
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Document
D-91-13

International Workshop
on

Terminological Logics

Schloß Dagstuhl, May 6-8, 1991

Organizers:

Bernhard Nebel eh ristof Peltason Kai von Luck

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
0-6750 Kaiserslautern, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
0-6600 Saarbrücken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarbrücken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense wh ich - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany anet from all over the wond. The goal is to have a statt of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

International Workshop on Terminological Logics

Organizers: Bernhard Nebel, Christof Peltason, Kai von Luck

DFKI-D-91-13

© Deutsches Forschungszentrum für Künstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

International Workshop
on

Terminological Logics

Schloß Dagstuhl, Germany
May 6 - 8, 1991

Bernhard Nebel
DFKI

Organizers:

Christof Peltason
TU Berlin

Contents

Preface

Workshop Programm

Contributions

List of Participants

Kai von Luck
IBM Germany

1

2

5

129

Preface

The second international workshop on Terminological Logics was held at Schloß DagstuhP ,
near Saarbrücken, Germany, on May 6-8, 1991. The workshop was the follow-up event to
the "Workshop on Term Subsumption Languages" held in New Hampshire, in October
1989 (cf. AI Magazine 11(2), 1990).

Terminological Logics consists of a family of representation formalisms that have grown
out of the KL-ONE knowledge representation system. Unlike some other areas of knowl
edge representation, in this field the aspects of theoretical work (semantical foundations,
complexity), system-oriented work (implementations), and application-oriented work are
all dealt with within one community, as documented by the variety of talks at this work
shop.

The workshop itself brought together 40 invited participants currently working in the
field, and served to provide a snapshot of the current state of research, showing that there
has been a lot of progress in tbe last several years. The theoretical area has advanced
to a point where only a few questions concerning the core formalism remain open. The
current trend seems to be to integrate more functionality and other formalisms.

The material compiled here consists of most of the contributions of the participants,
listed in alphabeticalorder of the submitting authors. In character with the informal
nature of the "work"shop, these papers sketch personal interests, work in progress, or
s11mmaries of research results rat her than being fully elaborated articles. The complete
set of presentations at the workshop can be seen from the program given on page 2.

In addition to the scheduled sessions, there were a number of informal meetings for ex
changing ideas and planning future collaborative work, including one about future system
standards and standard notation (see also the proposal on page 120). This should make
the exchange of ideas, systems, and knowledge bases, and the maintainance of a test
corpus easier in the future.

The program was rounded off by an overview talk by Ron Brachman on the past and
future development of Terminological Logics (the issue of finding a good name for the
field is still in discussion), and a panel debate on aspects of tbe relationship between
"Theory and Practice". In order to promote communication between people working in
the field a mailing list (tlc@isi.edu) was established.

We would like to thank the Dagstuhl foundation for inviting us, our affiliated organizations
for their support, and finally all participants for their active engagement in the workshop.

Bernhard Nebel
(DFKI)

Christof Peltason
(TU Berlin)

Kai von Luck
(IBM Germany)

July, 1991

1 Schloß Dagstuhl is the site of the recently founded International Conference and Research Center for
Computer Science, sponsored by the German Society for Computer Science (GI), and three universities
(Saarbrücken, Kaiserslautern, and Karlsruhe), and financed by the the federal states of Saarland and
Rheinland-Pfalz.

1

VVorkshop Prograrn

Sunday, May 5

afternoon

Monday, May 6

8:45 - 9:00

9:00 - 10:45

10:45 - 11:15

11:15 - 12:30

12:30 - 14:00

14:00 - 15:45

15:45 - 16:15

16:15 - 17:30

18:00

19:00

Arrival

Introduction
Bernhard Nebel (DFKI, Saarbrücken)

Algorithms and Complexity
Franz Baader (DFKI, Kaiserslautern)
Francesco Donini (Univ. Roma)
Werner Nutt (DFKI, Kaiserslautern)
Peter F. Patel-Schneider (AT&T Bell Labs)
Klaus Schild (TU Berlin)

Break

Principles of Modeling
Howard W. Beck (Univ. Florida)
Alfred Kobsa (Univ. Saarbrücken)
Joachim Quantz (TU Berlin)
Sonia Bergamaschi (Univ. Bologna)

Lunch

Implementation Techniques
Carsten Kindermann (TU Berlin)
Eric K. Mays (IBM, New York)
Bob MacGregor (ISI, Marina deI Rey)
Deborah L. McGuinness (AT&T Bell Labs)

Break

Probability and Defaults
Jochen Heinsohn (DFKI, Saarbrücken)
Lin Padgham (Linköping Univ.)

Keynote Address
Ron Brachman (AT &T Bell Labs)

Buffet

2

Tuesday, May 7

8:30 - 10:00

10:00 - 10:30

10:30 - 12:00

12:00 - 12:30

12:30 - 14:00

19:00

20:00

NL-Applications
J ürgen Allgayer (U ni v. Saarland)
Amadeo Capelli (Univ. Pisa)
Manfred Gehrke (Siemens, München)

Break

Unification-based Systems
Guiseppe Attardi (Univ. Pisa)
Roland Seiffert (IBM, Stuttgart)
Gert Smolka (DFKI, Saarbrücken)

Organisational Issues

Lunch

Dinner

Discussion: Theory and Practice
Bob MacGregor (ISI, Marina deI Rey)
Hector Levesq ue (U ni versi ty of Toronto)

Wednesday, May 8

8:30 - 9:45

9:45 - 10:15

10:15 - 12:00

12:00 - 12:30

12:30 - 14:00

14:00 - 15:30

18:00

Hybrid Extensions
Bernhard Pfahringer (Univ. Wien)
Enrico Franconi (IRST, Povo)
Albrecht Schmiedel (German Heart Center, Berlin)

Break

Technical Applications
Rüdiger Klein (AdW, Berlin)
Luca Spampinato (Quinary, Milano)
Bill Swartout (ISI, Marina deI Rey)

Organisational Issues

Lunch

Workshop Summary and Outlook

Dinner

3

Experiences in 'Hybridification': Enhancement of
a Term Subsumption Language to Cover Plural

and Quantified Terms.

J. Allgayer
University of Saarbrücken

FB 14: Dept. of Computer Science
6600 Saarbrücken 11, Germany

1 Introduction

In the context of natural language processing, term subsumption languages (TSL) are
widely used for several tasks, from lexicon structuring to domain modeling. One portion
of the problems in NL dialog systems is the necessity to represent and reason about dialog
contributions that construct step by step the context of the dialog, e.g. the intruduction
of entities the participants are talking about. This spans from descriptions of entities,
over relations they have been proposed with, to attitudes and modes they were proposed
in. Not only needs all this be represented in a way expressible and powerfull enough to
cover all representational means as weIl as processing demands from all parts of the overall
system, but also an adequate reasoning about these representational terms is necessary.

The facet of the described problem field which will be described in more detail in this
paper deals with the requirement of a language (called SB-TWO) that should a) utilize a
TSL (SB-ONE, [Kobsa89], [Profitlich90]), but b) extend/enhence it with representational
means to deal with descriptions of plural terms and relationships between them, and a
flexible way of quantification.

Considering the state of the art in NL processing (see, for example, Discourse Rep
resentation Theory ([Kamp81]), File Change Semantics ([Heim82]), Situation Semantics
([Barwise/Perry83]) or the Generalized Quantifier Theory ([Barwise/Cooper81])), there is
a clear tendency in NLP either to base the processing directly on a formalism taken from
linguistics, or to define a well-founded underlying theory according to linguistic criteria,
in order to get a system which behaves in a well-defined manner, and which is extendable
for dealing with new phenomena.

Therefore, in most cases the NLP formalisms are based on first order predicate logic;
but this leads to amismatch between the properties of the natural language to be char
acterized and those of the knowledge representation language that should describe them.

Notions like quantiJier, variable, sense and reference, intension and exten
sion, ... are all technical (. ..) notions introduced by philosophers and logi
Clans. They are not part of the data of natural language. It just might be

5

tbat some or all oE tbem cut across tbe grain oE tbe phenomena in unnatu
ral ways, generating artificial problems and constraining tbe space oE possible
solutions to tbe genuine puzzles that language presents. ([BarwisejPerry83,
p.xi f.])

On the other hand, not ions like these are very useful- and, as we believe, are indespen
able - with respect to an internal formal knowledge representation language. Therefor,
we look for an application of the above-mentioned notions that fits "the grain of the N
phenomena" in the best possible way.

And this, in fact, is the intention of the Generalized Quantifier Theory (GQT
[BarwisejCooper81]): to provide a notion of (formal) quantifiers that describes qua
tifiers as they occur in naturallanguage.

2 Natural Language Determiners

Research concerning General Quantifiers has been (and still is) mainly motivated by three
arguments:

Al Not all Natural Language Determiners are expressible by formulas of first order
predicate logic (FOL); propositional determiners like "more than half of" would
need higher order expressionsj

A2 in order to formally describe the relations between a predicate (verb) and its ar
guments (noun phrases) in a compositional semantics, a formalism is needed that
treats all possible structures of NPs in a unique manner;

A3 different determiners behave in different ways with respect to the deductions that
can legally be drawn from the proposition the determiner is involved with. One
would wish to formalize this observation in order to restrict the whole set of relations
denoted by Natural Language Determiners (called DET from now on), as well as to
subdivide DET into subclasses for which specific deductions hold.

The GQT's view of determiners is to see them as relations between two sets: the set
of individuals denoted by the NP's noun (which is referred to as the Basic predicate), and
the set of individuals denoted by the VP (the Central predicate). The main result shows
that any determiner in ((Det Basic) Central) that satisfies the fundamental priciples of
conservativity, extensionality, variety, and quantity (see below) can be defined via the
cardinalityt of two sets: 1 Basic n Central land 1 Basic \ Central I.

We see that the definition of meaning of determiners is totally independent from the
underlying model, which, in turn, is an argument to lower the treatment of determiners
into the knowledge representation language.

Especially results of GQT with respect to (A3) are most interesting for NLP systems,
as we shall see after the next section.

On the representational basis, we need to be able to express sets and relationships
between sets in order to lower the properties and characteristics of various NL determiners
into the representation formalism. The notion of whitness set from GQT can be seen as

6

the representative of the set of sets a determiner is mapped onto. Thus, being able to
handle sets appropriately enables us to treat determiner processing " a. la GQT". The
representational prerequisites will be briefly discussed in section 4.

3 Formal aspects of semantic constraints of NL de
terminer

As GQT has shown, all NL determiners satisfy the following fundamental principles which
therefore may be seen as linguistic universals.

Conservativity (CONS):
If Det in ((Det Basic) Central) describes a valid relation between the sets
Basic and Central, then ((Det Basic)(Basic n Central» is valid as weIl.

This is important for the proper treatment of determiners in an NLP system (based
on any KL-ONE family member and the open world assumption), because one never has
any information about the extension of the Central predicate. But, as CONS teIls us, the
semantics of DET doesn't depent on the cardinality 1 Basic \ Central I.

The second principle fulfilled by all naturallanguage determiners guarantees context
neutrality:

Extension (EXT):
If Det in ((Det Basic) Central) describes a valid relation between the sets
Basic and Central in a model A and there is a Model A' with A ~ A', then
((Det Basic) Central) is valid in A' as weIl.

What this means is that the extension of the discourse - which is done permanently
in a system with underlying open world asumption - does not change the semantics (the
truth value) of the quantified proposition, as long as it doesn't concern the denotation of
the predicates involved.

The principle of Quantity is concerned with the specific interpretation function un
derlying the model and is often called the principle of topic-neutrality:

Quantity (QUANT):
If ((Det Basic) Central) describes a relation between the sets Basic and Central
in a model A, and there is a function 7r representing a bijection from A to A',
then ((Det 7r(Basic» 7r(Central» is an equivalent relation in A'.

Thus, the interpretation of a determiner-specific relation is independent of the specific
properties of the elements of discourse. This again supports the view that the handling
of determiners should be a task of the knowldege representation formalism itself.

Variety (VAR):
If Basic is non-empty, then there exist two predicates Central and Central'
such that ((Det Basic) Central) and -,((Det Basic) Central ') hold.

7

This means that no element of DET is trivial in the sense that the determiner relation
either holds for any pair of elements of the uni verse or for none.

Beyond these principles which are fulfilled by all elements of DET, there are some char
acteristics of specific subclasses of DET that define inferential properties of the structures
corresponding to the determiners on the level of world knowledge representation.

To give an idea, take these as an example:

Transitivity: ((Det Basic) Central) n ((Det Central) Central') ~ ((Det Basic) Cen-
tral')

Example: "every", counterexample: "two"

Symmetry: ((Det Basic) Central) ~ ((Det Central) Basic)
Example: "sorne" , counterexample: "every"

For NLP systems with knowledge representation formalisms based on conceptual hi
erarchies, the most interesting properties of determiners are those that infiuence its infer
ential behaviour with respect to the underlying terminological basis.

Monotonicity:
If a determiner Det is upwardjdownward monotone then if ((Det Basic)

Central) describes a valid relation between the sets Basic and Central, and
there is a SuperconceptjSubconcept Central' that subsurnes Central, then
((Det Basic) Central') is valid as weIl.

Upward monotone determiners are, for example, "sorne" and "at least ten", where "at
most ten" is not.

Persistency:
If a determiner Det is upwardjdownward persistent then
if ((Det Basic) Central) describes a valid relation between the sets Basic and
Central, and there is a SuperconceptjSubconcept Basic' that subsurnes Basic,
then ((Det Basic') Central) is valid as weIl.

To summarize, the requirements necessary to cope with NL determiner processing in
an adeq uate fashion appear to be the following:

Rl a laguage that is able to express determiner properties and to compute the hierarchy
of determiner classes;

R2 a knowledge representation language that is able to express assertions in which NL
quantification (i.e., the usage of determiners) is required;

R3 integration of and access to knowledge bases (KBs) that describe the properties of
determiners (i.e., the DET classification KB);

R4 integration of inference capacities arising from the usage of DET with the reasoning
procedure of the overall inference mechanism (i.e., intelligent use of the KB wh ich
holds the determiner dependent inference ruIes);

R5 the ability to express sets and their relationships as weil as set elements next to
each other.

8

4 The representational foundations

In order to satisfy requirement R5, an extension of the existing knowledge representa
tion formalism (and system) SB-ONE ([Kobsa89, Profitlich90]) has been defined. This
formalism (called SB-ONE+) regards the universe of discourse as consisting of entities
and all possible groupings of those entities, i.e., U = D U P(D), where D is the set of
domain elements, and P(D) denotes the powerset. Thus, an instatiation of a concept,
called an instance, may be of type set or element, respectively. And, quite naturally, the
formalism allows to express relationships among these entities of our "world", e.g. subset,
superset, or element-of relationships, and maintains the relationships stated implicitly
(and computable via the transitivity of such relations). For a more detailed explanation
of SB-ONE+, see [Allgayer90].

5 A determiner processing system

The system's layout shown in Figure 1 gives so me insight into the approach taken
for the solution of our problems and requirements. The PROLOG meta-interpreter
MOTHOLOG1 combines the KL-ONE knowledge representation paradigm with the rep
resentational and computational power of logic. It does this by aHowing for the integrated
use of knowledge expressed in an inheritance network formalism (in our case, SB-ONE+),
as weH as the description and use of inferential knowledge expressed in inference rules.

MOTHOLOG allows for access to network based knowldege bases that simulates the
solution generating process underlying the PROLOG reasoning mechanism. Queries to
such KBs are translated into continuation-based reentry procedures that compute a set
of solutions and deliver on demand one solution after the other. Thus, a net-query can be
seen a.S a simulated sequence of queries to an ordinary PROLOG database which includes
backtracking after failure or unsatisfying proof results. This allows for the use of network
based knowledge bases within a logic-oriented language.

Equipped with these feasabilities, the DET classification KB can be used to determine
which determiner was used and what kind of properties are declared for it.

Knowing this, we can use the appropriate inference rules for this type of determiner.
Again, MOTHOLOG inference rules are capable to visit the appropriate KBs when in
terpreting the determiner dependent inference rules (DDIs). DDIs themselve express the
semantic properties of determiners as described in section 2. For example, a DDI express
ing the upward persistency of a certain determiner (which is a member of the class of
persistent determiners!) looks like

(gen-quant (?Det ?Var ?Basic) (?Central)) :
(detclass ?Det persisten/upward)j
(supsumes ?SubBasic ?Basic)j
(gen-quant (?Det ?Var ?SubBasic) (?Central))

It expresses the fact that by using an upward persistent determiner in an expres
sion, the Central predicate can be replaced by a more general one, preserving the truth
conditions for the newly generated expression.

1 MOTHOLOG is an acronym for 'MOre THan Ordinary proLOG'

9

DET
Classitic.

Declaritively
Expandable
Reasoner

Dornain
Knowledge -

Net
assertions

KL-ONE Iike representation scherne

Figure 1: Architecture of MOTHOLOG

DDIs

Logical
assertions

~
IrQ ;:;.

c:> .,
;;.
= -~
CI. .,
~

"'CI .,
~

~ = -~ -:i"
j!J
:r
~

3
~

The predicate detclass implements the connection to the knowledge represented in
the determiner classification knowledge base, and gen-quant couples the usage of deter
miners and their adequate processing.

References

[AllgayerjReddig90b] J. Allgayer and C. Reddig. What KL-ONE Lookalikes Need to Cope
with Natural Language - Scope and Aspect of Plural Noun Phrases. In K.R. Bläsius, U.
Hedstück and C.-R. Rollinger (eds.), Sorts and Types in Arificial Intelligence, Berlin,
Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer, 1990.

[Allgayer90] J. Allgayer, SB-ONE+ - dealing with sets efficiently. In: Proc. ECAl 90.

[BarwisejCooper81] J. Barwise and R. Cooper. Generalized Quantifiers and Natural Lan
guage. Linguistics and Philosophy, 4:159-219, 1981.

[BarwisejPerry83] J. Barwise and J. Perry. Situations and Attitudes. Bradford Books.
Cambridge, MA: MIT Press, 1983.

[Heim82] 1. Reim. The Semantics of Definite and Indefinite Noun Phrases. PhD thesis,
Univ. of Massachusetts, 1982.

10

[Kamp81] H. Kamp. A Theory of Truth and Semantic Representation. In: J. A. G. Groe
nendijk, T. M. V. Janssen, and M. B. J. Stokhof (eds.): Formal Methods in the Study
of Language, pp. 277-322, Amsterdam: Mathematical Centre, 1981.

[Kobsa89] A. Kobsa. The SB-ONE Knowledge Representation Workbench. Memo 31,
Univ. Saarbrücken, 1989.

[Profitlich90] SB-ONE: Ein Wissensrepräsentationssystem basierend auf KL-ONE. Mas
ter's thesis, Univ. of Saarland, 1990.

11

Cyclic, Transitive, and Concrete Extensions of
Concept Languages

Franz Baader
German Research Center for AI (DFKI)

Postfach 2080

W-6750 Kaiserslautern, Germany

e-mail: baader@dfki.uni-kl.de

phone: (+49 631)205-3457

Abstract

The purpose of this note is not mainly to describe particular results on extensions
of concept languages, but rat her to illustrate the evolution of research which lead
to these results, and to show how they are connected.

1 Terminological Cycles in :F.co
Cyclic definitions are often prohibited in terminological knowledge representation lan
guages because, from a theoretical point of view, their semantics is not clear and, from
a practical point of view, existing inference algorithms may go astray in the presence of
cycles. In [Baa90c] terminological cycles are considered in a very small KL-ONE-based lan
guage which allows only conjunction of concepts and value-restrictions. For this language,
which will be called F Co in the following, the effect of the three types of semantics in
troduced by [Neb87, Neb89, Neb90]-namely, least fixed-point semantics (lfp-semantics),
greatest fixed-point semantics (gfp-semantics), and what he called descriptive semantics
can be completely described with the help of finite automata. These descriptions provide
a rat her intuitive understanding of terminologies with cyclic definitions, and give insight
into the essential features of the respective semantics. In addition, one obtains algorithms
and complexity results for subsumption determination. The results of [Baa90c, Baa90dJ
may help to decide what kind of semantics is most appropriate for cyclic definitions, not
only for the smalllanguage F Co, but also for extended languages. As it stands, the great
est fixed-point semantics comes off best. The characterization of this semantics is easy
and has an obvious intuitive interpretation. Furthermore, important constructs-such as
value-restriction with respect to the transitive or reflexive-transitive closure of a role-can
easily be expressed.

However, the results obtained in [Baa90c] have two major drawbacks which we intend
to overcome in [Baa90a]. First, the language F Co is too small to be sufficient for practical
purposes. As shown in [Baa90d], the results can be extended to the language FC- of
[LB87], and it seems to be relatively easy to include number-restrictions. However, as soon

12

as we also consider disjunction of concepts and exists-in-restrictions, the unpleasant fea
tures which lfp-semantics had for :F Co (see [Baa90c, Baa90d]) also occur for gfp-semantics
in this larger language. If we should like to have general negation of concepts, least or
greatest fixed-points may not even exist, thus rendering fixed-point semantics impossi
ble. Second, the characterization of gfp-semantics for :F Co-though relatively easy and
intuitive-still involves notions from formal language theory such as regular languages
and finite automata.

2 Union, Composition, and Transitive Closure of
Roles

In [Baa90a] it is shown that the concept defining fa,cilities of :F Co with cyclic definitions
and gfp-semantics can also be obtained in a different way. One may prohibit cycles and
instead allow role definitions involving union, composition, and transitive closure of roles.
The regular languages which occur in the characterization of gfp-semantics for :F Co can
directly be translated into role definitions in this new language. This proposes a way of
retaining, in an extended language, the pleasant features of gfp-semantics for :F Co with
cyclic definitions without running into the troubles caused by cycles in larger languages.

Starting with the language ACe of [SSSJ-which allows one to use negation, conjunc
tion and disjunction of concepts as well as value-restrictions and exists-in-restrictions
cyclic concept definitions are disallowed in [Baa90a], but instead the possibility of role
definitions involving union, composition, and transitive closure of roles is added. In con
trast to other terminological KR-systems which incorporate the transitive closure operator
for roles, asound and complete algorithm for concept subsumption is given in [Baa90a].
The connection between role definitions involving union, composition, and transitive clo
sure of roles on the one hand, and regular languages over the alphabet of all role names
on the other hand is also important for this algorithm.

3 Terminological Cycles and Concept Equations in
A.ce

Since ACC contains general negation of concepts, descriptive semantics is the only mean
ingful semantics for cyclic definitions in this language. It is easy to see that the transitive
extension of ACe mentioned in the previous section is not equivalent to ACe with cyclic
definitions interpreted with descriptive semanties. Nevertheless, the algorithm developed
for subsumption testing in the transitive extension ean be used to decide subsumption for
ACe with eyclie definitions.

More general, it is even possible to deeide subsumption with respect to general concept
equations by using this algorithm (see Section 6 of [Baa90a]). A general concept equation
is an axiom of the form C = D where both C and D may be complex eoncept deseriptions.
In eontrast to these general equations, the usual T-Box axioms always have simple coneept
names on the left hand side, with the additional restrietion that any name may occur only
onee as a left hand side. Please note that the implication rules used in many terminologieal
KR-systems (e.g., in BACK or CLASSIC) can easily be expressed by such general concept

13

equations. In fact, an implication rule C => D is logically equivalent to the concept
equation enD = C where n stands for conjunction of concepts.

4 Integrating Concrete Domains

The extension described in this section was motivated by an application in a mechanical
engineering domain (see (BBK+91]).

A drawback which concept languages based on KL-ONE have is that all the termino
logical knowledge has to be defined on an abstract logical level. On that level one can
e.g. describe the concept Woman as "humans who are female", and represent it by the
expression Human n Female. In many applications, however, one would like to be able to
refer to concrete domains and predicates on these domains when defining concepts. Ex
amples for such concrete domains are the nonnegaiive integers, the real numbers, or also
non-arithmetic domains, and predicates could be equality, inequality, or more complex
predicates. In the above example, one might think that being human and female is not
enough to make a woman. As an additional property one could require that she should be
old enough, e.g., at least 21. Thus one would like to introduce a new role age, and define
Woman by an expression of the form Human n Female n ~21(age). Here ~21 stands for
the unary predicate {n; n ~ 21} of aH nonnegative integers greater or equal 21. Stating
such properties directly with reference to a given concrete domain seems to be easier and
more natural than encoding them somehow into abstract concept expressions.1 Though
this drawback already appears in naturallanguage processing, it becomes even more im
portant if one has other applications in mind. For example, in a technical application the
adequate representation of geometrical concepts requires to relate points in a coordinate
system. For that purpose one would e.g. like to have access to real arithmetic.

In [BH90a] we propose a scheme for integrating such concrete domains into concept
languages rat her than describing a particular extension by some specific concrete domain.
We define a terminological and an assertional language, and consider the important infer
ence problems such as subsumption, instantiation, and consistency. The formal semantics
as weH as the reasoning algorithms are given on the scheme level. The algorithms generate
subtasks which have to be solved by a special purpose reasoner of the concrete domain.
A concrete domain for which these subtasks are solvable is called admissible in [BH90a].
In contrast to existing KL-ONE based system, the algorithms will be not only sound but
also complete, provided that the concrete domain in question is admissible.

5 Combining the Extensions

For many applications (an in particular also for the above mentioned application in me
chanical engineering) it is desirable to have both access to an admissible concrete domain
and transitive closure of roles. We have mentioned above that adding one of these two
facilities to a concept language such as ACC leaves the interesting inference problems de
cidable. However, the situation changes if we want to have both facilities in one language.

I See e.g. [BS85], Section 9.2, where so-called Structural Descriptions are used to encode the concrete
predicate "less than one hour". From a computational point of view, Structural Descriptions are as bad
as Role Value Maps which cause undecidability of subsumption [SS89].

14

If, starting with ACe, we allow only transitive closure of functional roles (without
union or composition of roles) and integrate the admissible concrete domain R (which
stands for real arithmetic) then the subsumption problem becomes undecidable.

This can be shown by reducing the Post Correspondence Problem to the subsumption
problem for this language. The reduction uses only very simple predicates from real
arithmetic, namely equalities between linear polynomials in at most two variables (see
[BH90a] for details).

References

[Baa90a] F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. Research Report RR-90-13, DFKI /
Kaiserslautern, 1990. A short version will appear in the Proceedings of the
IJCAI'91.

[Baa90b] F. Baader. A formal definition for the expressive power of knowledge represen
tation languages. In Proceedings 0/ the 9th European Con/erence on A rtificial
Intelligence, pages 53-58. ECAI, 1990.

[Baa90c] F. Baader. Terminological cycles in KL-ONE-based knowledge representation
languages. In Proceedings 0/ the Eighth National Con/erence on Artificial Intel
ligence, volume 2, pages 621-626. AAAI, 1990.

[Baa90d] F. Baader. Terminological cycles in KL-ONE-based knowledge representation
languages. Research Report RR-90-01, DFKI / Kaiserslautern, 1990.

[BH90a] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. Research Report RR-91-10, DFKI / Kaiserslautern, 1990.
A short version will appear in the Proceedings of the IJCAI'91.

[BH90b] F. Baader and B. Hollunder. Kris: Knowledge representation and inference
system. Technical Memo TM-90-03, DFKI / Kaiserslautern, 1990. To appear
in the SIGART Bulletin.

[BBK+91] A. Bernardi, H. Boley, C. Klauck, P. Hanschke, K. Hinkelmann, R. Legleit
ner, O. Kühn, M. Meyer, M.M. Richter, F. Schmalhofer, G. Schmidt, and
W. Sommer. ARC-TEC: Acquisition, representation and compilation of tech
nical knowledge. In AVIGNON 91, 1991.

[BS85} R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171-216, 1985.

[LB87} H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowl
edge representation and reasoning. Computational Intelligence, 3:78-93, 1987.

[Neb87] B. Nebel. On terminological cycles. KIT Report 58, KIT Group, Technische
Universität Berlin, 1987.

15

[Neb89] B. Nebel. Terminological cycles: Semantics and computational properties. In
Proceedings 0/ the Workshop on Formal Aspects 0/ Semantic Networks, 1989.
Two Harbors, Cal.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, volume
422 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1990.

[SS89] M. Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In R. J. Brach
man, editor, First International Con/erence On Principles 0/ Knowledge Rep
resentation and Reasoning, pages 421-431, 1989.

[SSS] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with com
plements. To appear in Journal of Artificial Intelligence, 47, 1991.

16

A Conceptual Clustering Alogrithm for
Semantic Data Models *

Howard w. Beck

University of Florida
12 Rogers Hall

Gainesville, FL 32611
INTERNET: hwb@beach.cis.uft.edu

The Intelligent Information Retrieval Project at the University of Florida has been
exploring the application of term subsurnption languages to database management and
aturaJ Ja.nguage processing. The CANDIDE semantic data model was developed as an

a.daptation of KANDOR, and explored the use oE classification as a query processing tecb
nique. An information retrieval system was developed using CANDIDE wbicb featured a
natura1language query interface.

Recently research has focused on expanding term subsumption languages to more ac
curately reflect fundarnentals of category formation. A general conceptual clustering al
gorithm has been developed which augments deductive reasoning using subsumption with
inductive reasoning by generating classes over sets cf instances. The clustering algorithm
is applied to several database applications including schema design, schema evolution,
schema integration, view generation, and query processing. The database schema also
supports represention of lexical knowledge by organizing large numbers of cases of word
use. Lexical acquisition from cases is being explored.

1 Conceptual Clustering Algorithm

Conceptual clustering techniques based on current theories of cateorization [6, 5] provide
a way to design database schemas which more accurately represent classes. In this ap
proach, classes are treated as complex clusters of concepts rather than simple predicates.
An important service provided by the database is determining whether a particular in
stance is a me mb er of a class. A conceptual clustering algorithm aids in building classes
by grouping related instances and developing class descriptions. The resulting database
schema addresses a number of properties of categories including default values and pro
totypes, analogical reasoning, exception handling, and farnily resemblance.

Class cohesion results from trying to resolve conflicts between building generalized
dass descriptions and accommodating members of the class which deviate from these de
scriptions. This is achieved by combining techniques from machine learning, specifically

°This research is supported in part by grants from the Florida High Technology and Industry Council

17

1. Introduce a New Class
1.1. Use SUBSUME and Classification to determine the relationship

between the new dass and existing dass descriptions.
1.2. Use Realization to determine which existing

instances satisfy the new dass description.
2. Introduce a New Instance

2.1. Use Realization to place the new instance into
dasses for which the instance satisfies dass descriptions.

2.2. Use INTERSECT to identify other related instances. This may
generate new dasses, but is also needed in the next step.

2.3. Use the Exception Condition to see if the new instance may
be an exception to an existing dass description.

2.4. Based on adecision to place an exceptional instance into
a dass, use EVOLVE to modify the dass schema.

Figure 1: Main components of the conceptual dustering algorithm

explanation-based learning and case-based reasoning. A subsumption function is used to
compare two dass descriptions. A realization function is used to determine whether an
instance meets an existing dass description. A new function, INTERSECT, is introduced
to compare the similarity of two instances. INTERSECT takes two instances and gen
erates a new dass which is the minimal description which is satisfied by both instances.
INTERSECT is used in defining an exception condition. Exception handling results in
schema modification (EVOLVE).

The main components of the clustering algorithm are outlined in Figure 1. The
purpose of the dustering algorithm is to assign instances to dasses. In the process,
existing dasses may be modified (schema evolution) and new dasses formed. The process
is incremental in that each new instance or dass is being added to an existing database.
The structure (schema) of the database must be altered to account for the new instance
or dass. The process is conceptual in that it is based on a comparison of the structures
of database objects which represent concepts.

2 Database Applications

A conceptual dustering algorithm based on current theories of categorization should
be used as the basis for organizing and maintaining databases dasses. This results in
databases dasses which more accurately reflect real category structures. In this section,
the usefulness of this approach in database applications is discussed. The topic is explored
in greater detail in [2].

• Schema Generation and Evolution

The techniques described in the previous section are most directly applicable to
schema generation and maintenance. They can be used as tools to help database

18

designers. Since the algorithm is incremental, new classes and instances can be
added at any time. The database system evolves with each new addition in that
the schema is modified as needed to accommodate the addition. The process is
open-ended, leading to more complex, more accurate schemas as more information
is added.

• Schema Integration

The conceptual clustering algorithm can be used to generate a global schema which
integrates several different databases. Anwar et al. [2] describes a procedure in
which a schema is generated from the combined instances from several databases.
Relationships among instance attributes between databases must be specified, such
as synonomus relationships, set/subset relationships, and logical implication (such
as the relationship between age and date of birth). Instances from several databases
can then be clustered into a global schema based on specified goals and user prefer
ences.

• Query Processing

The conceptual clustering algorithm can be applied to query processing. Two such
applications are processing queries with inexact answers [1] and providing intensional
answers to queries.

- Queries with Inexact Answers

Analogical reasoning can be applied in situations where an inexact match to a query
specification is desirable. Such may be the case when no instances match the query
exactly. For example, it may be desired to find job candidates which most closely
match the job description, though no candidate may match precisely. In case-based
reasoning, it is a fundamental operation to retrieve cases which are somehow similar
to the new case. Such queries will be more important as databases are used in
analogical reasoning.

In contrast to numeric or fuzzy sets approaches which ultimately rely on so me
distance metric and threshold to processing such queries, conceptual clustering re
trieves instances which are structurally, semantically, and pragmatically similar to
the query even though they may not match the query exactly. The query processor
has both a deductive and inductive component. The deductive component finds
exact matches in the traditional sense, and the inductive component identifies ways
in which inexact matches may be considered similar. Ranking on similarity is done
using the database taxonomy by which similar instances become members of the
same class. Relative similarity is determined by depth in the taxonomy.

Query processing is accomplished through conceptual clustering by representing the
queryas an object (either a class or instance), and using the clustering algorithm
to determining the correct position of the query object within the taxonomy. The
use of classification in exact query processing was discussed in an earlier paper [7]
where classification was a purely deductive procedure. Queries are represented as

19

new database classes. Subsumption relationships between the query dass and other
dasses were computed to find the most specific dasses to which the new query dass
belongs. Instances of these classes were then tested to see if they conformed to the
restrictions stated in the query class. Those instances which satisfied the restrictions
were retrieved as the result of the query.

Inexact query processing extends this procedure by considering partial matching be
tween database instances and the query object. Partial matches can be determined
through INTERSECT. The generated class teIls how two instances are similar. In
crementaIly computing this relationship over the instances of a database results in
a rich taxonomy of clusters in which related instances are grouped into the same
dasses. The result of a query is a new structural organization of the database schema
which teIls, 1) Those instances which match exactly, 2) Those instances which match
inexactly, and 3) A dass taxonomy describing the relationships between the query
and other instances. The taxonomy is also used to rank relative similarity between
the query and retrieved instances.

