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Preface 

The second international workshop on Terminological Logics was held at Schloß DagstuhP , 
near Saarbrücken, Germany, on May 6-8, 1991. The workshop was the follow-up event to 
the "Workshop on Term Subsumption Languages" held in New Hampshire, in October 
1989 (cf. AI Magazine 11(2), 1990). 

Terminological Logics consists of a family of representation formalisms that have grown 
out of the KL-ONE knowledge representation system. Unlike some other areas of knowl
edge representation, in this field the aspects of theoretical work (semantical foundations, 
complexity), system-oriented work (implementations), and application-oriented work are 
all dealt with within one community, as documented by the variety of talks at this work
shop. 

The workshop itself brought together 40 invited participants currently working in the 
field, and served to provide a snapshot of the current state of research, showing that there 
has been a lot of progress in tbe last several years. The theoretical area has advanced 
to a point where only a few questions concerning the core formalism remain open. The 
current trend seems to be to integrate more functionality and other formalisms. 

The material compiled here consists of most of the contributions of the participants, 
listed in alphabeticalorder of the submitting authors. In character with the informal 
nature of the "work"shop, these papers sketch personal interests, work in progress, or 
s11mmaries of research results rat her than being fully elaborated articles. The complete 
set of presentations at the workshop can be seen from the program given on page 2. 

In addition to the scheduled sessions, there were a number of informal meetings for ex
changing ideas and planning future collaborative work, including one about future system 
standards and standard notation (see also the proposal on page 120). This should make 
the exchange of ideas, systems, and knowledge bases, and the maintainance of a test 
corpus easier in the future. 

The program was rounded off by an overview talk by Ron Brachman on the past and 
future development of Terminological Logics (the issue of finding a good name for the 
field is still in discussion), and a panel debate on aspects of tbe relationship between 
"Theory and Practice". In order to promote communication between people working in 
the field a mailing list (tlc@isi.edu) was established. 

We would like to thank the Dagstuhl foundation for inviting us, our affiliated organizations 
for their support, and finally all participants for their active engagement in the workshop. 

Bernhard Nebel 
(DFKI) 

Christof Peltason 
(TU Berlin) 

Kai von Luck 
(IBM Germany) 

July, 1991 

1 Schloß Dagstuhl is the site of the recently founded International Conference and Research Center for 
Computer Science, sponsored by the German Society for Computer Science (GI), and three universities 
(Saarbrücken, Kaiserslautern, and Karlsruhe), and financed by the the federal states of Saarland and 
Rheinland-Pfalz. 

1 



VVorkshop Prograrn 

Sunday, May 5 

afternoon 

Monday, May 6 

8:45 - 9:00 

9:00 - 10:45 

10:45 - 11:15 

11:15 - 12:30 

12:30 - 14:00 

14:00 - 15:45 

15:45 - 16:15 

16:15 - 17:30 

18:00 

19:00 

Arrival 

Introduction 
Bernhard Nebel (DFKI, Saarbrücken) 

Algorithms and Complexity 
Franz Baader (DFKI, Kaiserslautern) 
Francesco Donini (Univ. Roma) 
Werner Nutt (DFKI, Kaiserslautern) 
Peter F. Patel-Schneider (AT&T Bell Labs) 
Klaus Schild (TU Berlin) 

Break 

Principles of Modeling 
Howard W. Beck (Univ. Florida) 
Alfred Kobsa (Univ. Saarbrücken) 
Joachim Quantz (TU Berlin) 
Sonia Bergamaschi (Univ. Bologna) 

Lunch 

Implementation Techniques 
Carsten Kindermann (TU Berlin) 
Eric K. Mays (IBM, New York) 
Bob MacGregor (ISI, Marina deI Rey) 
Deborah L. McGuinness (AT&T Bell Labs) 

Break 

Probability and Defaults 
Jochen Heinsohn (DFKI, Saarbrücken) 
Lin Padgham (Linköping Univ.) 

Keynote Address 
Ron Brachman (AT &T Bell Labs) 

Buffet 
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Tuesday, May 7 

8:30 - 10:00 

10:00 - 10:30 

10:30 - 12:00 

12:00 - 12:30 

12:30 - 14:00 

19:00 

20:00 

NL-Applications 
J ürgen Allgayer (U ni v. Saarland) 
Amadeo Capelli (Univ. Pisa) 
Manfred Gehrke (Siemens, München) 

Break 

Unification-based Systems 
Guiseppe Attardi (Univ. Pisa) 
Roland Seiffert (IBM, Stuttgart) 
Gert Smolka (DFKI, Saarbrücken) 

Organisational Issues 

Lunch 

Dinner 

Discussion: Theory and Practice 
Bob MacGregor (ISI, Marina deI Rey) 
Hector Levesq ue (U ni versi ty of Toronto) 

Wednesday, May 8 

8:30 - 9:45 

9:45 - 10:15 

10:15 - 12:00 

12:00 - 12:30 

12:30 - 14:00 

14:00 - 15:30 

18:00 

Hybrid Extensions 
Bernhard Pfahringer (Univ. Wien) 
Enrico Franconi (IRST, Povo) 
Albrecht Schmiedel (German Heart Center, Berlin) 

Break 

Technical Applications 
Rüdiger Klein (AdW, Berlin) 
Luca Spampinato (Quinary, Milano) 
Bill Swartout (ISI, Marina deI Rey) 

Organisational Issues 

Lunch 

Workshop Summary and Outlook 

Dinner 
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Experiences in 'Hybridification': Enhancement of 
a Term Subsumption Language to Cover Plural 

and Quantified Terms. 

J. Allgayer 
University of Saarbrücken 

FB 14: Dept. of Computer Science 
6600 Saarbrücken 11, Germany 

1 Introduction 

In the context of natural language processing, term subsumption languages (TSL) are 
widely used for several tasks, from lexicon structuring to domain modeling. One portion 
of the problems in NL dialog systems is the necessity to represent and reason about dialog 
contributions that construct step by step the context of the dialog, e.g. the intruduction 
of entities the participants are talking about. This spans from descriptions of entities, 
over relations they have been proposed with, to attitudes and modes they were proposed 
in. Not only needs all this be represented in a way expressible and powerfull enough to 
cover all representational means as weIl as processing demands from all parts of the overall 
system, but also an adequate reasoning about these representational terms is necessary. 

The facet of the described problem field which will be described in more detail in this 
paper deals with the requirement of a language (called SB-TWO) that should a) utilize a 
TSL (SB-ONE, [Kobsa89], [Profitlich90]), but b) extend/enhence it with representational 
means to deal with descriptions of plural terms and relationships between them, and a 
flexible way of quantification. 

Considering the state of the art in NL processing (see, for example, Discourse Rep
resentation Theory ([Kamp81]), File Change Semantics ([Heim82]), Situation Semantics 
([Barwise/Perry83]) or the Generalized Quantifier Theory ([Barwise/Cooper81])), there is 
a clear tendency in NLP either to base the processing directly on a formalism taken from 
linguistics, or to define a well-founded underlying theory according to linguistic criteria, 
in order to get a system which behaves in a well-defined manner, and which is extendable 
for dealing with new phenomena. 

Therefore, in most cases the NLP formalisms are based on first order predicate logic; 
but this leads to amismatch between the properties of the natural language to be char
acterized and those of the knowledge representation language that should describe them. 

Notions like quantiJier, variable, sense and reference, intension and exten
sion, ... are all technical (. .. ) notions introduced by philosophers and logi
Clans. They are not part of the data of natural language. It just might be 
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tbat some or all oE tbem cut across tbe grain oE tbe phenomena in unnatu
ral ways, generating artificial problems and constraining tbe space oE possible 
solutions to tbe genuine puzzles that language presents. ([BarwisejPerry83, 
p.xi f.]) 

On the other hand, not ions like these are very useful- and, as we believe, are indespen 
able - with respect to an internal formal knowledge representation language. Therefor, 
we look for an application of the above-mentioned notions that fits "the grain of the N 
phenomena" in the best possible way. 

And this, in fact, is the intention of the Generalized Quantifier Theory (GQT 
[BarwisejCooper81]): to provide a notion of (formal) quantifiers that describes qua 
tifiers as they occur in naturallanguage. 

2 Natural Language Determiners 

Research concerning General Quantifiers has been (and still is) mainly motivated by three 
arguments: 

Al Not all Natural Language Determiners are expressible by formulas of first order 
predicate logic (FOL); propositional determiners like "more than half of" would 
need higher order expressionsj 

A2 in order to formally describe the relations between a predicate (verb) and its ar
guments (noun phrases) in a compositional semantics, a formalism is needed that 
treats all possible structures of NPs in a unique manner; 

A3 different determiners behave in different ways with respect to the deductions that 
can legally be drawn from the proposition the determiner is involved with. One 
would wish to formalize this observation in order to restrict the whole set of relations 
denoted by Natural Language Determiners (called DET from now on), as well as to 
subdivide DET into subclasses for which specific deductions hold. 

The GQT's view of determiners is to see them as relations between two sets: the set 
of individuals denoted by the NP's noun (which is referred to as the Basic predicate), and 
the set of individuals denoted by the VP (the Central predicate). The main result shows 
that any determiner in ((Det Basic) Central) that satisfies the fundamental priciples of 
conservativity, extensionality, variety, and quantity (see below) can be defined via the 
cardinalityt of two sets: 1 Basic n Central land 1 Basic \ Central I. 

We see that the definition of meaning of determiners is totally independent from the 
underlying model, which, in turn, is an argument to lower the treatment of determiners 
into the knowledge representation language. 

Especially results of GQT with respect to (A3) are most interesting for NLP systems, 
as we shall see after the next section. 

On the representational basis, we need to be able to express sets and relationships 
between sets in order to lower the properties and characteristics of various NL determiners 
into the representation formalism. The notion of whitness set from GQT can be seen as 
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the representative of the set of sets a determiner is mapped onto. Thus, being able to 
handle sets appropriately enables us to treat determiner processing " a. la GQT". The 
representational prerequisites will be briefly discussed in section 4. 

3 Formal aspects of semantic constraints of NL de
terminer 

As GQT has shown, all NL determiners satisfy the following fundamental principles which 
therefore may be seen as linguistic universals. 

Conservativity (CONS): 
If Det in ((Det Basic) Central) describes a valid relation between the sets 
Basic and Central, then ((Det Basic)(Basic n Central» is valid as weIl. 

This is important for the proper treatment of determiners in an NLP system (based 
on any KL-ONE family member and the open world assumption), because one never has 
any information about the extension of the Central predicate. But, as CONS teIls us, the 
semantics of DET doesn't depent on the cardinality 1 Basic \ Central I. 

The second principle fulfilled by all naturallanguage determiners guarantees context
neutrality: 

Extension (EXT): 
If Det in ((Det Basic) Central) describes a valid relation between the sets 
Basic and Central in a model A and there is a Model A' with A ~ A', then 
((Det Basic) Central) is valid in A' as weIl. 

What this means is that the extension of the discourse - which is done permanently 
in a system with underlying open world asumption - does not change the semantics (the 
truth value) of the quantified proposition, as long as it doesn't concern the denotation of 
the predicates involved. 

The principle of Quantity is concerned with the specific interpretation function un
derlying the model and is often called the principle of topic-neutrality: 

Quantity (QUANT): 
If ((Det Basic) Central) describes a relation between the sets Basic and Central 
in a model A, and there is a function 7r representing a bijection from A to A', 
then ((Det 7r(Basic» 7r( Central» is an equivalent relation in A'. 

Thus, the interpretation of a determiner-specific relation is independent of the specific 
properties of the elements of discourse. This again supports the view that the handling 
of determiners should be a task of the knowldege representation formalism itself. 

Variety (VAR): 
If Basic is non-empty, then there exist two predicates Central and Central' 
such that ((Det Basic) Central) and -,( (Det Basic) Central ') hold. 
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This means that no element of DET is trivial in the sense that the determiner relation 
either holds for any pair of elements of the uni verse or for none. 

Beyond these principles which are fulfilled by all elements of DET, there are some char
acteristics of specific subclasses of DET that define inferential properties of the structures 
corresponding to the determiners on the level of world knowledge representation. 

To give an idea, take these as an example: 

Transitivity: ((Det Basic) Central) n ((Det Central) Central') ~ ((Det Basic) Cen-
tral') 

Example: "every", counterexample: "two" 

Symmetry: ((Det Basic) Central) ~ ((Det Central) Basic) 
Example: "sorne" , counterexample: "every" 

For NLP systems with knowledge representation formalisms based on conceptual hi
erarchies, the most interesting properties of determiners are those that infiuence its infer
ential behaviour with respect to the underlying terminological basis. 

Monotonicity: 
If a determiner Det is upwardjdownward monotone then if ((Det Basic) 

Central) describes a valid relation between the sets Basic and Central, and 
there is a SuperconceptjSubconcept Central' that subsurnes Central, then 
((Det Basic) Central') is valid as weIl. 

Upward monotone determiners are, for example, "sorne" and "at least ten", where "at 
most ten" is not. 

Persistency: 
If a determiner Det is upwardjdownward persistent then 
if ((Det Basic) Central) describes a valid relation between the sets Basic and 
Central, and there is a SuperconceptjSubconcept Basic' that subsurnes Basic, 
then ((Det Basic') Central) is valid as weIl. 

To summarize, the requirements necessary to cope with NL determiner processing in 
an adeq uate fashion appear to be the following: 

Rl a laguage that is able to express determiner properties and to compute the hierarchy 
of determiner classes; 

R2 a knowledge representation language that is able to express assertions in which NL 
quantification (i.e., the usage of determiners) is required; 

R3 integration of and access to knowledge bases (KBs) that describe the properties of 
determiners (i.e., the DET classification KB); 

R4 integration of inference capacities arising from the usage of DET with the reasoning 
procedure of the overall inference mechanism (i.e., intelligent use of the KB wh ich 
holds the determiner dependent inference ruIes); 

R5 the ability to express sets and their relationships as weil as set elements next to 
each other. 
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4 The representational foundations 

In order to satisfy requirement R5, an extension of the existing knowledge representa
tion formalism (and system) SB-ONE ([Kobsa89, Profitlich90]) has been defined. This 
formalism (called SB-ONE+) regards the universe of discourse as consisting of entities 
and all possible groupings of those entities, i.e., U = D U P(D), where D is the set of 
domain elements, and P(D) denotes the powerset. Thus, an instatiation of a concept, 
called an instance, may be of type set or element, respectively. And, quite naturally, the 
formalism allows to express relationships among these entities of our "world", e.g. subset, 
superset, or element-of relationships, and maintains the relationships stated implicitly 
(and computable via the transitivity of such relations). For a more detailed explanation 
of SB-ONE+, see [Allgayer90]. 

5 A determiner processing system 

The system's layout shown in Figure 1 gives so me insight into the approach taken 
for the solution of our problems and requirements. The PROLOG meta-interpreter 
MOTHOLOG1 combines the KL-ONE knowledge representation paradigm with the rep
resentational and computational power of logic. It does this by aHowing for the integrated 
use of knowledge expressed in an inheritance network formalism (in our case, SB-ONE+), 
as weH as the description and use of inferential knowledge expressed in inference rules. 

MOTHOLOG allows for access to network based knowldege bases that simulates the 
solution generating process underlying the PROLOG reasoning mechanism. Queries to 
such KBs are translated into continuation-based reentry procedures that compute a set 
of solutions and deliver on demand one solution after the other. Thus, a net-query can be 
seen a.S a simulated sequence of queries to an ordinary PROLOG database which includes 
backtracking after failure or unsatisfying proof results. This allows for the use of network 
based knowledge bases within a logic-oriented language. 

Equipped with these feasabilities, the DET classification KB can be used to determine 
which determiner was used and what kind of properties are declared for it. 

Knowing this, we can use the appropriate inference rules for this type of determiner. 
Again, MOTHOLOG inference rules are capable to visit the appropriate KBs when in
terpreting the determiner dependent inference rules (DDIs). DDIs themselve express the 
semantic properties of determiners as described in section 2. For example, a DDI express
ing the upward persistency of a certain determiner (which is a member of the class of 
persistent determiners!) looks like 

(gen-quant (?Det ?Var ?Basic) (?Central)) :
(detclass ?Det persisten/upward)j 
(supsumes ?SubBasic ?Basic)j 
(gen-quant (?Det ?Var ?SubBasic) (?Central)) 

It expresses the fact that by using an upward persistent determiner in an expres
sion, the Central predicate can be replaced by a more general one, preserving the truth 
conditions for the newly generated expression. 

1 MOTHOLOG is an acronym for 'MOre THan Ordinary proLOG' 
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The predicate detclass implements the connection to the knowledge represented in 
the determiner classification knowledge base, and gen-quant couples the usage of deter
miners and their adequate processing. 
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Cyclic, Transitive, and Concrete Extensions of 
Concept Languages 

Franz Baader 
German Research Center for AI (DFKI) 

Postfach 2080 

W-6750 Kaiserslautern, Germany 

e-mail: baader@dfki.uni-kl.de 

phone: (+49 631)205-3457 

Abstract 

The purpose of this note is not mainly to describe particular results on extensions 
of concept languages, but rat her to illustrate the evolution of research which lead 
to these results, and to show how they are connected. 

1 Terminological Cycles in :F.co 
Cyclic definitions are often prohibited in terminological knowledge representation lan
guages because, from a theoretical point of view, their semantics is not clear and, from 
a practical point of view, existing inference algorithms may go astray in the presence of 
cycles. In [Baa90c] terminological cycles are considered in a very small KL-ONE-based lan
guage which allows only conjunction of concepts and value-restrictions. For this language, 
which will be called F Co in the following, the effect of the three types of semantics in
troduced by [Neb87, Neb89, Neb90]-namely, least fixed-point semantics (lfp-semantics), 
greatest fixed-point semantics (gfp-semantics), and what he called descriptive semantics
can be completely described with the help of finite automata. These descriptions provide 
a rat her intuitive understanding of terminologies with cyclic definitions, and give insight 
into the essential features of the respective semantics. In addition, one obtains algorithms 
and complexity results for subsumption determination. The results of [Baa90c, Baa90dJ 
may help to decide what kind of semantics is most appropriate for cyclic definitions, not 
only for the smalllanguage F Co, but also for extended languages. As it stands, the great
est fixed-point semantics comes off best. The characterization of this semantics is easy 
and has an obvious intuitive interpretation. Furthermore, important constructs-such as 
value-restriction with respect to the transitive or reflexive-transitive closure of a role-can 
easily be expressed. 

However, the results obtained in [Baa90c] have two major drawbacks which we intend 
to overcome in [Baa90a]. First, the language F Co is too small to be sufficient for practical 
purposes. As shown in [Baa90d], the results can be extended to the language FC- of 
[LB87], and it seems to be relatively easy to include number-restrictions. However, as soon 
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as we also consider disjunction of concepts and exists-in-restrictions, the unpleasant fea
tures which lfp-semantics had for :F Co (see [Baa90c, Baa90d]) also occur for gfp-semantics 
in this larger language. If we should like to have general negation of concepts, least or 
greatest fixed-points may not even exist, thus rendering fixed-point semantics impossi
ble. Second, the characterization of gfp-semantics for :F Co-though relatively easy and 
intuitive-still involves notions from formal language theory such as regular languages 
and finite automata. 

2 Union, Composition, and Transitive Closure of 
Roles 

In [Baa90a] it is shown that the concept defining fa,cilities of :F Co with cyclic definitions 
and gfp-semantics can also be obtained in a different way. One may prohibit cycles and 
instead allow role definitions involving union, composition, and transitive closure of roles. 
The regular languages which occur in the characterization of gfp-semantics for :F Co can 
directly be translated into role definitions in this new language. This proposes a way of 
retaining, in an extended language, the pleasant features of gfp-semantics for :F Co with 
cyclic definitions without running into the troubles caused by cycles in larger languages. 

Starting with the language ACe of [SSSJ-which allows one to use negation, conjunc
tion and disjunction of concepts as well as value-restrictions and exists-in-restrictions
cyclic concept definitions are disallowed in [Baa90a], but instead the possibility of role 
definitions involving union, composition, and transitive closure of roles is added. In con
trast to other terminological KR-systems which incorporate the transitive closure operator 
for roles, asound and complete algorithm for concept subsumption is given in [Baa90a]. 
The connection between role definitions involving union, composition, and transitive clo
sure of roles on the one hand, and regular languages over the alphabet of all role names 
on the other hand is also important for this algorithm. 

3 Terminological Cycles and Concept Equations in 
A.ce 

Since ACC contains general negation of concepts, descriptive semantics is the only mean
ingful semantics for cyclic definitions in this language. It is easy to see that the transitive 
extension of ACe mentioned in the previous section is not equivalent to ACe with cyclic 
definitions interpreted with descriptive semanties. Nevertheless, the algorithm developed 
for subsumption testing in the transitive extension ean be used to decide subsumption for 
ACe with eyclie definitions. 

More general, it is even possible to deeide subsumption with respect to general concept 
equations by using this algorithm (see Section 6 of [Baa90a]). A general concept equation 
is an axiom of the form C = D where both C and D may be complex eoncept deseriptions. 
In eontrast to these general equations, the usual T-Box axioms always have simple coneept 
names on the left hand side, with the additional restrietion that any name may occur only 
onee as a left hand side. Please note that the implication rules used in many terminologieal 
KR-systems (e.g., in BACK or CLASSIC) can easily be expressed by such general concept 
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equations. In fact, an implication rule C => D is logically equivalent to the concept 
equation enD = C where n stands for conjunction of concepts. 

4 Integrating Concrete Domains 

The extension described in this section was motivated by an application in a mechanical 
engineering domain (see (BBK+91]). 

A drawback which concept languages based on KL-ONE have is that all the termino
logical knowledge has to be defined on an abstract logical level. On that level one can 
e.g. describe the concept Woman as "humans who are female", and represent it by the 
expression Human n Female. In many applications, however, one would like to be able to 
refer to concrete domains and predicates on these domains when defining concepts. Ex
amples for such concrete domains are the nonnegaiive integers, the real numbers, or also 
non-arithmetic domains, and predicates could be equality, inequality, or more complex 
predicates. In the above example, one might think that being human and female is not 
enough to make a woman. As an additional property one could require that she should be 
old enough, e.g., at least 21. Thus one would like to introduce a new role age, and define 
Woman by an expression of the form Human n Female n ~21(age). Here ~21 stands for 
the unary predicate {n; n ~ 21} of aH nonnegative integers greater or equal 21. Stating 
such properties directly with reference to a given concrete domain seems to be easier and 
more natural than encoding them somehow into abstract concept expressions.1 Though 
this drawback already appears in naturallanguage processing, it becomes even more im
portant if one has other applications in mind. For example, in a technical application the 
adequate representation of geometrical concepts requires to relate points in a coordinate 
system. For that purpose one would e.g. like to have access to real arithmetic. 

In [BH90a] we propose a scheme for integrating such concrete domains into concept 
languages rat her than describing a particular extension by some specific concrete domain. 
We define a terminological and an assertional language, and consider the important infer
ence problems such as subsumption, instantiation, and consistency. The formal semantics 
as weH as the reasoning algorithms are given on the scheme level. The algorithms generate 
subtasks which have to be solved by a special purpose reasoner of the concrete domain. 
A concrete domain for which these subtasks are solvable is called admissible in [BH90a]. 
In contrast to existing KL-ONE based system, the algorithms will be not only sound but 
also complete, provided that the concrete domain in question is admissible. 

5 Combining the Extensions 

For many applications (an in particular also for the above mentioned application in me
chanical engineering) it is desirable to have both access to an admissible concrete domain 
and transitive closure of roles. We have mentioned above that adding one of these two 
facilities to a concept language such as ACC leaves the interesting inference problems de
cidable. However, the situation changes if we want to have both facilities in one language. 

I See e.g. [BS85], Section 9.2, where so-called Structural Descriptions are used to encode the concrete 
predicate "less than one hour". From a computational point of view, Structural Descriptions are as bad 
as Role Value Maps which cause undecidability of subsumption [SS89]. 

14 



If, starting with ACe, we allow only transitive closure of functional roles (without 
union or composition of roles) and integrate the admissible concrete domain R (which 
stands for real arithmetic) then the subsumption problem becomes undecidable. 

This can be shown by reducing the Post Correspondence Problem to the subsumption 
problem for this language. The reduction uses only very simple predicates from real 
arithmetic, namely equalities between linear polynomials in at most two variables (see 
[BH90a] for details). 
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The Intelligent Information Retrieval Project at the University of Florida has been 
exploring the application of term subsurnption languages to database management and 
aturaJ Ja.nguage processing. The CANDIDE semantic data model was developed as an 

a.daptation of KANDOR, and explored the use oE classification as a query processing tecb
nique. An information retrieval system was developed using CANDIDE wbicb featured a 
natura1language query interface. 

Recently research has focused on expanding term subsumption languages to more ac
curately reflect fundarnentals of category formation. A general conceptual clustering al
gorithm has been developed which augments deductive reasoning using subsumption with 
inductive reasoning by generating classes over sets cf instances. The clustering algorithm 
is applied to several database applications including schema design, schema evolution, 
schema integration, view generation, and query processing. The database schema also 
supports represention of lexical knowledge by organizing large numbers of cases of word 
use. Lexical acquisition from cases is being explored. 

1 Conceptual Clustering Algorithm 

Conceptual clustering techniques based on current theories of cateorization [6, 5] provide 
a way to design database schemas which more accurately represent classes. In this ap
proach, classes are treated as complex clusters of concepts rather than simple predicates. 
An important service provided by the database is determining whether a particular in
stance is a me mb er of a class. A conceptual clustering algorithm aids in building classes 
by grouping related instances and developing class descriptions. The resulting database 
schema addresses a number of properties of categories including default values and pro
totypes, analogical reasoning, exception handling, and farnily resemblance. 

Class cohesion results from trying to resolve conflicts between building generalized 
dass descriptions and accommodating members of the class which deviate from these de
scriptions. This is achieved by combining techniques from machine learning, specifically 

°This research is supported in part by grants from the Florida High Technology and Industry Council 
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1. Introduce a New Class 
1.1. Use SUBSUME and Classification to determine the relationship 

between the new dass and existing dass descriptions. 
1.2. Use Realization to determine which existing 

instances satisfy the new dass description. 
2. Introduce a New Instance 

2.1. Use Realization to place the new instance into 
dasses for which the instance satisfies dass descriptions. 

2.2. Use INTERSECT to identify other related instances. This may 
generate new dasses, but is also needed in the next step. 

2.3. Use the Exception Condition to see if the new instance may 
be an exception to an existing dass description. 

2.4. Based on adecision to place an exceptional instance into 
a dass, use EVOLVE to modify the dass schema. 

Figure 1: Main components of the conceptual dustering algorithm 

explanation-based learning and case-based reasoning. A subsumption function is used to 
compare two dass descriptions. A realization function is used to determine whether an 
instance meets an existing dass description. A new function, INTERSECT, is introduced 
to compare the similarity of two instances. INTERSECT takes two instances and gen
erates a new dass which is the minimal description which is satisfied by both instances. 
INTERSECT is used in defining an exception condition. Exception handling results in 
schema modification (EVOLVE). 

The main components of the clustering algorithm are outlined in Figure 1. The 
purpose of the dustering algorithm is to assign instances to dasses. In the process, 
existing dasses may be modified (schema evolution) and new dasses formed. The process 
is incremental in that each new instance or dass is being added to an existing database. 
The structure (schema) of the database must be altered to account for the new instance 
or dass. The process is conceptual in that it is based on a comparison of the structures 
of database objects which represent concepts. 

2 Database Applications 

A conceptual dustering algorithm based on current theories of categorization should 
be used as the basis for organizing and maintaining databases dasses. This results in 
databases dasses which more accurately reflect real category structures. In this section, 
the usefulness of this approach in database applications is discussed. The topic is explored 
in greater detail in [2]. 

• Schema Generation and Evolution 

The techniques described in the previous section are most directly applicable to 
schema generation and maintenance. They can be used as tools to help database 
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designers. Since the algorithm is incremental, new classes and instances can be 
added at any time. The database system evolves with each new addition in that 
the schema is modified as needed to accommodate the addition. The process is 
open-ended, leading to more complex, more accurate schemas as more information 
is added. 

