
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI Workshop
on

Planning

Document
0-92-07

Kaiserslautern, February 5, 1992

Proceedings

Susanne Biundo, Franz Schmalhofer (Eds.)

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
0-6750 Kaiserslautern, FRG
Tel.: (+49631)205-3211/13
Fax: (+49631) 205-3210

StuhlsaLZenhausweg 3
0 -6600 Saarbrücken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips ,
SEMA Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently , there are the föllowing research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

DFKI Workshop on Planning

Susanne Biundo, Franz Schmalhofer (Eds.)

0-92-07

© Deutsches Forschungszentrum für Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

DFKI Workshop on Planning
Proceedings

Susanne Biundo and Franz Schmalhofer (Eds.)

Kaiserslautern, February 5, 1992

List of Participants

Elisabeth Andre
Mathias Bauer
Ansgar Bernardi
Ralph Bergmann
Hans-J ürgen Bürckert
Alastair Burt
Susanne Biundo
Andreas Dannenmann
Dietmar Dengier
Dirk Fedeler
Klaus Fischer
Christoph Globig
Matthias Hecking
Andrea Hemprich
Knut Hinkelmann
Christoph Klauck
J ana Koehler
Norbert Kuhn
Otto Kühn
Ralf Legleitner
Michael Marlburg
Gaby Merziger
Jürgen Müller
Bernhard Nebel
Thomas Rist
Franz Schmalhofer
Gabriele Schmidt
Andreas Schroth
Sonja Weber
Wolfgang Wilke
Otto Kühn
Gabriele Schmidt

2

Preface

This document contains the \Ja\->ers present.ed at the first Dl·'l'l workshop on pla!l
ning. The workshop was organized in order to bring together people from different.
projects working on different. planning issues . Almost aU projects contributed a
paper, indicating that planning currently plays a central role at DFKI.

There were thirteen talks in five sessions. Most of them were concerned with special
aspects of planning, like representation, recognition, validation, generation, and
modification. Two of the talks addressed planning in manufacturing and distributed
planning, respectively.

One main point 01' discussion was devoted to different notions 01' planning: plan
nirtg being the refinement 01' already existing skeletal plans (plan schemat.a) versus
planning as the construction process 01' (instantiations of) t.hese plan schemata. Im
portant questions refered to feasibility and efficiency aspects 01' the resulting plans
as weil as to the efficiency and ftexibility of the planning processes themselves.
As a result it seems worth to investigate the connections between these two differ
ent views of planning in order to find general concepts realized in both or to make
methods used in one available for the other and vice versa.

Another observation was the increasing interest in plans containing control struc
tures like conditionals and loops. They could be found in dassical as weil as in
deductive plallning approaches. According to the different views 01' planning the
formation 01 these plans was addressed in different ways . Here exists a dose con
nection to various program synthesis paradigms.

In summary, the workshop has provided a general survey 01' current work on planning

at DFKI and thus constitutes an enabling factor for establishing tighter cooperations
among the various projects. Future workshops about special planning issues should
be envisaged as work proceeds in the particular projects.

We would like to thank the authors for their effort in contributing many interesting

papers and we are greately inclebted to all participants for many lively and fruitful
JiscussioIlS.

Susanne ßiundo Frauz Schmalhofer

3

Contents

Preface

Plan Representation and Knowledge Acquisition
Andreas Schroth

Plan RepT'esentatlOn

Otto Kühn and Gabriele Schmidt

3

5

J(nowledge Acquisition for Hierarchical Skeletal Plan Refinement . 10

Plan Recognition and Validation
Matthias Hecking and Mathias Bauer and Gaby Merziger
Iterative Plan Recognition

Bernard Nebel and Christer Bäckström

On the Computational Complexity of Temporal Projection and Plan

Validation .

Ralph Bergmann and Franz Schmalhofer
Learning Plan Abstractions: Formal Model and Method

Plan Generation
Elisabeth Andre and Thomas Rist

The Design of Illustrated Documents as a Planning Problem

Susanne Biundo and Dietmar Dengier
Deductive Planning in a Command Language Environment

Plan Modification and Abduction
Knut. Hillkelmallll

15

19

22

27

32

Planning as Transformation oI Declaratzve RepT'esentations in COLA B 37

J ana Kodder
A Deductive Approach to Plan Modification 42
Alastair Burt
Abduction and Planning

Planning in Production Environments and Distributed Planning
Klaus Fischer

46

Concepts foT' HieraT'chical Planning in a Flexible Manufacturing System 51

Ansgar Bernardi and Christoph Klauck and Ralph Legleitner
PIM - Plannzng In Manufactu.7'ing 56
Norbert Kuhn and Jürgen Müller
Multi-agent Planning . 61

4

Plan Representation

Andreas Schroth
AKA-MOD

Gennan Research Center für Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: schrüth@dfki.uni-sb.de

Abstract

The paper suggests a representation formalism for plans of autonomous
cooperating agents in achanging environment. A model of case-based, oppor
tunistic, hierarchical and reaktive planning is developed. A special feature of
the approach is, that reasoning steps are viewed as actions and thus can be
planned. A plan for cooperating forklifts in a loading-dock scenario is given
as a small example .

5

1 Introduction

This paper suggests a representation formalism for plans of autonomous cooperating
agents in achanging environment. A special feature of the approach is, that reason
ing steps are viewed as actions and thus can be planned. The presented formalism
will be furt her developed in the DFKI project AKA-Mod.

2 Aims of the Model

Cooperating agents act in achanging environment. On the one hand we have
to assurne that an agent's knowledge about the world is incomplete. This means
that the world does not always behave as the agent anticipates. On the other hand
the world state is sometimes affected by other agents without the agent directly
realizing this. The agent has to recognize the changes later and to update his
knowledge accordingly.
U nder those circumstances an agent needs the ability of reactive behaviour. An
agent's plan has to be flexible enough to permit hirn to react on unexpected con
ditions. The process of planning or reasoning in general must not take up so much
of the agent's time that he can't react spontaneously on dangerous situations any
more.
Nevertheless complex plans should be represented explicitly, (the agent's be
haviour should not just be determined by independent rules ,) so that the represent·
ing structure is available for inferences and moreover intentions concerning the plan
can be represented.
Reasoning steps should be treated as actions. Then the reasoning process and es
pecially the planning process can be planned, so that meta-planning (cf. [Wilensky83)'
becomes feasible. This requires the reasoning process to be split up into modules
which are able to change the agents knowledge. These reasoning actions can be
executed opportunistically. For example more or less time-consuming inferences can
be choosen depending on the time the agent has left, and resulting in more or less
optimized plans.
Some examples for reasoning activities that should be treated as described are:
plan generation, efficiency analysis of intended plans, plan optimization, conftict
detection, deadlock control, plan reorganization after a failure, reasoning about
causaIity and about resources, and inferences on knowledge. More examples can
easily be found.
In achanging environment hierarchical planning (cf. [Wilkins84]) is appropriate.
The agent makes available a not fully specified (i.e. abstract) plan for all of his goals.
Parts of the plan which are Iikely to be executed soon are expanded (particularized)
first, other ones not before the necessary information has been learned . In doillg so
the agent is able to specify his plan according to the actual situation.
Thereby planning and plan execution are interlinked, planning is done at
execution time when this is opportune.
Since actions are expanded depending on contextual information and at the appro
priate time, opportunistic planning is supported both for reasoning steps and

6

for 'normal' actions. (For the original approach to opportunistic planning refer to
[Hayes- Roth85].)
According to the fundamental idea of case-based reasoning we treat planning as
beeing based on standard plans. In the normal case the agent will know a plan to
achieve his goals, he will not have to construct a plan from scratch. As a rule, the
agent will retrieve a (possibly abstract) plan and specify or modify it appropriately
to the circumstances. (cf. [Hammond89])
Altogether we gain a model of case-based, opportunistic, hierachical and reactive
planning.

3 Plan Representation

Due to the limited space only a brief summary of the representation formalism will
be given here. The formalism is conceptually related to [McDermott91].

<predicate>
refers to an expression that can easily be evaluated in respect of the agent's knowl
edge base. Complex evaluations should be formalized as actions (see below) .
Special actions are writen as

(<action-name> {<parameter>}*)
and will be expanded from the agent 's knowledge base.
Some examples are:

• (succeed) , (fail) ,
representing the always succeeding / failing actionj
• (wait <time-period>) , (wait-until <predicate>)
i.e. suspend the plan's presently active branch and continue with another one beeing
declared as an alternative by an and-construct (see below)j
• complex evaluations should be executed as special actions

(evaluate <function>) ;
• (set <variable> <function>)
assigns a value to a variable being either local with respect to the plan or global in
the agent's knowledge base;
• (achieve <predicate>)
calls the planner that will make available a plan to achieve the goal <predicate>.
Actions are combined to more complex actions by structuring constructs like:
• if <predicate> then <action> else <action>
enables conditional plans;

• or ({<action>}+)
chooses randomly or by means of a more complex strategy one of the <action>s;

• and ({<action>} +)
executes all of the <action>s in turn; if the currently active action is suspended by
a wai t-action, an alternative action becomes active;
• seq ({<action>} +) , simult ({<action>} +)
executes actions sequentially / simultaneously;
• loop while <predicate> <action> , loop until <predicate> <action>

7

repeats actions.

Agents with incomplete knowledge have to be able to reorganize their plan in case of
a failing action. The failure of a su baction of a hierachical plan does not necessarily
mean that every superordinate (more abstract) action has become impracticable and
also will have to fail. Furthermore, a plan's abstraction hierarchy defines a causal
relation among more concrete and more abstract actions. A cleaver error handling
procedure will choose an appropriate level of abstraction within the hierarchical
plan structure that constitutes the action to be replanned and (if possible) to be
executed. We regard the knowledge that controls this selection as depending on and
belonging to the plan and therefore represent it in the plan itself.
This is done by specifying an error handling strategy for appropriate actions.

do <action1> if-fail <action2>
will catch the failure of a subaction of <action1>, execute the error-handling action
<action2> and thereafter reenter the whole do-construct.

4 An Example

Imagine a loading-dock scenario where some forklifts have the task to transport
some boxes from a store to a truck. Each forklift is assumed to have the top-level
plan

seq ((ascertain Now-Situation)
do (main-action)

if-fail (ascertain Now-Situation)
%%% and thereafter reenter the do-construct

) .
main-action is expanded at planning time to the loop

loop until (Now-Situation = Goal-Situation)
seq ((choose-some-boxes-to-transport-first)

(search-one-of-these- boxes)
(move- the-found- box-on-truck)
(ascertain Now-Situation)) ,

where the low-Ievel actions will be expanded opportunistically at execution time.
Any failure at this hierarchical level will result in arepetition of main-action, i.e.
in updating the forklifts knowledge and then trying to execute the whole main-action
loop again . A more sophisticated error handling strategy would be to continue with
the most promising subaction of main-action, depending on contextual information.
This behaviour had to be formulated with conditional failure treatment clauses, i.e.

if-fail if <contextual-information> then <action> else (fail) .

References

[Hammond89] Harrunond, K.J.: Case-Based Planning. Academic Press, Boston,
1989.

8

[Hayes-Roth85] Hayes-Roth, B.: A Blackboard Architecture for Control. Art. Int.,
26, pp 251-321, 1985.

[McDermott91] McDermott, D.: A Reactive Plan Language. Yale CSD Report 864,
1991.

[Wilensky83] Wilensky, R.: Planning and Understanding. Addison- Wesley, Read
ing, MA, 1983.

[Wilkins84] Wilkins, D.E.: Domain-Independent Planning: Representation and
Plan Generation. Art. Int., 22, pp 269-301, 1984

9

Knowledge Acquisition for
Hierarchical Skeletal Plan Refinement

Otto Kühn Gabriele Schmidt
ARC-TEC

Gennan Research Center for Artificial Intelligence (DFKI)
Postfach 2080

6750 Kaiserslautern
Germany

e-mail: kuehn@dfki.uni-kl.deschmidt@dfki.uni-kl.de

Abstract

Plans which were constructed by human experts and have been repeatedly
executed to the complete satisfaction of some customer in a complex real world
domain contain very valuable planning knowledge. In order to make this com
piled knowledge re-usable for novel situations, it is suggested to construct a
hierarchy of nested problem description modules of different grain sizes . With
these problem description modules, hierarchically structured problem classes
are defined so that appropriate skeletal plans can be associated. The thus
selected skeletal plans have to be refined with respect to the actual situation .
This approach is termed hierarchical skeletal plan refinement.

An analysis of the real world domain of mechanical engineering revealed
that such problem classes and associated skeletal plans can be constructed
for production planning problems. It was shown how hierarchical skeletal
plan refinement can be accomplished with an integrated knowledge acquisi
tion procedure that is supported by three coordinated tools . The first knowl
edge acquisition tool CECoS has been developed for delineating and defining
hierarchies of problem classes from a number of selected cases and hier ar
chies of operator classes or partial plans from a number of concrete plan
steps . The knowledge acquisition tool.COKAM+ is applied to acquire inter
actively formal descriptions of the operators and the appropriate task-related
and common sense knowledge from text. With the tool SPGEN a skeletal
plan with application conditions is then constructed for each problem class
with an explanation-based learning procedure. These skeletal plans consist of
a set of general operators and their dependencies.

10

1 Hierarchical Skeletal Plan Refinement for Production
Planning in Mechanical Engineering

The problem of production planning in mechanical engineering consists of finding
an adequate production plan for a given workpiece which is to be manufactured in
some factory [TSR91]. For the manufacturing of a rotational part, the production
plan specifies the sequence of chucking and cutting operations by which the work
piece can be manufactured. An adequate planning method for this problem must
take into account the enormous complexity of this real world domain. Traditional
planning methods, such as generating and testing various sequences of actions or
pure hierarchical planning, are bound to fail due to the exorbitant number of pos
sible operations and the various requirements which a good plan must fulfill. The
planning method of hierarchical skeletal plan refinement not only meets the men
tioned requirements, but at an abstract level it also reflects the expert's problem
solving which typically consists of two phases: the selection of a skeletal plan and
its subsequent refinement.
The selection of a skeletal plan is based on abstract features of the problem de
scription and of the available resources specified in the environment and context
description. The selected skeletal plan is an abstract sketch of the intended manu
facturing process. An executable production plan is obtained by refining the skeletal
plan with respect to the concrete data given in the problem and environment de
scriptions.
The general structure of the expert system which is being developed can be described
by the model of expertise [BW89]. l,From the concrete description of the workpiece
and the available manufacturing environment more abstract feature descriptions are
first constructed. These abstractions are then associated with a skeletal plan from
a hierarchy that has been stored in the knowledge base. The skeletal plan is finally
refined with the help of the workpiece and the factory description into the concrete
production plan.
The model of expertise [KS92] specifies what kind of knowledge has to be acquired
for the expert system, namely abstraction rules, refinement rules and hierarchies of
skeletal plaos which are associated with features of the problem description.

