No single agent may have a plan 
to achieve the subtask by hirnself. Even though subcontra.cting is possible, this fixed ·task allocation 
strategy which assigns a subtask to only one agent may results an ineffective hierarchy of subcontracts. 

If we apply the contract-net protocol to hierarchical multiagent planning, the problems become 
more serious. Tl.e manager wants some agent to accomplish a goal, but if he does not have sufficient 
knowledge to decompose a complex goal properly in an open distributed environment, he cannot ask 
ah:!' single agent to achieve the goal. His task allocation strategy fails. Therefor~ we need a more 
flexible strategy for selecting contractors. 

Suppose the manager can somehow select several agents as collaborative contractors. Here some 
questions arise. What information should he provide those contractors? In other words, what infor
mation is necessary for the contractors to mutually construct collaborative plans? Also, hov' should 
the mutual plan construction be coordinated and organized? 

In this paper we first. describe our agent model, and then characterize our dynamic organization 
scheme. We are developing an experimental environment for a multiagent planning system. In trus 
system we call the model of an agent, SocioAgent [Osawa and Tokoro 90). If an agent needs help, he 
organizes a cooperative group using the dynamic organization scheme. In this process, he :nitially 
plays the role of manager, selecting agents and allocating goals to them, but he can c ISO be a member 
of the collaborating group. We then propose a strategy and algorithm for select~ng collaborative 
contractors. In selecting contractors, information for collaboration, wruch we call suggestions for 
collaboration, is generated by the manager. The contractors are said to be given a collaborative award, 
when they receive these suggestions for collaboration. Then we characterize mutual plan construction 
by contractor agents in terms of elaboration 0/ individual plans. Elaboration of a individual plan 
involves inference based on each agent's partial view of the world and the suggestions for collaboration 
given by the manager. A contractor agent infers plans of other coilaborating agents. 

The organization of this paper is as follows. In Section 2 we give a concrete example of multiagent 
planning which illustrates the problems discussed above. Section 3 gives our basic agent model. In 
Section 4 we propose a strategy and algorithm for selecting collaborative agents. Then we characterize 
the mu~ual plan construction, and describe an algorithm for coilaborative plan construction. Section 5 
gives the relationship between our scheme and other work in trus area, and Section 6 contains our 
conchlsions. 

2 Problems of Cooperative Planning in Multiagent System 

Activities by two or more agents can be viewed as a composite action involving: (1) actions to be done 
concurrently by two or more agents; (2) actions to be done by either agent sequentially; and (3) actions 
to be done by both or many agents together. The first and second cases, in which agents act in a 
synchronous manner to cooperate and avoid conflicts, are weil studied in [Georgeff 83) as coordinating 
performed plans. In coordinating performed plans agents are not necessarily contributing to the same 
goal. In collaborative activities each agent helpfully (or positively) contribute its own skills to the 
successful acruevement of organizational tasks. In this paper we will focus on collaborative achvities 
which subsurnes above mentioned three cases. 

An agent 's possibly incorrect beliefs and partial knowledge of the world can cause various difficulties 
when se ver al agents collaborate to accomplish a goal. To examine the difficulties in detail, we give 
the following example. The goal in the example is for agent g3 to have block b in room T3 (figure 1). 

In this example we assurne that each agent, gb g2, g3, has the action rules and bellefs about the 
world given in the Appendix. We add to a first-order language with equality the operator B to model 
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room: r, room: r2 . 

door: d,2 agent: g2 

room: r3 

door: dzt 
agent: g3 door: ci:!. 

Figure 1: Moving a block along adjacen t rooms 

a agent's bellefs. B(g,p, t) says that agent 9 has a belief p at a time point t. For the belief operator B 
we assume axioms inspired by [Halpern and Moses 85J and a frame assertion axiom (details are given 
in Section 3). From now on, in logical formulae, arguments which begin with upper case letters and 
lower case letters represent variables and ground instances, respectively.) Note that in this section, 
constructors such as ";" ,"11" are used for convenience to compose a sequence of actions, concurrent 
actions, respectively. In the fol1owing section these constructs are excluded by introducing constraints 
on the temporal ordering of actions. 

Agent g3 wants to have block b in room r3. He knows that by perforrning trans(Agent, 93, b), he 
can hold block b. However, since some parts of the precondition of the action, i.e. 
(holding(Agent,b),in(Agent,r3)), don't hold at this moment, he ned.s to ask other agents to achieve 
this goal, conditioned by the fact that block b is not in room r3 at this moment. 

The contract-net provides for allocation of the goal to other agents by communication. In this 
case, agent g3 plays the role of manager and announces the goal status as a task. If the two agents 
gl and g2 individually respond to the announcement, and each can successfully generate a plan, then 
both give their plans to g3 . This is called a bid. g3 collects bids from potential contractors, evaluates 
them, and awards the task to one of the contractors. 

In this example, because gl and g2 have only partial knowledge of the situation, neither of them 
is able to generate a complete plan to achieve the goal. Therefore, if the manager requires that a 
bid be complete, neither returns a bid for the contract. If the manager does allow incomplete bid 
plans2, agen ts gl and g2 may return the incomplete indi vid ual plans, Pg1 and Pg2 , respecti vely.3 
Individual plan construction is described in the next section. These individual plans are constructed 
by a DCOMP-type backward production [Nilsson 80J. 

Pg1 = {pickup(gl, b) 
move(gl, b, rl, r2); 
move(gl,b,r2,r3) 

precond: boundary(Door, r2, r3), open(Door)}. 

Pg2 = {{open(g2, d23 ); 
trans( Agent, g2, b) 

precond: holding(Agent, b), in(Agent, r2)}; 
move(g2,b,r2,r3)}. 

Both Pg1 and Pg2 are incomplete plans, and the operators move(gl, b, r2, r3) in Pg1 and pickup(g2, b) 

2 An incomplete plan is a plan which includes operators with unknown preconditions. These operators are c.uled 
incomplete operators. 

3Each of these incomplete individu.u plans is one of many incomplete .uternatives of agents gl and g2. 
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in P92 are incomplete operators. 
In the contract-net, after manager g3 receives these bids, he would select one contractor, and 

allocate the task to that contractor assuming that incomplete operators will be later resolved by 
subcontracts. However, in this case, both bids are incomplete, so it is not possible for the manager to 
determine which bid is better, since he also does not have complete knowledge of the situation. 

The contract-net provides a general protocol for decomposing a task and awarding the subtasks 
to contractors. This decomposition is from the manager's point of view. Since managers in the 
contract-net award each task to one contractor, the allocation may not be optimal in an open dis
tributed environment. Even though subcontracting is possible, since the granularity of agents and 
plans constantly changes, the fixed task allocation strategy may not be sufficient. 

In the given example, if the manager selects gz, the incomplete operator trans(Agen~,g7,!I) in P9'l 
can be resolved with subcontract between gz and gl. In this case, the complete plan will be in the 
form; 

{{ open(gZ, dz3 ) 11 {pickup(gl, b); move(gl, b, Tb TZ)}; trans(gl, g2, b)}; move(gz, b, TZ, T3)}' 

However, if we have a whole view of the situation, we see that the plan is less efficient than the 
following plan, C P9192 • 

CP9192 = {{open(gz,dz3 ) 11 {pid;up(gt,b); move(gl,b, TI, TZ)}}; move(gt,b,Tz,T3)}' 

If gl is selected, he still nee· ·Iß a sub~ontractor to open door dz3 , since he does not have the 
skill. Since contracting is compt.Zationally expensive in a multiagent system, the above mentioned 
collaboration, C P9192 , is cheaper than su bcontracting. 

In the following sections, we describe construction of incomplete individual plans based on partial 
knowledge of the world. We then propose a protocol for forming dynamic organizations and a method 
for mutual collaborative planning. 

3 SocioAgent Model 

We have developed an experimental environment for multiagent planning based on an agent model 
called SocioAgent. In this section we describe communication primitives, communicative actions, 
and the planning mechanism of SocioAgent. SocioAgent, hereafter simply called agent, has two f;lan 
construction phases. The first is individual plan construction. In this phase, an agent generates a 
individual plan to achieve a given goal. This is an action sequence based on his beliefs and partial 
knowledge of the world. Therefore, a individual plan can be incomplete. The second phase is collab
orative plan construction. This process occurs when agents are to achieve an organizational goal. In 
this process eacll collaborating ag~nt elaborates on his own initial individual plan. We characterize 
collaborative plan construction in the next section as apart of the organizational scheme we propose. 

3.1 Communication Primitives 

Agents have two communication primitives: send and receive. If agent Sender executes 

sende {SendeT}, Recipient, Message), 

the message (SendeT, Recipient, Message) is sent from agent SendeT to agent Recipient. If SendeT 
is omitted, it is, by default, filled in with name of the agent executing the message sen ding primitive. 

The message receiving primitive receive reads a message from the incoming message queue of the 
receiving agent. If an agent executes 

receive( { SendeT} ), 

4 



the first message sent by agent Sender is retrieved in the form (Sender, Message) from the incoming 
message queue. If no Sender is specified in a receive primitive, the first message in the queue is 
retrieved and removed. This selective message receive primitive is necessary because while an agent 
is collaborating with other agents, he may want to receive messages only from other group members. 
Also, while he is waiting for a message from a specific agent about an urgent matter, he may not want 
to be disturbed by messages from other agents. 

3.2 Communicative Actions 

By sending the message 

request( Sender, Recipient, ToDo), 

Sender indicates that he requires Recipient to perform the action ToDo. 
In the following message, Agent asks Recipient to tell hirn whether or not he knows the truth 

value of P. If Agent is not specified, then by default, Agent is the sender of this message. 

request( {Agent}, Recipient, inform(Recipient, {Agent}, P)) 

3.3 Belief Model 

We assurne that every agent has a set of beliefs about the world, which may include beliefs about 
other agents' beliefs. We add to a first-order language with equality the operator B. B(g, p, t) says 
that agent g has a belief p at a time point t4 • The B operator is assumed to satisfy the following 
axioms, where P and Q are scheme variables ranging over propositions, G ranges over agents, and T 
ranges over time points. 

1. B(G,P,T) 1\ B(G,P:J Q,T) :J B(G,Q,T) 

2. B(G,P,T):J B(B(G,P,T)) 

3 . ...,B(G,P 1\ ...,P,T) 

4. VT(> T') JjT"(T ~ T" > T')B(G,P,T') 1\ B(G,...,P,T"):J B(G,P,T) 

3.3.1 Belief Revision 

Each agent maintains a database as its belief space. An agent may revise its beliefs after executing 
actions, and in the course of interaction with other agents. When an agent executes an action, he 
adds effects of the action to his belief database. A belief B( G', P, T) obtained in the course of inter
action with an agent G' is also added to belief database as its own belief B( G, P, T), if P satisfies the 
following condition without utilizing the frame assertion. 

JjT'(> T)B(G,...,P,T) 

3.4 Individual Plan Construction 

The action rules of SocioAgent are as follows. 
This plan scheme is similar to that of STRIPS [Fikes and Nilsson 71] except that, in SocioAgent, 

each operator is associated with a temporal variable and an execution time cost wh ich is the sum 

4 A time point is obtained from the virtual dock of the agent. Precisely speaking, a virtual docks do not indicate 
the global time, but indicates the local times of the agent. However we assume that these virtual docks are periodically 
adjusted, so that they maintain times which are sufficiently precise for the inference and planning process of agents. 
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operatorHead( Agent, ParametersList, T, T) 
precond: B( Agent, PI, T), ... , B( Agent, Pn, T) 
body: ActionSequence 
effect: B(Agent, QI, T),···, B(Agent, Qm, T) 

of the predicted costs of the actions in the body of the operator. The cost of a primitive action is 
predicted from an agent's working environment. 

Individual plan construction is done by a DCOMP-type backward production [Nilsson 80]. In the 
ba.ckward plan construction, if all preconditions become trivial, Le. all preconditions are compatible 
with the agent's bellefs, the sequence of actions obtained in the production process ia regarded as a 
plan [Nilsson 80]. In SocioAgent, this plan is called complete. Certain incomplete plans can also form 
a individual plan of an agent. 

In conventional plan synthesis, if an agent discovers an incomplete operator, he discards it. How
ever in SocioAgent, a.n agent continues to construct a plan even though it may contain incomplete 
operators. Pla.nt Pg1 and Pgl in the previous section are exa.mples of incomplete plans in SocioAgent. 
A individual pla- of SocioAgent is generally given in the following form. 

. 
{OI(Agent, Objectsb Tb Td,··· ,On(Agent,Objectsn, Tn, Tn )} C(Tb ···, Tn, Tl,···, Tn) 

where C(T!, .. · ,Tn, Tb·", Tn ) denotes a set of constraints on temporal ordering ofactions. 
Plans can be viewed as directed a.cycllc graphs, whose nodes are labeled with operator headers and 

propositions; when anode is labeled with a proposition P, it denotes any action that would acrueve 
P. A temporally ordered partial sequence of actions in a plan is called a partial plan. 

Using this form, the plan Pg1 given in the previous exa.mple can be expressed as folIows. 

Pg1 = {pickup(gl,b,Tj,r;fckuP)' 
move(g!, b,s/rl r2, Tj+l, T;;ove)' 
move(g!, b, r2, r3, TH2, T~ove) 

precond: B(g!, boundary(Door, r2, r3), Tj+2), B(gbopen(Door), Tj+2)}' 

Tj + r;fckup < Tj+l, THI + T;;ove < Tj+2 

If we allow trus sort of planning, an agent can generate many incomplete plans in rus plan search 
process. Some incomplete pla.ns are useful, and ca.n be successfully completed through collaboration, 
a.nd some are irrelevant and, thus useless. How ca.n a.n agent choose from the incomplete plans found in 
its search process? We propose two criteria for selecting the preferable incomplete plan: the specificity 
of the plan and the cost. In order to characterize these two aspects of a pla.n, we address the rationa.lity 
of agents. 

3.5 Rationality 

Rationa.lity a.nd its role in reasoning is discussed in [Doyle 90]. In a multiagent system, the notion of 
rational choice is of great significance. Choices a.mong alternative plans and among potential contract 
agents occur frequently. In a society of SocioAgents, we require every agent to be individually and 
organizationally rational. This rationa.lity not only makes it possible for every agent to make good 
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choices among alternative plans in individual plan construction, but it also enables agents to expect 
certain decisions and behavior from other agents in a collaborative activity. We discuss organizational 
rationality in the next section. 

An agent rationally chooses a plan partly by comparing costs of alternative partial plans or oper
ators. Cost is a numerical utility function which ranks alternatives according to degree of desirability. 
The other criteria is the specificity of the plan. lf an agent has two incomplete plans as alternatives 
in a plan construction process, he chooses the one which is more specifically synthesized. For instance 
agent 92 can construct the following individual plan ~2 in the example in Section 2. 

~2 ={open(92,d23,Ti,Tg~n), 
move(92, nil, r2, rb Ti+l, T/f:ove), 
pickup(92,b,Ti+2, r;?cku,/» 

precond: B(92, onjloor(b, rt}, Ti+2), 
move(92, b, rl. r2, Ti+3, T/f:ove), 
move(92, b, r2, r3, 1iH, T/f:ove)} 
Ti + Tg~n < 1iH' 1i+1 + T~ove < 1i+2, 
1i+2 + r::ckup < Ti+3, 1i+3 + T~201Je < TiH' 

This individual plan is also incomplete. Ho we ver, it is much more specific than Pg2 given in 
Section 2, since P:

2 
contains only one unknown condition, while Pg2 has two. In general ,we canl'ot 

say that a more specific plan is better than a less specific plan, since choices are based o:u both cost 
and specificity of alternative plans. 

4 Organizational Scheme and Collaborative Plan Construction 

SocioAgent dynamically forms an organization according to the protocol described belov.·, using the 
communication primitives and communicative actions given in the previous section. ThE:. outline of 
the dynamic organizational scheme we propose is similar to the contract-net up to the point at which 
a manager collects bids (in SocioAgent an announced task is called a reguest for prop08al or RFP). 
Evaluation by the manager, awarding, and task allocation in our scheme, however, are different because 
we include the possibility of collaboration among contractor agents. 

/A.l Dynamic Organization Scheme 

In a society of SocioAgents there are special agents called bulletin boards. Bulletin board agents 
receive RFPs from ordinary agents and save them until an expiration time. Bulletin boards also send 
saved RFPs to requesting agents. There can be many bulletin boards in a society and all do not 
necessarily contain the same information. Any given agent is designed to know at least one bulletin 
board. 

An agent that needs to request the help of other agents to achieve a goal first sends an RFP to a 
bulletin boa.rd. The RFP specifies the goal, an expiration time, and the manager's name. The bulletin 
board agents do not execute parts of RFPs, they only save them, and reply to send requests frorn 
ordinary agents. A free agent, i.e. one without a current task, can request the bulletin board to send 
a saved RFP to hirn. 

When the agent receives the RFP, if he can construct a individual plan, even if it is incomplete, 
he sends that plan directly to the manager of the RFP. This is a bid as in the contract-net. 

Upon expiration of the RFP, if the manager receives bids from more than one agent, he investigates 
the possibility of collaboration of all or so me of these agents according to the algorithrn described 
in the next subsection. (lf he receives only one bid, he selects that bidding agent as contractor.) 
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If collaboration seems possible, he computes suggestions !or collaborntion, and gives bidding agents 
collaborntive awards with his suggestions. In this way he requests the contractors to mutually construct 
a collaborative plan as elaboration of the initial individual plans, and to execute the collaborative plan 
to achieve the goal. If the manager finds that collaboration is not possible, he selects one agent based 
on his evaluation of the bids. 

4.2 Collaborative Award and Suggestion ror Collaboration 

In this section we specify an algorithm for selecting collaborative awards, in case of multiple bid 
submission, and for computing suggestions for collaboration. The Figure 2 describes for two bidding 
agents for simplicity. Agents Gx and Gy propose individual plans Px(= {Ox(l);"'; Ox(n)}Cx ) and 
Py(= {OY(l);'''; Oy(m)}Cy), respectlvely. Before manager Gm computes the algorithm, he needs to 
eliminate those bids whose cost exceeds his requirements for plan execution time. (In the contract-net 
this evaluation is implemented as an eligibility test.) 

1. Copy Py to P, and empty suggestion lists Sx and Sy. 
2. Let i = 1. While ((1 ::; i ::; n) and P is not empty), do; 

If Ox(i) matches (see the note described below) Oy(j)(1 ::; j ::; m), then 
Add Ox(i) and 0y(j)' with associated preconditions in case of an incomplete operator, to 

Sy and Sx, respectively. 
Remove Oy(j) from P. 

Increment i. 
3. If Sx and Sy are not empty, then 

Delete all matching operators from Sx and Sy which are inconsistent 
with respect to the temporal ordering of actions obtained from Cx and Cx • 

4. If Sx and Sy are not empty, then 
Send the collaborative awards (see below), CAx and CAy, to agents Gx and Gy, respectively. 

Else 
Compare cost of Px and Py , and allocate the task to the agent whose individual plan is cheaper. 

Note: 1. In matching of two operators, diffuence of agents and costs are ignored. 

Figure 2: An algorithm tor computing suggestions tor collaboration and selecting collab
orative awards 

Collaborative awards C Ax and C Ay in the algorithm are given in the following forms. 

C Ax = request(Gm , Gx, collaborate(Gx, suggestion(Sx), Px)). 
CAy = request(Gm , Gy, collaborate(Gy, suggestion(Sy), Py)). 

C A x, for instance, states that agent Gm requests Gx to collaboratively perform Px with the 
suggestion Sx. A suggestion for collaboration given to a contractor agent includes: (1) Explicit 
obstacles of the other agent which collaboration may be able to resolve; (2) Actions wh ich both 
collaborating agents can perform. If agents gl and g2 return individual plans Pg1 and P;2 as given in 
Section 2 and 3, suggestions for collaboration Sgl and Sg2 are as follows: 

4.3 Mutually Collaborative Plan Construction 

An agent who is given a collaborative award tries to construct a cooperative plan for collaboration. He 
does this through inference based on his initial individual plan, and the suggestions for collaboration 
given in the award. 
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Sgl = {pickup(g2, b, Ti+2, r;tckup) 
precond: B(g2, onflooT(b, Td, Ti+2), 

mOVe(g2, b, Tl, T2, 7i+3, T!::OtJfJ, 
move(g2,b,T2,T3,Ti+4,T!::ove)} 

Ti+2 + r;tckup < Ti+3, Ti+3 + T~o1Je < TiH' 

Sg2 = {pickup(91,b,Tj,r;:ckup)' 
mOVe(gl, b, Tl, T2, Tj + 1, T~o1Je)' 
mOVe(gl, b, T2, T3, Tj+2, T~o1Je) 

precond: B(gl, boundaTy(DoOT, T2, T3), Tj+2), B(gl, open(DOOT), Tj+2)} 

Tj + r;Ickup < Tj+l, Tj+l + T~o1Je < Tj+2' 

In such collaborative plan construction, each agent needs to elaborate his initial. individual plans 
to produce efficient collaborative plans for the given goal. 

Activities by two agents can be a composite action involving: (1) actions to be done concurrently 
by two agents, S.t. {a(Gx,Tx),a(Gy,Ty)}j (2) actions to be done by either agent sequentially, S.t . 
{a(Gx,Tx),a(Gy,Ty)}(Tx < Ty)j and (3) actions to be done by both agent~ together, S.t. a(Gx,Gy,T). 
The first and second cases, in which two agents act in a synchronous mauner to cooperate and avoid 
conflicts, are well studied in [Georgeff 83J. In this paper we will focus on collaborative activities by 
two agents which subsumes these cases. 

We raise three significant questions involved in collaboration. First, if the collaborating agents 
know that both of them can do the same parts of a collaborative activity, how does each agent decide 
wh ich actions to perform? Second, even though some operators of the initial individual plan of one 
agent, e.g. Gx , are incomplete, the other agent, Gy, may be able to perform actions which render 
that individual plan complete. If that is the case, is it possible for Gy to infer that he should do these 
actions? If so, how is trus inference made? Also, is it possible for Gx to infer that Gy will perform 
these actions to make Gx's individual plan executable? Third, is it possible for the two agents to 
mutually believe that these actions will be performed in a cooperative way? We now characterize 
factors wh ich affect the inference in the collaborative plan construction. 

In Section 3 we discussed the role of an agent's rationality in individual planning. In trus section 
we again emphasize the need for rationality of agents collaborating to acrueve a goal. If there are 

/ several possible collaborative plans, the collaborating agents mutually believe that each agent will 
always choose the most effective plan with respect to execution cost. 

To decide which actions will be performed by each agent in a collaborative plan, we look at 
three factors: obstacle elimination; workload balancing; and cost effectiveness. We then describe the 
algori thm for action decision. 

(1) Obstacle Detection and Elimination 
Unsatisfied preconditions of incomplete operators can be regarded" as explicit obstacles to the 

agent's plan. The agent, say Gx , believes that these conditions have not been met or that he cannot 
satisfy them by himself. The other agent, say Gy, may also include some of these operators in his 
individual plan. If he knows that the preconditions do hold or that he can act to make them hold, 
these operators in his individual pan are complete. This information is also included in the suggestions 
for collaboration given to Gx • Therefore, after Gx receives the award, he believes that the conditions 
are satisfied or will be eventually. In the suggestion sent to agent Gy, it is specified that Gx does not 
believe these preconditions are satisfied . So if Gy can satisfy, Le. he has a partial plan which satisfies 
these precoriditions, he acts to remove these obstacles for Gx • For instance, in the individual plan Pg1 

of the example given in Section 2, open(DooT) is an obstacle to agent gl. So when agent 92 receives 
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a collaborative award, he knows that this is an obstacle to agent 91. Therefore, even though agent 
92 does not perform any other actions in collaboration, he believes that he must perform at least 
open(92, d23 , Ti, Tg:,en)' If agent Gy believes that the obstacle precondition will ne ver be satisfied, h~ 
must inform agent Gx of that belief. 

(2) Balancing Workload among Collaborating Agents 
As stated above, a collaborative activity by two agents can be a composite action involving se

quential, concurrent, and conjoined parts. If these parts form partial plans which can be performed 
concurrently, and also if both agents are able to execute those partial plans, then the agents must 
mutually agree on an allocation of actions which will evenly balance the workload. Perfonning these 
partial plans concurrently will reduce the execution time of the collaborating plan. 

(3) Cost Effectiveness in Collaboration 
In the example given in Section 2, there are two alternative collaborative plans to move block b 

form room rl to room r3, if agent 91 and 92 return individual plans P91 and P:l , respectively. (We 
ignore the action to open door d-z3 for a while.) These plans, C P:192 and C ~~!l'l' are as follows: 

C P:192 = {pickup(9l, b, Ti, r:tckup)' move(9l, b, rl! r2, Ti+!, T~ove), move(9l, b, r2, r3, Ti+2, T~ove)} 
Ti + r;Ickup < Ti+!, Ti+! + T~ove < Ti+2. 

C P:~9l {move(92, nil, r2, rl, 71+1, T~ove), pickup(92, b, Ti+2, T:lckup )' move(92, b, rl, r2, 71+3, T~ove), 
move(92, b, r2, r3, TiH, T~ove)} 

71+1 + T!2ove < Ti+2, Ti+2 + r:lckup < Ti+3, 71+3 + T~ove < TiH' 

These two plans are actually incomplete. However, if they were complete, by comparing the ex
ecution cost of the common actions in C P'g192 and C P:~92' and summing the cost of each operator, 
an agent can determine which plan is cheaper to execute. Therefore, in general, by comparing the 
execution cost of common partial plans, agents can decide which agent should perform the partial 
plans. 

Taking these three factors into account, each agent elaborates his initial individual plan to decide 
- which actions to perform using the algorithm described in Figure 3. As a result, he constructs a 

collaborative plan. In the algorithm described for agent G x with collaborating agent Gy, cases CC, 
CI, IC, and II indicate the states of completeness of an operator as it appears in the agent's individual 
plan Px and the suggestion for collaboration Sx given to him. (These operators are also shared 
operators.) For instance, if an operator Ox(i) in Px is IC, it is incomplete, while the shared operatlJl" 
Oy(j) in the suggestion Sx is complete. Note that in the algorithm, the shared operator is written as 
Ox(i) and Oy(j). 

The elaborated individual plan, obtained by executing the algorithm, is called a collaborative 
operator and written C Px . Similarly Gy constructs C Py • Agents 91 and 92 of the example in Section 2 
construct collaborative plans CP91 and CPn , respectively. 

C P91 {pickup(9l, b, Ti, r:tckup)' 
move(9I, b, rI! r2, Ti+1! T~ove)' 
move(9l, b, r2, r3, Ti+2, T~ove)} 
Ti + r:tckup < Ti+1! Ti+l + T~ove < Ti+2' 

C P92 = {open(92, d23 , Ti, Tg~n)} 

Ti + Tgi>en < Ti+2. 

Combining C P91 and C P91 in a proper ttmporal order which satisfies the given time constraints 
results in the optimal collaborative plan C P9192 given in Section 2. 
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1. Let i = 1. While (1 S i Sn), do; 
If Oxlit is c<;>njoined , then 

Ir 0 x( i) IS II, then 
Remove unsatisfied preconditions not sha,red by Ox(i) and Oy(j). 

Else if Ox(i) is IC or CI, then 
Remove all unsatisfied preconditions fron:.. Ox(i) and Oy(j). 

Else 
If Ox(i) is CC, then 

Fmd the same partial plans of successive shared but non conjoined operators, 
PX(i,i+k) in Px and PY(j,j+k) in Sx, and . 

Compute costs TPz(i,i+lI) and TPY(J,J+II) of these partIal plans; 
If Tp (i,i+,II) > TPy(j,J+Ic)' then 

:Remove PX(i i+k) from Px , and 
ReHect the removal upon preconditions of subsequent operators of Px • 

(See the note about the reflect operation described below) 
Else if TP ... (i,i-U) < TpY(,J+Ic)' then 

Remove ry(j i+k) trom Sx, and 
Reflect the removal upon preconditions of subsequent operators of Sx. 

Else 
Communicate with Gy to decide who will perform the partial plan. 

Else if it is CI, then 
Remove Oy(j) from Sx, and 
Reflect the removal upon preconditions of subsequent operators of Sx . 

Else if it is IC, then 
Remove Ox(i) from Px , and 
ReHect the removal upon preconditions of subsequent operators of Px • 

Else if it is II, then 
Compute costs of TO ... () and TOy(j); 

If TO ... (i) > TO (j)' t~en 
Remove CJ x( ü from Px , and 

ReHect the removal upon preconditions of subsequent operators of Px • 

Else if TO ... (i) < TOy(j) , then 
Remove Oy(j) trom Sx, and 
Reflect the removal upon preconditions of subsequent operators of Sx. 

Else 

Increment i. 
Communicate with Gy to decide who will perform the partial plan. 

2. Remove all operators including non shared ones which are no longer needed to complete the goal. 
(Operators needed for obstacles elimination are left unremoved.) 

3. If incomplete operators are left in Px , then 
Send RFP to bulletin board(s) listing preconditions of incomplete operators as a goal. 

Note: In this algorithm, the reflection of rem oval of operators upon the preconditions of subsequent 
operators should be the effect specific to his states, since the other agent will perform the partial plan 
which achieves some sharable states. 

Figure 3: Individual plan elaborat ion and collaborative plan construction algorithm 
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5 Relation to Other Work 

In open distributed multiagent systems, agents are continuously changing with respect to their skiils 
and availability, being born, and dying. The contract-net protocol ([Davis and Smith 83]) provides a 
way for an agent who needs help to dynamically decompose a task into subtasks and allocate these 
subtasks to other agents through mutual selection. This protocol provides dynamic and opportunistic 
control in multiagent systems. However, in a open distributed environment each manager have limited 
knowledge to draw on for task decomposition and allocation, and this approach may not be effective. 
The collaborative awards proposed in this paper make decom~osition and allocation of tasks much 
more flexible. They allow managers to investigate possible collaboration among potential contractors. 
Complex tasks which are executed in a subct)ntr~t hierarchy in the contract-net, can now be performed 
by means of collaboration among agents at the same hierarchy level. Our scheme provides a better 
way to accomplish organizational tasks, since tasks are decomposed and allocated based not on only 
one agent's point of view. Many coilaborative plans are investigated among agents, and the optimal 
one can be selected and performed. 

The generalization of centralized planning techniques to accommodate multiple and distributed 
centers of planning control is investigated on the basis of Sacerdoti's NOAH planning systems in 
[Corkill 79J. His paper mainly concerns re30lving conflicts in distributed hierarchical planning. The 
top-down decomposition of a conjunctive goal is used to divide the goal into subgoals. Ea.i:h subgoal 
is also assigned to distributed planning elements. We are mainly concerned that fixed top-down 
decomposition of complex goals and fixed top-down assignment of subgoals are not promising in open 
systems for reasons described in this paper. Our scheme provides dynamic and opportunistic control 
for generating collaborative plans for complex goals. Furthermore it allows cooperation - individual 
plan elaboration and coilaboration - among planning elements in plan generation. 

Coordinating plans in a system is one significant issue in multi agent planning. [Georgeff 83J ad
dresses the issue of combining individual plans in such a way that avoids interference among the 
agents. In his scheme, appropriate synchronization actions are inserted in original plans. Our method 
for mutual planning focuses on coilaboration among agents. It emphasizes constructing mutually co
operative plans to coilaborate from agents' initial, possibly incomplete, individual plans. These two 
approaches need to be combined for optimal mutual planning. 

Obstacle detection and elimination in plan recognition is first introduced in [Allen and Perrault 80J, 
in order to provide a helpful response in discourse. Allen's paper discusses a method for detecting 
and eliminating implicit obstacles which can be derived by applying knowledge plan inference rules 
to each step in the plan. In discourse, problems arise from the fact that the entire plan of the 
speaker may not be inferred. Allen proposes a couple of specific strategies for controlling inference 
in obstacles detection. In this paper we discuss how to eliminate both explicit and implicit obstacles 
when observed by other agents having more complete knowledge about the world. In our scheme, the 
goals of collaborating agents are known to each member of the group, and agents can detect some 
implicit obstacles in others' plans. 

Rationality of an agent is needed to construct a weil organized society of agents, since it allows 
agents to choose among alternatives under uncertainty. [Doyle 90J emphasizes the need for rationality 
in reasoning. As he pointed out, not only logical rationality, but also economic rationality is of great 
importance. Rational agents are essential in multiagent systems because their actions are predictable. 

[Rosenschein and Genesereth 85J and [Rosenschein et al. 86J discuss deals among rational agents. 
Remarkably, [Rosenschein et al. 86J concludes that it is possible to coordinate decisions without com
munication using explicit models of va lues and possible choices of other agents under a variety of 
strong assumptions. In our scheme, an agent given a suggestion for coilaboration dynamically sets 
up a partial model. Since it provides hirn with predictions of other agents' decisions, communication 
among agents can be reduced to some extent. 

Martial has investigated how planning agents can positively cooperate in distributed environments 
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[Martial 90]. Many previous papers.on distributed coordinated planning mainly focus on how to resolve 
conilicts [Corkill 79] [Georgeff 83], however Martial precisely studies situations where a positive effect 
Can be reached as modeled by his favor relation. We also focus on the ,same aspect of cooperation 
in terms of collaborative plan construction. In Martial's method, agents broadcast their plans at any 
time and different levels of abatraction, so that they may refine their plans in a coordinated way. 
His method is based on the assumption that there is a collection of autonomous intelligent agents 
which communicate about planned actions ahead of time. In our scheme, the investigation of possible 
positive cooperation - collaboration - is taken into account, when need for help actually arises. It is 
ba.'lically designed to provide opportunistic collaboration to distributed planning. 

6 Concluding Remarks 

In this paper, we have presented an organizational scheme of collaboration in multiagent planning 
systems, and discussed strategies for collaborative plan construction by group members. 

Large, multiagent systems can be viewed as open distributed environments. Thus, agents have 
inconsistent and partial world views. In multi agent cooperative plan construction, several agents 
mutually generate collaborative plans by inference based on their own beliefs, and partial knowledge 
about the world. Therefore, mutual planning is confounded by disparities in agents' world knowledge. 

In the proposed scherne, an agent who needs help, dynamically organizes a group. He first an
nounces arequest for proposals by sending a message to bulletin boards. Ag~ts who read the RFP 
and who can construct a, possibly incomplete, individual plan for thE::.J'eque~ send their individual 
plans to the manager. Each operator in the plan is associated with -cl; cost estimated by the agent. 
The manager, then, investigates possible collaboration of potential contractors. If collaboration seems 
possible, the manager gives collaborative awards along with computed suggestions for collaboration. 
A suggestion for collaboration given to a contractor agent contains: (1) Explicit obstacles of the 
other collaborating agents which the agent may possibly resolve; (2) Actions which both collaborating 
agents can perform. Since this sets up a partial model for predicting the other agent's actions, com
munication among collaborating agents can be reduced. Using this suggestion, along with his initial 
individual plan and beliefs, each collaborating agent constructs a collaborative plan through inference. 
In collaborative plan construction, each collaborating agent decides the actions he should perform, the 
actions the other agent should perform, and the actions both agents do jointly. In the process, each 
agent takes three factors into account: the elimination of obstacles of other agent; balancing workload 
among agentsj and cost effectiveness. 

We are currently working on the following extensions: (1) Extending the algorithm for selecting 
/ collaborative awards and computing suggestions for collaboration to incluJe collaboration among more 

than two agents; (2) Implementing the proposed scheme on a society of SocioAgents; (3) Combining 
the proposed scheme with an approach which avoids interferenceamong the agents for optimum mutual 
planning; (4) Incorporating a learning capability into agents, so that successful collaboration can be 
reutilized again without the overhead of organizing a group. 
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Appendix: Beliefs and skills of agents in the example 

The followings are heliefs and action mIes of each agent which appear in the example in Section 
2. Details ahout the formalization of hellefs and action rules are given in Section 3. For simpllcity, 
names of agents are ommitted from the heliefs of each agent. A time point ohtained from a virtual 
dock has a concrete value, however in the following it is parametrized, assuming that for any time 
points ti and tj, if i ~ i, then ti ~ tj. 

agent: gl 
belief: 

B(block(b), to). B( handempty(gd, tl). B( room( rd, t6). B( room( r2), t7). B( in(gl, rl), ts). 
B( onfloor(b, rd, t6). B(boundary( dlx , rl, rx ), t6). B( -,open( d2y ), t7). 
B( boundary( d12 , rl, r2), t7). B(boundary( d2y , r2, Ry), t7). B( open( dI2 ), t7). 
B(boundary(D, Rb R2) :J boundary(D, R2, Rd, to). B(hodling( G, Obj) :J -,handempty(G) , to). 

action rule: 
pickup( G, Obj, T, r;lckup) 

precond: B(handempty(G),T), B(in(G,R),T), B(onfloor(Obj,R),T) 
effect: B( -,handempty(G), T + r;lckuP)' B( -,onfloor( Obj, R), T + r:I~kup)' 

B( holding( G, Obj), T + r%lckuP). 
putdown(G, Obj, T, r:~t) 

precond: B(hodling(G,Obj),T), B(in(G,R),T) 
effect: B( -,holding( G, Obj), T + r:~d, B(handempty(G), T + r%:.t), B( onfloOr(Obj, R), T + r%:.t)· 

move(G, Obj, R x, R y, T, T~01Je) 
precond: B(in(G, R x), T), B(hodling(G,Obj), T), B(boundary(Door,Rx, Ry), T), B(open(Door),T) 
effect: B( -,in( G, R x), T + T~ove)' B(in( G, Ry), T + T~ove). 

trans( Gx, Gy, Obj, T, rf,.lan.,) 
precond: B(hodling(Gx,Obj),T), B(in(Gx,R),T), B(in(Gy,R),T), B(handempty(Gy),T) 
effect: B( -,handempty( Gy), T + rf,.lan.,), B( -,holding( Gx, Obj), T + rf,.lana)' 

B(holding(Gy,Obj),T + Tf/ans)' B(handempty(Gx),T + rfr1ans)· 
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agent: g2 
belief: 

B(block( b), to). B( handempty(g2), tt}. B( room( rl), t2). B( room( r2), t3). B( room( r3), t4). 
B(in(g2' r2), ts). B(boundary(d12 , rl, r2), t3). B(boundary(d23, r2, r3), t4). B(open(d12 ) , t3). 
B( -,open( d23 ), ts). 
B(boundary(D, Rb R2) :> boundary(D, R2, Rt), to). B(hodling(G,Obj) :> -,handempty(G), to). 

action rule: 
pickup( G, Obj, T, r:ickup) 

similar with that 01 agent gl. 
move( G, Obj, R r , R y, T, T~ove) 

similar with that 01 agent gl. 
trans( Gr , Gy, Obj, T, rfrans) 

similar with that 01 agent gl. 
open(G, Door,T, Tg~n) 

precond: B(in(G,R)"T), B(boundary(Door,R,X),T), B(-,open(Door)) f), B(handempty(G),T) 
effect: B(open(Door), T + Tg~n). 

agent: g3 
belief: 

B( block(b), to). B( handempty(g3), tt}. B( room( r3), t7). B( in(g3, r3), t7). B( -,open( dy3 ), t7). 
B(open(dJr ), ts). 

action rule: 
trans( Gr , Gy, Obj, T, 1';ans) 

similar with that 01 agent gl. 
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We describe a domain independent control structure for cooperating problem solving both at the level of 
concepts and of realization (system architecture and implementation), and in terms of an example. The 
concepts are rooted in a generic agent model based upon intentions, behavior and resources of agei :ts. 
Agents are motivated to act by their long term goals, desires, preferences, responsibilities and the like, 
within their perceived sUITounding, that is other agents and the environment they exist in. 

1. Introduction 
Although the scope of DAI is not yet clearly defined, some main streams can be disiinguisht)d. 

- The editors of IBGI divide DAI into the primary areas 'Distributed Problem Solving' and 
'Multi-Agent Systems'. Distributed problem solving " ... considers how the work of solving a 
particular problem can be divided among a number of modules ... that cooperate at the level of 
dividing and sharing knowledge about the problem and about the developing solution". 
Multiagent systems are " ... concerned with coordinating intelligent behavior among a 
collection of ... autonomous intelligent 'agents' how they coordinate their knowlcdge, goals, 
skills and plans jointly to take action or to solve problems". 

- Rocently has developed a debate between proponents of 'contemplative' and of 'reactive' 
systems, e.g. IBr/. In a contemplative system knowledge about other agents and the 
environment is explicitly represented such that the agent is able to reason how to arrive at 
some goal. A reactive system simply behaves on a stimulus-response basis within its 
perceived surrounding. 

The point of view taken in this article is predominantly within contemplative multi-agent systems. 
Thus we deal with modeling scenarios with more or less sophisticated systems ("agents") 
interacting in some environment. Each agent perceives its surrounding. It has intentions and 
so me degree of autonomy and cooperativeness. To realize intentions an agent needs 
resources, which in general are limited and have to be shared. An agent eventually undertakes 
steps to realize intentions. The interaction among the agents consists of their mutual perception 
and of coordinating activities. 

Our aim is to cover a wide span of these kinds of scenarios with general control structures and 
communication strategies for cooperative problem-solving. The main aspect of this article is a 
control structure. The concepts are introduced in section 2. They are based on a general agent 
model. This, as weil as the problem solving and cooperation strategy of an agent, is based upon 
its intentions, resources and behavior. The realization of the concepts is described in section 3 
from the point of a system architecture, in which the cognitive skills of an agent are realized as a 
knowledge-based system, and a test-environment for knowledge-based systems. In order to 
iIIustrate the cooperative problem solving concepts we give an example from traffic securing and 
optimizing systems in section 4. We conclude with an outlook in section 5. 
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2. Concepts 
In this section we give a short overview of our agent model, as described in ISu/. The model is the 
base of an agent architecture, the treatment of the cognitive skills of an agent, a testbed, and the 
control structure for problem-solving and cooperation. Moreover we introduce a formal 
description of the agent model and of the cognitive actions of an agent as it is the thorough 
underpinning of the realization. 

2.1 Agent Model 

Overvlew 

We think of a DAI scenario as a set of agents which exist in an environment and which interact 
with each other and with the environment. 

An agent perceives its surrounding, Le. the environment and other agents, acts in accordance 
with its intentions and needs resources for performing perception or actions. 

As for pereeption we distinguish between whether more than one agent is explicitly involved 
(reeeiving messages from other agents) or not (sensing other agents and/or the 
environment). 
Whereas perception happens unintentionally and on a continuous basis, aetions are 
intended and can actively be planned and executed byan agent to any dasired moment. 
We differentiate eognitive aetions from effectorie aetions. Cognitive actions of an agent can 
not be directly perceived by other agents. They only become apparent by effectoric actions 
they may initiate. 
The effectoric actions are further divided into sending and acting. 
Sometimes it is convenient to talk of behavJoras comprising both actions and perception. The 
complete taxonomy of behavior is shown in Fig.1. 

behavior 

/'~ 
cognitive effectoric 
actions actions 

~ing 
perception 

~n.C\ 
receiving sending 

Fig.1: Taxonomy of 'behavior' 

- The role of intentions has recently been investigated in depth by e.g. ICU, /W/. Inaccordance 
with this work we distinguish long-term intentions, like superior goals, preferences, interests, 
responsibilities as strategie intentions from tactical intentions (short- and mid-term intentions, 
like subgoals, plans, and plan-steps). The difference can be seen in that tactical intentions 
are directly bound to actions in contrast to strategic intentions. 

- The technical term resourees is used in a very broad sense and covers everything that is 
needed for executing perception or actions. Thus resources may be divided into sensing 
resources (physical sensors, the content of buffers, ... ), sending and receiving resources 
(communication hardware, low-Ievel protocols, bandwidth message-queues, ... ), acting 
resources (robot arms, time, space, energy, ... ), and cognitive resources (knowledge and 
belief). 
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Intentions, behavior and resources are intimately tied together: Every intention is associated 
with the necessary resources for realizing it, every realized intention is an action, and every type 
of behavior needs and/or provides its typical resources. This interplay is exploited by other 
authors too (e.g./BIP/, /Isl), and more commonly covered under the topic "beliefs, goals, and 
actions". 

The interaction among agents consists of their mutual perception and their coordination of 
activities: comparison of intentions (to identify goal conflicts and common interests), adjustment 
of resources (in case of resource conflicts and resource sharing) and synchronization of actions. 
By our broad usage of the term resources this lastly amounts to the exchange of resources 
among the agents and among an agent and the environment. 

Fonnal Descrlptlon 

The agent model is formalized in terms of sets, relations and m~pings. 

As notation for the DAI scenario we introduce Scen = <AG, Env>, where AG is the set of agents 
and Env the environment. Env and every element Agj of AG are pairs themselves. The first 
element of each pair is the generic description of the object, the other one the description of its 
actual state. This distinction of descriptions holds throughout for alt objects introduced in the 
sequel. 

An agent Agj is characterized by the tuple <PERCj, ACTj, INTj, RESj>. 

The set PERCj, representing the perceptive behavior of agent Agj, is divided as PERCj = 
SENSINGj u RECEIVINGj. 

For the actions we denote ACTj =CognACTj u EffACTj and EffACT F ACTINGj u SENDINGj. 
For each agent Agj the respective sets of intentions are INTj, StratiNTj, and TactlNTj with INTj 

=StratlNTj uTactlNTj. The one-to-one correspondence between tactical intentions and actions 
(realized intentions are actions and every action can be intended) gives rise to an isomorphism 
between TactlNTj and ACTj. 
The set of resources RESj is the union of the sets of resources needed for executing the different 
behaviortypes: SensingRESj, ActingRESj, SendingRESj, ReceivingRESj, and CognRESj. There 

is a relation Execute(r,a) with r e RESj and a e ACTj, relating actions to the resources for 
executing them. By the isomorphism of ACTj and TactlNTj a similar relation Realize(r,i) holds for 

re RESj and ie TactlNTj, relating the tactical intentions with the resources for realizing them. 