• Schema Integration 

The conceptual clustering algorithm can be used to generate a global schema which 
integrates several different databases. Anwar et al. [2] describes a procedure in 
which a schema is generated from the combined instances from several databases. 
Relationships among instance attributes between databases must be specified, such 
as synonomus relationships, set/subset relationships, and logical implication (such 
as the relationship between age and date of birth). Instances from several databases 
can then be clustered into a global schema based on specified goals and user prefer
ences. 

• Query Processing 

The conceptual clustering algorithm can be applied to query processing. Two such 
applications are processing queries with inexact answers [1] and providing intensional 
answers to queries. 

- Queries with Inexact Answers 

Analogical reasoning can be applied in situations where an inexact match to a query 
specification is desirable. Such may be the case when no instances match the query 
exactly. For example, it may be desired to find job candidates which most closely 
match the job description, though no candidate may match precisely. In case-based 
reasoning, it is a fundamental operation to retrieve cases which are somehow similar 
to the new case. Such queries will be more important as databases are used in 
analogical reasoning. 

In contrast to numeric or fuzzy sets approaches which ultimately rely on so me 
distance metric and threshold to processing such queries, conceptual clustering re
trieves instances which are structurally, semantically, and pragmatically similar to 
the query even though they may not match the query exactly. The query processor 
has both a deductive and inductive component. The deductive component finds 
exact matches in the traditional sense, and the inductive component identifies ways 
in which inexact matches may be considered similar. Ranking on similarity is done 
using the database taxonomy by which similar instances become members of the 
same class. Relative similarity is determined by depth in the taxonomy. 

Query processing is accomplished through conceptual clustering by representing the 
queryas an object (either a class or instance), and using the clustering algorithm 
to determining the correct position of the query object within the taxonomy. The 
use of classification in exact query processing was discussed in an earlier paper [7] 
where classification was a purely deductive procedure. Queries are represented as 
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new database classes. Subsumption relationships between the query dass and other 
dasses were computed to find the most specific dasses to which the new query dass 
belongs. Instances of these classes were then tested to see if they conformed to the 
restrictions stated in the query class. Those instances which satisfied the restrictions 
were retrieved as the result of the query. 

Inexact query processing extends this procedure by considering partial matching be
tween database instances and the query object. Partial matches can be determined 
through INTERSECT. The generated class teIls how two instances are similar. In
crementaIly computing this relationship over the instances of a database results in 
a rich taxonomy of clusters in which related instances are grouped into the same 
dasses. The result of a query is a new structural organization of the database schema 
which teIls, 1) Those instances which match exactly, 2) Those instances which match 
inexactly, and 3) A dass taxonomy describing the relationships between the query 
and other instances. The taxonomy is also used to rank relative similarity between 
the query and retrieved instances. 

- Intensional Answers to Queries 

The conceptual clustering algorithm will build a taxonomy of subdasses subsumed 
by the new query dass. These subdasses provide an intensional ans wer to the 
query which can be stated in terms of the data definiton language [2]. Thus, in 
addition to retrieving a set of instances related to the query, these subdasses would 
be available to summarize the categories to which these instances belong. This 
intensional answer would contain more information than simply displaying a list of 
instances which match the query, since relations among the instances are categorized 
by the subdasses. 

A database schema design based on category theory more naturally represents the 
meaning of terminology, thus leading to an improved user interface since terms 
used to describe the data can be mapped onto database objects. In particular, we 
are using the data model discussed here to store a large lexicon for use in natural 
language query processing [3, 4]. The conceptual dustering algorithm is used to 
assist in building the lexicon by modifying representations for word meaning as new 
word usages are encountered . 

• Automatie Generation of Views Based on Clustering Seeds 

Database views can be specified by giving a dustering seed. The dustering seed 
is a class description or small schema representing the desired concepts that guide 
the view creation process[7, 2]. This seed provides the clustering algorithm with a 
basis for generating a database schema which conforms to the desired view. Existing 
subclasses and instances related with the view are dustered beneath the seed. Since 
it is directly related to query processing, view creation can take advantages of the 
query capabilities just described. 
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3 Language Acquisition 

The natural language processing component of the project is concentrating on lexical 
acquisition through case-based reasoning [3,4]. The conceptual clustering algorithm sup
ports retrieval of relevant cases. Database instances are used to represent cases. Language 
acquisition from similar cases is treated in the context of concept acuqistition and cate
gory theory. The main contributions from case-based reasoning include mapping new or 
unusual usage to related cases and determining default values over sets of cases for use in 
disambiguation. This work is being implemented as part of a information retrieval project 
involving language acquisition from corpus of text. 

Expectation-driven parsing fails in interpretation of new or novel usage patterns since, 
by definition, new or novel usage patterns are precisely those which are not expected. An 
expression is ungrammatical if it fails to fit patterns described by a particular set of 
grammar rules. Yet language speakers are often able to glean understanding from such 
express ions and may readily acquire the new usage pattern. Case-based reasoning provides 
a way to overcome the brittleness of strictly rule-based natural language processing by 
providing an interpretation of unusual utterances. Case-based language understanding 
is a "language usage" theory. We understand an utterance because of its similarity to 
previous utterances, not because the utterance fits the mold of a general, idealized rule. 
Nevertheless, case-based language understanding should be treated as one part of a more 
general theory which balances similarity-based reasoning with rule-based reasoning. 

Understanding an unusual utterance requires aglobai search of cases which may only 
partially match with the new utterance. Instead of (or more accurately, in addition to) 
comparing the utterance to general usage patterns, a case base of previous utterances 
provide a corpus of text which can be examined for relationships to the new utterance. 
The case base of text provides two techniques for analysis: 

1. Finding cases is treated as a database query with complete or partial matching. 
Context (expectation) is use to specify the query initially. 

2. Default values obtained by statistical measures over sets of cases is used to weight 
the retrieved cases. Usage patterns with the highest frequency are given priority. 

Finding cases is admittedly a computationally complex task. This would not be such 
a problem where it done in parallel. Otherwise the use of indexing can speed performance 
as it has in other applications of case-based reasoning. 

4 Summary 

An information retrieval system of agricultural data, mostly text, is being constructed 
using the CANDIDE semantic data model [7, 8]. Natural language processing is being 
developed for querying the database, but eventually also to help in building the database 
by extracting information directly from text. Language acquisition is seen as a significant 
bottleneck in this process. Conceptual clustering is a fundamental component of both the 
database organization and language acquisition. 
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Abstract 

The aim of this paper is to show the effectiveness of subsumption in the relevant 
field of database research of schema (terminology) design. After some general con
siderations, we briefly synthetize the results of two works dealing, respectively, with 
developing terminologicallogics for the so-called semantic models [3], and the more 
recent complex object models [2, 1], proposed in database environments. The devel
oped idea is that, by extending database models with defined concepts and giving 
them a terminological logic formalization, it is possible to compute subsumption, 
thus allowing a formal definition of consistency and minimality of a schema to be 
given and an active tool supporting schema acquisition to be developed. 

Primitive and Derived classes, Inheritance 

The idea of subsumption and defined concepts might seem, at first glance, extrane
QUS to database environment, where isa relationships between classes must be explicitly 
dedared and a dass description usually represents necessary conditions for the extension 
of a dass, which is explicitly filled with individuals. As a matter of fact, we observe that 
defined concepts present similarities with views in RDBMSs (i.e. virtual relations, com
puted on the basis of base relations), with derived subtypes [5] of semantic data models, 
and with derived types, expressed by horn dauses, in deductive databases. The main 
difference is that such modelling primitives are mainly used at instance level as derivation 
ru/es to fill the corresponding relations (dasses ). 

Furthermore, we observe that both primitive and defined concept semantics are useful 
because, usually, the upper levels of a conceptual schema are constituted by primitive 
concepts (no sufficient and necessary conditions are available), while lower levels are con
stituted by defined concepts. The limited expressivity of both tractable terminological 
formalisms and database models does not often allow the full definition of a dass to be 
given: structural descriptions of KL-ONE have been exduded from concept descriptions 
for computational problems, and derivation rules as weIl as integrity constraints (complex 
necessary conditions) are used at instance level and are often hidden in a program. Never
theless, there is a subset of DB derivation rules and integrity constraints which are already 
available or can be added to terminological formalisms without compromising tractability 

D1J:>artimento di Elettronica, Informatica e Sistemistica - Vi ale Risorgimento 2 - 40136 Bologna, Italy -
Tel: +39 51 644.3550-3548 - E-mail: {sonia,claudio}@deis64.CINECA.lT 
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(dasses disjointedness, constraints on value domains, cardinalities, reference constraints), 
which make the introduction of derived classes (i.e. defined concepts) in databases quite 
convincing. 

Another point is the different perspective on inheritance of the m'ost recent complex 
object database models: at the schema level, we have types and primitive dasses. Types 
denote data structures and extensions, i.e. domains of elements. Classes denote data 
structures and also extensions, i.e. collections of objects in a database. However, the 
extension denoted by a type is fixed and defined by the structure, while the extension of 
a dass is user definable. Therefore the following equations hold respectively for dasses, 
say Cl, C2 , their structures (typ) and types, say Tl! T2 : 

Cl isa C2 =? I( Cd ~ I( C2 ) 

Cl isa C2 =? typ(Ct}:::s typ(C2) 

Tl :::S T2 {:} typ(Td:::s typ(T2 ) {:} I(Td ~ I(T2 ) 

Notice that the :::S relationship, called type rejinement, defined for types is syntactically 
computed in a way very similar to subsumption, and is easily extensible to derived classes. 

By extending database models with derived dasses, and giving them a terminological 
logic formalization, provided we are able to develop complete and tractable subsumption 
algorithms, we can develop an active tool for schema acquisition, preserving consistency 
and minimality of ascherna. Consistency can be guaranteed for a taxonomy of only 
primitive dasses: given a new dass, by subsumption it is possible to compare its descrip
tion with a given dasses taxonomy and detect whether it is incoherent (subsumed by 
the empty dass) and, if so, reject it. A more active role can be played if the taxonomy 
indudes also derived dasses: for a coherent dass description a minimal description (i.e. 
a dass re-written description on the basis of its most specijic generalization classes) is 
computed, thus the dass is placed in the correct position of a taxonomy. In this way, 
equivalence of dasses is recognized, (i.e. different names and (or) syntactic descriptions 
which correspond to the same minimal description "are detected) and redundancies with 
respect to a taxonomy can be avoided. 

Subsumption for Semantic Models 

In [3J it is shown that the data modelling primitives of the best known semantic models 
giving prominence to type constructors (Entity-Relationship, TAXIS, GALILEO) can be 
expressed with the terminologicallanguage :F [,* , whereas the data modelling primitives 
of the models giving prominence to attributes (FDM, DAPLEX, IFO) can be expressed 
with :F ['7nv , which extends :F [,* with inverse roles. :F [,* is defined as follows: 

where V is defined as: 

C, D --+ A I ..... A I C n D I 
\:fR.C I (~nR) 1(:::; nR)1 

\:f At. V I (~ nAt) I (:::; nAd 

V --+ integer I real I string I Vname I 
integer-range I real-range I Vname-range I 
Vname = ((atoml) ... (atom n )) 
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F.c* and F .c;nll indude attributes and value domains semantics, following database tra
dition. It is worth noting that in order to capture the semantic of the most expressive 
semantic models, we had to develop F .c:nll (F .c:nll = F.c* + R-I) whose expressivity is 
equivalent to p.c l , one of the two maximally polynomial languages recently defined [4] 
(F C/nll = p.c l + At). Therefore, for both classes of semantic models, polynomial and 
complete subsumption algorithms can be developed and the goal of guaranteeing consis
tency and minimality of a schema can be achieved. The objective of schema minimality 
is obtained by the definition of minimal description of a dass. Given a dass descrip
tion C and a terminology T, the minimal description of C, say cmd, is expressed as 
emd = Cl n ... n Ci n Cd, with Ci E M SG( C), which is the most specific generalizations 
set, and CD is the difference concept, which can be univocally computed from C and 
M SG( C), as is proved in [3). 

Subsumption for Complex Object Data Models 

Complex objects data models, recently developed in the DB area, are adopted in both 
Object Oriented Databases and Deductive Databases. The following description gener
alizes different models, trying to synthetize the most relevant modelling principles. At 
schema level, we have types and primitive dasses, denoting complex structures and exten
sions. Complex structures are obtained by recursively applying any of the basic construc
tors to types: set ({}), tu pie ([]), sequence( 0). The main difference between types and 
classes, besides the al ready mentioned different extension denotation, is that types denote 
acyclic complex structures, while classes denote complex structures where cycles are al
lowed. At instance level, we have, corresponding to types, complex values and, to classes, 
abstract objects. This distinction generalizes the usual one between the set of base-values 
V (i .e. objects typically hard wired as integers, characters, strings) and abstract objects, 
which must be explicitly introduced. An abstract object must be uniquely identified by 
an object identifier (oid) and has a description, which may change and is a complex value. 
A complex value is created by recursively applying to complex values and oid3 any of the 
basic constructors: set ({}), tuple ([]), sequence(O). Inheritance is represented, for types, 
by the refinement relation and, for primitive classes, by an explicit isa relationship. 

The availability of classes with cyclic description, together with the idea of derived 
classes make the computation of extensions through an iterative process necessary in 
order to reach a fixpoint. Which type of fixpoint is more adequate is still matter of 
discussion: least, greatest, one in between. The choice adopted in [1, 2] is for a greatest 
fixpoint semantics. In fact, the greatest fixpoint tries to classify instances in the most 

specific dass is compatible with the definitions, and thus seems to be more adequate in 
DB environment. 

The idea developed in [1, 2] is to propose a terminologicallogic, allowing cycles, which 
captures the semantics of complex object models, thus permitting polynomial subsump
tion algorithms to guarantee consistency and minimality of ascherna. The main extensions 
with respect to complex object models are: the conjunction operator which permits to 
express inheritance between classes(types) as apart of a class description and derived 
classes. In the following the formalization of the problem as proposed in [2] is shown. 
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Types and Values 

We denote by S(A, B, C, T) the set of all finite type descriptions (S, S', . .. ), also briefly 
called types, over given A, B, C, T, which is defined as follows: 

S -+ BI P I D I T I {S} I (S) I [al: SI!"" ak : Sk] I Sn S' I D. S 

where A is a countable set of attributes (denoted by ab a2," .), B a PTIME base-type 
systeml , C a countable set of class names partitioned in Cp and Cd, where Cp is a set 
of primitive classes (P, PI, .. . ), Cd the set of derived classes (D, D' , .. . ), T a countable 
set of type names (T, T', .. . ), such that C, T, and Bare pairwise disjoint. 

o being the set of object identifiers disjoint from V, we can define the set of all complex 
values over 0, V(O), as the set of values obtained by finitely nesting elements of 0 and 
V with the constructors: Ü, [], O. We assign values to object identifiers by a total value 
function 6 from 0 to V( 0). 

For a given set of ob ject identifiers 0 and a value function 6, the interpretation function 
I is a function from S to 2V(O) such that: 

I[B] = IB[B] I[C] ~ 0 I[T] ~ V(O) - O. 

The interpretation of types is defined inductively for all S, S' E S by the usual interpre
tation of the type constructor Ü, (], (), and as follows for n and D. operators: 

I[S n S'] = I[S] n I[S1 

I[D.S] = {o E 016(0) E I[SJ} 

I[Tc] = O. 

This interpretation function is very general, but what we need is an interpretation of 
classes and types, consistent with their descriptions, denoted as possible instance, and a 
notion of well-formed schema. Further, the presence of cycles in class descriptions, lead 
to select a unique legal instance of a schema. 

Database Schemata and Illstances 

We define a schema (j over S(A, B, C, T) as a total function from CUT to S. We say 
that (j is well-formed if it is type well-founded (types defined using other type names always 
describe finitely nested values) and inheritance well-founded. Further, as inheritance is 
expressed as a conjunction, we can easily define direct inheritance as follows: N E CuT 
inherits directly from N', written N ~N', iff N' compares as a conjunction term in (O'(N)). 
Thus, we can say that a schema is inheritance well-founded iff the transitive closure of ~, 
which is denoted by -<, is a strict partial order. 

We say that an interpretation function I as defined above is a possible instance of a 
schema 0' iff the set 0 is finite, and for all P E Cp , D E Cd, T E T: 

I[P] ~ I[O'(P)] 

I[D] = I[O'(D)] 

I[T] = I[O'(T)]. 

i.~ a countable set of base-type designators which contains V, is complete with respect to conjundion 
n and such that B n B' can be decided in polynomial time. 
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Now, we have to select among the possible instances, with identical 0 which share 
the same b interpretation of primitive classes (denoted as P), one instance, called legal 
instance, which is unique for derived classes, taking into account terminological cycles 
in class descriptions. We define as legal instance of a well-formed schema (j the unique 
greatest instance of P. 

Inheritance, Subsumption, and Coherence 

We can now define a general subsumption relation, written S ~ S' for S, S' E S of a 
schema (j: 

S ~ S' iff I[ S] ~ I[ S'] for all legal instances I of (j. 

In [2] some interesting results on computational properties of coherence (absence of types 
and classes :::: 1.) of a well-formed schema and subsumption computation are shown, spec
ifying a mapping from schemata to nondeterministic finite automata. In particular, the 
two results of the following propositions are relevant to support minimality and consis
tency of ascherna. 

The coherence problem for a well-formed schema (j over S(A, B, C, T) is in PTIME 
if the base-type system is binary compact. 

Moreover, there is a wide class of database schemata which can be transformed into 
equivalent normalized schemata without an exponential increase for which subsumption 
computations can be done in polynomial time. A schema is called normalized iff 

• for all SES, (j(T) does not contain any conjunction, and 

• for all C E C, (j( C) = nPi n 6.S such that S does not contain any conjunction, 
Pi E Cp and 6.S ~ Pi, for all i. 

The subsumption problem for normalized schemata is in PTIME. 
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1 Current Research Interests 

My current work on knowledge representation spans several research topics: 

CLASSIC. My primary focus has been on the CLASSIC Knowledge Representation Sys
tem [1], which we have been developing at Bell Labs over the course of the last several 
years. CLASSIC is a relatively small system intended for use in a limited number of appli
cations; we do not intend it as an all-purpose tool usable in any conceivable application 
(nothing prevents that , it simply doesn't have enough power to be of much use in certain 
high-powered applications, such as natural language understanding). However, we have 
worked hard to make CLASSIC understandable to less-than-expert users; one of our goals 
is to allow this kind of KR technology to be used by non- AI people, and many of our 
design decisions are based on the need for it to be straightforward and easily learnable by 
those not well-versed in knowledge representation research or philosophy. As a result, we 
have kept the representation language uniformly compositional and relatively simple. 

We have completed the design and COMMON LISP implementation of CLASSIC 1.0, 
which has now been reimplemented in C by a Development organization and used in a 
significant application within Bell Labs, as weH as in several courses on knowledge rep
resentation (e.g., University of Pittsburgh, Columbia University). Based on feedback 
from users and applications, we have completed the design of a number of extensions 
to CLASSIC (a role hierarchy, role inverses, more useful rules, etc.), and have begun the 
implementation of the second generation of the system. When we are finished with CLAS

SIC 2 .0, we believe we will have a very usable and reasonably expressive system, and do 
not have plans to keep expanding the representation language. Our main focus will be 
on providing tutorial information for new users, making the system more usable in real 
application situations, and building applications ourselves. While we hope to stabilize 
the representation language, we will need to handle connections with databases, more 
elaborate querying facilities, explanation of reasoning, persistence of CLASSIC knowledge 
bases, and possibly extensibility. We are also currently weH along in the implementation 
of a graphical interface. 
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Extensibility. Alex Borgida and I have been working on an architecture that would 
make classification-based systems extensible in an interesting and efficient way. We have 
modularized and abstracted the general structure of reasoning systems that do classifica
tion, and have specified a set of functions that the user can provide to extend the language 
to handle new constructs (these functions include things like parsing, determining incon
sistency between two constructs of the same type, determining a set of other constructs 
implied by a new one, etc.). Alex has been fteshing out the complete specification of these 
functions, the hooks that need to be placed in the system to allow them to be invoked at 
the right time, and some example novel constructs that can be created and integrated with 
this mechanism. With this approach, the basic system can be sm all and compact, and 
can be extended to different versions without obligating a user to take on the overhead of 
constructs not useful in his application-and without redesigning or reimplementing any 
of the core of the basic system. 

CLASSIC as a Data Model. We are investigating the potential use of CLASSIC as, 
roughly speaking, a semantic data model, allowing a user to impose a more complex, 
object-centered worldview over data stored in a (or many) relational database(s). Peter 
Selfridge has built a prototype system [2] in which the user takes a simple relational model 
of cross-reference relations in software (i.e., what function calls what function) and, with 
CLASSIC essentially extends the schema as he discovers interesting facts and relations in the 
code. We are also exploring a more ambitious version of the same idea in a more business
oriented domain. One thing has become clear in considering these applications-we need 
a serious query language with which to interact with the combined knowledgej database. 
We have designed a set-oriented query facility that integrates CLASSIC expressions in a 
simple manner, does enough of what SQL does to satisfy our users (who are used to SQL 

over INGRES databases), and does some things that the users want but which cannot be 
done in SQL. A query processor for this language has been implemented (by Tom Kirk), 
and we are now experimenting with it. We have also considered the issues of persistence in 
CLASSIC knowledge bases, as weIl as various modes of connection with standard databases. 

2 Discussion Topics 

The topics that I believe are most critical to be discussed by our community are closely 
tied to these current research interests, as weH as to some general concerns about knowl
edge representation work in general, and how we can better address the needs of real users 
of our systems. Here I will break these interests down into three categories: theoretical 
issues, systems issues, and "meta"-issues. I addressed some of these in my keynote talk, 
and several were discussed at the workshop. 

Theoretical Issues. In the last few years, we have been besieged by complexity results 
for various forms of terminological systems. While these results continue to be useful, they 
don't give us much general insight into how to deal with normal uses of terminological 
systems, and when worst cases might arise. 1 It is time to turn our attention to concrete 

lJ should say that the recent comprehensive results presented by Donini, Nutt, et aL, at the workshop 
and at KR'91 are both impressive and insightfuJ. They consolidate many of the individual results we have 
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patterns of use, and real styles of knowledge base, and understand what are the sources of 
computational complexity that will really affect our use of TL systems in practice. I think 
that we still need formal results, and we should avoid handwaving of the "weH, it 's never 
arisen in my experience" sort. But our attention should be focused on "normal" cases, 
under certain sets of well-specified assumptions (what these are will need to be fieshed out, 
of course). Ideas that come to mind include consideration of limited-depth definitions, 
trees of certain shapes, complexity measures for individual term structures (i.e., how 
complex is a given concept?), etc.. Also, if we look more at the detailed algorithmic 
complexity (rather than just computability or NP-hardness) of some of our algorithms, 
we can see in more detail what parts of the input the complexity hinges on. This should 
yield a level of insight not yet achieved with these systems. 

Other issues need careful attention on the theoretical side: 

• sequence and ordering: we have considered some domains where dates and other 
ordering functions play a crucial role. How can we fold partial (and total) orders 
into our standard TL systems? 

• "structural descriptions": this was a critical piece of the original KL-ONE proposalsj 
it is probably time to resurrect it and nail down some formal proposals, with their 
semantics and some understanding of their contribution to overall complexity. 

• metaclasses: we have begun to run into cases where metaclasses are important. It 
probably is not too difficult to fold such things into our basic TL architecture, but 
formal work needs to be done to get this straight. The issue of such classes seems 
to be arising in practice now: Bill Swartout presented his needs at the workshop, 
Alfred Kobsa talked about reification in SB-ONE, and we have seen the need for at 
least aggregate dass information, such as average values of certain roles, in one of 
our applications. 

• query languages: in many applications where a TL-based system operates like or 
with a database, it is impossible to get along with the common lack of languages 
designed for querying. One can imagine extremely interesting query languages that 
combine the best of standard relational languages, languages like SETL, and the 
object-oriented contribution of our term-forming operators. We have begun exten
sive work on such a language, and the workshop indicated that the problem has 
arisen for others as weIl. 

• relation of TL's to type theory: much work in programming languages and databases 
involves complex types that bear a great deal of similarity to our terms. I would 
like to see a detailed analysis of the commonalities and the differences of these 
approaches. 

• on the encouraging side, recent work by Smolka, et al., reported at the workshop, 
shows that important connections to feature logics and constraint logic programming 
seem poised to bear fruit. 

seen over the last few years, and provide important information on wh at the root causes of complexity 
in these languages are. 

30 



Systems Issues. There are many issues that we should be concerned with that involve 
the utility of TL-based systems in the real world. I would like to see serious attention 
given to the issues that arise in trying to use our systems in applications. These might 
include database/knowledge base integration, extensible TL systems, and discussion of 
various types of ABoxes and their integration with the TL system. We might want to 
consider alternate forms of classification (i.e., less purely deductive forms). We might also 
consider the desirability of publication of detailed algorithms for subsumption, classifica
tion, propagation, etc., so that everyone can benefit from advances at the systems level 
made by the numerous projects implementing TL systems. I think we all agree that if 
we can find the right place (probably a journal) to publish such algorithms, the entire 
community would benefit. 

"Meta" -issues. There are a variety of issues that are not particularly technical, but are 
worthy of discussion by our research community. For one thing, I think that our little 
community is thought of as a perhaps small "faction" within the KR community. How 
can we make it clear that our work is not as limited as we sometimes make it appear, 
and that it brings something to the representation task that is complementary to other 
more well-known approaches (i.e., classification)? I think we should make some effort to 
avoid being viewed as a small group of people overly concerned with complexity results in 
severely limited, highly technical formalisms. For my part, in line with discussion at the 
workshop, I plan to write a paper to submit to, say, The AI Magazine, in which I intend 
to point out the impressive breadth of interests and accomplishments represented at the 
Dagstuhl workshop. 

Other issues of a similar nature that come to mind are these: 

• What should the stance of our community be with respect to the recent efforts 
towards "standards" in knowledge representation? Several people attending this 
workshop have been playing key roles in DARPA-sponsored work on sharing knowl
edge bases. Should we as a community take astand? Should we become more active? 
Less active? For now, it looks like many of us will remain active in the "knowledge 
representation system specification" subpart of the community-wide effort. 

• How do we evaluate work in our area? This applies to both our own work, as weIl 
as to the broader KR community at large. 

• There is the ever-lingering issue of how expressive the languages in our systems 
should be. I personally think we need to start thinking about the set of ways a 
knowledge representation system can be-there is a continuum of types of systems, 
ranging from relatively inexpressive to extremely expressive, and that there simply 
is no way to state a set of criteria (with respect to expressiveness) that should nec
essarily apply uniformly to all KR systems. Limited systems have their places, and 
have been quite successful at certain tasks. More expressive systems are needed for 
language applications of certain sorts, perhaps some medical applications as asserted 
by Doyle and Patil, and others. I would like to see us straighten this out once and 
for all , so we can stop the tendency to make global, context-free pronouncements 
on the adequacy of certain KR systems. We should begin to examine the trade-offs 
that affect the character of KR systems, and see what useful points lie on what is 
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clearly a continuum. I must say that good progress on clearing this up was made 
at the workshop, thanks in part to Bob MacGregor and Bill Swartout . 

• Finally, I think it is quite important for us as a community to begin to characterize 
in some detail the types of applications for which classification- or description-based 
systems have been and could be successful. Experience teaching with CLASSIC, for 
example, shows that students keep asking, "what is this good for?" I think we have 
plenty of instances of success that we can point to. I would like to see a compendium 
of successful uses, so that we can show the broader community what they are good 
for, and how they complement other things in wider use. Having a workshop on the 
topic this Fall (in Berlin) is a great step in the right direction. 