2 Integrated Knowledge Acquisition Method

An integrated knowledge acquisition method [SKS91] is developed to acquired the
different knowledge which is relevant for solving the problem according to the model
of expertise. The knowledge is acquired from three different sources of information
(texts, cases and the expert 's respective memories) with the help of three tools.
First the tool C ECoS (Case- Experience Combination System) [BS91] is applied.
Through an application of CECoS a hierarchy of problem or operator classes is
delineated and formally defined.
COKAM+ [Sch92] acquires preconditions and consequences from texts for the opera
tors and the operator classes given by CECoS. Furthermore task-related engineering

11

and common sense knowledge can be obtained from texts which is then formalized
step by step.
The formalized problem classes and feature descriptions obtained through CECoS
and the formalized task-related engineering and common sense knowledge, precon
ditions and consequences supplied by COKAM+ can then be utilized to automat
ically construct skeletal plans and associated application conditions through the
explanation-based learning procedure SPGEN (Skeletal Plan Generation Procedure)
[SBKS91].

3 Acquisition of Problem and Operator Classes with CE
CoS

With the interactive tool CECoS [BS91] a hierarchically structured set of problem
classes is obtained from a set of prototypical cases and human expert judgements.
The problem classes are defined so that a useful skeletal plan will exist for each
problem class. From explicit and implicit memories, the expert first establishes
an extensional definition of the various problem classes with respect to selected
prototypical cases. The so established production classes are then intensionally and
thereby generally defined by feature descriptions given by the expert.
CECoS can also be applied for delineating and defining hierarchies of operator classes
from a number of operators which are parts of a problem solution, i.e plan steps.
At the leaves of the constructed hierarchy trees concrete operators are located. The
nodes at higher levels are general operators which are abstractions of their related
lower operators. The expert can term such general operators and also uses them
during the problem solving process.

4 Acquisition of Operator Definitions with COKAM+

In order to acquire the knowledge with COKAM+ which is needed to generalize
plans into skeletal plans with the tool SPGEN, it is useful not only to consider
simple operators, but also the general operators or specific sequences of operators
(often called macros in mechanical engineering).
For defining individual operators, each operator is presented to the expert. The
expert then searches the informal knowledge base which he has interactively acquired
horn texts with COKAM+ and selects all knowledge units from the knowledge base
which specify relevant preconditions and consequences 01' the particular operator.
If relevant preconditions cannot be found in the informal knowledge, the expert is
to add new knowledge units. This procedure is the best way to really find all the
relevant preconditions and consequences. By combining theoretical knowledge from
text with the expert experiences both gaps in the theoretical knowledge as well as
gaps in the experts memories are likely to be discovered.
Explanations structures are acquired for the concrete operators as well as for the
generalization of operators which are provided by CECoS by constructing different
operator cl asses. The precondit.ions or consequences are related to the more general

12

operator, if they referred to all operators which are subsumed by this general oper
ator. These definitions of generalized operators are essential for the construction of
more or less general skeletal plans, which can be applied to different problem types
in the hierarchy of problem dasses.

5 Generation of Skeletal Plans with SPG EN

SPGEN is based on explanation-based generalization as described by [MKKC86J.
The domain and common sense knowledge acquired with COKAM+ is thereby used
as domain theory and the hierarchy of problem dasses is employed to specify op
erationality criteria. Depending upon the selected problem dass and the respective
operationality criteria, a more or less general skeletal plan will be obtained from a
glven case.
A skeletal plan is constructed by SPGEN in four phases:
In the first phase the execution of the source plan is simulated on the basis of the
available domain theory and explanations for the effects of the individual operations
are constructed. If the domain theory is sufficient, a complete explanation 01' the
plan will be obtained. The proofs that exist for the applicability of each operator
can now be seen as an explanation of each effect that depends on operator attributes
as weIl as world state attributes, from the initial or intermediate states.
In the second phase the generalization of these explanations is performed with re
spect to a criterion of operationality that specifies the vocabulary for defining ab
stract operators for the skeletal plan. The operationality criteria are provided by
the features of the problem dasses which were acquired from the human expert with
the knowledge acquisition tool CECoS.
In the third phase, a dependency analysis determines which previous operations (or
givens in the initial state) achieved the prerequisites for the subsequent plan steps.
The skeletal plan thus accounts for the interactions between the various concrete
operations of the plan at an abstract level.
In the forth phase the descriptions for the abstract operators of the skeletal plan are
formed by collecting and normalizing the important constraints for each operation
that were indicated by the dependencies. The dependencies referring to the problem
description (the mold, the goal workpiece or the manufacturing environment) specify
the dass of problems for which the skeletal plan can be used, i.e. they define
application conditions for the skeletal plan . The skeletal plan itself consists 01' a set
of operator dasses and dependencies which specify the possible sequences in which
the operators may be applied.
The skeletal plans and application conditions constructed with SPGEN, provide
a combination of knowledge-based and heuristic abstractions of a concrete plan.
For novel problems, which satisfy the application conditions, the skeletal plan will
provide a knowledge-based partitioning of the novel problems into appropriate sub
problems , which can then be solved more easily.

13

References

[BS91J

[BW89J

[KS92J

R. Bergmann and F. Schmalhofer. Cecos: A case experience combi
nation system for knowledge acquisition for expert systems . Behav'lOl

Research Methods , Instruments and Computers, 23:142-148,. 1991.

Joost Breuker and Bob Wielinga. Models of expertise in knowledge ac
quisition. In Giovanni Guida and Carlo Tasso, editors, Topics in Expert

System Design, Methodologies and Tools, Studies in Computer Science
and Artificial Intelligence, pages 265 - 295. North Holland, Amsterdam,
1989.

Otto Kühn and Franz Schmalhofer. Hierachical skeletal plan refinement
task and inference structures. In proceedings of the 2nd !{ADS user

meeting, Siemens AG Munich , FebT'uary 17 - 18, 1992 .

[MKKC86J T. M. Mitchell, R. M. Keller, and S. T.
based generalization : A unifying view.
1986.

Kedar-Cabelli. Explanation
Machine Learning, 1:47-80,

[SBKS91] Franz Schmalhofer, Ralph Bergmann, Otto Kühn , and Gabriele
Schmidt. Using integrated knowledge acquisition to prepare sophis
ticated expert plans for their re-use in novel situations. In Thomas
Christaller, editor, GWAI-91 15th German Workshop on Arti/icial In
telligence, pages 62 - 71. Springer-Verlag, 1991.

[Sch92J Gabriele Schmidt. Situated knowledge acquisition from text in a com
plex domain , J une 1992. to appear in Proceedings of the 5th Interna
tional Conference on Industrial and Engineering Applications of Artifi

cial Intelligence and Expert Systems.

[SKS91J Franz Schmalhofer, Otto Kühn, and Gabriele Schmidt. Integrated
knowledge acquisition from text, previously solved cases and expert
memories and expert memories. Applied Arti/icial Intelligence, 5 :311

- 337, 1991.

[TSR91] Jörg Thoben, Franz Schmalhofel', and Thomas Reinartz . Wieder
holungs- , varianten- und neu planung bei der Fertigung rotationssym
metrischer Drehteile. DFKI Document D-91-16, DFKI, 1991.

14

Iterati ve Plan Recognition

Matthias Hecking
Matllias Bauer Gaby Merziger

PHI
German Research Center for Artificial Intelligence (DFKl)

Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: hecking@dfki.uni-sb.de

Abstract

Help systems support the users of application systems. This support can
be considerably improved if help systems are provided with plan recognition
and plan generation capabilities. Most of the known plan recognizers work
with plan libraries . In the PHI project, we are combining plan recognition and
plan generation to realize a more flexible way of plan recognition . Asequent
calculus the basis for the recognition and generation. In this paper, we show
how the iterative plan recognition process is structured . The consistency test
is used to determine whether a plan hypothesis is still valid after processing
the cu rrent observation .

15

1 Plan Recognition in Help Systems

Help systems aim at supporting users of application systems, e.g. , cL [NWW92] .
[HKN+ 88]. This support can be considerably improved if help systems are provided
with plan recognition and plan generation capabilities. In this context, plan recognt

tion is used to identify the users goals and thus forms the basis for providing active
help (cf. [Fin83], [Hec87]).

There are many implemented plan recognizers in various domains and considera
tions of different plan recognition issues (e.g., [Fin83], [Gen79], [Hec87], [HKN+88],
[Let88], [Lit85], [Mo088], [PoI86], [SSG78], [SI81]). One of the first theories of plan
recognition was H. Kautz logical theory of plan recognition (cf. [Kau87]). Other
theoretical approaches are based on attribute grammars (cf. [HH87]) or situation
semantics (cf. [Wob88]). M . Vilain (cf. [ViI90]) shows one possible method for
connecting the recognition 01' pla.ns through context-free parsing methods with the
theory of H. Kautz.

Whereas previous approach es have worked with separated plan recognition and plan
generation components, the aim of the PHP project (Plan-based Help Systems, cL
[BBD+91]) is to realize different cross-talk modes between both.

Plan recognition as weIl as planning is done in a deductive way and is based on the
Logical Language for Planning (LLP). Asequent calculus forms the basis for the
deduction. The different application systems that should use the PHI kernel force
the plan recognition component to work iteratively.

2 Iterative Plan Recognition

To realize a general plan recognition system for different applications the plan recog
nizer of the PHI system must work incrementally, i.e., after each received cornmand
the recognizer must deterrnine whether the valid plan hypotheses are still valid or
not or whether a hypothesis is completely recognized. This means, that the plan
recognition process is an iterative PTOceSS for selecting plan hypotheses that account

JOT" the obserueJ actions. After each recognition step the following results can be
obtained: (1) If the hypo thesis accounts for the command, the command becomes
an element 01' the already recognized parts of the hypothesis, and parameters are
bound in the not yet recognized actions of the hypothesis, (2) if the hypothesis
doesn 't account for the command the hypothesis is not valid any longer, or (3) if the
hypothesis accounts for the command and there are no unrecognized actions left,
than the hypothesis is successfully recognized.

At the beginning of the iterative process a set of possible plan hypotheses ~o
is provided by the plan generation component. Together with the observed ac
tion EX (command 1) the plan recognizer determines the set of hypotheses ~ 1 so

that every member 01' ~1 accounts 1'01' the observed commands, or more formally:

~o U {EX(commandI)} r-PR ~1 (r-PR means that plan recognition specific inferences

I This work has been su pported by a grant from The Federal Ministry of Research and Tech
nology (FKZ ITW-9000 8)

16

are used). If a sequence of observations EX (commandl); ... ; EX(commandn) must be
processed, the recogni tion process can be abstractly descri bed as follows (0 i means
that the command is executed in the i-th state):

~o U {EX(commandl)} hR ~I

During this iterative process completely recognized plans can be deleted from ~i
and are reported to the application system, and if no hypothesis can explain the
observed actions, an adapted set ~o of generated possible hypotheses must be de
livered by the generation component.

Assurne that until now an action sequence ~ = EX(al); ... ;EX(an_l) was observed
and that each of the plan hypotheses in ~n-I = {Pb P2 , ... , Pm} could explain
those observations. Let an be the next observed action. Then the plan recogni
tion process selects those hypotheses Pi that also account for the action sequence
~' = ~; EX(an). For each such Pi this means : (a) ~' contains a parameter bind
ing compatible Lo the one demanded in Pi, (b) there is a suitable concrete domain
command in ~' wherever the plan hypothesis contains an abstract command, (c)
for every nondeterministic choice in Pi, ~' contains exactly one of the alternative
actions, and (d) ~' induces a temporal structure compatible with the initial part
of Pi. For each plan hypothesis P E ~i the iterative step can be described as
follows. Let EX(commandd be the formula describing the last observed action. Then
the plan recognizer tries to derive a new hypothesis pI which will become a mem
ber of ~i+1 through "p /\ OiEX(commandd f- PR pI "where P and pI are related
in the following way. There is a way to split P into different command segments .
Ini tp is the initial segment and contains that part of the hypothesis that was al
ready recognized. It exactly corresponds to the sequence of observed actions of
former recognition steps. Midp describes just that part of P considered in the cur
rent recognition step. Restp is the part that will be considered in the next step if the
current recognition step is successful. Thus we have P = Ini tp; Midp; Restp and
pI = Ini tp; EX(commandd; Restpl where Restpl results from Restp by substitut
ing formal parameters bound in the last step. If Restpl becomes empty, the plan
corresponding to this hypothesis was successfully recognized. In the next recogni
tion cycle the first command of Restp1 will become the new Midpl part.

The current recognition step is successful if we can show that Midp and EX(commandd
fulfill the requirements (a) - (d) listed above. This is the case if the recognizer de
duces whether the following holds: If EX(commandi), Midp ~. That means that if
the observed command and the Midp part are consistent the Midp part accounts for
the command and the instatiated observation becomes part of the Ini t part of the
new hypothesis.

References
[BBO+9l] M Uau e r, S. ßiundo , O . Dengier , M. Hecking, J. Köhler , and G . Merziger. lntegrated

Plan Generation and Recognition - A Logic-Based Approach . Report No . RR-91-

17

[BD92]

[Fin83]

[Gen79]

[Hec87]

[HH87]

26, German Research Center for ArtificiaJ Intelligence, Stuhlsatzenhausweg 3, W-660U
Saarbrücken ll , Germany, 1991

S. Biundo and D. Dengier. The Logical Language for Planning (LLP). Research report ,
German Research Center for Artificial Intelligence Inc., 1992. forthcoming.

T. W. Finin. Providing help and advice in task oriented systems. In Proceedings 0/ the
8th Inter'national Joint Gon/erenee on Artificial Intelligence, pages 176-178, 1983.

M. R. Genesereth. The role of plans in automated consultation. In Proceedings 0/ the
6th Inter'national Joint Gon/erenee on A rtificial Intelligence, pages 311-319, 1979.

M. Hecking . How to Use Plan Recognition to Improve the Abilities of the Intelligent
Help System SINIX Consultant. In Proceedings 0/ the Second IFIP Con/eTt1lC(011

Human-Gomputer' Inier'action, held at the Unlversity 0/ Stuttgart , Feder'al Rtpubhc 0/
Germany, 1-4 September, 1987, pages 657-662, 1987.

M. Hecking and K. Harbusch. Plan Recognition through Attribute Grammars. Memo
No. 17, Dept. ofComputer Science, University ofSaarbrücken, W .Germany, 1987.

[HKN+88] M. Hecking, C. Kemke, E . Nessen, D. Dengier, M. Gutmann, and G . Hector . The

[Kau87]

[Let88]

[Lit85]

[Moo88]

SINIX Consultant - A Progress Report. Memo No. 28, Dept. of Computer Science,
University of Saarbrücken , W.Germany, 1988.

H. A. Kautz. A formal theory of plan recognition. Report No. TR 215, University of
Rochester , Department of Computer Science, 5 1987.

S. Letovsky. Plan analysis of programs. In AAAI-88 Workshop on Plan RtCllljTl1.tWlI ,
St. Paul , Minnesota, 1988 .

D. J. Litman. Plan recognition and discourse analysis: An integrated approach for
understanding dialogues. Technical Report TR 170, Department of Computer Science,
The University of Rochester, Rochester, NY, 1985 .

R. J. Mooney. Explanation-based learning of plans for plan recognition . In AAAI-88
Workshop on Plan Recognition, St. Paul, Minnesota, 1988.

[NWW92] P Norwig, W. Wahlster, and R . Wilensky. Intelligent Help Systems tor UNIX - Gase
Studies in A rtifieial Intelligen ce. Springer, Heidelberg, 1992 .