- Intensional Answers to Queries

The conceptual clustering algorithm will build a taxonomy of subdasses subsumed
by the new query dass. These subdasses provide an intensional ans wer to the
query which can be stated in terms of the data definiton language [2]. Thus, in
addition to retrieving a set of instances related to the query, these subdasses would
be available to summarize the categories to which these instances belong. This
intensional answer would contain more information than simply displaying a list of
instances which match the query, since relations among the instances are categorized
by the subdasses.

A database schema design based on category theory more naturally represents the
meaning of terminology, thus leading to an improved user interface since terms
used to describe the data can be mapped onto database objects. In particular, we
are using the data model discussed here to store a large lexicon for use in natural
language query processing [3, 4]. The conceptual dustering algorithm is used to
assist in building the lexicon by modifying representations for word meaning as new
word usages are encountered .

• Automatie Generation of Views Based on Clustering Seeds

Database views can be specified by giving a dustering seed. The dustering seed
is a class description or small schema representing the desired concepts that guide
the view creation process[7, 2]. This seed provides the clustering algorithm with a
basis for generating a database schema which conforms to the desired view. Existing
subclasses and instances related with the view are dustered beneath the seed. Since
it is directly related to query processing, view creation can take advantages of the
query capabilities just described.

20

3 Language Acquisition

The natural language processing component of the project is concentrating on lexical
acquisition through case-based reasoning [3,4]. The conceptual clustering algorithm sup
ports retrieval of relevant cases. Database instances are used to represent cases. Language
acquisition from similar cases is treated in the context of concept acuqistition and cate
gory theory. The main contributions from case-based reasoning include mapping new or
unusual usage to related cases and determining default values over sets of cases for use in
disambiguation. This work is being implemented as part of a information retrieval project
involving language acquisition from corpus of text.

Expectation-driven parsing fails in interpretation of new or novel usage patterns since,
by definition, new or novel usage patterns are precisely those which are not expected. An
expression is ungrammatical if it fails to fit patterns described by a particular set of
grammar rules. Yet language speakers are often able to glean understanding from such
express ions and may readily acquire the new usage pattern. Case-based reasoning provides
a way to overcome the brittleness of strictly rule-based natural language processing by
providing an interpretation of unusual utterances. Case-based language understanding
is a "language usage" theory. We understand an utterance because of its similarity to
previous utterances, not because the utterance fits the mold of a general, idealized rule.
Nevertheless, case-based language understanding should be treated as one part of a more
general theory which balances similarity-based reasoning with rule-based reasoning.

Understanding an unusual utterance requires aglobai search of cases which may only
partially match with the new utterance. Instead of (or more accurately, in addition to)
comparing the utterance to general usage patterns, a case base of previous utterances
provide a corpus of text which can be examined for relationships to the new utterance.
The case base of text provides two techniques for analysis:

1. Finding cases is treated as a database query with complete or partial matching.
Context (expectation) is use to specify the query initially.

2. Default values obtained by statistical measures over sets of cases is used to weight
the retrieved cases. Usage patterns with the highest frequency are given priority.

Finding cases is admittedly a computationally complex task. This would not be such
a problem where it done in parallel. Otherwise the use of indexing can speed performance
as it has in other applications of case-based reasoning.

4 Summary

An information retrieval system of agricultural data, mostly text, is being constructed
using the CANDIDE semantic data model [7, 8]. Natural language processing is being
developed for querying the database, but eventually also to help in building the database
by extracting information directly from text. Language acquisition is seen as a significant
bottleneck in this process. Conceptual clustering is a fundamental component of both the
database organization and language acquisition.

21

References

[1] T. Anwar and H. Beck. Inexact Queries: A Conceptual Clustering Approach. Tech
nical Report, Database Systems Research and Development Center, University of
Florida, Gainesville, FL, 1991.

[2] T. Anwar, S. Navathe, and H. Beck. A Semantically Adaptive Modeling Interface for
Schema Generation over Multiple Databases. Technical Report TR-90-16, Database
Systems Research and Development Center, University of Florida, Gainesville, FL,
1990.

[3] H. Beck. Language acquisition from cases. In R. Bareiss, editor, Proc. DARPA Case
Based Reasoning Workshop, Morgan Kaufmann, San Mateo, CA, 1991.

[4] H. Beck. A lexicon design based on theories of categorization. In U. Zernik, edi
tor, Proc. First International Lexical Acquisition Workshop, AAAI Press/MIT Press,
Cambridge, MA, 1989.

[5] H. Beck. A Terminological Knowledge Representation System Based On Theories of
Categorization. PhD thesis, University of Florida, Gainesville, FL, 1990.

[6] H. Beck, T. Anwar, and S. Navathe. A Conceptual Clustering Algorithm for Database
Schema Design. Technical Report TR-91-05, Computer and Information Sciences,
University of Florida, 1991.

[7] H. Beck, S. Gala, and S. Navathe. Classification as a query processing technique in
the CANDIDE semantic data model. In Proc. IEEE Fifth International Conference
on Data Engineering, Los Angeles, CA, 1989.

[8] H. Beck, P. Jones, D. Watson, and F. Zazueta. An expert database system for orna
mental plants. Agricultural Systems, 31:111-126, 1989.

22

Subsumption for Database Schema Design

Sonia Bergamaschi and Claudio Sartori
CIOC-CNR

Universita di Bologna

Abstract

The aim of this paper is to show the effectiveness of subsumption in the relevant
field of database research of schema (terminology) design. After some general con
siderations, we briefly synthetize the results of two works dealing, respectively, with
developing terminologicallogics for the so-called semantic models [3], and the more
recent complex object models [2, 1], proposed in database environments. The devel
oped idea is that, by extending database models with defined concepts and giving
them a terminological logic formalization, it is possible to compute subsumption,
thus allowing a formal definition of consistency and minimality of a schema to be
given and an active tool supporting schema acquisition to be developed.

Primitive and Derived classes, Inheritance

The idea of subsumption and defined concepts might seem, at first glance, extrane
QUS to database environment, where isa relationships between classes must be explicitly
dedared and a dass description usually represents necessary conditions for the extension
of a dass, which is explicitly filled with individuals. As a matter of fact, we observe that
defined concepts present similarities with views in RDBMSs (i.e. virtual relations, com
puted on the basis of base relations), with derived subtypes [5] of semantic data models,
and with derived types, expressed by horn dauses, in deductive databases. The main
difference is that such modelling primitives are mainly used at instance level as derivation
ru/es to fill the corresponding relations (dasses).

Furthermore, we observe that both primitive and defined concept semantics are useful
because, usually, the upper levels of a conceptual schema are constituted by primitive
concepts (no sufficient and necessary conditions are available), while lower levels are con
stituted by defined concepts. The limited expressivity of both tractable terminological
formalisms and database models does not often allow the full definition of a dass to be
given: structural descriptions of KL-ONE have been exduded from concept descriptions
for computational problems, and derivation rules as weIl as integrity constraints (complex
necessary conditions) are used at instance level and are often hidden in a program. Never
theless, there is a subset of DB derivation rules and integrity constraints which are already
available or can be added to terminological formalisms without compromising tractability

D1J:>artimento di Elettronica, Informatica e Sistemistica - Vi ale Risorgimento 2 - 40136 Bologna, Italy -
Tel: +39 51 644.3550-3548 - E-mail: {sonia,claudio}@deis64.CINECA.lT

23

(dasses disjointedness, constraints on value domains, cardinalities, reference constraints),
which make the introduction of derived classes (i.e. defined concepts) in databases quite
convincing.

Another point is the different perspective on inheritance of the m'ost recent complex
object database models: at the schema level, we have types and primitive dasses. Types
denote data structures and extensions, i.e. domains of elements. Classes denote data
structures and also extensions, i.e. collections of objects in a database. However, the
extension denoted by a type is fixed and defined by the structure, while the extension of
a dass is user definable. Therefore the following equations hold respectively for dasses,
say Cl, C2 , their structures (typ) and types, say Tl! T2 :

Cl isa C2 =? I(Cd ~ I(C2)

Cl isa C2 =? typ(Ct}:::s typ(C2)

Tl :::S T2 {:} typ(Td:::s typ(T2) {:} I(Td ~ I(T2)

Notice that the :::S relationship, called type rejinement, defined for types is syntactically
computed in a way very similar to subsumption, and is easily extensible to derived classes.

By extending database models with derived dasses, and giving them a terminological
logic formalization, provided we are able to develop complete and tractable subsumption
algorithms, we can develop an active tool for schema acquisition, preserving consistency
and minimality of ascherna. Consistency can be guaranteed for a taxonomy of only
primitive dasses: given a new dass, by subsumption it is possible to compare its descrip
tion with a given dasses taxonomy and detect whether it is incoherent (subsumed by
the empty dass) and, if so, reject it. A more active role can be played if the taxonomy
indudes also derived dasses: for a coherent dass description a minimal description (i.e.
a dass re-written description on the basis of its most specijic generalization classes) is
computed, thus the dass is placed in the correct position of a taxonomy. In this way,
equivalence of dasses is recognized, (i.e. different names and (or) syntactic descriptions
which correspond to the same minimal description "are detected) and redundancies with
respect to a taxonomy can be avoided.

Subsumption for Semantic Models

In [3J it is shown that the data modelling primitives of the best known semantic models
giving prominence to type constructors (Entity-Relationship, TAXIS, GALILEO) can be
expressed with the terminologicallanguage :F [,* , whereas the data modelling primitives
of the models giving prominence to attributes (FDM, DAPLEX, IFO) can be expressed
with :F ['7nv , which extends :F [,* with inverse roles. :F [,* is defined as follows:

where V is defined as:

C, D --+ A I A I C n D I
\:fR.C I (~nR) 1(:::; nR)1

\:f At. V I (~ nAt) I (:::; nAd

V --+ integer I real I string I Vname I
integer-range I real-range I Vname-range I
Vname = ((atoml) ... (atom n))

24

F.c* and F .c;nll indude attributes and value domains semantics, following database tra
dition. It is worth noting that in order to capture the semantic of the most expressive
semantic models, we had to develop F .c:nll (F .c:nll = F.c* + R-I) whose expressivity is
equivalent to p.c l , one of the two maximally polynomial languages recently defined [4]
(F C/nll = p.c l + At). Therefore, for both classes of semantic models, polynomial and
complete subsumption algorithms can be developed and the goal of guaranteeing consis
tency and minimality of a schema can be achieved. The objective of schema minimality
is obtained by the definition of minimal description of a dass. Given a dass descrip
tion C and a terminology T, the minimal description of C, say cmd, is expressed as
emd = Cl n ... n Ci n Cd, with Ci E M SG(C), which is the most specific generalizations
set, and CD is the difference concept, which can be univocally computed from C and
M SG(C), as is proved in [3).

Subsumption for Complex Object Data Models

Complex objects data models, recently developed in the DB area, are adopted in both
Object Oriented Databases and Deductive Databases. The following description gener
alizes different models, trying to synthetize the most relevant modelling principles. At
schema level, we have types and primitive dasses, denoting complex structures and exten
sions. Complex structures are obtained by recursively applying any of the basic construc
tors to types: set ({}), tu pie ([]), sequence(0). The main difference between types and
classes, besides the al ready mentioned different extension denotation, is that types denote
acyclic complex structures, while classes denote complex structures where cycles are al
lowed. At instance level, we have, corresponding to types, complex values and, to classes,
abstract objects. This distinction generalizes the usual one between the set of base-values
V (i .e. objects typically hard wired as integers, characters, strings) and abstract objects,
which must be explicitly introduced. An abstract object must be uniquely identified by
an object identifier (oid) and has a description, which may change and is a complex value.
A complex value is created by recursively applying to complex values and oid3 any of the
basic constructors: set ({}), tuple ([]), sequence(O). Inheritance is represented, for types,
by the refinement relation and, for primitive classes, by an explicit isa relationship.

The availability of classes with cyclic description, together with the idea of derived
classes make the computation of extensions through an iterative process necessary in
order to reach a fixpoint. Which type of fixpoint is more adequate is still matter of
discussion: least, greatest, one in between. The choice adopted in [1, 2] is for a greatest
fixpoint semantics. In fact, the greatest fixpoint tries to classify instances in the most

specific dass is compatible with the definitions, and thus seems to be more adequate in
DB environment.

The idea developed in [1, 2] is to propose a terminologicallogic, allowing cycles, which
captures the semantics of complex object models, thus permitting polynomial subsump
tion algorithms to guarantee consistency and minimality of ascherna. The main extensions
with respect to complex object models are: the conjunction operator which permits to
express inheritance between classes(types) as apart of a class description and derived
classes. In the following the formalization of the problem as proposed in [2] is shown.

25

Types and Values

We denote by S(A, B, C, T) the set of all finite type descriptions (S, S', . ..), also briefly
called types, over given A, B, C, T, which is defined as follows:

S -+ BI P I D I T I {S} I (S) I [al: SI!"" ak : Sk] I Sn S' I D. S

where A is a countable set of attributes (denoted by ab a2," .), B a PTIME base-type
systeml , C a countable set of class names partitioned in Cp and Cd, where Cp is a set
of primitive classes (P, PI, .. .), Cd the set of derived classes (D, D' , .. .), T a countable
set of type names (T, T', .. .), such that C, T, and Bare pairwise disjoint.

o being the set of object identifiers disjoint from V, we can define the set of all complex
values over 0, V(O), as the set of values obtained by finitely nesting elements of 0 and
V with the constructors: Ü, [], O. We assign values to object identifiers by a total value
function 6 from 0 to V(0).

For a given set of ob ject identifiers 0 and a value function 6, the interpretation function
I is a function from S to 2V(O) such that:

I[B] = IB[B] I[C] ~ 0 I[T] ~ V(O) - O.

The interpretation of types is defined inductively for all S, S' E S by the usual interpre
tation of the type constructor Ü, (], (), and as follows for n and D. operators:

I[S n S'] = I[S] n I[S1

I[D.S] = {o E 016(0) E I[SJ}

I[Tc] = O.

This interpretation function is very general, but what we need is an interpretation of
classes and types, consistent with their descriptions, denoted as possible instance, and a
notion of well-formed schema. Further, the presence of cycles in class descriptions, lead
to select a unique legal instance of a schema.

Database Schemata and Illstances

We define a schema (j over S(A, B, C, T) as a total function from CUT to S. We say
that (j is well-formed if it is type well-founded (types defined using other type names always
describe finitely nested values) and inheritance well-founded. Further, as inheritance is
expressed as a conjunction, we can easily define direct inheritance as follows: N E CuT
inherits directly from N', written N ~N', iff N' compares as a conjunction term in (O'(N)).
Thus, we can say that a schema is inheritance well-founded iff the transitive closure of ~,
which is denoted by -<, is a strict partial order.

We say that an interpretation function I as defined above is a possible instance of a
schema 0' iff the set 0 is finite, and for all P E Cp , D E Cd, T E T:

I[P] ~ I[O'(P)]

I[D] = I[O'(D)]

I[T] = I[O'(T)].

i.~ a countable set of base-type designators which contains V, is complete with respect to conjundion
n and such that B n B' can be decided in polynomial time.

26

Now, we have to select among the possible instances, with identical 0 which share
the same b interpretation of primitive classes (denoted as P), one instance, called legal
instance, which is unique for derived classes, taking into account terminological cycles
in class descriptions. We define as legal instance of a well-formed schema (j the unique
greatest instance of P.

Inheritance, Subsumption, and Coherence

We can now define a general subsumption relation, written S ~ S' for S, S' E S of a
schema (j:

S ~ S' iff I[S] ~ I[S'] for all legal instances I of (j.

In [2] some interesting results on computational properties of coherence (absence of types
and classes :::: 1.) of a well-formed schema and subsumption computation are shown, spec
ifying a mapping from schemata to nondeterministic finite automata. In particular, the
two results of the following propositions are relevant to support minimality and consis
tency of ascherna.

The coherence problem for a well-formed schema (j over S(A, B, C, T) is in PTIME
if the base-type system is binary compact.

Moreover, there is a wide class of database schemata which can be transformed into
equivalent normalized schemata without an exponential increase for which subsumption
computations can be done in polynomial time. A schema is called normalized iff

• for all SES, (j(T) does not contain any conjunction, and

• for all C E C, (j(C) = nPi n 6.S such that S does not contain any conjunction,
Pi E Cp and 6.S ~ Pi, for all i.

The subsumption problem for normalized schemata is in PTIME.

References

[1] D. Beneventano, S. Bergamaschi, and C. Sartori. Taxonomie reasoning in
LOGIDATA+. In V. Monaco and R. Negrini, editors, COMP-EURO 91, pages 894-
899, IEEE Computer Society Press, Bologna - Italy, May 1991.

[2] S. Bergamaschi and B. Nebel. Theoretical Foundations of Complex Object Data Mod
els. Technical Report 74, CIOC - CNR, Bologna - Italy, Dec. 1990.

[3] S. Bergamaschi and C. Sartori. On taxonomie reasoning in conceptual design. Tech
nical Report 68, CIOC - CNR, Bologna - Italia, March 1990.

[4] D. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept languages. In
IJCAI 91, Australia, 1991.

[5] R. Hull and R. King. Semantic database modelling: survey, applications and research
issues. ACM Comput. Surv., 19(3):201-252, Sep. 1987.

lsystems such that for each subset X ~ B with nX = B, there are two elements B', B" E X such
that B' n B" = B

27

Interests and Issues in
Description (Terminologieal) Logics

Ronald J. Brachman
AT&T Bell Laboratories

600 Mountain Avenue
Murray Hill, New Jersey 07974

U. S. A.

1 Current Research Interests

My current work on knowledge representation spans several research topics:

CLASSIC. My primary focus has been on the CLASSIC Knowledge Representation Sys
tem [1], which we have been developing at Bell Labs over the course of the last several
years. CLASSIC is a relatively small system intended for use in a limited number of appli
cations; we do not intend it as an all-purpose tool usable in any conceivable application
(nothing prevents that , it simply doesn't have enough power to be of much use in certain
high-powered applications, such as natural language understanding). However, we have
worked hard to make CLASSIC understandable to less-than-expert users; one of our goals
is to allow this kind of KR technology to be used by non- AI people, and many of our
design decisions are based on the need for it to be straightforward and easily learnable by
those not well-versed in knowledge representation research or philosophy. As a result, we
have kept the representation language uniformly compositional and relatively simple.

We have completed the design and COMMON LISP implementation of CLASSIC 1.0,
which has now been reimplemented in C by a Development organization and used in a
significant application within Bell Labs, as weH as in several courses on knowledge rep
resentation (e.g., University of Pittsburgh, Columbia University). Based on feedback
from users and applications, we have completed the design of a number of extensions
to CLASSIC (a role hierarchy, role inverses, more useful rules, etc.), and have begun the
implementation of the second generation of the system. When we are finished with CLAS

SIC 2 .0, we believe we will have a very usable and reasonably expressive system, and do
not have plans to keep expanding the representation language. Our main focus will be
on providing tutorial information for new users, making the system more usable in real
application situations, and building applications ourselves. While we hope to stabilize
the representation language, we will need to handle connections with databases, more
elaborate querying facilities, explanation of reasoning, persistence of CLASSIC knowledge
bases, and possibly extensibility. We are also currently weH along in the implementation
of a graphical interface.

28

Extensibility. Alex Borgida and I have been working on an architecture that would
make classification-based systems extensible in an interesting and efficient way. We have
modularized and abstracted the general structure of reasoning systems that do classifica
tion, and have specified a set of functions that the user can provide to extend the language
to handle new constructs (these functions include things like parsing, determining incon
sistency between two constructs of the same type, determining a set of other constructs
implied by a new one, etc.). Alex has been fteshing out the complete specification of these
functions, the hooks that need to be placed in the system to allow them to be invoked at
the right time, and some example novel constructs that can be created and integrated with
this mechanism. With this approach, the basic system can be sm all and compact, and
can be extended to different versions without obligating a user to take on the overhead of
constructs not useful in his application-and without redesigning or reimplementing any
of the core of the basic system.

CLASSIC as a Data Model. We are investigating the potential use of CLASSIC as,
roughly speaking, a semantic data model, allowing a user to impose a more complex,
object-centered worldview over data stored in a (or many) relational database(s). Peter
Selfridge has built a prototype system [2] in which the user takes a simple relational model
of cross-reference relations in software (i.e., what function calls what function) and, with
CLASSIC essentially extends the schema as he discovers interesting facts and relations in the
code. We are also exploring a more ambitious version of the same idea in a more business
oriented domain. One thing has become clear in considering these applications-we need
a serious query language with which to interact with the combined knowledgej database.
We have designed a set-oriented query facility that integrates CLASSIC expressions in a
simple manner, does enough of what SQL does to satisfy our users (who are used to SQL

over INGRES databases), and does some things that the users want but which cannot be
done in SQL. A query processor for this language has been implemented (by Tom Kirk),
and we are now experimenting with it. We have also considered the issues of persistence in
CLASSIC knowledge bases, as weIl as various modes of connection with standard databases.

2 Discussion Topics

The topics that I believe are most critical to be discussed by our community are closely
tied to these current research interests, as weH as to some general concerns about knowl
edge representation work in general, and how we can better address the needs of real users
of our systems. Here I will break these interests down into three categories: theoretical
issues, systems issues, and "meta"-issues. I addressed some of these in my keynote talk,
and several were discussed at the workshop.

Theoretical Issues. In the last few years, we have been besieged by complexity results
for various forms of terminological systems. While these results continue to be useful, they
don't give us much general insight into how to deal with normal uses of terminological
systems, and when worst cases might arise. 1 It is time to turn our attention to concrete

lJ should say that the recent comprehensive results presented by Donini, Nutt, et aL, at the workshop
and at KR'91 are both impressive and insightfuJ. They consolidate many of the individual results we have

29

patterns of use, and real styles of knowledge base, and understand what are the sources of
computational complexity that will really affect our use of TL systems in practice. I think
that we still need formal results, and we should avoid handwaving of the "weH, it 's never
arisen in my experience" sort. But our attention should be focused on "normal" cases,
under certain sets of well-specified assumptions (what these are will need to be fieshed out,
of course). Ideas that come to mind include consideration of limited-depth definitions,
trees of certain shapes, complexity measures for individual term structures (i.e., how
complex is a given concept?), etc.. Also, if we look more at the detailed algorithmic
complexity (rather than just computability or NP-hardness) of some of our algorithms,
we can see in more detail what parts of the input the complexity hinges on. This should
yield a level of insight not yet achieved with these systems.

Other issues need careful attention on the theoretical side:

• sequence and ordering: we have considered some domains where dates and other
ordering functions play a crucial role. How can we fold partial (and total) orders
into our standard TL systems?

• "structural descriptions": this was a critical piece of the original KL-ONE proposalsj
it is probably time to resurrect it and nail down some formal proposals, with their
semantics and some understanding of their contribution to overall complexity.

• metaclasses: we have begun to run into cases where metaclasses are important. It
probably is not too difficult to fold such things into our basic TL architecture, but
formal work needs to be done to get this straight. The issue of such classes seems
to be arising in practice now: Bill Swartout presented his needs at the workshop,
Alfred Kobsa talked about reification in SB-ONE, and we have seen the need for at
least aggregate dass information, such as average values of certain roles, in one of
our applications.

• query languages: in many applications where a TL-based system operates like or
with a database, it is impossible to get along with the common lack of languages
designed for querying. One can imagine extremely interesting query languages that
combine the best of standard relational languages, languages like SETL, and the
object-oriented contribution of our term-forming operators. We have begun exten
sive work on such a language, and the workshop indicated that the problem has
arisen for others as weIl.

• relation of TL's to type theory: much work in programming languages and databases
involves complex types that bear a great deal of similarity to our terms. I would
like to see a detailed analysis of the commonalities and the differences of these
approaches.

• on the encouraging side, recent work by Smolka, et al., reported at the workshop,
shows that important connections to feature logics and constraint logic programming
seem poised to bear fruit.

seen over the last few years, and provide important information on wh at the root causes of complexity
in these languages are.

30

Systems Issues. There are many issues that we should be concerned with that involve
the utility of TL-based systems in the real world. I would like to see serious attention
given to the issues that arise in trying to use our systems in applications. These might
include database/knowledge base integration, extensible TL systems, and discussion of
various types of ABoxes and their integration with the TL system. We might want to
consider alternate forms of classification (i.e., less purely deductive forms). We might also
consider the desirability of publication of detailed algorithms for subsumption, classifica
tion, propagation, etc., so that everyone can benefit from advances at the systems level
made by the numerous projects implementing TL systems. I think we all agree that if
we can find the right place (probably a journal) to publish such algorithms, the entire
community would benefit.

"Meta" -issues. There are a variety of issues that are not particularly technical, but are
worthy of discussion by our research community. For one thing, I think that our little
community is thought of as a perhaps small "faction" within the KR community. How
can we make it clear that our work is not as limited as we sometimes make it appear,
and that it brings something to the representation task that is complementary to other
more well-known approaches (i.e., classification)? I think we should make some effort to
avoid being viewed as a small group of people overly concerned with complexity results in
severely limited, highly technical formalisms. For my part, in line with discussion at the
workshop, I plan to write a paper to submit to, say, The AI Magazine, in which I intend
to point out the impressive breadth of interests and accomplishments represented at the
Dagstuhl workshop.

Other issues of a similar nature that come to mind are these:

• What should the stance of our community be with respect to the recent efforts
towards "standards" in knowledge representation? Several people attending this
workshop have been playing key roles in DARPA-sponsored work on sharing knowl
edge bases. Should we as a community take astand? Should we become more active?
Less active? For now, it looks like many of us will remain active in the "knowledge
representation system specification" subpart of the community-wide effort.

• How do we evaluate work in our area? This applies to both our own work, as weIl
as to the broader KR community at large.

• There is the ever-lingering issue of how expressive the languages in our systems
should be. I personally think we need to start thinking about the set of ways a
knowledge representation system can be-there is a continuum of types of systems,
ranging from relatively inexpressive to extremely expressive, and that there simply
is no way to state a set of criteria (with respect to expressiveness) that should nec
essarily apply uniformly to all KR systems. Limited systems have their places, and
have been quite successful at certain tasks. More expressive systems are needed for
language applications of certain sorts, perhaps some medical applications as asserted
by Doyle and Patil, and others. I would like to see us straighten this out once and
for all , so we can stop the tendency to make global, context-free pronouncements
on the adequacy of certain KR systems. We should begin to examine the trade-offs
that affect the character of KR systems, and see what useful points lie on what is

31

-

clearly a continuum. I must say that good progress on clearing this up was made
at the workshop, thanks in part to Bob MacGregor and Bill Swartout .

• Finally, I think it is quite important for us as a community to begin to characterize
in some detail the types of applications for which classification- or description-based
systems have been and could be successful. Experience teaching with CLASSIC, for
example, shows that students keep asking, "what is this good for?" I think we have
plenty of instances of success that we can point to. I would like to see a compendium
of successful uses, so that we can show the broader community what they are good
for, and how they complement other things in wider use. Having a workshop on the
topic this Fall (in Berlin) is a great step in the right direction.

3 What's in a Name?

I would like to make one final comment, with respect to the description of the type of
system we are all engaged in studying. While "terminologicallogic" has its appeal, and
is representative of part of what we do, it seems not only too complicated to say, but too
narrow to characterize our community as a whole. Similarly, "KL-ONE-like systems" has
a ring of truth to it, but is too limiting. Personally, I believe that the word description
should play a central role in how we present what we are doing. While description
logics is still not an ideal label (in part because it seems to virtually leave out work
on assertion al components), it seems much better to me than the others. Among other
things, it broadens our community to include interaction with others doing related work,
but not sharing our literal ancestry (e.g., OMEGA). Since so much of what we do is actually
about forming, relating, and using descriptions, I think we should give this new term a
try and see how it works.

References

[lJ R. J. Brachman, A. Borgida, D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Resnick. Living with CLASSIC: When and how to use a KL-ONE-like language. In
J. Sowa, editor, Principles of Semantic Networks, pages 401-456. Morgan Kaufmann,
San Mateo, California, 1991.

[2J P. G. Selfridge. Knowledge representation support for a software information system.
In Proceedings of the Seventh IEEE Conference on AI Applications. oae:es 134-140.
Miami Beach, Florida, Feb. 1991.

32

Intensional Semantics and Relationships between
Epistemology and Ontology

Amedeo Cappelli
Istituto di Linguistica Computazionale - CNR

Via della Faggiola, 32 56100 Pisa Italy
Phone 39 50 560481

Fax 39 50 589055
e-mail SISTEMI@ICNUCEVM.CNUCE.CNR.IT

1 Introd uction

Many problems connected with the term subsumption language paradigm have so far not
received a solution. Furthermore, many interesting issues, suggested at the very begin
ning of the history of this subject, havebeen undecided, for various reasons (Brachman
& Shmoltze, 1985). One of the major assumptions in designing knowledge representation
formalisms in the KL-One family, was the so-called "intensional representation" intro
duced by Woods (1975) and Brachman (1979). An intensional representation is required
when two descriptions have to be compared (Bobrow & Winograd, 1977), or when they
are interpreted by qualitative processes; in other words, many processes can be activated
by using the global structure of a concept, and by interpreting its pro perties and the re
lationships between these properties (Woods, 1990). 1s this a problem which goes beyond
the actual goals of a language, in the sense that it lies in the realm of knowledge and is
domain-dependent, or can it be approached in a very general way, by defining a formal
semantics of the possible intensional operations which can be specified on a terminology?
The classic problem of "structural descriptions" has to be seen in this perspective, as weIl.
It is evident that an adequate representation of a concept involves the specification of the
relationships existing between its descriptive parts. Structural description was one of the
most interesting data structures of the classic S1-Nets model, even if it may be considered
as lying in an unclear position between the conceptual and the epistemologicallevels, with
reference to Brachman's distinction (1979). Another problem, which is still open, is that
of the role, of its function and of its meaning. Once, it was considered as a locus where
many types of processes may be accumulated, such as cardinality and modality. Apart
from the problems which arise when modality and number are interpreted together, the
role is a complex link which makes it possible for concepts to interact with one another.
So, while in certain cases it can be seen as a mere tuple, such as, for instance, in data base
application of terminologicallanguages, in other cases it must be seen as the point where
several conceptual processes take place, such as, for instance, in expert systems or in other
knowledge-based applications (Cappelli et al, 1983a, Cappelli & Moretti, 1983b, Cappelli

33

et al., 1986, Cappelli et al. 1988, Cappelli, 1987, Caracoglia, 1988, Caforio, 1988). As to
the former, it is sufficient to verify the tuple in the extension of a concept, whereas in the
latter, it is relevant to interpret the association from a well-defined conceptual point of
view. In this way, the ontological meaning of a role plays an important role, as suggested
in Frederking & Gehrke, 1988, Winston et al., 1987). Ontology plays an important role in
structuring knowledge. In order to create a knowledge base, one must make some assump
tions about what kinds of things there are in the world; in other words, any user needs a
general grammar for representing knowledge - in the sense of Brachman (1979), a notion
which has been lost, as claimed in Doyle & Patil (1989), but he must also be guided by
using constraints depending on the nature of the things being modelled (Lenat & Guha,
1990, Niremburg & Monarch, 1987). This limits the generative power of the grammar,
but, in any case, its expressive power increases, since putting together an epistemological
formalism and a set of ontological constraints makes it possible to account for more subtle
conceptual facts.

2 Intensional semantics

An intensional semantics for a typical terminological language has been designed
(Mazzeranghi & Cappelli, 1990), which is quite different from the extensional models
so far proposed (Brachman et al. 1985, Patel-Schneider, 1989, Shmoltze, 1989, Nebel,
1988, 1990). The semantics of the language is similar to that of data types in program
ming languages. Primitive concepts are denoted by a set of values. Defined concepts are
denoted by their properties. Adenotation thus contains the minimum number of prop
erties which are required for an individual to be an instance of a generic concept. More
precisely, the denotation is the Cartesian product of the sets denoting the properties of
the generic cuncept (deduced from its syntax). A role is denoted by a function which,
given a tuple, returns the values of the property which individuates the role. In general,
in any hybrid system, the assertional component is procedural, since it allows a user to
make assertions about the individual concepts (creation of individuals, link of individuals
by roles, etc.), by updating an assertional knowledge base. This approach has certain
consequences, such as, for instance, that a user has to know the entire history of the
KB, since any individual is characterized by the entire sequence of declarations, and no
constraints exist in order to control the use of the KB, so that the probability for a KB
to become inconsistent increases with its dimension. Different results can be achieved if
a functional approach based on the intensional semantics is adopted. An individual is
created by instantiating the properties of the relative generic concept, used as a guide. As
a result, this process creates a tuple whose elements are the instantiating properties. The
instantiation chain terminates by instantiating primitive concepts on the basis of their
denotation. Certain extensions have been introduced into the assertional component in
order to make it possible to use it more easily way, such as the following:

• Declaration of individuals

• Properties of individuals specified by using their names

• Properties of individuals specified incrementally

34

A deeper integration between the entire system and any programming language can be
reached, which implicitly gives rise to an object-oriented system. In other words, it is
possible to introduce an individual concept into a programming language, like any other
data type. For instance, an individual concept is passed to a function as a parameter;
on ce it has been verified that this individual is an instance of a generic concept, or
of one of its subconcepts, the function will be executed. For this aim, it is required
that the identifiers of the programming language can be used as identifiers of individual
concepts. The system has to expand the identifiers with their definitions which have
been evaluated in a different environment. Consequently, the system can assurne different
behaviours: functional or procedural in accordance with the use of the programmming
language identifiers. Furthermore, an increase in the expressive power is obtained, since it
makes it possible to give a formal meaning to all kinds of recursive definitions of individual
and generic concepts. For instance, by using an indirect recursion, the concepts of husband
and wife can be defined as folIows:

HUSBAND=(and HUMAN-BEING
(all wife WIFE)
(atleast 1 wife)
(atmost 1 wife))

WIFE=(and HUMAN-BEING
(all husband HUSBAND)
(atleast 1 husband)
(atmost 1 husband))) .

3 Structural descriptions

Structural descriptions are considered as an object-oriented programming tool. More
precisely, a function or a procedure can use the roles of a describing concept in order to
refer to the roles of a described concept. For instance, a function can be written in order
to calculate the height of any object composed of two parts, one of which is on the other,
simply referring to the roles "is-on" and "is-under" of a previously defined concept "ON".
This function can be applied to any individual, whose generic concept has been previously
defined by using the concept "ON", such as, for instance a TABLE, which is composed
of a board and four legs, or a HOUSE, which is composed of a roof and certain walls. A
new form of inheritance by structural descriptions is thus realized.

