
Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Proceedings
of the

Document
D-97-02

Fifth Meeting on Mathematics of Language

MOL5

Tilman Becker and Hans-Ulrich Krieger (eds.)

25-28 August 1997

Oeutsches Forschungszentrum fur Kunstliche Intelligenz

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
Kunstliche Intelligenz. DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organiza
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Proceedings
of the
Fifth Meeting on Mathematics of Language

MOL5

Tilman Becker and Hans-Ulrich Krieger (eds.)

DFKI-D-97-02

This work has been supported by a grant from The Federal Ministry of Educa
tion, Science, Research and Technology (FKZ ITWM-01 IV 701 VO).

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1997
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per
mission of the Deutsche Forschungszentrum fOr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstliche Intelligenz.
ISSN 0946-0098

Proceedings
of the

Fifth Meeting on Mathematics of Language

MOL5

Tilman Becker and Hans-Ulrich Krieger (eds.)

July 25, 1997

Abstract

The Fifth Meeting on Mathematics of Language (MOL5) covers all areas of study that deal
with the mathematical properties of natural language. These areas include, but are not limited
to, mathematical models of syntax, semantics and phonology; computational complexity of lin
guistic frameworks/theories and models of natural language processing; mathematical theories
of language learning; parsing theory; and quantitative models of language.
The 1997 meeting takes place in the wonderfully located Schloss Dagstuhl, the 'International
Meeting and Research Center for Computer Science' near Saarbruecken, Germany.

Contents

Bertolo, Stefano and Broihier, Kevin and Gibson, Edward and Wexler, Kenneth:
Characterizing Learnability Conditions for Cue-based Learners in Parametric
Language Systems 1

Brown, Stephen and Lyon, Caroline:
Evaluating Parsing Schemes with Entropy Indicators 9

Burheim, Tore:
Emptiness, Membership and Regular Expressions for Tree Homomorphic Feature
Structure Grammars . 14

Dalrymple, Mary and Gupta, Vineet and Lamping, John and Saraswat, Vijay:
Relating Resource-based Semantics to Categorial Semantics 22

Frank, Robert and Hiller, Markus and Satta, Giorgio:
Optimality Theory and Generative Complexity. 30

Harbusch, Karin:
The Relation between Tree-Adjoining Grammars and Constraint Dependency
Grammars. 38

Hendriks, Herman:
Compositionality: Similarity versus Interpretability 46

Hepple, Mark:
A Dependency-based Approach to Bounded fj Unbounded Movement 53

Heylen, Dirk:
Agreement Modalities. 61

Kahane, Sylvain:
Bubble Trees and Syntactic Representations . 70

Kallmeyer, Laura:
Local Tree Description Grammars . 77

Kohlhase, Michael and Kuschert, Susanne:
Dynamic Lambda Calculus 85

Kulick, Seth:
An Exploration of Some Extensions of Tree Adjoing Grammars · 93

Langholm, Tore:
Towards a Model-Theoretic Characterization of Indexed Grammars .101

Manaster Ramer, Alexis and Savitch, Walter:
Generative Capacity Matters · 106

Moshier, M. Andrew:
How to solve Domain Equations Involving Path Equations 114

Nakanishi, Ryuichi and Takada, Keita and Seki, Hiroyuki:
An Efficient Recognition Algorithm for Multiple Context-Free Languages . 119

Nederhof, Mark-Jan:
Solving the Correct-prefix Property for TAGs 124

Penn, Gerald:
Parametric Types for Typed Attribute Value Logic. · 131

Rambow, Owen:
A Polynomial Model for Unrestricted Functional Uncertainty · 138

Rogers, James:
A Unified Notion of Derived and Derivation Structures in TAG · 146

Sarkar, Anoop:
Separating Dependency from Constituency in a Tree Rewriting System · 153

Zuber, Richard:
Some Algebraic Properties of Higher Order Modifiers · 161

II

Characterizing learnability conditions for cue-based learners in parametric lan1!ua1!e
systems

Stefano Bertolo, Kevin Broihier, Edward Gibson and Kenneth Wexler
Department of Brain and Cognitive Sciences - MIT

Cambridge, MA 02139
{bertolo,kevin,gibson,wexler}@psyche.mit.edu

Abstract

Applications of Fonnal Learning Theory to the problem of
Language Acquisition have often had a rather narrow scope,
due to the difficulty of expressing general results in a vocab
ulary meaningful for the allied disciplines of Developmental
Psycholinguistics and Linguistics. In this paper we provide
a complete characterization of the learnability properties of
parametric systems of grammars of the kind hypothesized by
Chomsky [5] with respect to the class of cue-based learners.
In addition, we show that the conditions of the application of
our negative learnability results are local, in the sense that they
involve inspection of only a fragment of a parameter space and
can be verified by standard tools of linguistic analysis.

Parametric Linguistics and Cue-based
Learners

If, as it has been proposed by Chomsky [5], human languages
all obey a common set of principles and differ from one an
other only in finitely many respects (often referred to as pa
rameters) and in these respects only in finitely many ways
(the values of the parameters), then human language learning
can be seen as a search problem in a finite hypothesis space:
the child does not need to hypothesize grammars that fall
beyond those that are consistent with the common set of prin
ciples (often referred to as Universal Grammar) and any of
the possible assignment of values to the linguistic parameters.
However, although finite, this space of hypothesis can still
be quite large (recent principled estimates place this number
around 240 different possible grammars I) and it is therefore
imperative for any parametric model of language acquisition
to show how such a huge hypothesis space could be searched
effectively since this is arguably what children do.

Some linguists (e.g. Dresher and Kaye [7]) have observed
~hat ~his huge hypothesis space could be searched effectively
If chIldren were capable of establishing the value of certain
parameters by attending to linguistic events of a particular
nature in their environment. In fact, if all parameters are
binary valued establishing the value of a parameter eliminates
exactly half of the hypotheses from the hypothesis space.
Ideally, 40 such observations could be sufficient to single out
a grammar out of 240 possible alternatives.

IThis estimate can been obtained by restricting all parametric
variation to the ability or inability of functional heads to attract
other heads or maximal projections and by estimating the number of
functional head that are required for descriptive adequacy. On this
see Roberts [14].

. The following artificial example should help to give an
Idea as to what these observatiohs could amount to. Suppose
you were trying to determine, from a collection of positive
examples, which one of the following four regular expressions
generates the sample:

{ bua} {dUe} • a b. e d. ef .

One way to solve this problem could be to set up a battery of
tests to be applied to each one of the positive samples and to
make choices about the assignment of value that is appropriate
for each parameter depending on the outcome of these tests:

Test input string Response if test positive
T I : two a's in a row? set PI to value b U a
T2: two b's in a row? set PI to value b·
T3: two e's in a row? set P2 to value dUe
T4 : two d's in a row? set P2 to value d'

In this construction, the observable event of a sample string
having two a's in a row is taken as a cue to the b U a value
assignment for the first parameter. The goal of the cue-based
learning enterprise is to show that it is simultaneously pos
sible to reconstruct linguistic variation parametrically and to
single out in each possible target language a set of cues that
would allow a learner to acquire the correct setting for each
parameter.

A theory of cue-based learners
Although the central intuition about the design philosophy of
a cue-based learner emerges quite clearly from the example
above, a formal characterization of the class of these algo
rithms turns out to be quite useful on at least two counts. First
of all, a formal definition will make it possible to capture some
essential design features in learning algorithms that appear to
be prima facie unrelated. Second, by establishing learnability
results about the class of cue-based algorithms at large one
would automatically have results that can be applied to each
individual algorithm. For an application of the results of this
paper to the analysis of a parametric language learner based
on unambiguous 'superparsing' proposed by Fodor [8] see
Bertolo et al. [2].

Since, as we saw, the salient feature of a cue-based learner
is to restrict the hypothesis space of a parametric learning
problem, we first need to introduce a definition of parameter
spaces.

Definition 1 A parameter space P is a triple < par, L, L >.
where L is a finite alphabet of symbols and par is a finite
set of sets {PI, ... , Pn}. Given a Pi in par. its members

are enumerated as vI, ... , vlp;l. Given the cartesian product

P = PI X P2 x ... X Pn. a parameter vector P is a member of
P. The function L : P 1-+ 21:" assigns a possibly empty subset
of L· to each vector PEP. The expression C(P) denotes

the set {L(PI)"'" L(PIPI)}'
Given a parameter space. it turns out to be useful to be able

to refer to an assignment of values to some. but not all of the
parameters.

Definition 2 Let P be a parameter space. A partial assign
ment in P is any subset B of

U {pd X Pi
PiEpar

such thatfor every Pi in par there is at most one < Pi, vi >
in B . Given two partial assignments A and B in P. B is said
to be A -consistent iff AU B is also a partial assignment in P.

Such partial assignments can in turn be used to isolate only
those parts of a parameter space that agree on the values
assigned to the parameters in a partial assignment. Crucially,
such a portion of a parameter space is, by definition 1, itself a
parameter space.

Definition 3 Let P be a parameter space and P[0] = P. If
PIA] is a parameter space < parA, L, L > and B is an A
consistent partial assignment in p, then the subspace PIA U
B] is the parameter space < parAUB, L, L > such that, given

H = U 71'1 (x),
x€B

ifpj f/. H thenptuB = pt andifpj E H thenptuB = {vi}
where vi is the only v E Pj such that < Pi> vi >E B.

Finally, PIA U B] is the parameter space < parAUB, L, L >
where,for every Pi in H, pfUB = pf - pfUB and,for every

P· not in H p~UB - pA , J, - I·

We are now ready to formalize the notion of some param
eter values being established as a result of observing certain
events in the linguistic en vironment. The function <Pc of def
inition 4 can be seen as a formal representation of the battery
of tests discussed in the example above. It is important to no
tice that definition 4 generalizes our original intuition in two
important respects. First of all, it captures the possibility that
the learner. upon observation of a linguistic event, could reach
different conclusions depending on what its current state of
belief (assignment of value to certain parameters) is. Sec
ondly, it allows for the existence of linguistic events that can
only be observed comparing n distinct data points (in the case
of syntax learning, typically sentences).

Definition 4 Let P be a parameter space, B a subset of the
set B· of al{partial assignments in p, C a non-empty subset
ofl)pEP L(P) and C i the cartesian product of C with itself i
times. A cue function of window size n for P is a function

n

<Pc : U Ci x B 1-+ B·
i=1

such that:

2

I. if Si, Sj E U7=1 C i are permutations of one another; then,
for every B, <PC(Si, B) = <Pc(Sj, B) and

2. if<Pc(si,A) = Band<pc(sj,AUB) = C, thenifsk =
Si 0 Sj, then <PC(Sk, A) = B U C.

Restrictions 1) is meant to ensure that the cue functior
be 'locally set-driven' .2. Restriction 2) is needed to avoic
the case of a cue function that reacts to a set of data point!
differently than it does to a sequential presentation of one 01
its partitions.

Finally, a cue-based learner is a learning algorithm thai
does all its learning via a cue function. The crucial feature 01
such learners is the absence of any form of backtracking: ru
definition 5 shows, if the cue function returns any parameteJ
assignment that is not in agreement with the current assign·
ment, the inconsistent portion of the output of the cue functior
is simply discarded.

Definition 5 Let P be a parameter space, B·, B and C as if,
definition 4 and <Pc a cue function of window size n for P. A
cue-based learner for P is a function

n

AC : {P[AJIA E B} x U Ci
1-+ {P[A]IA E B·}

i=1

such that

{

PIA]

Ac(PlA], s) = P[A U B A]

PIA U <pc(s, A)]

If- dUn C i
I S y;:. i=1
if <pc(s, A) is not
A -consistent
othetwise

where BA is the largest A-consistent subset of<pc(s, A) .

Now that we have formalized what a cue-based learnel
does in response to a linguistic event we need to formalize
how a sequence of data points can be parsed into a sequence
of events compatible with a given window size. This step i5
necessary in order to investigate the behavior of such a learnel
in the limit.

Definition 6 Let a be a sequence of elements from a set Lane,
ai denote the i-th element in a. The expression w(ai, a, m)
denotes the sequence of sequences aim = atm, a~m, ... , aim
where

",im _ "'.
VI - VI

aim = ai-Iai

a3m = ai-2ai_l ai

aim = ai-k ... ai-2ai-lai

and k is the largest number such that k :::; m and i - k 2 1.
The expression W(a, m) then denotes the sequence of se·
quences w(al, a, m) 0 w(a2, a, m) 0 ... where 0 is the con·
catenation sign.

For example, given the infinite sequence a = 1,2,3,4,
W(a,3) is the infinite sequence

(1),(2),(2,1),(3),(3,2),(3,2,1),(4),(4,3),(4,3,2), .. .

Finally, we need to define the behavior of a cue-based
learner on strings of arbitrary length.

2 See Wexler and Culicover [16], sec. 2.2 and Osherson, Stob and
Weinstein [12], sec. 4.4.2 for definitions and consequences of the
general property of being ·set-driven'.

Definition 7 Let P[A] be a parameter space, e as in defi
nition 4 , CT a sequence of strings from UPE p L(P) and T :::::
W (CT, m) with T+ denoting the sequence such that TI OT+ ::::: T.
If .xc is a cue based learner with a window of size m for p,
.xc{P[A], T) is defined as .xc (.xc{P[A], TI), T+).

This completes the formalization of the notion of a cue
based learner. We now want to show under what conditions
exactly such learners are successful. We will do this in two
steps. Given a criterion of successful learning, we will first
show what characteristic a cue function should have for the
corresponding cue-based learner to be successful and we will
then show how the existence (or non existence) of the required
characteristics could be established by an analysis of the pa
rameter space which can often be grounded on a linguistically
respectable vocabulary.

Characterizing conditions for successful
cue-based learners

Our characterization of cue-based learners was general
enough to include the possibility of a learner reacting to the
same input sentence in different ways, depending on what its
particular current partial assignment is at that particular mo
ment. Given the possibility of this kind of potential cueing, it
will turn out to be useful to have a notion of which parts of a
parameter space a cue-based learner will visit in response to
data from a given language. The following definition formal
izes this notion.

Definition 8 Given two partial assignments A and B and a
PEP and a,pc of window size m, T",c (P) denotes the set of
all triples < 5, A, B > such that 5 E L(P)j for some j ::; m,
,pc(s, A) ::::: Band B is A-consistent.

1. A ,pc-chainfor P is a sequence til t2,'" I tn of elements
of T",c(P) such that 7I"2(tl) ::::: 0 and, for all n ::; m,
7I"2(t n)::::: 7I"2(t n-d U 7I"3(t n-I).

2. A ,pc-chain t I I t21 ... I tn for P is maximal iff there is no
t E T",c (P) such that t I I i2, ... , tn I t is also a ,pc-chain
for P and 7I"3(tn) =/; 7I"3(t).

3. A,pc -trajectory for P is a sequence I< I I ••. I K m such that
for /(I ::::: 7I"2(tl) and,for all 1 < i ::; m, Ki ::::: 7I"3(ti) for
some maximal ,pc-chain t I I t21 ... I tn for P.

4. The expression T(P) denotes the set

{7I"2(t)lt is a member of a maximal ,pc-chainfor P}

Our definition of a cue function is general enough to include
the case of a 'silent' cue function that returns an empty set
of parameter values in response to every sentence from the
target language. It is intuitively obvious why such a function
could hardly be useful for a cue-based learner. It is equally
intuitive that for a cue function to be of any use to cue-based
learner it must satisfy two conditions: it must eventually
yield a complete conjecture (that is a conjecture in which
every parameter has a value assigned to it) and it should
never restrict itself to a subspace that does not contain the
target or one of its equivalents. The following definitions are
introduced in order to formalize these notions and theorem 2
will show that the intuition presented above is indeed correct.

3

Definition 9 Let P be a parameter space and ,pc a cue func
tion for P. ,pc is complete iff for every PEP and every
,pc-trajectory T for P, IPT I ::::: Iparl, where PT is the union
of all the elements of T.

Definition 10 Let P be a parameter space and ,pc a cue
/!!.nction of window size mfor it. ,pc is coherent ifffor every
PEP and every partial assignment A E T(P) if5 E L(p)i
(with i ::; m) and ¢c{5, A) ::::: B then,for some pI E pAUB,

L(PI) ::::: L(P).

In order to prove that completeness and coherence of a cue
function are jointly necessary and sufficient for the success
of a cue based algorithm we need to specify adequately our
criterion of success. The follo~ing definitions adapt to our
parametric scenario Gold's [9] criterion of identification in
the limit.

Definition 11 Let P be a parameter space, ¢c a cue function
of window size m. A sequence CT of elements orr: x {O, I} is
said to be for a language L(P) iff, for every i, CTi E L(P).

1. A sequence CT for a language L(P) is a text for that lan
guage ifffor every s E L(P) there is an CTi :::::< s, I >.

2. A sequence (J fora language L(P) is an informantfor that
language ifffor every 5 E L(P) there is an CTi ::::: S.

3. Given a ¢c-chain tl I' .. I tn and a sequence CT for L(P), CT
is said to complete t I I . .. , tn iff, given T ::::: W(CT, m)

(a) there are Ti I> •.. I Ti n such that, for all I < k < n,
Tik ::::: 71"1 (tk). and

(b) for all 1 ::; k < n. ik+1 > ik and

(c) for any two Tik I Tik+1 there is no TikI such that i k <
k' < ik+1 and < Ti k" lf2(tk+I),B >E T",c (P) for some
B =/; 7I"3(tk+l) andfor Til there is no Tj such that j < i l

and < Tij,0,B >E T"'c(P)for some B f:. 7I"3(tI).

4. The sequence CT, is said to be em-richfor L(P) iffit com
pletes at least one maximal ¢c-chainfor L(P).

Definition 12 Given a parameter space p, a cue-based
learner .xc of window size m, an infinite sequence CT of mem
bers ofr." x {O, I} and the sequence T::::: W(CT,m), .xc is
said to be defined on T iff .xc is defined on Tn for every n,
where Tn is the segment containing the first n elements of T.
Let B be a partial assignment for P . .xc is said to converge
on T toP[B] iff.xc is defined on T andforall but finitely many
n .xc{P , Tn) ::::: P[B]. Given a sequence CT for a language
L(P), .xc is said to identify CT iff .xc{P IT) ::::: P[B], IpB I ::::: I
and L(P) is equivalent to the only L(PI) such that pI E pB.
Finally, .xc is said to identify L(P) on em -rich text (or in
formant) iff it identifies every em -rich text (or informant) for
L(P)

Notice that this definition of successful learning differs
from Gold's [9] original definition (see also Osherson, Stob
and Weinstein [12]) in precisely the respect that is relevant in
an application of formal learning theory to the problem of lan
guage acquisition. Since the environments in which humans
learn their respective target languages does not include all the
sentences of the target languages, it is useful to have a no
tion of success that does not require the learner's conjecture

to generate a language that is equivalent to the set of sen
tences present in the environment, as is the case for Gold's [9]
original definition.

Given this definition, it is easy to see that cue-based learn
ers cannot identify languages unless they receive em-rich
sequences for those languages.

Theorem 1 Given a parameter space p, a cue-based learner
>'c of window size m and a sequence 0' for a language L(P),
>'c identifies 0' only if 0' is em -rich.

PROOF. Assume 0' is not em-rich. Then, by defin!!!on II,
0' does not complete any maximal 4>c-chain for L(P).Let
il, " ., tm be a 4>c-chain completed by 0'. Since il,' .. , im
is not maximal, IP"z(tm)U"J(tm)1 > I. By definition 12, this
implies that >'c does not identify 0'.

o
Having established that no identification takes place on

sequences that are not em-rich we are now ready to prove
that cue-based learners are successful on em -rich sequences if
and only if they rely on a complete and coherent cue function.
The proof will be aided by the following lemma, that makes
explicit the consequences of restricting one's search to the
wrong subspace when this is coupled with a general inability
to backtrack.

Lemma 1 Let P[A] be a parameter space and L a subset of
L* such that L tl .C(pA). Then, for every partial assignment
B, L (j. £(PAUB).

PROOF. Since, by construction, for every partial assignment
B pA '2 pAUB, if L E £(PAUB) then L E £(pA). 0

Theorem 2 Let P be a parameter space and >'c a cue-based
learner of window size m . Then >'c identifies every L(P) E
£(P) on em-rich sequences if and only if the corresponding
cue function 4>c is complete and coherent.

PROOF. ::::::> Assume 4>c is not coherent. Then, there is a
PEP, an A E T(P) and as E L(p)i (with i ~ m) such that
4>c(s, A) = B and, for every pI E pAUB, L(PI) =F L(P).
Let s = 81,82, ... , 8n and O'A be a sequence of couples from
L(P) such that >'c(P, W(O'A,m)) = P[A]. This sequence
is guaranteed to exist, since A E T(P). Then, for every
sequence 0' for L(P), >'c does not identify the sequence
O'A 081 o ... 0 8n 00' and so, in particular, for every sequence
0'1 for L(P) such that O'A 0 SI 0 ... 0 Sn 0 0'1 is em-rich, >'c
does not identify the sequence O'A 0 SI 0 . .. 0 Sn 00'1. In fact,
by hypothesis and by the construction of O'A it follows that
>'c(P, W(O'A 0 SI, •.. Sn, m)) = P[A U B] . By lemma I and
the fact that for every pI E pAUB, L(PI) =F L(P) it follows
th'!!Jorevertlartial assignment D, for every pI E pAUBUD,

L(PI) =F L(P). Therefore, since, for every sequence 0' for
L(P), >'c(P, O'A 0 S 00') = P[A U BUD] for some partial
assignment D, >'c does not identify O'A 0 S 00'.

Assume 4>c is not complete. Then, for some PEP,
for some 4>c-trajectory T = Ao, ... Ak and for some

1 ~ i ~ n, 7ri(P) = vi and < Pi, vi >(j. U:=o Ai ·
Let O'Ak be a sequence of couples from L(P) such that

>'c(P, W(O'Ak,m)) = P[U:=oAi]. This sequence is guaran

teed to exist, since U:=o Ai E T(P). So, for every sequence
u (and so, a fortiori, for every sequence u l such that O'A. 0 u l

4

is em-rich) for L(P), if >'c(P[U:=o Ai], 0') = P[B] then
< Pi, vi >(j. B. This however, implies that IpBI > I and
so >'c does not identify O'Ak 00'.

¢:::::= Assume that 4>c is complete and coherent. Let 0'

be a em-rich sequence for some L(P) and il,' . . , ik the
maximal 4>c-chain 0' completes. From definition 5 it follows
immediately that >'c(P, W(O', m)) = P[7r2(ik) U 7r3(tk)]. To
show that >'c identifies a sequence 0' for L(15) we need to show
that IP"z(tk)u"J(tk)1 = I and, for every L(P) = L(PI) for

the only P' E pB. So, assume that >'c does not identify u.

This implies that, if >.c(P, W(O', m)) = P[7r2(ik) U 7r3(tk)],
then either IP1l'z(t k)U1I'J(t k) I > I or for the only P' E pD,

L(PI) =F L(P) .
Assume IPll'z(t k)U1r3 (t k)1 > I.. This implies that, for every

S E U::l(enL(p))i, 7r2(tk)U7r3(tk) '24>c(S,7r2(tk)U
7r3(tk))' But this contradicts the hypothesis that 4>c is com
plete.

Assume instead that IP 1rz(t k)u"J(tk)1 = I and, L(P') =F
L(P). So, by definition 10, if we can show the existence of a
7r2 (ti) be such that:

I. >'c (P [7r2(t;)], Sj) = P[7r2(t;) U 7r3(ti)];
2. for some P' such that L(P') = L(P), P' E pll'z(t;) and

3. for every P' such thatL(P') =F L(P), P' (j. p"z(t,)U"J(t;),

then we have a proof that 4>c is not coherent, contrary to
the assumption. But such a 7r2(ti) is guaranteed to exist from
the assumption that 7r2(t1) = 0 (and so P E p0) and the
assumption that P (j. p"Z(tk)U"J(t.).

o

Expressive cue functions and the
Non-Disjunctive Subspace property

Although, as theorem 2 shows, completeness and coherence of
cue functions completely characterize the class of successful
cue-based learners, they don't capture a desideratum of cue
functions that is quite obvious on grounds of psychological
plausibility, especially if, as in the example discussed in the
first section, one regards cue functions as batteries of tests
that can be performed on linguistic events. In particular, it
is perfectly possible for a complete and coherent function to
receive two input linguistic events SI and S2 from the same
language L(P) and return two distinct value assignments vi
and vf for the same parameter Pi. Of course, if the function is
coherent, this can only happen if one of these two events also
belongs to some other language. This is undesirable because,
in the presence of a linguistic event that could have been
produced by two different languages, it is as if the function
were 'partial' to one of these possibilities over the alternati ve.

A different way to see why functions that are 'partial'
are undesirable is the following: ideally, a cue-based learner
ought to commit itself to a particular assignment of value to a
parameter only if the sequence of data points that cause it to do
so somehow 'expresses' that assignment of value. There are
several different ways to reconstruct this notion (see Clark [6]
for a discussion concerning actual syntactic parameters and
Bertolo [1] for a formal definition) but the intuition is that a
sentence does not express the value vi of a parameter Pi if
it is also a member of languages corresponding to parameter

assignments where Pi is assigned a value different from vi
(although the converse does not hold).

This implies that, if we want cue-based learners to be some
thing more than hash-tables and require that their learning
behavior be guided by some fonn, however sllperficial of lin
guistic analysis of the input data (as it is done, for example,
in Fodor's [8] 'superparsing' algorithm) we have to require
that the data they use to return a parameter value must express
that parameter value. The following definition fonnalizes this
notion.

In order to fonnalize this desideratum, we introduce the
notion of 'expressiveness'.

Definition 13 Let P be a parameter space and <Pc a cue
function of window size m for it. <Pc is expressive iffJor
every PEP and every partial assignment A E T(P) if
S E L(p)i (with i ~ m) and <Pc(s, A) = B then, for every
< Pi, vi >E B - A.

u
(jlven thiS detinition it is easy to show that expressiveness

implies coherence.

Theorem 3 Let P be a parameter space and <Pc a cue Junc
tion of window size m for it. If <Pc is expressive then it is
coherent.

PROOF. Assume A E T(P). Then there is a <pc-trajectory
T = AI, A2, ... , An such that A = UAk for some 1 ~ k ~ n.
This implies that there is a s' E L(p)i (with i ~ m) such
that <pc(S', UA k_ J) = Ak. Assume P f/. pA. This implies
that for UAk_1 E T(P) there is a S' E L(P) such that
4>C(Si, UAk_ l) = Ak and, for some < Pi, vi >E Ak -
UAk-l,

But, by definition 13, this means that <Pc is not expressive.
o

As a consequence, in order to prove that a parameter space
can be learned by a cue-based learner it is sufficient to show
the existence of a complete and expressive cue function.

Theorem 4 Let P be a parameter space and AC a cue-based
learner. If the corresponding cue function <Pc is complete and
expressive, then AC identifies every L(P) E C(P).

The problem is then to show that there is a property of
parameter spaces that is sufficient and necessary for the ex
istence of a complete and expressive cue function and that
it is possible to use standard techniques of linguistic analy
sis to determine whether a parameter space does not have it.
In this section we address the first question by showing that
such a property exists. We call it the Global Non-Disjunctive
Subspace property.

Definition 14 Let P be a parameter space and A a partial
assignment. P[A] is said to have the Non-Disjunctive Sub
space property up to m (NDS-m) iff if IpA I > 1 then for
every P E p A there is an s E L(p)i (with i ~ m) and an

5

A-consistent partial assignment B such that P E pAUB and,
for every < Pi, vi >E B - A,

u
P has the Global NDS-m (GNDS-m) iff, for every partial
assignment A, P[A] has the NDS-m.

In essence, a parameter space has the GNDS iff for all
of its subspaces, each language in the subspace has enough
data points to distinguish itselffrom other languages in terms
of non-disjunctive parameter assignments (where a disjunc
tive assignment prompted by a linguistic event s could be
expressed as "event s could have been caused either by a lan
guage with Pi set to value vi or by a language with Pj set to
value vk ,,) J •

The following theorem shows that the GNDS is indeed
necessary and sufficient for the existence of a complete and
expressive cue function for a parameter space.

Theorem 5 Let P be a parameter space. A complete and
expressive cue function of window size m <Pc for P exists iff
P has the GNDS-j for some j ~ m.

PROOF.

~ Assume for every i ~ m, P does not have the GNDS-i
and <Pc is a complete and expressive cue function of window
size m for P. Since, for every i ~ m, P does not have the
GNDS-i there is a partial assignment A such that P[A] does
not have the NDS-i for every i ~ m. Let P E pA, A' be the
partial assignment such that P E pAUA' and IpAUA'1 = 1,

T = AI, ... , An a <pc-trajectory for P and Ak the first set in
T such that Ak n A' j 0. Such a Ak must exist in T since
we assumed that <Pc is complete. This implies that, for some
j ~ m, there is an s E L(p)i such that <Pc(S,UAk-J) =
Ak. Since, by assumption, <Pc is expressive, for every <
Pi, vi >E Ak - UAk_1

Also, since by construction UA k _\ ~ A, we have that, for

every < pi,vi >E Ak - UAk_1 pUAk-IU{<p"lIi>} 2
pAU{ <p;,lIi>}. This however implies that, for every <
pi,vi >E Ak - UAk-h

u
The assumption that P[A] does not have the NDS-i for every
i ~ m implies that, in particular for j, there is a < Pi, vi >E
Ak - UAk _\ such that

sE u
hence, a contradiction.

<== Assume P has the GNDS-m. Then, for every PEP
and every partial assignment A such that IpAI > 1, the set

C(A, P), which denotes the set of triples < 5, A, B > such
that P E pA, 5 E L(p)m and

u L(p)m for all < Pi, vi" >E B - A}

is not empty. Moreover, if B+ is the subset of B* such that,
if A E B+ then IPAI > 1,

C(P) = U C(A, P) and]{ = U C(P),
AEB+ PEP

then]{ is the graph of a complete and coherent cue function
¢c forP.

To show that ¢c is complete, it is sufficient to show that,
for every PEP and every ¢c-trajectory Ao, ... , An for P

n

a E U Ai iff a E {< PI?rI(P) >, ... , < Pn?rn(P) >}.
i=O

But this follows from the fact that for every sequence
< 81, Ao, AI >, < 82, AI, A2 >, ... < 8 n, An-I, An > of
members of C(P) such that Ao = 0,

n

UAi = {< PI,?rI(P) >, ... < Pn,?rn(P) >}
i=O

(since, by hypothesis, C(A, P) f 0 for every A such that
IpAI > I) and the fact that the corresponding sequence
Ao, A I, ... , An is by definition 8 a ¢c-trajectory for P.

To show that ¢c is expressive, take any P, A E T(P)
and 5 E L(p)m such that ¢c(5, A) = B. By construction
of the graph of ¢c < LA, B > E J{ and so, for some pi,
< 5, A, B >E C(A, Pi). But, by construction, again, if
< 5, A, B >E C(A, Pi) then, for every < Pi, vi" >E B - A,

U
o

Expressing learnability conditions in a
linguistically meaningful vocabulary

The existence of a characterizing condition for the cue-based
learnability of a parameter space is not in itself an exciting
result if it can only be tested by inspecting the set theoretical
relationships among all languages generated by the space. It
turns out, however, that in order to prove a negative learn
ability result one can simply verify whether the parameter
space under scrutiny possesses a feature that can be stated
in a vocabulary that is meaningful from the point of view of
linguistic theory.

In particular, it is possible to show that every parameter
space that includes clusters of two or more languages that
are weakly equivalent to one another (that is, that generate
exactly the same set of strings, whatever the internal structure
assigned to them) does not have the GNDS.

Theorem 6 Let P be.J!...Parameter space with pi, plI E P
such thaI L(P') 2 L(PII). Then P does not have the GNDS
mforanym.

6

PROOF. Let A = {< Pil?ril (Pi) >, ... < Pi m ?rim (Pi) >}
be the largest set such that for all I :s k :s m, 7rik (Pi) =
7r i k (P"). Then pi, pll EpA. If, for some m, P has the
GNDS-m, then every partial assignment has the NSP-m, and
so, in -.Earticular, A has the NSP-m. This implies that for
every P E pA, and so, in particular for pi there is a partial
assignment B and a Si E L(Pl)j (with j :s m) such that, for
every < Pi, vi" >E B - A,

However, by hypothesis, every member of L(Pi) is also a

member of L(PIl) and since pI/. E pAUB it follows that, for
every < Pi, vi" >E B - A,

U

hence a contradiction. 0

A direct consequence of theorem 6 and theorem 5 is that
once one is able to show that a system of parameters generates
at least a couple of languages that are either weakly equi valent
or properly include one another, then one has a proof that no
expressive cue-based learner exists for the space.

Proving that a system of parameters generates at least a
couple of weakly equivalent languages is often fairly easy to
do using standard linguistic analyses. For example, it is easy
to show that two languages are weakly equivalent if they only
different in the value of a parameter that requires or blocks
certain kinds of movement in a context that (due possibly to
the setting of some other parameters) makes such movements
string vacuous. Examples of this kind are endemic in the
linguistic literature on parametric variation. For example,
in Wu's [18] space of sixteen syntactic and morphological
parameters, several languages can be generated by as many as
twenty alternative parameter settings. It could be thought that
such massive underdetermination could have been an artifact
of the relatively small set of data considered by Wu for each
language. In Bertolo et al. [2], however, we discuss a space
of syntactic parameters where clusters of weakly equivalent
languages are still present even if each language is represented
by sets of data that are several hundreds times larger than those
considered by Wu.

Likewise, a prima facie argument for the existence of actual
linguistic systems that contain couples of languages that stand
in the subset/superset relationship can be made consulting the
vast body of linguistic literature on the so called Subset Prin
ciple (Rizzi [13], Berwick [4], Wexler and Manzini [17]. But
see MacLaughlin [10] for a critical review of these studies.)

Finally, it is important to stress that the existence in a pa
rameter space of clusters of weakly equivalent languages,
although sufficient, is by no means necessary for a space to
lack the GNDS. Consider for example the parameter space
P=< {{O, I}, {O, I}, {O, I}, L{O, In > where each lan
guage L(P) is constructed by diagonalization and consists
of all the members of P with the exception of P itself as it is
shown in the table below.

P L(P)
000 001 010 011 100 101 110 111
001 000 010 011 100 101 110 111
010 000 001 011 100 101 110 III
011 000 001 010 100 101 110 III
100 000 001 010 011 101 110 III
101 000 001 010 011 100 110 III
110 000 001 010 Oil 100 101 III
III 000 001 010 011 100 101 110

It is easy to verify that no two languages are equivalent to
one another. It is also easy to verify that, whatever the choice
of value for, say, PI, there is no data point in, say, L(< 000 »,
that cannot be found also in some of the languages that have PI
set to the alternative value. Therefore, P itself does not have
the NSP-I and so, a fortiori, it does not have the GNDS-I. It
is also easy to verify that the smallest number k such that P
has GNDS-k is 4.