[PoI86]

[SI81]

[SSG78]

[ViI90]

[Wob88]

M Pollack . A model of plan inference that distinguishes between the beliefs of actors
and observers. In Proceedmgs 0/ the AGL-86, pages 207- 214, 1986.

C. Sidner and D. Israel. Recognizing intended meaning and speakers plans . In PToct ed
ings 0/ the 7th International Joint Gon/erence on Artifieial Intelligence, pages 293- 298,
1981.

C. F . Schmidt, N. S. Sridharan, and J. L. Goodson . The plan recognition problem: An
intersection of psychology and artificial intelligence. A rlificial Intelligence, 11 :45-83 ,
1978.

M. Vilain . Getting serious about parsing plans: a grammatical analysis of plan recog
nition. In Proeeedings 0/ the 8th National Gon/erence 0/ the American Association on
ArtlficiallntelligeTtet , Boston, MA, pages 190-197, 1990.

W Wobcke. A logical theory of plan recognition. In AAAI-88 Workshop on Plan
RecognitlOTt, St Paul , Minnesota, 1988.

18

On the Computational Complexity of
Temporal Projection and Plan Validation 1

Bernhard Nebel
WIP

Gennan Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: nebel@dfki.uru-sb.de

Christer Bäckström
Department of Computer and Infonnation Science

Linköping Uruversity
S-581 83 Linköping

Sweden
e-mail: cba@ida.liu.se

Abstract

One kind of temporal reasoning is temporal projectwn---the computation
of the consequences of a set of events. This problem is related to a number
of other temporal reasoning tasks such as story understandmg, planning, and
plan validation. We show that one particular simple case of temporal projec
ti on on partially ordered events turns out to be harder than previously conjec
tured. However, given the restrictions of this problem, story understanding,
planning, and plan validation appear to be easy. In fact, plan validation, one
of the intended applications of temporal projection, is tractable for an even
larger dass of plans.

I A more complete description of this work is presented in [NB91 ,NB92]

lY

1 Temporal Projection

The problem of temporal projection is to compute the consequences of a set of events.
Oean and Boddy [OB88] analyze this problem for sets of parlially ordered events as
suming a propositional STRIPS-like [FN71] representation of events. The motivation
behind this analysis is that the validation 0/ non-linear plans and story undersland
ing tasks seem to be based on such a form of temporal reasoning.
Oean and Boddy investigate the computational complexity of a number of restricted
problems and conclude that even for severely restricted cases the problem is NP
hard, which motivate them to develop a tractable and sound but incomplete decision
procedure for the temporal projection problem.
Among the restricted problems they analyze , there is one they conjecture to be
solvable in polynomial time. This problem can be characterized as follows. Each
STRIPS-rule has only one precondition, which also appears as the only element in
the delete-list, and the add-list also contains only one element . Additionally, the
set describing the state is also restricted to contain only one (positive propositional)
element. Although these restrictions sound as if all temporal reasoning tasks must
become completely trivial, it turns out that even in this case temporal projection is
NP-hard , as is shown in [NB9l] .

2 The Relation between Plan Validation and Temporal
Projection

The above result is somewhat surprising, because planning, for instance, seems to
be easily solvable given the restriction of this temporal projection problem. Indeed ,
planning under this restrietion is tractable [NB91,ByI9l] .
This observation casts some doubts on whether temporal projection is iIldeed the
problem underlying plan validation and story understanding, as suggested by Dean
and Boddy [OB88]. It seems natural to assume that the validation 0/ plans is not
harder than planning. Our NP-hardness result for the simple temporal projection
problem seems to suggest the contrary, though.
The most problematical point in the definition of the temporal projection problem
by Oean and Boddy seems to be that event sequences are permitted to contain
events that do not affect the world because their preconditions are not satisfied.
In a planning context, however , we would consider such sequences that contain
unexecu table actions as illegal.
Ir we define the plan validation problem in a way such that all possible event se
quences have to contain only events that affect the world, plan validation is tractable
for the dass of plans containing only unconditional events, a point already suggested
by Chapman [Cha87].
In fact, deciding a conjunction of temporal projection problems that is equivalent
to the plan validation problem appears to be easier than deciding each conjunct
in isolation. The main reason for this fact is that for plan validation purposes we
can stop to test as soon as if we find an illegal sequence with the result that the
plan is invalid. Computing the temporal projection of a set of events, however

20

using the definition of Dean and Boddy - requires that we also consider illegal event
sequences .

Summarizing, the problem decomposition by Dean and Boddy, namely, to decom
pose the plan validation problem into a number of temporal projection problems ,
seems to be conceptually right . From a computational point of view, however , this
decomposi tion does not make sense.

Additionally, it turns out that the tractable and sound decision procedure for tem
poral projection fails on plans that could be validated in (low-order) polynomial
time.

3 Conclusion

Although many forms of temporal reasoning seem to require substantial computa
tional resources, i.e., temporal reasoning problems are gene rally intractable. ma.ny
forms of this kind of reasoning are nevertheless easier. The analysis 01" tempora.l
projection by Dean and Boddy [DB88] suggests that this task belongs to the dass of
reasoning tasks that are difficult. However, as we have shown, the form of temporal
projection as defined by Dean and Boddy does not arise in the applications they en
visioned. To the contrary, plan validation is tractable for a large dass of non-linear
plans, namely, all unconditional plans.

References

[ByI91] Tom Bylander. Complexity results for planning. In John Mylopoulos and Ray
Reiter, editors, Proceedings of the 12th International Jomt Conference on Artifi
ci al Intelligence, pages 274-279, Sydney, Australia, August 1991. Morgan Kauf
mann.

[Cha87] David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32(3):333-377, July 1987.

[DB88] Thomas L. Dean and Mark Boddy. Reasoning about partially ordered events.
Artificial Intelligence , 36(3):375-400, October 1988.

[FN71] Richard E. Fikes and Nils Nilsson. STRIPS: A new approach to the application
of theorem proving as problem solving. A rtificialIntelligence, 2: 198-208, 1971.

[N B91] Bernhard Nebel and Christer Bäckström. On the computational complexity
of temporal projection and some related problems . DFKI Report RR-91 -34,
German Research Center for Artificial Intelligence (DFKI), Saarbrücken, 1991.
Also published as Research Report LiTH-IDA-R-91-34, Department of Computer
and Information Science, Linköping University, Linköping, Sweden.

[NB92] Bernhard Nebel and Christer Bäckström. On the computational complexity
of temporal projection and plan validation . In Proceedings of the 1 Oth National

Conference of the A merican Assoclation for A rtificlal Intelhgence , San Jose, CA ,
July 1992 . MIT Press . To appear.

21

Learning Plan Abstractions:
Formal Model and Method

Ralph Bergmann Franz Schmalhofer
KIWI

Gennan Research Center for Artificial Intelligence (DFKI)
Postfach 2080

6750 Kaiserslautern
Germany

e-mail: bergmann@dfki.uni-kl.de

Abstract

schmalho@dfki.uni-kI.de

Plan abstraction is most important for plan recognition tasks as weIl as for
the acquisition of planning knowledge for hierarchical planning. Knowledge
intensive machine learning procedures such as explanation-based learning have
shown to be capable of producing generalizations of plans, but no approach has
been proposed for constructing plan abstractions. In this paper, generalization
is distinguished from abstraction. A general formal model of plan abstraction
is proposed, in which the problem of plan abstraction is decomposed into
finding astate abstraction mapping and a sequence abstraction mapping.
A generic abstraction theory is applied for generating deductively justified
plan abstractions. Lastly, a five-phase procedure is outlined which supports
the automatie construction of an abstract plan from a concrete plan. This
procedure demands, that a concrete and an abstract planning space is defined
as a STRIPS- system. Additionally, a generic abstraction theory is required
which defines the sentences of the abstract world in terms of the concrete
world .

22

1 Introduction

Plan recognition may be seen as analyzing a sequence of operations or programmillg,
statements of a computer program in order to apply a user's application- oriented
terminology for constructing a corresponding logically sound abstract plan. This ab
stract plan is much more closely related to the user's thinking than the operations or
programming statements of the concrete plan or program. For example, recognition
of an assembler program involves analyzing a sequence of machine-Ievel instructions
to identify the use of higher programming concepts such as data representations or
abstract data manipulating operations. Abstract plans are very important for reduc
ing the complexity of planning tasks. Friedland and Iwasaki [FIS5] have proposed
skeletal plans which they defined as a sequence of abstract operations which can be
refined to a solution of a concrete problem. Korf [Kor88] has recently shown that
with an appropriately defined hierarchy of plan abstractions, planning problems can
be reduced in their complexity from an exponential search to a linear search problem
under certain conditions. In this paper we propose a theoretical framework for de
scribing plan abstraction in general. A knowledge intensive learning method which
supports the automatic construction of abstract plans from concrete plans is finally
sketched.

2 The Problem of Learning Plan Abstractions

Michalski and Kodratoff [MK90] have recently pointed out, that abstraction must
be distinguished from generalization . While generalization transforms a description
along a set superset dimension, abstraction transforms a description along a level of
detail dimension which usually involves a change in the representation space. A plan
or program consists of a description which specifies some operations to be executed
in a specific order. Each operation changes the state of the system in some way.
Therefore plan abstract ion has two independent dimensions: The first dimension
describes a change in the level of detail for the representation of single states and
the second dimension requires a change in the level of detail by reducing the number
of states contained in a plan. As a consequence plan abstraction must perform a
change of the representation of the state descriptions and a change of the operations
which describe the state transitions. Knowledge-intensive learning mechanisms such
as explanation- based learning (EBL) can construct plan generalizations [FHN72 ,
MCK+S9,Ber92b], but have not yet been shown to be capable of forming truly
abstract plans. Since EBL procedures form operational specializations of a domain
theory with respect to a given example, the operational specializations are at an
intermediate level of generality. They are more general than the example but canno!
be more general than the sentences of the underlying domain theory. In order to
construct an abstract plan , the underlying domain theory must be enhanced with
knowledge about abstract states and abstract operations.

23

3 A Formal Model of Plan Abstraction

Since the goal of abstraction is to transform a plan according to a level of detail
dimension by performing a change in representation, two planning spaces, a concrete
and an abstract space, must be defined. We assume, that each of these planning
spaces or worlds is represented as a STRIPS-system W = (R, T, Op), where R is a
set of essential senten ces [Lif87] which describe the dynamic aspects of astate of the
world. T is a static theory which allows to deduce additional properties of astate
in the world and Op is a set of operators described by a precondition list, an add
list and a delete list. Let W e = (Re) Tc, OPe) be the STRIPS-system which describes
the concrete world and Wa = (Ra, Ta, OPa) be the STRIPS-system which describes
the abstract world. Note, that a totally different terminology can be employed to
represent the concrete and the abstract world. The problem of plan abstraction can
now be described as transforming a plan Pe from the concrete world into a plan Pa in
the abstract world, with several conditions being satisfied. This transformation can
formally be decomposed into two mappings: astate abstraction mapping a, and a
sequence abstraction mapping b as folIows:

Definition 1: Astate abstraction mapping a: Sc -t Sa is a mapping from Sc, the
set of aB states in the concrete world, to Sa, the set of all states in the abstract.
world, that satisfies the following conditions:
a) If Sc U Tc is consistent then a(se) U Ta is consistent.
b) If Sc U Sc' U Tc is consistent then a(Sc U sc') ~ a(Sc) U a(sc').

Definition 2: A sequence abstraction mapping b: N -t N relates an abstract
state sequence (sao, ... , san) to a concrete state sequence (sCQ, ... , sCm) by mapping
the indices i of the abstract states sai onto the indices j of the concrete states SCj,
such that b(O) = 0, b(n) = m and b(u) < b(v) if u < v.

Using these two mappings, plan abstraction can be defined as folIows:
Definition 3: A plan Pa is an abstraction of a plan Pe if there exists astate ab
straction mapping a : Sc -t Sa and a sequence abstraction mapping b : N -t .N,
such that: If Pe and an initial state SCQ induce the state sequence (sCQ, ... , sCm) and
sao = a(sCQ) and (sao, ... , san) is the state sequence which is induced by sao and the
abstract plan Pa, then a(sCb(i)) = sai holds for aB i E NI, ... ,n.

This definition of plan abstraction requires that for each state which results from
the abstract plan, a corresponding state in the concrete plan exists. The sequence
abstraction mapping defines which concrete state corresponds to each abstract state.
Note that only some of the concrete states have a corresponding abstract state . Con
crete states which are not abstracted by the sequence abstract ion mapping describe
a kind of detail which is eliminated by the plan abstraction. While the sequence
abstraction mapping reduces the level of detail of a plan by reducing the number 01'
states contained in a plan, the state abstraction mapping changes the level of detail
by changing the representation for each state from concrete to abstract. A good (i.e.
useful) state abstraction mapping coBects all those abstract sentences which support
the main subgoals of the plan that has to be abstracted. In order to restrict the
number of possible state abstraction mappings in this manner, a generic abstraction

24

theory Tg [G RS91] can be applied. Such a theory consists of a set ofaxioms which
describe the essential sentences r a of the abstract world in terms of sentences of the
concrete world. For a deductively justified state abstract ion mapping a we require,
that: If r a E Na(se) then Se U Te U Tg r ra.

4 A Method for Constructing Plan Abstractions

The task of automatically constructing deductively justified abstractions by us
ing know-Iedge- intensive machine learning methods based on cognitively adequate
generic abstract ion theories can be achieved by the following five-phase procedure: In
the first phase, the execution of the concrete plan Pe is simulated and the sequence of
the ind uced states in the concrete planning space is computed. In the second phase,
for each of these states, an abstract description is derived by trying to proof the es
sential senten ces r a of the abstract planning space through Sc U HTc U Tg r ra . Here
the generic abstraction theory is employed to construct state abstractions which are
composed of justified sentences. In third phase, for each pair of abstract plalllling
states (sau, sav), it is checked, if there exists an abstract operation from Opa which
is applicable in sau and which transforms sau into sav . A directed graph, where
abstract states are represented as nodes and abstract operations as arcs, is finally
construced in this phase. In phase four, a complete and consistent path from the
initial abstract state to the final abstract state is searched. This path describes an
abstract plan and defines astate abstraction mapping and a sequence abstraction
mapping. In the fifth phase, explanation- based generalization is applied to gener
alize the sequence of abstract operations into an abstract plan with corresponding
application conditions [Ber92b,Ber92a].

References

[Ber92a] R. Bergmann. Explanation-based learning for the automated reuse of pro
grams. In Proceedings 0/ the IEEE-Con/erence on Computer Systems and Soft

ware Engineering} COMPE UR 092. , 1992.

[Ber92b] R. Bergmann. Know ledge acquisition by generating skeletal plans. In
F. Schmalhofer, G. Strube, and Th. Wetter, editors, Contemporary J'i.'nowledqt

Engineering and Cognition, Heidelberg, 1992. Springer. (in press).

[FHN72] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing gener
alized robot plans. Artificial Intelligence, 3:251-288, 1972.

[FI85] P. E. Friedland and Y. Iwasaki. The concept and implementation of skeletal
plans. Journal 0/ Automated Reasoning, pages 161-208, 1985.