3 What's in a Name? 

I would like to make one final comment, with respect to the description of the type of 
system we are all engaged in studying. While "terminologicallogic" has its appeal, and 
is representative of part of what we do, it seems not only too complicated to say, but too 
narrow to characterize our community as a whole. Similarly, "KL-ONE-like systems" has 
a ring of truth to it, but is too limiting. Personally, I believe that the word description 
should play a central role in how we present what we are doing. While description 
logics is still not an ideal label (in part because it seems to virtually leave out work 
on assertion al components), it seems much better to me than the others. Among other 
things, it broadens our community to include interaction with others doing related work, 
but not sharing our literal ancestry (e.g., OMEGA). Since so much of what we do is actually 
about forming, relating, and using descriptions, I think we should give this new term a 
try and see how it works. 
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1 Introd uction 

Many problems connected with the term subsumption language paradigm have so far not 
received a solution. Furthermore, many interesting issues, suggested at the very begin
ning of the history of this subject, havebeen undecided, for various reasons (Brachman 
& Shmoltze, 1985). One of the major assumptions in designing knowledge representation 
formalisms in the KL-One family, was the so-called "intensional representation" intro
duced by Woods (1975) and Brachman (1979). An intensional representation is required 
when two descriptions have to be compared (Bobrow & Winograd, 1977), or when they 
are interpreted by qualitative processes; in other words, many processes can be activated 
by using the global structure of a concept, and by interpreting its pro perties and the re
lationships between these properties (Woods, 1990). 1s this a problem which goes beyond 
the actual goals of a language, in the sense that it lies in the realm of knowledge and is 
domain-dependent, or can it be approached in a very general way, by defining a formal 
semantics of the possible intensional operations which can be specified on a terminology? 
The classic problem of "structural descriptions" has to be seen in this perspective, as weIl. 
It is evident that an adequate representation of a concept involves the specification of the 
relationships existing between its descriptive parts. Structural description was one of the 
most interesting data structures of the classic S1-Nets model, even if it may be considered 
as lying in an unclear position between the conceptual and the epistemologicallevels, with 
reference to Brachman's distinction (1979). Another problem, which is still open, is that 
of the role, of its function and of its meaning. Once, it was considered as a locus where 
many types of processes may be accumulated, such as cardinality and modality. Apart 
from the problems which arise when modality and number are interpreted together, the 
role is a complex link which makes it possible for concepts to interact with one another. 
So, while in certain cases it can be seen as a mere tuple, such as, for instance, in data base 
application of terminologicallanguages, in other cases it must be seen as the point where 
several conceptual processes take place, such as, for instance, in expert systems or in other 
knowledge-based applications ( Cappelli et al, 1983a, Cappelli & Moretti, 1983b, Cappelli 

33 



et al., 1986, Cappelli et al. 1988, Cappelli, 1987, Caracoglia, 1988, Caforio, 1988). As to 
the former, it is sufficient to verify the tuple in the extension of a concept, whereas in the 
latter, it is relevant to interpret the association from a well-defined conceptual point of 
view. In this way, the ontological meaning of a role plays an important role, as suggested 
in Frederking & Gehrke, 1988, Winston et al., 1987). Ontology plays an important role in 
structuring knowledge. In order to create a knowledge base, one must make some assump
tions about what kinds of things there are in the world; in other words, any user needs a 
general grammar for representing knowledge - in the sense of Brachman (1979), a notion 
which has been lost, as claimed in Doyle & Patil (1989), but he must also be guided by 
using constraints depending on the nature of the things being modelled (Lenat & Guha, 
1990, Niremburg & Monarch, 1987). This limits the generative power of the grammar, 
but, in any case, its expressive power increases, since putting together an epistemological 
formalism and a set of ontological constraints makes it possible to account for more subtle 
conceptual facts. 

2 Intensional semantics 

An intensional semantics for a typical terminological language has been designed 
(Mazzeranghi & Cappelli, 1990), which is quite different from the extensional models 
so far proposed (Brachman et al. 1985, Patel-Schneider, 1989, Shmoltze, 1989, Nebel, 
1988, 1990). The semantics of the language is similar to that of data types in program
ming languages. Primitive concepts are denoted by a set of values. Defined concepts are 
denoted by their properties. Adenotation thus contains the minimum number of prop
erties which are required for an individual to be an instance of a generic concept. More 
precisely, the denotation is the Cartesian product of the sets denoting the properties of 
the generic cuncept (deduced from its syntax). A role is denoted by a function which, 
given a tuple, returns the values of the property which individuates the role. In general, 
in any hybrid system, the assertional component is procedural, since it allows a user to 
make assertions about the individual concepts (creation of individuals, link of individuals 
by roles, etc.), by updating an assertional knowledge base. This approach has certain 
consequences, such as, for instance, that a user has to know the entire history of the 
KB, since any individual is characterized by the entire sequence of declarations, and no 
constraints exist in order to control the use of the KB, so that the probability for a KB 
to become inconsistent increases with its dimension. Different results can be achieved if 
a functional approach based on the intensional semantics is adopted. An individual is 
created by instantiating the properties of the relative generic concept, used as a guide. As 
a result, this process creates a tuple whose elements are the instantiating properties. The 
instantiation chain terminates by instantiating primitive concepts on the basis of their 
denotation. Certain extensions have been introduced into the assertional component in 
order to make it possible to use it more easily way, such as the following: 

• Declaration of individuals 

• Properties of individuals specified by using their names 

• Properties of individuals specified incrementally 
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A deeper integration between the entire system and any programming language can be 
reached, which implicitly gives rise to an object-oriented system. In other words, it is 
possible to introduce an individual concept into a programming language, like any other 
data type. For instance, an individual concept is passed to a function as a parameter; 
on ce it has been verified that this individual is an instance of a generic concept, or 
of one of its subconcepts, the function will be executed. For this aim, it is required 
that the identifiers of the programming language can be used as identifiers of individual 
concepts. The system has to expand the identifiers with their definitions which have 
been evaluated in a different environment. Consequently, the system can assurne different 
behaviours: functional or procedural in accordance with the use of the programmming 
language identifiers. Furthermore, an increase in the expressive power is obtained, since it 
makes it possible to give a formal meaning to all kinds of recursive definitions of individual 
and generic concepts. For instance, by using an indirect recursion, the concepts of husband 
and wife can be defined as folIows: 

HUSBAND=(and HUMAN-BEING 
(all wife WIFE) 
(atleast 1 wife) 
(atmost 1 wife)) 

WIFE=(and HUMAN-BEING 
(all husband HUSBAND) 
(atleast 1 husband) 
(atmost 1 husband))) . 

3 Structural descriptions 

Structural descriptions are considered as an object-oriented programming tool. More 
precisely, a function or a procedure can use the roles of a describing concept in order to 
refer to the roles of a described concept. For instance, a function can be written in order 
to calculate the height of any object composed of two parts, one of which is on the other, 
simply referring to the roles "is-on" and "is-under" of a previously defined concept "ON". 
This function can be applied to any individual, whose generic concept has been previously 
defined by using the concept "ON", such as, for instance a TABLE, which is composed 
of a board and four legs, or a HOUSE, which is composed of a roof and certain walls. A 
new form of inheritance by structural descriptions is thus realized. 

4 Integration between epistemology and ontology 

The properties of a concept playarelevant role from an intensional viewpoint, in the 
same way as types of concepts are essential if we look at the uni verse as a map of com
plex descriptions interacting one with the other. Such facts can be specified by using 
notions such as, for instance, sortal concepts, or natural, nominal and artifact concepts 
as defined in the psychological paradigm (Cappelli & Catarsi, 1990; Keil, 1979, 1989; 
Smith & Medin, 1981; Wiggins, 1980), or ontological notions, such as substances and 
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accidents, genus, eidos, etc (Simons, 1983). Experiments about the relationships between 
epistemology and ontology are now being carried out, in the aim of both investigating the 
ontological adequacy of certain SI-Nets data structures and integrating epistemological 
tools with ontological constraints. Classical SI-Nets formalism accounts for many onto
logical facts, for instance the representation of hierarchies and properties of concepts can 
easily be translated into concepts, roles and cables. However, descriptions of objects need 
to be further specified from a conceptual point of view, in particular when a description 
is given in the aim of specifying global constraints which control the application of inten
sional functions A constructive formal apparatus is thus realized in which epistemology, 
a la Brachman, and ontology are integrated. A system has been created in which the 
representational tools based on intensional semantics interact with an ontological repre
sentation of a portion of universe; in this way, a user can create a knowledge base by using 
this representation as a guide, imposing constraints on the descriptions of items and their 
insertion into the network. 

References 

• Bobrow D. G., Winograd T., An Overview of KRL, a Knowledge Representation 
Language, Cognitive Science, 1 (1977). 

• Brachman R. J., On the epistemological status of semantic networks, in N. Findler 
(ed.), Associative Networks: Representation and Use of Knowledge by Computers, 
New York: Academic Press, 1979: 3-50. 

• Brachman R. J., Fikes R. E., Levesque H. J., An essential hybrid reasoning sys
tem: knowledge and symbol level accounts in KRYPTON, in Proceedings of the 9th 
International Joint Conference on Artificial Intelligence, Los Angeles (Ca): Kauf
mann,1985: 532-539. 

• Brachman R. J., Schmolze J. G., An overview of the KL-ONE Knowledge Repre
sentation System, Cognitive Science 9 (1985). 

• Cappelli A.,Catarsi M. N. , The Role of Ontology in Structuring Knowledge, ILC
KRS-1990-4, Pisa, 1990. 

• Cappelli A., Moretti L., Vinchesi C., KL-Conc: a Language for Interacting with an 
SI-Net, in Proceedings of the 8th-IJCAI Conference, Los Altos: Kaufmann, 1983. 

• Cappelli A., Moretti L., An Approach to Natural Language n the SI-Nets Paradigm, 
in Proceedings of First Conference of ACL-Europe, Pisa, 1983b. 

• Cappelli A., Caracoglia G., Moretti L., A Chunking Mechanism for a Knowledge 
Representation System, Cybernetics and Systems, 17 (1986) pp. 277-287. 

• Cappelli A., Semantic Networks and Natural Language Understanding, in "Research 
and Development in Language Processing" Paris December 7-11, 1987. 

36 



• Cappelli A., Moretti 1., Pagni F., Verso la costruzione di una base di conoscenza 
per un sistema di aiuto ad un esperto in radioprotezione, in Atti deI Congresso 
Internazionale "Informatica e regolamentazioni giuridiche", Roma, 1988. 

• Caracoglia G., Skill Acquisition in a Knowledge Representation System, in Pro
ceedings of the Third International Symposium on Knowledge Engineering, Madrid, 
1988. 

• Caforio M., A Network Search Approach Based on the Chunking Mechanism, in Pro
ceedings of the Third International Symposium on Knowledge Engineering, Madrid, 
1988. 

• Doyle J., Patil R. S., Two Dogmas of Knowledge Representation: Language Re
strictions, Taxonomie Classification, and the U tili ty of Representation Services, 
MITjLCSjTM-387.B, Cambridge (Mass.), 1989. 

• Frederking R. E., Gehrke M., Resolving Anaphoric References in a DRT-based Di
alogue System, in H. Trost (ed.), 4 Osterreichische Artificial- Intelligence-Tagung, 
Springer,1988, 94-103. 

• Hobbs J.R., Croft W., Davies T., Edwards D., Laws K., Commonsense Metaphysics 
and Lexical Semanties, Computational Linguistics 13 (1987). 

• Keil F . C., Semantic and conceptual development, Cambridge (Ma.): Harvard Uni
versity Press, 1979. 

• Keil F. C., Concepts, Kinds, and Cognitive Development, Cambridge: MIT Press, 
1989. 

• Lenat D. B., Guha R. V., Building Large Knowledge-Based Systems, Representation 
and Inference in the Cyc Project, Reading (Ma.): Addison-Wesley, 1990. 

• Mazzeranghi D., Cappelli A. An Intensional Semantics for a Terminological Lan
guage, ILC-KRS-1990-5, Pisa, 1990 . 

• Nebel Bernhard., Computational Complexity of terminological reasoning in BACK, 
Artificial Intelligence, 34 3 (1988): 371-383. 

• Nebel Bernhard., Reasoning -and Revision In Hybrid Representation Systems, 
Berlin: Springer Verlag,1990. 

• Niremburg S., Monarch 1., The role of Ontology in Concept Acquisition for 
Knowledge-Based Systems, Carnegie- Mellon University, Pittsburgh, PA, 1987. 

• Patel-Schneider Pet er F., Undecidability of subsumption in NIKL, Artificial Intelli
gence, 39 2 (1989): 263-272. 

• Schmolze James G., The Language and Semantics of NIKL, Technical Report 89-
4, Department of Computer Science, Tufts University, Medford, Mass., September 
1989. 

37 



• Simons P., A Lesniewskian Language for the Nominalistic Theory of Substance and 
Accident, Topoi 2 (1983): 99-109. 

• Smith E. E., Medin D. L., Categories and Concepts, Cambridge (Mass.): Harvard 
Univ. Press, 1981. 

• Wiggins D., Sameness and Substance, Oxford: Basil Blackwell, 1980. 

• Winston M. E., Chaffin R., Herrmann D., A Taxonomy of Part-Whole Relations, 
Cognitive Science 11 (1987), 417-444. 

• Woods W. A., What's in a link: foundations for semantic networks, in Bobrow and 
Collins (eds.), Representation and Understanding: Studies in Cognitive Science, 
New York: Academic Press, 1975: 35-82. 

• Woods W. A., Understanding Subsumption and Taxonomy: A Framework for 
Progress, TR-19-90, Harvard Univ. Center for Research in Copmputing Technology, 
Cambridge (Mass.) 1990. 

38 



Tractable Concept Languages 

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi 
Dipartimento di Informatica e Sistemistica, 

Universita di Roma "La Sapienza" 

via Salaria 113, 1-00198, Roma, Italy 

e-mail: {donini ,lenzerini ,nardi }@vaxrma.infn.it 

Werner Nutt 
Deutsches Forschungszentrum für Künstliche Intelligenz 

Postfach 2080, D-6750 Kaiserslautern, Germany 

e-mail: nutt@dfki.uni-kl.de 

Concept languages provide a means for expressing knowledge about hierarchies of 
concepts, i.e. classes of objects with common properties. They have been investigated 
following the ideas initially embedded in many frame-based and semantic-network-based 
languages, especially the KL-ONE language [2] . In contrast to earlier formalisms, concept 
languages are given a Tarski style declarative semantics that allows them to be conceived 
as sublanguages of predicate logic [8]. 

The basic reasoning tasks on concepts are unsatisfiability and subsumption checking. 
A concept is unsatisfiable if it always denotes an empty set. A concept C is subsumed by 
a concept D if C denotes always a subset of D. Since the performance of any application 
developed using concept languages will heavily rely on the above reasoning tasks, it is 
important both to characterize their computational complexity and to devise algorithms 
as much efficient as possible. 

Recent results allow us to draw a fairly complete picture of the complexity of a wide 
dass of concept languages [3, 4, 9] . Such results have been obtained by exploiting a 
general technique for satisfiability checking in concept languages. The technique relies on 
a form of tableaux calculus, and has been proved extremely useful for studying both the 
correctness and the complexity of the algorithms. 

The work reported here is concerned with the design of concept languages including 
the most powerful set of constructs, while retaining the tractability of subsumption, in 
particular extending the basic polynomial language F.c- [1]. If C and D denote generic 
concepts of F.c-, and R denotes a role, F.c- includes the following constructs: 

{ 

C n D conj unction of concepts 
F.c-: V R.C universal role quantification 

3R unqualified existential role quantification 

Various extensions of F.c- with a polynomial subsumption problem have al ready been 
considered: 
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• FC- + role concatenation R 0 Q (also called role chaining, see [1]); 

• FC- + concept formed by imposing number restrictions on roles (2: n R), (~ n R) 
(see [7]); 

• FC- + role conjunction Rn Q (see [7]); 

• FC- + negation of primitive concepts ...,A (see [9]). 

We considered concept languages obtained by combining constructs chosen from the 
ones presented till now, plus the following ones: union Cu D, qualified existential role 
quantification ~R.C, negation of general concepts ...,C, inverse roles R- l

• We did not 
consider any syntactic restriction on the possible combinations of the chosen constructs
i.e. we considered only fully compositional concept languages. 

The result of our work is the definition of two new extensions of F C-, called P Cl 
and PC2 • We show that subsumption in both languages can be solved in polynomial 
time. Moreover, they are maximally expressive, in the sense that none of the constructs 
previously considered can be added to them without losing tractability. It is interesting 
to notice that both languages include the construct for inverse roles, which has not been 
considered up to now in tractable languages. 

In particular, P Cl extends F C- in the following way: 

1 
C n D, VR.C, ~R (the language FC-) 

PC . ...,A negation of primitive concepts 
1· (2: n R), (~ n R) number restrictions 

R- l inverse roles 

P Cl can be therefore considered maximally expressive relative to the costructs available 
for concepts. 

On the other hand, P C2 extends F C- as follows: 

1 
CnD,VR.C,~R (the language FC-) 

P C . R n Q role conj unction 
2 . R 0 Q role concatenation 

R-l inverse roles 

P C2 can be therefore considered maximally expressive relative to the costructs available 
for roles. For a detailed description of P Cl and P C2 see [5]. 

The question arises about how many other maximally expressive tractable languages 
can be obtained by extending FC- with the above constructs. With regard to this point, 
we can state an interesting property of the two languages proposed: let L be a concept 
language extending FC- with any combination of the constructs presented above; if the 
subsumption problem in L is tractable, then the set of constructs of L is either a subset of 
those ofPCl or a subset of those ofPC2• There is only one exception to this statement, 
namely the language extending F C- with both role chaining and number restrietions. 
This exception is currently under investigation. 

As a conclusion, we want to comment on the results of the research on the computa
tional properties of concept languages by means of the satisfiability checking technique. 
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We think that the outcomes of this body of research go far beyond a mere complexity 
analysis. In particular, they shed light on three basic aspects related to the use of concept 
languages in knowledge representation. 

• First of all , since the complexity of both satisfiability and subsumption depends upon 
the constructs allowed in the language, they provide a useful framework for the study 
of the trade-off between the expressive power of the languages and their inherent 
complexity, which was the initial motivation of the seminal work by Brachman and 
Levesque [6]. 

• Secondly, the design of concept languages can now be realized through the appli
cation of the above mentioned technique, which provides an algorithmic framework 
that is parametric with respect to the language constructs. 

• Thirdly, the study of the computational behaviour of concept languages has led 
to a clear understanding of the properties of the language constructs and their 
interaction. This knowledge about the structure of concept languages can thus 
be used in the design of intelligent reasoning procedures, that-by looking at the 
form of concepts-can reason about the deductive service, for example estimating 
the difficulty of performing the required deduction, attempting to provide quick 
answers to subproblems, or trying possible simplifications of the problem. 
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YAK [6] is a hybrid KR system, and in its foundations is similar to Classic [3] and 
Loom [8]. The core of the system is a "traditional" TBox/ ABox hybrid representation 
language (with some peculiarities), enhanced, possibly in a "principled" fashion, with 
other hybrid modules representing different kind of knowledge and reasoning. The sys
tem, fully implemented in CommonLisp (and with an optional graphical user-interface 
machine-dependent), is the main knowledge representation module of the ALFresco nat
ural language system, a multimodal dialogue prototype for the exploration of Italian art 
history. 

The expressivity of the YAK TBox comes out from a study about the balancing of 
expressiveness, functional adequacy and formal properties of deductive procedures. It has 
been shown in [5] how some constructs - though enhancing expressive power and still 
maintaining tractability - do not give an intuitive behaviour to the language, from the 
point of view of both meaning and calculus. 

The classifier provided within the YAK system has a tractable, sound and complete 
algorithm. Moreover the classifier is speeded up by a caching mechanism and an intelligent 
name expansion scheduling, borrowed from the tabular approach used in nondeterministic 
natural language parsers. 

The ABox is a simple object oriented language, just like Classic: individuals are 
instances of concepts and incomplete descriptions are allowed. The query language has 
the same expressive power of the individual description language, with one variable. 

2 Extending Hybridity 

I quote James Schmolze [11] because I believe that this position is still of great topical 
interest: 

Terminological systems must fit within larger representational frameworks. It 
is therefore time to assess how weil previous and current KR systems have 
integrated terminological, (grounded) propositional, equational, rule- based 
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and other representations and reasoners. ( ... ) it is important to address the 
larger context in which such systems are placed and used. 

Motivations and new ideas for the KR field often are originated within the naturallan
guage processing community. Prototypical knowledge for prediction in natural language 
understanding [7], belief representation for user modeling in a multi-agent dialog [2], rea
soning about sets to handle conjunctions, plurals and natural quantifiers [1], reasoning 
about time relations [12] [10] are some aspects that we have taken into consideration. 
We are also exploring the possibility of reasoning in a coherent way with procedural at
tachments (following Classic) and production rules [14], and of using Weyhrauch's FOL 
system as an alternative ABox [4]. 

Within the framework of a complex hybrid architecture supporting multiple reasoning 
modalities, several aspects must still be addressed. The need of a greater expressivity to 
represent complex relations in naturallanguage should be considered a major topic in the 
KR research - see, as an example, the KODIAK system [13]. Another important issue 
concerns the inference control procedure in the assertional component, as far as a single 
condusion can arise out of different modalities which have different import. In these cases 
a belief revision mechanism [9] is central in order to manage nonmonotonic effects. 

2.1 Prototypes 

In this research project [7] the problem of instance recognition within an extended hy
brid knowledge representation system is addressed. Structural aspects of concepts are 
represented at two separate levels, the terminological and the prototypical; individuals 
are expressed in the frame-based assertional component. The hybrid reasoning mecha
ni sm recognizes the type of the individuals with respect to the terminology, making use 
of reasoning wi th prototypes. 

Basic ideas are shared with the so called Dual Theory about the mental representation 
of concepts. Within this theory concepts have a twofold representation: a "core descrip
tion", useful for compositional meaning, and an "identification procedure" for typical 
instance recognition. Our own realization of such a distinction is that the core strictly 
defines the necessary and sufficient properties for the concepts (only the necessary ones 
in the case of primitive concepts), while the identification procedure is a similarity mech
anism that works over a collection of perceptual and functional properties. We call such 
a collection the prototype for that concept. Within the identification procedure a "si mi
larity model" is introduced that describes the probability rating that an object belongs 
to a dass, supported by the similarity that the object shares with the prototype of that 
dass. 

The hybrid reasoning mechanism we propose extends the recognizing process of in
dividuals in the assertion al component. It makes use of the terminological knowledge 
to derive a first type assignment for the individual. This attribution is successively im
proved by comparing the description of the individual (via the similarity mechanism) to 
prototypes stored in the prototypical component. Prototypical knowledge is linked to 
appropriate names in the terminology through primitive concepts. 

The apparatus distinguishes between qualitatively different information and yet can 
deal with the problem of preferences among the results of similarity-based reasoning. 
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2.2 BeHefs 

This work is the attempt to import into the hybrid framework the ideas about relevant 

beliefs of [2]. The goal is to model an artificial agent - the system - which reasons 
subjectively about the beliefs of other agents in communication with hirn, in addition to 
its own beliefs. 

The knowledge base has been partitioned into viewpoints each one representing a 
set of complex nested beliefs, i.e. what the system believes the agent A believes the 
agent B believes ... about some topic. Topics are simply individual descriptions (or, more 
generally, ABox propositions) present in the viewpoint. A topic is believed with respect 

a viewpoint if it is logically implied by the knowledge directly stated in the viewpoint 
or if it is entailed by ascription. The ascription mechanism tests the truth value in the 
"preceding" viewpoints according to a "particular" order; the process faUs if at some point 
a contradiction is detected. The relevant beliefs theory presents a method concerning the 
ascription mechanism for determining whose beliefs are relevant in generating nested 
beliefs and in what order are they relevant. 

Within YAK a 3-values - true, false, unknown - hybrid retrieval function (believe?) 
has been implemented, which recursively checks the logical implications and the contra
dictions in the nested viewpoints. 
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I would like to briefly present in this paper an approach wich deviates from the 
mainstream of current KL-ONE-like systems, but which still takes the original 
motivations of KL-ONE as the main source of inspiration. This approach has evolved 
in 5 years th:ough two implemented systems, DRL [Guarino 88, 89] and I1L [Guarino 
91a], and it has now gained enough maturity to show its substantial differences with 
respect to "standard" tenninologicallanguages. I will present here these differences in 
an extremely concise way, trying to relate them to the discussions made at the 
workshop. 

A commitment to terminologies 

One of the main characteristics of!TL is the fact that the objects of interest are 
not generic descriptions, but defmed terms. Terminological knowledge, in our opinion, 
is mainly knowledge about terms, iniended as lexical items. The knowledge about a 
term is expressed as a set of taxonomic relations with other terms, which are interpreted 
assertionally. This means that it is not possible to speak of, say, black telephones 
whithout having introduced the term black-telephor..e: 

a telephone Xis a black-telephone if color ufX := [black}. 
color of any black-telephone := [black}. 

The reason of this choice is the desire tc "broken" a concept description into its 
basic constituents, Le. its necessary and/or sUl,'5cient conditions regarding roles. Of 
course, the resulting expressive power is not lower than that of standard languages, 
since any generic description may be given an ad-hoc concept name; the difference is 
that, given a cenain terminology, the number of concepts which may be formed (and 
therefore appear within queries) is much more restricted. 

Definitions vs. descriptions. 

The result of the previous choice is afine granulariry, which allows for a great 
flexibility for expressing incomplete or redundant information about a given term. 
Taking an example reponed in [Woods 90], the knowledge about the term triangle may 
be expressed by the following set of statements: 

arry triangle is a polygon. 
(numberofside) ofany triangle := [3}. 
(numberofangle) ofany triangle := [3}. 
a polygon Xis a triangle if number of side ofX := [3}. 
a polygon X is a triangle ifnumber of angle ofX := [3J. 

These statements represent a (potentially incomplete) description of a triangle, 
not adefinition. Current tenninologicallanguages may represent panial descriptions by 
adding so-called "roles" to definitions in order to express only-necessary conditions, 
but, as observed in [Doyle&Patil 911, they are not able to deal with alternate sufficient 
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conditions. Of course, this kind of problems are imponant for those applications where 
it is necessary to deseribe a relatively stable domain (Le., to represent its apriori 
organization), while they are less imponant for those applications where it is necessary 
to "organize a large set of objects that can naturally be represented in terms of features 
or roles" [Brachman&al. 90]. In my opinion, it is not just by chance that the major 
applications reponed by the CLASSIC and LOOM groups belong to the lauer category: 
surprisingly enough, the task of eapturing the meaning of an object like a lex.ical item, 
which was one of the main targets of KL-ONE and KRYPTON, turns to be hard for 
tenninologicallogics. 

Attribute-concepts as "vivid" entities 

If roies contribute to the meaning of a concept by eonditions which they have to 
satisfy, it is not necessary to introduce terms like (all R C), (some R), (atleasr N R), 
whose only purpose is to contribute to the meaning of a definition in a compositional 
way. In my opinion, they denote anificial eoneeprs, lacking a "vivid" relationships with 
objects of interest in the domain. For instance, I can.:~ot see how something like (all 
ehild doetor) can denote an object so relevant to deserve a specific construct in the 
language; I even doubt whether it can be called a eoneepr in a cognitive sense. As we 
know, the reason of the introduction of these terms is merely technical: they allow us to 
express concepts in a nice compositional way. But if we turn to conditions, their 
necessity disappear and some more vivid entity is necessary: attribute-concepts. For 
instance, the contribution of (all ehild do;-:ror) to the meaning of the concept 
parent_of_doetors = (and person (all ehild doetor)) splits into two separate conditions: 

any ehi!d 0/ a parent _ 0/_ doetors has ro be a doetor. 
i/ any ehild 0/ a given person is a doetor, then rhis person is a parent_o/_doerors. 

The conceptual entities which appear in the two conditions are ehild 0/ a 
parent_o/_doetors and ehild 0/ a given person: both seems to be entities relevant 
enough to deserve a term. In !TL, the former ; 5 already a term, while the lauer 
corresponds to the non-ground term ehild 0/ a pe .-son X. What is interesting is that 
these terms denote eoneepts.' in this way a neces~ary condition expressing a value 
restriction for a role can be represented homogenously to an explicit subsumption 
between concepts. There is therefore no need for a proliferation of concept-forming 
constructs. 

