
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Document

"May I Speak Freely?"
Between Templates and Free Choice

in Natural Language Generation

D-99-01

Workshop at the 23rd German Annual Conterence tor
Artiticial Intelligence (KI 199), Bonn

14.-15. September 1999

Tilman Becker, Stephan Busemann (eds.)

August 1999

Deutsches Forschungszentrum tür Künstliche Intelligenz

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail : info@dfki.uni-kl.de

WWW: http ://www.dfki.de

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel. : + 49 (681) 302-5252
Fax : + 49 (681) 302-5341
E-Mail: info@dfki .de

Deutsches Forschungszentrum tür Künstliche Intelligenz

DFKI GmbH
German Research Centre tor Artiticial Intelligence

Founded in 1988, DFKI today is one of the largest non-profit contract research institutes in the field of
innovative software technology based on Artificial Intelligence (AI) methods. DFKI is focusing on the
complete cycle of innovation - from world-class basic research and technology development through
leading-edge demonstrators and prototypes to product functions and commercialisation.

Based in Kaiserslautern and Saarbrücken, the German Research Centre for Artificial Intelligence
ranks among the important "Centres of Excellence" world-wide.

An important element of DFKI's mission is to move innovations as quickly as possible from the lab into
the marketplace. Only by maintaining research projects at the forefront of science can DFKI have the
strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with advanced degrees.
There are also around 120 part-time research assistants.

Revenues for DFKI were about 28 million DM in 1998, half from government contract work and half
from commercial clients. The annual increase in contracts from commercial clients was greater than
37% during the last three years .

At DFKI, all work is organised in the form of clearly focused research or development projects with
planned deliverables, various milestones, and a duration from several months up to three years.

DFKI benefits from interaction with the faculty of the Universities of Saarbrücken and Kaiserslautern
and in turn provides opportunities for research and Ph.D. thesis supervision to students from these
universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI's six research departments are directed by internationally recognised research scientists:

o Information Management and Document Analysis (Director: Prof. A. Dengel)

o Intelligent Visualisation and Simulation Systems (Director: Prof. H. Hagen)

o Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

o Programming Systems (Director: Prof. G. Smolka)

o Language Technology (Director: Prof. H. Uszkoreit)

o Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (e.g. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software available
as quickly as possible.

Prof. Wolfgang Wahlster

Director

"May I Speak Freely?"
Between templates and free choice
in Natural Language Generation

Tilman Becker, Stephan Busemann (eds.)

DFKI-D-99-01

© Deutsches Forschungszentrum für Künstliche Intelligenz 1999
This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of the
Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an ack
nowledgement of the authors and individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946·0098

"May I Speak Freely?"

Between Templates and Free Choice
in Natural Language Generation

Workshop at the 23rd German Annual Conference for
Artificial Intelligence (KI '99)
Bonn, 14.-15. September 1999

edited by

Tilman Becker
Stephan Busemann

DFKI GmbH

Saarbrücken, August 1999

1

Contents

Introduction ... iii

Workshop Program ... vi

Contributions

Kees van Deemter, ITRl, Brighton,
Emiel Kramer, Mariet Theune, IPO, Eindhoven:
Plan-based vs. template-based NLG: a false opposition? 1

Ehud Reiter, University of Aberdeen:
Shallow vs. Deep Techniques for Handling Linguistic Constraints and Optimisations 7

John Bateman, University of Bremen,
Renate Henschel, HCRC, University of Edinburgh:
F'rom Juli generation to 'near-templates' without loosing generality 13

Jo Calder, University of Edinburgh, Roger Evans, University of Brighton,
Chris Mellish, Mike Reape, University of Edinburgh:
"F'ree choice" and templates: how to get both at the same time 19

Paul Heisterkamp, DaimlerChrysler AG, Ulm:
Time to get real: Current and future requirements for generation
in speech and natural language from an industrial perspective 25

Boyd Buchin, Dlf Schmerl, Universität der Bundeswehr München:
TextPro - A Method of Generating Texts from a Formal Language
into Natural Languages 31

Hercules Dalianis, KTH and Stockholm University:
The VOL VEX Handbook - A general validation tool by natural language generation
for the STEP/EXPRESS standard 36

Annette Fritsch, Eric Cousin, Phillipe Tanguy, ENST Bretagne:
A Multilingual Text Generator for Real- Time WEB- Communication 42

Sabine Geldof, Vrije Universiteit Brussel:
Templates for Wearables in Context 48

Amanda Stent, University of Rochester:
Content planning and generation in continuous-speech spoken dialog systems 52

Lena Santamarta, Linköping U niversity:
Output Generation in a Spoken Dialogue System 58

11

Introd uction

Naturallanguage generation (NLG) technology is currently finding its way into commercial
systems. Promising applications are the automatie generation of weather forecasts, informa
tion about measurement data, or various kinds of authoring systems that help an author in
composing a text.
Generally the techniques used in NLG applications and application-oriented NLG systems
differ from those utilized in research systems. While the latter typieally aim at general, in
depth solutions, the former are geared towards solving particular classes of NLG problems.
This involves shallow generation such as dealing with canned texts or templates rat her than
choosing freely from the coverage of complex linguistic grammars. Correspondingly, different
systems encode linguistic knowledge at different levels of detail and sophistication.
In spite of recent, more unified theoretical accounts of the NLG process, these differences
persist. This is, we believe, to a large extent due to different requirements posed by the
application tasks.
While many theoreticallinguistical concepts are difficult to use in practice, the techniques used
in application systems often lack theoretical foundation. Their linguistie inadequacy severely
restricts the transportability of systems to other tasks and domains. Current work in NLG ad
dresses this problem, e.g., the RAGS project (http://vvv.itri. brighton. ac. uk/projectsl
rags). Whatever the chosen approach, its adequacy depends on the expected input to, and
the desired output of, the NLG system. Input may vary from non-linguistic data to surface
semantic senten ce representations. Further generation parameters may be available, such as
a user model or a discourse model. Output may vary from a single sentence per context to
multiple alternatives that allow, or require, the user to choose from.

This workshop is, to our knowledge, the first one topiealizing the relation between application
tasks and technologies used. It aims at exploring the tension between more general and more
specific approaches to NLG, thereby clarifying what NLG technology is suited best for which
task. It is intended to be an opportunity to get an overview over existing state-of-the-art
technology and its optimal usage. It will be relevant for both developers and users of NLG
systems. Exploring conditions for successful NLG applications is a step that should be taken
jointly by technology providers and current and potential users of NLG software. The invited
speaker, Paul Heisterkamp of DaimlerChrysler AG, will focus on the industrial usage of NLG
software, and we appreciate his contribution to this volume.
The workshop is embedded into the German Annual AI conference KI'99, following its tra
dition of hosting small hot-topie workshops. At the same time it is an activity of the Special
Interest Group for Natural Language Systems (Fachgruppe 1.3.1) of the German association
for computer science, Gesellschaft für Informatik (GI). Calling for international contributi
ons was successful, as we have ten papers from six European countries and from the D.S.
It was also mandatory since the topie in hand could not be covered adequately by national
attendance only.
The contributions to this volume are unpublished research reports reviewed by the workshop
organizers. The authors agreed to make available to each other the submitted papers before
preparing the final versions. The papers can also be downloaded from the workshop's web page
at http://vvv . dfki . dei service/NLG/KI99. html. The fuH report is available electronically
from the DFKI library (http://vvv . dfki. de/dfkibib/index .html).

III

We now provide an overview of the paper contributions. The first four papers address the
relation between shallow and in-depth generation. Van Deemter, Kramer and Theune (p.
1) restate it as plan-based versus template-based generation and attack the widespread as
sumption that plan-based approaches are theoretically well-founded whereas template-based
generation is application-dependent and lacks a theoretical basis. Using the template-based
system GoalGetter as an example, which comments on soccer games, it is shown how tem
plates can encode linguistically relevant information.
Reiter (p. 7) sees shallow techniques as a necessity where we lack sufficient knowledge of
deeper techniques or don't have the resources to create the expensive in-depth software for a
particular task. With the STOP system, which pro duces smoking cessation leaflets, he demon
strates that shallow techniques can beneficially be employed for so me constraint enforcement
and optimisation tasks.
Like van Deemter et al., Bateman and Henschel (p. 13) argue against the supposed dichotomy
between in-depth and shallow approaches to NLG. They emphasize that there is a continuum
between the two, giving rise to hybrid systems. This is supported by their method of automati
cally compiling customized subgrammars from a general, linguistically well-founded grammar.
The compiled gramm ars may vary in complexitYi they may correspond to templates.
Calder, Evans, Mellish, and Reape offer yet another perspective on the same idea (p. 19).
They sketch a uniform, architectural framework called whiteboard, in which various kinds
of representation structures, partial ones or mixed ones, co-exist. They have a derivational
history based on the modules that were needed to generate them. The whiteboard mayaIso
contain canned structures (e.g., canned texts) which differ from others in that they have no
derivational history.

Heisterkamp (p. 25) discusses requirements for the commercial use of NLG systems, con
centrating on generation for spoken dialogue systems. Besides real-time processing, ellipsis
generation, reformulation, choice of mode, and time-alignment for multi-modal systems, the
importance of application building and maintenance tools is pointed out.

The next three papers present solutions for various applications or application scenarios.
Buchin and Schmerl (p. 31) describe the system TextPro, which generates technical and
mathematical texts in multiple languages from a formal language. Expressions of the formal
language are computed from an disambiguated quasi-naturallanguage that is more amenable
to the author of a text.
Formal descriptions are also a topic in Dalianis' contribution (p. 36). Complicated formal
descriptions of domains mainly within the manufacturing industry are difficult to understand
and need to be paraphrased in terms of a NL. The paper discusses the Volvex system in
which the user can ask for concept descriptions that are based on both planning and template
techniques.
Fritsch, Cousin and Tanguy (p. 42) developed a template-based system designed to improve
multi-lingual interactive abilities in the Internet needed for activities such as reservat ions or
virtual shopping. In a given context, the user, after entering a keyword, selects from a set of
generated sentences one that meets her goal. A corresponding sentence in the target language
is then generated and transmitted.

The last three papers deal with NLG in spoken dialogues. Geldof (p. 48) describes context
sensitive language production by a wearable device, the "COMRIS parrot." She discusses

IV

various mechanisms to produce variable, parameterized output within a template-based ap
proach.
A speech act-based account of turn-taking in free-fiowing task-oriented dialogues forms the
basis of Stent's contribution (p. 52) in which she sketches the specific requirements on an
NLG component. She suggests that dialogue grounding and turn-taking are candidates for
template-based realization, whereas task-oriented and supporting acts should be based on
planning.
Santamarta (p. 58) describes work on the generation component in the Swedish LinLin dia
logue system framework. She argues for the use of a customisable domain-dependent planner
and a general realiser. The use of templates is considered risky in a dialogue system.

In addition to the paper presentations, some systems will be demonstrated, among them
STOP by Reiter and the COMRIS generation by Geldof.

We believe that the contributions in this volume provide a representative picture of the
present discussions on the proper use of NLG technology, ranging from theoretical discussions
to practical implementations. The outcome of such discussions will be infiuenced by both
theoretical insights and industrial requirements, and it will provide feedback to both NLG
technology and future applications. We feel that this topic should be taken up again at an
international workshop on NLG, which we will organise at Dagstuhl Castle, Germany, in July
2000 (preceding COLING 2000).

v

Tilman Becker
Stephan Busemann

VVorkshop Prograrn

Tuesday, 14 September 1999

15:30-15:45 Tilman Becker, Stephan Busemann, DFKI Saarbrücken:
Welcome and Introductory Remarks

15:45-16:15 Kees van Deemter, ITRl, Brighton,
Emiel Kramer, Mariet Theune, IPO, Eindhoven:
Plan-based vs. template-based NLG: a false opposition?

16:15-16:45 Ehud Reiter, University of Aberdeen:
Shallow vs. Deep Techniques for Handling Linguistic Constraints and Optimisatio

16:45-17:15 John Bateman, University of Bremen,
Renate Henschel, HCRC, University of Edinburgh:
From Jull generation to 'near-templates' without loosing generality

17:15-17:45 Jo Calder, University of Edinburgh, Roger Evans, University of Brighton,
Chris Mellish, Mike Reape, University of Edinburgh:
"Free choice" and templates: how to get both at the same time

17:45-19:00 Discussion and System Demonstration

20:00 KI99 Conference Dinner

Wednesday, 15 September 1999

10:5~11:50 INVITED TALK
Paul Heisterkamp, DaimlerChrysler AG, Ulm:
Time to get real: Current and future requirements for generation
in speech and natural language from an industrial perspective

11:50-12:20 Boyd Buchin, Dlf Schmerl, Universität der Bundeswehr München:
TextPro - A Method of Generating Texts from a Formal Language into Natural Lan

12:20-12:50 Hercules Dalianis, KTH and Stockholm University:
The VOLVEX Handbook - A general validation tool by natural language generation
for the STEP/EXPRESS standard

Lunch break

13:3~14:00 Annette Fritsch, Eric Cousin, Phillipe Tanguy, ENST Bretagne:
A Multilingual Text Generator for Real-Time WEB-Communication

14:0~14:30 Sabine Geldof, Vrije Universiteit Brussel:
Templates for Wearables in Context

14:30- 15:00 Amanda Stent, University of Rochester:
Content planning and generation in continuous-speech spoken dialog systems

15:00-15:30 Lena Santamarta, Linköping University:
Output Generation in a Spoken Dialogue System

15:3~16:30 Conclusions - an open discussion with all participants

VI

Plan-based VS. template-based NLG:
a false opposition?

Kees van Deemtert , Emiel Krahmer1 & Mariet Theune1

ITRlt, Brighton and IPOt, Eindhoven

July 7, 1999

Abstract

This paper uses the algorithm employed in a number of recent template-based NLG sys
tems to challenge the wide-spread assumption that template-based methods are inherently
less well-founded than plan-based methods.

Keywords: NLG paradigms, D2s, templates for NLG, plan-based NLG

1 Introduction: a caricature

Natural Language Generation (NLG) systems are sometimes partitioned into two mutually
exdusive, jointly exhaustive dasses [1,11,13]: (A) theoretically well-founded systems, which
embody generic linguistic insights and are, as a result, easily maintainable. Sometimes,
the term '(full-blown) NLG' has been narrowed down to denote this dass only; and (B)
application-dependent systems which lack a proper theoretical foundation. These systems
may be relatively easy to deploy but they are difficult to maintain. The following equalities
tend to be stated or suggested: A = plan-based NLG systems; B = template-based NLG
systems. l We will argue against these two identifications. We start out by sketching a dass of
systems that are template-based, while at the same time being as theoretically well-founded
as any existing plan-based system.

2 NLG with syntactically structured templates

In this section abrief description of a data-to-speech method called D2s is given. D2s is
the foundation of a number of language generation applications for different domains (Mozart
compositions, soccer reports, route descriptions, train information) and languages (Dutch, En
glish, German). As a running example we use the GoalGetter system which generates Dutch
soccer reports. (See http:j jirisI9.ipo.tue.nl:9000jenglish.html for an on-line demonstration .)
D2s consists of two modules: (1) a language generation module (LGM) which converts a typed
data-structure into enriched text, i.e., a text annotated with information about the place
ment of accents and boundaries, and (2) a speech generation module (SGM) which turns the

IThis identification may have originated when the term 'template' approach was used ('for lack of a better
name') to refer to 'programs that simply manipulate character strings, in a way that uses little, if any, linguistic
knowledge' [11). In the present paper, 'template-based' will be taken to mean "making extensive use of a
mapping between semantic structures and representations of linguistic surface structure that contain gaps" .

1

enriched text into a speech signal. Here we focus on the LGM and in particular on its use of
syntactically structured templates, an example of which is given in Figure 1.

S=
CP

~
NP.!. C'

(time) ~

CO IP

Jo ~
NP.j.. YP

(player) ~

NP yO

liet

~ aantekenen

DET.j.. N'
(playergen) ~

ADJ.j.. NO
(ordinal) doel punt

E = time f- ExpressTime (currentgoal. time)
player f- ExpressObject (currentgoal.player, P, nom)
playergen t- ExpressObject (currentgoal.player, P, gen)
ordinal f- ExpressOrdinal (ordinalnumber)

C = Known (currentmatch.result) 1\ currentgoal = First (notknown,goallist) 1\

currentgoal. type =I owngoal

T = goalscoring

Figure 1: SampIe syntactic template from the GoalGetter system.
liet een doelpunt aantekenen ('let a goal be noted')

means put a goal on the scoresheet

Formally, a syntactic template a = (8, E, C, T), where 8 is a syntactic tree (typically for a
sentence) with open slots in it, E is a set of links to additional syntactic structures (typically
NPs and PPs) which may be substituted in the gaps of 8, Cis a condition on the applicability
of a and T is a set of topics. We discuss the four components in more detail, beginning with
the syntactic tree, 8. All interior no des of the tree are labeled by non-terminal symbols,
while the nodes on the frontier are labeled by terminal or non-terminal symbols, where the
non-terminal nodes are the gaps which are open for substitution and are marked by a {..
Many templates contain only one (group of) lexical node(s), which may be thought of as the
head of the construction, while the gaps are to be filled by its arguments. An example is the
template in Figure 1, whose head is the collocation een doelpunt laten aantekenen (put a goal
on the scoresheet).

The second element of a syntactic template is E: the slot fillers. Each open slot in the tree
8 is associated with a call of some Express function, which generates the set of possible slot
fillers. This process is handled by the function ApplyTemplate, shown on the left in Figure 2.
ApplyTemplate first calls FiliSlots to obtain the set of all possible trees that can be generated
from the template, using all possible combinations of slot fillers generated by the Express
functions associated with the slots. Figure 2 (right) shows an example Express function,

2

namely ExpressObject, which generates a set of NP-trees and is used to generate fillers for the
(player) and (playergen) slots in the template of Figure 1. The first of the two, for example,
leads to the generation of NPs such as 'Atteveld' (proper name), 'the defender Atteveld',
'Vitesse player Atteveld', 'Vitesse's Atteveld', etc., depending on the context in the which
the NP is generated.2 Once all the gaps in the template are filled, the set alUrees results.
For each tree in this set, it is checked (i) whether it obeys Chomsky's Binding Theory and
(ii) whether it is compatible with the Context Model, which is arecord containing all the
objects introduced so far and the anaphoric relations among them. From the resulting set of
allowe(Ltrees, one is selected randomly and returned to the main generation algorithm.

I ApplyTemplate(template) I
allowed_trees f- {}

chosen_tree f- nil
alLtrees f- FiliSlots(template)
for each member t i of alLtrees do

if ViolateBinding Theory(ti) = false 1\

Wellformed(UpdateContext(ti)) = true
then allowed_trees f- allowed_trees Uti

if allowed_trees = nil
then return false
else chosen_tree f- PickAny (allowed_trees) 1\

return finaUree

I ExpressObject(r, P, case) I
PN, PR, RE f- nil
trees f- {}

PN f- MakeProperName (r)
PR f- MakePronoun (r, case)
RE f- MakeReferringExp (r, P)
trees f- PN U PR U RE
return trees

Figure 2: Functions ApplyTemplate (left) and ExpressObject (right).

The third ingredient of a syntactic template a is C: the Boolean condition. A template a

is applicable if and only if its associated condition is true. Several kinds of conditions can
be distinguished including, most notably perhaps, conditions on the knowledge state. An
example is the condition saying 'X should not be conveyed to the user before Y is conveyed',
which implies that the template can only be used if the result of the current match described
has been conveyed to the user (i.e., is known) and the current goal is the first one which has
not been conveyed (is not known). Finally, each template a contains a set of topics T, which
the LGM algorithm uses to group sentences together into coherent chunks of text.

3 The caricature exposed

Taking our inspiration from D2s [4,6,7], we will argue that the caricature from the introduction
is precisely this: a caricature. For starters, D2s' application across domains and languages
(cf. Section 2), has revealed aremarkable genericity. Important parts of the system (e.g., the
basic generation algorithm and such functions as ApplyTemplate and ExpressObject) turned
out to be independent of application domain (Classical Music / Soccer gaims) and output
language (English / Dutch). This is, of course, not true for the templates themselves, many
of which have to be written anew for each new domain as well as for each language. Based
on these experiences, however, it seems fair to say that D2s is as generic and maintainable as
any plan-based system, which will have to adapt its grammar, for example, whenever a new
application or a new output language comes along.

2For a more sophisticated version of the way in which nominals are generated in context, see [8].

3

But is 02s also well-founded? This depends on what it means for an NLG system to be well
founded. If it me ans that every decision made by the system (e.g., expressing a proposition
in one or in two sentences, using passive or active voice; lexical choice [2]) should be based
on sound linguistic principles, then no NLG system we are aware of qualifies as being even
remotely well-founded: the gap between raw data and text is bridged in ways that are often
arbitrary. Many NLG systems use linguistic principles, but typically such sophistication is
reserved for a few aspects of the generated text. 02s is no exception, as may be seen from
Section 2. For example, 02s uses well-established rules for constraining the use of anaphors
(see e.g., ViolateBindingTheory and Wellformed in ApplyTemplate), and a new variant of Dale
and Reiter's algorithm [3] for the generation of referring express ions that takes contextual
salience into account (MakeReferringExp in ExpressObject) [7]. Other choices (most notably,
perhaps, the choice of a pool of templates from which the generator can pick a candidate) are
made on less principled grounds. The main limiting factor for the deployment of linguistic
rules in 02s is not that the method does not allow it, but simply that not enough good
linguistic rules are known. In sum: 02s, though it is a template-based system, is as well
founded as any plan-based system.

In fact, we believe that the terminology itself is misleading. Few if any NLG systems are
plan-based in the full sense in which this term is used in artificial intelligence: in NLG, there
usually is no place for logical inference (e.g., avoiding a certain wording because of some
explicitly represented common-sense knowledge) or even backtracking. (Whether or not this
limitation reftects a property of human speaking and writing is a different matter.) If, as has
become usual in NLG, the not ion of planning is stretched to cover, say, Moore and Paris
style NLG [10], then the system described in Section 2 could be described as implementing a
distributive, reactive ('situated') planner. (See also the Conclusion of this paper.)

It is worth noting that 02s rather resembles an approach to NLG that is sometimes omitted
in discussions about practical versus applied systems, namely Tree Adjoining Grammar (TAG)
(e.g., [5,9,14]). The trees in 02s are similar to the 'initial trees' of TAG. Joshi [5:234] points
out that "The initial (...) trees are not constrained in any manner other than as indicated
above. The idea, however, is that [they] will be minimal in so me sense." The minimalism
constraint is usually interpreted as: the tree should not contain more than the lexical head
plus its arguments. The comparison with TAG-based NLG suggests that it is not the choice of
a template-based approach that makes an NLG system theoretically unwell-founded, but the
choice for nonminimal templates j elementary trees in these systems (or the use of canned text
in plan-based systems, for that matter). Of course, non-minimal templatesj elementary trees
are essential for the treatment of any phenomena where compositionality breaks down, such
as idioms, special collocations, etc. (cf. the treatment of collocations in [14]). But, generally
speaking, the larger the templatesjelementary trees, the less systematic the treatment, the
less insight it gives into the compositional structure of language, and the larger the number
of templatesjelementary trees needed. Unlike the earliest 02s-based NLG systems (e.g., [4]),
GoalGetter can be argued to use templates that are minimal except where there is a good
reason to make them larger [6].

4

4 Conclusion

We have argued against the caricature presented in Section 1, according to which template
based NLG systems are always linguistically less interesting than so-called plan-based systems.
We have illustrated our claim by sketching a template-based generation system that is theoret
ically as weIl-founded as any plan-based system, as weIl as being practically useful (deployable,
maintainable, etc.). Of course, there are genuine and interesting differences between the two
paradigms. For example, template-based systems do not conform to the well-known pipeline
model for NLG [12], which starts from the assumption that the entire semantic content of a
discourse is known at the beginning of the pipeline - after which this content is processed by
the next module and so on until the document comes out at the end of the pipeline. This
could point the way to an understanding of what makes plan-based systems more suitable
for one type of application and template-based systems for another. We hypothesize that
their pipeline structure (in a different jargon, their top-down orientation) makes plan-based
systems unsuitable for the modeling of 'spontaneous' types of speakingjwriting, in which the
speakerjwriter does not always have a plan for the complete discourse before the first word
is uttered. The incremental setup of D2s's language generation module, which lets templates
'fire' until a topic (e.g. the topic of goalscoring) is exhausted, without a preconceived plan
about the order in which this must happen [4,6], illustrates how such a spontaneous manner
of speakingjwriting can be modeled using a template-based method.