[GRS91] A. Giordana, D. Roverso, and L. Saitta. Abstracting background knowl
edge for concept learning. In Y. Kodratoff, editor, Lecture Notes in Artificial
Intelligence: Machine Learning-EWSL-91, volume 482, pages 1-13, Serlin, 1991.
Springer.

25

[Kor88] R.E. Korf. Optimal path-finding algorithms. In L. Kanal and V. Kumar,
editors, Search in Artificial Intelligence, pages 223-267. Springer, New York, 1988.

[Lif87] V. Lifschitz. On the semantics of strips. In Reasoning abou,[Actiull::- und

Plans: Proceedings of the 1986 Workshop, Timberline, Oregon. 1987.

[MCK+89] S. Minton, J. G. Carbonell, C.A. Knoblock, D. R. Kuokka, O. Etzioni,
and Y. Gil. Explanation-based learning:a problem solving perspective. Artificial

Intelligence, 40:63-118, 1989.

[MK90] R. S. Michalski and Y. Kodratoff. Research in machine learning: Recent
progress, classification of methods, and future directions. In Y. Kodratoff and
R. S. Michalski, editors, Machine Learning: An Artificial Intelligence Approach,

volume 3, chapter 1, pages 3-30. Morgan Kaufmann, San Mateo, CA, 1990.

26

The Design of Illustrated Documents
as a Planning Problem

Elisabeth Andre Thümas Rist
WIP

German Research Center für Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: andre@dfki.uni-sb.de

Abstract

rist@dfki.uni-sb.de

Not only the generation of text, but also the generation of multimodal
documents can be considered as a sequence of communicative acts which aim
to achieve certain goals. For the realization of a system able to automatically
generate illustrated documents, a plan-based approach seems adequate . To
represent knowledge about how to present information, we have designed pre
sentation strategies which relate to both text and picture production. These
strategies are considered as operators of a planning system. However, a con
ventional hierarchical planner for determining the contents and the rhetorical
structure of a document has proven inappropriate to handle the various de
pendencies between conte nt determination, mode selection and content real
ization. To overcome these problems, a new planning scheme has been devel
oped that supports data transfer between the content planner and the mode
specific generation components and allows for revising an initial document
structure .

27

1 Introduction

Abasie assumption behind the design of the multimodal presentation system WIP
(cf. [Wahlster et a1. 91]) is that not only the generation of text and dialog contri
butions, but also the design of graphics and multimodal presentations are planning
tasks (cf. [Andre and Rist 90]). A conventional hierarchical planner has, however,
proven inappropriate to handle the various dependencies between content determi
nation, mode selection and content realization. In the following, we will briefty
sketch an plan-based approach that integrates content and mode selection and al
lows for interaction with mode-specific generators . A more detailed description may
be found in [Andre and Rist 92].

2 The Basic Planning Scheme

To represent knowledge about how to present information , we have designed presen
tation strategies which relate to both text and picture production . These strategies
are considered as operators of a planning system (cf. [Andre and Rist. 90]). The
basic idea behind the planning process is as folIows : Given a present.at.ion goal, try

1,0 find strategies whose effect matches the presentation goal and check for which
variable bindings their applicability conditions hold. Then select astrategy, instan
tiate it and post the main and subsidiary acts as new subgoals or - in the case of
elementary acts such as 'Depict' or 'Assert' - forward them to the mode-specific
generators.
To ensure that document fragments in multiple modalities are smoothly tailored to
each other in the document to be generated, one also has to consider various depen
deneies between content determination, mode selection and content realization. As
a consequence, the process sketched above appears to be much more complicated
with respect to flow of contro] and data between the present.at.ion p]änllel allel t hf'
generators.

3 Interleaving Presentation Planning, Text and Graphics
Generation

Previous work on natural language generation has shown that content selection and
content realization should not be treated independently of each other. A st.rictly
sequential model in which data only flow from the "what 1,0 present" 1,0 the "how
to present" part has proven inappropriate because the components respoflsible for
selecting the contents would have to anticipate all decisions of the realization com
ponents. This problem is compounded if, as in our case, content realization is done
by separate components (currently a text and a graphics generator) of which the
content planner has only limited knowledge.
It seems even inappropriate to sequentialize content planning and mode selection
although mode selection is only a very rough decision about content realization.

28

Selecting a mode of presentation depends to a large extent on the information to be
communicated. On the other hand, content planning is strongly infiuenced by pre
viously selected mode combinations. E.g., to graphically refer to a physical object,
we need visual information that may be irrelevant to textual references .
A better solution is to interleave content planning, mode selection and content real
ization. In the WIP system, we interleave content and mode selection using a uni
form planning mechanism. This has become possible since the presentation strate
gies and metarules accessed by the planner contain not only knowledge about what
to present, but also knowledge about adequate mode combinations. In contrast
to this, presentation planning and content realization are performed by separate
components that access disparate knowledge sources. This modularization enables
parallel processing, but makes interaction between the single components necessary.
As soon as the planner has decided which generator should encode a certain piece of
information, this piece should be passed on to the respective generator. Conversely,
the planning component should immediately incorporate the results of the genera
tors. Therefore, the processing of all components has to be 'interrupted' at certain
decision points to allow other components to react.

4 Propagating Data During Presentation Planning

Since every component has only limited knowledge of other components, data have
to be passed from one component to the other. E.g., if a generator finds a better
solution or is not able to satisfy a task, it has to inform the planner, which has to
modify its initial plan. To ensure the consistency of the document, all changes have
to be propagated to other branches of the plan structure.
Information fiow is not only necessary between the content planner and the gener
ators, data also have to be propagated from one generator to the other. Suppose
the text generator has generated a referring expression for an object shown in a
picture. If the picture is changed due to graphical constraints, it might happen that
the referring expression no longer fits. Thus, the planner will have to create a new
object description and pass this description on to the text generator, which will have
to replace the initial referring expression by a new one.
Furthermore, the need for propagating data during presentation planning arises
when dealing with dependencies between presentation strategies.

5 The Architecture of the Presentation Planner

The considerations above led to an architecture for the presentation planner as
shown in Fig. 1. The basic planning module selects operators that match the
presentation goal and expands the nodes to generate a refinement-style plan in the
form of a DAG. The plan evaluation/revision module is responsible for evaluating
and revising plans.To allow for alternating revision and expansion processes, WIP's
presentation planner is controlled by a plan monitor that determines the next acLion

29

and the next nodes to be expanded. All components of the presentation planner
have read/write access to th e document plan. The leaves of the document plall
are connec ted to entries in the task queues of the mode-specific generators. Thus ,
a two-way exchange of information between the two generators is possible via the
document plan.

selection of operators,
expansion of nodes

Graphics
Desig!"n~--{~~~

I
next
task

Task Queue

Design Modules

Planning Monitor
determination of the next
action and the next node to
expand

_·······1 ~yout

~
• ~anager

, reE
(Document Plan) revise plan

resultl
Fail

I

eXt

Plan
EvaluationIRevision
apply critics and
revIsion strategies

DeSig~ ~f-'---,
next
task

Task Queue

Design Modules

resultl
Fail

Figure 1: The Architecture of WIP 's Presentation Planner

6 Summary

We have argued that not only the generation of text, but also the synthesis of
multimodal documents can be considered as a communicative act which aims to
achieve certain goals. For the realization of a system able to automatically generate
illustrated documents, we have proposed a plan-based approach that supports data
transfer between the content planner and the mode-specific generators and allows
for global plan evaluation after each plan step. The modularization of presentation
planning and mode-specific generation has led to the problem that the results pro
vided by the generators may deviate from the initial presentation plan. Since such
deviations have to be reflected in the presentation plan, the planning scheme has
also to comprise restructuring methods.

References

[Andre and Rist 90] Andre, E. and Rist, T. 1990. Synthesizing Illustrated Docu
ments: A Plan-Based Approach. In Fr-oceedings oj InjoJapan '90 Vol. 2 (163-170).

30

(Andre and Rist 92) Andre, E. and Rist, T. 1992. The Design o f lJJustr ated Doc

uments as a Planning Task. German Research Center for Artificial Intelligence,
DFKI Research Report .

[Wahlster et al. 91l Wahlster, W., Andre, E., Bandyopadhyay, S., Graf, W., Rist ,
T. 1991. WIP: The Coordinated Generation of Multimodal Presentations from a
Common Representation. DFKI (University of Saarbrücken) Technical Report.

31

Deductive Planning
In a

Cornmand Language Environment

Susanne Biundü Dietmar Dengier
PHI

Gennan Research Center für Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: biundü@dfki.uni-sb.dedengler@dfki.uni-sb.de

Abstract

A new deductive approach to planning is presented. It has been developed
to solve planning tasks in command language environments and mainly relies
on programming logics.
We introduce a logical framework defining the intervallogic LLP and asequent
calculus. The deductive planning system based on this logic provides several
strategies for deriving sequential as weil as conditional and while-plans . The
system is currently being implemented using concepts from tactical theorem
provmg .

32

1 Introduction

The deductive approach to planning we introduce aims at solving planning tasks in
an intelligent help system's context.

Intelligent help systems support users of complex application systems by the achieve
ments of qualified experts. One aspect of this support is devoted to the generation
of executable plans which, as a means of active help, are presented to the user
who may follow them in order to reach his current goals. Another aspect concerns
the synthesis of abstract plans. It plays a central role within the PHI system (cf.
[BBD+91]). PHI realizes the integration of iogic-based plan recognition and plan
generation components where plan recognition is done on the basis of abstract plans .
The abstraction involves object variables, abstract actions, and eontrol struetures as
well as temporal abstract ion. The latter comprises to formulate plan specifications
including propositions, like, for instance: "action a is carried out at some time
during the execution of plan p".
The planning domain is the command language environment of an application sys
tem. Consequently, the basic actions correspond to the elementary statements of
this command language. Together with the control structures provided for plalls
this strongly suggests to view plans as programs.

To realize deductive planning in this context we have developed the interval-based
temporal logic LLP (Logical Language for Planning) that combines features of a
programming logie [Krö87] with those of intervallogies (cf., e.g., [RP86]). Asequent
ca1culus for LLP provides the deductive basis for plan generation. Plans are gener
ated by proofs of so-called plan specification theorems, which are special type LLP
formulas. They represent partialor total correctness assertions or express liveness
propenies of plans, respectively.
Axiomatizing the planning domain using LLP provides a represental'ional "solution"
of the frame problem: Basic actions are represented like assignment statements in
programrning logics. As a consequence, only one axiom schema is needed for each
action to describe its effects as well as the frame properties that are not affected by

the action.

A c1assical application domain for intelligent help systems are operating systems.
Hence, we have chosen the example domain for our system to be a manageably sized
subset of the operating system UNIX, namely its mail system, where commands like
type, delete, or save manipulate objects, like messages or mailboxes.

2 Deductive Planning Using LLP

The Logical Framework
LLP reiies on a many-sorted first-order language and, besides the normal logical
variables, provides a set 01' so-called loeal variables for each sort. The iocal variables
are borrowed from programrning logics where they correspond to program variables
whose values can change {rom one state to another. We use loeal variables in the

same way and describe the effects of basic actions by a change of values of certain
local variables.

33

The modal operators provided by LLP are 0 (nextL 0 (sometimes), 0 (always),
and a sequential composition of formulas by the two-place modal operator; (chop).
Besides these operators, like in programming logics, also assignments and control
structures are available. The conditional if f. then 0: else ß for example, stands for
the formula
[f. ~ 0:]/\ [of. ~ ß]. The while-operator is defined by the following axiom:
while f. do 0: od ; ß ~ [if f. then [0: ; while f. do 0: od ; ß] else ßl.
Basic actions are represented by atomic formulas using the predicate EX ("exe
cute"). EX(type(l,mbox)), for example, represents the basic action of reading the
first message in a mailbox mbox.
Certain formulas of our temporallogic are viewed as plans. Those plan formulas are

• all formulas EX(c), where c is a term of type command,

• assignments of form a := t, where a is a local variable and t is a term,

• all formulas 0:; ß where 0: and ß are plan formulas,

• all formulas if t then 0: else ß. where 0: and ß are plan formtIlas and t IS a
formula not containing any temporal operator or basic plan formula,

• all formulas while f. do Q od ; ß, where Q and ß are plan formulas and f. is a
formula not containing any temporal operator or basic plan formula.

Syntax, semanties, and asequent calculus for LLP are given in [BD92].

Representing the Planning Dümain
The application domain we choose for our examples is a mail system where the
objects are "mailboxes" and "messages"; a mailbox is viewed as a list of one or more
messages. During the activation of themail system different aspects 01' messages can
be changed by the commands the user executes: so, every corrunand causes astate
transition changing the cüntent of the current mailbox. We deal with this behaviour
by using local variables to represent objects of type mailbox or message, respectively.

The axioms describing mail commands are given like axioms for assignment state
ments in prograrruning logics. As an example, the "type" command for reading a
message is axiomatized by the following scherne:

Vi: 'intege'r
[[oflag(t,CurrenLmbox) == ""d"/\

flag(i, CurrenLmbox) Current /\ EX(type(i, CurrenLmbox))] -t OPl
P "r" Current + 1

The symbol P is a metavariable für formulas; the substitution instructions correspond
to the effect of the "type" command: "type" does nothing else than changing the
flag of the i-th message in CurrenLmbox to "r" and increases the Current-counter

by 1.
During the deductive plan generation process appropriate instances of these axiom
schemata are used. The instances can either be frame axioms or axioms describing
effects of the according actions.

34

Deductive Planning
The planning process starts from a plan specification formula. Specifications are for
mulas containing metavariables for plans. Deriving a plan from such a specification
is done by constructing a sequence proof that provides appropriate instantiations
for these variables. That means, based on the specification we develop a proof tree
applying several sequence rules in turn until allleaves of the tree are closed.
The instantiations to be made for the plan meta variable are restricted to plan for
mulas. If we starting from the specification formula end up with a proof tree where
no metavariables are left, the instantiation generated for the plan variable represents
an executable plan that satisfies the given specification.
We distinguish between different types of plan specifications. Among them we have
assertions about intermediate states (also called liveness properties [Krö87]). They
read

Plan ---t [tPi ---t OtPg]

stating that tPg holds some time during the execution of Plan.

Suppose, our current plan specification is "Read any message of the mailbox C _mb
and delete it". The input for the plan generation process is then a formula of the
form:
Plan ---t (flag(x, C_mb) t "d" ---t O[Jlag(x, C_mb) == "r" 1\ 0 Jlag(x, C _mb) == "d"]]
The symbol Plan is a metavariable for a plan formula and has to be appropriately
instantiated during the proof.
A plan is derived from this specification by applying several sequence rules according
to a strategy developed for the synthesis of sequential plans out of liveness properties
statements. It includes an automatic classification of formulas resulting from rule
applications : Some of them Me subgoals leading to a proper instantiation of a plan
metavariable, while others represent so-called plan assertions. They describe certain
properties of the specified plan that cannot be proved until the plan synthesis has
been completed.
The plan we obtain from the above specification reads:

EX(type(x, C _mb))jEX(delete(x, C _mb))
stating that the message has to be read and subsequently has to be deleted.