The environment is completely characterized by its resources which it consumes or provides. 

All elements of PERCj and ACTj are seen as mappings among resources (always referring to the 
state description of the resources involved). 

The elements sensingja (the further index 'a' numbering the elements in the respective set) of 
SENSINGj are mappings from the environment and from the acting resources of a subset AGs 
of AG (these are those agents within the sensor range of the respective agent) to the sensing 
resources of AGj 

sensingja: Env x ActingRESs~ SensingRESj 

and receivingjkae RECEIVINGj are mappings trom the sending resources of an agent AGk to the 
receiving resources of agent Agj: 

receivingjka: SendingRESk ~ ReceivingRESj 

Similarly 

sendingjka: SendingRESj ~ ReceivingRESk . 
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The elements of ACTINGj are mappings wh ich involve the acting resources of Agj. and possibly 
of the environment, and of other agents from subsets AGA and AGA· of AG. 

actingja: ActingRESj x ActingRESA x Env ~ ActingRESj x ActingRESA· x Env 
The cognitive actions of Agj only involve resources of this agent. These actions are described in 
the following section. 

2.2 Cognitive Actlons 

Cooperative problem-solving from our point of view is identical to cognitive actions. Informally it 
subsumes the tasks 0; 
- analyzing observations (passive recognition of other agents and the environment by sensory 

means, receiving messages from other agents) 
moulding and reformulating tactical intentions 

- checking resources 
- considering actions 
- preparing messages (determining receivers and formulating questions. demands and 

informations). 
A common treatment of a11 these different types of cognitive actions would have the advantage of 
a standard frame of terms. However these tasks seem so different from each other, that a 
common treatment is unfeasible. The basic distinction between unaware perception and 
intended actions discussed in section 2.1 and the observation that the different tasks abovf can 
be grouped as those analyzing perception, those preparing actions, and those providinL the 
necessary resources. suggests the partition of the cognitive actions as 

CognACTj = ANALVZEj u PREPARq u PROVIDEj 
(In the sequel we drop the index 'i' for the agent, since cognitive actions refer to only one agent, 
per se.) 

CognHlve Actlons and Perceptlon 

Those cognitive actions which are concemed with the analysis of perceived data, Le. the 
elements of ANAL YZE, are not treated explicitly by intentions of an agent. The functions 
'analyze' (here we drop also the index 'a' numbering the functions) take the actual perceptive 
resources arld turn these into amodel of the perceived surrounding (pere): 

analyze: SensingRES x ReceivingRES ~ Perc c CognRES 

CognHlve Actlons and Effectorlc Actlons 

Those cognitive actions which deal with preparing effectoric actions (PREPARE) and with 
providing the resources for acting and sending (PROVIDE) are treated explicitly by the tuple 
<ACT, INT, RES>, since each agent aims to act in a perceived world according to its intentions 
and on behalf of available resources. 

The idea behind our treatment is the following: Each agent has a repertoire of generic actions 
which it is aware of. Generic actions are partially ordered in the sense that some have recourse to 
others in fotm of execution procedures. At the top of this ordering are 'strategie' actions StratACT 
which only make sense in specific world situations. At the bottom of the ordering are 'primitive' 
actions PrimACT. 
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The strategic intentions and the knowledge (or rather belief) of the state of the world (world model 
WM with PERC c WM c CognRES) determine the chosen tactical intention of an agent. 

adopt: WM x StratiNT ---+ adoptiNT E TactlNT . 
Committing to an adopted intention means to follow the partial ordering of the tactical intentions 
(the ordering being inherited from the ordering of the elements in EffACT) and adopting 
recursively intentions lower in the ordering 

fo"ow: TactlNT ---+ TactlNT 
where the domain of the first mapping in this sequence is adoptlNT, and the sequence 
terminates with those tactical intentions wh ich correspond to the actions in PrimEffACT. ·· 

In order to successfully follow a tactical intention, that is to have a chance to realize it, the· agent 
needs resources. So following an intention i means to obtain the necessary resources in 

Realize(r,i). If the resources for an intention are available it is called executable, ExeclNT c 
TactiNT. 
If the agent has the necessary resources at its disposal, the tactical intention can be realized 
immediately. If resources are not immediately at the agents disposal they possibly may be 
obtained frorn the environment or from other agents. This amounts to intending further generic 
acting or sending processes with their necessary resources, etc. If resources are available, but 
also needed by others, agents have to negotiate. Negotiation stepsare also treated like generic 
actions. If the resources are not available at all, the agent has to drop its originally chosen 
intention, to adopt another one, follow it, and so forth. 

The mappings in PREPARE are compositions of adopt and fol/ow mappings, 
prepare = adopt 0 follow· 0 [prepare], 

where various fol/ow mappings may be applied according to the recursive process mentioned 
above and where this possibly has to be interrupted to start another prepare. Thus ultimately 
prepare are mappings 

prepare: WM x StratiNT ---+ primexeclNT E TactlNT . 

Finally each provide mapping projects from Realize(r,execINT) those resources r which are 
needed for the realization of the intention. 

3. Realization 

In this section we describe the realization of the concepts presented in the previous chapter. The 
system architecture with its modular structure and the realization of the cognitive skills of an 
agent as a knowledge-based system are described in sections 3.1 and 3.2, respectively. We 
further briefly present our test-environment for cooperating knowledge-based systems in 
section 3.3. 

3.1 Agents and their Modules 

The features of agents which have been discussed in section 2.1 can be transformed almost 
uniquely into a modular system architecture with modules COG~JITION, responsible for 
"cognitive actions", SENSORS, responsible tor "sensing", ACTUATORS, responsible for 
"acting", COMMUNICATION, responsible for the connected pair of "receiving" and "sending", 
and INTENTION representing only strategic intentions, since, as discussed in section 2.2, 
moulding and revising tactical intentions is counted as cognitive actions. 

The model of the DAI scenario is completed by a module ENVIRONMENT. The full architecture 
is shown in Fig.2. 



Fig.2: AGENTs and their Modules 

The further system details of the modules largely depend on the specific application. Since we 
are interested in modelling the cognitive skills of an agent we can specity COGNITION if we 
decide on same paradlgm. 

3.2 COGNITION as a Knowledge-Based System 

We decided to realize each module COGNITION as a knowledge-based system. Besides a 
knowledge-base and a problem-solving component (as they are standard for isolated 
knowledge-based systems), it contains a cooperation component. 

- The knowledge base KB represents the cognitive resources of the agent. 
- The problem-solving component PC performs those cognitive actions which an agent can 

perform without coordination with other agents. 
- The cooperation component CC is responsible for negotiation processes, suitable selectici1 

of message types, resource allocation, and the like. 
COGNITION has interfaces to the other modules as shown in Fig.3. 

Knowledge Base 

The knowledge which is explicitly represented in KB is both the generic description of CognRES 
(generic knowledge) and the actual state of CognRESj (actual knowledge). 

As for structuring the knowledge we found the most natural and efficient way in a tree-like 
decomposition with a number of composite objects. KB is composed of parts 'self', 
'other_agents' and 'environment'. Each of these parts is divided into generic and actual 
knowledge, and these in turn into knowledge about behavior, intentions and resources (except 
rar 'environment', which is solely described by resources). 

- The part 'KB-self-generic-behavior' contains knowledge about the agent's repertoire of 
generic behavior, except for cognit;on. (Although this would be an avenue to meta-levels of 
problem-solving and cooperation we leave this out at present to avoid things like "intending to 
adopt an intention", or "obtain resources for adopting".) 



In our object-oriented implementation the data structure 'generic_behavior' is a super-class 
of other classes. It defines the slots with the name, an initial condition, an execution 
procedure, and parameters of a generic behavior. 
Only the class 'generic_effectoric_action' contains as an additional slot the tactical intention 
to which its instances are related (by the isomorphism). Their initial conditions are matched 
against entries within the knowledge base. 
In contrast (but in accordance with the considerations in section 2.2) 'generic""perception' is 
initialized by either message queues (for 'generic_receiving') or sensor queues (for 
'generic_sensing'). 

- 'KB-self-generic-intentions' contains knowledge both about strategic and tactical intentions. 
The part with knowledge about strategic intentions relates these to favorable strategic 
generic behaviors. Knowledge about tactical intentions incorporates knowledge of resources 
needed for realizing these intentions, that is ReaJize(r,i}. 

- 'KB-self-generic-resources' describes each resource by its source (self, others, 
environment), to wh ich module it belangs and by wh ich process it ~n be gained. If the source 
is not 'self' this process is formulated as a negotiation protocol. 

- The part 'KB-self-actual' contains the knowledge about the intentions the agent is currently 
trying to achieve, the behavior it is executing and the resources it has at its own disposaJ. 

- 'KB-others-generic' contains gene~c knowledge about the typicaJ behavior, intentions and 
resources of the other agents in thascenario, whereas 'KB-others-actual' is the knowledge 
about those agents that are actually interacting with the agent. This knowledge is often called 
knowledge about 'acquaintances',e.g. in MACE IGBHI or in the actor model. 

- Knowledge about the environment is knowledge about the resources provided by the 
environment, typically ('KB-environment-generic') and actually ('KB-environment-actual'). 

Fig.3: COGNITION and its Interfaces 

Problem-Solvlng Component 

The task of PC is the analysis of sensing and the preparation of acting togetherwith the provision 
of its necessary resources. To simplify the wording we simply write 'actions' for the elements of 
ACTING, since as discussed, cognitive actions are not treated in this form, and since the 
preparation of sending is delegated to the cooperation component. 
The data flow within the problem-solving component is described as follows (comp. Fig.4). 
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Fig.4: Data Flow within the Problem-Solving Component 

1. The agent acts according to a detault behavior, wh ich directly derives trom its strategic 
intentions. This behavior is performed as long as nothing else happens, it the performance ot 
a generic action is interrupted or as long no new one has been chosen. 

2. By analyzing new sensor data the models tor the environment and tor the other agents within 
KB are updated. 

3. Possible actions are determined trom the set ot generic actions by comparing the world model 
with the initial conditions ot the generic actions. 

4. It several possible actions exist, adecision tor one ot them is made by the strategic intentions. 
5. The agent commits itselt to perform the chosen action. 
6. To realize the tactical intention i its necessary resources r trom Realize(r,!) are checked: 

- It the necessary resources are immediately present, Le. it they are at the agents disposaI, 
the adjoined generic action can be executed according to the execution procedure; see 
step 7. 

- It the necessary resources are not immediately available, the agent aims to get the 
resources trom the environment or trom other agents. 
The task to obtain resources trom other agents is delegated to the cooperation component 
CC; see next paragraph. 

- It the necessary resources cannot be made available, the tactical intention is not realizable 
and a commitment to another generic action is to be made. 

7. A generic action is executed by tollowing an execution procedure. In gener~~ this leads again 
to a commitment to a tactical intention ot an action lower in the partial order. The execution ot 
primitive_acting directly happens by calling the interface tunction to ACTUATORS. 

Step 2 realizes part ot the analyze mapping, steps 3 and 4 the adopt mapping, and steps 5 to step 
7 the folIowand provide mappings, as introduced in sect. 2.2. 

Aside trom tollowing the seven-step procedure above. PC can be initiated on the level ot 
determining possible actions by an order trom CC due to arequest by another agent. 
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Cooperatlon Component 

The two tasks of the cooperation eomponent CC are to obtain resourees trom and to provide 
resourees to other agents. To tultill these tasks CC negotiates (and for this communieates) with 
other agents, Le. prepares sending aetions tor COMMUNICATION and analyses receiving 
messages trom COMMUNICATION. Aeeording to our attitude ot treating effectorie aetions 
different trom pereeption, 'sending' is described in terms ot tactical intentions in eontrast to 
'receiving' . 
Negotiation and eommunication tollows protocols, like the eontract net protocol 15ml or 
knowledge interehange protoeols/CI/. As mentloned betore, these protoeols are represented as 
generie_behavior. 

ce is initiated by either an order trom PC to obtain or provide resources or by an ineoming 
message trom another agent tor providing resourees. 

a) It CC is initiated by PC to obtain a eertain resouree, CC takes the tollowing steps (camp. 
Fig.5a): 

1. ce loo\l's up the generie deseription ofthe resouree in KB, where it finds agenerie_.sending 
whieh must be exeeuted to obtain the resouree. 

2. This generie_sending is treated just like generie-aeting within the problem-solving 
component, namely by eommitting to a taetical intention, by eheeking and obtaining 
neeessary resourees and by tollowing an exeeution proeedure, whieh eventually leads to a 
primitive--generie_sending, Le. a tunetion whieh direetly can be exeeuted by 
COMMUNICATION. 
The resources (address of receiver ete.) are in our first approaeh assumed to be at the 
agent's disposal, to prevent a recursive eall ot CC to itself. 

b) dealing with ineoming messages 

a) dealing with an order by PC 

CC 

Fig.5: Data Flow within the Cooperation Component 



b) Otherwise CC 'observes' the message queue, in orderto handle incoming messages (comp. 
Fig.5b): 

1. There is generic_receiving that de.als with incoming messages. Protocols specify special 
receiving behavior for every message type they include. CC follows the respective 
execution procedure. 

2. The execution of primitive_receiving can have different effects: The content of the 
received message can complete or change the world model as part of KB, the received 
message can initiate (or follow) a negotiation as described in a) or it can determine an 
acting behavior to be prepared (and executed) by PC. 

As basic message types we presently use INFORM (where areaction of the receiving agent is 
not expected), QUERY (where the receiver is expected to send an answer), and DEMAND 
(where an acting behavior of the receiver is expected). In accordance with the work of other 
authors, e.g. /NT/, we will build dialogue structures from these three types. 

3.3 Test-Environment 

The knowledge-based systems, representing 'the cognitive component of the agents involved, 
are embedded in our "Development And Simulation Environment for Distributed Intelligent 
Systems" (DASEDIS). DASEDIS supports a fealistic simulation and provides instruments for 
implementing, inspecting, and observing interacting knowledge-based systems. 

The architecture of this experimental tQol is deiived from the modular architecture of an agent. 
Everything besides the knowledge-based systems, namely the modules SENSORS, 
ACTUATORS, COMMUNICATION, INTENTION, ENVIRONMENT, is modeled within the 
simulation component of DASEDIS. These models are exchangeable both within an application 
as weil as for a domain. The simulation can be visualized in the DASEDIS user interface. The 
visualization is largely determined by the application. The other (application independent) tasks 
of the interface are the integration-and connection of the simulation component and the 
development component. The development component serves as basis for the implementation 
of the various components of the knowledge-based systems, for the inspection of the knowledge 
bases, and for the observation of the problem-solving and the cooperation component. 
DASEDIS provides methods for implementing agents, control and communication strategies by 
basic data structures. 

4. Example 
Our first application is drawn from the area of traffic securing and optimizing systems. This can 
be road bound or unbound two-dimensional traffic (cars or ships), or three-dimensional traffic 
(air planes or space vehicles). We presently concentrate on road-bound traffic in our project 
COroad. A comparable application is described in /U. 

In this secHon we introduce a scenario and describe the solution of a simple overtaking 
maneuver using the problem solving and cooperation mechanisms described before. 

1<' 



4.1 The COroad-Scenario 

We started with a very simple scenario, in wh ich two to ten agents (with possibly different 
performances and intentions) move on a two or three-Iane highway. They change lanes and 
overtake, or they enter or leave convoys. Each agent has partial knowledge about parameters 
(for example velocities, vehicle type), relative position (distance, lane) and intentions of other 
agents. Each agent decides with respect to the perceived world and with respect to its strategie 
intentions of whether it should drive with a certain speed, adopt the speed of another agent, 
overtake, or interrupt an overtaking maneuver. These correspond to strategie generic behavior 
"ride", "follow", "overtake", "interrupt-overtaking". Thedefault generic behavior is "ride", which is 
performed if no other agent is involved. 

The vehicle model in ACTUATO~S describes the rough geornetry of the vehicle, its velocity, its 
accelerationlbraking behavior. Different vehicle types are characterized by their maximal 
velocity and their power/weight ratio. The simulation functions are "drive", "brake", "accelerate", 
"change lane". Thus these are the primitive acting types. The driver model in INTENTION 
describes the attitudes and long term goals of a driver, such as driving cautiously, economically, 
fast. SENSORS "measure" the relative position of othervehicles. COMMUNICATION simulates 
the communication between vehicles. ENVIRONMENT describes the road in its topology, its 
qualities, as weil as restrietions due to speed regulations and the like. 

The knowledge base KB contains generic knowledge like the "driving school knowledge", 
models of other typical agents (ordinary cars, trucks etc.) and of the typical environment 
(two-Iane, three-Iane highway) as weil as actual knowledge like parameters describing the 
environment, the current own data (velocity etc.), the actual problem solving state with respect to 
intentions, behavior" and resources, as weil as the state of other agents (this however being 
incomplete). 

The DASEDIS user interface allows the user to input vehicle data and driver's strategie 
intentions. As output it shows the scenario in a graphical form (vehicle symbols moving on a road 
drawn on the visualization window) and parameters of selected vehicles. 

4.2 An Overtaking Maneuver 

Bonnie is a time-saving driver. She Ukes to c:trive as fast as possible. If no other agent is within her 
'zone of relevance' on the highway she adopts the default behavior "ride" with the maximum 
power. 

(def-generic·acting ride 
:init-cond :default 
:exec '( (drive :speed (resource vehicle-max-speed))) 
:tact-intention 'ta-ride ) 

(In italic letters we state in a CommonllSP and CLOS like notation those pieces of generic 
knowledge which Bonnie uses). 

At a certain moment her SENSORS register another agent (Clyde) on the same lane before her 
and with a decreasing distance. As soon as the distance becomes smaller than a trigger distance 
Bonnie has to decide what to do. Her problem-solving component determines two kinds of 
(strategie) generic acting behaviors to be applicable in this situation, namely 'overtake' and 
'follow'. 
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(def-generic-acting overtake 
:init-cond '(and (same-/ane-before-p $Vehic-before-me $se") 

(distance-decreasing-p $vehic-before-me $se") 
« (distance $vehic-before-me $se") 

(trigger-distance)) ) 
:exec '( (change-Iane :direction :/eft) 

(pass-by) 
(change-la ne :direction :right)) 

.tact-intention 'to-overtake) 

(def-generic-acting follow 
:init-cond '(and (same-Iane-before-p $Vehic-before-me $se") 

(distance-decreasing-p $Vehic-before-me $se") 
« (distance $Vehic-before-me $se") 

(trigger-distance)) ) 
:exec '( (drive (resources desired-speed-follow))) 
.tact-intention 'to-follow) 

Matehing these with her strategie intention to drive time-saving Bonnie deeides to overtake: 
(def-generic-strategic-intention drive-time-saving 

:favorable-behavior '(overtake)) 

(def-generic-strategic-intention drive-economic 
:favorab/e-behaifior '(follow) ) 

So, Bonnie commits to the taetical intention 'to-overtake'. 

(def-generic-tact~J-intention to-overtake 
:resources '(ok-to-overtake)) 

(def-gene ic-resaurce ok-to-overtake 
:provicfd-where :others 
:provio'"3d-by $vehic-before-me 
:provided-how '( (send-demand :content 'stay-on-/ane 

:receiver $Vehic-before-me))) 

The only resouree needed for overtaking is an 'ok' by Clyde. This resource is provided by :others 
and is provided through sending ademand to Clyde that he should stay on his lane. Assuming for 
simplieity that Clyde answers "ok" to this demand, Bonnie's cooperation eomponent inserts this 
answer into the knowledge base. As soon as the resouree 'ok-to-overtake' is available Bonnie 
ean exeeute the behavior 'overtake'. 

The first aetion to take (as stated in the :exee-attribute of overtake) is to ehange to the left lane. A 
tactieal intention 'to-ehange-Iane' is formulated: 

(def-primffive-generic-acting change-/ane 
:exec 'simu:change-fane 
:tact-intention 'to-change-/ane 
:params '(:direction) ) 

(def-generic-tactica/-intention to-change-Iane 
:resources '( new-/ane-no range (road new-Iane-no range))) 

(def-genefic-resaurce road 
:provided-where :environment 
:provided-by :environment) 

Here Bonnie needs as resouree a eertain range on the new lane to be free. Assuming that in 
eheeking this resouree she finds in her own aetuaJ knowledge (in the part :environment), that the 
road on the new lane is free (the knowledge about the environment eoming from her SENSORS). 
So the exeeution proeedure of 'ehange-Iane' ean be followed. Sinee it is asimulation funetion, it is 
direetly exeeuted in AC I'UATORS. 

The next step in the exeeution proeedure of 'overtake' is 'pass-by'. 
(def-generic-acting pass-by 

:exec '( (drive :speed (resource desired-speed-pass-by) ) ) 
:tact-intention 'to-pass-by 
:params '(:direction) ) 

(def-generic-tactica/-intention to-pass-by 
:resources '(desired-speed-pass-by) ) 
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(def-generic-resource desired-speed-pass-by 
:provided-where :selt 
:provided-by :cognition) 

So in order to pass-by, Bonnie needs to know the speed by whieh she wants to pass by. 
Assuming a flying overtaking (and a flat highway) this is hereurrent speed, knowledge of whieh is 
in her own KB. She can exeeute 'pass-by', whieh is finally to drive with a given speed. 

(def-primitive-generic-acting drive 
:exec 'simu:drive 
:tact-intention 'to-eJrive 
:params '(:speed)) 

(def-generic-tactical-intention ta-drive 
:resources '( desired-speed-drive 

(> vehicle-max-speed desired-speed-eJrive)}} 

(def-generic-resource desired-speed-drive 
:provided-where :selt 
:provided-by :cognition) 

(def-generic-resource vehicle-max-speed 
:provided-where :selt 
:provided-by :actuators) 

The only resouree of drive is that this speed is not a1lowed to be than the maximal speed the 
vehiele can drive. Drive, being a primitive aeting behavior, is exeeuted by ACTUATORS. 

The last step of overtaking is to change back to the right lane. Again the reSouree 'road' is 
eheeked, as long as the road on the right lane is not free, Bonnie keeps on driving on her eurrent 
lane, when she has passed by Clyde the resource 'road' is available again and she can change 
to the right lane. Bonnie has overtaken Clyde. Afterwards she returns to the default behavior 
"ride" with her favorable speed. 

What is demonstrated in this example is the interplay between the selection of a (strategie) 
generie behavior, the forming of the eorresponding taetieal intention, the eheeking and obtaining 
of resources and finally the exeeution of the behavior in a reeursive manner until a primitive 
behavior, Le. a simulation funetion is reaehed. 

5. Conclusion and Outlook 
The work deseribed in this artiele is part of our COSY projeet IBS/. The aim within COSY 
(COoperating SYstems) is to arrive at a systematics for the design of cooperating systems. We 
pick up the loose ends trom existing theoretieal and empirieal research results in DAI and 
investigate coneepts in earefully direeted experiments . . The eoneepts are implemented and 
evaluated in order to find out eontrol struetures and eommunieation strategies most appropriate 
for large elasses of applieations. 

For the purpose of testing and comparing existing results and for refining and extending them a 
very general agent model and a very broad coneept of eooperative problem-solving is needed. 

As argued elsewhere ISu/, our agent model being based on intentions, resourees and behavior, 
covers other approach es Iike state-, aetor-, role-, and organization-oriented ones. 

Also the data and control tlow presented in this artiele is meant to set a general trame tor specitic 
types of cooperative problem solving. 
- The control structure in the problem-solving component allows to mix methods of classical 

planning (where resources are to be seen as STRIPS-like preconditions) with script-based 
planning (where generic actions are tied to stereotyped situations), which allows a quick 
solution tor complex problem-solving. 

- By techniques to be described in a forthcoming pUblication, we are able to give reactive 
abilities to the cooperative planning process. 



- The control flow within the cooperation component can subsume different cooperation 
strategies. We want to demonstrate and utilize this by forming various cooperation strategies 
as "prefabricates" of the development component in DASEDIS. 

The advantage of our approach should be seen in that the original paradigm of knowledge
based systems, namely the separation of domain knowledge from a general problem solving 
procedure, is extended to interacting knowledge-based systems including cooperation. 
Lastly, by the basic assumption that agents are motivated to act by some sort of intention 
influenced by their perceived surrounding gives the conceptual framework a good chance to 
investigate the interplay of goals, belief and actions and its retation to ability, organizations and 
roles. 
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Abstract 

The topic of this paper is a representation model 
for solid objects used for physical simulation pur
poses and for planning in a robot assembly sys
tem. The system combines analogical representar 
tion and multi-agent modelling, using a bottom
up representation for objects based on analogical 
agents. We call these agents analogical because 
they are mapped into, interact with and reason 
directly on the workspace representation, which is 
a discrete grid. The agents contain local geomet
rical and physical constraints and they cooperate 
to satisfy them while moving in the direction of an 
external force and interacting with other objects in 
the workspace. An emergent functionality of the 
simulation of a block moving in a complex environ
ment is the solution to various stability problems. 

1 Introduction 

Simulation is a frequently used technique in many 
fields. In planning systems it is a valuable_method 
to check whether the execution of the planned ac-

°This research is supported by Swiss National Project 
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Dalle Molle di Studi sull'Intelligenza Artificiale (Lugano), 
Institut de Microtechnique Ecole Polytechnique Federale de 
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tions will lead to a successful state without hav
ing to try them in the real environment. This 
paper deals with the simulation of physical ob
jects, i.e. ob jects moving according to some force 
and colliding with other objects in the environ
ment. Consider for instance an object falling 
onto the edge of a table: it will hit the table, 
rotate around some pivot touch point and fall 
further down until it hits another object or the 
ground. In this paper we will present a system 
modeling this kind of behaviour in 2 dimensions 
with polygonic solid shapes. We will describe a 
bottom-up representation for these objects, con
sisting of autonomous agents, and show how the 
global behaviour emerges from the interaction of 
these agents. We will call these agents analogical 
because they are mapped into, interact with and 
reason directly on the workspace representation. 

This kind of analogical simulation has previ
ously been applied to other physical systems like 
liquids [DKS91] [GM89] and strings [GGM89]. 
The use of analogical representation is fostered by 
the nature of the problem. Simulating complex 
physical systems using exclusively symbolic infor
mation would result in low accuracy when detailed 
spatial knowledge is needed. 

A key example of an analogical simulation pro
gram is WHISPER, described in [Fun80]. It is 
able to detect and simulate instabilities in a blocks 
world using diagram representations. WHISPER 



has similar functionalities to those of our system 
but uses centralized high-level reasoning on low
level distributed analogical representation to cre
ate the envisionment of object configurations. Our 
system tries to avoid this global centralized con
trol by distributing among the constituent agents 
the necessary local behaviour to obtain a correct 
global result. We will obtain the same result, with
out explicitly describing the movement of an ob
ject; the required functionality emerges from in
ternal communications and interaction with the 
environment. The importance of the use of ana
logical representations in autonomous agent orga
nizations is explained in [Ste89J. 

The next section describes the different kinds 
of agents that our representation consists ('If. The 
third one explains how agents cooperate to obtain 
the desired behaviour. This is foilowed by a ..iscus
sion of the main characteristics,lim'ts and p,')ssible 
applications of the analogical agenLs approach. 

2 Agent Architecture 

Before explaining the different kind.s of agents, it is 
important to notice that the underl,ring workspace 
is a discrete grid; this means a two c.limensional ar
ray of ceils. Each object occupies a number of cells 
according to its size and shape. Objects are con
sidered to be two-dimensional, solid, non-elastic 
polygons. The ceils making up the con tour of the 
polygon contain two kinds of agents, namely l.lode 
agents on the nodes of the polygon and contour 
agents on the edges between the nodes. These two 
kinds of agents are organized in a two-Ievel hierar
chy in which the contour agents are subordinated 
to the node agents in the sense that they serve 
as analogical sensors and their position depends 
on the geometrical information con tained in the 
node agents. Node agents contain the necessary 
local rules that determine the geometrical shape 
and the non-elasticity property of the objects. For 
reasons of efficiency, the cells that fiil up the poly
gon remain empty. A third kind of agent which is 
not a real part of an object, but which is physically 
attached to it is the force agent. It represents the 
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Figure 1: Anode agent and its geometrical infor
mation. 

qualitative force acting on the object and will play 
an important role in the simulation behaviour of 
the agents. By a qualitative force, it is meant that 
i t only gives an indication of the direction of the 
force. Notice that the granularity of the workspace 
grid influences the accuracy of our model, because 
it determines the unit of the size that an agent 
can move. The foilowing paragraphs will describe 
these agents, giving their knowledge and positional 
constraints. 

2.1 Node Agents 

Node agents are positioned on the angular points 
of the polygonal object. The necessary geomet
rical information about the object is distributed 
over these agents. Each node agent n contains the 
following information slots (see Figure 1): 

• A position (x, y) denoting a cell in the 
workspace grid. 

• Links to the two neighbouring node agents: 
nbl and nb2· 

• The distances d1 and d2 from n to resp. nbl 

and nb2. 



• The angle a between the two neigh bouring 
node agents. 

• The orientation <p of the latter angle. This is 
a variable. 

• A link to the two direct contour agents of n, 
as described in the next paragraph. 

d1 , d2 and a are set at creation time and re
main constant an the time. They represent the 
constraints for anode agent and they are used to 
describe the geometrical shape of the object. The 
constant angle a expresses the non-elasticity con
straint for the object and dl, d2 tell that the object 
is not extensible. The angle <p describes the ori
entation of the fixed angle in the workspace. At 
each time step the angle and the distances between 
n and its two neighbour agents have to be equal 
to a and to d1 and d2• Each node agent checks 
its constraint by asking the two neighbour node 
agents for their position and from computing the 
actual distances d~, d~ and angle a'. When these 
constraints are not satisfied the agent can correct 
them by changing its position or by asking nbl or 
nb2 to adapt their position in order to obtain the 
correct value for d~, ~ and angle a'. Another con
straint is that each cell normally contain a single 
agent (i.e. anode or contour agent), which implies 
that the node agent will always check a cell before 
it tries to occupy it. 

2.2 Contour Agents 

Contour agents are positioned on the edges be
tween the node agents. Each contour agent c con
tains the following information slots (see Figure 2): 

• A position (x, y) denoting a cell in the 
workspace grid. 

• A link to the two neighbouring contour agents 
Cbl and Cb2' 

• A link to the two node agents nl and n2 at 
the ends of the edge on which C is positioned. 
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Figure 2: A contour agent and its geometrical in
formation. 

• A distance d to one of the two node agents 
mentioned in the previous slot. 

The constant d represents a positional constraint 
for the agent. Each time the object moves, the 
contour agents have to recompute their new po
sition using the constant distance d and the links 
to the node agents. When it tries to change po
sition it will make sure that it does not occupy 
a cell already occupied by another object. The 
purpose of contour agents is to act as analogical 
sensors, Le. to detect contact between the object 
and other objects represented as filled cells in the 
workspace. ' 

2.3 Force Agent 

The force acting on an object is represented by a 
force agent, which is positioned at the cell con
taining the point of application of a force. For 
instance, for an object falling under gravity this 
will be the center of mass. The knowledge of a 
force agent f is contained in the following slots 
(see Figure 3): 

• A position (x, y) denoting a cell in the 
workspace grid. 
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Figure 3: A force !gent and its geometrical infor
mation. 

• A qualitative force vector f denoting the di
rection of the force. 

• A constant angle</> and distance d denoting 
the relative position of the force agent to the 
object. 

The force agent's positional constraint is relative 
to that of the node agent and is contained in the 
constants </> and d. After each timestep the actual 
values for this angle and distance are computed 
and if necessary the agent's position is corrected. 
The force ',ector can be either static or can be 
changed by an external controller. Also, in order 
to consider multiple moving objects, a force prop
agation protocol between colliding obstacles could 
be considered. 

2.4 The communication protocol 

In order to satisfy their constraints and their goal, 
which we will describe in the next section, com
munication between the agents will be necessary. 
Between node agents and contour agents this oc
curs according to an actor protocol, which means 
that agents can only communicate directly with 

those agents that they know about, and that COffi

munication is done by message passing. These 
commurucation abilities are called links in the pre
vious paragraphs. Notice that between the node 
agents a doubly linked circular list exists, as for 
the contour agents. Node 'tgents have links with 
their direct neighbouring contour agents, which 
implies thä.! l)y message passing each node cr con
tour agent can reach every other node or contour 
agent. Contour agents can use a shortcut link to 
the node agents of their edge, for performance rea.
sons. The force agent ca.n communicate with every 
other agent and vice versa. 

3 Agent Behaviour 

In this chapter we will describe the behaviour of 
the agents to obtain global movement of an object 
according to a force applied to .it. We will con
si der one object moving in the workspace contain
ing static obstacles. The point at which the force 
is applied is considered to be the center of mass 
of the object. Forces applied at points other than 
the center of mass result in a torque and rotational 
movement, even in free space. 

3.1 Unconstrained Translation 

When a force is applied to an object a force agent 
is created and attached to it. Now, the goal of 
the node agents is to try to move in the direc
tion of the force. The node agents will try to oc
cupy the neighbouring ceU in the workspace grid 
according to the required direction, consequently 
the contour agents will change their position in or
der to remain on the correct edge position. If ev
ery agent successfuUy changes position, Le., does 
not try to occupy a fiUed ceU, the result will be a 
one cell translation of the object. The positional 
constraints of the node agents will remain satisfied 
and no complicated communication will be needed 
to resatisfy them and the force agent will start a 
new movement instruction. 



3.2 Stability Problem 

When an agent tries to occupy a cell that is already 
occupied by another object, it will not change po
sition. If this happens for one or more agents the 

. agent configuration will not conform to the object 
' initially modeled. At trus point the agents will 

have to negotiate to satisfy their local constraints 
and to obtain a new configuration conforming to 
the initial geometry and the movement caused by 
the force. Because we deal with only one mov
ing block in a workspace, containing only static 
obstacle blocks, we can distinguish two situations. 
The first is that the moving object is completely 
blocked by the others. The second possibility is 
that the object is only partially blocked and it will 
start rotating around a pivot touch point, which 
is the touch point dosest to the center of masse 
This is the so-called stability problem. We will 
show how we obtain this global behaviour, with
out really having the high-level notion of stability 
or rotation around a pivot point, but by coopera
tion among the agents in the bottom-up represen
tation. The general idea is that two agents will be 
selected, one on each side of the force vector (see 
Figure 4 and 5), from which the reconstruction 
protocol will be initiated. 

These two agents are called selected and are 
found in the following way. First each contour 
agent which w.,s unsuccessful in trying to occupy
ing its desired cell, looks to see whether both its 
neighbours are in the same condition. If this is not 
the case the agent knows that it is the last one in 
aseries of touching agents (and thus candidate for 
a pivot point). 

In Figures 4.a and 5.a these are the contour 
agents which are marked black. 

These candidate pivot points communicate with 
the force agent and compute their distance from 
the force vector. For each side of the force vector 
the agent having the shortest distance is marked 
as selected. In Figures 4 and 5 this leads to the 
marking of the contour agent which is labeled !I . 

If this results in two selected agents a reconstruc
tion protocol is started. In the case of only one 

(a.) 
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Figure 4: An unstable situation. 4:a Shows an 
agent configuration after a collisionwith a static 
obstacle. Agents!t is first chosen to be the selected 
agents, Node agent h is chosen to be the second 
selected agent. 4.b shows the resulting configura
tion after the reconstruction. 

selected agent the nearest node agent at the other 
side of the force vector is chosen to be the second 
selected agent (Node agent h in Figure 4) . 

These two agents determine how the positions of 
the rest of the agents are corrected. This is done 
in the following way: the selected agents communi
cate to their neighbours to change their position in 
a way to satisfy the constraints. These in turn do 
the same with their neighbours. When the loop is 
closed all constraints are satisfied and a new move
ment can be started. Notice that the first case of 
finding two selected contour agents, each on one 
side of the force vector, agrees with a stable sit
uation while the second case means an unstable 
situation. Examples of resulting configurations af
ter this correction are shown in Figures 4 .b and 
5.b . 



(a) 
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Figure 5: A stable situation. 5.a Shows an agent 
configuration after a collision with a static obsta.
de. Agents 11 and h are chosen to be the selected 
agents. 5.b shows the resulting configuration after 
the reconstruction. 

4 Characteristics, Applications 
and Limits of the System 

The main difference between our multi-agent ap
proach and high-level approaches, like the WHIS
PER system by Funt [Fun80] , is that we do uot 
explicitly code the global physical behaviour, but 
it emerges from the interaction between agents. 
In WHISPER a high level reasoner first checks a 
blocks configuration for instabilities, choses a pivot 
point and simulates the rotation explicitly. Our 
system does not have an idea of instability or ro
tation, agents always apply the same behaviour 
of moving in a certain direction and if necessary 
recover from an abnormal situation. In order to 
distinguish between a stable or unstable configu
ration the global behaviour must be interpreted 
externally by looking at the workspace grid or in
ternally by monitoring the behaviour of individ
ual agents. For stabil.ity, it is sufficient to observe 
the movement of the agents. This explains the 

need for an interpreter module to extract informar 
tion relating to the status of a simulation system 
which uses distributed representation and contro!. 
In [Gam91] the use of an analogical string simular 
tion in an automatie assembly system applying a 
planning, simulating and interpreting loop is de
scribed. 

A possible application of this physical block sim
ulation in robot assembly could be the simulation 
of an object following a path, defined by the plan
ner and represented as aseries of forces in the 
workspa.ce. The system could monitor the object, 
evaluate the success of the result using as a basis 
for recov~ry planning or execution of the plan in 
the real :mvironment. 

For this kind of application the current func
tionality will be sufficient. For other applications 
it will be necessary to cover more complex func
tionalities like velocity, acceleration object surfa.ce 
properties and other dynamic features of a phys
ical object. To be ahle to take these features 
into account for simulation the current qualitative 
knowledge of the agents needs to be extended with 
a more quantitative one. 

5 Conclusions 

We have described a model of physical objects for 
simulation purposes which relied on autonomous 
agents, bottom-up descriptions, constraint satis
faction and the use of local and analogical infor
mation. 

The result of the simulation of a moving block 
in a complex environment implicitly solves the star 
bil.ity problem, not by global reasoning, but by co
operation between autonomous agents. 

Analogical representations are used to represent 
both the workspace and the changes that are made 
in it. 

We mixed this strength of analogical representar 
tions with the power of autonomous agent systems 
which lies in the capabilities of agents to cooperate 
and communicate to satisfy their local constraints. 

An implementation of the model serves as a ba
sis for further research. One goal is to expand the 



model to cover multiple moving objects and prop
agation of forces. Another goal is to use the model 
in robot assembly, in which we simulate a grasped 
object moving in its workspace. 
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The paper identifies generality and power (processing work: per unit time) as two major 
but conflicting requirements for the design of autonomous intelligent agents. A 
separation of these two concems leads to the notion of a variable degree 0/ causal 
coupling between parts of a mechanism and its environment in tenns of spare and time. 
Recent controversies surrounding sub-symbolic processing, symbol-grounding, 
sinlated agents and reactive architectures can all be interpreted as manifestations of the 
pressure towards power by close coupling to the environment. Classical AI 
approaches based on symbolic processing, planning, general problem solving 
methods, the use of logic can all be interpreted as manifestations of the pres ure 
towards generality by loose coupling or decoupling from the environment. An 
implementation strategy for variable coupling Can be a layered architeeture, where the 
decoupled higher layers support generality and the dose coupled lower layers support 
power. 

The consequences of these distinctions for the choice of representations and 
processing strategies is discussed and illustrated. 

Some historical precedents and current implementation efforts towards such 
architectures are reviewed. 

It is J,)<>stulated that the topmost Iayer of such an architecture continues the layering 
indefinitely by having reflexive capabilities. It is also assumed that the distributed 
structure of this layer also supports the availability of "common information" at each of 
its components. 

It is then shown that this layer is associated with phenomena of the agent's self, 
consciousness, subjectivity and "free" will. 

The availability of common information at each component of the layer enables 
coordinated action and thus produces the unitary nature of the agent's seif. 

The role of consciousness is to support generality by being a modality-independent 
representation system in the architecture. Representations within this layer correspond 
to the subjective meaning extracted from the incoming information. 

If there are nonlinearities present, the reflexive processing is capable of chaotic modes 
of behaviour. It is proposed that the unpredictability of agent action and hence the 
impression of free will are due to the fact that chaotic processes act as generators of 
information. 1his resolves the ontological conflict between deterrninism and free agent 
action. Chaotic processes are deterministic but are informationally decoupled and 
hence opaque, unpredictable, from an observer's point of view. 



MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 

Toward an Architecture 
for Adaptive, Rational, Mobile Agents1 

Innes A. Ferguson 

Computer Laboratory 
University of Cambridge, 

Cambridge CB2 3QG, UK 
Tel.: +44 223 334421 
Fax: +44 223 334678 

E-mail: iaf@cl.cam.ac.uk 

July 7, 1991 

Abstract 

It is becoming widely accepted that neither purely reactive nor purely delibera
tive control techniques are capable of producing the range of behaviours required of 
intelligent agents in dynamic, unpredictable, multi-agent worlds. We present a new 
architecture for controlling autonomous, mobile agents - building on previous work 
addressing reactive and deliberative control methods. The proposed multi-layered 
control architecture allows a resource-bounded, goal-directed agent to react promptly 
to unexpected changes in its environment; at the same time it enables the agent to 
reason predictively about potential conflicts by constructing and projecting theories 
which hypothesize other agents' intentions. 

The line of research adopted is very much a pragmatic one. A single, common 
architecture has been implement.ed Wllich, being heavily parameterized, allows an 
experimenter to study functionally- and behaviourally-diverse agent configurations. A 
principal aim of this research is to understand the role different functional capabilities 
play in constraining an agent's behaviour under varying environmental conditions. To 
this end, an experimental testbed comprising a simulated multi-agent world has also 
been constructed. Some preliminary experience with the new control architecture is 
described. 

1 

lThis work was supported by a Bell-Northern Research Postgraduate Scholarship and a CVCP Overseas 
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1 Introduction 

In order to survive and thrive in complex, real-world domains, future robotic agents will 
need to be made considerably more robust and adaptive than they are at present. Such 
domains (e.g. factory floors or space stations) are likely to be populated by multiple agents, 
each pursuing any number of goals. Because agents have incomplete knowledge about 
the world, it is inevitable that some of these goals will conflict. In real-world domains . 
agents typically perform complex tasks requiring somE! degree of attention to be paid to .... 
computational resource bounds, temporal deadlines, and the impact their shorter-term. 
actions might be having on their longer-term goals. On the other hand, time never stops 
or slows down for agents to deli berate upon all possible courses of action for every world 
state. Intelligent agents will require a range of skills to respond promptly to unexpected 
events, while simultaneously being able to carry out pre-programmed tasks and resolve 
unexpected conflicts in a timely and efficient manner. Not surprisingly, it is becoming 
widely accepted that neither purely reactive nor purely deliberative control techniques are 
capable of producing the range of robust, llexible behaviours desired of future intelligent 
agents. 

In this paper we present a new multi-l; . .yered architecture for controlling autonomous, 
mobile agents or TOURINGMACHINES whi"h combines capabilities for producing a range 
of reactive and deliberati ve behar-iours in dynamic, unpredictable domains. This new 
approach is influenced on the one hand by recent work on reactive and behaviour-based 
agent architectures [Br086, Fir87, Kae87], and on the other by more traditional AI endeav
ours such as planning, diagnostic theory formation [PGA86], resource-bounded reasoning 
[PIB87], and belief and intention modelling [Bra87, GLS87, PIB87]. 

Our research adopts a fairly pragmatic approach toward understanding how complex, 
dynamic environments might constrain the design of agents and, conversely, how different 
functional capabilities within agents might combine to generate different behaviours. To 
evaluate the TOURINGMACHINE architecture we have implemented a multi-agent simu
lation testbed. By varying parameters constraining agents' functional capabilities (e.g. 
sensing characteristics, attentional powers, degree of reactivity, world modelling powers) 
or parameters characterizing the environment itself (e.g. number of agents and obstacles, 
ratio of cpu time to simulated-world time), we can study a number of tradeoffs vis-a-vis 
how much reacting, planning, and predicting resource-bounded agents should be doing in 
order to behave rationally with respect to their goals. 2 In many ways, our approach to eval
uating agent designs resembles the empirical approaches used in the Phoenix [CGHH89] 
and Tileworld [PR90] projects. 

In our example domain we cons;der one or more agents, each with the task of following 
a different route from so me starting location to some goal location within certain time 
bounds. Each agent starts wi th some geographical knowledge of the world (e.g. locations 
of paths and path intersections), but has no prior knowledge regarding other agents' 
locations or goals or static obstacles it might encounter along its route. An agent can 
communicate its intentions to turn or overtake by signalling - much like a driver does 
in a car - and can only consume up to so me fixed number of computational resources 
per unit of simulated world time. Before discussing specifics of the TOURINGMACHINE 
architecture, its implementation, and its simulation testbed, we consider so me important 
requirements for intelligent agency. 

2The definition of rational behaviour used here is borrowed from Pollack et al. [PIB87] and corresponds 
to "tue production of actions that further the goals of an agent, based upon [its] conception of the world." 
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2 Intelligent Agency 

In recent years there has been considerable growth of interest in the design of intelligent 
agent architectures for dynamic, unpredictable domains. One popular design approach 
- whose resulting architectures we'll call deliberative - attempts to endow agents with 
sophisticated control by embedding in these a nu mb er of general AI capabilities such as 
means-end reasoning, epistemic modelling [PIB87], plan recognition [Woo90], or natural 
language understanding [VB90]. Influenced prinCipally by the fruits of classical AI plan
ning research, deliberative architectures have been designed both to handle complex goals 
(e.g. those involving action-at-a-dlstance, resource constraints, or multiple agents) and 
to operate flexibly in unpredictable or novel situations (e.g. by performing contingency 
planning or analogical reasoning). This generality, however, exacts a price; by virtue of 
having to maintain complete, up-to-date world models, deliberative architectures can be 
resource-intensive and are usually slow at making critical decisions in real-time situations. 