Individuals vs. concepts 

Bill Swartout raised at the workshop the issue of those concepts which, in 
cenain cases, may be also seen as individuals. A good example may be teaeher, which 
may be seen as a subconcept of person as weH as an instance of job. Under this 
respect, In is very similar to OMEGA in the fact that there is no a-priori distinction 
between the two kinds of entities: the relevant distinction is between different ways to 
re/er to a given obiecl. Opaque references penain to objects seen in a collective way, 
i.e. "individuals", while transparent references penain to objects seen in a distributive 
way, i.e. concepts or classes. The presence or absence of determiners represent the 
syntactical tool used to implement this distinction. The result is a language where the 
object level and the meta level are "amalgamated". 

It was argued at the workshop that this approach may be too expensive with 
respect to the real needs of applications, and that some ad-hoc solution may be 
desirable. I present here three arguments in favour of the introduction of 
opaque/trasparent references in ITL. 
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First, number restrictions can be expressed as propenies of objects, without any 
need for ad-hoc constrUcts: 

number olpope := [1]. 
nwnber 01 child 01 bob := [3J. 
a person X is a parent if the nwnber 01 child 01 X is a [ 1 . .]. 

Second, opaque references may be useful to solve some classical puzzles 
involving intensionality, like McCanhy's example of Mike's telephone number. We 
show in [Guarino 91 a] that the practical need for intensionality is not limited to 
sophisticated linguistic applications, but plays a fundamental role for the representation 
of common-sense knowledge regarding change, causation and functional descriptions. 
Consider for instance the following statements: 

replaeed.(keyboard olthe macintosh oljohn). 
replaeed((keyboard 01 the macintosh 01 john):~. 
inereased.(temperarure 01 liquid#3). 
eauses( decrease 01 quantiry oloU, increase 01 temperanue 01 engine). 

Finally, the distinction between opaque anc. trasparent references gives us the 
possibility to implement some fonn of eomputational rej/ection, in the sense of 
[Maes&Nardi 88]. 

Ontological adequacy 

Some time was spent at the workshop on the issue of ontology. Most of us 
agn .1!d on the crucial role of ontology for building large, reusable (and therefore 
vaiu..ible) knowledge bases. What is an open issue is the impact of the ontological 
choices on the particular knowledge representation formalism used. In my opinion, we 
can deHne three levels of increasing ontological commionent, which are briefly 
de :cribed below. In [Guarino 91a], I argue that only a language which satisfies the 
co;· :litions associated to the three levels can be defined as omologicaily adequate. 

1. Qntolo~ieal discipline. At this level, the language is neutral with respect to 
the ontological choices, but some guidelines are given to the user in order to build well
founded knowledge bases. These guidelines should address basic distinctions such as 
concepts vs. roles, concepts vs. individuals, and terminological vs. non-tenninological 
knowledge, while proposing some naming conventions as weH. Some high level, 
"disciplined" ontologies for various domains may be offered as an example to the users 
community. In [Guarino 89] and [Guarino 91b] I discuss some of the above mentioned 
distinctions. 

2. Constrained semanties. Formal semantics of current knowledge 
representation languages usually accounts for a set of models which is much larger than 
the models we are interested in, i.e. real world models. As a consequence, the 
possibility to state something which is reasonable for the system but not reasonable in 
the real world is very high. In [Guarino 91a] I propose a semantics which is not neutral 
with respeet co some basic ontological asswnptions. Examples of these assumptions are 
the Attribute Consistency Postulate any X 01 Y is a X and the avoidance of an a-priori 
distinction between concepts and individuals. 

3. Fine eranuLarjry. An ontologically adequate language should be able to 
express knowledge about the ontological nature of the link existing between an object 
and its attributes. This is especially imponant for what 1 call non-relational attributes, 
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3. Fine iranularity. An ontologically adequate language should be able to 
express knowledge about the ontological nature of the link existing between an object 
and its attributes. This is especially imponant for what I call non-relational attributes, 
which mainly denote parts or possessions, since their name cannot be uniquely related 
to the nature of the ontological relationship involved: a book, for instance, may be a 
member of a collection as weH as apossession of aperson. A possibility to speak of an 
objectlattribute link may be its reification, as in Meta-SB-ONE [Kobsa 91]; another 
possibility is represented by ITL attribute-concepts. 
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Research in knowledge representation led to the development of terminologicallogic~ 
[18], which mainly originated from Brachman's KL-ONE [4]. In such languages, the ter
minological formalism (TBox) is used to represent a hierarchy of terms (concepts) whicb 
are partially ordered by a subsumption relation: If concept B is subsumed by concept A. 
then the set of B's real world objects is necessarily a subset of A's world objects. In thi~ 
sense, the semantics of such languages can be based on set theory. Two-place relatiom 
(roles) are used to describe concepts. In the case of defined concepts, restrictions on role~ 
represent both necessary and sufficient conditions. For primitive concepts only necessar) 
conditions are specified. The algorithm called classifier inserts new generic concepts at 
the most specific place in the terminological hierarchy according to the subsumption re· 
lation. Work on terminological languages further led to hybrid representation systems 
Systems like BACK, CLASSIC, LOOM, KANDOR, KL-TWO, KRYPTON, MESON, SB-ONE, ane 
YAK (for an overview and analyses see [14, 21]) make use of aseparation of terminologica 
and assertion al knowledge. The assertional formalism (ABox) is used to represent asser· 
tions about the real world. The mechanism to find the most specific generic concept ar 
object is an instance of and to maintain consistency between ABox and TBox is calle( 
the realizer. 

Since, on one hand, the idea of terminological representation is essentially based 01 

the possibility of defining concepts (or specifying at least necessary conditions), the das 
sifier can be employed to draw correct inferences. On the other hand, characterizin/ 
domain concepts only by definitions can lead to problems, especially in domains when 
certain important properties cannot be used as part of a concept definition. As argue( 
by Brachman [2] this may be the case in "natural" environments (in contrast to "techni 
cal/mathematical" environments). The source of the problem is the fact that in natura 
environments, besides their definition terms can only be characterized as having furthe 
typical properties or properties which are, for instance, usually true. If typical proper 
ties are (mis- )used to formulate definitions, this can lead to problems concerning multipl 

inheritance. 1 However, in the real world such properties often are only tendencies, i.E 

"This work has been carried out in the WIP project which is supported by the German Ministry fo 
Research and Technology BMFT under contract ITW 8901 8. 

lOne example commonly used to highlight these problems is known as the "quaker example": quaker 
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republicans "usually" are non-pacifist, for example. Tendencies as well as differences 
in these tendencies cannot be considered in the framework of term definitions. Several 
attempts have been made to cope with these observations. 

Considering "typical" properties led to nonmonotonic inheritance networks, and may 
be viewed as "cancellation of inheritance links" or "assurne to be true unless told other
wise" [26, 2, 6, 7, 17, 23] . These approaches work well if exceptions are explicitly known. 
However, in the case of conflicts the results can be unsatisfactory (i .e., the "multiple 
extension problem", compare e.g. [20]). 

A solution concerning "usually true" properties is proposed by Shastri [25]. He offers 
a language to represent empirical information about properties of hierarchically ordered 
concepts. This empirical knowledge is used instead of definitional roles. His system 
works weil in the case of exceptions and also for ambiguities. However, the system is 
built for handling a large amount of statistical data and is not constituted to consider 
terminological and statistical incompleteness. Other related work can be found in [19, 1, 
15, 16, 22]. 

In all these proposals an algorithm comparable to the classifier for maintaining the 
consistency of the terminology and for reorganizing it according to implicitly existing sub
sumption relationships does not exist because concepts cannot be defined by necessary 
and sufficient conditions. The importance of providing an integration of both term clas
sification and uncertainty representation was recently emphasized in [11, 27].2 Yen and 
Bonissone [27] consider this integration from a general point of view which, for instance, 
does not require a concrete uncertainty model (e.g., probabilistic, fuzzy, Dempster-Shafer 
[12, 13]), while in [11] specific properties of an integration are demonstrated based on a 
concrete probabilistic model. 

We propose an extension of terminologicallogics which allows to handle the problems 
discussed above [9, 10]. The extension maintains the original performance of drawing in
ferences on a hierarchy of terminological definitions. It enlarges the range of applicability 
to real world domains determined not only by definitional but also by uncertain knowledge. 
First, we briefly introduce .ACe [24], a propositionally complete terminological language 
containing the logical connectives conjunction, disjunction, negation, as weil as role quan
tification. By keeping the TBox semantics, which is based on term descriptions, we are 
able to use the classifier for extending and reorganizing the terminology. We extend .ACe 
by defining syntax and semantics of probabilistic implication (p-implication), a construct 
which is aimed at considering non-terminological knowledge sources and is based on a sta
tistical interpretation. In particular, .given two concepts Cl and C2 , the interpretation of a 

p-implication Cl ~ C2 is given by the relative cardinality p 1f [[Cl n C2 ] : I : [[Cl] : 
where [ maps every concept description to a subset of 2v and every role to a subset of 
2vxv , with n denoting concept conjunction and 'D being the domain of discourse. 

As demonstrated, on the basis of the terminological and probabilistic knowledge cer
tain consistency requirements have to be met. Moreover, these requirements allow to infer 
implicitly existent probabilistic relationships and their quantitative computation [11, 5) 

are pacifist, republicans are non-pacifist, and Dick is known to be both quaker and republican. The 
attempt to answer the question about Dick's pacifism results in the detection of a contradiction. 

2Brachman [3] considers "probability and statistics" as one of the "potential highlights" in knowledge 
representation . 
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(see [1] for a logical formalism dealing with qualitative statistical information). By ex
plicitly introducing restrictions for the ranges derived by instantiating the consistency 
requirements, also exceptions can be handled. In the categorical cases this corresponds to 
overriding of properties in nonmonotonic inheritance networks. 

Consequently, our probabilistic extension of terminological logics takes into account 
uncertain knowledge arising when certain properties are e.g. usually true but not defini
tional. Probabilistic implication opens the way to an integration of strictly definitional 
knowledge and the possibility to model exceptions, which do no longer appear as contra
dictions [2], but as a set of weaker inequalities that guarantees the consistency of prob
ability assignments. By separating terminological and probabilistic knowledge, processes 
maintaining the consistency of the terminological part remain operational. In fact, proba
bilistic consistency heavily depends on correct terminological subsumptions as established 
by the classifier. 

Current investigations [9] are related to the further refinement of the rules for test
ing consistency and to the consideration of assertional (ABox) knowledge. The second 
aspect however has as consequence that two different semantics of probabilities have to 
be integrated, i.e., we have to cope with both universal (statistical) statements involv
ing probabilities over domains and assertions describing particular degrees of belief by 
means of probabilities over possible worlds [8]. Furthermore, the way assertions about 
the real world are taken into account becomes different from classical hybrid representa
tion systems: even if an instance is known to belong to a concept "with certainty", its 
belonging to other concepts may become uncertain. So, our framework of terminological 
and probabilistic knowledge requires an extension of the "classical" realizer. 
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Work in the area of terminological logics (TL) has always been accompanied by theo
retical analysis of the worst case behavior of the respective inference algorithms. Recent 
results, however, suggest that investigations on average or normal case behavior of TL 
systems are required to estimate the practicability of the terminological approach. A 
system's behavior is determined by a number of factors including the completeness of the 
designed algorithms, decisions made when actually implementing them, and the structure 
of the underlying data depending on the particular appLication. Having worked on the 
implementation of several versions of the BACK system, one of my current interests is how 
to make TL systems adaptable in order to conduct experiments in different application 
environments. l 

Experiments in Implementing BACK 

During the last few years we have been experimenting with different implementations for 
the BACK system. Especially for the ABox we have considered several implementational 
alternatives, such as caching vs. recomputation, assertion time vs. query time deductions, 
control of the inference algorithms by data or by goals (forward and backward chaining), 
and have combined them in different ways for the various versions. Areport on these 
experiments is gi yen in [2]. 

I feIt there were two major problems in the way we conducted the experiments: 

1. For experimenting with an alternative set of choices we were forced to reimplement 
the core of the particular component (in this case the ABox) each time. 

2. The set of criteria we had developed was useful to describe the behavior of par
ticular implementations (e.g., "ABox V3 uses a derivative technique, and performs 
inferences at query time in a backward chained manner" ). The cri teria, however, 
were not directly transferable into running code. 

lThis work was supported by the Commission of the European Communities and is part of Esprit 
Project AIMS (5210). 
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The question is how to develop from a set of desired features the possibility to adapt 
the system accordingly. What I am proposing here is an approach of declaring concepts 
to be used for system internal purposes, and thereby to tailor terminological systems 
for different testbeds or different applications. The semantics of the traditional (i.e., 
primitive and defined) concepts remains the same. The additional declarations express 
how a concept is to be used to support a certain part of system functionality, e.g., that a 
concept should be used to index objects for faster retrieval. This approach may be useful 
in two ways: 

• If the system is sufficiently flexible, it may be evaluated for sampie data patterns 
that differ in characteristical properties such as breadth and depth of the concept 
hierarchy, maximallength of role-chains, or interrelatedness of objects. Similar test 
settings have been used successfully in the database area, cf. [1] . 

• In an application environment the adaptability of the knowledge base management 
system may be useful to obtain a more efficient beha;vior. The system may be 
adapted by a knowledge engineer after an analysis of the requirements and data of 
the domain at hand. Alternatively, a monitoring program may collect data of the 
actual use of the system. A heuristics-based component may then automatically 
adapt the system by introducing declarations for the appropriate concepts. 

Conceptual Indexing for Efficient Object Retrieval 

In a scenario of applying terminological systems to knowledge base management one of 
the frequently occurring tasks is the retrieval of instances of some query description. This 
task can be supported by a method we call conceptual indexing which essentially maintains 
references from concepts to their instances. 2 

The indexing structure is build up by object classification (recognition): For each object 
(at least) all indexing concepts are determined that it instantiates. For each of the in
dexing concepts--or, as an optimization, for the most specific ones among them-explicit 
references to the instances are maintained. 

For a query concept (or the generic part of a query in BACK's assertional query language 
AQL 3) that is equivalent to an indexing concept the set of its instances is obtained by 
simply following these references. For other queries the set of instances of their immediate 
superconcepts are intersected, and the restrictions that distinguish the query from its 
immediate superconcepts are used to discriminate those instances belonging to the final 
answer. 

In the BACK system the content of the ABox can be made persistent by storing it in 
a relational database. Query processing can be completely delegated to the relational 
DBMS in case the basic query (i.e. the query's generic part) is equivalent to an indexing 
concept. The AQL query is then resolved by compiling it into a single SQL query. In the 
more complex case it may be necessary to load instances into main memory in order to 

2Cf. also [4] for a first application of conceptual indexing. 
3The AQL is described in detail in [5]. 
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apply the ABox reasoning procedures. The cooperation of BACK's ABox with a relational 
DBMS is described in [3]. 

In a realistic application environment, however, it is not feasible to use all concepts to 
index objects. First, numerous concepts are introduced for system internal purposes, and 
determining their instances wastes storage without being of any interest. Second, for 
an indexing concept the system has to guarantee that all its instances are known. The 
introduction of new concepts then requires to restructure greater parts of the knowledge 
base. Consider as an example abstraction descriptors, i.e., concepts that are introduced to 
maintain the intensional information extracted from object descriptions. The introduction 
of a new object or modification of an existing one is likely to introduce/modify such a 
concept, and thus to cause a subsequent recomputation of the indexing structure. 

The problem is solved in a natural way if we provide the means to explicitly divide the set 
of concepts into indexing and non-indexing concepts. Concepts for system internal pur
poses may then be introduced generously, unused abstraction descriptors may be garbage 
collected, and all this does not influence the indexing structure at all. Furthermore, in
troducing the possibility to explicitly declare concepts as being indexing allows for deter
mining the system's query processing behavior. For instance, declaring only the primitive 
concepts as indexing makes TL systems behave like deductive databases where instances 
are kept only for base classes (corresponding to primitive concepts), while instances of 
deri ved classes (corresponding to defined concepts) are determined on demand. Alterna
tively, enlarging the set of indexing concepts to all user defined concepts guarantees fast 
retrieval of the instances of these concepts. 

Annotating Concepts for System Adaptation 

Making the notion of indexing concepts explicit is an example for an approach to tailor 
terminological systems by adding to concepts declarations that determine their system 
internal usage. 

As another example consider the set of concepts that constitute the searchspace for recog
nition. BACK's recognition process is partly driven by the concepts present in the TBox. 
Depending on what has been asserted about an object a number of concepts serve as 
candidates when looking for the most special concepts the object is an instance of (cL 
[2]). Preselecting among all concepts by marking those that in general are of interest to be 
tested, allows one to further determine the searchspace for recognition. A maximal choice 
would declare every concept as a recognition candidate. A minimal choice would consider 
only primitive concepts as candidates. 4 In this case inferences are drawn derivatively at 
query time, and consistency checking is performed in a limited way at assertion time. A 
reasonable setting is to declare as recognition candidates all indexing concepts and all 
concepts that correspond to the left hand side of rules (e.g., implication links, defaults, 
etc.). In this case the indexing structure is set up properly and the rule-like knowledge is 
applied forwardly. 

In summary, terminological systems can be made adaptable to different test and appli
cation scenarios by annotating concepts with declarations that express how the concepts 

4The candidate concepts for recognition must cover at least alt indexing concepts. 
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should be used for various system internal purposes. It should be clear, however, that 
not every aspect of a TL system's behavior may be determined this way, and that further 
kinds of "switches" may be applied to obtain flexibility with respect to other aspects. 
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Term description languages (TDL) in the tadition of KL-ONE provide powerful, well- : 

formalized representational means for such KR aspects as object classes, their instan-
ces, relations and attributes, taxonomic hierarchies, etc. But normally other aspects 
of knowledge have to be represented, too: various logical connections and constraints, 
algebraic expressions, etc. Meeting all these requirements within a formal, logic-ba-
sed language seems to be impossible (due to the encountered complexity). As a way 
out, a hybrid reasoning approach will besuggested. This implies the specification of so-
me well-defined restriction in the concept representation capabilities: relational terms 
are excluded from concept definitions, instead relations will be defined including con-
cept assignments to their arguments as a kind of consistency conditions. Though this 

results in reduced concept description capabilities, the overall expressiveness will be 
improved by the increased representational means on the side of relations and logical 
expressions. 
In this way, in many cases an adequate representation of the well-structured object
level knowledge can be achieved, providing a "background theory" for more general 
knowledge (represented, for instance, as a set of clauses). 

Configuration problems will be used as an illustration of our considerations: due to the 
well-structured, exact, and (relatively) complete object level knowledge they provide 
a suitable testbed. The constructive problem solving (CPS) will be outlined as an ab
ductive approach to configuration problem solving. Taxonomic reasoning, which is an 
essential part of the overall configuration problem solving, can be formalized within this 

paradigm. 

I. Introduction 

A central issue in recent AI research is the developement of formal, well-defined knowled

ge representation schemes [Levesque 86]. Such a scheme should provide epistemologi

cally adequate representational capabilities [Brachman, Schmolze 85], a declarative 

(Tarski-style) semantics, and a set of explicitly specified inference rules, which allow to 

address soundness, completeness and complexity issues. 

Various formal, logic-based knowledge representation approach es have been investiga

ted: order-sorted logic [Walther 87; Cohn 87], feature logic [Smolka 88; Schmidt-8chauß, 
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Smolka 88], term-oescription languages (TDL) in the tradition of KL-ONE [Brachman, 

Schmolze 85] or approaches integrating various schemes (for instance [Pletat, Luck 89; 

Ait-Kaci, Podelski 9_1]). 

All these formal schemes focus on the representation of object classes: their attributes, 

the taxonomic hierarchies they are involved, etc. Relations are mainly considered as re

presentational means with respect to these classes (by the inclusion of relational terms 

like 3reLc or weLc into concept specifications). But in many fields of application relations 

should be a representational means in their own (a kind of "first-order citicens" in the world 

of representations), and both, relations as weil as concept terms, should be incorporated 

into logical expressions, in order to represent generallogical connections and constraints 

as an essential part of the definition al knowledge. 

Recent results of theoretical investigations in these formal knowledge representation 

schemes revealed a basic conflict between expressiveness and inferential complexity 

[Nebel 90; Nebel 90a; Hollunder, Nutt 90]. Every scheme providing sufficient expressive

ness may easily result in intractability (or even undecidability [Schild 88 ; Patel-Schneider 

89]) of the inferences. 

As a consequence, in recent years considerable interest has been grown in hybrid reaso

ning techniques [Baader et aL 90; Frisch, Cohn 91], integrating various knowledge repre

sentation and reasoning techniques in a well-formalized way. 

Two main questions arise with such hybrid schemes : 

• Which knowledge may be ... represented in wh ich way? 

• How may the various forms of knowledge interact? 

The second question has been addressed in some general theoretical approaches: for in

stance theory resolution [Stickel 85], the substitutional frame concept [Frisch 89] as a ge

neralization of order-sorted unification [Walther 87, Cohn 87], or constraint resolution 

[Bürckert 90; Baader et al. 90]. Of course, their applicabilitywill be affected by the answer 

found to the first question. 

In conjunction with further theoretical investigations of hybrid knowledge representations 

more practical experiences have to be gained in order to get expressive and efficient hy

brid reasoning schemes. That's the main intention of this paper. 

In order to retain the formal foundation of knowledge representation and to avoid unneces

sary complexity, this hybrid representation should include some well~efined restrietions 

in the representational capabilities and in the inferences [Klein 91]. A scheme will be sug

gested here, which allows the (restricted) integration of term descriptions and logical ex

pressions (in the form of clauses). 

In chapter 2 a motivation for our approach to integrate these two essential aspects of 

knowledge representation will be given. Chapter 3 outlines a formal definition of the syntax 

and the declarative semantics of our knowledge representation, including the restrictions 

in the knowledge representation and inferences specified. Chapter 4 contains a descripti-
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on of the taxonomic reasoning based on these suggestions, followed by a discussion in 

the final chapter 5. 

11. Motivation 

Term description languages provide expressive means to object cl ass (concept) and in

stance representations. But a further increase of expressiveness, for instance by the inte

gration of clauses in the "traditional" TDL manner, easily results in intractability [Schild 89; 

Quantz 90]. 

As a way out of this conflict, we suggest a restriction of term description capabilities: rela

tional expressions will not be allowed as part of concept definitions. This, of course, may .. 

not always be adequate. But in many domains, especially such "well-structured" ones like 

configuration, scheduling, model-based diagnosis, etc., the object classes may be defi

ned per se, i.e., by their own features and attributes, without being influenced conceptually 

by reations to other objects. Relations, in contrast, should be considered here as first-or

der representational means. They will be characterized additionally by concept assign

rnents to their arguments, providing necessary pre-conditions for objects to be consistent

Iy involved in such a relation. 

Based on these representational means, which provide a kind of "background knowled

ge", logical expressions (for instance in the form of clauses) could be used to represent 

general logical connections and constraints. 

We suggest the following scheme of the definitional knowledge: 

• The object-centered knowledge representation (concept descriptions) will include 

Boolean expressions on other concepts, feature terms (selections), and feature 

(dis-)agreements [Smolka 88; Schmidt-Schauß, Smolka 88]. But in contrast to 

other term description languages, concept-defining terms will not contain any rela

tional expressions (Iike 3rel.c or '<ire I. c) 1. 

• As part of the definitional knowledge, relations will be defined including concept as

signments to their arguments (in analogy to order-sorted logic [Walther 87; Cohn 

87]). These concept assignments provide necessary pre-conditions for objects to 

be in such a relation to each other. 

• Both concept and relational expressions may be included in clauses, expressing ge-

neral logical constraints. 

In conjunction with this definitional knowledge, a set of assertions will be used to represent 

a concrete problem/solution. The interaction between both aspects of knowledge repre

sentation will be described in chapter 4. 

1. The distinction between features and relations (roles) as taken here will not be only a formal 
one (functional versus relational expressions), but basically one reflecting the different intended 
meaning: a feature will uniquely be assigned to one of the objects, whereas a role specifies a relati
on between various objects (see for instance the example described in chapter 5.) . 
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The overall representation scheme of the definitional knowledge adopted here has been 

outlined in fig . 1. 

clauses 

______ 1 ~----------------J ~----

object-centered 
knowledge 
• classes 
• features, etc. 

....... --
conslstency 
conditions 

roles 
• sort assignments 

Fig. 1: An outline of the definitional knowledge representation 

general knowledge 

background 
theory 

The restrictions in the concept description capabilities mentioned above (no relational ex
pressions in concept descriptions) will be accompanied with a restrietion of the terminolo

gical inferences: no relational expressions could be used in subsumption calculations. But 

this restriction will be compensated by an increased inferential power on the side of logical 

expressions, which involve concept and role expressions (as a background theory, for in

stance, to a modified2 constraint resolution [Bürckert 90; Baader et al. 90)). This will be 

described in chapter 4. 

111. Formal Definition of Object-Level Knowledge Representation 

As a concrete specification of the ideas discussed in the preceding chapter, we define the 

following knowledge representation scheme: 

• The object cl ass descriptions will be represented by a sort3 hierarchy SH; 

• A set REL SH of relations with SH sort assignments to their arguments (representing 

consistency conditions); 

• A set CL+sH and a set CL_SH of of definite and of negative clauses4, respectively, 

on sort and relational expressions, representing general logical connections. 

Object Class Representations 
We start with the specification of the object-class representation in a sort hierarchy SH: 

Definition: sort slgnature 

A sort signature L is a tripie: L = <S, F, A>, with 

• S = a set of sort symbols (concepts); 

2. As will be explained in chapter 4, configuration problem solving will be described in terms of 
abductive reasoning, which implies some modifications of standard resolution and unification 
[Klein 91 a]. 
3. The notions sort and concept will be used synonymously. 
4. The restrietion to definite and negative (Horn) clauses will be motivated in the next chapter. 
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• F = an S-family of sets of feature symbols: Fs,s'; and 

• A = an S-family of sets of atoms (constants): As 

Out of these primitive building blocks more complex sort expressions may be forrnulated: 

Definition: sort expressions 

Given a sort signature L = <S, F, A>, a set SE of sort expressions may be defined 

from this signature as foliows: 

• every sort symbol is a sort expression: S <;;; SE; 

• se 1\ se' will be in SE; 

• se v se' will be in SE; 

• -,se will be in SE; 

• {a1, a2, ... an} will be in SE; 

• f:se will be in SE; and 

• p=q and P*'1 will be in SE 

with se, se' being sort expressions. fa feature symbol, p and q being feature paths 

[ Smolka 88]. and every aj a constant. 

A further increase in expressiveness will be gained by the specification of a set SC of sort 

constraints allowing to relate different sort expressions. Two forms of sort constraints will 

be provided: sort definitions (':=') in analogy to KL-ONE's defined concepts [Brachman, 

Schmolze 85]. and sort restrietions (':<'), comparable to primitive concepts in KL-ONE. 

Finally, a sort hierarchycar:J be defined on these representational means as a representati

on of a taxonomie hierarchy: 

Definition: sort hlerarchy 

A sort hierarchy SH is a pair SH = < L. SC>, with 

• L being a sort signature; and 

• SC being a set of sort constraints. 

These representational means of object classes are basically a conjunction of feature 10-

gic constructs with term description capabilities [pletat, Luck 89]. 

Relations 

: 

A set RELSH of relations will be specified as part of the definitiona/knowledge . Each relation 

in RELSH(or for short, SH-relation) will be provided with SH sort assignments of its argu

ments (in analogy to order-sorted logic (Walther 87]). These assignments will be interpre

ted as necessary pre-conditions for every object, which can be included in such a relation. 

Relational expressions (like 3rel.c or Vrel.c) will be excluded from concept definitions. 