References

1. S. Busemann and H. Horacek. A Flexible Shallow Approach to Text Generation. In Proceedings of
the 9th International Workshop on Natural Language Generation (IWNLG'98), Niagara-on-the-Lake,

238-247, 1998.

2. L. Cahill. Lexicalisation in applied NLG systems. ITRI report ITRI-99-04, obtainable via
http:j jwww.itri.brighton.ac.ukjprojectsjragsj. 1998.

3. R. Dale and E. Reiter. Computational Interpretations of the Gricean Maxims in the Generation of
Referring Expressions. Cognitive Science 18, 233-263, 1995.

4. K. van Deemter and J. Odijk. Context Modelling and the Generation of Spoken Discourse. Speech
Communication 21(lj2), 101-121, 1997.

5. A.K. Joshi. The Relevance of Tree Adjoining Grammar to Generation. In G. Kempen (ed.), Natural
Language Generation, Martinus Nijhoff, Dordrecht, The Netherlands, 233-252, 1987.

6. E. Klabbers, E. Krahmer, and M. Theune. A Generic Algorithm for Generating Spoken Monologues.
In Proceedings 0/ the 5th International Conference on Spoken Language Processing (ICSLP'98), Syd
ney, 2759-2762, 1998.

7. E. Krahmer and M. Theune. Context Sensitive Generation of Descriptions. In Proceedings of the

5th International Conference on Spoken Language Processing (ICSLP'98), Sydney, 1151-1154, 1998.

8. E. Krahmer and M. Theune. Efficient Generation of Descriptions in Context. To appear in Pro

ceedings of ESSLLI workshop Generation 0/ Nominals, Utrecht, August 1999.

9. D. McDonald and J. Pustejovsky. TAC'S as a Grammatical Formalism for Generation. In Proceed
ings 0/ the 23rd Annual Meeting 0/ the Association for Computational Linguistics (ACL '85), Chicago,
94-103, 1985.

5

10. J.D. Moore and C.L. Paris. Planning Text for Advisory Dialogues: Capturing Intentional and
Rhetorical Information. Computational Linguistics 19(4), 652-694, 1994.

11. E. Reiter. NLG vs. Templates. In Proceedings 0/ the 5th European Workshop on Natural Language
Generation (EWNLG'95), Leiden, 95-106, 1995.

12. E. Reiter. Has a Consensus NLG Architecture appeared and is it Psychologically Plausible? Pro
ceedings 0/ the 7th International Workshop on Natural Language Generation, pp. 163-170, 1994.

13. E. Reiter and R. Dale. Building Applied Natural Language Generation Systems. Natural Language
Engineering 3(1), 57-87, 1997.

14. M. Stone and C. Doran. Paying Heed to Collocations. In Proceedings 0/ the 8th International
Workshop on Natural Language Generation (IWNLG'96), Herstmonceux, 91-100, 1996.

6

Shallow vs. Deep Techniques for Handling Linguistic
Constraints and Optimisations

Ehud Reiter
Dept. of Computing Science,

University of Aberdeen, Aberdeen, Scotland,
email: ereiter@csd.abdn.ac . uk

Abstract

An important aspect of many NLG systems is ensuring that all generated texts obey
linguistic constraints and are (near-)optimal under linguistic quality measures . Where
they are possible, deep techniques can automate the enforcement of linguistic constraints
and optimisations. In contrast, shallow techniques require developers to explicitly enforce
constraints and optimisations. Deep techniques therefore offer the potential of improv
ing system robustness and decreasing development time. Unfortunately, deep techniques
cannot be used for many types of optimisations and constraints because of gaps in oUf
understanding of linguistic phenomena, or because the necessary software would be very
expensive to create. This discussion is illustrated by examining where deep and shallow
techniques are used in the STOP system, which produces personalised smoking cessation
leaflets.

1 Introduction

Applied Natural Language Generation (NLG) systems should be robust, that is they should
produce good-quality output in all cases, even strange situations that their developers did
not anticipate. In particular, it would be very useful ifwe could guarantee that the output of
an NLG system is always linguistically correct (correct orthography, morphology, syntax, use
of anaphors, etc). In many applications, it would also be useful if we could guarantee that
the output of a system was always easy to read, difficult to misinterpret, and otherwise weIl
suited to its readers. In other words, we would like to be able to guarantee that 100% of texts
produced by an NLG system obey a set of linguistic constraints (for example, are syntactically
correct), and are optimal or near-optimal under a set of linguistic quality measures (for
example, reading speed).

From this perspective, an important difference between shallow and deep techniques is
that in systems built with shallow techniques, the system developer must explicitly ensure
that constraints and optimisations are enforced by careful design and testing of templates
(or whatever shallow technique is used). In systems built with deep techniques, in contrast,
the core NLG code may be able to enforce some constraints and perform some optimisations
automatically, without the system developer needing to explicitly worry about this. This
should both enhance robustness and reduce the developer's workload.

Unfortunately, in many cases it is not possible to enforce linguistic constraints and optim
isations automatically, because we do not understand the underlying linguistics weIl enough

7

to be able to write a robust set of rules for the phenomena. In other cases, even if the under
lying linguistics is weIl understood, there may not be an existing software package which can
do the job, and building a deep processing engine for one application may be prohibitively
expensive. In such cases, shallow techniques may be preferable.

2 STOP

In the rest of this paper I shall discuss how several linguistic constraints and optimisations
are handled in the STOP system (Reiter, Robertson, and Osman, 1999)1. STOP produces per
sonalised smoking-cessation leaflets, where personalisation is based on the smoker's response
to a questionnaire about attitudes towards smoking, health problems, previous attempts to
quit, and so forth. STOP is not fielded, but it is currently undergoing a clinical trial which
requires STOP to produce 800 leaflets for previously unseen patients; hence STOP needs to be
robust.

Internally, processing in STOP is divided into the three stages of document planning,
microplanning, and realisation, of which document planning (deciding what information to
communicate) is the most complex. Oversimplifying to so me degree, the document planner
works by first classifying smokers into one of 7 categories, and then activating a schema
associated with that category. The schemas produce a tree-like document plan. Each leafnode
of the document plan essentially defines one sentence in the leaflet. Sentences are represented
by what Reiter and Dale (1999) call canned text, that is lists of sentence fragments without
orthographie information such as capitalisation. The internal nodes of the tree indicate how
sentences are grouped, associate document structures (such as paragraphs or itemised lists)
with groups of sentences, and sometimes specify discourse relations between daughter nodes.
Discourse relations are represented by cue phrases, not abstract RST-like relations (Mann
and Thompson, 1988). The microplanner and realiser convert this structure into aMicrosoft
Word RTF document specification. STOP also includes a revision module which enforces a
length constraintjoptimisation (see Section 3.5); this uses importance information which the
schemas associate with document plan structures. Perhaps the most innovative aspect of
STOP from an NLG perspective is the knowledge acquisition methodology used to interact
with experts while building the system, but this will not be discussed here.

Prom the perspective of deep vs. shallow handling of optimisations and constraints, I will
regard as 'shallow' anything which must be explicitly programmed in ascherna, and as 'deep'
anything which is automatically handled by the rest of the system.

3 Handling Optimisations and Constraints in STOP

3.1 Orthography

Texts need to be orthographically correct. That is, they need to use correct punctuation
and capitalisation, and should include blank spaces between tokens when appropriate. Many
orthographie rules are straightforward, such as the rule that a sentence should end in a fuH stop
or other sentence-final punctuation mark; but there are subtleties such as quote transposition
(the rule in American English that if a sentence ends in a quote, the sentence-final full stop
should go before the final quotation mark).

1 More information about STOP is available at http://'\Nil.csd.abdn.ac.uk/~rroberts/smoking.html

8

In STOP, orthographie processing is handled in a 'deep' fashion, using rules based on
Nunberg's (1990) analysis. This is because these rules are relatively easy to code, and (at
least in my experience) it is difficult to get orthography 100% right in template-based systems,
especially when a system is being developed or maintained by more than one person. Certainly
most systems I have looked at which use shallow techniques for orthography do make mistakes
in at least a few cases. For example, consider this output from the ECRAN system (Geldof
and van de Velde, 1997):

'BIue Velvet' was produced by David Lynch in 1986 in the USA. The movie features
Kyle McLachlan, Laura Dem, Dennis Hopper, Isabella Rossellini. It teIls the
story of a good but curious boy who gets in touch with evil in hirnself and in the
world. On his 'walk on the wild side' he meets a strange nightclub singer (Isabella
Rossellini), a diabolistic sadist (Dennis Hopper) and other 'strange folks'. ,it will
be shown at Arenberg Galeries in room 2. You can see some shots here.

The sentence it will be shown at Arenberg Galeries in room 2 should be capitalised, and the
comma in front of it should be deletedj these are orthographie errors.

Of course, I am sure the ECRAN developers could easily fix this error once it is pointed
outj the point I am trying to make is simply that it is difficult for adeveloper to detect all
such problems in advance if capitalisation, punctuation, and spacing is explicitly specified in
templates. I have observed similar problems in many other systems (commercial as weIl as
research), ECRAN is by no means atypieal and I am not intending in any way to single it out
for critieism.

In any case, STOP's use of deep orthographie processing seems to have been successful in
its aims of making the system more robust, and of simplifying the schema author's job.

3.2 Syntactic Processing

Texts of course need to be syntactically correct, this is a very important linguistic constraint.
Syntax is a complex phenomena, but it is reasonably weIl understood, and the NLG com
munity has developed several general-purpose syntactic realisation packages. When we first
started working on STOP, we intended to incorporate one of these packages into STOP, in
order to ensure that STOP'S output was always syntactically correct.

However, after experimenting with the KPML (Bateman, 1997), SURGE (Elhadad and
Robin, 1997), and REALPRO (Lavoie and Rambow, 1997) realisation packages, we changed
our mind and reverted to shallow techniques. That is, there is no explicit enforcement of syn
tactic rules in STOPj instead, schema authors must carefully design template-like structures
that always produce syntactieally correct text.

The problem with the packages we examined is that none of them had both adequate
documentation and broad enough grammatieal coverage. For example, there is essentiaIly no
documentation on the NIGEL grammar used in KPML other than a large set of examples. SURGE
does have some documentation, but experimentation revealed that it has many undocumented
aspects as weIl. For example, producing the passive form of Sam sees Mary (Mary is seen by
Sam) requires not just changing the focus, but also specifying the feature (agentless no); this
feature is not described in the current SURGE documentation.

Of course, it is perfectly understandable that KPML/NIGEL and SURGE should not have
commercial-quality documentation. Producing such documentation is expensive, and these
systems were developed as research projects, not as commercial systems. However, we feIt

9

that using a system that was not weIl documented might actually reduce the robustness of
STOP and increase the schema author's workload.

The third system we looked at, REALPRO, was a commercial system and did have reas
onable documentation. However, REALPRO's grammatical coverage did not include many
constructs that we needed, and hence we could not use it in STOP. Again this is perfectly
understandable; producing a well-documented commercial quality realiser is expensive, and
REALPRO'S grammatical coverage is dictated by wh at is needed in the commercial projects
i t is used in.

Using shallow techniques for syntactic processing in STOP was a disappointment. I hope
that in the future some NLG group does develop a realisation component which is weIl docu
mented, weIl engineered as a software artifact, and has a wide-coverage grammar; this would
allow future sToP-like projects to use deep techniques for realisation.

3.3 Rhetorical Coherence

Another crucial linguistic constraint is that texts should be rhetorically coherent. A vari
ety of 'deep' document-structuring algorithms (such as (Marcu, 1997)) have been developed
which automatically create rhetorically coherent texts. These algorithms are based on formal
definitions of dis course relations such as Contrast and Elaboration. We briefly considered
incorporating such an algorithm into STOP, but decided against this because we feIt that
existing definitions of discourse relations (such as those in RST (Mann and Thompson, 1988))
were problematical. In other words, we believed that the underlying linguistic knowledge of
discourse relations - what they are, when they are used, how they are expressed via linguistic
mechanisms such as cue phrases - was not robust, and hence attempting to use an algorithm
such as Marcu's might decrease system robustness instead of increase it.

As a result, shallow techniques were used for rhetorical coherence in STOP. Schema authors
explicitly specify the order in which things are said, and also explicitly specify cue phrases
between clauses or sentences. A few simple rules are enforced automatically by STOP; for
example, a cue phrase will not be expressed if one of the clauses it links is the empty string.
Such rules do in a small way add robustness and simplify the schema authoring task, but 95%
of the rhetorical coherence task is still explicitly programmed by the schema authors.

This is not ideal, and I hope that in the future linguistic understanding of discourse
relations progresses sufficiently so that general-purpose 'deep' discourse structuring systems
can be built.

3.4 Reading Level

An important linguistic optimisation is that STOP'S texts should be easily readable by people
with limited reading ability; in other words, that STOP's texts should have a low 'reading
level'. Unfortunately, there is no reliable measure of the reading level of a text (although
there are some rough heuristics, such as the Flesch Reading Ease score (Hartley, 1994)).
However, there are some guidelines on ways of decreasing readability level, such as using
short sentences, short familiar words, and active voice; and avoiding sentences with more
than two subordinate clauses (Hartley, 1994). These can in principle be implemented in a
deep fashion, even if it is not possible to measure overall reading level.

In STOP, this optimisation is handled in a shallow manner, that is schema authors explicitly
specify words and sentence structures which are expected to be in accordance with the above

10

rules. This decision was partially based on the way we interacted with our reading-Ievel expert;
she preferred to revise specific sentences, and this was easiest to do if senten ce fragments
were explicitly represented in schemas. However, we are currently trying to see if we can
automatically enforce so me of the above rules in STOP in a deep fashion.

3.5 Length

An important application-specific constraintjoptimisation in STOP is length. Essentially,
STOP'S leaflets must fit on 4 A5 pages (a constraint), but we wanted them to say as much
as possible given this constraint (an optimisation). This is enforced in a deep fashion in
STOP, using a revision module which estimates the length of aleaflet and adjusts content
accordingly. This was useful because length constraintsjoptimisations are difficult for schema
authors to enforce explicitly (essentially because they are global, not local), so automating
this both enhanced robustness and made the schema authoring job easier.

3.6 Other Constraints and Optimisations

The constraints and optimisations discussed above are all important and non-trivial to enforce
in STOP. Hence, the decision as to whether they should be automated or left to schema authors
depended on the issues raised at the beginning of this paper. There were other constraints
and optimisations which were handled by shallow techniques simply because it was very
easy to enforce them in schemas, or because they were not important in STOP. For example,
morphological constraints (such as the correct formation of plurals and other inflected forms),
could be automated in a deep fashion, but this was not done in STOP because there were very
few places in STOP'S leaflets where inflected forms needed to be produced from root words,
and hence correct morphology was easy to directly specify in schemas. Another example is
recall optimisation (that is, optimising the amount that recipients remember after reading a
leaflet); this was feIt to be unimportant in the STOP application, and hence no attempt was
made to optimise this (either automatically or by the schema authors).

4 Conclusion

In conclusion, deep and shallow techniques differ in how they ensure that Iinguistic constraints
and optimisations are enforced. In an ideal world with perfeet understanding of Ianguage
and unlimited software development resources, deep techniques would be used everywhere,
because in principle they are better at guaranteeing that 100% of generated texts satisfy
linguistic constraints and are (near-)optimal under linguistic quality measures. However, in
our imperfect world of limited understanding of Ianguage and limited resources, sometimes it
makes more sense to use shallow techniques.

STOP uses deep techniques where we feIt that (a) they addressed a linguistic constraint or
optimisation which was important in STOP, and could not trivially be enforced by schema au
thors; (b) the underlying linguistics of the constraint or optimisation was weIl understood; and
(c) deep processing could reaIisticaIly be implemented in a resource-limited project. Where
we did use deep techniques (orthography, Iength, a few rhetorical coherence ruIes), we believe
they added substantial value to the system in terms of making it more robust and easier
to develop. However, there were many areas where we could not use deep techniques be-

11

cause of insufficient understanding of the underlying linguistic phenomena, or the expense of
programming a robust implementation of a deep technique.

We hope that future systems such as STOP will be able to make more use of deep tech
niques, because of advances in linguistics and the development of reusable wide-coverage NLG

components that are robust, weIl documented, and weIl engineered as software artifacts. After
aIl, much of the the potential power of NLG technology comes from using deep techniques
to automatically handle linguistic constraints and optimisations. Indeed, without such tech
niques, we may not be able to do much better than developers who build text-generation
systems using string-concatenation or mail-merge techniques.

References

Bateman, John. 1997. Enabling technology for multilingual naturallanguage generation: the
KPML development environment. Natural Language Engineering, 3:15-55.

Elhadad, Michael and Jacques Robin. 1997. SURGE: A comprehensive plug-in syntactic
realisation component for text generation. Technical report, Computer Science Dept,
Ben-Gurion University, Beer Sheva, Israel.

Geldof, Sabine and Walter van de Velde. 1997. An architecture for template based (hy
per)text generation. In Proceedings 01 the Sixth European Workshop on Natural Language
Generation, pages 28-37, Duisberg, Germany.

Hartley, James. 1994. Designing Instructional Text. Kogan Page, London, third edition.

Lavoie, Benoit and Owen Rambow. 1997. A fast and portable realizer for text generation.
In Proceedings 01 the Fifth Conlerence on Applied Natural-Language Processing (ANLP-
1997), pages 265-268.

Mann, William and Sandra Thompson. 1988. Rhetorical structure theory: Towards a func
tional theory of text organisation. Text, 3:243-281.

Marcu, Daniel. 1997. From local to global coherence: A bottom-up approach to text planning.
In Proceedings 01 Fourteenth National Conlerence on Artificial IntelligenceAAAI-1997),
pages 629-635.

Nunberg, Geoffrey. 1990. The Linguistics 01 Punctuation. Number 18 in CSLI Lecture Notes.
University of Chicago Press.

Reiter, Ehud and Robert Dale. 1999. Building Natural Language Generation Systems. Cam
bridge University Press. In press.

Reiter, Ehud, Roma Robertson, and LieslOsman. 1999. Types of knowledge required to
personalise smoking cessation letters. In Werner Horn et al., editors, Artificial Intelligence
and Medicine: Proceedings 01 AIMDM-1999, pages 389-399. Springer-Verlag.

12

From fuH generation to 'near-templates' without loosing generality

J ohn Bateman

University of Bremen
Bremen, Germany

e-mail: bateman@uni-bremen.de

1 The state of the 'art'?

Renate Henschel

Human Communication Research Centre,
University of Edinburgh

e-mail: henschel@cogsci.ed.ac.uk

Natural Language Generation (NLG) research has traditiona11y sought after sophisticated co m
plexity of expression in the texts generated and considerable degrees of flexibility. However, the
applications involving NLG functionality attempted to date have required little of this flexibility
and none of the complexity. In this rat her immature context, a received view is developing that
full NLG cannot be motivated for 'real applications' and that simpler techniques, such as 'template
generation' should be used. But, since templates in the sense of rigid patterns are weil acknowl
edged to be overly restricted, 'extensions' of basic templates are commonly proposed: ranging
from libraries of fixed syntactic fragments (Glass, Polifroni & Seneff 1994), through 'phrasallexi
cons' (e.g., Milosavljevic, Th110ch & Dale 1996), through to general mechanisms for constructing
grammars involving arbitrary chunks of linguistic material (Busemann 1996). The 'application
context' assumed by a11 of these directions is arguably appropriate for the current state of NLG
application: i.e., generation-like behaviour of restricted flexibility is to be produced making little
or no use of existing resources, with no conformance to existing standards, with little expectation
that this is any more than a one-off effort, and with minimal regard for possible extension.

Since this kind of situation is untenable for anything more than a handful of first experiences in
providing generation functionality, template-based environments such as that of Busemann (1996)
offer powerful techniques of which 'template-grammars' can avail themselves as little or as much as
they require. It is possible then to write 'template-grammars' of increasing sophistication, largely
overcoming many of the problems of rigidity commonly attributed to them. The argument is then
that such developments are useful in that they focus on the needs of applications rather than on
the interests of theoretical generation; as, for example, Horacek & Busemann (1998) claim:

' . .. most available tools are based on in-depth approaches to NLG contributing to a
general purpose generation system rather than supporting the economic development
of dedicated applications.'

In this paper, we will suggest that the dichotomizing of approaches to NLG that such views pro
mulgate is unnecessary and that appropriate approaches to generation can move freely between
the general and the specific. 'In-depth' does not mean that there is no basis for pursuing economic
solutions-indeed, quite the contrary, apremature orientation to 'shallow' techniques can weaken
support for the economic development of increasingly complex, but nevertheless praetical, genera
tion systems while simultaneously stifling opportunities for user-motivated (even user-demanded)
flexibility.

It is now eommonly noted that the distinction previously drawn between 'fulI' generation and
template-based generation is not clear-eut; indeed, the two approaches need not be considered
different in kind at all, but instead represent two extreme points on a continuum. This has
supported the development of 'hybrid' or 'mixed' arehitectures for generation, in which some
elements of a generator's behaviour are contributed by relatively fixed templates and others by
fu11 generation . Both views-that template generation and fuH generation are extremes on a
single eontinuum and that mixed representations are possible--are natural when a unifieation
based metaphor is assumed for representing linguistie resourees and their processing. At some
intermediate point in processing some of the structures constructed will be partially instantiated
and resemble more templates, others will be uninstantiated and resemble more the state of affairs
in fuH generation.

13

Now, while the removal of the categorial distinction between full-NLG and template-NLG
has enabled template-based approach es to address issues of ftexibility and potential expansion , it
equally enables full-NLG to address issues of application-customization. Just because an NLG
system can provide in-depth approaches, does not mean that it must in all cases. Moreover, while
template-based approaches make much of their ease of adaptability-i .e., that adeveloper is free
to write whatever they need to get desired generation functionality with minimal extern al con
straint and with no necessary adherence to existing practice-the downside of this is that issues of
standardization and re-use get left by the wayside. A solution to this is relatively obvious: libraries
of established solutions to particular areas of generation functionality should be made available
for the particular template/hybrid-architecture adopted so that these modules can be used or not
when building generation functionality for some application. But one thing that should be clear in
this move is that the apparent 'freedom' of the wild west of template generation is successively re
placed by a more disciplined adherence to, and use of, standard packages and standard techniques
and this will necessarily represent an initial overhead for an application builder.

It is this, then, rather more complex situation of application development that needs to be
compared and contrasted among other approaches to providing NLG-technology for applications.
The argument that some full-NLG approach is complex and involves an overhead when compared
with 'quick and easy' template generation can only apply for the most simple of generation require
ments (generally those for which it is difficult to motivate NLG-technology in the first place). For
more complex, more mature application demands, any appropriate solution will involve external
overheads: that is, overheads due both to the complexity of the system that is used and to the
need to re-use and conform to pre-existing resource components. The question is then to what
extent these overheads can be structured in beneficial ways.

2 Automatie eustomized subgrammar extraetion

The view of practical NLG given above is largely 'bottom up' : when particular generation func
tionality is required, various resource components are either constructed from scratch or adopted
from any libraries that may exist. We can contrast this with another view, where the developer
works with the power of a full description which is then subsequently automatically pruned of non
required functionality in order to deliver a small, customized application system. Solutions of this
kind are generally not quite so small or fast as those delivered by the former model (arguably), but
are (again arguably) very much more rapid to develop and retain a degree of ftexibility and ease
of subsequent extension that the former model cannot match. In Henschel & Bateman (1997), we
introduced and illustrated an implemented method for systematic, semi-automatic customization
of this kind. Here we describe its use for a different application and different language, focusing
on some of the options that having a full NLG system 'in the background' open up.

Although the procedure we have developed is valid for grammars written in typed unification
formalisms in general, the principal reference grammars we consider are systemic-functional gen
eration grammars. Large-scale systemic gramm ars have shown themselves to be powerful tools for
a wide range of generation tasks. Computational instances of systemic grammars are accordingly
employed in some of the largest and most inftuential text generation projects-such as, for example,
PENMAN, TECHDOC, Drafter-I, Gist, and the numerous projects using SURGE/FUF (Elhadad
& Robin 1996). The general methodology adopted in these systems has been to build on the
already broad coverage systemic-functional grammars that have been constructed over the past 15
years. Large grammars he re include the original Nigel grammar for English developed within the
Penman text generation project (Mann & Matthiessen 1985) and SURGE. The input specifications
for these resources are usually a semantic specification of some kind: for the purposes of the cur
rent paper we will focus here on Penman-style systems since their favoured input is the 'Sentence
Plan Language' (SPL) as generally proposed as a reference input form for tactical generation by
the RAGS ('Reference Architecture for Generation Systems') project (RAGS Project 1999) .