Breaking with the traditionally held belief that "complex" architectures are required 
to produce intelligent agent behaviours, a number of non-deliberative (e.g. reactive [Fir87], 
situated [AC87, Mae90], and behaviour-based [Bro86, Kae87]) architectures have recently 
been proposed. These architectures 'are characterized by a more direct coupling of per
ception to action, increased decentralization of control, and relative simplicity of design. 
Because they perform localized search, ' the time spent deciding which action to effect in 
any given situation can be minimized. At the same time, however, these architectures run 
the risk of generating sub-optimal action sequences precisely because they operate with 
minimal memory or state information [Fir87]. Also, because non-deliberative agents are 
essentially hardwired to effect a particular action sequence in each given situation, they 
can be ineffective when confronted with situations which are either novel or which do not 
provide immediate access to the complete set of environmental stimuli needed for deter
mining subsequent action sequences. Indeed, to date, there has been little evidence to 
suggest that pure non-deliberative architectures are capable of handling multiple, com
plex, resource-bounded goals in any sophisticated manner [Kir91, GLS87, Mae90J. Like 
their deliberative cousins, non-deliberative agents will require that their environments be 
reasonably cooperati ve if they are to achieve their goals satisfactorily [Bro86J. 

Operating in the real world means having to deal with multiple events at severallevels 
of granularity - both in time and space. So, while agents must remain reactive in order to 
survive, so me amount of strategie or predictive decision-making will be required if agents 
are to handle complex goals while keeping their long-term options open. Agents, however, 
cannot be expected to model their surroundings in every detail as there will simply be too 
many events to consider, a large number of which will be of little or no relevance anyway. 
What is required, in effect, is an architecture that can cope with uncertainty, react to 
unforseen events, and re cover dynamically from poor decisions. All of this, of course, on 
top of accomplishing whatever tasks it was originally programmed for. 

3 Touring Machines 

For almost all practical purposes, an autonomous robotic agent must be adaptive - it must 
be capable of carrying out its intended goals in dynamic, unpredictable environments. To 
do this, we believe, the agent must be capable of exhibiting a range of different behaviours. 
First, it will need to be reactive to deal with events which it might not have had sufficient 
time or resources to consider. Secondly, since the agent's maill task, in our case, will 
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be to get from some starting location to some goal location in so me specified time, it 
should be c.:l.pable of rational, resource-bounded, goal-directed behaviour. And thirdly, 
since it will inhabit a world populated by other entities (about which very little will be 
known in advance) it must be able to reason about what events are taking place around it, 
determine what effect these events could have on its own goals, and, where possible, predict 
what is -likely to happen in the near future so as to be bet ... ..'!r informed when choosing 
and effecting subsequent actions. Because these skills have such disparate characteristics 
and requirements, the most sensible way of realizing them, it would seem, is as separate 
activity-producing behaviours in a layered framework. We have adopted this approach in 
designing and implementing TOURINGMAClfINES. 

.jensors Action 
Effectors 

Figure 1: The Tou RINGMACHINE architecture. 

To URIN G MACH I N ES comprise three concurrently-operating, independently motivated, 
activity-producing layers: a reactive layer R, a planning layer P, and a reflective-predictive 
or modellinq layer M (see Figure 1). Each models the agent's world at a different level 
of abstraction and each is endowed with different task-oriented capabilities. The TOUR
INGMACHIN E framework is, in fact, hybrid, as it may incorporate several functional or 
horizontal faculties within a given task-achieving or verticallayer. For example, hypothet
ical reasoning and focus of attention are both realized in layer M. 

The main principle behind vertical decomposition is to create activity-producing sub
systems each of which directly connects perception to action and which can independently 
decide if it should or should not act in a given world situation. Frequently, however, one 
layer's proposed actions will conflict with those of another: a layer i& an approximate 
machine and thus its abstracted world model is necessarily incomplete. Because of this, 
layers need to be mediated by an enveloping control policy (Figure 1) if the age:r;lt, as a 
single whole, is to behave appropriately in each different world situation. 

Implemented as a combination of inter-Iayer message-passing and context-acti vated 
control rules, the control policy's mediation enables each layer to examine data from other 
layers, inject new data into them, 01' even remove data from the layers. (The term data 
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here covers sensed input to ami action output from layers, the contents of inter-layer 
messages, as weil as certain rules or plans residing within layers.) This has the effect of 
altering, when required, the normal flow of data in the affected layer(s). So, for example, 
the reactive rule in layer n to prevent an a.gent from straying over lane markings can, with 
the appropriate control rule present, be overridden by layer M should the agent em bark 
on a plan to overtake the agent in front of it. 

Inputs to and outputs from layers are generated in a synchronous fashion, with the 
context-activated control rules beingapplied to these inputs and outputs at each synchro
nization point. The rules, thus, act as filters between the agent's sensors and its internal 
layers, and between its layers and its action effectors. Mediation remains active at all 
times and is largely "transparent" to "the layers: each layer acts as if it alone were con
trolling the agent, remaining largely unaware of any "interference" (either by other layers 
or by the rules of the control policy) with its own inputs and outputs. The overall control 
policy is such that while striving to service the agent's high-level tasks (e.g. exit-path) it 
is sensitive also to its low-level, high-priority goals (e.g. avoid-collision). 

The TOURINGMACHIN E layered framework is strongly influenced by Brooks' subsump
tion architecture [Br086]. This comprises several concurrently-operating, task-achieving 
behaviours which are implemented as fixed-topology networks of finite-state machines 
along with various registers and timers. Layers communicate via fixed-length messages 
over "wires" and are mediated by suppression and inhibition mechanisms which can alter 
the flow of inter-Iayer messages to produce the correct action for the situation at hand. 

Besides several technical differences, the main distinction between the two architectures 
is that TOURINGMACHINES store and manipulate explicit representations of, among other 
things, beliefs, desires, and intentions in order to perform such cognitive tasks as reflection 
and prediction (see below) . Brooks' agents have not to date been used to solve such 
high-level tasks, and it's not at all clear whether his architecture could be scaled up 
indefinitely without ever resorting to the use of internal representations [Kir91]. Aspects 
ofthe TOURINGMACHINE framework also bear some resemblance to the 2-layered (roughly 
n and P) Phoenix architecture [CGHH89] . The following sections describe each layer in 
so me more detail. 3 

3.1 Layer n (reactive) 

The purpose of this layer is to provide a.n agent with fast, reactive capabilities for coping 
with events i t hasn't previously planlled fol' 01' modelled. A typical event, for example, 
would be the sudden appearance of some hitherto unseen agent or obstacle. Layer n 
provides the agent wi th aseries of rules for avoiding obstacles, walls, kerbs or other agents, 
and for preventing it from straying over path lane markings. For example, the two rules 
for avoiding collisions wi th other agents are: 

rule-4: if is-in-front(Other. Observer) and 
speed(Other) < speed(Observer) and 
separation(Other. Observer) < Front.Threshold 

then 
reduce-speed-by(Observer. speed(Observer) - speed(Other» 

rule-5: if is-behind(Other. Observer) and 
speed(Other) > speed(Observer) and 

30ue to space restrictions milch detail will, in fact , be omitted and presented elsewhere [FerIP] . 



MAAMAW-91, August 5-7 1991, Kaiserslautern, Germany 

separation(Other, Observer) < Rear.Threshold 
then 

increase-speed-by(Observer, speed(Other) - speed(Observer» 

6 

where Front. Threshold and Rear. Threshold are parameters associated with the agent 
Observer. As we shall see below, an agent can be made variably reactive or inert by 
~1100sing appropriate values for these (and other) parameters. 

Rules are stimulated solely and directly by input they receive from the agent's sen
sors. When a given rule fires, an appropriate action (e.g. accelerate or turn-~heel) is 
immediately sent to the agent's effectors.4 Clearly, actions effected at this level cannot be 
gua:anteed to be rational since rules are memoryless and fire on the agent's sensory infor
mation alone. Consequently, each time a reactive rule fires, layer M (modelling) must be 
flagged (sent a message by layer R) so that it can assess whether the resulting unplanned 
state change will require further processing. In partieular, layer M will need to determine 
if any actions effected by layer Rare likely to prevent the agent from achieving its planned 
tasks. 

3.2 Layer P (planning) 

The purpose of this layer is to generate and execute plans. Since an agent';' rilain task typ
ieally involves relocating to some destination within certain pre-specified time bounds, i 
makes sense for the agent to do some amount of forward planning (e.g. locate-destination, 

calculate-cruise-speed). However, since the agent is very likely to encounter other enti
ties unexpectedly, complete, detailed plans are undesirable if replanning is to be kept to 
arninimum. Layer P, therefore, is realized as a linear, hierarchieal, partial planner whieh 
can interleave plan formation and execution, and defer committing to specific subplan ex
ecution methods or temporal orderings of subplans until absolutely necessary. Also, sine<' 
TOURINGMACHIN8S have limited computational resources, the planner is designed so that 
its operation can be pre-empted and its state suspended for subsequent use. The plan elab
oration scheme employed is akin to the partial elaboration method of PRS [GLS87] and 
the lazy skeletal expansion scheme used in Phoenix agents [CGHH89]. In essence, we take 
Bratman's view [Bra87] that plans are useful for constraining the amount of subsequent 
deliberation an agent will need to perform. 

The planner manipulates and instantiates template plans or schemas which it retrieves 
from a schema library (Figure 2). Schemas are procedural structures consisting of a body, 
a set of preconditions, a set of applicability constraints (e.g. temporal ordering), a set of 
postconditions, and an associated cost in terms of computational resources. Schemas are 
either primitive or composile. Primitive schemas can either submit physical actions to be 
effected (e.g. turn-wheel, signal-left) or perform various arithmetic or geometrie calcu
lations (e.g. calculate-stopping-distance). Composite schemas trigger library searches 
and subplan expansion. The planner also has access to a database of topologieal facts 
about its task domain. 

The planner uses a fixed, combined depth-first and best-first search strategy for con
structing single-agent plans. Apart from occasionally generating sensory acts to determine 
the location of, say, a fixed landmark, the planner remains largely "unaware" of what's 

iSeveral reactive mies could lire simultaneonsly but only one is allowed to submit its corresponding 
action; currently the rule triggered by the (spatially) lIearest environmental stimulus is chosen. Other 
selection policies may be considered in the ~lture. 
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going on around it. In particuJar, it dops not consider what other agents aredoing, this 
task being left to layer M which, in eFect, is the only part of the agent that has any 
reasoned view of what other events are taking place in the world. So, while the planner 
is capable of some limited baektracking (e.g. to try an alternative exeeutiQn method if 
the chosen one has failed or to try to re-satisfy an applieability eonstraint), initiation of 
dynamic (re-)planning (e.g. overtake-agent) is the responsibility of layer M. Layer P, 
then, is able to take on new goals and abandon old ones if layer M so dietates. In thls 
manner, layer P keeps abl'east of changes in the agent's environment. 

3.3 Layer M (modelling) 

The main purpose of layer M is to provide an agent with refleetive and predietive ca
pabilities. The agent reaJizes such capabilities by construeting models of world entities, 
including itself, whieh it uses as a platform for explaining observed behaviours and making 
predietions about possible future behaviours.5 The potential gain in this approach is that 
by making successful predictions.-.about other entities' activities the agent should be able 
to deteet potential goal confticts earJier on. This would then enable it to make changes 
to its own plans in a more effective manner than if it were to wait for these conflicts to 
materialize. Goal conflicts can oceur within the agent itself(e.g. the agent's projected time 
of arrival at its destination exceeds its original deadline or the agent's layer Reffects an 
action which alters the agent's trajectory) 01' in relation to another agent (e.g. the agent's 
trajectory intersects that of another agent). 

Other functions made available to the agent through this layer (see Figure 3) include a 
heuristic foeus of attention module for creating closures within which to perform inferenc
ing and a goal conflict detection/resolution facility for dealing with intra- and inter-agent 
conflicts. Like every module in the Tüu RINGMACHIN E architecture, each function in layer 
M is resouree-bounded, thus ensuring a degree of reaetivity in the agent as a whole. 

5We assume TOURINGMACHINES can readily identify various physical properties of world entities such 
as type, size, Cartesian location, speed, acceleration, orientation, and communicated information. This 
concords with most other simulated agent environments [CGHH89, DM90, PR90, SH88, VB90, Woo90]. 
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The structures used by an agent to model an eRtity's betaviour are time-indexed 
4-tuples of the form (C, B, D, 1), where C is the entity's ConJiguration, namely, (x, y)
location, speed, acceleration, orientation, and signalied communications; B is the set of 
Beliefs ascribed to the entity; D is its ascribed list of partially-ordered goals or Desires; 
and I is its ascribed plan or Intention structure.6 The models used by an agent are, in fact, 
filled-in instances of model templates which the agent obtains from a library (Figure 3). 
While all templates have the same basic 4-way structure, they can be made to differ in such 
aspects as the depth of information that can be represented (e.g. a particular template's 
B component might not permit nested beliefs), initial default values provided, and cost. 
The last of these will subsequently be taken into account each time the agent makes an 
inference from the chosen model. 

Reasoning from a model of an entity essentially involves looking for discrepancies 
between the entity's actual behaviour and that predicted by its model or, in the case of a 
self-model, between the agent's actual behaviour and that desired by the agent. Predictions 
are formed by temporally projecting those parameters that make up the modelled entity's 
configuration vector C, in the context of the current world situation and the entity's 
ascribed intentions. Noticing a discrepancy between actual and predicted (or desired) 
behaviours, however, need not on every occasion force the agent into a wholesale revision 
of its "faulty" model. This is because associated with each of the parameters of a model's 
C-vector are upper- and lower- bounds whose sizes can be chosen by the testbed user. 
The agent doing the modelling, then, will become "aroused" only if the entity's observed 
configuration parameters fall outside the corresponding C-vector bounds in its model of the 
entity. Clearly, different settings for these parameter bounds will affect both ·,he amount of 
environmental change pereeptible to the agent and the amount of time the agent will need 
to spend revising its models. Studying sueh tradeoffs in TOURINGMACHINES is a foeus of 

6Plan ascription or recognition has beeil realized in TOURINGMACHINES as a process of scientific the
ory formation which employs an abd ucti ve reasoning methodology similar to that of the Theorist de
fault/diagnostic reasoning system [PGA86], 
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current study. Achieving the optimal level of sensitivity to environmental change has also 
been recognized as a critical issue in Sanborn and Hendler's Trafiic World system [SH88] 
and - through the use of plan-monitoring envelopes - in the Phoenix project [CGHH89]. 

4 Experimental Test bed 

To validate TOURINGMACHIN ES, we have implemented our control architecture in SICStus 
Prolog and are experimenting with it in a simulated 2-dimensional world occupied by, 
among other things, other Tou RINGMACHIN ES, obstacles, walls, paths, and assorted infor
mation signs. World dynamics are realized by a discrete event simulator which incorporates 
a plausibleworld updater for enforcing "realistic" notions of time and motion, and which 
creates the illusion of concurrent world activity through appropriate action scheduling. 
Other processes handled by the simulator include a facility for tracing scenario parame
ters, a statistics-gathering package for agent performance analysis, and several text and 
graphics windows for displaying output. 

~ S~ngle-agent 5cenarlO ~ ~ 

Time: '35.5' 

'GG8 
, 

, 
,-

, 

r 
• 

• Obstach! 
G A@;ent 

Figure 4: Graphical output from the testbed shov,ring 
: a scenario in vol vi ng one agent and several obstacles. 

Our testbed also provides a scenario definition facility which allows us to generate 
scenario instances from a fairly rich callection of agent- and environment-level parameters. 
So, for example, we can configure a TOURINGMACHINE to be variably reactive by altering 
parameters defining such things as the distribution of computational resources within its 
three contral layers, the amount of forward planning it performs, the sensitivity of its 
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reactive rules, or the frequency with which it senses or models the world. In a similar 
fashion, we can experiment with the TOURINGMACHINE'S tolerance to environment al 
uncertainty by adjusting its sensing horizon, by tightening its initial goal deadline, by 
populating its world with many other fast-moving agents, or by varying the ratio of cpu 
to simulated world time used in the scenario. This last one affects the amount of time the 
TOURINGMACHINE has to deliberate between dock ticks. 

The To U RI N G MAC HIN E test bed has been designed to enable controlled, repeatable 
experimentation and to facilitate the creation of diverse agent scenarios for subsequent 
user analysis. Based on some very early tests, we are satisfied that our agents can be
have robustly in the presence of unexpected obstades while successfully accomplishlng 
time-constrained, relocation-type goals (see Figure 4). But this is just the beginning. 
Ultimately, through the design and analysis of more complex scenarios, we hope to gain 
more insight into the behavioural ecology - to use Cohen's terminology [CGHH89] - of 
TOURINGMACHINES. In other words, we are interested in studying, and eventually dis
covering general rules that describe, the relationships and tradeoffs that exist between an 
agent's design (in other words, the particular configuration of its functional capabilities 
and knowledge sources), its environment, and the repertoire of demonstrable behaviours 
that the agent is capable of. So, for example, we lore interested in understanding how weH a 
given TOURINGMACHINE configuration might pt."form across a range of environments and 
also how the behaviours of different cor. .1gurations of TOURINGMACHINES compare when 
placed in a single common environment Criteria with which to evaluate the performance 
of our agents have already been identified and indude, among others, resource consump
tion and utilization, was ted planning effort (e.g. amount of backtracking or replanning 
required), number of successful/ullsuccessful actions effected, ratio of successful to un
successful model- based explanations or predictions, number of model revisions performed, 
and delay in arriving at a target destination. 

5 Conclusions 

We have presented a new, robust control architecture for resource-bounded, goal-directed, 
mobile agents operating in dynamic environments. Our layered, activity-producing ar
chitecture integrates both deliberative and non-celiberative control features enabling a 
TOURINGMACHINE to produce a range of reactive, goal-oriented, reflective, and predictive 
behaviours as demanded by the agent 's goals and environmental situation. This empow
ers agents to deal with events and tasks at different levels of granularity (e.g. avoiding 
collisions, accomplishing complex goals. predicting world behaviour). We have also briefly 
described a feature-rich simulation testbed within which we have started to study design
behaviour-environment tradeoffs. 

By using a highly parameterized, layered architecture we have benefited greatly in 
terms of our effort to design, implement, and test different agent configurations. Our 
experience so far has demonstrated that TOURINGMACHINES can be configured to behave 
"sensibly" in dynamic environments. The work presented here is ongoing: future work 
will indude functionally extending ollr current implementation (e.g. adding more agent 
plans and model templates, enhancing inter-layer control), as weH as experimenting with 
multiple, heterogeneous agentsin diverse environments. We believe this will provide us 
with important clues about how best to design adaptive, rational, autonomous agents. 
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Eco-Problem-Solving model: 
Results of the N-Puzzle 
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Abstract 

Eco-Problem-Solving (EPS) is a new approach to problem solving based on the 
paradigrns of Distributed Anificial Intelligence and founded on interacting agents. We 
show the way to decomposing the n-puzzle problem into EPS agents, the behaviors with 
which they are provided and some general mechanisms. Then, we show how simple 
interactions between agents can lead to the solving of the problem of the edges. We 
prove that OUT solving method is guaranteed always to find a solution if there is one. We 
also prove that the method is more than complete and becomes decidable. Evidence of 
completeness and decidability are fonnulated. Finally, we propose some empirical 
results to show that the EPS implementation of the n-puzzle can effectively solve 
significantly larger problems than have previously been solvable using traditional 
heuristic search methods. 
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1) Introduction 

Our aim in this paper is to show that Eco-Problem-Solving, based on the paradigms 
of Distributed Artificial Intelligence and interactive agents, is able to solve any size of n
puzzle without planning. 

Section 2 approaches n-puzzle vis avis classical planning. The model of Eco
Problem-Solving is presented in Section 3. Section 4 describes the agents involved in the 
n-puzzle solving and Section 5 algorithms used in their behaviors. In order to see exactly 
how it works, Section 6 .shows the solving of the standard problem of the edges, thanks 
to snapshots of the system in progress. The completeness and the decidability of our 
method are proved in Section 7. Then, Section 8 presents empirical results for several 
sizes oi n-puzzle. 

2) N-Puzzle and Heuristic Search 

N-puzzle consists of a square frame containing N square fies and an empty position 
called the "blank". Authorized operations slide any tile adj&cent to the blank into the 
blank position. The task is to rearrange the tiles from <;ome random initial configuration 
into a particular designed goal configuration. 
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Fig. 1 - Initial state and goal state of aN-Puzzle; Example of a search tree 

N-Puzzle is the common example of a problem that requires the use of heuristic search 
algorithms to be solved. In fact, the set of operators, the initial and goal states can be 
easily defined as weH as the entire set of states of the problem. 

A * [7] is the best known of these algorithms. Many of its implementations use the 
Manhattan Distance function for estimating the relative merits of different states of the 
puzzle relative to the goal state. A * has the property of always finding an optimal 
solution to the n-puzzle, given a fine heuristic function. But it needs in practice both 
exponential space and time to run, so its applicability is restricted to relatively small 
problems (8-puzzle for A*, 15-puzzle for IDA* [10]). 

To overcome this drawback, latest approaches have sacrificed solution optimality for 
th..:; benefit of a limited search horizon, in order to solve larger puzzles than have 
previously been solvable using A *. The major items in terms of results are the Real-
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Time-A* and the Learning-Real-Time-A* algorithms [11]. It seems now possible to 
solve as far as the 24-puzzle in a reasonable time (Le. less than a human). 

But even these works appear to be limited with respect to the greater sizes of n
puzzles. First. the search horizon to obtaining good solution lengths (in tenns of moves 
of the tiles) seems exponentially to increase with the size of the puzzle (92 states on 
average for the 8-puzzle, 2622 for the 15-puzzle). Secondly, both A*:and RTA* need to 
be specially adapted to each size of puzzle, given the fact that the heuristic functions are 
not necessarily the same. 

Considering these limits, we think it is now time to question :the heuristic search 
paradigm and to explore other ways of solving. 

3) Eco-Problem-Solving (EPS) model 

lbis model is based on the paradigm of "computational eco-systems" rS]. Problem 
solving is seen as the production of stable states i.n adynamie system, where evolution is 
due to the behaviors of simple agents. A problem is then defined by a population of 
interacting agents. 

EPS is twofold: a domain independent kernel where behaviors of the agents are 
described and a domain dependent application where their actions are coded. We a1ready 
used this to solve various AI problems (e.g. cubes world, hanol towers) [4]. 

EPS agents are actor-based and use Agha's model of continuations [1]. An agent 
possesses another agent as goal and acquaintances. It only takes decisions from its local 
informations, without knowing about any global state of the world. It has a simple 
behavior which can be compared to abasie "biologieal" pattern: satisfaction, flight. 

Note that our approach differs from connectionism: our agents are not statically 
linked together and they behave independently. It also differs from other distributed 
approach es, such as "distributed planning" [5] or "planning for multiple agents" [9] 
where solution is obtained by coordination of the agents local plans. The actions of our 
agents follow the three principles below3: 

a) The will to be satisfied: This corresponds to the description of the goal. A 
function in the kernei called TrySatisfaction handles it. This function calls two domain
d.ependent actions: doSatisfaction (ifthe agent can be satisfied) or satisfactionAggression 
(if it must attack other agents to seek satisfaction). A satisfied agent does not seek 
satisfaction anymore, unless it is provided with a new goal. 

b) The will to be free: Before trying to act, an agent has to befree. Freeing itself 
consists in attacking its jailers (acquaintances that prevent it from acting) and in telling 
them to flee. 

c) The obligation to flee: Fleeing is the answer to an attack. It makes the agent 
change its position in the problem to avoid conflicts. The function flee handles it and 
leads to two domain-dependent actions: doFlee (if there is a way to flee) or 
fleeAggression (if it must attack other agents to flee). Aflee message is often supplied 

3 Depending on the characteristics of the problem, agents may have additional knowledge about their 
environment and domain-dependent behaviors that are not described in the kerne!. 
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with a constraint (another agent) given by the attacker. Thefleeing agent, then, will not 
have the possibility co attack this constraint. 

A problem in EPS is defined by describing its initial state (the acquaintances of the 
agents are initialized) and its final state (a goal is given to each agent) [6]. The allocation 
of a goal to an agent creates a slave-master relationship between the agent and the goal. 
The agent becomes a dependency of its goal and is at the same time the master of its 
own dependencies. Dependencies will see their satisfaction only after that of tht"'ir goal 
(when an agent has reached its goal it informs its dependencies by sending them a 
TrySatisfaction message). 

N-Puzzle has been implemented under the EPS kernel called EcoTalk. It is based Crt 
the kernel defined by Jacques Ferber [3], and Actalk, a language of actors UIlder 
Smalltalk-SO [2]. Each of the problem entities is represented by a dass of actors which 
has the actions seen above. Their ancestor is a dass named EcoAgent which defmes the 
kernel methods (so all the agents will inherit these behaviors). 