For a proof that parametric systems of infinite languages
that are based on the diagonalization construction can in
deed be generated by parametric classes of context free
grammars, consider the following parameter space P=<
{{O, I}, {O, I}}, L , C, {a,b , g} > where the function L is
defined as follows .

P L(P)
00 abg" U bag' U bbg"
01 aag" U bag" U bbg'
10 aag" U abg" U bbg"
II aag" U abg" U bag"

A uni versal part of the grammar, common to all languages,
can be represented by the following set of rules:

{
C ---+ gC

UC = C ---+ bb
C ---+ t

D ---+ aa
B ---+ ba }
E ---+ ab

The two parameters are then:

{ { S ---+ AC} {S ---+ DC } }
PI = 0 = S ---+ BC 1 = S ---+ EC

S ---+ CC S ---+ FC

and

{ { A ---+ ab} {A ---+ aa } }
P2 = 0 = F ---+ bb 1 = F ---+ ba

This would seem to indicate that the existence of spaces
lacking the GNDS is not just a mathematical curiosity but
something a linguistic theory of variation has to treat as a
distinct possibility.

This example is particularly instructive because it shows
that a simpleminded repair strategy that a cue-based learner
could adopt upon encountering a subspace. that does not have
the NSP, that is, arbitrarily choosing a possible partition of the
subspace, is not guaranteed to work in general. In particular,
a learner that adopted such a strategy in the parameter space
of the example above by first guessing the value of the first
parameter, then the value of the second and so on selecting
the two alternative values with equal probability would have

7

probability at most 0.25 of selecting the target grammar.3

This example is therefore helpful to provide an additional
motivation for the restriction on cue function imposed by ex
pressiveness. Although expressiveness may not be necessary
for learn ability when the lack of GNDS in the space is due
solely to clusters of weakly equivalent languages, it certainly
is when it is not.

Conclusions
In this paper we have provided a formal characterization of a
broad class of learning algorithms for parametric space sys
tems that have been advocated in one form or another by
linguists and psycholinguists due to their search efficiency in
a parametric hypothesis space.

We have shown that, as it was to be expected, such ef
ficiency comes at a cost. Specifically, we have shown that
cue-based learners can be successful (and efficiently so, in
that case), only if the parametric class of languages that they
are supposed to learn enjoys certain set theoretical properties.
In particular, we have shown how these properties are related
to the size of the memory window the learner can rely on .

Finally, we have shown that, it is always possible to verify
'locally' the application of our general negative learnability
result to a particular parameter space. In other words, given
a parameter space that cannot be learned by any cue-based
learner of a certain window size, one only needs to inspect a
subset of all the languages in the class to find out that this is
the case. In addition, the conditions for the 'local' application
of the negative learnability result can often be stated in a
vocabulary that is descriptively meaningful in terms of current
linguistic theories of parametric variation.

All the results of this paper depend on the assumption al
most universally shared by developmental psycholinguists
(see Marcus [II] for a review of the arguments in support
of this conclusion) that children cannot rely on systematic
negative evidence for language learning . However, we have
shown elsewhere (Bertolo et al. [3]) that the results general
ize straightforwardly to the case in which cue-based learners
receive systematically both positive and negative evidence.

In closing, we wish to list a few questions that can be
fruitfully investigated within the model we have proposed.

I. As it has been pointed out repeatedly, what causes cue
based learners to fail on parameter spaces that have a cer
tain structure is their inability to backtrack in the hypotesis
space. There are, however, several ways to search effi
ciently the hypothesis space while keeping a modicum of
backtracking. One such way would be to start with some
'default' values for some or all of the parameters and re
vise them in response to cues (as it is done, for example,
in Dresher and Kaye [7]). In that case, the characterizing

3Suppose the target language is L(< 000 ». As noted before,
no data point could reveal the value of PI. Choosing randomly Ihe
learner has 0.5 probability of choosing the correct value O. The same
is true for parameter P2, which gives the learner a 0.25 probability of
choosing the correct values for both PI and P2. If these two values are
correctly retrieved, however, the learner could rely on a conditional
form of learning, that is allowed by definition 4 and 'reason' as
follows: if the current assignment is < 00 > then observing 001,
which. at this point. is unique to L(< 000 » assigns to P3 value O.
Similarly. observing 000 assigns to P3 value I.

condition for successful learning is going to be different
from the one we have provided.

2. Our criterion of success requires learners to yield a com
plete parameter assignment as their last conjecture. It is
conceivable that for many linguistic systems this may not
be necessary and that, in some sense, a 'partial' conjecture
may be equivalent to many possible ways to complete it.
A study of how the success criterion may be relaxed in
such cases will require a more fine grained analysis of the
properties of the function that maps parameter assignments
to languages. Some preliminar results on this problem can
be found in Bertolo et al [3].

3. The example by means of which we demonstrate the pos
sibility of implementing a 'diagonal' construction of a pa
rameter space by means of context free grammars reveals
that there is nothing intrinsically 'parametric' about the
GNDS property that we used to establish our main result.
In other words, whenever one specifies a class of gram
mars (whether finite or infinite) in terms of distinct union
sets of sets of rules, it should always be possible to deter
mine whether, for the purpose of efficient learning, certain
(sequences of) data can be used to acquire certain (sets
of) rules. The same analysis of 'non-backtracking' learn
ing algorithms could then be applied also to grammatical
systems such as those investigated by Stabler [15], where
the number of possible human languages is not limited in
principle as it is in the parametric case.

Acknowledgments
Stefano Bertolo was supported by a post-doctoral fellow
ship from the McDonnell-Pew foundation, Kevin Broihier
(grant DIR 9113607) and Edward Gibson and Kenneth
Wexler (grant SBR-9511167) were supported by grants
from NSF. We wish to thank Janet Fodor and Ed Stabler for
valuable comments on earlier versions of this work.

References
[I] Stefano Bertolo. Learnability properties of parametric

models for natural language acquisition. PhD thesis,
Rutgers University, 1995.

[2] Stefano Bertolo, Kevin Brohier, Edward Gibson, and
Kenneth Wexler. Cue-based learners in parametric lan
guage systems: applications of general results to a re
cently proposed learning algorithm based on unambigu
ous 'superparsing'. In Proceedings of the Nineteenth
Annual Conference of the Cognitive Science Society,
August 1997.

[3) Stefano Bertolo, Kevin Brohier, Edward Gibson, and
Kenneth Wexler. Cue-based learners in paramet
ric language systems. MIT manuscript. Available at
http://www-bcs.mit.edu/~bertolo, August 1997.

[4] Robert Berwick. The Acquisition of Syntactic Knowl
edge. MIT Press, Cambridge, MA, 1985.

[5] Noam Chomsky. Lectures on Government and Binding.
Foris Publications, Dordrecht, 1981.

[6] Robin Clark. The selection of syntactic knOWledge. Lan
guage Acquisition, 2(2):83-149, 1992.

[7] Elan Dresher and Jonathan D. Kaye. A computational
learning model for metrical phonology. Cognition,
34: 137-195,1990.

8

[8] Janet Fodor. Unambiguous triggers. Linguistic Inquiry.
[9] Mark E. Gold. Language identification in the limit.

Information and Control, 10:447-474, 1967.
[10] Dawn MacLaughlin. Language acquisition and the sub

set principle. The Linguistic Review, 12:143-191 , 1995.
[11] Gary Marcus. Negative evidence in language acquisi

tion. Cognition, 46(1):53-85, 1993.
[12] Daniel Osherson, Michael Stob, and Scott Weinstein.

Systems that learn. MIT Press, Cambridge, MA, 1986.
[13] Luigi Rizzi. Violations of the wh island constraint and

the subjacency condition. In Luigi Rizzi, editor, Issues
in Italian Syntax. Foris, Dordrecht, 1982.

[14] Ian Roberts. Language change and learnability. In
Stefano Bertol0, editor, Learnability and Language Ac
quisition: a self contained Tutorialfor Linguists. MIT
Manuscript, 1996.

[15] Edward Stabler. Acquiring and parsing languages with
movement. Ms. UCLA, 1996.

[16] Kenneth Wexler and Peter Culicover. Formal Principles
of Language Acquisition. MIT Press, Cambridge, MA,
1980.

[17] Kenneth Wexler and Rita Manzini. Parameters and
learnability in binding theory. In Thomas Roeper and
Edwin Williams, editors, Parameter Setting, pages 41-
76. Reidel, Dordrecht, 1987.

[18) Andi Wu. The Spell-Out Parameters: A Minimalist
Approach to Syntax. PhD thesis, UCLA, 1994.

Evaluating Parsing Schemes with Entropy Indicators

1 Introd uction

Caroline Lyon
Computer Science Department

University of Hertfordshire
Hatfield ALIO gAB, UK
comrcml@herts.ac.uk

This paper introduces an objective metric for assessing the effectiveness of a parsing scheme. Information
theoretic indicators can be used to show whether a given scheme captures some of the structure of natural
language text. We then use this method to support a proposal to decompose the parsing task into
computationally more tractable subtasks.

The principle on which the grammar evaluator is based is derived from Shannon's original work with letter
sequences [1]. We show how his ideas can be extended to other linguistic entities. We describe a method
of representation that enables the entropy of sentences to be measured under different parsing schemes.
The entropy is a measure, in a certain sense, of the degree of unpredictability. If the grammar captures
some of the structure of language, then the relative entropy of the text should decline after parsing. We
can thus objectively assess whether parsers that accord with some linguistic intuition do indeed capture
some regularity in natural language.

Natural language can be seen as having a tertiary structure. First, there are the relationships between
adjacent words, a structure that can be modelled by Markov processes. Then words can be grouped
together into constituents and these constituents are organized in a secondary structure. Thirdly, there
are relationships between elements of constituents, such as the agreement between the head of a subject
and the main verb. These 3 levels are compatible with levels in the Chomsky hierarchy.

We need to integrate natural language processing at these different levels. The work described in this paper
uses a method of representation that enables primary and secondary structure to be modelled jointly. It
concludes by suggesting how this approach could facilitate processing at levels 2 and 3.

The paper is organized in the following way. First, we recall Shannon's original work with letter sequences.
Then we describe a method of adapting his approach to word sequences. Next, we show how this is not
an adequate model for natural language sentences, but can be extended. Using the new representation we
can model syntactic constituents, and parsing a sentence is taken to be finding their location. Then we
show how the entropy of parsed and unparsed sentences is measured. If the entropy declines after parsing,
this indicates that some of the structure has been captuered.

Finally, we apply this entropy evaluator to show that one particular parsing method effectively decomposes
declarative sentences into 3 sections. These sections can be partially parsed separately, in parallel, thus
reducing the complexity of the parsing task.

9

~ ::;hannon 7S work with letter sequences

Shannon's well known work on characteristics of the English language examined the entropy of letter
sequences. He produced a series of approximations to the entropy H of written English, which successively
take more of the statistics of the language into account

Ho represents the average number of bits required to determine a letter with no statistical information.
HI is calculated with information on single letter frequencies; H2 uses information on the probability
of 2 letters occurring together; Hn , called the n-gram entropy, measures the amount of entropy with
information extending over n adjacent letters of text. As n increases from 0 to 3, the n-gram entropy
declines: the degree of predictability is increased as information from more adjacent letters is taken into
account. If n - 1 letters are known, Hn is the conditional entropy of the next letter, and is defined as
follows.

b; is a block of n - 1 letters, j is an arbitrary letter following bi

p(bi,j) is the probability of the n-gram b.,j

Pb; (j) is the conditional probability of letter j after block b., that is p(b., j) -;- pCb;)

Hn = - LP(bi,j) * log2Pb;(j)
i,i

- LP(b., j) * lOg2P(b i , j) + L p(b.) * [og2P(bi)
i.j

since L.,j pCb;, j) = L. p(bi)

An account of this process can also be found in [2].

The entropy can be reduced if an extra character representing a space between words is introduced. Let
H' represent the entropy measures of the 27 letter alphabet. Then, if n > 0, H~ < Hn. By introducing an
extra element, the number of choices has increased, so Ho > Ho. The space will be more common than
other characters, so H~ < HI. Where n > 1 the statistical relationships of neighbouring elements are
taken into account. Shannon says "a word is a cohesive group of letters with strong internal statistical
influences" so the introduction of the space has captured some of the structure of the letter sequence.

26 letter
27 letter

Ho
4.70
4.76

HI
4.14
4.03

H2
3.56
3.32

H3
3.3
3.1

Table 1: Comparison of entropy for different n-grams, with and without representing the space between
words

1U

3 Representing parsed and unparsed text

This type of analysis can be applied to strings of words instead of strings of letters. In order to make
this approach computationally feasible we need to partition an indefinitely large vocabulary into a limited
number of part-of-speech classes. By taking this step we loose much information: the process is not
reversible. However, we aim to retain the information that is needed for one stage of processing, and
return later to the actual words at a later stage.

Sometimes, the allocation of part-of-speech tags has been considered a step in parsing. However, we are
looking for syntactic structure and call the strings of tags the unparsed text.

Now, at the primary level text can be modelled as a sequence of tags, and Shannon's type of analysis can
be extended to word sequences. Punctuation marks can also be mapped onto tags. An experiment with
the LOB corpus showed that for sequences of parts-of-speech tags H2 and H3 are usually slightly lower if
punctuation is included in an enlarged tagset.

However, there is more structural information to be extracted. Our linguistic intuition suggests that there
are constituents, cohesive groups of words with internal statistical influences. The entropy indicator will
show objectively whether this intuition is well founded .

Furthermore, the statistical patterns of tag sequences can be disrupted at the boundaries of constituents .
Consider the probability of part-of-speech tags following each other: some combinations are "unlikely",
such as noun - pronoun and verb - auxiliary verb but they may occur at clause and phrase boundaries in
sentences like "The shirt he wants is in the wash.".

An important step extends the representation to handle this . The embedded clause is delimited by inserting
boundary markers, or hypertags, like virtual punctuation marks. We represent the sentence as

The shirt { he wants} is in the wash.

The pairs generated by this string would exclude noun - pronoun, but include, for instance, noun -
hypertagl. The part-of-speech tags have probabilistic relationships with the hypertags in the same way
that they do with each other. We can measure the entropy of the sequence with the opening and closing
hypertags included. If their insertion has captured some of the structure the bipos and tripos entropy
should be reduced.

Each class of syntactic elements has a distinct pair of hypertags. Applying automated parsers, one type of
syntactic element is found at a time. In this particular case of locating an embedded clause, the insertion
of hypertags can be seen as representing "push" and "pop" commands. One level of embedding has been
replaced.

4 Entropy measures

we apply tne tneory outllnea aoove to a corpus of text, taken from engine maintenance manuals. We
propose different structural markers, and measure the resulting entropy. Note that the absolute entropy
levels depend on a number of variable factors. We are interested in comparative levels, and thus use the
term entropy indicators.

There is a relationship between tagset Size, mStnOlitlOn or tags, numoer 01 samples ana entropy. tor
instance, as tagset size is decreased entropy declines, but at the same time grammatical information may
be lost. We have to balance the requirement for a small tagset against the need to represent separately each
part-of-speech with distinct syntactic behaviour. Another approach to entropy reduction, which would not
be helpful, is to expand one element into several that always, or usually, occur together. For instance, we

11

could reduce the entropy by mapping every instance of determiner onto hypertagJ determiner hypertag2.

We use linguistic intuition to propose constituents, substrings of tags with certain characteristics that
suggest they should be grouped together. Then we investigate the entropy levels of tagged text for the
following cases

1. No hypertags (suffix p: plain)

2. Hypertags before and after determiners (suffix d)

3. Arbitrarily placed hypertags: in each sentence before tag position 2, after tag position 5 (suffix a)

4. Hypertags delimiting noun groups (suffix n)

5. Hypertags delimiting subject (suffix s)

6. Hypertags delimiting subject and noun groups (suffix sn)

A noun group is taken to be a noun immediately preceded by an optional number of modifiers, such as
"mechanical stop lever" or just "lever".

Results

The data consisted of 351 declarative sentences from manuals from Perkins Engines Ltd. Average sentence
length is 18 words, counting punctuation marks as words. The tagset had 32 members, including 4
hypertags. Ho is 5. Using automated parsers previously developed, the data was prepared automatically,
but then manually checked. A summary of results obtained is given in Table 2.

text HI H2 H3
1 text-p 3.962 2.659 2.132
2 text-d 4.086 2.123 1.722
3 text-a 4.135 2.689 2.077
4 text-n 3.981 2.038 1.682
5 text-s 4.135 2.472 1.997
6 text-sn 4.142 1.943 1.612

Table 2: Entropy measures for text with different structural markers

For interest, some text from Shannon's article was also processed in the same way, and produced results
in line with these.

Recall that we are interested in the movement of the entropy measure, and do not claim to attach signi
ficance to the absolute values. We ask a question with a "yes" or "no" answer: does the entropy decline
when the parsing scheme is applied. However, note the results of 6, which combines schemes 4 and 5, that
is marking both the noun groups and the subject. We see that the decline in entropy H2 and H3 is greater
than for either scheme separately.

5 Applying these results to decompose the parsing task

Consider the parser numbers 5 that locates the subject of a sentence. In the corpus used the length of the
subject varied from 1 to 12 words, the length of the pre-subject from 0 to 15 words.

12

As an example of subject location consider a sentence from Shannon's paper which would be represented
as

If the language is translated into binary digits in the most efficient way , { the entropy} is the
average number of binary digits required per letter of the original language.

Comparing lines 1 and 5 of Table 2, we see H2 and H3 decline for parsed text, so we have captured some
of the structure.

Now, locating the subject effectively decomposes a declarative sentence into 3 sections:

pre-subject - subject - predicate.

Of course the first section can be empty. Imperative sentences can also be processed in this way, the lack
of an explicit subject being represented by an empty subject section. An automated parser that finds
the subject, and thus decomposes the sentence, has already been developed. A prototype is available via
tel net for users to try with their own text, and is described in [3, 4].

On examining these concatenated sections we note that other constituents are contained within them and
do not cross the boundaries between them. An element or constituent in one section can have dependent
links to elements in other sections, such as agreement between the head of the subject and the main
verb. However, the constituents themselves - clauses, phrases, noun groups - are contained within one
section. Therefore, once the 3 sections have been located, they can then be partially processed separately,
in parallel. The complexity of the parsing task can be reduced by decomposing a declarative sentence as
a preliminary move.

6 Concl usion

We have shown that entropy indicators can be used to support parsing schemes based on linguistic intuition.

In particular, the entropy indicator supports the decompostion of a sentence into 3 concatenated segments
that can be partially processed separately. Since many automatic parsers have difficulty processing longer
sentences, we suggest that this decomposition could facilitate the operation of other systems.

References

[1.] C E Shannon. Prediction and Entropy of Printed English. Bell System Technical Journal, pages 50-64,
1951.

[2] T M Cover and J A Thomas. Elements of Information Theory. John Wiley and Sons Inc., 1991.

[3] C Lyon and R Frank. Neural network design for a natural language parser. In International Conference
on Artificial Neural Networks (ICANN), pages 105-110, 1995.

[4] C Lyon and R Frank. Using single layer networks for discrete, sequential data: an example from natural
language processing. Neural Computing Applications, To appear.

13

Emptiness, Membership and Regular Expressions for
Tree Homomorphic Feature Structure Grammars

Short version *

Tore Burheimt

Abstract

Tree Homomorphic Feature Structure Grammar
is a feature structure grammar formalism based
on Lexical-Functional Grammar (LFG). It has a
strong restriction on the syntax of the equation
schemata, but does not have the off-line parsabil
ity constraint. In this paper we use modal logic to
show that the emptiness and membership problems
are decidable for this grammar formalism. We also
show that we may allow regular expressions in the
feature structure equations without changing the
class of languages described.

1 Introduction and some defi
nitions

Feature structure grammars are widely used in
computational linguistics. They are grammar for
malisms that use feature structures as (one of)
their main data structure(s), sometime together
with some phrase structure backbone. Feature
structures and the way they may be specified are
very flexible, but this flexibility has its drawback:
the formalisms become almost too powerful in the
sense that the membership problem for these gram
mars in their most general form is undecidable.
Restrictions are an answer to this problem. The
off-line pars ability constmint is such a restriction
which makes Lexical-Functional Grammar (LFG)
[8] decidable. The off-line parsability constraint
says that one is not allowed to have non-branching

• A full version of this article may be found at
The Computation and Language E-Print Archive,
http://xxx.lanl.gov/cmp-lg/ after August 25,1997.

ITelenor Research and Development, P.O.Box 83, N-2007
Kjeller, Norway. Tore. Burhe imClf ou . telenor . no

chains in the phrase-structure tr:ee where one cat
egory is repeated, or a branching chain with a re
peated category but where all the branches between
only yield the empty string. However there are
other restrictions we may impose to make LFG-like
grammar formalisms decidable.

Tree Homomorphic Feature Structure Grammar
was introduced in [3]. It is based on Lexical
Functional Grammar (LFG) [8, 5] and work by
Colban [4]. The formalism has a context-free
phrase structure backbone and adds equations to
the nodes in the phrase-structure tree as LFG.
These equations describe feature structures. In the
formal framework there are two main differences
from LFG: First, due to a restriction that is im
posed on the equations in the grammar, the re
ferred part of the feature structure is a tree which
includes a homomorphic image of the phrase struc
ture tree. Then, with this restriction we do not
need the off-line parsability constraint to make the
grammar decidable.

1.1 Tree Homomorphic
Structure Grammar

Feature

In this section we will give a brief introduction
to Tree Homomorphic Feature Structure Grammar
(THFSG). A broader presentation may be found in
[3].

A feature structure over a set of attribute symbols
A and value symbols V is a four-tuple (Q, f D, 8, ())
where Q is a finite set of nodes, fD : D -t Q is a
function, called the name mapping, 8 : Q x A -t Q
is a partial function, called the transition function,
and () : Q -t V is a partial function called the
atomic value function. We omit the name-domain
from the notation, so f will alone denote the name
mapping. We extend the transition function to be a

14

function from pairs of nodes and strings of attribute
symbols as usual.

A feature structure is describable if there for ev
ery q E Q is an xED and a u E A * such that
o(J(x),u) = q. A feature structure is atomic if for
every node q E Q: if B(q) is defined then is o(q, a)
not defined for any a EA. A feature structure is
acyclic if for every node q E Q, o(q, u) = q if and
only if u = E. A feature structure is well defined if
it is describable, atomic and acyclic.

We will use equations to talk about feature struc
tures, such that a feature structure mayor may not
satisfy each equation. A feature structure satisfies
the equation

U3 E A+ and v E V. The sets K and 'E are required
to be disjoint.

To define constituent structures we use tree do
mains. Let N+ be the set of all integers greater
than zero. A tree domain D is a set D ~ N+ of
number strings such that if xED then all prefixes
of x are also in D, and for all i E N+ and x E N+,
if X· i E D then X· JED for all j, 1 ~ j < i.
Since clean strings over numerals may be ambigu
ous we use the sign· to indicate juxtaposition, as
in 2 ·11 · 3. The out degree d(x) of an element x
in a tree domain D is the cardinality of the set
{i I x·i E D,i E N+} . The set of terminals of Dis
termeD) = {x I x E D,d(x) = a}. The elements of

if and only if o(J(xt}, UI) = f(x2), and the equation

if and only if a(o(J(x3), U3)) v, where
XI,X2,X3 E D, UI,U3 E A* and v E V. We will
call equations like (1) path equations and equa
tions like (2) value equations. These path and value
equations are the only kind of equations we use in
THFSG. If E is a set of equations and M is a well
defined feature structure such that M satisfies ev
ery equation in E we say that M satisfies E and
we write M 1= E.

(1) a tree domain are totally ordered lexicographically
as follows: x' ~ x if x' is a proper prefix of x, or
there exist strings y,z,z' E N+ and i,j E N+ with

(2) i < j, such that x' = y·i·z l and x = y-j-z. A tree
domain may be infinite, but we restrict attention
to finite tree domains.

A Tree Homomorphic Feature Structure Gram
mar, THFSG, is a 5-tuple (K, S, 'E, P, £) over the
set of attribute symbols A and value symbols V
where K is a finite set of symbols, called categories,
S E K is a symbol, called start symbol, and 'E is
a finite set of symbols, called terminals. Further
more, P is a finite set of production rules

A constituent structure (c-structure) based on a
THFSG-grammar G = (K, S, 'E, P, £) is a triple
(D, C, E) where

• D is a finite tree domain,

• G: D -+ (K u 'E U {E}) is a function,

• E: (D - {E}) -+ r is a function where r is the
set of all sets of equation schemata in G,

such that C(x) E ('E U {E}) for all x E termeD),
G(E) = S, and for all x E (D - termeD»~, if d(x) =
m then

C(x) G(x·l)
E(x·l)

... C(x·m) (5)
E(x·m)

Ao -+ (3) is a production or lexicon rule in G, and we say

where m ~ 1, Ao, ... , Am E K, and for all i,
1 ~ i ~ m, E, is a finite set consisting of one
and only one equation schema of the form t UI ==.J..
where UI E A*, and a finite number of equation
schemata of the form t U2 == v where U2 E A+ and
v E V. At last, £ is a finite set of lexicon rules

A -+ t (4)
E

that license(x) is the given rule in (5). The ter
minal string of a constituent structure is the string
G(xd.·· G(xn) such that {Xl, ... , Xn} = termeD)
and Xi ~ Xi+l for all i, 1 ~ i < n.

A c-structure c = (D, C, E) is feature consistent
if and only if there exist a well defined feature struc
ture M such that

M 1= U En (x)
xE(D-{e})

(6)

where the En is defined as
where A E K, t E ('E U {E}), and E is a finite set
of equation schemata of the form t U3 == v where En(x·i) = E(x·i)[x/t,x ·i/.J..] (7)

15

A string is grammatical with respect to a given
grammar if it is the terminal string in a feature
consistent c-structure based on that grammar. The
set of grammatical strings with respect to a given
THFSG grammar G is as usual denoted L(G). Two
grammars G and G' are weakly equivalent if and
only if L(G) ::::: L(G').

2 Emptiness and membership
for THFSG

2.1 Feature productive THFSG

In this section we introduce THFSG which do not
contain any t=-I- equation schemata. The reason
that we do not want these equations is that we do
not want any of the descendants of any node in a
c-structure to be mapped to the same node in the
feature structure as the node itself. We need this
property in the proof of emptiness decidability. We
will here show that given any THFSG-grammar we
may effective l transform this to a THFSG-grammar
with the given property such that the language de
fined by original grammar is non-empty if and only
if the language defined by the new one is also non
empty.

Definition 1 (Feature productive THFSG) A
feature productive 2 THFSG grammar is a THFSG
grammar that does not contain any t=-I- equation
schemata.

Lemma 1 There exists an effective procedure
which for any THFSG grammar G defines a feature
productive TH FSG grammar G' such that L(G) = 0
if and only if L(G') ::::: 0.

1 By "effective" we mean that it can be computed on a
Thring Machine (with a proven termination) [7, p146-147J.
This must not be confused with polynomial time determin
istic algorithms.

2The feature productive THFSG is almost identical to nc
LFG defined by Seki et.al. [11]. The differences are that each
equation schema in nc-LFG has an attribute string consist
ing of one and only one attribute symbol, and nc-LFG does
not allow the empty string on the right hand side in the
phrase structure rules . In their article Seki et.al. prove that
nc-LFG is equivalent to finite state translation system based
on tree transducer as defined in [10J in the sense that it de
scribes the same class of languages. The emptiness problem
is decidable for the yield language of finite state translation
system based on tree transducer. It is possible that the de
cidability of the emptiness problem for feature productive
THFSG could be proved using this path .

Proof: Let us first introduce a new notation for
the production and lexicon rules. Let

Ao --+
(8)

be any production rule. Then (Ao, E) --+
(AI,el)'" (An,en) is the rule in (8) on flat format.
Here E is the set of all value equation schemata
in El U ... U En, and each ei is the path equa
tion schema in Ei , 1 ~ i ~ n. We do the same
for lexicon rules, which give us rules on the format
(A, E) --+ t, where E is the set of (value) equation
schemata in the rule. '

As a first step, let G be any THFSG grammar
(K,S, E, P, C). We define Go ::::: (K,S, 0, P, Co)
from G as follows: For each lexicon rule (A, E) --+ t
in C, (A, E) --+ c: is a lexicon rule in Co ' It is trivial
that L(G) -:j:. 0 if and only if c: E L(G£) if and only
if L(Ge;) -:j:. 0.

Now we will transform Ge; into a feature produc
tive grammar. First notice that since the empty
string is the only possible string in L(G£), the
order of the right hand side in the production
rules does not matter, any repetition of identi
cal elements is redundant3 , and we may view the
right hand sides in production and lexicon rules as
sets. We treat them together in PC as follows: If
(Ao, E) --+ (AI, ed ... (An, en) is a production rule
in P then (Ao, E) --+ {(A1,ed,oo.,(An,en)} is a
set rule in PC, and if (A, E) --+ c: is a lexicon rule
in Co, then (A, E) --+ {c:} is a set rule in PC. Now,
we define the following closure on PC: If

(A,E)

(B,F)
--+ 'I/J U {(B, t=-I-)}
--+ ¢

(9)

(10)

are two~les in PC, then the following is also a
rule in PC:

(A, E U F) --+ 'I/J U ¢ (11)

We see that PC is a finite set since the constituents
of each rule are elements or subsets of finite sets.
Now let f},li be the set PC minus every rule where

3This due to the fact that if a node in a c-structure has
two daughters labeled with identical category symbols and
identical path equation schema, the sets of possible feature
consistent sub-c-structures which can be rooted at each of
these two nodes are identical, and so are the constraints on
the feature structure they may produce.

16

t=-!. occurs in elements in the set on the right hand
side.

It is a trivial procedure to separate n into a
set of lexicon rules and a set of production rules,
and so is the process to separate f},li into a set
of lexicon rules and a set of feature productive pro
duction rules. Hence the grammar G' we get from
f},li, together with K, S, and E' = 0 is a feature
productive THFSG grammar. So, every step in the
definition of G' is simple to implement as an effec
tive procedure.

The grammar we get from n is weakly equiva
lent GF:' since each rule in GF: exists as a set rule in n, and each additional rule in n corresponds to
an internal sub-c-structure based on Go. Then we
have to show that the grammar we get from f},li
is weakly equivalent to the grammar we get from
n. Since f},li c n, we only have to consider
c-structures with ;t rules from fiE with t=-!. in el
ements in the right hand side. By induction on the
number of such rules used subsequently in a feature
consistent c-structure we have that any sequence
of such rules can be replaced with a rule in f},li

tion is defined as 1-, and the empty conjunction is
defined as T.

Given a set of modalities A and a set of atomic
propositions U, a deterministic Kripke model is a
tdple (Q, {Ra}aEA, Val) such that Q is a nonempty
set of nodes, each Ra : Q ~ Q is a partial function,
and Val: U ~ 2Q is a valuation function which as
signs a subset of Q to each v E U. A Kripke model
is acyclic if and only if there does not exist any
sequence of nodes in Q, where each node is con
nected to the next by a modality, and at least one
node occurs in more than one place in the sequence.

Given a deterministic· Kripke model
(Q, {Ra}aEA, Val) we define the satisfaction
relation for wff's of LO the usual way:

M F v[q] iff q E Val(v)
M F (a)¢>[q] iff 3q' E Q : (q, q') E Ra

& M F </>[q']
M F .¢>[q] iff M ~ </>[q]
M F ¢> V </>'[q] iff M F </>[q] or M F </>'[q]
M F O</>[q] iff Vq' E Q : M F </>[q']

which yields the same (empty) string and which The connection between feature structures and
is feature consistent. Then we may transform any Kripke models is well described in [1]. Well de
feature consistent c-structure for t with rules from fined feature structures where required to be de
the n to a feature consistent c-structure with only scribable, acyclic and atomic in addition to finite.
rules from f},li. • Later we will see that the atomicity constraint can

2.2 The modal language LO and fi
nite acyclic models

There is a trend in computational linguistics to
view the structures that is used to collect grammat
ical information about language strings as models
in the model theoretical sense. Different modal lan-
guages have shown to be promising to talk about
such models [1]. In this section we will present the
modal language LO as it is described in [2]. This
is a language of propositional modal logic, with a
countable set of distinct existential modalities and
a countable set of propositional symbols, together
with the universal modal operator o.

Given a set U of atomic propositions, and A of
modalities, the set of well formed formulas (wff's)
in LO is the least set such that if v E U, a E A,
¢>, ¢>' E LO, then v, (a)¢>, .</>, </> V¢>' ,O¢> E LO. We
use the standard definitions of the other boolean
connectives /\, ~, T, and ..l. The empty disjunc-

easily be formulated in a formula. The finite and
acyclic constraint we define as metaconstraints on
the Kripke-models. When we limit the interpreta
tion to deterministic Kripke models we also ensure
that the attribute transition function is well de
fined. But, we need two versions of two theorems
(4.3 and 4.4) in [2] which deal with finite acyclic
deterministic Kripke models. The proofs of these
lemmas are elaborations of the proofs in [2] and are
omitted here, but may be found in the full version
of this article.

Lemma 2 Let <I> be an LO formula. If <I> is satisfi
able in a finite acyclic deterministic K ripke model
then it is satisfiable in a finite acyclic deterministic
Kripke model with at most 221<1>1 nodes.

Lemma 3 Let <I> be an LO formula. Then it is
decidable whether or not <I> is satisfiable in a finite
acyclic deterministic K ripke model.

17

2.3 From grammar rules to a modal that expresses that the models have to be atomic
formula and that no more than one atomic value can be

In this section we will define an LO formula <I>0 for
each THFSG grammar with the following property:
If the grammar is feature productive then <I>0 is
valid in finite acyclic deterministic Kripke models
if and only if the language defined by the given
grammar is empty. We start by formulating the
information we have about any node decorated with
a given category in the c-structure.

Definition 2 (<I> A) Let G = (K, S, 'E, P, C) be a
THFSG grammar. Let A be the set of attribute sym
bols used in G and V the set of value symbols used
in G. Then let U = (V U K) be the set of atomic
propositions and A the set of modalities in LO

•

i). For each category A E K, let RA be the set of
production and lexicon rules in G with A on
the left hand side.

ii). If r is the following production rule in G

(12)

then ¢r is the following LO formula:

Eo 1\ (al,l)'" (al,ml)Bll\

... I\(an,l)'" (an,mJBn (13)

where t ai,l ... ai,m; =-i is the path equation
schema in Ei for i : 1 ::; i ::; n, and Eo is the
conjunction of all LO formulas (al)'" (am)v
such that t al ... am = V is a value equation
schema in E = El U ... U En,

iii). If r is the following lexicon rule in G

A ~ t
E

(14)

assigned to each node.