Whereas the increment involved in extending these large grammars to cover any particular
phenomena required by a new application or text type is usually relatively small (i.e., much less

14

than building comparable functionality from scratch), maintaining the resources as a whole would
be a considerable overhead for most applications. Henschel & Bateman (1997) therefore describe an
algorithm and its implementation by wh ich arbitrary subgrammars can be automatically extracted
from the resource set as a whole in order to provide customized generation capabilities. The input
to the extraction process is a set of grammatical types to be preserved as distinct in the extracted
subgrammar. Such a list is most simply obtained by generating the required output with the fuH
grammar. Thning to a particular application then works by (a) constructing (or planning) semantic
inputs for the tactieal generator, (b) generating the surface strings required for the application,
(c) collecting the subset of grammatical types involved, and (d) producing a subgrammar that is
customized so as to just cover the target generation behaviour.

3 Case study: temporal specifications for appointments

We illustrate the approach by considering an appointments domain and appointment scheduler
such as described in the COSMA-system (Busemann, Declerck, Diagne, Dini, Klein & Schmeier
1997). We begin our illustration by assuming that such an appointment scheduler has to generate
a limited number of speech acts that could be represented by templates such as '<meeting> has
been postponed <time>', etc. Now, temporal expressions should be considered a standard part
of a full generation grammar and we want to re-use this information for our targetted application.
For the concrete generation grammar Nigel and a generation system such as Penman or KPML (cf.
Bateman 1997), temporal expressions are generated by purely semantie SPL specifications: the
following SPL, for example, would generate (in English) the string 'until Monday'.

(time / object
:modifying-relation-q modifying
:operator-id (8 / (extremal anterior))
:operand-id (d / date :veekday-id (vd / monday»))

Here operator-id describes the semantie type of the temporal relation involved, and operand-id
describes the semantics of the prepositional object. This could then be embedded in the ' hybrid'
SPL-style supported by KPML so as to give an input specification:!

«p / template :pattern (event "has been p08tponed" time))
(time / object

:modifying-relation-q modifying
:operator-id (8 / (extremal anterior»
:operand-id (d / date :veekday-id (vd / monday»»

Although the use of a template avoids much of the complexity of the full Nigel grammar, it
would still not be desirable for the simple appointments domain to keep the full grammar 'on
board'. Even the grammar component responsible solely for prepositional phrases of this kind
contains approximately 50 choiee points with cross-classification, while the grammar of nominal
phrases necessary for the prepositional objects adds another 80 or 90 choice points. Together this
involves several hundred grammatieal types. If we then further assurne that we actually only need
to generate very few phrases, e.g., the phrases 'until <time>', 'by <time>' and 'on <time>' then
the full grammar is clearly overkill.

In constrast, automatie grammar extraction allows us straightforwardly to extract a subgram
mar that corresponds to just the breadth of generation that we require. When we base extraction
on the semantic specifications necessary for the three temporal expressions we need, the result
is a 'complete' generation resouree with only a handful of choiee points, presenting little more
complex than a template with conditionalized components; this is shown in Figure 1. Moreover,
the subgrammar extraction process maintains an appropriate link between the semantics and the
extracted subgrammar: this means that the input specifications are unchanged and can continue

15

prapoaitional-phraa8
MiDirang. 1 groupI .

MiDirangl I ;roupl •

• ld.norproc:

+Minirano ••

Mlnorproc ••• ·Jlinirang • •

\J::::-'::' '~I - r::.:::.'.::::~:.1~~"'~

-I ~~""<io<i'Y-""i'i" Ilroupa
'tbing 1'1 noun-.t •.

'lbing I" DOUD.

'rh1ng 1I proper-DOU.D. nOnp<lsterior IlIinorproc ... I lJntll . 1

TbJ. Dg' I J DOUD •

• '!'hing.

Figure 1: Automatically extracted grammar for simple temporal specifications

to be drawn from stable libraries of test suites and examples, as weH as providing a stable API for
applications.

Although it is possible to proceed in the fashion just described, some of the well-known lim
itations of the template approach show themselves when we switch the language. We could, for
example, just as easily select to send the semantic specification given above through the existing
grammar for German. Then we would obtain the not very useful string: 'Event has been postponed
bis Montag'. Language-conditionalization of the input specification is supported in KPML but
this does not avoid the basic problem that the particular appropriate choice of preposition depends
on what the system intends to communication: when it is 'postponing' (until, auf) rather than
'taking-place' (on/at, an/um) particular decisions are necessary and this depends on information
that is not available in the template. In short, the apparent simplicity of the approach brings
complexity downstream because general linguistic information that a full grammar possesses is
not accessible.

As a more complex example, we can also consider the case where we want to generate not just
three simple temporal express ions but a representative range of the expressions that actually occur
in an appointments domain. For this, we used the corpus of German email messages collected prior
to the COSMA project (Declerck & Klein 1997): this includes expressions such as the following
in many combinations:

14
14h

14:00
um 14:00 Uhr C.t.

um 14:00 B.t.
um 2

um 14:00h
um 14 Uhr

4.11.91
4. November 1991

4. November 91
4.11

04.11
4. November

November
November 1991

We extended the coverage of our German gramm ar so that all of these expressions can be generated
on the basis of semantic SPL specifications. Since many of the variations have immediate and
restricted linguistic possibilities, the resulting SPLs are often not significantly different from a
keyword-based input form-this can be seen in the following two examples:

14:00 Uhr C.t . 14.00 S.t.

(t / clock-time
:academic-time-q academic-time
:hour (y / object :name 1141)
:min (m I object :name 100(»

(t / clock-time
:academic-time-q academic-time

:academic-time-type-q exact
:clock-explicitness-q clock-not-expressed
:hour (y / object :name 1141)
:min (m / object :name 1001»

Such input expressions can be used with the full grammar anywhere where corresponding temporal
expressions are to be generated. The full German grammar then contained 719 choice points

IThe event that is postponed could also be a template or a fuH semantic specification of some event.

16

ranging over 1200 grammatical features.
We then produced a set of input express ions involving the full range of temporal express ions

and covering the kinds of speech acts typically found in the corpus (e.g., postponing meetings,
moving meetings forward, announcing meetings for particular dates, arranging to meet on some
date, etc.). As with most real examples of the use of this style of generator, the values of many
features are provided by default values and do not need to be explicitly given. Therefore sentences
such as: "<event> wird auf <time> verschoben" are produced from SPL patterns of the following
form, where <time> can be drawn from any of the temporal specifications summarized above:

(x27 / dispositive-material-action
:lex postponing
:tense present
:actee <event>
:destination <time»

Now sufficient information is explicitly available in the input specification, the grammar can decide
between particular prepositional forms appropriately-and, moreover, this then does not present
a problem when the language changes.

Finally, we ran this set of semantic specifications through the grammar extraction process in
order to derive a time-specification customized generation grammar. The specifications as a whole
employ 308 of the grammatieal features of the full grammar when generating and so an extracted
grammar can be substantially smaller: in this case, the extracted grammar consisted of only 139
choice points ranging over 204 grammatical features. We then regenerated the example set with
the extracted grammar and also compared generation times. Whereas generation with the full
grammar ranges from 1-4s with an average just below 2s, generation with the extracted grammar
requires approximately 60% of that.2

In fact, the range of expressions generated with our example set is still probably too wide for
a generation system. It is not likely that an application would need to produce all the variability
illustrated above. However, since the time and date specifications now form part of the general
grammar, more specific, application-tuned subgrammars can be similarly extracted. All that needs
to be done is that a system designer would piek the particular forms of temporal express ions that
are required, and grammar extraction can deli ver the result, ranging from the trivial component
illustrated at the beginning of this section to the more complex coverage of the last example. This
also suggests both useful support, and flexible production of resources, for controlled languages.

4 Discussion

The brief example of the previous section has suggested using hybrid template-semantie input
forms, applying existing linguistie resources unchanged for a partieular domain, and the automatie
extraction of subgrammars that range from being little more complex than templates to sizable,
although application-motivated, grammars of their own.

Several issues are worth raising. In particular, we have assumed throughout the present dis
cussion that an input form analogous to SPL is appropriate. This could weIl vary depending on
partieular application: however, given the above mentioned proposal from the RAGS project that
SPL be seen as a reference point, it would be useful to develop libraries of SPL specifications for
a wide variety of grammatical constructions-this would provide a strong basis for applications to
aim at when generation functionality is required. Appropriate input specifications can then either
be generated as traditionally done in NLG or used as hybrid 'semantie templates' as illustrated
above. Note that this automaticaIly provides a convenient point for cross-Ianguage localization.
Another issue is the kind of division of labour our methodology requires: whenever there is genera
tion capability that is not present in a general resource, we have argued that the appropriate place

2 All times with Allegro Common Lisp 5.0 running on a Sun Ultra 2. Sentence length ranges from 5 to 18 words,
average 10 words. No further performance improving measures were taken in the comparison and generation was
carried out with the unoptimized full grammar development environment.

17

to build this capability is in the general resource (so that it can be re-used) and not in the specific
application. Both options are probably desirable, however: minor adaptations being carried out
in the extracted grammar, with more significant areas being added to the general grammar. Fi
nally, our approach places a different slant on 'integration': with the grammar extraction model,
integration of linguistic information is done within the general grammar rather than opportunisti
cally as required when particular components are to be brought together for an application. This
additional effort is then weH repaid in the ftexibility of customization and tailoring that becomes
possible.

To conclude, we suggest that modularities and resource re-use such as those envisaged here can
provide a basis for the more mature application work involving generation that will be required
in the future and will support a more useful utilization of the mutually-beneficial competences of
linguistic and software engineers.

Acknowledgement

We are very grateful to Stephan Busemann for making the appointment expression corpus available
to uso

References
Bateman, J . A. (1997), 'Enabling technology for multilingual natural language generation: the KPML

development environment', Journal 0/ Natural Language Engineering 3(1), 15-55.

Busemann, S. (1996), Best-first surface realization, in 'Proceedings of the 8th. International Workshop on
Natural Language Generation (INLG '96)', Herstmonceux, England, pp. 101-110.

Busemann, S., Declerck, T., Diagne, A. K., Dini, L., Klein, J. & Schmeier, S. (1997), Natural language
dialogue service for appointment scheduling agents, in 'Proc. 5th Conference on Applied Natural
Language Processing', Washington, DC., pp. 25-32.

Declerck, T. & Klein, J. (1997), Ein email-korpus zur entwicklung und evaluierung der analysekomponente
eines terminvereinbarungssystems, in 'Proceedings of DGfS-CL', Heidelberg.

Elhadad, M. & Robin, J. (1996), A reusable comprehensive syntactic realization component, in 'Demon
strations and Posters of the 1996 International Workshop on Natural Language Generation (INLG
'96)', Herstmonceux, England, pp. 1-4.

Glass, J., Polifroni, J. & Seneff, S. (1994), Multilingual language generation across multiple domains, in
'Proceedings of the International Conference on Spoken Language Processing', Yokohama, Japan.

Henschel, R. & Bateman, J. (1997), Application-driven automatic subgrammar extraction, in 'Proceedings
of ACLjEACL97 Workshop: "ENVGRAM: Computational Environments for grammar development
and linguistic engineering', Association for Computational Linguistics. (Also available from the
Computational Linguistics E-Print Archive, paper: cmp-lgj9711010).

Horacek, H. & Busemann, S. (1998), Towards a methodology for developing application-oriented report
generation, in A. Günter & O. Herzog, eds, '22nd German Conference on Artificial Intelligence (KI-
98). Proceedings', Bremen, Germany.

Mann, W. C. & Matthiessen, C. M. (1985), Demonstration of the Nigel text generation computer program,
in J . D. Benson & W. S. Greaves, eds, 'Systemic Perspectives on Discourse, Volume 1', Ablex,
Norwood, New Jersey, pp. 50-83.

Milosavljevic, M., Tulloch, A. & Dale, R. (1996), Text generation in a dynamic hypertext environment, in
'Proceedings of the Nineteenth Australasian Computer Science Conference (ACSC '96)', Melbourne,
Australia.

RAGS Project (1999), Towards a re fe ren ce architecture for naturallanguage generation systems, Technical
Report ITRI-99-14 and HCRCjTR-102, Information Technology Research Institute (U. Brighton)
and Division of InformaticsjHuman Communication Research Centre (U. Edinburgh), Brighton and
Edinburgh. Contributors: Lynne Cahill, Christy Doran, Roger Evans, Chris MeIlish , Daniel Paiva,
Mike Reape, Donia Scott and Neil Tipper.

18

"Free choice" and templates: how to get both at the same time

J 0 Calderl ,3, Roger Evans2 , Chris Mellish 3 , and Mike Reape3

I Human Communication Research Centre
University of Edinburgh

2 Information Technology Research Institute
University of Brighton

3 Institute for Communicating and Collaborating Systems
Division of Informatics

University of Edinburgh

Abstract. This paper presents a procedurally neutral framework for representing the results and
states of computations called the whiteboard, developed in the context of an investigation of reference
architectures for Natural Language Generation (NLG) systems. We show that whiteboards solve a
number of data representation problems in NLG, in particular, how to characterize partial and mixed
representations. With these in place, an approach to generalized "canning" - by which we mean
the generalisation of its use in "canned text" to any datatype - becomes available which allows
indusion of arbitrary fixed and partial structures of any type which may themselves be realized by
structures of other types. We use this mechanism to show that the "free choice vs. templates debate"
is only a question of degree.

1 Introduction

The context of the work described in this paper is an initiative to develop a generic architecture for NLG
systems l

. In a study of applied NLG systems (reported in [Pai98] and [CDE+99b]), we found reasonable
evidence to support a functional decomposition of most systems into seven or so modules operating on
three types of data representation (broadly, rhetorical, semantic and syntactic - see [CDE+99a] for further
details). However, we found less consistency in ordering and control of processing within each system,
leading us to conclude that any generic architecture would need a high degree of procedural flexibility.

This paper outlines an architectural framework that aims to support this flexibility. We provide an
infrastructure that allows modules in an NLG system to communicate with each other and collectively
develop data structures that represent solutions to a generation task. We focus on the declarative aspects
of the framework, encompassing both data structures of the generation task and relationships between
such structures. In particular, our proposals naturally support structures that span more than one rep
resentation level ('mixed' structures), partial structures and 'canned' structures of any type. We do not
address issues of control directly, but intend the declarative semantics of the framework to support any
control regime. The framework we have developed has the following key properties:

• It is cumulative. That is, there is a data stream which flows from the beginning of the generation
process to the end and once data is added to this stream, it stays there - it cannot be removed or
altered (although it may be superseded by another data item of the same type).

• It represents data as typed atomic objects and relationships between them - objects may have
internal structure accessible to individual processing modules, but apart from the object's type,
that structure is invisible at the level of the framework itself.

• It supports a range of control regimes (such as incremental, revision, parallel and blackboard
regimes). To do this, it can explicitly represent results of intermediate and partial representations,
and realizational and historical dependencies between data objects.

We call this representation framework a whiteboard architecture2
.

I This work was supported in part by ESPRC grants GRjL77041 (Edinburgh) and GRjL77102 (Brighton),
RAGS: Reference Architecture for Generation Systems, and research sponsorship from Microsoft Corporation
to Edinburgh.

2 We choose the term whiteboard in contrast to so-called blackboard architectures. A crucial property of blackboards
is that their contents can be removed or destructively modified. A whiteboard, by contrast, can only be written
to - on ce added, no content can be removed or altered.

19

2 Whiteboards

Informally, a whiteboard is an unstructured heap of (undecomposed) objects with a structure imposed
on them. The structure we want to impose in the general case is one of stating that two elements in the
heap stand in some relationship to each other.

This requirement can be achieved with the following simple model. We have a set of objects and a set
of arrows pointing between pairs of objects. Both the objects and the arrows are typed: there will be a
function from objects to object types, and arrows to arrow types. In the case of arrows, there is also a
second level of typing. Each arrow type, t, has a signature, a(t), which is a pair of object types, indicating
what type of object arrows of type t can point from and to. We define a whiteboard as folIows.

Definition 1 (Whiteboard).
A whiteboard is a tuple

(O,A, To,TA, to, tA,a)

where 0 is a set %bjects, A ~ (0 T.4) 0) is a set 0/0/ arrows, To is a set %bject types, TA is a set
0/ arrow types, to : 0 --+ To is a function, tA : A --+ TA is a function, a : TA --+ 2(To xTo) is a function

andfor all a: 01 -.!t 02 E A.((to(0J),tO(02)} E a(t)).3

By intention, nothing is said in the definition about the internal structure of objects or the internal
structure of types. We assurne that object types "have their own logic" which is to be strictly separated
from the information encoded in the whiteboard. This is because we want the whiteboard to be indepen
dent of any particular set of objects. That is, a whiteboard should make sense no matter what its set
of objects iso However, we shall assurne below that types corresponding to sets and tuples of objects are
available, so that the whiteboard can contain objects representing sets and tuples of other objects.

This strategy induces a very explicit division in the representation of information in the system as
a whole. The whiteboard represents information at the level at which modules communicate with each
other. In particular, modules are only sensitive to 'events' in the whiteboard at this level of representation.
Lower levels of representation may also exist within whiteboard objects (for example a whiteboard object
might be a feature structure), and modules may pass information between each other at this level, but
such structure is invisible to the whiteboard.

Note however, that our formulation takes absolutely no stand on the 'granularity' of the whiteboard
objects, that is where this division in representations occurs. The whiteboard might characterize just
the highest level architecture where each component operates on richly structured representations whose
internal structure is invisible to the whiteboard, or at the other extreme the whiteboard could record
every use of the lowest level data access or constructor functions.

A further issue on which the definition is intentionally uncommitted is the extent to which there might
be different kinds of arrows. In practice it is often useful to distinguish at least two such kinds, namely
arrows that relate pieces of structure together to form larger structures (for example, linking mothers to
daughters in a phrase structure tree) and arrows that relate whole structures to each other (for example
linking semantic structure to syntactic structure). Although this distinction is not precise, it is useful
to introduce so me terminology to capture the intuition: let us call the first kind of arrows local and the
second non-Iocal. The following examples of arrow types are significant for the discussion below.

constructor (Iocal) constructor arrows build new objects out of old - the arrow points from the sub-
structure to the structure it is part of.

component (Iocal) component arrows are (for the purposes of this paper) just the inverses of constructor
arrows.

realizes (non-Iocal) the target is the next level of representation (derived from the source) in the text
generation process.

3 Coherence and completeness

In this sec ti on we briefty note some formal properties of whiteboards. Let us assurne we express the
components of a generation system in terms of functions F over the objects 0 of a whiteboard. As
elements on the whiteboard can correspond to sets or tuples of objects, so we can view all functions as
unary. Let a(f) be the signature of the function f.

3 This simple setup might be profitably generalized to an order-sorted type structure.

20

Definition 2 (Coherence). A whiteboard is coherent iffVf E F,Vo, 01,02 E 0.(1(0) = 01 and f(o) =
02) -+ (01 = 02 and 3a E A.a : ° .4 01).

Definition 3 (Completeness). A whiteboard w is complete iffw is coherent andVf E F, oE O.(to(o) =
a(f) -+ 30' E O.f(o) .4 0' E A).

In other words, coherence requires that functions really are functions whose 'outputs' are recorded
on the whiteboard. Completeness requires that every function "has been applied" to every object in its
domain.4

The following definition is also useful. An object ° is initial, if it is not the result of any function.
Then, given any set of initial objects, and assuming a condition of minimality in which the whiteboard
contains only initial objects and objects transitively derived by function from them, the induced minimal
complete whiteboard is unique.

These definition provides the basis for viewing a whiteboard as the basis of a processing system. The
whiteboard is seeded with some initial objects, and then processing modules operate on the objects in the
whiteboard, adding further objects and relationships. The process continues until no further objects can
be added. As long as each processing module preserves coherence then the resulting whiteboard will be
the unique minimal complete whiteboard.

As a cumulative data store, the whiteboard resembles the chart as used in many parsing algorithms.
Indeed, work by [Ritar] on determining properties of grammars via the notion of 'completed' charts has
been a major inspiration to uso In a setting where productions in a CFG may be restricted to top-down
(or bottom-up) use, he derives conditions under which completeness with respect to the unrestricted
grammar is preserved. As is weil known, an edge in achart can in fact represent the 'result' of more than
one computation and these computations are usually distinct with different categories and substructure
assigned. We attempt here to mimic exactly this kind of behaviour in a more general setting.

We will say that an object has a history if it is the target of some realizes arrow. In other words, it
may be dependent on one or more other objects, but is not the realization of any of them. Initial objects
don't have histories.

4 Some examples

An example of a realizes arrow might be x ~ y which means that y is the syntactic structure that
realizes x. Then if we already have a semantic object a and we have just created a syntactic object b
which realizes it then we just add b to the whiteboard and add an a ~ b arrow. Likewise, we might
under some circumstance imagine adding a semantic object a and an arrow ~ pointing from a to a
syntactic object b which was already there.

We might also want to say that the syntactic object which realizes some semantic object a is the same
thing as one of the components of some other syntactic object, b without knowing anything about what
that object iso In this case, we add a new object, say c, and a realizes arrow from the semantic object a to c
and a component arrow from the syntactic object b to c. In this case, we leave any component structure of c
undefined. Procedurally speaking, when we eventually get around to computing any component structure
of c we will add arrows to characterize that structure. (Cf. Fig. 1.5)

b

Fig. 1. An example of an object with an unspecified type

4 An obvious technical consequence is that all functions in F are total on their domains. This is easily arranged.
~ The triangles in Fig. 1 and the foUowing diagrams indicate objects with internal structure.

21

5 Partial and mixed structures

Fundamentally, a whiteboard is just a collection of objects and arrows. However our informal distinction
between local and non-Iocal arrows allows us to conceive of larger structures within a whiteboard. A loeal
structure (or just 'structure') is a maximal connected subgraph in which all the arrows are local. Local
structures correspond to 'ordinary' data structures6 .

Intuitively, a partial structure is a structure with "a hole in it". For example, a syntactic representation
might represent an NP-VP clause with the VP syntax fully specified, the mother S fully specified but a
hole where the NP goes. In this case the object corresponding to the S will have a component arrow from
it to the syntactic object corresponding to the VP but the component arrow for the NP will just point to
some object with an "underspecified" type. (Cf. Fig. 2(b) .)

• csem-R~. Asyn-R. CSyn-R •

a b c d

(a) A mixed structure (b) A partial structure

Fig. 2. Structures

A mixed structure is a set of local structures connected by non-Iocal arrows. For example, consider
a generation system with four levels of representation: A(bstract)Sem(antics), C(oncrete)Sem(antics),
A(bstract)Syn(tax) and C(concrete)Syn(tax) and that the architecture is one of a pipeline of transducers
with the four levels of representation as interfaces in that order. 7 Then, a mixed structure might corre
sponds to an object and some of the objects which were transduced to generate it. That is, if we have

S
CSem-R ASyn-R CSyn-R

a E A em, b E CSem, C E ASyn and d E CSyn and arrows a) b, b) c and c) d where
CSem-R, ASyn-R and CSyn-R are the "realizes CSem", "realizes ASyn" and "realizes CSyn" arrow types
respectively, then we can look at the collection of a, b, c and das a mixed structure. (Cf. Fig. 2(a).)

Notice however that any of the structures in Fig. 3 would be a valid mixed structure as weil. In these
cases, levels of representation are "skipped" and objects of one level of representation direct1y realize
objects of another level of representation without all the objects of the intermediate levels of representation
present.

(a) • csem.R,..
CSyn-R

~.

a b d

(b) • ASyn-R ... CSyn-R

a c d

(c) • CSyn-R ...
a d

Fig. 3. Some other mixed structures

For example, in Fig. 3(a), the ASem object a is conventionally realized by the CSem object, b, but b
is not realized by an ASyn object but is instead realized direct1y by the CSyn object d. This might be
the case for a number of reasons. Two are that d may have been computed directly from b or perhaps
for some reason the intermediate ASyn object has simply not been put in the whiteboard. Fig. 3(b) and

6 Strictly, we need to identify a unique 'root' object to ensure this - a local structure with multiple roots corre
sponds to a tangled structure: two or more objects that share components. But we will not pursue this detail
here.

7 These levels are among those proposed within the RAGS project, [CDE+99a)

22

Fig. 3(c) are similar. In Fig. 3(b), the CSem object is missing and the ASem object a is directly realized
by the ASyn object c. In Fig. 3(c), both the CSem and ASem object a is directly realized by d.

If an object is added without its derivationally precedent levels of representation as in Fig. 3, co m
putation can still proceed with the object as long as access to those preceding levels is not required. For
example, an ASyn object might be placed in the whiteboard and then a CSyn object calculated from it
so long as realization does not require access to precedent ASem and CSem objects. But this is just the
behaviour required. Some computations will require derivationally precedent levels of representation and
some will not. We will exploit this property below.