4) N-puzzle Agents 

4.1) Decomposition 

N-puzzle has been decomposed into three different types of agents: N+ 1 EcoSquares, 
N EcoTiles and the EcoPuzzle. Squares are the locations on which tiles move. Problem 
solving begins by giving each agent its goal and acquaintances, and asking the 
EcoPuzzle to seek satisfaction. 

~~~ 
~rnl~l-----il Ir----I ...... II __ 
~BB~ 
rnl[J]Ba[] .. 
[[]~B~ 

EcoSquare 

EcoTiie 

EcoPuzzle 
Fig.2B - N-Puzzle decomposition into Eco-agents 

Eco-Problem-Solving model: Results of the N-Puzzle - A.Drogoul - C.Dubreuil- MAAMA W'91 page 3 



4.2) Behaviors of the EcoSquares 

The acquaintances of an EcoSquare are: the tile lying on it (its on) and the squares 
adjacent to it (its adjacenrs). An EcoSquare is always satisfied and not able to flee. It can 
free itself by sending a "flee" message to its on. An EcoSquare can also be locked or 
unlocked. depending on the behavior of its on . 

Fig. 2C • Acquaintances or the EcoSquares and or the EcoTiies 

4.3) Behaviors of the EcoTiies 

The acquaintances of an EcoTile consist in the EcoSquare on which it lies (its under). 
the square on to which it has to move (its goal) and the puzzle. Its sarisfacrion is called 
incremental. The agent searches among the adjacenrs of its under the nearest unlocked to 
its goal. If the square is not free. the tile teUs it to free itself and moves on it. When 
freeing it. an EcoTile can trans mit two possible constraints to the tile that will have to 
flee: its goal (if it is an edge square). or the under of the previous sarisfied tile (in order 
to preserve its satisfacrion). 

The flight behavior of a tile consists in searching the nearest square to the blank, 
different from the constraint and_unlocked, among the adjacents of its under . If the goal 
of the rile is found among them, it is prioritarly chosen. If no suitable squares are found, 
the tile takes the nearest one to the blank and teHs the puzzle to unlock all the squares. 
The tile teUs the chosen square to free itself and moves on to it. 

A tile locks its under when it teUs another square to free itself or when it becomes 
satisfied. That means it gives indirect information to the other agents whose meaning is: 
HI am already attacking or satisfied, so do not attack me unless no other choice can be 
made". This square is unlocked when the tile moves. 

4.4) Behavior of the EcoPuzzle 

The acquaintances of the EcoPuzzle are the squares, the tiles and a goal. It foUows 
satisfaction behavior that consists in determining in which order the tiles will try to 
satisfy themselves and telling the first tile in this list to do it (see Seerion 5.1 for details). 

A puzzle also possesses general mechanisms such as the computation of the distance 
between two squares. or the ability to lock/unlock its lines and columns. The next 
section presents some of these because of their importance in the solving. 
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5) Ceneral Mechanisms 

5.1) Serializing the attempts of tile satisfaction 

Tiles cannot satisfy themselves together at the same time. A sole blank location does 
not allow two tiles to move concurrently. Therefore, it is necessary to serialize their 
attempts of satisfaction. A relationship is provided by EPS between an-agent and its 
goal. Unfortunately, the goals of the tiles are not relative (a tile) but absolute (a square). 
Consequently, there are no direct slave-master relationships between the: tiles. An 
indireet slave/master relationship between the tiles is then generated by creating a 
relationship between the squares (this creation has been realized using EPS [4D. 

4 4 4'4 4 ... All the squares are ordered in a 

... list by their distance to IIze blank 
4 3 3 3 3 .. I in thefinal state (3A). Squares at 

4 3 2 2 2 ... 1 the same distance are chained 

~ #' I 
toge'ther (3.B). Then (3.C). these 

4 3 2 I I , . " ~ r ~ lists are link.ed up. 

.1 
111111811111111 . . """""" . . -3 2 

,~ - I 
Fig. 3.A Fig. 3.B Fig. 3.C 

When the ordered list of squares has been obtained, the next step consists in giving 
the right goals to the puzzle and the squares (The future blank location is not in the list). 
The goal of the fIrst square becomes the puzzle. The goal of each square is the tile whose 
goal is the previous square in the list. The goal of the puzzle is the tHe whose goal is the 
last square in the list 

SI S2 S3 

Fig. 4 - Ne',; Slave/Master reiaUUnSDI 

5.2) Distance computation 

The puzzle has received the message 
TrySatisfaction. /t is already satisfied 
and so in/orms its dependencies that 
they can satisfy themselves. The first 
square. SI. whose goal was the puzzle . 
is also satisfied (a square is always 
satisfied) and in/orms the tile Tl that it 
can try 10 satisfy itself. Once satisfied. 
this tile in/orms in turn its 
dependencies (i.e. the square whose goal 
was Tl). and so on. When Tn. the last 
tile. has been satisfied, it in/orms the 
puzzle that it can satisfy itself again . 
The loop has been completed and the 
solving SlOpS. 

The algorithm used for calculating the right distance between squares is based on the 
Manhattan distance algorithm and Voronor's diagram [12]. A distance is calculated 
between a target-square and a list of start-squares. The target is asked by the puzzle to 
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generate a wave by transmitting the value 1 to its adjacents . This wave is then 
transmitted to their adjacents with a value increased by one. Squares cannot transmit the 
wave to locked neighbors (the wave breaks on "obstacles") and already valued squares. 
Once the start-squares have been reached, the wave stops. 

Fig.SA - Distance Computation 

Ti/e A has allacked TUe B. which has attacked TUe 
C. elc ... And Ti/e H has been asked to flee. Be/ore 
fleeing. Ti/e H chooses a square on which to move. 
This square musl be lhe neareSl 0/ ils square's adjacents 
to lhe blanJc. Ti/e H lhen aslcs the puzzle 10 calculale 
lhe dislance between lhese squares and lhe blank. The 
wave generaled by lhe blank square breaks on the 
squares whose liles are aiready fleeing. Once IM two 
squares adjacenllO Ti/e H have been reached. IM puzzle 
gives lhem back ordered by their value to the ti/e 
which will choose lhe square whose "value" is the 
smallesl. 

This system can be seen as a sort of gradient whose value equals the distance at which ", 
it has been generated. It allows tiles to know the right distance between two squares in 
terms of "real" moves and illustrates the appeal of square locking. 

The complexity of this method is in the worst case in O(n), where n is the number of 
unlocked squares. As a matter of fact, it is easy to see that an unlocked square only 
transmits one value to its neighbors and can not be reached again by the wave. 

5.3) Locking columns and lines 

The EcoPuzzle also possesses another mechanism that allows it to lock definitively an 
entire line/column of the puzzle when all the agents making up this line/column are 
satisfied. When an EcoTile has reached its goal, it just asks the puzzle to verify if its 
line/column can be locked. It may be locked if it is on the border of the puzzle or if an 
adjacent line/column has already been locked. The agents (EcoTiles and EcoSquares) 
making up this line/coluIIUl are killed and this line/coluIIUl will no Ion ger be disturbed by 
the other agents. The purpose of this mechanism is to reduce dynamically the size of the 
puzzle during the solving in order to accelerate the distance calculations. For instance, a 
24-puzzle becomes a 15-puzzle once a line and a column have been locked. 

Fig.SB - Locking a line and a column 
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6) Emergence of complex behaviors 

The underlying paradigrn of our solving system is to make the solution of a problem 
emerge from local interactions. As an instance of emergence, the solving of the problem 
of the edges is described in this seetion. This problem is as follows: how can a tile 
whose goal is an edge of the puzzle satisfy itself without disturbing the satisfied tiles that 
make up the line or the column including this edge ? 

General planning systems apply special heuristics to overcome this difficulty. In 
contrast, EPS solves it without requiring any special behaviors and the solution simply 
emerges from the interactions between the tiles and the constraints they transmit when 
attacking other agents. Figure 6 shows how it wodes in a 24-puzzle. 

~Aggression 

H ~Flight 

L X Constraint 

)j,.~;,:.~.:~;~:.~~~~~~~\~~~ 

Fig. 6 • The problem or the edges 

Ti/es B,C anti D are 
already satisfied and A 
tries to satisfy itself. 
Therefore. it attacks E 
with the square of B as 
constraint (B is the 
previous satisfied tile). E 
then attaclcs A in order to 
jlee (it cannot attack B) 
and teils the puzzle to 
unlock all the squares 
(All its adjacent squares 
are /bcked). 

A jlees on the blank 
and tries to satisfy itself 
again by attacking E 
with its goal as 
constrainl. 

E attacks F, which 
attaclcs I, which attacks 
K anti so on up to B. B 
then jlees on the blank 
(the previous constraint 
was only valuablefor E), 
followed by all the 
jleeing tiles. 

A moves on the blank 
and attaclcs B which lies 
on its goal. The 
transmitted constraint is 
the goal of A (because B 
is no longer satisfied). B 
attaclcs C. which attacks 
G (C does not jlee on the 
blank bUl on its goal). G 
attacks K. K jlees on the 
blank. followed by all 
the jleeing ti/es. Anti A 
can now satisfy itself by 
moving on its goal. 
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7) Completeness and decidability 

7.1) Completeness 

The proof of the completeness of our problem solving method for any size of n-puzzle 
will be marle in three steps: ftrst, proving the fact that, given a puzzle whose dimensions 
are N x N (N > 1), we can reduce it to a (N-l) x (N-I) puzzle. Secondly, proving that 
we can solve the I-puzzle (1 xI). Finally concluding on the proof that we can solve any 
size of n-puzzle with the same agents. 

We assume that the serialization ofthe squares is the same as in Figure 1, Seetion 5.l. 
We also assume that the lines and columns are numbered from 1 to N, starting from the 
blank position in the ftnal goal state. Thus, the ftrst tiles that will try to satisfy 
themselves will be those making up the line N. 

Theorem 1: The N-l first tiles of line N can satisfy themselves without 
being shifted by an external attack. 

Proof: The first tile can satisfy itself and lock its square without disturbing any other 
tiles. Let us now assume that the ith tile (1 < i < N-I) has satisfied itself and locked its 
square without disturbing the previously satisfied ones. Can the (i+l)lh tile reach its goal 
without shifting the previous tiles ? 

A tile can be pushed out of its square for two reasons:· ( 1) An adjacent tile tries to 
satisfy itself and attacks it; (2) An adjacent tile tries to flee and attacks it. But a tile on a 
locked square can never be attacked (see Section 4.3). So the i previously satisfied tiles 
cannot be shifted unless their squares are unlocked. 

Squares can only be unlocked when a fleeing tile has found no place to flee because 
all its adjacent squares were locked (Section 43). Can thi.; happen? The answer is no, 
thanks to the distance computation; a tile never attacks a square that leads to a dead-end 
because the blank or the goal would not be reachablefrom this square (Section 52). 

Moreover, as the goal ofthe (i+l)th tile is not a corner (only thefirst and the Nth tiles 
have corners as goals), it never transmits any constraints to the tiles it attacks. So a 
fleeing tile is always able to choose a square from which the blank is reachable and never 
asks the puzzle to unlock all the squares. 

We have proved that, given i satisfied tiles on Une N (1 < i < N-I), the (i+ l)lh tile 
can satisfy itself without disturbing them. We have also showed that the first tile can 
satisfy itself without disturbing any other. The proo/ 0/ the theorem by a simple 
induction on i is straightjorward. 

Theorem 2: When the Nth tile of the line N seeks satisfaction, it may 
destroy some previous satisfactions but puts them back in place when 
reaching its goal. 

Proof: When trying to reach its goal, the Nth tile can meet three situations: (1) lts 
goal is blank and the Nth tile is adjacent to it: it just moves on it without destroying any 
satisfactions.(2) fts goal is occupied by another tile and the Nth tile is adjacent to it: this 
is the situation described in Section 6. Some satisfactions are de~troyed but, when the 
tile moves on its goal, it necessarily attacks the (N-l)th tile. As afleeing tile primarily 
moves on its goal when it is adjacent (see Section 4.3), the (N-l)th tile attacks the (N-
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lyh square (which can make the (N-2)lh tUeflee at its turn on fts goal, anti so /orth untU 
a// the satis/actions have been re-established). (3) Its goal is blank and there is another 
tile T between the Nlh tile and its goal: the Nlh tile attaclcs T with the blank as constraint. 
T cannotflee because the other square adjacent to the blank contains the (N-lyh tile and 
is locked. It then asks the puzzle to unlock a// the squares and attacks the tile below the 
(N-l )lh tile. Whatever occurs after that does not matter because we are back to situation 
2. 

These two theorems prove that, given a N x N puzzle, we are able to build the line 
number N. The same proofs, once columns and lines have been exchanged, show that 
we are also able to build the column number N. 

Section 5.3 explains that entirely satisfied lines or columns can be defmitively locked 
and no longer used in the problem. Then, we lock line N and column N and consider 
their agents as dead. And doing this creates a new puzzle, whose dimensions are (N-l) x 
(N-l). So the system can always reduce the solving of an N x N puzzle to the solving of 
an (N-I) x (N-I) puzzle, whatever N > I may be. 

I-puzzle is easy to solve with our system. It is decomposed into an EcoPuzzle and an 
EcoSquare. 'Ibe solving begins by sending the puzzle the message TrySatisfaction. The 
puzzle tries to create the list of ordered squares, but, as no squares otherthe blank 
location can be found, obtains an empty list Thus, it stops. It has found the solution. 

An N x N puzzle (N > I) cao be solved only if the (N.I)x(N.I) puzzle 
(obtained by locking a line and a column of the previous one) can be 
solved and the 1 x 1 puzzle is solved. The method is then correct for 
solving any size of n·puzzle. 

Consequently, whatever may be the size of the puzzle to be solved, the behaviors of 
the agents do not have to change. 

7.2) Decidability 
The other important consequence of this proof is the decidability of the solving 

method: It finds the solution when there is one and stops with acceptance. Where there is 
none, it also stops but with no acceptance. How does it stop ? 

Theorem 3: 11 a satisfied tile is attacked, and il the goal 01 the tile that 
seeks satislaction is not an edge, the puzzle is not solvable. 

Proof: We assume that the puzzle is greater than 2. Theorems 1 & 2 prove that 
satisfied tiles cannot be shifted unless the goal 0/ the current tile that seeks satis/action is 
an edge. So, if a satisfied tile is attacked while the goal 0/ the current tile is not an edge, 
there is something wrong with the puzzle.on the other hand, a wrong initial state should 
generate loops among the tiles. Loops can only occur between tiles that seek satis/action 
and make the other one flee at each turn. But it would necessarily mean that one 0/ them 
has reached fts goal (two tUes cannot seek satis/action concurrently). And that is the 
situation to which theorem 3 applies. 

Pratically, a way to stop when this situation is met is as folIows: Everytime a tile 
seeks satisfaction, it informs the puzzle of the current goal. Everytime a satisfied tile is 
attacked, it asks the puzzle if the current goal is an edge. If not, the tile does not answer 
the attack and the solving stops, leaving the puzzle in a wrong state. 
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8) Empirical Results 

EPS system is able to solve very large puzzles. The n-puzzle has been tested on the 8 
up to the 168-puzzle. Some of them were as yet unsolved because of the cost of the 
computation. Figure 7 shows the average solving times and the average solution lengths 
in terms of moves. 

All the results have been registered with the EcoTalk kernel written in Smalltalk.,.80 
release 2.5, running on a Macintosh I1fx. They have been obtained by making the 
average over a hundred random problem instances of each size. 

It is important to notice that we do not look for optimality in solving. The lengths of 
the solutions obtained for the 8 and 15 puzzles in terms of moves are approximatively a 
little more than the double of the optimal ones (respectively 22 and 53 moves, as 
computed by A *). While no practical techniques exist for computing optimal solutions 
for greater puzzles, we cannot conclude on their performances. But the system solves 
them in a reasonable time. 

~ Avera~tim~ Avera~ Avera~ 
(in seconds) ngmber Qf mQv~~ moves Der tile 

8 1,5 51 6,4 
15 5,6 ' 133 8,9 
24 18,~ _ 298 12,4 
35 49,3 525 15,U 
48 91,2 802 16,7 
63 160,5 1155 18,5 
8U 3UU,4 1712 21,4 
99 484,8 2273 22,9 

120 665,7 2830 23,ß 
143 830,4 _ 3132 21,9 
168 lU2U,5 3624 21,S 

Fig. 7 - Performances of the EPS implementation of the n-puzzle 

The other interesting fact is that the average number of moves a tile needs to be 
satisfied increases very slowly and even decreases for the biggest sizes of n-puzzles. 
This means that the quality of the solution 10 terms of moves increases with the size of 
the puzzle. 

9) Conclusion 

We present a new approach to Distributed Problem Solving. We show that the EPS 
model, based on agents provided with satisfaction and flight behaviors, solves the n
puzzle problem without using a heuristic search approach, but as the result of the 
interactions between agents. 

Then, we prove that the solving method generated by EPS is correct, complete and 
decidable for any size of n-puzzle (n > 2). That means the solving always stops: with the 
solution if there is one and in a wrong state if there is none. 

Finally, we present empirical results that demonstrate that the EPS implementation is 
effective at solving larger problems than have previously been solvable with heuristic 
search algorithms because combinational explosion has been drastically reduced. 
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We are currently working on extensions of the n-puzzle problem. and our purpose 
will be to show that a few changes should allow the actual implementation to solve any 
kind of n-puzzle: any frame (not necessarily a square), any number of blank locations. 
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This paper addresses the question of how to exploit emergent behaviour in the design of 
multi-agent systems. The method advocated is to design the individual agents so that they 
maintain symbolic representations of emetgent behaviour which can then be used as a 
basis for building higher level behaviours. The paper falls into four parts: a description of 
behaviour-based agents, a discussion of emergent behaviour, a description of a 
methodology for developing agents which exploit emergent behaviour, and a practical 
example of the application of these idcas to the development of a simulated multi-agent 
system. 

1. Introduction 

Emergent behaviour is an issue in multi-agent systems in two respects. Firstly, the 
behaviour of a system or group of agents is emergent from the behaviour of individual 
agents [e.g. Steels, 1990]. Secondly, the architecture of an individual agent can itself rely 
on emergent behaviour [e.g. Brooks, 1989]. In either case emergent behaviour is to be 
valued as an efficient and robust way of producing behaviour. 

A central problem with designing systems with emergent behaviour is to produce the 
desired emergent behaviour in the first place. Existing methods include careful design 
[Brooks, 1989] and machine learning [Maes & Brooks, 1990]. In this paper, however, we 
will set aside the problems involved in creating emergent behaviour and concentrate 
instead on how the emergent behaviour can be made use of in the design of multi-agent 
systems. 

The problem is that emergent behaviours, in their nature, have no symbolic representation 
and so cannot easily be used to build higher level behaviours. This is particularly the ca se 
for agents which are designed and implemented entirely as sets of interacting symbolic 
representations of behaviour. 

The paper is organised as folIows. Section 2 describes behaviour-based agents and the 
behaviour representation language we have developed for implementing them. Such 
agents consist of a set of symbolic representations of behaviour which correspond to their 
actual behaviour as perceived by the designer. 

Section 3 starts with adefinition of emergent behaviour. It then shows how the problem 
referred to above can be overcome by creating and maintaining, within the agent, new 
symbolic behaviours which are maintained ';;0 that they correspond to the emergent 
behaviours and so can be used as a basis for building further behaviours. 



Section 4 presents a methodology for developing systems of behaviour-based agents 
which maintain internal representations of emergent behaviour. This methodology is 
based on the use of a simulation of the multi-agent world. 

Finally, section 5 describes the application of this methodology in a simulated mobile 
robot domain. 

2. Behaviour-based agents 

Whereas much Artificial Intelligence work is based on the explicit representation of 
knowledge, our approach to multi-agent systems is based on the explicit representation of 
behaviour [Brooks, 1985]. This is because we believe that the activity of an agent is 
produced primarily by the interplay between the agent and its environment, not by 
reasoning processes (such as planning) occurring entirelywithin the agent [Suchman, 1987; 
Agre & Chapman, 1987; Rosenschein & Kaelbling, 1986]. By representing behaviour 
explicitly it is possible to model the agent, its environment and their causal interactions 
within a single coherent framework. 

One of the consequences of representing behaviour explicitly is that, knowing the current . 
behaviour of a system, it is possible to predict its immediatejUture behaviour. Rer: ~atedly 
predicting future behaviour in this way gives rise to a simulation of the system. This makes 
it possible to design programming languages whose source code consists of dec1arative 
symbolic representations of behaviour and whose mode of execution is discrete event 
simulation. We have designed a programming language which works in this way called 
ABLE (Agent Behaviour LanguagE) and a real-time variant of it called RTA (Real Time 
ABLE) [Wavish & Connah, 1990; Graham & Wavish, 1991; Wavish 1991]. Both languages 
are summarised in figure 1. 

From a programming language perspective, atomic and simple behaviours correspond to 
simple fc:.cts in PROLOG, licences and schemas are different kinds of forward chaining 
production rule, functions correspond to PROLOG predicates, and worlds correspond to 
partitions of the temporal database. The main distinctions between ABLE and traditional 
production rule languages are that rules (i.e. licences, schemas and functions) execute in 
parallel, they are dynamic and can be arbitrarily nested, and they can be time-annotated 
with the times for which components of the condition must be present and the durations for 
which newly created behaviours must persist. 

From a representational perspective, atomic behaviours usually represent objects or 
agents, simple behaviours usually represent attributes of objects (the way they are 
currently behaving), licences and schemas represent different kinds of causa I links 
between behaviours, and worlds represent different realities which are largely causally 
independent. The overall computation mimics the way that cause and effect appear to 
operate in the real world. Changes propagate independently and concurrently in a way 
that depends on the structure of the symbolically represented behaviour through which the 
changes are propagating. Intera:.:tions between different trains of cause and effect depend 
critically on their timing relative to the time-line of the simulated world. 

-2-



Atomic behaviour agent1 

Simple behaviour agent(agent1 ) 

Licence - predicts independent behaviour 

agent(A) & say(B,U)/O.1 ~ 
hear(A,say(B,U))/O. 5 

Schema - predicts dependent behaviour 

agent(A) => 
{ 
object(A), 
hear(A,say(B,U))/O.2 & agent(B) ~ 

look_at(A,B) 
} 

. r . 'virtual' behavlOu 0\ ~ 
Function - defines together(A, J IA P\ & at(O,P))/O.1 

(atl • , / 

World - self-contained set of behaviour 

goal (agent1, goal_ world: at( agent1, place3)) 

Figure 1: Behaviour constructs in ABLE and RTA 

The existing ABLE interpreter is quite slow, and this has in the past prevented us from 
running multi-agent simulations such as [Connah & Wavish, 1990] and [Hickman & 
Shiels, 1991] in real time. This is a problem both because it prevents the designer from 
making free use of the simulation für trying out ideas, and because it restricts the dass of 
real agents which can be implemented in ABLE. To overcome this problem, we have 
defined a compilable variant of ABLE called RTA (Real Time ABLE) which is fast enough 
to operate in real time. RTA texts are compiled into C code which can then be compiled 
either for the host workstation or for a target microprocessor. The compiled code is 
typically hundreds ofkilobytes in size and executes at 10,000 events per second on a typical 
workstation. Its internal time-line is locked to the real time dock of the computer. RTAis 
therefore effective both for simulating agents in real time and for actually implementing 
them. 

The particular way that RTA is restricted compared with ABLE is that the set of possible 
behaviours is finite and is determined at compile time. In practice this means that licences 
and schemas cannot contain unbound variables, so building and decomposing structure at 
run time is not possible. The effect of this from the programmer's viewpoint is to force a 
style of representation similar to that used in Pengi [Agre & Chapman, 1987]. For instance, 

-3-



the representation of another agent saying something is not, as it is in ABLE, the simple 
behaviour: 

hear(agent1,say(agent2, "hello")) % agent1 hears agent2 say "hello" 

because variables would be needed to decompose this structure. Instead, while agent2 is 
actually uttering and agentl is hearing, the following set of behaviour will be active in 
agentl: 

{ 
hear(agent1, "hello "), 
see(agent1,agent2), 
see _speaking(agent1) 
} 

% agent1 hears "hel/o" being said 
% agent1 is 100 king at agent2 
% agent1 sees something speaking 

In other words the binding between the components of a complex behaviour is provided 
not by their incorporation into a single data structure but by their co-occurrence at a 
particular moment in time. An agent encoded in RTA can be viewed as a large, fixed set of 
such behaviours, of which only a small subset will be active at any one time. These 
behaviours are linked together by a network of logical oper;~ors and delays which 
determine how the behaviours are interrelated. In fact, ag.pnts are represented by the RTA 
compiler as asynchronous digital logic circuits, where behaviours are implemented as 
registers, logical operators as logic gates, and delays as monostables. This level of 
representation is however normally hidden from the designer, in contrast with 
hardware-oriented approaches such as [Agre & Chapman, 1987]. 

When agents of this kind interact with each other or with their environment in general, 
their overall behaviour, and also the behaviour of the system of which they form part, 
emerges from interactions between their explicitly represented behaviours. This emergent 
behaviour is not represented directly, nor is it represented by any simple function of the 
behaviours that are actually represented. In the next section we focus on this kind of 
emergent behaviour. 

3. Emergent Behaviour 

A good introduction to emergent functionality is given in [Steels, 1991]. For the purposes 
of this paper, however, we will define emergent behaviour in a way which is relevant to the 
concems of a designer programming in ABLE or RTA. Such a designer has a vocabulary of 
behaviour descriptions V1 with which behaviour of a system can be described, and a much 
smaller subset V2 which is actually used in the written texts describing and ultimately 
generating the behaviour of the system. Emergent behaviour is that behaviour which is 
produced by behaviour describable by V2, but which is not itself describable by V2, 
although it is describable by Vl. 

To see how this definition is applied, consider the emergent walking behaviour ofBrook's 
six-Iegg",d robot [Brooks, 1989]. Walking is not easily describable in terms of the explicitly 
represented behaviours (such as moving a leg forward) from which it emerges, but it is 
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immediately obvious to the observer that the robot is exhibiting walking behaviour and 
'walking' is already part of the designer's vocabulary. 

Stable emergent behaviour is valuable both because it can be produced much more 
economically than explicitly programmed behaviour and because it is typically very robust. 
The problem with emergent behaviour within a behaviour programming framework is that 
because, by definition, it is not explicitly represented, it is difficult to make use of it to build 
higher level behaviours. For example, the designer may wish to add another behaviour to 
the six-Iegged robot which depends on (or controls) whether it is walking or not, but if 
there is no explicit representation of walking behaviour, this cannot easily be done. 

The basis of a solution to this problem is for the designer to add a new symbolic behaviour 
SBl that represents the real emergent walking behaviour EBl. This behaviour must be 
maintained so that it is "on" when the real walking behaviour exists and is "off" when real 
walking behaviour is absent. It is then possible to add further behaviour B2 which 
apparently depends on the real emergent behaviour EBl but is actually causally linked to 
its symbolic representation SBl. This state of affairs can be depicted as folIows: 

Additional behaviour 82 

Emergent behaviour EB1 
•• 

••• 
•• 

••• 

~ 
Symbolic behaviour SB1 

,/ 
Basic behaviour BO 

Figure 2: Maintaining a symbolic representation o[ emergent behaviour 

In figure 2, bold lines represent causallinks between behaviours which may run in either 
(or both) directions, and the broken line represents emergence. The emergence link is also 
bi-directional in the sense that emergent behaviour EBl couples back to affect the basic 
behaviours BO which produce it (for instance, the emergent walking behaviour ofBrooks' 
robot coordinates the individual move-Ieg-forward behaviours). Notice that there is no 
direct link between EBl, the emergent behaviour, and B2, the additionaLbehaviourwhich 
is apparently built on top of it. 

The diagram glosses over the distinction between real behaviour and symbolic 
representations of behaviour at the level of basic behaviour BO. The symbolic behaviour 
BO represents only a subset of the real behaviour BO. This in practice restricts the causal 
links that can be established by the designer between BO and SBl. However, in orde~: to 

simplify the following discussion, it will be assumed that there is a direct correspondence 
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between real behaviours and their symbolic representations at this level, so we can think of 
BO in terms of either real or symbolic behaviour as appropriate. 

The strategy for building B2 on top of SB 1 by causally linking it to SB 1 only works if the 
symbolic behaviour correlates weil with the emergent behaviour EB1, Le. one does not 
exist without the other. Since the causa I and emergent relations shown in the diagram are 
bi-directional, there are two ways of achieving this: 

1) the basic behaviours BO and the corresponding emergent behaviour EB1 already 
exist, and the symbolic behaviour SB1 is caused by the behaviours in BO which 
indicate the presence of EB l. 

2) the symbolic behaviour SB 1 indirectly gives rise to emergent behaviour EB 1 through 
its direct causallinks to the set of basic behaviours BO which create the conditions 
for emergence. 

In either case, the behaviours EB1 and SB1 will be correlated with each other, but in the 
first case the emergent behaviour 'drives' the symbolic behaviour, whereas in the second 
case the symbolic behaviour 'drives' the emergent behaviour. Although we will focus on 
these two cases, there is also a thjrd case which is the superposition of the first two cases, in 
which the emergent behaviour EB 1 and l;le symbolic behaviour SB 1 both drive each other 
and so are locked together in a,mutually supportive loop. 

In the first case, the symbolic behaviour SB1 needs to be turned "on" when the emergent 
behaviour starts, and turned "off" when it finishes. The designer's task is to determine 
what particular configurations of basic behaviours BO are associated with the existence of 
the emergent behaviour EB 1, and to devise a network ofbehaviour which allows the basic 
behaviours BO to determine the state of SB 1 appropriately. Relevant behaviours in BO 
include those which are known to give rise to the emergent behaviour and those which 
indicate its presence. 

In the second case, the emergent behaviour EB 1 needs to be produced when the symbolic 
behaviour SB 1 is turned "on", and removed when it turns "off". The designer's task is to 
find some subset of basic behaviours BO which, in conjunction with other existing basic 
behaviours, will give rise to the emergent behaviour EB1, and to devise a network of 
behaviours which allows the state of the symbolic behaviour SB 1 to determine the 
existence of the appropriate basic behaviours. 

So far, we have implicitly been considering the behaviour of a single agent (in other words, 
even though the emergent behaviour will normally depend on the effect of the agent's 
environment, it is predominantly the behaviour of the agent itself). In the typical 
multi-agent situation, however, the emergent behaviour EB 1 may be largelyoutside the 
agent itself and may emerge from the concurrent activity of a number of agents. The 
symbolic representation SB 1, however. is stilliocated within the agent (because that is the 
only place where the designer can actually put symbolic representations). Figure 3 shows 
the relation between the agents and its environment. 

A further difference is that the set of basic behaviour BO is effectively split into the subset 
ABO, which is the basic behaviour of the agent, and the subset WBO, which is the basic 
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Agent's 
environment 

Agent 

Additional behaviour B2 

1 
Emergent behaviour EB1 Symbolic behaviour SB1 

1 
• •• • ••• • •• · ,- .. • 

Environment's basic behaviour ~Agent's basic behaviour 
WBO I ABO 

Figure 3: The relation between the agent and its environment 

behaviour of its environment or world. These two subsets are however causally linked. 
This makes the designer's prGblem of maintaining a high correlation between the symbolic 
behaviour SB 1 and die real emergent behaviour EB 1 much more difficult, because the 
agent has direct access only to ABO, and not to WBO, although it is the union of these sets 
that is responsible for the existence of EB 1. 

In the first case we have been considering, where the emergent behaviour EBI drives the 
symbolic behaviour SB 1, the agent's basic behaviour is influenced by the emergent 
behaviour both directly and indirectly through WBO. Typically nothing can be done to 
strengthen the direct link, so in order to improve the correlation between EB 1 and SB 1 the 
indirect link through WBO must be strengthened. This can be done either by adding 
sensors to the agent or by increasing its level of activity so that it interacts more frequently 
with behaviours in WBO. In either case, the whole process of maintaining SB 1 in 
correspondence with EB1 can be regarded as a process of perception. 

In the second case, where the symbolic behaviour SB 1 drives the emergent behaviour EB1, 
the basic behaviour of the agent ABO is part of the behaviour in the world from which the 
emergent behaviour EB 1 emerges. The basic behaviour of the agent ABO also affects 
behaviour in its environment WBO which also contributes to the emergence of EB 1. The 
designer must consider both paths in order to determine how the emergent behaviour EB 1 
is to be produced. The whole process of creating and maintaining emergent behaviour in 
the world according to the state of the symbolic behaviour SB1 can be regarded as action . 

. It should be remembered, howe"er, that the point of this action is not just to affect the 
behaviour of the world, but to make it correspond to the agent's representation of it. 

We have presented a picture of how an agent can maintain its internal representation of 
emergent behaviour in correspondence with real emergent behaviour in its environment. 
The purpose of the internal representation is to provide a 'handle' on the emergent 
behaviour so that the agent can behave appropriately in its presence. There are at least 
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three general ways in which the emergent behaviour may be related to the agent's current 
interests and hcnce to its behaviour: 

1) The ell'ergent behaviour is beneficial with respect to the agent's current interests, in 
which case the agent's behaviour is designed to support the continued existence of 
the emergent behaviour. 

2) The emergent behaviour is damaging with respects to the agent's current interests, 
in wh ich case its behaviour is designed to suppress the emergent behaviour. 

3) The emergent behaviour is neutral with respect to the agent's current interests, in 
which case the agent may make use of its representation of the emergent behaviour 
to ensure that its behaviour in general is appropriate to tbepresence ofthe emergent 
behaviour. 

This completes our account of emergent behaviour. The central idea is to maintain a 
correspondence between real emergent behaviour in the world and a symholic 
representation of that behaviour in the agent. The technical problems are to do with 
maintaining that correspondence. The reason for taking the trouble to solve these 
technical problef'ls is that it then be comes possible to build higher levels of behaviour 
apparently (but n "t really) on top of the emergent behaviour. In the next section we will 
put forwa'd a methodology for developing multi-agent systems in this way. 

4. Methodology 

This picture of the relation between emergent behaviour and its symbolic representation 
within the agent gives rise to a particular way of developing multi-agent systems based on 
simulatio~ of the system. The designer depends heavily on the simulation to reveal 
spontaneously occurring emergent behaviou(, to test out ideas for creating emergent 
behaviour, and to optimise the causal pathways within the agent that maintain the 
correspondences between the real emergent behaviour and its symbolic representation. 

The overall development cycle is edit, compile, run, and observe what happens. Four 
interesting situations can be singled out: 

1) Expected and wanted emergent behaviour is present. Adjust the causal chain of 
behaviour WBO - ABO - SB1 to optimise the correlation between EB1 and SB1 and 
to optimise the stability ofEB 1 with respect to changes in ABO. This keeps the system 
'in tune'. 

2) Expected and wanted emergent behaviour is absent. Check and if necessary redesign 
the causal chain of behaviour SB 1 - ABO - WBO so that ABO and WBO provide the 
right conditions for EB 1 to emerge. This makes SB 1 available for future use. 

3) Unexpected emp-rgent behaviour is present. Create a new causal chain ofbehaviour 
EB1 - WBO - ABO to maintain the new symbolic behaviour SBl. This makes SB1 
available for future use. 

4) Unwanted emergent behaviour is present. Design a new causal chain of behaviour 
SB1 - ABO - WBO which removes the conditions necessary for the emergent 
behaviour EB1 to exist. This suppresses EB1 whenever it occurs. 
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As the development progresses, the vocabulary of behaviour available will become 
extended by the process of maintaining representations of newly observed behaviours and 
so provide an increasingly rich base for creating further new behaviour. It should perhaps 
be pointed out that this process results in the agent acquiring explicit representations of 
behaviours wh ich are attributed to the system by the designer. While this is not necessarily 
the optimal way for a simple agent to view the world, it is much easier for the designer if the 
agent and the designer share a common conceptualisation of what is going on. 

This process may be compared with the original subsumption architecture approach 
[Brooks, 1985] where once a layer ofbehaviour is defined, its implementation is frozen. In 
the present approach, the implementation of any-behaviour may be freely changed as the 
development progresses provided it remains correlated with the real behaviour it 
represents as perceived by the designer. This ensures that higher levels of behaviour can 
be built on asolid foundation. In fact, as higher levels of behaviour are built, lower levels 
tend to go 'off tune', and it is normally necessary to review their design from time to time. 

s. An example 

This methodology has been tried out in a simulated mobile robot domain. One robot, the 
'dog', has the task of herding five other robots, the 'sheep' into a 'pen' consisting of a 
number of obstacles arranged in a partial ring, as shown below. The obstacles can be 
rearranged to create different problems for the agents. A 'shepherd' agent whose position 
can easily be controlled by the user is also provided. 

Each robot can move in any of eight directions, and has two means of sensing, 
corresponding roughly to sight and touch. Both the robot's touch surface and its field of 
view are divided into eight sectors, in each of which it senses either the presence or the 
absence of an object. In the case of sight, the class of object to which the sight sensor is 
sensitive can be predetermined. This means that when the dog is visually sensing the 
sheep, it can tell where in its visual field the sheep are but cannot for example identify 
individual sheep or even tell how many sheep there are. In addi tion to this, the dog can see 
whether it is facing the shepherd or not (in other words, whether the shepherd is in any of 
the three forward facing visual sectors). 

Much of the basic behaviour of the dog and sheep is concerned with dealing with collisions 
and visually seeking objects. Two behaviours of the dog will be singled out here because 
they correspond to the two ways of maintaining the correspondence between the emergent 
and the symbolic behaviours described in the previous section. The first behaviour is that 
of being trapped, which illustrates how a behaviour which is apparent to the designer has a 
behaviou r representation maintained for it which is then used to influence further 
behaviour of the dog. The second behaviour is that of the dog driving the sheep across the 
field, which is built from a pair of emergent rounding-up behaviours, and illustrates how 
emergent behaviour is produced in response to symbolic behaviour. 

The trapped behaviour of the dog occurs when the dog is surrounded by obstacles which 
block its forward progress. Notice that the trap itself is usually perceived as a trap by the 
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human observer who sees the configuration of the obstac1es, but it does not exist as an 
object within the simulation, and is not perceived as such by the dog. Ablocked behaviour 
for the dog is maintained so that it exists when the dog is being touched on any of its front 
three faces (touching behaviour for each ofthe dog's eight faces is maintained by software 
which computes the distance and relative orientation of objects within the simulated two 
dimensional world). The normal behaviour of the dog in response to being blocked is to 
turn in the appropriate direction lI'1til it is no longer blocked. If the dog happens to be 
surrounded by obstac1es, it will repeatedly move forward, become blocked, turn, move 
again and so on. trapped behaviour is maintained so that it starts to exist when the dog has 
been repeatedly blocked for some period of time, and ceases when the dog has not been 
blocked for some time. 

It can be argued that being-trapped behaviour, as described, is not emergent, on the 
grounds that it is (almost) compositionally related to touching and being-blocked 
behaviours. It is therefore worth saying why we consider it to be emergent. We are 
distinguishing in this paper between the vocabulary of behavim:r which is used to generate 
the behaviour of the agents, and the considerably larger vocabulary available to the 
designer. It is a matter of fact that when the dog is surrounded by obstac1es and is 
repeatedly being blocked, turning and moving forward again, it is strongly perceived (by 
human observers) as being trapped even though there is no symbolic representation of its 
being-trapped behaviour. The behaviour observed is not describable within the 
vocabulary so far used by the designer which inc1udes touching, being blocked, and 
turning. Being trapped is related to other concepts such as escaping which are at a different 
conceptual level. 

Having defined and maintained a symbolic behaviour trapped which correlates weIl with 
the perceived being-trapped behaviour, it becomes easy to program the dog so that it 
behaves appropriately. For example, if the dog is visually seeking an object when it 
becomes trapped, it will tend to stay in the corner of the trap nearest its objective, so 
preventing a search for a way out of the trap. trapped behaviour is therefore used to 
suppress goal-see king behaviour of this kind so that the dog is free to escape from the trap. 
A further behaviour of the dog in this situation is to start howling, so drawing the attention 
of another agent (such as the human observer) to its predicament. 

A different way of viewing trapped behaviour is that it is one component of the dog's 
overall model of its situation, and it is maintained by what is normally termed a process of 
perception. This is broadly correct, but it is the activi ty of the whole dog in turning, moving 
and becoming blocked that is used to maintain trapped behaviour, so this is much c10ser to 
Neisser's account of perception [Neisser, 1976] than to the traditional information 
processing model. 

Having described how a symbolic representation of behaviour is maintained to correspond 
with spontaneously occurring emergent behaviour, we will now examine emergent 
behaviour which is driven by its symbolic representation. Figure 4 shows the tracks of the 
dog and the five sheep as the dog rounds up the sheep and drive them towards the 
shepherd. 
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Figure 4: The dog rounding up and driving the sheep 
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The behaviour drive _sheep corresponds to the dog's ability to drive the sheep towards the 
shepherd. This is built compositionally from two complementary behaviours, 
round _up _sheep -,ett and round _up _sheep Jight. The overall operation of driving sheep 
is to round_up_sheep-,ett until the dog is facing the shepherd on one side ofthe flock, and 
then round_up_sheepJight until the dog is facing the shepherd on the other side of the 
flock. These behaviours take place alternately, with the dog weaving to and fro behind the 
flock, so that the flock as a whole is driven towards the shepherd. The coherence of the 
flock during drive_sheep behaviour is derived from the round_up_sheep-,ett and 
round_up_sheepJight behaviours, both of which have the effect of making the sheep 
gather into a flock. 

The two rounding up behaviours are emergent (in the sense used in this paper) from the 
behaviours of the individual agents. The sheep run away from the dog when it gets too 
close, and the dog, by running round the flock in circles, tends to drive the sheep towards 
each other. The dog's circling behaviour is very simple: in round_up_sheep_lett 
behaviour it changes direction so as to keep its front visual sector free of sheep and its front 
left visual sector showing sheep. The resulting emergent be;haviour of the sheep, that they 
tend to gather together into a flock, is very stable, but depends on parameters of the basic 
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behaviour of both the dog and die sheep, for example their relative speeds and certain 
timing considerations. 

In this particular case, it is a single agent, the dog, who initiates and maintains these 
behaviours, so they are represented symbolically as behaviours of the dog. These 
behaviours produce relatively low level behaviours of the dog which are linked (by causal 
processes in the world) to similarly low-Ievel behaviours of the sheep. The behaviour of 
gathering together into a flock is emergent from all of these low-Ievel behaviours. 

Just as the maintenance of the symbolic behaviour trapped to conform with th~ observable 
being-trapped behaviour was viewed as perception, the -way the real rounding-up 
behaviour is produced in accordance with the symbolic rounding_up_sheep_left 
behaviour can be viewed as action. But whereas traditional accounts of action deal with 
changes of state of objects in the environment of the agent, action in this case involves a 
collective activi ty of a group of agents which is sustained by the behaviour of the individual 
agents. During this activity, a new entity (the flock of sheep) comes into being whose 
existence Ü, maintained by the activity of the agents. The agent is then further able to act on 
this emergent entity by driving it across the field. 

An alternative way of viewing the behaviour of the dog is to ascribe to it the beliefthat it is 
trapped or the objective of moving the sheep towards the shepherd. The internal state of 
the dog contains components corresponding to this, namely the trapped and drive_sheep 
behaviours. The dog is not however designed to conform with any logic of beliefs and 
action. Relations between components of its internal state are determined by the causal 
processes which maintain its internal behaviour representations consistent with real 
behaviours in the world. It is interesting that this process results in behaviour which is 
naturally describable in intentional terms, and we hope to investigate the way that 
intentional behaviour can be made to emerge from concrete behaviour in future work. 

6. Conclusions 

The main point of this paper is to describe a practical methodology for building agents out 
of emergent behaviour centred around the notion of maintaining symbolic representations 
of the emergent behaviour. This methodology has been tested by developing a simple 
mul ti-agent demonstrator. 

The discussion in this paper has concentrated mainly on an individual agent embedded in a 
multi-agent world. A natural extension to this work would be to conslder groups of agents 
such that the individual agents all have internal symbolic representations of the emergent 
behaviours of the group. This would appear to provide a good basis for supporting 
cooperative behaviour. 
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A General Purpose Vision System (GPVS) is an open and domain-independent system that is 
able to build, maintain, and use an internal representation of the external world from data 
provided by physical sensors such as cameras. The experience in constructing the Vision As 
Process (V AP) and SA TURNE systems at LIFIA using a Distributed Artificial Intelligence 
(DAI) approach has enabled us to compare, from a DAI point of view, these two systems with 
other major existing GPVS's. This work represents the first large-scale comparison between 
GPVS's at the module and module-integration levels using a DAI fonnalism. This has lead us 
to the identification of several basic common features within the systems studied. Furthermore 
we think these common features are essential for the construction of a GPVS, namely : 1/ the 
distribution of the knowledge representation provides /eve/-agents that denote the same 
knowledge at a given level of representation 2/ the distribution of the knowledge processing 
provides!ocus-agents which realize the system's "focus of attention" 3/ intersection of level
agents and focus-agents determines the active basic-agents that explicitly or implicitly constiblte 
the system at a given time. The description of GPVSs in terms of basic agents is a novel feature 
of oUf approach and may also be applicable to other domains such as robotics. 

1. Introduction 

A General Purpose Vision System (GPVS) is an open and domain-independent system that is 
able to build, maintain, and use an internal representation of the external world from data 
provided by physical sensors such as cameras. This representation is built in order for example 
to be used by other systems acting in the same external world but lacking in perceptual 
capabilities. Such systems may interact with the vision system through an exchange of data or 
of goals the vision system has to satisfy. Its internal activity is realized by the chaining of 
specific processes it contains, or in collaboration with other systems with which it interacts. 
The experience in constructing the Vision As Process (V AP) and SA TURNE systems at LIFIA 
using a Distributed Artificial Intelligence (DAI) approach, has enabled us to compare, from a 
DAI point of view, these two systems with the major existing GPVS's. After the definition of 
the vocabulary and concepts we use in the field of DAI, we try to identify the main concepts 
involved in the building of a GPVS, and we propose a methodology to analyse the whole 
system, as weil as its functioning. Then we will also show that the DAI approach allows a 
unified description of all GPVSs while from a computer vision perspective such systems are 
generally extremely difficult to compare. We finally use-the DAI fonnalism in section 6 to 
describe one of the GPVSs developed at LIFIA, the V AP system (Vision As Process ), built in 
the framework of the European ESPRIT Basic Research Project BRA3038. 

2. Distributed Artificial Intelligence 

The description of a system using a DAI fonnalism can be made- according to two points of 
view [BOI 89) [DM 90) : 1) a macro level taking ioto account the building t~ocks of the system 
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as individuals having knowledge, limited resolution abilities and interacting together. At this 
level we consider the system as a society 0/ agents. The degree of homogeneity of the society 
changes depending of the degree of homogeneity or heterogeneity of the agents that build it as 
weIl as the number of these agents (from few to many). 2) a micro level considering the system 
or each building block as a whole entity that has a problem to solve with its knowledge and its 
resolution abilities. In this case, we focalise our attention on the agent. The grain of the agents 
covers the range from coarse to fine. 
ln DAI all systems may be represented using these two levels of description; We will use the 
agent and society models figured in [DM 9O].-Additionally we use concepts from current work 
carried out at Grenoble in the framework ofthe PLEIAD group [GDA 91]. 

2.1. Agent 

Agents are the dynamic entities acting in the world. The effect of their actions is perceived in it 
by the production of events that correspond to modifications of the environment, and to 
communication acts. Agents can vary in complexity, from ants to robots. We mean by agent an 
entity that acts rationally and intentionally according to its own goals and to the cmrent state of 
its knowledge. We say that agents are autonomous or exhibit intelligence if they are capable of 
flexibility and adaptiveness, of setting up their own goals based on their interests and of 
achieving these goals by eificient actions. -

An agent can be split into two main parts. Tbe first one, which is a static aspect, defines the 
architecture of the agent. This aspect, which commonly termed knowledge representation, deals 
with the definition of the types of knowledge available to the agent and how it is represented. 
The second aspect is the dynamic processing that takes place on the agent's architecture. We 
call this aspect the processing methods. 

Static aspect 

Tbe type of knowledge an agent has which is relevant to its existence in a society may be 
divided into : 

• explicit and abstract world representation in which the agent lives. 
• abilities : what an agent can offer to others; topics of interest, what an agent is 

interested in, and its representation of other agents' abilities. 
• explicit and abstract representation of the problems or goals that the agent has to solve, 
• plans to be executed, 
• choices or decisions taken. 

Dynamic aspect 

Processing methods are the way a dynamic aspect is added to this static structure, these may be 
divided into: 

• reasoning capabilities including communication planning, detection of incoherences, 
integration (combination of data), use of data, reasoning on the others' knowledge and 
behaviours, 

• choice anti decision fTUlking mechanism, or decision capabilities. 
The control consists of the transformation and the inclusion in an agent's processing methods 
of global constraints due to the society of agents. It also includes inherent constraints of the 
processing methods that are used within each agent 

2.2. Society of Agents 

Taking the same way of description for the society the agents build, we have a static and 
dynamic aspects. 
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Static aspect 

The society of agents is organized according to a network that can be heterarchical, hierarchieal, 
or market-like. This exhibits links of communication that can be apriori defined between two 
agents. Basic interactions deal with what is exchanged using these links : knowledge, goals, 
plans or choices. Agents can know each others and exchange data namely - direct 
communication - or they can communicate without knowing each other by posting and taking 
data according to predefmed characteristics - indirect communication -. These three features 
statically define the game rules, or what can be done inside the society. 

Dynamic aspect 

We have to define the manner and the moment to use the network, given the game rules that 
have been settled. Given what is effectively exchanged on the network - knowledge, goals, 
plans or choices - the links between agents are used either for simple communication or for 
control influence. Deduced from the content of the exchange and from the eventual protocol of 
communication that can take place between the agents, we can speak of cooperation, 
competition or cohabitation. 
The control at this level deals with the settling and the regulation of the different data exchanges 
described above. It can be distributed over the agents in case of entire autonomous agents or 
may also be centralised somewhere in one agent. 

3. General Pur pose Vision Systems 

The research dealing with the construction of a GPVS is generally concemed with : 1) design of 
explicit models of a visual problem domain, 2) methods for extracting features from a 
representation of the perceived scene (image, 2D description, 3D description for example), 3) 
methods for malehing these features to models by using a suitable control structure. A GPVS 