Definition 3 (<I>0) Given any THFSG grammar
G. Let A be the set of attribute symbols used in
G and let V be the set of value symbols used in G .
Then let U = (V U K) be the set of atomic proposi
tions and A the set of modalities in LO

• Then <I>0
is the LO formula

1\ 1\ v ~ -.(a)T 1\ 1\ v ~ ,v' (16)
vEVaEA v,v' E V

v :j:. ~;'

2.4 The emptiness problem

Lemma 4 (Emptiness with <I>0) Given any f ea
ture productive THFSG
grammar G = (K,S,'E,P,C). Then L(G) = 0 if
and only if

o 1\ <I> A 1\ O<I>0 ~ ,S (17)
AEK

is valid in finite acyclic deterministic Kripke mod
els.

We call the formula in (17) <I>0.
Proof: (<=) Assume that L(G) :j:. 0 and that w E
L(G) for a string w. Then there exists a c-structure
c = (D, C, E) based on G which is supported by a
feature structure M = (Q,f,6,() and which has w
as terminal string. Assume that A is the set of at
tribute symbols used in G, and that V is the set of
value symbols used in G. We define an acyclic de
terministic Kripke model M' = (Q, {Ra}aEA, Val)
from c and M as follows: Let {Ra}aEA be the set
of partial functions R a , where each Ra is the set

{(q, q') E Q x Q I 6(q, a) = q'} (18)

then ¢r is the LO formula Eo defined from E Since 6 is a partial function, so must each Ra be.
as above. The valuation function Val: (KuV) ~ 2Q is defined

From i), ii) and iii), let <I> A be the LO formula for each A E K and each v E V as follows:

(15)
Val(A) {J(x) I xED - term (D)

& C(x) = A} (19)

In section 2.2 we introduced metaconstraints on
Val(v) {q E Q I ()(q) = v} (20)

our models expressing that they must be finite, de- Since M is acyclic, finite and deterministic, we have
terministic and acyclic. Now we define a formula from the given definition that M' also must be

18

acyclic, finite and deterministic. Now we have to
show that M' F ...,4>0[qO], for some node qo, that is

M' F 0 1\ 4> A 1\ 04>0 1\ S [qo] (21)
AEK:

Let qo be f(c). Then we have that M' F S[qo]
since G(c) = S, and since M is atomic and () is
well defined we have directly that M' F 04>dqo].

Now, given any node q E Q and any category
symbol A such that M F A[q]. From the def
inition of M' we then know that there exists a
nonterminal node xED such that f(x) = q and
G(x) = A. Then there exists a lexicon or produc
tion rule license(x)

A -t G(x ·1)
E(x·1)

... G(x ·d(x»
E(x·d(x»

(22)

that is applied at x. Since c is supported by
M all the equations we get from the equation
schemata in this rule are satisfied in M. If
license (x) is a production rule we have by the
definition of M' that if t ai,l··· ai,m. ==.!,.E Ei
so must M' F (ai ,I) ... (ai,m.)G(X . i)[q] since
o(J(x), ai,l ... ai,m.) = f(x·i) and f(x-i) E Val(G(x·
i», for each i : 1 :S i :S d(x) . Also by the def
inition of M' for each value equation schemata
t a~ ... a~ == v in each E(xi), M' F (aD . .. (a~)v[q]
since ()(o(J(x), a~ ... a~» = v. Then by the def
inition of ¢>license(x) , we have directly that M' F
¢Iicense(x) [q], and then

M' FA -t V ¢r[q] (23)
rER A

Since this is the case for any node q E Q and any
category A, we have that

(24)

Then we have that M' F ...,4>0[qO] and 4>0 is not
valid in finite acyclic deterministic Kripke models.

(::::::::::}) Assume that 4>0 is not valid in acyclic de
terministic Kripke models. Then there exists a fi
nite acyclic deterministic Kripke model M' with a
node qo such that M' F ...,4>0[qO], that is

M' F 0 1\ 4> A 1\ 04>0 1\ S [qo] (25)
AEK:

From this we will show that there must exist a
feature consistent c-structure based on G. As
sume that M' = (Q, {Ra}aEA, Val). Then let
M = (Q, f,o, () be a feature structure where ° and
() are defined as follows:

° = {(q, a, q') I (q, q') E Ra

& Ra E {Ra}aEA)} (26)

() = {(q,v)lqEVal(v)&vEV} (27)

Since M' F 04>0, M must be atomic and () well
defined, and since M' is deterministic, ° must be a
well defined partial function.

We define a c-structure c = (D, G, E) and the
name mapping function f of M from M' induc
tively top down in c. At the same time we also
show that all the equations we get from the equa
tion schemata sets in c are satisfied in M. To help
us with this we will also show that for all xED
such that G(x) E K, f(x) E Val(G(x».

Initial step (the root node c): Let f(c) = qo, and
let G(c) = S. Since M F S[qo] so must qo E Val(S)
and then fCc:) E Val(G(c». There are no equations
attached to c.

Induction hypothesis: Assume that all nodes
above x are licensed by some rule in G and that
for all nodes above and including x, f(x) is defined
and f(x) E Val(G(x». Assume also that all the
equations we get from the equation schemata sets
assigned to these nodes are satisfied in M.

Induction step: Assume that G(x) = A for some
A and f(x) E Val(A). Let q be f(x). Then M' F
A[q]. Since M' F /\BEK: 4> B, we know that M' F
4> A and since M' ~ A -t .l[q] there must be a rule
r E RA such that M' F ¢r[q]. Assume that r is
the following rule

(28)

Then let license(x) be T, that is: extend e's tree do
main with the nodes x-1, ... , xn, and assign G(xi) =
Bi and E(x·i) = Ei for each i : 1 < i < n. Now for
each i : 1 :S i :S n: Assume that t ai,~ . .. ai,m. =.!
is the path equation schema in Ei if r is a produc
tion rule. Since M' F ¢>r[q] we know that M' F
(ai,I) ... (ai,m.)Bi[q] . Then we know that there
exists a sequence of nodes q~, ... , q:n. such that
(q, qD E Ra' .ll (q~, q~) E Ra •. 2 ,···, (q:n. -1' q:n.) E
R a •. m • and q:n. E Val(Bi) . Then let f(x·i) = q:n.,

19

and we have that I(x·i) E Val(C(x·i)) . The path
equation we get from the path equation schema in
Ei is then satisfied in M. In the same way we see
that all the value equations we get from the value
equation schemata in Ei must be satisfied in M. If
r is a lexicon rule the value equation schemata must
be satisfied in the same way. In this case we extend
the c-structure with a terminal node x ·1, and as
signs B 1, which is a terminal symbol, together with
El to x · I.

With the definition of I the feature structure is
well defined except for describability. However, re
stricting M to nodes reachable4 from qQ, does not
make any difference in the above arguments, hence
we may restrict both Q, 0 and () to these nodes.
Since I(C:) = qQ it then became describable.

Since the Kripke model is finite and acyclic the
process terminate with terminal symbols.

Then c must be a complete c-structure and since
all the equations we get from the equation schemata
in c are satisfied in M, M supports c and hence is

Proof: [6] Given any recursively enumerable set
R, does it exists two deterministic context free lan
guages LR.l and LR.2, and a homomorphism h such
that R = h(LR.l n L R.2). Now assume that R is
not recursive. LR.l and LR.2 are describable by
two THFSG grammars. If LR.l n LR.2 had been a
THFSG-language, then R = h(LR.l n LR.2) would
also have been since THFSG is closed under homo
morphism [3]. But, this that can not be the case
since THFSG has a decidable membership problem.

If THFSG had been closed under complement ,

then L R.1 U LR.2 = LR.l n LR.2 would have been
a THFSG-language since THFSG is closed under
union [3] . •

Given an ordering on the c-structures we have
the following:

Theorem 4 Given any THFSG grammar G, and
a string w. Then there exists an effective procedure
which give a least feature consistent c-structure for
w ifw E L(G) or a "no" answer ifw f/. L(G).

c feature consistent. Then the terminal string of c Proof: From Theorem 2 and the fact that the c
is a member of L(G) and L(G) f:. 0. • structures based on any given grammar is enumer-

~~. .
Theorem 1 The emptiness problem for THFSG is
decidable . 3 Empty value path extension

Proof: From Lemma 1, 3 and 4. • In the next section we show that we may allow
regular expressions in the attribute strings in the

Theorem 2 The membership problem for THFSG equation schemata without changing the class of
is decidable.

Proof: From [3] we have that THFSG is closed
under intersection with regular languages. In the
same place it is described how we can construct a
grammar for the intersection. Then we can con

languages the THFSG grammars describe. In the
proof we need the possibility that value equa
tion schemata may have empty attribute strings
as in t= v . Recall that we in the definition of
THFSG required the value equation schemata to
have nonempty attribute strings.

struct a THFSG grammar for the language L(G) n Definition 4 (Empty value path extension)
{ w }. This language is non-empty if and only if A TH FSG+ grammar is a TH FSG grammar where
wE L(G). • we allow value equation schemata t w = v with

2.5 Consequences ot the member
ship decidability

Theorem 3 The class of languages described by
THFSG is not closed under intersection or comple
ment.

4 By this we mean all nodes q such that there exist and
w where o(qo.w) = q

wE A*.

Theorem 5 The class of languages described by
THFSG+ is the same as the class of languages de
scribed by THFSG .

We prove this by changing the equation
schemata, and manipulation on the feature struc
ture. It is not particular interesting nor surprising,
and the proof may be found in the full version of
this article.

20

4 Regular expressions in the
equations

We extend our definitions of equation schemata to
include regular expressions over attribute symbols
in addition to just strings. Regular expressions are
used in LFG-like grammar formalisms to cope with
long distance dependencies such as topicalization
[9].

Definition 5 (Regular expression equations)
If al and a 3 are regular expressions, then
XI al == X2 and X3 a3 == v are regular expression
equations.

A feature structure (Q, f, 6, B) satisfies the regular
expression equation Xlal == X2 if and only if there
exists a string Ul E L(al) such that 8(J(xt}, ut} =
f(x2) and the regular expression equation X3a3 == v
if and only if there exists a string U3 E L(a3) such
that B(8(J(X3), U3» = v

Definition 6 (THFSG++) A THFSG++ grammar
is a THFSG grammar where we allow regular ex
pressions over attribute symbols in the equation
schemata instead of just strings as in THFSG.

Theorem 6 The class of languages described by
THFSG++ is the same as the class of languages de
scribed by THFSG.

In the proof each regular expression is isolated
in path equation schemata in non-branching pro
duction rules . Then each regular expression are de
composed until they are just strings, by introducing
additional new production rules whith unique new
category symbols. This give us a TH FSG-grammar.
The full proof may be found in the full version of
this article.

Acknowledgments

I would like to thank Tore Langholm for his advice
during the work that this paper is based on, and
for comments on earlier versions of the paper.

References

[1] Patrick Blackburn. Structures, languages and
translations: the structural approach to feature

logic. In C. J. Rupp, M. A. Rosner, and
R . L. Johnson, editors, Constraints, Language and
Computation, pages 1-28. Academic Press, Lon
don, England, 1994.

[2] Patrick Blackburn and Edith Spaan. A modal
perspective on the computational complexity of
attribute value grammar. Journal of Logic, Lan
guage, and Information, 2:129-169, 1993.

[3] Tore Burheim. A grammar formalism and cross
serial dependencies. In Patrick Blackburn and
Maarten de Rijke, editors, Specifying Syntactic
Structure. CSLI-Publications, 1997.

[4] Erik A. Colban. Three Studi~s in Computational
Semantics. PhD thesis, University of Oslo, 1991.

[5] Mary Dalrymple, Ronald M. Kaplan, John T .
Maxwell III, and Annie Zaenen. Formal Issues in
Lexical-Functional Grammar. Number 47 in CSLI
Lecture Notes. CSLI Publications, 1995.

[6] S. Ginsburg, S.A. Greibach, and M.A. Harrison.
One-way stack automata. Journal of the Asso
ciation of Computing Machinery, 14(2):389-418,
1967.

[7] John E. Hopcroft and Jeffrey D. Ullman. Introduc
tion to Automata Theory, Languages and Com
putation. Addison-Wesley Publishing Company,
Reading, Massachusetts, USA, 1979.

[8] Ronald M. Kaplan and Joan Bresnan. Lexical
Functional Grammar: A formal system for gram
matical representation. In Joan Bresnan, editor,
The Mental Representation of Grammatical Rela
tions. The MIT-Press, Cambridge, Massachusetts,
USA,1982.

[9] Ronald M. Kaplan, John T . Maxwell III, and An
nie Zaenen. Functional uncertainty. CSLI Monthly
2:4, 1987.

[10] William C. Rounds. Context-free grammars on
trees. In Conference Record of the A GM Sym
posium on Theory of Computing. Association of
Computing Machinery, 1969.

[11] Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji,
Sachiko Ando, and Tadao Kasami . Parallel mul
tiple context-free grammars, finite-state transla
tion systems, and polynomial-time recognizable
subclasses of Lexical-Functional Grammars. In
Proceedings of the 31st Annual Meeting of the As
sociation for Computational Linguistics, A GL '93,
pages 130-139. Association for Computational
Linguistics, 1993.

21

Relating resource-based semantics to categorial semantics*

Mary Dalrymplet Vineet Guptat John Lampingt Vijay Saraswat!

July 16, 1997

1 Introduction

We provide a new formulation of the resource-based
'glue' approach to semantics (Dalrymple, Lamping,
and Saraswat, 1993; Dalrymple et al., 1997) which
better brings out the essential differences and sim
ilarities between the glue style and categorial ap
proaches. In particular, we show that many appli
cations of the glue approach use a fragment of lin
ear logic which is equivalent to typed linear lambda
calculus . For example, the word 'yawn' might be
encoded in the three approaches as approximately:

Categorial AX. yawn(x) : N\S
Old Glue '<1M. g"-,,M -() J"-"yawn(M)

New Glue AM.yawn(M): g -() J

An essential difference between the categorial ap
proaches and the glue approach is their relation to
syntax . Categorial approaches describe syntactic
rules, starting from the point of view of how mean
ings will functionally compose, and using types, like
N\S above. The glue approach doesn't try to de
scribe syntactic rules, but rather connects to a sep
arate grammar, and says how to assemble mean
ings of sentences that have been analyzed by the
grammar. It focuses on mediating the differences
between the compositional structure of the gram
mar and the compositional structure of meaning
assembly, differences such as occur with quantifier
scopillg.

A historical difference between the categorial ap
proach and the glue approach has stemmed from
the former's use of lambda expressions to manipu
late meanings, compared to the latter's use of quan
tification. This has meant that the actual com
position of meanings in the categorial approach is
clearly separated from the syntactic types. The

·We are grateful to John Fry, David Israel, Mark John
son, Nissim Francez, Dick Oehrle, Fernando Pereira, and Jo
hann van Bentham for helpful discussion of the issues raised
here.

tXerox PARC, 3333 Coyote Hill Road, Palo Alto CA
94304 USA; {dalrymple,vgupta,lamping}@parc.xerox.com

lAT&T Research, 180 Park Avenue, P.O. Box 971,
Florham Park NJ 07932-0971 USA; vj@research.att.com

original formulation of the glue approach, in con
trast, intermixed syntactic information and mean
ings.

This paper shows that a signi'ficant fragment of
the glue approach can be reformulated to separate
out the meaning composition in a way that is very
similar to that of the categorial approaches. Specif
ically, we show the following:

• A core fragment C of linear logic (LL) can
be used to define semantic assembly in many
cases.

• Every formula in C can be read as an asser
tion that a particular A-term has a particular
type. These assertions are formulas in System
F (Girard 1986).

• The two formulations have equivalent deduc
tive power.

When the glue approach requires only the core
fragment, the reformulation allows it to take advan
tage of one of the primary attractions of the catego
rial approach: that the syntactic well-formedness of
a sentence can be reasoned about strictly in terms
of types, yet the types can be labeled with lambda
terms so that a meaning term for the sentence can
be constructed automatically from a proof that the
sentence has the appropriate type, following the
well-known Curry-Howard connection between the
A-calculus and intuitionistic logic . This is attrac
tive because it captures formally the intuition that
the process of meaning construction is sensitive
only to the types of the terms being assembled, not
their actual values. This Meaning Parametricity
structurally guarantees that no assumptions about
the content of the actual meaning are built into the
meaning assembly process. Put another way, this
captures the intuition that control information is
manifest only through type-structure. That is, the
only way information from phrasal structure can be
used to influence the combinations of meanings of
lexical entries is through the type-structure of the
meanings - in particular, "control" information

22

cannot be encoded in the specific meaning terms,
which live in their own separate world, independent
of control or computational concerns.

Under the reformulation of the glue approach,
the type structure reflects the parsing results of
a separate process (LFG syntactic analysis). This
process interfaces with the meaning assembly pro
cess by generating types for lexical entries that in
volve type constants (called roles, cf. f and 9 in the
example above) which capture more information
than just the information about individuals (e) and
truth-values (t) inherent in the meaning term; they
also capture information about the role of the lex
ical entry in the syntactic parse. This information
is naturally represented by these type constants in
the various meaning terms arising from the lexical
entries. The combination of the meanings is then
purely standard.

In the following we first review the categorial
approach and the glue approach. We then char
acterize the fragment of the glue approach that is
equivalent to typed lambda calculus and prove the
equivalence . We discuss the differences between
that calculus and categorial approaches. Finally,
we examine applications of glue semantics that use
linear logic that exceeds the core fragment C and
discuss why this step was necessary.

2 Categorial grammar

Lexical entries in a typical Categorial Grammar
(Lambek, 1958; Oehrle, Bach, and Wheeler, 1988)
assign syntactic categories such as N to noun
phrases like Bill, or more complex categories like
N\S for intransitive verbs like yawned. N\S repre
sents a category that combines with a N to its left
to produce a S. Lexical entries are also associated
with typed A-calculus terms, which are combined
via application and abstraction in a manner dic
tated by the types and the associated parse tree to
yield a meaning for the entire utterance. For a sen
tence like Bill yawned, the relevant lexical entries
are:

(1) Bill Bill N
yawned Ax.yawn(x) N\S

Given this lexical information, we can produce
the following proof that Bill yawned is a sentence:

(2) Derivation:

It suffices to consider the derivations as inferring
types (formulas in intuitionistic logic) - the term
corresponding to the meaning can then be built up
in a uniform way from the proofs and terms corre
spondin,!!; to the lexical entries:

3 Resource-based semantics and LFG

In this section we provide a brief overview of the
resource-based approach. For a more detailed pre
sentation, see Dalrymple et al. (1995c).

Lexical-Functional Grammar (LFG) (Bresnan,
1982; Dalrymple et aI., 1995a) assumes two syntac
tic levels of representation. The constituent struc
ture tree encodes phrasal dominance . and prece
dence relations. Functional structure (I-structure)
encodes syntactic predicate-argument structure,
and is represented as an attribute-value matrix.
With Kaplan and Bresnan (1982) and Halvorsen
(1983), we claim that the functional syntactic infor
mation encoded by f-structures - information about
relations such as subject-of, object-of, modifier-of,
and so on - is the primary determinant of semantic
composition . Those relations are realized by dif
ferent constituent structures in different languages,
but are represented directly and uniformly in the
f-structure.

We also assume a semantic function (J" which
maps an f-structure to a semantic structure or role
encoding information about f-structure meaning.
In the following, we will use names like f and 9 for
roles except when we wish to establish the relation
of the role to its corresponding functional struc
ture; in those cases, we will use names like fq or
(f SUBJ)q for roles corresponding to the functional
structures f and (f SUBJ).

We use linear logic (LL) as the 'glue' for compos
ing a meaning for an utterance from meanings of its
constituents. Role, r, is associated with meaning
term, M, (drawn from some pre-specified 'meaning
logic', usually Montague's intensional logic (Mon
tague, 1974)) via an atomic assertion of the form
r"-'+,. M, where "-'+ is an otherwise uninterpreted bi
nary predicate symbol and T is the semantic type of
the entry. Lexical entries contribute either atomic
formulas for their roles or a non-atomic LL formula
(e.g ., S"-'+o: M -<> t"-'+{3 N -<> r"-"',. P) that states how
a meaning term may be produced by consuming
meaning terms associated with related roles.

Bill : N => Bill : N S
---=~~----~~--~~7.=-=~\E

The LL fragment used allows quantification over
roles and over meaning-terms. A meaning M of
the role r corresponding to the entire utterance is
obtained by finding an LL proof of r"-"'o: M (where

23

a is usually t, the type of propositions) from the
contributions of the lexical entries (perhaps in the
presence of an underlying LL theory) . Each such
derivable M provides a meaning for the utterance;
for the representation in glue logic to be complete,
every meaning for the utterance must be derivable
in this way.

N ames The meaning constructor for a particular
occurrence of a name such as 'Bill' establishes an
association between a role ga and the constant Bill
representing its meaning:

(3) g,,"v+ e Bill

Since the meaning term is an entity, we indicate
this by the subscript e on the 'means' relation "v+ e •

Verbs The meaning constructor for a verb such
as 'yawned' is a glue language formula that can be
thought of as instructions for how to assemble the
meaning of a sentence with main verb 'yawned': the
meaning X for the subject of 'yawned' is consumed,
and the sentential meaning is produced .

Deduction of meaning We will give the names
Bill and yawned to the meaning constructors for
the sentence 'Bill yawned'. Note that in the case at
hand, f's SUBJ is labeled g, and so we can write g
instead of (f SUBJ) in the meaning constructor for
yawned.

(5)

[

PRED 'YAWN'

f: SUBJ g:[PRED 'BILL'] 1
bill: ga"v+ e Bill

yawned: "IX. g,,"v+eX -0 !a"v+t yawn(X)

From these premises, LL sanctions the following
proof (I- stands for the LL entailment relation):

(6) bill Q9 yawned

!,,"v+t yawn(Bill)

(Premises.)
X 1-+ Bill

Quantifiers A generalized quantifier such as 'ev
eryone' can be seen as making a semantic contri
bution along the following lines: If by giving the
arbitrary meaning x to g", the role for 'everyone',
we can derive the meaning S(x) for the scope of
quantification, then S can be the property that the

quantifier requires as its scope, yielding the mean
ing every(person, S) (Dalrymple et aI., 1997). Log
ically, this means that the semantic constructor for
an NP quantifies universally over roles:

(7) everyone VH,S. ("Ix. g,,"v+eX --0 H"v+tS(x))
--0 H"v+t every(person, S)

Notice that the assignment of a meaning to H ap
pears on both sides of the implication, and that the
meaning is not the same in the two instances.

The derivation of the meaning of an sentence like
'Everyone yawned' proceeds from the meaning con
structors for 'everyone' and 'yawned':

(8) Everyone yawned.

[

PRED 'YAWN' 1
f: SUBJ g: [PRED 'EVERYONE' 1

everyone: VH,S. ("1M. ga"v+eM --0 H"v+t S(M))
--0 H "-'+t every(person, S)

yawned: "1M. g,,"v+ e M --0 !,,"v+t yawn(M)

With this, we have the following derivation:

everyone Q9 yawned

I- !,,"v+t every(person, yawn)

4 Analysis of C

(Premises.)

H 1-+ fa, M 1-+ M,
S 1-+ yawn

The examples presented above lie in the core frag
ment C. We now turn to an analysis of C and elu
cidation of its formal properties.

We first make a notational shift. The glue liter
ature, and the discussion of it above, writes atoms
of the form, ra"-'+e M, where r denotes a syntactic
construction, and its sigma projection, r" denotes a
place to attach a meaning. For this paper, we want
to focus on just the meaning assembly process, and
so it is convenient to avoid constants that denote
syntactic entities. From now on, our constants will
directly denote places to attach meanings . Further,
rather than add the type, e or t, as another argu
ment to the ~ relation, we will type our constants
and variables. Thus, we will write re""M to say
that the meaning attachment point, r e' which has
type e is associated with meaning M.

4.1 Informal development

If we reconsider the meaning deduction for the sen
tence 'Everyone yawned', we can remove the mean
ing terms from the atoms and remove quantifica
tion over meaning terms, obtaining the 'stripped'
premIses:

24

everyone: V H. (ge -<> HI) -<> Ht

yawned: go -<> It
Notice that quantification over H is left, because
H ranges over roles, not meanings . Intuitively, the
stripped premises yield the stripped deduction:

V H. (go -<> HI) -<> Ht
ge -<> II

f- It

It is easy to see that stripping meanings from the
propositions preserves deductions. That is, that
if there is a deduction from some original formu
las, then there is an equivalent deduction from the
stripped formulas . This is true of any fragment
where the notion of stripping makes sense, since
the stripped formulas remove some constraints on
what formulas can be combined, and add no new
constraints.

More interestingly, the implication goes the other
way: the meanings do not constrain the deduc
tion. That is, if one starts with original formu
las, strips them, and makes a deduction from the
stripped formulas, then there is an analogous de
duction from the original formulas. Put another
way, the meanings can be added back: a deduc
tion from the stripped formulas can be enriched to
become a valid deduction on the original formulas.
What is more, there is a unique way to enrich the
deduction to work on the original formulas. This
claim depends on some properties of C to be pre
sented shortly.

This result can be strengthened to connect with
the A-calculus: a A-expression can be associated
with each stripped term that will record the mean
ing information, and the meaning of the inferred
term can be determined by performing applica
tions and A-abstractions in correspondence with
the proof rules.

Returning to the example, the stripped mean
ings for everyone and yawned with A-expressions
added look like:

AS.every(person, S): VH. (ge -<> HI) -<> HI
yawn: go -<> II

Implication elimination and universal instantiation
in the stripped premises now indicates that the cor
responding A-terms should be applied:

AS.every(person,S): VH. (go -<> HI) -<> HI
yawn: ge -<> It

f- AS.every(person, S)yawn : It

or, equivalently:

every(person, yawn) : II

This formulation looks very similar to the categor
ical approach, with the crucial difference that the
types records the roles that result from an indepen
dent syntactic analysis.

4.2 Formal development

The core fragment, C. Informally, the fragment
has two kinds of terms, those like I that refer to
roles, and those like Bill that are in the meaning
language. The atoms of the fragment are formulas
like Ie Bill that relate the two kinds of terms.

Larger formulas are built up in only two ways:
by quantification over roles, and by combina
tion of a quantification over a meaning variable
and a linear implication (the two together act
ing as a function definition). An example is
Vx.fe x -<> gl yawn(x), where the meaning of g
is set up as a function of the meaning of I.

Definition 1 (Syntax of C)

(e-role) ::= (e-role const)
(t-role) ::= (t-role const)1 (t-role var)

(role) ::= (t-role) I (e-role)

(meaning) ::= (meaning-const)
I (meaning-var)
I (meaning)((meaning) ... (meaning})

(formula) ::= (role) (meaning)
I V(t-role var).(formula)
I V(meaning-var) . (formula}t -0 (formu
il generic((meaning-var), (formula) 1

Notation: We will use the variables II, gt to stand
for t-role constants and Ie, go for e-role constants.
I, g will stand for any role. Meaning constants will
be denoted by m, n. In each case the correspond
ing capital letters will stand for variables of those
classes. M, N will be used to denote meanings.
P, Q, R will stand for formulas.

generic(M, P) is a meta-predicate that means
that P serves strictly to associate M to a role or
roles, but doesn't say anything about its value. For
example, generic(x,/ x). Genericity guarantees
that the last clause of the syntax of formulas in the
syntax of C is definining what is essentially a func
tion. Formally, genericity is defined by structural
induction to hold in exactly the following three
cases.

1. generic(M,f M).

25

the typed A-calculus (see Girard 1986). We restrict
the power of System F by limiting type abstraction
to t-role types only.

System F. In the following, r is a set of M : 5
pairs where M is a meaning variable, and 5 is a
role projection. A well formed r will have distinct
variables (so no variable will have more than one
role projection) - thus M : 5 E r, M : 5' E r =>
5 =a 5'. Let 5,5' denote role projections, other
terms are as before .

The proof rules are:

r, M : 5 I-F N : 5'
r I-F AM.N: S --0 5'

(identity)

(A-intro)

r I-F M : 5 --0 5' 6.. I-F N : 5
r , 6.. I-F M(N) : 51 (appl)

rI- F M:5
r I-F M : VFt.S (A-intro, F t new in f)

r I-F M : VFt .5
r I-F M : 5[5' / Fd (A-elim)

Note that we did not need to have AFt .M in the
A-intro rule since we know that Ft cannot occur in
M.

Theorem 9 Let II be a proof of PI, ... , Pn I-c R.
Then for any r I r I-F [R] : {R} in System F when
ever each of r I-F [Pi] : {Pd holds in System F.
Th e converse is also true .

Proof. By induction on the proof tree for
PI, .. . , Pn I- R.

If the last rule applied is the identity rule , there
is nothing to prove.

If the last rule is the left V quantification over
t-roles, then we have a proof of r I-F M : V Ft .5,
from our assumption that r I-F [Pill: {Pd. Now
we can use the A-elimination rule to conclude r I-F
M : 5[5'/ Ftl. Thus we have a proof for all the
premises of the antecedent, so by induction we can
prove r I-F [R] : {R}.

If the last rule was the right V quantification over
t-roles, then we can use the A-intro rule to conclude
the result.

If the last rule is the left V quantification over
meaning variables, then we know that

and

Now from the proof of PI, "'Pi I- Ql[M/ Ml and the
genericity of M in Ql we have a proof of r I-F M :
{Qd. Now by the application rule we then have
r I-F [Q2][M/Ml : {Q2}' Thus from the induction
hypothesis, we can prbve r I-F [R] : {R}.

If the last rule is the right V quantification over
meaning variables, then R = VN.RI --0 R2 , for
some variable N. r I-F [Pi] : {P;} holds in System
F for each premise. As N does not occur in r,
r, N : {Rd I-F [Pill : {P;} holds in System F, and
r, N : {Rd I-F N : {Rd. Thus, by induction
r,N : {Rd I-F [R2] : {R2 }. Now by A-intro, we
have r I-F AN.[R2] : {Rd --0 {R2}, which is the
required result.

The linearity assures us that each r I-F [Pi] :
{Pd will be needed exactly once in the proof of
r I-F [R] : {R}.

The converse is true, because if we drop the
meaning terms from the System F rules we get rules
that are valid in LL. Now we can add the meanings
via the previous theorem. 0

5 Beyond the Core Fragment

The core fragment is sufficient to cover many lin
guistic constructs, including proper nouns, quanti
fiers, extensional verbs, and a variety of other phe
nomena. As the above results show, it requires only
propositional inference; it is tractable . Whenever
possible, it seems best to express linguistic phenom
ena within the core fragment .

Some linguistic constructs, however, appear to
require going beyond the core fragment. The glue
semantics approach has the advantage that it is
possible to move beyond the core fragment when
that is appropriate, while staying within the well
developed linear logic system. In fact, the exten
sions to date have stayed within an only slightly
larger fragment of linear logic.

In this section we will very briefly discuss those
situations and point out how they affect the above
results.

5.1 Intensionality

Intensional verbs require the meaning language to
be able to express intensions. To illustrate, one of
the readings for "Bill seeks a unicorn" should be

seek(Bill, ' AQ.aCunicorn, Q))

where the meaning language now is the intensional
A-calculus, which we assume the reader is familiar

27

with. l

Intensional verbs can be handled by extending
the core fragment to allow the meaning language
to include intensional expressions also:

(meaning) ::= A(meaning-var).(meaning)
I "(meaning)
I -(meaning)

This extension allows the above conclusion to be
derived from the following contributions of 'Bill',
'seek' and 'a unicorn' (labeled uni):

B ilJk "-+ " Bill
uniiH, N . ("1M. h~"-+M --0 Ht"-+N(M))

--0 Ht"-+ "aCunicorn, "AM:(NCM)))
seeWMI , M 2 ·ge Ml

--0 (VH, NdVN2 .he"-+N2 --0 Ht"-+N I (N2))
--0 Ht"-+M2(Nt})

--0 It''-+ seek(M l , "AQ:(M2Ax ."(CQ)(-x))))

In order to have intensions available when they
might be needed, all meaning variables now refer
to intension, with extensions explicitly taken when
ever necessary. This is a departure from Dalrymple
et al. (1997). The equivalent formulation here re
quires more explicit manipulation of intensions, but
stays closest to the core fragment.

Since the only change to the core fragment is
to allow a wider meaning language, and since the
details of the meaning language do not affect the
theorems, the theorems above still apply.

5.2 Non-semantic atoms

Recently, Fry (1996) has explored the use of ad
ditional atoms in the semantic contributions that
do not carry meaning terms, but that are, in
stead, used to limit the number of possible read
ings. These can be used to express restrictions on

ever: V P. (It''-+ P ® i) --0 (It''-+ ever(P) ® i)

'Ever' can only be used in the presence of a negative
polarity license i, and it reinstates the license so it
can be used by other negative:polarity items.

The language of the core fragment may be ex
tended to allow these kinds of non-semantic propo
sitions (ns-prop, denoted by i, i') to be inter
spersed:

(ns-prop) ::= (non-semantic atom)
I (ns-prop) --0 (ns-prop)
I (ns-prop) ® (ns-prop)

(formula) ::= I (ns-prop) --0 (formula)
I (ns-prop) ® (formula)

Genericity can be extended to these cases:

1. generic(M ,i --0 P) if generic(M, P).

2. generic(M, i ® P) if generic(M, P).

These definitions allow a non-semantic atom to be
added to any term, either conjoined with the term,
or as an antecedent of the term. The idea is that
they should play no direct role in determining the
meaning, but may constrain what deductions are
possible.

Role- and meaning-projections may be defined
via:

{I --0 P} = I --0 {P}
{/®P}=/®{P}

[I --0 P] = [P]
[/®P] = [P]

Given these definitions, all the results above carry
through except the last theorem. The last theorem
cannot go through because there are no meanings
corresponding to the non-semantic atoms. 2

Discussion
the appearance of negative polarity items such as
'any' or 'ever', for example. Fry proposes that the 6
meaning constructor for an operator like 'nobody',
which can license a negative polarity item, is: We have presented a reformulation of the glue ap

proach that separates out meaning composition so
that it is handled by lambda application, in a way
that is very similar to that of the categorial ap
proaches. This better points out the essential dif
ference of the glue approach from categorial ap
proaches: the glue approach doesn't use types to
describe syntactic rules, but rather uses types to

nobody: VH, M. (V N. (ge"-+ N ® i)
--0 (Ht"-+M(N) ®£))

--0 Ht"-+no(person,M)

The non-semantic atom i constitutes a license for
negative polarity items that is available only within
the scope of the quantifier 'nobody'. The meaning
constructor for a negative polarity item such as the
sentential adverb 'ever' is:

I Here we are asswning Montague's treatment of inten
sionality. Other approaches can be handled similarly.

2The meaning projection rule [/ -0 P) = [P) could be
changed to [/ -0 P) = AU.[P), with vacuous abstraction over
u, to allow the last theorem to go through. However, this
would violate the spirit of the meaning projection, and still
wouldn't handle the [/0 P) case.

28

connect to a separate grammar, and say how to as
semble meanings of sentences that have been an
alyzed by the grammar. The value of the glue
approach is in mediating situations, like quanti
fier scoping, where the compositional structure of
the grammar does not align with the compositional
structure of meaning assembly.