Definition: relations 

Given a sort hierarchy SH, a set RELsH of relations will be defined. Each SH-relation 

rel in RELsH will be assigned astring s1.s2..... sn of sort expressions 

(s1.s2, ... ,sne SE): 

relS 1, s2, ... , sn 
specifying the sort assignments to each of its n arguments. 
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Semantics 

Based on these syntax specifications. a declarative Tarski-style. set-theoretic semantics 

may be defined as usual. We start with the definition of an interpretation: 

Definition: Interpretation 

Given a sort signature L = <S, F. A>. a sort hierarchy SH • and a set RELsHof SH-rela

tions. an interpretation I is a pair I = <~I. I·>. with ~I being a set (the domain of the 

interpretation). and I· being an interpretation function having the following properties: 

• every sort expression se E SE will be assigned a subset ~Ise of the domain ~I: 

I(se) = ~Ise. with ~Ise ~ ~I ; 
• every feature fs,se E F will be assigned a function fls,s" mapping elements of its do- • 

main interpretation I(S) to elements of its range interpretation I(S'): 

I{fs.s·) = fIs,s' : I(S) ~ I(S'); 

• every attribute asEAs will be assigned an element of the corresponding sort inter

pretation I(S): 

I(as) = als. with als E I(S); and 

• every relation rSl,s2, ... ,snE RELsH will be assigned a subset of the Cartesian product 

on the corresponding sort interpretations: 

I(r sI ,s2 .... ,sn) ~ I(SI) x I(S2) x ... x I(Sn) . 

Of course we are normally not interested in anyinterpretation. but in those fulfilling the con

ditions specified by sort expressions and sort constraints [Nebel 90a; Pletat, Luck 89; 

Schmidt-Schauß. Smolka 88] . Any such interpretation will be called a model of SH. 

A sort hierarchy SH will be called inconsistent. if it containes a sort symbol. wh ich in every 

model interpretation will be assigned the empty set as only possible interpretation. Inconsi

stent sort hierarchies will not be considered in the following. 

Based on these semantical considerations. the subsumption relation between sort ex

pressions can be defined (in the usual TDL manner): 

Definition: subsumption 

Given a sort hierarchy SH. a sort expression se E SE will be said to subsume (or SH

subsume) another sort expression se' E SE, iff for any interpretation I = <~I. b being 

a model of SH holds: 

I(se') ~ I(se) 

This subsumption relation between se and se' will be written 

se' ~SHse . 

This notion of subsumption also provides the semantical foundation to the consistency 

conditions of relational expressions and clauses: having for instance a relation rel defined 

in RELsHwith sort assignments s1.s2 ..... sn to its n arguments: 

reISl ,S2, ... ,sn E RELsH 
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any relational term rel(01.02 ...• on) will only be consistent. if each of its arguments 0i (i = 
1 ..... n) has a sort assignment Si' (i = 1 ....• n) fulfilling the well-sortedness conditions [Frisch 

89]5: 

Si' :5SH Si ('di = 1 •.... n) 

Thus the sort hierarchy SH will be used as a sorttheory[Frisch 89]. which has to be fulfilled 

by every semantics. The resulting hybrid entailment will be written (as usual) I=SH . 

IV. Hybrid Inferences: Keeping the Solution Consistent 

This hybrid knowledge representation scheme could be used in a traditonal. deductive 

way: in theory resC'lution [Stickel 85]. constraint resolution [Bürckert 90]. within the substi

tutional framework [Frisch 89]. etc. But in order to demonstrate the usefulness of our sche- : 

me in full extent. a special problem solving approach will be introduced. wh ich puts its main 

emphasis on the consistent construction and manipulation of a set of assertions. This ap

proach greatly utilizes the various aspects of consistency. which are represented within 

the definitional knowledge: the concept descriptions. the relation specifications (including 

concept assignments to their argumenmts). and as sets of clauses. 

Configuration problem solving has been shown to be an interesting field of applications 

of these ideas[Klein 91 +91 a]. because problem solving here is mainly a synthetic process: 

a solution will be generated. which allows to fulfil the goals formulated as weil as the con

straints defining consistency. As a result of this consistency maintenance. a kind of taxono

mic reasoning occurs. This essential element of configuration problem solving [Peltason 

89; Klein 90a] is closely connected to the concept representation chosen. 

As a basis of our discussion we'lI outline a formal approach to configuration problem sol

ving (introduced in [Klein 90]). called constructive problem solving (CPS): 

Definition: constructlve problem solving 

• The definitional knowledge characterizing a configuration domain will be represen

ted by a sort hierarchy SH. a set REL SH of relation specifications and sets CL+SH and 

CL_SH of definite and negative clauses. respectively. on sort and relational expres

sions. 

• A concrete configuration problem will be represented by a set GOAL SH of atomic goal 

expressions (interpreted as conjunction). 

• Solving a configuration problem formulated in this way means to generate a solution 

SOL SH being a set of assertions (a database of ground atomic expressions represen

ting objects and relations between them). This set SOLSH has to fulfil the following 

formal conditions in order to be a correct solution: 

• SOLSH u CL+SH I=SH GOAL SH ;;; the goal has to be fulfilled 

• '\ICE CL-sH: SOLSH u CL+SH I=SH C ;;; the constraints must be fulfilled 

5. This provides a semantical extension 01 the original. synactically delined well-sortedness of 
order-sorted logic [Walther 87; Cohn 87] . 
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Up to now there is no comprehensive formalization of this basically abductive6 approach . 

This is at least in part due to a missing general theory of abduction (on the predicate logic 

level) [O'Rorke 90+91 ; Levesque 89; Seiman, Levesque 90].Of course, also some meta

criteria should be fulfilled by the abductive reasoning process. The generated solution da

tabase SOLSH has to fulfil, for instance, a kind of minimality criterion with respect to the set 

of objects introduced and to relations specified between them. 

The restriction of the clauses to definite and negative ones may significantly reduce com

plexity (without loosing too much in expressiveness [Kowalski 90]): the negative clauses 

allow to represent inconsistency explicitly, without affecting the "positive side" of the pro

blem solving7 (realized by the definite clauses). The set of definite clauses will be treated 

as a complete decription of the positive literals contained [Klein 90; Console et al. 90]. 
: 

These and other formal issues of the CPS approach will be discussed elsewhere [Klein 

91b). 

The solution database SOLSH will formally be defined as folIows: 

Definition: solution SOLSH 

Given a sort hierarchy SH and a set RELsH of relation definitions, a solution database 

SOLSH is a set of assertions (ground atomic expressions): 

• object descriptions: a:s - with a being an object and s being a sort expres

sion: s E SE; and 

• relation al expressions : rel(o" ... , on) -with rels, ... snE RELsH being a relation, 

and o,:s,. ... on:sn' being objects in SOL SH fulfilling the well-sortedness con

ditions: 

Vi =1 , ... ,n: Si' $SH Si . 

The semantics can be extended in the usual way in order to capture the assertion al terms, 

hybrid entailment, etc. [Nebel 90a]. 

Solution Consistency 

One of the essential points with this kind of constructive problem solving is database consi

stency: having an object description 

a:s, 

in the solution database SOLSH, and an assertion 

r(a,b) 

with rs.s·E RELsH being a relation defined as part of the definitional knowledge, the object 

a must have a sort assignment s,/\s as a necessary pre-condition of a consistentdataba

se SOLSH: 

{a:s" r(a,b) ... } I=SH a: s,/\s 

Of course, s,/\s has to be consistent. too. 

6. For a discussion of abductive reasoning in configuration problem solving and the relation bet
ween deductive and abductive inferences see for instance [Coyne et al. 90; Poole 90; Klein 90] 
and references cited there. 
7. At least as long as the solution generated will be consistent. 
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Exactly this incremental specification of objects and of relations between them will be done 

by the abductive inferences in the constructive problem solving. This results in a kind of 

taxonomie reasoning by rnonotonicly restricting the sort expressions of the objects in order 

to keep the solution database consistent. 

V. Discussion 

The basic conflict between expressiveness and complexity of inference operations enco

untered in term description languages strongly stimulated the investigation of hybrid re

asoning schemes (Frisch, Cohn 91). 

Our approach to a :'ybrid, theoretically well-defined knowledge representation has mainly 

been based on a well-defined restriction in the expressiveness of the concept description 

capabilities: relations (roles) have been excluded from concept descriptions. This seems 

to be adequate in those cases, where due to the well-structuredness of the object level 

knowledge the object classes can be described per se, without relations to other objects 

[Klein 91 +91 a). This well-structuredness also implies, that it will be useful to define relati

ons in conjunction with concept assignments to their arguments (providing a kind of consi

stency information). As a result, the integration of this "background" definitional knowledge 

into more generallogical expressions is possible (in order to represent the various logical 

connections and constraints being relevant there). 

Expressive means on the side of relations have been provided in other systems, too 

[BACK 89; Nebel 90a and references cited there): domain and range restrietions of roles, 

and various role-forming operators (Iike composition, inverse roles, transitive expres

sions). Despite the fact, that (normally) these representational rneans are not fully integra

ted into the subsumption inferences (due to the encountered computational complexity 

[Quantz 90]), the main problem with these approach es is the eoneeptual viewapplied: ro

les - primitive or defined - are taken at first glance as concept-describing capabilities. In 

our approach, more emphasis has been put onto relations as first-order representational 

means. 

This provides an expressive and well-defined opportunity to integrate concept descripti

ons and relations into more general logical expressions. 

Because relational expressions heve been excluded with purpose from concept descripti

on, it makes no sense to take them into account in subsumption inferences. As a result, 

these inferences will be incomplete. 

On trle other side, the concept descriptions in the sort hierarchy, the relation specifications 

including concept assignments to relation arguments, and the clauses enable a great va

riety of inferences on the side of assertions. This results in a shift of emphasis from defini

tional to assertional inferences. The main aspect of the hybrid reasoningwould be to keep 

assertions eonsistent. 

Of course, in certain cases the restrietions specified here would be a disadvantage. Thus 

the question arises: How could we get things as expressive as needed, and keep them 

68 



tractable and theoretically wel/-defined? Here, as in many other cases of hybrid inference 

systems, the main problem seems to be the control of inferences [Kowalski 90]. As a result 

of an efficient control, the practical complexity may be kept tractable. Take for instance 

subsumption inferences: knowing the instance a to be an element of sort s (a:s), we may 

answer a question, wh ether a:s' holds, by searching for a subsumption relation between 

soris sand s': s ~ s'. But answering this question may be done by deducing a:s' directly 

(only for the special case of object a), too, which could be much less expensives. In our 

approach, we have generally excluded relation al expressions from concept descriptions 

(without any possibility of control). Having a suitable way to contro/the inference process, 

this may allow to take relations (roles) into account as concept defining terms in some spe

cial cases, without increasing complexity in general. 

The constructive problem solving (CPS) approach has been used in order to demonstrate ' 

the consistency-based reasoning capabilities of the hybrid knowledge representation 

scheme introduced here. It may be considered as a formal description of configuration pro

blem solving. Due to the lack of a general theory of abduction (at least on the predicate-Io

gic level), only some aspects of this approach could be demonstrated here. The discus

sion of other essential aspects of CPS (Iike variable treatment, minimum model semantics, 

inference rules) will be performed elsewhere [Klein 91 b]. 

ACknowledgements 

Many thanks to the collegues from the ESPRIT project KIT -BACK at TU Berlin, especially 

Jochen Quantz, for somevery helpful discussions. 

References 

[Alt-Kacl, Podelskl 9'1] 
Ait-Kaci, H" and Podelski, A. : Is there a Meanng to LlFE?, 2nd International Workshop on Termino

logical Logic, Schloß Dagstuhl, May 1991, Statements of Interest, IBM Report, IWBS Stuttgart, 

1991. 

[BACK 89] 

Luck, K.v. et al.: 'The BACK System Revisited", KIT-Report 75, TU Berlin, 1989 

[Baader et al. 90] 
Baader, F., Bürckert, H.-J ., HOllunder, B., Nutt, w., and Siekmann, J .H.: Concept Logic, in: [lloyd 

90], pp. 177-201 . 

[Bürckert 90] 
Bürckert, H.-J .: AResolution Principle for Clauses with Constraints, in : M. Stickel (ed.): Proc. 10th 

Conf. on Autom Deduction, Kaiserslautern , 1990. 

[Brachman, Schmolze 85] 

R.J. Brachman, J.G. Schmolze: An Overview of the KL-ONE Knowledge Representation System, 

Cognitive Science 9 (85) 171-216. 

[Cohn 87] 

A.G. Cohn: "A More Expressive Formulation of Many-Sorted Logic", J. of Autom. Reasoning, 3/2 
(87) 113 

[Console et al. 90] 
Console, l., et al.: A Completion Se mantics tor Object-Level Abduction, in : [0' Rorke 90], pp. 72-76. 

[Coyne et al. 90] 

8. though the opposite case may be true as weil 

69 



Coyne, R. , et al. : Knowledge-Based Design Systems, Addison Wesley, Reading (Mass.), 1990._ 

[Frisch 89] 
Frisch, A.: A General Framework of Sorted Deduction, in: Brachman, R., Levesque, H., and Reiter, 

R. (eds.): Proc. of the First International Conference on Principles of Knowledge Representation, 

Toronto, May 1989, pp. 126-136, Morgan Kaufman Publ., 1989. 

[Frisch, Cohn 91] 
Frisch, A., and Cohn, A.: Thoughts and Afterthoughts on the 1988 Workshop on Hybrid Reasoning, 

AI Mag. (Speciallssue), Jan. 1991, pp.77-87. 

[Hollunder, Nutt 90] 
HOllunder, B. and Nutt, W.: Subsumption Aigorithms for Concept Languages, Report 90-04, DFKI. 

[Klein 90] 
Klein, R. : Problem solving as database construction, Proc. 4. Workshop "Planen und Konfigurier

en", FAW Bericht, Ulm, April 1990. 

[Klein 90a] :-
Klein, R. : Towards an Integration of Knowledge Based Systems with Computer-Aided Design, in: 

U. Geske, D. Koch (eds.): Contributions to AI, Akademie-Verlag, Berlin, 1990. 

[Klein 91] 
Klein, R.: Model Represntation and Taxonomie Reasoning in Configuration Problem Solving, Ger

man Workshop on AI, to appear in Springer Lecture Notes in AI, Springer, Berlin, 1991 . 
[Klein 91a] 
Klein , R.: Towards a Logic-Based Model Representation in Configuration Problems, ÖGAI91 Work

shop on Model Based Reasoning, Wien, Sept. 91 

[Klein 91b] 
Klein , R.: Constructive Problem SOlving, subm. to the 8th Deduction Workshop, Berlir., Oct. 1991. 

[Kowalskl 901 
Kowalski, R.: Problems and Promisses of Computational Logic, in : [Lloyd 90], pp. 1-36 

[Levesque 86] 
Levesque, H.: Making Believers out of Computers , A130/1 (1986)81-1 08. 

[Levesque 89] 
Levesque, H.: A knowledge-Ievel account of abduction, Proc. IJCAI-89, pp.1061-1066, Detroit, 

1989 

[Lloyd 90] 
Lloyd, J .W.: Computational Logic, Proc. of the ESPRIT Basic Reasaerch Activities Symposium, 

Bruxels, Nov. 1990, Springer, Berlin, 1990. 

[Nebel 90] 
Nebel, B.: Terminological Reasoning is Inherently Intractable, AI Journal 43/2(1990)235-250. 

[NebeI90a] 
Nebel, B. : Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in AI 422 , 

Springer, Berlin, 1990. 

[O'Rorke 90] 
O'Rorke, P. : Automated Abduction , Working Notes, 1990 AAAI Spring Symposium, Stanford-Univ., 

TR-9Q-32 

[O'Rorke 91] 
O'Rorke, P.: Review of AAAI-90 Spring Symposium on Automated Abduction, SIGART Bulletin 

1/3(1991), pp.12-17. 

[Patel-Schnelder 89] 
Patel-Schneider, P. : Undecidability of Subsumption in NIKL, AI 39(1989)263-272 . 

[Peltason 89] 
Peltason, C.: "Wissensrepräsentation für Entwurfssysteme", Diss. TU Berlin, 1989. 

[Pletat, Luck 89] 

70 



Pletat, C. und v. Luck, K.: Die Wissensrepresentationssprache SORT -LILOG, IWBS-Report 89, 

IBM Stuttgart, 1989 

[Pooie 90] 
Poole, D.: Hypo-Deductive Reasoning for Abduction, Default Reasoning and Design, in : 

[O'Rorke 90), pp. 106-110. 
[Quantz 90] 
Quantz , J.: Modeling and Reasoning with Defined Roles in BACK, KIT -BACK Report 84, TU Berlin, 

1990. 

[Schild 88] 
Schild, K.: Undecidability of Subsumption in U, KIT-Report 67, TU Berlin , Oc!. 88 
[Schild 89] 
Schild, K.: Towards a Theory of Frames and Rules, KIT -Report 76, TU Berlin, Dec . 89 

[Schmidt-Schauss, Smolka 88] 
Schmidt-Schauss, M. and Smolka, G.: Attribu tive Concept Description with Unions and Comple- : 
ments,SEKI Report 88-21, Universitaet Kaiserslautern, Dec . 88 
[Searls, Norton 90] 
Searls, D.B. and Norton, L.M .: Logic-BasedConfigurationwith a Semantic Network, Journalof Log
ic Progr. 8(1990)53-73. 

[Seiman, Levesque 90] 
Seiman , B., and Levesque, H.: Abductive and Default Reasoning : A Computational Core, Proc. 

AAAI-90 , pp.343-348 . 
[Smolka 88] 
Smolka, G. : A Feature Logic with Subsorts, IBM Report 33, IWBS Stuttgart, May 1988. 
[Stickel 85] 
Stickel, M.: Automated Deduction by Theory Resolution, J. Autom. Reas,1 (85) 333 
[Walther 87] 

Walther, C. : A Many-Sorted Calculus with Resolution and Paramodulation, Morgan-Kaufman 
Pubi ., 1987. ' 

71 



Reification in SB-ONE 

Alfred Kobsa 
Dept. of Computer Science 
University of Saarbrücken 

D-6600 Saarbrücken 11 
GERMANY 

kobsa@cs.uni-sb.de 

Terminological representation systems are neutral with respect to what kinds of thing:; ill the 
domain to be modeled should be regarded as individuals (and hence be represented by concepts) 
and what should be regarded as relations (and thus be represented by roles). The decision as 
to how to represent certain conceptual knowledge is entirely left to the knowledge engineer \\"ho 
models a domain. 

It is true that [1] present a guideline for the discrimination between concepts and roles. nalllcly 
lo determine "as to whether a description can stand on its own without implying an Ullmen· 

tiol1ecl object related to the object in question" . If so, the description at hand wOlild COII~t it lIlE' 

a concept, otherwise a role of the unmentioned object. However, this guideline seems to be 
frequently violated by current representational practice in the field of natural-Ianguage [)roce:iS
ing, where a number of conventions vertaining to the concept/role dichtonomy have emergecl 
since certain forms of representation turned out to be advantageous for natural-language ap
plications. For instance, if actions are regarded as individuals rather than relations , it is easier 
to specify the relationship between the semantic cases [2] of the natural-Ianguage verbs which 
describe these actions and the attributes of these actions (such as the agent, object, etc.) . The 
example of action representation seems to contradict the above guideline of [1], since all action 
like 'give' is related to unmentioned objects (e.g., the object being given , as weil as rlw (l1!,<'111 

of this action), but is nevertheless represented by a concept. Another example of cül\flinillg, 
guidelines in the decision between representation with concepts or representation Willl mies 
are "societal persons": while [8][238] regard 'father' and 'mother' as "roles persons pla.\' ill [ lw 
concept 'family' ", these notions are favorite examples of concepts in the KL-ONE literature , 
Things become even worse in other fields of AI (such as expert systems) or in the area of con
ceptual modeling for databases, where no convention at all seems to exist as yet with respect 
to what to regard as a frame 01' schema, and what as a slot 01' schema attribute. 

This arbitrarine::is in the representation of knowledge via concepts or roles does not seem harmfu' 
a::; long as knowledge bases are used in isolation only. As SOOI1 as one wants to combillt' t hf 
conceptual knowledge of two 01' more knowledge bases, l'epl'esentational variants for the SilllH 

knowledge pose serious problems. One solution would be to decide on one variant, and Slll)]>!<.':;' 

the other in the combined knowledge base. This, however, means that processes which <:',\1)('( 

the suppressed version can no longer operate on the combined knowledge base. 
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The solution pursued in the development of SB-ONE [3, 6, 5, 7] was to enhance the language 
in such a way that objects in the world can be regarded both as individuals and as pairs of 
a relation, so that the same knowledge can be represented both through concepts and thl"01U]h 

roles. For achieving this, both the interpretative domain and the representational elements of 
SB-ONE must be augmented (the resulting language was coined 'ivleta-SB-ONE'). DilTelent 
Jinearly ordered ontological levels are introduced into the interpretative domain V, Clllcl eClch 
individual in V is assigned to one of these levels. A reification relation is introducecl bet 1I'(:'c:n 
higher-level individuals and pairs whose elements belong to a lower level (which expresses that a 
higher-level individual "stands for" a lower-level pair). Two new representational elements are 
introduced on the general level, namely so-called metaconcepts (they possess two special roles). 
and the reif relation between metaconcepts and roles. If a role is reified using the reif relation. 
the assertions expressed by this role become additionally represented by the metaconcept ~nd 
its special roles. An example is given in Fig. 1, which also illustrates the graphical notatiol1 of 
some SB-ONE and Meta-SB-ONE knowledge representation elements. In this example, the rol e 
'has-child' of PERSON with value restriction *CHILD* has been reified into the metaconcp.pt 
'PARENTSHIP' with two special roles whose value restrictions are PERSON and *CH I LD",. 
res pecti vely. 

Figure 1: Example of a metaconcept and the reif relation 

~letaconcepts and the 7'eifrelation are governed by a number of syntactic constraints, the 1ll0:)t 
important being that one special role of the metaconcept of a role r l11L1st ha\'e r's (Iom,lill 
concept as its value restriction, and the other r 's value restriction as its own value restrietion. 
The denotation function 6., which maps SB-ONE concepts into the interpretati\'e c10lllilill D 
must be slightly redefined in that all individuals of V which are in the denotation of a concept 
must pertain to the same ontological level. Thus each concept maps into a subset of the 
individuals of a single ontological level of V. In a well-formed Meta-SB-ONE knowledge base. 
aseparate root concept gC{). is introduced for each ontological level i. All these root concepts 
are disjoint from each other. An additional requirement for roles of a concept of a certain le\'el 
is that only concepts of the same or a lower level may be employed as value restrictions. This 
constraint, together with the different root concepts for each ontological level, guarantee t!1Clt 
the ontological distinctions of the interpretative domain are also syntactically obsen'ecl (('.g. 
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by the classifier). Reification may occur arbitrarily often, i.e. roles of metaconcepts may again 
be reified, etc. A set of individuals of the next higher ontological level in the interpretati\'e 
domain is thereby described each time. It is doubtful, however, whether a double 01' e\'en 
multiple reification makes sense. In practical applications, single reification will most probably 
be sufficient. 
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Below, I list a few topics that are of particular interest to me, and which I would like 
to be the subject of discussion during the workshop. 

1 Semantic Choice Points 

The recently circulated KRSS specification emanating from a US-based knowledge rep
resentation standards effort, and a proposal for a terminological logic emanating from 
a group at DFKI, Kaiserslautern represent initial attempts to bring some kind of order 
to the growing field of terminologically-based systems. I am hoping that, among other 
things, these specifications will inspire discussion of a number of semantic issues that 
previously have been ignored for the most part by the community, probably because too 
few systems had reached a point where they had to bite the bullet and make a particular 
semantic choice. Below, I list some of these exemplary issues. In each case, we have made 
an explicit design decision in LOOM (i.e., we have lots of buHet fragments lying around). 

1. Temporal semanties. Any system that supports either role closure or retraction 
implicitly defines some sort of temporal semantics. This semantics ought to be made 
explicit. The need for an explicit semantics becomes even more evident when be
havioral constructs such as production rules are introduced into the representational 
framework. 

2. Retraction semanties. A number of systems implement retraction of facts. From 
discussions I've had with Peter Patel-Schneider and Ron Brachman, it appears that 
LOOM and CLASSIC have adopted a very similar semantics. It would be valuable 
to survey each of the systems represented at the Workshop to find out if there is 
in fact a consensus on retraction semantics, or if significant differences of opinion 
exist. 

3. Skolem individuals. The generation of objects representing skolem individuals 
might be considered simply as an implementation detail not deserving of attention by 
a knowledge levellanguage specification. However, we have users that have explicitly 
requested that LOOM generate skolem objects in certain situations. Hence, I would ' 
like to explore the quest ion of when the system should support retrieval of skolem 
indi viduals. 
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4. Prototypes, Default Rules, Close-world assumption. A decade ago it was 
quite common for KR systems to support such things as generic or prototypical indi
viduals, and default values. Possibly because a formal semantics for such constructs 
is hard to come by, their implementation has somewhat fallen out of favor. However, 
it is possible that some sort of consensus could be reached regarding an incomplet~ 
characterization of the semantics for these constructs. For example, one might be 
able find a consensus on the behavior of default rules in the absence of explicit can
tradictions. Also, LOOM users routinely employ LOOM's facility for specifying that 
a (non-monotonic) closed-world assumption (predicate completion) should apply to 
specific relations. The semantics for this in the absence of contradictions appears 
to be straightforward. 

5. Reified Relations The PENMAN group at ISI needed a means for specifying con
cepts representing the reification of binary relations (roles), which resulted in the 
inclusion of a defreified-relation construct into the LOOM language. Sub
sequent discussions have revealed that the current LOOM semantics for reified 
relations is not satisfactory. We now have an alternative proposal, which may ar 
may not be controversial. 

2 Hybrid Logics 

LOOM integrates a description language with aHorn logic [Mac91]. Users have found 
this combination to be much more useful than having just a bare description language. 
LOOM has made several decisions regarding control of deductive inference over this 
hybrid logic that appear to be novel. LOOM offers users the choice of marking their 
concepts as "forward-chaining" or "backward-chaining." We are finding that for large, 
dense applications, we can 't get acceptable performance if all concepts are marked as 
forward. Furthermore, LOOM is unable to truth-maintain the more complex concept 
descriptions, and hence automatically treats these as backward-chaining. Users are re
questing such things as lazy evaluation of concept instantiations, combined with caching 
whenever evaluation actually occurs. 

We are hoping that we can discover more high-level means for determining the direc
tion of inferencing. As one example of a more semantically-motivated type of contral, 
LOOM permits concepts to be marked as "monotonic"-this reduces the amount of work 
necessary to truth maintain these concepts. 

We view the object-centered style of representation found in the terminologicallogics 
as being antithetical to the relation-based style of representation found in languages such 
as Prolog. For this reason, I am skeptical of efforts to combine a description language with 
Prolog (unless Prolog is regarded merely as the host language, rat her than as an extension 
to the representationallogic). However, recent efforts to combine feature structures with 
definite clause gramm ars appear to have found more successful means for integrating these 
otherwise dissonant representational paradigms. An exploration at the knowledge levelof 
how such things as features and function symbols within one of these languages map inta 
the terminological framework (defini tions, instances, etc.) might prove to be illuminating. 
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3 Representational Building Blocks 

I observed within the DFKI proposal the existence of what might be called "extended nu
meric restrietions" , e.g., (atleast 1 children Female). In languages that support the 
definition of range-restricted roles, these constructs represent syntactic sugar-coating (e.g., 
the description (at least 1 (and children (range Female))) is equivalent. However, 
the (former) extended form has an internal analogue (a data structure), representing what 
might be called a "type-restricted, numerically-quantified skolem" that appears to me to 
support more flexible and efficient reasoning than the traditional representations for re
strictions. In this case, the extended restrietion avoids the necessity for generating the 
additional role "(and children (range Female))" and hence leaves us with a cleaner, 
more efficient role hierarchy. 

The LOOM implementation defines a variety of_ data structures that we collectively re
fer to as features. These include numeric, type, and filled-by restrictions, role-equivalence 
descriptions, finite sets, and numerically-bounded intervals (and whenever we get around 
to implementing them, SDs). Features constitute the building blocks LOOM uses to 
define its concepts, and as such constitute a vocabulary that is much richer than the vo
cabularies manipulated by, say, a typical resolution theorem prover. Conceptually, we like 
to view this as a CISC approach rather than a RISC approach to deductive reasoning. 
We conjecture that the CISC approach is more amenable to the integration of a large 
variety of special purpose reasoners than the RISC approach. 
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The focus of our work has been on the systems aspects of terminological languages. 
In this regard, we have limited the core of our representation to a tractable component. 
In this core representation there are many things which are unexpressible, and there are 
some things which are expressible but need not be explicitly represented. A problem thus 
arises as to how other computational components can be integrated with the representa
tion language to form a useful system. This requires accomodating arbitrary data and 
functional attachment, as well as incorporating the semantics of primitive types in an 
extensible way. Additionally, there are performance aspects relating to the scalability of 
knowledge bases containing tens or hundreds of thousands of concepts, which are required 
to meet the expectation of current application demands. 