has to be able to perform a non trivial set of visual tasks using a set of such models and 
methods in an imperfectly known environment. This definition leads us to require that such a 
system must be an open system in the sense that new functionalities to solve new kinds of 
problems can be easily added to it. Moreover it has to be a domain-independenl system to be 
used in any environment. 
In the late 70's, several proposals for General Vision architeetures were reported [HR 78]. 
From this time onward few researchers have tried to bring together a large set of methods 
covering all the processing chain. Almost all research has been focused on smaller parts of the 
whole problem. Each time, in order to solve a particular subset of problems, it was assumed 
that solutions to other related subproblems were known. Few attempts were made to build 
domain-independent vision systems. Almost all systems were well suited for a specific domain, 
such as SPAM [MWH 87] for airport scenes or MESSIE [GGM 89] for aerial images. 
More recently new efforts were made to integrate visual modules or processing methods in the 
context of a General Vision System. The first class of GPVSs are aimed at processing single 
static images from several types of image properties (SCHEMA [DCB 89], SA TIJRNE [DEM 
86] [DEM 90], SKIDS [ABH 89]). Others introduce in addition a Focus Of Attention 
dimension on the control of the perceptual process. Such systems incorporate several aspects : 
spatial,. temporal, and semantic. Moreover an added dynamic dimension corresponding to the 
use of sequences of images, dealing with the tracking of objects, puts such systems in the trend 
of Active Vision [A WB 87]. The MEDUSA [ALO 90], Rochester system [CM 87][BAL 
89][WB 90HBAL 91], Vision As Process (V AP) [CCE 89] [CG 90], are the main systems 
following such an approach. 

4. Analysing General Pur pose Vision Systems 

The main problem of visual perception is the interpretation of an enormous amount of 
inherently ambiguous symbolic and numeric data. TI) simplify the representation it is natural 10 

3 



MAAMAWl991 

define intermediate levels 01 representation between the information coming from the sensors 
and the final description of the scene in the context of the system's goals. On another hand the 
structuration of the whole processing taking place in a GPVS appears also necessary. Indeed 
such systems are implicitly structured by the global goals they have to satisfy and by the 
designers themselves. Finally, the functioning of GPVSs exhibit two main behaviours. The 
first is a preattentive or understanding behaviour consisting of a continuous and permanent 
activity driven by a set of intrinsic goals. The second behaviour, resolutive or recognition , is 
much more discrete and punctual since it is driven by the satisfaction of extrinsic goals. 
The current trend in the construction of GPVSs consists of using general principles from the 
design of complex systems, namely to divide the system into different components. The 
splitting use the two structurations presented above. The resulting components are then 
reg:"!'uped or integrated inside the system by the addition of a communication language and an 
interaction protocol. An horizontal splitting enables us 1/ to structure the levels of 
representation, 2/ 10 identify the basic transformations between levels and 3/ to install both the 
preattentive and resolutive behaviours. A further vertical splitting enables 1/ the definition of the 
focus of attention of the system and to predefine privileged verticallinks within the system, 2/ 
the identification of the basic agents of the system and 3/ the envisionment of a common internal 
structure of these standard agents. These points will be discussed in more details in the 
following sections. 

4.1. Horizontal Splitting into levels of representation (Ievel-agents) 

The levels inherited by the horizontal splitting are those that were clearly identified in Ü'e 80's 
[HR 78]. A great deal of work has been done on the several proposed different hori mntal 
splittings. However from the point of view of the knowledge representation, there is .still a 
strong need to discover what are the most suitable representations at a given level. 11tis is 
particularly the case at the higher levels. Setting this horizontal splitting on a GPVS defines 
different entities in the system that we call1evel agents. 
The different levels of representation are used in GPVSs for organizing the large amount of 
information with which they are faced. The informations - data and goals - are ttansfonned and 
then gathered in sub sets according to several criteria : degree of abstraction on the shape 
(abstraction), expression in different spatial and temporal systems of reference (decentration) 
[MAR 82] [DEM 86]. Abstraction is a classical notion that we will not discuss here [HR 78] 
[MAR 82]. Decentration has two aspects : a spatial and a temporal one. The spatial aspect 
consists of expressing the features at each level according to different points of view : viewer
centered, image-centered, object-centered or scene-centered. These points of view are used 
because of their suitability for the processing taking pi ace on the representation in this reference 
frame. The temporal aspect deals with how features evolve with time. As we go up in levels of 
representation - with higher decentration - this sensitivity to time decreases. For instance, the 
edges belonging to an object observed in the scene exhibit a high degree of temporal instability . 
However the edge information at a given time maybe sufficient to maintain the object 
hypothesis within the system. As a consequence of these definitions, decentration is made up of 
only the spatial aspect in systems that do not include the maintenance of the scene representation 
over time. 

4.2. Vertical Splitting according to Foci of Attention (focus-agents) 

Despite of this first structuration, it now appears that the obtained level-agents are too coarse
grained to be considered as basic processing units. There appears 10 be no general structure for 
each level agent that could actively produce the entire description of the scene at a given level. 
As a consequence, there is a even sttonger need of structuring again these level-agents, splitting 
them into several subparts. We propose here some key concepts for both the inter comparison 
of GPVSs as weIl as for analysing them namely, the Focus 01 Attention dimension. In fact, a 
GPVS is implicitly vertically structured by the global goal it has to satisfy and by the designer 
himself. That is to say, at a given moment, the processing of the system is focused either on a 
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location, on an object, on a task, or on a feature - the focus of attention -. More drastically, we 
can observe that this focalisation of the processing exists at each level of representation on 
which the system is distributed. This leads to an observable vertical splitting-of a GPVS into 
groups according to a focus of attention at a given moment These resulting groups can 
physically exist in the system such as SA 1URNE , or can be dynamically defmed by grouping 
the different activated subparts of the system at a given moment along the levels of 
representation, as for example in the V AP system. We call these groups thefocus-agents. 

4.3. The society of Agents : the static aspect 

Basic Agents : The horizontal splitting provides level-agents that denote the same knowledge 
at a given level of representation. The vertical splitting provides focus-agents that denote the 
same focus of attention through the levels. The intersection of these two kinds of agents defmes 
the active basic units that constitute the system at a given time. These are what we call the basic 
agents. 

Network : Both splittings define too the different links of interactions between the basic 
agents. This defines what we call the interaction network. In GPVSs we have mainly two kinds 
of links : horizontal ones that allows the basic agents to exchange infonnations within· the same 
level of representation and vertical ones that links basic agents belonging to the same focus 
agent This latter kind of link favours obviously control influences inside the society between 
basic agents because of the focus of attention attached 10 the concept of focus agent. The levels 
of representation are the main interaction media of the society. ' . 

4.4. The society of agents : Dynamic aspect 

Basic Interactions : Among the different informations that are manipulated by a GPVS, we 
can distinguish two subsets : 

• informations used on the same level, concerned with the enrichment aspect if produced 
inside a basic agent They can give rise also to interactions that we call communication if they 
resulted from an exchange between basic agents inside the same level agent 

• infonnations leading to the production of new data on an other level: This is the result 
of either, a perceptual act, interaction between basic agents that do not belong to the same level 
agent, or an inference that is internal to a basic agent 

Vertical Knowledge Interchange Protocols : We will illustrate the knowledge 
interchange protocols only with the perception aspect However, we have to take in mind that a 
knowledge interchange protocol also exists for the communication aspect This intra-level 
protocol is currently poorly studied. For instance it exists in the SCHEMA system where 
objects' schemas within the same high level of representation communicate through a 
blackboard. This protocol is less weH defined than the vertical one dealing with the perception. 
The process of perception has been for a long time considered as the skilled combination of two 
functions : segmentation and interpretation acting on the lower and higher levels respectively. 
This combination was realised by a feedback from the high level processes to the lower levels. 
Representation levels were refined as the predict and verify processing mode from one level to 
another [LUX 85]. It can be also fonnulated as : given a model in a representation at one level 
and data in an other representation at another level, is there an instance of the model in this latter 
representation. The prediction phase corresponds to the transformation of the data issued from a 
representation into more abstract data representation. The verijication phase consists of using 
knowledge or models of this more abstract representation in order to match it wüh the 
incoming data. This phase can also trigger a feedback to the lower level in order to confirm the 
hypotheses. This feedback takes place after the transfonnation of the verification data in the 
lower levels of representation (projection step). 
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On this basic cycle takes place a an other interaction protocol that uses it. Tsotsos [TSO 89, 
TSO 90] defmes the visual search taking place in the visual processing, as having two aspects : 
1) a bottom-up - data driven - that consists of transition from lower levels to upper, 2) a top
down - goal-directed - corresponding to transitions from upper to lower levels. In the bottom
up case, the goals are either unknown in advance either known but not used except to detennine 
when the search ends. The top-down case makes use of goals to assist in optimizing the 
solution to the problem. In fact, depending on the complexity of the task, the large amount of 
manipulated data, an exclusively data driven resolution could lead to a combinatorial explosion. 
This mixnu-e between both modes of intemaI functioning - bottom-up and top-down - has led to 
the emergence of many resolution cycles depending on the extend of this mixture [TSO 87][RJ 
88]. These are for exarnple the perceptual cycle by Crowley [CRO-90] (figure 1) or Kanade 
[KAN 80] that explicidy presents the two main levels used (figure 2). For an excellent review 
of the different cycles the reader is reffered to [TSO 87] or [LUX 85]. This wide range of 
cycles in GPVSs shows that the structuring of the processing of a GPVS is quite a difficult 
problem. 

~ .-JIL _____ .... _--I 

Figure 1 ''The V AP cycle [CRO 90]" 

( :::r-c-.oa\_dim;ts_ 
samplcs EloraliO~ 

Figure 2 "The Perceptual Cycle from [RJ 88] and Kanade's cycle [KAN 80]" 

Behaviour of the society 

The global processing that takes place within a GPVS consists of a cycle of a close interaction 
between two main behaviours : the resolutive and preattentive ones. 

Resolutive behaviour : The resolutive behaviour is a discrete and punctual functioning of 
the GPVS. It is driven by the satisfaction of extrinsic goals, such as the answering to a request 
coming from a robot ann to locate some particular object. As far as the resolutive behaviour of 
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the system is concerned, the vision task can be described as a search one : look for an instance 
of one model in one set of data. 

Preattentive behaviour : However, a GPVS must be open to the external world, it is 
observing. So it must pennanently pay attention to the extern al events or data in a preattentive 
mode. TItis second rnain behaviour of a GPVS consists of a continuous and permanent activity 
driven by a set of intrinsic goals. Here again, the kind of unexpected events or data to which the 
system is sensitive can either be explicitly programmed inside the system either result from the 
data, satisfying some implicit goal such as understand. 

Mixed behaviour : A GPVS must be adaptative and flexible, allowing it to reconcile these 
two types of behaviours. Even though the resolutive behaviour seems to be much more top
down while the preattentive behaviour seems to be more bottom-up. As a consequence each 
basic agent will have the task of either resolving a particular subproblem, resolutive aspect, 
either to execute their own processing independently of any external goal, preattentive mode. 
Both behaviours are implemented using the predict and verify loop between the severallevels of 
representation that are addressed while solving the current problem. They are implemented in 
addition with a combination of top-down and bottom-up processing. 

4.5. The agent : static and dynamic aspects 

To enable such behaviours, GPVSs have to incorporate in their basic agents different 
functionalities as weH as several kinds of knowledge~ analytical, geometrical and physical. In 
addition to such knowledge of the real environment that is classically found in such systems, 
temporal, relational, functional and communicational knowledge of the behaviours of the basic 
agents within the systems has also to be included. These last knowledge sources come directly 
from multi-agent studies. Basic agent's internal structures are specific to each GPVS. So, no 
standard description of such a structure is given in this paper. As an example, in the last 
section, we will describe the V AP system in more details providing such kind of adescription. 

5. Review of General Purpose Vision Systems with these Analysis Principles 

5.1. The SCHEMA system 

The Image Understanding Architecture [WLH 87] (figure 3) is a general Vision System whose 
goal is the recognition and the localisation of objects in the scene together with their 
relationships. This system uses an architecture the principle of which lies in the decomposition 
of the vision process into different layers and processes that are hierarchically organized. 
Physically the system is organized as three sets of processors that are respectively dedicated to : 
image processing, manipulation of events and features extracted from the image, and symbolic 
processing. This system is specialized in static scenes and does not incorporate the means to 
control its sensors. 

Horizontal splitting : The SCHEMA system does not have an explicit definition of levels. 
The levels are continuous in the sense that they depend on the amount of detail used, and on the 
knowledge organization needed inside the object model Schema by the different processing 
methods. Therefore the number of levels in the system depends on the object model that is 
considered. Nevertheless on a large sc ale three levels may be distinguished in this system: 
image, intermediate level, scene description - equivalent to the scene interpretation of the V AP 
system -. The intennediate level has a variable extension: it embodies the levels between image 
and symbolic scene interpretation in the V AP System. 
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Figure 3 "Tbe SCHEMA System [DCB 89]" 

Vertical Splitting: In the SCHEMA system, the focus-agents are issued from a Object 
model splitting (figure 1O)_ There exists dynamically a focus-agent for each object that can c::xist 
in the scene. Tbe representation levels are not explicitly taken into account. A focus-agent 
corresponds to a processing cone coverbg all the representation levels. This cone is 
dynamically generatedby the use 0': inter-level processing methods communicating between 
them inside the cone on the represent:'ition level they need. 

Basic Agents : As previously mentioned, the basic agent of this system are the object models 
organized within a blackboard. 

GLOBALBLACKBOARD 

( s~). ~ LOCALBLACKBOAKD 

Intemal H ypothcoi. I 
Intmna1 Hypotheoia 

Tok_: (resion2AO) 
Bndananalla : 
«ocnm~2.3S) 

L.. (adjacall.-ftlIId (rqrian241))) • 
~ 

ROIIId·Iostaoc:e 
C~n) 

Schema instancc 

Figure 4 "Agent Model of the SCHEMA System rOCB 89]" 

Behaviours : In the SCHEMA system, the functioning mode is resolutive. Tbe system is 
initiated with an hypothesis that the different agents have to verify. The SCHEMA system can 
also be described as a Distributed Problem Solving system in the sense that each agent is built 
to satisfy a particular goal. 
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Each time an hypothesis on the existence of an entity has to be made, the Schema dedicated to 
the interpretation of this entity is triggered. The architecture used is a Blackboard in which the 
triggered Schemas interact according to two modes : cooperation and competition. 
The processing methods building a focus-agent do not communicate directly with the 
processing methods of an other focus-agent. The only exchange of data that takes place is on 
the higher level through the blackboard between the basic agents. 

Internal Structure : Within the SCHEMA system, one agent is a specialized vision system 
that can recognize one type of entity. Several general vision processing methods coexist in the 
system. A set of strategies makes it possible to apply or to choose the Knowledge Source that 
has to be activated according to the conditions in which the interpretation of the entity has to 
take place. The interna! activity of each agent as weH as each focus-agenl"inclndes the 
prediction-verification cycle (figure 4). 
At the highest level the deductive knowledge is organized in Knowledge Sources or Schemas 
each consisting of one or more dedicated strategies relevant to the interpretation of particular 
entity such as "tree", "road", "foliage". This modularity principle is inherited from the 
incremental development of the Knowledge Base [DCB 87]. On the other levels there are 
procedures called by the different Schemas. 

5.2. The SATURNE system 

The main objectives of the SATURNE system, currently under construction, is the 
development of the notion-Of levels of representation based on the two principles abstraction 
and decentration. This syst.em is mainly composed of a number of Shape-jrom methods that 
are able to communicate with each other and with other intelligent agents (figure 5). The 
current limitation of the system lies in the fact that it is conceived to ensure an instantaneous 
passive understanding without taking into account the temporal dimension. The architecture 
itself is independent of the Computer Vision application field since it is suited to the integration 
of other robotics or AI modules. 
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Figure 5 "Tbe SA TURNE System" 

Horizontal splitting: The SA TURNE system has explicit levels of representation on which 
it makes use of a distributed representation. In the SA TURNE system, we have five levels that 
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are Image, Image Features, Scene Features, Object and Scene. This structuration is mostly 
inspired by D. Marr's levels [MAR 82] : Image, Prima! sketch, 2,5 sketch, 3D Model 

Vertical Splitting: The SA TURNE System uses an explicit vertical splitting based on the 
features (contours, highlights, shading, texture, motion, stereo) on which the system can be 
focussed. This decomposition is due to Marr [MAR 82]. Each focus-agent includes the basic 
agents that are specialized in the processing of the same feature (figure 10). Focus-agents can 
be explicitly represented and constitute the built-in shape-frcnn methods in the system. The 
currently available focus-agents include : shape-from contours, shape-from highlights, shape
from range data and a grasping module. Other shape-from methods : shape-from' shadows, 
shape-from shading, shape-from motion, shape-from texture, are scheduled for construction 
and integration. The action field of such an agent covers the set ofrept~sentation available along 
a specific property of the image. 

Basic Agents : A basic agent is defined as the intersection of a representation level and a 
Shape-from methcxl. Moreover, they explicitly constitute the agents that compose the society at 
its fmest grain. Every basic agent is specialized in representing and processing a cenain kind of 
feature at a given level of representation. 

Behaviours : The design and the basic functioning of this system - understanding : 
preattentive and pe . .rmanent - is characteristic of a multi-agent system. The second behaviour -
recognition : resalutive and punctual -, more directed by an extrinsic goal, is much more typical 
of a Distr.'buted Froblem Solving system. Recognition behaviour is an extension and a 
particular \lse of the. multi-agent architecture through the implementation of particular decision 
capabilitie~ for each of the shape-from modules. 
Perception is provided by basic agents of the same focus-agent while communication is 
available with agents of the same level-agent. Links of communication between the basic agents 
are dynamically set according to same instantaneous goal provided by an extemal agent. It is 
hoped that the system can be used in any environment, under any condition which results 
would not be affected. but the global functioning of the system, using general shape-from 
methods as focus-agents for all the goals may be hard to adjust especially if we want it to be 
robust. 

Internal Structure : The basic agents of the SA TIJRNE system are called intentional ones 
(figure 6) [DM 90]. At a given level, the agent has a representations of the world called its 
knowledge. This knowledge can be inherent or acquired through perceptiC'n (at a lower level) 
or communication (at the same level) with other agents. To communicate with a lower or higher 
level, the agent transforms its representation into the target representation. Each reception of 
information is assumed to be communicated to the receiver at its level of representation. Goals 
are abstracted from the observation of the behaviour of the agent. These goals do not need to 
exist explicitly within the agent. In the context of its knowledge and goals, an agent can be 
thought of as having to consider a set of possible solurions if the goal is to salve a problem. An 
agent does not need to be able to derive all the possible solutions but only a part of these 
depending on its reasoning capabilities. When various possible solutions are potentially 
applicable, a decision must be made among them to choose the best one - the choice - from the 
point of view of the agent. 0.-----, 

Figure 6 "Model of an Agent in SA TURNE" 
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5.3. The "Vision As Process" system 

The aim of the Vision As Process project [CCE 89] is to investigate /ocus 0/ attention 
techniques for the control of the perceptual process in an integrated vision system (figure 7). 
The major effort in this project is aimed at system integration. The characteristics of such a 
system are active sub-systems such as movable cameras operating in a dynamic environment 
under real time constraints. These characteristics have a major effect on the control of the 
system. The first version of this system, currently under construction, is composed of the 
following modules: Ca.n1era Control Unit, Image description processes Qperating at multiple 
resolutions, Processes for extracting 3D description of the scene from sequences of images, 
~ocess for dynamically maintaining a symbolic description of the scene using information 
from the other processes and apriori knowledge about the scene. All these modules were 
developed independently with the aim of integration using a skeleton, the SA VA system [DCR 
9O][BC 91]. The control of the system is the task of a supervisor module. The operating cycle 
reproduces the tradition al approach laken in building a GPVS : close interaction between a 
given module and its direct successor. 
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Horizontal splitting : The V AP systems uses explicit levels of representation. The four 
used levels are : image, 20 image description, 3D image description, Symbolic Scene 
Interpretation. 

Vertical Splitting: A focus-agent is defined as being composed of the union of the 
processing· units that transform a representation into a successive one for a given Region of 
loteTest (ROI). The ROI is the spatial area, temporal slice and its semantic bucket - set of 
objects or features - within the focus agent processes and builds its representation (figure 10). 

Basic Agents : At each moment of the processing a basic agent can be dynamically defined : 
this is the level-agent to which is affected the ROI expressed at this level of representation. In 
this way, we have on the same level a dynamic definition of several homogeneous basic agents 
corresponding each one to a different ROr. Currently, just one agent of this kind is active at a 
given time on a given level. We envision a parallel processing mode at each representation level 
in which several ROIs will be defined. This feature may for example be used for the tracking of 
features or objects in the scene as in [CKB 90] or [TM 89]. 

Behaviours : The system exhibit mainly a resolutive behaviour : its activity is directed 
towards the satisfaction of goals given to the supervisor. This mode of functioning is illustrated 
in figure 1 using the cycle described in [CRO 89]. 
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No communication between basic-agents is currently settled because of the impossibility of 
having more than one basic-agent at the same time on the same level of representation. In some 
way, the communication between basic-agents occurs when it integrates results provided by a 
previous Region of Interest, stored on the level of representation. The perception aspect is the 
major mode of interaction between basic agents within the same focus agent. 

Internal Structure : In V AP, the functioning of the system is based on the cycle Match
Update-Predict added to the internal cycle inherited from the Prediction and Verify [LUX 85]. It 
incorporates also atemporal prediction that enables the system to integrate its results over time 
(figure 8). At the input level of the agent the transformation function makes it possible to go 
from ~ne representation to another at a higher level. At the output level the verification phase is 
accompanied by a projection function tilat makes it possible to go from one representation to 
another one at a lower level. As a consequence, every agent is able to -transform the 
representation at a lower level into another one at its level and reciprocally. 

5.4. The MEDUSA system 

MEDUSA is an active vision system (figure 9) which is built with an active camera system, 
inertial sensors, a hand which is visible from the camera and a sub-system that allows it to 
move around in the environment. This system works on multiple images accumulating them 
while moving. There are two main data structures used by every component of the system : 
images and normal flow fields extracted from the images. A first module is dedicated tothe task 
of the extraction of normal flow fields from the sequences of images. A second module of the 
system is a central controller which has a global view of the resolution, and controls all the 
activation and execution of the other modules within the system. Apart from these two modules 
the other components of MEDUSA are task dedicated. For instance, one module is able to 
determine if something is moving independently of the system and is able to locate it. The task 
of another module will be to detect objects getting closer to the system. 

2-0 : FlUID tbe series of imogel !iDdI • series oe oormaI Oow 6eIdI 
A : aDSWa'I Ibe foUowiq qucslion for Me<ba : lJ Iben -)'1bin8 movlng independtftly of 
IDII 7 Yel or No 7 ADd iC" eI iI il Öl Ibe image 7 
B : Amwen tbe followiDI qumtioa : lJ Ibis moving object geUiDg cloler of IDII 7 Or wbich 
pIIICeI Öl tbe im.t&e CXJI1apond ID pII'IS of Ibe seme wbich I GD geuq cloler 10 7 
C : pafOl1lll Ibe laK 0( ktlepiDg Ibe lIIOViDg objea Öl Ibe cenlrll' 0( tbe YiIuaI filed by 
appropriIIeIy lOIaIina Ibe eye of MeduIa. 
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Figure 9 "The MEDUSA System [ALQ 90]" 

Horizontal splitting : The MEDUSA system seems to lack of homogeneous number of 
levels. Levels of representation seems to be gathered inside modules and depend also on the 
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need of the different methods used inside each one. This description could be incomplete or 
erroneous due 10 the partial infonnation we currently have on this system. 

Vertical Splitting: Aloimonos considers vision problems as being composed of two 
. particular tasks theU interact without being completely independant of each other : localisation 

and description. This dichotomy is developed by introducing the purposive vision concept [AS 
89, ALO 90] : the vision system has 10 be cut in different modules according 10 the basics goals 
the system has 10 satisfy. Thus, the MEDUSA system is verticaHy splitted along Task focus of 
attention criteria (figure 10). A focus-agent in Medusa is a particular instanciation of shape-from 
method to satisfy a ded.icated task. 

Basic Agents : Basic-agents are-tbe result of intersection of task-ded.icated focus-agents and 
level-agents. However, focus-agents are buHt with a fixed set of basic agents that are lioked 
rigidly. 

Behaviour : The aim of such a system is 10 organize its processing methods along the 
different tasks it is able to process such as obstacle detection or object tracking. The behaviour 
of the system seems to be able 10 inc1ude both modes, resolutive and preattentive, event though 
the purposive vision concepts tends 10 use it in a resolutive way. 
In this centralized system, no ~ommunication takes place between modules. Only the controller 
can communicate with the others : it is the main channel of communication allowing it 10 have a 
global view of the state of the system and a control on its evolution. 

Intemal Structure : As previously said for MEDUSA, several processing focus-agents are 
buHt in MEDUSA by using the task similarity criteria to merge the different processing units. 
The links between the units is fixed. It is not clear if these processing units are duplicated into 
the several focus-agents or if they are shared, defining by this way some agents. The lack of 
information does not ahle us 10 teH about the internal structme of the basic units. 

level of n:prcscnWion 
or level-agent 

Focua Agent I Focus Agent Focua Agent Focua Agent 
objcct models A caractcrislics Region Of Iotcrest Tub 

ShapD 
from 

OOIJIOUIII 

bui<: .gat1I ..... leYel .ga". bui<: ...... 

Schema Salume V AP 
objecl model splitting caracteristic splitting R.O.I splitting 

• rcsolutive mode t reactive mode 

Medusa 
ta.ak. splitting 

Figure 10 "Vertical Splitting of the GPVS" 
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6. A DAI Description of the V AP System 

We are currently finishing the flrst step of the "Vision As Process" Project. In this section, we 
will describe what has been realized. We will discuss also some of the extensions that are 
planned to upgrade the system in the light of the first realized experiments. The V AP system is 
currently built with flve heterogeneous modules, plugged" inside the same system. Their 
integration is made in order to allow the system to actively work in adynamie environment We 
have set an ..ctditional constraint on this system. that is to have loosely coupled agents. We also 
integrate an other parameter related to the movement of the sensors themselves or due to events 
occuring in the scene. Aloimonos tA WB 87] showed that this additional parameter can increase 
the robustness of the vision methods. It can be used for example to decrease the uncertainty of 
an interpretatioil or to constrain problems. However, it has also some drawbacks and especially 
for the movement of sensors, it introduces an additional control parameter: the system has to 
decide where to look and to execute the move of the sensors. 
The VAP system is written in C and Lucid Common Lisp 4.1. We have developed the 
framework in which agents are plugged in C under Sun OS Version 4.1. This communication 
skeleton SA VA [DCB 90] allows the agents to ron on different machines that are Sun 3/2fIJ or 
Sun 4 Spare Station by using the SOCket mechanism in Unix BSD 4.3. The Man Machine 
Interfaces are written in X Windows v llR4 using the MOTIF programming system. 

6.1. The agents 

As defined above, a basic agent is a particular instanciation of a level agent with a region of 
interest So It is a group of processing methods that acquire and improve the scene description 
on a given level of representation. The level-agents of our system are (figure 7) 

• Camera Contro/ Unit: execution of the moves, the focus, vergence and zoom of the 
camera 

• 2D Image description : build the 2D description of the image in terms of edges. 
• 3D scene description : maintenance and buildiog of a three dimensional object models. 
• interpretation : buildiog of a symbolic scene description 
• supervision : control ofthe system according to goals fixed by the user. 

Static Aspect 

Each agent has a different representation - understanding - of the same phenomenon that 
constitutes the scene itself. Each agent translates a perception of the scene in the representation 
at one level. The agent will then send it to an other agent. Depending of the agent, the 
representation is built from models of primitives of the domain such as edges, perceptual 
groupings, or geons [BIE 85]. These models represent prototypical concepts of the domain that 
have to be instanciated by the data sensed by the agent. Concepts are organised along a 
specialization hierarchy and a composition one [TSO 87]. The aim of an agent's representation 
is to describe the perceived world. As a consequence, we have spatial, temporal and functional 
links between the different primitives used by the agent 

The knowledge present in each agent can be regrouped in three classes : 
• the model : information produced by the agent itself. It is the scene description at the 

representation level on which the agent acts. Relationships are linking the objects together. 
• the perceptual data: information belonging to an other agent's model and sent to the 

agent. They are expressed in the sender's representation. They are used by the agent to build its 
own representation. 

• the contro/ data: These are parameters set defining the behaviour of the agent A main 
control parameter consists of the Region O/Interest - the spatial area, temporal slice and the 
semantic bucket, in which to process -. These parameters are also thresholds for the 
processing, timeouts and so on. The control data are splitted in two subsets : one dealing with 
the internat behaviour constraining the internal orocessing. In this subset we flnd the way to 
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add dynamically new tasies to the agent according to different goals during a certain number of 
processing cyc1es. The other subset gathers all the parameters defining the external behavioUf of 
the agent in the society, especially its sensitivity to the exchange ofmessages with other agents. 
This laller aspect allows to set a variable bandwidth of communication for each agent This will 
be done in order to study the importance and impact of communication on the internal 
processing. Currently we are also studying the way to add to one agent: 1) knowledge about 
the other agents, 2) capabilities of the agent such as to provide images, particular features, 
objects and 3) fieId of interest of one agent. This laller aspect deals with the explicit expression 
of the agent's needs .. Funher work has to be done to explicitly express the interests and 
competences of an agent in order to allow some adaptability of thebehavioUf. 
Control parameters are not defmed only by default in the agent itself, but may be settled also by 
agcnts from the upper levels. 

Dynamic .Aspect 

The prediction-verification cycle is present in each agent with a more or less degree of 
explicitness. The prediction phase produces hypotheses through a transfonnation operation on 
the perceived data. The verijication phase tries to verify constraints directly on these hypotheses 
or to search for further perceived data to confum them. This leads to the generation of goals for 
other agents consisting of requests for finding or verifying the existence of hypotheses in their 
model. 
Our system is able to act in a dynamic environment So it has to handle data evolving in time. 
This is done by defining in each agent a cyc1e allowing to do temporal prediction Oll- the 
hypotheses and to update its model with these new hypotheses. The old ones in the m~xlel 
which predicted position matches the new ones allow to track the different features in the 
representation and to maintain the description of the scene in the agent 

The basic steps of the cyc1e added on the prediction-verification set are : 
• match: matching of the predictions with the new incoming data. 
• update : new data in the model are added and their confidence factor is updated. When 

this confidence factor is to low, the data is removed from the model in order to keep the siz.e of 
the model reasonable. This constraint of keeping always a small amount of data to process 
comes from the realtime aspect of our project 

·predict : use of atemporal behaviour model of the data in order to do a prediction on 
their future location. 

Each agent has an incomplete perception of the other agent because of the difference of 
processing time scale. This effect is due to the fact that each V AP basic agent belongs to a 
different level agent, having thus a time decentration on its representation. 
On the figure (figure 8), the prediction step of the cycle and the verification step of the 
processing cyc1e are merged in the same box, identified by predict .. Communication of data 
involves a change in the levels of representation. So, there exist a transformation phase that 
translates data from a given level into understandable tenns for the upper level. The inverse 
transformation is the projection phase. 

Currently, the existing agents do not have a lot of explicit decision abilities. For instance, they 
are unable to change their Region Of Interest on their own. This change is driven by the state of 
the representation and by the goals of the system. But given this goal, the ROI is refined and 
changed according to the new representation. To modify its behaviour without setting an 
incoherent processing mode in the system, the agent needs to have some global idea of the 
resolution. We have seen that the verification on the data produced by an agent is made by the 
upper agent that have the models and knowledge to look for more data or detect incoherences. 
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6.2. The Society of Agents 

Static Aspect 

From the data point of view, everybody can communicate to everybody as soon as the agent is 
able to process the infonnation it receives. 
From the control point of view, the agents are organized along a hierarchy. The supervisor 
controls the highest modules, that is the symbolic interpretation module. Currently, the upper 
agent d<.5nes the ROI for a lower agent but also the different resolution parameters such as 
thresholds or constants for its internal processing. 
Inspired by the preattentive mode of the SA TURNE system, further work involves settling a 
heterarchical control so that the system will be much more suited to react to the events. We 
project to investigate the way to distribute the control in each agent, allowing it to define itself 
the reasoning parameters it needs for processing the data. By the already explicit representation 
of control data in one agent, this will lead to add some reasoning capabilities to reason on its 
own behaviour. 

Dynamic Aspect 

Communication acts are currendy very primitive in the system. This is mainly due tO the fact 
that the society is composed of heterogeneous agents that do have their specific weH-defmed 
tasks and that the society is hierarchically organised. As a consequence, we .only deLned a set 
of requests to allow agents to ask each other for some information having certain kinds of 
features. For instance, the 2-D description module can be asked to discove'r some perceptual 
groupings present in the scene in a given Region of Interest This perceptual grouping could be 
to find orthogonal edges and which one of their extremities is located at the same place. 

The communication acts is splitted in two parts : 
• data request dealing with the data exchange. They aHow the definition of 

instantaneous goals for an agent through the asking for data satisfying a set cf constraints in its 
model. The process of answering gives rise either to a specific processing method in the agent 
(perceptual grouping for example), either to a simple interrogation of the internal model issued 
from its usual behaviour. The set of messages is : 

• Find: looks for a particular item already identified, according to a list of 
matching parameters for the primitive. Answers by giving the list of identity of primitives 
feeting the matching parameters. 

• Get : Given an id, it will retum the set of parameters that defmes the primitive. 
• Verify: It will seek to match a specified primitive to the current contents of the 

model. 
• Put : It allows an external agent to change the internal model of an agent by 

putting some primitives in it. 
• control request dealing with the specification or adjustments of the control parameters 

of the other agent or requests for having information on it : Region of Interest, Parameters of 
Extraction, Processing Time, Behaviour. Such requests affects the decision capabilities of the 
agent as weH as some of its reasoning capabilities. As an example, a behaviour request 
corresponds to the fact that one agent orders to another one to regularly communicate some kind 
of infonnation at a certain frequency and during a certain while, without being further requested 
to do so. This installs some preattentive behaviour inside the agent. The set of messages is : 

• Get : gets the value of the specified parameter. 
• Set: Sets the specified parameter to the specified value 

The current existing communication is a direct one. The success of the cooperation between 
these agents is strongly dependent from the communication protocol that is settled in the 
society. Further work is being performed to instali a strong communication protocol. This will 
mainly be done in order to test several modes of cooperation. 
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7. Conclusion 

In this paper, we have identified a number of import3llt concepts involved in the construction of 
a GPVS. We have also proposed a methodology for the structuring of the whole system into 
standard modules, as weIl as for its functioning. This has been possible because of the 
existence of the V AP system that constitutes a testbed for experimenting with these concepts. 
The current release of V AP is not sufficiently open or flexible. The ideas expressed in this 
paper will contribute to redefine and improve both the V AP and SA TIJRNE systems, 
particularly with respect to a common organisation and communication structure. Both systems 
are de facto quite different at the levels of the bäsic and focus agents. Nevertheless, we think 
the needs in communication of data and control requests are the same. 
We believe that the DAI analysis of the currently on-going GPVSs projects we have presented 
is one of the first attempts to compare these systems using this approach. We will go on our 
work by analysing other systems such as the Rochester one [BAL 91] or Skids [ABH 89]. 
More generally, DAI can be used as a tool to analyze any complex systems. DA! is also a 
natural description for the conceiption of complex systems and we will keep on working on a 
general methodology for the construction of GPVSs. Computer Vision field is a particular 
application area for AI studies. Therefore we think that the concepts inherited from our Vision 
Problems, like the Focus of Attention, or Preattentive or Resolutive Behaviours, can probably 
be extended at the AI level to help the modelling of Autonomous Agents in a Multi-Agent 
World, independantl y of the type of the agent 
In the light of the experience gained from developing the V AP and SA TIJRNE systems, we are 
convinced that the DAI field approach is an excellent aid to both the-integration of visual 
modules, and the study of control of perception in such systems. ' 
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Abstract 

In a multi-agent world, several agents act simultaneoulsly, competitively or 
cooperatively. In many situations, an intelligent autonomous agent must interact with the 
other agents or the physical environment in real time. Because it cannot predict all the 
events that will occur in the physical environment or result from other agents reasoning, it 
must notice and control its responses to unanticipated events. However, insuring execution 
of the best possible operation conflicts with meeting deadlines, especially as the event rate 
and the number of known operations increase. Rater than engineer agents to meet deadlines 
under particular parameter values, we aimlo build autonomous agents that control their 
reasoning so as to guarantee real-time performance despite increases in parameter values. 
We propose a satisficing algorithm. To control response time, it triggers only a limited 
number of operations and interrupts triggering to execute the best one available whenever it 
triggers a "good enough" operation or a deadline occurs. To insure that it can execute high
priority operations when interrupts occur, it uses dynamic control plans to trigger 
operations roughly "best-first." In this paper, we describe the satisficing algorithm, 
informally analyse the behavior of an agent under this algorithm, and present experimental 
results. 

1 The research was conducted while Anne Collinot was a Post-Doctoral Fellow at Stanford. 



1. The Problem 

In a multi-agent world, several agents act simultaneously, competitively or 
cooperatively. In many situ:!.tions, an intelligent alitonomous agent must interact with 
the other agents or the physical environment in real-time (e.g., [Decker and Lesser, 
1990; Howe et al., 1990]). Because it cannot predict all of the events that will occur in 
the physical environment or result from other agents reasoning, it must notice and 
respond to important unanticipated events. On the other hand, because it has limited 
resources, the agent must be selective in its responses, so as to achieve its most 
important goals. In general, the utility of an agent's behavior is a function of the 
criticality of the events to which it responds and the value of its responses to them. 
Moreover, because other agents or physical processes in the environment have their 
own temporal dynamics, the value of an agent's response to an event depends r..~t only 
on its response quaIity'(the correctness of the response and perhaps other features such 
as completeness or precision), but also on its response latency (the delay between 
occurence of the event and the response). Düferent situations may impose different 
constraints on response latency. We focus on deadlines, including both soft deadlines, 
whose violation reduces response value incrementally, and hard deadlines, whose 
violation reduces response value directly tQ O. 

In addition to being individually challenging, these requirements conaict. In 
particular, identifying and chooshlg the best among all possible operations (commonly . 
called the "match process" and"conflict resolution" [Forgy, 1982]) conflicts with 
meeting deadlines becau~~e it entails unbounded response latencies. A given event can 
trigger (satisfy the condilions of) .nultiple reasoning operations and a given operation 
can be triggered by multiple events. If n is the number of events the agent notices and k 
is the number of operations the agent knows, in the worst case, the time to trigger all 
executable operations is O(nk). Each of these operations must be rated so that the best 
one can be chosen. If m is the number of executable operations triggered and r is the 
number of rating criteria, the time spent rating and choosing among these operations is 
O(mr). This is not acceptable in agents that must produce high quality responses to 
important events in real tilne. 

In this paper, we address this problem in the context of autonomous deliberative 
agents, that is agents that reason about their actions to achieve goals. Deliberative 
architectures [Corkill et aL, 1982; Erman et al. 1980; Georgeff and Lansky, 1987; 
Hayes-Roth, 1985; McDermott and Forgy, 1978; Newell, 1973] iterativelyenumerate 
possible responses to new events and execute the best one. When augmented with 
multiple processors [Gupta et al., 1989; Laird et al., 1987], they match events to all 
known operations in parallel and -guarantee bounded cycle time. The use of multiple 
processors permits to solve the immediate problem of bounding response latencies for a 
particular application by engineering the agent architecture for associated values of the 
two complexity parameters. This approach handles anticipated increases in these 
parameters with additional processors, but the demand for processors has the same 
complexity as latency has on a single processor. It cannot handle unanticipated 
increases in event rate or number of known operations. But, in any practical multi-agent 
world, we have to assume some limit on an agent's computational resources and a 
reasonable probability that event rate or number of known operations occasionally or 
eventually will exceed its resources. 

A more flexible approach is to apply the concept of "anytime algorithms" [Dean 
and Boddy, 1988]. On each reasoning cycle, the triggering of reasoning operations is 
interrupted and the best available one is executed whenever a deadline occu!"s, thereby 
guaranteeing bounded latency. The longer triggering is allowed to continue, the higher 
the expected value and the Ion ger the latency (both up to some maximum) of the 
operation. Thus, an agent can make strategic trade-offs between response quality and 
latency. In panicular, it can sacrifice quality as necessary to bound latency while event 
rate and number of known operations increase. The question is, of course, how will 
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necessary sacrifices in quality impact utility? As we shall see, strategic interruption of 
triggering is a key feature of the proposed "satisficing algorithm". With additional 
features, however, it gives better performance than an anytime algorithm with respect to 
both quality and latency ofresponse. 

In this paper we describle a "satisficing approach" and report- experimental 
results of its perfonnance. The satisficing algorithm is designed to pennit intelligent real 
time control of reasoning within a deliberative agent architecture. As we shall see, real 
time control of reasoning plus several additional features enabl&1U1 agent to execute 
high quality operations in bounded time, despite increases in environmental complexity 
and number of known operations. 

2. A Satisficing Approach 

Our approach replaces an exhaustive search for the optimal operation on each 
cycle with a non-exhaustive search for a satisficing operation. To bound latency, it 
triggers only a limited number of operations and interrupts triggering to execute the best 
operation available when either it finds one that is ""good-enough" or a deadline occurs. 
To insure that it can execute high-priority operations (high-quality responses to high 
criticality events) with short latency, it uses dynamic control plans to trigger operations 
roughly "best-first". In this section, we describe our agent architecture and the 
satisficing algorithm. 

2.1 The Agent Architecture 

We assume a deliberative agent architecture comprising asynchronous systems 
for perception, reasoning and action [Hayes-Roth, 1990]. The perception system 
senses the environment. labels each event by relevance, criticality, and urgency, and 
gives it an overall priority. It orders events in the reasoning system's input buffer by 
priority [Washington and Hayes-Roth, 1989; Washingtonet al. 1990]. The reasoning 
system iterates the satisficng algorithm (discussed below): (a) it uses perceived and 
internally generated events, along with the current control plan, to trigger a limited 
number of reasoning operations roughly best-first; and (b) when interrupted by a good
enough operation or a deadline, it executes the highest priority triggered operation with 
respect to the current control plan. Executed operations produce reasoning results, 
modify the control plan, or place intended actions (including communication actions) in 
output buffers. The action system retrieves intended actions from the output buffers and 
executes them in the environment 

Control plans are central to the architecture. They focus an agent's perception of 
the environment, enable it to coordinate opportunistic and goal-directed reasoning, and 
guide its execution of high-priority reasoning operations in bounded time under the 
satisficing algorithrn. Accordingly, we briefly explain control plans and their use, with 
illustrations from Guardian, an experimental agent that monitors simulated intensive
care patients [Hayes-Roth et al., 1989]. 

A control plan is a data structure comprising a number of decisions, each of 
which describes a class of operations to be performed during some time pel'iod. For 
example, given an observation of high PIP (peak inspiratory pressure) at time t4, 
Guardain makes decision D7 in Figure 1, "Quickly react to high PIP." Based on 
knowledge of different types of operations and events, it evaluates the degree to which 
each subsequently triggered operation matches D7. Thus, it prefers to execute "quick" 
operations (e.g. associative, rather than model-based reasoning) that "react to" 
(diagnose or correct) problems related to the high PIP, until those problems are solved 
at 15. 
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An agent generates control decisions with general control reasoning operations 
within the basic reasoning cycle. Consider this example: 

Name: Urgent-Reaction 
Trigger: Critical Observation 0 
Prescription: Quicldy react to 0 
Criticality: Criticality of 0 
Goal: Diagnose problems related to 0 are corrected 

This operation is triggered and its parameter, 0, is instanciated whenever the perception 
system delivers an observation with high criticality (such as high PIP). When executed, 
it generates a contral decision favoring "quick" reasoning operations that "react to" 0, 
as in D7, and gives it the same criticality of O. The decition is deactivated when its goal 
is achieved, namely that all diagnosed problems related to 0 have been corrected. 

U sing a small set of general operations to generate a variety of specific 
decisions, an agent constructs control plans that are appropriate to its situation and 
changes those plans as the situation changes [Hayes-Roth, 1985; Johnson and Hayes
Roth, 1987]. At each point in time, the agent executes the highest-priority triggered 
reasoning operation that matches one of the active control decisions, with its priority 
being the product of degree of match and criticality of the decision. 

01 . Aespond to critical events 
02. Update control plans 
03. Respond to user requests • 

04. Investigate Iow temperature 

os. Plan actions to correct PaC02 

06. Explain how temp & rate => PaC02 

07. Quickly react to high PIP 

tO t1 t2 t3 t4 tS t6 t7 t8 n~e 

Figure 1. illustrative Guardian control plan. Horizontallines signify active time 
interval and criticality of decisions. 

(a) At time tO, Guardian has made three moderately critical control decisions, DI-D3, to 
respond to critical events, update control plans, and respond to user requests. During 
tO-tl, it executes triggered reasoning operations that match any of DI-D3, ignoring 
others. 

(b) At tl, Guardian perceives the patient's low temperature, a moderately important 
abnormality. It executes a triggered control operation to introduce D4, favoring 
investigation of this problem. It begins to execute triggered operations that diagnose 
the low temperature (post-operative status), predict Its course (spontaneous warming), 
and infer consequences (low, but rising partial pressure of C02 in the arterial blood 
(PaC02». Because newly perceived events are delivered asynchronously 10 its event 
buffers, Guardian remains sensitive to new events and can execute triggered operations 
that match DI-D3. 
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(c) At t2, Guardian infers that the patient currently has low PaC02, which will rise as 
temperature rises, a moderately important abnonnality. It executes a triggered control 
operation to introduce D5, favoring planning of corrective actions. It begins to execute 
triggered operations that plan corrective changes to breathing rate, while continuing its 
diagnosis, prediction, and causa! inference and remaining sensitive to new events. 

(d) At t3, Guardian perceives a request for explanation of its predictions that low 
temperature will cause low PaC02. It executes a triggered control opeanion to 
introduce D6, favoring construction of the requested explanation. It begins to execute 
triggered operations for explanation, while continuing its other tasks and remaining 
sensitive to new events. 

(e) At t4, Guardian perceives the patient's high PIP, a critical abnormality with a 
deadline on the order of minutes. It executes a triggered control operation to introduce 
D7, favoring quick reaction to the high PIP. It executes triggered operations that 
diagnose the underlying problem (pneumothorax, a hole in the lung that allows inspired 
:Ur to escape into the chest cavity, preventing subsequent inflation of the lung) and 
recommend a corrected action (insertion of a chest tube). During this interval it ignores 
less critical ongoing tasks, but remains sensitive to possibly critical new events. 

(f) At 15, Guardian completes diagnosis and correction of problems underlying the high 
PIP and executes a triggered control operation to deactivate D7. It resurnes its 
interrupted tasks. When they are completed at t6, t7, and t8 it deactivates D6, D4, and 
D5 in a similar fashion and continues executing triggered operations that match D 1-D3. 

2.2 The Satisficing Aigorithm 

Now let us turn to the focus of this paper, an agent's use of its control plans to 