The reformulation only applies, however, when
the sentences of glue approach stick to a core frag
ment of linear logic. Some linguistic constructs ap
pear to call for sentences beyond that fragment,
meaning that they have expressive requirements
not readily available in a categorial style.

References

Bresnan, Joan, editor . 1982. The Mental Repre
sentation of Grammatical Relations. The MIT
Press, Cambridge, MA.

Dalrymple, Mary, Ronald M. Kaplan, John T.
Maxwell, III, and Annie Zaenen, editors. 1995a.
Formal Issues in Lexical-Functional Grammar.
Center for the Study of Language and Informa
tion, Stanford University.

Dalrymple, Mary, John Lamping, Fernando C. N.
Pereira, and Vijay Saraswat. 1995b. A deduc
tive account of quantification in LFG. In Makoto
Kanazawa, Christopher J. Pinon, and Henriette
de Swart, editors, Quantifiers, Deduction, and
Context. Center for the Study of Language and
Information, Stanford, California.

Dalrymple, Mary, John Lamping, Fernando C. N.
Pereira, and Vijay Saraswat. 1995c. Linear logic
for meaning assembly. In Proceedings of CLNLP,
Edinburgh.

Dalrymple, Mary, John Lamping, Fernando C. N.
Pereira, and Vijay Saraswat . 1997. Quantifiers,
anaphora, and intensionality. Journal of Logic,
Language, and Information. To appear.

Dalrymple, Mary, John Lamping, and Vijay
Saraswat. 1993. LFG semantics via constraints.
In Proceedings of the Sixth Meeting of the Eu
ropean ACL, University of Utrecht, April. Euro
pean Chapter of the Association for Computa
tional Linguistics .

Fry, John. 1996. Negative polarity licensing at
the syntax-semantics interface. Technical Re
port ISTL-NLTT-1996-11-01, Xerox PARC, Palo
Alto, CA.

Girard, J.-Y. 1986. The system F of variable types,
fifteen years later. Theoretical Computer Sci
ence,45(2):159-192.

Girard, J.-Y . 1989. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Compuier Sci
ence. Cambridge University Press. Translated
and with appendices by Y. Lafont and P. Taylor .

Halvorsen, Per-Kristian. 1983. Semantics for Lex
ical Functional Grammar. Linguistic Inquiry,
14(4):567-615.

Kaplan, Ronald M. and Joan Bresnan. 1982.
Lexical-Functional Grammar: ' A formal system
for grammatical representation . In Joan Bres
nan, editor, The Mental Representation of Gram
matical Relations. The MIT Press, Cambridge,
MA, pages 173-281. Reprinted in Dalrymple,
Kaplan, Maxwell, and Zaenen, eds ., Formal Is
sues in Lexical-Functional Grammar, 29-130.
Stanford: Center for the Study of Language and
Information. 1995 .

Lambek, Joachim. 1958. The mathematics
of sentence structure. American Mathematical
Monthly, 65:154-170 .

Montague, Richard. 1974. The proper treatment of
quantification in ordinary English . In Richmond
Thomason, editor, Formal Philosophy. Yale Uni
versity Press, New Haven.

Oehrle, Richard T., Emmon Bach, and Deirdre
Wheeler, editors. 1988. Categorial Grammars
and Natural Language Semantics. D. Reidel,
Dordrecht.

29

Optimality Theory
and Generative Complexity

1 Introd uction

Robert Frank*
Markus Hillert

Giorgio Sattat

Analyses within generative phonology have traditionally been stated in terms
of systems of rewrite rules, which, when applied in the appropriate sequence,
produce from an underlying representation the appropriate surface form.
This view of phonological analysis has been adopted in almost all work in
computational phonology, where the goal has been to produce feasible imple
mentations of phonological rule systems for use in generating surface forms
from lexical specifications as well as in parsing surface forms into underly
ing representations. As first pointed out in [6], the effects of phonological
rewrite rules can be simulated using only rational relations (equivalently,
finite state transducers) with iterative application accomplished by relation
composition, a property under which the class of rational relations is closed.
Consequently, since the pioneering work in [7] and [9], computational imple
mentations of phonological rule systems have been done using finite state
transducers or extensions thereof.

Recently, there has been a shift in focus in much of the work on phonolog
ical theory, from systems of rules to sets of constraints on well-formedness.
In this paper, we begin an examination of the effects of the move from
rule-based to constraint-based theories upon the generative complexity of

"Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland,
rfrank0vonneumann.cog.jhu.edu

tSeminar fuer Sprachwissenschaft, Universitaet Thebingen, Thebingen, Germany,
markus.hiller0zdv.uni-tuebingen.de

IDipartimento di Elettronica ed Informatica, Universita. di Padova, Padova, Italy,
satta0dei.unipd.it

30

phonological theories. Specifically, we will focus our efforts on the issue
of whether the widely adopted constraint-based view known as Optimal
ity Theory (OT), developed by Prince and Smolensky in [10], may be in
stantiated in a rational relation (a finite state transducer)'! OT raises a
particularly interesting theoretical question in this context: it allows the
specification of a ranking among the constraints and allows lower ranked
constraints to be violated in order for higher ranked constraints to be satis
fied. This violability property means that certain well-known computational
techniques for imposing constraints are not directly applicable.

The contribution of this work is stated in what follows. We present
a formalization of OT which embodies that theory's notion of constraint
violability rather directly. We make the additional assumptions that the
mapping from input to possible output forms (the function GEN) is repre
sentable as a rational relation and that each constraint may be represented
by means of a total function from strings to non-negative integers, with the
requirement that the inverse image of each integer be a regular set. These
assumptions suffice to capture most of the current phonological analyses
within the OT framework that have been presented in the literature. Under
the assumptions above, we prove the following results:

• whenever constraints are represented by means of functions with a
finite co-domain (as in the case of so called boolean and multi-valued
constraints) then OT systems can be expressed by means of rational
relations;

• the fact that optimal surface forms may violate some constraints an
unbounded number of times allows the theory to express mappings
beyond the generative power of rational relations.

Notice that, because of the separation result above, the result about mem
bership in the class of rational relations is an optimal one, in the sense that
dropping the finite co-domain requirement takes us outside of the rational
relations.

lWork on related matters has been presented in [3] and in [11]. None of these papers
addresses the general question of whether the input/output mapping specified by OT can
be simulated with finite state machinery.

31

2 A model of OT

In this section we briefly describe the rudiments of OT and introduce a
formalization of this theory whose generative complexity will be investigated
in the next section .

As in derivational systems, the general form of phonological computation
in OT proceeds from an underlying representation (UR). Such a UR is fed
as input to the function GEN which produces as output the set of all possible
surface realization (SRs) for this UR, called the candidate set. The notion of
a possible SR, as realized in [10], is governed by the containment condition,
requiring any SR output by GEN to include a representation of the UR as
a (not necessarily contiguous) subpart. Thus, an SR must at a minimum
include all of the structure that is specified in the UR, but may also include
extra structure absent from the UR, called epenthetic structure. This is not
to say that all parts of the input are necessarily pronounced at the surface.
Rather, the analog of "deletion" may occur by marking that part of the SR
corresponding to the deleted material as unparsed, meaning that it is not
visible to the phonetic interface.

The candidate set produced by GEN for any UR will in general be infi
nite, as there is no bound on the amount of epenthetic material which may
be added to the UR to produce the SR. The core of the OT machinery is
devoted to choosing among the members of this candidate set to determine
which is the actual SR. To do this, OT imposes a set of well-formed ness
constraints on the elements of the candidate set. Note, however, that these
constraints are not imposed conjunctively, meaning that the "winning" SR
need not, and most often will not, satisfy them all. Instead, OT allows for
the specification of a language particular ranking among the constraints,
reflecting their relative importance. The candidate SRs are evaluated with
respect to the constraints in a number of stages. At each stage the entire
candidate set is subjected to one of the constraints, which stage a constraint
is applied being determined by the specified constraint ranking. There are
two possible outcomes of such an evaluation. The first arises when some
members of the candidate set violate the constraint, but others do not. In
this case, the constraint permits us to distinguish among the members of the
candidate set: those which do not satisfy the constraint are eliminated from
the candidate set and are not considered in subsequent constraint evalua
tion. (Alternatively, if a constraint can be violated multiple times by a single
SR, the relevant evaluation compares the number of violations incurred by
each of the SRs in the candidate set. Candidates with the fewest violations

32

are preferred and those with more violations are eliminated.) The second
possible outcome from a constraint evaluation ensues when all of the mem
bers of the candidate set violate the constraint to the same degree, perhaps
massively or perhaps not at all. When this happens, the constraint does not
help us in narrowing down the candidate set. Hence, no candidates are elim
inated from the candidate set and violations of the constraint do not block
any of them from being considered further to be the actual SR. At the end
of the last stage, i.e., when all constraints have been applied, what remains
is precisely the subset of the candidate set which are the optimal satisfiers
of the constraints under their ranking. This set of candidates, which will
often contain only a single member is taken as the set of actual SRs for the
original UR.

OT makes the strong assumption that the constraints which are used to
evaluate the members of the candidate set are universal, and are therefore
active in the phonology of every language. What varies from one language to
another is the relative ranking of constraints. Thus, as soon as a commitment
is made concerning the set of constraints, there is a concomitant commitment
concerning the range of possible typological variation: every ordering of the
constraints corresponds to a possible phonological system. This concludes
our overview of OT. For further discussion of the formal structure of the
model and of its empirical consequences, see [10] and references cited therein.

We now turn to the formalization of OT we work with. We denote as N
the set of non-negative integers.

Definition 1 An optimality system (OS) is a triple G = (E, GEN, C),
where E is a finite alphabet, GEN is a function from E* to 21:· and C =
(Cl' ... ,ep), p ~ 1, is an ordered sequence of total functions from E* to N.

The basic idea underlying the above definition is as follows. If w is a well
formed UR, GEN(W) is the non-empty set of all associated SRs, otherwise
GEN(W) = 0. Each function c in C represents some constraint of the gram
mar. For some SR w, the non-negative integer c(w) is the "degree of viola
tion" that w incurs with respect to the represented constraint. Given a set
of candidates S, we are interested in the subset of S which violates c to the
least degree, i.e., whose value under the function c is lowest. To facilitate
reference to this subset, we define

argminc{S} = {w I wE S, c(w) = min{c(w') I w' E S}}.

We can now characterize the map an OS induces. We do this in stages, each
one representing the evaluation of the candidates according to one of the

33

constraints. For each w E E* and for 0 ~ i ~ p we define a function from
E* to 2E*:

OTb(w) =

GEN(W)

OT~l(w)

argminc; {OT~ 1 (w) }

if i = 0;
if i ~ 1 and
argminci{OT~l(w)} = OT~l(w);
if i ~ 1 and
argmincJOT~l(w)} i= OT~l(w).

Function OT~ is called the optimality function associated with G, and is
simply denoted as OTa. We drop the subscript when there is no ambiguity.

3 OT and rational relations

In this section we present our two main results. Below we take for granted
the notion of regular language and rational relation (see for instance [5]
and [4]). We also view a one-ta-many rational relation as a function from
strings to set of strings, in the usual way.

We make a number of specific assumptions concerning the formal nature
of an OS. We assume that GEN is specifiable in terms of a rational relation.
In addition, we restrict our attention to sets of constraints C such that, for
each c in C and kEN, the set {w I w E E*, c(w) = k}, i.e., the inverse
image of k under c, is a regular language. Since the question that we focus
on in this research is that of determining whether the class of mappings
specifiable in OT is beyond the formal power of rational relations, dropping
the above assumptions would decide the question by fiat. Furthermore, it
turns out that nearly all of the constraints that have been proposed in the
OT phonological literature satisfy the above restriction on the inverse image.
The reason for this is that OT constraints have tended to take the form
of local conditions on the well-formed ness of phonological representations,
where local means bounded in size. Because of this fact, a phonological
representation w attests as many violations of a given constraint c as the
number of occurrences of strings from some finite set of configurations Vc
appearing as substrings of w. Since Vc is finite, it can be represented through
some regular expression, and we can use well-known algebraic properties of
regular languages to derive the above condition on the inverse image. (See
Tesar [11] for further discussion of a related notion of locality in constraints.)

We now start by presenting a sufficient condition for OS's to be imple
mented through finite state transducers.

34

Theorem 1 Let G = (L;, GEN, C) be an OS such that GEN is a rational
relation and the inverse image under a constraint in C of an integer is a
regular set. Function OT a can be represented as a rational relation if each
constraint in C has a finite co-domain.

Outline of the proof. First, we restrict our attention to constraints having
co-domain of size two. We proceed by induction and assume that for i ~ 1 we
have already been able to represent OTi- 1 by means of a rational relation R.
Let L(Ci) = {w I w E :E*, Ci{W) = a}. Consider some UR wand the set
OTi-1(w) = {w' I WRW'} = wR of associated candidate SR's that are
optimal with respect to OTi- l . To select the strings in this set .that are
optimal with respect to Ci, we check if there are candidates from wR which
are members of L(Ci). If the check is successful, (a) we eliminate any non
satisfying candidates by intersecting wR with L(Ci)i otherwise (b) we select
the whole set of candidates wR. It can be shown that the set L+ of all UR's
for which the above check is successful is a regular language. Thus we can
"split" relation R into two relations R+ and R_, where R+ (R_) is R with
its left projection intersected with L+ (L;* - L+, respectively). In order to
implement step (a) above, we construct a relation R~ by intersecting R+'s
right projection with L(Ci). It is not difficult to see that OTi is represented
by the union of R~ and R_. This relation is rational, since both R~ and
R_ are rational.

The theorem can be proved using the above result and a construction
first suggested in [3] that reduces constraints having arbitrarily large finite
co-domain to a finite number of constraint having co-domain of size 2. •

We now turn to our second result, and show that the condition on the
finite co-domain in Theorem 1 is also a necessary condition.

Theorem 2 There exists an OS G = (L;, GEN, (c}) such that GEN is a ra
tional relation, the inverse image under c of an integer is a regular set, c
has an infinite co-domain, and function OTa is not a rational relation.

Outline of the proof. Let L; = {al, ... ,an,b}, n ~ 2. For 1 ~ i ~ n, let
~ = {(w, w') I w E :E*, w' is w with each occurrence of ai replaced by
b}, and let GEN = Uf=l~' Finally, let c(w) = #b(W), where #b(W) denotes
the number of occurrences of b within w. Clearly GEN is a rational relation
and c satisfies our assumptions. It is not difficult to see that, for each
w E L;*, OTa(w) includes string w with each occurrence of ai replaced by
b iff #ai (w) ~ #aj (w) for each j, 1 ~ j ~ n. Let R be the binary relation
corresponding to OTa(w). The right projection of R with the language

35

denoted by the regular expression b* ai ... a~ is the language {bi
1 a~2 ... a~

i 1 ~ ij, 1 ~ j ~ n}, which is not regular. Hence R cannot be a rational
relation. _
Observe that, in the proof of Theorem 2, if I:EI = 2 then R can be realized
by a sintax-directed translation schemata; if I:EI > 2, then R is even more
powerful that the class of translations that correspons to these devices. Since
the OS in the proof uses a single constraint, we can conclude that the source
of the detected generative complexity resides in the optimization mechanism
ofOT.

4 Discussion

We have seen that OT systems including constraints which distinguish among
unboundedly many levels of violation may give rise to mappings beyond the
power of rational relations, whereas systems including only constraints that
distinguish among only finitely many levels of violation remain within the
class of rational relations. Karttunen [8] argues on empirical grounds that
attested phonological processes which mediate between UR and SR can be
modelled by a finite state transducer. Though his argument was given in the
context of a discussion of systems of rewrite rules, the conclusion, if correct,
is completely general. That is, whether the relation between UR and SR
is best characterized in terms of sequences of rewriting steps or in terms of
OT optimizations, Karttunen's argument suggests that the generative com
plexity of the resulting mapping need be no greater than that of rational
translations. If this empirical argument is on the right track, our results
diagnose a formal deficiency with the OT formal system, namely that it is
too rich in generative complexity. In addition, our results also suggest a
cure: that constraints should be limited in the number of distinctions they
can make in levels of violation. We suspect that following this regimen will
require a change in the type of optimizations which carried out in OT, from
global optimizations over arbitrarily large representations to local optimiza
tions over structural domains of bounded complexity. We leave a study of
the empirical and formal implications of this move for future work.

References

[1] Bird, Steven and T. Mark Ellison. 1994. One-level phonology: Au
tosegmental representations and rules as finite automata. Computational

36

Linguistics, 20{ 1) :55-90.

[2] Bird, Steven and Ewan Klein. 1994. Phonological analysis in typed
feature systems. Computational Linguistics, 20(3):455-491.

[3] Ellison, T. Mark. 1994. Phonological derivation in optimality theory.
In Proceedings of the 15th International Conference on Computational
Linguistics, pages 1007-1013.

[4] Gurari, Eitan. 1989. An Introduction to the Theory of Computation.
Computer Science Press, New York, NY.

[5] Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Au
tomata Theory, Languages, and Computation. Addison Wesley, Reading,
MA.

[6] Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description.
Mouton, The Hague.

[7] Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonolog
ical rule systems. Computational Linguistics, 20(3):331-378. Written in
1980.

[8] Karttunen, Lauri. 1993. Finite-state constraints. In John Goldsmith,
editor, The Last Phonological Rule. University of Chicago Press, Chicago,
pages 173-194.

[9] Koskenniemi, Kimmo. 1984. A general computational model for word
form recognition and production. In Proceedings of the 10th International
Conference on Computational Linguistics, pages 178-181.

[10] Prince, Alan and Paul Smolensky. 1993. Optimality theory: Constraint
interaction in generative grammar. Manuscript, Rutgers University and
University of Colorado, Boulder.

[11] Tesar, Bruce. 1995. Computational Optimality Theory. Ph.D. thesis,
University of Colorado, Boulder.

37

The Relation Between Tree-Adjoining Grammars and
Constraint Dependency Grammars

Karin Harbusch
University of Koblenz-Landau

Computer Science Department, Institute of Computational Linguistics
Rheinau 1, D-56075 Koblenz, Germany

Phone: +49 261 9119 463, Fax: +49 261 9119465
E-mail: harbusch~informatik.uni-koblenz.de

July 18, 1997

Abstract

!<'or the two grammar formalisms Tree-Adjoining Grammars (TAGs) and Constraint De
pendency Grammars (CDGs), it is known that they are mildly context-sensitive. In both
formalisms, natural-language phenomena can appropriately be specified. TAGs provide an
adequate domain of locality by defining trees as rules. In a CDG, more or less strictly for
mulated local constraints are written which must be satisfiable all over the system. For both,
polynomial parsers have been proposed in the literature (0(n4) for CDGs and 0(n5) for TAGs) .

Consequently, it seems reasonable to compare the two formalisms in more detail because
each provides convincing features to the grammar writer. In the following paper, we show
that each TAG can be transformed into an equivalent CDG but not vice versa. This is shown
by outlining how a CDG produces the non Tree-Adjoining language L-6 := anbncndnen r .

1 Introd uction

Tree-Adjoining Grammar (TAG) is a well studied formalism for writing natural-language gram
mars (see, e.g., [Doran et al. 94] for a large natural-language grammar specified in this formalism;
furthermore, see section 2 for a brief introduction).

Some remarkable properties are:

• TAGs define an extended domain of locality, i.e. complex phenomena, e.g. long distance move
ment (cf. [Kroch, Joshi 85]) can be represented by one and the same rule or tree, respectively .

• TAGs are more powerful than Context-Free Grammars1 (mildly context-sensitive - cf. the
TAG for the non-context-free language an bn cn dn [Joshi 83]),

I Here, a Context-Free Grammar (CFG) G = (V,T,S,P) is used as described, e.g., in [Hopcroft, Ullman 79]) . V
is the finite set of nonterminals, T is the finite set of terminals (V n T = 0), S E V is the start symbol and P is the
set of productions (P ~ N x (N U Tt).
A word w := I-'dJJ.L2 is directly derivable from a word v := 1-'1 CXl-'2 , where 1-'1,1-'2 E (N U T)' <=> cx EN, fJ E (N U

T)· and (cx,fJ) E P (written as tLICXJ.L2 c: J.LlfJtL2) '
Furthermore, a word w is derivable from a word v<=>3 series WI, . •. ,Wn (n EIN) with w := WI ~ W2 ~ . ,. ~

Wn := v (written as ji.10:ji.2 G ji.IJJji.2) . •

A word wET· is in the la~guage of the Context-Free Grammar G (L(G» <=> 3 derivation S G w.

If in such a derivation S = W the elements on the left-hand side of each applied rule are interpreted as mother
nodes and all elements on t~e right-hand side are interpreted as daughters preserving their order i,from left to right
a derivation tree results.

38

• the word problem is solvable in polynomial time (direct parsers which run in time O(n6)

are described in [Vijay-Shanker, Joshi 85] or [Schabes 90]; furthermore, a parser for bracket
grammars which are equivalent to TAGs runs in time O(n5) [Guan 92]) .

Beside the extended domain of locality, for Constraint Dependency Grammars (CDGs) the same
properties hold (cf. [Maruyama 90a] and see section 3 for a brief introduction). In a CDG, the
domain of locality is specified indirectly by a set of constraints. Each constraint cuts off a specific
region of the search space solving the combinatory problem of finding values for all variables. For
instance, it allows to address a so called modifier without localizing it. So, a set of solutions
results. Further constraints can be ·put on the modifier (e.g., the modifier is the first word, i.e.
mod(x) = word(pos(l)), makes the result unique). So, all local solutions are tested to satisfy all
other constraints as well. Consequently, the result is a possibly empty set of values.

Since the two formalisms exhibit similar properties it should be discussed whether they are
equivalent. In the following paper, we show that each TAG can be transformed into an equivalent
CDG by extending the constructive proof by [Maruyama 90b] which transforms a CFG into a
CDG. For our purposes, we add a new role tree. Basically, it relates all adjacent context-free rules
in an elementary tree. Furthermore, it relates dislocated context-free rules which belong to the
same elementary tree. Since this constraint overgeneralizes, links between root and foot node of
an auxiliary tree are introduced similar to the ordering constraints preserving the tree property of
context-free rules. Another constraint requires that links can only be nested. It restricts the set of
hypotheses to the set of valid TAG derivations. In section 4, the basic context-free transformation
and the extensions for TAGs are outlined in more detail. Although the comparison of the two
formalisms gives the impression that they are equivalent it is simple to construct a CDG for L-6
:= anbncndnen jn (n ~ 1) which is known not to be a Tree-Adjoining language (TAL) . This fact
is discussed in section 4.4.

The paper ends addressing some open questions and future work.

2 The Formalism of TAGs
In 1975, the formalism of Tree Adjoining Grammars (TAGs) was introduced by Aravind K Joshi,
Leon S. Levy and Masako Takahashi (cf. [Joshi et al. 75]). Since then , a wide variety of properties
- formal properties as well as linguistically relevant ones - have been studied (see, e.g., [Becker 93]
or [Doran et al. 94] for an overview to the recent literature).

A TAG G = (V, T, S, I, A) is a tree-generation system. It consists, in addition to the set of
nonterminals V, the set of terminals T (V n T = 0), and the start symbol S, an extraordinary
symbol in V, of two different sets of trees (I and A, called the set of elementary trees), which specify
the rules of a TAG. Intuitively, the set I of initial trees can be seen as context-free derivation trees.
This means the start symbol is the root node, all inner nodes are nonterminals and all leaves are
terminals. The second set A, the auxiliary trees, which can replace a node in an initial tree (which
is possibly modified by further adjoinings) during the recursion process, must have the form, so
that again a derivation tree results. Accordingly, as in an initial tree all inner nodes are labelled
with nonterminals, and beside a special leaf (the foot node) all leaves a terminals. The foot node
is labelled with the same nonterminal as the root node. Furthermore, it is obligatory that an
auxiliary tree derives at least one terminal (Le. for the leaf string holds ~ (T+ V T" U T* V T+)).
During the recursion process adjoining of an auxiliary tree /3 in the inner node X of a, the inner
node X - which can also be the root node - of the initial tree a (which can possible be modified
by further adjoinings) is eliminated. The incoming edge of X now ends in the root node of the
auxiliary tree {3 which is labelled with the same nonterminal as X and all outgoing edges of X now
start in the foot node of {3.

The set of all initial trees modified by an arbitrary number of adjoinings (at least zero) is called
T(G), the tree set of a TAG G.2 L(G), the language of a TAG, is defined as the set containing all

2The elements in this set can also be specified by building a series of triples (ai, f3i, Xi) (0 ~ i ~ n) - the
derivation tree - where ao E I, ai (1 ~ i ~ n) is the result of the adjoining of f3i-1 in node Xi-I in ai-I, f3i (0
~ i ~ n-l) is the auxiliary tree, which is adjoined in node Xi in tree ai and Xi (0 ~ i ~ n-1) is a unique node
number in ai. This description has the advantage that structurally equal trees in T(G) which result from different
adjoinings can uniquely be represented.

39

leaf strings of trees in T(G) or all trees which can be constructed by adjoining as described in the
corresponding derivation, respectively. Here, a leaf string means all labels of leaves in a tree are
concatenated in order from left to right.

3 The Formalism of CDGs
The formalism of Constraint Dependency Grammars (CDGs) was introduced by Hiroshi Maruyama
in 1990 (cf. [Maruyama 90a] and [Maruyama 90b]).

Formally speaking, a CDG is a four-tuple (T, R, L, C) where T is the finite alphabet. Let
R = {rl, r2, ... , rAo} be a finite set of role-ids. Roles are like variables, and each role can have a
pair (a, d) as its value, where the label a is a member in the finite set L = {al, a2, ... , ac} and the
modifiee d is either 1 :s d :s n or a special symbol nil.

Cis a constraint that an assignment should satisfy. A constraint C is a logical formula in a
form VXl, ... ,Xp: role;P1& ... Pm where Xl, •.• ,Xp are variables and range over the set of roles in an
assignment A. Each subformula Pi consists of the following vocabulary:

• variables Xl, ... , Xp,

• constants: elements and subsets of T U L U R U{nil, 1, 2, ... },

• function symbols: word, pos, rid, lab, mod,

• predicate symbols: =, <, >, E, and

• logical connectors: &, I, -', =>.
Let a sentence s = WI W2 ... Wn be a finite string on a finite alphabet T. Let Rand L be defined

as before. The degree of a CDG G is the size k of the role-id set R. Suppose that each word Wi

(addressed by the position i because the same word can occur in many different positions in a
sentence) in a sentence s has k different roles rl (i), r2(i), ... , rdi). Roles are like variables, and
each role can have a pair (a, d) as its value. An analysis of the sentence s is obtained by assigning
appropriate values to the n x k roles.

An assignment A of a sentence s is a function which assigns values to the roles. Given an
assignment A, the label and the modifiee of a role X are determined. The following four functions
are defined to represent various aspects of the role X assuming that X is an r;-role of the word at
position i (written as word(i)):

• pos(x):=the position i,

• rid(x) :=the role id rj,

• lab(x):=the label of x and

• mod(x):=the modifiee of x.

Specifically, a subformula Pi is called a unary constraint if Pi contains only one variable, and a
binary constraint if Pi contains exactly two variables. If all subformulae of C are unary or binary
constraints the grammar is of arity 2. In the following, only grammars of arity 2 are addressed.

Finally3, the word problem for CDGs can be defined as follows. A non null string s over the
alphabet T is generated iff there exists an assignment A that satisfies the constraint C. It can be
shown that the runtime of the parser for CDGs of arity 2 is O(n4) (cf. [Maruyama 90a]).

4 The Relation between TAGs and CDGs
In this section, we discuss whether TAGs and CDGs are equivalent. It can be shown (cf. 4.3) that
a TAG can be transformed into a CDG but as outlined in section 4.4 the other direction does not
work. This is shown by constructing a CDG for a non-TAL. In the following, the transformation
of an arbitrary Context-Free Grammar G in Greibach-Normal Form into a CDG is presented
because the transformation for TAGs extends this proof. Since both proofs require a grammar in
Greibach-Normal Form, in section 4.2, the idea how to transform a TAG into Greibach-Normal
Form is described. In section 4.3, the transformation of an arbitrary TAG in Greibach-Normal
Form into a CDG is .2.resented.

3Since here is not the space for an illustrating example, the reader is referred to section 4.4 for a simple grammar
written in this formalism.

40

4.1 How to transform a CFG into a CDG
In [Maruyama gOb] the constructive proof is described how to transform an arbitrary Context
Free Grammar G in Greibach-Normal Form (i.e. the finite set of productions P ~ V x (T V')
and f E\: L(G))4 into a CDG of degree 2 and arity 2. The basic idea of the construction described
below is to define two roles head and bod'!!' (degree 2). The two roles differentiate whether the
element occurs on the left-hand side or the right-hand side of a rule. Constraint (2) defines the
"shake-hand" of these two interpretations iff they refer to the same nonterminal. Furthermore for
each context-free rule, all non terminals on the right-hand side are linked to become a "circle" as
described in subformula (3) (cf. figure 1). By this method, all nonterminals on the right-hand side
are determined uniquely and are applied in their order from left to right. Together with further
constraints specifying that all links are nested6 (cf. (6)) and some specific constraints reading a
lexicon entry by interpreting it as a head role (Le. termination of the recursion, cf. (1)) and finally
another specific rule for the start symbol (cf. (5)), the CDG simulating a Context-Free Grammar
is complete and looks as follows:
Let us consider G1 = (T1 , R1 , L1 , C1) where Tl = the alphabet of the CFG, Rl = {head, body},
Ll = U X B U X H U { #} where X E V, the set of nonterminals. Let Xl, X 2, ... be the occurrences
of the nonterminal X on the left-hand side of the context-free production rules which are called a
left occurrence of X. The set of all left occurrences of X is written as XB. Similarly, XH is the set
of all right occurrences. Consequently, each rule of the Context-Free Grammar can be rewritten
by replacing each occurrence of a nonterminal symbol by the indexed one, so that every X. and
X· - subscript and superscript asterisk represents appropriate indices - appears only once in all
the production rules in P - which states a necessary prerequisite for CDGs.

The constraint C1 is a conjunction of the following conditions (x and yare universally quanti
fied) :

(1) (Lexical)
(rid(x) = head&word(x) = a ~ 3 a rule p: (p) X o• ~ aXiX;' . .x;.(O ~ m)&lab(x) = X o.).

(2) (head-role - body-role consistency)
(pos(x) = pos(y)&rid(x) = head&rid(y) = body&lab(x) = X. ~ lab(y) E xR U {#}) .

(3) (Loop)
«rid(x) = head&rid(y) = body&mod(x) =pos(y)&lab(x) = X o.&3 p: (p) Xo• ~ aX;Xz ... X;'
~ pos(x) < pos(y)&lab(y) = X;') &
(rid(x) = body&lab(x) = X;&rid(y) = body&mod(x) = y (2 ~ i ~ m)
~ posey) < pos(x)&lab(y) = Xt-J&
(rid(x) = body&lab(x) = Xi&rid(y) = head&mod(x) = y ~ posey) < pos(x)&lab(y) = Xo.)).

(4) (Terminal)
(rid(x) = head&lab(x) = X.&3 p: (p) X ~ a ~ mod(x) = nil).

(5) (start symbol)
«rid(x) = head&pos(x) = 1 ~ lab(x) = S.)&
(rid(x) = body ~ (pos(x) = 1 ¢:} lab(x) = # ¢:} mod(x) = nil))).

(6) (no crossing)
«(pos(x) < posey) < mod(x) ~ pos(x) ~ mod(y) ~ mod(x))&
(pos(x) < mod(y) < mod(x) ~ pos(x) ~ posey) ~ mod(x))&
(mod(x) < posey) < pos(x) ~ mod(x) ~ mod(y) ~ pos(x))&
(mod(x) < mod(y) < pos(x) ~ mod(x) ~ posey) ~ pos(x))).

(7) (uniqueness of modifiee with the same label)
(mod(x) = mod(y) ~ x = V).

For an illustration of rule (3) see figure 1. This construction together with rule (6) and (7) filters
only correct parse trees.

4The proof can probably be modified to work for an arbitrary Context-Free Grammar according to the Earley
parser [Earley 70) . However, the test to check for complete derivations, i.e. completion, is more complicated .

5Since the two roles annotate a unique node during constraint satisfaction no argument position is necessary for
the individual roles .

6This constraint preserves the property that a derivation tree without any crossing of edges is produced.

41

a: S

NpAVP

I I
N

{31,1 := {31: NP

AD0NP

v

p NP V N

I
N

p NP

I
N

{32: NP

NpApp

pANP

I
N

v N , PPrV

A
p NP

I
N

{32,1 replacing (32: PPr

P~PPr
I
N

Figure 2: The transformation of an example grammar

tree. Consequently, the degree is 3. But note that the arity remains 2.
In the TAG formalism, only specific context-free rules can be combined. Therefore, the con

clusion in subformula (2) is restricted in the following way:

1. (lab(y) = Xi &tree(y) = x) if X. and Xi both refer to the same node in the same elementary
tree, i.e. two neighboring context-free rules have been identified.

2. (lab(y) = Xi) if j refers to a foot node in the TAG, i.e. an adjoining interrupts the testing
for a complete elementary tree. This is expressed by leaving the tree role undetermined.

Subformula (3) is extended to relate all tree roles in the same way as head and body are treated.
So, the restriction that each element must have a tree modifier (subformula (11)) is always satisfied
inside a context-free rule. Additionally, the following rules are required:

(8) «rid(x) = head&lab(x) = X k where k refers to the root of an auxiliary tree)&(rid(y) = body
&lab(y) = xm where m refers to the foot node of the same auxiliary tree) => tree(x) = V).

(9) (pos(x) = pos(y)&rid(x) = body&lab(x) = Xk&rid(y) = head&lab(y) = Xm where m refers
to the root node of an auxiliary tree => tree(x) = tree(y)).

(10) «rid(x) = body&lab(x) = X k where k does not refer to the foot node of an auxiliary tree)
&(rid(y) = head&lab(y) = Xm where k and m refer to the same node in an elementary tree
=> tree(x) = V).

(11) All tree links are nested and there exists exactly one tree modifier for each element.

43

These - locally overgenerating - constraints organize the TAG derivation in the following
manner. If the derivation consists of an initial tree without adjoinings, sub formulae (2) and (3) can
only relate the tree roles all over the system as if a depth-first left-ta-right parser would operate.
Iff an adjoining occurs (second alternative of subformula (2)) the foot node remains without a tree
role. All pointers inside the auxiliary tree realize the "shake-hand" according to (2) until the root
node is reached or further adjoinings are detected which prevent the "shake-hand" of the body
and the head. Subformula (8) hypothesizes all candidates for a complete adjoining. Subformula
(9) represents that an adjoining - as detected in (8) - can be ignored. Subformula (10) tests
whether there exist subtrees of "interrupted" elementary trees (i.e. heads which can combine with
bodies not directly neighboring in the derivation tree). The final subformula restricts the existing
hypotheses, which allow for mixing parts of different subtrees, by strictly nesting tree modifiers
and by making them unique in the same manner it is stated for mod. Since it is intuitively clear
that the treatment of the tree role stretches the "shake-hand" of the body - head identification in
subformula (2), exactly a TAG derivation is stipulated by the system described above. In figure 3
the application of these rules during the identification of an adjoining in a TAG-derivation tree is
illustrated.