Continuing our analogy with chart parsing, once an object arrives on the whiteboard, its contents are
available for furt her processing regardless of the history of that object. Once a set of objects is available
which provides the argument required by some function, application of that function is then a possible
computation step. It could be that some collection of objects are processed in many different ways, just
as edges in achart may be used by more than one dominating edge.

6 "Free choice" vs. templates

We have described how the whiteboard allows us to represent local, mixed and partial structures in
a uniform framework, and also introduced the notion of object histories. In this section we put these
components together to give an account of generalised canning, arbitrary mixed canned representations.
First, we define canning.

Definition 4 (Canning). An object 0 in a whiteboard is canned if it represents a data-type which could
potentially be constructed by some function, but its contents do not have a history.

It is worth emphasizing that this definition operates in terms of types, rather than instances.
As a a concrete example, consider a traditional template consisting of predetermined strings (in other

words, 'canned text' par excellence) and holes. It is reasonable to assurne that, on this occasion, the te m
plate as a whole is dependent on so me object. The use of the template is therefore historically dependent
on that object - likewise the contents of the elements that fill the holes. The template constructs a final
text by concatenation, ultimately yielding an object of the same type as the canned elements. Therefore,
the template as a whole is not canned, but the predetermined strings are.

The definition also allows canning to be used for any datatype. A syntactic structure containing
some leaf nodes annotated with lexical items is canned in just the same way: it contains structures in a
configuration of a type which could have been computed by some other process, but those structures are
in this case explicitly asserted. The predetermined lexical items are then available for a later process, say
inflection, just as would be other lexemes, whose identity would be determined by some other process.

Fig. 4(a) is a general characterization of this situation. Here, band c are components of a, but of distinct

realizes •..•. ... ".. C _c.:.==..:.._ .. ~ d ----=::.:..::::....-

'-... ~ a ,
b

(a) Generalized canning

.. ~ x

d
i

········>request(X)

1
-me-

lookup ~ • fax • concat,

(b) A concrete instance

Fig. 4. Canning

-fax me"

type, while b, d are of the same type. a, c have histories (indicated by the preceding dashed arrows), while
b doesn't. For our first example above, read 'predetermined string' for the type of b, and 'hole' for the type
of c. e is then the results of string concatenation (or some representation immediately related to surface
presentation). Note that this overall pattern is an instance of a mixed structure as defined above, and

23

the relationship between a and cis that of a partial structure. Fig. 4(b) repeats Fig. 4(a), but substitutes
examples of concrete data. In this case, we assurne an input such as request (fax). The constructor
function is string concatenation.

From this perspective, it is instructive to compare canning with the actions of a simple head-driven
sentence realizer, such as that described by [CRZ89]. There, a semantic head is determined by pattern
matching a semantic representation against the lexicon. Each act of matching may give rise to subgoals
corresponding to argument express ions themselves requiring generation from subparts of the original
semantic representation. If no subgoals are generated, the relevant part of the computation is complete.
In terms of the picture of generalized canning shown in Fig. 4(a), this amounts to allowing the process of
realization which links objects c and d to potentially create new objects of the same type as a.

These examples are sufficient to show that, from an abstract perspective, there is no hard and fast line
between "free choice" and template-based approaches. At the template end of the spectrum, transduction
will tend to involve more initial objects as there is intentionally less (computed) structure exploited in
the generation process, while at the free choice end recursion may be implicated.

It is worth noting here that the approach does make some assumptions about the behaviour of the
algorithms manipulating the whiteboard. In order for the generalised canning to function properly, modules
need to be 'well-behaved' in the sense that their response to the addition of larger canned structures all
in one go must be the same as if the components had been added independently.

7 Future work

There are many aspects of this proposal which we can't discuss in detail here - most certainly in its
appropriate technical formulation - and others which we are uncertain of. How, for example, is it best
to describe and reason about control? Canning has an impact here, because we may want to use a
predetermined structure even when a computed structure might be available (or, indeed, vice versa). A
second question is the extent to which in practice it will be possible to bring extant generation systems
within the scheme proposed here.

8 Conclusions

Our initial goal in developing the whiteboard architecture was to provide a framework that was sufficiently
general to subsurne the architectures found in practical NLG systems. In order to achieve this goal in a
principled way, we had to include formal operations that turned out to support a general approach to
canning. With hindsight perhaps this is not so surprising: given that our architecture that is (a) highly
modular and (b) not ordered, individual modules need to have the potential to deal with input presented
in various states of readiness, and canned structures just represent one extreme on that continuum.

Our characterization of generalized canning in terms of whiteboard configuration permits an abstract
view on the manipulation of information in the generation process. From that perspective, the distinction
between template-based and "free choice" systems is seen to be essentially one of degree.

References

[CDE+99a] Lynne Cahill, Christy Doran, Roger Evans, Chris Mellish, Daniel Paiva, Mike Reape, Donia Scott,
and Neil Tipper. Towards a reference architecture for naturallanguage generation systems. Technical
Report ITRl-99-14, University of Brighton, Brighton, March 1999. Also published as HCRC technical
report number HCRC/TR-102, University of Edinburgh.

[CDE+99b] Lynne Cahill, Christy Doran, Roger Evans, Chris Mellish, Daniel Paiva, Mike Reape, Donia Scott,
and Neil Tipper. In Search of a Reference Architecture for NLG Systems. In European Workshop on
Natural Language Generation, Toulouse, May 1999.

[CRZ89] Jo Calder, Mike Reape, and Henk Zeevat. An algorithm for generation in unification categorial gram
mar. In Proceedings 0/ the 4th Con/erence 0/ the European Chapter 0/ the Association /or Computa
tional Linguistics, pages 233-240. University of Manchester Institute of Science and Technology, April
10--12 1989.

[Pai98]

[Ritar]

Daniel S Paiva. Survey of applied natural language generation systems. Technical Report ITRI-98-03,
University of Brighton, Brighton, July 1998.
Graeme Ritchie. Completeness conditions for mixed strategy bidirectional parsing. Computational
Linguistics, to appear.

24

Time to get real
Current and future requirements for generation in
speech and naturallanguage from an industrial

perspective

Paul Heisterkamp
DaimlerChrysler AG

Speech Understanding (FT3/A V)
Wilhelm-Runge-Str. 11, D-89081 Ulm, Germany
E-mail: paul.heisterkamp@daimlerchrysler.com

Abstract

In state-of-the-art speech dialogue systems, both the applications behind them and the dialogues
themselves become more general and more flexible. The time is near when current template
based generation of system utterances and user information becomes a limiting factor on functio
nality and, eventually, market success of such systems. They need to be at least augmented with
the capability of full-fledged linguistic generation. Linguistic generation systems for speech dia
logue, in their turn, have to meet a number of requirements in order to fully serve the purpose of
the overall system. We motivate and discuss these requirements, such as real-time processing,
ellipses generation, reformulation, choice of mode, time alignment for multi-modal systems etc.
We also point to the importance of application creation and maintenance tools.

1. Introduction

In the recent years, the perspective of generation has - as far as we can see it - changed to
accept and incorporate 'simple' techniques for creating {spokenlmultimedia} language
output in generation systems. At this workshop, it really would be carrying coals to
Newcastle to argue for the necessity of an integration of both 'free', fully linguistic
generation and template-based approaches (cf., e. g. Bateman & Henschel 1999, Calder et
al. 1999, van Deemter, Kramer & Theune 1999), as we did a number of years ago
(Heisterkamp 1996). So, we need not dweIl on the advantages of simplicity. Ease of
implementation, ease of maintenance, ease of change and predictability of what's going to
be said are mostly recognised benefits of using slot-and-filler templates. But templates
require that the structure (or lay-out) of the data they will 'verbalise' is known in the sense
that slots are available and filler values are identified, in short, that the 'world' of
applications, of things we can talk about, is fully known. Likewise, templates yield only a
lirnited repository of patterns. If someone uses them longer, they can easily become boring,
even with a random-choice generator attached. Third, templates are of the 'one-size-fits-all'

1 The quotation marks indicate that we are referring to multi-modal utterances generally, and use speech and
language terms as pars pro toto.

25

kind: their flexibility towards different people in different situations is - to say the least -
limited2

. In short: The benefits as weIl as the shortcomings of template based generation are
obvious.

Currently, for commercial systems, the benefits by far outweigh the shortcomings.3 The
lack of flexibility is not noticed as a limiting factor, as most systems work with one
(structurally static) application aimed at the general public. But things are changing. The
dynamics of information via the web and the necessity - commercially - to provide custom
tailored services already now require some linguistic, rule-based generation capacity in
properly arranging the 'filler values' of slots in templates. With more sophisticated, mixed
initiative dialogue systems on the one hand and information extraction, selection,
abstracting, and translation on the other hand coming up fast, the addition of linguistic
generation is needed to make these services really useful and economically viable. 'Useful'
here means both that the outcome, i. e. the resulting (multi-modal) text serves its purpose
for the end-user, as weIl as that the generation component is easy to adapt, maintain etc. for
the service provider(aka 'deployer,4). It is from this point of view of 'use-centred' research
(cf. Stokes 1997) that we present in this talk some requirements for generation components
embedded in overall service-providing systems.

We do not strive for exhaustiveness, nor do we intend to rank these requirements in
terms of importance. It is supposed to be a list of research issues and questions like 'Has
this been done before, or, does anybody know how to properly do this?', and it would be
nice if someone would point at so me of the items presented in the talk and say: 'Yes, this is
solved, look it up in that-and-that paper'.

In the following, we concentrate on generation for spoken language dialogue systems (or
conversational systems: 'synchronous generation' that has to work under the conditions of
'real time' (cf. below).

2. Think in Systems!

The generation component of a dialogue system is crucial in that it is responsible for the
only part of the overall system that is 'visible' to the end users. However, it is only useful in
so far as it interacts properly with the other components to best exploit their capabilities and
to yield a maximum of functionality and naturalness, i. e. ease of use. In particular, this
means that the 'what-to-say' part of the generation process is handled by the dialogue
management. It determines the next system utterance, the items to be addressed and the type
of utterance (question etc.). The dialogue management has to deliver the appropriate surface
semantic description. It also should know where the semantic focus of the utterance or
particular sentences should be, which items may be elliptified, which items may be
anaphorised and perhaps has some idea about 'chunking', grouping of related items. The

2 For an attempt to enhance the flexibility of templates by endowing them with adaptabJe prosodie markers,
see Hulstijn & van Hessen 1998.
3 Whether this is due only to the inherent simplicity of templates or to a lack of tool support for other approa
ches is not the question here.
4 We have been arguing for so me time now to differentiate these two groups what is often still generally call
the ,users' into (end-)users and (system-)deployers, deployers being companies or individuaJs that offer a
service using the technology research and development provide.
5 Thanks to Peter Poller for this observation.

26

generator then must negotiate with the dialogue manager about possible and impossible
formulations.

On the 'output' side (speech synthesis - concept-to-speech preferably) the generator has
to provide not only the linearisation, but also information about prosodic focus, speech
appropriate syntax ('breath groups'), sentence type(s) etc. In case the speech dialogue
system has barge-in capability (Le. the user is allow to interrupt the system as it speaks, and
the recogniser can handle this), the generator has to stop the speech output, receive from the
synthesiser a time-tag indicating which word was uttered when the interruption occurred,
and translate this back into a marker on the respective semantic element and send back the
marked and time-tagged order of semantic item to the dialogue manager.6 The dialogue
manager can decide (or at least guess) which semantic item caused the interruption and is
the most likely context in which the user utterance can be analysed.7

In case of misunderstanding being signalIed by the user, the dialogue manager initiates
some repair activities. It starts with repairing what the system can repair by itself: its own
utterances. The dialogue manager must be able (and allowed to) request a re-formulation of
a system utterance (in terms of e. g. explicitness, sentence structure, lexical choice). Now,
this is an internal functional argument for the use of 'templates' in 'free' generation. In
order to be able to avoid generating the same output, the generator has to store what has
been said. This storage feature can be used easily to build up a database of (successful, i. e.
un-contradicted) utterances that can then be re-used to speed up the generation process. By
the same token, the generator can use this database to improve its own performance by re
ordering its preference of grammar rules, lexical selection, linearisation etc.

3. Real time

In interactive systems, it is essential that the user gets areaction within the time a human
agent would respond. 'Real time' here means the time to the to first sound or image of the
system utterance. Within this time, ideally, speech andlor gesture recognition, parsing and
dialogue management as weIl as application system interaction and, not to forget, the actual
generation should have taken place. At least in part. Speech output calls for incremental
generation.8 The first difficulty is in doing incremental generation for speech is that speech
output is linear: no retracting of backtracking allowed. Now, as it cannot be guaranteed that
all of the semantic items that have to be formulated arrive in time to take up their 'correct'
position in the utterance, one has to recourse (as humans do) to what is called 'Afterthought
syntax', resulting in utterance like 'You want to fly to Rome? From Paris?', where the
prepositional phrase 'from Paris?' should have gone hefore the 'to Rome' pp. To implement
this type of syntax, we used the ellipsis feature we already had and genera ted the parts that
arrived at linearisation 'too late' by inserting them in the complete utterance and elliptifying

6 see Poller, Heisterkamp & Stall 1996 and Poller & Heisterkamp 1997 for an implementation of an interface
frotocol between generator and synthesiser for concept-to-speech synthesis .

This assumes that the interrupting uUerance was of error-correcting or similar nature; for an interesting use
of purely back-channel interruptions see Iwase & Ward 1998.
sIn the EFFENDI project, we prototyped an incremental generator for a dialogue system. (EFFizientes For
mulieren von DIalogbeiträgen (Efficient formulation of dialogue contributions): Joint project of Dairnler
Benz Research and DFKI Saarbrücken 1994-1996; based on ideas published in Heisterkamp 1993; no public
ly available papers except Poller, Heisterkamp & Stall 1996 and Poller & Heisterkamp 1997. The bulk of the
implementation in EFFENDI and the experimental experience here is due to Peter Poller).

27

the parts that were already uttered. Thus, we arrived at keeping both the original sentence
type and the corresponding prosodic features in intonation and focus. And this is another
argument to store and re-use templates also in 'free' generation, as the ellipsis feature in
turn is based on consulting a template (record of previous generation).

Even with incremental generation, it may be asking too much to start a system utterance
with some 'meaningful' part, especially as connections to application systems (e. g. over the
web) can be unpredictable in their time behaviour. This is why it might be useful to gain
more time by starting a system utterance with

4. 'Filler' utterances

Apart from being a cheap trick, to start an utterance with some introductory non-semantic
word or phrase is very helpful in priming the hearer (user) to raise his or her attention level
and to start listening. This is especially true in situations where there may be some
distraction. Humans do this all the time. It is a way to ensure the efficiency of the overall
interaction in that it hel ps to be understood. Ditto, in a system thatwould allow concurrent
processing of utterances, it should be possible to generate backchannel utterances (the nods
and 'umm's' that signal back attention (not necessarily understanding».

5. What is efficiency?

'Weil, let me get this c1ear, so this would be a flight to ehemm Paris, leaving from
Frankfurt, yes? On Tuesday - so that's the twenty-fourth - next week - at nine o'c1ock a.m.,
that's oh-nine-hundred hours , right?' This (not completely made-up) example of a 'system'
utterance for a airline schedule inquiry system should illustrate that efficiency of generation
in interactive systems is neither the 'shortest' possible formulation nor a fully 'grammatical'
one.9 Rather, it is the formulation that serves best the purposes of being understood,
requesting contradiction in case the system did get something wrong (or, as it also happens,
the user did not say what he or she 'really' meant) and to give the hearer appropriate time to
process the information. In other words, efficiency can be seen as approaching cognitive
adequacy. Regrettably, this adequacy is not in the book like grammar rules, it is dynamic in
that it is situation and context dependent, and it is hard to measure. IO Still, it is the overall
goal that generation systems should aim at achieving. Another aspect of this adequacy is
that it also points at an aspect of interaction that has - to our knowledge - so far not been in
the focus of research in language generation, namely the fact that

6. Interaction is a social thing

Currently, spoken dialogue systems are designed to be 'impersonal' in that they do not
actively try to ac hieve the impression of being some specific 'person' (or rather 'persona').
However, people only can model interaction on the basis of human-human communication.
This implies a social role of the dialogue partner. So, people do ascribe some sort of
personality to the dialogue system they're interacting with, and for whatever reason, we, the

9 Redundancy is good for communication anyway.
10 An advantage of interactive systems is that they can exploit user feedback to improve their performance.
Backchannel information (Iwase & Ward 1998) could be used in this way; so far, however, we are not aware
of any system that would architecturally allow for such a learning feature.

28

designers, try of counter this by making the systems as neutral as possible. 11 With the
advent of 'persona' systems, it is about time to answer such questions as: How do we
'make' an person (impression) through speaking style? And, when and if we con do that
(consistently), what use do we put this feature tO?12 Apart from commercial opportunities in
the games sector (FinFin's, Talking personalised Tamagotchis and the like), this has
immediate implications for the 'communication' (i. e. the advertising and self-presentation)
of companies. Does the automated receptionist talk in the way 'corporate identity' requires
it, or is it just the ordinary off-the-shelf style? Can I make my product more attractive,
differentiate my brand better, by endowing it with a speaking style that suits my target
customer group best?

7. Tools: Make it work for everybody

So far, we have been talking about technical requirements, system features and suchlike.
Sure, if we have all of these things, we can build really wonderful systems. But we - the
developers and techies - are not going to build all the systems that can be created and put
into service with our technology. Because we're too few, too long trained and thus too
expensive to write a grammar for the umpteenth sports abstract service. If we want to make
generation really useful (and in the long run, this is the key to commercial success as weIl)
we have to provide mechanisms that allow a broad range of people to take the technology
and set up their own system with it, the system that best suits the service, the user and the
deployer in terms of functionality, adequacy and (not the least) economy. We have already
addressed the topic of self-improvement or learning. Learning currently is mostly done
using some sort of statistics. In our view, learning, adapting a system to a new
{domainllanguagel3lspeaking stylelmulti-modal environmentl...} should also be possible by
example. Let someone show you how some contents (or semantic representation) should
be verbalised, analyse the sentence, and add the style to your rule-base. If you can't do
that, use the example as it is whenever possible.

And this is the final argument for the integration of 'free' generation and templates.

11 Or could this be due to some lack of imagination on our side, we being mostly (some sort of) engineers?
Cultural differences seem to matter a great deal here; little wonder that an experiment of 'purely' social inter
action (basically, speaking without saying anything, only exchanging social recognition) was conducted in
Japan (Suzuki, Ishii & Okada 1998),
12 A persona speaking in the dialect of an area where people are notorious for being slow could be very help
ful in increasing the acceptance for systems with long reaction times.
13 Multilinguality has been taken for granted so far. I1's granted, isn't it?

29

8. References
Bateman, John; Henschel, Renate (1999): From fuH generation to 'near-templates' without loosing generality.

In this volume.

Calder, Jo; Evans, Roger; MeIIish, Chris; Reape, Mike (1999): "Free choice" and templates: how to get both at

the same time. In this volume.

Heisterkamp, Paul (1993): Arnbiguity and uncertainty in spoken dialogue. In: Proceedings of Eurospeech '93,

Berlin.

Heisterkamp, Paul (1996): Natural language analysis and generation. Materials of the course held at the 4th

European Summer SchooI on Language and Speech Communication - Dialogue Systems. Budapest,

Hungary.

Hulstijn, Joris; van Hessen, Arjan (1998): Utterance generation for transaction dialogues. In: Proceedings of

ICSLP '98.

Iwase, Tatsuya; Ward, Nigel (1998): Pacing spoken directions to suit the listener. In: Proceedings of ICSLP

'98.

Poller, Peter; Heisterkamp, Paul (1997): A compact representation of prosodically relevant knowledge in a

speech dialogue system. In: Proceedings of the Workshop on Concept-to-Speech Generation

Systems, July 11, 1997, ACL'97IEACL'97 Joint Conference, Spain.

Poller, Peter; Heisterkamp, Paul; Stall, David (1996): An interface protocol from the speech generator to the

speech synthesis module of a dialogue system. In: Bateman, John A. (Ed.): Speech Generation in

Multimodal Information Systems and its Practical Applications. Proceedings of the 2nd 'SPEAK!'

Workshop (2nd-3rd November 1996 [recte 1995]). St. Augustin: GMD. (GMD-Studien. 302.).

Stokes, Donald E. (1997): Pasteur's Quadrant. Basic Science and Technological Innovation. Washington, DC:

Brookings Institution Press.

Suzuki, Noriko; Ishii, Kazuo; Okada, Michio (1998): Organizing Self-Motivated Dialogue with Autonomous

Creatures. In: Proceedings of ICSLP '98.

van Deemter, Kees; Kramer, Erniel; Theune, Mariet (1999): Plan-based vs. template-based NLG: a false

opposition? In this volume.

30

TEXTPRO - A Method of Generating Texts from a Formal
Language into Natural Languages

Boyd Buchin and Ulf Schmerl

Institut für Theoretische Informatik und Mathematik
Universität der Bundeswehr München, 85577 Neubiberg, Germany

URL: http://infl-Ilwv.informatik.unibll-muenchen . de

Abstract. Attention, the following text has been produced by machine! The corresponding source
text is printed at the end of this paper.

This paper describes the system TEXTPRO which generates texts from the expressions of a formal
language into various natural languages. The target languages which we support at present are
English, French and German. Since the human user has difficulty understanding the formal
language, a more readily comprehensible intermediate language, which until now only exists for
English, is intended for each of the target languages.

Rksume. Attention, le texte suivant a eU elabore d la machine! Le texte source correspondant
paraft d la fin de cet article.

Cet article decrit le sysMme TEXTPRO qui gen~re des textes A partir des expressions d'un lan
gage formel dans des langages natureis differents. Les langues cibles que I'on soutient A present
sont I'anglais, le fran<;ais et I'allemand. Comme I'utilisateur humain ades difficultes A com
prendre le langage formel, une langue intermediaire plus comprehensible, qui jusqu'A present
existe seulement pour I'anglais, est destinee pour chaque langue cible.

Zusammenfassung. Achtung, der folgende Text ist maschinell erzeugt worden! Der dazugehö
rige Quelltext ist am Ende dieser Arbeit abgedruckt.

Diese Arbeit beschreibt das System TEXTPRO, das Texte aus den Ausdrücken einer formalen
Sprache in verschiedene natürliche Sprachen generiert. Die Zielsprachen, die wir gegenwärtig
unterstützen, sind Englisch, Französisch und Deutsch. Da der menschliche Benutzer Schwierig
keiten hat, die formale Sprache zu verstehen, ist für jede Zielsprache eine besser verständliche
Zwischensprache vorgesehen, die bis jetzt nur für Englisch existiert.

1 Introduction

In this paper we describe a method of generating texts in various natural languages from the
expressions of a formal language. The formal language codes the information necessary for
generating the natural language texts. The target languages under consideration at present
are English, French and German. The system TEXTPRO is an implementation of this method.

The intended application of this method is as folIows: an author who wishes to publish a
text in a language with which he is not familiar or in multiple languages can write the text in
the formallanguage of TEXTPRO. TEXTPRO then takes over the task of formulating the text
in the desired target language by means of language specific generators. Compared to machine
and human translations, this method has the obvious advantage that there is no need for an
analysis of the natural language source text. This analysis is a problem which has, to date,
been insufficiently resolved.

31

To facilitate the use of the formal language, we intend to construct an intermediate lan
guage for each of the target languages. The intermediate languages should be constructed in
such a way that they are more user-friendly than the actual formallanguage and can be easily
"compiled" into the formal language by computer. We plan to achieve this by using disam
biguated fragments of speech and thus allow the user to work with a fragment of his mother
tongue. So far only the intermediate language for English is available.

2 Similar Systems

Our intention has been to design TEXTPRO in such a way as to cover a sufficiently large
and general fragment of speech of the target Ianguages. The fragment should be sufficient for
formulating technical and mathematical texts. This rules out using pre-formulated text-blocks
as they can only cover specific fragments of speech and thus their use is limited to special
applications. We therefore based our system on a formallanguage. In objective, our approach
shows a fair degree of similarity to those of KPML, FUF, the CoGENTEx-family and, possi
bly, UNL. They too are based on formallanguages, which differ - in some cases considerably
- from ours (Paiva 1998, Senta and Uchida 1998). The differences prevent a mapping of our
formal language into one of the others, and thus the re-use of an existing generator.