4 Integration between epistemology and ontology

The properties of a concept playarelevant role from an intensional viewpoint, in the
same way as types of concepts are essential if we look at the uni verse as a map of com
plex descriptions interacting one with the other. Such facts can be specified by using
notions such as, for instance, sortal concepts, or natural, nominal and artifact concepts
as defined in the psychological paradigm (Cappelli & Catarsi, 1990; Keil, 1979, 1989;
Smith & Medin, 1981; Wiggins, 1980), or ontological notions, such as substances and

35

accidents, genus, eidos, etc (Simons, 1983). Experiments about the relationships between
epistemology and ontology are now being carried out, in the aim of both investigating the
ontological adequacy of certain SI-Nets data structures and integrating epistemological
tools with ontological constraints. Classical SI-Nets formalism accounts for many onto
logical facts, for instance the representation of hierarchies and properties of concepts can
easily be translated into concepts, roles and cables. However, descriptions of objects need
to be further specified from a conceptual point of view, in particular when a description
is given in the aim of specifying global constraints which control the application of inten
sional functions A constructive formal apparatus is thus realized in which epistemology,
a la Brachman, and ontology are integrated. A system has been created in which the
representational tools based on intensional semantics interact with an ontological repre
sentation of a portion of universe; in this way, a user can create a knowledge base by using
this representation as a guide, imposing constraints on the descriptions of items and their
insertion into the network.

References

• Bobrow D. G., Winograd T., An Overview of KRL, a Knowledge Representation
Language, Cognitive Science, 1 (1977).

• Brachman R. J., On the epistemological status of semantic networks, in N. Findler
(ed.), Associative Networks: Representation and Use of Knowledge by Computers,
New York: Academic Press, 1979: 3-50.

• Brachman R. J., Fikes R. E., Levesque H. J., An essential hybrid reasoning sys
tem: knowledge and symbol level accounts in KRYPTON, in Proceedings of the 9th
International Joint Conference on Artificial Intelligence, Los Angeles (Ca): Kauf
mann,1985: 532-539.

• Brachman R. J., Schmolze J. G., An overview of the KL-ONE Knowledge Repre
sentation System, Cognitive Science 9 (1985).

• Cappelli A.,Catarsi M. N. , The Role of Ontology in Structuring Knowledge, ILC
KRS-1990-4, Pisa, 1990.

• Cappelli A., Moretti L., Vinchesi C., KL-Conc: a Language for Interacting with an
SI-Net, in Proceedings of the 8th-IJCAI Conference, Los Altos: Kaufmann, 1983.

• Cappelli A., Moretti L., An Approach to Natural Language n the SI-Nets Paradigm,
in Proceedings of First Conference of ACL-Europe, Pisa, 1983b.

• Cappelli A., Caracoglia G., Moretti L., A Chunking Mechanism for a Knowledge
Representation System, Cybernetics and Systems, 17 (1986) pp. 277-287.

• Cappelli A., Semantic Networks and Natural Language Understanding, in "Research
and Development in Language Processing" Paris December 7-11, 1987.

36

• Cappelli A., Moretti 1., Pagni F., Verso la costruzione di una base di conoscenza
per un sistema di aiuto ad un esperto in radioprotezione, in Atti deI Congresso
Internazionale "Informatica e regolamentazioni giuridiche", Roma, 1988.

• Caracoglia G., Skill Acquisition in a Knowledge Representation System, in Pro
ceedings of the Third International Symposium on Knowledge Engineering, Madrid,
1988.

• Caforio M., A Network Search Approach Based on the Chunking Mechanism, in Pro
ceedings of the Third International Symposium on Knowledge Engineering, Madrid,
1988.

• Doyle J., Patil R. S., Two Dogmas of Knowledge Representation: Language Re
strictions, Taxonomie Classification, and the U tili ty of Representation Services,
MITjLCSjTM-387.B, Cambridge (Mass.), 1989.

• Frederking R. E., Gehrke M., Resolving Anaphoric References in a DRT-based Di
alogue System, in H. Trost (ed.), 4 Osterreichische Artificial- Intelligence-Tagung,
Springer,1988, 94-103.

• Hobbs J.R., Croft W., Davies T., Edwards D., Laws K., Commonsense Metaphysics
and Lexical Semanties, Computational Linguistics 13 (1987).

• Keil F . C., Semantic and conceptual development, Cambridge (Ma.): Harvard Uni
versity Press, 1979.

• Keil F. C., Concepts, Kinds, and Cognitive Development, Cambridge: MIT Press,
1989.

• Lenat D. B., Guha R. V., Building Large Knowledge-Based Systems, Representation
and Inference in the Cyc Project, Reading (Ma.): Addison-Wesley, 1990.

• Mazzeranghi D., Cappelli A. An Intensional Semantics for a Terminological Lan
guage, ILC-KRS-1990-5, Pisa, 1990 .

• Nebel Bernhard., Computational Complexity of terminological reasoning in BACK,
Artificial Intelligence, 34 3 (1988): 371-383.

• Nebel Bernhard., Reasoning -and Revision In Hybrid Representation Systems,
Berlin: Springer Verlag,1990.

• Niremburg S., Monarch 1., The role of Ontology in Concept Acquisition for
Knowledge-Based Systems, Carnegie- Mellon University, Pittsburgh, PA, 1987.

• Patel-Schneider Pet er F., Undecidability of subsumption in NIKL, Artificial Intelli
gence, 39 2 (1989): 263-272.

• Schmolze James G., The Language and Semantics of NIKL, Technical Report 89-
4, Department of Computer Science, Tufts University, Medford, Mass., September
1989.

37

• Simons P., A Lesniewskian Language for the Nominalistic Theory of Substance and
Accident, Topoi 2 (1983): 99-109.

• Smith E. E., Medin D. L., Categories and Concepts, Cambridge (Mass.): Harvard
Univ. Press, 1981.

• Wiggins D., Sameness and Substance, Oxford: Basil Blackwell, 1980.

• Winston M. E., Chaffin R., Herrmann D., A Taxonomy of Part-Whole Relations,
Cognitive Science 11 (1987), 417-444.

• Woods W. A., What's in a link: foundations for semantic networks, in Bobrow and
Collins (eds.), Representation and Understanding: Studies in Cognitive Science,
New York: Academic Press, 1975: 35-82.

• Woods W. A., Understanding Subsumption and Taxonomy: A Framework for
Progress, TR-19-90, Harvard Univ. Center for Research in Copmputing Technology,
Cambridge (Mass.) 1990.

38

Tractable Concept Languages

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi
Dipartimento di Informatica e Sistemistica,

Universita di Roma "La Sapienza"

via Salaria 113, 1-00198, Roma, Italy

e-mail: {donini ,lenzerini ,nardi }@vaxrma.infn.it

Werner Nutt
Deutsches Forschungszentrum für Künstliche Intelligenz

Postfach 2080, D-6750 Kaiserslautern, Germany

e-mail: nutt@dfki.uni-kl.de

Concept languages provide a means for expressing knowledge about hierarchies of
concepts, i.e. classes of objects with common properties. They have been investigated
following the ideas initially embedded in many frame-based and semantic-network-based
languages, especially the KL-ONE language [2] . In contrast to earlier formalisms, concept
languages are given a Tarski style declarative semantics that allows them to be conceived
as sublanguages of predicate logic [8].

The basic reasoning tasks on concepts are unsatisfiability and subsumption checking.
A concept is unsatisfiable if it always denotes an empty set. A concept C is subsumed by
a concept D if C denotes always a subset of D. Since the performance of any application
developed using concept languages will heavily rely on the above reasoning tasks, it is
important both to characterize their computational complexity and to devise algorithms
as much efficient as possible.

Recent results allow us to draw a fairly complete picture of the complexity of a wide
dass of concept languages [3, 4, 9] . Such results have been obtained by exploiting a
general technique for satisfiability checking in concept languages. The technique relies on
a form of tableaux calculus, and has been proved extremely useful for studying both the
correctness and the complexity of the algorithms.

The work reported here is concerned with the design of concept languages including
the most powerful set of constructs, while retaining the tractability of subsumption, in
particular extending the basic polynomial language F.c- [1]. If C and D denote generic
concepts of F.c-, and R denotes a role, F.c- includes the following constructs:

{

C n D conj unction of concepts
F.c-: V R.C universal role quantification

3R unqualified existential role quantification

Various extensions of F.c- with a polynomial subsumption problem have al ready been
considered:

39

• FC- + role concatenation R 0 Q (also called role chaining, see [1]);

• FC- + concept formed by imposing number restrictions on roles (2: n R), (~ n R)
(see [7]);

• FC- + role conjunction Rn Q (see [7]);

• FC- + negation of primitive concepts ...,A (see [9]).

We considered concept languages obtained by combining constructs chosen from the
ones presented till now, plus the following ones: union Cu D, qualified existential role
quantification ~R.C, negation of general concepts ...,C, inverse roles R- l

• We did not
consider any syntactic restriction on the possible combinations of the chosen constructs
i.e. we considered only fully compositional concept languages.

The result of our work is the definition of two new extensions of F C-, called P Cl
and PC2 • We show that subsumption in both languages can be solved in polynomial
time. Moreover, they are maximally expressive, in the sense that none of the constructs
previously considered can be added to them without losing tractability. It is interesting
to notice that both languages include the construct for inverse roles, which has not been
considered up to now in tractable languages.

In particular, P Cl extends F C- in the following way:

1
C n D, VR.C, ~R (the language FC-)

PC,A negation of primitive concepts
1· (2: n R), (~ n R) number restrictions

R- l inverse roles

P Cl can be therefore considered maximally expressive relative to the costructs available
for concepts.

On the other hand, P C2 extends F C- as follows:

1
CnD,VR.C,~R (the language FC-)

P C . R n Q role conj unction
2 . R 0 Q role concatenation

R-l inverse roles

P C2 can be therefore considered maximally expressive relative to the costructs available
for roles. For a detailed description of P Cl and P C2 see [5].

The question arises about how many other maximally expressive tractable languages
can be obtained by extending FC- with the above constructs. With regard to this point,
we can state an interesting property of the two languages proposed: let L be a concept
language extending FC- with any combination of the constructs presented above; if the
subsumption problem in L is tractable, then the set of constructs of L is either a subset of
those ofPCl or a subset of those ofPC2• There is only one exception to this statement,
namely the language extending F C- with both role chaining and number restrietions.
This exception is currently under investigation.

As a conclusion, we want to comment on the results of the research on the computa
tional properties of concept languages by means of the satisfiability checking technique.

40

We think that the outcomes of this body of research go far beyond a mere complexity
analysis. In particular, they shed light on three basic aspects related to the use of concept
languages in knowledge representation.

• First of all , since the complexity of both satisfiability and subsumption depends upon
the constructs allowed in the language, they provide a useful framework for the study
of the trade-off between the expressive power of the languages and their inherent
complexity, which was the initial motivation of the seminal work by Brachman and
Levesque [6].

• Secondly, the design of concept languages can now be realized through the appli
cation of the above mentioned technique, which provides an algorithmic framework
that is parametric with respect to the language constructs.

• Thirdly, the study of the computational behaviour of concept languages has led
to a clear understanding of the properties of the language constructs and their
interaction. This knowledge about the structure of concept languages can thus
be used in the design of intelligent reasoning procedures, that-by looking at the
form of concepts-can reason about the deductive service, for example estimating
the difficulty of performing the required deduction, attempting to provide quick
answers to subproblems, or trying possible simplifications of the problem.

References

[1] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-based
description languages. In Proc. of the 4th Nat. Gonf. on Artificial Intelligence AAAI-

84, 1984.

[2] R. J. Brachman and J. Schmolze. An overview of the KL-ONE knowledge represen
tation system. Gognitive Science, 9(2):171- 216, 1985.

[3] F. M. Donini, B. Hollunder, M. Lenzerini, A. Marchetti Spaccamela, D. Nardi, and
W. N utt. The complexity of existential quantification in concept languages. Technical
report, Deutsches Forschungszentrum für Künstliche Intelligenz, Postfach 2080, D-
6750 Kaiserslautern, Germany, 1990.

[4] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proc. 0/ the 2nd Int. Gon/. on Principles 0/ Knowledge Representation
and Reasoning KR-91. Morgan Kaufmann, 1991.

[5] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept languages. In
Proc. 0/ the 12th Int. Joint Gon/. on Artificial Intel1igence IJGAI-91, Sidney, 1991.

[6] H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge
representation and reasoning. Gomputational Intelligence, 3:78-93, 1987.

[7] B. Nebel. Computational complexity of terminological reasoning in BACK. Artificial

Intelligence, 34(3):371-383, 1988.

41

[8] B. Nebel and G. Smolka. Representation and reasoning with attributive descriptions.
In K. BIäsius, U. Hedtstück, and C.-R. Rollinger, editors, Sorts and Types in Artificial
Intelligence, number 422 in Lecture Notes in Artificial Intelligence, pages 112-139.
Springer Verlag, 1990.

[9] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with compIe
ments. A rtificial Intelligence, 48(1): 1-26, 1991.

42

Extending Hybridity within the YAK Knowledge
Representation System

1 YAK

Enrico Franconi
1RST

1-38050 Povo TN, Italy
e-mail: franconi@irst.it

YAK [6] is a hybrid KR system, and in its foundations is similar to Classic [3] and
Loom [8]. The core of the system is a "traditional" TBox/ ABox hybrid representation
language (with some peculiarities), enhanced, possibly in a "principled" fashion, with
other hybrid modules representing different kind of knowledge and reasoning. The sys
tem, fully implemented in CommonLisp (and with an optional graphical user-interface
machine-dependent), is the main knowledge representation module of the ALFresco nat
ural language system, a multimodal dialogue prototype for the exploration of Italian art
history.

The expressivity of the YAK TBox comes out from a study about the balancing of
expressiveness, functional adequacy and formal properties of deductive procedures. It has
been shown in [5] how some constructs - though enhancing expressive power and still
maintaining tractability - do not give an intuitive behaviour to the language, from the
point of view of both meaning and calculus.

The classifier provided within the YAK system has a tractable, sound and complete
algorithm. Moreover the classifier is speeded up by a caching mechanism and an intelligent
name expansion scheduling, borrowed from the tabular approach used in nondeterministic
natural language parsers.

The ABox is a simple object oriented language, just like Classic: individuals are
instances of concepts and incomplete descriptions are allowed. The query language has
the same expressive power of the individual description language, with one variable.

2 Extending Hybridity

I quote James Schmolze [11] because I believe that this position is still of great topical
interest:

Terminological systems must fit within larger representational frameworks. It
is therefore time to assess how weil previous and current KR systems have
integrated terminological, (grounded) propositional, equational, rule- based

43

and other representations and reasoners. (...) it is important to address the
larger context in which such systems are placed and used.

Motivations and new ideas for the KR field often are originated within the naturallan
guage processing community. Prototypical knowledge for prediction in natural language
understanding [7], belief representation for user modeling in a multi-agent dialog [2], rea
soning about sets to handle conjunctions, plurals and natural quantifiers [1], reasoning
about time relations [12] [10] are some aspects that we have taken into consideration.
We are also exploring the possibility of reasoning in a coherent way with procedural at
tachments (following Classic) and production rules [14], and of using Weyhrauch's FOL
system as an alternative ABox [4].

Within the framework of a complex hybrid architecture supporting multiple reasoning
modalities, several aspects must still be addressed. The need of a greater expressivity to
represent complex relations in naturallanguage should be considered a major topic in the
KR research - see, as an example, the KODIAK system [13]. Another important issue
concerns the inference control procedure in the assertional component, as far as a single
condusion can arise out of different modalities which have different import. In these cases
a belief revision mechanism [9] is central in order to manage nonmonotonic effects.

2.1 Prototypes

In this research project [7] the problem of instance recognition within an extended hy
brid knowledge representation system is addressed. Structural aspects of concepts are
represented at two separate levels, the terminological and the prototypical; individuals
are expressed in the frame-based assertional component. The hybrid reasoning mecha
ni sm recognizes the type of the individuals with respect to the terminology, making use
of reasoning wi th prototypes.

Basic ideas are shared with the so called Dual Theory about the mental representation
of concepts. Within this theory concepts have a twofold representation: a "core descrip
tion", useful for compositional meaning, and an "identification procedure" for typical
instance recognition. Our own realization of such a distinction is that the core strictly
defines the necessary and sufficient properties for the concepts (only the necessary ones
in the case of primitive concepts), while the identification procedure is a similarity mech
anism that works over a collection of perceptual and functional properties. We call such
a collection the prototype for that concept. Within the identification procedure a "si mi
larity model" is introduced that describes the probability rating that an object belongs
to a dass, supported by the similarity that the object shares with the prototype of that
dass.

The hybrid reasoning mechanism we propose extends the recognizing process of in
dividuals in the assertion al component. It makes use of the terminological knowledge
to derive a first type assignment for the individual. This attribution is successively im
proved by comparing the description of the individual (via the similarity mechanism) to
prototypes stored in the prototypical component. Prototypical knowledge is linked to
appropriate names in the terminology through primitive concepts.

The apparatus distinguishes between qualitatively different information and yet can
deal with the problem of preferences among the results of similarity-based reasoning.

44

2.2 BeHefs

This work is the attempt to import into the hybrid framework the ideas about relevant

beliefs of [2]. The goal is to model an artificial agent - the system - which reasons
subjectively about the beliefs of other agents in communication with hirn, in addition to
its own beliefs.

The knowledge base has been partitioned into viewpoints each one representing a
set of complex nested beliefs, i.e. what the system believes the agent A believes the
agent B believes ... about some topic. Topics are simply individual descriptions (or, more
generally, ABox propositions) present in the viewpoint. A topic is believed with respect

a viewpoint if it is logically implied by the knowledge directly stated in the viewpoint
or if it is entailed by ascription. The ascription mechanism tests the truth value in the
"preceding" viewpoints according to a "particular" order; the process faUs if at some point
a contradiction is detected. The relevant beliefs theory presents a method concerning the
ascription mechanism for determining whose beliefs are relevant in generating nested
beliefs and in what order are they relevant.

Within YAK a 3-values - true, false, unknown - hybrid retrieval function (believe?)
has been implemented, which recursively checks the logical implications and the contra
dictions in the nested viewpoints.

References

[1] Jürgen Allgayer. SB-ONE+ - dealing with sets efficiently. Proceedings of 9th Euro

pean Conference on A rtificial Intelligence, Stockholm, Sweden (1990)

[2] Afzal Ballim and Yorick Wilks. Relevant Beliefs. Proceedings of 9th European Con
ference on Artificial Intelligence, Stockholm, Sweden (1990)

[3] Ronald J. Brachman, Deborah L. McGuiness, Peter F. Patel-Schneider, Lori Alperin
Resnick and Alexander Borgida. Living with CLASSIC: When and How to Use a
KL-ONE-Like Language. In J. Sowa (ed.) Principles of Semantic Networks, Morgan
Kaufmann (1991)

[4] Paolo Bresciani. Logical Account of a Terminological Tool. Proceedings of Applica
tions of Artificial Intelligence IX, Orlando FL (1991)

[5] Roldano Cattoni and Enrico Franconi. Walking through the Semantics of Frame
Based Description Languages: a case study. In Z.W. Ras, M. Zemankova, M.L.
Emrich (eds.), Methodologies for Intelligent Systems, 5, North-Holland (1990)

[6] Enrico Franconi. The YAK (Yet Another Krapfen) manual. IRST - Manual 9003-01,
Trento, ltaly (1990). Also as Progetto Finalizzato CNR 'Sist. lnformatici e Calcolo
Parallelo' report 7/30 (1990)

[7] Enrico Franconi, Bernardo Magnini and Oliviero Stock. Prototypes in a Hybrid Lan
guage with Primitive Description. To appear in Computer & Mathematics with Appli

cations, special issue: Semantic Networks in A rtificial Intelligence, Pergamon Press
(1991)

45

[8] Robert MacGregor, A Deductive Pattern Matcher. Proceedings of AAAI-88, St.Paul
MINN, 403-408 (1988)

[9] Bernhard Nebel, Reasoning and Revision in Hybrid Representation Systems. Lecture
Notes in Artificial Intelligence 422, Springer-Verlag (1990)

[10J Albrecht Schmiede!. A Temporal Terminological Logic. Proceedings of AAAI-90,
Boston MA (1990)

[ll] James G. Schmolze. Statement of Interest for the Workshop on Term Subsumption
Languages, Thorn Hill NH (1989)

[12J Paolo Terenziani, Pietro Torasso, Luisa Farinasso and Laura Mantegazza. Causa
tion and Time in a Hybrid Knowledge Representation Formalism. In Z.W. Ras, M.
Zemankova, M.L. Emrich (eds.), Methodologies for Intelligent Systems, 5, North
Holland (1990)

[13] Robert Wilensky. Some Problems and Proposals for Knowledge Representation. Re
port No. UCB/CSD 87/351, University of California, Berkeley, (1987)

[14J John Yen. A principled Approach to Reasoning about the Specificity of Rules. Pro
ceedings of AAAI-90, Boston MA (1990)

46

A non -standard approach to terminological
knowledge: the ITL system

Nicola Guarino
guarino@ladseb.pd.cnr.it

I would like to briefly present in this paper an approach wich deviates from the
mainstream of current KL-ONE-like systems, but which still takes the original
motivations of KL-ONE as the main source of inspiration. This approach has evolved
in 5 years th:ough two implemented systems, DRL [Guarino 88, 89] and I1L [Guarino
91a], and it has now gained enough maturity to show its substantial differences with
respect to "standard" tenninologicallanguages. I will present here these differences in
an extremely concise way, trying to relate them to the discussions made at the
workshop.

A commitment to terminologies

One of the main characteristics of!TL is the fact that the objects of interest are
not generic descriptions, but defmed terms. Terminological knowledge, in our opinion,
is mainly knowledge about terms, iniended as lexical items. The knowledge about a
term is expressed as a set of taxonomic relations with other terms, which are interpreted
assertionally. This means that it is not possible to speak of, say, black telephones
whithout having introduced the term black-telephor..e:

a telephone Xis a black-telephone if color ufX := [black}.
color of any black-telephone := [black}.

The reason of this choice is the desire tc "broken" a concept description into its
basic constituents, Le. its necessary and/or sUl,'5cient conditions regarding roles. Of
course, the resulting expressive power is not lower than that of standard languages,
since any generic description may be given an ad-hoc concept name; the difference is
that, given a cenain terminology, the number of concepts which may be formed (and
therefore appear within queries) is much more restricted.

Definitions vs. descriptions.

The result of the previous choice is afine granulariry, which allows for a great
flexibility for expressing incomplete or redundant information about a given term.
Taking an example reponed in [Woods 90], the knowledge about the term triangle may
be expressed by the following set of statements:

arry triangle is a polygon.
(numberofside) ofany triangle := [3}.
(numberofangle) ofany triangle := [3}.
a polygon Xis a triangle if number of side ofX := [3}.
a polygon X is a triangle ifnumber of angle ofX := [3J.

These statements represent a (potentially incomplete) description of a triangle,
not adefinition. Current tenninologicallanguages may represent panial descriptions by
adding so-called "roles" to definitions in order to express only-necessary conditions,
but, as observed in [Doyle&Patil 911, they are not able to deal with alternate sufficient

47

conditions. Of course, this kind of problems are imponant for those applications where
it is necessary to deseribe a relatively stable domain (Le., to represent its apriori
organization), while they are less imponant for those applications where it is necessary
to "organize a large set of objects that can naturally be represented in terms of features
or roles" [Brachman&al. 90]. In my opinion, it is not just by chance that the major
applications reponed by the CLASSIC and LOOM groups belong to the lauer category:
surprisingly enough, the task of eapturing the meaning of an object like a lex.ical item,
which was one of the main targets of KL-ONE and KRYPTON, turns to be hard for
tenninologicallogics.

Attribute-concepts as "vivid" entities

If roies contribute to the meaning of a concept by eonditions which they have to
satisfy, it is not necessary to introduce terms like (all R C), (some R), (atleasr N R),
whose only purpose is to contribute to the meaning of a definition in a compositional
way. In my opinion, they denote anificial eoneeprs, lacking a "vivid" relationships with
objects of interest in the domain. For instance, I can.:~ot see how something like (all
ehild doetor) can denote an object so relevant to deserve a specific construct in the
language; I even doubt whether it can be called a eoneepr in a cognitive sense. As we
know, the reason of the introduction of these terms is merely technical: they allow us to
express concepts in a nice compositional way. But if we turn to conditions, their
necessity disappear and some more vivid entity is necessary: attribute-concepts. For
instance, the contribution of (all ehild do;-:ror) to the meaning of the concept
parent_of_doetors = (and person (all ehild doetor)) splits into two separate conditions:

any ehi!d 0/ a parent _ 0/_ doetors has ro be a doetor.
i/ any ehild 0/ a given person is a doetor, then rhis person is a parent_o/_doerors.

The conceptual entities which appear in the two conditions are ehild 0/ a
parent_o/_doetors and ehild 0/ a given person: both seems to be entities relevant
enough to deserve a term. In !TL, the former ; 5 already a term, while the lauer
corresponds to the non-ground term ehild 0/ a pe .-son X. What is interesting is that
these terms denote eoneepts.' in this way a neces~ary condition expressing a value
restriction for a role can be represented homogenously to an explicit subsumption
between concepts. There is therefore no need for a proliferation of concept-forming
constructs.

Individuals vs. concepts

Bill Swartout raised at the workshop the issue of those concepts which, in
cenain cases, may be also seen as individuals. A good example may be teaeher, which
may be seen as a subconcept of person as weH as an instance of job. Under this
respect, In is very similar to OMEGA in the fact that there is no a-priori distinction
between the two kinds of entities: the relevant distinction is between different ways to
re/er to a given obiecl. Opaque references penain to objects seen in a collective way,
i.e. "individuals", while transparent references penain to objects seen in a distributive
way, i.e. concepts or classes. The presence or absence of determiners represent the
syntactical tool used to implement this distinction. The result is a language where the
object level and the meta level are "amalgamated".

It was argued at the workshop that this approach may be too expensive with
respect to the real needs of applications, and that some ad-hoc solution may be
desirable. I present here three arguments in favour of the introduction of
opaque/trasparent references in ITL.

48

First, number restrictions can be expressed as propenies of objects, without any
need for ad-hoc constrUcts:

number olpope := [1].
nwnber 01 child 01 bob := [3J.
a person X is a parent if the nwnber 01 child 01 X is a [1 . .].

Second, opaque references may be useful to solve some classical puzzles
involving intensionality, like McCanhy's example of Mike's telephone number. We
show in [Guarino 91 a] that the practical need for intensionality is not limited to
sophisticated linguistic applications, but plays a fundamental role for the representation
of common-sense knowledge regarding change, causation and functional descriptions.
Consider for instance the following statements:

replaeed.(keyboard olthe macintosh oljohn).
replaeed((keyboard 01 the macintosh 01 john):~.
inereased.(temperarure 01 liquid#3).
eauses(decrease 01 quantiry oloU, increase 01 temperanue 01 engine).

Finally, the distinction between opaque anc. trasparent references gives us the
possibility to implement some fonn of eomputational rej/ection, in the sense of
[Maes&Nardi 88].

Ontological adequacy

Some time was spent at the workshop on the issue of ontology. Most of us
agn .1!d on the crucial role of ontology for building large, reusable (and therefore
vaiu..ible) knowledge bases. What is an open issue is the impact of the ontological
choices on the particular knowledge representation formalism used. In my opinion, we
can deHne three levels of increasing ontological commionent, which are briefly
de :cribed below. In [Guarino 91a], I argue that only a language which satisfies the
co;· :litions associated to the three levels can be defined as omologicaily adequate.

1. Qntolo~ieal discipline. At this level, the language is neutral with respect to
the ontological choices, but some guidelines are given to the user in order to build well
founded knowledge bases. These guidelines should address basic distinctions such as
concepts vs. roles, concepts vs. individuals, and terminological vs. non-tenninological
knowledge, while proposing some naming conventions as weH. Some high level,
"disciplined" ontologies for various domains may be offered as an example to the users
community. In [Guarino 89] and [Guarino 91b] I discuss some of the above mentioned
distinctions.

2. Constrained semanties. Formal semantics of current knowledge
representation languages usually accounts for a set of models which is much larger than
the models we are interested in, i.e. real world models. As a consequence, the
possibility to state something which is reasonable for the system but not reasonable in
the real world is very high. In [Guarino 91a] I propose a semantics which is not neutral
with respeet co some basic ontological asswnptions. Examples of these assumptions are
the Attribute Consistency Postulate any X 01 Y is a X and the avoidance of an a-priori
distinction between concepts and individuals.

3. Fine eranuLarjry. An ontologically adequate language should be able to
express knowledge about the ontological nature of the link existing between an object
and its attributes. This is especially imponant for what 1 call non-relational attributes,

49

3. Fine iranularity. An ontologically adequate language should be able to
express knowledge about the ontological nature of the link existing between an object
and its attributes. This is especially imponant for what I call non-relational attributes,
which mainly denote parts or possessions, since their name cannot be uniquely related
to the nature of the ontological relationship involved: a book, for instance, may be a
member of a collection as weH as apossession of aperson. A possibility to speak of an
objectlattribute link may be its reification, as in Meta-SB-ONE [Kobsa 91]; another
possibility is represented by ITL attribute-concepts.

Bibliography

Brachman, R. J., McGuinness, D. L., Patel-Schneider, P. F., Resnick, L. A. 1990.
Living wich CLASSIC: When and How to Use a KL-ONE-like Language. To
appear in [Sowa 91].

Doyle, J., and Patil, R. S. 1991. Two theses of knowledge representation: language
restrictions, taxonomic classification, and the utility of representation services.
Artijiciallnzelligence 48.

Guarino, N. 1988. DRL: terminologic and relational knowledge in Prolog. In Y.
Kodratoff (ed-), Proc. 0/8th European Conference on Artijicial Inte//igence (ECAl-
88), Muenchen, August 1-5, 1988. Pitman.

Guarino, N. 1989. Nature and strucrure of terminological knowledge: the DRL
approach. Proc. 0/ the 1st Conf. 0/ the Itaiian Association/or Arnjicial Inte//igence
(Al*IA), Trento.

Guarino, N. 1991a. A Concise Presentation of ITL. To appear on ACM SIGART
Bu//etin, special issue on Implemented Knowledge Representation and Reasoning
Systems, summer 1991. An extended and revised version will appear on the Proc.
o/Int. Workshop on Processing Deciarative Knowledge, Symbolic Computation
Series, Springer-Verlag.

Guarino, N. 1991 b. Concepts, Attributes, and Arbitrary Relations: Some Linguistic
and Ontological Criteria for Structuring Knowledge Bases. Italian National
Research Council, LADSEB-CNR Int. Rep. 01/91.

Kobsa, A. 1991. Utilizing knowledge: The components of the SB-ONE knowledge
representation workbench. To appear in [Sowa 91].

Maes, P., and Nardi, D. (eds.) 1988. Meta-Level Architecrures and Reflection. North
Holland 1988. -

Sowa, J. (ed.) 1991. Principles 0/ Semantic Networks: Exploration in the
Represenration 0/ Knowledge. Morgan Kaufmann 1991.

Woods, W. 1990. Understanding Subsumption and Taxonomy: A Framework for
Progress. To appear in [Sowa 91].

50

A Probabilistic Extension for
Terminological Logics *

Jochen Heinsohn
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
W-6600 Saarbrücken 11, Germany

e-mail: heinsohn@dfki.uni-sb.de

Research in knowledge representation led to the development of terminologicallogic~
[18], which mainly originated from Brachman's KL-ONE [4]. In such languages, the ter
minological formalism (TBox) is used to represent a hierarchy of terms (concepts) whicb
are partially ordered by a subsumption relation: If concept B is subsumed by concept A.
then the set of B's real world objects is necessarily a subset of A's world objects. In thi~
sense, the semantics of such languages can be based on set theory. Two-place relatiom
(roles) are used to describe concepts. In the case of defined concepts, restrictions on role~
represent both necessary and sufficient conditions. For primitive concepts only necessar)
conditions are specified. The algorithm called classifier inserts new generic concepts at
the most specific place in the terminological hierarchy according to the subsumption re·
lation. Work on terminological languages further led to hybrid representation systems
Systems like BACK, CLASSIC, LOOM, KANDOR, KL-TWO, KRYPTON, MESON, SB-ONE, ane
YAK (for an overview and analyses see [14, 21]) make use of aseparation of terminologica
and assertion al knowledge. The assertional formalism (ABox) is used to represent asser·
tions about the real world. The mechanism to find the most specific generic concept ar
object is an instance of and to maintain consistency between ABox and TBox is calle(
the realizer.

Since, on one hand, the idea of terminological representation is essentially based 01

the possibility of defining concepts (or specifying at least necessary conditions), the das
sifier can be employed to draw correct inferences. On the other hand, characterizin/
domain concepts only by definitions can lead to problems, especially in domains when
certain important properties cannot be used as part of a concept definition. As argue(
by Brachman [2] this may be the case in "natural" environments (in contrast to "techni
cal/mathematical" environments). The source of the problem is the fact that in natura
environments, besides their definition terms can only be characterized as having furthe
typical properties or properties which are, for instance, usually true. If typical proper
ties are (mis-)used to formulate definitions, this can lead to problems concerning multipl

inheritance. 1 However, in the real world such properties often are only tendencies, i.E

"This work has been carried out in the WIP project which is supported by the German Ministry fo
Research and Technology BMFT under contract ITW 8901 8.

lOne example commonly used to highlight these problems is known as the "quaker example": quaker

51

republicans "usually" are non-pacifist, for example. Tendencies as well as differences
in these tendencies cannot be considered in the framework of term definitions. Several
attempts have been made to cope with these observations.

Considering "typical" properties led to nonmonotonic inheritance networks, and may
be viewed as "cancellation of inheritance links" or "assurne to be true unless told other
wise" [26, 2, 6, 7, 17, 23] . These approaches work well if exceptions are explicitly known.
However, in the case of conflicts the results can be unsatisfactory (i .e., the "multiple
extension problem", compare e.g. [20]).

A solution concerning "usually true" properties is proposed by Shastri [25]. He offers
a language to represent empirical information about properties of hierarchically ordered
concepts. This empirical knowledge is used instead of definitional roles. His system
works weil in the case of exceptions and also for ambiguities. However, the system is
built for handling a large amount of statistical data and is not constituted to consider
terminological and statistical incompleteness. Other related work can be found in [19, 1,
15, 16, 22].

In all these proposals an algorithm comparable to the classifier for maintaining the
consistency of the terminology and for reorganizing it according to implicitly existing sub
sumption relationships does not exist because concepts cannot be defined by necessary
and sufficient conditions. The importance of providing an integration of both term clas
sification and uncertainty representation was recently emphasized in [11, 27].2 Yen and
Bonissone [27] consider this integration from a general point of view which, for instance,
does not require a concrete uncertainty model (e.g., probabilistic, fuzzy, Dempster-Shafer
[12, 13]), while in [11] specific properties of an integration are demonstrated based on a
concrete probabilistic model.