trigger and execute high-priority operations in bounded time. Figure 2 shows the 
proposed satisficing algorithm. As discussed below, control plans playa key role in the 
algorithm. 

The satisficing a1gorithm uses the current control plan to trigger and prioritize a 
limited munber 0/ executable operations roughly best-first by selecting a limited nwnber 
0/ events and operation types/or consideration best-first. 

Tbe satisficing algorithm considers a limited number of events, which it 
reuieves best-first from its buffer. Most events are placed in the buffer by the 
perception system, which uses the currentcontrol plan to prioritize them. For example, 
under D7 in Figure 1, Guardian's perception system gives high priority to observations 
of PIP and to events of the same type, "breathing measurements." Some reasoning 
operations executed under D7 instrllct the perception system to give high priority to 
other relevant types of events, for example interpretations of lung x-rays. Events 
generated by reasoning operations also are prioritized. The satisficing algorithm ignores 
some events (possibly even high-priority events) that overflow the buffer worst-first or 
are not yet retrieved when an interrupt occurs. 

The satisficing algorithm considers a limited number of known operation types, 
using the current control plan to retrieve them best-first from memory. For example, 
under D7, Guardian gives high priority to: operations of the specified type, "react," 
including its subtypes, "diagnose" and act;" and "associative" operations, which are 
"quicker" than the alternative "model-based" operations. For a given event, the 
satisficing algorithm retrieves operations best-first, stopping when it retrieves one that 
is "bad-enough," that is, does not match its control decision weH enough. It also 
ignores some operations (possibly even high-priority operations) that are not yet 
retrieved when an interrupt occurs. 
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Taking these two factors together, the satisficing algorithm attempts to trigger 
high-priority operations with high-priority events before attempting to trigger lower-

. priority operations with lower-priority events. For example, under D7, Guardian first 
tries to trigger "associative diagnosis" and "associative action" operations with PIP 
events. Given the possibility of partial matches between executable operations and 
control decisions (some degree of match to some number of variables in some number 
of control decisions), the algorithm triggers and prioritizes operations roughly, but not 
always exactly, best-first. It inserts and orders executable operations in a limited
capacity agenda, from whi",h the best available operation is chosen for immediate 
execution whenever an interrupt occurs. Most executable operations (possibly even 
high-priority ones), eventually overflow the agenaa as newly triggered, higher-priority 
operations are inserted. 

UntU an Interrupt condltlon occurs 
(a "good enough" operation, a deadline, or no more events) 

Identlfy & priorltlze executable operations best-first 
Retrieve the highest-priority event, 9, from the event buffer 
Until a limiting condition occurs 

(a "bad enough" operation or no more operations) 
Retrieve the highest-priority operation, 0, from memory 
11 all of o's triggering conditions are satisfied by 9, 

Then trigger and prioritize 0-9 on the agenda 

Execute the hlghest-prlorlty operation on the agenda 

Figure 2. The Satisficing Algorithm 

The satisjicing algoritJun uses inrerrupt contiilions in the current control plan 10 
interrupt its lriggering oloperations anti immediately execute one thm is "good enough" 
or the "best available." 

Interrupt conditions are of three types: 

(1) If a newly triggered operation is "good-enough" with respect to the current 
control plan, the agent executes it. For example, under D7, an associative diagnosis 
operation triggered by the observed high PIP would perfectly match a highly critical 
control decision and, therefore, be good enough for Guardian to execute immediately. 
With interruption by a "good-enough" operation," the algorithm pUlS a jloor untier the 
qualiry 01 reasoning anti, within thaI constraint, reasons as last as possible. 

(2) If a deadline occurs, the agent executes the "best available" operation. For 
example, under D7, Guardian might execute a model-based operation for diagnosing 
the high PIP if an associative operation were not triggered within a few seconds. Wilh 
interruption by a deadline, the algoritJun pUlS a ceiling on the larency 01 reasoning anti, 
wilhin thm constraint, reasons as weil as possible. 

(3) If all events and operations are processed, the agent executes the "best 
available" operation. This is like an exhaustive search for the optimal operation, but 
takes longer with the satisficing algorithm than with an algorithm optimized for that 
purpose. In addition, the satisficing algorithm may lose critical events through buffer 
and agenda overflows. With exhaustive processing, the agent reasons as weil as 
possible, regardless ollatency. 
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Although different interrupt conditions are heuer under different circumstances, 
we offer two general observations. First, an agent should avoid using interrupt (3) 
because it has high cost and uncertain benefit. Second, interrupts (1) and (2) make a 
powerful combination because they allow an agent to reason as fast as possible at a 
criteriallevel of quality, comprornising quality only when necessary to meet deadlines. 

3. Behavior under the Satisficing Aigorithm 

For a given pattern of events and repertoire of operations, an agent's behavior 
under the satisficing algorithm is detennined by its control plan and interrupt 
conditions. Consider two classes of control plans. Non-discriminative control plans 
have low to moderate criticality and match many potential operations. Therefore, they 
give comparably low priorities to many operations and provide no obvious criterion for 
"g00d eriough" opelatioris; By only weakly constraining selection of events and known 
operations, they pennit only roughly best-first triggering of operations. Very 
discriminative control plans have high criticality and match few potential operations. 
Therefore, they give distinctively high priorities to few operations and easily identify 
"good-enough" operations. By strongly constraining selection of events and known 
operations, they permit strongly best-first triggering of operations. Obviously, these 
two classes represent a continuum. But they present an interesting contrast, as shown 
in the examples from Guardian below. For comparison to the satisficing algorithm, we 
also consider: (a) an exhaustive algorithm that uses an efficient Rete-like match process 
[Forgy, 1982] and executes the best triggered operations; and (b) an anytime algorithm 
that uses the same algorithm, but interrupts triggering to execute the best available 
operation on deadline. 
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Triggered operations 

Distribution of priorities on cycle 96. 

1 3 5 7 911131517192123252729313335373941434547495153555759 

Number of operations triggered over 
time 

Expected value of best available operation on cycle 96. 

Figure 3. The case of a Non-Discriminative Control Plan. Top panel: Distribution 
of priorities among all possible triggered operations on this cycle. Bouom panel: 
Expected value of best available operation over time during triggering in random 
order (shaded curve) or in roughly best-first order (unshaded curve). 
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Consider the case of a non-discriminative control plan, such as Guardian's 
decision 04: "!nvestigate low temperature." D4 is only rnoderately critical. It perfectly 
matches many potential operations (e.g. ~ associative or rnodel-based operations for 
diagnosis, prediction, or causal inference triggered by low temperature) and partially 
matches many others, giving comparably low priOIities to all of them. For example, in 
the top panel of Figure 3, D4 gives a relatively flat distribution of low priorities to the 
60 operations that could be triggered on reasoning cycle 96 of a typical run. The 
exhaustive algorithm triggers all 60 operations and executes the best one. However, its 
latency is long and exceeds any reasonable deadline. The anytime algorithrn does better. 
In the bottorn panel of Figure 3, the shaded curve shows how the expected value (in 
this case, reflecting the act;ual value) of the best available operation increases over time 
during triggering. When a deadline occurs, the anytirne algorithrn executes the best 
available operation. Thus, it gracefully trades response quaIity for latency. However, 
because the function has a low asymptote and approaches it rapidly, continued 
triggering has low, rapidly decreasing marginal utility. The satisficing algorithm does 
heuer. by ordering its triggering of operations, the satisficing algorithrn produces an 
expected value function (unshaded curve in Figure 3) that has a higher intercept and 
reaches asymptote earlier. For any reasonable deadline, the best available operation has 
higher value under the satisficing algorithrn than under the anytirne algorithrn. (As 
shown below, the time spent ordering the triggering of operations is less than the time 
saved by limiting the nurnber of operations triggered.) Although triggering is only 
roughly best-first and it is not obvious how to identify a "good enough" operation, the 
satisficing algorithrn can interrupt triggering early with its own internal deadline and stil 
guarantee execlJtion of an operation with near asyrnptotic value. Given a non
discriminative control plan anti interruption by shon internal deadlines, the satisficing 
algorithm makes graceful trade-offs within near-asymptotic quality and latency bounds. 
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Figure 4. The Case of a Very Discriminative Control Plan. Top Panel: Distribution 
of priorities among all possible triggered operations on this cycle. Bottom panel: 
Expected value of best availabale operation over time during triggering in random 
order (shaded curve) or in roughly best-first order (horizontaliine). 
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Consider the case of a very discriminative control plan, such as Guardian's 
decision 07: "Quickly react to high PIP." 07 is highly critical, matches only a few 
potential operations (associative operations for diagnosis or action triggered by high 
PIP), and gives them distinctively high priorities. For. example, in the top panel of 
Figure 4, 07 gives a very high priority 10 exactly one of the 25 operations that could be 
triggered on reasoning cycle 49 of a typical run. The exhaustive algorithm triggers all 
25 operations and executes the best one. However, its latency is long and exceeds any 
reasonable deadline. The anytime algorithm does not necessarily do better. In the 
oottom panel of Figure 4, the shaded curve shows that the expected value of the best 
available operation increases roughly linearly over time during triggering. When a 
deadline oxurs, the anytime algorithm executes the best available operation. However, 
in this case, the linear increase in expected value does not reflect a similar increase in 
actual value of the best available operation. In fact, actual value is a step function whose 
point of discontinuity is unknown. Thus, the anytime algorithm trades expected 
response value, but perhaps not actual value, for latency. The satisficing algorithm does 
better, as shown by the horizontalline in Figure 4. Because 07 is very discriminative, 
the satisficing algorithm triggers the best possible operation first. Interrupting triggering 
for an obviously "good.-enough" (very high priority) operation, it executes the best 
possible operation immediately. Given a very discriminative control plan and 
interruption by "good-enough" operations, the sLltisjicing aJgorithm optimizes both the 
quality and latency 0/ response. 

4. Experiments 

To verify that the satisficing algorithrn behaves as intended in a realistic domain, 
we evaluated it in Guardian. The predictions are that, despite increases in eventrate and 
number of known Ql)erations, Guardian will: (a) trigger and choose operations for 
execution in constant time; (b) respond to most, if not all, critical events correctly; (c) 
res pond faster with a more discriminative control plan; and (d) produce a high utility 
behavior. 

4.1 Method 

We used the monitoring scenario discussed aoove, enacted by our patient 
simulation in real-time. There are four critical events. Perceived low temperature, 
predicted low PaC02, and perceived request for explanation are moderately critica1 and 
require response. Perceived high PIP is highly critical and requires quick response. In 
all cases, complete response entails many reasoning cycles. Other observations of 
twenty patient variables and a variety of internally generated inferences have 10w 
criticality and pennit response, but do not require any. Critical events occur in the same 
order in every simulated run through the scenario. However, normal variability 
introduced by the simulation and uncontrollable variation in network communication 
times cause the exact timing of events to vary somewhat 

We manipulated the two complexity factors, event rate and number of known 
operations. In experiment 1, we held the number of known operations constant at k=39 
and manipulated the rate of perceived events entering the reasoning system's buffer to 
be: 1r, 2r, 4r. and 8r events per second, r=.15. In experiment 2, we held the event rate 
constant at r=.15 events per second and manipulated the number of known operations 
to be: 1k, 2k, 4k, 'and 8k, k=39. In experiment 3, we manipulated ooth variables: 1r-
1k, 2r-2k, 4r-4k, 8r-8k. 

As a standard of comparison, we evaluated the exhaustive algorithm in another 
version of Guardian. This gives a measure of the actual computational cost of higher 
values of the complexity factors and, therefore, the ,magnitude of the satisficing 
algorithm's achievement in circumventing that cost. In fact, with event rates 4r and 8r, 
response time under the exhaustive algorithm is too long to complete the scenario. 
Therefore, in experiments 1 and 3, we used a maximum rate of 3r for the exhaustive 
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algorithm only. Except for their control algorithms, the two versions of Guardian are 
identical. They contain knowledge and reasoning operations necessary to perceive 
events from the simulator and to construct and follow the control plan in Figure 1. They 
contain other knowledge and reasoning operations that have low pri~rity during this 
scenario. (In earlier experiments, we evaluated aversion of Guardian using the anytime 
algorithm described above. However. the trade-offs between response quality and 
latency were too precipitous to give good overall performance.) 

4.2 Results 

Figure 5 shows "agenda time," the time to trigger and choose an operation on 
each reasoning cycle, for different experimental conditions. The left column shows 
times for the highly critical event, which presents the strongest demand for high 
quality, bounded-time response and for which Guardian makes its most discriminative 
control decision. Each point plotted in these graphs is averaged over the 21 reasoning 
cycles Guardian uses to diagnose and initiate corrective action for the high PIP 
problem. The right column shows results for reasoning about the three moderately 
critical events. for which Guardian makes less discriminative control decisions. Each 
point in these graphs is averaged over the approximately 65 reasoning cycles Guardian 
uses tCl reason about these events. 

The most important result is the relation of agenda time w the three 
manipulations. With the exhaustive algorithm, as one would expect, agen-ta time for 
both highly and moderately critical events is a steep linear funcl ~on of event rate, a 
shallower linear function of number of known operations, and a SC1::ond-order function 
of the two variables together. As mentioned above, beyond an event rate of 3r. agenda 
time is too long to complete the scenario. By contrast. as predicted, with the satisficing 
algorithm, agenda time is constant regardless 0/ event rate, number 0/ known 
operations, or the two variables rogether. 

The satisficing algorithm sometimes ignores moderately critical events in order 
to meet deadlines for highly-critical events. For example, in Experiment 3. condition 
8r-8k. the perceived high PIP happened to occur shortly after the perceived request for 
explanation. While Guardian immediately responded to the high PIP. a proliferation of 
highly critical new perceived and internally generated event caused the explanation 
request to overflow its event buffer. As a result. Guardian could not trigger explanation 
operations even after the high PIP problem was corrected. This occurred in only a few 
conditions with high event rates and random temporal clustering of critical events. 
Although it is a reasonable kind of trade-off. we are exploring architectural mechanisms 
to minimize the loss ofcritical events. In general, as predicted, the satisficing algorithm 
always res ponds correctly to the highly critical event anti nearly always responds 
co"ectly ro the moderately critical events. 

It is worth noting that the satisficing algorithm is comparatively fast. In all 
conditions. agenda time is substantially shorter for the satisficing algorithm than for the 
exhaustive algorithm. Thus, the computational cost of triggering operations best-first is 
much less than the computational savings form limiting the number of operations 
triggered. Although this result is implementation-sensitive, it is likely to hold generally 
because the exhaustive algorithm already has been optimized, while the satisficing 
algorithm has not. 
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In addition, as predicted, the satisficing algoritJun responds faster with a more 
discriminative control plan. In these experiments, Guardian has a more discriminative 
control plan for the high PIP event than for the other critical events. In all cases, the 
exhaustive algorithm actually produces longer agenda times for the high PIP event than 
for the others. This is because the high PIP event is accompanied by a flury of events, 
independent of our manipulation, all of which the exhaustive algorithm considers. By 
contrast, the satisficing algorithm produces shorter times for the high PIP event than for 
the others. It ignores low-priority events, no matter how many occur and, as suggested 
by our informal analysis, a very discriminative control plan enables the satisficing 
algorithm to identify and execute the best possible operation immediately, while less 
discriminative control plans entail More triggering time. 

Finally, as predicted, the satisjicing algoritJun maintains high utility despite 
increases in event rate and number of known operations. Recall that an agent's utility is 
a function of the criticality of the events to which it responds and the value (quality and 
Iatency) of its responses. Under any reasonable combining function, Guardian's utility 
under the exhaustive algorithm is low. Although it eventually produces the correct 
response to every key event, its latencies are excessive, especially for the highly-critical 
high-PIP event with its short deadline and life-threatening consequences. By contrast, 
Guardian's utility under the satisficing algorithm is high in all conditions because it 
naturally favors correct, timely responses 10- critical events. It always responds 
immediately to the highly-critical high-PIP event and responds promptly to most other 
critical events as weIl. 

5. Conclusions 

The satisficing approach is designed to enable an intelligent autonomous agent 
to guarantee real-time performance despite increases in environmental complexity and 
number of known operations. Three factors determine its actual effectiveness: a good 
satisficing algorithm, an effective control plan, and appropriate interrupt conditions. 
The approach also reHes on architectural mechanisms, such as the perceptual process, 
which prioritizes and filters events, and the reasoning system's limited-capacity event 
and agenda buffers, which strictly bound the number of events and operations under 
consideration at any point in time. The present results provide a proof of concept using 
a simple version of the algorithm and control plans and interrupt conditions previously 
developed for Guardian. In our experiments, the satisficing approach maintains high 
utility by responding correctly to highly and moderately critical events in constant time, 
despite substantial increases in event rate and number of known operations. Only in 
extreme cases (co-occurence of several critical events in the context of a high overall 
event rate) must it ignore a moderately critical event in order to give a timely response 10 
a highly critical event 

In ongoing research, we are investigating formal properties of control plans and 
interrupt conditions and their implications for behavior of agents under the satisficing 
cycle. We also wish to investigate the use of control plans for controlling 
communication [Bouron, 1991] among several agents. In order to guarantee real time 
performance, 1ntelligent autnomous agents must also adapt their communication activity 
so as to meet deadlines associated with the agents goals. Knowing about control plans 
of other agents should enable an agent to decide what to communicate at appropriate 
times. 
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Abstract 
In this paper I addresa the isaues of how an organizatiolt such as a group or a hierarchical society can be formed 
a.nd how organizational knowledge (e.g. a contract) can be acquired through conversation among situated agents. 
A special interest group (SIG) has the most fundamental style of every organization. Through conversation, 
situated agents can join any SIG and a.ct as a member in order to individually profit from group activity. On the 
basis of SIGs, we can formulate markets and hierarchies which are organizations of different styles. Conversation 
is key to the organizational activity of situated agents in these organizations. 

1 Introduction 

Various in management science (e.g. [Malone 87, 
Marschak and Radner 72, Baligh and Riehartz 67]) use 
the eoneepts of market and hierarchy as organizational 
structures in human eeonomie activity. The action of each 
human in an eeonomie eommunity is based on a payoff 
function for the organization to they belong. Situated 
agents 1 with goals are similar to humans in the sense 
that both pursue activities for their own benefit. Here, 
I investigate how an agent forms various useful organi
zational structures using eonversation, and what benefits 
agents get from belonging to these organizations. 

In our analysis, both the market and the hierarehy 
are represented as special interest groups in whieh every 
member benefits from the group. The master/slave rela
tionship is fundamental to the hierarehy, while the mar
ket is based on a suppliers/buyers relationship. Further
more, the hierarchy pursues benefits for the organization 
whereas the market provides a field in whieh eaeh mem
ber ean pursue its own benefits. The rest of this paper 
deseribes characteristics of three organizational struetures 
(viz. SIG, market, and hierarehy) and eonversational ac
tivit.y of agents in these organizations. 

2 Well-formed Plans 

Situated agents perform physieal actions based on logieal 
plans. Plans ean not only be eonstructed by a situated 

1 Situated agents a.re autonomoua IIoIld self-contained agents who 
ca.n reßect their behavior on situations. 

1 

agent itself but also be affected by information reeeived 
through eonversation with other agents. The m08t funda
mental plans are ealled well-/ormed plans. Here I list up 
well-formed plans used in this paper: 

• Atomie plans, whose goals are to perform any primi
tive action of funetional adion units. 

• (SERIAL WFP1 ••• WFPn ): to perform WFP1, •.• , 

and W F Pn serially. 

• (NOOR WFP1 ••• WFPn ): to perform WFP1 , .•. , 

or W F Pn non-deterministieally. 

• (TEST F(?V1 , ... ,?Vn )): to test whethcr or not there is 
F in a belief and, if exists, to bind objects to variables 
(this sentenee is not 80 dear. wh at F?) (?\.1, .. . ,?Vn ). 

Other eonstructs of WFP are as folIows: 

• (SKIP) ~r (TEST true). 

• (ABORT) ~ (TEST (NOT true)). 

der 
• (CASE F WFPtrue WFPfalse WFPunknown) = 

(NDOR (SERIAL (TEST F) W F Ptrue) 
(SERIAL (TEST (NEG F)) W FPialse) 
(SERIAL (TEST (UNKNOWN F)) W F Punknown) 

der 
• (IF-THEN-ELSE F W FP1 W FP2 ) = 

(NDOR (SERIAL (TEST F) W F Pd 
(SERIAL (TEST (NOT F)) WFP2 )). 



Representative 

Figure 1: Organizational Structures (1): Special Interest 
Group 

• (IF-THEN F WFP) ~ 

(IF-THEN-ELSE F WFP (SKIP». 

• (DO-FOR-All F WFP): As long as there is F wh ich ia 

• Services provided by the SIG. 

Obviously, if an agent does not know the advantages of 
being a member of a SIG, it doea not have any reason to 
join that SIG. Thus, knowing services provided by a SIG is 
an important matter. Every member of an SIG has a right 
to vote on new members. In addition, the representative 
of the SIG has the authority to make a final decision based 
on the voting. Requirements for joining a SIG are defined 
by the representative and given to the members. 

3.1 Group Formation 

Expressing aDesire to Join an SIG When an agent 
wants to join an SIG, it has to make an utterance to in
troduce itself to the representative. This utterance must 
include a.n agent's i.ientifier Ai. Suppose the protocol for 
joining an SIG ia (Tij.UE join (Agent-ID Ai» and the 
identifier of the representative is R. Thus, this uttera.nce 
should be: 

(INFORM Ai R (,rRUE Join Ai) R) 

not tested, perform WFP. (should be "an F", maybe? Voting . .:'he representative gives voting plans to every 
i still don't understand what "F" is.) member ofthe SIG. We may do this as folIows: 

3 Special Interest Group 

In this section, I formally define the characteristics of a 
special interest group (henceforth SIG), an organization in 
which every member has the same interests. A SIG can be 
viewed as a conceptually bounded field through wh ich each 
member of the group can share information with othera 
and can cooperate with others to do a job (See Figure 1) . 
In order for aIl members to be equaI, restrictions, such as 
group specific roles, will be given equally to aIl members. 

A SIG is a mapping function from a group name de
fined by an agent to a set of agents. A SIG has a set of 
restrictions on information acquired through group com
munication. The followings are definitions related to SIG: 

Definition 3.1 (Special Interest Group (SIG» A 
SIG i8 a mapping function from an agent identifier and 
a group name (defined by a representative of the SIG) to 
a set of agents and a set of restrictions on the SIG. 

Definition 3.2 (Representative of an SIG) A repre
sentative of an SIG is an agent who defines a framework 
for the SIG. A representative is not privileged within the 
group, and its only special role is to tell the group name 
and restrietions to agents wanting to join the SIG. 

An agent must have the following information to join an 
SIG: 

• The grc ~lP name of the SIG, 

• Protocols for joining the SIG, and 
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(INFORM A B 
(TRUE (WFP (Voting ?agent-id) 

B). 

(SERIAL 
(TEST (TRUE Preference ?agent-id ?x)) 
(TEST (TRUE Preference-Average ?y)) 
(IF-THEN-ELSE « ?x ?y) 

(INFORM B A (TRUE against) A) 
(INFORM B A (TRUE for) A))))) 

Here, Preference is a relation which shows the degree of 
preference for an ageüt assigned to variable '!agent-id and 
Preference-A verage is a relation to show an average value 
in the preference spectrum. This utterance means that 
if representative AREQUESTs including a formula (Vot
ing agent-id) to agent B then agent B should say (TRUE 
against) if its preference is less than average or (TRUE 
for) otherwise. 

When representative A believes that B knows how to 
vote, the voting procedure is as folIows: 

Step 1 Request (Voting agent-id) to every member of the 
group. Agent-id indicates the agent identifier of an agent 
who wants to join the STG is assigned. 

Step 2 According to the well-formed plan ofthe composite 
action (Voting agent-id), every member Informs A (TRUE 
for) or (TRUE against). 

Step 3 A decides based on the vote and its own judgment, 
whether the agent can join the SIG. 



Notification of New Members A notification of ap
proval is send by the representative to the new agent using 
INFORM as folIows: 

(INFORM R Ai 
(TRUE Group-members (Group-name na.me) 

Mem ber's-list 
Ai). 

This notification comes in the form of a members' list. 
In addition, the new member is also told voting plans. 

Leave an SIG When an agent wants to leave an SIG, 
it does this according to the protocol of leaving for that 
SIG. The agent sends to another member of the SIG with 
the group name of the SIG indicated as Interpreter. 2 An 
example is: 

(INFORM Ai Ai 
(TRUE Leave Ai (Group-name gname)) Ai)' 

3.2 Group Communication 

Here I give a rule describing the FORWARD action in the 
case that a group name is indicated 88 the Interpreter. 

Rule 3.1 If the Interpreter of an utterance is a name of 
group, that utterance is FORWARDed to every member of 
the group, gname. 

According to this rule, the above utterance will be for
warded to each member of the group, gname. When an 
agent receives this utterance, it deletes the name of the 
agent who wante to leave gname from the SIG's group 
member list. After all, members of the SIG receive the 
utterance, services supplied by the SIG are not available 
to the departed agent. 3 

Every group communication folio ws Rule 3.1. That is, 
notification is given to a group by specifying the group 
name as In terpreter. 

Principle 3.1 Every member of a group has the opportu
nity to receive all information sent to the group. 

This principle is a direct application of the definition of 
INFORM. 

~lnterpreter i. a special concept we introduced in Situated Con
veraa&ion Model (Numaoka 90). In Situated Convenation Model, an 
agent who ahould interpret an utterance ill not always a helU"er of 
the utterance and Interpreter indicaiell an agent who should inter
pret utterances finally. Thi. i. shown in each INFORM, QUERY, or 
REQ UEST fonnula as it. last argument. 

3[Maruichi el Al. 89) has shown that an environment which fa.cili
tates IIpeaking to unspecified hearen i. usd'ul for group communic. 
tion. Since an enviromnent UII a kind of group and the environment 
knows aIl members of the group, if an agent makes an utterance 
to the environment, the environment ca.n send the utterance to aIl 
group membel'l on behalf of the apeaker. In Situated Converution 
Model, this task ill achieved without environment by situated agents 
knowing the notion of group. 

Automatie Reporter 

Figure 2: An Automatie Reporter 

. 
3.3 Shared Resources among SIG Mem-

bers 

In an SIG, members share resources, including situated 
agents and well-defined objects supplied by the represen
tative of t.he SIG. Some shared resources may have to used 
in an exclusive manner due to interna! restrictions. For 

,example, an agent of type telephone can be accessed by 
only one user at a time, so there must be a mechanism 
to guarantee exclusive access. Telephones are, of course, 
unnecessary in Situated Conversation Model since a sit
uated agent can always receive messages. However, the 
telephone answering machine is a good approximation of 
the mechanism agent uses to receive messages. Therefore, 
necessary is proxy of an automatie reporter such 88 a tele
phone answering machine which notify a current status of 
an agent and inform arequest of the agent to senders of 
messages to it (see Figure 2). The notion of an insensitive 
actor [Agha 86] is useful for this purpose. An insensitive 
actor is one which is insensitive to incoming messages un
til it is sent a become communication specifying a replace
ment behavior. 4 Since whenever a message is received by 
an actor, it executes the request 88 soon as p088ible, if an 
actor does not want to accept messages while performing 
a task, it assigns another actor to deal with the incoming 
messages. 

3 

How can we implement an agent with this ability in 
Situated Conversation Model? Consider the example of 
a J apanese SIG having telephone agents capable of con
necting with telephone agents in another SIG in the U .S. 
Agents who want to phone the SIG in the U .S. must be
long to an SIG in Japan with this ability. Thus, the rep
resentative of an SIG must have the ability to inform SIG 
members-of---the agent identifiers of phone agents able to 
connect with telephone agents in the U.S. 

The agent identifier of such an agent should identify 
itself as a receptionist. That is, there is an automatie 

tIn the actor model, the a.ctor C&D. expücitly llpecify the behav. 
ior it would like for it. next tW. The behavior llpecified ill caIled 
replacement behavior. 



reporter contained in the OBJECT level of this agent. 
An automatie reporter is a well-defined object without a 
META level. Its abilities are: 

• To forward received utterances to an agent, and 

• To make an utterance specified by the agent when it 
is in an insensitive state and not to forward received 
utterances. 5 

Thus, an antomatic reporter can change its role according 
to the sensitivity of an agent. For example, if a telephone 
is occupied, it changes its state from sensitive to insen
sitive and reports this change to its automatie reporter. 
This frees the agent from being bothered with incoming 
utterances. 

3.4 An Example SIG 

In this sect~on, I give an example of a SIG for sharing a 
meeting room. Invariants 6 for the meeting room are as 
follows: 

Invariant 1 Only one agent at a time can wIe the me( :ing 
room, R. 

If (LAND (TRUE occupies Ai R) 
(TRUE occupies Aj R» 

where i::l:- j. 

Figure 3: Organizational Structures (2): Market 

Case 1: It is Ai 's turn, and it requests the room. Ai is 
assigned the room, and the next turn goes to Ai+!. 

Case 2: It is Ai'S turn, and Aj requests the room .. The 
meeting room agent asks agent i througb j-l, in order, 
whether any of them need the room. If not, the room 
is assigned to Aj and Ai takes Aj 's place in the order. 
If some agents do need the room, the agent closest in 
line to A; is assigned the room, and Ai then takes the 
other agent's place in the order. 

Invariant 2 The room is utilized whenever there is a re- Case 3: The same as Case 2 but i is exchanged for j. 

quest; 

Invariant 3 Chances to use the meeting room are lairly 4 Market 
given to every member 01 the SIG. 

For tbis invariant, the meeting room agent follows the def
inition.. and principle given below: 

Definition 3.3 (Fair Assignment of a Room) 11 it is 
an a.gent 's turn to use the room and it requires the room, 
tlte room is assigned to that agent. 11 agent Ai requires 
the room when it is not his turn, it is assigned the room 
il and only il it is guaranteed that no agent between the 
current agent and agent Ai-l, in cyclic order 01 the group 
member's list, requires the room. 

Principle 3.2 A meeting room agent with a group mem
Kr's list in cyclic order can guarantee that the room is 
cus.igned to members 01 the SIG as lairly as possible. 

Sappose (AL, •.. ,Ai, ... ,Aj, ... ,An ) is the group memo 
hers list. There are three cases. 

~Whether thc automatie reporter stores thesc received uttcrances 
« not should be defined by thc designer of thc agent. 

6Wc WIe thc. term Invan&l1t for indieating thc formula which e&l1-
not reroain in any belief space. That is, if a formula which is eon· 
tradictory to thc fonnula represented by &11 invariant appean in &I1Y 
belief spacc, then any truth m.aintcnance mechanism will C&WIe &I1Y 
physieal action in order to resolvc thc situation. 

4 

A market is an another kind of organization. In a mar
ket, there are suppliers, task proce880rs for various types 
of tasks, and buyers, agents needing the services of any 
supplier. In asense, the buyers are U product managers." 
They know all suppliers and can choose the best one for 
their needs. In a market, buyers contract some task di
rectly with- suppliers whose products they need (See Fig
ure 3). 

The relationships of master with slaves and buyers with 
suppliers differ in that, in the former, the master assigns 
tasks to slaves based on their ability, in the latter, a buyer 
assigns tasks based on which supplier can best do the task 
not simply which supplier has the ability. The master in a 
hierarchy is the coordinator of an organization as weH as 
being apart of that organization. A buyer in a market, 
however, is the user of an organizational functionality and 
is not necessarily part of the organization. 

In a market, a group of suppliers is modeled as an SIG. 
Therefore, we can say a market is represented by a pair 
consisting of a buyer and an SIG. The advantage of a 
market is that if a new agent is developed with a better 
implementation, the benefit of the agent is available for 
aH members of a SIG, a group of suppliers, immediately 
when the agent joins the SIG. 



4.1 Example: Contract Net Protocolcre-
ated through Conversation 

The Contract Net Protocol is a protocol for assign
ing tasks to suppliers called eontraetors using bidding 
[Davis and Smith 83]. In this protocol, users are called 
managers and a manager begins a contract process by 
broadcasting an announee message. Every contractor re
ceiving an announce message replies with a b-id message to 
the manager if it has the ability to performthe task indi
cated in the announce message. The manager then selects 
a contractor from the bits received and it s~nds a eontract 
message to the selected contractor. 

Following is an implementation of Contract Net Proto
colon a market. A group of suppliers is defined to be an 
SIG. Let its name be eonstruet (E ./If). The SIG construct 
should contain certain requirements for members of the 
SIG. Suppose these requirements are as follows: 
(Primitive Actions) 

(Estimate Spec): An action for estimating the 
cost for a construction specified by Spee. 
(Construet Spec): An action for perform a con
struction specified by Spec. 

(Internal States) 

estCost: The estimated cost of a construction. 
estTerm: The estimated term of a construction. 
possible(Spec): a formula created by the result 
of an action (Estimate Spee). 

The SIG representative establishes these requirements, 
which every member of the supplier SIG must satisfy. 
Therefore, a designer of a supplier must satisfy the repre
sentative agent's specifications. 

Another possibility is to assume that every supplier in 
the SIG construct has these abilities and can reply to ques
tions about its internal states. The Contract Net Protocol 
for a market whose suppliers form SIG constructs is imple
mented with conversational action protocols as folIows: 7 

(Defining ANNOUNCE and BID using Conversation) 

(IN FORM A B 
(TRUE (WFP (Announce ?spec) 

(SERIAL 
(TEST (TRUE Self-ID ?c)) 
(Estimate ?spec) 
(IF-THEN-ELSE (TEST (TRUE POIlIIible ?spec)) 

(INFORM ?c A (TRUE Bid dueCost dueTerm) A) 
(ABORT))))) 

(Group-name construct)). 

By performing this action, B forwards the utterance 
to all members of the SIG. As a result, they will know 
the interpretation of utterance (Announee spee). In the 
above utterance, ?c is replaced by the agent identifier of 
the hearer receiving the utterance. If an estimation fails, 

7Hcre, thc autholll presuppoec that buycr A knOW8 IIUPPÜcr B, a 
mcmbcr oe thc SIG construct. 
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Figure 4: Organizational Structures (3): Hierarchy 

using ABORT causes the action corresponding to well
formed plan (Announee spec) to fail, and the agent utters 
a failure REPORI'. 

(ANNOUNCE and CONTRACT a Construction) After 
performing the INl'ORM action, AREQUESTs B, a sup
plier of S ;G eonstruet, to announce a construction speci
fied by sf.ee as follows: 

(REQUEST A B (Announce spec) 
(Group-name construct)). 

B then forwards the utterance to all members of the SIG 
eonstruet. Then, A will wait for bids and choose a con
tractor ba.sed on those bids. It then utters the following 
REQUEST that ?c constructs a building as described in 
the full specification, fullSpee: 

(REQUEST A ?c (Construct fullSpec) ?c). 

These examples show that conversational action pro
tocols are enough strong to express any other protocol, 
including Contract- Net Protocol, if an organization c<an 
be modeled as an SIG, hierarchy, or market. 

5 Hierarchy 

A hierarchy is designed as a kind of SIG (See Figure 4), 
which has a name, a representative, and some other orig
inal group members. A representative is called a mas
ter and other members are called slaves. Here is a mas
ter/slave relation. This is the relative relation for a hierar
chy. Thus, a slave may be a master of other hierarchy. A 
hierarchy is an organization to deal with large-scale tasks. 
Since it is difficult for an agent to perform a large-scale 
task, the task is divided into smaller tasu. These tasks 
are assigned to slaves. In order to monitor the status of 
tasks, a manager is required. This is a master agent. A 
master has an authority controlling slave agents and must 



know all functionalities of its slave agents to assign sub
tasks. Since a hierarchy is an SIG, an agent Can join the 
hierarchy. A master also has an authority to decide to 
allow a new agent to join by its own preference. 

(REQUEST A B (Recruit message) B). 

message contains all that is required to carry out the 
task. 

Conclusion 
The duty of a slave is to comply with every request its 

master makes. For example, after beginning an assigned 6 
task, if the slave is required to change some parts of the 
task, it must obey even if the changes mean it will have In this paper I have classified organizational structures 

into three categories: Special Interest Group, market, and 
hierarchy. Situated agents can use these organizations 
through conversation in Open Systems. In addition, I have 
discussed the relationship between conversation and these 

to do the task over agam. An agent designed as a slave 
must know all the actions performed by its master of the 
hierarchy. It must use these actions to define how the 
master can use it so that the master caIi understand how 
the slave perfofUlS tasks. 

The advantage of a hierarchy is that wohen a master gives 
part of an organizational goal, and gives permission to use 
the resources of the hierarchy, to each slave, it forces the 
slaves to give their best effort to achieve these organiza
tional goals. The biggest problem in hierarchy is that the 
master must know in aclvance how many agents he will 
require. Because of this, a market system, which ensures 
finding agents appropriate to a given task, is often a better 
system. 

5.1 Exam~ ,Ie: Rer:ruiting Agents 

A hierarchy is an example of distributed problem solving, 
decomposing a problem into smaller problems and assign
ing each to a slave. If there is no slave available to be in 
charge of a task, the master recruits a slave by issuing an 
invitation. However, since the number of agents the mas
ter knows is limited, it can ask the agents it does know 
to forward the invitation message to all the agents they 
know. This is not just a simple FORWARD action, so the 
master must first use the following INFORM to define how 
to distribute the invitation: 

(INFORM A B 
(TRUE (WFP (Recruit ?message) 

(SERIAL 

B). 

(TEST (TRUE Self-ID ?al» 
(DO-FOR-ALL (TRUE Agent-ID ?a2) 

(SERIAL 
(TF.ST (TRUE WFP (Recruit ?msg) ?body» 
(INFORM ?al ?a2 

(TRUE WFP (Recruit ?msg»?body 
?a2) 

(REQUEST ?al ?a2 
(Recruit message) 
?a2))) 

;;RECRUITING PLAN))) 

In this action, DO-FOR-ALL is a well-formed plan, for 
all agents ?a2 whose agent ids B knows, perform the action 
shown in a formula (SERIAL .. .). TEST finds a formula 
which matches the given formula including variables, and 
Self-ID is an agent own identifier. After issuing the IN
FORM above, master A takes the following action: 

6 

structures. 
A special interest-group (SIG) is a fundamental orga

nization for implementing both hierarchies and markets. 
A SIG allows its members to share information and/or re
sources. In a market, a buyer is designed to select the best 
of many p088ible suppliers for a job. New suppliers are de
signed to do tasks better than the existing suppliers in a 
market. In asense, all agents represent suppliers in a mar
ket. If a suppIier is developed by redesigning an existing 
supplier, it can join a market by joining with the origi
nal supplier. Then the original supplier will notify buyers 
to the new supplier. A hierarchy is for systematic or
ganizations where a master coordinates sub-organizations 
that autonomously carry out tasks under the direction of 
a master of the sub-organization. 

An agent can simultaneously belong to various kinds 
of organizations and, as a result, must play various roles. 
This means a situated agent has to work within the re
strictions of various kinds of organization. The analysis of 
this problem is left for future work. 
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INTRODUCTION. 
In a Multi-Agent setting it became necessary to enlarge the traditional concept 

of Belief Revision . I"or detecting contradictions and. identifying their sources it is suf
ficient to maintain informations about wh a t -has been told; but to "solve" a 
contradiction it is necessary to keep informations about wh 0 said it or, in general, 
about the source where that knowledge came from. We can take as certain the fact that 
an agent gave an information, but we can take the given information only as a 
revisable as<;umption. The Belief Revision system can't leave the sources of the 
informations out of consideration because of their relevance in giving the additional 
notion of "strength of belief' [Galliers 89]. In fact, the reliability of the source affects 
the credibility of the information and vice-versa. It is necessary to develop systems 
that deal with couples <assumption, source_oCthe_assumption>. In [Dragoni 91] we 
propose a system that moves in this direction. Here we give a short description of that 
system. In part one we describe the agent's knowledge processing structure with a 
parth ular characterization of the "Assumption Based Belief Revision" concept; in part 
two Ne outline the project of an embedded device that enables the overall system to deal 
with couples <assumption,source>. 

1.1 PRELIMINARIES. 
By "Belief Revision" we mean the process of detecting contradictions, identifying 

the assumptions from which they came out and readjusting the knowledge base to 
remove the contradictions . Beliefs are assumed to be expressed as sentences of first 
order logic stored in the agent's memory. There are two kinds of sentences: those 
introduced as assumptions and those deducti vely deri ved as logical consequences of the 
assumptions. We need an Assumption Based Truth Maintenance System [De Kleer 86]. We 
use the following modified version of the Supported Wff of Martins and Shapiro [Mar
Shap 86] (the rationalities for the multi-agent topic are in part two): 

SWM=<.A,OSO,OSl, .. ,OSn,OSE,RS> 
where A is an F.O.L sentence; among the assumptions really used in the derivation of A 
OSO contains those whose source is an observation,OSi contains those whose source is a 
comunication received from the agent i and OSE contains those introduced ipothetically 
by the agent hirnself; OS = OSO U LiOSi U OSE is the Origin Set of A; RS is the Restriction 
Set; it contains all the sets of assumptions that unioned with the OS produce a strongly
inconsistent set (see below). 

An assumption is an SWM whose OS contains only the SWM's sentence. We define 
contradiction, a couple of SWMs <A,OSl,RS1> and <., A,OS2,RS2>. The set OSlUOS2 from 
which has been derived the contradiction is defined to oe a strongly-inconsistent set. A 
weakly-consistent set is a not strongly-inconsistent one. 

The Knowledge Base KB(t) is the set of all the assumptions introduced by the Rea
soner (see below) up to t. The Knowledge Space KS(t) is the set of all the sentences de
ductively derived from KB(t) by the Reasoner up to t. A Belief Base BB(t) is a subset of 
KB(t) such that it is weakly-consistent and it is maximal wich respect to KB(t) (if aug
mented with whatever else assumption of KB(t) it becomes a strongly-inconsistent set). 
The Belief Space BSBB(t)(t) joined with a Belief Base BB(t) is the set of all the sentences 
derived from BB(t) up to t. 
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1.2 THE BELIEF REVISION SYSTEM. 
With icture we sketch here the entire em. 

Chooser 

Generator I------II' .. ~I Class Select 

Com 1 

Com n 

Reasoner 

1.2.1 The REASONER. 
Its essential task is to clock simulated time providing the assumption of a new 

SWM in KB(t), or the deduction of a new SWM in KS(t). The first activity is intended to 
model forms of plausible reasoning [Davis 90] (abduction, induction, default reasoning 
[Gen-Nils 87] etc.); the second activity is intended to model the limited deductive ability 
of areal reasoning agent. KB(t)!;;KS(t) because assumptions are logical consequences of 
themselves. No senten ces will ever be removed from KS(t). We call Current Belief Base 
CBB(t) the particular Belief Base chosen by the Chooser (defined below) as the pre
ferred one. We call Current Belief Space the set CBS(t)=BSCBB(t)(t). The intended mean
ing for CBS(t) is to be the most believable and maximal piece of knowledge actually 
available for the reasoning agent. Probably, for best results, it would be preferable to 
limit at CBS(t) (instead of at the entire KS(t» the input of the Reasoner (as depicted in 
the picture) but we see no serious advantages to be so drastic. 

1.2.2 The Belief Bases' GENERATOR. 
For our purpose, it would be very desirable for the agent's belief base CBB(t) to be 

consistent. Unfortunately, practical FOL-based systems have to restrict themselves to 
consider only limited forms of Consistency because of the indecidibility of the validity 
problem. Previously defined Weak-Consistency is our limited form of Consistency. It 
seems also desirable for an agent to use as more informations as possible in its reason
ing. Hence our choice to impose maximality for CBB(t). Notice that this maximality is 
intended with respect to all the assumptions in KB(t) and not, as usually, with respect of 
all the sentences of the Language; this is because we give no importance to the sen
tences not already introduced in the memory. Each event is a clock pulse for the Context 
Generator. It searches all over KS(t) for a contradiction If it succeeds it records the dis
covery of the strongly-inconsist~nt set and redefines the Situation S(t) of all the Belief 
Bases in KB(t) (see the Updating Restriction Set rule in [Mar-Shap 87] for details). 
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1.2.3 The CHOOSER. 
After the discovery of a new contradiction the agent is in a position to revision 

its beliefs. It is not the case to select which belief is to be thrown away to remove the 
contradiction, but, quite more gene rally , to choose which is the new preferred Belief 
Base among them in S(t). This is wh at we mean by "Belief Revision" and this is the task 
of the Chooser; it is an appropriate machine that takes S(t) as input and gives the new 
preferred Context CBB(t) as output. We think the Chooser as the cascade of two compo
nents: the Classifier and the Selector. The Classifier takes KB(t) as input an gives as out~ 
put the list of aB the aS5umptions in KB(t) ordered according to so me specific criteria. 
The Selector takes as input the list passed from the Classifier and the situation S(t) 
passed by the Generator and gives as output CBB(t). 

This system shows both foundational and coherence nature. From [Galliers 89]: 
"Foundation theory considers new beliefs are only to be added on the basis of other jus
tified beliefs, and beliefs no longer justified are abandoned", this is the case of beliefs 
corresponding to the deductively derived sentences which are in CBS(t) and are added 
only on the basis of the set of assumptions CBB(t); "Coherence theory represents a con
servatism whereby justification is only a requisite condition of believing if there is a 
special reason to doubt a belief", this is the case of beliefs corresponding to the as~ 
sumptions whose permanence in CBB(t) is only due to their being not , strongly-incon
sistent with the others in the same Belief Base; the assumptions in a Belief Base are 
there because there isn't a valid reason for their not being there. 

In order to produce the list of the assumptions, the Classifier needs not only so me 
credibility-imponance criteria to judge them but also a strategy to manage those crite
ria. These could in fact be used at least in two different ways: 
a) they could be soned according to their imponance (the importance of the criteria 

themselves) and used in cascade as selective filters on the assumptions, or 
b) it could be assigned a weight to each one of them according to their imponance and 

then they could be used as tests score on the assumptions, reponing the degree with 
which they are satisfied. 

We have developed some algorithms based on the first (non-numeric) strategy. 

2.1 THE MULTI-AGENT SETTING. 
We distinguish at least three kinds of sources: 
- perception (typicaBy vision) gives a first direct information about the state of 

the world (objects' and agents' spatial positions etc.) and about spatial events or occur
ring actions; 

- communication: each agent is able to exchange informations employing a cer
tain physical channel and appropriate communication protocols; agents are not neces
sarily sincere and competent; 

- reflection: for the sake of realism we admit the presence of assumptions engen
dered by some forms of hypothetical reasoning internal to the agent; we caH them E n ~ 
dothesis and we discuss below a problem with them. 

In addition we see the presence of "a priori" assumptions that, for our purpose, 
could be though as innate to the agent; they represent, typicaBy, the roles (causal or 
not) of the knowledge domain under consideration but we think them as not removable, 
therefore, not assumptions at all. 

2.2 SOME CRITERlA FOR JUDGING ASSUMPTIONS IN A MULTI-AGENT SETTING. 
The following is a proposal list. 
1. Assumptions derived from observation are stronger then those derived from 

communication. Observation is taken as a son of Super-Agent. 
1 b. Assumptions derived from communication which are in contrast with sets of 

assumptions aB derived from observation have no strengh at all. 
2. The sources multiplicity confirms the assumption. 
3. The more the conflicts with other assumptions, the weaker the assumption. 
4. The OSs of SWMs with the same wff confirm each others because of their mu-
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tu al coherence. 
Two criteria modelling psychological attitudes. 
5. Belief Conservariveness: it is stronger the assumption supporting more SWMs. 
6. Goals Conservativeness: it is stronger the assumption supporting more goals 

(assuming a planner working on the system). 
It is important to consider also the reliability of the agents. 
7. The less reliable the agent who made a communication, the weaker the as

sumption derived from it . We could estimate the agent's reliability by: 
- Self-Inconsistency (he made communications mutually inconsistent) 
- ~verage of Inconsistency of the assumptions derived from communications re-

ceived from that agent with respect of all the other assumptions deriyed from obserya
t..i.Q.ru. in KB(t) (we choose t0 not consider the conflicts with other assumptions in order 
not to punish competency). 

We t;mph .. :;ize the importance of the 4 th criterion in giving a prize to coherence. 
Let Th(Kt} represent a scientific theory based on a set of assumptions Kt not derived 
from observation and let Ko be a set of assumptions all derived from observation; if 
there is a couple of SWMs in KS(t), named Sand T, where wff(S) la wff('1), OS(S)=K t and 
OS('1)=K o , then Ko could be intended to represent the experimental evidences of the sci
entific theory so that it is justified its reinforcement over Kt. 

The 7 th criterion could be seen as a preprocessor that gives a weight to each as
sumption derived from communication. The criteria 1-4 should be able to manage these 
weights. 

2.3 THE ENDOTIiESES. 
Realistic situations require much complex treatments . Among otber considera

tions, we endorse the need for assumptions "internai" to the agent; we think them as 
auxiliary beliefs, functional to the reasoning process which is going on. That's the ra
tionality for the Endotheses. They could be the result of the application of some sort of 
plausible inference rules, it may be "induction" (Le. from a and ~ infer a-+ ~) or 
"abduction" (i.e. from ~ and a-+ ~ infer a) or a non-monotonie default rule. These En
dotheses are treated normaHy by the Generator; that is, an Endothesis a belongs to ev
ery Belief Base not containing a subset that is strong-inconsistent with a. This implies 
that an Endothesis a hypothetically derived from a set of assumptions {al , .. ,ail in a Be
lief Base, can as wdl belong to other Belief Bases not containing {al, .. ,aj}. This could 
seem strange but it is in accord with the Principle of Positive Undermining [Harman 
86]: the lack of justification is not a good reason to remove a belief; we think that this 
principle is more a~)propriate for beliefs plausibly derived from a set of assumptions 
than it is for beliefs which are logical consequences of the set of assumptions. The real 
problem with the Endotheses is that it isn't clear how they are to be treated by the 
Chooser; because of the arbitrarity with which they can be introduced we can't fix cri
teria for the Chooser to process them. The problem is that their introduction is again a 
casual element in the reasoning story and we are no more favourably disposed towards 
such casualness. We've been weH disposed towards the casualness inherent the story of 
the introduction of assumptions from the outside of the agent (by communication and 
observation). They are regarded as "interrupts" to be processed, and the change of the 
deductive theory following the arrive of one of them is justified by the real change of 
the agent's cognitive state. We've been not so well disposed tOVfards the casualness in
herent the story of the derivations of new SWMs in KS(t). However, if the Inconsis
tency of a set is rcvealed in its being strong-inconsisten depends on the story of the de
ductions made by the Reasoner. But Strong-Inconsistency itself does not depend on that 
story. So, if the property that defines a Belief Base is Weak-Consistency (not Consis
tency) then we bave nothing to worry about the casualness of the deductions. 

Bnt now, we are not well disposed towards the casualness inherent the story of 
the intrcduction of assumptions from the inside of the agent (the Endotheses). It could 
be objected that these events too could be regarded as interrupts changing the agent's 
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cognitive state and we've just accepted the fact that casual elements internal to the 
Reasoner activity (deductions) can affect the agent's cognitive state. However, our 
resolution is to reduce this casualness simply giving the lowest importance to the En
dotheses when subjected to the Chooser's processing. 

CONCLUSIONS. 
This paper deals with the concept of Assumption Based Belief Revision in a Multi

Agent environment, that is how to consider also the sources of the information (i. e. 
who gave it) in the general belief revision process. We have briefly presented: 

a) a rather innovative general framework for assumption based Belief Revision 