3 Conclusion

The logical framework we have introduced forms the basis for deductive planning
in a command language environment. Plans are generated by sequence proofs of
specification formulas. Specification formulas contain metavariables for formulas.
During the proof these metavariables have to be replaced by plan formulas. If the
proof succeeds these finally constitute the specified plan. Besides sequential ones
plans can be generated that contain control structures like iJ then else and while.
Proofs of specification formulas are carried out in a goal directed way using several

derived rules and appropriate proof strategies.

35

References

[BBD+91] M. Bauer, S. Biundo, D. Dengler , M. Hecking, J. Koehler , and
G. Merziger. Integrated Plan Generation and Recognition : A Logic
Based Approach. In Proceedings of the 4. Internationaler GI-I(ongress
Wissensbasierte Systeme, München, pages 266-277. Springer IFB 291,
1991.

[BD92]

[Krö87]

[RP86]

S. Biundo and D. Dengler. An Interval-Based Temporal Logic for Plan
ning. Research report, German Research Center for Artificial Intelli
gence, Saarbücken, 1992.

F. Kröger. Temporal Logic of Programs. Springer , Heidelberg , 1987 .

R. Rosner and A. Pnueli . A Choppy Logic. In Symposium on Logic in
Computer Science, Cambridge, Massachusetts, 1986.

36

Planning as Transformation of Declarati ve
Representations in COLAB

Knut Hinkelmann
ARC-TEC

Gennan Research Center for Artificial Intelligence (DFKl)
Postfach 2080

6750 Kaiserslautern
Gennany

e-mail: hinkelmann@dfki.uni-k1.de

Abstract

Given the CAD-like geometry of a rotational-symmetric workpiece ab
stract NC macros for rough-turning the workpiece on a CNC lathe machine are
generated . A declarative representation of a production plan is derived from
a declarative representation of the start and goal states by step-wise abstrac
tion, association and refinement operations. All intermediate representations
are declarative, too. The approach is implemented in COLAB, a hybrid
knowledge compilation laboratory which integrates the power of forward and
backward reasoning (incl. functional programming), constraint propagation,
and taxonomie classification. The declarative subformalisms of COLAB col
laborate in a prototypical synergetic manner to perform the central subtasks
of CAD-to-NC transformations.

37

1 Introduction

To reach a goal or solve a problem a rational or even intelligent agent will not
simply try arbitrary actions but will first think of the problem. But to think about
a problem, an internal representation is needed of the initial state from which to
start and of the goal that should be reached. The result of this planning process
is a set of actions, which must be performed to reach the goal state from the inital
state. This set of actions itself has an intern al structure for its own. For instance,
the order in which the actions are performed may be significant. This means that
the set of actions of a plan is at least partially ordered. Also the plan may contain
loops and conditions, e.g. if there are incomplete informations.
The paradigm of planning as transformation of declarative representations is ex
emplified in the fLCAD2NC system [BHH+91] for production planning of rotation
symmetrie products on lathe-turning machines. A declarative representation of a
production plan is derived from a declarative representation of the start and goal
states by step-wise rewriting and association operations. All intermediate represen
tations are declarative, too. The goal state is described by a drawing in a CAD
system. The initial state is not explicitly represented but is implicitly considered
in the planning process as a cylinder whose length and radius corresponds to the
length and maximum radius of the workpiece. The resulting plan contains as its
main part an NC program with instructions for chucking, tool change, and cutting
the contour of the lathe work.

2 Planning in COLAB

The presented approach is implemented in the COLAB knowledge representation
system. The COLAB system has been designed as a COmpilaton LABoratory aim
ing at a synergetic COlLABoration of different knowledge representation formalisms.
Its architecture corresponds to terminological systems like KL-ONE separating tax
onomie and affirmative (often called assertional) knowledge. The COLAB system
is comprised of subsystems dealing with different kinds of knowledge. A hybrid
knowledge base can contain items from all subsystems. Tags indicate the type of
a knowledge item and determine how it has to be processed. Dynamic cooperation
of the subsystems is organized through access primitives providing an interface to
the respective reasoning services. For a more detailed description of COLAB and
its subsystems see [BHHM91].

38

\.

taxonomie knowledge
---a--.---------i---._._.----------------._._.-:
eonerete: elassifieation of eoneepts :

: domains: taxonomie reasoning about indi viduals i '"
_______________ J. __ ._. ______________ ._.:
-----------------.--_._._-----.-._._--.-_._._---_._---.--_._---------------.-----._.------_.----_ ..

forward ehaining
with relations

" .' .' ,.
" .' ,.
.'
" " .' .'
" .' ~------------------------------ ______ I . " , "

, baekward ehaining with 11

1 relations and funetions n
, .' , "

propagation
in eonstraint nets
over hierarehieal
struetured
domains

~----------.-----------------------------------._-----_.~.--_.------------------ .. ----------_._--_.

affirmative knowledge

Figure 2: The COLAB Representation Architecture

The starting point of our planning approach is a very 'elementary' description of a
workpiece according to the boundary representation of a product model. Original
CAD data can be transformed into this representation in a simple preprocessing step.
In the example presented here we will concentrate on a geometrical description of a
workpiece's surfaces and topological neighborhood relations omitting technological
information for simplicity. The following sampie knowledge items represent part of
a workpiece:

(attrterrn (ring rng42 (tup '(center1 110)
'(center2 110)
'(radius1 30)

'(radius2 20))))
(attrterrn (cylinder cy143 (tup '(center1 110)

'(center2 120)
'(radius1 20)
'(radius2 20))))

(attrterrn (ring rng44 (tup '(center1 120)
'(center2 120)
'(radius1 20)
'(radius225))))

(fact (neighbor rng42 cy143))
(fact (neighbor cy143 rng44))

The first three attribute terms (indicated by the tag attrterm) describe the geom
etry of three surfaces. The tup constructor is comparable to the list constructor
and is used here to group the attributes . The attributes correspond to co-ordinates
and radii of the surface boundaries. The neighbor facts determine the topological
relations of the surfaces.

39

Production planning with these inpu t data would be very complex. Instead there
exists a library of skeletal plans. Each of these skeletal plans is accessed with a
more or less abstract description of a characteristic part of a workpiece , whicll is
called a workpiece feature. Thus, the representation of an abstract NC progralll
is derived from the representation of the goal state by first generating an abstract
feature description of the workpiece, associating features to skeletal plans and then
refining these skeletal plans to an NC program.
In the first abstraction phase a feature description is aggregated from the elemen
tary workpiece data by a cooperation of the taxonomic and rule-based reasoning
components of COLAB. Feature abstract ion starts bottom-up with a collection of
attribute terms by asserting features into the fact base. The rules are very general
mentioning in the ideal case only the most general features (in the subsumption
hierarchy) ranging over the corresponding number of surfaces. As soon as a new
feature instance or information about an already existing instance is asserted, its
most special concept association is computed using the realization service. This
information gain can trigger rules to derive further features. If, for instance, two
surfaces are aggreagted to a biconic, the realization service may find that it is actu
aUy a left shoulder. Then this new fact may trigger any rule with premises referring
to left shoulder, shoulder, biconic, or any more general feature.
The result of this first abstraction phase is a number of facts describing all the
features occuring in the workpiece. Since the resulting production plan will be rep
resented by one single term, the first classification phase is completed by converting
the aggregated features into a nested term structure, which is called classified work
piece. The resulting representation is less redundant and more analogical, because
the structure of the term reflects the topological ordering of the features:

(cvp (tup 40) . ..
(nft (grv (flk (tup (mg 110 25 20)))

(grd (tup (mg 110 20 20) (rng 120 20 20»))
(flk (tup (mg 120 20 25»)))

(tup (nft (lsh (flk (tup (mg 110 30 20)))
(grd (tup (mg 110 20 20)))

(rsh (flk (tup (rng 120 20 25)))
(grd (tup (rng 110 20 20»))) .. . »»)

When the features are collected into one term, for each feature various skeletal plans
are retrieved by COLAB's relational-functional component. A skeletal plan contains
the tools, the direction into which the cut is directed (left, right, vertical) and the
co-ordinates of the feature's contour. In particular, depending on the material, the
angles of the surfaces, etc. only a small subset of available skeletal plans is really
suitable. Therefore, the constraint system is ca lied to reject skeletal plans with
unfitting tools. The remaining skeletal plans are composed to an SAC plan, i.e. a
(higher-order skeletal) plan consisting of a composition of sequential , alternative,
and cornmutative subplans. In a last refinement step an abstract Ne program is
generated by qualitative simulation of the SAC plan in the relational-functional
subsystem: In this phase the order of commutative subplans is fixed and the best
of the alternatives is selected. The main optimization criteria are minimal number
of cuts and minimal number of tool changes. The final ANC program consists 01" a

40

sequence of macro calls performing the roughing part of contour cutting . Modern Ne
programming system can easily expand these kind of macros into real Ne progra.m
code .

(tup (roughing (too1 dnmm-71 tmaxp-pd193)
1eft
(geo (tup (p 110 25) (p 110 20) (p 120 20) (p 120 25)))

(roughing (too1 dnmm-71 tmaxp-pdr93)
right
(geo (tup (p 110 25) (p 110 20) (p 120 20) (p 120 25))) . . .)

3 Summary

Starting with a declarative representation of a workpiece an NC program is gener
ated by successive abstraction , association and refinement operations. In the first
abstraction phase a classified workpiece is derived by cooperation of the taxonomie

and the forward reasoning subsystem of COLAB. In a second phase skeletal plans
associated with the features of the classified workpiece are retrieved by the relational
functional component. Thereby the constraint system rejects unsuitable plans before
they are composed to an SAC plan. The final abstract NC program is generated
by qualitative simulation of the SAC plan, selecting best alternatives and fixing the
order of operations.

References

[BHH+91] Harold Boley, Philipp Hanschke, Martin Harm, Knut Hinkelmann ,
Thomas Labisch, Manfred Meyer, Jörg Müller, Thomas Oltzen, Michael
Sintek, Werner Stein, and Frank Steinle. pCAD2NC: A declarative
lathe-workplanning model transforming CAD-like geometries into ab
stract NC programs. Technical Report Document 0-91-15 , OFKI
GmbH, November 1991.

[BHHM91] H. Boley, P. Hanschke, K. Hinkelmann, and M. Meyer. COLAB : A
Hybrid Knowledge Compilation Laboratory. submitted for publication,
December 1991.

41

A Deductive Approach to Plan Modification

J ana Koehler
PHI

Gerrnan Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: koehler@dfki.uni-sb.de

Abstract

We discuss a deductive approach to plan modification that integrates plan
ning from second principles into a deductive planner. The logical formalism is
reftected in a theorem proving approach in which the reuse component tries to
prove a new plan specification using one of the generalized plan specifications
stored in a plan library. If the proof succeeds the old plan can be used to
satisfy even the new specification. If it fails the information for successfully
modifying the old plan can be extracted from the fai\ed proof.

4:2

1 Plan Reuse in a Deductive Planning Environment

Planning in eomplex domains is normally a resouree and time eonsuming proeess
when it is purely based on first prineiples. Onee a plan is generated it represents
problem solving knowledge whieh is generally lost in classieal planning systems after
the plan has been sueeessfully exeeuted . If sueh a planner has to solve the same
problem again, it will spend the same planning effort and is not eapable 01' "learning"
from its "experienee." Methods of planning from second principles try to reuse former
problem solutions in order to make planning more effieient and flexible.
Besides planning from first prineiples as it is performed by the deductive planner
[Biundo/Dengler], we integrate planning from second principles by incorporating a
plan reuse component into it. As with plan generation we ground this plan reuse
eomponent on a deductive formalism [Biundo and Dengier, and Koehler92].
Planning and plan reuse interact in the following way: A formal plan specifieation
(provided to the planner) is forwarded to the reuse component. If the reuse com
ponent succeeds in hunting up a plan from the library that (p erhaps after minol'
modifications) can be reused to solve it the plan modification process starts . This
process implements planning from second principles: It takes an existing pla.n to
gether with its generation process (which in our case is a proof) out of the plan
library. lf the plan has to be modified, for example, by inserting additional actions,
a formal subplan speeification is generated and passed to the planner. The planner
generates a subplan, which then is used to extend the already existing plan in such
a way that it satisfies even the eurrent specification. If no reuse "eandidate" can be
found the deductive planner has to generate a completely new plan out of the given
specifieation.

2 A Four Phase Model of Plan Reuse

To formalize planning from second principles we have developed a four phase model
of plan reuse reflecting the different tasks that have to be addressed [Koehler9]:

1. In the phase of Plan Determination a plan specification formula <{) is retrieved
from the plan library to solve a new planning problem given as a plan spec
ification formula IJ!. We presuppose that the plan library does not contain
(user-)predefined plan entries , but is built up using information provided by
the deductive planner, e.g ., the specifieation formula, the generated plan , drtd
the proof tree for the plan.

2. In the phase of Plan Interpretation the formula <{) has to be interpreted in the
current planning situation by investigating whether <{) can be instantiated to
<{)inst such that IV is obtained.

3. In the Plan Refitting phase the instantiated plan specification <{)inst is compared
with IV and neeessary refitting tasks for the planner are derived. Planner
and plan reuse component interact in such a way that the reuse component
generates subplan specifications for which the planner is activated to gellerdtc

43

the subplans which have to be deleted from or incorporated into the plan to
be reused.

4. The reuse process finishes with a Plan Library Update in which the plan spec
ification formula W is generalized and compared with already stored plan s. If
W is "worth" storing it is added to the plan library.

In the following we shortly describe how plan interpretation and refitting, summa
rized as plan modijication are realized deductively.

3 A Deductive Approach to Plan Modification

The deductive formalism is worked out using the framework provided by an interval
based temporal modallogic, the so-called Logical Language for Planning LLP that is
used by the planner the reuse component is interacting with [Biundo and Dengler9:2] .
We assurne that plan specification formulas given in LLP [Plan,j! ---t lJ}] are of form
[Plan~ ---t [1fJi ---t 1fJg]], where the subformulas 'l/Jj and 'l/Jg describe the facts holding
before executing the plan and the facts that have to be reached by it, respectively.
Suppose, given a plan specification [Plan~ ---t 1fJJ the plan determination process
succeeds in finding an appropriate entry in the plan library and comes up with a
specification formula [Plan1> ---t 4>J and a plan formula P1> that had been generated
from this specification to replace the metavariable Plan1>' To find out whether P1>
can be reused as a solution even for Plan~ in order to satisfy the current specification
we try to prove the formula:

[4> ---t 1fJ J

This step is justified by the fact that [P1> ---t 1fJ] if [4> ---t 'l/J], provided [P.p ---t 4>] holds.
lf the proof of [4> ---t 'rfJ succeeds the "old" plan P1> can be reused without any
modifications. But in general, the proof of 4> ---t 'rf will fail since the old plan will not
be applicable without any modification to solve the new planning task. Therefore,
we conduct the proof attempt in such a way, that from the failed proof sufficient
information can be extracted to modify P1> successfully.
[4> ---t 'rf] is attempted to be proved using a matrix calculus for the modal logic
LLP based on results by [BibeI82,Wallen89J. The proof attempt consist.s 01' t.wo
steps: First the matrix corresponding to that formula has to be built and paLhs ill
the matrix are determined for which simultaneously complementary liltmls under
an admissible substitution (meeting several criteria posed by the uuderlying logic)
can be constructed. The result of the plan interpretation phase, i.e., the desired
instantiation for <I> is provided by the substitution under which the number of these
paths has a maximum.
Secondly, to formalize the plan rejitting phase we analyze the remaining paths in
the matrix. The formula described by the set of these paths represents refitting
information from which we derive logical specification formulae representing the
necessary refitting tasks for the planner. This unique characterization of refit.ting
tasks allows to reduce the problem of plan refitting to one basic refitting stra1.egv
resolving the two possible plan failures, viz. plan reduclion and plan expanSIO/l. fllii.1
have to be distinguished.