Figure 3: Tree links in a TAG-derivation tree

Consequently, each TAG can be transformed into a CDG and runs the constraint satisfaction
process described in [Maruyama 90a] which has a time complexity of O(n4). Up to now, this
result could not be proven for a direct TAG parser. As mentioned in the final section, it is an
open question whether the increasing number of rules resulting from transforming the TAG into
Greibach-Normal Form would undermine the better runtime.

4.4 A CDG for L-6
Here it is shown that CDGs are more powerful than TAGs. In the following, a CDG for L-6 =
anbncndnen r (n2: 1) is described.

Let us consider G2 = (T2, R2, L2, C2) where T2 = {a,b,c,d,e,J}, R2 = {partner}, L2 =1.
The constraint C2 is a conjunction of the following conditions (x and yare universally quantified) :

(1) (word(pos(x)) = a =:> word(mod(x)) = J&pos(x) < pos(mod(x))) ,
i.e. the partner of a is f and f follows a.

(2) (word(pos(x)) = b => word(mod(x)) = e&pos(x) < pos(mod(x))).
(3) (word(pos(x)) = c => word(mod(x)) = d&pos(x) < pos(mod(x))).
(4) (pos(x) < pos(y) < mod(x)&word(x) E {a,b,c} => pos(x) < mod(y) < mod(x)),

i.e. only nested partner links pointing from the left to the right can occur.
(5) (mod(x) = mod(y) => x = y), i.e. partner link are unique.
(6) (word(pos(x)) = f =:> word(mod(x)) = e,pos(mod(x)) < pos(x)).
(7) (word(pos(x)) = e =:> word(mod(x)) = d,pos(mod(x)) < pos(x)).
(8) (word(pos(x)) = d => word(mod(x)) = c,pos(mod(x)) < pos(x)) .
(9) (mod(x) < pos(y) <pos(x)&word(x) E {d, e, J} => mod(x) < modty) < pos(x)).

44

Since here is not the space to show the formal proof we give an intuitive idea why exactly
L-6 is generated. Subformulae (1) - (3) relate a and f, band e, and c and d, respectively. (4)
stipulates that all partner links stated in (1) - (3) must be nested. According to constraint (5), a
unique structure results. However, the a's, b's and c's remain unordered. Their ordering is realized
by the constraints (5) - (9). (5) - (8) associate f and e, e and d, and d and c, respectively.
Furthermore, the modifiee must occur to the left of the element. Constraint (9) stipulates crossed
links here. Consequently, 1-6 is the only language satisfying all constraints.

Obviously, the control of further pairs of terminals in front of a or between c and d can easily
be stated. So, a CDG of arity 2 can produce language of the form ar ... a~m' ai E T.

5 Final Discussion
In the paper, we have demonstrated that each TAG can be translated into an equivalent CDG.
The other direction does not hold because CDGs are more powerful than TAGs. Consequently,
TAGs can indirectly be parsed in 0(n4). The implementation of the constructive proof described
in section 4 should answer the open question how much does the grammar constant (which is
assumedly cubic after transforming the TAG in Greibach-Normal Form) influence the average
runtime of a parser running the constraint-satisfaction algorithm described in [Maruyama 90a] in
comparison to a direct TAG parser.

The example in section 4.4 reminds of the class of set-local Multi-Component TA Gs (MC- TA G)
in Weir's dissertation. But is remains an open problem how powerful CDGs are.

References
[Becker 93] T. Becker. HyTAG: A New Type of Tree Adjoining Grammars for Hybrid Syntac

tic Representation of Free Word Order Languages. PhD thesis, University of the Saarland,
Saarbriicken/Germany, 1993.

[Doran et al. 94] C. Doran, D. Egedi, B.A. Hockey, B. Srinivas, M. Zaidel. XTAG System - A
Wide Coverage Grammar for English. In the Proceedings of the 15th COLING, Kyoto/Japan,
1994.

[Earley 70] J. Earley. An efficient context-free parsing algorithm. Communications of the Associ
ation for Computing Machinery, 13(2):94-lO2, 1970.

[Guan 92] Y. Guan. A 0(n5) recognition algorithm for coupled parenthesis rewriting systems.
In A.K. Joshi, editor. Proceedings of the 2nd International TAG+ Workshop , Philadelphia,
PA/USA, 1992.

[Hopcroft, Ullman 79] J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, Massachusetts/USA, 1979.

[Joshi 83] A. K. Joshi. Factoring recursion and dependencies : An aspect of Tree Adjoining
Grammars (TAG) and a comparison of some formal properties of TAGs and GPSGs and
PLGs and LFGs. In Proceedings of the 21st ACL, Cambrigde, MA, pp. 7-15, 1983.

[Joshi et al. 75] A .K. Joshi, S. Levy, M. Takahashi . Tree Adjoining Grammars. Journal of Com
puter and Systems Science, 6(2):272-284, 1975.

[Kroch, Joshi 85] T . Kroch A.K. Joshi. Linguistic relevance of Tree Adjoining Grammars. Tech
nical report, Philadelphia, PA/USA, 1985. MS-CIS-85-16.

[Maruyama 90a] H. Maruyama. Structural Disambiguation with Constraint Propagation . In the
Proceedings of the 28th Annual Meeting of the Association for Computational Linguistics
(ACL-90), Pittsburgh, Philadelphia/USA, 1990.

[Maruyama 90b] H. Maruyama. Constraint Dependency Grammar. Research Report RT0044,
IBM Research, Tokyo Research Laboratory, Tokyo/Japan, 1990.

[Schabes 90] Y. Schabes. Mathematical and Computational Aspects of Lexicalized Grammars. PhD
thesis, Philadelphia, PA/USA, 1990.

[Vijay-Shanker, Joshi 85] K. Vijay-Shanker, A. K. Joshi. Some computational properties of Tree
Adjoining Grammars. In Proceedings of the 23rd ACL, Chicago, IL/USA, pp. 82-93, 1985.

45

Compositionality: Similarity versus Interpretability

Herman Hendriks
Utrecht Institute of Linguistics OTS

'frans 10, 3512 JK Utrecht, The Netherlands
+31-(0)30-2536183 (phone)

Herman.Hendriks@let.ruu.nl (e-mail)

Abstract

The present paper studies the general implications of the principle of compo
sitionality for the organization of grammar. It will be argued that Janssen's
(1986) requirement that syntax and semantics be similar algebras is too
strong, and that the more liberal requirement that syntax be interpretable into
semantics leads to a formalization that can be motivated and applied more
easily, while it avoids the technical complications that encumber Janssen's
formalization. Moreover, this alternative formalization even allows one to fur
ther 'complete' the formal theory of compositionality, in that it is capable
of clarifying the role played by model-theoretic interpretation and meaning
postulates, two aspects that received little attention in Janssen (1986) and
Montague (1970).

In its most general form, the principle of compositionality states that 'the meaning
of an expression is a function of the meanings of its parts and of the way they
are syntactically combined' (Partee 1984, p. 281). In other words: the meaning
of an expression is determined completely by the meanings of its parts plus the
information which syntactic rules have been used to build that expression out of
those parts. The principle is also known as 'F'rege's principle', but this attribu
tion is at best a tribute according to Janssen (1986), who gives a formalization
of the principle which is based on Montague's paper 'Universal Grammar' (1970).
Janssen's formalization and the framework defined in Montague (1970) are, roughly
speaking, 'different views of the same mathematical object' (Janssen 1986, Part I,
p. 91). The main difference is that Janssen employs many-sorted algebras, whereas
Montague uses one-sorted algebras (though with much additional structure). As a
consequence of this, Janssen's approach has various advantages (see Hendriks 1993,
p. 136). The term 'many-sorted algebra' stems from Adj (1977). We define the
notion as follows: l

(1) «As)sES, (F-Y)-YEr) is a many-sorted algebra of signature 11" (1I"-algebra) iff
(a) S is a non-empty set (of sorts);
(b) (A')sES is an indexed family of sets (As is the carner of s);
(c) r is a set (of operator indices);
(d) 11" (the type-assigning /unction) assigns to each 'Y Era pair

«SI, ••• , sn), Sn+l), where n > 0, SI E S, ... , Sn+l E S; and
(e) (F-Y)-YEr is an indexed family (of operators) such that if

11"("{) = «S1' ... , sn), Sn+l}, then F-y : ASI x ... x ASn -+ ASn +1 '

To cut a long story short, Janssen argues that the compositionality principle dic
tates the following: (A) the syntax is a 1I"-algebra A = «AS)SES, (F1')1'Er) with

lOur terminology deviates from Janssen (1986), where a pair «A.)'ES, (F-y her-) meeting the
requirements in (1) is called a 'many-sorted algebra of signature (S, r, 7r)' (1986, Part I, p. 43).

46

generating family H = (Hs)sES; (8) the semantic domain is an w-algebra M =
(Mt)tET, (G.s).sE~) such that for some a: S -t T and p: r -t 6.: A is (a, p)-similar
to M; and (c) meaning assignment is a (a, p)-homomorphism from T A,H, the term
algebra of A with respect to H, to M.

Ad (A): S is the set of syntactic categories and for each S E S, the set As is the
set of expressions of category s. r is the set of syntactic operator" indices and for
each'Y E r, syntactic operator F-y of type 7r(-y) = «s}, ... , sn), Sn+1) is some total
function ASI X ... X Asn -t A Sn +1 that yields a compound expression an+l of category
Sn+1 for every sequence a1, ... ,an of expressions of respective categories S1, ... ,Sn'
And for each S E S, the set Hs is the set of non-compound (lexical) expressions of
category s. Ad (8): T is the set of semantic types and for each t E T, the set M t
is the set of semantic objects of type t. 6. is the set of semantic operator indices
and for each fJ E 6., semantic operator G.s of type w(fJ) = ((tl, ... ,tn),tn+1) is
some total function Mtl x ... x Mtn -t Mtn+1 that yields a semantic object mn+l

of type tn+1 for every sequence m1, ... ,mn of semantic objects of respective types
ml,' .. ,mn. Algebra A and M are (a, p)-similar iff a and p are bijections a : S -t T
and p : r -t 6. such that for all 'Y E r: if 7r('Y) = ((SI' ... ,sn), Sn+1), then w(p('Y)) =
«a(sd, ... ,a(sn),a(sn+1)' Ad (c): the term algebraTA,H of A with respect to H
is invoked on account of the phenomenon of (non-lexical) ambiguity, which entails
that one cannot in general speak of the meaning of an expression, but only of the
meaning of an expression relativized to a certain so-called derivational history. The
carriers TA,H,s of this term algebra TA,H = (TA,H,s)sES, (F:{)-YEr) of signature 7r
consist of symbols which can be seen as representations of the derivational histories
of the expressions of the generated syntactic algebra. Finally, the requirement that
meaning assignment be a (a, p)-homomorphism from T A,H to M means that it has
to be a function f : USES TA,H,s -t UtET M t such that (i) f respects the sorts
in that for all s: J[TA,H,sl ~ MIT(s); and (ii) f respects the operators: if 7r(-y) =
«S1, ... ,Sn),Sn+1) and T1 E TA,H,8p ... ,Tn E TA,H,8n ' then f(F-y(Tl, ... ,Tn)) =
Gp(-y) (f(Td, ... , f(Tn)).

In this paper we will argue that the above formalization of the compositionality
principle is largely correct-except, however, for a seemingly minor point which will
turn out to have rather far-reaching ramifications. We will show that these compli
cations can be solved by replacing the requirement of (a, p)-similarity between the
syntactic algebra A and the semantic algebra M by the requirement that the syn
tactic algebra A be (a,p)-interpretable in the semantic algebra M, by which we will
mean that a and p have to be functions (and not necessarily bijections) a : S -t T
and p : r -t 6. such that for all 'Y E r: if 7r(-y) = «SI,"" sn)s, sn), Sn+1), then
w(p(-y)) = ((a(sd, ... , a(sn)' a(Sn+1)' We will defend this claim by arguing that
(a, p)-similarity is too strong from the point of view of explicating the intuitive idea
of compositionality, but that, on the other hand, (a, p)-interpretability is a notion
that can be motivated in this way. Besides, the fact that bijections are functions
entails that a 7r-algebra A is (a, p)-interpretable in w-algebra M whenever A and
M are (a, p)-similar (the converse does not hold, however). Thus (a, p)-similarity is
stronger than (a, p)-interpretability, so that the latter notion is more easily applica
ble in principle. In fact, the requirement that the domains of syntax and semantics
constitute similar algebras does lead to actual problems of applicability, since in
practice it is generally not the case that there are bijections a : S """"* T from the
syntactic categories to the semantic types and p : r -t 6. from the syntactic op
erator indices to the semantic operator indices that are respected by the meaning
assignment homomorphism. Usually, the syntactic and the semantic algebra fail
to be (a,p)-similar, since (a) some semantic types do not correspond to syntactic
categories (so that a is not surjective); (b) different syntactic categories correspond
to one and the same semantic type (so that a is not injective); (c) some semantic
operators do not figure as the counterpart of a syntactic operator (so that p is not

47

surjective); and/or (d) different syntactic operators correspond to one and the same
semantic operator (so that p is not injective). Moreover, as will be shown below,
if a formal logical language is used as an auxiliary translation language, syntactic
operators may correspond to semantic operators that-though definable in terms of
the operators of the semantic algebra-are themselves not actually present in the
semantic algebra (so that p is not even a function).

In order to bridge such gaps of dissimilarity between algebras, Janssen invokes
the notion of a 'safe deriver'. This notion is introduced in the course of giving
a definition of a Montague grammar, which, in its most simple form, consists of a
many-sorted algebra and a homomorphic interpretation. However, 'one always uses,
in practice, some formal (logical) language as auxiliary language, and the language
of which one wishes to define the meanings is translated into this formal language.
Thus the meaning assignment is performed indirectly. The aspect of translating
into an auxiliary language is, in my opinion, unavoidable for practical reasons, and
I therefore wish to incorporate this aspect in the definition of a Montague grammar'
(Janssen 1986, Part 1, p. 81). This definition is given in (2), and the situation can
be sketched as in (3) (cf. Janssen 1986, Part 1, pp. 75 and 82):

(2) A Montague grammar consists of:

(3)

a syntactic 7r-algebra A = «(As)sES, (F'Y)."YEr) generated by H = (Hs)sEs;
a logical w-algebra B = «(Bt)tET, (K.s)OE6);
a semantic w-algebra M = «(Mt)tET, (Go).sE6) similar to B;
an interpretation homomorphism I from B to M;
an algebra D(B) similar to A, where D is a safe deriver; and
a translation homomorphism tr from TA,H = «(TA,H,s)sES, (F';)'YEr), the
term algebra of A with respect to H, to D(B).

B =>
.,l.I
M =>

TA,H
.,l. tr
D(B)
.,l.I
M'

In general, a deriver D is a function from algebras to algebras: 'a method to ob
tain new algebras from old ones', and a deriver D is safe for algebra P iff for all
algebras Q and all surjective homomorphisms I from P to Q there is a unique
algebra Q' such that for the restriction I' of I to D(P) it holds that I' is a sur
jective homomorphism from D(P) to Q' (Janssen 1986, Part 1, p. 76) .2 Janssen's
deriver D is the composition of four basic derivers, viz., AddOp, AddSorts, DelOp
and DelSorts,3 which, by adding operators, adding sorts, deleting operators, and
deleting sorts, respectively, transform the logical algebra B into an algebra D(B)
= DeISorts(DeIOp(AddSorts(AddOp(B)))) which is similar to the syntactic alge
bra A. As regards the question whether is it really necessary to incorporate this
laborious process of deriving a similar algebra D(B) in four steps from the original
logical algebra B into the general definition, it can be noted that Janssen empha
sizes repeatedly that the possibility of a homomorphism presupposes similarity: 'A
mapping is called a homomorphism if it respects the structures of the algebras in
volved. This is only possible if the two algebras have a similar structure.' (Janssen

2Janssen offers no arguments why this should define the safeness of a deriver. The only motiva
tion given is the following: 'The requirement that I' is a surjective homomorphism is important .
If we would not require this, then Q' would in most cases not be unique. An extreme example
arises when D(P) is an empty algebra. Then there are infinitely many algebras Q' such that I' is
a homomorphism from D(P) to Q/, but only one such that I' is a surjective homomorphism from
D(P) to Q'.' (Janssen 1986, Part I, p. 76).

3In fact, the deriver DelSorts replaces the more complicated and problematic deriver SubAlg
actually proposed by Janssen (see Hendriks 1993, p. 162, for motivation) .

48

1986, Part 1, pp. 21-22; see also pp. 67-70). Nevertheless, it can also be observed
that if, instead of similarity, interpretability is assumed, we are done in one step:
we only need to consider the addition of operators to the logical algebra.

With respect to this aspect of deriving a new syntactic algebra from the syntac
tic algebra of the logical language, Janssen notes: 'In one respect this attempt [to
formalize the compositionality principle] probably has not been successful: the de
scription of how to obtain new algebras out of old ones. There is no general theory
which I could use here, and I had to apply ad hoc methods.' (Janssen 1986, Part
1, p. 42; see also p. 83). Contrary to this, however, we feel that the appropriate
conclusion to be drawn is that the very notion of a 'safe deriver' is ad hoc, since
it is an artefact created by the requirement of similarity-a requirement which, as
we pointed out above, is itself undermotivated in view of the conditions imposed
by the compositionality principle. Accordingly, we will now show that the addition
of operators to the logical algebra is not, as Janssen puts it, the 'most important'
deriver, but the only 'deriver' that has to be taken into account at all.

The basic idea of using a formal logical language as an auxiliary translation
language is simply that a term in the term algebra of the generated syntactic alge
bra is indirectly assigned the interpretation I.({3) of the expression {3 of the logical
language that serves as the translation of the term. Thus, each syntactic term t
is associated with a unique translation tr(t), and this translation induces the in
terpretation I.(tr(t)): 'the principal use of translations is the semantical one of
inducing interpretations' (Montague 1970, p. 232). For such an indirect interpreta
tion assignment to be compositional, the composition tr 0 I. of the translation and
interpretation step has to be a homomorphism, i.e., a function, which entails that
the logical language must be unambiguous. Therefore, the generated algebra of a
logical language is as a rule a free algebra.4

Furthermore, formal logical languages usually have a model-theoretic interpreta
tion, which means that their interpretation homomorphism I. is defined pointwise:
on the basis of a class5 M of models for the logical language, the interpretation of
logical expressions {3 is specified by separately defining inm ({3) for each m EM.
Of course, the point of this model-theoretic set-up is that an expression can have
different interpretations in different models: there is not in general a single object
that serves as the interpretation of an expression {3 in all models m. Consequently,
in order to be able to talk about 'the' interpretation I.({3) of an expression {3, one
has to incorporate the models into the concept of interpretation: I.({3) is that func
tion from models to interpretations in models such that I.({3)(m) = inm({3) for all
mEM.

Translations tr(t) of terms t in the term algebra TA,H = ((TA,H,s)sES, (Fn"YEr)
of the generated syntactic algebra are defined by providing a mapping tr which
(i) associates each term t that corresponds to a generator h of category s in the
syntactic algebra with some expression of type O"(s) in the logical algebra B =
((Bt)tET, (K.s).sEt..); and (ii) associates each term algebra operator F:{ of type

4In conformity with L.T .F. Gamut's adage that 'Logical languages wear their meanings on their
sleeves' (p.c.).

SHere the word 'class' is used deliberately rather than 'set', since the collection of models for
a logical language is generally not a set in the sense of axiomatic set theory. In typed logic, for
instance, each non-empty set E gives rise to a distinct domain DE,e, so that there are at least
as many frames-and, consequently, models-as there are (non-empty) sets. This means that the
collection M of models is too large to be countenanced as a set: it is a proper class. Moreover, if M
is a proper class, then the interpretations I(fJ) that will be defined below must be proper classes as
well: these collections contain for all m E M exactly one ordered pair (m, a) and are, hence, just as
large as M. Finally, proper classes do not correspond to set-theoretical objects, so they cannot be
constituents of sets and ordered pairs (which are a special kind of sets) . Therefore, also the notions
<I>~, KI, It, Sand S', which will be defined below in terms of I(fJ), do not necessarily correspond
to sets. The use of calligraphic letters for these notions is meant to visualize the set-theoretical
proviso of the present footnote.

49

«Sl,"" Sn), Sn+l) with some function <1>')' : Bu(s.) x ... X Bu(sn) -t BU(Bn+.) ,

whereby tr(F.'{(t1,"" tn)) is defined as <I>')'(tr(t1), ... , tr(tn». It is worth mention
ing that the logical algebra is usually exploited 'at a higher level' in the process of
translation. Thus, terms corresponding to generators of the syntactic algebra need
not be translated into generators of the logical algebra. And, more importantly, the
functions <1>')' associated with the operators F.'{ of the term algebra do not necessar
ily coincide with the operators Ko that are actually present in the logical algebra.
Let <1>')' : Bu(s.) x ... X Bu(sn) -t Bu(sn+d be such a function. Define <I>~, the relation
I-induced by <1>,)" as the class {((I(.Bd, ... ,I(.Bn»), I(.Bn+l») I «.B1, ... ,.Bn), .Bn+l) E
<I> ')' }, and call a function <1>')' I-Junctional iff <I>~ is a function. 6 Moreover, let It =
{I(.B) I.B E Btl, where B = «Bt)tET, (Ko)oEA) is the logical algebra. Of course, for
all c5 E ~, Ko is I-functional, so that I is a (surjective) homomorphism from B to the
semantic algebra S = «It)tET, (K])OEA). As for the compositionality of an indirect
interpretation assignment in terms of a translation homomorphism tr from the syn
tactic term algebra TA.H = «TA.H .•)sES, (F.'{)')'Er) to the 'derived' logical algebra
B' = «Bt)tET, (<1>')')')'Er) and an interpretation homomorphism I from the logical
algebra B = «BdtET' (KO)OEA) to the semantic algebra S = «It)tET, (KO)OEA),
note that the structure S' = «It)tET, (<1>~)')'Er) is an algebra-and I, consequently,
a homomorphism from B' to S'-if and only iffor all 'Y E r, <1>')' is I-functiona1.7 As
the composition of two homomorphisms is again a homomorphism, we know then
that troI is a homomorphism from TA.H to S'.

This raises a question: which operators <1>')' : Btl x ... x Btn -t B tn+ l are
I-functional, given a homorphism I from logical algebra B = «Bt)tET, (KO)OEA)
to semantic algebra S = «It)tET, (KD6EA)? A partial answer to this question is
that the class of operators that are I-functional for all I includes the polynomial
operators over the algebra B. The class of polynomial operators over B consists of
elementary operators-projection functions and constant functions-plus operators
that are definable as compositions of these elementary operators and the operators in
(KO)OEA. On the other hand, it is also obvious that for a particular homomorphism
I from the logical algebra B to a specific semantic algebra S, there are always
non-polynomial I-functional operators.

Nonetheless, there are good reasons for disregarding operators over the logical
algebra B that are only I-functional for some homorphism I. For even though
formal logical languages B usually come with a particular class of models M which
determines a specific semantic algebra S and homorphism I from B to S, 8 this
is generally not the class of models in which the translations of the expressions in
the syntactic term algebra are interpreted. Most Montague grammar fragments
contain a set MP of so-called meaning postulates, sentences of the logicallanguage9

which are intended to reduce the class M of all models to the subclass M MP

of models in which all meaning postulates in MP are true (or valid, in the case

6I.e., iff there are no ((EI, .. . ,En),e") E cI>~ and ((E~, ... ,E~),E') E cI>~ with (q, .. . ,En) =
(E~, ... , E~) and E :f. E'.

7Strictly speaking, it is not the cI>1' : B"(8d X ••• x B"(8n) -t B"(8 n+d themselves, but
their restrictions cI>1'ltr = cI>1' n ((tr[TA.H.81] x . . . x tr[TA.H.8nJ) x tr[TA.H •• n+lJ) which must
be I-functional for tr oI to be a homomorphism. But in view of the fact that every I-functional
cI> : tr[TA.H.Sl]x ... x tr[TA.H.sn] -t tr[TA.H"n+l] can be extended to an I-functional cI>' : B"('Il x
... x B,,(sn) -t B"(8n+Il (simply avoid non-equivalent values for equivalent arguments outside
tr[TA.H"ll x .. . x tr[TA.K •• n]), there is for every non-I-functional cI>1' : B,,(.tl x ... x B"('n) -t
B"('n+Il with I-functional cI>1'ltr an I-functional cI>; : B"(8Il x ... x B"(8n) -t B,,(s,,+d such
that cI>;ltr = cI>1'ltr. The latter entails that an algebra B' = ((Bt}teT,(cI>1'her) that mediates
in an indirect interpretation homomorphism tr. I can always be replaced by an algebra B" =
((Bt}t€T, (cI>;her) in which all operators are I-functional.

8There is, however, some latitude here. E.g., typed logics have 'standard' as well as 'generalized'
models, etc.

9Given their function of reducing the class of models, for that matter, it does not even seem
essential that meaning postulates are expressions of (or expressible in) the logical language.

50

of intensional logics). The interpretation I(13) of logical expressions 13 is reduced
accordingly: I MP (13) = {(m, inm (/3)) 1m E MMP}. Let It MP = {IMP(a) I a E
Bd. Then I MP can be construed as a homomorphism from the logical algebra B
to the semantic algebra SMP = (ItMP)tET, (KI

MP
)6Et.). The addition of meaning

postulates affects the class of I-functional operators in a fairly inscrutable manner:
given an initial homomorphism I and some set MP of meaning postulates, the I MP_
functionality of an operator over a logical algebra B cannot be predicted from its I
functionality.lO Hence it is a safe strategy to allow only those operators over B which
are I-functional for all homomorphisms I. We noted above that the class of these
universally I-functional operators always includes the polynomial operators over the
logical algebra B. Moreover, for the languages of typed logic which are commonly
used in Montague grammar fragments and whose syntax constitutes a free algebra
B in which each type contains infinitely many generators (viz., the variables of that
type), it can be shown that the polynomial operators over B actually exha~st the
class of universally I-functional operators. l1 Let the polynomial closure lI(B) of
B = (Bt)tET, (K6)6Et.) be the algebra (Bt)tET, POLB}), where POLB denotes
the set of polynomial operators over B. When we incorporate the restriction to
universally I-functional-Le., polynomial---operators, we eventually arrive at the
situation sketched in (4):

(4) TA,K

.t. tr
B lI(B)

.t.I tIMP

S lI(SMP)

Summing up, the main advantage of the picture sketched in (4) over the approach
outlined in (3) above seems to be that there is no need for a separate process of
explicitly deriving algebras. On the one hand, there is a model-theoretically inter
preted logic which determines the translation algebra. On the other hand, there is
a grammar fragment consisting of a syntactic algebra, a translation homomorphism
from its term algebra to the translation algebra, and a set of meaning postulates.
Given the grammar fragment, both the interpretation algebra and the interpretation
epimorphism from the translation algebra to the interpretation algebra are induced
automatically. This makes the relationship between the grammar of our fragment
and the logic that we use in specifying its semantics not only more perspicuous, but
also more general: there is no need to readjust our logical tools to every fragment in
which we may wish to employ them, in keeping with Montague's idea, who 'viewed
the use of an intermediate language as motivated by [... J the expectation (which
has been amply realized in practice) that a sufficiently well-designed language such
as his Intensional Logic with a known semantics could provide a convenient tool for
giving the semantics of various fragments of various natural languages' (Partee and
Hendriks 1997, p. 24).

IOSome results in this area can be distilled from Van Benthem (1980), Section 3.
II A proof of this result which originates from F. Wiedijk is presented in Appendix 1 of Janssen

(1986, Part I, pp. 189-192) (cf. Van Benthem (1980), footnote 7, for a one-sorted counterpart).
It can be noted that an operator 4>1' over algebra B is universally I-functional iff the deriver
AddOp[{4>1'} J is safe for B in the sense of the definition quoted above, but that, contrary to what
Janssen's motivation for safeness (see footnote 2 above) expresses, it is not so much the uniqueness
as the existence of the algebra Q' which is at stake.

51

References

• Adj (J.A. Goguen, J .W. Thatcher, E.G. Wagner, J.B. Wright) (1977). 'Initial Algebra
Semantics and Continuous Algebras'. Journal of the Association for Computing Machinery
24,68-95.
• Benthem, J . van (1980). 'Universal Algebra and Model Theory. Two Excursions on the
Border.' Report ZW-7908. Department of Mathematics, Groningen University.
• Gamut, L.T.F. (1991). Logic, Language and Meaning. Volume I: Introduction to Logic.
Volume II: Intensional Logic and Logical Grammar. University of Chicago Press, Chicago
and London.
• Hendriks, H. (1993). Studied Flexibility. Categories and Types in Syntax and Seman
tics. ILLC Dissertation Series 1993-5. Institute for Language, Logic and Computation,
University of Amsterdam.
• Janssen, T. (1986). Foundations and Applications of Montague Grammar. Part 1:
Philosophy, Framework, Computer Science. Part 2: Applications to Natural Language.
CWI Tracts 19 and 28, Amsterdam.
• Montague, R . (1970). 'Universal Grammar'. Theoria 36, 373-398. Page references
concern the reprint as Chapter 7 ofR. Thomason (ed.) (1974), Formal Philosophy. Selected
Papers of Richard Montague . Yale University Press, New Haven.
• Partee, B. (1984). 'Compositionality'. In F. Landman and F. Veltman (eds.) (1984),
Varieties of Formal Semantics. Proceedings of the Fourth Amsterdam Colloquium. Foris,
Dordrecht.
• Partee, B., and H. Hendriks (1997). 'Montague Grammar'. Chapter 1 in J. van Benthem
and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier Science Publishers,
Amsterdam, 5-92.

52

A Dependency-based Approach to
Bounded & Unbounded Movement

1 Introduction

Mark Hepple

Dept. of Computer Science
University of Sheffield

Regent Court, Porto bello Street
Sheffield Sl 4DP, UK

hepple@dcs.shef.ac.uk

This paper addresses the treatment of movement phenomena within multimodal categorial,
or type-logical, grammar systems. Multimodal approaches allow different modes of logical
behaviour to be displayed within a single system. Intuitively, this characteristic corresponds
to making available different modes of linguistic description within a single formalism. A
key benefit of taking a multimodal approach is that it allows us to choose, for any linguistic
phenomenon addressed, a level of description that encodes only the aspects of linguistic
structure that are relevant to the treatment of that phenomenon. In practice, this means
that we may lexically encode linguistic information which is relevant to one phenomenon
but not another, but can discard such information where it is not needed. This characteristic
means that the analysis of each phenomenon need focus only on relevant distinctions, allowing
analyses to be simpler and more elegant.

In this paper, we are concerned particularly with how locality constraints on movement
should be handled, both for bounded and unbounded movement cases. A central claim of the
paper is that the treatment of such locality conditions requires representations that encode
dependency (i.e. head-dependent distinctions).

2 Multimodal Categorial Grammar

The multimodal categorial approach used here makes available multiple modes of construction,
realised in syntax via different product operators 00: (each with associated implicationals1 ~,
t:-), whose behaviour reflects the axioms (e.g. associativity) governing the corresponding
operator in the underlying interpretive semantics. Further axioms allow interaction between
modes (e.g. x 0i (y OJ z) = (x 0i y) OJ z), and 'linkage' (e.g. x 0i Y ~ X OJ y), i.e. movement
from one mode to another. Axioms divide into three classes: (i) mode internal axioms, which
involve only a single modality, e.g. the familiar associativity axiom XOi (yoiZ) = (XOiY) 0iZ; (ii)
interaction axioms, involving more than one modality, e.g. XOi(YOjZ) = (XOiY)OjZ; (iii) linkage

IThese 'associated implications' correspond to the connectives that are typically notated as \ and rin
familiar categorial systems such as the associative Lambek calculus, which is a unimodal system having a
single associative product operator (typically notated as .).

53

or inclusion axioms, allowing movement from one mode to another, e.g. x 0i Y ~ X OJ y.2
Intuitively, the move from one mode to another allowed by a linkage axiom is akin to movement
from one description of a linguistic object to an alternative, less informative, description.

We adopt a labelled natural deduction formulation, employing inference rules (1-3) below.3

Labelled formulae take the form: m I- A: s, with A a type, s a 'semantic' lambda term, and
m a marker term, the latter being a structured object built up as deduction proceeds, that
records information used in ensuring appropriate structure sensitivity in deduction. Hence this
system is an instance of a labelled deductive system (Gabbay [2]). In linguistic derivations,
lexical assumptions have lexically provided marker and semantic components (loosely, the
word's 'string' or 'phonology' and its meaning). In all other assumptions (i.e. any additional
assumptions, used in hypothetical reasoning, that are eventually discharged), these terms are
a simple variable. The role of marker terms here, in recording the proof's significant structural
information, closely parallels that of structured configurations of types in various sequent and
natural deduction logical formulations, but differing perhaps in that they provide a somewhat
more concise/readable representation of the proof's significant structural information. In a
linguistic context, a marker may be viewed as providing a description of the linguistic structure
of the object derived.

(1) sI-A~B:a tl-B:b
---------~E

(s 0", t) I- A: (a b)

(2) tl-B :b sI-B~A:a
--------~E

(t 0", s) I- A : (a b)

(3) [v I- B : v],[w I- C: w] t I- Bo",C: b

s[(vo", w)]1- A:a
--------------------o"'E

s[t] I- A: [b/(v 0 w)].a

[v I- B : v]
(so",v)I-A:a
-----~l
s I- A~B : Av.a

[v I- B : v]
(vo",s)I-A:a
-----~I
s I- B~A: Av.a

sl-A :a tl-B :b
-------0"'1

(s 0", t) I- Ao",B : (a, b)

AdditIOnal structural rules, which directly reflect axioms of the underlying semantics, act to
modify the form of the marker and thereby affect the derivability relation. For example, the
associativity rule [a] in (4), which mirrors the associativity axiom (xoi(yoiZ)) = ((xoiY)OiZ),
is needed to enable derivation of the 'simple composition' theorem Xti-Y, Y ti-Z ~ Xti-Z,
as illustrated in (7). Note that a system with only a single modality plus the rules (1-4)
constitutes a formulation of the associative Lambek calculus. Further examples of structural
rules (permutation and linkage) are shown in (5,6). Proof (8) illustrates how the linkage rule
allows modality change within an implicational type.

2Hepple [4, 5] and Moortgat & Oehrle [9] introduce multimodal frameworks which, like the one to be
described in this paper, allow juxtaposition of different levels of the substructural hierarchy of logics, with
movement between levels allowed by linkage axioms. Interestingly, the two groups take precisely opposing
views as to what constitutes an appropriate pattern of linkage between levels. Kurtonina [7] shows that both
views are have well-founded interpretive semantics. There are other proposals that are also multimodal, in the
sense of including multiple groups of operators within a single system, with patterns of derivability between
different operators, e.g. Morrill [11], Morrill & Solias [12].