b) some abstract criteria to deal with an agent's knowledge base built upon ob

servations, internal hypotheses and several other agent's informative contributions. 
The former topic is based on 
- choosing a new preferred Belief Base versus removing the beliefs causing the 

contradiction, 
- achieving our defined Weak-Consistency versus achieving Consistency 
The laUer topic covers: 
- the definition of very general criteria to associate each agent advise (or agent. 

hirnsei!) with an implicit credibility factor 
- the discussion of a criterion to judge the (our defined) Endotheses, that is as

sumptions derived internally to the agent 
the discussion of strategies that use these criteria to compute the new 

preferred context 
The overall system exhibits an enviably anthropomorphous behaviour. 

WHA T IS MISSING. 
This' research belongs to a Multi-Agent planning project, but several examples 

show that the system fits as weil in police investigations or detective stories. The system 
could also be seen as a module in expert systems regarding not weil established knowl
edge with multiple experts contrasting contributions. The real limitation of this ap
proach is that it doesn't reason about w hy an agent gave an information; we don't take 
explicity in count the intention [Cohen 90] of the agents or their dependence relations 
[Castelfranchi 91] as usefuil elements to judge their uUerances. The key element is only 
consistency with the observation. !t's too liule for some pourpose. 
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1 Joint Action: An Introduction 

Within a multi-agent environment, there are numerous possibilities for the way in which community 
members can operate and interact. The aim of this paper is to produce a behavioural fL'amework for social 
interactions in which groups of (semi-)autonomous agents decide they wish to solve a particular problem 
together and then collaborate to attain the desired state (this activity will be referred to as group/joint 
problem solving). The framework defines prerequisites for joint action and also how agents should 
behave (both in their own problem solving and with respect to other group memb,~rs) once they have 
agreed to participate in joint problem solving. 

Typically in a community of autonomous agents, one of the primary motives "or such joint action is when 
no individual within the community is capable of achieving a desired objecri'/e alone; only by combining 
with others in a structured manner can the target be reached (contrast this with objectives such as load 
balancing). It is typically a reciprocal process in which participating agents augment their objectives and 
problem solving to comply with those of others - hence it is a fairly sophisticated form of cooperation. It 
requires greater knowledge, awareness and reflection by an agent both with respect to its own problem 
solving objectives and about their compatibility with the objectives of others (contrast with task and 
result sharing [1]). 

Joint action, by definition, requires an objective the group wishes to achieve - it is the "glue" which binds 
the team together. As a consequence of the autonomous nature of the agents, each team member will only 
participate if it can derive some benefit from the interaction. This differs from the more traditional 
approach in which agents are assumed to enter into interactions merely if they are requested to do so (i.e. 
they are benevolent [2,3]). However merely having a common objective is not sufficie11t for obtaining a 
collective goal - agents also need to agree upon a means of reaching the target state. Imagine trying to lift 
a heavy object if the lifting positions of the participants and the relative fOI"Ces exerted by each participant 
had not been agreed upon beforehand! Agreeing such a solution may be done in an incremental fashion, 
nevertheless such a solution must be agreed at a certain level of abstraction. As activity progresses the 
solution may be refined or modified to better fit prevailing circumstances. Having a common objective 
and solution means participant's actions can be phrased in tenns of "doing their bit" [4]. In the collabora
tive lift example, an agent lifts the object at one eI'd as a means of contributing to the group objective of 
lifting the object. 

Previous work on collaborative problem -solving [4,5,6,7,8] has been deficient because it failed to 
describe the complete mental state of the participants. This state, which we call join~ responsibility, 
internalises for each team member the notion of being in a group. It provides beliefs about how others 

1. The work described in this paper has been partially supported by the ESPRIT II project P2256 (ARCHON) whose 
partners are: Krupp ALl:....~ Elektronik, IRC Ispra, Frarnentec, Labein, QMW, IRIDIA, Iberduero, ERDC, Amber, 
Technical UniversiLy of ALhens, University of Amsterdam, Volmac, CERN and University of Porto. 



will act, both in perfonning their intentions and in participating in coHaborative interaction per se. Such 
guidelines are especially important in dynamic and complex environments in which agents' aims and 
objectives are likely to alter during the course of a cooperative interaction. In addition to providing 
behavioural guidelines joint responsibility defines the pre-requisites which need to be satisfied before 
joint action can commence. In the remainder of this paper the notion of joint responsibility as a pre-requi
site for joint action is developed. Section two describes an example problem domain in which joint prob
lem solving by a team of autonomous agents is beneficial to all participants and also enhances the quality 
of the output to the user. Seetion three introduces, using a logic-based fonnalism, the notions of joint 
r~sponsibility and provides pointers to where previous work in this field has been deficient. 

2 Fault Recovery in Electricity Distribution Networks 

The domain upon which the principles related to joint action will be illustrated is that of fault recovery in 
electricity distribution networks2. The described scenario involves three pre-existing agents each of 
which has a set of clearly defined goals and is capable of sophisticated problem solving in its own right. 
The agents, together with an indication of the message ftows between them, are shown below. 

FAULT 

DIAGNOSIS 

FAULT EVOLuTIoN 

PLANNED ACDONS 

FAULTS 

NE1WORK 

SIMULATION 

Figure 1 

RESTORATION 

PIANNING 

SIDE EFFECTS 

The fault diagnosis agent's role in this example is to indicate to the other two agents that a fault has been 
detected in the network. The restoration planning agent (RA) is responsible for constructing a mainte
nance plan on ce faults have been detect~ - such a plan will instruct the operator to perfonn certain 
sequences of operations in a weH defined order. The network simulation agent (NSA) is capable of run
ning and explaining what-if simulations of the network based on the settings of certain key parameters. 
The joint action which can be instantiated between the NSA and RA is in the area of producing restora
tion plans whose actions will not cause further parts of the network to fail (i.e. "sensible" restoration 
plans). As a standalone system, the plans suggested and devised by the RA may lead to further faults as 
the specified operations may result in overloading a currently working component, causing it to fail. 
However if the RA's tentative restoration plan is sent to the NSA then its effects can be predicted, prob
lem areas highlighted and the RA infonned. If major problems are identified and the RA decides to sig
nificantly revise the original restoration plan then there may be further interaction with the NSA before an 
acceptable plan can be generated. If only minor modifications are made, or the RA deerns the highlighted 
risks acceptable, then the restoration plan may be slightly altered and because of the relatively minor 
nature of the changes no further interaction is undertaken with the NSA. 

2. The example is loosely based on an ARCHON applicaLion [9,10]. 
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3 Joint Responsibility 

Joint responsibility defines a behavioural framework for panicipants who wish to engage in collaborative 
problem solving. It defines the conditions which need to be satisfied before joint action can be initiated 
and a code of conduct specifying how agents should react when the joint action becomes unsustainable. 
Joint responsibility will be defined using a logical formalism, similar to that described in [11]. This for
malism has the usual connectives of a first order language (" AND, v OR, -NOT) - as well as operators 
for propositional attitudes. BEL(x, p) and GOAL(x, p) mean agent x has p as a belief and a goal respec
tively, MB(x, y, p) that x and y mutually believe p. Dynamic logic constructs are also used: Op means p 
is always true and Op that p will eventually be true. p?~a means "action a with p holding initially", and 
analogously for a~p? As stated previously, this analysis will be exemplified using two agents (the restora
tion agent (RA) and the network simulation (NSA» for simplicity, although it can of course be applied to 
communities of arbitrary size. 

3.1 Common Goals and Joint Persistence 

The first step to achieving joint action is that a group of two (or more) agen~ realize that they have a 
common objective (inlention3) and that this intention can only (best) be fulfilled by collaborating with 
others. Once this is mutually believed by all panicipants, a common goal exists and each individual par
ticipant becomes committed [11] to achieving that objective. However as Levesque et al. point out this is 
not a sufficiently sturdy foundation upon which robust joint a ;tion can be based [8]~ it is particularly frag
ile if agents intentions change (i.e. they reach astate in whieh they are no Ion ger committed to attaining 
the common objective). To rectify these problems, they propose the notion of joint persistent goals (JPGs) 
[8] in which groups of agents become jointly committed to a common aim. The properties of JPGs can 
best be illustrated using an example. Suppose the RA and the NSA have established a JPG of producing a 
"sensible" restoration plan and then at some later stage one of the agents (say the NSA) no Ion ger desires 
this objective (because the user has asked it to run a what-if question on the network as a very important 
task). Should it simply drop the common goal without informing the RA?, meaning that the RA will be 
left waiting indefinitely. Clearly not! Therefore in the interests of robust group problem solving, a JPG 
requires that the NSA adopts the goal of informing the RA of its change of intention. Thus, JPGs define 
the conditions under which a joint commitment to a goal can be dropped and also how panicipants should 
act when they find themselves in such a situation. 

3.2 Solution Commitment 

Contrary to the claims of Levesque et al. [8], having a JPG is not sufficient for obtaining joint action. 
JPG 's only specify that agents have a common desire to reach a target state, they do not sp~cify how 
agents are to reach this state. Agreeing upon a means of reaching the state is nearly as important as the 
desire to reach the state itself. Therefore although NSA and RA may be able to agree that they want to 
produce a restoration plan together, unless they can agree upon a means of achieving this then joint action 
will not follow. In some circumstances, such agreement may be impossible because of the autonomous 
nature of the agents involved; both agents are likely to have several objectives at any one time and these 
must be balanced with the desire to produce a sensible restoration plan. If they have insufficient resources 
to devote to the problem or it conflicts with their other intentions then it may be impossible for them to 
converge upon the necessary common plan even though they Sh2~~ a common objective. 

At this stage we are not concerned with the mechanisms used for achieving the common solution4 (eg one 
agent may derive the plan and pass it to others who obediently adopt it or the participants may compile 

3. Intentions have been ascribed a variety of differing meanings (eg [lI, 12, 13])- within this context they specify a 
desired or target state without consideration of how that state is to be attained. 
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separate plans and then coordinate them, [14,15]); rather we are concemed with the fact that they must 
agree upon the principle that a common plan is needed to taclde the joint problem. 

Before this intuition can be formalised, a simple plan representation language needs to be defined. In a 
multi-agent environment not only do the actions to be performed need 10 be specified, but also the agent 
which will perform the action needs to be given [16]. In order to stress that several agents are working 
together towards a common objective it is convenient to represent intentions in terms of the agents which 
will work together to achieve them, rather than the other way around. Therefore the fact that a set of 
agents (<Xl , •• ,<ln) will work together in order to try and reach stare <1 will be represented as follows: < 
(<Xl , •• ,<ln), <1 >. Let the set of all agents existing in the environment be denoted by A; unless stated 10 the 
contrary, all groups of agents are just a subset of the members of A. 

In any complex environment, intentions will typically be composed of sub-intentions which are them
selves decomposable - the solution graph for <1 being represented by l:cr. The nodes without successors 
(when the graph has been fully expanded) correspond to atomic units of activity which are executable by 
individual agents. The various stages of intention "execution"S can be expressed as follows: 

EXECUTE/EXECUTING/EXECUTED( < (<Xl , •• ,<ln), <1 >, L(J) 

which respectively mean that L(J will be executed next, is being executed now or has been executed, for 
the purpose of attaining <1 by agents {<Xb •• <ln}. Underlying this definition is the assumption that-at least 
one team member (or a subset of them) is (are) capa'ble of realising the constituent sub-intentions and that 
team members will not attempt actions which they (annot execute to some degree, 

Typically the solution of a joint action wilLrequire actions which need to be coordinated (i.e. a relation
ship exists) with those of other agents and some which can be executed independently of the activities of 
other agents. Solutions are therefore likely to contain interrelated components: 

L(J = {<11 9\1,2 <12, <13 9\3,4 <14,····} 

9\1,2 defmes the relationship between <11 and <126. This will usually be temporal (eg BEFORE, AFTER, 
SIMULTANEOUSLY) although it may also express constraints. Such relationships are an ·integral com
ponent of the solution specification and if they are not satisfied then the desired objective cannot be guar
anteed by solution l:cr. Hence fulfilling an intention means reaching the desired state and satisfying any 
relationships which exist between that intention and others7: 

(\;f <{<lw ... <Xx}, <1i> E L(J) (3 «ny ... <Xz), <1j> E l:cr) 9\jj::J 

MB«<lw ... <Xx}, 9\ij)?; EXECUTE«{<lw ... <Xx}, <1j>, Lcri) 

To illustrate this formalism, the intention of producing a sensible restoration plan can be expressed as fol
lows: <1 = < (RA, NSA), SENSIBLE-RESTORATION-PLAN> and one solution for achieving this is: 

L(J = «RA, TENTATIVE-RESTORATION-PLAN> BEFORE 
<NSA, CHECK-PLAN-FOR-OVERLOADS> 

<NSA, CHECK-PLAN-FOR-OVERLOADS> BEFORE 
<RA, REFINE-RESTORATION-PLAN>) 

4. A common solution should be understood in a broad context, it is intended to embrace both agreeing upon a strat
egy or plan for coming to a common set of actions as weH as the set of actions themselves. 
5. Execution in this context corresponds to expansion of those nodes without successors if anode is expandable or 
processing of atomic uruts if nOL 
6. 9t 1.2 ;t: 9t2•1 
7. Typically fulfilling relationships is a process requiring communication and synchronization between the responsi
ble agents. However details of how this is achieved are beyond the intended scope of this paper 
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The success of a solution in reaching its desired objective is the final component of the plan representa
tion language: 

• ACHIEVE«(al""~}, a>, 1:(1) ~ -a 1\ EXECUTE«(al""<Xn}. a>, 1:(1); a? 

meaning if 1:a is executed next a, which did not hold before this sequence of actions, will hold as a direct 
consequence of performing the specified actions. 

It is now possible to express the first pre-condition for joint action, namely· that the participants must 
agree upon the principle that a common solution is needed if the objective is to be achieved: 

NEED-COMMON-SOLUTION «(al".'<Xn)' a» ~ 
MB«(att .. ,<Xn}, 0 31:a EXECUTE«(al' .. '<Xn}' a>, 1:(1) v D-a) 

This notion that joint action requires a common solution is also expressed in the work of Grosz and Sid
ner [5.6]. In addition to the shortcomings of their work expressed in [4,16], their formulation is also lack
ing in the following key areas: 

• it does not explicitly address the problem of interrelated intentions (actions) 

• it does not specify how team members should react if (for whatever reason) they believe the plan is 
no longer appropriate for r:!aching the common objective 

• at no stage is one common so)ution adopted for attaining the common objective. it merely states that 
there is mutual beI ief aboul. a means of achieving the desired state 

. . 
• it is possible for agents which are unable to contribute anything to the overall objective to be 

involved in the common plan 

All of these shortcomings are tackled by the joint responsibility definition; the first by the plan formula
tion language chosen and the last in the next section. This section concentrates on the second and third 
points, describing a framework which specifies under wh at conditions an agent can become uncommitted 
to the agreed plan and what actions should be undertaken in such circumstances. 

There are several circumstances in which the commonly agreed plan may be inappropriate, illustrations 
are taken from the sensible restoration plan example: 

• the plan 's objective may already hold 

eg the NSA may calculate tbat the proposed tentative plan will cause no additional problems in 
the network - therefore the joint objective of producing a sensible restoration plan has already 
been met and no additional work is required 

• following the plan steps may no Ion ger result in the desired state (due to changed circumstances, for 
example) -INVALID plan 

eg the NSA is informed by the diagnosis agent that the network status has changed substantially 
since the simulation to judge the effect of the tentative restoration plan was started. This means 
the analysis produced will be out of date (it is missing important new information) and hence it is 
impossible to tell whether the restoration plan is safe or not without redoing the simulation. It will 
not be worth redoing the simulation because the tentative restoration plan will be completely 
altered to take the new information into account, therefore following the agreed solution may not 
produce the desired result. 

• one of the specified plan steps may no longer be achievable - UNATTAINABLE plan 

eg the operator (who has higher priority than the RA) requests the NSA to run a very time-con
suming simulation. Carrying out this user request means that the NSA will not be able to meet its 
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agreed action of analyzing the tentative plan (in computational tenns the notion of "never" corre
sponds to at least for the foreseeable future). 

• one of the plan steps which should have been performed has not been performed, or a relationship 
between plan steps has not been upheld - VIOLA TED plan 

eg the RA has sent a tentative plan to the NSA which has run a simulation and highlighted poten
tial problem areas. However because a major incident has occurred on the network and many 
more faults have been generated the RA decides th.at rather than refining the tentative plan it is 
better to try and genera te a new plan because the information will be that much more up:,to-date. 
In this case, the RA has violated the agreed plan by not perfonning the refinement task. 

These notions can be formalised in the following manner:" 

• INVALID «{ ab .. Cln), CD, La) ~ O-AClITEVE«{ al,··,Cln}, CD, La) 
• UNATIAINABLE «{ab .. Cln), CD, La) ~ (3 <{nw, .. ,ax}, eri> E Lcr) O~eri 

where [{ nw, .. ,nx} C {ab .. ,Cln}] 

• VIOLATED «{ al, .. Cln), CD, Lcr) ~ -EXECUTED«{ al, .. ,Cln}, cr>, Lcr) 

If the joint plan is to be successful, all ptrrticipants must be committed (Le. endeavour to perform actions 
they are obliged to). HQwever there are circumstances in which it would be rational for an agent to stop 
being committed - this'includes those outlined above and the case in which one (or more) of the other 
team membets is no Ion ger committed. Unless these conditions prevail, an individual agent (a) remains 
committed (I-COMMIT-CONDS) to solution Lcr as a means of achieving er: 

I-COMMIT-CONDS(a, <{ al, .. Cln}, CD, Lcr) ~ [a E {al,··,Un}] 
BEL(a, -er) 1\ 

BEL(a, -IN VALID «{ al, .. Cln}, CD, La» 1\ 

BEL(a, -UNATIAINABLE«{al, .. Cln}, CD, Lcr» 1\ 

BEL(a, -VIOLATED«{ab .. an}, CD, Lcr» 1\ 

BEL(a, (V<lj E {al, .. ,an) I-COMMIT-CONDS(<lj, <{ al, .. Cln}, cr>, l:cr») 

Once an agent becomes uncommitted to a solution (for any of the reasons outlined) it cannot simply 
ignore its future responsibilities or carry on as if nothing had happened. Rather it must endeavour to 
inform other team members that it is no Ion ger committed to the solution. When other agents receive this 
message a re-planning phase may be initiated or the overall objective may be altered, however we are not 
concemed with this behaviour here. It is now possible to formalize our intuitions about how individuals 
within the team should act once a common solution has been derived and agreed upon - this behaviour 
will be called individual solution commitment (ISC): 

ISC(a, <{ ab .. an}, CD, La) ~ [a E {ab.·,Cln}] 
UNTIL -1-COMMIT-CONDS(a, <{al, .. a n}, CD, Lcr), 

(V <{nw, .. a x}' erj> E Lcr) 1\ (a E {nw, .. a x})::> [{nw, .. ,nx} c {al,.·,Cln}] 

BEL(a, OEXECUTE«{ aW' .. nx}, eri>, Lm» 1\ 

EXECUTE( < [Ow,··ax}, eri>, l:cri» 
8 WHEN GOAL(a, MB({al, .. Cln}, -I-COMMIT-CONDS(a, <{al, .. Cln}, cr>, l:cr») 

8. UNTIL p,q WHEN r: until p is true, q will remain true. When (it) p becomes true, r will become true 
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From this definition it is apparent that a group member will try and fulfil its obligations specified in the 
agreed solution whilst it is still committed to that solution as a means of achieving the desired result - on 
becoming uncommitted it endeavours to inform others of this fact. This behaviour ensures that whenever 
the chosen solution is unsustainable every effort is made to ensure that all team members are made aware 
of this fact so that computational effort is not wasted. 

Combining the results of this section there are :clearly two facets concerned with actions for achieving a 
target state: there is the principle of agreeing to the need for "'" common solution and also a definition of 
how group members should behave once such a solution has been agreed upon. These two components 
can be joined together into a single proposition called solution commitrnent: 

SOLUTION-COMMITMENT«{al 1 .. ,<In}, CD) (::) 

MB({al, .. ,<In}, NEED-COMMON-SOLUTION«{al, .. ,Un}, CD»" 

(\I <lj E {al, .. <In} ISC(<lj, <{alt .. <In}, CD,~» 

Retuming to our example, this means the RA and the NSA have to agree upon the principle that a com
mon plan is needed for producing a sensible restoration plan. Once such a solution has been agreed, both 
agents will endeavour to do their parts (eg the RA will generate a tentative plan, the NSA will highlight 
any potential problem areas and the RA will then refine its tentative plan based on this information). They 
will continue to dJ this until either the task is completed satisfactorily or one of them finds the agreed 
solution unsustain. ble or one of them discovers the other is no Ion ger committed to the solution. 

3.3 Contrlbutions 

One attribute completely missing from all descriptions of joint actions is that of group minimality; to be 
included in a group an agent must be able to contribute something positive to that group's activity. This 
facet differs from previous attributes in that it is pragmatic rather than conceptually essential. In our res
toration plan example, the joint action is between the RA and the NSA and as the scenario is described it 
makes no sense for any other agent (eg the fault diagnosis agent) to be involved because it is unable to 
carry out useful problem solving in the context of producing a sensible restoration plan. As we have 
alluded to, coordinating group problem solving may be a time consuming activity and because cost is 
proportional to the size of the group it makes sense to only include those 8.gents which carry out activities 
beneficial to the group 's objectives. 

There are two ways in which an agent can contribute to the attainment of a group goal: it can perform an 
act which is part of the agreed solution (positive contribution) or it may refrain from performing an action 
which would interfere with the agreed solution (non-negative contribution). Imagine a team of agents try

ing to stack blocks BI, B2 and B3 - a positive contribution could be putting B2 onto BI, a non-negative 
one not unstacking B2. However due to space limitations we will only consider positive contributions. 

Firstly we need to define exactly what it means for a sub-intention to contribute to the attainment of an 
intention. At this stage, as no definite solution has been agreed upon, a sub-intention can be said to con
tribute to the overall objective if it is a component of any solution (however inefficient or cumbersome) 
which reaches the target state: 

CONTRIBUTES «{aj, .. ,<lIc}, (Ji>, <{alt .. ,<In}, CD) (::) 

(:3 Lcr ACHIEVE«{aw, .. ,<lx}, CD,:Ecr)" < {aj, .. ,ak}, (Jj> E Lcr 

where [{aw, .. ,ax} C {al, .. ,Un}] and [{aj, .. ,ak} ~ {aw, .. ,<lx}]. 

The first step in being involved in group problem solving activity is for the individual to believe that it is 
capable of offering something to the group. Once an individual is convinced of this fact, it then has to 
convince others that it's inclusion will be to the group's benefit. Concentrating on the former, an agent is 
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capable of contributing to the group goal if it can solve to a sub-intention which is a component of a 
potential overall solution: 

CAN-CONTRIBUTE(a, «al, .. ,Cln), cr» ~ 
ACHIEVE( <{ CXw, •• ,ax }, O'i>, l:<Ji) /\ 

CONTRIBUTES( < {CXw, •• ,ax}' O'i>, < {al> .. ,Cln}, cr» 
[{ CXw, •• ,CXx} C {al,··'Cln}] 
[a E {aW' .. CXx}] 

The ability of being able to contribute to the attainment of a goal is useless, unless the individual actually 
intends to participate in the problem solving process: 

WILL-PARTICIPATE(a, <{alt .. ,Cln}, cr» ~ [a E {alt .. Cln}] 

OSOLUTION-COMMITMENT«{ alt .. ,Cln}, cr» 

As stated above, an agent will only be admitted into joint problem solving activity if all group members 
are firstly convinced that the agent is capable of contributing to the objective and secondly that they 
believe it will actually participate: 

MAY-CONTRIBUTE(a, <{al, .. ,Cln}, cr» ~ [a E {al, .. Cln}] 
MB( {al, .. ,Cln}, CAN-CONTRIBUTE(a, <{ al, .. ,Cln}, cr») /\ ' 
MB({al,··,Cln}, WILL-PARTICIPATE(a, <{al, .. ,Cln}, cr») 

This is a conservative approach to setting up groups of cooperating agents, in that allother members must 
agree to the participation of others at this early stage (even before a solution has been developed). A Ihore 
liberal approach is to weaken this condition and allow agents to participate in the subsequent solution 
development phase on the basis that they alone believe they can contribute. 

3_4 ResponsibiIity At Last! 

We are now in a position of being able to draw together all the work specified in this section and fuHy 
describe the complete mental state which a group of agents must adopt if they are to jointly solve a com
mon problem together: 

jOINT-RESPONSIBILITY «{ab--,a,,), cr» ~ 

MB ({ab--,a,,), jPG( <{ab--,a,,}, 0'>)) /\ 

MB ({ab--,a,,), SOLUTION-COMMITMENT «{ab--,a,,), cr>)) /\ 

MB ({ab--,a,,), (t/ ai E {ab-_a,,} MAY-CONTRIBUTE(aj, <{ab--,a,,}, 0'») 

4 Conclusions 

The work presented in this paper is a synthesis and extension of previous work in the fields of mUlti-agent 
planning and joint intentions and provides a foundation upon which robust and sophisticated collabora
tive problem solving can be based. The notion of joint responsibility offers, for the first time, a sufficient 
definition of the conditions which must be satisfied before joint action can begin and also defines how 
participants in such actions should behave whilst problem solving. It defines the conditions under which 
commitment to solutions can be dropped and what an agent should do when it finds itself in a position in 
which the solution is unsustainable. This type of mental state and behavioural description is important if 
robust and sophisticated cooperation is to succeed in dynamically changing environments. 
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As part of an effort to define a unified formal semantics for beliefs, desires and action, 
this paper sketcbes a model theory for the axiological aspects of agent theory: hedonic 
states, likes, goals and values. It pays particular attention 0 modelling the intensity of 
likes. The main intuition underlying the model theory is that the axiological aspects 
of agent theory can be modelled through computational generalisations of physical 
dynamics. Computational analogues of force, mass and potential are offered. 

Introduction 

An important part of agent theory appears to be the notion of desires. Several 
formulations of agent theory have adopted beliefs, desires and intentions as a set of 
basic notions (the so-called BDI models). However, to our knowledge, so far 
relatively little has been said explicitly in the AIliterature about a theory of desires 
(Cohen and Levesque, 1985 and in press; Moore, 1985a; Kiss, 1988; Shoham, 1989). 

This paper takes some initial steps towards the explicit formulation and formalisation 
of such a theory. We concentrate on axiological issues, covering hedonic states, likes, 
goals and values (Kiss, 1988, 1990). 

Among the many issues surrounding desires, we select the question of the intensity of 
the attitude of liking for detailed treatment. We think that likes are not the only 
attitudes that have an intensity aspect. It is common to talk about the strength of 
beliefs too. We hope to extend our approach to those other attitudes as weH in the 
future. 



Differences between the intensities of likes are often called preferences in the
literature of decision theory, economics and psychology. Preferences are usually 
taken as the primary, primitive, notions in the sense that preferences are directly 
manifested in the choices made by an agent. Likes are therefore treated as relative, 
comparative attitudes. Few disciplines enquire into the mechanisms that might 
determine such choices and it is usually assumed that it is preferences that are directly 
available to the agent. Absolute values of liking are usually recovered from 
behuviourally expressed preferences by some analytical computations from these 
preferences. 

We would like to proceed in the opposite direction and take absolute likes as primary 
and u c;e d,ese to determine preferences. Our intuition is that an agent has 
representations of how far it likes variouLthings and when faced with a choice, 
compares the intensities of its likes to compute a preference. This need not of course 
exdude mechanisms of context dependence and interaction effects. 

Our longer-term research objective is to formulate a unified formal semantics for 
beliefs, desires and action and to lay foundations for implementation work. This short 
paper has limited aims. Our main concem is to refine the set of intuitions which were 
outlined in Kiss (1988, 1990, 1991) and sketch the model theory for a modallogic of 
liking. The model theory also lends itself for a .treatment of modal epistemic 
operators in the style of Halpem and Moses (1990), although in this paper we will 
restrict ourselves to axiological issues. We also defer the definition of the syntax and 
semantics of the logical language, the statement ofaxioms arId the derivation of 
theorems for another paper. 

The main intuition we wish to convey is that the axiological aspects of agent theory 
are best interpreted in terms of concepts that are computational generalisations of 
physical dynamics. Demazeau (1991) similarly argues for the importance of concepts 
borrowed from dynamics for agent design. Traditional1y in physics dynamics deals 
with changes of state in a system and with the causes of these changes, usually 
conceptualised as forces. Modem developments have tumed dynamics into a more 
abstract area of study, as we shall briefly sketch below. 

We propose that dynamics has a natural place in agent theory, since that theory is 
vitally concemetj with (mental) states, their properties, and with the dynamics of 
sequences of changes in mental state. The interpretation of knowledge and belief as a 
state of the agent has recently been gaining ground (Rosenschein, 1986; Halpem and 
Moses, 1985). There have been increasing efforts also in forging a link between 
knowledge and action, (Moore, 1985b; Cohen and Levesque, in press), thereby 
introducing a dynamic element, because of the changes caused by action. While these 
authors have been concemed with agent dynamics, they have not attempted to link 
their logics to dynamical systems in the physical sense. In this paper we hope to do 
so and we propose a model theory which is very dose to actual dynamic systems. 
Apan from the fact that we believe that this model theory gives us an intuititvely 
more appealing way to take about agent-theoretic notions, we also believe that the 
model theory is dose enough to actual physical systems to allow specifications 
formulated in Cour logic to be directly implemented. 

The rest of the paper is organised as follows. We first review some relevant concepts 
from abstract dynamics. Next, we discuss how agent-theoretic concepts can be 
intetpreted in such terms. Finally, we formulate computational generalisations of 



physical concepts like potential, force, velocity, etc., and indicate how they can 
provide a framework in which to interpret axiological concepts in agent theory. 

Concepts of Abstract Dynamics 
The main concepts of recent developments in dynamics deal with the structure of state 
spaces. Abstractly, the theory can be formulated in terms of functional iteration. The 
functions which define dynamical systems map states in the state space into other 
states in the same state space. They are also called mappings or maps. The main 
concern of the abstract theory is with the asymptotic behaviour of iterative mappings. 
The iteration of a function is a discrete process. If the process is continuous, the 
description is often given in the form of differential equations to describe the 
behaviour of the solution over time. 

In a geometric interpretation, the iterative process maps points into points. The points 
correspond to the states of the process. The process is then said to go through a 
trajectory or orbit of points. The main concern of dynamics is to understand the 
nature of all trajectories of a system and to classify them as moving to a fixed point, 
being periodic, asymptotically periodic, etc. We shall now turn to an informal 
summary of some of these concepts. For more detail, see, for example, Abraham and 
Shaw (1981), Devaney (1986), Thompson and Stewart (1986) or Cvitanovic (1984). 
Cvitanovic also contains an extensive bibliography. The field is developing very 
rapidly under the designation of chaos theory, which is a specialised branch of .' 
dynamics. 

The state space of a system is generally a topological surface (manifold) on which the 
possible states of the system are located. This can be just three-dimensional space, or 
some curved surface, for example, like a doughnut (torus). 

It is normally assumed that there is aforce vector field acting at all points of the state 
space. This vector field determines the dynamics of the system by constraining the 
trajectories to certain directions at each point of the state space. When typical or 
many trajectories of the system have been drawn, we get a phase portrait of the 
system. 

Closed trajectories produce cyclic behaviour. Trajectories can otherwise take many 
shal'es, like spirals, straight lines or any kind of curve. 

The focus of interest is in the asymptotic behaviour of trajectories. Limit sets of state 
spaces are sets of points towards which the trajectories move asymptotically. Limit 
sets may be solitary points, or cycles, or more complicated distributions of points. 
Limit sets which are solitary points, are calledfixed points. 

Fixed points of functions are points x for whichf(x)=x. That is, the fixed points are 
mapped ioto themselves by the function. Fixed points are important in dynamics, 
because they correspond to equilibrium (steady) states of systems. Once a system has 
somehow got to astate which is a fixed point, it will not move from that state under 
the iteration of the function f 

It is of interest to ask how a system may get to a fixed point. The simplest case is that 
the system may start from an initial state that is a fixed point, and there will be no 
further change. More interestingly, trajectories starting at other states may lead to a 



fixed point after a number of transitions. In such cases we say that the fixed point 
attracts the trajectory. The set of states from which trajectories lead to an attractive 
fixed point are called the basin oj attraction of the fixed point. It turns out that a 
fixed point is attractive if the slope (derivative) of the functionj is l~ss than 1 at the 
fixed point. The magnitude of the slope characterizes the strength of the attractor: the 
greater the strength, the faster the trajectory approaches the fixed point. 

A periodic point is a generalisation of the concept of the fixed point to the case when 
a trajectory cyclically visits a point after every n iterations of the functionj. 

If the iteration is run backwards, trajectories would appear to diverge from an 
attractive fixed point. In this situation the fixed point is called a repellor. Such fixed 
points correspond to unstable equilibria in physical systems. Slight disturbance from 
the equilibrium starts the system on a trajectory leading away from the equilibrium 
state. Conversely, attractive fixed points correspond to stable equilibria. 

Agent Attributes and Dynamics 
We now briefly review how to interpret the agent-theoretic concepts of interrest in this 
paper in terms of abstract dynamics. 

Compositionality. 

We assume that complex agents are architecturally compositional, both ~.tructurally 
and behaviourally. The complex agent structure is produced by a.ssembling simpler 
component elements. Complex agent behaviour is produced through the (often 
nonlinear) interactions between the simpler component behaviours. Concurrency, 
parallelism and distributed systems become important issues. 

The agent as controller. 

We assume that the agent acts as a controller with respect to the world state. The 
agent exens control by taking actionsi. We include "doing nothing" as an agent 
action. Taking an evolutionary point of view, we assurne that ultimately this control 
is in [he interest of fitness for survival. Fitness for survival is dependent on the 
existence of cenain world states. or on keeping them within permissible bounds. We 
assume that environmental events produce disturbances in the agent's internal state by 
causal effects conveyed through inputs. Agent action attempts to counteract such 
disturbances. An agent can control the world state either by changing its internal state 
or by attempting to change the extern al state. For example, the agent may change its 
beliefs or it may locomote to another location. 

IThere have been numerous discussions in philosophy on the exact definition of the 
notion of an agent action. Rather than attempt adefinition of our own, we will simply 
rely on the intuitions of the reader. Agent actions are those actions that an agent 
performs qua agent, and over which he or she has direct and voluntary control (or at 
least has the impression). Thus, actions like making adecision, deciding to rruse 
one's arm are agent actions, whereas such actions as sneezing or reflex actions in the 
physiological sense of the word are not. 



We want to distinguish between a system's natural dynrunics (might also be called the 
free dynamics) which is operating when the agent is executing the "null" action, and 
the constrained dynamics that results from the composioon of the free dynamics with 
the control dynamics produced by the non-null agent actions. The distinction is 
motivated by recognising that only some events in the world are produced by agent 
actions. 

Axiological aspects of agents 

Axiological issues are concemed with the directional nature and asymptotic behaviour 
of agent dynamics. The teleological (goal-directed) nature of agent behaviour is one 
of the central examples of such issues. In terms of dynamic system theory, the 
dynamic~ can be described in terms of the movement of the system state towards 
stable equilibrium states and away jrom unstable equilibrium states. Teleological 
agent behaviour is to be identified with movement towards stable equilibria which are 
in this sense prejerred states of the system: we shall say that the agent "likes" to be in 
these states. A versive agent behaviour is to be identified withmovement away from 
unstable equilibria which are in this sense disliked by the agent. In the terminology of 
dynamic system theory, these states are attracrors and repellors. Unstable equilibria 
arise mainly through competition between attractors and represent boundaries 
between the basins of attraction of those attractors. Attractors and repellors determine 
the direction of movement, i.e. the direction of agent action. It is natural to interpret 
the pro- and anti-attitudes of agents with this kind of directionality. We assurne that 
due to the physiological structuring of living organisms attractors and repellors are 
created in their behavioural space. By analogy, itshould be possible to create 
attractors and repellors in non-living computational systems through appropriate 
construction or programming. 

A related point of view is found in optimisation theory. In this approach the main 
underlying idea is that the states and trajectories of a dynamic system are govemed by 
some principle that can be expressed mathematically as finding the stationary value 
(usually maximisation or minimisation) of an "objective" (or goal) function. There is 
a great deal of work on the application of such optimality principles to evolutionary, 
ecological, economic and behavioural processes. We wish to look upon this approach 

- in the same spirit and regard the extrema of the objective function as specifications of 
the attractors and repellors of the state space. In its application to the description of 
behavioural or econoniical processes the objective function is usually called utility. 
Note that utility is here a descriptive aspect, revealed by the observation of behaviour. 
In other applications to evolutionary processes the objective function is taken to be 
fitness for survival. We are of course more concerned with individual agent 
behaviour and hence with utility in this paper. In summary, from the viewpoint of 
optimality theory, the agent is maximising utility. 

In a utilitarian framework utility would be some function of hedonic states, i.e. 
pleasure and pain. One might speculate that pleasure and pain are related to fitness 
and have been incorporated in the architecture of organisms to make available to the 
individual some state variable that can be used as an indicator of fitness. Such an 

interpretation would not be unnatural in the case of pain as an indicator of damage 
and hence loss of fitness and pleasure as an indicator of health and hence of 
maximisation of fitness. For the time being, we adopt this utilitarian framework and 
assurne that the agent is maximising a hedonic function. 



Thevalues of an agent correspond to global (high-dimensional) attractors and 
repellors of the composite dynamics. We think of values as global attractors which 
may never be reached or closely approached by trajectories, due to the topological 
structure of the state space created by the competition between them. In complex 
agents explicit representations of values form a value system. 

A goal of an agent corresponds to a local (low-dimensional) attractor in a basin of 
attraction of the composite dynamics. We think of goals as attractors which are 
reached or closely approached by nearby trajectories . 

. To support our intuitions, we wish to use a mechanical analogy. According to this 
analogy the intensity of adesire (liking) should correspond to some abstract "force of 
attraction" acting on the agent, producing acceleration of state change. 

Similar conceptual frameworks have already been used in mechanical engineering 
and in robotics (see Koditschek, 1989 for a review). In mechanics it is weH known 
that the total energy of a dissipative system (e~pressed by the Hamiltonian) will 
monotonically decrease and will be asymptoticaHy stable. A known technique in 
robot contrcl engineering is to use feedback conu'ol which amounts to following the 
gradients of total energy. This technique has been used for robot arm control. Direct 
utilisation of the potential field has been userl for path planning with obstacle 
avoidance in mobile robots (Barraquand and Latombe, in press). 

In our mechanical analogy too, the forces .would 00 derived from a potential field and 
the agent is assumed to follow [he gradiellts of the potential. From the point of view 
of optimisation theory, the objective function is used as the potential. The description 
of such a potential therefore amounts to the specification of a goal which is the 
asymptotically stable equilibrium state of the agent. We can also represent a value 
system in this analogy as additional potentials, with opposite sign, superimposed on 
the potential created by the goal. In the robot navigational applications such 
potentials are used to represent obstacles to be avoided while moving towards the goal 
state. In our analogy these obstacles ccrrespond to elements of the value system, 
expressed as "prohibitions". The analogy is reasonable in the light of value systems 
often being expressed in the form of prohibitions (laws, regulations, etc). Presumably 
positive values (obligations) could always be re-expressed in a negated form. 

Modeltheory 
In this section we review some of the fundamental concepts that we need for our 
model theory: space, time, state, and process (trajectory). Our formulation draws on 
and extends previous work by Rosenschein and Kaelbling (1986) on agents as 
situated automata and by Halpern and Moses (1990) on knowledge in distributed 
systems. Our main concern is the formal characterisation of a process (or trajectory). 
For this, we need formal notions of time, space and state. We describe each in turn 
briefly. 



Time is analysed as consisting of a set of instants T and a total ordering relation< 
overTl. 

Space will be regarded as a set of locations L. We shall not assume any specific 
topology over L, but wish to partition L into subsets, whieh we shall eall systems. 
Agents are considered as special types of system. Whereas nonnal systems may 
overlap, agents never overlap. That is, there is a set of locations whieh are part of 
exaetly one agent, and whieh are not part of any other system. We eall sueh locarions 
agent locations. All other locations are called non-agent locations. 

States are defined as funetions from locations to data values. We assume that for 
every location I in L, there is a set of data values Dl that this location ean take. We· 
distinguish between global and local states as follows. Global states are funetions 
whieh assign to every location la data value from the appropriate set Dl. Given a set 
of locations L, we define GSL to be the set of possible global states. Clearly, if the 
number of locations is n then GSL can be regarded as an n-dimensional spaee. If gis 
a global state, then g(l) denotes the data value assigned to location I by g. 

A local state is a function whieh assigns appropriate data values to a sub set Loc of the 
set of locations, i.e. to a system. The set of all possible loeal states over Loc is 
denoted LSLoc. 

Processes are defined as temporal sequenees of states. Sinee the eoncept of state is 
tied to that of space through -loeations taking on data values, it is natural to regard 
processes as oceupying a spatio-temporal region. Following Rosensehein and 
Kaelbling (1986), we eapture these intuitions in _ two steps. First, at each instant in 
time a proeess ean be regarded as occupying a set of loeations. Seeond, eaeh 
oceupied loeation takes on a speeifie data value. We thus have two funetions. The 
first is a funetion from T to subsets of L determining the oceupied locations, while the 
seeond assssoeiates data values wich these loeations. We ean thus generalise the 
notion of state to proeesses. The state of a process at time t is determined by the set 
of locations oceupied at r and their data values. 

Just as we did with states, we distinguish global and loeal proeesses. Global 
proeesses are temporal sequenees of global states. Thus, global proeesses oceupy, 
and assign data values to, alilocations at every instant in time. Halpem and Moses 
call sueh aglobai process a "run" of a system. A global proeess or run ean be 
regarded as one possible way the world ean unfold over time, or a "possible world". 
Formally, a run is a funetion from T into GSL. We denote the set of all runs by Rand 
an individual run by r. Then r(t) gives the state of the run rat t, and r(t)(l) gives the 
data value of Iocation I assigned by the run r to I. 

Loeal processes oceupy only a subset of L at eaeh instant in time and are thus a 
sequenee of local states. Local processes ean also be thoughtof as subprocesses of 

2Noming hinges on mis definition of time. In particular, we also could have adopted an instance-based 
definition of time. However, this would have made the remaining presentation considerably more 
complicated. Given thal mis paper is not primarily concemed with a temporallogic, we have opted for 
the simpler temporal onLology. 



aglobal process. Fonnally, the spatial region-occupied by a local process is a 
functiomt from T and R into Powerset(L). The state of the process is then given by a 

function s(1t,r,t), which is a set of location data-value pairs: {<I, r(t)(l» I I E 1t(r, t)}. 
This notation emphasizes that the data values of the local process depend on the run 
of which it is a subprocess. 

The foregoing define processes in a very general way. For many applications simpler 
special cases are sufficient and are conceptually easier to handle. F.;r the purposes of 
the rest of this paper we introduce jixed-Iocation processes, which occupy the same 
locations at every instant in time. Thus, fixed-Iocation processes do not move 
spatially and the only change that takes place at successive instants of time is that the 
fixed locations take on different data values. 

Und~r this picture, complex agents are simply fixed-Iocation processes, where all the 
the locations involved are agent locations. 

Our model theory can accommodate the notion of an "accessible world" , which 
allows us to construct a modal logic of beliefs along similar !ines to Halpern and 
Moses (1990). A process 1t only occupies a subset of the set of alliocations at time t .. 

It is therefore possible for different runs to assign the same state to 1t at t. We shall 

call such runs alternativ~ runs with respect to 1t at time t. Thus, the runs rand r'are 

alternative runs with respect to process 1t at time t if s(1t,r,t) = s(1t,r',t). If we identify 
a process with pn agent situated in the world, then we can regard alternative runs as 
different states of affairs which are indistinguishable as far as the state of the agent is 
concerned. This construction gives us a way to interpret the epistemic operator in our 
logic. 

Transition functions 

In order to calculate a run of a system, we need to define a transition function for each 
location. A transition function for a location I is simply a function which calculates 
the next data value of 1 based on its present value and the data values of other 
locations. Although we do not wish to put any strong constraints on which locations 
can influence the next value of location I, typically the new state of location I will 
depend not on alliocations in the L but only on a subset of them. Cellular automata 
are typical in this respect: the transition function for each location takes as input only 
the values of the immediate neightbours of that location. For logic circuits too, the 
transition function is usually defined as a function of a sm all subset of specified 
locations. Interestingly, in the lauer case, the present value of the location is 
irrelevant for computing its next value. 

By defining a transition function for each individual location, and allowing a 
location's transition function to take as input the values of other locations as weIl, we 
can refonnulate the usual picture of a distributed. concurrent computing system in 
our proposal. In such a system, the component processes interact with each other 
through constraint relationships, implemented as message or signal passing. 
Connectionist architectures can be seen as an example. In this case, the messages are 
values, usually in the real nnmber or boolean data domains. Under our proposals, we 
simply see interaction between location 1 and l' as indicating that the transition 
function for 1 has the value of l' as one of its inputs, and vice versa. 



Earlier, we distinguished between agent locations and non-agent locations. We can 
now distinguish between three types of agent locations. The first distinction depends 
on whether an agent location's transition functions is dependent only on other agent 
locations, or whether they also receive as input the values of non-agent locations. We 
will call the first type of agent locations pure agent locations. We shall refer to the 
latter as Input locations for obvious reasons: Input locations are the places where the 
state of the external environment exerts influence on the agent. Note that Input 
locations are still agent locations. There are of course also some non-agent locations 
whose transition function takes as input values of agent locations. These are the 
places where agent exert influence on the world. We will therefore call tho~ agent 
locations whose value is used as input to the transition function of a non-agent 
location Output locations3. 

We postulate a difference between the nature of the transition functions for agent and 
non-agent locations. In the case of agent locations, we assume that the transition 
function is chaotic and hence non-predictable, whereas for non-agent locations it is 
entirely prediclable. The reason for this distinction is that it allows us to give a more
intuitive account of the notion of agent action. We defIne an event as astate change 
of a location. Clearly, it is then natural to assume that an agent action is astate " 
change of an agent location. Now, if we assumed that the transition function for a 
agent location was a completely predictable function, then this would go counter to 
the free will intuition, the intuition that agents have control over their own actions. 
On the other hand, one would also like to avoid the possiblity of having to explain 
free will as involving some kind of "magical" process. We claim that by postulating 
that transition functions for agent locations are chaotic we avoid both horns of this 
dilemma. Agents's actions remain unpredictable and hence seem to involve some 
notion of voluntary control, while remaining completely detenninistic, and hence 
non-magical4 . 

There are a number of further aspects of our model that we would like to draw 
attenti,m to. First, we can defIne different "flavours" of agent action. On the one 
hand, we have pure agent actions, events that take place in pure agent locations. On 
the other hand, there are non-pure agent actions, events in agent locations that are 
partly under the influence of non-agent locations. Events that take place in input 
locations are of course the primary example of non-pure agent actions. Also, we can 
distinguish between pure physical events, events in locations whose transition 
functions take as input only the values of other non-agent locations., and non-pure 
physical events, events that happen in non-agent locations whose transition function 
also takes as input values from agent locations. 

Second, although agents can directly influence only a sm all subset of non-agent 
locations, namely only those whose transition functions receive tnput from output 

3If we stick to the assumption that only neighbouring locations influence each other, then clearly the 
sets of output and inputlocations overlap. However, nothing in our model theory forces us 10 accept 
this assumption. 

4Clearly, the use of chaotic functions is direclly inspired by dynamics as weil. Thus, we not only rely 
on dynarnics for our main intuitions. it also provides some of the mathematical machinery that we can 
use in OUf model-theory. 



locations, agents can of course indirectly influence other events as weil. In particular, 
non-agent locations that are directly connected to an agent's output locations can in 
their turn influence other non-agent locations. It is through such chains that agents 
can influence locations whose transition functions are not directly influenced by the 
agent's output locations. In particular, such chains allow us to explain how an agent 
can influence another agent: in order for this to take place, there must some chain 
from the flrst agent's output locations to thesecond agent's input locations. 

State Transition Functions and State Space 

Although we could formulate the rest of our proposals in terms'-ef transition functions 
for individual locations, it will' be more straightforward to do so in terms of state 
transition functions, transition functions for the entire set of locations. It is of course 
a relatively trivial matter to construct state transition functions from the transition 
functions for individual locations: if tf, ... ,tf are the transition functions for the 
locarions I, ... ,l' in L, the transition function can simply be obtained by applying the 
local transition functions to each location. We will call such a transition function a 
state transition junctions 

The set of possible runs has been denoted R. Trajectories in R are generated by the 
iterated application of a transition functionj, Si+1 =f(si). The transition functionj 
represents the changes brought about by the agent's actions, including doing nothing. 
Recall that the changes may be either internal or external to the agent. 

We want our state transition functions to be non linear functions j which have 
attractive limit sets. In the case of a limit set wh ich is just a single point, we have a 
flxed point Sfixed, such thatj(Sjixed) = sfixed. Here Sfixed is an attractor. For all 
attractors there is an open set, called the domain of attraction D, such that for all states 
S E D the iterated application of j eventually carries the state into Sfixed. 

We distinguish global attractors from local attractors. The transition function may 