44

It finally has to be verified that the modification of Pr/! leads to a correct, I.e.,
executable plan.

4 Conclusion

In this paper we discussed the ideas of a logical and domain-independent approach
to the problem of plan reuse inside of deductive planning. The main idea is to base
it on a theorem proving approach to provide the logical framework for a completely
automated solution to the problem of plan modification. The developed modification
method is purely based on information arising in the deductive planning process and
does not require additional information supplied by auser.
Current investigations are related to the characterization of the proof at tempt as a
kind of subsumption test to provide the framework for further theoretical investi
gations of such important aspects as decidability of the test procedure, soundness,
i.e., the modified plan is indeed a solution for the current goal and completeness,
i.e., in general every plan can be modified to obtain a solution.

Acknowledgements

I want to thank Prof. Wolfgang Wahlster for his advice and support and my col
leagues Dr. Susanne Biundo and Dietmar Dengier for their interest in my work and
many fruitful discussions.

References

[BibeI82] W. Bibel(1982). Automated Theorem Proving. Vieweg, Braunschweig -
Wiesbaden.

[Biundo and Dengler92] S. Biundo and D. Dengier (1992). An interval-based tem
poral logic for planning. Research report RR-92-12, German Research Center for
Artificial Intelligence.

[Biundo and Dengier, and Koehler92] S. Biundo, D. Dengier, and J. Koehler (1992).
Deductive planning and plan reuse in a command language environment. Research
report RR-92-11, German Research Center for Artificial Intelligence.

[Koehler9] J. Koehler (1991). Approaches to the reuse of plan schemata in planning
formalisms. Technical Memo TM-91-01, German Research Center for Artificial

In telligence.

[Wallen89] 1. A. Wallen (1989). Automated Deduction in Non-classical Logtcs. MIT
Press, Cambridge, London .

45

Abduction and Planning

Alas tair B urt
KIK-Teamware

Gennan Research Center for Artificial Intelligence (DFKI)
Postfach 2080

6750 Kaiserslautern
Germany

e-mail: burt@dfki.uni-kl.de

Abstract

The goal of the KIK project is to investigate domain independent tech
niques for cooperation . We regard cooperation as an interactive process be
tween agents, where agents are entities that carry out actions and plan their
actions. Here we describe a general framework for planning, in which it is
viewed as a form of hypothetical reasoning. Abduction is presented as a
means to reason with planning hypotheses . We indicate how this influences
our not ion of inter agent cooperation.

46

1 Cooperation and Planning

Spurred by the increased networking of computers, cooperation IS becoming the
focus of attention in two ways:

• in Computer Supported Cooperative Work (CSCW), where attempts have been
made to formalise cooperative behaviour amongst people in the workplace in
order enhance the computer support, and

• in Distributed AI (DAI), where researchers are trying to find general mecha
nisms to coordinate software in loosely coupled systems.

A useful defini tion of cooperation is:

Cooperation == Distributed Planning of Actions + Coordinated Execution of Actions

An understanding of cooperation is therefore to be gained by

1. finding a general model of planning,

2. extending it to the case where several planners interact with one allother. and

3. describing the relationship between planning and execution.

Below we describe aland hint at how one may achieve 2 and 3.

2 Requirements for Planning

There are two key features which characterise general approaches planning:

• the means to describe state change and actions - here we use augmented
event calculus, alternatives might be situation calculus or non-classical logics
of action and time; and

• the means used to derive the actions that will lead to the goal state - here we
use abduction, alternatives might be deduction or modifications of deduction .

This approach to planning has been developed by [Esh88] and [Sha89].

3 Event Calculus and State Change

Event calculus captures the notion of state change by pegging it onto events . One
describes when events happen and what properties of the world these events initiate
or terminate. The following two Horn clauses represent this:

47

holds-at(P, T) if
happens(E) and
time(E) < T and
initiates(E, P) and

not clipped(E, P, T)

clipped(E, P, T) if
happens(E') and
terminates(E', P) and
not T ::; time(E') and
not time(E') < time(E)

We can capture the effects of an action by defining initiates and terminales appro
priately. For example:

initiates(E, clear(Z)) if
act(E, move(X, Y)) and
holds-at(on(X, Z), time(E)) and
Z =f Y

terminates(E, on(X, Z)) if
act(E, move(X, Y)) and
Z =f Y

Preconditions, which must hold in the world before an action can be executed, call

be described in two ways:

• by extra conditions in the definitions of initiates and terminales, or

• by using the appropriate integrity constraints in the abductive scheme we
outline below.

4 Abduction: A Form of Hypothetical Reasoning

Given a theory T and a goal formula C, abduction consists in finding the set of
assumptions .6, such that:

T+.6,~C

There may be many possi ble val ues for .6" in w hich case i twill be useful to define
which are good or optimal values. Possible criteria are:

• that i t only contains instances of relations in a certain set a of abducibles.

• that it is minimal: that is there exists no .6,' S.t .
.6,' C .6, and
T U .6,' ~ C, or

• the.6, meets the integrity constraints I) that is, Tu .6, u I is satisfiable.

48

5 Abduction and Planning

Using abduction in the context of event calculus and planning we can rest.rict the
abducibles to the relations happens, act, and the relations of temporal ordering.
The goal G is the formula :1 T holds-at(P, T), where P is the property wh ich wish
to hold in the goal state. An appropriate criterion for the best 6. is that it contaill
the fewest instances of happens.

To obtain an algorithm to compute 6. we can use a extension of SLD resolution
that does not fail when it cannot prove an instance of a relation in (X but instead
adds the instance to 6.. Complications arise when we interpret not as negation as
failure, as is usual with event calculus. The most elegant way to handle this is to
re-interpret negation as failure itself as a form of abduction.
What are the advantages of using abduction and event calculus for planning?

• It stays wi thin well- understood first order classical logic.

• It maps easily onto an efficient extension of resolution.

• Since it stores assumptions on which a plan is based, it can be used to check
that these assumptions still hold when the plan comes to be executed and to
modify the plan when they do not.

• Event calculus is a very general means to reason about states, and can be ex
tended to cope with periodic and continuous change. Moreover, givell sllilablf>
definitions of holds-at(P, T), P may be any reified logical formula.

• Abduction is a very general framework for hypothetical reasoning. lt could
incorporate the heuristics that have been suggested for efficient planning al
gorithms.

6 Cooperation and the Planning Model

In view of the above model of planning cooperation can be re-interpreted as:

Distributed Hypothetical Reasoning + Coordinated Realisation of Hypotheses

In the cooperative context there are several agents, Al, A 2 , ... , An each associated
with their own Ti, Gi , I i , 6. i and (Xi. We then have a problem of how to localise
the decision making when generating a particular set of assumptions. The 6. i of
agent should in some sense be acceptable to the other agents but we do not want to
require that Uj'==l TJ U 6. j U IJ be satisfiable.
We must build on our model of planning in other ways to reAect the dynamic
interactive nature of the multi agent system. Agent Ai not only generates 6., DU!. by
carrying out actions ensures that the statements in 6. i become true 01" the world. We
would like to engineer the agent such that it demonstrably respects the commitments
made in 6.i . The search for suitable actions to carry out is not typically a on ce for

49

all affair. Rather, it is an ongoing process. The agent is constantly revI slng .0:. , in
the light of Ilew input from the world. Our abductive architec \, ure shoulJ CtdllJle
this situation. These and related topics are the subject of current research.

References

[Esh88] K. Eshghi. Abductive planning with event calculus. pages 562-579, Cam
bridge, Massachusetts London, England, 1988. "MIT Press".

[Sha89] M. Shanahan. Prediction is deduction but explanation is abduction . 111
Proceedings IJCAI, 1989 .

50

Concepts for Hierarchical Planning in a Flexible
Manufacturing System

Klaus Fischer
AKA-MOD

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
6600 Saarbrücken 11

Germany
e-mail: fischer@dfki.uni-sb.de

Abstract

The paper presents a concept for the design of the planning and controlling
components of a flexible manufacturing system. The hierarchical planning
structure consists of 6 layers: the production planning and control layer, the
shop floor control layer, the task coordination layer, the task planning layer,
the task execution layer and the machine control layer . The design of these
layers is briefly described by the paper.

51

1 Introduction

CIM (computer-integrated manufacturing) is nowadays a catchword to which current
research work is trying to give real contents. In the environment of a laboratory it
is already possible to carry out a manufacturing order fully automatically, from the
layout of the product to the manufacturing of the end product. At the beginning
of the research work, success in special subjects, e.g. CAD (computer-aided design)
systems, had been achieved. The main research work today is done on the integration
of the units of a flexible manufacturing system (FMS). At first the main problem
was the communication between these units. The ongoing connection of these units
in local area networks and the definition of communication protocols has brought
about great progress here. Now it is possible to concentrate on the real problems in
the planning and controlling components of a FMS. These are the control of the flow
of information and the control of the movement of the workpieces and tools in the
manufacturing floor. In order to control the movement of the workpieces and tools,
it must be determined how and when they have to be carried from one Iocation to
another. Controlling the flow of information requires ensuring thaJ t.he dat.a guiding
the manufacturing process , e.g . how a workpiece has to be worked on, acconqHllies
with the physical transport of the workpieces . The concept presented ill this J.laper
is a framework for the design of the planning and controlling components in a FMS.

2 The Production Planning and Control Layer

The production planning and control (PPC) system is the highest controlling body
to reach the goals defined by the management of a company. The registration 01'
dient orders takes place in the PPC system where they are treated by ecolloillical
criteria. Here the dassical functions: administration of dient orders , data man
agement, material management, and time management are treated. The horizon of
planning is a day up to a week. Planning of a specific dient order is done with
respect to the finishing date and the sequence of the work steps to be done. In
doing so a rough esternation of the capacities of the resources needed for this dient
order is done [SFB331]. By an off-line planning step work plans are given to the
PPC system which determine the manufacturing sequence for a certain end prod
uct . These work plans are passed as manufacturing orders to the shop floor control
system where they are executed. All economical aspects in planning are handled
by the PPC system and during the design of the working steps and work plans
by a product engineer. For the deeper planning layers it is above all impoltarlt to
execute the production orders defined by the PPC system efficiently with respect
to the time constraints specified by the PPC system. The more deterministic the
execution of the production orders take place, the better it is possible for the PPC
system to plan the execution of the dient orders. Because the planning is done us
ing statistical data, variations in the execution of the manufacturing orders due to
autonomous planning decisions can be registered. Autonomous planning decisions
can be necessary because of the occurrence of error and exceptional situations (e.g.
damage of a tool or a workpiece, collision etc.) or because 01 the break dOWl1 01'

52

resourees (e.g. maehine tools, robots ete.).

3 The Shop Floor Control Layer

The eentral problem to be solved in the shop floor eontrol (SFC) system is tbe control
of the flow of material. Controlling a FMS means reaehing two eonflieting goals:
minimal costs 01 inventory by minimizing the duration 01 the production oT'der in the
shop floor and a maximal rate 01 capacity utilization 01 the machines. It is impossible
to satisfy these two goals simultaneously [Müller70]. Therefore, a eompronUse has to
be found between these two goals . By inereasing the teehnologieal level the resouree
'time' beeomes more and more important for eompetitiveness, because advantages
in time ean beeome advantages in eosts [Milberg90]. Hence, saving of time is an
important aspect in a FMS and, therefore, it is eommon agreement. that it is good
to reaeh the first of the two goals and to get additionally a reasonable capacity
utilization of the machines . The global goal here is to have a high ftexibility in the
design of products and in the production of these products in order to be able to
react quickly to ehanges of the market.

4 The Task Co ordination Layer

Looking at the hierarehical planning structure from above, the task coordination
layer (TCL) is in the first planning layer which is present for each autonomous unit
separately. The planning and controlling layers from the TCL to the machine control
layer (MCL) group to a logical unit whieh is unified with the term 'autonomous
unit' (AU) . The SFC system passes the task to the TCL immediately when it is
determined by the production plan that the task may be executed because all of the
preceding working steps have been eompleted. The SFC system does not care if it is
possible for a group of AUs to exeeute this task irnmediately or if they are currently
engaged in the exeeution of a task. The task is just announeed by the SFC and the
AUs deeide by themselves when it will actually be executed. By doing a speeific
task several AUs have to cooperate. Eaeh AU has to playapart to solve a specific
task. No AU may believe that it is the only one whieh wants to playa eertain part
for a specific task. Therefore, the AUs must coordinate their intentions 01' playing
parts in different tasks on the TCL .

5 The Task Planning Layer

The TCL of a AU passes a single task to the task planning layer (TPL) of the AU
which has to be solved in order to solve the global task given on the TCL. The
planning of the task is done using the eontent of aglobaI knowledge base. This
global knowledge base contains an image of the current state of the real world. By
solving a task the AUs have to cooperate with each other . For that reaSOll , the
complex task given by the TCL has to be decomposed into primitive actions each

53

of which can be executed by the AU without interacting with other AU s. The task
planner contained in the TPL of an AU therefore implements the fun etiolI:

f : K" x T ----+ P"

where K is the set of a all possible knowledge base states, T is the set of alt tasks ,
and P is the set of primitive actions. The input to the task planner is a sequence ot
knowledge base states because the content of the knowledge base is changed while
task planning is active. Hence, the task planner reacts to changes in the environment
of the AU by reacting to the changes in the knowledge base. For each task function
f is specified by a set of rules which we call behaviour pattern. A single rule of a
behaviour pattern is ca lied a behaviour rule [Fischer88,Fischer89].

6 The Task Execution Layer

The primitive actions derived in the TPL of an AU are executed in the task execution
layer (TEL) of the AU. By executing primitive actions an AU has not to interact
with other AUs. Nevertheless, such a primitive action may be itself a complex
task to do, for example the sensor-guided insertion of a pin into a hole by a robot.
[Hagg92] describes the concept of sensor actor networks with which the solution of
such tasks may be specified.

7 The Machine Control Layer

Simple control commands are sent from the TEL to the machine controllayer (!VIeL)
where the actions are actually executed. The separation of the TEL and the MCL
is done due to the systems which are available today. The controlling units of these
robots and machine tools are simple computation units with weak computational
power, which are therefore not able to do complex computations. In the future it is
likely that the controlling units of such systems will offer the computational power of
today's workstations and that therefore the TEL and the MCL will grow t.oget.her.

References

[Fischer88] Fischer, Klaus: Regelbasierte Synchronisation zwischen Roboter und
Maschinen, Technischer Bericht, Institut für Informatik, TU München .

[Fischer89] Fischer, Klaus : Knowledge-Based Task Planning for Autonomous Mo
bile Robot Systems, Proc. of the 2nd Inter. Conf. on Intelligent Au
tonomous Systems, Amsterdam, pp 761-771, December 1989.