3 TEXTPRO: Theory and Implementation

The theoretical basis of the TEXTPRO-project is the development of the formallanguage to
gether with its versions as intermediate languages. Its implementation, the TEXTPRO-system,
is made up of compilers, which translate texts from the intermediate languages into the ac
tual formal language, and generators, which translate texts from the formal language into the
target languages.

3.1 The Formal Language

As we already mentioned above, the formal language has the function of co ding the informa
tion necessary for generating the natural language texts. We decided on a sentence-oriented
representation of this information, as the structure of sentences can more easily be precisely
framed by grammatical rules than the structure of texts. We let ourselves be guided by heuris
tic principles in taking advantage of syntactic agreement between the three target languages,
i. e. by taking over corresponding syntactic structures into the formal language.

We circumvent differences in the syntactic structure of the three languages by using instead
more profound semantic descriptions. This surmounts the differences, without trying to find
absolute semantic descriptions and thus attempting to construct a "universal interlingua". An
example of a difference which has to be resolved in this way is the negation in English and
German. If one takes the sentence

Peter does not see Mary. (1)

one is tempted to formalise it as

--, (see Peter Mary) (2)

32

which can be generated into German as:

Peter sieht Maria nicht. (3)

But if one tries to formalise the very similar sentence

Peter does not see many guests. (4)

in the same way as we formalised sentence (1), the result is

-, (see Peter (many guest)) (5)

which corresponds to the German:

Peter sieht viele Gäste nicht. (6)

However, a correct translation of sentence (4) into German would have been:

Peter sieht nicht viele Gäste. (7)

The reason why the naive approach fails in the second example is that the negation se
mantically refers to the quantifier many. This can be made visible by putting sentence (4) into
the passive:

Not many guests are seen by Peter. (8)

One way to overcome this difference in syntax is to use generalised quantifiers like Barwise and
Cooper (1981) propose. In our example it is the generalised quantifier -, many which allows a
sufficient formalisation of sentence (4):

see Peter (-, many guest) (9)

Negation is not the only phenomenon where a naive approach fails. Other differences in
syntax can be found in articles, modal auxiliaries, voice, tense and aspect.

Even so the three target languages mentioned above show a large measure of agreement in
their sentence structure and other syntactic structures, e. g. relative clauses, that-, infinitive
and wh-clauses, constructions of noun phrases, prepositional phrases and adverbials, which can
be used for the formal language. In this respect, our approach differs considerably from that
of UNL, where the aim is to generate a text into dozens of highly different naturallanguages,
which in all probability possess few syntactic correspondences.

As the given space does not allow us to present the whole formal language, we will focus
on how sentences are formalised in TEXTPRO. TEXTPRO distinguishes between two types of
sentences: the simple and the composed sentence. Simple sentences are sentences which do
not have other sentences as direct constituents. Composed sentences, on the other hand, are
constructed from other sentences joined together by a connector such as and, or, but.

Simple sentences are either mathematical formulae (as in if x = 0 then ...) or consist of
a predicate and a list of terms. Each predicate has its own valence, which states the number
of terms the predicate requires. These mandatory terms correspond to subject and objects of
the sentence. All other terms are called free and represent adverbials.

Usually predicates take noun phrases as mandatory terms, but some require that-, infini
tive-, wh-clauses or other types of expressions at certain positions (l know that he will come).

33

Thus the valences of predicates not only define the number of required mandatory terms but
also their type. Finally some predicates permit terms of different types in certain positions
(e. g. he proved the theorem; he proved that 2 is a prime number), so that some valences must
furthermore be oligomorphic. A simple sentence thus has the structure:

T tT1 tTn j0:1 fo:m'f () E PI' ., n I ... m , 1 Tl, ... , T n T

T is the valence of the predicate p, tr1, ... , t~n are the mandatory terms, whose types are
TI, ... , Tn , and jf1, ... , j~m are free terms, whose types are al, ... , am . Of course predi
cates, mandatory terms and free terms are also complex structures. For example, a predicate
is divided into a kernel and modifiers. The kernel is either a verb or an adjective and the
modifiers make it possible to express modality, tense, voice and aspect, among other things.
The structure of the terms is even rieher. For a detailed description we refer to Buchin (1999).

3.2 The Implementation of the TEXTPRo-System

At present the TEXTPRo-system consists of four main components: a compiler, which trans
lates sentences of the English intermediate language into the actual formallanguage, and three
generators for the target languages supported at present, namely English, French and German.
In its final form, TEXTPRO will consist of a compiler and a generator for each the n target
languages - resulting in a total of 2n components.

We defined the compiler for the intermediate language for English in the form of a context
free grammar. It consist of over 260 production rules and distinguishes elose to 80 different
types of terminals. The parser-generator HAPPY converts it into program code. This approach
has the advantage that the definition of the compiler is compact and can be checked for
ambiguities automatieally.

The generators of TEXTPRO are written in the functional programming language HAS
KELL. We chose this language because of its strength in list processing: lists play an important
role in naturallanguage generation and in HASKELL even complex list transformations can be
expressed with ease. In total, the system consists of about half a megabyte of code. This does
not inelude the dictionaries. They are realised as text files and currently contain about 1000
entries per language. Both the compilers and generators make use of them.

We will not describe the components in furt her detail, but instead present the (ASCII)
text, from which TEXTPRO generated the abstracts at the beginning of this paper. It gives
an impression of the task TEXTPRO has to complete:

lAbs Abstractl. %%\emph{%% Attention, the following text H B produced2 by machine! The
corresponding2 source text is <printed> at {the end of this paper2}. %%}%%

This paper2 describes {the system % \ textsc{TextPro} %} wh ich >.t(t generates texts from {typ
expressions of a formal language} into various natural languages). The target languages wh ich
>.t(weO support t at present) are [English, French and Gennan). Since (the human user has
difficulty c(understanding the formal language)) for each of the target languages a more readily
comprehensible intennediate language which >.'t(until now, t only exists for English) is <in
tended>.

34

References

Barwise, J. and Cooper, R. (1981). Generalized quantifiers and naturallanguage. In Linguistics and Philosophy,
volume 4, pages 159 - 219. Reidel.

Bateman, J. (1997). Some apparently disjoint aims and requirements for grammar development environments:
the case of natural language generation. In Workshop on Computational Environments for Grammar
Development and Linguistic Engineering (A CL-EA CL '97), Madrid.

Buchin, B. (1999). Die Generierung natürlicher Sprache aus einer formalen Repräsentation. PhD thesis,
Universität der Bundeswehr München, CIS-Bericht 99-122, Universität München.

Duroux, P., Preller, A., and SchmerI, U. (1995). Natural language text generation from a formal language.
Universit~ Paul Valery, Montpellier.

Elhadad, M. and Robin, J. (1999). SURGE: A Comprehensive Plug-in Syntactic Realization Component for
Text Generation. Ben Gurion University.

Kittredge, R. and Lavoie, B. (1998). Meteocogent: A knowledge-based tool for generating weather forecast
texts. In Proceedings ofthe American Meteorological Society AI Conference (AMS '98), Phoenix, Arizona.

Paiva, D. S. (1998). A Survey of Applied Natural Language Generation Systems. Information Technology
Research Institute (ITRI), University of Brighton.

Senta, T. D. and Uchida, H., editors (1998). Universal Networking Language - UNL. UNU lIAS Tokio.

35

The VOL VEX Handbook -

A General Validation Tool by Natural Language Generation for

the STEPIEXPRESS Standard

Hereules Dalianis

Department of Compute rand Systems Sciences (DSV)

The Royal Institute ofTechnology (KTH) and Stockholm University

Electrum 230, S-I64 40 Kista, SWEDEN,

E-mail:hercules@dsv.su.se

Abstract

STEP Application Protocols (APs) are often very large and complicated general descriptions
of different domains mainly within the manufacturing industry. STEP AP's are expressed in the
EXPRESS language which is a static modeling language of Entity-Relationship type. Users of
STEP AP have often large problems to understand the whole AP and therefore they need a tool
wh ich helps them to validate the STEP AP. The tool we are proposing is a natural language
English paraphraser of the STEP AP. In this handbook we are demonstrating how to
automatically build a AP domain lexicon from one STEP AP and with this lexicon automatically
translate one arbitrary STEP AP EXPRESS file into a Prolog based format to be used by a
Natural Language Generator called ASTROGEN. The translation from EXPRESS format to
EXPRESS Prolog format and the construction of the domain lexicon is carried out by a set of Perl
programs.

1. Introduction

To make STEP AP's and formal language descriptions understandable for "naive" users one
needs to paraphrase them to natural languages by using natural language generation (NLG)
techniques. Two serious obstacles prevent the use of NLG systems for large collections. First, the
limited domain lexicon and the effort to extend it to construct the domain lexicon is time-consuming
and costly. Second, the generated text may seem too "computer-made" and therefore boring. For
example, the text below, (see Figure 1), is automatically generated from the STEP Application
Protocol214 (AP214), the automotive design application protocol [AI-Timimi and MacKrelI, 1996],
using neither text nor senten ce planning, nor canned or example text.

To produce even poor text like this (Figure 1) for a new domain, the user is required to build up a
lexicon of new tenns, this can be a time-consuming task. To improve the quality of such machine
generated text, the user may re-use some fragments of the STEP AP concept definitions verbatim
(after all, they were produced by humans!) and also make use of the sentence planning abilities of
the ASTROGEN Natural Language Generator [Dalianis, 1997] to generate texts that are nice to
read.

36

?- question(project & projeccreiationship).
a project is an entity and
a project has an undefined_object id and
a project has a string...select name and
a project has a string...select description and
a project has a date_time actual_starCdate and
a project has a date_time actual_end_date and
a project has an evenCor_date_select planned_start_date
and
a project has a product class affected .product class and

a project has an aclivity work_program and
a project has a period_ocdate_select planned_end_date
and
a projeccrelationship is an entity and
a projeccrelationship has a project related and
a projeccrelationship has a project relating and
a projeccrelationship has an undefined_object
relation_type and
a projeccrelationship has a string...select description.
yes

Figure 1. Automatically generated naturallanguage text from AP214.

2. Background

STEP stands for STandard for the Exchange of Product model data, and is an ISO 10303
standard [AI-Timimi and MacKrelI, 1996]. STEP has been developed by industry for the exchange
of product model data between different platforms, as e.g. CAD/CAM platforms.

The STEP standard contains Application Protocols (APs) that are standardized schemata within
each domain, expressing the standardized concepts. Each AP consists of two files: the formal
concept definitions and the associated text definitions. APs exist in several domains, including
automotive manufacturing, ship building, electrotechnical plants, and process industry. The APs are
expressed in the data modeling language EXPRESS [Schenk and Wilson, 1994] EXPRESS is a
static modeling language of Entity-Relationship type.

3. Previous Research

Several attempts have previously been made to automate the lexicon acqUiSitlOn for natural
language interfaces, e.g., TEAM [Grosz et al., 1987] and CLE [Alshawi, 1992]. In both TEAM and
CLE, the domain users had to answer a set of question for each lexical entry and hence identify the
entry. In TELL [Knight et a1. , 1989], another approach was made, a set of heuristics were used
together with the CYC Ontology [Lenat & Guha, 1988] to identify the lexical entries. The
requirements engineering conununity [Chen, 1983] has been identifying the relations between
various entities in conceptual models and word categories.

Our view is that there is no user in areal industrial setting who is really interested in answering
thousands of questions to acquire a lexicon. This argument is also reflected in [Reiter and Mellish,
1993], where the authors say that to make NLG more useful and practical, one needs to make the
customization process fast and efficient. Discussing the costs and benefits for NLG, they also argue
that the only way to make NLG techniques competitive is to use its advantages (flexibility in the
produced texts) without its disadvantages (costly lexical acquisition and knowledge base building).
Therefore in this paper our approach is based on the assumption that the STEP schemata, per se,
contain all necessary linguistic information to create a domain lexicon. The approach can be seen as
something between TELL [Knight et al., 1989] and [Chen, 1983].

We also argue for the use of hybrid systems, a term coined by Reiter [Reiter, 1995] . These are
systems that use a combination of techniques from traditional NLG systems and canned texts .
Hybrid systems have turned out to be very practical since canned texts always are available
somewhere and just need to be combined with real generated text. [Mittal and Paris, 1993] present

37

an example of a hybrid system using a combination of naturallanguage generated text and examples
to make the explanation more user-friendly. A similar approach was made in [Dalianis et al., 1997]
after user studies indicating that schema information not available in the schema is used for manual
paraphrasing of schemata by domain experts.

4. The Acquisition of the Lexicon and Canned Text Dermitions

To extract the lexicon and the canned text from the STEP files and the definition files
respectively we use a set of Perl programs. Perl , [Wall et al. , 1996], is excellent for string
processing. For the STEP domain in general we have an express base-Iexicon [Dalianis et al., 1997]
that contains all lexical terms used in the EXPRESS language. What we need to construct is a
domain lexicon for each domain or AP, as weil as the set of canned texts expressing definitions and
examples (see Figure 1).
Altogether from the STEP AP214, the auto motive design application protocol, we created 1551
lexical objects (1291 nouns and 260 adjectives), 492 canned definition texts, and 106 canned
example texts.

Extraction of nouDS and adjectives
The lexical extraction pro gram scans the EXPRESS files for EXPRESS entities and attributes which
are extracted as nouns and adjectives respectively (according to [Chen, 1983]) and saved in a
lexicon file with extension as a Prolog DCG-clause [Clocksin and Mellish, 1984] reflecting the
lexical items.

Extraction of canned definition text
The canned text extraction pro gram scans the EXPRESS definition files for definitions
corresponding to a specific entity, wh ich are saved to a file, with extension as a Prolog fact, together
with the specific entity as a key.

The text definition file contains textual information in naturallanguage (NL) form of each entity.
We extract only the first sentence of each text description since we have the impression that this
gives a fair overview description of the entity. In many cases the full text description is
cumbersome.
Extraction of canned example text
The canned text extraction program scans the EXPRESS defmition files for examples corresponding
to a specific entity, which are saved to a file, with extension, as a Prolog fact together with the
specific entity as a key.

5. The ASTROGEN (Natural Language) Generator

The ASTROGEN generator [Dalianis, 1997] is written in Prolog. ASTROGEN has its main
strength in its aggregation mies, [Dalianis and Hovy, 1996], that remove redundant portions of a text
without changing the content. In the ASTROGEN documentation one can read about the use of the
ASTROGEN generator and also download the whole generator.

ASTROGEN takes as input a set of content-selected f-structures (an intern al representation) and
performs first sentence planning: it applies the aggregation rules to the f-structures, carries out
pronominalization on the aggregated result, then creates a coherent discourse structure of the f
structures, and second with this as input, the surface generator then generates the syntactic surface
structure and the lexical objects. Finally, the sentence transformer performs the post-processing of

38

the text.
We customized the ASTROGEN generator for the EXPRESS language with an express base
lexicon, defining specific EXPRESS reserved words.

To make use of Prolog's extremely efficient matching capability we translated the whole STEP
AP (EXPRESS) file to Prolog syntax. This made it possibly to ask questions about the STEP AP and
hence make content determination from the abundant knowledge base of the STEP AP.

Sentence transfonnation
As a final step we perform a set of sentence transformations to blend the generated output, wh ich
consists of both generated sentences and fragments of canned text, together. The sentence
transformation rules are applied on the final output NL string. Two main heuristics are carried out.
First, each first letter of a sentence is capitalized so the text will look more natural when displayed
together with the canned definitions and example texts. Second, the aggregated (coordinated and
elipted) [Dalianis and Hovy 1996] text is post-processed by replacing consecutive ands with
commas, except for the final and. The canned texts (and example texts) are reproduced just as they
are stored in the definition files; no sentence transformation is carried out on them.

6. Generating Concept Descriptions

When all the above mentioned preparations were complete, we generated concept descriptions
from the STEP AP 214 in NL, using ASTROGEN. Two examples are shown in Figure 2. Each
concept description contains sentences describing the supertype, subclasses and attributes of the
concept (produced by ASTROGEN) and the canned definitions and also when available the canned
example. As can be seen from Figure 4, the generated and canned texts fit together nicely to give a
fairly coherent result.We produced descriptions for 501 concepts from the STEP AP214.

?- question(fiJlet).
A constancradius_fi lIet is a subtype of a fillet.
A fillet is an entity.
t is a subtype of a transition_feature. (Pron.)
~ Fillet is a concave circular arc transition between two intersecting Face (see 4.2.167) objects
rwithout any constraints concerning changes of the radius along the Fillet. (Canned text)
~es

?- question(project & projeccrelationship).
~ project and a projeccrelationship are entities. (Agg.)
They have a strin~select description. (Pron.)
A project has a date_time actua'-end_date.
t has a date_time actual_starCdate. (Pron.)
t has a product31ass affected_product_class. "
t has an undefined_object id. "
t has a strin~select name. "
t has a period_ocdate_select planned3nd_date."
t has an evencor_date_select planned_start_date."
t has an activity work _program. " (cont')

39

iA projecCrelationship has a project related.
t has a project relating. (Pron.)

Ilt has an undefined_object relation_type. "
Project is a unique process with a time limit, with a defined goal, with a defined budget, and with

efined resources. (Canned text)
ProjecCrelationship is a relationship between two Project (see 4.2.356) objects. (Example text)

XAMPLE 174 -- For the development of a new car, a project is set up that is responsible for the
evelopment decisions as weil as for the accounting of the costs.

Figure 2. The output from of the ASTROGEN generator describing STEP AP214, Italicized
comments indicate processing steps.

7. Conclusions and future directions

In this paper we describe a fast and efficient method to build a natural language generation
system for areal industrial setting. This work has been carried out by building the lexicon and
adapting the database to Prolog and to ASTROGEN automatically from STEP APs .

Future work will be to adapt this generation technique to a similar domain namely the UML
Unified Modeling Language wh ich is a new standard in software engineering. UML is similar to
EXPRESS but has dynamics.

Our plans are also to integrate the results of this paper with the VINST tool [Dalianis, 1998], in
order to provide the user with extracts of STEP Schemata translated to NL. Future basic research
will be to elaborate on the extraction of nouns from entities and adjectives from attributes and to
extend the sentence and text planner.

Acknowledgements
Great thanks to Dr Eduard Hovy and USC/Information Sciences Institute for interesting and fun
discussions around automatic integrations and to Dr.Chin-Yew Lin and VIi Germann also at
USC/Information Sciences Institute for their help in the art of programming Perl.

I would also like to thank my sponsors Volvo Research Foundation, Volvo Educational
Foundation and Dr Pehr G Gyllenhammar Research Foundation for their support to the VOLVEX
project- Validation Of Specifications by Natural Language Generation for VOLVO expressed in
STEP/EXPRESS.

8. References

Alshawi, H. (Ed.) 1992. The Core Language Engine, MIT Press.

A1-Timimi, K. and J. MacKreII. 1996. STEP Towards Open Systems. STEP Fundamentals & Business
Benefits, CIMdata.

Chen, P. P-S. 1983. English Sentence Structure and Entity Relationship Diagrams, Information Sciences
29(2), pp. 127-149.

Clocksin, W.F. and C.S. Mellish. 1984, Programming in Prolog. Springer Verlag.

Dalianis, H. and E. Hovy. 1996. Aggregation in Natural Language Generation. In Adorni, G. & Zock, M.
(Eds .), Trends in Natural Language Generation: an Artificiallntelligence Perspective,
EWNLG'93, Fourth European Workshop, Lecture Notes in Artificial Intelligence, No. 1036,
Springer Verlag. pp. 88-105,.

40

Dalianis, H. 1997. AS1ROGEN-Aggregated deep and Surface naTuRal language GENerator,
http://www.dsv.su.se/-hercules/ AS1ROGENI ASTROGEN.htmJ

Dalianis, H, P. lohannesson and A. Hedman. 1997. Validation of STEPIEXPRESS Specifications by
Automatie Natural Language Generation. In Proceedings of RANLP'97: Recent Advances in Natural
Language Processing, pp. 264-269. Tzigov Chark, Bulgaria, September 11-13, 1997.

Dalianis, H. 1998. The VINST Approach:Validating and Integrating STEP AP Schemata Using a Semi
Automatie Tool. In N. M<Ertensson et al (Eds). Changing the Ways We WorkShaping the ICT solutions
for the Next Century, lOS-Press, 1998, pp. 211220. Proceedings ofthe Conference on Integration in
Manufacturing (liM-98). Gothenburg, Sweden, October 68, 1998.

Grosz, B.I., D.E. Appelt, P.A. Martin, and C.N.Pereira. 1987. Team: An Experiment in the Design of
Transportable Natural-Language Interfaces, J. Artificical Intelligence 32(2) pp. 173-243.

Knight, K., E. Rich and D. Wroblewski. 1989. Integrating Language Acquistion and Knowledge
Acquisition. In the Proceedings of First International Workshop on Lexical Acquistion JCAI-89.

Lenat, D. and RV. Guha. 1988. The world according to Cyc. Tech Report ACA-AI-300-88 MCC
(Microelectronics and Computer Technology).

Mittal, V. and C. Paris. Automatie Documentation Generation: The Interaction ofText and Examples.
Proceedings of 13th International Joint Conference on Artifical Intelligence, IJCAI-93,
pp. 1158-1163.

Reiter, E. and C. Mellish. 1993. Optimizing the Costs and Benefits of Naturallanguage Generation.
Proceedings of 13th International Joint Conference on Artifical Intelligence, IJCAI-93, pp.
1164-1169.

Reiter, E. 1995. NLG vs. Template. In Proceedings ofthe Fifth European Workshop on Natural Language
Generation, Leiden, The Netherlands. Schenk, D. and P. Wilson 1994. Information Modeling the Express
Way, Oxford University Press.

Wall, L., T. Christensen, and R.L. Schwartz. 1996. Programming Perl. O'Reilly & Associateslnc.

41

A Multilingual Text Generator for Real-Time
WEB-Communication

Annette Fritseh, Erie Cousin, Philippe Tanguy

1 Introduction

July 7, 1999

ENST Bretagne
Technopöle Brest-Iroise, BP832

29285 BREST Cedex
Annette.Fritsch@enst-bretagne.jr

Multilingual naturallanguage generation as a tool of interaction on the web is more than ever an
issue of highest interest and will be of major concern in various web-situation, such as reservations,
virtual shopping, talks/chats or virtual worlds, and information seeking. As communication on
the Internet is about to become a means of interaction for everyone, both commercially and as a
way to spend leisure time, the use of the mother tongue will indeed become more important, as it
is quicker, more efficient and personalised. In that, we agree with Boitet [1], who highlights that
"to take over English as the unique language of communication is not cost effective. There is a
strong desire to use ones own language, while of course trying to learn a few others for personal
communication and cultural enrichment".

In order to enhance multilingual interaction and communication, we developed a context-dependent
multilingual application system on a template based approach. This sort of "bridge the gap"-tool
between two users unable to communicate in the same language allows real-time synchronic written
communication within a chosen context.

This approach is not research within large-scale linguistic resources, such as KPML [6] for instance.
Work that has been carried out in this area proved that the context-free approach and its linguistic
constraints are far too complex to provide successful translation for everyone in every context on a
low-cost level [2], [4], [5]. Our goal is rather to provide a very practical, pragmatic approach towards
cross-cultural comprehension, communication and interaction. We limit ourselves to reachable
goals by systematically focusing on different contexts in order to achieve successful communication,
i.e. syntactically, semantically, and pragmatically correct translations. We see our work as apart
of HCI in that "better human-computer interaction strategies have to be developed, as multilingual
language translation becomes a tool to broker an understanding between two humans rather than
a black box that tries to translate every utterance" [7] .

2 Linguistic requirements

The underlying idea was that the linguistic structures we would need for our purposes were likely
to be recurrent question-answer speech-acts, comparable to adjacency-pairs in telephone calls [3].
We consider that these adjacency-pairs are recurrent patterns in commercial contexts such as hotel
reservations, department store-call centres, and ticket booking, and that we can adapt them to

42

online hotel reservation services or online ticket booking. The same account for the domain of
virtual games.

We believe that for our restricted purpose, focusing on question answer speech-acts comes dosest
to what the online situation requires.

We focus on a combination of a question-answer corpus with a filler-words corpus, which leads
to a fairly large number of questions in different variations. Furthermore, both corpora can be
specifically shaped according to the context they have to operate in. The corpus may be established
by analysing data from real-life conversation such as data from call-centres or any other real-life
environment that might be stored in the corpora. This context-dependent framework allows us to
rule out the semantic and pragmatic ambiguities, which are inevitably met when working within
a context- independent approach.