assign the same state to a subset of locations at different times. We cail such a local 
flxed state a local attractor. By analogy to global domains of attractions we can 
deflne a local domain of attraction in a straightforward manner. 

Hedonic Functions 

In order to use the model theory for the interpretation of desires, we introduce hedonic 
functions. Intuitively, the hedonic function specifies the amount of pleasure or pain 
an agent experiences in some state. The hedonic function h1C of a process 1t maps 
states into hedonic data values. The domain of hedonic data values H is a partially 
ordered set, containing a distinguished element neutral, corresponding to a neutral 
hedonic data value. All other hedonic data values are either hedonically greater than 
or smaller than neutral. The hedonic relational operator will be denoted by <Hed. We 
shall assume that the hedonic state of an agent depends only on the local state of the 
agent. As indicated below, we will interpret the hedonic state as a computational 
analogue of potential field, with a potential of zero corresponding to the hedonic 
neutral. 

Th~ hedonic state results from the superposition of attractive and repelling potentials 
at the point corresponding to the current state. These potentials are produced by the 
agent's value system and by the current goal. The contributions of individual 



attractors and repellors can be separately computed as h1t(s,Sfixedj)' where Sfixed
j 
is the 

fixed point state corresponding to attractor i. 

As is usual in utilitarian agent theories, we assurne that an agent acts in order to 
maximise its hedonic state. The computation the agent executes to detennine its 
action is therefore the optimisation of the hedonic function. Maxima of the hedonic 
function correspond to limit sets in the state space of the agent 

Computational Analogues of Force, Mass and Potential 

We assurne that for each point s ; ~n GSL we can define the distance 
d(s, Sfixed) as the distance between the pojnt sand the fixed point Sfixed. If we regard 
GSLas an n-dimensional space, then this' could be euclidean distance. If we interpret 
each function iteration of the transition function f as a unit of time then we can define 
the velociry at s as the distance d(s,f(s», since this will be the distance travelled in 
unit time. The definition of a force vector F acting at the point s follows the 
mechanical analogy and is the product of acceleration and mass. It is natural to 
interpret mass in our computational domain as some measure of the size of the state s. 
For exarnple, we can take the number of locations occupied by the agent process, n, as 
this measure. Then, 

F(s, Sfued) = n • d(s,f(j(s») - d(s,f(s». 

Theanalogy can then be even funher extended by defining force, as in physics, as the 
gradient of a potential, F = grad H. 

The joint effect of two or more fixed points at s can then be reflected by vector 
addition of the forces acting at s. Let us denote two such forces by Fi and Fj for two 
different fixed points. The joint effect is then 

F = Fi (f7 Fj 

where (f7 denotes vector addition. 

We can now assess the relative strengths of two attractors by comparing the 
magnitudes of the two forces and say that Greater(s, Sflu:ed.' Sfu:ed) if 1Fil > IF). 

I J 

The intuitive agent theoretic interpretation of these concepts is then as follows. As 
stated before, the potential is interpreted as the hedonic state. Components of the 
potential correspond to the values of the agent. The forces correspond to the intensity 
of liking. The concept of relative intensity, or preference, is based on the comparison 
of forces. We model the activity of the agent as following gradients in a potential field 
produced by the superposition of all the forces, i.e. values, acting on the agent. 
Gradient following corresponds to hedonic maximisation. 

Conclusions 
We have described so me intuitions about the interpretation ofaxiological aspects of 
agent theory in terms of concepts from physical dynamics. The first steps have been 



taken towards fonnalisation by sketching a model theory. This model theory can be 
used straightforwardly for the construction of a logical language in which to reason 
about an agent's hedonic state, likes, goals and values. We believe that the model 
theory can also be used for an integrated interpretation ofaxiological, epistemic and 
praxiological aspects of agent theory. 

As indicated in Kiss (1991), such a model theory can also offer a link between 
concems for forrnalisation arid concerns for implementation strategies. As shown by 
Rosenschein's 'Vt'ork on situated automata theory and the implementation language 
REX, there is a complementary relationship between a mathematical model and a 
physical phenomenon, both of whici. can be taken as alternative interpretations of a 
logic. When this is the case, the logic can be used for reasoning about a design, the 
mathematical mode~ provides the semantics of that reasoning, while the physical 
phenomena (or their computational analogues) can be used for the implementation of 
the design. Thus, by adopting a model theory that is much closer to the physical 
world than is the case in for example a possible world model, we hope that the step 
for design (and a logical analysis of this design) to an actual implementation is 
considerably reduced. 
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The basic thesis of this work is that human interactions are neither unpredictable nor bounded, 
but they are undertaken autonomously on the grounds of a number of basic principles and 
conditions. Among these, a crucial role is played by the objective dependence relationships 
holding among agents. In this paper we report about a first step in providing a computational 
theory of dependence as a tool for interaction control. We define non social as weIl social 
dependence, and try to show how dependence relationships are organized into complex patterns 
(such as multiparty, multigoal, unilateral, and bilateral dependence). We then show how a given 
set of dependence relationships may produce new dependence relationships. f1inally, we explore 
the relationship between dependence and influencing, describing how one's dependence on 
another is predictive of one's goal of influencing the other, as weIl as of the latter's power of 
influencing the fonner. 
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1. INTRODUCTION 
Communication control has always been a crucial problem in distributed system. The limited 
capacity of communication channels represents a bottleneck for the performance of thosp
systems. In Distributed Artificial Intelligence (DAI), the problem is amplified because of the 
continuous need for interaction among agents (e.g., for negotiation). The proposed solutions try 

either to communicate implicitly using a shared memory (blackboard systems [8]) or, if the 
si:1gle agent is more autonomous, to apply specialized control strategies (see for example [1]). 
Both approaches use solutions quite different from the behavior of human beings in similar 
situations. Cognitive agents generally find implausible to put a request message in a mailbox and 
wait for somebody to answer it; neither do they apply a standard protocol for the interaction. 
Wheu an agent needs somebody else for achieving a goal, she reasons about knowledge of 
sociality and social relations. Such knowledge is used both in the stage of decision formation and 
in actual interaction. 

We have been studying human behavior and developing models of it for several years (see 
[2, 6]). In this paper we attempt to describe the relations upon which context-dependent human 
interaction is based and try to devise some principles controlling it. Our main argument is that 
human interactions are neither unpredictable nar bounded but they are undertaken autonomously 
on the grounds of a number of basic principles. Those principles are formulated in a quasi-formal 
way, and seem to represent a necessary background for a computational model of context-rehted 
social interaction. 

One of the fundamental notions of social interaction is the dependence relation among 
agents. In our opinion, the terminology for describing interaction in a multi-agent world is 
necessarily based on an analytic description of this relation. Starting from such a terminology, it 
is possible to devise a calculus to obtain predictions and make choices that simulate human 
behavior. 

In this paper, we present our formalism for dependence relation and describe some 
deductions to be made on the grounds of this relation in order to obtain rational choices. In 
particular, we distinguish between resource dependence and social dependence, and show 
properties and special cases of both. We also give the basic axioms and show which types of 
actual interactions are strongly based on dependence. In particular, we try to show the relation 
between dependence relationships among agents and the action of influencing of one agent 
respect to another as probably the most relevant form of interaction in real social contexts. 

The paper is structured as follows: in Section 2, we provide our basic definition of 
dependence and describe its properties; in Section 3, we describe some principles for deriving a 
dependence relationship from another, in Section 4, we describe the relation between dependence 
and influencing; in a concluding Section, we point out some aspect stilllacking in our theory. 

2. DEPENDENCE AND ITS PROPERTIES 
As already argued in [5], dependence is undoubtedly the ground relation upon which the whole 
construction of sociality is based. In the following, we first analyze a non social, or pre-social, 
form of dependence, namely the one between an agent and aresource. Then we proceed to its 
social version, the dependence between two agents, and finally try to describe some types of 
social dependence relationships involving more than two agents. 
In the paper we mainly refer to the formal apparatus used by Cohen and Levesque in [3]. In the 
following x and y denote agent variables with x'* yalways implicitly stated, adenotes an action 
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variable, raresource, and p a weH fonned fonnula representing astate of the world. The 
predic ate ( RES 0 UR CEr a) means that r is needed in order to perform a. 
(CANDO x a) means that agent x has the action a in his repertoire, that is he is able to do it by 

himself. We use the following definition similar to the one in [3]: 

(DONE-BY x a) =def (DONE a) /\ (AGT x a) whose rneaning is quite obvious. 

2.1 Non social dependence 
Dependence is not necessarily a social notion. A relation of dependence may be said to occur 
whenever: a) any object or event in the extemal world may increase, if used, the probability that a 
given state of the world be realized, and b) that world state is represented as a goal by at least one 
agent. In such a case, we say that agent to be dependent on the enabling object or event. The 
latter will then be called aresource. Resourees enter the structures of the actions (see also [9]). 
An action can be modeled as a relation holding among agent(s), goal(s), and resource(s). A set of 
resources is required for any action to take place. In our notion. cubes, tables and hands are 
resources in the block world. In the social world, others may be used as resources (not only in 
exploitation but also in prosocial action: in help, ,in a quite abstract sense, the recipient is a 
resouree of the action "give help"). 

Agents are usually dependent on the existence of resources. We call this type of 
dependence a resource dependence (described by the R-DEP predicate), to distinguish it from 
sociardependence, S-DEP, (see below): 

Dl. (R-DEP x rap) =def (GOAL x p) 

/\ (RESOURCE r a) 
/\ ((DONE-BY x a) => (EVENTUALLY p)) 

r is then a resource for x to achieve his goal that p. Thus, for instance, x is resource dependent 
on a hammer for having a nail driven into a wall. * 

2.2. Social dependence 
Dur basic defmition of social dependence is as foHows [6]: 

D2. (S-DEP x y a p) =def (GOAL x p) 

/\....., (CANDO x a) 

/\ (CANDO y a) 

/\ ((DONE-BY y a) => (EVENTUALLY p)) 

that is: x depends on y with regard to an act useful for realizing astate p when p is a goal of XS 
and x is unable to realize p while y is able to do so. In this context, y's action is a resource for 
XIS achieving his goal. 

* We want to point out the difference between the given definition of R-DEP and the following one where w 
denotes a plan for achieving p (or an <action-expression> following [3]): 
Dlb. (R-DEP x rap) =def Vw (GOAL x p) /\ «ACHIEVE w p) :::> (IN a w» /\ (RESOURCE r a) 
which means that x depends only from resources of actions essential to the achievement of his goal. Even if this 
definition is reasonable, the one we use in the paper is intended to stress the fact that agents may have a number of 
alternative ways to achieve their goals either acting by themselves or asking others to acL Their behavior is the 
result of a decision making process. This is tme as weH in the case of S-DEP. 
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It should be stressed that, unlike what most DAI work seems to take for granted, social 
dependence as weH as resource dependence is not Jundamentally mental. It is an objective 
relationship, in that it holds independently of the agents' awarencss of it: x may depend on Y 

even though they both ignore the fact. However, many r~levant consequences may derive from 
xs and y's (either unilaterally or mutually) becorning aware of it: to mention just the most salient 
ones, x rnay try to influence y to pursue p, while y may choose whether to adopt xs goal or not 
(see [6]; see also later on in the text). 

Moreover, not only a dependence relationship may be known; it may also be wanted, in 
that either x or y may actively "work" on rnaintaining or strengthening the relationship. And, not 
only a dependence relationship may be wanted once established. It rnay even be created by the 
agents, by producing those objective conditions that define a dependence relationship (a certain 
goal in xs mind; the lack of a certain power condition, etc.). So, for instance, y may influence x 
and induce hirn to have p as a goal of his own; since p cannot be achieved by x without y's help, 
y has created a dependence of x on her by means of an influencing strategy; otherwise, 
supposing that x already has p as a goal of his and is also endowed with the power conditions 
useful for achieving it, y may deprive x of some of them (say, by stripping hirn of a certain 
resource), thus making x become dependent on her relative to p. 

2.3. Patterns of dependence relationships 
Dependence relations set up a social network (that we call the n .:P-net, to stress the fact that it is 
a baseline for the socalled contract net [7]) among agents, independent of, and often preceding, 
their awareness. Several special cases of net can be recognized: 

a) OR-Dependence. Very often, there exist disjunctive compositions of dependence relations; that 
is, x may depend on Yl OR on Y2 (or on Y3' etc.) for the same p, for at least two possible 
reasons: 

-- the same action a useful for realizing p is performable by a number of agents (each 
independent of the other); so, it is sufficient for x to have a performed by one of them (say, the 
most available or willing): 
(GOAL x p) 1\, (CANDO x a) 

1\ (Ai=l,n (CANDO Yi a)) 1\ (( V i=l,n (DONE Yi a))::::) (EVENTUALLY p)) 

-- alternative actions are useful for realizing p, and for each of them xis dependent on a different 
agent. In such a case, x's dependence with regard to p varies with the act, and then the agent, 
considered. 

(GOAL x p) 1\ (Ai=l,n' (CANDO x ai)) 

1\ (Ai=l,n (CANDO Yi ai)) 1\ (( Vi=l,n (DONE Yi ai))::::) (EVENTUALLY p)) 

b) AND dependence. Two cases may be distinguished in which there is a conjunction of 
dependence relations, namely the multiparty and the multigoal dependence: 

-- we call multiparty dependence the case in which x depends on more than one agent for 
realizing p; this happens when more than one single act is needed for achieving one and the same 
goal,andforeachactxdependsonadifferentagent: "i=l,n (S-DEP x Y ai p); 
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-- multigoal dependence happens when x depends on the same agent for realizing a number of 
unrelated goals: "i=l,n (S-DEP x Y ai Pi). 

e) Bilateral dependenee. So far, just eases of unilateral dependenee (of x on y) have been 
deseribed. However, dependenee mayaiso be bilateral (of x on yand of y on x). Bilaterality 
should not be eonfused with symmetry. The DEP predieate is in faet asymmetrieal, in the sense 
that x's dependenee on y relative to a eertain aetion for a given goal does not imply y's 
dependenee on x relative to the same aetion for the same goal, and viee versa. On the eontrary, in 
bilateral dependenee either the aetions or both the actions and goals implied are not the same for x 
and y. There are in faet two possible kinds of bilateral dependenee: 

--mutual dependence, whieh oeeurs when x and y depend on eaeh other for realizing a common 
goal p, whieh ean be aehieved by means of a plan including at least two different acts sueh that x 
depends on y's doing al' and ydepends on xs doing a2: 

(S-DEP x Y al p) /\ (S-DEP y x a2 p) 

as observed in a previous work [6], cooperation is a funetion of mutual dependenee: there is no 
eooperation without mutual dependence; 

-- reciprocal dependence. which oeeurs when x and y depend on eaeh other for realizing 
different goals, that is, when x depends on y for realizing xs goal that P l' while y depends on 

x for realizing y's goal that P2: 

(S-DEP x Y al Pl) /\ (S-DEP y x a2 P2) 

reeiproeal dependenee is to sodal exchange what mutual dependenee is to eooperation. 

3. SOME PRINCIPLES OF A THEORY OF DEPENDENCE 
So far we have attempted to provide some definitions of various forms of dependenee (resouree 
dependenee vs. soeial dependenee) and of different patterns of dependenee relationships. Now, a 
number of interesting eonsequenees may be drawn from the above. We do not aim here at 
showing all the possible prineiples aeeording to whieh a dependenee relationship ean be derived 
from another; we just outline some of the most eommon ones. 

3.1. From resource dependence to social dependence 
Resouree dependenee is likely to produee social dependenee. In order to deseribe this property 
we introduee the notion of resouree eontrol. An agent x controls a resouree r when he is able to 
do an aetion al by whieh he allows any other agent to perform all the aetions requiring the 

resouree: 

D3. (CONTROL x r) =defVy::lal Va2 (CANDO x al) /\o-.(CANDO y al) 

/\ (RESOURCE r a2) 

/\ ((DONE-BY x al):::> (CANDO y a2» 

If agent x depends on resouree r for a given p, and agent yeontrols r, then agent x depends on 
agent y for using r. So, in this eontext social dependenee (of x on y) is the joint result of 
resouree dependenee (of xon r) and resouree eontrol (of yover r): 
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AI.3al ((R-DEP x rap) /\ (CONTROL y r» :::> (S-DEP x Y al p) 

There exist, then, at least two sources of social dependence relationships: 
a) x directly depends on some action of y's; 
b) x depends on some resource which is controlled by y, hence, he depends on y. 

However, (b) can be seen as a sub-case of (a), in that also in (b) x comes to depe::d on 
so me action of y's: if r is controlled by y, x depends on y's action of "letting x use r". 

By the way, CONTROL should be articulated into at least three possible sub-cases, each 
implying a particular action by yof "letting xuse r"; these cases might be unfonnally describeO 
as follows: 
1) y possesses r; hence, a condition for xs using r is y's permission to use it; y's act on which 
x depends is exactly y's pennission; 
2) y is using rat the same time when x would like to use it, and r is such a resource that cannot 
be used by different agents at the same time. So, x depends on y's act of stopping using r; 
3) r is ~patially available to y, while it is not available to x, in the sense that r's location 
coincides with y's location, and x cannot use r unless y makes r's location change from hers to 
x's, that is, unless y gives r to x. 

Thus, it might be concluded that social dependence of x on y relative to p is always a 
dependence on y's actions of two SOf'!S: either actions which cause r to be available to x for p 

(stopping using r, giving r to X, pennitting x to use r), or actions which directly produce p** . 

3.2. Dependence via influencing 
Another interesting case of generation of DEP relations implies the mediating role of some 
agent's power of influencing another. Our basic definition of the power of influencing, 
INFL-POWER, is the following: 

D4. (INFL-POWER x y a p) =def (CANDO x a) 
/\ ((DONE-BY x a) :::> (EVENTUALLY (GOAL y p») 

That is: x has the power of influencing y if he CANDO such an act that makes y have p as a goal 
of her own. As we shall see in Seetion 4, this action generally implies making y beLieve 
something which is somehow related to p. For instance, an act of that sort might be a threat ("If 
you don't pursue p, I will thwart you in q'-- where q is some other goal of y's). 

If x depends on y relative to a für rcalizing P. and z has the power of influencing y to do 
a, then x depends also on z for realizing p: 

A2. (( S - DEP x y alP) /\ (INFL - POWER z y a 2 (DONE - BY Y al») :::> 
(S-DEP x z a2 p) 

** Moreover. a number of distinetions ean be done modifying definition 03. whieh describes an agent as the 
administrator of aresource. An agent ean be described as the only one able to do something by means of a given 
resource: 
03b. (CONTROL x r) =def Vy Va (CANDO x a) 1\ (RESOURCE r a) 1\ -.(CANDO y a). 
A third and stronger definition describes a controller as the agent who prevents others from using the resource: 
03c. (CONTROL x r) =def Vy 3al Va2 (CANDO x a1> 1\ -.(CANDO y a1> 1\ (RESOURCE r a2) 

1\ «DONE-BY x a1>::J -.(CANDO y a2» 
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We will discuss in more detail both the goal and the power of influencing and their relation with 
dependence in the next Section. 

3.3. Generative power of multiparty dependence 
Let us suppose a simple case of AND dependence, where x depends on more than one agent 
(say, on yand on z) for realizing p: ((S-DEP x y al p) 1\ (S-DEP x z a1 p)). This AND 
dependence may generate a further dependence of y on z, in case y is benevolent toward x. In 
[2] and [6], we argue against the notion of benevolence, suggesting some further refinement of 
it; however, to our current purposes, it is sufficient to refer to a simpler definition, in line with 
Cohen & Levesque's [4]: 

05. (BENEVOLENT y x p) =def (BEL Y (GOAL x p) ) ::> 

(EVENTUALLY (GOAL Y p) ) 

So, if y believes that x has the goal p then also ycomes to have the same goal p. 

Now, if y is benevolent toward x and believes that x has the goal that p, also y (besides 
x) comes to depend on z (provided y is unable to perform a 1)' since z's action a 1 is necessary 
for realizing p: 

A3.((S-DEPxyalP) 1\ (S-DEPxza1P) 

1\ (BENEVOLENT Y x p) ) 1\ (BEL Y (GOAL x p) ) :::> 
(S-DEP y z a1P) 

Of course, if in turn also z is benevolent toward x, yand z will mutually depend on eac~ other 
relative to p. 

4. PREDICTIVE POWER OF OEPENDENCE RELATIONSHIPS: FROM 
DEPENDENCE TO INFLUENCING 

One of the most interesting aspects of the DEP relations lays in their predictive power, that is, in 
the possibility to predict other social relationships and goals from dependence relationships. 

4.1. From dependence to the goal of influencing 
Among the social goals predictable from a dependence relationship, a crucial role is played by the 
goal 01 influencing. In our view, one's goal of influencing another is the goal of increasing the 
probabilities that the other pursues (or does not pursue) a certrun goal that p [2]. However, here 
we can propose a simplified version of that definition: so, by x's goal 01 inlluencing y, 
INFL -GOAL, we mean xs goal that y has a certain goal p: 

06. (INFL-GOAL x y p) =def (GOAL x (GOAL Y p)) 

Let us start from our basic definition of social dependence (see 02). First of all we need that this 
objective social relationship between x and y is assumed by x. In fact, one of the ways in which 
new goals are acquired implies that people leam they are involved in certain relationships. Now, 
by assuming his dependence on y relative to a, x will also ass urne that he can achieve his goal 
that p by means of y's performing a: (BEL x (S-DEP x y a p)) ::> (BEL x ((DONE-BY y 

a) ::> (EVENTUALLYp)). Then, according to a condition-action rule formulated as follows: 
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A4. ((BEL x ( q::> p) ) A (GOAL x p) ) ::> (GOAL x q) 

x will come to have the goal that (DONE-BY Y a), in order to achieve his goal that p: 

Tl. (BEL x (S-DEP x y a p» ::> (GOAL x (DONE-BY y a» 

So, if x believes he is dependem on y relative to a, then he will have the goal that y perforlns a. 
But given the postulate on rational agenthood, according to which, in order to perform an action, 
an agent must want that action, (GOAL x (DONE-BYy a» is actuallj' ~quivalent to (GOAL x 

(GOAL Y (DONE-BY y a) ) ) .Then xs dependence on y, when assumed, will also irrtply x's 

goal that y has the goal to do a: 

(BEL x (S-DEPxyap»::> (GOALx (GOALy (DONE-BYya») 

Now, being (GOAL x (GOAL y (DONE-BY y a») nothing but a goal of influencing y 

relative to the goal th~t (DONE-BY Y a) (see D6), xs dependence on y relative to a certain a 

useful for p will implv, when assumed, XS goal of influencing yto perform a: 

T2. (BELx .'S-DEF'xyap»::> (INFL-GOALxy (DONE-BYya» 

So, if an agent assurnes to be dependent on another relative to some goal, he will have the goal of 
influencing the other to perform the (set of) action(s) that allows him to achieve his goal. And, on 
the grounds of a given assumed DEP-net, a network is derivable of possible goals and actions of 
influencing (INFL-net). 

4.2. From dependence to power of influencing 
However, the goal of influencing is not sufficient for an agent to succeed in influencing another. 
Also the power of influencing is necessary, that is, the power of making someone do what we 
want. We have already provided a simplified definition of the power of influencing (see D4). 

Many are the possible bases of one's power of influencing. Wh at we are mainly 
interested in here is the power of influencing derivable from a dependence relationship. If x is 
(and assurnes to be) dependent on y's performing a certain act in view of p, y is quite likely to 

have the power of influencing x relative to some other goal of xs. We will try to describe the 
main steps of this derivation, which, it should be stressed, is but a rough derivation, and would 
surely benefit from a number of refinements. 

4.2.1. Dependence as a basis for the power of influencing 
As we know from Tl, if x assurnes his dependence on yrelative to a certain a (say, painting a 
wall) useful for p (having the wall painted), x will have the goal that y perforrns that action: 
(GOAL x (DONE-BY y a) ), e.g .. the goal that y paints the wall. 

Now we need some other condition -- some sort of "persuasive" power of y over x about a 
means-ends relationship between some action on x's part and y's action a. Suppose y has an 
action al such that x comes to believe that y will do a (painting the wall) if x perforrns some 
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other action a2 (giving ysome money). We can write something like: 

(CANDOyal) 

1\ ((DONE-BYyal)::J 

(EVENTUALLY (BEL x ((DONE-BY x a2) ::J (DONE-BY y a) )) ) ) 

Action al can be either a communicative act of promise (as in this case) or even threat, or any 

"demonstrative" behavior useful for making x believe the means-end relation between xs action 
and y's. 

Suppose also that (DONE-BY y al) holds. Now, as we know from the condition-action 
rule, A4, if x believes that q implies p and has the goal that p, then he will also have the goal 
that q. Applying the condition-action rule to xs goal that (DONE-BY y a), we obtain: 

((BELx ((DONE-BYxa2)::J (DONE-BYya))) 

1\ (GOAL x (DONE-BY y a) ) ) ::J (GOAL x (DONE-BY x a2) ) 

That is, x will come to have the goal of giving y the money (GOAL x (DONE-BY x a2) ), in 

order to obtain that (DONE-BY y a) -- on condition that the value of (DONE-BY y a) be 
greater than the cost of pursuing (DONE - BY x a 2): only in this case, in fact, x would accept 
(.nONE-BYx a2) as a goal of his own, in view of (DONE-BYya). So, y is in fact endowed 
wirh an action at such that (GOAL x (DONE-BYxa2)). This equals to saying that y, in 

virtue of both x's dependence on her and her ability to make x believe the implication 

(DONE - BY x a 2) ::J (DONE - BY Y a) , has the power of influencing x to (DONE - BY x a 2) : 

T3. ( (BEL x (S-DEPxyap)) 1\ (CANDOyal) 

1\ ((DONE-BY y al) ::J 

(EVENTUALLY (BEL x ( (DONE-BY x a2) ::J (DONE-BY y a) ) )) )::J 

) ) *** (INFL-POWERyxal (DONE-BYxa2 

4.3. The act of influencing: goal plus power of influenCing 
So far, we have observed that: x (the dependent agent) has the goal of influencing y, while y has 
the power of influencing x. But, in this situation, x is the one who is the most interested in 
influencing y. And having a goal is a necessary, but not sufficient, condition for pursuing it, that 
is, for transfonning that goal into an actual intention. A rational agent x, who is interested in 
influencing y relative to p, will pursue his goal of influencing y if he believes that goal to be 

*** The expression (CANOO y al) 1\ «OONE y al) ::::> (EVENTUALL Y (BEL x «(DüNE x a2)::::> (OONE y a»))) 
can be seen as an instantiation of a more general case of a relationship between two agents, where the former is 
able 10 make the latter believe something. In olher words a new predicate might be introduced, BEL-POWER, 
defined as folio ws: 
D7. (BEL-POWER x y a p)= def (CANOO x a) 1\ «OONE-BY x a)::::> (EVENTUALL Y (BEL y p») 
that is: x has the power to make y believe p if he can do an action a (be it a simple communication of a fact p -
for instance, saying "It is raining" -- or a more indirect and subtle persuasive strategy -- for instance, taking an 
umbrella before going out) such that y comes to believe p (for instance, that it is raining). A particular 
instantiation of D7 is the case when p corresponds to the implication between x's doing a2 and y's doing a. 
So, T3 might be rephrased as folIows: 
T3b. «BEL x (S-DEP x y a p» 1\ (BEL-POWER Y x al «OONE x a2) ::::> (OONE y a)))) ::::> 

(lNFL-POWER y x al (OONE x a2» 
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achievable; in particular, he must believe he has the power of influencing y. Now, what can he 
do in order to have that power? 

Of course, he can do a lot of things, among which just appealing to y's benevolence. But, 
again, in the context of dependence relationships, the strategy of greatest interest would be trying 
to find out some "dependence" 0/ y on him. In other words, x may try to derive his power of 
influencing y from y's dependence on hirn relative to some goal. The goal in question might 
even be the same p relative to which he ci~pends on y: in that case, x will try to persuade y that p 
is a common goal and that they (x and y) are related each other by a mutual DEP-link:; as already 
observed, this kind of dependence is typical of cooperation. Otherwise, x will try to find out 
some other goal q relative to which y may derend on him, and persuade y of their reciprocal 
dependence, that is typical of social exchange. 

5. CONCLUSIONS AND FURTHER DEVELOPMENTS 
In this paper we have tried to move some steps toward a theory of dependence in decentralized 
intelligent systems. Our aim has been to ~larify how to apply such a theory to the problem of 
communication control among agents. We have tried to show that dependence is the basis and the 
reason for social interaction. We have sketched how, starting from knowledge about 
dependence, it is possible for an agent to devise actions of influencing other agents that are 
"realistically" able to do what he needs. In our view, the realism sterns from the agent's coming 
to believe that he is involved in a dependence relation, and reasons and chooses to act according 
to that belief. 

The present stage of our study is strongly based on the analysis of human social behavior. 
Further efforts must be carried out in order to ac hieve a satisfactory theory of both formal and 
computational aspects. Moreover, a number of interesting aspects have been neglected here, and 
should be addressed in a further development of the model. 

First of all, one would need an analysis of the criteria for inference control in this model. In 
fact, innumerable dependence relationships may stern from all the possible benefits/detriments 
any agent may cause to another agent: if y's action repertoire includes an action whose effect 
avails or damages a goal of x's, x depends on y relative to that goal. Moreover, dependence 
relationships are in principle transient: a dependence relationship between x and y may arise from 
xs temporary lack of an enabling condition for pursuing a given goal. And the goal itself may be 
a very contingent one in x 's mind. Hence, the risk that dependence relationships proliferate 
without any possible control. 

In order to be able to select the most relevant dependence relationships within a given social 
world, and to predict various forms of social interaction on the grounds of these relevant 
relations, so me criteria for the relevance of dependence relationships should be postulated. 
Among them, a few criteria might be: the presence vs. absence of x's (the dependent person's) 
power of influencing y to perform the action a needed for realizing p; the "importance" of the 
goals with regard to which dependence occurs; the frequency of those goals; their being "active" , 
that is, their entering the agent's actual decision processes, versus "inactive"; the contingency 
versus permanence of the lack of power conditions producing dependence. 

Some quantitative aspects of dependence relationships would also improve the predictive 
power of the model. In particular, dependence may vary in its degree. The degree of dependence 
of x on y relative to p might be defined as the ratio between the stre/lgth of a lJEP-link, which is 
a function of the coefficient of value of the goal that p , and the /lumbe,. 0/ alternatives (agents 
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other than yon which x may depend) available to x. The higher the degree of dependence the 
more relevant the dependence relationship in question. 

Finally, possible predictions might be put forward about the communicative acts occurring 
between agents in a dependence relationship: in fact, various communicative acts (requests, 
commands. etc.) might be inferred on the grounds of, say, the type of resource x needs from y 
(infonnation, physical action, etc.) and the particular goal x needs to influence yto pursue. 
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Abstract 

Research in Distributed Artificial Intelligence (DAI) often consid
ers the problem of how best to utilize multiple automated agents to ac
complish a given task. A canonical problem, the Pursuit Problem [1], 
was suggested as a useful tool for evaluating alternative approaches to 
the distribut.ion of knowledge and control among intelligent, cooper
ative problem-solvers. Work on the Pursuit Problem was carried out 
by several researchers; for example, Stephens and Merx [14] compare 
alternative approaches to solving the problem. 

In [5], agame theoretic model was proposed for DAI in which each 
agent works for his own selfish goals. In this paper, we suggest a 
method for solving the Pursuit Problem using game theoretic tech
niques , by incorporating the global goal of a group of agents into their 
local interests. Although applied to the Pursuit Problem, the tech
nique has wider applicability throughout DA!. We present the results 
of a simulation of the game theory model for the Pursuit Problem, 
and compare results to those of other models. 
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1 Introd uction 

Research in Distributed Artificial Intelligence (DAI) often considers the prob
lem of how best to utilize multiple automated agents to accomplish a given 
task. Work in DAI has made use of several approache~ to thedistribu
tion of knowledge and control among intelligent, cooperative problerh-solvers. 
The contract-net model of Davis and S.nith [3] uses bidding and contracting 
to achieve cooperation in the assignment of tasks to processors in a multi
processor system. Malone et al. [10] refined the above framework by intro
ducing a more explicit economic model to cooperation. 

Another direction of research is presented in [lJ. It is assumed that co
operation among agents is a function of their organizational structure and 
the way they communica.te with one another. Benda et al. examined several 
organizational structures, consisting of three basic components (communicat
ing agents, negotiating agents, and a controlling agent) in connection wi th a 
pursuit problem, first presented in that research. 

The Pursuit Problem models a configuration of four intelligent agents, 
together performing a gi yen task that requires some sort of coordination (ex
plicit or implicit). Four blue agents, positioned on different locations over a 
grid, are attempting to surround a fifth red agent. See Figure 1. The red 
agent moves randomly in any possible direction (i.e., one not blocked by a 
blue agent). In addition to the global goal of the system, each agent may have 
some local goal of its own. Those local needs may contradict both the co m
mon goal and local goals of other agents. Some sort of negotiation (explici t 
or implicit) might be used to achieve a compromise. Benda et al. concluded 
that an organization with one controlling agent and three communicating 
agents was the best to solve the problem. 

Similar conclusions are suggested by Stephens and Merx [14]. They com
pare the results of using different approaches for solving the Pursuit Problem 
(autonomous agents, communicating agents, controlling agent, and negoti
ating agents), and show that the controlling agent model is superior to the 
others. It guarantees capture of the red agent in all 6 test cases, in a rela
tively small nu mb er of moves. They also noted that the autonomous agents 
model was the least satisfactory approach, with the explanation that since 
each agent has a local goal, they did not work efficiently towards achieving 
the global goal, sometimes completely failing to achieve that global goal. 

Gasser and Rouquette [4] developed a framework for representing orga-
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Figure 1: The Pursuit Problem 

nizational knowledge, using the pursuit game, to investigate decentralized 
coordination mechanisms. Their analysis introduces a si x-phase solution, 
where each phase involves a different organization of agents. Singh [13J ap
plied his theory of "group intentions" to the pursuit problem to demonstrate 
that theory's general utility to DA!. 

Rosenschein et al. [11, 5, 16J analyze various rationality assumptions on 
multi-agent system behavior, along with their implications. These results 
(such as the existence of dominance analysis, and iterated dominance analy
sis) suggest that Game Theory techniques, along with appropriate rationality 
assumptions, might allow greater ftexibility in the autonomous agents model 
of coordination. One of the goals of this work is to suggest a method for 
incorporating global goals into the local interests of all agents through the 
use of Game Theory techniques. 

2 N ecessary Concepts from Game Theory 

In order to clarify our discussion in the following sections, we here give a 
brief overview of concepts, definitions and theorems of Game Theory. The 
material covered he re is mainly due to Von Neumann and Morgenstern, Nash, 
Maschler and Davis, and Shapley. 

2.1 Non-Cooperative Games 

Let N be a set of n players, N = {I, ... , n}. Let Si be a finite set of strategies 
for player i, i E N. We will denote by S the cartesian product Sl x··· X sn. 
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Definition 1 A Finite Non-Cooperative Game in Normal Form is a system 
G = (SI, ... , sn; HI, ... , Hn), where Si is a non-empty set of strategies of 
player i, and Hi is a payojJ function, Hi : S --+ R for player i, i E N. 

One of the interesting questions about non-cooperative games is whether 
a player can guarante'e his minimal payoff. It is reasonable that a player 
might prefer to :.Ise c.. "solid" strategy that provides some guaranteed income 
(though minimal), over taking risks for the chance of making a larger profit, 
but also with a higher probability of losing. This leads us to the concept 
of equilibrium points. Definition 2 states the following about an equilibrium 
point: for each player, as long as the other players maintain their same 
strategies, his current strategy is the best he's got. 

Definition 2 An n-tuple of strategies sES is a N ash Equilibrium Point if 
for each player i, i E N, and for each strategy;; of player i, 

Hi(sl;;) ~ Hi(s) 

where the strategy si;; is derived from s by substituting ;; for si . 

In pure strategies, such equilibrium points do not always exist, and even 
when they do exist , they are not necessarily the best solution for games (the 
well-known Prisoners' Dilemma is an example of this). 

2.2 Cooperative Games 

Games with side-payments are games in which the participants get immediate 
(and transferable) utility (that is, money). In a cooperative game (with 
side payments), some players may form a coalition and together design their 
strategies so they can increase their total income. This total income then 
has to be shared-in some manner-among all the coalition's members. The 
theory of cooperative games (with side-payments) assurnes that a coalition 
achieves so me payment, and deals with the different methods for sharing the 
profit. 

Definition 3 We define a Cooperative Game in Coalitional Form with s;.de
payments as a pair (N, v), where N is the set of players, and v : 2N --+ R is 
a payojJ function, wherl; v(S) is the payment to coalition S, and v(0) = O. 
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A cooperative game is therefore stated in terms of the coalitional function 
v. Note that no strategies appear in the definition. Once a coalition is formed, 
it is of no concern how it gains its utiiity. A player should take into account 
the coalitions he may pa.rticipa.te in and their incomes, and decide which 
coalition is the best fOl hirn. We will be using the Shapley Value [12] in 
order to determine the way in which the income is dividedj this technique 
provides us with a single payoff vector specifying the income distribution. 

Definition 4 A Payoff Vector for N is a function x : N ~ R. 

The i-th coordinate in the payoff vector x corresponds to the payment for 
player i. Let GN be the set of all cooperative games over N. 

Definition 5 A solution to cooperative games is a function 'Ij; : GN ~ RN. 

The function 'Ij! represents a method for sharing v( N) among all players in 
N. 

The Shapley value satisfies three properties (see [15]). The symmetry 
property guarantees that there is no preference by the solution of one player 
over another player. \Vhat is important to the solution concept is not the 
identity of a player, but the role it plays. Efficiency guarantees that players 
cannot get (according to the solution) more than N can afford. Finally, 
the marginality principle states that a player's "value" to the coalition is 
measured by his contribution to the coalition. 

The Shapley Value may be calculated using the following formula: 

'lj!i(V) = L (n -151 ~ I)! 151! [v(5U {i}) - v(5)] 
SCN,ii.S n. 

3 A Model for the Pursuit Problem 

From our game theoretic point of view, the Pursuit Problem has two aspects 
to be considered. First of all, the players should be given methods for solving 
the game, so that they have the ability to cope with problems they face. In 
addition, we must also set the payment policy according to which the players 
are being paid for their actions. The idea that local interests of the players 
should not interfere with the global goal of the group of players should be 
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incorporated into the payment policy of the game. We are integrating aglobai 
goal into agents' loeal goa.ls, not replacing their local goals with a global goal. 
Another of our design aims for the system was to have the agents reach a 
solution with the minimum amount of communication. 

3.1 Payment Policy 

The payment policy we suggest incorporates two ideas. First, the conver
gen ce to the final state should be as dose as possible to optimal (i.e., fast). 
Moreover, it should ultimately represent the global interest of the system 
(i.e., capture). Therefore, the payoff function is the sum of two distinct 
arguments. 

For every move, a player is paid an amount of money proportional to 
the difference of his distance from the' red agent before and after the move. 
Distance is measured using city block metries. This amount of money may be 
positive or negative (or zero, if the player decides to remain in his positioL). 
This argument of the payoff function causes the agent to prefer moves tLat 
tend to bring the player doser to the red agent. 

The second argument of the payoff function encourages agents to coordi
nate their actions and block the red agent.! Given a coordinated strategy of 
a coalition S ~ N, we thus use the following arguments: 

• The sum of differences in players' distance from the red agent (using 
the ci ty- block metries ). We denote this sum by LiES di . 

• The number of blocked escape directions of the red agent, using the 
strategy of S. Let ks designate this number. 

In order to emphasize the importance of cooperation among players, it 
is suggested that the second argument of the payoff function will be the 
ks 's power of some number (unless ks is zero, in which case the second 
argument will also be zero). There is, however, one point which must be 
taken into account: the payoff function should make a distinction between a 
cooperati ve and a non-cooperati ve coali tion. This distinction is essential to 

IThe red agent can move in one of four possible directions. We say that a coalition has 
"blocked" an escape direction if some member of the coalition could physically obstruct 
that direction were the red agent to choose it. The coalition is rewarded for the number 
of directions that are simultaneously blocked as a result of its actions. 
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Figure 2: An Example With Two Players 

characterizing equilibrium points, as discussed in Section 4.1. For example, 
consider the second argument to be 2ks . There is no way to distinguish 
between a coalition of two players who together block one escape-direction 
(the payoff to this coali tion should be 2 + 21 = 4), and four players moving 
separately, blocking no escape-direction (the non-cooperative "coalition" of 
four thus gets 4 + 0 = 4). A similar argument holds for both 3ks and 4ks . As 
shown in Section 4.1, the proof of the characterization lemma i~ based on a 
base of 5 for ks . Hence it was chosen for the payoff function. 
Example. Consider Figure 2, in which only two players appear, for sim
plicity. N, therefore, is the set {l,2}, and: 

v(0) = 0 

v( {l}) = L i + 5k
{l} = 1 + 5 = 6 

iE{1 } 

v( {2}) = L di + 5k
{2} = 1 + 5 = 6 

iE{2} 

v( {I, 2}) = L ~ + 5k
{l,2} = 2 + 52 = 27 

iE{I,2} 

4 Solution Algorithms 

We derive a solution that mixes cooperative games with non-cooperative 
games. As each player has to make its own decision, without explicit coordi
nation with the others, each player has to solve a four-player non-cooperative 
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game with side payments. This game will be denoted by C, and what follows 
is a description of how it should be constructed. 

The set of agents (or players) is: 

N = {l,2,3,4} 

Each player i E N has a set of pure strategies, given by: 

5 i = {South, West, North, East, Stay} 

Let 5 be defined by: 
5 = rr 5 i 

iEN 

We use H i (s) in order to specify the payoff to player i for a strategy 
s E 5. Using the payment policy described in the previous section, notice 
that each move s E 5 actually defines a four-player coo0erative game with 
side-payments in the following manner: let T ~ N be a coalition of players. 
Then 

vs(T) = { LiET d
i + 5kT 

if kT =f 0 
o if kT = 0 

and 
vs (0) = 0 

We refer to this cooperative game as the "local game" for that move. 
The amount of utility, represented by vs(N), will be shared among the four 
players in accordance with the Shapley value. Player i (for i E N) will get 
'ljJi( vs), where 'ljJ represents the Shapley value, and 

I: 'ljJi(vs) = vs(N) 
iEN 

Having solved the local game, a player should now return to the "global" 
non-cooperative game, and define the payoff function for player i (i E N) for 
each move s E 5 by: 

Hi ( s) = 'ljJ i ( V s ) 

Hence, we complete the formalism of the non-cooperative game, and let 
C be: 

G = (51 52 53 54. H l H 2 H 3 H 4 ) , , " , , , 
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The game G may be constructed, analyzed and solved by each player on 
its own. Because of the desirable properties of equilibrium points, we design 
our agents so that they choose to play a strategy that corresponds to an 
equilibrium point in G. 

4.1 Equilibrium Points 

In this section we inspect the relation of equilibrium points to what we shall 
call "optimal points." For our purposes, an optimal point represents moves 
that are best for the system as a whole. It turns out that the game G defined 
above has at lea.st one equilibrium point, depending on the specific scenario. 

Definition 6 A coordinated strategy x E S is said to be an optimal point 
in G (defined above) if for all y E S the following condition holds: 

x(N) = L hi(x) ~ L hi(y) : ~ y(N) 
iEN iEN 

At an optimal point, the coalition N gets the maximum amount of utility 
it ean get in G. 

Theorem 1 A point x E S is an equilibrium point in G if and only if x zs 
an optimal point in G. 

For the proof of this theorem and subsequent ones, see [9]. A straightforward 
eorollary of the theorem is the following: 

Corollary 1 G does have an equilibrium point, since surely it has an optimal 
point. 

There are situations in whieh there exist more than one equilibrium point. 
An example of such a situation appears in Example 4.1. 
Example. 

Consider Figure 3. Players 3 and 4 have two symmetrie directions in 
whieh they can move (regarding distanee from the red agent, and blocking 
eseape-direetions). Therefore, every two strategies of the form 

(Si, S2 , EAST, SOUT H) 

(sl,s2,SOUTH, WEST) 
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Figure 3: A Situation With Two Equilibrium Points 

will be equal in worth to each other. 
The payment to the group of all players, N, is the same for all optimal 

points (this follows immediately from the definition of optimal points). Can 
there be different situations in which N receives the same payment, and what 
characterizes such situations? 

Lemma 1 Ef at two poinls in G, N gets the same payment, then: 

1. The number of blocked escape directions in the two points is the same. 

2. The total difference in the distance of players from the red agent is the 
same in the two points. 

For the proof, see [9]. The proof uses the constant 5 as the base of the 
second argument in the payoff function as a result of the fact that there are 
4 blue agents. Were there .5 blue agents, the base would thus need to be 6. 

4.2 Scope and Limitations of the Algorithm 

One of the main goaJs of our system design was to minimize the need for 
communication among agents. From our experiments we concluded that in 
our model, a general solution without any communication is impossible. 2 

Consider the left side of Figure 4 in which the two blue agents are at 
distance 3 from each other. Agent 1 will surely select SaUT H as his next 
move. Agent 2 may choose SaUT H or WEST (ignore for the moment 

20bviously, another model. even one that continues to use Game Theory, might have 
different properties, and may weIl have different !imitations as weil. 
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Figure 4: Typical Problems, Cases 1 and 2 

agents 3 and 4, and the exact equilibrium points). If agents 1 and 2 would 
not coordinate themselves via a negotiation process, agent 2 may move to 
the WEST and block agent 1, who cannot recover from this afterwards. In 
the right side of Figure 4 (distance 2 between agents) coordination is needed 
to prevent a situation where both agents move to the same location (agent 
1 moves to the SOUTH, agent 2 to the WEST). 

Experimental results supported the hypothesis that if the distance be
tween agents is 3 or less (using city block metrics), explicit negotiation is 
needed to synchronize them. 

5 Experimental Results 

A computer progra.m to implement our model was written in Common Lisp. 
Two questions were to be tested and answered by the simulation: 

• Wh at are the initial states of the problem for which the model does 
provide suitable solutions? 

• How does t.he exist.ence of more than a single equilibrium point affect 
the need for communication? 

The question of "convergent" initial states, i.e., those states for which 
we know the solution to converge, depends on the definition of the payoff 
function. Therefore, the following discussion is closely tied to our particular 
payoff function. Onee a player identifies a single free escape direction, he 
does not give it up. If two (or more) players compete over that direction , 
the solution will probably not converge. We say "probably" because random 
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Figure 5: Step 8 of Case land Step 7 of Case 11 

movements of the red a.gent may change one situation into the other one, 
in which the solution may converge. In other words, if the initial state is 
such that resources are available to players, and all t.hey have to do is decide 
on the b~st method to share them, then success is guaranteed (subject to 
random l'ehavior of the red agent) . In order to cope with situations in which 
r' sources are not directly available, one should correct the payoff function in 
a 1 appropriate wai 

In order to ans wer the question of how multiple equilibrium points affect 
the need for communication, let us turn to an example (the middle of the 
game is seen on the left side of Figure 5). The original problem was sol ved in 
11 moves, but from step 8 on, interference of an outside user (who simulates 
a.n inter-agent discussion to resolve symmetrical equilibrium points) is neces
sc.ry. The answer of the outside user on step 3 and 4 is actually an arbitrary 
selection. However, from step 8 in test-case land step 7 in test-case 11 (see 
Figure 5), a bit of thought must be given in order to prevent the game from 
reaching a dead end. This is necessary because in those steps, blue agents 
1 and 2 get too elose to each other. When agents sense tha'~ they are very 
elose, they should coordinate via communication, so that they can prevent 
themselves from competing over the same resource. 

In Section 4.1 we discuss the symmetry of multiple equilibrium points, 
and show that this symmetry indicates the existence of equivalent actions by 
one or more players. Test cases land 11 show that as long as the blue agents 
who have symmetrie actions are far from each other and from the red agent, 
there is no importance to the equilibrium point that is selected. However, 
as the blue agents get closer to the red agent (up to a distance of 3 or less 
from the red agent), the significance of intra-agent communication grows, 
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and sometimes becomes necessary. These phenomena may also be observed 
from other test cases. See [9] for full experimental test results. . 

One problem that needed to be a0.dressed in the simulation was that 
of calculating equilibrium points in non-cooperative games. This subject 
is discussed in the literat ure' (see, for example, the work of Chin et al. [2], 
Harsanyi [6] and Rosenmüller [7]). There are several mathematical algo
rithms to find and calculate equilibrium points in such games. In the actual 
implementation, however, we used a simple exhaustive search over all points 
in the non-cooperative game in order to find equilibrium points. In a more 
realistic system, simplicity would be abandoned in favor of efficiency. 

6 Comparison and Conclusions 

In [14], Stephens and Merx summarize the performance results of four meth
ods of solution on six different scenarios. They specify three possible out
comes, capture, stalemate, and es cape. We used the six scenariosas test cases 
for our simulation. The results are summarized in Appendix A. In three of 
the cases the game ended in the capture of the red agent, and in two others 
in stalemate. In one case (scenario 1 of [14]) the simulation did not even 
get dose to the solution, with all the agents dustered far away from the red 
agent and satisfied to remain there. The payoff function was not designed 
for that kind of situation a.nd failed to motivate the blue agents to capture 
the red agent. Table 1 extends Table 4 in [14] to include our results. 

Interestingly, our model fails in scenario 6 where all other models succeed. 
This result demonstrates the nature of the underlying model. In the first few 
stages of the game, the agents appear to be proceeding correctly. However, 
at a particular point nea.r the end of the game, the agents continue in their 
rush towards the original capture positions, even though the red agent has 
meanwhile scurried away. In Section 5 we pointed out that communication 
should be used to select one of several equilibrium points. This example 
shows that there are cases in which communication might also be used to 
prevent the system agents from taking a misguided path. 

Although there are random elements involved (i.e., the movement of the 
red agent), we can still reach some preliminary condusions regarding the 
effectiveness of our model. In those cases for whom our payoff function 
is known to be appropriate, the results show convergence to the solution, 
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s'ometimes with a shorter number of moves than in other methods. However, 
the definition of the payoff function has the disadvantage of not covering 
all cases, as seen by ca.<:~s 1, 5 and 6. To its credit, however, agents in 
this model do not need ,to communicate with one another most of the time. 
Communication is needed only when agents get elose to other agents. 

See [9] for the application of these techniques to the real-world problem 
presented originally in [8].· 
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A Test Results 

Table 1: C0!llparison Of Performance Results 

DAI System Scenario 1 Scenario 2 
I 

Moves Outcome Moves Outcome I 

Autonomous-Agent 10 Escape 10 Stalemate 
Limited-Communication 10 Escape 10 Stalemate 
N egotiating -Agen t 11 Stalemate 11 Capture 
Controlling-Agent 17 Capture 12 Capture 
Game-Theory None Escape 8 Capture 

DAI System Scenario 3 Scenario 4 
Moves Outcome Moves Outcome 

Au tonomous- Agent 7 Stalemate 10 Stalemate 
Limi ted -Communication 7 Stalemate 10 Stalemate 
Negotiating-Agent 8 Capture 11 Capture 
Con t rolling -Agen t 10 Capture 12 Capture 
Game-Theory 7 Capture 15 Capture 

DAI System Scenario 5 Scenario 6 
I 

Moves Outcome Moves Outcome I 

Autonomous-Agent 7 Stalemate 7 Capture 
Limited-Communication 7 Stalemate 7 Capture 
N egotiating-Agent 8 Capture 8 Capture 
Controlling-Agent 10 Capture 10 Capture 
Game-Theory 6 Stalemate 6 Stalemate 
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