[Hagg92] Hagg, Ernst: Realisierung von Multisensoranwendungen mit verlletzt.ell
logischen Sensoren und Aktoren, Doktorarbeit, Institut lür Iulorrlld.tik ,
TU München, 1992.

54

[Milberg90] J. Milberg: Eine Woche lang CIM - CAD - (,AM , Si.iddeutsche
Zeitung, 22.10.1990.

[Müller70] Müller-Mehrbach, Heiner: Optimale Reihenfolgen, Springer-Verlag,
Berlin 1970.

[SFB331] Sonderforschungsbereich 331 - Informationsverarbeitung in au
tonomen mobilen Handhabungssystemen - Arbeits- und Ergebnis
bericht - Januar 1986 - Dezember 1988.

55

PIM - Planning In Manufacturing

Ansgar Bernardi Christoph Klauck
ARC-TEC

Ralph Legleitner

German Research Center for Artificial Intelligence (DFKI)
Postfach 2080

6750 Kaiserslautern
Germany

e-mail: bernardi@dfki.uni-kl.deklauck@dfki.uni-kl.de
legleit@dfki.uni-kl.de

Abstract

In order to create a production plan from product model data, a human
expert thinks in a special terminology with respect to the given work piece
and its production plan : He identifies certain areas of interest. the so-called
application features. The exact form of these features is inftuenced by his man
ufacturing environment (e.g. available tools) and by his personal experience .
The expert associates the application features with fragments of a production
plan. By combining these fragments, bearing in mind some general principles ,
he creates the complete production plan .

We present a set of representation formalisms which allow to model this ap
proach very closely. Based on TEC-REP (TEChnological REPresentation),
a general representation formalism for geometrical and technological infor
mation abou t the work piece, an expert 's application features are defined.
They are described using the language FEAT-REP (FEATure REPresenta
tion) and represent his personal terminology. Skeletal plans (abstracted plans
or fragments of plans), represented in the hierarchical formalism SKEP-REP
(SKEletal Plan REPresentation), are associated with the features.

When an expert 's knowledge about production planning has been for
malised in terms of application features and associated skeletal plans , the
generation of a production plan boils down to a sequence of abstraction, selec
tion and refinement: The geometrical/ technological representation of a work
piece allows the recognition of the relevant features. The associated skeletal
plans are selected, merged and refined until a complete plan is created. This is
demonstrated in the CAPP-system PIM (Planning In Manufacturing), which
is currently developed as a prototype ..

The representation formalisms and the prototypical implementation have
been designed with special focus on the possible integration into existing Cl M
chains . We provide interfaces to CAD and to NC machines.

The approach sketched above formalizes the knowledge of the concrete
expert (or the accumulated know-how of a concrete factory). Byemploying
the expert's feature definitions it is possible to create planning systems which
are especially tailored to the concrete manufacturing environment and opti
maHy use the expert's knowledge. The e10se modeling ofthe expert's planning
methods and his terminology should also lead to improved acceptance of the
system.

56

1 TEC-REP

The representation formalism TEC-REP [BKL91]provides the necessary constructs
to describe the geometrical and technological information of the work piece. The
geometry of the workpiece is described by surface primitives. These pledefined
primitives include simple expressions for rotational symmetrie parts, which ale 01
special interest in the domain of manufacturing by turning. To be as universal as
possible, primitives for non-symmetrie surfaces also exist. The extensions 01' any
surface are specified using a cartesian coordinate system. The concrete dimensions
are specified for each work piece. Every surface of a work piece description can
be identified by a unique identification number. The neighbourhood of surfaces is
explicitly represented by aseparate primitve. The technological informations are
described by attributes to the surfaces they concern.
In summary, TEC-REP allows the description of every work piece we current.ly deal
with by using a symbolic and attributed boundary representatiofl.

2 Features and FEAT-REP

Features represent a concrete expert's knowledge about characteristic aggregations
of surfaces. We define the term feature as a description element based on geometrical
and technological data of a product which an expert in a domain associates with
certain informations (see also [K B L91]).
The features can be described by means of formal languages via attributed node
label-controlled graph grammars (ANLCGG's) [KBL91J .
Each feature can be associated with knowledge about how the feature should be
manufactured; this information can be used to generate a process plan. Given the
geometrical/technological description of a workpiece, all relevant features can be
identified by feature recognition.
To show the usability of our high-level-representation language FEAT-REP the
FEAT-PATR-System was implemented as a prototypical part of PIM, by adopting
achart parser for our application in mechanical engineering. Input of our FEAT
PATR-System is a workpiece description in TEC-REP. Input is also the expert's
feature knowledge about the workpiece, represented in a grammar. Output 01' the
system is a feature-structure of the workpiece

3 Skeletal Plans

To combine the expert's knowledge about the manufacturing process with feature
structures as shown above we use skeletal plans [FI85J. The skeletal plan represen
tation formalism SKEP-REP allows the expert to write down his knowledge about
the process necessary for the manufacturing of his workpieces and fol' special part.s
of this workpieces (features) .

57

A skeletal plan described in the formalism SKEP-REP contains the feature or feature
structure it is associated to. It. then contains so me context informalwil which relales
to other skeletal plans which form preconditions for the application 0[' thi::; part iuden
plan. lt mayaIso contain some applicability constraints which are not expressed
by the features or the context of skeletal plans. Then it contains a sequence of
operations, which may result in the subroutine-like call of other skeletal plans 01'

in the generation of concrete planning steps. In the domain of manufacturing by
turning, eonerete planning steps are ehueking eommands, cut instruetions and tool
selections.
Every operation may aceess the conerete technologieal and geometrical informa
tions, especially measurements, whieh are represented in the TEC-REP of the sur
faces which form the features assoeiated with the skeletal plan or with the plans of
the context (see above). Beside this, no information about the workpiece can be
aceessed. This realizes the concepts of modularity and informatioll hiclillg for the
skeletal plans and makes it possible to create skeletal plans for for a large bandwit.h
of workpieces.
Some of the operations ean result in the subroutine-eall of special programs for
particular tasks. In our prototype, the tool selection operation uses a constraint
system to find the suitable group of tools for the intended operation.
To perform the selection and merging of the skeletal plans, a prototypical skeletal
planning system was implemented as apart of our PIM system [Bec91] . which uses
the following algorithm:
When a given workpiece description has been transformed in a feature st,ruct,urt' by
the feature recognition process, the skeletal plans associated with these features are
found and selected according to the constraints embedded in the plans. The re
sulting set of skeletal plans is then merged to one final plan, and abstract variables
are replaced by the concrete data of the workpiece in question. The merging of the
skeletal plans is oriented on several topics: Operations using the same tool should
be performed consecutively (minimalization of tool change operations). Operations
in one chucking context must be performed together, minimizing the changes of
chueking. Different tools belonging to a eommon group may be exchanged against a
more general tool of this group, sueh that several operations using slightly different
tools can be merged to one operation using only one too!. Differellt. surtaces 01' a
workpiece which are treated with similar operations should be grouped together.
These merging operations are supported by a hierarchical ordering of the available
tools and a hierarchical grouping of the possible operations. Some heuristieal ap
proaches to skeletal plan merging are under investigation. The expert may inftuence
the merging operations by explicit merging commands.

4 Connections to the real world

The PIM system fits into the CIM-chain by interfaces to existing CAD syst.ems and
to existing NC programming systems.
The interface to the CAD world transforms the necessary geometricalJtechnological

58

information about the workpiece from the CAD data into our TEC-REP. A trdllS

lator for the forthcoming ISO-st.a.ndard STEP [G ASS89,BhL90] is cUlT t:' lIlly ul1c1er

implementation.
Another interface connects the CAD system "Konstruktionssystem Fertigungs
gerecht" of Prof. Meerkarnm, U niversity of Erlangen [MW91], with TEC- REP. This
system is a augmented CAD system based on SIGRAPH. It uses an internal data
format which can directly be transformed into TEC-REP. Thanks to the cooperation
of Prof. Meerkarnm and his team, this connection works satisfying.
To get connected to the NC-machines we rely on components of NC programming
systems avail~ble on the market today. The primitive operations used in the skeletal
plans can easily be compiled into the cornmand language of the NC programming
system, which subsequently can generate CLDATA Code as weil as machine specific
NC-Code without any further human interaction.

5 Conclusion

The observation of human expert's problem-solving behavior resulted in a model
of process planning which supports a knowlegde-based approach to CAPP. Based
on technological/ geometrical information about the workpiece, higher-level features
are defined and associated with skeletal plans. Special languages for d ddequdle
representation of the necessary knowledge on the different abst.raction levels were
presented. The transformation and interpretation steps between the different lan
guages have been implemented and form the planning system PIM. The resulting
system is especially tailored to a concrete manufacturing environment and uses the
expert's knowledge optimally. This should lead to good quality of the produced
plans and to high acceptance of the system. Positive comments of many domain
experts support this claim.

References

[Bec91] Andreas Becker. Analyse der planungsverfahren der ki im hinblick aul
ihre verwendung in der arbeitsplanung. Dokument 0-91-17, DeuLsches
Forschungszentrum für Künstliche Intelligenz GmbH, Postfach 20 800-
6750 Kaiserslautern, september 1991.

[BKL90] Ansgar Bernardi, Christoph Klauck, and Ralf Legleitner. Step: Uberblick
über eine zukünftige schnittstelle zum produktdatenaustausch. Doku
ment 0-90-04, Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH, Postfach 20 80, 0-6750 Kaiserslautem, septeillber 1990.

[BKL91] Ansgar Bernardi, Christoph Klauck, and Ralf Legleitner. Tec-rep:
Repräsentation von geometrie- und technologieinformationen. Dokument
0-91-07, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH,
Postfach 20 80, 0-6750 Kaiserslautern, june 1991.

59

Cha90] Tien-Chien Chang. Expert Process Planning fOT A1a·lwfad'Ul"in!J.

Addison- Wesley, 1990.

:FI85] Peter E. Friedland and Yumi Iwasaki. The concept and implementation
of skeletal plans. Journal of Automated Reasoning, 1:161-208, october
1985.

GASS89] H. Grabowski, R. Anderl, B. Schilli, and M. Schmitt. Step - entwick
lung einer schnittstelle zum produktdatenaustausch . VDI-Z, 1:31(9):68-
76, september 1989 .

KBL91] Christoph Klauck, Ansgar Bernardi, and Ralf Legleitner. Feat-rep: Rep
resenting features in cadj cam. In IV International Symposium on A rti

ficial Intelligence:Applications in Informatics and International Confer

ence on Manufacturing Automation, 1991.

LBK91] Ralf Legleitner, Ansgar Bernardi, and Christoph Klauck. Pim: Skeletal
plan based capp. In International Conference on Manufacturing A utoma
tion, 1991.

MW9l] H. Meerkamm and A. Weber. Step - entwicklung einer ~chnil tstellt' Z Ull}

produktdatenaustausch. In Erfolgreiche Anwendung wissensbasurler
Systeme in Entwicklung und I{onstruktion. VDI-Berichte 903, pages 231-
249, 1991.

60

Multi-agent Planning

Norbert Kuhn Jürgen Müller
AKA-MOD

Gennan Research Center for Artificial Intelligence (DFKl)
Stuh1satzenhausweg 3
6600 Saarbrücken 11

Gennany
e-mail: kuhn@dfki.uni-sb.demueller@dfki.uni-sb.de

Abstract

In contrast to the planning of actions for a single agent, planning in a multi
agent environment is concerned with the construction of plans for several
agents that act in the same world. This implies that there may be eitheI
conflicting or common goals in the different agents' plans that need to be
coordinated. Thus, an important aspect in a multi-agent society are the way~
of inter action that can occur between the agents.

Our main interest is in multi-agent systems where the agents try to coop
erate, i.e. they are consciously acting together to reach a common goal and
they coordinate their activities by negotiations and by making arrangements.
Therefore, the agents must have capabilities to reason about their own activ
ities and other agents' actions in order to resolve conflicting situations in a
cooperative manner.

We present a first approach to deal with the quantifiable aspects of coop
eration which can also be used to solve a second major problem of multi-agent
planning, namely the problem of task decomposition and task allocation. The
solution of this problem is crucial for exploiting the synergetic effects from an
agent-society. Unfortunately, a synergetic effect is system-immanent most of
the times and it is hardly to be captured by some numerical function. Thus,
we also deal with some sociological aspects of cooperation, such as the effect
of the structure of the groups that are working together and of the communi
cation features on the global functionality of a community of agents.

61

1 Introduction

The task in multi-agent planning is to construct sequences of actions for several
different units that act in the same wor/d. This can be done by a distinguished
central planner as weil as by a set of differerent decentralized planning units. In
either case the existence of a society of agents has so me impacts on the planning
process itself. LFrom an agent 's local point of view this means that he should take
care of other agents' actions al ready at the planniOng stage. From a more technical
point of view the system should at least provide facilities to resolve possible conflicts,
e.g. synchronization mechanisms for resource allocation.
Another problem that has to be addressed is the finding of an appropriate task
decomposition, i.e. breaking down a given task into subtasks and assigning them to
the available agents. Thus, in multi-agent planning systems we will have in general
at least the two phases of task decomposition and the individual planning of actions.
Assuming that every agent has only incomplete information about the üthcr <tgt'I"::;

and they cannot predict their actions leads to the necessity of a third phase in t.he
planning process, the coordination of the individual plans .
In the following we first present some possible approaches to plan coordination to
motivate our model of decentralized multi-agent planning. This model should enable
us to handle task decomposition and the coordination of the individual plans in the
same manner.

2 Coordination of individual plans

To fulfill given tasks the agents will develop sequences of actions. By perl"orming
specific actions the agents will obstruct each other, e.g. if two agents compete for the
same resource, or parts of the plans may include the possibilty of mutual support.
Thus, there are relations between the sequences of actions which can be either
possible obstructions or that may include the possibility that the agents can 'help'
each other. In the coordination phase all the obstructions should get eliminated and
the possibilities of supporting each other should be exploited.
The handling of the obstructing relationships between sequences 01" actioTl::; is etlso
of some relevance in other kinds of distributed systems, like distributed o[JeratioTi
systems or distributed databases, and a lot of mechanisms to deal with this kind
of relation have been developed . These mechanisms may be applied in our setting,
too. But, in general these mechanisms lack of exploiting the intelligent features 01"
the agents.
Some of the approaches for coordinating agent activities apply the communication
of partial plans between the agents. If those partial plans include for example
a competetive request for some resource the corresponding agents have to resolve
this conflict via negotiation. In the solution of v.Martial [vM92] the agents try to
modify (shift or shrink) the time intervals for which they require a commoll resomee
to achieve an agreement.
Another possibility for controlling resource allocation of the agents is the use 01 all

62

artificial market mechanism. 'vVe endow the agents with all alllOUllt. ur lllUIWY lü !Ja.\"
for the use of the resources wit.hin a specific time period. Every sillgle l('SOl\l«(, is
associated with a price which may vary over time. These so called t I"allsfer priees
[Mey80] can be used to control the access to the resources .
The general idea is the following: To fulfill a certain task the agents may have to
choose between the use of different resources. This choice is done by evaluating a
private function that yields a priority on the resources considered. One variable in
those functions should be the price associated with each resource. By modifying
the prices we try to influence these functions to achieve a good rate of resource
utilization. The following simple example illustrates this idea:
Let al, a2 be agents, and rl, r2 be two equal resources with the associated prices PI
and P2' If agent aj wants to use resource rj he will have the costs c,) = Pl + Wir

where Wij is a.;'s extra cost for getting rj.

al 1
1

4 If the Wij are as in the table to the left then for each agent. the
a2 1 2

cost of using rl is less than the one for using r2. Thus, both agents will run for rl,
and we are in a situation that we have a conflict for the reservation of one resource
while an identical one stays unused. But, if we increase the value of PI by 2, i.e. PI
:= PI + 2, we see that for agent a2 the cost now for r2 is less than that for rl' So
he will revise his decision made up so far and the conflict will be solved.
The modification of the prices can be done in various ways - e.g . by a central u!lit,
by communication between the resources or by putting up the resomee für auel iOll.