We propose an extension of terminologicallogics which allows to handle the problems
discussed above [9, 10]. The extension maintains the original performance of drawing in
ferences on a hierarchy of terminological definitions. It enlarges the range of applicability
to real world domains determined not only by definitional but also by uncertain knowledge.
First, we briefly introduce .ACe [24], a propositionally complete terminological language
containing the logical connectives conjunction, disjunction, negation, as weil as role quan
tification. By keeping the TBox semantics, which is based on term descriptions, we are
able to use the classifier for extending and reorganizing the terminology. We extend .ACe
by defining syntax and semantics of probabilistic implication (p-implication), a construct
which is aimed at considering non-terminological knowledge sources and is based on a sta
tistical interpretation. In particular, .given two concepts Cl and C2 , the interpretation of a

p-implication Cl ~ C2 is given by the relative cardinality p 1f [[Cl n C2] : I : [[Cl] :
where [maps every concept description to a subset of 2v and every role to a subset of
2vxv , with n denoting concept conjunction and 'D being the domain of discourse.

As demonstrated, on the basis of the terminological and probabilistic knowledge cer
tain consistency requirements have to be met. Moreover, these requirements allow to infer
implicitly existent probabilistic relationships and their quantitative computation [11, 5)

are pacifist, republicans are non-pacifist, and Dick is known to be both quaker and republican. The
attempt to answer the question about Dick's pacifism results in the detection of a contradiction.

2Brachman [3] considers "probability and statistics" as one of the "potential highlights" in knowledge
representation .

52

(see [1] for a logical formalism dealing with qualitative statistical information). By ex
plicitly introducing restrictions for the ranges derived by instantiating the consistency
requirements, also exceptions can be handled. In the categorical cases this corresponds to
overriding of properties in nonmonotonic inheritance networks.

Consequently, our probabilistic extension of terminological logics takes into account
uncertain knowledge arising when certain properties are e.g. usually true but not defini
tional. Probabilistic implication opens the way to an integration of strictly definitional
knowledge and the possibility to model exceptions, which do no longer appear as contra
dictions [2], but as a set of weaker inequalities that guarantees the consistency of prob
ability assignments. By separating terminological and probabilistic knowledge, processes
maintaining the consistency of the terminological part remain operational. In fact, proba
bilistic consistency heavily depends on correct terminological subsumptions as established
by the classifier.

Current investigations [9] are related to the further refinement of the rules for test
ing consistency and to the consideration of assertional (ABox) knowledge. The second
aspect however has as consequence that two different semantics of probabilities have to
be integrated, i.e., we have to cope with both universal (statistical) statements involv
ing probabilities over domains and assertions describing particular degrees of belief by
means of probabilities over possible worlds [8]. Furthermore, the way assertions about
the real world are taken into account becomes different from classical hybrid representa
tion systems: even if an instance is known to belong to a concept "with certainty", its
belonging to other concepts may become uncertain. So, our framework of terminological
and probabilistic knowledge requires an extension of the "classical" realizer.

References

[1] F. Bacchus. Lp, a logic for representing and reasoning with statistical knowledge.
Computational Intelligence, 6:209-231, 1990.

[2] R. J. Brachman. 'I lied about the trees' or, defaults and definitions in knowledge
representation. The AI Magazine, 6(3):80-93, 1985.

[3] R. J. Brachman. The future of knowledge representation. In Proceedings of the 8th
National Conference of the American Association for Artificial Intelligence, pages
1082-1092, Boston, Ma., 1990.

[4] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge repre
sentation system. Cognitive Science, 9(2):171-216, 1985.

[5] D. Dubois and H. Prade. On fuzzy syllogisms. Computational Intelligence, 4(2):171-
179, May 1988.

[6] D. Etherington. Formalizing nonmonotonic reasoning systems. ArtificialIntelligence,
31(1):41-85, 1987.

[7] C. Froidevaux and D. Kayser. Inheritance in semantic networks and default logic. In
P. Smets, E. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for
Automated Reasoning, pages 179-212. Academic Press, New York, N.Y., 1988.

53

[8] J. Y. Halpern. An analysis of first-order logics of probability. In Proeeedings of
the 11th International Joint Conferenee on Artifieial Intelligenee, pages 1375-1381,
Detroit, Mich., 1989.

[9] J. Heinsohn. A hybrid approach for modeling uncertainty in terminological log
ics. DFKI Report, German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany, 1991. In preparation.

[10] J. Heinsohn. A probabilistic extension for term subsumption languages. In Proeeed
ings of the 1st European Conferenee on Symbolie and Quantitative Approaehes for
Uneertainty (ECSQAU-91), Marseilles, France, October 15-17 1991. To be published
by Springer-Verlag.

[11] J. Heinsohn and B. Owsnicki-Klewe. Probabilistic inheritance and reasoning in hy
brid knowledge representation systems. In W. Hoeppner, editor, Proeeedings of the
12th German Workshop on Artifieial Intelligenee (GWAI-88), pages 51-60. Springer,
Berlin, Germany, 1988.

[12] J. Heinsohn and J. van Loon. Numerical measures for handling uncertainty - looked
at from a Bayesian perspective. Report MS-H 4795/88, Philips Research Laboratories
Eindhoven/Hamburg, 1988.

[13] R. Kruse, E. Schwecke, and J. Heinsohn . Uneertainty and Vagueness in [(nowl
edge Based Systems: Numerieal Methods. Series Symbolic Computation _. Artificial
Intelligence. Springer, Berlin, Germany, 1991. To appear.

[14J B. Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422 of
Lecture Notes in Computer Seienee. Springer, Berlin, Germany, 1990.

[15J E. Neufeld. Defaults and probabilitiesj extensions and coherence. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Proeeedings ofthe 1st International Conferenee
on Prineiples of Knowledge Representation and Reasoning, pages 312-323, Toronto,
Ont., May 1989.

[16] G. Paass. Probabilistic logic. In P. Smets, E. Mamdani, D. Dubois, and H. Prade,
editors, Non-Standard Logies for Automated Reasoning, pages 213-251, New York,
N.Y., 1988. Academic Press.

[17] L. Padgham. Non-Monotonie Inheritanee for an Object-Oriented [(nowledge-Base.
Ph.D. Dissertation No. 213, Linköping University, Sweden, 1989.

[18J P. F. Patel-Schneider, B. Owsnicki-Klewe, A. Kobsa, N. Guarino, R. MacGregor,
W. S. Mark, D. McGuinness, B. Nebel, A. Schmiedei, and J. Yen. Term subsumption
languages in knowledge representation. The AI Magazine, 11(2):16-23, 1990.

[19] J. Pearl. Probabilistic semantics for nonmonotonic reasoning: A survey. In R. J.
Brachman, H. J. Levesque, and R. Reiter, editors, Proeeedings ofthe 1st International
Conferenee on Prineiples of [(nowledge Representation and Reasoning, pages 505-
516, Toronto, Ont., May 1989.

54

[20] D. Poole. What the lottery paradox teIls us about default reasoning. In R. J.
Brachman, H. J. Levesque, and R. Reiter, editors, Proceedings ofthe 1st International
Conference on Principles of [{ nowledge Representation and Reasoning, pages 333-
340, Toronto, Ont., May 1989.

[21] H.-J. Profit li ch, J. Heinsohn, D. Kudenko, and B. Nebel. A comparative analysis
of terminological representation systems. In Working Notes AAAI Spring Sympo
sium on Implemented K nowledge Representation and Reasoning Systems, Stanford
University, USA, March 26-28 1991.

[22] A. Saffiotti. A hybrid framework for representing uncertain knowledge. In Pro
ceedings of the 8th National Conference of the American Association for Artificial
Intelligence, pages 653-658, Boston, Ma., 1990.

[23] E. Sandewall. Nonmonotonic inference rules for multiple inheritance with exceptions.
Proc. of the IEEE, 74(10):1345-1353, 1986.

[24] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple
ments. Artificial Intelligence, 48, 1991.

[25] 1. Shastri. Semantic Networks : An Evidential Formalization and its Connectionist
Realization. Pitman, London, England, 1988.

[26] D. S. Touretzky, J. F . Horty, and R. H. Thomason. A dash of intuitions: The
current state of nonmonotonic multiple inheritance systems. In Proceedings of the
10th International Joint Conference on A rtificial Intelligence, pages 476-482, Milan,
Italy, Aug. 1987.

[27] J. Yen and P. Bonissone. Extending term subsumption systems for uncertainty man
agement. In Proceedings of the 6th Conference on Uncertainty in Artificial Intelli
gence, Cambridge, MA, July 1990.

55

On Conceptual Indexing in Terminological
Systems

Carsten Kindermann
Technische Universität Berlin,

Sekr. FR 5-12, Projekt KIT-BACK
Franklinstraße 28/29, D-I000 Berlin 10, Germany

Carsten.Kindermann@cs.tu-berlin.de

Work in the area of terminological logics (TL) has always been accompanied by theo
retical analysis of the worst case behavior of the respective inference algorithms. Recent
results, however, suggest that investigations on average or normal case behavior of TL
systems are required to estimate the practicability of the terminological approach. A
system's behavior is determined by a number of factors including the completeness of the
designed algorithms, decisions made when actually implementing them, and the structure
of the underlying data depending on the particular appLication. Having worked on the
implementation of several versions of the BACK system, one of my current interests is how
to make TL systems adaptable in order to conduct experiments in different application
environments. l

Experiments in Implementing BACK

During the last few years we have been experimenting with different implementations for
the BACK system. Especially for the ABox we have considered several implementational
alternatives, such as caching vs. recomputation, assertion time vs. query time deductions,
control of the inference algorithms by data or by goals (forward and backward chaining),
and have combined them in different ways for the various versions. Areport on these
experiments is gi yen in [2].

I feIt there were two major problems in the way we conducted the experiments:

1. For experimenting with an alternative set of choices we were forced to reimplement
the core of the particular component (in this case the ABox) each time.

2. The set of criteria we had developed was useful to describe the behavior of par
ticular implementations (e.g., "ABox V3 uses a derivative technique, and performs
inferences at query time in a backward chained manner"). The cri teria, however,
were not directly transferable into running code.

lThis work was supported by the Commission of the European Communities and is part of Esprit
Project AIMS (5210).

56

The question is how to develop from a set of desired features the possibility to adapt
the system accordingly. What I am proposing here is an approach of declaring concepts
to be used for system internal purposes, and thereby to tailor terminological systems
for different testbeds or different applications. The semantics of the traditional (i.e.,
primitive and defined) concepts remains the same. The additional declarations express
how a concept is to be used to support a certain part of system functionality, e.g., that a
concept should be used to index objects for faster retrieval. This approach may be useful
in two ways:

• If the system is sufficiently flexible, it may be evaluated for sampie data patterns
that differ in characteristical properties such as breadth and depth of the concept
hierarchy, maximallength of role-chains, or interrelatedness of objects. Similar test
settings have been used successfully in the database area, cf. [1] .

• In an application environment the adaptability of the knowledge base management
system may be useful to obtain a more efficient beha;vior. The system may be
adapted by a knowledge engineer after an analysis of the requirements and data of
the domain at hand. Alternatively, a monitoring program may collect data of the
actual use of the system. A heuristics-based component may then automatically
adapt the system by introducing declarations for the appropriate concepts.

Conceptual Indexing for Efficient Object Retrieval

In a scenario of applying terminological systems to knowledge base management one of
the frequently occurring tasks is the retrieval of instances of some query description. This
task can be supported by a method we call conceptual indexing which essentially maintains
references from concepts to their instances. 2

The indexing structure is build up by object classification (recognition): For each object
(at least) all indexing concepts are determined that it instantiates. For each of the in
dexing concepts--or, as an optimization, for the most specific ones among them-explicit
references to the instances are maintained.

For a query concept (or the generic part of a query in BACK's assertional query language
AQL 3) that is equivalent to an indexing concept the set of its instances is obtained by
simply following these references. For other queries the set of instances of their immediate
superconcepts are intersected, and the restrictions that distinguish the query from its
immediate superconcepts are used to discriminate those instances belonging to the final
answer.

In the BACK system the content of the ABox can be made persistent by storing it in
a relational database. Query processing can be completely delegated to the relational
DBMS in case the basic query (i.e. the query's generic part) is equivalent to an indexing
concept. The AQL query is then resolved by compiling it into a single SQL query. In the
more complex case it may be necessary to load instances into main memory in order to

2Cf. also [4] for a first application of conceptual indexing.
3The AQL is described in detail in [5].

57

apply the ABox reasoning procedures. The cooperation of BACK's ABox with a relational
DBMS is described in [3].

In a realistic application environment, however, it is not feasible to use all concepts to
index objects. First, numerous concepts are introduced for system internal purposes, and
determining their instances wastes storage without being of any interest. Second, for
an indexing concept the system has to guarantee that all its instances are known. The
introduction of new concepts then requires to restructure greater parts of the knowledge
base. Consider as an example abstraction descriptors, i.e., concepts that are introduced to
maintain the intensional information extracted from object descriptions. The introduction
of a new object or modification of an existing one is likely to introduce/modify such a
concept, and thus to cause a subsequent recomputation of the indexing structure.

The problem is solved in a natural way if we provide the means to explicitly divide the set
of concepts into indexing and non-indexing concepts. Concepts for system internal pur
poses may then be introduced generously, unused abstraction descriptors may be garbage
collected, and all this does not influence the indexing structure at all. Furthermore, in
troducing the possibility to explicitly declare concepts as being indexing allows for deter
mining the system's query processing behavior. For instance, declaring only the primitive
concepts as indexing makes TL systems behave like deductive databases where instances
are kept only for base classes (corresponding to primitive concepts), while instances of
deri ved classes (corresponding to defined concepts) are determined on demand. Alterna
tively, enlarging the set of indexing concepts to all user defined concepts guarantees fast
retrieval of the instances of these concepts.

Annotating Concepts for System Adaptation

Making the notion of indexing concepts explicit is an example for an approach to tailor
terminological systems by adding to concepts declarations that determine their system
internal usage.

As another example consider the set of concepts that constitute the searchspace for recog
nition. BACK's recognition process is partly driven by the concepts present in the TBox.
Depending on what has been asserted about an object a number of concepts serve as
candidates when looking for the most special concepts the object is an instance of (cL
[2]). Preselecting among all concepts by marking those that in general are of interest to be
tested, allows one to further determine the searchspace for recognition. A maximal choice
would declare every concept as a recognition candidate. A minimal choice would consider
only primitive concepts as candidates. 4 In this case inferences are drawn derivatively at
query time, and consistency checking is performed in a limited way at assertion time. A
reasonable setting is to declare as recognition candidates all indexing concepts and all
concepts that correspond to the left hand side of rules (e.g., implication links, defaults,
etc.). In this case the indexing structure is set up properly and the rule-like knowledge is
applied forwardly.

In summary, terminological systems can be made adaptable to different test and appli
cation scenarios by annotating concepts with declarations that express how the concepts

4The candidate concepts for recognition must cover at least alt indexing concepts.

58

should be used for various system internal purposes. It should be clear, however, that
not every aspect of a TL system's behavior may be determined this way, and that further
kinds of "switches" may be applied to obtain flexibility with respect to other aspects.

References

[1] F. Bancilhon and R. Ramakrishnan. An Amateur's Introduction to Recursive Query
Processing Strategies. In J. Mylopoulos and M.1. Brodie (eds.), Readings in A rtificial
Intelligence and Databases, Los Altos (Cal.): Morgan Kaufmann, pp. 376-430, 1988.

[2] C. Kindermann. Class Instances in a Terminological Framework - An Experience
Report. In H. Marburger (ed.), Proc. of GWAI-90. Berlin: Springer, pp. 48-.57, 1990.

[3] C. Kindermann and P. Randi. Object Recognition and Retrieval in the BACK System.
In S.M. Deen (ed.), CKBS '90, Proc. of the International Working Conference on
Cooperating Knowledge Based Systems, Berlin: Springer, pp. 311-325, 1991.

[4] P.F. Patel-Schneider, R.J. Brachman, and H.J. Levesque. ARGON: Knowledge rep
resentation meets information retrieval. In Proc. of 1st CAIA, pp. 280-286, 1984.

[5] C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK System Re
visited. KIT Report 75, Technische Universität Berlin, 1989.

59

AN APPROACH TO THE INTEGRATION OF

TERM DESCRIPTION LANGUAGES AND CLAUSES

Abstract

by
Rüdiger Klein

Institute of Artificial Intelligence
(lfKIIZKI)

Kurstraße 33
0-1 086 Berlin

Term description languages (TDL) in the tadition of KL-ONE provide powerful, well- :

formalized representational means for such KR aspects as object classes, their instan-
ces, relations and attributes, taxonomic hierarchies, etc. But normally other aspects
of knowledge have to be represented, too: various logical connections and constraints,
algebraic expressions, etc. Meeting all these requirements within a formal, logic-ba-
sed language seems to be impossible (due to the encountered complexity). As a way
out, a hybrid reasoning approach will besuggested. This implies the specification of so-
me well-defined restriction in the concept representation capabilities: relational terms
are excluded from concept definitions, instead relations will be defined including con-
cept assignments to their arguments as a kind of consistency conditions. Though this

results in reduced concept description capabilities, the overall expressiveness will be
improved by the increased representational means on the side of relations and logical
expressions.
In this way, in many cases an adequate representation of the well-structured object
level knowledge can be achieved, providing a "background theory" for more general
knowledge (represented, for instance, as a set of clauses).

Configuration problems will be used as an illustration of our considerations: due to the
well-structured, exact, and (relatively) complete object level knowledge they provide
a suitable testbed. The constructive problem solving (CPS) will be outlined as an ab
ductive approach to configuration problem solving. Taxonomic reasoning, which is an
essential part of the overall configuration problem solving, can be formalized within this

paradigm.

I. Introduction

A central issue in recent AI research is the developement of formal, well-defined knowled

ge representation schemes [Levesque 86]. Such a scheme should provide epistemologi

cally adequate representational capabilities [Brachman, Schmolze 85], a declarative

(Tarski-style) semantics, and a set of explicitly specified inference rules, which allow to

address soundness, completeness and complexity issues.

Various formal, logic-based knowledge representation approach es have been investiga

ted: order-sorted logic [Walther 87; Cohn 87], feature logic [Smolka 88; Schmidt-8chauß,

;n
v~

Smolka 88], term-oescription languages (TDL) in the tradition of KL-ONE [Brachman,

Schmolze 85] or approaches integrating various schemes (for instance [Pletat, Luck 89;

Ait-Kaci, Podelski 9_1]).

All these formal schemes focus on the representation of object classes: their attributes,

the taxonomic hierarchies they are involved, etc. Relations are mainly considered as re

presentational means with respect to these classes (by the inclusion of relational terms

like 3reLc or weLc into concept specifications). But in many fields of application relations

should be a representational means in their own (a kind of "first-order citicens" in the world

of representations), and both, relations as weil as concept terms, should be incorporated

into logical expressions, in order to represent generallogical connections and constraints

as an essential part of the definition al knowledge.

Recent results of theoretical investigations in these formal knowledge representation

schemes revealed a basic conflict between expressiveness and inferential complexity

[Nebel 90; Nebel 90a; Hollunder, Nutt 90]. Every scheme providing sufficient expressive

ness may easily result in intractability (or even undecidability [Schild 88 ; Patel-Schneider

89]) of the inferences.

As a consequence, in recent years considerable interest has been grown in hybrid reaso

ning techniques [Baader et aL 90; Frisch, Cohn 91], integrating various knowledge repre

sentation and reasoning techniques in a well-formalized way.

Two main questions arise with such hybrid schemes :

• Which knowledge may be ... represented in wh ich way?

• How may the various forms of knowledge interact?

The second question has been addressed in some general theoretical approaches: for in

stance theory resolution [Stickel 85], the substitutional frame concept [Frisch 89] as a ge

neralization of order-sorted unification [Walther 87, Cohn 87], or constraint resolution

[Bürckert 90; Baader et al. 90]. Of course, their applicabilitywill be affected by the answer

found to the first question.

In conjunction with further theoretical investigations of hybrid knowledge representations

more practical experiences have to be gained in order to get expressive and efficient hy

brid reasoning schemes. That's the main intention of this paper.

In order to retain the formal foundation of knowledge representation and to avoid unneces

sary complexity, this hybrid representation should include some well~efined restrietions

in the representational capabilities and in the inferences [Klein 91]. A scheme will be sug

gested here, which allows the (restricted) integration of term descriptions and logical ex

pressions (in the form of clauses).

In chapter 2 a motivation for our approach to integrate these two essential aspects of

knowledge representation will be given. Chapter 3 outlines a formal definition of the syntax

and the declarative semantics of our knowledge representation, including the restrictions

in the knowledge representation and inferences specified. Chapter 4 contains a descripti-

61

on of the taxonomic reasoning based on these suggestions, followed by a discussion in

the final chapter 5.

11. Motivation

Term description languages provide expressive means to object cl ass (concept) and in

stance representations. But a further increase of expressiveness, for instance by the inte

gration of clauses in the "traditional" TDL manner, easily results in intractability [Schild 89;

Quantz 90].

As a way out of this conflict, we suggest a restriction of term description capabilities: rela

tional expressions will not be allowed as part of concept definitions. This, of course, may ..

not always be adequate. But in many domains, especially such "well-structured" ones like

configuration, scheduling, model-based diagnosis, etc., the object classes may be defi

ned per se, i.e., by their own features and attributes, without being influenced conceptually

by reations to other objects. Relations, in contrast, should be considered here as first-or

der representational means. They will be characterized additionally by concept assign

rnents to their arguments, providing necessary pre-conditions for objects to be consistent

Iy involved in such a relation.

Based on these representational means, which provide a kind of "background knowled

ge", logical expressions (for instance in the form of clauses) could be used to represent

general logical connections and constraints.

We suggest the following scheme of the definitional knowledge:

• The object-centered knowledge representation (concept descriptions) will include

Boolean expressions on other concepts, feature terms (selections), and feature

(dis-)agreements [Smolka 88; Schmidt-Schauß, Smolka 88]. But in contrast to

other term description languages, concept-defining terms will not contain any rela

tional expressions (Iike 3rel.c or '<ire I. c) 1.

• As part of the definitional knowledge, relations will be defined including concept as

signments to their arguments (in analogy to order-sorted logic [Walther 87; Cohn

87]). These concept assignments provide necessary pre-conditions for objects to

be in such a relation to each other.

• Both concept and relational expressions may be included in clauses, expressing ge-

neral logical constraints.

In conjunction with this definitional knowledge, a set of assertions will be used to represent

a concrete problem/solution. The interaction between both aspects of knowledge repre

sentation will be described in chapter 4.

1. The distinction between features and relations (roles) as taken here will not be only a formal
one (functional versus relational expressions), but basically one reflecting the different intended
meaning: a feature will uniquely be assigned to one of the objects, whereas a role specifies a relati
on between various objects (see for instance the example described in chapter 5.) .

62

The overall representation scheme of the definitional knowledge adopted here has been

outlined in fig . 1.

clauses

______ 1 ~----------------J ~----

object-centered
knowledge
• classes
• features, etc.

....... --
conslstency
conditions

roles
• sort assignments

Fig. 1: An outline of the definitional knowledge representation

general knowledge

background
theory

The restrictions in the concept description capabilities mentioned above (no relational ex
pressions in concept descriptions) will be accompanied with a restrietion of the terminolo

gical inferences: no relational expressions could be used in subsumption calculations. But

this restriction will be compensated by an increased inferential power on the side of logical

expressions, which involve concept and role expressions (as a background theory, for in

stance, to a modified2 constraint resolution [Bürckert 90; Baader et al. 90)). This will be

described in chapter 4.

111. Formal Definition of Object-Level Knowledge Representation

As a concrete specification of the ideas discussed in the preceding chapter, we define the

following knowledge representation scheme:

• The object cl ass descriptions will be represented by a sort3 hierarchy SH;

• A set REL SH of relations with SH sort assignments to their arguments (representing

consistency conditions);

• A set CL+sH and a set CL_SH of of definite and of negative clauses4, respectively,

on sort and relational expressions, representing general logical connections.

Object Class Representations
We start with the specification of the object-class representation in a sort hierarchy SH:

Definition: sort slgnature

A sort signature L is a tripie: L = <S, F, A>, with

• S = a set of sort symbols (concepts);

2. As will be explained in chapter 4, configuration problem solving will be described in terms of
abductive reasoning, which implies some modifications of standard resolution and unification
[Klein 91 a].
3. The notions sort and concept will be used synonymously.
4. The restrietion to definite and negative (Horn) clauses will be motivated in the next chapter.

63

• F = an S-family of sets of feature symbols: Fs,s'; and

• A = an S-family of sets of atoms (constants): As

Out of these primitive building blocks more complex sort expressions may be forrnulated:

Definition: sort expressions

Given a sort signature L = <S, F, A>, a set SE of sort expressions may be defined

from this signature as foliows:

• every sort symbol is a sort expression: S <;;; SE;

• se 1\ se' will be in SE;

• se v se' will be in SE;

• -,se will be in SE;

• {a1, a2, ... an} will be in SE;

• f:se will be in SE; and

• p=q and P*'1 will be in SE

with se, se' being sort expressions. fa feature symbol, p and q being feature paths

[Smolka 88]. and every aj a constant.

A further increase in expressiveness will be gained by the specification of a set SC of sort

constraints allowing to relate different sort expressions. Two forms of sort constraints will

be provided: sort definitions (':=') in analogy to KL-ONE's defined concepts [Brachman,

Schmolze 85]. and sort restrietions (':<'), comparable to primitive concepts in KL-ONE.

Finally, a sort hierarchycar:J be defined on these representational means as a representati

on of a taxonomie hierarchy:

Definition: sort hlerarchy

A sort hierarchy SH is a pair SH = < L. SC>, with

• L being a sort signature; and

• SC being a set of sort constraints.

These representational means of object classes are basically a conjunction of feature 10-

gic constructs with term description capabilities [pletat, Luck 89].

Relations

:

A set RELSH of relations will be specified as part of the definitiona/knowledge . Each relation

in RELSH(or for short, SH-relation) will be provided with SH sort assignments of its argu

ments (in analogy to order-sorted logic (Walther 87]). These assignments will be interpre

ted as necessary pre-conditions for every object, which can be included in such a relation.

Relational expressions (like 3rel.c or Vrel.c) will be excluded from concept definitions.

Definition: relations

Given a sort hierarchy SH, a set RELsH of relations will be defined. Each SH-relation

rel in RELsH will be assigned astring s1.s2..... sn of sort expressions

(s1.s2, ... ,sne SE):

relS 1, s2, ... , sn
specifying the sort assignments to each of its n arguments.

64

Semantics

Based on these syntax specifications. a declarative Tarski-style. set-theoretic semantics

may be defined as usual. We start with the definition of an interpretation:

Definition: Interpretation

Given a sort signature L = <S, F. A>. a sort hierarchy SH • and a set RELsHof SH-rela

tions. an interpretation I is a pair I = <~I. I·>. with ~I being a set (the domain of the

interpretation). and I· being an interpretation function having the following properties:

• every sort expression se E SE will be assigned a subset ~Ise of the domain ~I:

I(se) = ~Ise. with ~Ise ~ ~I ;
• every feature fs,se E F will be assigned a function fls,s" mapping elements of its do- •

main interpretation I(S) to elements of its range interpretation I(S'):

I{fs.s·) = fIs,s' : I(S) ~ I(S');

• every attribute asEAs will be assigned an element of the corresponding sort inter

pretation I(S):

I(as) = als. with als E I(S); and

• every relation rSl,s2, ... ,snE RELsH will be assigned a subset of the Cartesian product

on the corresponding sort interpretations:

I(r sI ,s2 ,sn) ~ I(SI) x I(S2) x ... x I(Sn) .

Of course we are normally not interested in anyinterpretation. but in those fulfilling the con

ditions specified by sort expressions and sort constraints [Nebel 90a; Pletat, Luck 89;

Schmidt-Schauß. Smolka 88] . Any such interpretation will be called a model of SH.

A sort hierarchy SH will be called inconsistent. if it containes a sort symbol. wh ich in every

model interpretation will be assigned the empty set as only possible interpretation. Inconsi

stent sort hierarchies will not be considered in the following.

Based on these semantical considerations. the subsumption relation between sort ex

pressions can be defined (in the usual TDL manner):

Definition: subsumption

Given a sort hierarchy SH. a sort expression se E SE will be said to subsume (or SH

subsume) another sort expression se' E SE, iff for any interpretation I = <~I. b being

a model of SH holds:

I(se') ~ I(se)

This subsumption relation between se and se' will be written

se' ~SHse .

This notion of subsumption also provides the semantical foundation to the consistency

conditions of relational expressions and clauses: having for instance a relation rel defined

in RELsHwith sort assignments s1.s2 sn to its n arguments:

reISl ,S2, ... ,sn E RELsH

65

any relational term rel(01.02 ...• on) will only be consistent. if each of its arguments 0i (i =
1 n) has a sort assignment Si' (i = 1• n) fulfilling the well-sortedness conditions [Frisch

89]5:

Si' :5SH Si ('di = 1 •.... n)

Thus the sort hierarchy SH will be used as a sorttheory[Frisch 89]. which has to be fulfilled

by every semantics. The resulting hybrid entailment will be written (as usual) I=SH .

IV. Hybrid Inferences: Keeping the Solution Consistent

This hybrid knowledge representation scheme could be used in a traditonal. deductive

way: in theory resC'lution [Stickel 85]. constraint resolution [Bürckert 90]. within the substi

tutional framework [Frisch 89]. etc. But in order to demonstrate the usefulness of our sche- :

me in full extent. a special problem solving approach will be introduced. wh ich puts its main

emphasis on the consistent construction and manipulation of a set of assertions. This ap

proach greatly utilizes the various aspects of consistency. which are represented within

the definitional knowledge: the concept descriptions. the relation specifications (including

concept assignments to their argumenmts). and as sets of clauses.

Configuration problem solving has been shown to be an interesting field of applications

of these ideas[Klein 91 +91 a]. because problem solving here is mainly a synthetic process:

a solution will be generated. which allows to fulfil the goals formulated as weil as the con

straints defining consistency. As a result of this consistency maintenance. a kind of taxono

mic reasoning occurs. This essential element of configuration problem solving [Peltason

89; Klein 90a] is closely connected to the concept representation chosen.

As a basis of our discussion we'lI outline a formal approach to configuration problem sol

ving (introduced in [Klein 90]). called constructive problem solving (CPS):

Definition: constructlve problem solving

• The definitional knowledge characterizing a configuration domain will be represen

ted by a sort hierarchy SH. a set REL SH of relation specifications and sets CL+SH and

CL_SH of definite and negative clauses. respectively. on sort and relational expres

sions.

• A concrete configuration problem will be represented by a set GOAL SH of atomic goal

expressions (interpreted as conjunction).

• Solving a configuration problem formulated in this way means to generate a solution

SOL SH being a set of assertions (a database of ground atomic expressions represen

ting objects and relations between them). This set SOLSH has to fulfil the following

formal conditions in order to be a correct solution:

• SOLSH u CL+SH I=SH GOAL SH ;;; the goal has to be fulfilled

• '\ICE CL-sH: SOLSH u CL+SH I=SH C ;;; the constraints must be fulfilled

5. This provides a semantical extension 01 the original. synactically delined well-sortedness of
order-sorted logic [Walther 87; Cohn 87] .

66

Up to now there is no comprehensive formalization of this basically abductive6 approach .

This is at least in part due to a missing general theory of abduction (on the predicate logic

level) [O'Rorke 90+91 ; Levesque 89; Seiman, Levesque 90].Of course, also some meta

criteria should be fulfilled by the abductive reasoning process. The generated solution da

tabase SOLSH has to fulfil, for instance, a kind of minimality criterion with respect to the set

of objects introduced and to relations specified between them.

The restriction of the clauses to definite and negative ones may significantly reduce com

plexity (without loosing too much in expressiveness [Kowalski 90]): the negative clauses

allow to represent inconsistency explicitly, without affecting the "positive side" of the pro

blem solving7 (realized by the definite clauses). The set of definite clauses will be treated

as a complete decription of the positive literals contained [Klein 90; Console et al. 90].
:

These and other formal issues of the CPS approach will be discussed elsewhere [Klein

91b).

The solution database SOLSH will formally be defined as folIows:

Definition: solution SOLSH

Given a sort hierarchy SH and a set RELsH of relation definitions, a solution database

SOLSH is a set of assertions (ground atomic expressions):

• object descriptions: a:s - with a being an object and s being a sort expres

sion: s E SE; and

• relation al expressions : rel(o" ... , on) -with rels, ... snE RELsH being a relation,

and o,:s,. ... on:sn' being objects in SOL SH fulfilling the well-sortedness con

ditions:

Vi =1 , ... ,n: Si' $SH Si .

The semantics can be extended in the usual way in order to capture the assertion al terms,

hybrid entailment, etc. [Nebel 90a].

Solution Consistency

One of the essential points with this kind of constructive problem solving is database consi

stency: having an object description

a:s,

in the solution database SOLSH, and an assertion

r(a,b)

with rs.s·E RELsH being a relation defined as part of the definitional knowledge, the object

a must have a sort assignment s,/\s as a necessary pre-condition of a consistentdataba

se SOLSH:

{a:s" r(a,b) ... } I=SH a: s,/\s

Of course, s,/\s has to be consistent. too.

6. For a discussion of abductive reasoning in configuration problem solving and the relation bet
ween deductive and abductive inferences see for instance [Coyne et al. 90; Poole 90; Klein 90]
and references cited there.
7. At least as long as the solution generated will be consistent.

67

Exactly this incremental specification of objects and of relations between them will be done

by the abductive inferences in the constructive problem solving. This results in a kind of

taxonomie reasoning by rnonotonicly restricting the sort expressions of the objects in order

to keep the solution database consistent.

V. Discussion

The basic conflict between expressiveness and complexity of inference operations enco

untered in term description languages strongly stimulated the investigation of hybrid re

asoning schemes (Frisch, Cohn 91).

Our approach to a :'ybrid, theoretically well-defined knowledge representation has mainly

been based on a well-defined restriction in the expressiveness of the concept description

capabilities: relations (roles) have been excluded from concept descriptions. This seems

to be adequate in those cases, where due to the well-structuredness of the object level

knowledge the object classes can be described per se, without relations to other objects

[Klein 91 +91 a). This well-structuredness also implies, that it will be useful to define relati

ons in conjunction with concept assignments to their arguments (providing a kind of consi

stency information). As a result, the integration of this "background" definitional knowledge

into more generallogical expressions is possible (in order to represent the various logical

connections and constraints being relevant there).