Over the past few years we have been involved in building a large knowledge based 
system, called FAME, which assists IBM marketing representatives in the design of ac
quisition solutions for large scale computing requirements. The central representation in 
FAME is a terminological based knowledge representation system called K-Rep, which 
we have built. Our experience in building a large knowledge based system has shown 
that there is a need for a knowledge base management system (KBMS) which would sup
port shared access to a large persistent knowledge base by multiple applications. Such a 
KBMS would support knowledge engineers in the development and maintenance of the 
knowledge base. The goals for a KBMS consist of the following: (i) to allow a knowledge 
engineer to update a knowledge base and have these updates persist on secondary storage, 
(ii) to allow multiple knowledge engineers to have shared access to a knowledge base and 
modify the knowledge base concurrently, and (iii) to maintain consistency of the shared 
knowledge base as it evolves. 

Our approach to this problem is to adopt aversion oriented concurrency protocol in 
which each knowledge engineer makes modifications to the shared knowledge base, thus 
deriving multiple versions. We have developed storage management mechanisms which 
allow any version of the knowledge base to be efficiently updated and retrieved. The 
version oriented protocol handles the problems relating to long transaction times and 
large lock grain sizes. Additionally, it places no temporal dependencies on the updates 
arriving from multiple knowledge engineers. From the multiple versions of the knowledge 
base it is necessary that a single unified knowledge base emerge. This requirement is 
achieved via the merge operation. 
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Additionally, we have been interested in interfacing knowledge representation systems 
with data bases. One problem which arises here is that the mapping between the data base 
and the knowledge base can be difficult due to the fine distinctions that are often made 
in the knowledge base. Terminological logics assist in this regard by allowing the intro
duction of new concepts in the knowledge base without the necessity for a corresponding 
modification the the data base schema. 
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Abstract 

Implementation, analysis, and application work with CLASSIC have provided op
portunities for evaluating the usefulness and implications of our selection of term 
constructors. We have discovered that all of our applications depend critically on 
one or more constructs not found in some systems based on terminological logics. 
We report on user needs (and demands) for sets, individual fillers in concept descrip
tions, coreference constraints, host language escapes, and simple rules. We discuss 
some of the advantages and complications that these features introduced from the 
perspective of both system designers and knowledge engineers. 

1 Introduction 

The CLASSIC knowledge representation system [1, 2] has been designed and implemented 
at AT&T Bell Laboratories over the last few years. Within the dass of "terminological" 
knowledge representation systems, it has taken a position in exploring the tradeoff between 
expressiveness and tractability. While some systems have had a primary goal of extend
ing expressiveness, CLASSIC has tried to remain a simple compositional language that is 
expressive enough for certain classes of applications while retaining more of a handle on 
tractability and predictability. This puts it in the same philosophical dass as systems 
such as KANDOR [6] and BACK [8]. CLASSIC's main practical goal has been to provide an 
implementation that can be used in the real world for certain classes of applications-i.e., 
it must provide added value over other available tools while retaining understandability 
and ease of use for non-expert users. Given these goals, CLASSIC provides an interesting 
testbed for exploration into minimum sets of term constructors. In this paper, we will 
focus on the ones that may not be considered standard in other terminological systems. 

Although work is continuing on the second version of CLASSIC, most of our experience 
with users has been with the first version so that is the version that will be discussed here. 
COMMON LISP and C versions of the first release exist and have been in use for approx
imately two years. The COMMON LISP implementation has been distributed to over 25 
Universities and has also been used for several graduate AI dasses} In addition, AT&T 

Iln order to request a copY of the COMMON LISP version and user's manual [9), send a letter to 
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Bell Laboratories has been teaching a dass on knowledge representation and CLASSIC for 
the last year. 

The rest of the paper will assurne familiarity with the core constructors of most ter
minological systems (for more background see [12J or [4]), give a very brief introduction 
to CLASSIC, and discuss the constructors that CLASSIC indudes that many other termi
nological logic systems do not. We will highlight the users' needs for these constructors 
and discuss the implementation implications. Finally, we will indicate future directions 
of our work. 

2 CLASSIC Overview and Perspective 

A simple way to view CLASSIC is KANDOR without the role hierarchy2 but with rules, 
tests, coreference constraints, sets, and individual fillers. Roles are atomic but there is a 
distinction between multi-valued and single-valued roles. In addition to the standard cre
ation of roles, concepts, and individuals, CLASSIC allows information to be retracted from 
and added to individuals and rules to be retracted from and added to concepts. Concepts 
are non-circular however rules can create circularities by referring to other concepts. 

The representational capabilities of CLASSIC can best be seen by looking at the concept 
description language. The grammar follows: 

<concept-description> ::= 

THING I CLASSIC-THING I HaST-THING I 
(buHt-in host concepts) I 
<concept-name> I 
(AND <concept-expr>+) 
(ALL <role-expr> <concept-expr» 
(AT-LEAST <positive-integer> <role-expr» 
(AT-MOST <non-negative-integer> <role-expr» I 
(SAME-AS <attribute-path> <attribute-path» I 
(TEST-C <fn> <argument>*) I 
(TEST-H <fn> <argument>*) I 
(ONE-OF <individual-name>*) I 
(PRIMITIVE <concept-expr> <index» 
(DISJOINT-PRIMITIVE <concept-expr> 

<group-index> <index» I 
(FILLS <role-expr> <individual-name>+) 

<concept-name> ::::: <symbol> 
<individual-name> ::= <symbol> I <d-host-expr> 
<role-expr> ::= <mrole-expr> I <attribute-expr> 
<mrole-expr> ::= <symbol> 
<attribute-path> ::= «attribute-expr> +) 
<attribute-expr> ::::: <symbol> 

D. McGuinness at the above address. This should be on university letterhead and it should state that 
CLASSIC will be used for research andjor educational purposes only. 

2 A primitive role hierarchy will be included in the next release. 
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<cl-host-expr> ::= <string> I <number> I 
'<CommonLISP-expr> I 
(quote <CommonLISP-expr» 

<index> ::= <number> I <symbol> 
<group-index> ::= <number> I <symbol> 
<fn> ::= a three-valued logical function in the 

host language (Common LISP) 
<argument> ::= an expression passed to the test function 

3 Additions and Challenges 

We will now discuss five features of CLASSIC that make it much more usable than a system 
such as KANDOR. One interesting point about these features is that all of our users are 
critically dependent on one or more of them. We will discuss their usefulness and the 
problems they present. 

3.1 Rules 

CLASSIC has a simple forward-chaining rule mechanism. Descriptions can be attached to 
concepts as rule consequents and, when an individual is known to be an instance of the 
antecedent concept, the information in the consequent is added to the individual. Rules 
are used to represent properties that are not used for recognition. For example, ane could 
attach a rule to a concept for person stating that all persons have social security numbers. 
Then we would not need to know that something has a social security number in order 
to recognize that this object is aperson, but once the object is found to be a person then 
the object would also become an instance of something that has a social security number. 
This rule is enforced forever and CLASSIC would signal an error if at any point in the 
future something was found to contradict the rule. This facility has been found to be very 
useful in all of our applications. 

Rules clearly provide a level of functionality that all of our knowledge engineers desire, 
yet they have also been the area where most of the application debugging time has been 
spent. One confusion is that CLASSIC rules are not logical implications. If CLASSIC can 
prove that something does not have a social security number, then it does not imply 
that this thing is not aperson. Another possibly counter-intuitive not ion is that rules 
are only invoked on individuals. Thus, a concept defined as "person with social security 
number" would not subsume a concept person with a rule requiring all instances to have 
social security numbers attached to it. For more on these representational issues see 
[2J. Another aspect of rules arises when rules that reference other concepts are added to 
existing concepts. This is the only place in CLASSIC where cycles can be created. This 
actually provides much more expressive power and does not cause termination problems 
but it does sometimes create debugging problems. The problem is not that we can't 
explain the idea of rules, it is just that in some cases CLASSIC's use of rules is different 
than the rules that some users may have been exposed to in logic or in expert systems. We 
could probably decrease some of the expectation mismatches if we used rules in concept 
classification and treated them as logical implications but then we would introduce the 
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problems associated with cydes [5] and require reasoning by cases. One other possibility 
is to adopt the OPS method of handling rules but then part of the power of rules for 
integrity checking is lost since rules would not continually enforced. 

3.2 Coreference Constraints 

The SAME-AS constructor requires that the two composed attribute (uni-valued role) 
paths have the same filler. The original motivation for this came from natural language 
and planning uses where it is important for the actor of one act to be the recipient of 
another. Other obvious uses for this are in layout where it is important that two ends of 
a wire are attached to the same wire. 

Difficulties with SAME-AS have not really arisen for the application programmer as 
they did with tests-the difficulties show up in the implementation. Our original plan was 
to implement coreference constraints on multivalued roles. We did not have a complete 
theoretical analysis of the task when we began, and midway through our implementation 
(while we were still struggling with the algorithm), a proof was provided (see [10] and [7]) 
showing the reason for our problems. Even after limiting SAME-AS to functional roles, 
we still found this portion of the code to be the most challenging to write and maintain. 
It also is the constructor that is the most challenging when considering extensions to the 
system. 

3.3 Tests 

By using tests, users may write functions that determine membership in a concept dass. 
The function could be something as simple as checking for an even number of fillers on a 
role or it could be arbitrarily complex host code (either COMMON Lrsp or C depending 
upon the implementation). Tests have proven to be invaluable in applications. In limited 
languages it can be quite important to have a way for the user to add a few specialized 
concepts to the application. Also, given that certain kinds of expressive power have been 
deliberatively left out of version 1 in an attempt to be more tractable, tests can provide 
a mechanism for expressing things that are outside CLAssrc's scope but still essential to 
the application. One common test of expressive power and reasoning in terminological 
systems is the "at least one child who is a doctor" issue. CLAssrc allows only number 
restrietion (at least one child) and value restrietion (all children are doctors) without 
using tests. One can write a test function to recognize individuals who have at least one 
child who is a doctor. This solves the expressiveness and recognition issue but it doesn't 
attack the part of this problem that Brachman and Levesque showed to be intractible [3]. 

Tests are treated as black boxes by CLASSIC and originally we thought that they would 
not interact with the rest of the CLAssrc code. After we required tests to be three-valued 
monotonie side-effect-free functions, we succeeded in allowing tests to coexist harmo
niously with the rest of the system. From a terminological system designer's perspective, 
tests can provide a wonderful view into the real needs of a user. Most users will minimize 
their use of tests so analyzing the final uses of tests has been instructive. Version 2 of 
CLASSIC has been expanded in two ways (intervals and role hierarchies) as a result of 
evaluating user's test usage. 
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Tests and rules together can provide a powerful combination. Rules are Iimited to 
a form that uses one named concept expression as an antecedent and another concept 
expression as the consequent. If a rule is attached to a test concept, then this rule 
can have arbitrary expressive power in its antecedent. Also, if the consequent concept 
expression includes a test concept, then the rule can provide more expressive power in an 
integrity checking mode. 

3.4 Sets 

The ONE-OF constructor allows the user to say that all of the fillers for a role must be 
in a specified set of individuals. For example, a wine's color must either be red, white, 
or rose. ONE-OF provides both a limited form of negation (i.e., the wine is not blue) as 
well as a kind of disjunction, and it has been qui~e useful in expressing the incomplete 
knowledge that seems to pervade most of our applications. 

ONE-OF, however, has introduced a form of incompleteness into our system. Since 
ONE-OF is inherently a form of disjunction, in order to reason completely with it one 
must do reasoning by cases. CLASSIC specifically does not attempt any such work and 
is thus incomplete. ONE-OF, as FILLS below, allows concept descriptions to refer to 
individuals. This presents so me questions when calculating the subsumption hierarchy. 
In normal evolution of a knowledge base (ignoring errors for the moment), we expect some 
things to change about individuals (for example, a person might change from being single 
to being married or might become a parent), but we don't expect definitions of concepts 
(such as person or parent) to change. Thus, we expect the concept hierarchy to remain 
constant while "contingent facts" about individuals may change. Concept descriptions 
that include individuals in their definition fall somewhere in the middle since although 
they are dearly concepts, something that they refer to may change. CLASSIC handles this 
by doing concept subsumption without taking into account the contingent facts about 
individuals. Thus a concept that had a role filled by "ONE-OF Joe or John" could 
be subsumed by something that had at most 2 fillers for that role (since the fact that 
Joe and John are unique is not contingent) but it would not be subsumed by a concept 
that expects this role to be filled by New Jersey residents even if Joe and John are both 
currently known to live in New Jersey (since one or both of them could move). This 
issue is similar to the one with rules-the behavior of CLASSIC is well motivated and 
explainable, but sometimes runs counterintuitive to new users' expectations and thus can 
be a source of confusion. 

3.5 Fills 

In some senses, FILLS can be viewed as a special case of ONE-OF. Instead of saying that 
the filler of a role belongs to so me set of individuals, FILLS states that one particular 
individual fills the role. The difference between FILLS and ONE-OF is that ONE-OF 
implies number restrictions, i.e., the maximum number of fillers of a role is equal to the 
number of elements in the ONE-OF set, while FILLS just states that one of the fillers 
of that role is known but (in the absence of other number restrictions) other fillers can 
be added to the role later. Since FILLS is like ONE-OF when it allows individuals to be 
referenced in concept expressions it has some of ONE-OF's advantages and difficulties. 
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4 Current and Future Research 

Our experience with theoretical analysis of terminological systems, implementation of 
CLASSIC, and its use in several kinds of applications continues to drive our work forward. 
We are currently designing the next version of CLASSIC. While we are still exploring the 
space of small usable systems, the next version will be richer in expressive power as well 
as in supporting facilities (such as explanation, dumping knowledge bases, UNIX inspired 
line-oriented interface, graphical interface, and query language). We are also pursuing 
research on aversion of CLASSIC that will be extensible given templates designed by the 

user to define additional inferences that CLASSIC should perform. 

References 
[1] Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin Resnick. 

CLASSIC: A structural data model for objects. In Proceedings 0/ the 1989 ACM SIGMOD 
International Con/erence on Management 0/ Data, pages 59-67, June 1989. 

[2] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, Lori Alperin 
Resnick, and Alex Borgida. Living with CLASSIC: When and how to use a KL-ONE
like language. In Sowa [11J. 

[3J Hector J. Levesque and Ronald J. Brachman. A fundamental tradeoff in knowledge repre
sentation and reasoning (revised version). In Ronald J. Brachman and Hector J. Levesque, 
editors, Readings in Knowledge Representation, pages 42-70. Morgan Kaufmann, San Ma
teo, California, 1985. 

[4] Robert MacGregor. The evolving technology of the classification-based knowledge repre
sentation systems. In Sowa [11] . 

[5] Bernhard Nebel. Terminological cycles: Semantics and computational properties. In Sowa 
[11J. 

[6] Peter F. Patel-Schneider. Small can be beautiful in knowledge representation. In Pro
ceedings 0/ the IEEE Workshop on Principles 0/ Knowledge-Based Systems, pages 11-16, 
Denver, Colorado, December 1984. IEEE Computer Society. A revised and extended ver
sion is available as AI Technical Report Number 37, Schlumberger Palo Alto Research, 
October 1984. 

[7J Peter F. Patel-Schneider. Undecidability of subsumption in NIKL. ArtificialIntelligence, 
39(2):263-272, June 1989. 

[8] Christof Peltason, Albrecht SchmiedeI, Carsten Kindermann, and Joachim Quantz. The 
BACK system revisited. KIT-Report 75, Department of Computer Science, Technische 
Universität Berlin, August 1989. 

[9J Lori Alperin Resnick, Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, and 
Peter F. Patel-Schneider. CLASSIC description and reference manual for the COMMON 
LISP implementation. AT&T Bell Laboratories., January 1990. 

[lOJ Manfred Schmidt-Schauss. Subsumption in KL-ONE is undecidable. In Proceedings 0/ the 
First International Con/erence on Principles 0/ K nowledge Representation and Reasoning, 
pages 421-431. Morgan Kaufmann, May 1989. 

85 



[11] John Sowa, editor. Principles 01 Semantic Networks: Explorations in the representation o} 
knowledge. Morgan-Kaufmann, San Mateo, California, 1991. 

[12] William A. Woods and James G. Schmolze. The KL-ONE family. Harvard Technical 
Report Number TR-20-90, Harvard University, August 1990. 

86 



The Complexity of Concept Languages 
- Extended Abstract 

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi 
Universita di Roma "La Sapienza" 

via Salaria 113, 1-00198, Roma, Italy 

Werner Nutt 
German Research Center for Artificial Intelligence (DFKI) 

Postfach 2080, D-6750 Kaiserslautern, Germany 

Concept Ianguages have been investigated mainly in the field of knowledge representation, 
following the ideas initially embedded in many frame-based and semantic-network-based 
languages, especially the KL-ONE language [BS85]. However, several formalisms of this 
kind are now being considered within the realm of data bases and logic programming, 
with the aim of enriching the expressivity of existing data models and logic programming 
languages with object-oriented features (see [Be88, AN86]). 

Concept languages can be given a Tarski style dedarative semantics that allows them 
to be conceived as sublanguages of predicate logic [BL84]. A concept is built up of 
two kinds of symbols, primitive concepts and primitive roles. An interpretation interprets 
them as subsets of a domain and binary relations over the domain . These primitives can be 
combined by various language constructs (such as intersection, union, role quantification, 
etc.) yielding complex concepts, which again are interpreted as subsets of the domain. 
Different languages are distinguished by the different sets of constructs they provide. 

To give examples we suppose that person and female are primitive concepts, and child 
and female_relative are primitive roles. Using the set theoretical connectives intersection 
and complement, we can describe the dass of "persons that are not female" by the concept 

person n -,female. 

Most languages provide quantification over roles that allows for instance to describe the 
dasses of "individuals whose children are all female" and "individuals having a female 
child" by the concepts 

Vchild.female and 3ch ild. fema le. 

Number restrictions on roles denote sets of individuals having at least or at most a certain 
number of fillers for a role. For instance, 

(~3female_relative) n ($ 2child) 
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denotes the dass of "all individuals having at least three friends and at most two children." 
Intersection can also be used as a role forming construct. For instance, the intersection 

child n female_relative, 

intuitively yields the role "daughter." 
The basic reasoning tasks on concepts are satisfiability and subsumption checking. A 

concept is unsatisfiable if it denotes the empty set in every interpretation, and is satisfiable 
otherwise. A concept C is subsumed by a concept D if in every interpretation C denotes 
a subset of the set denoted by D . For a long time, the KL-ONE community was content 
with sound, but incomplete subsumption algorithms. Such an algorithm deli vers a correct 
answer when given C and D such that C is not subsumed by D, but sometimes fails to 
recognize that one concept is subsumed by another one. 

Complexity analysis of the subsumption problem originated with the paper [BL84] 
by Brachman and Levesque, which provides a polynomial algorithm for a very limited 
language, called :F C- , and shows that for the seemingly slightly more expressive language 
:FC subsumption is co-NP-hard. Nebel [Ne88] identified other constructs that give rise to 
co-NP-hard subsumption problems. Neither [BL84] nor [Ne88] give algorithms for the co
NP-hard languages. The first nontrivial subsumption algorithm was devised by Schmidt
Schauß and Smolka [SS91] for the language ACC, an extension of :F C. They proved 
that unsatisfiability and subsumption in ACC are PSPACE-complete and identified a 
sublanguage with co-NP-complete unsatisfiability problem. 

In the pr~sent paper, we consider a family of languages, called AC-Ianguages, which 
indudes most of the concept languages considered in the literat ure. In the simplest AC
language, called AC, concepts (denoted by the letters C and D) are built out of primitive 
concepts (denoted by the letter A) and primitive roles according to the syntax rule 

C, D -+ AlT 11. 1 C n D 1 -.A 1 V R.C 1 3R. T 

where R denotes a role, that in AC is always primitive (more generallanguages provide 
a constructor for role intersection). 

An interpretation X = (~I, .I) consists of a set ~I (the domain of X) and a function 
.I (the interpretation function of X) that maps every concept to a subset of ~I and every 
role to a subset of ~I x ~I such that 

TI = ~I 

1.I = 0 
(C n D)I 

(-'A)I _ 

(VR.C)I 

(3R.Tf = 

CIn DI 

~I \ AI 

{a E ~I 1 Vb.(a,b) E R I _ bE CI} 

{a E ~I 13b. (a, b) E RI
}. 

Obviously, an interpretation function is already determined by the way it interprets prim
itive concepts and roles. An interpretation X is a model for a concept C if CI is nonempty. 
A concept is satisfiable if it has a model and unsatisfiable otherwise. We say C is subsumed 
by D if CI ~ D I for every interpretation X, and C is equivalent to D if CI = D I for 
every interpretation X. 

More general languages are obtained by adding to AC the following constructs: 
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• union of concepts (indicated by the letter U), written as Cu D, and defined by 

• full existential quantification (indicated by the letter f), written as 3R.C, and de
fined by 

(3R.C)I = {a E /).I 13b.(a,b) E RI /\ bE CI}; 

• compiement of non-primitive concepts (indicated by the letter C), written as -,C, 
and defined by 

• number restrictions (indicated by the letter N), written as (~ n R) and ($ n R), 
where n ranges over the nonnegative integers coded in unary (i.e., the integer n is 
represented by astring of length n), and defined by 

and 

respecti vely; 

• intersection of roies (indicated by the letter n), written as Q n R, where Q and R 
are arbitrary roles, and defined by 

We consider all combinations of the above constructs in concept languages. Every 
AC-language is named by astring of the form 

AC[U] [f] [N] [n], 

where a letter in the name stands for the presence of the corresponding construct in 
the language. Observe that the combination of union and full existential quantification 
gives the possibility to express complements of concepts, and conversely, union and full 
existential quantification can be expressed using complements. Hence, without loss of 
generality we will assume that union and full existential quantification are available in 
every language that contains complements, and vice versa. In language names we will 
use the letter C instead of Uf. It follows that there are 16 pairwise non-equivalent AC
languages, which form a lattice, whose bottom element is AC and whose top element is 
ACCNn. 

The present paper features two main results. First, we define a general technique for 
checking unsatisfiability (and therefore subsumption, since C is subsumed by D if and 
only if C n -,D is unsatisfiable) in AC-languages, thus providing complete algorithms 
for the basic inferences in concept languages. Following an idea presented in [5591], our 
technique relies on a set of rules, which closely resemble the rules of the tableau calculus 
for first order logic. In fact, if one translates concepts into predicate logic formulas, 
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and applies to them the tableaux calculus with a suitable control strategy, one obtains 
essentially the calculus described here. 

Second, we give a detailed complexity analysis of both unsatisfiability and subsump
tion for AC-Ianguages. We have classified 15 of the 16 languages with respect to the 
complexity of both problems. The only exception is ACEN, where we can say that un
satisfiability and subsumption are in PSPACE, and both are co-NP-hard (thisfollows from 
the results reported in [Ne88]) and NP-hard. Notice that for only one of these languages, 
namely ACe, both the upper and the lower complexity bound for the two problems were 
previously known. Since for all AC-Ianguages but one the upper and lower bounds we 
give coincide, one can say that our algorithms are optimal for the problems they solve. 

Complete proofs of the results are given in [DL*91]. 
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Department of Computer and Information Science 

My main work has been on the development of a logic for default reasoning within 
type hierarchies. Unlike most people I have worked with a notion of 2 parts (or nodes) for 
each type descriptor - one with necessary and one with default information. This gives 
similar expressivity to systems with mixed link types (strict and default links) with some 
interesting extra expressivity (one can say e.g. that a sparrow is a typical bird, as well 
as that a typical bird is a flying thing). This approach has also enabled development 
of an algorithm for default reasoning which is essentially linear. I have a prototype 
implementation of the default reasoner. 

The model for default reasoning is a lattice based model where the core and default 
nodes of types, and also the objects can be compared to each other with respect to a 
hypotheticallattice of feature descriptors. This is equivalent to all inheritance links being 
strict. The fact that all inheritance links are strict in our model (default reasoning is 
accomplished by a "jump" against the direction of the link, between type co re and type 
default) makes the model relatively compatible with models used by terminologicallogic 
systems. This leads- to the hope that we can use our theory of default reasoning as a base 
for specifying well behaved default reasoning within terminological logic systems. The 
representation of the type hierarchy for our default reasoner is, as mentioned previously 
based only on strict inheritance. Consequently it is possible to use classification algorithms 
developed within terminologicallogics on this hierarchy. 

Together with a graduate student (Tingting Zhang) i am working on a medical di
agnosis system which uses a combination of default reasoning and classification in the 
diagnosis process. Disease descriptions are represented in a type hierarchy, where each 
disease contains a set of necessary and a set of typical features. A patient is represented 
as a set of symptoms. An initial classification is made of the patient and then more 
information is sought in order to move the classification down in the hierarchy. 

The language used for the diagnosis application is extremely limited compared to 
the languages usually used in terminological logics. However i tappears adequate for 
this application. We suggest that for some applications it may be desirable to limit the 
expressiveness of the language in certain ways in order to allow integration of defaults. 
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It is an unfortunate fact of life that the important reasoning operations (subsumption, 
classification, and realization) in many terminological logics are worst-case in tractable 
or even undecidable. (See [2] for some of these results.) Because these operations will 
be performed often during the normal course of operation of knowledge representation 
systems built upon terminologicallogics, I think that some solutions to the problem must 
be devised before knowledge representation systems based on terminologicallogics will be 
of general use. 

I see two basic types of solutions to this problem: 

1. choosing a better method of analyzing complexity and decidability, and 

2. retreating to incomplete (or unsound) reasoning. 

Both of these basic types of solutions have several variants, some better than others. 
One solution to the problem fits in neither of the two types given above. This 

solution-limiting the expressive power of the terminological logic to obtain worst-case 
tractable reasoning-was initially suggested by Brachman and Levesque and partially 
implemented in KANDOR [5] and CLASSIC [1]. (Neither KANDOR nor CLASSIC are 
worst-case tractable, complete reasoners for a standard terminological logic, so they are 
not pure examples of this approach.) However, recent results in the complexity and 
decidability of reasoning in terminological logics have shown that achieving worst-case 
tractability requires giving up far too much expressive power, so this solution cannot be 

considered to be viable, at least by itself. 

1 Complexity Analysis 

The worst solution in the better analysis camp, in my view, is to simply ignore the problem 
and hope that actual systems will not have any problems. This may work in some cases, 
but there are many applications where it is intolerable not to have some idea of how fast 
(or slow) the knowledge representation will be. 

93 



However, worst-case tractability is an unduly pessimistic indicator of performance. If 
it could be guaranteed that the system would in fact perform reasonably quickly in almost 
all knowledge bases and queries that will be encountered, then the system would be of 
considerably more use. 

This "average-case" complexity analysis suffers from two problems. First, it is very 
hard to give a probabilistic characterization of the knowledge bases and queries that a 
knowledge representation system will encounter. Second, there is still no firm guarantee 
that the system will not take much too long-just a guarantee that this will happen rarely. 
Many applications can tolerate rare problems of this sort, perhaps by having a method 
for terminating reasoning if it is taking too long, but others can not. 

Another replacement for worst-case complexity analysis is "normal-case" analysis. 
Here a subset of the possible knowledge bases is selected as "normal", and the system 
is guaranteed to be tractable on this subset. If the normal cases include all those that 
will be encountered in an application, then the system is effectively worst-case tractable 
for this application. Normal-case tractability is generally no worse to determine, given a 
definition of anormal case, than worst-case tractability is, and is a viable replacement for 
worst-case tractabili ty. 

However, it is often possible to go beyond normal-case tractability by performing a 
complete computational analysis of a reasoning algorithm. From this algorithmic analysis 
not only can tractable cases be extracted, but also the causes of exponential behavior can 
be determined and quantified. 