The use of a market model for controlling resource all oe at ion in a multi-agent sys
tem provides a mechanism to quickly resolve conflicts for reservation. In addition,
the change of the reserve of money yields varying priorities of the agents . Of course,
the model is refinable to take care of optimality criteria or to model cooperation
between agents.
In the modelling of the transportation companies the market model can be used
to control the task allocation in the same way as the resource allocation. At every
time point t there is a set of open tasks and a set of companies with open capacities .
Every task has associated a profit and the agents try to estimate their costs when
they would accept this task. Then they bid for a contract. for the t.ask t.hey rat.ed
best. Conflicts can then be solved by modification of the profit associated with so me
task.

3 Teams of agents

One of the main motivations of representing real-world problems by mult.i-agent.
scenarios is the ho pe to be able to catch the phenomenon of a synerget.ic effect, i .e .
to be able to build up systems where the whole is more than the sum 01' its part.s .
Synergetic effects have been the matter of attention in many areas 01' research, in
particular in psychology and sociology. For us, the studies concerned with working
groups or teams are of special interest. A group structure that is appropriate for
a special problem raises the probability that a synergetic effect can be achieved.

63

Forster [For82] distinguishes three areas where teamwork has advanta.ges over single
handed work:

• advantage in the field of Carrying and Lifting

• advantage in the filed of Searching and Finding

• advantage in the field of Classifying and Standardizing

Implemented multi-agent systems where these effects are demonstrated are found
through the last decade. One of the latest is ARCHON [Jen91], where different
expert systems are linked together. These expert systems are able 1.0 cOl11municate
some of their current hypotheses. For instance, there is one expert system for high
voltage diagnosis and one system weather forecast. lf there will be cl IJovvn [itil ure
and a thunderstorm, this will lead to the hypothesis of the global system Lhitt there
may be some damage by lightning. Another famous example is the blackboard sys
tem HEARSAY-II [EHRLD80], where different agents work together for analyzing
a given sentence in natural language.
All these sytems have in common that the synergetic effects observed are not mea
surable by some numerical function. And, one of the main variables effecting the
functionality of the global system is the structure of the communication between
the agents.
Thus, a multi-agent system we have in mind should be comprised 01' team::; ur itgents.
The teams themselves always have a common goal to achieve. They COllsist or a sIllall
number of agents, where every agent fulfills a specific task. Communica.tioll should
be possible almost direct, i.e. agent-to-agent. The membership of an agent in a
team is fixed, while teams may build up groups whose combination as weil as the
form and the degree of cooperation may vary over time. Each task in the system is
assigned to a certain team which is responsible for the fulfillment of the task. If the
team is not able to guarantee this it has to look for other teams for help.

4 Conclusion

We have presented some ideas to show how to incorporate coordination and cooper
ation into multi-agent planning systems. The agents' architecture could be based on
the RATMAN model [BM91]. We motivated the division of cooperative aspects into
quantifiable and non-quantifiable aspects. The quantifiable ones may be captured
by the evaluation of some weighting function that controls the behavior of the agent
in the near future. The non-quantifiable aspects heavily depend on the application
domain and should be represented by an appropriate communicat.ion st.ructure ol
the multi-agent system we design.

References

[BM91] H.-J. Bürckert and J. Müller. RATMAN : Rational Agents Testbed for
Multi-agent Networks. In Decentralized AI Val. 2. North Holland, 1991.

64

[EHRLD80] L.D. Ermann, F . Hayes-Roth, V.R. Lesser, and D.R.Reddy. The
HEARSAY-I! speech understanding system: Integrating Knowledge to
resolve uncertainty. In Computing Surveys 12(2), pages 213-253,1980.

[For82]

[Jen91]

[Mey80]

[vM92]

J. Forster. Teamarbeit . Sachliche, personelle und strukturelle Aspekte
einer Kooperationsform. In W. Grunwald and H.-G. Lilge, editor, 1 0-

operation und konkurrenz in Organisationen, pages 153-168. UTB,
1982.

N.R. Jennings. Cooperation in Industrial Systems. In ESPRIT '91

Con/erence Proceedings, pages 253-263, 1991.

G. Meyer. Dezentrale Planung - Betriebswirtschaftliehe Analyse

ausgewählter Dekompositionsmodelle. Verlag Dr. Peter Maullhold ,
Düsseldorf, 1980.

F . v. Martial. Coordinating Plans 0/ A utonomous Agents. PhD thesis,
University of Saarbrücken, 1992 .

65

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91-10
Franz Baader. Philipp Hanschke : A Scheme for
Integrating Concrete Domains into Concept
Languages
31 pages

RR-91-11
Bernhard Nebel : Belief Revision and Default
Reasoning: Syntax-Based Approaches
37 pages

RR-91-12
J.Mark Gawron. lohn Nerbonne. Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka : Residuation and Guarded Rules for
Constraint Logic Programming
17 pages

RR-91-14
Peter Breuer. lürgen Müller : A Two Level
Representation for Spatial Relations. Part I
27 pages

RR-91-15
Bernhard Nebel . Gert Smolka :
Attributive Description Formalisms ... and the Rest
ofthe World
20 pages

RR-91-16
Slephan BusemfJnn : Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations
18 pages

DFKI
-Bibliothek
PJ:- · 2080
D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-17
Andreas Dengel. Nelson M. Matlos :
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-18
lohn Nerbonne. Klaus Neller. Abdel Kader Diagne.
Ludwig DickmfJnn. ludith '(lein :
A Diagnostic Tool for Gel man Syntax
20 pages

RR-91-19
Munindar P. Singh: On th~ Commitments and
Precommitments of Limited Agents
IS pages

RR-91-20
Chrisloph Klauck. Ansgar Bernardi. Ralf Leglei/ner
FEAT-Rep: Represeming Features in CAD/CAM
48 pages

RR-91-21
Klaus Netler: Clause Union and Verb Raising
Phenomena in German
38 pages

RR-91-22
Andreas Dengel: Self-Ada~,ting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Banardi. ChrisLOph
Klauck. Ralf Legleimer: A.<.quisition und
Repräsentation von technischem Wissen für
Planungsaufgaben im Bere.ich der Fertigungstechnik
24 Seilen

RR-91-24
lochen Heinsohn: A Hybrid Approach für
Modeling Uncertainty in Terminological Logics
22 pages

RR-91-25
Karin Harbusch, Wolf gang Finkler, Anne Schauder:
Incremental Syntax Generation wilh Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer, S. Biundo, D. Dengier, M. Hecking,
l. Koehler, G. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach-
17 pages

RR-91-27
A. Bernardi, H. Boley, Ph. Hanschke,
K. Hinkelmann, Ch. Klauck, O. Kühn,
R. Legleitner, M. Meyer, M. M. Richter,
F. Schmalhofer, G. Schmidt, W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen, Harald Trost, Hans Uszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger, lohn Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger, 1. Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf Backofen, Lutz Euler, Günther Görz:
Towards lhe Integration of Functions, Relations and
Types in an AI Programming Language
14 pages
RR-91-33
Franz Baader, Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel , Christer Bäckström:
On the Computational Complexity of Temporal
Projection and some related Problems
3S pages

RR-91-35
Winfried Graf, Wolf gang Maaß: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-01
Werner Null: Unification in Monoidal Theories is
Solving Linear Equations over Semirings
S7 pages

RR-92-02
Andreas Dengel, Rainer Bleisinger, Rainer Hoch,
Frank Hönes, Frank Fein, Michael Malburg:
TIODA: The Paper Interface to ODA
S3 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
lohn Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
IS pages

RR-92-05
Ansgar Bernardi, Christoph Klauek,
Ralf Legleitner, Michael Schulte, Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-lheoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Winfried Graf, Markus A. Thies:
Perspektiven zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
IS Seiten

RR-92-11
Susane Biundo, Dietmar Dengier, lana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR-92-13
Markus A. Thies, Frank Berger:
Planbasierte graphische Hilfe in objektorientierten
Benutzungsoberflächen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object
Oriented User Interfaces
Markus A. Thies, Frank Berger

22 pages

RR-92-15
WinJried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsohn, Damel Kudenko, Berhard Nebel,
Hans-Jürgen Profitlieh: An Empirical Analysis of
Tenninological Representation Systems
38 pages

RR-92-17
Hassan Ai't-Kaci, Andreas Podelski, Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleimer, Ansgar Bernardi, Christoph Klauck
PIM: Planning In Manufacturing using Skeletal
Plans and Features
17 pages

RR-92-20
John Nerbonne: Representing Grammar, Meaning
and Knowledge
18 pages

RR-92-21
Jörg-Peter Mohren, Jürgen Müller
Representing Spatial Relations (part II) -The
Geometrical Approach
25 pages

RR-92-22
Jörg Würtz : Unifying Cycles
24 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

DFKI Technical Memos

TM-91-09
Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents
18 pages

TM-91-10
Bela Buschauer, Peter Poller, Anne Schauder, Karin
Harbusch: Tree Adjoining Grammars mit
Unifikation
149 pages

TM-91-11
Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
SteJan Bussmann: Prototypical Concept Formation
An Alternative Approach to Know1edge
Representation
28 pages

TM-92-0 1
Lijuan Zhang:
Entwurf und Implementierung eines Compilers zur
Transformation von Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

DFKI Documents

D-91-11
Thilo C. Horstmann:DisLributed Trulh Maimenance
61 pages

D-91-12
Bernd Bachmann:
Hieracon - a Knowledge Representation System
wilh Typed Hierarchies and Constraims
75 pages

D-91-13
International Workshop on Tenninological Logics
Organizers: Bernhard Nebel. Christof Peltason.

Kai von Luck
131 pages

D-91-14
Erich Achilles. Bernhard Hollunder. Armin Laux.
Jörg-Peter Mohren: 'XJ(lS : ~owledge
~presentation and lnference System
- Benutzerhandbuch -
28 Seiten

D-91-15
Harold Boley. Philipp Hanschke. Martin Harm.
KnUl Hinkelmann. Thomas Labisch. Manfred
Meyer. Jörg Müller. Thomas Oltzen. Michael
Sintek. Werner Stein. Frank Steinle:
j.lCAD2NC: A Declarative Lalhe-Worplanning
Model Transfonning CAD-Iike Geometries imo
Abstract NC Programs
100 pages

D-91-16
Jörg Thoben. Franz Schmalhofer. Thomas Reinartz:
Wiederholungs-, Varianten- und Neuplanung bei der
Fertigung rotationssymmeLrischer Drehteile
134 Seiten

D-91-17
Andreas Becker :
Analyse der Planungsverfahren der Kl im Hinblick
auf ihre Eignung für die AbeiLSplanung
86 Seiten

D-91-18
Thomas Reinartz: Definition von ProblemkJassen
im Maschinenbau als eine Begriffsbildungsaufgabe
107 Seiten

D-91-19
Peter Wazinski : Objektlokalisation in graphischen
Darstell ungen
110 Seiten

D-92-0 1
Stefan Bussmann: Simulation Environment for
Multi-Agent Worlds - BenulzeranleilUng
50 Seilen

D-92-02
Wolfgang Maaß : Constraim-basierte Plazierung in
multimodalen Dokumenten am Beispiel des Layout
Managers in WIP
111 Seilen

D-92-03
Wolfgan Maaß. Thomas Schiffmann. Dudung
Soetopo. Winfried Graf: LA YLAB: Ein System zur
automatischen Plazierung von Text-Bild
Kombinationen in multimodalen Dokumenten
41 Seilen

D-92-06
Hans Werner Höper: Systematik zur Beschreibung
von Werkstücken in der Terminologie der
Featuresprache
392 Seiten

D-92-07
Susanne Biundo. Franz Schmalhofer (Eds.) :
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn. Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings
56 pages

D-92-09
Gernod P. Laujköller: Implementierungsmöglich
keiten der integrativen Wissensakquisitionsmelhode
des ARC-TEC-Projektes
86 Seilen

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser für attributierte Graph-Grammatiken
87 Seiten

D-92-13
Holger Peine: An Investigation of lhe Applicability
of Tenninological Reasoning to Application
Independem Software-Analysis
55 pages

D-92-15
DFKJ Wissenschaftlich-Technischer Jahresbericht
1991
130 Seilen

D-92-21
Anne Schauder: Incrememal Syntactic Generation of
Natural Language wilh Tree Adjoining Grammars
57 pages

t--c
00)
• E

NB
0')0
.0

Cl

ui
'0
UJ

....
2

0')
0
J::.

c:: eil
c:: E
c:: J::.
ro 0

a..
Cf)

N

c:: c:
0 eil

LI..
a.
0 0

.s::::. '0
(/) c:
~ ::J

CD 0

~ Q)
c:
c:

~ eil

LL
IJ)

::J
C Cf)

	D-92-07-0001
	D-92-07-0002
	D-92-07-0003
	D-92-07-0004
	D-92-07-0005
	D-92-07-0006
	D-92-07-0007
	D-92-07-0008
	D-92-07-0009
	D-92-07-0010
	D-92-07-0011
	D-92-07-0012
	D-92-07-0013
	D-92-07-0014
	D-92-07-0015
	D-92-07-0016
	D-92-07-0017
	D-92-07-0018
	D-92-07-0019
	D-92-07-0020
	D-92-07-0021
	D-92-07-0022
	D-92-07-0023
	D-92-07-0024
	D-92-07-0025
	D-92-07-0026
	D-92-07-0027
	D-92-07-0028
	D-92-07-0029
	D-92-07-0030
	D-92-07-0031
	D-92-07-0032
	D-92-07-0033
	D-92-07-0034
	D-92-07-0035
	D-92-07-0036
	D-92-07-0037
	D-92-07-0038
	D-92-07-0039
	D-92-07-0040
	D-92-07-0041
	D-92-07-0042
	D-92-07-0043
	D-92-07-0044
	D-92-07-0045
	D-92-07-0046
	D-92-07-0047
	D-92-07-0048
	D-92-07-0049
	D-92-07-0050
	D-92-07-0051
	D-92-07-0052
	D-92-07-0053
	D-92-07-0054
	D-92-07-0055
	D-92-07-0056
	D-92-07-0057
	D-92-07-0058
	D-92-07-0059
	D-92-07-0060
	D-92-07-0061
	D-92-07-0062
	D-92-07-0063
	D-92-07-0064
	D-92-07-0065
	D-92-07-0066
	D-92-07-0067
	D-92-07-0068
	D-92-07-0069
	D-92-07-0070
	D-92-07-0071
	D-92-07-0072
	D-92-07-0073
	D-92-07-0074