3 A formula in square brackets here indicates an assumption that is discharged by a rule's use. For example,
the [t:.r] rule indicates that given a proof of a formula of type A which rests on an assumption of type B, we
can discharge that assumption to construct a proof of a formula with type A?B. Note that in (3), s[(v 0", w)]
and s[t] refer to marker terms that are identical except that where (v 0", w) appears as a subterm in the former,
t appears instead in the latter.

54

(4)

(7)

s[(XO, (yo, z))] I- A:a
[a]

s[«x 0,1/) 0, z)]1- A: a

(5)

xl-XtLY : x yl-YtLZ:y [zl-Z:z]

(y 0, z) I- Y : (yz)

(x 0, (y 0, z)) I- X: (x(yz))
--------[a]
«x 0, y) 0, z) I- X: (x(yz))

(x 0, y) I- XtLZ : AZ.(X(Yz))

s[(x 0, y)]1- A : a
""':"':""-:"":"':""'--[i/J]
s[(x OJ y)]1- A: a

(8)

(6) s[(x 0, y)]1- A:a
====[p]
8[(YO, x)] I- A:a

xl-XtLY:x [yl-Y:y]

(x 0, y) I- X: (xy)
-----[i/J]
(x OJ y) I- X: (xy)

x I- Xti-Y: Ay.(XY)

Regarding the linear order (i.e. word order) consequences of proofs, note that we cannot
simply look to the order of assumptions as they are written on the page, since not all modalities
carry simple ordering import (and hence likewise their associated connectives). However, we
can 'read off' order information from a proof's marker term, provided it is constructed only
using modalities that do have simple linear import (i.e. are not subject to any permutative
axioms). Only proofs that have such markers can serve adequately as linguistic derivations.4

3 Categorial Analysis of Movement

The basic treatment of movement rests on being able to derive a type of the form Y ~Z
(informally a phrase Y missing a subphrase Z) for the material forming the extraction do
main.s Movement is allowed by assigning the displaced element an additional 'movement'
type such as Xti-(Y tLZ) which can (for leftward movement) prefix to the extraction domain.
For example, a relative pronoun might have a type Relti-(stLnp)' so it can combine with a
'sentence missing np' to give a relative clause.

We shall illustrate this approach in relation to a multimodal system, having three mod
alities: n (non-associative, non-permutative), a (associative, non-permutative), and c (as
sociative, permutative), for which we assume the structural rules [a] and [p] above to be
appropriately conditioned. Further, we assume that the schematic linkage rule [ifj] has per
missible instances [n/a], [n/c] and laic]. Consider a relative pronoun type Rel~(sfE.np), and
the derivation (9) it allows of the relative clause who saw kim.

4There are some further aspects to a more complete presentation of the particular multimodal approach
described here, which are described in detail in Hepple [6]. In particular, it is shown that explicit marker terms
within proofs can be eliminated provided that proof term representations (i .e. the lambda terms encoding
functional structure) are augmented with modality information, since marker terms can be directly computed
from such enriched proof terms, and hence including explicit marker terms within proofs would then be
redundant. The correctness tests on inference rule uses, performed above upon marker terms, can instead then
be based upon the enriched proof terms. This development of the system allows for an approach were lexical
items may be associated with string components that may be complex terms built using the operators of the
proof term algebra (rather than just simple atoms), a move which amounts to allowing lexical encoding of
partial proof structure.

5This general approach to extraction, depending on the 'flexible deduction' characteristic of many categorial
systems, has been widely used within categorial work, and adapts ultimately from the proposals of Ades &
Steedman [1] .

55

(9) who I- ReI~(sF-np): who' v I- np: v saw I- (np~s)~np: saw' kim I- np : kim'

(saw On kim) I- np~s: (saw' kim')

(v On (saw On kim» I- s : (saw' kim' v)
------------[n/c]
(v 0c (saw On kim» I- s: (saw' kim' v)

«saw On kim) 0c v) I- s: (saw' kim' v) [p]

(saw On kim) I- sF-np: Av .(saw' kim' v)

(who On (saw Oa kim» I- Rei: who' (AV. (saw' kim' v»

Such extraction derivations involve an additional assumption (here of type np) appearing in
the canonical place of the displaced phrase, which is subsequently discharged in an [t-I] step,
creating an implicational type Y ~Z - a 'Y missing Z'. The structure sensitivity of extraction
depends crucially on this [t-I] step, requiring the immediate subproof's marker to restructure
to the form (s 0 0 v) (v being the discharged assumption's marker variable). Whether this
restructuring is possible or not depends on the structural characteristics of the' proof (or, if
you prefer, the structure of the phrase), and on the specific modality Q required, which is
itself determined by the 'movement category' of the displaced phrase, e.g. modality c for
the category Relf!!.(st-f.np) in the above proof. This modality allows linkage inferences that
change the marker to a weaker description that allows use of the permutation rule, and hence
this relative pronoun type can allow subject extraction, as it does in (9), but can equally well
allow object extraction, as in the derivation (10) of who kim saw.

(10) who I- ReI~(sF-np): who' kim I- np: kim' saw I- (np~s)~np: saw' v I- np : v

(saw On v) I- np~s : (saw' v)

(kim On (saw On v» I- s: (saw' v kim')

(k ' (» I- (, k' ') tn/a]' 1m 0a saw 0a V s: saw v 1m

«kim 0a saw) 0a v) I- s : (saw' v kim') [a]
------------[a/c]
«kim Oa saw) Oc v) I- s: (saw' v kim')

(kim 0a saw) I- sF-np: Av.(saw' v kim')

(who On (kim 0a saw» I- Rel:who'(.>.v.(saw' v kim'»

Using instead a movement category Relf!!.(sf!!.np), requiring modality a for the [*-1] step,
we find that object extraction is still possible, as in (11), but that subject extraction is not
since we cannot now move to a marker allowing permutation. The third alternative of using a
movement category requiring modality n for the introduction step would allow neither subject
nor object extraction (i.e. since neither [p] nor [a] could be used). Note then that the two
connectives in a movement type such as Relti-(sti-np) play very different roles. The principle
connective (ti-) serves to assign structure in the usual way, whereas the second embedded
connnective (ti-) instead serves to test structure.

56

(11) who I-- Rel~(s~np): who' kim I-- np : kim' saw I- (np~s)~np: saw' v I-- np : v

(saw On v) I-- np~s: (saw' v)

(kim On (saw On v» I-- s: (saw' v kim')

(kim Oa (saw Oa v)) I-- s: (saw' v kim') [n/ar

«kim Oa saw) Oa v) I-- s : (saw' v kim') [a)

(kim Oa saw) I-- s~np: >.v.(saw' v kim')

(who On (kim 0a saw» I-- Rei: who' (>.v.(saw' v kim'»

Let us contrast this approach to handling movement constraints to what we perhaps might
view as more 'standard' alternatives, which address a single description of linguistic structure
and then apply some relatively complex constraint in deciding the permissibility of a given
extraction in terms of the relation between the extracted phrase and its canonical position. For
a tree-based approach to linguistic description, such a constraint could perhaps be formulated
(or reformulated) as some non-trivial tree-traversing automaton. For the present approach,
the absolute characterisation of a movement constraint is quite simple, i.e. does a given
phrase have a description (s 00< v), for some ex? The real complexity of the constraint can
be seen to lie with the initial rich lexical encoding of linguistic structure and the system of
alternative descriptions that the given multimodal approach allows, from which the individual
description is selected.

In what follows, our discussion of how to treat locality constraints within this general
approach will not be illustrated by proofs for specific cases, but will instead focus directly
on marker systems, and whether or not they allow restructuring of the above kind as is
appropriate for characterising particular locality behaviour.

4 Dependency and Locality

An earlier account of locality constraints within a type-logical framework is offered by Hepple
[3] (extending proposals due to Morrill [10]), which makes available multiple unary modalities,
that can be marked on particular phrases to make them boundaries for movement. One
criticism that can be levelled against this approach is that it is essentially stipulative, in
that it allows boundaries to be specified in a way that is independent of other aspects of
structure. In contrast, the aim here is to construct an account of locality that is rooted in a
more broadly motivated account of linguistic structure, i.e. developing what appears to be
an adequate description of linguistic structure for broader purposes, and then using it as the
basis for formulating an account of locality constraints.6

One syntactic distinction that might be encoded by modalities is dependency, i.e. the
asymmetry between heads and dependents. This idea was introduced, within categorial work,
by Moortgat & Morrill [8], who employ it in a type-logical encoding of metrical trees. A cent
ral claim of this paper is that, within a multimodal setting, structures encoding dependency
provide an appropriate basis for addressing locality in movement. In particular, such struc
tures allow for the use of a notion of 'domain' for locality which might be termed the 'domain
of a head' - i.e. that domain consisting of a head plus its dependents - and allow us to
distinguish the cases where the movement of some element does or does not stay within some
given domain.

6The account of locality constraints to be presented here develops earlier proposals outlined in Hepple (4) .

57

Let us notate left-headed modes using ?-, and right-headed ones using -< (a notation
intended to be reminiscient of the 'arrow structures' of dependency grammar, with heads
'pointing' at their dependents), i.e. so that x is head in (x ?- y). A derivation of (e.g.) Kim
saw Lee clearly might yield a marker such as:

{kim -< {(saw ?- lee) ?- clearly)).

The use of binary operators here gives hierarchical structures in which some 'head' elements
may be complex. This contrasts with the 'flatter' structures of dependency grammar, where
all heads are lexical elements, as in e.g.:

I\~ '\
kim saw lee clearly

To bridge this gap, it is useful to go beyond our purely binary structures to a recursive notion
of R-head where a single atomic element has multiple dependents, e.g. in ({y -< x) ?- z),
atomic x is R-head, having R-dependents y, z (which are the 'immediate dependents' of the
'projections' of x). Additionally, let the 'maximal head' of an expression be the R-head within
it that dominates all other R-heads (i.e. they are contained within its R-dependents) .

Let us consider a multimodal approach whose modalities include ones that encode the
head-dependent asymmetry, as indicated above. The modalities used in specifying lexical
types will be ones that are structurally restrictive (and hence more 'informative'), encod
ing (we might expect) linear order and bracketting (i.e. being non-associative and non
commutative), as well as headedness (i.e. head-dependent asymmetry). This level can be
linked to other structurally more-liberal levels, whose behaviour allows for different possibil
ities of dependency-sensitive movement. Let us imagine one such level (notated ~, >=-), which
maintains a head-dependent distinction, and consider how this level may be used in character
ising constraints on movement. Note that we are only concerned with locality constraints, and
not any putative order-related constraints, and so we shall firstly assume that the following
axiom applies at this level, which freely reorders heads and dependents, whilst maintaining
the distinction between them, and which hence serves to undermine any effects of order upon
what is derivable:

[ax!]: x ~ y = y ~ x

The crucial division between where movement is restricted to be within local domains
(in the 'domain of a head' sense indicated above) depends on our choice of axioms from the
following two:

[ax2]:

[ax3]:

x -=< (y ~ z) = (x -=< y) ~ z

x ~ (y ~ z) = (x ~ y) ~ z

Although the axiom [ax2] does not preserve hierarchical head-dependent structure, it does
preserve R-heads and R-dependents (i.e. the markers it equates will have the same R-heads,
each of which will have the same set of R-dependents). In combination with [ax!], this axiom
will permit restructuring that allows any dependent of the maximal head of an expression
to 'move up' to topmost hierarchical position, so that a marker Q may restructure to the
form {3 ~ x (for some {J) iff x is a dependent of the maximal head of Q. Consequently,
the corresponding implication (~) could be used for a version of bounded movement of
dependents, i.e. allowing an element to move to the periphery of the domain of its R-head but

58

not beyond. However, this system appears too restrictive for most purposes. For example, it
is well known that adverbial adjuncts cannot in general be extracted from embedded clauses
(as illustrated in (12)). However, purely head-bounded movement is too restrictive for this
phenomenon, as shown by (13b).

(12) a. John [vp [vp opened the box] [adv with a crowbar]]

b. Howj did John [vp [vp open the box] -d
c. *Howj do you remember that John [vp [vp opened the box] -d

(* under intended reading)

(13) a. John wants [vp [vp to leave] tomorrow]

b. Wheni does John want [vp [vp to leave] -i]

In contrast to [ax2], the axiom [ax3] preserves neither heads nor dependents in general (nor,
indeed, either R-heads or R-dependents). The move from x >=- (y >=- z) to (x >=- y) >=- z that it
allows might be viewed as a 'non-local' restructuring whereby an 'embedded' dependent moves
up a level. In conjunction with [axl] and [ax2], this axiom will allow an embedded dependent
to move up to topmost hierarchical position, and hence be extracted. More specifically, this
system will allow a marker a to restructure to the form {3 >=- x (for some (3) for any (atomic) x
within a except its maximal head. Hence, such a system appears to be too liberal to be useful.
A complementary observation, however, is that in a system with [axl] and [ax3] (either with
or without [ax2]), a marker a can restructure to the form {3 -=< x (for some (3), with x atomic,

iff x is the maximal head of a. Consequently, the corresponding implication (~) could be
used in implementing a bounded form of head movement, allowing a head to move to the edge
of its 'domain' (i.e. consisting of itself plus dependents) but not beyond. A possible use is in
handling the bounded movement of the finite verb in the main clauses of V2 (Verb-Second)
languages such as Dutch and German. The requisite movement types for finite verbs might
be generated by a lexical rule such as:

V =} sm/{s ~ V) (V a finite verb)

As we have seen, the restructuring allowed by [ax2] alone is insufficient, but free involve
ment of [ax3] gives a system that is too liberal. However, an intermediate position between
these two extremes is possible, which involves restricting the action of the 'non-local' axiom
[ax3], and in particular linking its use to further distinctions encoded by modalities. Let
us consider just one of many possible distinctions that might be invoked. Various linguistic
approaches acknowledge a distinction between head-complement and head-adjunct relations.
We might use different operators to encode these different dependencies, e.g. such as >-c, >-a
(c for complement, a for adjunct), so that our example Kim saw Lee clearly might yield a
marker such as:

{kim -<c ({ saw >-c lee) >-a clearly)).

These modes might be linked to others (>-=-c, >-=-a) which preserve both headedness and the
complement/adjunct distinction, but which are otherwise more liberal in being subject to
variants of the axioms [axl], [ax2] and [ax3]. A modified [ax3]' in particular, might be
restricted to apply in only certain cases, e.g. taking the form:

x >-i (y >-j z) = (x >-i y) >-j z)) where (i,j) E { ... }

59

For cases of (i, j) pairs that are not allowed, the effect is that 'j-dependents' may not move
up out of 'i-domains', so that 'i-domains' are islands to extraction of 'j-dependents' . For
example, the island status of adjuncts, illustrated by (14), could be enforced by disallowing
all pairs (i, j) in which i corresponds to a head-adjunct relation.

(14) a. Kim filed the articles without telling Lee.

b. *Who did Kim file the articles without telling?

The above example hopefully illustrates the point that this approach seeks to ground an
analysis of locality constraints within a detailed representation of linguistic structure, exploit
ing the distinctions that this representation encodes rather than being merely a stipulative
overlay.

References

[1 JAdes, A.E. and Steedman, M.J. 1982. 'On the order of words.' Linguistics and Philosophy,
4. 517-558.

[2] Gabbay, D.M. 1996. Labelled deductive systems. Volume I. Oxford University Press.

[3J Hepple, M. 1990. The Grammar and Processing of Order and Dependency: A categorial
approach. PhD Thesis, University of Edinburgh.

[4] Hepple, M. 1993. 'A general framework for hybrid substructural categorial logics.' Ms,
IRCS, UPenn. Available as IRCS Report 94-14.

[5] Hepple, M. 1995. 'Mixing Modes of Linguistic Description in Categorial Grammar.' Pro
ceedings EA CL-7.

[6] Hepple, M. 1996. 'Head Promotion and Obliqueness in a Multimodal Grammar', Proofs
and Linguistic Categories, C. Casadio (ed), Proceedings of the Third Roma Workshop,
Rome, April 1996.

[7] Kurtonina, N. 1994. Frames and Labels: A Modal Analysis of Categorial Inference. PhD
thesis, Utrecht University.

[8] Moortgat, M. & Morrill, G. 1991. 'Heads and Phrases: Type Calculus for Dependency
and Constituency.' To appear: Journal of Language, Logic and Information.

[9] Moortgat, M. & Oehrle, R. 1994. 'Adjacency, dependency and order'. Proceedings of
Ninth Amsterdam Colloquium.

[lOJ Morrill, G. 1990. 'Intensionality and Boundedness,' Linguistics and Philosophy, 13, 699 ··
726.

[11] Morrill, G. 1995. 'Clausal Proofs and Discontinuity', Bulletin of the Interest Group in
Pure and Applied Logics, Vol. 3, No. 2,3.

[12] Morrill, G. & Solias, M.T. 1993. 'Tuples, Discontinuity, and Gapping in Categorial Gram
mar.' Proc. of EA CL-6, Utrecht.

60

Agreement Modalities
Dirk Heylen

UiL - OTS, Utrecht University

Abstract Recently, several extensions to the Lambek calculus have been proposed that incorpo
rate important aspects of the expressivity offered by feature structures as used in constraint-based
grammars. In this paper we focus on a specific extension using unary modal operators to express
feature information. We compare this to a constraint-based approach, like categorial unification
grammar, and an extension of the Lambek calculus that uses layering of a categoriallogic over a
feature logic. We illustrate the approach with a simple example of agreement relations between
adjectives and nouns in Dutch.

In the first section we highlight a number of aspects of feature structures, their logic and their
use as descriptive devices in theories of grammar. In the second section we present the formal
details of a multimodal type-logical grammar and extensions to categorial grammars that include
means to express some aspects of feature structures. In the last section we illustrate their use.

1 Feature Structures

1.1 Definition

One could define a feature structure as a decorated labelled directed connected acyclic rooted
graph with no two edges with the same label originating at the same node. Many variations to
this definition are possible. For instance, in some frameworks cyclic graphs are allowed. Some
frameworks require decorations on all nodes, others only on terminal nodes (nodes from which no
edges emanate), many require that each node can only be decorated by a single decoration, etc.

To provide a more formal definition (inspired by definitions in [1]) we first parameterise the def
inition with respect to a signature (.c, A), a pair of non-empty sets thought of as the set of possible
labels on the edges, the features, and the set of atomic information that can decorate nodes, types
or sorts. A feature structure of signature (.c, A) then is an ordered triple (N, {Rt}IE'c, {Q o:} O:EA),
where N is a non-empty set of nodes; for each l E .c, Rl is a partial function on N and for all
a E A, Q 0: is a unary relation on N.

The feature structures used in HPSG to model linguistic expressions are of the variety called
typed feature structures . This variety is well-documented in [4]. The signature for such structures
is slightly more complicated. The set of sorts is assumed to be partially ordered, ~, and appro
priateness conditions are defined that restrict the domain and range of the functions R/ in terms
of the decorations on the nodes.

In order to talk about feature structures themselves, we need a language. Many feature struc
ture description languages have been proposed in the literature. Here, we choose the multi-modal
propositional language LN as 'described in [1]. The signature for this language is (.c,A,B). The
language contains an .c indexed collection of distinct modalities, a set A of sort symbols, and a
set B of nominals. The set F of well-formed formulas is defined as follows.

F ::= A I B I O/F I F V F I -,F
Other Boolean connectives can be defined as usual as can the dual box modalities. We will write
(l) for 0/.

The feature structures as defined above can be viewed as Kripke models for this language.
To interpret nominals we add to the definition of feature structure unary relations Q{3, f3 E B
which must be singleton subsets of N: a nominal is true at exactly one node in the structure.
Using nominals we can talk about reentrancies (structure sharing). Given a feature structure
M = (N,n, {Rd/E'c, {Q'Y}'YEAUB) we can specify the truth definition as follows:

M, n 1= a iff n E Qo: M, n 1= ¢ 1\ 1jJ iff M, n 1= ¢ and M, n 1= 1jJ
M,n 1= f3 iffn E Q{3 M,n 1= ¢V1jJ iff M,n 1= ¢ or M,n 1= 1jJ
M, n 1= -,¢ iff M, n ~ ¢ M, n 1= (l)¢ iff 3n'(R/(n) = n' 1\ M, n' 1= ¢)

61

We now turn to an illustration of the use of the language.

1.2 Constraint-based Grammars

In a constraint-based grammar like HPSG, languages are modelled as sets of totally well-typed,
and sort resolved feature structures! that satisfy the grammar, Gj a formula from the feature
description language. A feature structure M = (N,n, {RI}IE.c, {Q-r}-rEAUB} is in the language if
it satisfies G. We make this idea a bit more precise by defining a categorial unification grammar
([3]) in this way. We assume a set of features and sorts as follows:

C = {CAT, VAL, ARG, FUNCTOR, ARGUMENT}

A = { bot, sign, category, word, phrase, basic, complex, s, np, n }
E = {i,j, ... }

We furthermore assume that all types are subtypes of botj word and phrase are subtypes of signj
basic and complex are subtypes of category and s, np, n are subtypes of basic, i.e bot ~ sign, bot ~,
etc. The functions interpreting the features are restricted as follows.

CAT: sign -+ category VAL: complex -+ category ARG: complex -+ category
FUNCTOR: phrase -+ sign ARGUMENT: phrase -+ sign

The essence of the categorial grammar formula is given as the following formula which in fact we
want to hold for all nodes of sort sign2

•

(wordV (phrase/\ (cat}i /\ (Junctor) (sign /\ (cat)((val)i /\ (arg)j)) /\ (argument) (sign /\ (cat)j)))
This requires that either feature structures in our language are of sort word or phrase and it requires
the latter to have CAT, FUNCTOR, and ARGUMENT features where the FUNCTOR has a complex
category such that the value for FUNCTORIARG is reentrant with the value of ARGUMENTlcAT

and the value for FUNCTORlvAL is reentrant with the value of CAT. This is the essence of the
application schema.

Of course, a more realistic grammar will also contain other features to cover more dimensions
of linguistic description (morphosyntax, phonology, semantics etc.). We also need to expand the
grammar by providing more specific descriptions of words (the lexicon). Adding a feature like
PHON: word -+ phonology, and john, laughs, as subtypes of phonology and replacing word in
the formula above by (word /\ (PHoN)john /\ (cAT)np) V (word /\ (PHoN}laughs /\ (CAT) (ARG)np /\
(CAT)(VAL)S) allows the following feature structure in our language.

1.3 Properties

phrase

CAT

FUNCTOR

ARGUMENT

[]~

PHON john

[

word

[

complex

CAT ARG

VAL

[
word 1
PHON laughs

CAT I1lnp

ffi;p 11

The basic components of feature structures are features and sorts. The former are used to name a
property or parameter of classification, the latter as a value for the parameter. In some linguistic
frameworks feature structures are simply defined as sets of feature-value pairs. Such structures are
assumed to describe objects for which all the properties, expressed by the feature-value pairs, hold

lThis means that each node must be decorated by a sort. No node of a certain sort can have an outgoing arc
that is not appropriate for that sort. If a feature is appropriate for a sort then there must be an edge labelled with
this feature for each node decorated by that sort. Also, each node must be decorated by a sort that has no subsorts,
in other words, that is maximal.

2Note that this formula does not express this idea precisely. Actually we need a recursive constraint. See [2] .

62

simultaneously. These are about the simplest definitions of feature structures available, which
shows that this conjunctive aspect is central to the notion of feature structure. The basic use
of such simple structures is to allow cross-classification. Also, the use of such sets as categories
defines an information ordering corresponding to the subset ordering. It provides a simple way to
express generalisations and the combination or unification of information by taking the union of
two sets (but taking care that the functional nature of features is retained).

The feature structures we have considered them above also allow structures as complex values
of features. The phrasal signs have FUNCTOR and ARGUMENT features whose values are again
signs. This recursion is needed if we want our feature structures to describe linguistic trees as in
HPSG.

Reentrancy (structure sharing) or the nominals of the description language, are essentially
used to enforce equality of certain values. Feature percolation principles (think of the head feature
principle in HPSG) that enforce equality of feature values in different parts of the linguistic tree
are formulated as reentrancies.

The extensions to the type-logical grammars we discuss in the next section do not encode all
these properties of feature structures.

2 Categories and Feature Structures

2.1 Categorial/Type-Iogical Grammars

In this paragraph we define a basic multi modal categoriallanguage and logic. We assume a set A
of basic types and a set I of indices on the type-forming connectives. Formulas are then defined
by the following grammar.

F ::= A I F ei F I F\iF IF li:F.
Deductions in the next section are written in a Gentzen-style sequent presentation . We will

use rules such as the following.
Elimination Introduction

t::.. => Y rrX] => Z t::.. => Y rrX] => Z r 0i Y => X Y 0i r => X
r[XIX 0i t::..] => Z r[t::.. 0i Y\iX] => Z r => XliY r => Y\iX

The semantics for the language is provided in terms of frame semantics, with some domain
N (of linguistic resources) and ternary accessibility relations, Ri , interpreting ei. To define the
interpretation in a model M we further assume a family of subsets of the domain , one for each
basic category: Qb.

v(b) = {xIXEQb}
v(A ei B) = {x I 3y3z[14(x, y, z) & y E v(A) & z E v(B)]}
v(CliB) = {y I V'xV'z[(R;(x,y,z) & z E v(B)) => x E v(C)]}
v(A\iC) = {z I V'xV'y[(R;(x,y,z) & y E v(A)) => x E v(C)]}

In this framework a grammar is specified by providing a lexicon that assigns categories to lexical
linguistic resources. For a general model to qualify as appropriate for the lexicon, we assume that
the linguistic resources in the lexicon are in the model and we require the valuation function v to
be compatible with the lexical type assignment. Grammaticality is defined in terms of deduction
as in [10]: the grammar assigns some type B to a non-empty string of lexical resources Xl, ... ,xn,
provided there are lexical type specifications, Al , .. . , An (such that Al is in the lexical assignments
of XI etc.) and we can deduce B from O(AI, ... , An) in the type logic. By o(A l , ... , An) is meant,
any of the possible products of the formulas AI, '" An in that order.

2.2 Feature Extensions

An important difference between the constraint-based and the type-logical grammars is that the
former define grammaticaiity on the basis of the satisfiability of formulas making up the grammar
and the lexicon (find a model that makes the formula true) whereas the latter are defined on the ba
sis of derivability and hence the validity of formulas (the formula must be true in all models) . This

63

has repercussions on the way that feature structures can be used in type-logical grammars, relating
to unification and underspecification. If we would just transplant the constraint-language in the
type-logical setting then there are formulas that defined grammatical structures in the constraint
language (true in some model) that are no longer grammatical in the type-logical grammar (not
true in all models).

There are many options to choose from when adding feature structure-like objects to type
logical grammars. First, there is the issue of the precise notion of feature structure one wants to
embed in the categorial framework. For instance, one could use only flat, non-recursive structures
(like feature structures as sets of feature-value pairs); one could choose to ignore the features and
leave them implicit (as we will do below); and one could choose to exclude structure-sharing or
reentrancy. Next, one has to choose a specific feature description-language. Some of the options
are: a propositional language (see [9]), a predicational language (see [11]) or a modal language
([12]) . Related to the choice of description language is the way of combining the feature and type
logic. Some choices of layering and double layering the logics are discussed in [5], [6) and [7].
One particular option of fibering a feature logic with the type logic is presented below. The other
extension we discuss adds unary modalities to the type-logic to express feature information.

Propositional One way to refine the category structure of Lambek-style categorial grammars
is to replace atomic basic categories by formulas taken from some feature logic ([6]). Such systems
preserve the inferential capacities of the categoriallogic, while allowing a way to decompose at least
basic categories into features. In the system proposed by (9) the feature logic is a simple fragment
of propositional logic. Crucially, functors and arguments do not combine through unification but
the argument position of the functor must subsume the argument category: XIYe Z 4 X if Y
subsumes Z (Y ~ Z, i.e. v(Z) ~ v(Y)).

We now give a more formal definition of this language and its interpretation . The categorial
language extended with booleans can be characterised as follows. We assume a set A of basic
categories or sorts. Formulas are then defined by the following grammar.

T ::= A I T 1\ TIT V T
F ::= T IF ei F I F\;F IF I;F·

We assume similar interpretation clauses as for the language presented above. The interpreta
tion for the terms of the language is now slightly more complicated.

v(A 1\ B) = {x I x E v(A) & x E vB} = v(A) n v(B)
v(A V B) = {x I x E v(A) V x E vB} = v(A) u veE)

As for the proof-theoretic characterisation of the logic we can adopt the usual rules for 1\ and
V from propositional logic. More about this can be found in [6) (where soundness, completeness
and decidability are proven).

This approach can be modified in various ways. One could for instance add other boolean
constructors, replace the sorts by feature-value pairs, add an ordering to the sorts, or indeed
replace the boolean terms by a complete feature logic as the one presented in the previous section.
One could also consider moving 1\, V a level up to connect formulas.

As it stands the feature part is very restricted. We have only sorts, and no features. However,
we do have the means for multiple classification using 1\ but no recursive structure (embedding).
An information ordering is defined by the logic of 1\, V as well, which makes underspecification
(to a certain extent as we will see shortly) and generalisations possible. The language does not
include the means to talk about equality, so there is no device matching reentrance. Because the
feature-language is plugged in at the atomic level (the level of the basic types of the categorial
language), we can only decompose basic categories into morphosyntactic information (see [3] for
a discussion on such a restriction).

Modal We now turn to another way to add feature decorations to a type-logical grammar which
is also quite restricted in the kind of feature structures it actually encodes. In this case we use
unary modal operators as described in [10] to express feature-like information. We specify the
syntax as follows.

64

:F ::= A I :Fei:F I :F\i:F I :F/i:F I Oi:F I O;:F
To account for the semantics, we add the following clauses.

V(OiC) == {x 13y[~(x,y) & y E v(C)]}
v(O;C) = {x I Vy[~(y,x) ::} Y E v(C)]}

In Gentzen format, the rules for the unary operators we will be using are the following.
(nO, ::} Z r[X] ::} Z

r::} 0; Z r[(O; X)O,] :::} Z

Our analysis also relies on inclusion postulates, marked !;;, for the unary modalities which will
be used to encode features. The inclusion postulates can be seen as part of the 'signature' familiar
from typed-unification logic. They express a kind of subsumption relation between features. The
distribution postulates, marked A, will be used to enforce agreement.

r[(X)O;] ::} Z r[D.ik ei D.~k] ::} Z
r[(X)O;] :::} Z!;; r[(D.l ei D.2)Ok] :::} Z A

inclusion postulate distribution postulate

Our deductions will be abbreviated wherever convenient. We will write (i) and [i] instead of
o i and 0;. For more details on formal aspects of this calculus, the reader should consult [10]. In
the next section we provide an elaborate illustration of the way this language is used to encode
feature information.

3 Features and Modalities

3.1 The problem

The paradigm of Dutch agreement phenomena that concerns us here is illustrated by the following
data.

de/*het jongen 'the boy' het/*de kind 'the child'
de aardige/*aardig jongen 'the nice boy' een aardige/*aardig jongen 'a nice boy'
het aardige/*aardig kind 'the nice child' een *aardige/aardig kind 'a nice child'

Dutch nouns bear grammatical gender. Neuter nouns combine with the definite determiner
het, non-neuter nouns with de. The indefinite determiner een can combine with both. As the
above examples show, the form of the adjective varies with the context in a particular way. If the
determiner is indefinite and the noun is neuter, the adjective is not inflected. In all other cases
the adjective is inflected.

The analysis of this construction is interesting when considering feature extensions to the
Lambek calculus for the following reason. Bayer and Johnson ([9]), defend the view that a theory
modelling agreement phenomena in terms of the requirement that arguments must be subsumed by,
or logically imply, the corresponding argument specification of a predicate or functor category, is
superior to a theory that assumes unification (see also [8]). Bouma (in postings to the CG-mailing
list, January 1997) challenges this position by arguing that the agreement phenomena in Dutch
cannot be treated in a subsumption-based setting without missing generalisations. In this paper we
take up Bouma's challenge and provide a subsumption-based analysis of the Dutch constructions
in which the generalisations are not lost using the mixed multimodal calculus presented above.

In a constraint-based analysis of this construction, we can use the lexical assignments given
below. Note that we assume an extended signature to accomodate for the morphological informa
tion. (CM) groups together (CAT) and (MOR) information. (VAL*) abbreviates (CAT)(VAL)(CM),
(ARG*) abbreviates (CAT)(ARG)(CM).
(PHoN)de 1\ (CM) «VAL *)(CAT)np 1\ (ARG*)«CAT)n 1\ (MOR)((GEN)de 1\ (OEF)+)))
(PHON)het 1\ (CM) «VAL *)(CAT)np 1\ (ARG*)((CAT)n 1\ (MOR)((GEN)het 1\ (OEF)+)))
(PHON)een 1\ (CM) «VAL *)(CAT)np 1\ (ARG*)«CAT)n 1\ (MOR)(OEF)-))
(PHON)jongen 1\ (CM)«CAT)n 1\ (MOR) (gen) de)
(PHON)kind 1\ (CM) «CAT)n 1\ (MOR) (gen)het)

65

(PHON)aardig /\ (CM) ((VAL *) ((CAT)n /\ (MOR)(i /\ (GEN)het/\ (OEF)-)) /\ (ARG*) ((CAT)n /\ (MOR)i))
(PHON)aardige/\(CM) ((VAL *)((CAT)n/\(MOR)(i/\-,((GEN)het/\(OEF) -»)A(ARG*)((cAT)n/\(MoR)i))

The crucial point of this example is that the combination of an adjective with a noun carries
morphosyntactic information arising from the adjective as well as the noun. This can be seen
when we combine the adjectives and the noun to yield aardig kind. Unification and reentrancies
can be presented as in the following formula that is made to look like a feature structure.

(CM)
(FUNCTOR)

(ARGUMENT)

[](MOR)m
(PHON)
(CM)

(PHON)
(CM) rn

aardig

(VAL *) IT]

(ARG*) rn
kind

(cAT)n

(CAT)n

(MOR)m((GEN)het /\ (OEF)-)
(CAT)n

(MOR)m

(MOR) m (GEN) het
As a result of the application schema, the morphological information of the noun unifies with

the information on the argument position of the adjective and the information on the argument
position is reentrant with the information on the result position. The effect is that the modifier
(1) mediates the information of the noun to the combination and (2) adds information of its own.

The same procedure can be carried out for further combinations with the determiners. Of
course not all combinations are grammatical. In the case of the ungrammatical aardig jongen, the
various constraints at the node labelled m are incompatible: at the adjective position the gender
is required to be het, whereas at the noun position it is required to be de. There is no feature
structure that satisfies this formula.