Expressive means on the side of relations have been provided in other systems, too

[BACK 89; Nebel 90a and references cited there): domain and range restrietions of roles,

and various role-forming operators (Iike composition, inverse roles, transitive expres

sions). Despite the fact, that (normally) these representational rneans are not fully integra

ted into the subsumption inferences (due to the encountered computational complexity

[Quantz 90]), the main problem with these approach es is the eoneeptual viewapplied: ro

les - primitive or defined - are taken at first glance as concept-describing capabilities. In

our approach, more emphasis has been put onto relations as first-order representational

means.

This provides an expressive and well-defined opportunity to integrate concept descripti

ons and relations into more general logical expressions.

Because relational expressions heve been excluded with purpose from concept descripti

on, it makes no sense to take them into account in subsumption inferences. As a result,

these inferences will be incomplete.

On trle other side, the concept descriptions in the sort hierarchy, the relation specifications

including concept assignments to relation arguments, and the clauses enable a great va

riety of inferences on the side of assertions. This results in a shift of emphasis from defini

tional to assertional inferences. The main aspect of the hybrid reasoningwould be to keep

assertions eonsistent.

Of course, in certain cases the restrietions specified here would be a disadvantage. Thus

the question arises: How could we get things as expressive as needed, and keep them

68

tractable and theoretically wel/-defined? Here, as in many other cases of hybrid inference

systems, the main problem seems to be the control of inferences [Kowalski 90]. As a result

of an efficient control, the practical complexity may be kept tractable. Take for instance

subsumption inferences: knowing the instance a to be an element of sort s (a:s), we may

answer a question, wh ether a:s' holds, by searching for a subsumption relation between

soris sand s': s ~ s'. But answering this question may be done by deducing a:s' directly

(only for the special case of object a), too, which could be much less expensives. In our

approach, we have generally excluded relation al expressions from concept descriptions

(without any possibility of control). Having a suitable way to contro/the inference process,

this may allow to take relations (roles) into account as concept defining terms in some spe

cial cases, without increasing complexity in general.

The constructive problem solving (CPS) approach has been used in order to demonstrate '

the consistency-based reasoning capabilities of the hybrid knowledge representation

scheme introduced here. It may be considered as a formal description of configuration pro

blem solving. Due to the lack of a general theory of abduction (at least on the predicate-Io

gic level), only some aspects of this approach could be demonstrated here. The discus

sion of other essential aspects of CPS (Iike variable treatment, minimum model semantics,

inference rules) will be performed elsewhere [Klein 91 b].

ACknowledgements

Many thanks to the collegues from the ESPRIT project KIT -BACK at TU Berlin, especially

Jochen Quantz, for somevery helpful discussions.

References

[Alt-Kacl, Podelskl 9'1]
Ait-Kaci, H" and Podelski, A. : Is there a Meanng to LlFE?, 2nd International Workshop on Termino

logical Logic, Schloß Dagstuhl, May 1991, Statements of Interest, IBM Report, IWBS Stuttgart,

1991.

[BACK 89]

Luck, K.v. et al.: 'The BACK System Revisited", KIT-Report 75, TU Berlin, 1989

[Baader et al. 90]
Baader, F., Bürckert, H.-J ., HOllunder, B., Nutt, w., and Siekmann, J .H.: Concept Logic, in: [lloyd

90], pp. 177-201 .

[Bürckert 90]
Bürckert, H.-J .: AResolution Principle for Clauses with Constraints, in : M. Stickel (ed.): Proc. 10th

Conf. on Autom Deduction, Kaiserslautern , 1990.

[Brachman, Schmolze 85]

R.J. Brachman, J.G. Schmolze: An Overview of the KL-ONE Knowledge Representation System,

Cognitive Science 9 (85) 171-216.

[Cohn 87]

A.G. Cohn: "A More Expressive Formulation of Many-Sorted Logic", J. of Autom. Reasoning, 3/2
(87) 113

[Console et al. 90]
Console, l., et al.: A Completion Se mantics tor Object-Level Abduction, in : [0' Rorke 90], pp. 72-76.

[Coyne et al. 90]

8. though the opposite case may be true as weil

69

Coyne, R. , et al. : Knowledge-Based Design Systems, Addison Wesley, Reading (Mass.), 1990._

[Frisch 89]
Frisch, A.: A General Framework of Sorted Deduction, in: Brachman, R., Levesque, H., and Reiter,

R. (eds.): Proc. of the First International Conference on Principles of Knowledge Representation,

Toronto, May 1989, pp. 126-136, Morgan Kaufman Publ., 1989.

[Frisch, Cohn 91]
Frisch, A., and Cohn, A.: Thoughts and Afterthoughts on the 1988 Workshop on Hybrid Reasoning,

AI Mag. (Speciallssue), Jan. 1991, pp.77-87.

[Hollunder, Nutt 90]
HOllunder, B. and Nutt, W.: Subsumption Aigorithms for Concept Languages, Report 90-04, DFKI.

[Klein 90]
Klein, R. : Problem solving as database construction, Proc. 4. Workshop "Planen und Konfigurier

en", FAW Bericht, Ulm, April 1990.

[Klein 90a] :-
Klein, R. : Towards an Integration of Knowledge Based Systems with Computer-Aided Design, in:

U. Geske, D. Koch (eds.): Contributions to AI, Akademie-Verlag, Berlin, 1990.

[Klein 91]
Klein, R.: Model Represntation and Taxonomie Reasoning in Configuration Problem Solving, Ger

man Workshop on AI, to appear in Springer Lecture Notes in AI, Springer, Berlin, 1991 .
[Klein 91a]
Klein , R.: Towards a Logic-Based Model Representation in Configuration Problems, ÖGAI91 Work

shop on Model Based Reasoning, Wien, Sept. 91

[Klein 91b]
Klein , R.: Constructive Problem SOlving, subm. to the 8th Deduction Workshop, Berlir., Oct. 1991.

[Kowalskl 901
Kowalski, R.: Problems and Promisses of Computational Logic, in : [Lloyd 90], pp. 1-36

[Levesque 86]
Levesque, H.: Making Believers out of Computers , A130/1 (1986)81-1 08.

[Levesque 89]
Levesque, H.: A knowledge-Ievel account of abduction, Proc. IJCAI-89, pp.1061-1066, Detroit,

1989

[Lloyd 90]
Lloyd, J .W.: Computational Logic, Proc. of the ESPRIT Basic Reasaerch Activities Symposium,

Bruxels, Nov. 1990, Springer, Berlin, 1990.

[Nebel 90]
Nebel, B.: Terminological Reasoning is Inherently Intractable, AI Journal 43/2(1990)235-250.

[NebeI90a]
Nebel, B. : Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in AI 422 ,

Springer, Berlin, 1990.

[O'Rorke 90]
O'Rorke, P. : Automated Abduction , Working Notes, 1990 AAAI Spring Symposium, Stanford-Univ.,

TR-9Q-32

[O'Rorke 91]
O'Rorke, P.: Review of AAAI-90 Spring Symposium on Automated Abduction, SIGART Bulletin

1/3(1991), pp.12-17.

[Patel-Schnelder 89]
Patel-Schneider, P. : Undecidability of Subsumption in NIKL, AI 39(1989)263-272 .

[Peltason 89]
Peltason, C.: "Wissensrepräsentation für Entwurfssysteme", Diss. TU Berlin, 1989.

[Pletat, Luck 89]

70

Pletat, C. und v. Luck, K.: Die Wissensrepresentationssprache SORT -LILOG, IWBS-Report 89,

IBM Stuttgart, 1989

[Pooie 90]
Poole, D.: Hypo-Deductive Reasoning for Abduction, Default Reasoning and Design, in :

[O'Rorke 90), pp. 106-110.
[Quantz 90]
Quantz , J.: Modeling and Reasoning with Defined Roles in BACK, KIT -BACK Report 84, TU Berlin,

1990.

[Schild 88]
Schild, K.: Undecidability of Subsumption in U, KIT-Report 67, TU Berlin , Oc!. 88
[Schild 89]
Schild, K.: Towards a Theory of Frames and Rules, KIT -Report 76, TU Berlin, Dec . 89

[Schmidt-Schauss, Smolka 88]
Schmidt-Schauss, M. and Smolka, G.: Attribu tive Concept Description with Unions and Comple- :
ments,SEKI Report 88-21, Universitaet Kaiserslautern, Dec . 88
[Searls, Norton 90]
Searls, D.B. and Norton, L.M .: Logic-BasedConfigurationwith a Semantic Network, Journalof Log
ic Progr. 8(1990)53-73.

[Seiman, Levesque 90]
Seiman , B., and Levesque, H.: Abductive and Default Reasoning : A Computational Core, Proc.

AAAI-90 , pp.343-348 .
[Smolka 88]
Smolka, G. : A Feature Logic with Subsorts, IBM Report 33, IWBS Stuttgart, May 1988.
[Stickel 85]
Stickel, M.: Automated Deduction by Theory Resolution, J. Autom. Reas,1 (85) 333
[Walther 87]

Walther, C. : A Many-Sorted Calculus with Resolution and Paramodulation, Morgan-Kaufman
Pubi ., 1987. '

71

Reification in SB-ONE

Alfred Kobsa
Dept. of Computer Science
University of Saarbrücken

D-6600 Saarbrücken 11
GERMANY

kobsa@cs.uni-sb.de

Terminological representation systems are neutral with respect to what kinds of thing:; ill the
domain to be modeled should be regarded as individuals (and hence be represented by concepts)
and what should be regarded as relations (and thus be represented by roles). The decision as
to how to represent certain conceptual knowledge is entirely left to the knowledge engineer \\"ho
models a domain.

It is true that [1] present a guideline for the discrimination between concepts and roles. nalllcly
lo determine "as to whether a description can stand on its own without implying an Ullmen·

tiol1ecl object related to the object in question" . If so, the description at hand wOlild COII~t it lIlE'

a concept, otherwise a role of the unmentioned object. However, this guideline seems to be
frequently violated by current representational practice in the field of natural-Ianguage [)roce:iS
ing, where a number of conventions vertaining to the concept/role dichtonomy have emergecl
since certain forms of representation turned out to be advantageous for natural-language ap
plications. For instance, if actions are regarded as individuals rather than relations , it is easier
to specify the relationship between the semantic cases [2] of the natural-Ianguage verbs which
describe these actions and the attributes of these actions (such as the agent, object, etc.) . The
example of action representation seems to contradict the above guideline of [1], since all action
like 'give' is related to unmentioned objects (e.g., the object being given , as weil as rlw (l1!,<'111

of this action), but is nevertheless represented by a concept. Another example of cül\flinillg,
guidelines in the decision between representation with concepts or representation Willl mies
are "societal persons": while [8][238] regard 'father' and 'mother' as "roles persons pla.\' ill [lw
concept 'family' ", these notions are favorite examples of concepts in the KL-ONE literature ,
Things become even worse in other fields of AI (such as expert systems) or in the area of con
ceptual modeling for databases, where no convention at all seems to exist as yet with respect
to what to regard as a frame 01' schema, and what as a slot 01' schema attribute.

This arbitrarine::is in the representation of knowledge via concepts or roles does not seem harmfu'
a::; long as knowledge bases are used in isolation only. As SOOI1 as one wants to combillt' t hf
conceptual knowledge of two 01' more knowledge bases, l'epl'esentational variants for the SilllH

knowledge pose serious problems. One solution would be to decide on one variant, and Slll)]>!<.':;'

the other in the combined knowledge base. This, however, means that processes which <:',\1)('(

the suppressed version can no longer operate on the combined knowledge base.

72

The solution pursued in the development of SB-ONE [3, 6, 5, 7] was to enhance the language
in such a way that objects in the world can be regarded both as individuals and as pairs of
a relation, so that the same knowledge can be represented both through concepts and thl"01U]h

roles. For achieving this, both the interpretative domain and the representational elements of
SB-ONE must be augmented (the resulting language was coined 'ivleta-SB-ONE'). DilTelent
Jinearly ordered ontological levels are introduced into the interpretative domain V, Clllcl eClch
individual in V is assigned to one of these levels. A reification relation is introducecl bet 1I'(:'c:n
higher-level individuals and pairs whose elements belong to a lower level (which expresses that a
higher-level individual "stands for" a lower-level pair). Two new representational elements are
introduced on the general level, namely so-called metaconcepts (they possess two special roles).
and the reif relation between metaconcepts and roles. If a role is reified using the reif relation.
the assertions expressed by this role become additionally represented by the metaconcept ~nd
its special roles. An example is given in Fig. 1, which also illustrates the graphical notatiol1 of
some SB-ONE and Meta-SB-ONE knowledge representation elements. In this example, the rol e
'has-child' of PERSON with value restriction *CHILD* has been reified into the metaconcp.pt
'PARENTSHIP' with two special roles whose value restrictions are PERSON and *CH I LD",.
res pecti vely.

Figure 1: Example of a metaconcept and the reif relation

~letaconcepts and the 7'eifrelation are governed by a number of syntactic constraints, the 1ll0:)t
important being that one special role of the metaconcept of a role r l11L1st ha\'e r's (Iom,lill
concept as its value restriction, and the other r 's value restriction as its own value restrietion.
The denotation function 6., which maps SB-ONE concepts into the interpretati\'e c10lllilill D
must be slightly redefined in that all individuals of V which are in the denotation of a concept
must pertain to the same ontological level. Thus each concept maps into a subset of the
individuals of a single ontological level of V. In a well-formed Meta-SB-ONE knowledge base.
aseparate root concept gC{). is introduced for each ontological level i. All these root concepts
are disjoint from each other. An additional requirement for roles of a concept of a certain le\'el
is that only concepts of the same or a lower level may be employed as value restrictions. This
constraint, together with the different root concepts for each ontological level, guarantee t!1Clt
the ontological distinctions of the interpretative domain are also syntactically obsen'ecl (('.g.

73

by the classifier). Reification may occur arbitrarily often, i.e. roles of metaconcepts may again
be reified, etc. A set of individuals of the next higher ontological level in the interpretati\'e
domain is thereby described each time. It is doubtful, however, whether a double 01' e\'en
multiple reification makes sense. In practical applications, single reification will most probably
be sufficient.

References

[1] R. J. Brachman, D. 1. McGuinness, P. F. Patel-Schneider, L. Alperin Resnick, and
A. Borgida. Living with CLASSIC: When and how to use a KL-ONE-like language .. In
J. Sowa, editor, Principles 0/ Semantic Networks: Exploration in the Representatiori of
I(nowledge. Morgan Kaufmann, San Mateo, CA, 1991.

[2] C. J. Fillmore. The case for the case. In E. Bach and R. Harms, editors, Universals in
Linguistic Theory, pages 1-88. Holt, Rinehart and Winston, New York, 1968.

[3] A. Kobsa. The SB-ONE knowledge representation workbench (extended version). I\lemo ·)0 .

SFB 314: AI - Knowledge-Based Systems, Dept. of Computer Science, Uni\'. of Saarbrücke l1 .
Saarbrücken, Germany, 1990.

[4] A. Kobsa. First experiences with the SB-ONE knowledge representation workbench lD

natural-la.nguage a.pplications. SJGART Newsletter, Summer, 1991.

[5] A. Kobsa. Reification in meta-SB-ONE: Bridging the object/relation dichotomy. unpub
lished Manuscript, Dept. of Computer Science, Univ. of Saarbrücken, Saarbrücken , Ger
many., 1991.

[6J A. Kobsa. Utilizing knowledge: The components of the SB-ONE knowledge reple::wll((\
tion workbench. In J. Sowa, editor, Principles o/Semantic Networks: Exploral1oll ill thE
Rep1'esentation 0/ J{nowledge. Morgan Kaufmann, San Mateo, CA, 1991.

[7] A. Kobsa. The SB-ONE knowledge representation workbench. Computational Intelligence .
(submitted), 1992.

[8] H. Trost and I. Steinacker. The role of roles: Some aspects of real \vorld kno\\'ledge repre
sentation. In Proc. 0/ the 7 th IJCAI, pages 237-239, Vancouver, Canada, 1981.

74

Statement of Interest, Dagstuhl Workshop

Robert MacGregor
USCjlnformation Sciences Institute

Marina deI Rey, California, United States

macgreg@isi.edu

Below, I list a few topics that are of particular interest to me, and which I would like
to be the subject of discussion during the workshop.

1 Semantic Choice Points

The recently circulated KRSS specification emanating from a US-based knowledge rep
resentation standards effort, and a proposal for a terminological logic emanating from
a group at DFKI, Kaiserslautern represent initial attempts to bring some kind of order
to the growing field of terminologically-based systems. I am hoping that, among other
things, these specifications will inspire discussion of a number of semantic issues that
previously have been ignored for the most part by the community, probably because too
few systems had reached a point where they had to bite the bullet and make a particular
semantic choice. Below, I list some of these exemplary issues. In each case, we have made
an explicit design decision in LOOM (i.e., we have lots of buHet fragments lying around).

1. Temporal semanties. Any system that supports either role closure or retraction
implicitly defines some sort of temporal semantics. This semantics ought to be made
explicit. The need for an explicit semantics becomes even more evident when be
havioral constructs such as production rules are introduced into the representational
framework.

2. Retraction semanties. A number of systems implement retraction of facts. From
discussions I've had with Peter Patel-Schneider and Ron Brachman, it appears that
LOOM and CLASSIC have adopted a very similar semantics. It would be valuable
to survey each of the systems represented at the Workshop to find out if there is
in fact a consensus on retraction semantics, or if significant differences of opinion
exist.

3. Skolem individuals. The generation of objects representing skolem individuals
might be considered simply as an implementation detail not deserving of attention by
a knowledge levellanguage specification. However, we have users that have explicitly
requested that LOOM generate skolem objects in certain situations. Hence, I would '
like to explore the quest ion of when the system should support retrieval of skolem
indi viduals.

75

Statement of Interest, Dagstuhl Workshop

Robert MacGregor
USC/lnformation Sciences Institute

Marina deI Rey, California, Uni ted States

macgreg@isi.edu

Below, I list a few topics that are of particular interest to me, and which I would like
to be the subject of discussion du ring the workshop.

1 Semantic Choice Points

The recently circulated KRSS specification emanating from a US-based knowledge rep
resentation standards effort, and a proposal for a terminological logic emanating from
a group at DFKI, Kaiserslautern represent initial attempts to bring some kind of order
to the growing field of terminologically-based systems. I am hoping that, among other
things, these specifications will inspire discussion of a number of semantic issues that
previously have been ignored for the most part by the community, probably because too
few systems had reached a point where they had to bite the bullet and make a particular
semantic choice. Below, I list some of these exemplary issues. In each case, we have made
an explicit design decision in LOOM (i.e., we have lots of buHet fragments lying around).

1. Temporal semanties. Any system that supports either role closure or retraction
implicitly defines some sort of temporal semantics. This semantics ought to be made
explicit. The need for an explicit semantics becomes even more evident when be
havioral constructs such as production rules are introduced into the representational
framework.

2. Retraction semanties. A number of systems implement retraction of facts. From
discussions I've had with Peter Patel-Schneider and Ron Brachman, it appears that
LOOM and CLASSIC have adopted a very similar semantics. It would be valuable
to survey each of the systems represented at the Workshop to find out if there is
in fact a consensus on retraction semantics, or if significant differences of opinion
exist.

3. Skolem individuals. The generation of objects representing skolem individuals
might be considered simply as an implementation detail not deserving of attention by
a knowledge levellanguage specification. However, we have users that have explicitly
requested that LOOM generate skolem objects in certain situations. Hence, I would
like to explore the question of when the system should support retrieval of skolem
individuals.

75

4. Prototypes, Default Rules, Close-world assumption. A decade ago it was
quite common for KR systems to support such things as generic or prototypical indi
viduals, and default values. Possibly because a formal semantics for such constructs
is hard to come by, their implementation has somewhat fallen out of favor. However,
it is possible that some sort of consensus could be reached regarding an incomplet~
characterization of the semantics for these constructs. For example, one might be
able find a consensus on the behavior of default rules in the absence of explicit can
tradictions. Also, LOOM users routinely employ LOOM's facility for specifying that
a (non-monotonic) closed-world assumption (predicate completion) should apply to
specific relations. The semantics for this in the absence of contradictions appears
to be straightforward.

5. Reified Relations The PENMAN group at ISI needed a means for specifying con
cepts representing the reification of binary relations (roles), which resulted in the
inclusion of a defreified-relation construct into the LOOM language. Sub
sequent discussions have revealed that the current LOOM semantics for reified
relations is not satisfactory. We now have an alternative proposal, which may ar
may not be controversial.

2 Hybrid Logics

LOOM integrates a description language with aHorn logic [Mac91]. Users have found
this combination to be much more useful than having just a bare description language.
LOOM has made several decisions regarding control of deductive inference over this
hybrid logic that appear to be novel. LOOM offers users the choice of marking their
concepts as "forward-chaining" or "backward-chaining." We are finding that for large,
dense applications, we can 't get acceptable performance if all concepts are marked as
forward. Furthermore, LOOM is unable to truth-maintain the more complex concept
descriptions, and hence automatically treats these as backward-chaining. Users are re
questing such things as lazy evaluation of concept instantiations, combined with caching
whenever evaluation actually occurs.

We are hoping that we can discover more high-level means for determining the direc
tion of inferencing. As one example of a more semantically-motivated type of contral,
LOOM permits concepts to be marked as "monotonic"-this reduces the amount of work
necessary to truth maintain these concepts.

We view the object-centered style of representation found in the terminologicallogics
as being antithetical to the relation-based style of representation found in languages such
as Prolog. For this reason, I am skeptical of efforts to combine a description language with
Prolog (unless Prolog is regarded merely as the host language, rat her than as an extension
to the representationallogic). However, recent efforts to combine feature structures with
definite clause gramm ars appear to have found more successful means for integrating these
otherwise dissonant representational paradigms. An exploration at the knowledge levelof
how such things as features and function symbols within one of these languages map inta
the terminological framework (defini tions, instances, etc.) might prove to be illuminating.

76

3 Representational Building Blocks

I observed within the DFKI proposal the existence of what might be called "extended nu
meric restrietions" , e.g., (atleast 1 children Female). In languages that support the
definition of range-restricted roles, these constructs represent syntactic sugar-coating (e.g.,
the description (at least 1 (and children (range Female))) is equivalent. However,
the (former) extended form has an internal analogue (a data structure), representing what
might be called a "type-restricted, numerically-quantified skolem" that appears to me to
support more flexible and efficient reasoning than the traditional representations for re
strictions. In this case, the extended restrietion avoids the necessity for generating the
additional role "(and children (range Female))" and hence leaves us with a cleaner,
more efficient role hierarchy.

The LOOM implementation defines a variety of_ data structures that we collectively re
fer to as features. These include numeric, type, and filled-by restrictions, role-equivalence
descriptions, finite sets, and numerically-bounded intervals (and whenever we get around
to implementing them, SDs). Features constitute the building blocks LOOM uses to
define its concepts, and as such constitute a vocabulary that is much richer than the vo
cabularies manipulated by, say, a typical resolution theorem prover. Conceptually, we like
to view this as a CISC approach rather than a RISC approach to deductive reasoning.
We conjecture that the CISC approach is more amenable to the integration of a large
variety of special purpose reasoners than the RISC approach.

References

[Mac91] Robert MacGregor. Using a Description Classifier to Enhance Deductive In
ference In Proceedings of Seventh IEEE Conference on Artificial Intel/igence
Applications, Miami, Florida, February 1991.

77

Large Knowledge Base Management

Eric Mays

IBM Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
EMays@Watson.IBM.COM

The focus of our work has been on the systems aspects of terminological languages.
In this regard, we have limited the core of our representation to a tractable component.
In this core representation there are many things which are unexpressible, and there are
some things which are expressible but need not be explicitly represented. A problem thus
arises as to how other computational components can be integrated with the representa
tion language to form a useful system. This requires accomodating arbitrary data and
functional attachment, as well as incorporating the semantics of primitive types in an
extensible way. Additionally, there are performance aspects relating to the scalability of
knowledge bases containing tens or hundreds of thousands of concepts, which are required
to meet the expectation of current application demands.

Over the past few years we have been involved in building a large knowledge based
system, called FAME, which assists IBM marketing representatives in the design of ac
quisition solutions for large scale computing requirements. The central representation in
FAME is a terminological based knowledge representation system called K-Rep, which
we have built. Our experience in building a large knowledge based system has shown
that there is a need for a knowledge base management system (KBMS) which would sup
port shared access to a large persistent knowledge base by multiple applications. Such a
KBMS would support knowledge engineers in the development and maintenance of the
knowledge base. The goals for a KBMS consist of the following: (i) to allow a knowledge
engineer to update a knowledge base and have these updates persist on secondary storage,
(ii) to allow multiple knowledge engineers to have shared access to a knowledge base and
modify the knowledge base concurrently, and (iii) to maintain consistency of the shared
knowledge base as it evolves.

Our approach to this problem is to adopt aversion oriented concurrency protocol in
which each knowledge engineer makes modifications to the shared knowledge base, thus
deriving multiple versions. We have developed storage management mechanisms which
allow any version of the knowledge base to be efficiently updated and retrieved. The
version oriented protocol handles the problems relating to long transaction times and
large lock grain sizes. Additionally, it places no temporal dependencies on the updates
arriving from multiple knowledge engineers. From the multiple versions of the knowledge
base it is necessary that a single unified knowledge base emerge. This requirement is
achieved via the merge operation.

78

Additionally, we have been interested in interfacing knowledge representation systems
with data bases. One problem which arises here is that the mapping between the data base
and the knowledge base can be difficult due to the fine distinctions that are often made
in the knowledge base. Terminological logics assist in this regard by allowing the intro
duction of new concepts in the knowledge base without the necessity for a corresponding
modification the the data base schema.

References

[1] C. Apte, R. Dionne, J. Griesmer, M. Karnaugh, J. Kastner, M. Laker, E. Mays, "An
Experiment in Constructing an Open Expert System using a Knowledge Substrate",
to appear IBM Journal of Research and Development.

[2] E. Mays, C. Apte, J. Griesmer, J. Kastner, "Organizing Knowledge in a Complex
Financial Domain", IEEE Expert 2, Fall 1987, pp. 61-70.

[3] E. Mays, S. Lanka, B. Dionne, R. Weida, "A Persistent Store for Large Shared
Knowledge Bases", IEEE Transaction on Knowledge and Data Engineering
3, 1, March 1991.

79

The CLASSIC Knowledge Representation System:
Implementation, Applications, and Beyond

Deborah L. McGuinness
AT&T Bell Laboratories

600 Mountain Avenue
M urray Hill, N ew Jersey 07974

Abstract

Implementation, analysis, and application work with CLASSIC have provided op
portunities for evaluating the usefulness and implications of our selection of term
constructors. We have discovered that all of our applications depend critically on
one or more constructs not found in some systems based on terminological logics.
We report on user needs (and demands) for sets, individual fillers in concept descrip
tions, coreference constraints, host language escapes, and simple rules. We discuss
some of the advantages and complications that these features introduced from the
perspective of both system designers and knowledge engineers.

1 Introduction

The CLASSIC knowledge representation system [1, 2] has been designed and implemented
at AT&T Bell Laboratories over the last few years. Within the dass of "terminological"
knowledge representation systems, it has taken a position in exploring the tradeoff between
expressiveness and tractability. While some systems have had a primary goal of extend
ing expressiveness, CLASSIC has tried to remain a simple compositional language that is
expressive enough for certain classes of applications while retaining more of a handle on
tractability and predictability. This puts it in the same philosophical dass as systems
such as KANDOR [6] and BACK [8]. CLASSIC's main practical goal has been to provide an
implementation that can be used in the real world for certain classes of applications-i.e.,
it must provide added value over other available tools while retaining understandability
and ease of use for non-expert users. Given these goals, CLASSIC provides an interesting
testbed for exploration into minimum sets of term constructors. In this paper, we will
focus on the ones that may not be considered standard in other terminological systems.

Although work is continuing on the second version of CLASSIC, most of our experience
with users has been with the first version so that is the version that will be discussed here.
COMMON LISP and C versions of the first release exist and have been in use for approx
imately two years. The COMMON LISP implementation has been distributed to over 25
Universities and has also been used for several graduate AI dasses} In addition, AT&T

Iln order to request a copY of the COMMON LISP version and user's manual [9), send a letter to

80

Bell Laboratories has been teaching a dass on knowledge representation and CLASSIC for
the last year.

The rest of the paper will assurne familiarity with the core constructors of most ter
minological systems (for more background see [12J or [4]), give a very brief introduction
to CLASSIC, and discuss the constructors that CLASSIC indudes that many other termi
nological logic systems do not. We will highlight the users' needs for these constructors
and discuss the implementation implications. Finally, we will indicate future directions
of our work.

2 CLASSIC Overview and Perspective

A simple way to view CLASSIC is KANDOR without the role hierarchy2 but with rules,
tests, coreference constraints, sets, and individual fillers. Roles are atomic but there is a
distinction between multi-valued and single-valued roles. In addition to the standard cre
ation of roles, concepts, and individuals, CLASSIC allows information to be retracted from
and added to individuals and rules to be retracted from and added to concepts. Concepts
are non-circular however rules can create circularities by referring to other concepts.

The representational capabilities of CLASSIC can best be seen by looking at the concept
description language. The grammar follows:

<concept-description> ::=

THING I CLASSIC-THING I HaST-THING I
(buHt-in host concepts) I
<concept-name> I
(AND <concept-expr>+)
(ALL <role-expr> <concept-expr»
(AT-LEAST <positive-integer> <role-expr»
(AT-MOST <non-negative-integer> <role-expr» I
(SAME-AS <attribute-path> <attribute-path» I
(TEST-C <fn> <argument>*) I
(TEST-H <fn> <argument>*) I
(ONE-OF <individual-name>*) I
(PRIMITIVE <concept-expr> <index»
(DISJOINT-PRIMITIVE <concept-expr>

<group-index> <index» I
(FILLS <role-expr> <individual-name>+)

<concept-name> ::::: <symbol>
<individual-name> ::= <symbol> I <d-host-expr>
<role-expr> ::= <mrole-expr> I <attribute-expr>
<mrole-expr> ::= <symbol>
<attribute-path> ::= «attribute-expr> +)
<attribute-expr> ::::: <symbol>

D. McGuinness at the above address. This should be on university letterhead and it should state that
CLASSIC will be used for research andjor educational purposes only.

2 A primitive role hierarchy will be included in the next release.

81

<cl-host-expr> ::= <string> I <number> I
'<CommonLISP-expr> I
(quote <CommonLISP-expr»

<index> ::= <number> I <symbol>
<group-index> ::= <number> I <symbol>
<fn> ::= a three-valued logical function in the

host language (Common LISP)
<argument> ::= an expression passed to the test function

3 Additions and Challenges

We will now discuss five features of CLASSIC that make it much more usable than a system
such as KANDOR. One interesting point about these features is that all of our users are
critically dependent on one or more of them. We will discuss their usefulness and the
problems they present.

3.1 Rules

CLASSIC has a simple forward-chaining rule mechanism. Descriptions can be attached to
concepts as rule consequents and, when an individual is known to be an instance of the
antecedent concept, the information in the consequent is added to the individual. Rules
are used to represent properties that are not used for recognition. For example, ane could
attach a rule to a concept for person stating that all persons have social security numbers.
Then we would not need to know that something has a social security number in order
to recognize that this object is aperson, but once the object is found to be a person then
the object would also become an instance of something that has a social security number.
This rule is enforced forever and CLASSIC would signal an error if at any point in the
future something was found to contradict the rule. This facility has been found to be very
useful in all of our applications.

Rules clearly provide a level of functionality that all of our knowledge engineers desire,
yet they have also been the area where most of the application debugging time has been
spent. One confusion is that CLASSIC rules are not logical implications. If CLASSIC can
prove that something does not have a social security number, then it does not imply
that this thing is not aperson. Another possibly counter-intuitive not ion is that rules
are only invoked on individuals. Thus, a concept defined as "person with social security
number" would not subsume a concept person with a rule requiring all instances to have
social security numbers attached to it. For more on these representational issues see
[2J. Another aspect of rules arises when rules that reference other concepts are added to
existing concepts. This is the only place in CLASSIC where cycles can be created. This
actually provides much more expressive power and does not cause termination problems
but it does sometimes create debugging problems. The problem is not that we can't
explain the idea of rules, it is just that in some cases CLASSIC's use of rules is different
than the rules that some users may have been exposed to in logic or in expert systems. We
could probably decrease some of the expectation mismatches if we used rules in concept
classification and treated them as logical implications but then we would introduce the

82

problems associated with cydes [5] and require reasoning by cases. One other possibility
is to adopt the OPS method of handling rules but then part of the power of rules for
integrity checking is lost since rules would not continually enforced.

3.2 Coreference Constraints

The SAME-AS constructor requires that the two composed attribute (uni-valued role)
paths have the same filler. The original motivation for this came from natural language
and planning uses where it is important for the actor of one act to be the recipient of
another. Other obvious uses for this are in layout where it is important that two ends of
a wire are attached to the same wire.

Difficulties with SAME-AS have not really arisen for the application programmer as
they did with tests-the difficulties show up in the implementation. Our original plan was
to implement coreference constraints on multivalued roles. We did not have a complete
theoretical analysis of the task when we began, and midway through our implementation
(while we were still struggling with the algorithm), a proof was provided (see [10] and [7])
showing the reason for our problems. Even after limiting SAME-AS to functional roles,
we still found this portion of the code to be the most challenging to write and maintain.
It also is the constructor that is the most challenging when considering extensions to the
system.

3.3 Tests

By using tests, users may write functions that determine membership in a concept dass.
The function could be something as simple as checking for an even number of fillers on a
role or it could be arbitrarily complex host code (either COMMON Lrsp or C depending
upon the implementation). Tests have proven to be invaluable in applications. In limited
languages it can be quite important to have a way for the user to add a few specialized
concepts to the application. Also, given that certain kinds of expressive power have been
deliberatively left out of version 1 in an attempt to be more tractable, tests can provide
a mechanism for expressing things that are outside CLAssrc's scope but still essential to
the application. One common test of expressive power and reasoning in terminological
systems is the "at least one child who is a doctor" issue. CLAssrc allows only number
restrietion (at least one child) and value restrietion (all children are doctors) without
using tests. One can write a test function to recognize individuals who have at least one
child who is a doctor. This solves the expressiveness and recognition issue but it doesn't
attack the part of this problem that Brachman and Levesque showed to be intractible [3].

Tests are treated as black boxes by CLASSIC and originally we thought that they would
not interact with the rest of the CLAssrc code. After we required tests to be three-valued
monotonie side-effect-free functions, we succeeded in allowing tests to coexist harmo
niously with the rest of the system. From a terminological system designer's perspective,
tests can provide a wonderful view into the real needs of a user. Most users will minimize
their use of tests so analyzing the final uses of tests has been instructive. Version 2 of
CLASSIC has been expanded in two ways (intervals and role hierarchies) as a result of
evaluating user's test usage.