3 Usability

Since we want to avoid slow and incorrect, thus frustrating communication, we opt for a keyword
based system. The user enters keywords and the system generates a range of sentences containing
these keywords. Entering the keyword room for instance, the system might suggest "Do you want
to book a room?" in the hotel context. The user selects the sentence that suits his purposes best.
The system is then able to generate instantly a correct translation of the chosen sentence in any
of the known languages. By choosing this method, we want to avoid unsuccessful translation due
to entering false spelling, as weil as slowness in translation speed. At the moment, our system
processes English, French, Spanish and German. The keyword approach works quite weil as long
as the corpora are not too large. A user who gets lost and who has too choose between an enormous
amount of sentences offered by the system cannot be in our interest either. Thus, we need to find
a compromise between quantity and quality, i.e. a corpus which is sufficient without confusing the
user. Nevertheless, this is rather a question of stocking senten ces and overall organization than a
problem of large corpora.

4 Test-bed

We consider that games in general, as a sort of prototypical interaction amongst people, (guessing
games in particular), are a good means to test the feasibility of a combination of sentence-structure
corpus with a filler word corpus. Games combine the question-answer-structures of commercial
conversations which we are likely to need and the fun-factor side which we do not want to neglect,
since we want to test the users acceptance towards the keyword approach. The multilingual tool
has been tested with a ten questions guessing game which we adapted specially for .this purpose.
In order to enhance the fun-factor, we created the possibility of choosing between the different
style levels of communication: normal, colloquial and sophisticated style. This will certainly be of
somewhat different importance within a commercial context, but was very much appreciated by
our test players within the game context. The players were able to interact with the given set of
available recurrent linguistic patterns at their disposal, and managed indeed to have a successful
multilingual interaction within the given context. Nevertheless, both corpora have to be enlarged
in order to conduct tests on a larger scale.

5 The Multilingual Tool

The tool is a multilingual text generator based on two corpora, the sentence-structure corpus and
the filler-word corpus, which we call, in the computerised version, Sentence-pattern manager and
Filler-word manager. The overall architecture of the tool is based on a system of index matching.

43

Thus, words from the FiBer-word manager are inserted by the Sentence-pattern manager according
to the index-compatibilities. The foBowing examples are extracts from one of the test games, where
the players had to guess an animal. For this purpose, both corpora were adapted to the animal
context. Since the formal structures and the overall architecture of the system is running, we are
positive that adaptation to a different context is only a question of a few weeks, the case given
that the real-life corpus has already been established.

5.1 Sentence-pattern manager

Figure 1 shows the sentence-patterns with their markers. In the examples given, the markers
VI, V2 and N2 indicate whether the sentence pattern requires a transitive infinitive, a transitive
present or a plural noun.

The indexing system receives the information needed by using the semantic key (S), indicating
that the different sentences in the different languages do correspond. One of the advantages of
the system is inherent in the fact that it does not work on a language-pair basis. It is constructed
around the markers. Therefore, any other language can be added, in case we meet the morpho
syntactic requirements.

Since we place ourselves in the game-context, the player can choose between different style lev
els, managed by the style-level key (R). The style-level approach might be altered when dealing
with other contexts. While games certainly demand a more emphatic conversational style, other
contexts, such as hotel booking, focuses on the purely informative level.

[I S IR I Sentences n
33 0 est-ce qu'il V2 des N2 ?
33 1 pourriez vous m'aider et me dire s'il V2 des N2 ?
33 2 <;a V2 des N2 ce truc la ?

33 0 does it VI N2 ?
33 1 be so kind as to teB me, does it VI N2 ?
33 2 it V2 N2, right ?

33 0 V2 N2?
33 1 podemos pensar que el animal V2 N2 ?
33 2 aquello V2 N2 ?

33 0 V2 es N2?
33 1 Muss ich davon ausgehen, dass es der Lage ist N2 zu VI ?
33 2 Hier, sachma, tuts N2 VI ?

5.2 Filler-word manager

Figure 2 shows the fiBer word manager. Every word is given with its derived forms and classified
by its grammatical type (T) as weB as its inter- language properties (12). The inter-language
properties such as gender, number, and conjugation correlate with the possibilities of insertion in
the sentence pattern manager.

44

11 French
Forms 12

11 English 11 Spanish

1 V chanter / chante 1 sing/sings 1 cantar / can ta 1
2 V chasser/chasse 0 hunt/hunts 0 cazar/caza 0
3 V pond re/pond 2 lay /lays 2 poner/pone 2
1 V chanter/chante 1 sing/sings 1 canntar / canta 1
4 N leopard/leopards 5 leopard/leopards 4 leopardo /leopardos 5
5 N lievre/liElvres 5 hare/hares 4 lievre/lievres 5
6 N oeuf/oeufs 7 egg/eggs 5 huevo/huevos 10
7 ADJ joli/jolie/jolis/jolies 10 attractive 7 guapo/guapa/ gua- 10

pos/guapas
8 ADJ gris / grise / gris / 10 grey 6 gris / gris / grises / 9

grises grises

6 General architecture of communication

Figure 3 gives a graphical description of the principle of "translation". The user chooses the
sentences he or she wants to be translated . The system generates the sentence by applying the
semantic key index (33) the register-level index (0) and the index of the words to be inserted (3
and 6). Then the system tests the compatibility of the information given.

Question
entry in
French

I
I
I
I
I
I
I
I
I
I

'f

Est-ce qu'il pond des oeufs ?

pondre
index: 3

oeuf
Index: 6

\ !
Est-ce qu'il V2 des

N2 ?
index: 33

Ooes it lay eggs ?

lay
index : 3

\
egg

Index: 6

/
Does it V1 N2 ?

index: 33

Transmission of Index 33 - 0 - 3 - 6

..
I
I
I Sentence
I construction

in English

Communication takes pi ace via an applet, which pops up on the interface if the player wishes to
use it .

45

11

7 Limitations and furt her developments

So far, we have tested and validated the tool in the context of animal guessing. Having achieved
successful communication between players within this context, we believe that an application in
i.e. enigmatic games in virtual worlds may lead to coherent multilingual communication between
participants. Furthermore, translation will be quick, which is an advantage not to be underesti
mated, given the slowness of current systems and page loading. Thus, it is areal nuisance for the
user to have to go back to, i.e. Systran, enter the sentence, wait for the answer, and go back to
the site, still not knowing if the sentence will be comprehensible to his interlocutor.

Other applications of the system may involve all information-seeking and commercial contexts,
i.e. virtual call-centres, where an immediate response is necessary, instead of delayed response
via e-mail. From the technical point of view, the applet will be inserted in the HTML page.
Nevertheless, linguistic preliminary work has to include an analysis and definition of the speech
acts involved and needed for such purposes. In the following, the two corpora have to be adapted
to the given context and filled with the vocabulary and the sentence structures involved . It is
obvious that such a system is of very limited use as soon as the context is not closely defined.

Presently, we only operate on the basis of Indo-European languages, whose morpho-syntactic
structures are quite easy to handle. Although we are positive that basically all Indo-European
languages can be added to the system, we will be in trouble as far as agglutinating languages
such as Finnish or Hungarian are concerned : the system is not able to produce alternation at the
stern . Future research will have to include trying to find a means of adding an alternation at the
stem-component, at least for the regular cases.

46

8 Conclusion

We do believe that work such as ours can help pave the way for developments of user-centred
realistic translation services that can help to enhance and simplify multilingual human-computer
human interaction. This does not mean, that we do not see the necessity of research within the
field of deep techniques for NLP, on the contrary. Nevertheless, we believe that the two approaches
can exists side by side, and that shallow techniques might be useful as an ersatz, allowing more
people access to a wider range of services and cross-cultural communication, as long as large scale
linguistic resources are still on their way.

9 Aknowledgments

This work was partly supported by European fundings (Amusement project - ESPRIT LTR project
25197).

Special thanks to Josette Jouas, Jose Manuel Abreu, Daniel Bourget and the students who were
involved in the work reported here.

References

1. Boitet, C. (1996) (Human-aided) machine translation: a better furture ? In Survey of the State
ofthe Art in Human Language Technology: http:j jcslu.cse.ogi.edujHLTsurveyjch8node5.html#SECTION83

2. Chandioux, J Les promesses de Ja traduction automatique http ://www.riofil.org/oqiljtao/tradauto .htm
(1999)

3.Ervin-Tripp, S. (1972) On sociolinguistic rules: alternation and co-occurrence In J.J Gumperz
& D. Hymes (eds.) Directions in sociolinguistics. New York: Holt, Rinehart & Winston, 213-50.

4.Language Partners International (1999) An Introduction to Computer Aided Translation (CAT)
http:j jwww.languagepartners.comjreference-centerjcatintro.htm

5. Lauckner, C Traducteurs automatises - Etude bibliographique, ENST Bretagne (1998)

6. Stirling university The KPML multilingual natural language generation system, development
environment and tools (1999) http:j jwww.stir.ac.ukjenglishjcommunicationjComputational-toolsjkpml.html

7. Waibel, A. (1996) Multilingual Speech Processing In Survey of the State of the Art in Human
Language Technology: http:j jcslu.cse.ogi.edujHLTsurvey jch8node8.html#SECTION86

47

Templates for Wearables in Context

1 Introduetion

Sabine Geldof

Vrije Universiteit Brussel
Artificial Intelligence Laboratory

Pleinlaan 2, B-I050 Brussels, Belgium
sabine®arti.vub.ac.be
http://arti.vub.ac.be

In the COMRlSl project we are developing natural language generation (NLG) technology for
output on a wearable device: auser, moving freely in the area of a conference receives from her
COMRlS parrot (spoken) advice (e.g. on events and encounters not to miss, reminders about
commitments and proposals for meetings). This setting requires NLG technology that is fast and
context sensitive: otherwise the user will be bored and turn off her device. In contrast to other
NLG projects for wearable devices, e.g., HIPS [1], the COMRlS parrot is supported by a mixed
reality set-up. A multitude of agents, defending users' interests and aware of their physical context,
are continuously interacting in the virtual space, eager to pursue the specific (user) interest they
stand for. They try to push the results of their activities to the physical space in the form of short,
ad-rem messages to the user. A mechanism of competition for attention [2] ensures that only
the relevant messages are passed to the user. The NLG module produces two outputs based on
the same text: one version contains basic prosodie annotations (phrase boundaries, accentuation
marks) and will be further processed by the speech synthesis module, the other version consists
of the same text annotated with html tags for web-based interaction, in case the user wants to
explore further related information. We will briefly describe and more extensively demonstrate
how we model the different aspects of a user's context (in order to annotate NLG input) and
how these data influence the (output of the) NLG process. The underlying idea is that context
sensitivity is aprerequisite for NLG technology to evolve with current technological developments
and that a user's context encompasses more than discourse history.

2 NLG strategy in COMRIS: foeus on eontext sensitivity

Multi-dimensional context Context is a very complex and multifaceted phenomenon which has
been studied in logic for several years [3]. There is a growing awareness and interest to study it also
from two other perspectives: engineering and natural language processing [4]. Within the field of
NLP, mostly the linguistic (or discourse) context has been studied both for language understanding
and generation. We are striving at a more global account of context, specifically for the purpose of
generating naturallanguage. In earlier experiments [5] we let NLG output vary according to the
minute-by-minute evolving interests of the user. COMRlS adds another dimension: the physical
context.

Thus, at least three dimensions of a user's context should influence the output of an NLG com
ponent: (a) linguistic context (the discourse model), (b) extra-linguistic context (the physical con
text) and (c) the user's profile. Consider the following examples (italics indicate context-sensitive
expressions of the corresponding type):

(a) John Lewis will give a presentation on Robotics. He wiII also chair a panel on the same topic.
(b) Please note that you have to give a presentation on Monday, June 14th at 2 o'clock in Room

B. Please note that you have to give a presentation within 10 minutes in Room B at the other
side oi the building.

I http://arti.vub.ac.be;-comris

48

(c) Isabel Baud, who is also interested in natural language generation and wearable devices, is
currently in the same room as you. She has an interesting demo at the booth of the SIRCOM
project.

We developed a simple representation formalism (see Table 1) for these three types of context infor
mation in order to annotate the propositional content provided as input to the NLG process. The
text generator produces variable output according to the values of these contextual parameters.

Generation phases IdeaIly, context sensitivity will be taken care of in all three phases of the gen
eration process. In COMRIS content determination and sentence planning take place outside the
proper NLG component. Still, each of the three phases somebow contributes to context sensitivity.

The content of a generated utterance is mostly determined by the activities of the personal
representative agents (PRA), who are exploring the virtual space in search of interesting infor
mation and encounters related to the user's interest which they have to pursue (e.g., robotics,
template-based NLG). Their interactions are mainly driven by user profile information. Hence,
the objects that are part of the proposition al content are automatically choosen w.r.t. the hearer's
interest. The outcome of PRAs activities consists of input to the NLG component (e.g., data about
a panel discussion on The Future of Agents). Parts of these input structures might not be realised
by the NLG component, if that suits the hearer's context better (e.g., include or omit information
about the affiliation of a mentioned person might (not) be relevant for the hearer).

Sentence planning is controlled by the personal assistant agent (PA) who is on the edge of the
virtual and the physical world, representing the user as a person (not one of her specific interests).
Indeed, PRAs have to compete for the attention of the user with their coded message contents.
The PA rules this competition, taking into account the physical context of the user but mainly
by evaluating relevance, competence and performance measures (e.g., when a message, estimated
very relevant by the PRA receives negative feedback from the user, the corresponding PRA's
performance will decrease, thus lowering its chances in future competition for attention). Further
senten ce planning is carried out in the NLG component: the presence or absence of particular
items in the input structure determines which rules to follow and hence which templates will be
realised.

FinaIly, most of the context sensitive adaptations take place at tbe level of surface realisation
through referring expressions (Iinguistic context), relative time and spatial expressions (physical
context) and insertion of additional information (related to the user's known interests). These
surface annotations are guided by the contextual annotations, contributed by the different com
ponents along the generation process (PRA: profile valuesj PA: physical contextj NLG-discourse
module: linguistic context).

Variable output based on templates We have various reasons for using templates rat her than
deep generation as basic technique. The expected output is canonical, i.e., it is determined by the
limited set of protocols (scenes) PRAs can enter. Moreover, efficiency is a major concern, since
real-time processing is required. A third argument is that modular sets of templates allow us to
adapt our NLG component easily to eventual extensions of the application (new scenes). A weIl
known limitation of templates, n1. the difficulty in reusing ternplates across domains and even
applications bolds also for our case, especially at the macro-Ievel of sentence patterns. However,
the relative ease with which templates and inputstructures can be created cornpensates for this
limitation and we rnanaged to reuse at least partly, sorne specific structures, e.g., for rnanipulating
lists, or rendering dates, from an earlier application.

Our NLG component is developed using the TG /2 tool2 , which allows for template-based NLG
as weIl as deep generation [6]. We currently use templates only, but as we extend our system to
more scenes, we are looking for generalities that are worth implementing small subgrammars,
similar to the functions in the syntactic templates of [7]. COMRIS text templates are encoded

2 TGj2 is used in the COMRIS project under a license agreement between VUB and DFKI for the pur pose
of scientific research.

49

into TG/2 production rules in a special purpose language (TGL). A first strategy for obtainin,
variable output according to contextual parameters is to formulate conditions on the presence 0

particular context values. For instance: if the profile value denotes high interest of the hearer in thl
topic (of a talk to be announced), then include it in the output message. Table 1 gives an overviev
of this input-output context sensitive variability for all the sub-mentioned context parameters.

Table 1. Overview of eontext annotation values in COMRlS

Linguistic context lcv (a, b)
Coneept/ Instanee NUMerie foeus on Concept NUMerie foeus on Instance
(mentioned to user: ..) 1: oeeurred 2/more messages aga 1: oeeurred 2/more messages aga

3: oeeurred 1 message aga 3: oeeurred 1 message aga
5: oeeurred in previous message 5: oeeurred in previous message

Extra-Linguistic context: d_elcv (+/- n) Lelcv ("string")
(user is in ..) time/ space (date) 0: today (Ioeation) cIose-by,

(time) +1: in one hour at the other side of the building,
(time) +.10: in 10 minutes an tbe same Haar, ...

soda! implieature: s_elcv (n)
(user is ..) 1..2: standing, wandering around

3: moving towards a goal
4: attending an event
5: talking to someone

Profile Value: user's interest Lpv (n)
. .in a topie: 1..2: .. you might be interested in

3: .. you are interested in
5: .. your favourite topic

p_pv (pnumval n {pqval "string"})
. .in aperson: 1..2: .. you might want to meet for diesussion, for introduetion,

3: .. you wanted to meet for lobbying, for soeializing,
5: .. you absolutely wanted to meet as an expert, ...

This strategy requires explidtly acquired and encoded information about the context of th{
hearer. However, in our experiments it became clear quite soon that the acquisition and manage
ment of such data might become a bottleneck, both from the conceptual and efficiency point 01

view: the NLG component has to rely on other COMRIS components to provide these data. Ead
interaction among components requires an exchange of agent messages via the COMRIS infras·
tructure. By putting extra burden on each of the components involved in the NLG process froIT
content determination (by PRA) to linguistic realisation, we might, in the worst case, endangel
the timely delivery of a message to the hearer.

Therefore, we are looking for alternatives using global and numeric context information, as il
is handled by the COMRIS agents. For instance, we might rate the sodal implicature of a usel
at every moment, indicating how much she is involved in a sodal inter action (wandering around
listening to a talk, talking to someone) and rate alternatives within the rule-set accordingly
When the user is talking to someone, only extremely short (and important) messages should b{
generated, (e.g., 'Look for Isabel Baud', as an alternative for example c). Through a mechanisIT
of parametrization, the TG/2 tool allows to influence the order in which rules are considered, e.g.
according to how much sodal implicature they tolerate. When the user is wandering around, th{
situation is less resource-bound and more elaborate messages are welcome. The sodal implicaturE
rating is a (extra-linguistic) context parameter that applies globally to the situation of the useI
and not to one particular aspect of the contents of the message (as with (extra)linguistic context
values or profile values). Comparable to Reiter's constraints [8], we are investigating how to USE

such global context values which are readily available from the other COMRIS components (PA

50

& PRA). Being the software part of the wearable deviee, the PA has direet aeeess to information
about the user's environment (e.g., Ioeation near beaeons, proximity to other (parrot-wearing)
users), from which social implieature ean be derived.

3 Discussion

In this paper we propose an NLG strategy that takes into aeeount multiple dimensions of the user's
context. The input to the NLG proeess is annotated with both loeal and global information about
the context of the user. We are interested in a hybrid approach: combining local context values (e.g.,
indicating how mueh a user is interested in a particular topic of the domain, or whether a specifie
objeet has been mentioned reeently to the user) with global context parameters (esp. how much the
user is available for new information). We experiment with different mechanisms for producing
variable output within a template based approach. Our parameters for eontext sensitivity are
appIication independent, but for every applieation domain it has to be made explicit how they
influence the output text. The COMRlS environment is an interesting test-bed for these ideas on
eontext-sensitive NLG.

Acknowledgments We are grateful to Stephan Busemann for his advice on the use of TG /2. This
research is funded by the EC as part of the COMRIS project (LTR 25500), within the Intelligent
Information Interfaces3 (13) programme.

References

1. Not, E., Petrelli, D., Stock, 0., Strapparava, C. and Zancanaro, M.: Person-oriented guided visits
in a physical museum. In: Proceedings of the Fourth International Conference on Hypermedia and
Interactivity in Museums (ICHIM97), Paris, (1997)

2. Van de Velde, W., Geldof, S., Schrooten, R. Competition for attention. In: Singh, M.P., Rao, A.S.,
and Wooldridge, M.J., (eds.) Proceedings of ATAL: 4th International Workshop on Agent Theories,
Architectures and Languages, LN AI Vo!. 1365. Springer-Verlag, Heidelberg (1998) 282-296.

3. McCarthey, J.: Notes on Formalizing Context. In Proceedings of 13th IJCAI conf. (1993) 555-560
4. Br~zillon, P., CavaIcanti, M.: Modeling and using context. The Knowledge Engineering Review, 1997

12(4) 185-194
5. Geldof, S., Van de Velde, W.: An architecture for template based (hyper)text generation. In: Höppner,

W. (ed) Proceedings of the 6th European Workshop on Natural Language Generation. Gerhard
Mercator-Universität Duisburg, Germany. (1997) 28-37

6. Busemann, S.: Best-First Surface Realization. In: Scott, D. (ed) Proceedings of the 8th Int!. workshop
on Natural Language Generation, Herstmonceux CastIe, University of Brigthon, UK, (1996) 101-110

7. van Deemter, K., Krahmer, E., Theune M.: Plan-based vsr. Template-based NLG: a false Opposition?
In: Busemann,S. and Becker, T. (eds) Proceedings of the KI workshop on NLG: May I Speak Freely?
Bonn, 1999 (this volume)

8. Reiter, E.: ShaJlow vs. Deep Techniques for Handling Linguistic Constraints and Optimisations. In:
Busemann,S. and Becker, T. (eds) Proceedings of the KI workshop on NLG: May I Speak Freely?
Bonn, 1999 (this volume)

3 http://www.i3net.org/

51

Content planning and generation in continuous-speech
spoken dialog systems*

1 Introduction

Amanda J. Stent

Department of Computer Science
University of Rochester
Rochester, NY 14627
stent@cs. rochester. edu

August 12, 1999

Researchers interested in constructing conversational agents that can interact naturally in rela
tively complex domains face a unique set of constraints. Generation must take place in real, or
near-real, time. The language coverage must be extensive, and language use must be varied. A
grammar-based approach can be both slow and awkward. On the other hand, it is difficult to'
provide the required language coverage using templates. In this paper we propose an architecture
for generation that combines these two approaches, capitalizing on their strengths and minimizing
their weaknesses. In the process, we attempt to answer the question, "How far can templates take
us?"

2 The Situation

The TRIPS system is a multi-modal dialog system at the University of Rochester that provides
a platform for research in different aspects of dialog and planning ([4]). Currently, generation in
this system is done by the dialog manager and the generator. The dialog manager interprets user
input and selects conte nt for output. It passes this conte nt to the generator as a set of role-based
logical forms with associated speech acts. The generator decides which ones to produce and how
to order them, and then passes them on to modality-specific generators.

In an "idealized" generation system, there would be separate components for planning inten
tions, semantic content, and form ([1]. Our language generator combines these last two com
ponents, and in some cases does the work of all three. It finds a rule or rules that match the
speech act and conte nt specification, and then selects from the set of meaning-equivalent strings
associated with each rule. There is also a set of noun phrase rules for producing noun phrases to
insert into utterances. For instance, if the logical form is for an acknowledgment, the generator
may select from utterances such as "OK" and "Fine". For location question answers, it may
have only one utterance, "There are NP" in which "NP" can be replaced by e.g. "five people at
Calypso". For most simple utterances (acknowledgments, indications of lack of understanding or
reference failures) and a limited set of more complex ones, this is sufficient. As the system begins

'This work was supported by ONR research grant NOOOI4-95-1-1088, U.S . Air Force/Rome Labs research con
tract no. F30602-95-1-0025, NSF research grant no. IRI-9623665 and Columbia University /NSF research grant no.
OPG: 1307

52

A 41 And so (breath] I think we need to send a we obviously need to
send an ambulance to Marketplace.

42 We should then send that ambulance to Highland.
B 43 Mm-hm.
A 44 Um so the problem is th- the six people at the airport.

45 Um we can do the helicopter from the airport to Strong.
46 Those a- are in fact the only two piaces that you can do that .

B 47 Right.
A 48 Um (breath] so here's the thing.

49 We can we we can either uh
50 I guess we have to decide how to break up this.
51 We can make three trips with a helicopter a-

B 52 So I guess we should send one ambulance straight off to Market
place right now right?

Figure 1: Dialog extract

to take more initiative and the domain becomes more complex (answering wh-questions, making
statements, asking questions), this approach becomes more difficult to maintain .

The output of generation is astring or set of strings that are se nt to the Truetalk speech
synthesizer and displayed on the screen, and displays including maps, drawings on maps and
charts. Currently, push-to-talk regulates the turn-taking, but we hope soon to move to continuous
speech.

Our goal is to develop a conversational agent capable of interacting naturally in task-oriented
multi-modal dialog situations. To give us an idea of the kinds of interaction required, we have
collected a corpus of twenty mixed-initiative, task-oriented human-human dialogs in a complex
domain. Our study of these dialogs informs our hypotheses about how to produce natural inter
actions.

3 Dialog

In the following discussion we will use the extract in figure 1, which comes from a dialog in our
corpus, as a reference point.