Now consider an approach based on subsumption. We can use the following lexical assignments.

een np/(n /\ in de!) de np/(n /\ de)
het np/(n /\ het) jongen n /\ de /\ indef /\ de!
kind n /\ het /\ in de! /\ def aardig (n /\ het /\ inde!) / (n /\ het /\ inde!)
aardige (n /\ de /\ de! /\ inde!)/(n /\ de) aardige (n /\ het /\ de!)/(n /\ de!)

The fact that nouns are neutral with respect to definiteness is indicated by 'overspecifica
tion' (see [8], [9]). So jongen is both in de! and de! at the same time. A problem arises with
the specification of aardige, for which we need two entries. Using a single assignment such as
(n /\ -,(het /\ indef»/(n /\ -,(het /\ indef» does not work. To see this, consider the case of the
ungrammatical een aardige kind. The single assignment fails to exclude the phrase. The reason is
that the values on the argument category and the resultant category are unrelated: the assignment
subsumes the category (n /\ de /\ inde!)/(n /\ het /\ de!».

This constrasts with the constraint-based analysis and the analysis we propose below. Bouma
notes that such a multiplication of lexical assignments (which may be worse if you consider lan
guages with richer nominal inflection, such as German) may be considered as 'missing a generali
sation' by some. Although, missing this generalisation need not be considered such a great burden
on the grammar, it would be interesting nevertheless to try and construct a grammar that is sub
sumption based and that needs only one lexical assignment. This we will do in the next section.
Our main purpose, however, is to illustrate the expressive power of the multimodal approach to
grammar writing which allows us to encode feature distribution principles mimicking in part the
effect of unification.

3.2 A multimodal Analysis

The multimodal analysis of this construction uses the following ingredients.

1. A selection of resource modes on unary modalities expressing featural information: d, h, 0,

db, do, hb, ho, -ho.

66

2. A selection of resource modes on binary modalities expressing the mode of combination:
specifier/head (= s), modifier/head (= m).

3. Inclusion postulates expressing an ordering on the feature modes (see below).
4. Interaction postulates expressing the distribution of features over combination modes.
5. Lexical assignments as follows.

de
jongen
aardig

NP/[db]N
[d]N
[hO](N/N)

het NP /[hb]N een NP/[O]N
kind [h]N
aardige [-hO](N/N)

Let us review the features/sorts used briefly. [d] is used for a word like jongen, to mark its
grammatical non-neuter gender: it combines with the definite determiner de. Similarly, [h] marks
neuter words, those that combine with the definite determiner het. The definite determiners
require their complements to be 'definite' and have the appropriate gender. We use b for definite
and 0 for indefinite. [db] is the requirement put on nouns and their projections by the definite
non-neuter determiner de, [hb] is the requirement put on nouns by the definite neuter determiner
het. The adjectives divide into inflected and uninflected ones. The latter occur only in indefinite
neuter environments, which is signalled by [ho] whereas the former occur in all other environments,
hence [-ho], to be thought of as "not neuter and indefinite".

First, we consider the derivations for the grammatical de aardige jongen and the ungrammatical
het aardige jongen.

N/N Om N => N
([-hO](N/N))(-ho) Om ([d]N)(d) => N
~~~~~---=~~--c 
([-hO](N/N))(db) Om ([d]N)(db) => N ~ 

([-hO](N/N) Om [d]N)(db} => N 

fail c 
([-hO](N/N))(hb) Om ([d]N)(hb) => N ~ 

([-hO](N/N) Om [d]N)(hb} => N 
NP => NP [-hO](N/N) Om [d]N => [db]N NP => NP [-ho](N/N) Om [d]N => [hb]N 

NP/[db]N Os [-hO](N/N) Om [d]N => NP NP/[hb]N 08 [-hO](N/N) Om [d]N => NP 

The crucial points to note about these derivations are the following. First, the agreement 
relation between the adjective and the noun is expressed through the distribution of the agreement 
features over both the modifier and the noun. We assume the distribution principles: 

r[t.~db} Om t.~db)] => Z 
~~--~~~--A 

r[(t.l Om t. 2 )(db}] => Z 

r[t.~hb} Om t.~hb}] => Z 
~~----~~--- A 
r[(~l Om t.2)(hb}] => Z 

Second, the derivations rely on several inclusion postulates which are needed to make the 
inferences marked I!;;'. In the case of de aardige jongen we need the rules: 

r[(X)(-hO}] => z 
--=...:.....--'----,--:'--- C 
r[(X)(db}] => Z -

r[(X)(d}] => z 
--=-.:..'---=--- C 
r[(X)(db}] => Z -

We do not want the inclusion postulate relating {d} and {hb} in our grammar, because this 
would imply that checking whether something is a neuter word amounts to checking whether it is 
a non-neuter definite word, so this why the derivation for het aardige jongen fails. 

Now consider the similar derivations for een aardige jongen en een aardig kind. 
N/N Om N => N N/N Om N => N 

([-hO](N/N))(-ho) Om ([d]N)(d) => N C ([hO](N/N»(ho) Om ([h]N)(h) => N C 

([-hO](N/N))(o) Om ([d]N)(o) => N - ([hO](N/N))(o) Om ([h]N)(o) => N -
~~~~~--~~~--- A A 

([-hO](N/N) Om [d]N)(o} => N ([hO](N/N) Om [h]N)(o} => N

NP => NP [-ho](N/N) Om [d]N => [O]N NP => NP [hO](N/N) Om [h]N => [O]N
NP/[O]N Os [-hO](N/N) Om [d]N => NP NP/[O]N 08 [hO](N/N) Om [h]N => NP
We have used the following inclusion postulates to account for these derivations.

67

r[(X)(-ho)] "* Z r[(X)(d)] "* Z r[(X)(ho)] "* Z r(X)(h)] "* Z
.-:.;....--'-------''--- C C C c

r[(X)(o)] "* Z - r(X)(o)] =? Z - r(X)(o)] "* Z - r(X)(o)] "* Z -

And we have used the distribution postulate:

r[D.. (0) ° D.. (0)] "* Z
1 m 2 A

r(D..l Om D..2)(0)] "* Z

However, we run into problems with the ungrammatical indefinites *een aardig jongen en *een
aardige meisje. With the distribution postulates assumed in the previous derivations, we can also
derive these ungrammatical noun phrases.

The problem is easily diagnosed. In the indefinite case, we have to worry about the gender
~"'~"'~~"'''''': b",,,~<,,,,n. "b", n.o,,:n. ""-:'U ""be a.u)ee"""",,:,, as well. ~e c.an 0.0 tfiis by not allowing the feature
~O;O~l~~~b~~~ over the adJectIve-noun combmations, but only allow the more specific DORt.lll:\.t.P"

r[D..~dO) Om D..~do)l "* Z r[D..iho
) Om D..~ho)l "* Z

r(D..I Om D..2)<do)] "* Z A r[(D..I Om D..2)(ho)] "* Z A

We replace the inclusion postulates involving 0 with the following:

q(X)(do)l"* Z r[(X) (ho)l "* Z r(X)(-ho)l"* Z r[(X)(d)l"* Z r[(X)(h)] "* Z
-.:..:....--'--.,.....:-- C C C C c
r[(X)(o)] "* Z - r(X)(o)] "* Z - r(X)(do)] "* Z - r[(X)(do)] "* Z - r(X)(ho)] "* Z

The derivation for een aardige jongen now looks different, because we can no longer distribute
(0) over the adjective and the noun. We first have to apply one of the inclusion postulates, turning
the check for indefiniteness into a check for indefiniteness neuter, (do), or indefiniteness non-neuter,
(ho). In this case the indefiniteness non-neuter option (do) works. In the ungrammatical case een
aardig jongen, neither of the two will work.

Discussion The principal characteristics of the grammar fragment are that (1) features are
encoded as unary modalities; (2) these are ordered hierarchically by means of inclusion postulates
and (3) the distribution of features in syntactic structure is partly defined in terms of distribution
laws encoded as interaction postulates.

It is interesting, with respect to this last point, to compare the set-up with feature-distribution
principles in a theory like HPSG. The need for various HPSG principles, head-feature principle,
valence principle, immediate dominance, slash-inheritance, etc. is a reflection of the fact that
not all information in syntactic structure is governed by a single distribution law. The functional
nature of categories and the formation of constituents by application in categorial grammars
combine the effects of only a few principles in HPSG. Interaction postulates complement this.

On the subject of unification versus subsumption we would like to point out, that in many
cases structure sharing is used in HPSG where simple equality of information is needed. With the
distribution principles described above we cannot enforce structure sharing, we can only make sure
that the same information is found in different places. Our conjecture is that such a restricted
mechanism is sufficient for writing grammars.

Summarising, the grammar fragment above illustrates some of the expressive capacities of
multimodal categoriallogic. It shows:

• how feature information can be introduced on both basic and complex types;
• how feature information can be organized by means of inclusion postulates;
• how feature distribution principles can be implemented by means of interaction postulates;
• how such postulates may obviate the need for (i.e. replace) unification in grammatical de

scription.

68

As in the propositional extension our "feature structures" do not have attribute names but
only sorts. In the example we discussed we only used simple modalities but this is not a principled
restriction. We could stack features or use a more complicated logic for the labels to add the
conjunctive aspect from ordinary feature structures.

Conclusion We have discussed three varieties of categorial grammars that include the means
to decompose categories into some kind of feature bundles (a classic move in linguistics). The
categorial unification grammar differs from the two type-logical grammars in that they define
grammaticality in terms of satisfiability instead of validity. The first type-logical grammar replaces
basic categories with feature structures, the second uses unary modalities as feature decorations.
Both embody only limited aspects of the notion of feature structure as it is standardly found in
constraint-based theories, but this restriction need not be considered a drawback. The modal
approach benefits from the possibility of defining modal postulates that allow the specification of
more complicated patterns of feature checking, mimicking the effect of unification.

References

[1] Patrick Blackburn. Structures, languages and translations: the structural approach to feature
logic. In C.J. Rupp, M. A. Rosner, and R.L. Johnson, editors, Constraints, Language and
Computation, pages 1-27. Academic Press, London, 1994.

[2] Patrick Blackburn and Edith Spaan. A modal perspective on the computational complexity of
attribute value grammar. Journal of Logic, Language, and Information, 2(2}:129-169, 1993.

[3] Gosse Bouma. Nonmonotonicity and Categorial Unification Grammar. PhD thesis, R.U .
Groningen, The Netherlands, 1993.

[4] Bob Carpenter. The Logic of Typed Feature Structures. Cambridge University Press, Cam
bridge, 1992.

[5] Jochen Dorre, Dov Gabbay, and Esther Konig. Fibred semantics for feature-based grammar
logic. Journal of Logic, Language, and Information, 5(3-4}:387-422, October, 1996.

[6] Jochen Dorre and Suresh Manandhar. On constraint-based Lambek calculi . In Patrick Black
burn and Maarten de Rijke, editors, Logic, Structures and Syntax. Reidel, Dordrecht, to
appear.

[7] Nissim Francez. On the direction of fibring feature logics with concatenation logics. Nancy,
LACL 1997.

[8] Dirk Heylen. On the proper use of booleans in categorial logic. In Formal Grammar, pages
71-84, Prague, 1996.

[9] Mark Johnson and Sam Bayer. Features and agreement in Lambek categorial grammar. In
Glyn Morrill and Richard Oehrle, editors, Formal Grammar, pages 123-137, Barcelona, 1995.

[10] Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter Meulen,
editors, Handbook of Logic and Language. Elsevier, 1996.

[11] Glyn Morrill. Type Logical Grammar. Kluwer Academic Publishers, Dordrecht, 1994.

[12] Koen Versmissen. Grammatical Composition: Modes, Models, Modalities. PhD thesis, Utrecht
University, Utrecht, 1996.

69

70

BUBBLE TREES
AND SYNTACTIC REPRESENTATIONSI

Sylvain KAHANE2

Abstract. A new mathematical object, the bubble tree, is introduced and applied to the syntactic represen
tation of sentences. Two themes are explored: first, the comparison of dependency and constituency models;
second, the application of bubble trees to a particular syntactic model.

1. Introduction

One of the major issues in modern linguistics is the lack of a common language among linguists (as
opposed to, say, mathematics), which leads to problems of finding correspondences between different idiolects.
In particular, two differents models can hide more similarities than it appears at first sight. In Section 4,
the two main models of syntactic representation, dependency and constituency, will be compared with the
support of a common representational device, the bubble tree. Intuitively, bubble trees are trees whose
nodes are bubbles which in turn contain sub-bubbles linked to other bubbles and so on. The only formal
study of such mathematical structures, as far as I know, is by Gladkij 1968.

Section 5 describes some complex syntactic phenomena, such as coordination, extraction and word order,
using representations based on bubble trees. Detailed linguistic descriptions and computational applications
cannot be presented in this short communication. They will be the subject of a further communication .

2. Prerequisites

A tree can be viewed as an oriented graph or as a binary relation <I (in this case we will call it a
tree relation) (x <I y if and only if (y, x) is a link of the corresponding graph). A tree relation induces a
domination relation ~ defined by x ~ y if and only if x = Xl <1 .. . <1 Xn = Y (n ~ 0). The root of a tree
is the only node which dominates all other nodes. A terminal node is a node without dependents.

A constituency tree on X (Bloomfield 1933, Chomsky 1957) is a four-tuple (X, B, cp, <1) where B is
the set of constituents, <I is a relation on Band cp is a map from B to the non-empty3 subsets of X (which
describes the content of constituents) such that:

Plo <I is a tree relation.
P2. Anyone-element subset of X is the content of one and only one terminal node.
P5. If 0' <I (J, then cp(O') ~ cp({J).

A dependency tree on X (Tesniere 1934, 1959, Hays
1960, Lecerf 1961) is in fact a plain tree on X.4 Any depen
dency tree (X, <ld induces a constituency tree (X, B, cp, <12):
each node x produces two constituents, noted x and x such
that cp(x) = {x} and cp(x) is the projection of x, i.e. the
set of nodes of X dominated by x (variant: when x is a
terminal node x for <11, x and x can be identified). The re
lation <12 is <11 on the bar-constituents and x <12 X for every
x E X.

1

I~@
3

A dependency tree and
the corresponding constituency tree

To give a constituency tree heads (resp. co-heads) means to choose a (resp. a set of) head sub
constituent(s) in each constituent (Pittman 1948). So a co-headed constituency tree on X is a quintuple
(X,B,cp,<I,r), where (X,B,cp,<1) is a constituency tree and r a map from B (= the subset of B of non ter
minal constituents) to the non-empty subsets of B such that {J <1 0' for each (J E r(O'). If r(O') has a single
element, 0' is said to be headed, otherwise 0' is said to be co-headed or sub-headed (in the latter case, 0'

is considered to be a potentially headed constituent for which the head is subspecified). A head node of a
bubble 0' is a node obtained in descending from 0' following only head constituents. The kernel of 0' is the
subset of head nodes of 0'.

1. The pre.ent paper w ... read and comment.d on by Anne Abeill., David Beck, Dick Hudson and Igor Mel'~uk. I thank th.m.

2. TALANA (Univ. Paria 7) and Univ . Paria 10· Nanterr •. E-mail: .k@ccr.julli.u.fr

3. That doe. not m.an that w. ignore empty con.titu.nb. EI.menb of X are ab.trad node. which are ociat.d with .ign., which do not ne.d a
phonological realiaation.

4. In a more general way, d.pendeng tre •• are tte •• whole node. are labelled with grammatical categori .. and links with functional aUributes, but
we are not directly concerned with the la6elling h.re .

71 Sylvain KAHANE Bubble trees

A headed constituency tree induces a dependency tree (Lecerf 1961, Gaifman 1965, Robinson 1970),
but the dependency relation is not explicit. We will introduce equivalent structures to headed constituency
trees, which makes dependency relations more explicit.

3. Bubble trees
A bubble tree is a four-tuple (X, E, cP, <I), where X is the set of basic nodes, E is the set of bubbles,

cP is a map from E to the non-empty subsets of X (which describes the content of bubbles) and <I is a
relation on E verifying PI, P25 and

P 3. If 0:, (3 E E, then cp(0:) n cp«(3) = 0 or cp(0:) ~ cp«(3) or cp«(3) ~ cp(0:).

P4. If cp(o:) C cp«(3), then 0: -< (3. If cp(o:) = cp«(3), then 0: ~ (3 or (3 ~ 0:.

Bubble trees are thus defined.6 The relation <I is called dependency-embedding relation. Two sub
relations of <I are considered, the dependency relation <)(l defined by 0: 4:l (3 if 0: <I (3 and cp(0:) n cp«(3) = 0
and the embedding relation ~ defined by 0: ~ (3 if 0: <I (3 and 0: ~ (3. We will say that 0: depends on (3 if
0: <)(l (3 and 0: is directly embedded in (3 if 0: ~ (3. In the following figures, 4:l will be represented by links
and ~ by inclusion of bubbles. The projection of a bubble 0: is the union of the contents of all the bubbles
dominated by 0:, including 0:.

4. Comparison between dependency and constituency

4.1. Various representations of the same structure

Consider a co-headed constituency tree Bl = (X,El,CPI,<ll,r). We associate it with a bubble tree
B2 = (X,E2 ,CP2,<l2) where E2 = EI , <12=<11 and 0: ~2 (3 if and only if 0: E r«(3). Such a bubble tree is called
a bi-tree. Note that CP2(0:) is the kernel of 0: in B l , and CPI(O:) is the projection of 0: in B 2 . Therefore ,
co-headed constituency trees and bi-trees are in one-to-one correspondence. A bi-tree corresponding to a
headed constituency tree is called a stratified tree; in this case , every bubble contains a unique element
(the head of the constituent). Any stratified tree T trivially induces a dependency tree T'; to obtain T' from
T, it is sufficient to collapse all bubbles with the same content .7

Example. We will give four representations of an X-bar tree of John loves Mary (X-bar trees are headed
constituency trees; r is generally encoded in the node labelling; here r is represented by lining up any node
with its head). s

/ 1
N VP
I l~
, V N

1 1 1
Mary loves John

An X-bar tree the same X-bar tree
the corresponding

stratified tree the corresponding Gladkij tree

Bi-trees can be easily characterised . The bubble (3 is a sub-bubble of 0: if (3 ~ 0: and (3 -< 0: . The bubble
(3 is an immediate sub-bubble of 0: if (3 is a sub-bubble of 0: but not a sub-bubble of a sub-bubble of 0:.

Note that an immediate sub-bubble of 0: is either directly embedded in 0: or depends on another immediate
sub-bubble of 0:. A bubble tree is a bi-tree if and only if any immediate sub-bubbles of any bubble 0: is
directly embedded in 0:. In other words, a link cannot be included in a bubble.

There is another way to encode a headed constituency tree with a bubble tree, but this does not work
with a co-headed constituency tree. A headed constituency tree BI = (X,El,CPI,<ll,r) can be associated
with a bubble tree B3 = (X, E 3 , CP3, <13) where E3 = EI, CP3 = CPl and 0: <13 (3 if and only if either 0: = r«(3)
or there exists i such that 0: <II i and (3 = rei). The resulting bubble tree is called a Gladkij tree g A
combination of both types of representation will give us hybrid representations of bi-trees and Gladkij trees
(for example Vergne's model (Vergne 1994) uses such structures) .9

5. P2 can be weakened to authorize a "lexical" bubble to have descendent..

6. Gladkij 1968 define ... particular c of bubble tree. (he .uppo.es in particular that each link mu,t be contained in .. bubble and that there mmt
exist a bubble which (ontain ... ll the node.). Moreover, " .. nd <l<l are not clearly di.tinguished and PI i. only partially .tated.

7. If the .tr .. tified tree is labelled by c .. tegorie., the induced dependency tree mu.t be I .. belled by .equence. of categorie •.

8. Thi. kind of bubble tree ... re bubble tree. in the .ence of Giadkij 1968. But Gi .. dkij's formal and linguistic interpretations of the,e trees are very
different from wh .. t is offered here.

9. A del'endency tree T=(X ."~ io .aid to be compatible with a bubble tree B=(X,13./P,",1l if for each link X"I Y of T there exists a link
a<l<l2 of B with x a) .. nd y (. Note that the dependency tree induced by a .tratified tree Ii com atible with it and is .. 1,0 compatible with
the cor~e~p'onding bfa~k,j tree. t~ere ore, the lwo repre.entationo can be mixed without problerru: the in:l'uced dependency bee ca.n be recovered by
compa.bbility.

Sylvain KAHANE Bubble t" .. 72

4.2. Concentration vs stratification, dependency vs constituency

The bi-tree Bl = (X,B,l;?l,<l) is said to be more concentrated than the bi-tree B2 = (X,B,1;?2,<l) if

is a partial order on bi-trees. Maximal elements are 7 ~ ,-----C
[0< emy a, ",(a) S; ",(a) . The concentration ~

stratified trees and minimal elements constituency ~
trees. Concentrating a given bi-tree consists in €~ I ~2
chang;ng an ;mmed;ate ,ub-bubble P 0[. bubble a '>--. ~-;:-'
(which has at least two immediate sub-bubbles) into C C I 3

a dependent bubble of a. 3

To stratify a constituency tree consists simply in adding any intermediate constituents. For a bi-tree,
this is generally more complicated, because we want to ensure the commutativity between the operations of
concentration and stratification. Stratification of a given bi-tree consists in adding to some non-terminal
bubble a an immediate sub-bubble {3 and in distributing a's dependencies among a and {3 . A bi-tree Bl is said
to be more stratified than the bi-tree B2 if Bl is ob
tained by stratifying B 2 . The stratification is a par
tial order on bi-trees. Stratification has no maximal

€~~~
elements. Minimal stratified trees are dependency "'\.
trees or, more exactly, bi-trees corresponding to the 1\2
headed constituency trees associated with these de-
pendency trees . I 3

s

Note that concentration does not change stratification and vice-versa, and the two operations commute
(see figure above). Clearly, concentration measures the degree of dependency or headed ness and stratification,
the degree of constituency. Contemporary syntactic models are generally split into dependency models (MTT
(Mel'cuk 1988), WG (Hudson 1990), ...) and constituency models (GB (Chomsky 1981), G/HPSG (Gazdar
& al. 1985, Pollard & Sag 1994), LFG (Kaplan & Bresnan 1982), TAG (Joshi 1987), CG (Bar-Hillel
1953, Moortgaat 1988), ...). In fact, all these models use dependency (and of course constituency, in the
sense that any dependency tree canonically induces a constituency tree) and their respective classification
depends on how these models are presented (i.e. whether the dependency relation is explicit or not), not on
concentration and stratification. For example, GB is a real dependency model (c-command and government
cannot be defined without the notion of head) and it is even more concentrated than Tesniere's model.lO

There is a third important operation on bubble trees: granularisation. The aggregation of a bi-tree
consists in collapsing together two "adjacent" basic nodes. A bi-tree Bl is said to be more granular than
B2 if B2 is obtained by aggregating B I . For example, GB is more granular than other models because it
considers two nodes V and IN F L where other models consider only the node V. More generally, models
that work with morphemes are more granular than models that work with words.

5. A particular model based on bubble trees

We will now defend a particular syntactic representation using bubble trees. Our basic representation is a
standard dependency tree which is roughly equivalent to Tesniere's stemma or the Surface Syntactic Structure
of MTT, the deep structure of WG, the I-structure of LFG, the derivation tree of TAG, the d-structure of
GB or the subcategorization structure of G/HPSG. These theories differ most in the representation of some
complex phenomena such as coordination or extraction, to which we now turn.

On the one hand, the well-formedness of syntactic structures is controlled, by some general principles
such as projectivity, coordination principles, ... (see §§5.1-2) and, on the other, by lexical frames ll (a lexical
frame, which is a part of a given lexical entry a, describes an acceptable structural environment for a, that
is, the nature and the government (= regime) of its arguments or the nature of its head if it is a modifier) 12 .

5.1. Coordination

Dependency links are a good way to formalize subordination. But coordination is an orthogonal opera
tion and must be formalize in an orthogonal way. Bubbles offer us a good solution .

10. Temiere' •• lemmA iI nol exaclly a lree '" mo.tlinguilh thinl< . Some phrue."such u delerminant-noun, auxiliary-parliciple, complementizer-.erb
.. . , are grouped in a bubble, cAlled a nucleus . ThuI, .the .temmA i. a bubble tree wllh co-head bubble •.

II. The border line between lexical frame. and .Keneral principle. iI nol clear: for example, agreemenl rules can either be generallrinciple. directly
apR lied 10 lhe Itruclure or can b. encoded in lexicarframe •. Neverlhele .. , in lhelaUer c , an agreemenl rule mu.l nol be introduce independently in
.aCh parlicular lexical frame l bul mull be st .. l.d by .. rule .. I .. metA-Ie.el: .. greemenl rules b.long 10 a m.l .. -l.xicon, which controu the correclne •• of
elemenlo of lhe lexicon, i.e . lne lexical frame.) .

12. It can be supp.0.ed thai a l.xical frame can deal only wilh .. djac.nl node. of lhe nod. occupied by lhe lexical unil in queotion (thi. iI generAlly
called the locality principle). In d.pend.ncy slructure., lhe localily p.rinciple ",.urne. that a lexical unit control. only its go.ernor and aependenk In a
certain .ense, lh .. l define.lhe he .. dj.th. head of a con.liluent i. lhe lexical unil which d.termine. lh. pOlSibiliti •• of in.erlion of lh. con.lituenl (Pittm .. n
1948, Garde 1967, Mel'cuk 1988) . Noverlh.le .. , lhe.e pouibilitie. do not necessarily dep.nd on only one l.xical unit .. nd co-he .. d. can b. r.l.vanl.

73 Sylvain KAHANE Bubbl. Ire ••

Roughly speaking, coordination boils down to the fact that two or more elements together occupy one
syntactic position. These elements can be grouped in a bubble, called a coordination bubble, which
occupies this position. Paradoxically, our description of coordination rests on the notion of head, but cannot
be properly encoded in a plain dependency tree.

Note that coordination can be developped in two ways:

- the iterativity of coordination is the fact that an illimited number of elements can be coordinated
and that a coordination bubble can have an illimited number of elements;

- the recursivity of the coordination is the fact that coordination bubbles can be coordinated, as in
Peter invited John, Mary and Bill; the recursivity is linguistically limited to one step and must be well
marked (by special words, such as either, or prosody).

and@

Peter invited John, Mary and Bill
(iterativity of coordination)

Peter invited either John and Mary or Bill
(recursivity of coordination)

Sharing. Coordinated elements necessarily share their governor (if there is one) and they can share all or
part of their dependents . Sharing is constrained: for example, in English, it is easier for two coordinated
verbs to share their subject than their object C Mary loves and Peter hates Bill) . The whole sharing (Peter
loves and hates Bill) is a special case of coordination with particular constraints (it is generally called lexical
coordination) .

Peter loves Mary and John hates Bill Peter loves Mary and hates Bill Peter loves and hates Bill

Coordination and lexical frames. A coordination bubble is a special kind of co-headed bubbles. Never
theless, a coordination bubble requires a particular interpretation . First, the coordination bubble contains
two different sorts of objects: coordinated elements on the one hand, and coordinating conjunctions on the
other hand. Second, lexical frames apply to coordination bubbles (for example, the verb agrees with its
subject which can be a coordination bubble), but also to the coordinated elements by taking into account
that the valency (= sub-categorization) of any coordinated element is the union of the valency of every
coordination bubble containing it (it is this resulting graph that Tesniere 1959 and Hudson 1990, 00 adopt
as a representation of the coordination) . In particular, lexical order rules, such as "the subject is before its
governor" , apply to a dependent of a bubble just as they do to a dependent of lexical node: thus, Peter loves
and hates Bill, for example, is the only possible projection of its syntactic structure.

We will now describe two particular kinds of coordina
tion, gapping coordination and valency slot coordination .

Gapping coordination. If two clauses with the same
main verb are coordinated, the second occurrence of the
verb can be omitted. So we have a verbal bubble with an
empty phonological realisation.

Valency slot coordination. A valency slot bubble is
a subset of the valency of a governing element grouped in
a bubble (with a single link to governor); two valency slot
bubbles of the same kind can be coordinated.

Mary loves Bill and Ann, John

,
~~~--------.------------ ----~--

{:~S:·and :,@-€Jj:; 
'~::::::::: = = ~:: ~~ -- - ---:~ '-'----.---------.-.-----:-

Mary gives Peter a book and John a pen 



Sylvain KAHANE Bubble I .... 

Gapping coordinations and valency slot coordinations 
are close, and formally they could be represented in the 
same way: opposite, we propose representing a valency slot 
coordination in the same way as a gapping coordination. In 
fact, valency slot coordination are closer to ordinary coor
dination than gapping coordination; gapping coordination 
is more constrained. For example, in French, with the coor
dinating cunjunction ainsi que, only valency slot coordina
tion is possible: Pierre donne un livre a Pierre, ainsi qu'un 

* 

Mary gives Peter a book and John a pen 
(as gapping coordination) 

74 

crayon a Jean vs 7! Marie parle a Paul, ainsi qu'Anne a Jean. The same is true for as well as in 
Peter drinks coffee at 11 as well as tea at 4 vs 7! Peter drank coffee as well as John tea. 

English: 

On the other hand, gapping coordinations are not valency slot coordinations, because the governing 
verb agrees with only the first subject. Moreover, our valency slot representation would pose problems for 
the control of the linear order of gapping coordinations, because we have to assume that the projection of a 
valency slot bubble, as well as a coordination bubble, must be continuous (see §5.2) 

5.2. Word order, projectivity and nuclei 

A dependency (resp. constituency) structure is a dependency (resp . constituency) tree on a linearly 
ordered set X. A dependency structure on X is said to be projective if links do not cross each other 
and no link covers an ancestor . A constituency structure is said to be continuous if the content of any 
constituent is continuous. Generally, constituency structures are always supposed to be continuous. Note 
that a dependency structure is projective if and only if the induced constituency structure is continuous 
(Lecerf 1961, Gladkij 1966). 

Very often, the syntactic dependency tree of a sentence is not projective. The most common type of 
non-projectivity in English is due to extraction (topicalisation, interrogation, relativisation .. . ), which we 
will now study. Following Tesniere 1959 or Hudson 00, we think that it is better to associate two nodes 
to a wh-word because it assumes two functions: a pronominal function and the same function as other 
conjunctions, such as that, which have the role of subordinating a verb. Both nodes can be combined: we 
obtain a structure which is not exactly a tree because the wh-word has two governors, but which does not 
make formal problems. 

~~~~~~~ 
Mary wonders which girl Peter thinks that John is looking for

Note that the above "tree" is not projective . Nevertheless, the linear order of such constructions is very
constrained and it is not possible to totally renounce projectivity. We need a weaker property which allows
all the possible linearisations, but which, combined with the order constraints of the lexical frames, allows
only the possible linearisations. Our solution is to use bubble trees.

Roughly, a node of a clause can be extracted (= topicalized, relativized, interrogated ...) only if it
depends on some main verbal nucleus, where verbal nuclei of English are verbs and complex units such as
auxiliary-participle (be eating, have eaten), verb-infinitive (want to eat), verb-conjunction-verb (think
that eat), verb-preposition (look for) and all units built by transitivity from these (thinks that is looking
for).13 The extractee is a nominal nucleus containing a wh-pronoun. Nominal nuclei are nouns (who) and
complex units such as determinant-noun (which girl, whose girl) and noun-noun complement (the daughter
of which man). Verbal and nominal nuclei can be represented by bubbles and certain links can or must be
allocated to the nucleus such as the governing link of the extractee.

The previous ordered bubble tree represented is projective in a sense that I will now make clear.
A linearly ordered bubble-tree is said to be projective if bubblinks do not cross each other and no

bubblink covers an ancestor or a co-head (where a bubblink is either a bubble or a link).14

13. Every languaK' can have nuclei, but e"ch language dev.lop, its own proper type. of nuclei. For example, in French, Ihe nucleu. verb-prepo,ition
doe. not elUSl (. Marl' .. demande quell, fille Pierre parle A), bul Ihe,. exist. a nucleul .erb-lUbjecl "nd verb-direct obj,ct (I'1.omm, done 1. fiUe
dort, I'1.omme donI Pierro aime I. IiUe) and no olher nudeu. verb-complemenl (" I'oomme don! Pierre parle a I. fiUe).

l~. The /illl half of Ihis property is 'laled in Gladkij 1968.

75 Sylvain KAHANE Bubble trees

The signifiance of projectivity depends on the way nuclei are encoded. Although the two properties are
not equivalent , projectivity can be described in this case by saying that the projection of every bubble is
continuous. 15

Attention: nuclear structure does not take the place of dependency structure. The former is simply
superimposed on the latter and it is to the former that projectivity applies. There is fundamental difference
between nuclei and coordination bubbles: the nucleus is a marking of a particular string of dependencies
which must be consider from a certain point of view as a whole, whereas the coordination bubble is an
orthogonal operation which must not be describe in term of dependencies.

5.3. Nuclei and coordination
It is well known that there is some constraints between extraction and coordination (Ross 1967) :
• a student whose mother Peter knows and helps Mary
• a student whose mother and his [ather Peter knows

In all the models which I know -constituency or dependency based-, these constructions must be blocked
by complicate special constraints.