83

Tests and rules together can provide a powerful combination. Rules are Iimited to
a form that uses one named concept expression as an antecedent and another concept
expression as the consequent. If a rule is attached to a test concept, then this rule
can have arbitrary expressive power in its antecedent. Also, if the consequent concept
expression includes a test concept, then the rule can provide more expressive power in an
integrity checking mode.

3.4 Sets

The ONE-OF constructor allows the user to say that all of the fillers for a role must be
in a specified set of individuals. For example, a wine's color must either be red, white,
or rose. ONE-OF provides both a limited form of negation (i.e., the wine is not blue) as
well as a kind of disjunction, and it has been qui~e useful in expressing the incomplete
knowledge that seems to pervade most of our applications.

ONE-OF, however, has introduced a form of incompleteness into our system. Since
ONE-OF is inherently a form of disjunction, in order to reason completely with it one
must do reasoning by cases. CLASSIC specifically does not attempt any such work and
is thus incomplete. ONE-OF, as FILLS below, allows concept descriptions to refer to
individuals. This presents so me questions when calculating the subsumption hierarchy.
In normal evolution of a knowledge base (ignoring errors for the moment), we expect some
things to change about individuals (for example, a person might change from being single
to being married or might become a parent), but we don't expect definitions of concepts
(such as person or parent) to change. Thus, we expect the concept hierarchy to remain
constant while "contingent facts" about individuals may change. Concept descriptions
that include individuals in their definition fall somewhere in the middle since although
they are dearly concepts, something that they refer to may change. CLASSIC handles this
by doing concept subsumption without taking into account the contingent facts about
individuals. Thus a concept that had a role filled by "ONE-OF Joe or John" could
be subsumed by something that had at most 2 fillers for that role (since the fact that
Joe and John are unique is not contingent) but it would not be subsumed by a concept
that expects this role to be filled by New Jersey residents even if Joe and John are both
currently known to live in New Jersey (since one or both of them could move). This
issue is similar to the one with rules-the behavior of CLASSIC is well motivated and
explainable, but sometimes runs counterintuitive to new users' expectations and thus can
be a source of confusion.

3.5 Fills

In some senses, FILLS can be viewed as a special case of ONE-OF. Instead of saying that
the filler of a role belongs to so me set of individuals, FILLS states that one particular
individual fills the role. The difference between FILLS and ONE-OF is that ONE-OF
implies number restrictions, i.e., the maximum number of fillers of a role is equal to the
number of elements in the ONE-OF set, while FILLS just states that one of the fillers
of that role is known but (in the absence of other number restrictions) other fillers can
be added to the role later. Since FILLS is like ONE-OF when it allows individuals to be
referenced in concept expressions it has some of ONE-OF's advantages and difficulties.

84

4 Current and Future Research

Our experience with theoretical analysis of terminological systems, implementation of
CLASSIC, and its use in several kinds of applications continues to drive our work forward.
We are currently designing the next version of CLASSIC. While we are still exploring the
space of small usable systems, the next version will be richer in expressive power as well
as in supporting facilities (such as explanation, dumping knowledge bases, UNIX inspired
line-oriented interface, graphical interface, and query language). We are also pursuing
research on aversion of CLASSIC that will be extensible given templates designed by the

user to define additional inferences that CLASSIC should perform.

References
[1] Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin Resnick.

CLASSIC: A structural data model for objects. In Proceedings 0/ the 1989 ACM SIGMOD
International Con/erence on Management 0/ Data, pages 59-67, June 1989.

[2] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, Lori Alperin
Resnick, and Alex Borgida. Living with CLASSIC: When and how to use a KL-ONE
like language. In Sowa [11J.

[3J Hector J. Levesque and Ronald J. Brachman. A fundamental tradeoff in knowledge repre
sentation and reasoning (revised version). In Ronald J. Brachman and Hector J. Levesque,
editors, Readings in Knowledge Representation, pages 42-70. Morgan Kaufmann, San Ma
teo, California, 1985.

[4] Robert MacGregor. The evolving technology of the classification-based knowledge repre
sentation systems. In Sowa [11] .

[5] Bernhard Nebel. Terminological cycles: Semantics and computational properties. In Sowa
[11J.

[6] Peter F. Patel-Schneider. Small can be beautiful in knowledge representation. In Pro
ceedings 0/ the IEEE Workshop on Principles 0/ Knowledge-Based Systems, pages 11-16,
Denver, Colorado, December 1984. IEEE Computer Society. A revised and extended ver
sion is available as AI Technical Report Number 37, Schlumberger Palo Alto Research,
October 1984.

[7J Peter F. Patel-Schneider. Undecidability of subsumption in NIKL. ArtificialIntelligence,
39(2):263-272, June 1989.

[8] Christof Peltason, Albrecht SchmiedeI, Carsten Kindermann, and Joachim Quantz. The
BACK system revisited. KIT-Report 75, Department of Computer Science, Technische
Universität Berlin, August 1989.

[9J Lori Alperin Resnick, Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and
Peter F. Patel-Schneider. CLASSIC description and reference manual for the COMMON
LISP implementation. AT&T Bell Laboratories., January 1990.

[lOJ Manfred Schmidt-Schauss. Subsumption in KL-ONE is undecidable. In Proceedings 0/ the
First International Con/erence on Principles 0/ K nowledge Representation and Reasoning,
pages 421-431. Morgan Kaufmann, May 1989.

85

[11] John Sowa, editor. Principles 01 Semantic Networks: Explorations in the representation o}
knowledge. Morgan-Kaufmann, San Mateo, California, 1991.

[12] William A. Woods and James G. Schmolze. The KL-ONE family. Harvard Technical
Report Number TR-20-90, Harvard University, August 1990.

86

The Complexity of Concept Languages
- Extended Abstract

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi
Universita di Roma "La Sapienza"

via Salaria 113, 1-00198, Roma, Italy

Werner Nutt
German Research Center for Artificial Intelligence (DFKI)

Postfach 2080, D-6750 Kaiserslautern, Germany

Concept Ianguages have been investigated mainly in the field of knowledge representation,
following the ideas initially embedded in many frame-based and semantic-network-based
languages, especially the KL-ONE language [BS85]. However, several formalisms of this
kind are now being considered within the realm of data bases and logic programming,
with the aim of enriching the expressivity of existing data models and logic programming
languages with object-oriented features (see [Be88, AN86]).

Concept languages can be given a Tarski style dedarative semantics that allows them
to be conceived as sublanguages of predicate logic [BL84]. A concept is built up of
two kinds of symbols, primitive concepts and primitive roles. An interpretation interprets
them as subsets of a domain and binary relations over the domain . These primitives can be
combined by various language constructs (such as intersection, union, role quantification,
etc.) yielding complex concepts, which again are interpreted as subsets of the domain.
Different languages are distinguished by the different sets of constructs they provide.

To give examples we suppose that person and female are primitive concepts, and child
and female_relative are primitive roles. Using the set theoretical connectives intersection
and complement, we can describe the dass of "persons that are not female" by the concept

person n -,female.

Most languages provide quantification over roles that allows for instance to describe the
dasses of "individuals whose children are all female" and "individuals having a female
child" by the concepts

Vchild.female and 3ch ild. fema le.

Number restrictions on roles denote sets of individuals having at least or at most a certain
number of fillers for a role. For instance,

(~3female_relative) n ($ 2child)

87

denotes the dass of "all individuals having at least three friends and at most two children."
Intersection can also be used as a role forming construct. For instance, the intersection

child n female_relative,

intuitively yields the role "daughter."
The basic reasoning tasks on concepts are satisfiability and subsumption checking. A

concept is unsatisfiable if it denotes the empty set in every interpretation, and is satisfiable
otherwise. A concept C is subsumed by a concept D if in every interpretation C denotes
a subset of the set denoted by D . For a long time, the KL-ONE community was content
with sound, but incomplete subsumption algorithms. Such an algorithm deli vers a correct
answer when given C and D such that C is not subsumed by D, but sometimes fails to
recognize that one concept is subsumed by another one.

Complexity analysis of the subsumption problem originated with the paper [BL84]
by Brachman and Levesque, which provides a polynomial algorithm for a very limited
language, called :F C- , and shows that for the seemingly slightly more expressive language
:FC subsumption is co-NP-hard. Nebel [Ne88] identified other constructs that give rise to
co-NP-hard subsumption problems. Neither [BL84] nor [Ne88] give algorithms for the co
NP-hard languages. The first nontrivial subsumption algorithm was devised by Schmidt
Schauß and Smolka [SS91] for the language ACC, an extension of :F C. They proved
that unsatisfiability and subsumption in ACC are PSPACE-complete and identified a
sublanguage with co-NP-complete unsatisfiability problem.

In the pr~sent paper, we consider a family of languages, called AC-Ianguages, which
indudes most of the concept languages considered in the literat ure. In the simplest AC
language, called AC, concepts (denoted by the letters C and D) are built out of primitive
concepts (denoted by the letter A) and primitive roles according to the syntax rule

C, D -+ AlT 11. 1 C n D 1 -.A 1 V R.C 1 3R. T

where R denotes a role, that in AC is always primitive (more generallanguages provide
a constructor for role intersection).

An interpretation X = (~I, .I) consists of a set ~I (the domain of X) and a function
.I (the interpretation function of X) that maps every concept to a subset of ~I and every
role to a subset of ~I x ~I such that

TI = ~I

1.I = 0
(C n D)I

(-'A)I _

(VR.C)I

(3R.Tf =

CIn DI

~I \ AI

{a E ~I 1 Vb.(a,b) E R I _ bE CI}

{a E ~I 13b. (a, b) E RI
}.

Obviously, an interpretation function is already determined by the way it interprets prim
itive concepts and roles. An interpretation X is a model for a concept C if CI is nonempty.
A concept is satisfiable if it has a model and unsatisfiable otherwise. We say C is subsumed
by D if CI ~ D I for every interpretation X, and C is equivalent to D if CI = D I for
every interpretation X.

More general languages are obtained by adding to AC the following constructs:

88

• union of concepts (indicated by the letter U), written as Cu D, and defined by

• full existential quantification (indicated by the letter f), written as 3R.C, and de
fined by

(3R.C)I = {a E /).I 13b.(a,b) E RI /\ bE CI};

• compiement of non-primitive concepts (indicated by the letter C), written as -,C,
and defined by

• number restrictions (indicated by the letter N), written as (~ n R) and ($ n R),
where n ranges over the nonnegative integers coded in unary (i.e., the integer n is
represented by astring of length n), and defined by

and

respecti vely;

• intersection of roies (indicated by the letter n), written as Q n R, where Q and R
are arbitrary roles, and defined by

We consider all combinations of the above constructs in concept languages. Every
AC-language is named by astring of the form

AC[U] [f] [N] [n],

where a letter in the name stands for the presence of the corresponding construct in
the language. Observe that the combination of union and full existential quantification
gives the possibility to express complements of concepts, and conversely, union and full
existential quantification can be expressed using complements. Hence, without loss of
generality we will assume that union and full existential quantification are available in
every language that contains complements, and vice versa. In language names we will
use the letter C instead of Uf. It follows that there are 16 pairwise non-equivalent AC
languages, which form a lattice, whose bottom element is AC and whose top element is
ACCNn.

The present paper features two main results. First, we define a general technique for
checking unsatisfiability (and therefore subsumption, since C is subsumed by D if and
only if C n -,D is unsatisfiable) in AC-languages, thus providing complete algorithms
for the basic inferences in concept languages. Following an idea presented in [5591], our
technique relies on a set of rules, which closely resemble the rules of the tableau calculus
for first order logic. In fact, if one translates concepts into predicate logic formulas,

89

and applies to them the tableaux calculus with a suitable control strategy, one obtains
essentially the calculus described here.

Second, we give a detailed complexity analysis of both unsatisfiability and subsump
tion for AC-Ianguages. We have classified 15 of the 16 languages with respect to the
complexity of both problems. The only exception is ACEN, where we can say that un
satisfiability and subsumption are in PSPACE, and both are co-NP-hard (thisfollows from
the results reported in [Ne88]) and NP-hard. Notice that for only one of these languages,
namely ACe, both the upper and the lower complexity bound for the two problems were
previously known. Since for all AC-Ianguages but one the upper and lower bounds we
give coincide, one can say that our algorithms are optimal for the problems they solve.

Complete proofs of the results are given in [DL*91].

References

[AN86] H. Ait-Kaci, R. Nasr. "LOGIN: a logic programming language with built-in in
heritance." Journal o[Logic Programming, 3, 1986.

[Be88] C. Beeri. "Data models and languages for databases." Proc. ICDT-88, 1988.

[BL84] R. J. Brachman, H. J. Levesque. "The tractability of subsumption in frame based
description languages." Proc. 4th AAAI, Austin, Tex., 1984.

[BS85] R. J. Brachman, J. Schmolze, "An overview of the KL-ONE knowledge represen
tation system." Cognitive Seien ce, 9 (2), 1985.

[DL*91] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt. The Complexity o[Concept
Languages. DFKI Research-Report, Forthcoming.

[GJ79] M. R. Garey, D. S. Johnson. Computers and lntractability-A Guide to the The
ory o[NP-Completeness. Freeman, San Francisco, Cal., 1979.

[HN*90] B. Hollunder, W. Nutt, M. Schmidt-Schauß, "Subsumption algorithms for con
cept descri ption languages." Proc. 9th ECAI, 1990.

[Ne88] B. Nebel. "Computational complexity of terminological reasoning in BACK." Ar
tificial Intelligence, 34(3), 1988.

[Ne90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, Springer
LNAI 422, 1990.

[SS91] M. Schmidt-Schauß, G. Smolka. "Attributive concept descriptions with comple
ments." To appear in Artificial Intelligence, 47, 1991.

90

Position Paper - Terminological Logics Workshop

Lin Padgham
Linköping University

Department of Computer and Information Science

My main work has been on the development of a logic for default reasoning within
type hierarchies. Unlike most people I have worked with a notion of 2 parts (or nodes) for
each type descriptor - one with necessary and one with default information. This gives
similar expressivity to systems with mixed link types (strict and default links) with some
interesting extra expressivity (one can say e.g. that a sparrow is a typical bird, as well
as that a typical bird is a flying thing). This approach has also enabled development
of an algorithm for default reasoning which is essentially linear. I have a prototype
implementation of the default reasoner.

The model for default reasoning is a lattice based model where the core and default
nodes of types, and also the objects can be compared to each other with respect to a
hypotheticallattice of feature descriptors. This is equivalent to all inheritance links being
strict. The fact that all inheritance links are strict in our model (default reasoning is
accomplished by a "jump" against the direction of the link, between type co re and type
default) makes the model relatively compatible with models used by terminologicallogic
systems. This leads- to the hope that we can use our theory of default reasoning as a base
for specifying well behaved default reasoning within terminological logic systems. The
representation of the type hierarchy for our default reasoner is, as mentioned previously
based only on strict inheritance. Consequently it is possible to use classification algorithms
developed within terminologicallogics on this hierarchy.

Together with a graduate student (Tingting Zhang) i am working on a medical di
agnosis system which uses a combination of default reasoning and classification in the
diagnosis process. Disease descriptions are represented in a type hierarchy, where each
disease contains a set of necessary and a set of typical features. A patient is represented
as a set of symptoms. An initial classification is made of the patient and then more
information is sought in order to move the classification down in the hierarchy.

The language used for the diagnosis application is extremely limited compared to
the languages usually used in terminological logics. However i tappears adequate for
this application. We suggest that for some applications it may be desirable to limit the
expressiveness of the language in certain ways in order to allow integration of defaults.

91

Relevant Published Work of Mine

References

[Padgham 90J Padgham, L. Defeasible Inheritance: A Lattice Based Approach, Comput
ers and Mathematics with Applications, special issue on Semantic Nets.

[Padgham 89J Lin Padgham, Non-Monotonie Inheritance for an Object-Oriented
Database, 1989, ISBN 91-7870-485-5 (PhD thesis).

[Padgham 89bJ Padgham, L. Negative Reasoning Using Inheritance, Proceedings of
IJCAI '89, Aug 20-25, 1989, Detroit, Michigan, USA. vo1.2 p. 1086.

[Padgham 89cJ Padgham, L. A Lattice Based Model for Inheritance Reasoning, Proceed
ings of the Workshop on Inheritance in Programming Languages and Knowl
edge Representation, Viareggio, Italy, February 6-8, 1989.

[Padgham 88J Padgham, L. A Model and Representation for Type Information and its
Use in Reasoning with Defaults. Proceedings 0/ AAAI '88 St Paul, Minnesota,
August 20-26, 1988, vol 2, pp.409-414

[Padgham 88bJ Padgham, L. NODE: a database for use by intelligent systems. Proceed
ings of the International Symposium on Methodologies for Intelligent Sys
tems, Torino, Italy, October 17-19, 1988.

[Zhang, Padgham 90J Zhang T., Padgham L., A Diagnosis System Using Inheritance in
an Inheritance Net, Proceedings 0/ the International Symposium on Method
ologies /or Intelligent Systems, Knoxville j USA, Oct 24-27 1990.

[Padgham, Rönnquist 87J Lin Padgham, Ralph Rönnquist, LINCKS: An Imperative Ob
ject Oriented System, Proceedings 0/ the 20th International Con/erences on
Systems Sciences, Hawaii, Jan. 1987.

92

Handling Computational Difficulties with
Reasoning in Terminological Logics

Peter F. Patel-Schneider
AT&T Bell Labs, 600 Mountain Avenue

Murray Hin, New Jersey 07974
U. S. A.

pfps@research.att.com

It is an unfortunate fact of life that the important reasoning operations (subsumption,
classification, and realization) in many terminological logics are worst-case in tractable
or even undecidable. (See [2] for some of these results.) Because these operations will
be performed often during the normal course of operation of knowledge representation
systems built upon terminologicallogics, I think that some solutions to the problem must
be devised before knowledge representation systems based on terminologicallogics will be
of general use.

I see two basic types of solutions to this problem:

1. choosing a better method of analyzing complexity and decidability, and

2. retreating to incomplete (or unsound) reasoning.

Both of these basic types of solutions have several variants, some better than others.
One solution to the problem fits in neither of the two types given above. This

solution-limiting the expressive power of the terminological logic to obtain worst-case
tractable reasoning-was initially suggested by Brachman and Levesque and partially
implemented in KANDOR [5] and CLASSIC [1]. (Neither KANDOR nor CLASSIC are
worst-case tractable, complete reasoners for a standard terminological logic, so they are
not pure examples of this approach.) However, recent results in the complexity and
decidability of reasoning in terminological logics have shown that achieving worst-case
tractability requires giving up far too much expressive power, so this solution cannot be

considered to be viable, at least by itself.

1 Complexity Analysis

The worst solution in the better analysis camp, in my view, is to simply ignore the problem
and hope that actual systems will not have any problems. This may work in some cases,
but there are many applications where it is intolerable not to have some idea of how fast
(or slow) the knowledge representation will be.

93

However, worst-case tractability is an unduly pessimistic indicator of performance. If
it could be guaranteed that the system would in fact perform reasonably quickly in almost
all knowledge bases and queries that will be encountered, then the system would be of
considerably more use.

This "average-case" complexity analysis suffers from two problems. First, it is very
hard to give a probabilistic characterization of the knowledge bases and queries that a
knowledge representation system will encounter. Second, there is still no firm guarantee
that the system will not take much too long-just a guarantee that this will happen rarely.
Many applications can tolerate rare problems of this sort, perhaps by having a method
for terminating reasoning if it is taking too long, but others can not.

Another replacement for worst-case complexity analysis is "normal-case" analysis.
Here a subset of the possible knowledge bases is selected as "normal", and the system
is guaranteed to be tractable on this subset. If the normal cases include all those that
will be encountered in an application, then the system is effectively worst-case tractable
for this application. Normal-case tractability is generally no worse to determine, given a
definition of anormal case, than worst-case tractability is, and is a viable replacement for
worst-case tractabili ty.

However, it is often possible to go beyond normal-case tractability by performing a
complete computational analysis of a reasoning algorithm. From this algorithmic analysis
not only can tractable cases be extracted, but also the causes of exponential behavior can
be determined and quantified.

It is the quantification of intractable behavior that is probably the most important
benefit of this type of analysis. In the best case, it is possible to provide abound on how
long a particular operation will take just by quickly looking at the form of the inputs.
The application can then avoid situations that could possibly result in long operations.

One particular example of this computational analysis is the complexity of subsump
tion in terminologicallogics in the presence of definitions. Bernhard Nebel [4] has shown
that the presence of definitions results in intractable subsumption in many simple termino
logicallogics. However, in many applications the replacement of names by their definitions
just does not result in a large increase in the size of descriptions, and whenever this is the
case, computational difficulties will not occur.

The normal-case and computational analysis solutions to the computational problems
of terminologicallogics appear to work fairly weIl for a number of intractable terminolog
icallogics. Unfortunately, it is much harder to perform such magic when operations are
undecidable.

2 Incomplete (and Unsound) Reasoning

The second type of solution to the complexity problem for terminologicallogics is to give
up on sound and complete reasoning in return for computational benefits.

The traditional solution to complexity problems has been to just implement those
deductions that can easily be implemented and that produce a reasonably fast system,
or that are needed to make particular applications (or demos) work. As more and more
deductions are added, it becomes harder and harder to determine just what deductions

94

these systems do perform, and harder and harder to count on the system. I consider this
an inferior solution, even in combination with other solutions.

I see three good methods for describing the deductions of a partial reasoner. Theyare
to use

1. a non-standard semantics for the logic, such as my four-valued semantics [6] or the
non-standard semantics used in CLASSIC;

2. a set of inference rules, such as the rules in [7] and [2J; or

3. an abstract algorithm.

Each of these solutions, when done weIl, can result in a description of the reasoner that
can be readily understood and used to develop applications.

Non-standard semantics can describe both radical and minor changes to reasoners with
a single modification in the semantics, as in the non-standard semantics for CLASSIC's
subsumption algorithm. CLASSIC allows user code to appear in concept descriptions,
which, obviously, makes determining subsumption undecidable. The non-standard se
mantics for subsumption in CLASSIC treats user code as arbitrary functions, divorced
from the semantics of the programming language. This sanctions treating user code as
black boxes. CLASSIC also allows individuals to appear in concept descriptions, which
makes subsumption worst-case intractable. The non-standard semantics for CLASSIC
maps individuals into subsets of the domain instead of elements of the domain. This
means that certain deductions are not valid for individuals, removing a source of in
tractability. However, developing non-standard semantics with the correct computational
properties is a difficult process at best, and not a short-term solution.

I think that a good description of incomplete terminological reasoners that are likely
to be built in the near future can be obtained by means of an abstract algorithm. In par
ticular, an abstract algorithm description of the standard normalize-and-classify method
used in CLASSIC, LOOM [3], KANDOR, etc., should be quite easy for users to under
stand. Sets of inference rules, although easy to devise and modify, can be very hard to
understand, even for experts.

Perhaps the best method for describing incomplete terminological reasoners will be
found where abstract algorithms and structured sets of inferences rules merge. Here it
may be possible to obtain the benefits of both algorithms (easy-to-follow control flow)
and inference rules (independence from many low-Ievel details).

3 Combining Solutions

I think that just about any system that attempts to solve the computational difficulties
inherent in reasoning in terminological logics will have to use several solutions. For ex
ample, CLASSIC obtains tractable subsumption (without definitions) by implementing
a partial subsumption algorithm that is sound and complete with respect to a variant
semantics for an expressively limited terminologicallogic but also uses the computational
analysis method to characterize its intractability with respect to definitions. More work
is needed to determine just what is the best sort of description for such combination
solutions.

95

References

[1] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and
A. Borgida. Living with CLASSIC: When and how to use a KL-ONE·1ike language. In
J. Sowa, editor, Principles 0/ Semantic Networks: Explorations in the representation
0/ knowledge. Morgan-Kaufmann, San Mateo, California, 1991.

[2] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proceedings 0/ the Second International Con/erence on Principles 0/
[(nowledge Representation and Reasoning, pages 151-162. Morgan Kaufmann, May
1991.

[3] R. M. MacGregor and R. Bates. The Loom knowledge representation language. Tech·
nical Report ISIjRS-87-188, Information Sciences Institute, University of Southern
California, May 1987.

[4] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43(2):235-249, May 1990.

[5] P. F. Patel-Schneider. Small can be beautiful in knowledge representation. In Proceed

ings 0/ the IEEE Workshop on Principles 0/ Knowledge-Based Systems, pages 11-16,
Denver, Colorado, Dec. 1984. IEEE Computer Society. A revised and extended ver
sion is available as AI Technical Report Number 37, Schlumberger Palo Alto Research,
October 1984.

[6] P. F. Patel-Schneider. A four-valued semantics for terminological logics. Artificial
Intelligence, 38(3):319-351, Apr. 1989.

[7] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with unions.
Artificial Intelligence, 47, 1991.

96

Modeling and Reasoning

J oachirn Quantz
Technical University of Berlin
Project KIT-BACK, FR 5-12

Franklinstr. 28/29, W-I000 Berlin 10, Gerrnany
E-Mail: quantz@tubvrn.cs.tu-berlin.de

Modeling and reasoning are, of course, strongly connected to the expressivity of the
representation language under investigation. Thus, when considering the integration of
new epistemological primitives, one tries to find out what can be modeled with these
primitives and what kind of inferences are licensed by them. From a theoretical point
of view, once the semantics of a primitive is specified, all inferences are determined as
weIl. From an applicational point of view, however, it is important to characterize those
inferences which can be regarded as obvious or as basic. This distinction between obvious
and more elaborated inferences is useful for two reasons. If, for whatever reason, only an
incomplete algorithm is implemented, it should at least compute the obvious inferences.
Furthermore, even for complete algorithms, obvious inferences might be efficiently com
putable whereas more elaborated ones might be not. In this case one could choose to
precompute obvious inferences, whereas other inferences are only computed on demand
by the user. 1

As a result of my research concerning the integration of rules (or implication links)
and role forming operators into BACK,2 I became convinced, that the obvious inferences
and hence the advantages of these extensions lie on the object level. In the following I
want to substantiate this claim with respect to role forming operators by summarizing
some of the results presented in [4].3

Role Forming Operators

Research in the area of terminological representation systems tends to focus on concept
forming operators and on concept subsumption, whereas role forming operators and role
subsumption are comparatively neglected. Out of 11 systems listed in an overview in [3,
S. 234] 4 do support primitive role hierarchies and 5 even include role forming operators for
the definition of roles. It is not obvious, however, to what extent the inference aigorithms

lThe distinction made by the system developer is, of course, only preliminary and its adequacy has
to be verified when actual applications are evaluated.

2This work was supported by the Commission of the European Communities and is part of Esprit
Project AIMS (5210).

3For a theoretical investigation of rules or implication links confer [6]. A description of the imple
mentation in BACK and a small example illustrating the usefulness of implication links can be found in
[5] .

97

of hybrid representation systems have to be modified in order to support the integration
of defined roles into a terminological language. 4 Three kinds of consequences can be
distinguished:

Concept Subsumption

The use of role forming operators can lead to subsumption between concepts (e.g.,
all(rhatmost(m,r2)) and atmost(n,rl) ~ atmost(nm,rl comp r2)). To capture these
subsumption relations classification algorithms for concept terms have to be modified in
a non-trivial way.

Role Subsumption

In addition to classification for concept terms subsumption between role terms (e.g.,
trans(r and range(c)) ::S trans(r) and range(c)) must be computed by the classi
fier. If the trans operator is not included in the terminologicallanguage, the algorithm
presented in [4] together with two minor modifications is probably complete and sub
sumption of role terms is then turing reducible in polynomial time to subsumption of the
domain and range concepts. The conjecture that the algorithm is complete for full T:FR
turned out to be unjustified however, due to subsumption between embedded comp and
trans terms (e.g. trans(rt) comp r2 = trans(rt) comp trans(r2) iff r2 ::S rt).

Hybrid Entailment

Additional inferences on the object level are from my point of view the major contribution
of defined roles for a hybrid representation system. In general, the terminological modeling
with defined roles can be used to establish complex connections between roles which result
in the automatie instantiation of role-fillers on the object level (for examples, see below).5

Dependencies

Having distinguished these areas of hybrid reasoning one can ask what kind of dependen
eies exist between them. Clearly, role subsumption has impact on concept subsumption
(via atleast, atmost, and all terms) and vice versa (via domain and range terms).
Also, both concept and role subsumption inftuence hybrid entailment (e.g., rJ(oJ,02) F
r2(oJ ,02) if rJ ::S r2). There are, however, inferences on the object level which must be
drawn by the recognizer alone, without resort to the classifier. The integration of role
forming operators gives rise to the following list of genuine recognition tasks:

• Counting of role-fillers:
r(oJ,02) 1\ r(oJ,03) F atleast(2, r)(od.6

4In the following I consider the language T:FR- containing the role forming operators domain, range,
and, inv, comp, and trans.

5The importance of role-filler instantiation is underlined in proposals for semantic data models (e.g.,
SDM [1]). Defined roles and the role forming operators comp and inv correspond to the 'member
attribute interrelationships' in SDM.

6Together with classification this can be used for the propagation of domains (domain(c)(ol' 02) F
C(OI)), since atleast(l,domain(c)) :: c.

98

• Propagation of value restrictions:
all(r,c)(od /\ r(ol,o2) ~ C(02)'

• Generalization over closed role-filler sets:
atmost(l, r)(od /\ r(ol,o2) /\ C(02) ~ all(r,c)(od.

• Instantiation of inverse role-fillers:
r(ol,02) ~ inv(r)(o2,od

• Instantiation of role-filler chains:
rl(ol,o2) /\ r2(o2,o3) ~ rl comp r2(ol,03) .7

Conclusion

In general, most object level inferences resulting from defined roles are either computable
by the recognizer or can be derived via role classification. Thus, even if consequences for
concept subsumption are not integrated into the classification algorithm the interesting
inferences on the object level are still derivable.8 This line of argument (ignore conse
quences for concept subsumption, focus on consequences for hybrid entailment) might be
also valid for the use of constants in concept definitions and for role value maps.

Whereas so far only concept valued roles were considered, similar extensions are pos
sible for roles which have special types as their ranges. 9 For these roles additional role
forming operators can be provided, such as numerical operations or basic set operations.
This might be especially useful for numericaI, functional roles. Thus va/ue_added_tax could

be defined as neLprice * 0.14. This would lead to the automatic instantiation of the value
for value_added_tax when the value for neLprice is specified.

These considerations suggest arevision of the application scenario for terminologi
cal logics. In the traditional application scenario the user enters definitions of concepts
and the system detects implicitly given subsumption relations and builds up an explicit
terminological hierarchy. As a consequence, a terminological representation system is
considered useful only for domains in which defined concepts (necessary and sufficient
conditions) can be specified. Furthermore the concept classifier is considered to be the
inference component whereas recognition is only a special form of classification. In the
revised application scenario, however, the modeling of a terminological hierarchy is just
a first step followed by the specification of rules. The system supports these activities by
checking consistency and eventually by drawing additional conclusions. In a second step
object descriptions are evaluated taking into account terminological and rule knowledge.
Additional properties of objects can be inferred from these descriptions. In this scenario
a terminological representation system can be even useful if the terminology does not
contain any defined concepts, since some object level inferences do not involve concept
subsumption. lO Besides the concept classifier there are other important inference compo-

7This is also the basic schema for inferences involving the transitive closure of roles.
8To compute these inferences a recognition aJgorithm as presented in [5] has to be augmented. In

addition, the conceptual indexing of objects which supports retrieval for both simple and complex queries
(cf. [2]) has to be expanded to include indexing of role-fillers.

9The current version of BACK supports attribute-sets, numbers, and strings as role ranges.
lONeedless to say, that the more defined concepts a domain contains, the more useful is a terminological

representation system.

99

nents like the role classifier, the rule classifier and the recognizer. They aB use the concept
classifier but they also perform interesting inferences on their own.

References

[1] M. Hammer, D. McLeod, "Database Description with SDM: A Semantic Database
Model", ACM Transactions 0/ Database Systems 6, 351-386, 1981

[2] C. Kindermann, "Class Instances in a Terminological Framework - an Experience
Report", in H. Marburger (ed.), Proc. 0/ GWAI-90, Berlin: Springer, 48-57, 1990

[3] B. Nebel, Reasoning and Revision in Hybrid Representation Systems, Berlin: Springer,
1990

[4] J. Quantz, Modeling and Reasoning with Defined Rofes in BACl< KIT Report 84,
Technical University of Berlin, 1990

[5] J. Quantz, C. Kindermann, lmpfementation 0/ the BACl< System Version 4, KIT
Report 78, Technical University of Berlin, 1990

[6] K. Schild, Towards a Theory 0/ Frames and Rufes, KIT Report 76, Technical Univer
sity of Berlin, 1989

100

From Terminological Logics to Modal Logics

Klaus Schild
Technische Universität Berlin

KIT-BACK, FR 5-12, Franklinstr. 28/29
W-I000 Berlin 10, FRG

Correspondences between terminologicallogics and propositional modal and dynamic
logics are currently in the focus of my interest. 1 These correspondences turn out to be
highly productive because formerly unrelated fields are brought together. In the area of
terminologicallogics, running systems have been developed since the late seventies. Only
recently theoretical investigations have been undertaken mainly concerning the computa
tional complexity of terminologicallogics. In the very contrast to that, elaborated theories
for modal and dynamic logics have been developed much earlier. Particularly, for modal
logic there is-apart from first order logic-the most elaborated logical theory, and dy
namic logic has benefited from these results. By detecting these correspondences, one can
gain new insights into terminological logics solely by expounding the theorems of modal
and dynamic logic as theorems of the corresponding terminological logic.

Terminological Logic and Modal Logic

The terminologicallogic ACC, introduced by Schmidt-Schauß and Smolka [9], comprises
the Boolean operators n, U, and -, on concepts as weIl as the value restrietions \:I R.C and
3R.C.

It is weIl known that ACC is a sublanguage of first order logic since atomic concepts
correspond to one-place predicates and atomic roles to two-place predicates. The ACC
concept -'Cl U \:Ir,c2 n C3, for instance, can be expressed by the first order formula -'Cl (x) V

\:Iy . r (x , y) =? C2 (y) t\ C3 (y) .
Viewing ACC from the modal logic perspective, atomic concepts can be interpreted

simply as atomic propositional formulae. In this case the value restriction \:I. becomes a
modal operator since it is applied to formulae. Thus the above mentioned concept can
be expressed by the propositional modal formula -'Cl V K r(C2 t\ C3). K r(C2 t\ C3) is to be
read as "agent r knows proposition C2 t\ C3," and means that in every world accessible for
r, both C2 and C3 hold. ActuaIly,

• the domain of an extension function can be read as a set of worlds .