It is important to distinguish between the plan for the dialog as a whole, and the plan for
the current utterance or turn. The dialog plan is constructed as a byproduct of the agents'
collaboration. It is impossible to construct the whole dialog plan at the beginning; planning must
be incremental and take place in real-time. Re-planning may have to occur at any point, to
deal with interruptions or new information from the world. By contrast, the plan for the current
utterance can usually be specified in fuH (although even here some researchers prefer to interleave
planning and execution [7]). Because the dialog plan is incomplete, however, the plan for any
individual utterance will necessarily be made on the basis of incomplete information.

Because dialog is collaborative behavior, there are two kinds of intentions behind the production
ofindividual utterances: taskjdomain-related intentions that contribute to the overall dialog plan;
and intentions related to maintaining the collaboration (see figure 2) .

So me utterances are related to the topic of the dialog, for instance contributing to the solution
of a task. The intentions behind these may come from a task or domain model ([2, 5]), or from
a model of rhetorical structure ([6]). The intentions behind utterance 45 probably come from
the domain model, while utterance 44 provides motivation for utterance 45. These utterances
also have semantic content in addition to the speech act, such as references to specific objects.
Finally, the form of these utterances matter. For instance, the "then" in utterance 42 is crucial to
identification of the sequence relation that holds between utterances 41 and 42 .

Other utterances (e.g. turn-taking and grounding utterances) maintain the collaboration.

53

Type of Source of Examples
dialog act intentions

turn-taking maintains "Um", "Wait aminute"
collaboration

grounding maintains "Okay", "WeIl "
collaboration

primary acts furthers "Send the A train."
task

secondary acts support, "because it's faster."
coherence

Figure 2: The different types of dialog acts

These communieative actions are intentional, but are not part of the overall dialog plan. Often,
to produce them one can simply select one of several conventional utterances that satisfy the
intention. There is no need to plan semantic content or form for these utterances. For example,
utterance 43 is an utterance that performs grounding only.

Looking at the example dialog, we can see that planning utterances does not consist simply
of choosing individual dialog acts and then realizing themj multiple dialog acts can be performed
by one utterance or a single dialog act may be realized over several utterances ([8]). For example,
a release-turn act can be performed by performing an info-request. We hope that as we annotate
our dialog corpus, we will gain insights into the complex interactions between different aspects of
content planning and generation. For instance, how frequently do agents reuse surface forms? How
do agents decide when they need not plan a grounding act? How do agents combine different dialog
acts, and what surface forms do they use to signal these combinations? In wh at circumstances
will agents generate utterances that contribute to rhetorieal structure, and when will they limit
how much they say?

4 Proposed Architecture

We propose to think of the three stages of generation (planning intentions, planning content and
planning form) as three different dimensions along which planning1 can occur, possibly simulta
neously ([7,3]). The planning of intentions generally consists of selecting intentions from different
sour ces such as interpretation and the agent's internal agent model, and ensuring that none of
the selected intentions conflict or are redundant. It usually takes place as part of dialog manage
ment. The planning of content is what is more usually referred to as strategie generation, and the
planning of form is tactieal generation.

If planning need occur along only one dimension, then templates can be effectively used.
Grounding and turn-taking acts involve the planning of intentions only. The form can be selected
from a set of conventional formsj to try to construct conte nt and generate these surface forms
using a grammar adds nothing to the result, and may limit the variability of language use. It
can sometimes involve completely unnecessary processing (think of generating the surface form "I
heard you" from the discourse act acknowledge). Also, turn-taking and grounding acts often begin
a turn, so generating these acts quiekly can give a conversational agent time to produce other acts
that may involve more processing. Therefore, we can use templates to generate these acts.

If planning needs to occur along more than one dimension, it may be better to use a grammar.
Otherwise, a template will probably be needed for each combination of, say, intention and content
or content and form (see figure 3).

Those utterances that speakers produce to fulfill intentions arising directly from the domain or
the task being solved (primary intentions) often have content that must be expressed. The form

1 In this paper, planning is any kind of non-trivial processing.

54

Dimensions that Type of Grammarj
involve planning dialog act templates

I turn-taking, grounding templates
e
F
I, e so me primary intentions grammar
I, F
e,F
I, e, F some primary intentions, grammar

secondary intentions

Figure 3: Generating different types of dialog acts: dimensions along which planning may occur

may or may not be important. These utterances should be generated using a grammar, unless
there is a very limited set of kinds of utterances that can be produced. There is nothing to gain
from using templates because there is no way to "skip" stages of processing, and with a grammar
greater language coverage can be obtained.

Other utterances are produced primarily to complete an argumentation act, for instance to
provide justification for something (we will call these secondary intentions). Their production
involves the planning of intentions, semantic content and surface form. In particular, the form
may determine whether these acts are seen as coherent in the dialog. These utterances should also
be generated using a grammar.

These four kinds of dialog acts account for only three of the seven possible combinations of
dimensions along wh ich planning may occur (see figure 3). We are unable to think of examples of
utterances for the other four possibilities2 , so we have left them blank, but we believe the same
reasoning could be used in these cases.

To summarize, we believe that templates are best used when it is possible to eliminate stages of
processing (e.g. to go directly from intentions to form), and when speed is necessary. Otherwise, we
think a grammar should be used for tactical generation, especially where broad language coverage
is needed.

At this point, we may conclude that we have obtained a good architecture for generation for
dialog. Intentions, represented as dialog acts ([8]), and associated content come to the generator
from the agent's internal agent model (which can reason about the task, the domain, and rhetorical
structure), or from the process of interpretation. Each kind of dialog act proceeds through a differ
ent path in the architecture. The generation of turn-taking and grounding acts happens quickly,
via templates. There is the coverage of a grammar for producing the more "multi-dimensional"
acts.

If a grammar that provides incremental output is used, the behavior of the agent will change.
One might expect to see fewer utterances that perform only grounding at the start of turns. There
will also probably be repairs; the modules producing incremental output would provide the repairs
but, if there are pauses, turn-keeping utterances could be interleaved with the incremental output
from the other modules.

Unfortunately, this architecture is a little too simple. As we said earlier, many utterances
realize multiple dialog acts. For instance, questions can be both info-request and release-turn acts.
We cannot just send the dialog acts through their respective paths without risking over-generation.
We have a very preliminary solution for this. The generator maintains a set of sets of intention by
content pairs, prioritized mostly by recency (we'll call this the intention-set) . Each set is sent to all
the generation modules. The output from each module is a a surface form and a set of intentions
fulfilled by that form. A gate-keeper at the end removes intentions from the intention-set as they
are fulfilled. It can also add sets of intentions to the memory, for instance to keep the turn or

2If the domain is simple enough that everything to be generated is an inform, that might be a case where only
content, or maybe only content and form, need be planned. However, few domains are that simple.

55

Turn
taking

Agent's
internal lDodel

Grounding

(Intention,
Content) pairs

Gate-keeper

Interpretation!
Dialog lDanager

Figure 4: Proposed generator architecture

if the agent is interrupted . Finally, it can minimize over-generation by selecting which results to
produce, if it gets simultaneous results that satisfy the same intentions.

For example, imagine a user has just made a statement to the agent. The agent wants to
acknowledge part of the statement (grounding) and ask a question about another part. So the
memory looks like:
{{ take-turn, acknowledge(Uttl), info-request(Content)}}
(items with initial capitalletters are variables).
This set gets passed to all modules. The turn-taking module returns "Vh" for take-turn and the
grounding module returns "Okay" for take-turn and acknowledge(Uttl). The gate-keeper therefore
removes take-turn and acknowledge(Uttl) and produces "Okay". If a pause of more than, say, half
a-second ensues, the gate-keeper might add the set {keep-turn} to the memory which will feed
it to the various modules. However, happily the gate-keeper quickly receives a result for info
request(Content) which it produces, removing that intention (and therefore the whole set) from
the memory.

This architecture is given in figure 4. We have not yet implemented it, but we believe it may
be possible to combine the turn-taking and grounding modules into one, and the primary and
secondary act modules into one. This would especially help with reasoning about argumentation
acts.

Real-time generation is very important in the context of dialog. We have observed that if
users have to wait for a response, they may begin to hyper-articulate, resort to saying only one
word per utterance, or otherwise begin to use unnatural interactions. In a continuous-speech
system in particular, this architecture would be most effective if the interpretation component
could produce incremental output, thus allowing the system to, for instance, provide appropriate
and timely back-channels.

Of course, agents have many intentions when interacting, among them social intentions such as
politeness, and other "global" intentions such as efficiency. We have not discussed how these types
of intentions could be used in this architecture. We believe that they could simply be included as
constraints on the generation process, as they are in some text-based generators.

We should point out that there is nothing in the architecture that requires that templates or
a grammar need be used in any module; either of these, or other forms of generation (finite state
models, statistical generators) can be used .

56

This architecture allows for different levels of processing, incremental generation, and fast
generation in some cases. It also allows us to combine different types of generators into one
component. We believe it, or something like it, will permit natural interaction in the context of
conversational agents.

5 Conclusion

We have highlighted the unique difficulties of performing generation for free-flowing task-oriented
dialog and the possibilities inherent in using an approach to generation that combines the use
of templates with the use of a grammar and planning. We have also classified some of the ways
templates can be used in strategie and tactieal generation for dialog.

These are our initial hypotheses based on a preliminary examination of our data. We hope to
soon be able to confirm or deny them, and point out any complicating factors of whieh we become
aware during further data analysis and preliminary system development.

References

[1] M. Bordegoni, G. Faconti, S. Feiner, M. Maybury, TRist, S. Ruggieri, P. Trahanias, and
M. Wilson. A standard reference model for intelligent multimedia presentation systems. Com
puter Standards and Interfaces, 18(6, 7):477-496, December 1997.

[2] J. Chu-Carroll and S. Carberry. Collaborative response generation in planning dialogues.
Computational Linguistics, 24(3):355-400, 1998.

[3] K. Oe Smedt, H. Horacek, and M. Zock. Architectures for naturallanguage generation: Prob
lems and perspectives. In Trends in Natural Language Generation: An Artificial Intelligence
Perspective, pages 17-46. Springer-Verlag, Berlin, Germany, 1996.

[4] G. Ferguson and J. Allen. TRIPS: an intelligent integrated problem-solving assistant . In
Proceedings of the fifteenth national conference on artificial intelligence (AAAI-98), Madison ,
WI,1998.

[5] K. Lochbaum. A collaborative planning model of intentional structure. Computational Lin
guistics, 24(4):525-572, Oecember 1998.

[6] W. Mann and S. Thompson. Rhetorieal structure theory: a theory of text organisation. In
L. Polanyi, editor, The structure of discourse. Ablex, Norwood, NJ, 1987.

[7] N. Reithinger. POPEL - a parallel and incremental natural language generation system. In
C. L. Paris, W. R. Swartout, and W. C. Mann, editors, Natural Language Generation in Artifi
cial Intelligence and Computational Linguistics, pages 179-199. Kluwer Academic Publishers,
Boston, MA, 1991.

[8] O. Traum and E. Hinkelman. Conversation acts in task-oriented spoken dialogue. Computa
tional Linguistics, 18(3):575--599, 1992.

57

Output Generation in a Spoken Dialogue System

Lena 8antamarta
Dept. of Computer and Information 8cience

Linköping University, 8-581 83 Linköping, 8weden
lensa@ida.liu.se

June 29, 1999

1 Introduction

Spoken dialogue systems are finding their way to the public at large, e.g. as simple service
systems, and have then to handle a range of users that differ in many ways: in age, educational
status, computer experience, and others. A public dialogue system should work for all users.
The users may use such a system sporadically. This requires that the system is robust in all
its parts, as a failure in the first interaction could discourage the user from using the system
again. Public systems do not afford being dependent on the users' learning. We believe that
some of the factors that infiuence the acceptability of a system are the flexibility and the
quality of the output.

This paper presents some basic assumptions of work in progress which aims to develop the
output capacities of the dialogue system built at Linköping University, the LinLin system [6].
The LinLin system was first developed to cope with written NL interaction and is now being
developed towards a speech-in-speech-out multimodal system. However, the work presented
in this paper deals with speech-only interaction. The goal is to achieve a flexible generator
that allows the interaction to take place on the user's terms.

The LinLin system is a general dialogue framework for simple service systems that relies on
the concept of sub-Ianguages to cope with human-machine-interaction in natural language.
For managing an information-seeking dialogue it is enough to model the sub-Ianguage of
human-computer-interaction and the sub-Ianguage of the domain the application deals with.
The dialogue is handled by a dialogue grammar that models it in initiative-response units.
Empirical studies show that the coherence relation between turns in a human-computer
dialogue is rather simple. Users talk about the same object or the same properties [6].
Currently we are working on a public transport information domain.

Spoken dialogue systems have special requirements on generation; the generated answer
has to be short, only the most suitable information can be presented, and it has to be presented
in such a way that the relevance and importance of each piece of information are clearly
mirrored in the output.

A dialogue system consists of several modules, here we will focus on the generation module
and the dialogue manager that controls the whole system and the interaction with the user.
The generator is thus a slave of the dialogue manager.

58

2 The Input and Output

The dialogue manager provides the generation module with the content of the next utterance
to be generated and the communicative goal this utterance has to fulfil. Beside this, it
is necessary that the generator has access to information ab out the words chosen by the
user and the focus of the user's turn. The dialogue tree built by the dialogue manager is
also available for the generator. The classical generation task of deciding "what to say" is
consequently handled by the dialogue manager.

The generator outputs a tagged text adapted for a speech synthesis system. In the last
years there have been initiatives to specify and standardise such a mark-up language [10].
The main idea when generating marked text is to transfer the information about syntax,
semantics, and topie structure that the generator has to the speech synthesis [7].

The output text is tagged with pauses and boundary types indieating the prosodie units of
the utterances. Words are tagged for prominence level depending on their new / given status,
part-of-speech and syntactieal function, as weH as if they are part of a contrastive or emphatie
construction. (For a description of the phonetie realisation of these features see e.g. [3], [4],
[5]).

3 Generation in a Spoken Dialogue System

In a dialogue system the length of the generated text is rat her short, namely a turn. A turn
can consist of one word up to a couple of sentences. However, the versatility of the channel ac
centuates the need of proper structuring the information, syntactically and prosodically. The
modelling of contrast and emphasis, of the topical structure and the new-given relationship
is very important for the intelligibility of the synthesised speech.

Generation in a dialogue system consist of two different kinds of processes, there is a
context dependent part that varies due to the state of the dialog and the user's turn and
there is a linguistic part that do not depend on the turn or even the domain. The first part
includes the steps of ordering the pieces of information to be presented, taking care of lexical
ization, and marking the context dependent information status of constituents. A concept's
information status affects its prominence level and depends on whether the concept is new
or given in the discourse and on its relevance in the fulfilment of the system's next dialogue
move. In the second part the linguistic surface form has to be created with the corresponding
default prosodic features. Obviously, these correspond to the "sentence planner" and the
"linguistic realiser" of NLG architecture [9]. In a spoken interaction environment, however,
"utterance planner" should be a better name as there is not always complete sentences that
are generated.

3.1 The Utterance Planner

To make the system answer co-operative, the utterance planner's main concern is to tailor it
against the user's information needs and linguistic preferences. The user's information needs
are assumed to be new information and relevant information. What is new information can be
inferred from the user's question and the dialogue history. What is relevant information in a
domain is defined by domain heuristics developed from the initial empirical studies. While the
derivation of what is new information is a procedure that can be reused from one application

59

to another, the relevance not ion is strictly application dependent. To tailor the answer to the
linguistic preferences of the user the system should adapt to the lexical choices of the user.

So me of the problems the utterance planner has to deal with are how to order the presen
tation of information and how to mark for prominence. In initial empirical studies we have
seen that new and relevant information comes early in the answer and is prosodically promi
nent. To do this the system must be able to present the same response from the background
system, i.e. the same content, in different forms depending on what was the focus of the
user's question.

Consider for example the two interactions below 1:

EXAMPLE 1:
U: How do I get /rom the railway station to IKEA tomorrow round ten?
S: Take bus 210 /rom the railway station at ten o'clock. It will be at IKEA at twenty past
ten.

EXAMPLE 2:
U: When is the next bus going /rom the railway station to IKEA?
S: at ten o'clock, the next 210 leaves at ten 0 'dock /rom the railway station. It will be at
IKEA at twenty past ten.

Both questions have the same response from the background system, namely:

Bus
210

Resecentrum
10:00

IKEA
10:20

In both cases the dialogue manager wants the generator to inform the user about this data
that fitted as a response to the questions. However, in the first case the system recognises the
turn as arequest for a "route", i.e. a description of how to use the buses to go from A to B.
And in the second case the system recognises the request as being for a "trip", i.e. arequest
for information about a special bus and departure time. The raw information content of the
two answers is the same, but the surface form is different because the users requested different
information. In both cases the arrival time comes last, this is not due to the newjgiven status
of it but to the domain heuristics that states that arrival time is only relevant information
when it is explicitly asked for. The phrase "ten o'c1ock" will be prominent because it is relevant
information in the answer, though not altogether new information. This also depends on the
domain heuristics. Departure time is relevant and important information, otherwise the user
may miss the bus and the service be useless.

The lexicalization step should follow an adaptation strategy. Many studies have shown
that users usually adapt to the vocabulary of the computer, changing their lexical choice for
the one of the system, specially in respect to content word as verbs and nouns (see e.g. [2]).
However, in some domain the users usually do not use the "official" names of the entities but
other types of referents, this is true about the bus trafik domain [1]. In the examples above
the user refers to "the railway station" while the bus stop is really called "Resecentrum".
Suppose the user never heard of "Resecentrum", an answer containing that word instead of
the one chosen by the user would make no sense for the user. To start the answer telling the
user what the official name of the bus stop is go es against the principles for ordering stated

lBold indicates that the word or phrase is prominent.

60

before. So we choose to let the system adapt to the user's lexieal choiee. This strategy is
also used to choose between linguistie synonyms when possible. This yields a co-operative
dialogue system and eases the process of lexieal choiee.

The utterance planner has to mark the output for the context dependent information
status. Concepts are marked as new information, given information or the intermediate
given-by-semantie-relation informatjbn, because in speech new concepts are prominent while
given concepts are not, and items that are new to the discourse may be de-accentuated or
have a special realisation if they are given by the context or through a hyponym relationship
with an already mentioned concept. Concepts are also marked if they are part of an emphatic
or contrastive construction.

In order to produce a naturally sounding utterance the utterance planner, as sentence
planner for written language, takes care of aggregation and pronominalization as weIl as the
phases described above. However, those process should not be different in a spoken language
context.

3.2 The Linguistic Realiser

The linguistie realiser takes the lexicalized utterance plan and has to output the surface form.
The surface realisation includes not only making the correct morphologie al and syntactieal
forms but dealing with the information status markers. The realiser has to accomplish the
prosodie marking by applying surface form dependent prosodie rules.

The syntactic structure of the utterance is used to define phrase and sentence boundaries
that are marked in speech by pauses and intonation contours , Within a phrase, pauses are
placed between prominent words. In sentences with all new information the constituents have
different level of prominence depending on their syntactical function, non-prominent content
words sometimes have to be marked with weak intonation patterns depending on the distance
to the prominent word [3]. Contrast and emphasis are signalled in speech both syntactically
and prosodieally. The linguistie realiser has to be able to handle the markers put there by the
utterance planner and elaborate them to create a full prosodie description of the utterances,

4 Templates vs. Free Choice

To discuss re-use of generation resources when it comes to the Swedish language is pointless,
there are no such available. So, the key question is whether to put a big effort in developing
templates that are flexible (or many) enough to accomplish the communieation strategy pre
sented above or to build a new system for the realisation of Swedish, alternatively to build a
Swedish variant of resources available for other languages.

Besides tbe well-known pros and cons oE templates and canned text describe by many
authors (see e,g. (8]) in a dialogue system environment there are extra cons that are worth
to point out.

• As pointed out above the surface form of the answer depends on the quest ion in many
different ways and the same information from the background system can be presented
in different ways depending on the user's question and the dialogue history. This would
demand a huge amount of templates to be built,

61

• In a speech-only environment, due to the restriction of the channel, only the requested
information should be presented. Using templates we would need different templates
for the different amount of information to be presented.

• In order to adapt to the user's vocabulary, the templates need to have variables in parts
where they usually do not, thus increasing the choice points.

• Templates and canned texts may lead to amismatch between system's language under
standing and production capacities.

The last point is not a consequence of using templates and canned texts, but a serious risk
as dialogue systems usually are developed by several different research es working on different
parts of the system. Dialogue systems are often developed to "understand" the many different
ways of expression that the users may choose while interacting. Those alternatives are then
mapped into an internal representation that triggers a query to the background system and
an answer to the user. Thus, there is a many-to-one mapping that could lead to a system
that is able to understand expressions it does not use. The system's utterances are then
monotonous and the user may fee I that the system do not accept his way of expression.

Canned text and the predefined parts of templates may consist of words and syntactical
structures the system does not have in the understanding module. Specially in larger text
for help, or for presentations and descriptions of objects. Then the system could use words
and structures that it cannot understand itself. This is indeed more "dangerous" than the
previous because it can lead to utterances as l'm sorry. I don't understand the word "sorry".
To avoid this problem the lexicon of the generator has to be shared with the rest of the
system. In any case, amismatch between the production and the perception of the system
may confuse the user. We do commonly assurne that our interlocutors understand the words
and structures they use, and that they can say everything they understand.

In order to avoid this kind of communicative mismatches, the developers have to put
much attention when building and enhancing the system, specially in putting all words and
expressions from the produced text into the interpretation module. This special attention
have to be added to the costs of developing template based dialogue systems.

The answer to the key question posed above seems to be not to use templates, but is
it then to use a general free choice system? As pointed above there is no such system for
Swedish that we may re-use, so the system has to be built. And as this work deals with spoken
interaction the system will be tailored to that kind oflanguage and will not be re-usable for the
generation of larger written text. This means that the amount of superfluous grammatical
coverage will be limited. As described above, the utterance planner is more domain and
application dependent than the linguistic realiser, the solution seems to be to build a general
linguistic realiser for spoken human-computer-interaction Swedish and an easily customisable
framework for the utterance planning component.

As no spoken dialogue system for Swedish use the kind of architecture proposed in this
paper for generation, we can not say with confidence what kind of problems the Swedish
language or the grammar of spoken language may cause. What we can say is that the
templates based systems used in the systems that are available (public or at research labs)
do not allow the kind of communication strategy we think is necessary for public systems.

62

5 Discussion

We have presented the requirements spoken dialogue systems have on generation in order
to pro du ce an efficient and co-operative interaction with the user. Co-operative answer that
are tailored towards the user's information needs and linguistic preferences are important in
making public dialogue systems that do not require learning or computer experience to be
useful and efficient.

An architecture as proposed above, a customisable domain dependent planner and a gen
eral realiser for the human-computer-interaction sub-language, will be suitable for spoken in
teraction in the kinds of applications the LinLin system works with, Le. information-seeking
dialogues for simple services. The basic ideas could also be implemented (and the utterance
planner enhanced) for more sophisticated dialogue system architectures.

References

[1] Flycht-Eriksson, A., Jönsson, A.: "A spoken dialogue system utilizing spatial informa
tion". Proceedings of ICSLP'98, Sydney, Australia, 1998.

[2] Gustafson, J., Larsson, A., Carlson, R, Hellman, K: "How do System Questions Influ
ence Lexical Choices in User Answers?". In: Proceedings of EUROSPEECH'97, Rhodes,
Greece, 1997

[3] Horne, M.: Towards a quantified, focus-based model for synthesizing English sentence
intonation. Lingua 75, Lund University, 1988

[4] Horne, M., Filipsson, M.: "Computational modelling and generation of prosodie structure
in Swedish". In: Proceedings of ICPhS'95, Stockholm, Sweden, 1995.

[5] Horne, M., Hansson, P., Bruce, G., Frid, J.: "Prosodie Correlates of Information
Structure in Swedish Human-Human Dialogues". Forthcoming in: Proceedings of EU
ROSPEECH'99, Budapest, Hungary, 1999.

[6] Jönsson, A.: Dialogue Management for Natural Language Interfaces, An Empirical Ap
proach. Linköping Studies in Science and Technology, Dissertations, No. 312, 1993

[7] Pan, S., McKeown, KR: "Integrating Language Generation with Speech Synthesis in
a Concept to Speech System". In: Alter, K, Pirker, H., Finkler, W. (eds): Concept to
Speech Generation Systems, ACL, Madrid, Spain, 1997

[8] Reiter, E.: "NLG vs. Templates". In Proceedings of the Fifth European Workshop on
Natural-Language Generation, Leiden, The Netherlands, 1995.

[9] Reiter, E., Dale, R: "Building Applied Natural-Language Generation Systems". Journal
of Natural-Language Engineering, No 3, 1997.