It is the quantification of intractable behavior that is probably the most important 
benefit of this type of analysis. In the best case, it is possible to provide abound on how 
long a particular operation will take just by quickly looking at the form of the inputs. 
The application can then avoid situations that could possibly result in long operations. 

One particular example of this computational analysis is the complexity of subsump
tion in terminologicallogics in the presence of definitions. Bernhard Nebel [4] has shown 
that the presence of definitions results in intractable subsumption in many simple termino
logicallogics. However, in many applications the replacement of names by their definitions 
just does not result in a large increase in the size of descriptions, and whenever this is the 
case, computational difficulties will not occur. 

The normal-case and computational analysis solutions to the computational problems 
of terminologicallogics appear to work fairly weIl for a number of intractable terminolog
icallogics. Unfortunately, it is much harder to perform such magic when operations are 
undecidable. 

2 Incomplete (and Unsound) Reasoning 

The second type of solution to the complexity problem for terminologicallogics is to give 
up on sound and complete reasoning in return for computational benefits. 

The traditional solution to complexity problems has been to just implement those 
deductions that can easily be implemented and that produce a reasonably fast system, 
or that are needed to make particular applications (or demos) work. As more and more 
deductions are added, it becomes harder and harder to determine just what deductions 
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these systems do perform, and harder and harder to count on the system. I consider this 
an inferior solution, even in combination with other solutions. 

I see three good methods for describing the deductions of a partial reasoner. Theyare 
to use 

1. a non-standard semantics for the logic, such as my four-valued semantics [6] or the 
non-standard semantics used in CLASSIC; 

2. a set of inference rules, such as the rules in [7] and [2J; or 

3. an abstract algorithm. 

Each of these solutions, when done weIl, can result in a description of the reasoner that 
can be readily understood and used to develop applications. 

Non-standard semantics can describe both radical and minor changes to reasoners with 
a single modification in the semantics, as in the non-standard semantics for CLASSIC's 
subsumption algorithm. CLASSIC allows user code to appear in concept descriptions, 
which, obviously, makes determining subsumption undecidable. The non-standard se
mantics for subsumption in CLASSIC treats user code as arbitrary functions, divorced 
from the semantics of the programming language. This sanctions treating user code as 
black boxes. CLASSIC also allows individuals to appear in concept descriptions, which 
makes subsumption worst-case intractable. The non-standard semantics for CLASSIC 
maps individuals into subsets of the domain instead of elements of the domain. This 
means that certain deductions are not valid for individuals, removing a source of in
tractability. However, developing non-standard semantics with the correct computational 
properties is a difficult process at best, and not a short-term solution. 

I think that a good description of incomplete terminological reasoners that are likely 
to be built in the near future can be obtained by means of an abstract algorithm. In par
ticular, an abstract algorithm description of the standard normalize-and-classify method 
used in CLASSIC, LOOM [3], KANDOR, etc., should be quite easy for users to under
stand. Sets of inference rules, although easy to devise and modify, can be very hard to 
understand, even for experts. 

Perhaps the best method for describing incomplete terminological reasoners will be 
found where abstract algorithms and structured sets of inferences rules merge. Here it 
may be possible to obtain the benefits of both algorithms (easy-to-follow control flow) 
and inference rules (independence from many low-Ievel details). 

3 Combining Solutions 

I think that just about any system that attempts to solve the computational difficulties 
inherent in reasoning in terminological logics will have to use several solutions. For ex
ample, CLASSIC obtains tractable subsumption (without definitions) by implementing 
a partial subsumption algorithm that is sound and complete with respect to a variant 
semantics for an expressively limited terminologicallogic but also uses the computational 
analysis method to characterize its intractability with respect to definitions. More work 
is needed to determine just what is the best sort of description for such combination 
solutions. 
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Modeling and reasoning are, of course, strongly connected to the expressivity of the 
representation language under investigation. Thus, when considering the integration of 
new epistemological primitives, one tries to find out what can be modeled with these 
primitives and what kind of inferences are licensed by them. From a theoretical point 
of view, once the semantics of a primitive is specified, all inferences are determined as 
weIl. From an applicational point of view, however, it is important to characterize those 
inferences which can be regarded as obvious or as basic. This distinction between obvious 
and more elaborated inferences is useful for two reasons. If, for whatever reason, only an 
incomplete algorithm is implemented, it should at least compute the obvious inferences. 
Furthermore, even for complete algorithms, obvious inferences might be efficiently com
putable whereas more elaborated ones might be not. In this case one could choose to 
precompute obvious inferences, whereas other inferences are only computed on demand 
by the user. 1 

As a result of my research concerning the integration of rules (or implication links) 
and role forming operators into BACK,2 I became convinced, that the obvious inferences 
and hence the advantages of these extensions lie on the object level. In the following I 
want to substantiate this claim with respect to role forming operators by summarizing 
some of the results presented in [4].3 

Role Forming Operators 

Research in the area of terminological representation systems tends to focus on concept 
forming operators and on concept subsumption, whereas role forming operators and role 
subsumption are comparatively neglected. Out of 11 systems listed in an overview in [3, 
S. 234] 4 do support primitive role hierarchies and 5 even include role forming operators for 
the definition of roles. It is not obvious, however, to what extent the inference aigorithms 

lThe distinction made by the system developer is, of course, only preliminary and its adequacy has 
to be verified when actual applications are evaluated. 

2This work was supported by the Commission of the European Communities and is part of Esprit 
Project AIMS (5210). 

3For a theoretical investigation of rules or implication links confer [6]. A description of the imple
mentation in BACK and a small example illustrating the usefulness of implication links can be found in 
[5] . 
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of hybrid representation systems have to be modified in order to support the integration 
of defined roles into a terminological language. 4 Three kinds of consequences can be 
distinguished: 

Concept Subsumption 

The use of role forming operators can lead to subsumption between concepts (e.g., 
all(rhatmost(m,r2)) and atmost(n,rl) ~ atmost(nm,rl comp r2)). To capture these 
subsumption relations classification algorithms for concept terms have to be modified in 
a non-trivial way. 

Role Subsumption 

In addition to classification for concept terms subsumption between role terms (e.g., 
trans(r and range(c)) ::S trans(r) and range(c)) must be computed by the classi
fier. If the trans operator is not included in the terminologicallanguage, the algorithm 
presented in [4] together with two minor modifications is probably complete and sub
sumption of role terms is then turing reducible in polynomial time to subsumption of the 
domain and range concepts. The conjecture that the algorithm is complete for full T:FR 
turned out to be unjustified however, due to subsumption between embedded comp and 
trans terms (e.g. trans(rt) comp r2 = trans(rt) comp trans(r2) iff r2 ::S rt). 

Hybrid Entailment 

Additional inferences on the object level are from my point of view the major contribution 
of defined roles for a hybrid representation system. In general, the terminological modeling 
with defined roles can be used to establish complex connections between roles which result 
in the automatie instantiation of role-fillers on the object level (for examples, see below).5 

Dependencies 

Having distinguished these areas of hybrid reasoning one can ask what kind of dependen
eies exist between them. Clearly, role subsumption has impact on concept subsumption 
(via atleast, atmost, and all terms) and vice versa (via domain and range terms). 
Also, both concept and role subsumption inftuence hybrid entailment (e.g., rJ(oJ,02) F 
r2(oJ ,02) if rJ ::S r2). There are, however, inferences on the object level which must be 
drawn by the recognizer alone, without resort to the classifier. The integration of role 
forming operators gives rise to the following list of genuine recognition tasks: 

• Counting of role-fillers: 
r(oJ,02) 1\ r(oJ,03) F atleast(2, r)(od.6 

4In the following I consider the language T:FR- containing the role forming operators domain, range, 
and, inv, comp, and trans. 

5The importance of role-filler instantiation is underlined in proposals for semantic data models (e.g., 
SDM [1]). Defined roles and the role forming operators comp and inv correspond to the 'member 
attribute interrelationships' in SDM. 

6Together with classification this can be used for the propagation of domains (domain(c)(ol' 02) F 
C(OI)), since atleast(l,domain(c)) :: c. 
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• Propagation of value restrictions: 
all(r,c)(od /\ r(ol,o2) ~ C(02)' 

• Generalization over closed role-filler sets: 
atmost(l, r)(od /\ r(ol,o2) /\ C(02) ~ all(r,c)(od. 

• Instantiation of inverse role-fillers: 
r(ol,02) ~ inv(r)(o2,od 

• Instantiation of role-filler chains: 
rl(ol,o2) /\ r2(o2,o3) ~ rl comp r2(ol,03) .7 

Conclusion 

In general, most object level inferences resulting from defined roles are either computable 
by the recognizer or can be derived via role classification. Thus, even if consequences for 
concept subsumption are not integrated into the classification algorithm the interesting 
inferences on the object level are still derivable.8 This line of argument (ignore conse
quences for concept subsumption, focus on consequences for hybrid entailment) might be 
also valid for the use of constants in concept definitions and for role value maps. 

Whereas so far only concept valued roles were considered, similar extensions are pos
sible for roles which have special types as their ranges. 9 For these roles additional role 
forming operators can be provided, such as numerical operations or basic set operations. 
This might be especially useful for numericaI, functional roles. Thus va/ue_added_tax could 

be defined as neLprice * 0.14. This would lead to the automatic instantiation of the value 
for value_added_tax when the value for neLprice is specified. 

These considerations suggest arevision of the application scenario for terminologi
cal logics. In the traditional application scenario the user enters definitions of concepts 
and the system detects implicitly given subsumption relations and builds up an explicit 
terminological hierarchy. As a consequence, a terminological representation system is 
considered useful only for domains in which defined concepts (necessary and sufficient 
conditions) can be specified. Furthermore the concept classifier is considered to be the 
inference component whereas recognition is only a special form of classification. In the 
revised application scenario, however, the modeling of a terminological hierarchy is just 
a first step followed by the specification of rules. The system supports these activities by 
checking consistency and eventually by drawing additional conclusions. In a second step 
object descriptions are evaluated taking into account terminological and rule knowledge. 
Additional properties of objects can be inferred from these descriptions. In this scenario 
a terminological representation system can be even useful if the terminology does not 
contain any defined concepts, since some object level inferences do not involve concept 
subsumption. lO Besides the concept classifier there are other important inference compo-

7This is also the basic schema for inferences involving the transitive closure of roles. 
8To compute these inferences a recognition aJgorithm as presented in [5] has to be augmented. In 

addition, the conceptual indexing of objects which supports retrieval for both simple and complex queries 
(cf. [2]) has to be expanded to include indexing of role-fillers. 

9The current version of BACK supports attribute-sets, numbers, and strings as role ranges. 
lONeedless to say, that the more defined concepts a domain contains, the more useful is a terminological 

representation system. 
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nents like the role classifier, the rule classifier and the recognizer. They aB use the concept 
classifier but they also perform interesting inferences on their own. 
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Correspondences between terminologicallogics and propositional modal and dynamic 
logics are currently in the focus of my interest. 1 These correspondences turn out to be 
highly productive because formerly unrelated fields are brought together. In the area of 
terminologicallogics, running systems have been developed since the late seventies. Only 
recently theoretical investigations have been undertaken mainly concerning the computa
tional complexity of terminologicallogics. In the very contrast to that, elaborated theories 
for modal and dynamic logics have been developed much earlier. Particularly, for modal 
logic there is-apart from first order logic-the most elaborated logical theory, and dy
namic logic has benefited from these results. By detecting these correspondences, one can 
gain new insights into terminological logics solely by expounding the theorems of modal 
and dynamic logic as theorems of the corresponding terminological logic. 

Terminological Logic and Modal Logic 

The terminologicallogic ACC, introduced by Schmidt-Schauß and Smolka [9], comprises 
the Boolean operators n, U, and -, on concepts as weIl as the value restrietions \:I R.C and 
3R.C. 

It is weIl known that ACC is a sublanguage of first order logic since atomic concepts 
correspond to one-place predicates and atomic roles to two-place predicates. The ACC
concept -'Cl U \:Ir,c2 n C3, for instance, can be expressed by the first order formula -'Cl (x) V 

\:Iy . r ( x , y) =? C2 (y) t\ C3 (y ) . 
Viewing ACC from the modal logic perspective, atomic concepts can be interpreted 

simply as atomic propositional formulae. In this case the value restriction \:I. becomes a 
modal operator since it is applied to formulae. Thus the above mentioned concept can 
be expressed by the propositional modal formula -'Cl V K r( C2 t\ C3). K r( C2 t\ C3) is to be 
read as "agent r knows proposition C2 t\ C3," and means that in every world accessible for 
r, both C2 and C3 hold. ActuaIly, 

• the domain of an extension function can be read as a set of worlds . 

• atomic concepts can be interpreted as the set of worlds in which they hold, if ex
pounded as atomic formulae. 

IThis work was supported by the Commission of the European Communities and is part of Esprit 
Project AIMS (5210). 
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• atomic roles can be viewed as denoting accessibility relations. 

Hence d E t'[VR.C] can be expounded as "in world d agent R knows proposition C." 
This illustrates that ACe is a notational variant of the propositional modal logic K(rn). 

For abrief introduction to K(m) confer for example [2]. To demonstrate the utility of 
the correspondence, I exposed two of its immediate by-products in [8]. N amely, I gave 
an axiomatization of ACe and a simple proof that subsumption in ACe is PSPACE
complete, replacing the original six-page one in [9]. 

Terminological Logic and Dynamic Logic 

Moreover, I have considered an extension of ACe, called TSC, comprising various role 
forming operators. In addition to the ACe-operations, T SC contains both the identity 
role id and the composition 0, the disjunction U, the transitive-reflexive closure", the range 
restriction :, and the inverse -1 of roles. Now it is important to realize that roles can be 
interpreted not only as accessibility relations but also as nondeterministic programs. In 
this case the domain of the extension function t' is to be read as a set of program states, 
and (d, e) E t'[R] denotes that there is an execution of the program R transforming state 
d into state e. Using this interpretation, compound terms can be expounded as follows: 

• d E t'[V R.C] as "whenever program R terminates starting in state d, proposition C 
holds on termination" 

• R 1 ° R 2 as "run R 1 and R 2 consecutively" 

• R 1 U R 2 as "nondeterministically do R 1 or R 2" 

• R" as "repeat program R a nondeterministically chosen number of times ~ 0" 

• R- 1 as "run R in reverse" 

• id : C as "proceed without changing the program state iff proposition C holds" 

This illustrates that TSC is a notational variant of the propositional dynamic logic 
PDL with the converse-operator. Using this correspondence, one can easily prove that 
(a) it suffices to consider finite connected TSC-models of exponential size, (b) ACe 
augmented with the transitive-reflexive closure of roles is EXPTIME-hard, and that (c) 
TSC-subsumption can be computed in exponential time even W.r.t. a finite set of concept 
equations. Moreover, utilizing the correspondence one obtain an axiomatization of TSC. 

Since features (functional roles) correspond to deterministic programs in dynamic logic, 
it follows that adding them to TSC preserves decidability, although violates its Finite 
Model Property (FMP, for short). Surprisingly, adding both role-conjunction and features 
to TSC does not preserve decidability. All these results are summarized in Figure 1 and 
can be found in (8). 
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Name Concept Role Notational Complexity of FMP 
Operators Operators Variant Subsumption 

A.cC concept names, role names, K(m) PSPACE-complete yes [2] 
n, ..." "I., [ u, 3. ] [ u, 0, id, : ] [2, 9] 

A.cCrtg concept names, role names, test-free EXPTIME-hard l.~J. yes [1] 
n, ..." "I., [ u, 3. ] u, 0, • PDL EXPTIME-easyt [5] 

A.cCrtg+R : C concept names, role names, PDL EXPTIME-hard l.IJ. yes [1] 
n, ..." "I., [U, 3. ] u, 0, ., id , : EXPTIME-easyt [5) 

A.cCrtg+R : C concept names, role names, IPDL EXPTIME-hard [IJ no [3] 
+RnS n, ..." "I ., [ u, 3.] u, 0, ., id, :, n 

TS.c concept names, role names, CPDL EXPTIME-hard l,lJ. yes [lJ 
n, ..." "I., [u, 3.] u, 0, ., id, :, - 1 EXPTIME-easyt [3) 

FS.c concept names, [ role names,J. CDPDL EXPTIME-hard l4J no [3] 
n, ..." "I., [ u, 3. ) u, 0,·, id, :, -1, decidable [10) 

feature names 
-l-free concept names, [ role names,] IDPDL undecidable [3J no [3J 
FSCR n, ..." "I., [ u, 3. ] u, 0, • , id, :, n, 

feature names 
Term forming operators occurring in [ J can be added without changing the expressive power or 
the computational complexity of the corresponding language , 
tEven w.r.t. a finite set of concept equations and inequations [8] . 

Figure 1: Terminological Logics and their Notational Variants. 

FUrther Issues 

This work can be extended in two ways. First, one can further exploit the correspondences 
al ready established by carefully studying the corresponding theories of modal and dynamic 
logic. For example, I proved that subsumption in a syntactically restricted form of T S L 
with universal implications, known in dynamic logic as partial completeness assertions, 
is co-NP-complete. Secondly, one can establish additional correspondences. Constants in 
terminologicallogics, for instance, correspond to names (atomic formulae denoting single 
element sets) in dynamic logic. Similarly, temporal operators can easily be integrated into 
terminologicallogics. The reason is that temporal concepts such as sometime(T R, C) and 
alitime(T R, C) with T R being either earlier or later clearly correspond to the well-known 
modal operators of the Tense Logic. 

References 

[1] Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Pro
grams. Journal 01 Computer and System Science, 18:194-211, 1979. 

~21 Joseph Y. Halpern and Yoram Moses. A Guide to the Modal Logics of Knowledge and 
Belief. In Proceedings 01 the 9th International Joint Conlerence on Artificial Intelligence, 
pages 480-490, Los Angeles, Cal. , 1985. 

[3J David Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook 01 Philo
sophical Logic, volume 2, pages 497-604, Dordrecht, Holland, 1984. Reidel. 

[4J Rohit Parikh. Propositional Dynamic Logics of Programms: A Survey. In E. EngeIe:, 
editor, Proceedings 01 the Workshop on Logic 01 Programs,. volume 125 of Lecture Notes m 
Computer Science, pages 102-144, Berlin, FRG, 1979. Sprmger- Verlag. 

103 



[5] Vaughan R. Pratt. Models of Program Logics. In Proceedings 0/ the 20th Annual Sympo
sium on Foundations 0/ Computer Science, pages 115-122, San Juan, Puerto Rko, 1979. 

[6] Klaus Schild. U ndecidability of Subsumption in U. KIT Report 67, Department of Com
puter Science, Technische Universität Berlin, Berlin, FRG, October 1988. 

[7] Klaus Schild. Towards a Theory of Frames and Rules. KIT Report 76, Department of 
Computer Science, Technische Universität Berlin, Berlin, FRG, December 1989. 

[8] Klaus Schild. A Correspondence Theory for Terminological Logics: Preliminary Report. 
In Proceedings 0/ the IJCAI'91, 1991. To appear. 

[9] Manfred Schmidt-Schauß and Gert Smolka. Attributive Concept Descriptions with Com
plements. Artificial Intelligence, 48(1):1-26, 1991. 

[10] Moshe Y. Vardi. The Taming of Converse: Reasoning about Two-Way Computations. In 
R. Parikh, editor, Proceedings 0/ the Workshop on Logic 0/ Programs, volume 193 of Lecture 
Notes in Computer Science, pages 413-424, Berlin, FRG, 1985. Springer-Verlag. 

104 



Integrating Time into Terminological Logics 

Albrecht Schmiedel 
Deutsches Herzzentrum Berlin 

atms@cs.tu-berlin.de 

Presumably there are many ways of integrating time into terminological logics. To 
begin with, I will point out a more or less shallow mode of integration which seems to be 
useful in many cases all the same. For a deep integration a number of choices concerning 
the semantic model and various degrees of expressivity have to be made. I will argue 
for the potential usefulness of a fairly expressive approach such as [6] in a monitoring 
scenano. 

A shallow integration of time 

Rather than building time right into the semantic structure of a terminologicallogic and 
therefore having to deal with time everywhere, a more limited approach stays with the 
static, timeless model and gives time no special status. Instead, time is introduced as a 
particular concrete domain in the sense of [1]: 

• time intervals are taken as the individuals of the concrete domain 1
, 

• constraints2 on the duration, absolute bounds, and granularity of intervals as unary 
predicates, and 

• Allen's interval relations as binary predicates structuring the domain. 

This is an admissible concrete domain, since the predicates provided are closed under 
negation, and satisfiability for conjunctions of these predicates is assumably decidable. 

Adopting this approach allows the user to describe (abstract) objects in terms of fea
tures taking time intervals as values. Concepts can be formulated in terms of temporal 
constraints on those features. For example, we might model 'birthdays' using time inter
vals constrained to granularity and duration 'day'. We can then define 'a person whose 
birthday is before 1950', or 'a person whose birthday is after that of her mother'. This 
is good enough for cases where it is sufficient to model time as one property of objects 
among others, and express relationships between objects in terms of the corresponding 

1 Note that the approach of [1J for representing time intervals is different : they use the real numbers 
structured by <, $, >,~, =,:f:. as the concrete domain and define intervals and interval relations on top 
of it. 

2 cf. [5) for this type of constraint language 
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relationships of the (temporal) property. This is definitely a useful combination of the 
general-purpose terminological reasoner and the specialized temporal constraint reasoner 
built into the concrete domain. 

But things get more difficult when we need to explicitly represent changing proper
ties or relations of an object over time. Of course this could be done up to a point by 
introducing auxiliary objectsj but this would be ad-hoc, and generally adopting this ap
proach would jeopardize the goal of providing high-level, easy-to-understand, and intuitive 
knowledge representation primitives. 

What other plausible alternative routes to take are there for integrating time into 
terminologicallogics? Poesio [3] pursues a kind of 'reification' of role-relationships, thus 
turning such relationships into objects of their own right, and therefore being able to add 
descriptions to such objects, e.g. time of validity. This is certainly an interesting approach 
(reminding one of Hobbs' 'ontological promiscuity' [2]), but it would have to be worked 
out more formally to make an adequate asessment possible. One of the main difficulties 
with this approach would be (as far as I can tell) to achieve a seamless integration with 
non-temporal terminologicallogic. One would have to refer to reified states from within 
terms in order to be able to define concepts with temporal structure. 

Deep integration of time 

In the following I will discuss some issues involved in a deep integration of time. I will 
call an integration of time deep when it is built right into the semantic structure, i.e., 
terms of a temporal terminologicallanguage are interpreted in a structure which explicitly 
mentions a time domain besides the domain of individuals. In general, this means that 
the extensions of concepts and roles will be time-dependent. This opens up completely 
new representational possibilities compared to the static model above: 

• individuals can have different properties at different times and can participate in 
varying relations with other individuals time-dependently, and 

• concepts can describe individuals in terms of their patterns of variation, thus en
abling a kind of temporal abstraction in addition to the structural abstraction in the 
non-temporal case. 

Various degrees of expressivity can be envisaged when designing a temporal termino
logical logic. 

Firstly, should the time domain be point-based or interval-based? Interval-based ap
proaches are more expressive, since they might include the point-based ones (zero-Iength 
intervals ), and they can potentially treat the different temporal types, such as downward
hereditary, concatenable, solid, etc. propositiolls (cf. [7]). The latter is interesting when 
integrating various types of temporal knowledge from different levels of abstraction is an 
issue (see the section on applications below). In my approach I have taken this route [6]. 

Secondly, what kind of term-forming operators should be included in the temporal 
terminologicallogic? Should temporal variables (together with temporal constraints) be 
allowed inside temporal term-formingoperators? Or should they remain implicit? Clearly, 
term-forming operators such as '(sometime-earlier concept)', '(since concept)' as proposed 
by [4] refer to an implicit temporal variable and a temporal relation, which is in the spirit 
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of the variable-free syntax of non-temporal term-forming operators. Also, their meanin!! 
is intuitively clear. On the other hand , certain temporal patterns cannot be expressed 
this way, and nested temporal operators of this kind can be difficult to understand. 

A possible area of application: monitoring 

It is important to examine carefully possible areas of application for temporal terminolog
icallogics, because although it is easy to make out a historicalor temporal dimension in 
almost every domain, explicitly representing time does complicate matters considerably. 
Much has to be made explicit what is naturally hidden in a 'time-less' knowledge base. 
For example, update time and time of validity have to be differentiated and explicitly 
dealt with in a deep temporal model; this isn't important when the knowledge base is 
meant to model only one current state of affairs. Qften enough, a shallow integration by 
means of a concrete domain as indicated above will be all one wants. 

But in so me areas change and patterns of change are the actually interesting aspects. 
One area (among others such as planning) are computer systems monitoring processes 
that produce large amounts of time-dependent data such as environmental surveillance, 
production plant monitoring, or intensive care. Integration and combination of data, 
detecting relevant types of events, and data abstraction and reduction are the main tasks 
for this type of application. 

Here, a sufficiently expressive temporal terminological logic could provide a human 

window to the mass data generated by such a process. The services provided by a temporal 
terminological logic could be: 

• Integrate primitive data (from sensors etc.) as weIl as all kinds of derived informa
tion (statistical abstract ions such as averages, standard deviations, etc., qualitative 
abstractions, and derived events types) within one unified formalism. 

• Define all interesting and relevant states, events, statistics in terms of (structural 
and temporal) abstractions from primitive data (and each other). 

• Define triggers for actions in terms of (temporal) concepts. 

• Perform data reduction: from a process generating large amounts of primitive data, 
keep only a small amount of interesting information describing the history of the 
process using defined concepts and relations. (data vs. structured knowledge about 
the running history. ) 

• Browse the running history from various perspectives: 

What happened in a certain time interval? 

How did a certain object change in the course of time? 

What is the history of certain event types? 

• Generate explanations for globally defined events, states, and measures exploring 
how their definitions were instantiated. 
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Since recognition on the basis of completely given ground data would be the main mode 
of operation in this type of application (rather than consistency checking) completeness 
of the subsumption checker is not of primary concern. On the other hand, an interval
based approach seems essential; otherwise, integration of concepts on successive levels 
of granularity would be difficult. Further, complex temporal patterns should be easily 
expressible, including constraints on duration and absolute times. 
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1 Overview 

Our current research focusses on the development of a unification-based grammar for
malism mainly for the use within the LILOG project at IBM Germany for building a 
HPSG-style gramm ar of German. STUF integrates feature terms with sorts and recursive 
definitions of relations. This is in the spirit of a new consensus of recent formalisms used 
in computational linguistics that can be characterized as principle-based approaches to 
grammar. Principles state relations over (typed) feature structures, incorporating phono
logical strings and constituent structures as integral parts. Examples for such formalisms 
are HPSG ([PS87]), TFS ([ZE90J), CUF ([DE91J), and also the knowledge representation 
language LIFE ([AKP90J). We show how the concepts of these formalisms can be further 
enriched and integrated into one formalism, STUF. A rigorous though simple semantics 
for the complete formalism is given in [DS91J. It is argued that exactly this chosen com
bination allows for a very elegant formulation of HPSG-style grammars. Also, we give a 
translation of relational dependencies to definite clauses of first-order logic that fits ex
actly into the generalized Constraint Logic Programming scheme of [HS88J. This opens 
up the treasure of results and techniques known in CLP and promises that an efficient 
implementation of STUF is possible; A detailed description of the formalism is given in 
[DS91J. 

2 The Formalism 

Central to our formalism is the not ion of a feature term coined by [KR86J and extended 
and generalized by [Sm088, Sm089J. It allows us to specify sets of feature structures 
in a linearized feature-matrix oriented notation. This differentiation between feature 
structures and their descriptions is crucial since it allows us to extend the descriptional 
devices to include e.g. disjunction or negation without having to stipulate new kinds of 
underlying structures. We even can abstract away from the concrete notion of a feature 
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structure. We only assurne a domain of discourse to contain unspecified elements, where 
feature applications are reflected by functional dependencies between those elements. In 
the following the letters s, t, t l , .. . will always denote feature terms. The syntactic forms 
of feature terms are given by the context-free production in Figure 1. 

s,t -+ x 
A 
!:t 
s&t 
Sjt 

-,t 

a variable 
a sort 
feat ure selection 
conjunction (intersection) 
disj unction (union) 
negation (complement) 

Figure 1: The Syntax of Feature Terms 

The simplest forms are variables and sorts. Feature terms may contain variables 
to state sharing of structures, i.e. they serve the same purpose as path equations in 
Kasper- Rounds logic. Sorts are descri bed in more detail below. A term ! : t denotes the 
set of those elements for which the feature! leads to an element in the denotation of 
t. Conjunction, disjunction, and negation are set intersection, union, and complement, 
respecti vely. 