• atomic concepts can be interpreted as the set of worlds in which they hold, if ex
pounded as atomic formulae.

IThis work was supported by the Commission of the European Communities and is part of Esprit
Project AIMS (5210).

101

• atomic roles can be viewed as denoting accessibility relations.

Hence d E t'[VR.C] can be expounded as "in world d agent R knows proposition C."
This illustrates that ACe is a notational variant of the propositional modal logic K(rn).

For abrief introduction to K(m) confer for example [2]. To demonstrate the utility of
the correspondence, I exposed two of its immediate by-products in [8]. N amely, I gave
an axiomatization of ACe and a simple proof that subsumption in ACe is PSPACE
complete, replacing the original six-page one in [9].

Terminological Logic and Dynamic Logic

Moreover, I have considered an extension of ACe, called TSC, comprising various role
forming operators. In addition to the ACe-operations, T SC contains both the identity
role id and the composition 0, the disjunction U, the transitive-reflexive closure", the range
restriction :, and the inverse -1 of roles. Now it is important to realize that roles can be
interpreted not only as accessibility relations but also as nondeterministic programs. In
this case the domain of the extension function t' is to be read as a set of program states,
and (d, e) E t'[R] denotes that there is an execution of the program R transforming state
d into state e. Using this interpretation, compound terms can be expounded as follows:

• d E t'[V R.C] as "whenever program R terminates starting in state d, proposition C
holds on termination"

• R 1 ° R 2 as "run R 1 and R 2 consecutively"

• R 1 U R 2 as "nondeterministically do R 1 or R 2"

• R" as "repeat program R a nondeterministically chosen number of times ~ 0"

• R- 1 as "run R in reverse"

• id : C as "proceed without changing the program state iff proposition C holds"

This illustrates that TSC is a notational variant of the propositional dynamic logic
PDL with the converse-operator. Using this correspondence, one can easily prove that
(a) it suffices to consider finite connected TSC-models of exponential size, (b) ACe
augmented with the transitive-reflexive closure of roles is EXPTIME-hard, and that (c)
TSC-subsumption can be computed in exponential time even W.r.t. a finite set of concept
equations. Moreover, utilizing the correspondence one obtain an axiomatization of TSC.

Since features (functional roles) correspond to deterministic programs in dynamic logic,
it follows that adding them to TSC preserves decidability, although violates its Finite
Model Property (FMP, for short). Surprisingly, adding both role-conjunction and features
to TSC does not preserve decidability. All these results are summarized in Figure 1 and
can be found in (8).

102

Name Concept Role Notational Complexity of FMP
Operators Operators Variant Subsumption

A.cC concept names, role names, K(m) PSPACE-complete yes [2]
n, ..." "I., [u, 3.] [u, 0, id, :] [2, 9]

A.cCrtg concept names, role names, test-free EXPTIME-hard l.~J. yes [1]
n, ..." "I., [u, 3.] u, 0, • PDL EXPTIME-easyt [5]

A.cCrtg+R : C concept names, role names, PDL EXPTIME-hard l.IJ. yes [1]
n, ..." "I., [U, 3.] u, 0, ., id , : EXPTIME-easyt [5)

A.cCrtg+R : C concept names, role names, IPDL EXPTIME-hard [IJ no [3]
+RnS n, ..." "I ., [u, 3.] u, 0, ., id, :, n

TS.c concept names, role names, CPDL EXPTIME-hard l,lJ. yes [lJ
n, ..." "I., [u, 3.] u, 0, ., id, :, - 1 EXPTIME-easyt [3)

FS.c concept names, [role names,J. CDPDL EXPTIME-hard l4J no [3]
n, ..." "I., [u, 3.) u, 0,·, id, :, -1, decidable [10)

feature names
-l-free concept names, [role names,] IDPDL undecidable [3J no [3J
FSCR n, ..." "I., [u, 3.] u, 0, • , id, :, n,

feature names
Term forming operators occurring in [J can be added without changing the expressive power or
the computational complexity of the corresponding language ,
tEven w.r.t. a finite set of concept equations and inequations [8] .

Figure 1: Terminological Logics and their Notational Variants.

FUrther Issues

This work can be extended in two ways. First, one can further exploit the correspondences
al ready established by carefully studying the corresponding theories of modal and dynamic
logic. For example, I proved that subsumption in a syntactically restricted form of T S L
with universal implications, known in dynamic logic as partial completeness assertions,
is co-NP-complete. Secondly, one can establish additional correspondences. Constants in
terminologicallogics, for instance, correspond to names (atomic formulae denoting single
element sets) in dynamic logic. Similarly, temporal operators can easily be integrated into
terminologicallogics. The reason is that temporal concepts such as sometime(T R, C) and
alitime(T R, C) with T R being either earlier or later clearly correspond to the well-known
modal operators of the Tense Logic.

References

[1] Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Pro
grams. Journal 01 Computer and System Science, 18:194-211, 1979.

~21 Joseph Y. Halpern and Yoram Moses. A Guide to the Modal Logics of Knowledge and
Belief. In Proceedings 01 the 9th International Joint Conlerence on Artificial Intelligence,
pages 480-490, Los Angeles, Cal. , 1985.

[3J David Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook 01 Philo
sophical Logic, volume 2, pages 497-604, Dordrecht, Holland, 1984. Reidel.

[4J Rohit Parikh. Propositional Dynamic Logics of Programms: A Survey. In E. EngeIe:,
editor, Proceedings 01 the Workshop on Logic 01 Programs,. volume 125 of Lecture Notes m
Computer Science, pages 102-144, Berlin, FRG, 1979. Sprmger- Verlag.

103

[5] Vaughan R. Pratt. Models of Program Logics. In Proceedings 0/ the 20th Annual Sympo
sium on Foundations 0/ Computer Science, pages 115-122, San Juan, Puerto Rko, 1979.

[6] Klaus Schild. U ndecidability of Subsumption in U. KIT Report 67, Department of Com
puter Science, Technische Universität Berlin, Berlin, FRG, October 1988.

[7] Klaus Schild. Towards a Theory of Frames and Rules. KIT Report 76, Department of
Computer Science, Technische Universität Berlin, Berlin, FRG, December 1989.

[8] Klaus Schild. A Correspondence Theory for Terminological Logics: Preliminary Report.
In Proceedings 0/ the IJCAI'91, 1991. To appear.

[9] Manfred Schmidt-Schauß and Gert Smolka. Attributive Concept Descriptions with Com
plements. Artificial Intelligence, 48(1):1-26, 1991.

[10] Moshe Y. Vardi. The Taming of Converse: Reasoning about Two-Way Computations. In
R. Parikh, editor, Proceedings 0/ the Workshop on Logic 0/ Programs, volume 193 of Lecture
Notes in Computer Science, pages 413-424, Berlin, FRG, 1985. Springer-Verlag.

104

Integrating Time into Terminological Logics

Albrecht Schmiedel
Deutsches Herzzentrum Berlin

atms@cs.tu-berlin.de

Presumably there are many ways of integrating time into terminological logics. To
begin with, I will point out a more or less shallow mode of integration which seems to be
useful in many cases all the same. For a deep integration a number of choices concerning
the semantic model and various degrees of expressivity have to be made. I will argue
for the potential usefulness of a fairly expressive approach such as [6] in a monitoring
scenano.

A shallow integration of time

Rather than building time right into the semantic structure of a terminologicallogic and
therefore having to deal with time everywhere, a more limited approach stays with the
static, timeless model and gives time no special status. Instead, time is introduced as a
particular concrete domain in the sense of [1]:

• time intervals are taken as the individuals of the concrete domain 1
,

• constraints2 on the duration, absolute bounds, and granularity of intervals as unary
predicates, and

• Allen's interval relations as binary predicates structuring the domain.

This is an admissible concrete domain, since the predicates provided are closed under
negation, and satisfiability for conjunctions of these predicates is assumably decidable.

Adopting this approach allows the user to describe (abstract) objects in terms of fea
tures taking time intervals as values. Concepts can be formulated in terms of temporal
constraints on those features. For example, we might model 'birthdays' using time inter
vals constrained to granularity and duration 'day'. We can then define 'a person whose
birthday is before 1950', or 'a person whose birthday is after that of her mother'. This
is good enough for cases where it is sufficient to model time as one property of objects
among others, and express relationships between objects in terms of the corresponding

1 Note that the approach of [1J for representing time intervals is different : they use the real numbers
structured by <, $, >,~, =,:f:. as the concrete domain and define intervals and interval relations on top
of it.

2 cf. [5) for this type of constraint language

105

relationships of the (temporal) property. This is definitely a useful combination of the
general-purpose terminological reasoner and the specialized temporal constraint reasoner
built into the concrete domain.

But things get more difficult when we need to explicitly represent changing proper
ties or relations of an object over time. Of course this could be done up to a point by
introducing auxiliary objectsj but this would be ad-hoc, and generally adopting this ap
proach would jeopardize the goal of providing high-level, easy-to-understand, and intuitive
knowledge representation primitives.

What other plausible alternative routes to take are there for integrating time into
terminologicallogics? Poesio [3] pursues a kind of 'reification' of role-relationships, thus
turning such relationships into objects of their own right, and therefore being able to add
descriptions to such objects, e.g. time of validity. This is certainly an interesting approach
(reminding one of Hobbs' 'ontological promiscuity' [2]), but it would have to be worked
out more formally to make an adequate asessment possible. One of the main difficulties
with this approach would be (as far as I can tell) to achieve a seamless integration with
non-temporal terminologicallogic. One would have to refer to reified states from within
terms in order to be able to define concepts with temporal structure.

Deep integration of time

In the following I will discuss some issues involved in a deep integration of time. I will
call an integration of time deep when it is built right into the semantic structure, i.e.,
terms of a temporal terminologicallanguage are interpreted in a structure which explicitly
mentions a time domain besides the domain of individuals. In general, this means that
the extensions of concepts and roles will be time-dependent. This opens up completely
new representational possibilities compared to the static model above:

• individuals can have different properties at different times and can participate in
varying relations with other individuals time-dependently, and

• concepts can describe individuals in terms of their patterns of variation, thus en
abling a kind of temporal abstraction in addition to the structural abstraction in the
non-temporal case.

Various degrees of expressivity can be envisaged when designing a temporal termino
logical logic.

Firstly, should the time domain be point-based or interval-based? Interval-based ap
proaches are more expressive, since they might include the point-based ones (zero-Iength
intervals), and they can potentially treat the different temporal types, such as downward
hereditary, concatenable, solid, etc. propositiolls (cf. [7]). The latter is interesting when
integrating various types of temporal knowledge from different levels of abstraction is an
issue (see the section on applications below). In my approach I have taken this route [6].

Secondly, what kind of term-forming operators should be included in the temporal
terminologicallogic? Should temporal variables (together with temporal constraints) be
allowed inside temporal term-formingoperators? Or should they remain implicit? Clearly,
term-forming operators such as '(sometime-earlier concept)', '(since concept)' as proposed
by [4] refer to an implicit temporal variable and a temporal relation, which is in the spirit

106

of the variable-free syntax of non-temporal term-forming operators. Also, their meanin!!
is intuitively clear. On the other hand , certain temporal patterns cannot be expressed
this way, and nested temporal operators of this kind can be difficult to understand.

A possible area of application: monitoring

It is important to examine carefully possible areas of application for temporal terminolog
icallogics, because although it is easy to make out a historicalor temporal dimension in
almost every domain, explicitly representing time does complicate matters considerably.
Much has to be made explicit what is naturally hidden in a 'time-less' knowledge base.
For example, update time and time of validity have to be differentiated and explicitly
dealt with in a deep temporal model; this isn't important when the knowledge base is
meant to model only one current state of affairs. Qften enough, a shallow integration by
means of a concrete domain as indicated above will be all one wants.

But in so me areas change and patterns of change are the actually interesting aspects.
One area (among others such as planning) are computer systems monitoring processes
that produce large amounts of time-dependent data such as environmental surveillance,
production plant monitoring, or intensive care. Integration and combination of data,
detecting relevant types of events, and data abstraction and reduction are the main tasks
for this type of application.

Here, a sufficiently expressive temporal terminological logic could provide a human

window to the mass data generated by such a process. The services provided by a temporal
terminological logic could be:

• Integrate primitive data (from sensors etc.) as weIl as all kinds of derived informa
tion (statistical abstract ions such as averages, standard deviations, etc., qualitative
abstractions, and derived events types) within one unified formalism.

• Define all interesting and relevant states, events, statistics in terms of (structural
and temporal) abstractions from primitive data (and each other).

• Define triggers for actions in terms of (temporal) concepts.

• Perform data reduction: from a process generating large amounts of primitive data,
keep only a small amount of interesting information describing the history of the
process using defined concepts and relations. (data vs. structured knowledge about
the running history.)

• Browse the running history from various perspectives:

What happened in a certain time interval?

How did a certain object change in the course of time?

What is the history of certain event types?

• Generate explanations for globally defined events, states, and measures exploring
how their definitions were instantiated.

107

Since recognition on the basis of completely given ground data would be the main mode
of operation in this type of application (rather than consistency checking) completeness
of the subsumption checker is not of primary concern. On the other hand, an interval
based approach seems essential; otherwise, integration of concepts on successive levels
of granularity would be difficult. Further, complex temporal patterns should be easily
expressible, including constraints on duration and absolute times.

References

[1] F. Baader, P. Hanschke, A Scheme for Integrating Concrete Domains into Concept
Languages, Research Report RR-91-10, Deutsches Forschungszentrum für Künstliche
Intelligenz, Saarbrücken, 1991

[2] J. R. Hobbs, "Ontological Promiscuity," Proc. 23rd Annual Meeting ACL, Chicago,
lU., 1985, 61-69.

[3J M. Poesio, Towards a Hybrid Representation of Time, Proc. ECAI·88, Munich, 1988.

[4] K. Schild, Integration of Terminological Logic and Tense Logic, unpublished draft,
Berlin, 1991

[5J A. Schmiedei, Temporal Constraint Networks, KIT Report 69, Fachbereich Informatik,
Technical University Berlin, November 1988.

[6J A. Schmiedei, A Temporal Terminological Logic, Proc. AAAI·90, Boston (Mass.),
640-645, 1990.

[7J Y. Shoham, Temporal Logics in AI: Semantical and Ontological Considerations, Ar
tificial Intelligence 33(1), 89-104, 1987.

108

Sorted Feature Terms and Relational
Dependencies

Roland Seiffert
IBM Deutschland GmbH

Institute for Knowledge Based Systems
P.O. Box 80 08 80

D-7000 Stuttgart 80
Fed. Rep. of Germany

e-mail: seiffert@dsOlilog.bitnet

1 Overview

Our current research focusses on the development of a unification-based grammar for
malism mainly for the use within the LILOG project at IBM Germany for building a
HPSG-style gramm ar of German. STUF integrates feature terms with sorts and recursive
definitions of relations. This is in the spirit of a new consensus of recent formalisms used
in computational linguistics that can be characterized as principle-based approaches to
grammar. Principles state relations over (typed) feature structures, incorporating phono
logical strings and constituent structures as integral parts. Examples for such formalisms
are HPSG ([PS87]), TFS ([ZE90J), CUF ([DE91J), and also the knowledge representation
language LIFE ([AKP90J). We show how the concepts of these formalisms can be further
enriched and integrated into one formalism, STUF. A rigorous though simple semantics
for the complete formalism is given in [DS91J. It is argued that exactly this chosen com
bination allows for a very elegant formulation of HPSG-style grammars. Also, we give a
translation of relational dependencies to definite clauses of first-order logic that fits ex
actly into the generalized Constraint Logic Programming scheme of [HS88J. This opens
up the treasure of results and techniques known in CLP and promises that an efficient
implementation of STUF is possible; A detailed description of the formalism is given in
[DS91J.

2 The Formalism

Central to our formalism is the not ion of a feature term coined by [KR86J and extended
and generalized by [Sm088, Sm089J. It allows us to specify sets of feature structures
in a linearized feature-matrix oriented notation. This differentiation between feature
structures and their descriptions is crucial since it allows us to extend the descriptional
devices to include e.g. disjunction or negation without having to stipulate new kinds of
underlying structures. We even can abstract away from the concrete notion of a feature

109

structure. We only assurne a domain of discourse to contain unspecified elements, where
feature applications are reflected by functional dependencies between those elements. In
the following the letters s, t, t l , .. . will always denote feature terms. The syntactic forms
of feature terms are given by the context-free production in Figure 1.

s,t -+ x
A
!:t
s&t
Sjt

-,t

a variable
a sort
feat ure selection
conjunction (intersection)
disj unction (union)
negation (complement)

Figure 1: The Syntax of Feature Terms

The simplest forms are variables and sorts. Feature terms may contain variables
to state sharing of structures, i.e. they serve the same purpose as path equations in
Kasper- Rounds logic. Sorts are descri bed in more detail below. A term ! : t denotes the
set of those elements for which the feature! leads to an element in the denotation of
t. Conjunction, disjunction, and negation are set intersection, union, and complement,
respecti vely.

2.1 Sorts

The intended meaning of sorts is to denote subsets of the domain of discourse. The
integration of sorts into feature terms follows [Smo88]. The main difference is, that we
made it possible to define the sort structure within our formalism.

Sorts come in three varieties: atoms, primitive sorts, and defined sorts. For atoms
we use the letters a, b, C, ••. and for sorts other than atoms we write A, B, C,
An atom is assumed to denote a singleton subset of the domain that is disjoint to the
set denoted by any other atom or primitive sort. A primitive sort denotes an arbitrary,
unspecified subset of the domain. Defined sorts can be built from arbitrary sorts using
boolean connectives in adefinition of the form A = sexpr. Figure 2 shows the syntax of
these sort expressions. The connectives are interpreted in the usual way, i.e. for example
AnB denotes the intersection of the sets denoted by A and B.

sexpr -+ A
a
sexprnsexpr
sexprUsexpr
-,sexpr

Figure 2: The Syntax of Sort Expressions

110

Obviously, the sets denoted by sort expression defined in this way form a distribu
tive lattice with set inclusion being the order relation and intersection and union being
the meet and join operations. In our system these operations are implemented using a
propositional theorem prover that operates on bit vectors for the internal representation
of sorts 1

• The description of that algorithm lies beyond the scope of this paper.
Sorts serve two purposes, a syntactic and a semantic. In the syntax they are used

by a typing scheme similar to that of [Car90]. For example, for well-typed expressions
for which a certain sort is specified (or inferred) only certain features are allowed, whose
values in turn have to obey sort restrictions. However, in this paper we will not give
details of this syntactic use of sorts.

Semantically sorts are a means to coarsely structure the domain of interest . The sorts
definable in our system can constitute a hierarchy, and one way of refining the information
about a certain object which is known to be of so me sort A would be to go to a subsort
of A. Compared to the usual atomic values in feature structures, the unification of two
different sorts does not necessarily lead to inconsistency, but instead depends on the sort
hierarchy and we get the greatest common subsort of the two, if it exists. Also, sorts are
compatible with feature specifications, i.e. objects denoted by sorts may have features.

Since sorts can be handled very efficiently using a specialized propositional theorem
prover we expect that they will be employed very much to substitute for a lot of dis
junctions that without sorts would be "structural" , i.e. they would have to be treated as
really disjunctive feature terms. Dealing with those is a well-known source for very hard
computatlonal problems.

2.2 Integrating Relations

We extend the syntax of feature terms to include the form:

a relational dependency

where ti are all feature terms. Hence, relational dependencies are used in our syntax as
function applications in disguise. The meaning of such a term depends on the n+1-place
relation A, which can be introduced through relation definitions, as described below. A
relational dependency term A(t1 , ••• , tn) now denotes the set ofvalues which the additional
argument, let's call it the O-argument, can take, when the other arguments are in the
denotations of their respective ti. Suppose for example a 3-place relation append on lists
whose O-argument is the concatenation of the other two arguments. The definition of this
relation is given below. Now, the term with the variables X, Y, and Z

f: X &:

g: Y &:

h: Z &:

i: append(X, append(Y,Z»

denotes a structure whose value of the feature i is the concatenation of the values of the
features J,9, and h. The meaning of relational dependencies does not imply an order of
evaluation as one might assume for this function application syntax. Our semantics is

1 similar to that of [She89]

111

completely declarative, also in this respect. Hence, a relational dependency may be used
to generate its arguments from its 'result' value, or to propagate side-effects from one
argument to another.

For example, conjoining the above term with

g: [b] &:

i: [a,b,c]

would only yield a non-empty denotation if the values of fand h are taken to be [al and
[cl, respectively.2

A n+l-place relation A is defined through a set of defining clauses of the form:

A(t1 , • • • , tn) := to· where all tj are feature terms

Multiple defining clauses for one relation are taken disjunctively. The meaning of such a
defining clause is that the terms to to tn give us a sufficient condition on the description of
objects Uo to U n , respectively, in order to be in the relation A. For example, the definition
of the recursive relation append can be given as follows.

append([] ,L) := L.
append([FIR] ,L) := [Flappend(R,L)].

Actually, this means that we are proposing some sort of logical programming language
where a very powerful term syntax is used, including disjunction and relational depen
dencies, making the relational body of a clause superfluous. Notice that the right-hand
side of a defining clause is just the term for the implicit O-argument.

An important observation is that unary relations and sorts are semantically the same,
at least in effect. Also syntactically there is no difference between "application" of a unary
relation and a sort. Since the only difference between a unary relation and an ordinary
sort is that a unary relation is defined via general feature terms, we will call such relations
simply generally-defined sorts. The term "relation al dependencies" shall henceforth only
refer to terms of at least one parameter, i.e. terms that refer to relations of at least two
arguments.

In [DS91] you can find a discussion on the use of relational dependencies. The two
most important arguments are: First, you can arrive at more concise and clear gramm ars
makeing use of parameters. Second, explicit knowledge of "result values" makes data
structures smaller and allows for garbage collection.

3 Implementational Issues

In this section we will present so me of the basic ideas underlying our current STUF
implementation. First, recall that our grammars employ a quasi-functional notation to
define relations. We can make these relations explicit by systematically introducing an
additional argument for all relations. We now present a translation function trans (Fig
ure 4) that converts a given definition r(S) := t into a new, equivalent definition of the
form r(X, X) +- t', where t' is a formula built of conjunctions and disjunctions of basic
constraints (Figure 3).

112

j(X) = Y, where j is a feature, X and Y are variables

X E A, where A is a sort, X is a variable

X = Y, where X and Y are variables
X =f. Y, where X and Y are variables

r(Xo, . .. , X n), where r is a (defined) n-ary relation; Xo, . .. , X n is
usually written as X

Figure 3: The Basic Constraints

trans(r(s) := t) => r(X,X) -- trans(X,t) 1\ trans(Xi,sd, for all Xi
in X and corresponding Si in s, and X and all
Xi are new variables

trans(X,J : t) => j(X) = Y 1\ trans(Y,t), where Y is a new vari-
able

trans(X ,A) => XEA
trans(X,-'A) => X EÄ
trans(X ,Y) => X=Y
trans(X,-,Y) => X=f.Y

trans(X ,t l&t 2) => trans(X,td 1\ trans(X,lz)

trans(X ,tl; t2) => trans(X,td V trans(X,lz)

trans(X ,r(i)) => r(X, X) 1\ trans(Xi,ti), for all Xi in X and cor-
responding ti in ~ and all Xi are new variables

Figure 4: The Translation Function trans

Note that we don't have a translation scheme for general negation -,t. This is not an
accident as will become clear soon.

As an example consider the definitions for subeat_principle and append from our
HPSG fragment:

subeat_prineiple(syn: loe: subeat: append(S1,S2),S2) :=
syn: loe: subeat: S1.

append(nil,Y) := Y.
append(eons&(first:X1)&(rest:X),Y) :=

eons&(first:X1)&(rest:append(X,Y» .

The function trans applied to all definitions in the example yields:

20r anything that is subsumed by that

113

subcaLprinciple(M, H D, C Ds) +-

syn(M) = M1/\ loc(M1) = M2/\ subcat(M2) = Sl/\
syn(HD) = HD1/\ loc(HD1) = HD2/\ subcat(HD2) = S/\
append(S, SI, CDs).

append(Y, X, Y) +

X E nil.
append(Z, X, Y) +-

Z E cons /\ first(Z) = X1/\ rest(Z) = Zs/\
X E cons /\ first(X) = X1/\ rest(X) = X s/\
append(Zs, X s, Y).

lf we exclude general negation then each of the definitions resulting from trans can
be easily transformed into an equivalent set of normal form clauses. The normal form is
defined as

ro(Xo) +- <P /\ rl (Xd /\ ... /\ rn(Xn)

<P is a formula containing arbitrary conjunctions and disjunctions of basic constraints
except relational atoms. If our system contains only definitions in normal form-definite
clauses-then this fits nicely into the r"efined Constraint Logic Programming scheme de
scribed in [HS88]. In fact, our definite relations correspond exactly to the relational
extensions of simple feature logic as described in [Sm088] for which efficient constraint
sol vers exist. This immediately gives us an operational semantics for solving the relational
constraints, which is a generalization of SLD-resolution. Our implementation of STUF is
based on this SLD-resolution scheme and thanks to [HS88] we know that this approach
is sound and complete.

Another observation is that a very common optimization technique from conventional
logic programming can be integrated into our framework: Some of the (non-relational)
constraints of <P are associated with the head of adefinite clause (<PHead) and others with
the body (<PBody), i.e. <P = <PHead /\ <PBody .

ro(Xo) +- <PHead /\ <PBody /\ rl (Xl) /\ ... /\ rn(Xn)

<PHead should be very simple but impose very strong constraints. Then it can be used
to efficiently cut down the search space significantly. When selecting a clause, we first
unify with <PHead and if this fails, we reject the clause immediately. Typical constraints in
<PHead are sort restrictions on the variables occurring in the head of the clause.

4 Current Work

Most of the work currently being done for STUF deals with devising proof strategies that
allow for an efficient processing of grammars written in STUF both for the analysis of
senten ces and for generation. As a starting point we consider very general techniques, e.g.
partial execution of programs at compile time, detecting and preferring of deterministic
"subproofs" at run time, We also try to learn from the experience we have in
context-free based parsing and to incorporate similar strategies and heuristics into our
new approach.

114

References

[AKP90] Hassan Ait-Kaci and Andreas Podelski. Is there a meaning to LIFE? Draft
paper, Nov. 1990.

[Car90] Bob Carpenter. Typed feature structures: Inheritance, (in)equality and exten
sionality. In Proceedings of the Workshop on Inheritance in Natural Language
Processing, Tilburg University, The Netherlands, 1990.

[DE91] Jochen Dörre and Andreas Eisele. A comprehensive unification-based grammar
formalism. Deliverable R3.l.B, DYANA - ESPRIT Basic Research Action
BR3175, 1991. to appear.

[DR90] Jochen Dörre and William C. Rounds. On Subsumption and Semi-Unification
in Feature Aigebras. In Proceedings of the 5th Annual Symposium on Logic in
Computer Science, pages 300-310, Philadelphia, PA., 1990.

[DS91] Jochen Dörre and Roland Seiffert. Sorted Feature Terms and Relational Dpen
dencies. IWBS Report 153, IBM Deutschland GmbH, Institute for Knowledge
Based Systems, 1991.

[HS88] Markus Höhfeld and Gert Smolka. Definite relations over constraint languages.
LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart
80, W. Germany, October 1988. To appear in the Journal of Logic Program
mmg.

[KR86] Robert T. Kasper and William C. Rounds. A logical semantics for feature
structures. In Proceedings of the 24th Annual Meeting of the ACL, Columbia
University, pages 257-265, New York, N .Y., 1986.

[PS87] Carl Pollard and Ivan A. Sag. Information-Based Syntax and Semanties. CSLI
Lecture Notes 13. Center for the Study of Language and Information, Stanford
University, 1987.

[Rea89] Mike Reape. A logical treatment of semi-free word order and bounded discontin
uous constituency. In Proceedings of the 4th Conference of the European Chapter
of the Association for Computational Linguistics, pages 103-110, Manchester,
England, 1989.

[She89] M. J. Shensa. A computational structure for the propositional calculus. In
Proceedings of the 11th International Joint Conference on Artificial Intelligence,
Detroit, Michigan , USA, 1989.

[Smo88] Gert Smolka. A feature logic with subsorts. LILOG Report 33, IWBS , IBM
Deutschland, Postfach 80 0880,7000 Stuttgart 80 , W. Germany, May 1988. To
appear in the Journal of Automated Reasoning.

[Smo89] Gert Smolka. Feature constraint logics for unification grammars. IWBS Re
port 93, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, W.

115

Germany, November 1989. To appear in the Proceedings of the Workshop on
Unifkation Formalisms-Syntax, Semantics and Implementation, Titisee, The
MIT Press, 1990.

[ZE90] Remi Zajac and Martin Emele. Typed unification grammars. In Proceedings
of the 13th International Conference on Computational Linguistics, Helsinki,
Finland, 1990.

116

Using Terminological Logics in a Problem Solver

William Swartout
USC/Information Sciences Institute

4676 Admiralty Way
Marina deI Rey, CA 90292

USA

The goals of the Explainable Expert Systems project (EES) have been to construct an
framework for building expert systems that:

• enhances their explanation capabilities [MS89],

• eases their maintenance and extension [NSM85], and

• allows system builders to rapidly construct prototypes [SNPS89].

In the references cited above we have argued that conventional expert system frame
works are seriously li mi ted in providing these capabili ties . These limi tations stern in
part from problems in their underlying knowledge representation-specifically the use of
low-Ievel rules that implicitly encode and compile together different kinds of knowledge.
Because different kinds of knowledge are not distinguished, this implicit, intertwined rep
resentation of knowledge makes a system less modular and understandable and hence
more difficult to modify or explain [Cla83, Swa83]. Because knowledge is intertwined
and multiple concerns may be expressed in a single rule, it is also more difficult to re
use knowledge across systems, hence making it more difficult to use knowledge from an
existing system to construct a rapid prototype of a new system.

We deal with these problems by taking a different approach to the construction of
expert systems. We begin by representing knowledge at a more abstract level and pro
viding representations that allow us to explicitly distinguish and separate different kinds
of knowledge. The kinds of knowledge that we distinguish include:

• terminology, which defines the terms in the domain and provides the 'building
blocks' out of which the rest of the knowledge base is constructed,

• a domain model, which describes how the domain 'works' (e.g. a causal model or a
circuit schematic), and

• problem solving knowledge, expressed as a set of plans, which tells the system how
to perform tasks such as diagnosing a network or assessing the state of a patient.

The EES framework (rather than the system builder) takes responsibility for linking to
gether these various kinds of knowledge to actually solve problems. This approach allows

117

a system builder to work at a more abstract and explicit level of representation, and
increases the modularity of the overall system, thereby helping us achieve our goals of
enhanced explanation, easier maintenance, and support for rapid prototyping.

The linkage of different kinds of knowledge is a critical step in our approach, and it
depends on our use of a term subsumption-based knowledge representation (Loom). The
domain model is constructed using the conceptual structures and assertion al capabilities
of Loom. Representing problem-solving knowledge is more of achallenge. Goals to be
achieved by the problem sol ver are represented as conceptualized verb clauses based on
a case grammar approach [FiI68]. Thus, the goal of 'put block-a on the table' would be
represented as a specialization of the verb 'put' with slots filled to specify the object to
be manipulated (block-a) and its destination (table). Capability descriptions are associ
ated with plans, and describe what the plans can do. Capability descriptions are also
represented using conceptual structures, but special mechanisms have to be provided to
allow variables to appear in capability descriptions so that parameters can be passed from
goals into plans. We use the classifier and realization mechanisms of Loom as a sort of
pattern-matcher to find plans that are capable of achieving goals.

One advantage of this approach to representing goals and plans is that it gives a
goal an independent meaning which is based on the conceptual structur from which it
is composed, unlike conventional systems where a goal acquires its meaning based solely
on how plans in the system react to it. An additional advantage of the approach is
that it allows us to define domain-independent techniques for reformulating aposted
goal into other goals when no plans can be found for achieving the original goal. These
reformulations are based on the meaning of the goal itself. The system makes use of facts
about the domain expressed in the domain model to perform the reformulation, and it is
through reformulations that much of the domain knowledge becomes integrated into the
problem solving process (see [NSM85] for a more complete description).

Generalizing from the specific concerns of EES, there are some observations we can
make. Traditionally, term subsumption knowledge bases have been regarded as repos
itories for knowledge that perform certain kinds of deductive inference with reasonable
alacrity. It seems that th view may be too limiting. While many problems can be for
mulated as deductive problems, there are many problems that do not fit naturally within
a dedudive framework. Furthermore, our work in EES, and of others [YNM89, Yen90],
suggests that there may be a lot to be gained by integrating terminological reasoners with
other kinds of problem solving architectures such as planners or rule based systems. As
one of the topics for the workshop, I would like to suggest that we consider how termino
logical representation systems can be integrated with other problem solving architectures.
Some specific questions we might consider include:

• How does the integration of a problem-sol ver with a terminological KB affect ex
pressivity needs?

• What sorts of software interfaces need to be provided so that different problem
solving systems can be interfaced? What approaches have worked? What haven't?

• Integrating a problem solver raises the question of how much of the system's overall
processing should be done by the reasoning mechanisms provided by the knowledge

118

representation and how much should be done by the problem sol ver. What are the
tradeoffs?

Acknowledgements

The research described in this paper was supported by the Defense Advanced Research
Projects Agency under Grant MDA 903-81-C-0335 and under a NASA Ames cooperative
agreement number NCC 2-520.

References

[Cla83] W. Clancey. The epistemology of a rule-based expert system: A framework for
explanation. Artificial Intelligence, 20(3):215-251, 1983.

[FiI68] C. Fillmore. The case for case. In Universals in Linguistic Theory. Holt,
Rinehart and Winston, 1968.

[MS89] Johanna D. Moore and William R. Swartout. A reactive approach to explana
tion. In Proceedings ofthe Eleventh International Joint Conference on Artificial
Intelligence, Detroit, MI, August 20-25 1989. IJCAI.

[NSM85] R. Neches, W. R. Swartout, and J. D. Moore. Enhanced maintenance and
explanation of expert systems through explicit models of their development.
IEEE Transactions on Software Engineering, SE-11(11):1337-1351, November
1985.

[SNPS89] W. Swartout, H. Nordin, C. Paris, and S. Smoliar. Toward a rapid prototyping
environment for expert systems. In Proceedings of the 13th German Workshop
on Artificial Intelligence, pages 438-454, 1989.

[Swa83] W. Swartout. Xplain: A system for creating and explaining expert consulting
systems. Artificial Intelligence, 21(3):285-325, September 1983. Also available
as ISIjRS-83-4.

[Yen90] J. Yen. A principled approach to reasoning about the specificity of rules. In
Proceedings of AAAI-90, .the Eighth National Conference on Artificial Intelli
gence, 1990.