[10] Sproat, R, Taylor, P., Tanenblatt, M., Isard, A.: "A markup language for text-to-speech
synthesis". Proceedings of EUROSPEECH'97, Rhodes, Greece, 1997

63

~ , ~~.
~. ~. '

Deutsches
Forsch u ngszen tru m
für Künstliche
Intelligenz GmbH

Veröffentlichungen des DFKI

-Bibliothek, Information

und Dokumentation (BID)-

PF 2080

67608 Kaiserslautern

FRG

Telefon (0631) 205-3506
Telefax (0631) 205-3210

e-mail
dfkibib@dfki.uni-kl.de

WWW
http:((www.dfki.uni

sb.de(dfkibib

Die folgenden DFKI Veröffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio
nen können von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp.dfki.uni-kl.de (131.246.241.100) im Verzeichnis pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of all published papers so far are obtainable from the above
address or (if they are marked as obtainable by jtp) by anonymaus jtp from jtp.djki.uni-kl.de (131.246.241.100)
in the directory pub/Publications.
The reports are distributed free of charge except where otherwise noted.

DFKI Research Reports

1999

RR-99-04
Gera Vierke , Cbristian Ruß
The Matrix A uction: A Mechanism for the Market
Based Coordination of Enterprise Networks
11 pages

RR-99-03
Cbristian Gerber, Jörg Siekmann, Gera Vierke
Holonic Multi-Agent Systems
42 pages

RR-99-02
Michael Schillo, Jürgen Lind, Petra Funk, Christian
Gerber,
Christoph Jung
SIF - The Social Interaction Framework
System Description and User's Guide to a Multi-Agent
System Testbed
30 pages

RR-99-01
Jürgen Lind, Stefan Pbilipps
Ein System zur Definition und Ausführung von Proto
kollen für Multi-Agentensysteme
61 Seiten

1998

RR-98-04
Bernd Kiefer, Hans-Ulricb Krieger
A Bag of Useful Techniques for Efficient and Robust
Parsing
9 pages

RR-98-03
Heiko Mantel
Developing a Matrix Characterization for ME:CC
59 pages

RR-98-02
Klaus Fischer, Christian Ruß, Gero Vierke
Decision Theory and Coordination in Multiagent
Systems
134 pages

RR-98-01
Christoph G. Jung, Klaus Fischer
Methodological Comparison of Agent Models
58 pages

1997

RR-97-08
Stefan Müller
Complement Extraction Lexical Rules and Argument
Attraction
14 pages

RR-97-07
Stefan Müller
Yet Another Paper about Partial Verb Phrase Fronting
in German
26 pages

RR-97-06
Stefan Müller
Scrambling in German - Extraction into the Mittelfeld
24 pages

RR-97-05
Harald Meyer auf'm Hofe
Finding Regions of Local Repair III Hierarchical
Constraint Satisfaction
33 pages

RR-97-04
Serge Autexier, Dieter Hutter
Parameterized Abstractions used for Proof-Planning
13 pages

RR-97-03
Dieter Hutter
Using Rippling to Prove the Termination of Algorithms
15 pages

RR-97-02

RR-96-03
Günter Neumann
Interleaving
Natural Language Parsing and Generation
Through Uniform Processing
51 pages

RR-96-02
E.Andre, J. Müller, TRist :
PPP-Persona: Ein objekt orientierter Multimedia-Prä
sentationsagent
14 Seiten

RR-96-01
Claus SengIer
Induction on Non-Freely Generated Data Types
188 pages

1995

RR-95-20
Hans-Ulrich Krieger
Typed Feature Structures, Definite Equivalences ,
Greatest Model Semantics, and Nonmonotonicity
27 pages

RR-95-19

Stephan Busemann, Thierry Declerck, Abdel Kader Abdel Kader Diagne, Walter Kasper, Hans-Ulrich Krie

Diagne, Luca Dini,
Juditb Klein, Sven Scbmeier
Natural Language Dialogue Service for Appointment
Scheduling Agents
15 pages

RR-97-01
Erica Melis, Claus SengIer
Analogy in Verification of State-Based Specifications:
First Results
12 pages

1996

RR-96-06
Claus SengIer
Case Studies of Non-Freely Generated Data Types
200 pages

RR-96-05
Stephan Busemann
Best-First Surface Realization
11 pages

RR-96-04
Christoph G. Jung, Klaus Fischer, Alastair Burt
Multi-Agent Planning
Using an Abductive
EVENT CALCULUS

114 pages

ger
Distributed Parsing With HPSG Grammar
20 pages

RR-95-18
Hans- Ulricb Krieger, Ulrich Schäfer
Efficient Parameterizable Type Expansion for Typed
Feature Formalisms
19 pages

RR-95-17
Hans- Ulricb Krieger
Classification and Representation of Types in TDL
17 pages

RR-95-16
Martin Müller, Tobias Van Roy
Title not set
o pages

Note: The author(s) were unable to deliver this
document for printing before the end of the year.
It will be printed next year.

RR-95-15
Joachim Niehren, Tobias Van Roy
Title not set
o pages

Note: The author(s) were unable to deliver this
document for printing before the end of the year.
It will be printed next year.

RR-95-14
Joachim Niehren
Fundional Computation as Concurrent Computation
50 pages

RR-95-13
Werner Stephan, Susanne Biundo
Deduction-based Refinement Planning
14 pages

RR-95-12
Walter Hower, Winfried H. Graf
Research in Constraint-Based Layout, Visualization,
CAD, and Related Topics: A Bibliographical Survey
33 pages

RR-95-11
Anne Kilger, Wolgang Finkler
Incremental Generation for Real-Time Applications
47 pages

RR-95-10
Gert Smolka
The Oz Programming Model
23 pages

RR-95-09
M. Buchheit, F. M. Donini, W. Nutt, A. Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views
71 pages

RR-95-08
Michael Mehl, Ralf Scheidhauer, Christian Schulte
An Abstract Machine for Oz
23 pages

RR-95-07
Francesco M. Donini, Maurizio Lenzerini, Daniele Nar
di, Werner Nutt
The Complexity of Concept Languages
57 pages

RR-95-06
Bernd Kiefer, Thomas Fettig
FEGRAMED
An interactive Graphics Editor for Feature Structures
37 pages

RR-95-05
Rolf Backofen, James Rogers, K. V~jay-Shanker
A First-Order Axiomatization of the Theory of Finite
Trees
35 pages

RR-95-04
M. Buchheit, H.-J. Bürckert, B. Hollunder, A. Laux, W.
Nutt,
M. W6jcik
Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03
Stephan Baumann, Michael Malburg, Hans-Guenther
Hein, Rainer Hoch,
Thomas Kieninger, Norbert Kuhn
Document Analysis at DFKI
Part 2: Information Extraction
40 pages

RR-95-02
Majdi Ben Hadj Ali, Frank Fein, Frank Hoenes, Thor
sten Jaeger,
Achim Weigel
Document Analysis at DFKI
Part 1: Image Analysis and Text Recognition
69 pages

RR-95-01
Klaus Fischer, Jörg P. Müller, Markus Pischel
Cooperative Transportation Scheduling
an application Domain for DAI
31 pages

1994

RR-94-39
Hans- Ulrich Krieger
Typed Feature Formalisms as a Common Basis for
Linguistic Specification.
21 pages

RR-94-38
Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab
deI Kader Diagne,
Elizabeth A. Hinkelman , Walter Kasper, Bemd Kiefer,
Hans- Ulrich Krieger,
Klaus Netter, Günter Neumann, Stephan Oepen,
Stephen P. Spackman.
DISCO-An HPSG-based NLP System and its
Application for Appointment ScheduJing.
13 pages

RR-94-37
Hans- Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
1: Overview.
54 pages

RR-94-36
Manfred Meyer
Issues in Concurrent Knowledge Engineering. Knowl
edge Base and Knowledge Share Evolution.
17 pages

RR-94-35
Rolf Backofen
A Complete Axiomatization of a Theory with Feature
and Arity Constraints
49 pages

RR-94-34
Stephan Busemann, Stephan Oepen, Elizabeth A. Hin
keIm an,
Günter Neumann, Hans Uszkoreit
COSMA - Multi-Participant NL Interaction for
Appointrnent Scheduling
80 pages

RR-94-33
Pranz Baader, Armin Laux
Terrninological Logics with Modal Operators
29 pages

RR-94-31
Otto Kühn, Volker Becker, Georg Lohse, Philipp Neu
mann
Integrated Knowledge Utilization and Evolution for the
Conservation of Corporate Know-How
17 pages

RR-94-23
Gert Smolka
The Definition of Kernel Oz
53 pages

RR-94-20
Christian Schulte, Gert Smolka, Jörg Würtz
Encapsulated Search and Constraint Programming in
Oz
21 pages

RR-94-19
Rainer Hoch
Using IR Techniques for Text Classification III

Document Analysis
16 pages

RR-94-18
Rolf Backofen, Ralf TI-einen
How to Win aGame with Features
18 pages

RR-94-17
Georg Struth
Philosophical Logics-A Survey and a Bibliography
58 pages

RR-94-16
Gert Smolka
A Foundation for Higher-order Concurrent Constraint
Programming
26 pages

RR-94-15
Winfried H. Graf, Stefan Neurohr
Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programrning Interfaces
20 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Christof Kremer
Towards a Sharable Knowledge Base on Recyclable
Plastics
14 pages

RR-94-13
Jana Koehler
Planning from Second Principles-A Logic-based
Approach
49 pages

RR-94-12
Hubert Comon, Ralf TI-einen
Ordering Constraints on Trees
34 pages

RR-94-11
Knut Hinkelmann
A Consequence Finding Approach for Feature
Recognition in CAPP
18 pages

RR-94-10
Knut Hinkelmann, Helge Hintze
Computing Cost Estirnates for Proof Strategies
22 pages

RR-94-08
Otto Kühn, Björn Höfling
Conserving Corporate Knowledge
Design
17 pages

RR-94-07
Harold Boley

for Crankshaft

Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-06
Dietmar DengIer
An Adaptive Deductive Planning System
17 pages

RR-94-05
Pranz Schmalhofer, J. Stuart Aitken, Lyle E. Boume jr.
Beyond the Knowledge Level : Descriptions of Rational
Behavior for Sharing and Reuse
81 pages

RR-94-03
Gert Smolka
A Calculus for Higher-Order Concurrent Constraint
Prograrnming with Deep Guards
34 pages

RR-94-02
Elisabeth Andre, Thornas Rist
Von Textgeneratoren zu Intellirnedia-Präsentationssy
sternen
22 Seiten

RR-94-01
Elisabeth Andre, Thomas Rist
Multimedia Presentations: The Support of Passive and
Active Viewing
15 pages

DFKI Technical Memos

1999

TM-99-04
Christoph Endres
The MultiHttpServer - A Parallel Pull Engine
18 pages

TM-99-03
Jürgen Lind
A Process Model for the Design of Multi-Agent Systems
20 pages

TM-99-02
Hans-Jürgen Bürckert, Petra Funk, Gero Vierke
An Intercompany Dispatch Support System for
Intermodal Transport Chains
12 pages

TM-99-01
Matthias Fiscbmann
The Smes Client/Server Protokol (SMESPR/1.0)
10 pages

1998

TM-98-09
Jürgen Lind
The EMS Model
15 pages

TM-98-08
Michael Scbillo, Petra Funk
Spontane Gruppenbildung in künstlichen Gesellschaften
10 Seiten

TM-98-07
Markus Perling
The RAWAM: Relfun-Adapted WAM Emulation in C
49 pages

TM-98-06
Petra Funk, Gero Vierke, Hans-Jürgen Bürckert
A Multi-Agent Perspective on Intermodal Transport
Chains
8 pages

TM-98-05
Jürgen Lind, Klaus Fiscber
Transportation Scheduling and Simulation in a Railroad
scenario: A Multi-Agent Approach
17 pages

TM-98-04
Hans-Jürgen Bürckert, Gera Vierke
Simulated Trading Mechanismen für Speditionsüber
greifende Transportplanung
12 pages

TM-98-03
Petra Funk
Fast Loading and Unloading Devices: Planning and
Scheduling Requirements
7 pages

TM-98-02
Christian Gerber, Christian Ruß, Gera Vierke
An Empirical Evaluation on the Suitability of Market
Based Mechanisms for Telematics Applications
20 pages

TM-98-01
Christian Gerber
Bottleneck Analysis as a Heuristic for Self-Adaption in
Multi-Agent Societies
16 pages

1997

TM-97-03
Hans-Jürgen Bürckert, Klaus Fischer, Gera Vierke
TeleTruck: A Holonic Fleet Management System
10 pages

TM-97-02
Christian Gerber
Scalability of Multi-Agent Systems - Proposal for a
Dissertation
49 pages

TM-97-01
Markus Perling
GeneTS: A Relational-Functional Genetic Algorithm
for the Traveling Salesman Problem
26 pages

1996

TM-96-02
Harold Boley
Knowledge Bases in the World Wide Web:
AChallenge for Logic Programming
(Second, Revised Edition)
10 pages

TM-96-01
Gerd Kamp, Holger Wache
CTL - a description Logic with expressive concrete
domains
19 pages

1995

TM-95-04
Klaus Schmid
Creative Problem Solving
and
Automated Discovery
- An Analysis of Psychological and AI Research -
152 pages

TM-95-03
Andreas Abecker, Harold Boley, Knut Hinkelmann, Hol
ger Wache,
Fi"anz Schmalhofer
An Environment for Exploring and Validating
Declarative Knowledge
11 pages

TM-95-02
Michael Sintek
FLIP: Functional-plus-Logic Programming
on an Integrated Platform
106 pages

TM-95-01
Martin Buchheit, Rüdiger Klein, Werner Nutt
Constructive Problem Solving: A Model Construction
Approach towards Configuration
34 pages

DFKI Documents

1999

D-99-01
Tilman Becker, Stephan Busemann
May I Speak Freely? Between Templates and Free
Choice in Natural Language Generation Workshop at
the 23rd German Annual Conference for Artificial
InteJligence (KI '99), Bonn 14.-15. September 1999
69 pages

1998

D-9B-03
Stephan Busemann, Karin Harbusch, Stefan Werm-
ter(Hrsg.)
Hybride konnektionistische, statistische und regel ba
sierte Ansätze zur Verarbeitung natürlicher Sprache
Workshop auf der 21. Deutschen Jahrestagung für
Künstliche Intelligenz, Freiburg, 9.-10. September 1997
75 Seiten

1994

TM-94-05
Klaus Fischer, Jörg P. Müller, Markus Pischel
Unifying Control in a Layered Agent Architecture
27 pages

TM-94-04
Cornelia Fischer
PAntUDE - An Anti-Unification
Expressing Refined Generalizations
22 pages

TM-94-03
Victoria Hall
Uncertainty-Valued Horn Clauses
31 pages

TM-94-02
Rainer Bleisinger, Berthold Kröll

Algorithm for

Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations
11 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores
Text Skimming as a Part in Paper Document
U nderstanding
14 pages

D-9B-02
Andreas Abecker, Ansgar Bernardi, Knut Hinkelmann
, Otto Kühn,
Michael Sintek
Techniques for Organizational Memory Information
Systems
66 pages

D-98-01
Stephan Baumann, Jürgen Lichter, Michael MaIburg,
Heiko Maus,
Harald Meyer auf'm Hofe, Claudia Wenzel
Architektur für ein System zur Dokumentanalyse
im Unternehmenskontext Integration von Daten
beständen, Aufbau- und Ablauforganisation
76 Seiten

1997

D-97-0B
Christoph G. Jung, Klaus Fischer, Susanne Schacht
Distributed Cognitive Systems
Proceedings of the VKS'97 Workshop
50 pages

D-97-07
Harold Boley, Bernd Bachmann, Christian Blum, Chri
stian Embacher,
Andreas Lorenz, Jamel Zakraoui
PIMaS:
Ein objektorientiert-regelbasiertes System zur Produkt
Prozeß-Transformation
45 Seiten

D-97-06
Tilman Becker, Stephan Busemann, Wolfgang Finkler
DFKI Workshop on Natural Language Generation
67 pages

D-97-05
Stephan Baumann, Majdi Ben Hadj Ali, Jürgen Lichter,
Michael Malburg,
Harald Meyer auf'm Hofe, Claudia Wenzel
Anforderungen an ein System zur Dokumentanalyse im
Unternehmenskontext
- Integration von Datenbeständen, Aufbau- und Ab
lauforganisation
42 Seiten

D-97-04
Claudia Wenzel, Markus Junker
Entwurf einer Patternbeschreibungssprache
für die Informationsextraktion
in der Dokumentanalyse
24 Seiten

D-97-03
Andreas Abecker, Stefan Decker, Knut Hinkelmann, Ul
rich Reimer
Proceedings of the Workshop "Knowledge-Based
Systems for Knowledge Management in Enterprises" 97
167 pages

D-97-02
Tilman Becker, Hans- Ulrich Krieger
Proceedings of the Fifth Meeting on Mathematics of
Language (MOL5)
168 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

D-97-01
Thomas Malik
NetGLTool Benutzeranleitung
40 Seiten

1996
D -96-07
Technical StaH
DFKI Jahresbericht 1995
55 Seiten

Note: This document is no longer available in printed
form.

D-96-06
Klaus Fischer (Ed.)
Working Notes of the KI'96 Workshop on Agent
Oriented Programming and Distributed Systems
63 pages

D-96-05
Martin Schaaf
Ein Framework zur Erstellung verteilter Anwendungen
94 pages

D-96-04
Franz Baader, Hans-Jürgen Bürckert, Andreas Günter,
Werner Nutt (Hrsg.)
Proceedings of the Workshop on Knowledge
Representation and Configuration WRKP'96
83 pages

D-96-03
Winfried Tautges
Der DESIGN-ANALYZER - Decision Support im Desi
gnprozess
75 Seiten

D-96-01
Klaus Fischer, Darius Schier
Ein Multiagentenansatz zum Lösen von Fleet
Scheduling-Problemen
72 Seiten

1995

D-95-12
F. Baader, M. Buchheit, M . A . Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'95 Workshop:
KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases
61 pages

D-95-11
Stephan Busemann, Iris Merget
Eine Untersuchung kommerzieller Terminverwaltungs
software im Hinblick auf die Kopplung mit natürJich
sprachlichen Systemen
32 Seiten

D-95-10
Volker Ehresmann
Integration ressourcen-orientierter Techniken in das wis
sensbasierte Konfigurierungssystem TOOCON
108 Seiten

D-95-09
Antonio Krüger
PROXIMA: Ein System zur Generierung graphischer
Abstraktionen
120 Seiten

D-95-08
Technical Staff
DFKI Jahresbericht 1994
63 Seiten

Note: This document is no longer available in printed
form.

D-95-07
Ottmar Lutzy
Morphic - Plus
Ein morphologisches Analyseprogramm für die deutsche
Flexionsmorphologie und Komposita-Analyse
74 Seiten

D-95-06
Markus Steffens, Ansgar Bernardi
Integriertes Produktmodell für Behälter aus Faserver
bundwerkstoffen
48 Seiten

D-95-05
Georg Schneider
Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

D-95-04
Victoria Hall
Integration von Sorten als ausgezeichnete taxonomische
Prädikate in eine relational-funktionale Sprache
56 Seiten

D-95-03
Christoph Endres, Lars Klein, Markus Meyer
Implementierung und Erweiterung der Sprache At:.CP
110 Seiten

D-95-02
Andreas Butz
BETTY
Ein System zur Planung und Generierung informativer
Animationssequenzen
95 Seiten

D-95-01
Susanne Biundo, Wolf gang Tank (Hrsg.)
PuK-95, Beiträge zum 9. Workshop "Planen und Kon
figurieren", Februar 1995
169 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

1994

D-94-15
Stephan Oepen
German Nominal Syntax in HPSG

- On Syntactic Categories and Syntagmatic Relations

80 pages

D-94-14
Hans- Ulrich Krieger, Ulrich Schäfer
TDL - A Type Description Language for HPSG, Part
2: User Guide.
72 pages

D-94-12
Arthur Sehn, Serge Autexier (Hrsg.)
Proceedings des Studentenprogramms der 18. Deut
schen Jahrestagung für Künstliche Intelligenz KI-94
69 Seiten

D-94-11
F. Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the K1'94 Workshop: KRDB'94
- Reasoning about Structured Objects: Knowledge
Representation Meets Databases
65 pages

Note: This document is no longer available in printed
form.

D-94-10
F. Baader, M. Lenzerini , W. Nutt, P. F. Patel-Schneider
(Eds.)
Working Notes of the 1994 International Workshop on
Description Logics
118 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

D-94-09
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1993
145 Seiten

D-94-08
Harald Feibel
IGLOO 1.0 - Eine grafikunterstützte Beweisentwick
lungsumgebung
58 Seiten

D-94-07
Claudia Wenzel, Rainer Hoch
Eine Übersicht über Information Retrieval (IR) und
NLP-Verfahren zur Klassifikation von Texten
25 Seiten

Note: This document is no longer available in printed
form.

D-94-06
Ulrich Bubrmann
Erstellung einer deklarativen Wissensbasis über recy
c\ingrelevante Materialien
117 Seiten

D-94-04
FTanz Schmalhofer, Ludger van EIst
Entwicklung von Expertensystemen: Prototypen, Tie
fenmodellierung und kooperative Wissensevolution
22 Seiten

D-94-03
Franz Scbmalhofer
Maschinelles Lernen: Eine kognitionswissenschaitliche
Betrachtung
54 Seiten

Note: This document is no Ion ger available in printed
form .

D-94-02
Markus Steffens
Wissenserhebung und Analyse zum Entwicklungsprozeß
eines Druckbehälters aus Faserverbundstoff
90 pages

D-94-01
Josua Boon (Ed.)
DFKI-PubIications: The First Four Years
1990 - 1993
75 pages

"M
a

y
I S

p
e

a
k

F
re

e
ly

?
"

B
e

tw
e

e
n

 T
e

m
p

la
te

s
a

n
d

 F
re

e
C

h
o

ic
e

in

 N
a

tu
ra

l
L

a
n

g
u

a
g

e
 G

e
n

e
ra

tio
n

W
o

rk
sh

o
p

 a
t t

h
e

 2
3

rd
 G

e
rm

a
n

 A
n

n
u

a
l

C
o

n
fe

re
n

ce
 f

o
r

A
rt

if
ic

ia
l

In
te

lli
g

e
n

ce
 (

K
I

'9
9)

,
B

o
n

n

1
4

.-
1

5
.

S
e

p
te

m
b

e
r

19
99

T
ilm

a
n

 B
ec

ke
r,

 S
te

p
h

a
n

 B
u

se
m

a
n

n
 (

ed
s.

)

D
-9

9-
01

D

oc
um

el
1

t

	D-99-01-0001
	D-99-01-0002
	D-99-01-0003
	D-99-01-0004
	D-99-01-0005
	D-99-01-0006
	D-99-01-0007
	D-99-01-0008
	D-99-01-0009
	D-99-01-0010
	D-99-01-0011
	D-99-01-0012
	D-99-01-0013
	D-99-01-0014
	D-99-01-0015
	D-99-01-0016
	D-99-01-0017
	D-99-01-0018
	D-99-01-0019
	D-99-01-0020
	D-99-01-0021
	D-99-01-0022
	D-99-01-0023
	D-99-01-0024
	D-99-01-0025
	D-99-01-0026
	D-99-01-0027
	D-99-01-0028
	D-99-01-0029
	D-99-01-0030
	D-99-01-0031
	D-99-01-0032
	D-99-01-0033
	D-99-01-0034
	D-99-01-0035
	D-99-01-0036
	D-99-01-0037
	D-99-01-0038
	D-99-01-0039
	D-99-01-0040
	D-99-01-0041
	D-99-01-0042
	D-99-01-0043
	D-99-01-0044
	D-99-01-0045
	D-99-01-0046
	D-99-01-0047
	D-99-01-0048
	D-99-01-0049
	D-99-01-0050
	D-99-01-0051
	D-99-01-0052
	D-99-01-0053
	D-99-01-0054
	D-99-01-0055
	D-99-01-0056
	D-99-01-0057
	D-99-01-0058
	D-99-01-0059
	D-99-01-0060
	D-99-01-0061
	D-99-01-0062
	D-99-01-0063
	D-99-01-0064
	D-99-01-0065
	D-99-01-0066
	D-99-01-0067
	D-99-01-0068
	D-99-01-0069
	D-99-01-0070
	D-99-01-0071
	D-99-01-0072
	D-99-01-0073
	D-99-01-0074
	D-99-01-0075
	D-99-01-0076
	D-99-01-0077
	D-99-01-0078
	D-99-01-0079
	D-99-01-0080
	D-99-01-0081
	D-99-01-0082
	D-99-01-0083
	D-99-01-0084