2.1 Sorts 

The intended meaning of sorts is to denote subsets of the domain of discourse. The 
integration of sorts into feature terms follows [Smo88]. The main difference is, that we 
made it possible to define the sort structure within our formalism. 

Sorts come in three varieties: atoms, primitive sorts, and defined sorts. For atoms 
we use the letters a, b, C, ••. and for sorts other than atoms we write A, B, C, .... 
An atom is assumed to denote a singleton subset of the domain that is disjoint to the 
set denoted by any other atom or primitive sort. A primitive sort denotes an arbitrary, 
unspecified subset of the domain. Defined sorts can be built from arbitrary sorts using 
boolean connectives in adefinition of the form A = sexpr. Figure 2 shows the syntax of 
these sort expressions. The connectives are interpreted in the usual way, i.e. for example 
AnB denotes the intersection of the sets denoted by A and B. 

sexpr -+ A 
a 
sexprnsexpr 
sexprUsexpr 
-,sexpr 

Figure 2: The Syntax of Sort Expressions 
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Obviously, the sets denoted by sort expression defined in this way form a distribu
tive lattice with set inclusion being the order relation and intersection and union being 
the meet and join operations. In our system these operations are implemented using a 
propositional theorem prover that operates on bit vectors for the internal representation 
of sorts 1

• The description of that algorithm lies beyond the scope of this paper. 
Sorts serve two purposes, a syntactic and a semantic. In the syntax they are used 

by a typing scheme similar to that of [Car90]. For example, for well-typed expressions 
for which a certain sort is specified (or inferred) only certain features are allowed, whose 
values in turn have to obey sort restrictions. However, in this paper we will not give 
details of this syntactic use of sorts. 

Semantically sorts are a means to coarsely structure the domain of interest . The sorts 
definable in our system can constitute a hierarchy, and one way of refining the information 
about a certain object which is known to be of so me sort A would be to go to a subsort 
of A. Compared to the usual atomic values in feature structures, the unification of two 
different sorts does not necessarily lead to inconsistency, but instead depends on the sort 
hierarchy and we get the greatest common subsort of the two, if it exists. Also, sorts are 
compatible with feature specifications, i.e. objects denoted by sorts may have features. 

Since sorts can be handled very efficiently using a specialized propositional theorem 
prover we expect that they will be employed very much to substitute for a lot of dis
junctions that without sorts would be "structural" , i.e. they would have to be treated as 
really disjunctive feature terms. Dealing with those is a well-known source for very hard 
computatlonal problems. 

2.2 Integrating Relations 

We extend the syntax of feature terms to include the form: 

a relational dependency 

where ti are all feature terms. Hence, relational dependencies are used in our syntax as 
function applications in disguise. The meaning of such a term depends on the n+1-place 
relation A, which can be introduced through relation definitions, as described below. A 
relational dependency term A(t1 , ••• , tn) now denotes the set ofvalues which the additional 
argument, let's call it the O-argument, can take, when the other arguments are in the 
denotations of their respective ti. Suppose for example a 3-place relation append on lists 
whose O-argument is the concatenation of the other two arguments. The definition of this 
relation is given below. Now, the term with the variables X, Y, and Z 

f: X &: 

g: Y &: 

h: Z &: 

i: append(X, append(Y,Z» 

denotes a structure whose value of the feature i is the concatenation of the values of the 
features J,9, and h. The meaning of relational dependencies does not imply an order of 
evaluation as one might assume for this function application syntax. Our semantics is 

1 similar to that of [She89] 
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completely declarative, also in this respect. Hence, a relational dependency may be used 
to generate its arguments from its 'result' value, or to propagate side-effects from one 
argument to another. 

For example, conjoining the above term with 

g: [b] &: 

i: [a,b,c] 

would only yield a non-empty denotation if the values of fand h are taken to be [al and 
[cl, respectively.2 

A n+l-place relation A is defined through a set of defining clauses of the form: 

A(t1 , • • • , tn) := to· where all tj are feature terms 

Multiple defining clauses for one relation are taken disjunctively. The meaning of such a 
defining clause is that the terms to to tn give us a sufficient condition on the description of 
objects Uo to U n , respectively, in order to be in the relation A. For example, the definition 
of the recursive relation append can be given as follows. 

append([] ,L) := L. 
append([FIR] ,L) := [Flappend(R,L)]. 

Actually, this means that we are proposing some sort of logical programming language 
where a very powerful term syntax is used, including disjunction and relational depen
dencies, making the relational body of a clause superfluous. Notice that the right-hand 
side of a defining clause is just the term for the implicit O-argument. 

An important observation is that unary relations and sorts are semantically the same, 
at least in effect. Also syntactically there is no difference between "application" of a unary 
relation and a sort. Since the only difference between a unary relation and an ordinary 
sort is that a unary relation is defined via general feature terms, we will call such relations 
simply generally-defined sorts. The term "relation al dependencies" shall henceforth only 
refer to terms of at least one parameter, i.e. terms that refer to relations of at least two 
arguments. 

In [DS91] you can find a discussion on the use of relational dependencies. The two 
most important arguments are: First, you can arrive at more concise and clear gramm ars 
makeing use of parameters. Second, explicit knowledge of "result values" makes data 
structures smaller and allows for garbage collection. 

3 Implementational Issues 

In this section we will present so me of the basic ideas underlying our current STUF 
implementation. First, recall that our grammars employ a quasi-functional notation to 
define relations. We can make these relations explicit by systematically introducing an 
additional argument for all relations. We now present a translation function trans (Fig
ure 4) that converts a given definition r(S) := t into a new, equivalent definition of the 
form r(X, X) +- t', where t' is a formula built of conjunctions and disjunctions of basic 
constraints (Figure 3). 
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j(X) = Y, where j is a feature, X and Y are variables 

X E A, where A is a sort, X is a variable 

X = Y, where X and Y are variables 
X =f. Y, where X and Y are variables 

r(Xo, . .. , X n ), where r is a (defined) n-ary relation; Xo, . .. , X n is 
usually written as X 

Figure 3: The Basic Constraints 

trans(r(s) := t) => r(X,X) -- trans(X,t) 1\ trans(Xi,sd, for all Xi 
in X and corresponding Si in s, and X and all 
Xi are new variables 

trans(X,J : t) => j(X) = Y 1\ trans(Y,t), where Y is a new vari-
able 

trans(X ,A) => XEA 
trans(X,-'A) => X EÄ 
trans(X ,Y) => X=Y 
trans(X,-,Y) => X=f.Y 

trans(X ,t l&t 2 ) => trans(X,td 1\ trans(X,lz) 

trans( X ,tl; t2 ) => trans(X,td V trans(X,lz) 

trans(X ,r( i)) => r(X, X) 1\ trans(Xi,ti), for all Xi in X and cor-
responding ti in ~ and all Xi are new variables 

Figure 4: The Translation Function trans 

Note that we don't have a translation scheme for general negation -,t. This is not an 
accident as will become clear soon. 

As an example consider the definitions for subeat_principle and append from our 
HPSG fragment: 

subeat_prineiple(syn: loe: subeat: append(S1,S2),S2) := 
syn: loe: subeat: S1. 

append(nil,Y) := Y. 
append(eons&(first:X1)&(rest:X),Y) := 

eons&(first:X1)&(rest:append(X,Y» . 

The function trans applied to all definitions in the example yields: 

20r anything that is subsumed by that 
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subcaLprinciple(M, H D, C Ds) +-

syn(M) = M1/\ loc(M1) = M2/\ subcat(M2) = Sl/\ 
syn(HD) = HD1/\ loc(HD1) = HD2/\ subcat(HD2) = S/\ 
append(S, SI, CDs). 

append(Y, X, Y) +

X E nil. 
append(Z, X, Y) +-

Z E cons /\ first(Z) = X1/\ rest(Z) = Zs/\ 
X E cons /\ first(X) = X1/\ rest(X) = X s/\ 
append(Zs, X s, Y). 

lf we exclude general negation then each of the definitions resulting from trans can 
be easily transformed into an equivalent set of normal form clauses. The normal form is 
defined as 

ro(Xo) +- <P /\ rl (Xd /\ ... /\ rn(Xn) 

<P is a formula containing arbitrary conjunctions and disjunctions of basic constraints 
except relational atoms. If our system contains only definitions in normal form-definite 
clauses-then this fits nicely into the r"efined Constraint Logic Programming scheme de
scribed in [HS88]. In fact, our definite relations correspond exactly to the relational 
extensions of simple feature logic as described in [Sm088] for which efficient constraint 
sol vers exist. This immediately gives us an operational semantics for solving the relational 
constraints, which is a generalization of SLD-resolution. Our implementation of STUF is 
based on this SLD-resolution scheme and thanks to [HS88] we know that this approach 
is sound and complete. 

Another observation is that a very common optimization technique from conventional 
logic programming can be integrated into our framework: Some of the (non-relational) 
constraints of <P are associated with the head of adefinite clause (<PHead) and others with 
the body (<PBody), i.e. <P = <PHead /\ <PBody . 

ro(Xo) +- <PHead /\ <PBody /\ rl (Xl) /\ ... /\ rn(Xn) 

<PHead should be very simple but impose very strong constraints. Then it can be used 
to efficiently cut down the search space significantly. When selecting a clause, we first 
unify with <PHead and if this fails, we reject the clause immediately. Typical constraints in 
<PHead are sort restrictions on the variables occurring in the head of the clause. 

4 Current Work 

Most of the work currently being done for STUF deals with devising proof strategies that 
allow for an efficient processing of grammars written in STUF both for the analysis of 
senten ces and for generation. As a starting point we consider very general techniques, e.g. 
partial execution of programs at compile time, detecting and preferring of deterministic 
"subproofs" at run time, .... We also try to learn from the experience we have in 
context-free based parsing and to incorporate similar strategies and heuristics into our 
new approach. 
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Using Terminological Logics in a Problem Solver 
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The goals of the Explainable Expert Systems project (EES) have been to construct an 
framework for building expert systems that: 

• enhances their explanation capabilities [MS89], 

• eases their maintenance and extension [NSM85], and 

• allows system builders to rapidly construct prototypes [SNPS89]. 

In the references cited above we have argued that conventional expert system frame
works are seriously li mi ted in providing these capabili ties . These limi tations stern in 
part from problems in their underlying knowledge representation-specifically the use of 
low-Ievel rules that implicitly encode and compile together different kinds of knowledge. 
Because different kinds of knowledge are not distinguished, this implicit, intertwined rep
resentation of knowledge makes a system less modular and understandable and hence 
more difficult to modify or explain [Cla83, Swa83]. Because knowledge is intertwined 
and multiple concerns may be expressed in a single rule, it is also more difficult to re
use knowledge across systems, hence making it more difficult to use knowledge from an 
existing system to construct a rapid prototype of a new system. 

We deal with these problems by taking a different approach to the construction of 
expert systems. We begin by representing knowledge at a more abstract level and pro
viding representations that allow us to explicitly distinguish and separate different kinds 
of knowledge. The kinds of knowledge that we distinguish include: 

• terminology, which defines the terms in the domain and provides the 'building 
blocks' out of which the rest of the knowledge base is constructed, 

• a domain model, which describes how the domain 'works' (e.g. a causal model or a 
circuit schematic), and 

• problem solving knowledge, expressed as a set of plans, which tells the system how 
to perform tasks such as diagnosing a network or assessing the state of a patient. 

The EES framework (rather than the system builder) takes responsibility for linking to
gether these various kinds of knowledge to actually solve problems. This approach allows 
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a system builder to work at a more abstract and explicit level of representation, and 
increases the modularity of the overall system, thereby helping us achieve our goals of 
enhanced explanation, easier maintenance, and support for rapid prototyping. 

The linkage of different kinds of knowledge is a critical step in our approach, and it 
depends on our use of a term subsumption-based knowledge representation (Loom). The 
domain model is constructed using the conceptual structures and assertion al capabilities 
of Loom. Representing problem-solving knowledge is more of achallenge. Goals to be 
achieved by the problem sol ver are represented as conceptualized verb clauses based on 
a case grammar approach [FiI68]. Thus, the goal of 'put block-a on the table' would be 
represented as a specialization of the verb 'put' with slots filled to specify the object to 
be manipulated (block-a) and its destination (table). Capability descriptions are associ
ated with plans, and describe what the plans can do. Capability descriptions are also 
represented using conceptual structures, but special mechanisms have to be provided to 
allow variables to appear in capability descriptions so that parameters can be passed from 
goals into plans. We use the classifier and realization mechanisms of Loom as a sort of 
pattern-matcher to find plans that are capable of achieving goals. 

One advantage of this approach to representing goals and plans is that it gives a 
goal an independent meaning which is based on the conceptual structur from which it 
is composed, unlike conventional systems where a goal acquires its meaning based solely 
on how plans in the system react to it. An additional advantage of the approach is 
that it allows us to define domain-independent techniques for reformulating aposted 
goal into other goals when no plans can be found for achieving the original goal. These 
reformulations are based on the meaning of the goal itself. The system makes use of facts 
about the domain expressed in the domain model to perform the reformulation, and it is 
through reformulations that much of the domain knowledge becomes integrated into the 
problem solving process (see [NSM85] for a more complete description). 

Generalizing from the specific concerns of EES, there are some observations we can 
make. Traditionally, term subsumption knowledge bases have been regarded as repos
itories for knowledge that perform certain kinds of deductive inference with reasonable 
alacrity. It seems that th view may be too limiting. While many problems can be for
mulated as deductive problems, there are many problems that do not fit naturally within 
a dedudive framework. Furthermore, our work in EES, and of others [YNM89, Yen90], 
suggests that there may be a lot to be gained by integrating terminological reasoners with 
other kinds of problem solving architectures such as planners or rule based systems. As 
one of the topics for the workshop, I would like to suggest that we consider how termino
logical representation systems can be integrated with other problem solving architectures. 
Some specific questions we might consider include: 

• How does the integration of a problem-sol ver with a terminological KB affect ex
pressivity needs? 

• What sorts of software interfaces need to be provided so that different problem 
solving systems can be interfaced? What approaches have worked? What haven't? 

• Integrating a problem solver raises the question of how much of the system's overall 
processing should be done by the reasoning mechanisms provided by the knowledge 
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representation and how much should be done by the problem sol ver. What are the 
tradeoffs? 
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Abstract 

This paper contains a proposal for a terminological logic. The formalisms for 
representing knowledge as weil as the needed inferences are described. 

1 Introduction 

An important aspect of intelligence is the use of existing knowledge. In order to realize 
this in AI-Systems we need both adequate methods to represent knowledge and effective 
procedures to retrieve and reuse the needed knowledge. One of the basic mechanisms of 
human knowledge representation and processing is the division of the world into classes 
or concepts ("find the right pigeonhole") which usually are given with a hierarchical 
structure. 

Let us consider so me knowledge base about families and relationships. We have to 
deal with persons which are of sex male or female . We have parents, mothers, fathers etc. 
A verbal description of this knowledge might be as follows: 

• Persons are of sex Male or Female. 

• Woman is a Person with sex Female. 

• Man is a Person with sex Male. 

• Parents are defined as Persons which have some child (which is also aPerson). 

• Mothers are defined to be Parents with sex Female. 

• Fathers are defined to be Parents with sex Male. 

• Mother_with_many_children is defined as Mother with at least three children. 

We also have individuals (or objects) which are instances of concepts. For example, 
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• John is a Father. 

• Tom is a child of John. 

• Mary is a Woman. 

Now every knowledge representation system should offer a couple of services that allow 
to arrange , manage, modify or retrieve information of the above kind. It should be able 
to ans wer the following questions: 

• Is an introduced concept defined in a meaningful way at all (or does it denote the 
empty concept in all worlds) ? (satisjiability) 

• Is a concept more general than another one ? (subsumption) 

• Where exactly is the concept situated in a concept hierarchy ? (classijication) 

• Is the represented knowledge consistent ? (consistency) 

• What facts are deducible from the knowledge? (instantiation) 

• Which are the concepts an object is instance of ? (realization) 

• Which are the instances of a given concept ? (retrievaD 

Building such a system we are confronted with the following questions: 

1. How can the above properties been found out at all ? 

And then, if we know procedures that might do this : 

2. How can we find out, whether the procedures really do what they should do ? 

3. How efficient are these procedures ? 

4. How efficient may an optimal procedure for the problem be ? 

Terminologicallogics based on concept description languages like KL-ONE [BS85J are 
such formalisms that make classification, description of relations among the classes and 
especially their hierarchical structure possible. However, concept description languages 
are not only one among a lot of possibilities, but meanwhile they offer compared to other 
KR-formalisms some fundamental advantages: 

• There is a weil understood declarative semantics. 
This means that the meaning of the constructs is not given operationally, e.g. by 
the implementation (" John is a father", because my system answers to the question 
"What is John?" just "father"), but the meaning is given by its description and its 
models ("John is a father", because he is a father in all models-in all worlds-where 
the descri ption sui ts to.) 

• There is a characterization of the tasks of the KR-systems by the declarative se
mantics. 
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• There is a nu mb er of procedures and algorithms that realize these tasks, and their 
properties are weIl investigated now. Important properties are 

1. Correctness 
(If the system answers "John is a father", then John is a father within the 
meaning of the semantics-that is in all suitable worlds.) 

2. Completeness 
(The system answers "John is a father", if John is a father within the meaning 
of the semantics.) 

3. Decidability, Complexity 
(Are the services decidable at all, and how fast are they executable ?) 

If we want to design a knowledge base, we first need a formal language that we can 
use. In the following we will present a proposal for a terminological language in both 
abstract form and machine readable form (LISP notation). As a kerneI, our language 
contains all the constructs provided by ACC [SS88] and some additional operators which 
(sometimes?) can be translated into ACC;: NR [HN90]. 

2 Symbols 

The terminological language is based on the following primitives, the symbols of the 
alphabet: 

• Concept names: CN 

• Role names: RN 

• Attribute names: AN 

• Individual names: IN 

• Object names: ON 

Examples with respect to our introductory example are: Person, Woman, Man, Parent are 
concept names, child is a role name, sex is an attribute name, Male and Female are 
individual names, and John and Mary are objects names. 

With this primitives we are allowed to form more complex expressions as specified in 
the next two sections: 

• Concept expressions: C 

• Role expressions: R 

• Attribute expressions: A 

The meaning of these is given by interpretations I. They consist of a set ~I-the 
domain-and an interpretation function .I, that assigns a set 

CNI ~ ~I 
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to each concept name CN, a set-valued function (or equivalently a binary relation) 

to each role name RN, a single-valued partial function 

where dom ANI ~ jj"I, to each attribute name AN, and an element 

to each individual name IN and object name ON. We assurne that different individuals 
and objects denote different elements in every interpretation. This property is called 
unique name assumption and is usually assumed in the database world. 

3 Concept Forming Operators 

Besides the concept, role, and attribute names our alphabet includes a nu mb er of operators 
that permit to compose more complex concepts, roles, and attributes. We allow for the 
following concept forming operators: 

Concrete Form Abstract Form Semantics 
top T fj.I 

bot tom 1. 0 
(and Cl ... Cn ) Cl n ... n Cn Cf n ... n C~ 
(or Cl ... Cn ) Cl U .. . U Cn Cf u .. . u C~ 
(not C) -.C fj.I \ Cl 
(all R C) VR:C {d E fj. I I RI (d) ~ CI} 
(some R) 3R {d E fj. I I RI (d) :f 0} 
(some R C) 3R:C {d E fj. I I RI (d) n Cl :f 0} 
(atleast n R) '2nR {d E fj. I I I RI ( d) I '2 n} 
(atmost n R) ~nR {d E fj.I IIRI(d)1 ~ n} 
(exact n R) nR {d E fj. I I I RI ( d) I = n} 
(atleast n R C) '2nR: C {d E fj.I IIRI(d) n CII '2 n} 
(atmost n R C) ~nR:C {d E fj. I I I RI (d) n Cl I ~ n} 
(exact n R C) nR: C {d E fj.I IIRI(d) n CII = n} 
(eq R I R'l) R1 = R'l {d E ßI \ Rf(d) = RHd)} 
(neq R I R'l) R1 :f R2 {d E ßI I Ri(d) :I RHd)} 
(subset R I R2 ) R I ~ R2 {d E ~I I Rf(d) ~ Rf(d)} 
(in A C) A:C {d E dom AI I AI(d) E CI} 

(is A IN) A: IN {d E dom AI I AI(d) = INI} 

(eq Al A2 ) Al = A2 {d E fj.I I Ai (d) = A{ (d)} 

(neq Al Al) Al :f A2 {d E fj.I I Ai(d) :f AHd)} 
(subset Al A2 ) Al ~ A2 {d E fj.I I d E dom Ai => d E dom A~ 

1\ Ai (d) = A{ (d)} 

(oneof INI .. . INn ) {INI, ... ,INn } {INf, .. . , IN~} 
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Examples: The concept mother can be described as 

Personn (sex: Female); 

Mother _withJllany _children can be described as 

Mother n (~3child : Person); 

FatheLwith_sons_only can be described as 

Parent n (sex: Male) n (child = son). 

Please note that the semantics of Al = A2 and Al :f. A2 for attributes is defined anal
ogously to the semantics of RI = R2 and RI :f. R2 for roles. In particular, Af (d) = A{ (d) 
also covers the case where both values are undefined. This differs from the definitions used 
in [HN90] and computational linguistics in that we do not require that both attributes 
have to be defined on d. However, these definitions can be expressed using our constructs: 

(Al = A2 ) n (Al: T) n (A 2 : T) 

(Al :f. A2 ) n (Al: T) n (A 2 : T) 

As abbreviations for these two expressions we propose Al ::!: A2 and Al ~ A2 , where the 
downarrow is meant to express the condition "is defined". 

4 Role Forming and Attribute Forming Operators 

Similar as for concepts our terminological logic provides a variety of role forming and 
attribute forming operators: 

Concrete Form 
(and RI •.. Rn) 
(or RI .. . Rn) 
(not R) 
identity 
(inverse R) 
(restrict R C) 
(compose R I •.• Rn) 
(domrange Cl C2 ) 

(trans R) 
(transref R) 
(inverse A) 
(restrict A C) 
(compose Al . . . An) 

Abstract Form 
RI n ... n Rn 
RI U ... LI Rn 
...,R 
id 
R-I 

RIC 
RIO ... 0 Rn 
Cl X C2 

R+ 
R* 
A- I 

AIC 
Al 0 ... 0 An 

Semantics 
Rf n ... n R; 
Rf u ... u R; 
6,I X 6,I \ RI 

{(d, d) I d E 6,I} 
{(d, d') I (d', d) E RI } 
{(d,d') E RI I d' E CI} 
Rf 0 ..• 0 R; 
CI X CI 

I 2 

Un>l (RI)n 
Un~O(RI)n 
{(ÄI(d), d) I d E dom AI} 
AI leI 
Af 0 . .. 0 A; 

Notice that the inverse of an attribute is a role, but in general not an attribute. The 
range restriction R /C can be seen as an abbreviation for Rn (T xC). Similarly, a domain 
restriction on the role R could be expressed as Rn (C X T). 
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Examples: The role daughter can be defined as 

female..relati ve n child; 

the role successor can be defined as 

(inverse predecessor). 

5 Terminological Axioms 

The terminological axioms (definitions, specializations, and restrictions) are used to spec
ify the knowledge about the world or apart of the world. A set of terminological axioms 
specifies a terminology T. It selects from all possible interpretations of the language the 
models of T, i.e., the interpretations satisfying the axioms of T as described below. 

Concrete Form 
(defconcept CN C) 
(defrole RN R) 
(defattribute AN A) 
(defprimconcept CN C) 
(defprimrole RN R) 
(defprimattribute AN R) 
(defdisjoint CN1 ••• CNn ) 

Abstract Form 
CN=C 
RN=R 
AN=A 
CN~C 

RN~R 

AN~R 

CN1 11 ... 11 CNn 

Semantics 
CNI = CI 
RNI = RI 

ANI = AI 

CNI ~ CI 
RNI ~ RI 
ANI ~ RI 

CNI n CNI = 0 i -t )' , ) ,1" 

Usually the following restrictions are imposed on terminologies. Any name should 
appear onIy on ce as a left hand side of an axioms, and disjointness axioms should only 
contain names of primitive concepts. 

An alternative way of expressing disjointness could be the use of disjointness groups 
in the definition of primitive concepts. In this case the introduction of primitive concepts 
would be of the form CN ~ C / g1,' .. ,gn, where the g/s are names of disjointness groups. 
Two different primitive concepts must have disjoint extensions if a disjointness group 
occurs in the definitions of both concepts. 

In the abstract form there is no syntactic distinction between definitions of concepts, 
roIes, and attributes. One possibility to distinguish between concepts, roIes, and attributes 
could be to group the definitions, as done in the following example. 

Example (our introductory exampie in formal notation): 
Attributes: 
sex ~ T x T 

Roles: 
child ~ T x T 

Concepts: 
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Person ~ sex: {Male, Female} 
Woman ~ Person n sex: Female 
Man !; Person n sex: Male 
Parent === Person n 3child : Person n 'v'child : Person 
Mother == Parent n sex: Female 
Father == Parent n sex: Male 
MotheLwi th...lllany _children === Mother n 2:3child : Person 
FatheLwi th_sons_only == Father n (child = son). 

Please note that the disjointness axiom Woman 11 Man would be redundant since dis
jointness of woman and man is a consequence of the fact that sex is an attribute and male 
and female are individuals which are interpreted with unique name assumption . 

6 Assertional Axioms 

In order to fiH our world with objects we allow for assertional axioms which have the 
foHowing forms. 

Concrete Form 
(C ON) 
(R ON ONJ) 
(A ON ONJ

) 

Examples: 
John E Father 
Mary E Woman 
(John, Tom) E child. 

7 Services 

Abstract Form 
ONEC 
(ON,ONJ) ER 
(ON,ONJ) E A 

Semantics 
ONI E CI 
(ONI,ONJI ) E R1 

ONI E dom AI 1\ AI(ONI ) = ONJI 

Now we are able to give a formal specification of the services mentioned in the introduction. 

1. Satisfiabili ty of a concept C in a terminology T: 
Does there exist a model I of T with Cl =j:. 0 ? 
(Man n Woman is not satisfiable.) 

2. Subsumption within a terminology T: 
C ~T D iff in all models I of T: Cl ~ DI 

(e.g. Mother ~T Woman). 

3. Equivalence of concepts within a terminology T: 
C ~T D iff in all models I of T: Cl = DI 

4. Classification of C in T: 
For a given concept C, find all minimal (w.r.t. the subsumption relation) concepts 
D in T such that C !;T D. 
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5. Find the smallest binary relation on the concepts in T such that its transitive closure 
is the subsumption relation (modulo ::::::7). 

6. Consistency of the represented knowledge. 
Does there exist a model I of the terminological and assertional axioms? 

7. What facts are deducible from the knowledge ? 
A fact Q is deducible from the knowledge iff all models of the terminological and 
assertional axioms satisfy Q. In particular, if Q is of the form ON E C, then we talk 
about instantiation. 

8. Realization. 
Given an object ON occurring in an assertional axiom. Which are most specific 
concepts of T w.r.t. the subsumption relation ON is instance of? 

9. Retrieval. 
Given an concept C. Which objects occurring in the assertional axioms are instances 
of C ? 

With this formalization of our services we can develop procedures or algorithms for 
the services and prove their correctness, completeness, complexity, decidability; see for 
example [Sc89, Pa89b, SS88, Ne88, Ne90, Pa89a, HN90, H090, Ba91, DL +91a, DH+91, 
HB91, BH91, DL +91b]. 
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