[YNM89] J. Yen, R. Neches, and R. MacGregor. Using terminological models to enhance
the ruIe-based paradigm. In Proceedings of the Second International Sympo
sium on A rtificial Intelligence, 1989.

119

Terminological Knowledge Representation:
A Proposal for a Terminological Logic

Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn,
Bernhard Hollunder, Jürgen Müller, Bernhard Nebel,

Werner Nutt, Hans-Jürgen Profitlich
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)

Postfach 2080, W-6750 Kaiserslautern

Stuhlsatzenhausweg 3, W-6600 Saarbrücken 11

Germany

Abstract

This paper contains a proposal for a terminological logic. The formalisms for
representing knowledge as weil as the needed inferences are described.

1 Introduction

An important aspect of intelligence is the use of existing knowledge. In order to realize
this in AI-Systems we need both adequate methods to represent knowledge and effective
procedures to retrieve and reuse the needed knowledge. One of the basic mechanisms of
human knowledge representation and processing is the division of the world into classes
or concepts ("find the right pigeonhole") which usually are given with a hierarchical
structure.

Let us consider so me knowledge base about families and relationships. We have to
deal with persons which are of sex male or female . We have parents, mothers, fathers etc.
A verbal description of this knowledge might be as follows:

• Persons are of sex Male or Female.

• Woman is a Person with sex Female.

• Man is a Person with sex Male.

• Parents are defined as Persons which have some child (which is also aPerson).

• Mothers are defined to be Parents with sex Female.

• Fathers are defined to be Parents with sex Male.

• Mother_with_many_children is defined as Mother with at least three children.

We also have individuals (or objects) which are instances of concepts. For example,

120

• John is a Father.

• Tom is a child of John.

• Mary is a Woman.

Now every knowledge representation system should offer a couple of services that allow
to arrange , manage, modify or retrieve information of the above kind. It should be able
to ans wer the following questions:

• Is an introduced concept defined in a meaningful way at all (or does it denote the
empty concept in all worlds) ? (satisjiability)

• Is a concept more general than another one ? (subsumption)

• Where exactly is the concept situated in a concept hierarchy ? (classijication)

• Is the represented knowledge consistent ? (consistency)

• What facts are deducible from the knowledge? (instantiation)

• Which are the concepts an object is instance of ? (realization)

• Which are the instances of a given concept ? (retrievaD

Building such a system we are confronted with the following questions:

1. How can the above properties been found out at all ?

And then, if we know procedures that might do this :

2. How can we find out, whether the procedures really do what they should do ?

3. How efficient are these procedures ?

4. How efficient may an optimal procedure for the problem be ?

Terminologicallogics based on concept description languages like KL-ONE [BS85J are
such formalisms that make classification, description of relations among the classes and
especially their hierarchical structure possible. However, concept description languages
are not only one among a lot of possibilities, but meanwhile they offer compared to other
KR-formalisms some fundamental advantages:

• There is a weil understood declarative semantics.
This means that the meaning of the constructs is not given operationally, e.g. by
the implementation (" John is a father", because my system answers to the question
"What is John?" just "father"), but the meaning is given by its description and its
models ("John is a father", because he is a father in all models-in all worlds-where
the descri ption sui ts to.)

• There is a characterization of the tasks of the KR-systems by the declarative se
mantics.

121

• There is a nu mb er of procedures and algorithms that realize these tasks, and their
properties are weIl investigated now. Important properties are

1. Correctness
(If the system answers "John is a father", then John is a father within the
meaning of the semantics-that is in all suitable worlds.)

2. Completeness
(The system answers "John is a father", if John is a father within the meaning
of the semantics.)

3. Decidability, Complexity
(Are the services decidable at all, and how fast are they executable ?)

If we want to design a knowledge base, we first need a formal language that we can
use. In the following we will present a proposal for a terminological language in both
abstract form and machine readable form (LISP notation). As a kerneI, our language
contains all the constructs provided by ACC [SS88] and some additional operators which
(sometimes?) can be translated into ACC;: NR [HN90].

2 Symbols

The terminological language is based on the following primitives, the symbols of the
alphabet:

• Concept names: CN

• Role names: RN

• Attribute names: AN

• Individual names: IN

• Object names: ON

Examples with respect to our introductory example are: Person, Woman, Man, Parent are
concept names, child is a role name, sex is an attribute name, Male and Female are
individual names, and John and Mary are objects names.

With this primitives we are allowed to form more complex expressions as specified in
the next two sections:

• Concept expressions: C

• Role expressions: R

• Attribute expressions: A

The meaning of these is given by interpretations I. They consist of a set ~I-the
domain-and an interpretation function .I, that assigns a set

CNI ~ ~I

122

to each concept name CN, a set-valued function (or equivalently a binary relation)

to each role name RN, a single-valued partial function

where dom ANI ~ jj"I, to each attribute name AN, and an element

to each individual name IN and object name ON. We assurne that different individuals
and objects denote different elements in every interpretation. This property is called
unique name assumption and is usually assumed in the database world.

3 Concept Forming Operators

Besides the concept, role, and attribute names our alphabet includes a nu mb er of operators
that permit to compose more complex concepts, roles, and attributes. We allow for the
following concept forming operators:

Concrete Form Abstract Form Semantics
top T fj.I

bot tom 1. 0
(and Cl ... Cn) Cl n ... n Cn Cf n ... n C~
(or Cl ... Cn) Cl U .. . U Cn Cf u .. . u C~
(not C) -.C fj.I \ Cl
(all R C) VR:C {d E fj. I I RI (d) ~ CI}
(some R) 3R {d E fj. I I RI (d) :f 0}
(some R C) 3R:C {d E fj. I I RI (d) n Cl :f 0}
(atleast n R) '2nR {d E fj. I I I RI (d) I '2 n}
(atmost n R) ~nR {d E fj.I IIRI(d)1 ~ n}
(exact n R) nR {d E fj. I I I RI (d) I = n}
(atleast n R C) '2nR: C {d E fj.I IIRI(d) n CII '2 n}
(atmost n R C) ~nR:C {d E fj. I I I RI (d) n Cl I ~ n}
(exact n R C) nR: C {d E fj.I IIRI(d) n CII = n}
(eq R I R'l) R1 = R'l {d E ßI \ Rf(d) = RHd)}
(neq R I R'l) R1 :f R2 {d E ßI I Ri(d) :I RHd)}
(subset R I R2) R I ~ R2 {d E ~I I Rf(d) ~ Rf(d)}
(in A C) A:C {d E dom AI I AI(d) E CI}

(is A IN) A: IN {d E dom AI I AI(d) = INI}

(eq Al A2) Al = A2 {d E fj.I I Ai (d) = A{ (d)}

(neq Al Al) Al :f A2 {d E fj.I I Ai(d) :f AHd)}
(subset Al A2) Al ~ A2 {d E fj.I I d E dom Ai => d E dom A~

1\ Ai (d) = A{ (d)}

(oneof INI .. . INn) {INI, ... ,INn } {INf, .. . , IN~}

123

Examples: The concept mother can be described as

Personn (sex: Female);

Mother _withJllany _children can be described as

Mother n (~3child : Person);

FatheLwith_sons_only can be described as

Parent n (sex: Male) n (child = son).

Please note that the semantics of Al = A2 and Al :f. A2 for attributes is defined anal
ogously to the semantics of RI = R2 and RI :f. R2 for roles. In particular, Af (d) = A{ (d)
also covers the case where both values are undefined. This differs from the definitions used
in [HN90] and computational linguistics in that we do not require that both attributes
have to be defined on d. However, these definitions can be expressed using our constructs:

(Al = A2) n (Al: T) n (A 2 : T)

(Al :f. A2) n (Al: T) n (A 2 : T)

As abbreviations for these two expressions we propose Al ::!: A2 and Al ~ A2 , where the
downarrow is meant to express the condition "is defined".

4 Role Forming and Attribute Forming Operators

Similar as for concepts our terminological logic provides a variety of role forming and
attribute forming operators:

Concrete Form
(and RI •.. Rn)
(or RI .. . Rn)
(not R)
identity
(inverse R)
(restrict R C)
(compose R I •.• Rn)
(domrange Cl C2)

(trans R)
(transref R)
(inverse A)
(restrict A C)
(compose Al . . . An)

Abstract Form
RI n ... n Rn
RI U ... LI Rn
...,R
id
R-I

RIC
RIO ... 0 Rn
Cl X C2

R+
R*
A- I

AIC
Al 0 ... 0 An

Semantics
Rf n ... n R;
Rf u ... u R;
6,I X 6,I \ RI

{(d, d) I d E 6,I}
{(d, d') I (d', d) E RI }
{(d,d') E RI I d' E CI}
Rf 0 ..• 0 R;
CI X CI

I 2

Un>l (RI)n
Un~O(RI)n
{(ÄI(d), d) I d E dom AI}
AI leI
Af 0 . .. 0 A;

Notice that the inverse of an attribute is a role, but in general not an attribute. The
range restriction R /C can be seen as an abbreviation for Rn (T xC). Similarly, a domain
restriction on the role R could be expressed as Rn (C X T).

124

Examples: The role daughter can be defined as

female..relati ve n child;

the role successor can be defined as

(inverse predecessor).

5 Terminological Axioms

The terminological axioms (definitions, specializations, and restrictions) are used to spec
ify the knowledge about the world or apart of the world. A set of terminological axioms
specifies a terminology T. It selects from all possible interpretations of the language the
models of T, i.e., the interpretations satisfying the axioms of T as described below.

Concrete Form
(defconcept CN C)
(defrole RN R)
(defattribute AN A)
(defprimconcept CN C)
(defprimrole RN R)
(defprimattribute AN R)
(defdisjoint CN1 ••• CNn)

Abstract Form
CN=C
RN=R
AN=A
CN~C

RN~R

AN~R

CN1 11 ... 11 CNn

Semantics
CNI = CI
RNI = RI

ANI = AI

CNI ~ CI
RNI ~ RI
ANI ~ RI

CNI n CNI = 0 i -t)' ,) ,1"

Usually the following restrictions are imposed on terminologies. Any name should
appear onIy on ce as a left hand side of an axioms, and disjointness axioms should only
contain names of primitive concepts.

An alternative way of expressing disjointness could be the use of disjointness groups
in the definition of primitive concepts. In this case the introduction of primitive concepts
would be of the form CN ~ C / g1,' .. ,gn, where the g/s are names of disjointness groups.
Two different primitive concepts must have disjoint extensions if a disjointness group
occurs in the definitions of both concepts.

In the abstract form there is no syntactic distinction between definitions of concepts,
roIes, and attributes. One possibility to distinguish between concepts, roIes, and attributes
could be to group the definitions, as done in the following example.

Example (our introductory exampie in formal notation):
Attributes:
sex ~ T x T

Roles:
child ~ T x T

Concepts:

125

Person ~ sex: {Male, Female}
Woman ~ Person n sex: Female
Man !; Person n sex: Male
Parent === Person n 3child : Person n 'v'child : Person
Mother == Parent n sex: Female
Father == Parent n sex: Male
MotheLwi th...lllany _children === Mother n 2:3child : Person
FatheLwi th_sons_only == Father n (child = son).

Please note that the disjointness axiom Woman 11 Man would be redundant since dis
jointness of woman and man is a consequence of the fact that sex is an attribute and male
and female are individuals which are interpreted with unique name assumption .

6 Assertional Axioms

In order to fiH our world with objects we allow for assertional axioms which have the
foHowing forms.

Concrete Form
(C ON)
(R ON ONJ)
(A ON ONJ

)

Examples:
John E Father
Mary E Woman
(John, Tom) E child.

7 Services

Abstract Form
ONEC
(ON,ONJ) ER
(ON,ONJ) E A

Semantics
ONI E CI
(ONI,ONJI) E R1

ONI E dom AI 1\ AI(ONI) = ONJI

Now we are able to give a formal specification of the services mentioned in the introduction.

1. Satisfiabili ty of a concept C in a terminology T:
Does there exist a model I of T with Cl =j:. 0 ?
(Man n Woman is not satisfiable.)

2. Subsumption within a terminology T:
C ~T D iff in all models I of T: Cl ~ DI

(e.g. Mother ~T Woman).

3. Equivalence of concepts within a terminology T:
C ~T D iff in all models I of T: Cl = DI

4. Classification of C in T:
For a given concept C, find all minimal (w.r.t. the subsumption relation) concepts
D in T such that C !;T D.

126

5. Find the smallest binary relation on the concepts in T such that its transitive closure
is the subsumption relation (modulo ::::::7).

6. Consistency of the represented knowledge.
Does there exist a model I of the terminological and assertional axioms?

7. What facts are deducible from the knowledge ?
A fact Q is deducible from the knowledge iff all models of the terminological and
assertional axioms satisfy Q. In particular, if Q is of the form ON E C, then we talk
about instantiation.

8. Realization.
Given an object ON occurring in an assertional axiom. Which are most specific
concepts of T w.r.t. the subsumption relation ON is instance of?

9. Retrieval.
Given an concept C. Which objects occurring in the assertional axioms are instances
of C ?

With this formalization of our services we can develop procedures or algorithms for
the services and prove their correctness, completeness, complexity, decidability; see for
example [Sc89, Pa89b, SS88, Ne88, Ne90, Pa89a, HN90, H090, Ba91, DL +91a, DH+91,
HB91, BH91, DL +91b].

References

[Ba91.] F. Baader. Augmenting Concept Languages by Transitive Closure of Roles: An
Alternative to Terminological Cycles. DFKI Research Report RR-90-13, DFKI,
Postfach 2080, W-6750 Kaiserslautern, Germany. To appear in Proceedings of
IJCAI '91.

[BH91] F. Baader, P. Hanschke. A Schema for Integrating Concrete Domains into Con
cept Languages. DFKI Research Report RR-91-10, DFKI, Postfach 2080, W-
6750 Kaiserslautern, Germany. To appear in Proceedings of IJCAI '91.

[BS85] R. J. Brachman, J. G. Schmolze. "An Overview of the KL-ONE knowledge rep
resentation system." Cognitive Science, 9(2):171-216, April 1985.

[DH+91] F. Donini, B. Hollunder, M. Lenzerini, A. Marchetti Spaccamela, D. Nardi,
W. Nutt. The Complexity of Existential Quantification in Concept Languages.
DFKI Research Report RR-91-02, DFKI, Postfach 2080, W-6750 Kaiserslautern
Germany.

[DL +91a] F. Donini, M. Lenzerini, D. Nardi, W. Nutt. "The Complexity of Concept
Languages." In J. A. Allan, R. Fikes, E. Sandewall (editors), Proceedings of the
Second International Conference on Principles of Knowledge Representation and
Reasoning, Cambridge, Mas., 1991.

127

[DL +91bj F. Donini, M. Lenzerini, D. Nardi, W. Nutt. "Tractable Concept Languages."
To appear in Proeeedings of IJCAI '91.

[Ho90] B. Hollunder. "Hybrid Inferences in KL-ONE-based Knowledge Representation
Systems." In Proeeedings of the 14th German Workshop on Artificial Intelli
genee, pp. 38-47, Eringerfeld, Germany, 1990.

[HB91] B. Hollunder, F. Baader. "Qualifying Number Restrictions in Concept Lan
guages." In J. A. Allan, R. Fikes, E. Sandewall (editors), Proeeedings of the
Seeond International Conferenee on Prineiples of Knowledge Representation and
Reasoning, Cambridge, Mas., 1991.

[HN90] B. Hollunder, W. Nutt. Subsumption Algorithms for Concept Languages. DFKI
Research Report RR-90-04, DFKI, Postfach 2080, W-6750 Kaiserslautern, Ger
many.

[Ne90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, Lecture
Notes in Artificial Intelligence, LN AI 422, Springer Verlag, 1990.

[Ne88] B. Nebel. "Computational complexity of terminological reasoning in BACK."
Artificial Intelligence, 34(3):371-383, 1988.

[Pa89a] P. Patel-Schneider. "A four-valued Semantics for Terminological Logics." Arti

fieia} Intelligenee, 38(3):319-351, 1989.

[Pa89b] P. Patel-Schneider. "Undecidability of Subsumption in NIKL." ArtificialIntel
ligenee, 39(2):263-272, 1989.

[Sc89] M. Schmidt-Schauß. "Subsumption in KL-ONE is undecidable." In R. J. Brach
mann, H. J. Levesque, R. Reiter (editors), Proeeedings of the 1st International
Conference on Principles of Knowledge Representation and Reasoning, pp. 421-
431, Toronto, Ont., 1989.

[SS88] M. Schmidt-Schauß, G. Smolka. "Attributive Concept Descriptions with Unions
and Complements". In Artifieial Intelligence, 47, 1991.

128

List of participants

• J ürgen Allgayer
Universität des Saarlandes
Im Stadtwald 15
D-6600 Saarbrücken
Germany
allgayer@cs.uni-sb.de

• Guiseppe Attardi
Dipartimento di lnformatica
Corso Italia 40
1-56125 Pisa
Italy
attardi@di. unipi. it

• Franz Baader
DFKI
Postfach 2080
Erwin -S chrödinger-S tr.
D-6750 Kaiserslautern
Germany
baader@dfki. uni-kl. de

• Howard W. Beck
Computer and Information Sciences
460 CSE
University of Florida
Gainsvilie, FL 32611
USA
hwb@beach.cis.ufl·edu

• Sonia Bergamaschi
CIOC-CNR
U niversita di Bologna
viale Risorgimento 2
1-40136 Bologna
Italy
sonia@deis64·cineca.it

• Ronald J. Brachman
AT & T Bell Labs
600 Mountain Ave. 3C-439
Murray Hili, NJ 07974
USA
rjb@research.att.com

129

• Amedeo Cappelli
Istituto di Linguistica Computazionale
Via della Faggiola 32
1-56100 Pisa
Italy
sistemi@icnucevm.cnuce.cnr.it

• Francesco M. Donini
Dipartimento di Informatica e Sistemistica
Universita di Roma "La Sapienza"
Via Salaria 113
1-00198 Roma
Italy
donini@vaxrma.infn.it

• Enrico Franconi
IRST - Istituto per la Ricera
Scientifica e Tecnologica
1-38050 Povo TN
Italy
franconi@irst.it

• Manfred Gehrke
SIEMENS AG
ZFE F2 INF 23
Otto-Hahn-Ring 6
D-8000 München 83
Germany
gehrke@ztivax.siemens.com

• Nicola Guarino
LADSEB-CNR
Corso Stati Uniti 4
1-35020 Padova
Italy
Guarino@ladseb.pd.cnr.it

• Jochen Heinsohn
DFKI
Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11
Germany
heinsohn@dfki.uni-sb.de

• Carsten Kindermann
Technische Universität Berlin
FR 5-12
Franklinstraße 28/29
D-1000 Berlin 10
Germany
Carsten. Kindermann@cs.tu-berlin.de

• Karin Klabunde
Philips GmbH
Forschungslaboratorium Aachen
Postfach 1980
D-5100 Aachen
Germany
klabunde@philfa. uucp

• Rüdiger Klein
Otto-Brahm-Str 26
0-1120 Berlin
Germany
klein@city.zki-berlin. adw. dbp. de

• Alfred Kobsa
SFB 314
FB-10 Informatik
Universität des Saarlandes
D-6600 Saarbrücken 11
Germany
ak@cs.uni-sb.de

• Hector J. Levesque
Department of Computer Science
U niversity of Toronto
10 King's College Road
Toronto, Ont. M5S 1A 7
Canada
hector@ai. toronto. edu

• Kai von Luck
IBM Deutschland GmbH
IWBS 7000-75
Postfach 80 08 80
D-7000 Stuttgart 80
Germany
luck@dsOlilog. bitnet

• Robert MacGregor
USC/ISI
4676 Admiralty Way
Marina deI Rey, CA 90292
USA
macgregor@isi. edu

130

• Eric K. Mays
IBM Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598
USA
emays@ibm.com

• Deborah L. McGuinness
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hili, NJ 07974
USA
dlm@research.att.com

• Bernhard Nebel
DFKI
Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11
Germany
nebel@dfki. uni-sb. de

• Werner Nutt
DFKI
Postfach 2080
Erwin -Schrödinger-S t r.
D-6750 Kaiserslautern
Germany
nutt@dfki. uni-klo de

• Lin Padgham
Linköping Uni versity
Computer and Information Science Dept.
S-58183 Linköping
Sweden
lin@ida.liu.se

• Peter F. Patel-Schneider
AT&T Bell Labs
600 Mountain Ave.
Murray Hili, NJ 07974
USA
pfps@research.att.com

• Christof Peltason
Technische Universität Berlin
FR 5-12
Franklinstraße 28/29
D-1000 Berlin 10
Germany
peltason@cs.tu-berlin.de

• Bernhard Pfahringer
Austrian Research Institute
for Artificial Intelligence
Schottengasse 3
A-1010 Vienna
Austria
bernhard@ai-vie.uucp

• Udo Pletat
IBM Deutschland GmbH
IWBS 7000-75
Postfach 80 08 80
D- 7000 Stuttgart
Germany
pletat@dsOlilog.bitnet

• H.-J. Profitiich
Deu tsches Forschungszentrum
für Künstliche Intelligenz GmbH
Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11
Germany
profi@dfki. uni-sb. de

• Joachim Quantz
Technische Universität Berlin
FR 5-12
Franklinstraße 28/29
D-1000 Berlin 10
Germany
jjq@cs.tu-berlin.de

• Klaus Schild
Technische Universität Berlin
FR 5-12
Franklinstraße 28/29
D-1000 Berlin 10
Germany
ks@cs.tu-berlin.de

• Albrecht Schmiedel
Deutsches Herzzentrum Berlin
Projektgruppe Medizin Informatik
Voltastraße 5
D-1000 Berlin 65
Germany
atms@cs.tu-berlin.de

131

• Roland Seiffert
IBM Deutschland GmbH
IWBS 7000-75
Postfach 8008 80
D-7000 Stuttgart 80
Germany
seijJert@dsOlilog.bitnet

• Gert Smolka
DFKI
Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11
Germany
smolka@dfki. uni-sb. de

• Luca Spampinato
Quinary S.p.A.
Via Crivelli 15/1
1-20123 Milano
Italy
ls@quinary. uucp

• William R. Swartout
USC/ISI
4676 Admiralty Way
Marina deI Rey, CA 90292
USA
swartout@isi.edu

• Wolfgang Wahlster
Universität d. Saarlandes
Fach bereich 10
Bau 36
D-6600 Saarbrücken
Germany
wahlster@cs. uni-sb. de

,.~

Deutsches
Forschungszentrum
fOr KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen oder die
aktuelle Liste von erhältlichen Publikationen
können bezogen werden von der oben angegebenen
Adresse.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR·90·01
Franz Baader: Terminological Cycles in KL-ONE
based Knowledge Representation Languages
33 pages

RR·90·02
Hans-Jürgen Bürckert: AResolution Principle for
Clauses with Consttaints
25 pages

RR·90·03
Andreas Dengel, Nelson M. Maltos: Integration of
Document Representation, Processing and
Management
18 pages

RR·90·04
Bernhard Ho//under. Werner Nutt: Subsumption
Algorithms for Concept Languages
34 pages

RR·90·0S
Franz Baader: A Fonnal Defmition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR·90·06
Bernhard Hol/under: Hybrid Inferences in KL-ONE
based Knowledge Representation Systems
21 pages

RR·90·07
Elisabeth Andre. Thomas Rist: Wissensbasiene
Informationspräsentation:
Zwei Beiträge zum Fachgespräch Graphik und KI:
I. Ein planbasierter Ansatz zur Synthese

illustrierter Dokumente
2. Wissensbasiene Perspektivenwahl für die

automatische Erzeugung von 3D·
Objektdarstellungen

24 pages

DFKl
-Bibliothek
PF 2080
6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of
cWTently available publications can be ordered from
the above address.
The reports are distributed free of charge except if
otherwise indicated.

RR·90·08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR·90·09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR·90·10
Franz Baader. Hans-Jürgen Bürckert. Bernhard
Hol/under. Werner NUll. Jörg H. Siekmann:
Concept Logics
26 pages

RR·90·11
Elisabeth Andre. Thomas Rist: Towards a Plan
Based Synthesis of Illusttated Documents
14 pages

RR·90·12
Harold Boley: Declarative Operations on Nets
43 pages

RR·90·13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR·90·14
Franz Schmalhojer, Otto Kühn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expen Memories
20 pages

RR·90·1S
Harald Trost: The Application of Two-Ievel
Morphology to Non-concatenati ve German
Morphology
13 pages

RR-90-16
Franz Bamier. Wemer Nutt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR-90-17
Stephan Busemann
Generalisiene Phasenstrukturgnunmatiken und ihre
Verwendung zur maschinellen Sprachverarbeiwng
114 Seiten

RR-91-01
Franz Bamier. Hans-JÜTgen BÜTcken. BernhaTd
Nebel. Werner Nun. and Gere Smolka :
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Son
Equations
20 pages

RR-91-02
Francesco Donini. Bernhard Holluntier. Maurizio
Lenzerini. Alberto Marchetti Spaccamela. Daniele
Nardi. Werner Nutt :
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
BHollunder. Franz Baader: QuaIifying Number
Restrietions in Concept Languages
34 pages

RR-91-04
Harald Trost
X2MORF: A Morphological Component Based on
Augmented Two-Level Morphology
19 pages

RR-91-0S
Wolf gang Wahlster. Elisabeth Andre. Winfried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is lnfluenced by Graphics
Generation.
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
lllustrated Documents
A Plan-Based Approach
11 pages

RR-91-07
Günter Neumann, Wolfgang Finkler: A Head
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster . Elisabeth Andre. Som
Bandyopadhyay, Winfried Graf. Thomas Rist
WIP: The Coordinated Generation of MultimodaI
Presentations from a Common Representation
23 pages

RR-91-09
Hans-JÜTgen Bürckert. JÜTgen Müller. Achim
Schupeta
RA TMAN and its Relation to Other Multi-Agent
Testbeds
31 pages

RR-91-10
Franz Bamier. Philipp Hanschke
A Scheme for Integrating Concrete Domains into
Concept Languages
31 pages

RR-91-11
Bernhard Nebel
Belief Revision and Default Reasoning: Syntax
Based Approaches
37 pages

RR-91-12
J.Mark Gawron. John Nerbonne. anti Stanley Peters
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13
Gert Smolka
Residuation and Guarded Rules for Constraint Logic
Programming
17 pages

RR-91-lS
Bernhard Nebel. Gert Smolka
AtLributive Description Fonnalisms ... and the Rest
ofthe World
20 pages

RR-91-16
Stephan Busemann
Using Pauem-Action Rules for the Generation of
GPSG Structures from Separate Semantic
Representations
18 pages

RR-91-17
Andreas Dengel & Nelson M. Mattos
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR-91-20
Christoph Klauck. Ansgar Bernardi. Ralf Legleimer
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR·91·23
Prof Michael Richler. Ansgar Bernardi. Christoph
Klauck. Ralf Leglei/ner
Akquisition und Repräsentation von technischem
Wissen für Planungsaufgaben im Bereich der
Fenigungstechnik
24 Seiten

RR·91·25
Kann Harbusch. Wolfgang Finkler. AnTU! Schauder
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR·91·26
M. Bauer. S. Biundo. D. Dengier. M. Hecking. J.
Koehler. G. Merziger
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

OFKI Tecbnical Memos

TM·89·01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM·90·01
Som Bandyopadhyay: Towards an Understanding of
Coherence in MultimodaJ Discourse
18 pages

TM·90·02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM·90·03
Franz Baader. Bernhard Hollunder: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM·90·04
Franz Baader. Hans-JÜTgen BÜTcken. Jochen
Heinsohn. Bernhard Hollunder. Jürgen Müller.
Bernhard Nebel. Werner NUll. Hans-JÜTgen
Profit/ich : Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM·91·01
JanaKöhler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM·91·02
Knut Hinkelmann
Bidirectional Reasoning of Horn Clause Programs:
Transformation and Compilation
20 pages

TM·91·03
Otto Kühn, Marc Linster, Gabriele Schmidt
Clamping. COKAM. KADS. and OMOS:
The Construction and Operationalization
of a KADS Conceptual Model
20 pages

TM·91·04
Harold Boley
A s~pler of Relational/Functional Defmitions
12 pages

TM·91·05
Jay C. Weber. Andreas Dengel and Rainer
Bleisinger
Theoretical Consideration of Goal Recognition
AspecLS for Understanding Information in Business
Letters
10 pages

OFKI Oocuments

0·89·01
Michael H. Malburg. Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypermedia
Informationssystem
43 Seiten

0·90·01
DFKI Wissenschaftlich-Technischer Jahresbericht
1989
45 pages

0·90·02
Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

0·90·03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Abschlußbericht des Arbeitspaketes
PROD
36 Seiten

0·90-04
Ansgar Bernardi. Christoph Klauck, Ralf
Leglei/ner: STEP: Überblick über eine zulcünftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

0-90·05
Ansgar Bernardi. Chnstoph Klauck. Ralf
Legleimer: Formalismus zur Repräsentation von
Geo-meaie- und Technologieinformationen als Teil
eines Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becur: The Window Taol Kit
66 Seiten

D-91-01
Werner Stein. Michael Sintek
Relfun/X - An Experimental Prolog
Implementation of Relfun
48 pages

D-91-03
Harold Boley. Klaus Elsbernd. Hans-Günther Hein.
Thomas Krause
RFM Manual: Compiling RELFUN into the
Relational/Functional Machine
43 pages

D-91-04
DFKl Wissenschaftlich-Technischer Jahresbericht
1990
93 Seiten

D·91-06
GerdKamp
Entwurf. vergleichende Beschreibung und
Integration eines Arbeitsplanerstellungssystems für
Drehteile
130 Seiten

D·91-07
Ansgar Bernardi. Christoph Klauck. Ralf Legleüner
TEC-REP: Repräsentation von Geometrie- und
Technologieinformationen
70 Seiten

D-91-08
Thomas Krause
Globale Datenflußanalyse und horizontale
Compilation der relational-funktionalen Sprache
RELFUN
137 pages

D-91-09
David Powers and Lary Reeker (Eds)
Proceedings MLNLO '91 - Machine Leaming of
NaturaI Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 USoS).

D-91-10
Donald R. Steiner. Jürgen Müller (Eds.)
MAAMAW'91: Pre-Proceedings ofthe 3rd
European Workshop on "Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 USoS).

D-91-11
Thilo C. Horstmann
Distributed Truth Maintenance
61 pages

D-91-12
Bernd Bachnumn
Hieracon - a Knowledge Representation System
wilh Typed Hierarchies and Constraints
75 pages

D-91-13
International Workshop on Terminological Logics
Organizers: Bernhard Nebel. Christo! Peltason. Kai

von Luck
131 pages

M-C
,-0>
• E

,-:J
m g
.0

Cl

I/J
(.) .-rn
o
...J

ca
(.) .-rn
o
o
c: .-
E ...
Q)
~

c:
o
c..
o

.r::.
I/J
~ ...
o
::
ca
c:
.~ -ca
c: ...
Q) -c:

~
(J

::I
...J

c:
o
>

c:
o
(J)
ro
~
Cl)

a.. -o -(J)
.;::
J::
U

Cl)

..0
Cl)

Z

'C
ro
J::
c: ...
Cl)

al

(J)
Cl)

.!::!
c:
ro
Cl
o

	D-91-13-0001
	D-91-13-0002
	D-91-13-0003
	D-91-13-0004
	D-91-13-0005
	D-91-13-0006
	D-91-13-0007
	D-91-13-0008
	D-91-13-0009
	D-91-13-0010
	D-91-13-0011
	D-91-13-0012
	D-91-13-0013
	D-91-13-0014
	D-91-13-0015
	D-91-13-0016
	D-91-13-0017
	D-91-13-0018
	D-91-13-0019
	D-91-13-0020
	D-91-13-0021
	D-91-13-0022
	D-91-13-0023
	D-91-13-0024
	D-91-13-0025
	D-91-13-0026
	D-91-13-0027
	D-91-13-0028
	D-91-13-0029
	D-91-13-0030
	D-91-13-0031
	D-91-13-0032
	D-91-13-0033
	D-91-13-0034
	D-91-13-0035
	D-91-13-0036
	D-91-13-0037
	D-91-13-0038
	D-91-13-0039
	D-91-13-0040
	D-91-13-0041
	D-91-13-0042
	D-91-13-0043
	D-91-13-0044
	D-91-13-0045
	D-91-13-0046
	D-91-13-0047
	D-91-13-0048
	D-91-13-0049
	D-91-13-0050
	D-91-13-0051
	D-91-13-0052
	D-91-13-0053
	D-91-13-0054
	D-91-13-0055
	D-91-13-0056
	D-91-13-0057
	D-91-13-0058
	D-91-13-0059
	D-91-13-0060
	D-91-13-0061
	D-91-13-0062
	D-91-13-0063
	D-91-13-0064
	D-91-13-0065
	D-91-13-0066
	D-91-13-0067
	D-91-13-0068
	D-91-13-0069
	D-91-13-0070
	D-91-13-0071
	D-91-13-0072
	D-91-13-0073
	D-91-13-0074
	D-91-13-0075
	D-91-13-0076
	D-91-13-0077
	D-91-13-0078
	D-91-13-0079
	D-91-13-0080
	D-91-13-0081
	D-91-13-0082
	D-91-13-0083
	D-91-13-0084
	D-91-13-0085
	D-91-13-0086
	D-91-13-0087
	D-91-13-0088
	D-91-13-0089
	D-91-13-0090
	D-91-13-0091
	D-91-13-0092
	D-91-13-0093
	D-91-13-0094
	D-91-13-0095
	D-91-13-0096
	D-91-13-0097
	D-91-13-0098
	D-91-13-0099
	D-91-13-0100
	D-91-13-0101
	D-91-13-0102
	D-91-13-0103
	D-91-13-0104
	D-91-13-0105
	D-91-13-0106
	D-91-13-0107
	D-91-13-0108
	D-91-13-0109
	D-91-13-0110
	D-91-13-0111
	D-91-13-0112
	D-91-13-0113
	D-91-13-0114
	D-91-13-0115
	D-91-13-0116
	D-91-13-0117
	D-91-13-0118
	D-91-13-0119
	D-91-13-0120
	D-91-13-0121
	D-91-13-0122
	D-91-13-0123
	D-91-13-0124
	D-91-13-0125
	D-91-13-0126
	D-91-13-0127
	D-91-13-0128
	D-91-13-0129
	D-91-13-0130
	D-91-13-0131
	D-91-13-0132
	D-91-13-0133
	D-91-13-0134
	D-91-13-0135
	D-91-13-0136
	D-91-13-0137
	D-91-13-0138
	D-91-13-0139
	D-91-13-0140
	D-91-13-0141
	D-91-13-0142
	D-91-13-0143