In our model, possible cases of coordination are of course allowed because a node of a nucleus can
naturally be occupied by a coordination bubble:

~~~~ 
a student (whose mother 

a student and 

On the other hand, non acceptable cases of coordination are blocked without additional constraints by 
our constraint on the extraction (§5 .2) and our particular representation of the wh-words. Thus, • a student 
whose mother Peter knows and helps Mary is blocked because the nominal nucleus whose mother is not a 
complement of the main verbal nucleus knows and helps (but only to knows) and • a student whose mother 
and his father Peter knows is blocked because whose and his do not have the same lexical frame and the two 
nominal nuclei cannot be coordinated (wh-words own very special lexical frame: they have two governors !). 

5.4. Coordination and nuclei 

The notion of nucleus also allows us to explain some 
facts of coordination which cannot be described without 
extending our definition of coordination. We claim that 
a verbal nucleus can be coordinated with a verb or with 
another verbal nucleus: 

Our outlook has been and continues to be defen
SIve. 

a picture that Peter likes and is trying to buy. 
Verbal nuclei in coordination are more constrained than 
verbal nuclei in extraction: not all kinds of verbal nuclei 
can be coordinated. 

Gapping coordination is possible with verbal nuclei as 
it is with a verb : 

Peter wants to eat an apple and Mary, a pear. 
Mary is looking for a beautiful landscape and Peter, 

a pretty girl. 16 

and 

outlook defensive 

j 
our 

Peter an apple Mary a pear 

Nuclei also intervene in a valency slot coordination, in the sense that two nodes can be grouped 111 

valency slot bubble if their governors belong to the same nucleus and are thus coordinated: John went to 
London in April and Boston in June . 

Other kinds of nuclei can also be coordinated. For example, one can find in a dictionary this definition: 
hedonism: pursuit of or devotion to pleasure. 

IS . Projectivity can be ensured in other equivalent ways. For example , all the link. of the nudeu. can be allocated to the head node (that is what i, 
done by Hud,on 00 with rai,ing or by G/.HPSG with the dash feature (.ee Kahane 1996)), or the link, can be labelled as extra- and intranuclear link, 
and projectivity stated in terms of wliich kind, of links can cut or cover each other (see agam Kahane 1996). 

16. Such a coordination (with the ellip,is of the prepo,ition) ;. impossible in French where the nudeus verb-preposition doe. not exi.t. 



Sylvain KAHANE Bubble Leoti 76 

5.5. Conclusion 

Constituency structures, as well as plain dependency structures, are too poor: they force us to put in 
a same dimension subordination and coordination. But subordination and coordination are two orthogonal 
linguistic operations and we need a two dimentional formalism to capture this, such that bubble trees. 

References 

BAR-HILLEL Yehoshua, 1953, A quasi-arithmetical notation [or syntactic description, Language 29.1, 47-
58. 

BLOOMFIELD Leonard, 1933, Language, New York: Holt, 566 p. 
CHOMSKY Noam, 1957, Syntaxic structures, La Haye: Mouton, 116 p. 
CHOMSKY Noam, 1981, Lectures on Government and Binding, Dortrecht: Foris. 
GAIFMAN Halm, 1965, "Dependency systems and phrase-structure systems", In[ormation and Control B, 

304-337; Rand Corporation, 1961, RM-2315. 
GARDE Paul, "Ordre lineaire et dependance syntaxique: contribution it une typologie", Bull. Soc. Ling. 

Paris 72.1, 1-26. 
GAZDAR Gerald, KLEIN Ewan, PULLUM Geoffrey K. & SAG Ivan A., 1985, Generalised Phrase Structure 

Grammar, Cambridge, Mass.: Harvard Univ. Press. 
GLADKIJ Aleksej V., 1966, Leckii po matematiceskoj linguistike dlja studentov NGU, Novosibirsk (French 

transl: Le~ons de linguistique mathematique, [asc. 1, 1970, Paris: Dunod). 
GLADKIJ Aleksej V., 1968, "On describing the syntactic structure of a sentence" (in Russian with English 

summary), Computational Linguistics 7, Budapest, 21-44. 
HAYS David, 1960, "Grouping and dependency theory", Rand Corporation, RM-2646. 
HUDSON Richard A., 1990, English Word Grammar, Oxford: Blackwell. 
HUDSON Richard A., 00, "Discontinuity", e-preprint (ftp .phon.ucl.ac.uk) . 
JOSHI Aravind K., 1987, "Introduction to Tree Adjoining Grammar", in A. Manaster Ramer (ed.), The 

Mathematics of Language, Amsterdam: J. Benjamins, 87-114. 
KAHANE Sylvain, 1996, "If HPSG were a dependency grammar ... ", Proc. 3rd TALN Conf., Marseille, 

45-49. 
KAPLAN Ronald M. & BRESNAN Joan, 1982, "LFG: a formal system for grammatical representation", in 

J. Bresnan (ed.), The mental representation o[ grammatical relations, Cambridge, Mass.: MIT Press. 
LECERF Yves, 1961, ClUne representation algebrique de la structure des phrases dans diverses langues 

natuelles", C. R. Acad. Sc. Paris 252, 232-234. 
MEL'CUK Igor, 1988, Dependency syntax: theory and practice, Albany, NY: State Univ. Press NY. 
MOORTGAT 1988, Categorial investigations, Dordrecht : Foris. 
POLLARD Carl & SAG Ivan A., 1994, Head-Driven Phrase Structure Grammar, CSLI series, University of 

Chicago Press. 
ROBINSON Jane J., 1970, "Dependency structures and transformational rules" , Language 46.2, 259-85. 
ROSS John, 1967, "Contrainst on variables in syntax", Doctoral dissertation, MIT (Published as Infinite 

syntax !, Norwood, N.J.: Ablex, 1986) . 
TESNLERE Lucien, 1934, "Comment construire une syntaxe", Bull. Fac. Lettres Strasbourg 7, 12eme 

annee, 219-229. 
TESNIERE Lucien, 1959, Elements de syntaxe structurale, Paris: Kliencksieck, 670 p. 
VERGNE Jacques, 1994, "A non recursive sentence segmentation applied to parsing of linear complexity in 

time", Proc. 1st Int. Conf. on New Methods in Lang. Proc., Manchester. 



Local Tree Description Grammars 

Laura Kallmeyer 

Universitiit Tiibingen 
lk~sfs.nphil.uni-tuebingen.de 

1 Introduction 

A lot of interest has recently been paid to constraint-based definitions and ex
tensions of Tree Adjoining Grammars (TAG). Examples are the so-called quasi
trees (see Vijay-Shanker (1992) and Rogers (1994)), D-Tree Grammars (see 
Rambow et al. (1995)) and Tree Description Grammars (TDG) (see Kallmeyer 
(1996a,b)). The latter are grammars consisting of a set of formulas denoting 
trees. TDGs are derivation-based where in each derivation step a conjunction is 
built of the old formula, a formula of the grammar and additional equivalences 
between node names of the two formulas. This formalism is more powerful than 
TAGs. TDGs offer the advantages of Me-TAG (see Joshi (1987a)) and D-Tree 
Grammars for natural languages, and they allow underspecification. However, 
the problem is that TDGs might be unnecessarily powerful for natural lan
guages. To solve this problem, in this paper, I will propose local TDGs, a 
restricted version of TDGs. Local TDGs still have the advantages of TDGs but 
they are semilinear and therefore more appropriate for natural languages. 

First, the notion of semilinearity is defined. Then local TDGs are introduced, 
and, finally, semilinearity of local Tree Description Languages is proven. 

2 Semilinearity 

Let N be the set of non-negative integers. For (al,'" ,an), (bl ,'" ,bn) E N n 

and mEN we define: (al,"', an) + (bI,'" ,bn) := (a1 + bl ,'" ,an + bn) and 
m(a1,"', an) := (mal,''', man). 

For some alphabet X = {a1, .. ·,an } with some (arbitrary) fixed order of the 
elements, a function p : X* -t N n is called a Parikh-function, if: 
For all w E X*: p(w) := (lwla1 , Iwla2 ,'" ,lwlaJ, where Iwla• is the number of 
occurences of ai in w. For all L ~ X*: p(L) := {p(w)lw E L}. 

Two strings Xl, X2 E X* are letter equivalent if they contain equal number of 
occurences of each symbol, i.e. if p(xt) = P(X2) for some Parikh-function p. 
Two languages L 1, L2 ~ X* are letter equivalent if every element in L1 is letter 
equivalent to an element in L2 and vice-versa, i.e. if p(Ld = p(L2) for some 
Parikh-function p. 

Definition 1 (Semilinearity) 

1. Let XO,XI,'" ,Xm,O ~ m be in fV7l. A linear subset of Nn is a set 

{xo +nIXI + ... +nmXm ni E N for 1 ~ i ~ m}. 

77 



~. The union of finitely many linear subsets of fV'I' is a semilinear subset of N n . 

3. A language L ~ X* is semilinear, if there is a Parikh-function p such that 
p(L) is a semilinear subset of N n . 

Proposition 1 {Parikh- Theorem} Each context free language is semilinear. 

Clearly, each language that is letter equivalent to a semilinear language is semi
linear as well. Because of the Parikh-Theorem (proven by Parikh (1966)), this 
means that for some language L, in order to prove the semilinearity of L, it is 
sufficient to show that L is letter equivalent to a context free language. 

Semilinearity is an important language property because it seems plausible that 
natural languages are semilinear (see Joshi (1987b) and Vijay-Shanker et al. 
(1987)). As far as I know, the only example of a possibly non-semilinear phe
nomenon is case stacking in Old Georgian (see Michaelis and Kracht (1996)). 
Since it is not clear whether there is really a (theoretically) infinite progression 
of stacking possible, there is no reason to assume natural languages not to be 
semi linear , as long as these are the only examples of nonsemilinear phenomena. 
If natural languages are semilinear, then it is desirable that the languages gen
erated by grammar formalisms intended to capture human language capacity 
are semi linear as well. 

3 Local TDGs 

The tree logic used for local TDGs is the same as for TDGs (see Kallmeyer 
(1996b)). It is similar to the logic proposed by Rogers (1994) for TAGs. The 
logic is a quantifier-free first order logic with variables K (node names), binary 
relations <J (parent or immediate dominance), <J * (dominance), -< (linear prece
dence) and ~ (equality), a symbol 6 for the labelling function, sets of constants 
Nand T for the nonterminal and terminal labels, and logical connectives .." 
1\ and V. Satisfaction is defined with respect to special models (finite labelled 
trees) and variable assignments. </>1 entails <P2 (<PI F <P2) for two formulas <PI, <P2 
iff all finite labelled trees satisfying <PI with respect to an assignment 9 also sat
isfy <P2 with respect to g. A sound, complete and decidable notion of syntactic 
consequence, <PI l- <P2, can be defined for this logic. 

In the formulas in TDGs (descriptions) certain subtrees are uniquely described 
together with dominance relations between these trees. A negation free, disjunc
tion free satisfiable formula <P is a description if there is at least one k E node ( <p) 
(k E K occuring in <p) such that <P l- k <]* k' for all k' E node(<p) (k is called 
minimal in <p), and iffor all kI' k2, k3: 

- If <P l- ki <J k2 1\ kl <J* k3, then either <P l- kl ~ k3 or there is a k4 with 
<P l- kl <J k4 1\ k4 <J* k3· 

- If (p l- kl <Jk2l\kl <Jk3, then either <P l- k2 -< k3 or <P l- k2 ~ k3 or <P l- k3 -< k2. 

To guarantee that in each derivation step, descriptions with disjoint sets of node 
names can be chosen, an equivalence relation on {(<p, K p); <P is a description and 

78 



K¢ ~ node(¢)} is needed: ('l/JI,K"h) ~K ('l/J2,K""2) iff 1/1 I and 1/12 only differ in 
a bijection (variable renaming) fK: K -+ K with K""2 = fK(K""I)' 

A TDG is a tuple G = (N,T,D,¢s), such that: 

1. Nand T are pairwise disjoint finite sets, the nonterminals and terminals 

2. D is a finite set of equivalence classes (1/1,K",,) (wrt ~K), such that for all 
(1/1, KIji) E (1/1, K",,), 1/1 is a description with constants Nand T . 1/1 is called 
an elementary description of G, and each k E K"" is called marked in 1/1. 

3. ¢s is a description (with constants N and T), the start description. 

In a derivation step ¢l ~ ¢2, the result ¢2 is the conjunction of ¢l, an elemen
tary 1/1 and equivalences ki ~ k2 with ki E node(¢d and k2 E {k; k minimal 
in 1/1 or k E KIji}. The main idea of local TDGs is to restrict the derivation 
mode such that all ki E node ( ¢I) used for new equivalences occur in one single 
elementary 1/1d that was added before. Furthermore, each kl E node( ¢l) can be 
used but once to introduce a new equivalence. Then the derivation step only 
depends on 1/1d, and the derivation process can be described by a context-free 
grammar. Doing this, letter equivalence of local TDLs (the string languages of 
local TDGs) and context-free languages can be shown, and, consequently, local 
TDLs are semilinear. 

To understand the intuitions behind the definition of local TDGs, it is helpful 
to have an idea of the semilinearity proof. In this proof, for a given local 
TDG GT a letter equivalent context-free grammar GCF is obtained as follows: 
The nonterminals in GCF describe "states" of elementary descriptions used in 
the course of a derivation. For a derived description ¢ in the corresponding 
derivation in GCF there is one nonterminal Zljid for each start or elementary 
description 1/1d added in the course of the derivation of ¢. Z""d specifies in 
which way the names of 1/1d can be used in a new derivation step. For each 
k E node(1/1d), Z""d gives information about whether k has a parent or daughter 
in ¢, whether k is minimal or does not dominate any other name in ¢ and 
whether k is strongly dominated by a name k' such that ¢ I- c5(k') ~ X for 
some label X. (A strong dominance in ¢ is a conjunct kl <J* k2 in ¢ that is not 
entailed by the rest of ¢, i.e. ¢ without this conjunct. Notation: ¢ 1-8 ki <J* k2') 

kl 

!\ 
k2 k.3 

,4 

ks 

'1/11 == kl <l k2A 
kl <l k3 A k2 -< k3 A 
k3 <J' k4 A k4 <l k s , 
K,p! == {ks} 

~l.~ 

A A 
k l3 kl4 k l6 k17 

'1/12 == kll <l" kl2 A 
kll <l' k ls A ... 

K"'2 == {k17} 

Figure 1: non-local elementary descriptions 

For the old description ¢ in a derivation step the following should hold: Only 
for the elementary 1/1d (in ¢) used in this derivation step may the state change. 
Therefore "subtree descriptions" (e.g. the part with k12, k13 , k14 in 1/12 in Fig. 1) 

79 



must not be inserted into strong dominances ¢ 1-8 k <J* k' with k' ~ node ('ljJd). 
To guarantee this the form of the descriptions is restricted by defining local 
descriptions. The descriptions of Fig. 1 for example are not local. If kl3 or kl4 
was marked, then 1fJ2 would be local. 

Definition 2 (Local description) An elementary description 'IjJ in a TDG G is 
local, if for all kI, k2, k3 E node( 'IjJ),' 

1. If'IjJ I- kl ~ k2, then kl = k2. 

2. If'IjJ 1-8 k2 <J* kl and'IjJ 1-5 k3 <J* kl' then k2 = k3· 
3. If'IjJ I-s kl <J* k2 and'IjJ 1-8 kl <J* k3, then either k2 = k3 or: kl is minimal or 

marked in 'IjJ and there are k4' k5 E K,p with 'IjJ I- k2 <J* k4 and 'IjJ I- k3 <J* k5. 

4. If kl E K ('IjJ) and k2 is marked or minimal in 'IjJ with kl '" k2 and'IjJ I- k2 <J* kl' 
such that there is no further marked name between kl and k2' then: ' 

- There is a k E node( 'IjJ) with 'IjJ 1-8 k2 <J* k and 'IjJ I- k <J* kl' and for all 
k3 E K,p: if wI- k <J* k3, then 'IjJ I- kl <J* k3· 

- If there are k4, k5 with'IjJ I- k4 <J* k5, 'IjJ 1-5 k2 <J* k4 and'IjJ 1-8 k5 <J* kl' 
then: there is an X E N with 'IjJ I- o(ki ) ~ X for all i E {I, 2,4, 5}, and if 
there is a k with 'IjJ 1-8 k2 <J* k, then k = k4 holds . 

WI 
• k2 

'ljJ2 
• k2 

~ .. .. . 

• kl L 
; kl 

By this definition two kinds of marked names kl with k2 as next marked or 
minimal name dominating kl are allowed: first (see wI) names kl with no 
k '" k2 strongly dominating kl . The second type (see 'ljJ2) are marked names 
where underspecification can occur. This is the case, if k2 strongly dominates 
some k4 and kl is strongly dominated by some k5. k4, k5, kl and k2 then have the 
same labels, and there are no other names strongly dominated by k2. Generally, 
names k that are not marked or minimal do not strongly dominate more than 
one name. 

A local TDG is a TDG G = (N, T, D, ¢s) where ¢s and all elementary descrip
tions are local. As already mentioned, the main idea of local derivation is to use 
for new equivalences only names from one elementary 'ljJd in the old description 
¢l, and to use each k E node( ¢l) at most once. 

Definition 3 (Local derivation) Let G be a local TDG. For an elementary 'IjJ in 

G and descriptions ¢l, ¢2 with ¢s =*1 ¢l and node('IjJ)nnode(¢r) = 0: ¢l tl ¢2 
holds (¢2 is locally derived from ¢l in one step), if there is a Wd with 'ljJd = ¢s 

or ¢s =*1 ¢ 'U1 ¢' =*1 ¢l, such that: 

1. ¢21- ¢lI\W. 
2. For all kl E node(¢I) , k2 E node('IjJ) such that ¢2 I- kl ~ k2, there is a k~ 

with ¢l I- kl ~ k~ and 

80 



(i) k~ E node('lj;d), and k2 is marked or minimal in 'lj;. 
(ii) For all k with <PI r k~ ~ k: either k~ = k , or'lj;d "# <Ps and <P' r k~ ~ k. 

(iii) If km is the next marked or minimal name dominating k2 and there are 
k:n, k~ with'lj; r s km <J* k:n and'lj; r k:n <J* k~ 1\ k~ <J k2, then: There is a k 
with <PI r s k <J* k~ such that for all k': if'lj; r k:n <J* k', then <P2 r k <J* k'. 

(iv) If there is no k3 E K"" k2 "# k3, such that 'lj; r k2 <J* k3, then either k~ 
is a leaf name in <Pl or k2 is a leaf name in 'lj; . (k is a leaf name in <P iff 
for all k': If <P r k <J* k', then <P r k ~ k'.) 

(v) If there is a k3 E K", with'lj; r k2 <J* k3 and k2 "# k3, if there is no marked 
name between k2 and k3, and if there are k~, k3 with'lj; rs k2 <J* k~ and 
'lj; r s k3 <J* k3 and'lj; r k~ <J* k3' then: If k4 E node( 'lj;d) with <P2 r k4 ~ k3, 
then for all k E node(<pt): <Pl If k~ <J k V k <J k4. 

3. For all <P3 such that 1. and 2. hold for <P3 : If <P2 r <P3, then <P3 r <P2· 

(i) makes sure that all k E node(<pt) used in one derivation step are from one 
elementary 'lj;d. (ii) says that each name can be used only once for a derivation 
step. Because of (iii), parent relations in <P2 come from exactly one of the 
descriptions <Pl or 'lj;, and everything between two marked or minimal names in 
'lj; must be inserted into one single strong dominance. With (iv) a k E K", not 
dominating any other k' E K", either is a leaf name or it is identified with a 
leaf name in <Pl. Because of 1. and 3., <P2 must entail 'lj; and <Pl, and <P2 must 
be maximally underspecified. 

4>2 
4>1 tP • k2 ~ k3 ok 4>1 :::} 4>2 

• k 3 • k2 
inse rt .' . 

• k, <-~ 
""'-+ 

. . 

~ 
kl ~ k4 

For kl' k2 E node('lj;) either marked or minimal with no marked names in be
tween and with <P2 r k4 ~ kl 1\ k3 ~ k2 for k3, k4 E node(<pt): Either there is 
no k "# k2 with 'lj; rs k <J* k l . Then the derivation step is as in the preceding 
figure. Or, if there is such a k, (see (v)) the derivation step has the form: 

4>1 tP 
• k3 • k2 

i~t~ 

.;. k4 ; kl 

ok 4> 1 :::} 4>2 

"" 

4>2 

k3 ~ k2 ... 

... ' 

. ;. .. 
k4 ~ kl 

~ 

In a local TDG G, Lb(G) is the set of descriptions that can be locally derived 

81 



from <Ps. The tree language is the set of minimal trees of these descriptions. A 
minimal tree of <P is a tree that satisfies <P such that all parent relations in the 
tree are already described in <p. The set of strings yielded by these trees is the 
string language. 

Local TDGs are still powerful enough to describe·{ alaz ... ak} and copy lan
guages. Local Tree Description Languages (TDL) are a true superset of Tree 
Adjoining Languages. With local TDGs, as with MC-TAGs, several subtree de
scriptions can be added simultaneously, and subsertion-like derivation steps as 
in D-Tree Grammars are possible. Furthermore, in cases of scope ambiguities, 
underspecified representations can be derived {see Kallmeyer (1996b. 1997)). 

4 Semilinearity of local TDLs 

Proposition 2 Local TDLs are letter equivalent to context-free languages. 

Proof (outline): Let GT = (NT, T, D, <Ps) be a local TDG such that without 
loss of generality for all elementary or start descriptions <p and all k E node { <p) 
there is a X E NT UT U {E} with <p r- 6(k) :::::; X. 
Construction of a letter equivalent context-free grammar GCF := (Nc, T, P, S): 
The nonterminals are states Z of the form Z = <Pz 1\ ~z with: <Pz = <Ps or <Pz 
elementary in GT (one representative for each class in D is chosen). ~z is a 
conjunction of formulas parent{k) , child(k), leaf{k), minimal{k), domt(k, X) 
or derive{k) or their negations with k E node{<pz) and X E NT. For each state 
Z = <Pz 1\ ~z for all k E node(<pz) and all such formulas 'ljJ = parent{k),' " 
either 'ljJ or -,'ljJ must occur in ~z. 
Additionally Nc contains a start symbol S different from all other nonterminals. 
Let Z~ = <Pz 1\ ~z be equivalent to one ZEN ("equivalent" means that Z 
and Z~ only differ in a bijection K). We define: A description <p with <Ps =*1 <b 
entails Z~, ¢ F Z~, as follows: 

1. <p F parent{k) iff there is a k' such that <p F k' <l k. 
2. <p F child{k) iff there is a k' such that ¢ ~ k <l k'. 
3. <p F leaf{k) iff k is a leaf name in <p. 
4. <p F minimal{k) iff k is minimal in <p. 

5. <p F derive{k) iff there are <PI, <P2 such that <Ps =*1 <PI ~l <P2 =*1 <p, k E 
node{<pt} and ¢2 F k :::::; k' for one k' ~ node{¢t}. 

6. ¢ F domt{k, X) iff there is a k' with ¢ r-s k' <l* k 1\ 6(k') :::::; X. 
7. Apart from this, <PI F <P2 is defined as before. 

Productions P: 

1. If Zs E N with Zs = <Ps I\~s and <Ps F ~s and if tl,'" ,tn are all occurences 
of terminals in <Ps, then S -t t1 ... tnZs E P. 

2. Let Z and Z' be states for the same elementary or start description, Znew a 
state for some elementary 'ljJ, and tt,··· ,tn all occurences of terminals in 'ljJ. 
Z -t tl . . . tnZ' Znew E P iff the following holds: 

82 



For all </>, </>5 =*1 </> entailing a Z~ = </>'" /\ ~'" equivalent to Z: There is a </>' 
with </> J}I </>' and Z'''' = </>'''' /\ e'" and Z~w = </>';ew /\ ~;ew equivalent to Z' 
and Znew such that </>' 1= z'''' /\ Z;ew' Furthermore </>'" = </>'''' and 'ljJ = </>';ew 
hold and </>'" is the elementary 'ljJd (see Def. 3) used in this derivation step. 

3. For all ZEN, Z = </>z /\ ~z: 
Z ~ € E P iff for all kin </>z: if X is the label of k, then either parent(k) or 
domt(k, X) or derive(k) or minimal(k) is in ~z. 

GCF is unique and it is a context-free grammar. 
By induction on the length n of the derivation the following can be shown: 

S nJ,l Wn wrt GCF without applying €-productions, and Zl,'" Zn are all 
occurences of nonterminals in Wn 
iff there is a derivation </>5 ~I </>n wrt GT such that there are pairwise different 
Zl"", Z; with Zi = </>i /\ ~i equivalent to Zi, with: 

- The elementary or start descriptions that have been used in course of the 
derivation of </>n, are exactly </>'1, ... , </>;. 

- </>n F= Zt' for all 1 ~ i ~ n. 

With the €-productions the following holds for Wn, </>n as above: Wn =* w~ can 
be derived by applying only E-productions and w~ E T* iff </>n has a minimal 
tree. 
In general: </>5 =*1 </> wrt GT, </> has a minimal tree yielding the string W iff there 
is a w' letter equivalent to W such that S =* w' wrt GCF . 

o 

As a corollary local TD Ls are semilinear. 

5 Conclusion 

TDGs have been developed to give a constraint-based TAG-extension that offers 
the advantages of MC-TAGs and D-Tree Grammars, and to introduce under
specification to TAGs. However, TDGs seem to be unnecessarily powerful for 
natural languages. For this reason I have presented local TDGs in this paper, a 
restriction of TDGs that is still much more powerful than TAGs. Local TDGs 
also have the advantages of MC-TAGs and D-Tree Grammars, and even under
specified representations are still possible in local TDGs (see Kallmeyer (1996b, 
1997)). By describing the derivation process by a context-free grammar, I have 
proven that local TDGs are semilinear, which indicates that they really are 
an interesting alternative to other formalisms developed for natural language 
processing. 

Acknowledgments 

For critical. discussions and helpful comments, I would like to thank Tom Cornell 
and Frank Morawietz. 

83 



References 

Joshi, A. K.: 1987a, An introduction to Tree Adjoining Grammars, in 
A. Manaster-Ramer (ed.), Mathematics of Language, John Benjamins, Ams
terdam. 

Joshi, A. K.: 1987b, Tree adjoining grammars: How much contextsensitivity is 
required ro provide reasonable structural descriptions?, in D. Dowty, L. Kart
tunen and A. Zwicky (eds), Narural Language Parsing, Cambridge University 
Press. 

Kallmeyer,1.: 1996a, Tree Description Grammars, in D. Gibbon (ed.), Natural 
Language Processing and Speech Technology. Results of the 3rd KONVENS 
Conference, Mouton de Gruyter, Berlin. 

Kallmeyer, L.: 1996b, Underspecification in Tree Description Grammars, Ar
beitspapiere des SFB 340 81, UniversWit Tiibingen. To appear in: Hans Peter 
Kolb and Uwe Monnich (eds.) The Mathematics of Syntactic Structures. 

Kallmeyer, L.: 1997, A syntax-semantics interface with Synchronous Tree De
scription Grammars, Proceedings of Formal Grammar, Aix en Provence. to 
appear. 

Michaelis, J. and Kracht, M.: 1996, Semilinearity as a syntactic variant. Ab
stract, Logical Aspects of Computational Linguistics, Nancy. 

Parikh, R.: 1966, On context free languages, Jounal of the ACM 13, 570-581. 

Rambow, 0., Vijay-Shanker, K. and Weir, D.: 1995, D-Tree Grammars, Pro
ceedings of ACL. 

Rogers, J.: 1994, Studies in the Logic of Trees with Applications to Grammar 
Formalisms, PhD thesis, University of Delaware. 

Vijay-Shanker, K.: 1992, Using descriptions of trees in a tree adjoining gram
mar, Computational Linguistics 18(4), 481-517. 

Vijay-Shanker, K., Weir, D. J. and Joshi, A. K.: 1987, Characterizing struc
tural descriptions produced by various grammatical formalisms, Proceedings 
of A CL, Stanford. 

84 



Dynamic Lambda Calculus 
Michael Kohlhase, Susanna Kuschert 

Universitat des Saarlandes 

The goal of this paper is to lay a logical foundation for discourse theories by providing an 
algebraic foundation of compositional formalisms for discourse semantics as an analogon to 
the simply typed .>.-calculus. Just as that can be specialized to type theory by simply providing 
a special type for truth values and postulating the quantifiers and connectives as constants 
with fixed semantics, the proposed dynamic .>.-calculus vee can be specialized to .>.-DRT by 
essentially the same measures, yielding a much more principled and modular treatment of 
.>.-DRT than before; vee is also expected to eventually provide a conceptually simple basis 
for studying higher-order unification for compositional discourse theories. 

Over the past few years, there have been a series of attempts [Zee89 , GS90, EK95, Mus96, 
KKP96, Kus96] to combine the Montagovian type theoretic framework [Mon74] with dynamic 
approaches, such as DRT [Kam81] . The motivation for these developments is to obtain a general 
logical framework for discourse semantics that combines compositionality and dyn,amic binding. 

Let us look at an example of compositional semantics construction in >'-DRT which is one of 
the above formalisms [KKP96, Kus96]. By the use of ,B-reduction we arrive at a first-order DRT 
representation of the sentence Ai man sleeps. (i denoting an index for anaphoric binding.) 

( AQ. 
Vi 

man(U;) <8> QIU;) ) 1 !.x. I","PIX) I )~; 

--td 

Vi 

man(Ui) I 0 

Vi 
man(U;) 
s/eep(Ui) 

s/eep(Ui) 

where ® is the >.-DRT conjunction operator that intuitively merges two DRSes by unifying the 
sets of discourse referents and that of conditions. 

Unfortunately, the above mentioned unified formalisms have failed so far to duplicate a key 
aspect of type theory that has lead to interesting linguistic analyses in computational linguistics. 
Type theory (or higher-order logic) is a two-layered formalism, where the algebraic content (the 
behaviour of higher-order functions) is neatly packaged into a formalism of its own, namely simply 
typed >.-calculus; while the logical content (the specific semantics of connectives and quantifiers) 
is built on top of it. Thus the use of type theory allows us to deal with the complexities of natural 
language semantics on two distinct levels: the simply typed >.-calculus provides the theory of ,B
reduction (which is the motor of compositionality) whereas the logical side of semantics is dealt 
with by a system that is rather like predicate logic. By focussing on known mechanisms for dealing 
with each of the two subsystems, it has proved possible to use type theoretic techniques for natural 
language processing systems. 

• Higher-order unification [Hue75] solves equations in the simply typed A-calculus and leads 
to analyses of ellipsis [DSP91], and focus [GK96, PuI94] . Note that these accounts are 
inadequate for the treatment of the logical structure, so they make insufficient predictions 
about quantifiers and connectives. 

• First-order automated theorem proving [Fit90] is used to reason about the logical structure of 
natural language, for presuppositions, and to integrate world knowledge into natural language 
semantics. Note that these approaches normally cannot capture higher-order aspects of the 
semantics like compositionality or underspecified (e.g. elliptic-) semantic elements. 

• Only recently, logic formalisms for higher-order theorem proving [Koh95] have appeared that 
are generalizations of both higher-order unification and automated theorem proving. These 
can be used to integrate world knowledge into the unification-based approaches [GKvL96]. 

The goal of this paper is to lay the foundation for analyses like the above by providing an 
algebraic foundation of compositional formalisms for discourse semantics as an analogon to the 

85 



simply typed >.-calculus. Just as that can be specialized to type theory by simply providing 
a special type 0 for truth values and postulating the quantifiers and connectives as constants 
with fixed semantics, the proposed Dynamic Lambda-Calculus (V.cC) can be specialized to >.
DRT [KKP96] by essentially the same measures, yielding a much more principled and modular 
treatment of "\-DRT than before. 

However, we expect the benefits from a clean separation of the structural and logic parts of 
compositional discourse semantics will not be restricted to this . In particular, V.cC is expected to 
serve as the formal basis for the development of higher-order unification algorithms for composi
tional formalisms for discourse semantics (the topic of a future talk, though), which in turn can 
be expected to lead to dynamic analyses of ellipses, focus, corrections, . . . , corresponding to those 
discussed above. First experiments with the formal system have shown that these will be more 
intuitive than those for the static case. 

The central theme of DRT is the establishment of anaphoric binding in discourse; "\-DRT, 
similar to the other above mentioned formalisms, establishes such bindings in a Montagovian-like 
construction process given coindexation of the pronoun with its antecedent through the syntactical 
analysis. As an example, consider continuing the above sentence by Hei snores. The representa
tion of the discourse may be constructed from the representation of the two senten·ces by applying 
them to "\P."\Q.P ® Q and reducing, arriving at 

>'P.>.Q .P 0 Q I man(Ud 
u· 1 

$leep(Ui) 
--+{3 ( >.Q. 1 m.~iu;) 1 0P ) B $leep(Ui) wore I 

~ u· 1 I man(Ui) 0 man(Ud 
--+{3 --+6 $leep(Ui) 

sleep(Ui) 
wore(Ui) 

Note that in this process the free variable in the representation of Hei snores, standing for the 
pronoun hei, has in the course of ,B-reduction been captured by the declaration of the discourse 
referent Ui in the representation of the first sentence, which is part of the representation of ai man . 

Indeed, the capturing of free variables, the thing impossible in pure >.-calculus, is the driving force 
of the establishment of anaphoric binding in >'-DRT. 

The proposed formalism V.cC focuses on the interaction of dynamic binding (declaration of dis
course referents), function abstraction and function application. It is spelt out by the interaction of 
two distinct abstraction operators, the well-known >.-, and the dynamic a-operator . The capturing 
of free variables, motivated above, will be one of the central themes. This leads us to a thorough 
study of the variables known from "\-calculus and the variables that can thus be captured. 

Most of the burden of the interaction of the two kinds of variables, and in particular the 
respective abstraction mechanisms that go with them, is carried by an elaborate type system that 
takes into account structural properties of dynamic systems (the mode), such as binding power 
and the accessibility relation. In first experiments, the use of these binding properties have proven 
very useful in different linguistic applications. 

This abstract only gives a first idea about the details of v.ce; the full paper can be found via 
http://coli.uni-sb.de/~kuschert/academic.html. 

1 The Syntax of V.cC 

The key to understanding the character of compositional dynamic formalisms is the identification 
of functional and dynamic properties and the interaction of these. [KKP96, Kus96] already observe 
that we can locate two different kinds of variables together with two kinds of abstractions of very 
different nature: the well-known standard ,.\-abstraction, used for the compositional construction 
of representations, and a dynamic abstraction to be called a-abstraction. Most prominent of their 
differences is the fact that a-abstraction may capture free variables on ,B-reduction which breaks a 
taboo in standard >.-calculus. In essence this means that the two abstraction operators have quite 
different notions of scope: Whereas a-abstraction is boundless with respect to function application, 

86 



it is bounded by the notion of accessibility, motivated and defined by some linguistic theory (in 
particular D RT). 

Observing that both these properties are of a structural nature , the central idea of V£C is to 
encode the necessary information for variable capture and the accessibility relation in an elaborate 
type system. Such information must include knowledge about a-bound variables, which have the 
power to capture variables, and knowledge about free variables , which are liable to being captured . 

As a consequence, V£C's types include mode information for the variables that are visible from 
the outside of an expression: In addition to the standard A-calculus types (formed from basic 
types and functional application) there are types of the form f#a for any a , where the mode f 
marks a variable with a '+' if the variable has capturing power, and with a '-' if it is prone to 
being captured (i.e. if it is a free variable)1. As a first example, if the expression A has type 
X-, U+, f#a, we know that A is of standard (type theoretic) type a (e.g. if a is the base type 
0, then A is a proposition) and A contains at least the free variable X and the a-bound variable 
U . 'x-bound variables in A do not appear in the mode of its type, since they are not visible to the 
outside of A. 

The set V of (typed) variables is partitioned into two distinct sets of variables of inherently 

different character: the set of functional variables Vfun and the set of dynamic 'variables Vdyn . 
In a mode, a positive declaration of a variable U will always overwrite a negative declaration, 
i.e. U+,U- = U+ = U-,U+. We use f+ (f-) for the positive (negative) submode of f. As an 
example, if f = U+, y- , P+, then f+ = U+, P+, and f- = Y - . 

Members of the set T of V£C-types, or simply types, are constructions of the form (3 = f#a, 
and function types of the form a -t (3 E T (# shall bind stronger than -t), where a,(3 E T, built 
up from a fixed set f3T of base types. We call a type simple, iff it is a base type or a functional 
type. We identify a simple type a with type 0#a. Note that simple types may contain modes on 
functional level. Furthermore, we identify f#(/).#a) with (f, /).)#a . Thus we can always rewrite 
a type (3 such that a is simple in (3 = f#a . In this case we call a the characteristic type and f 
the characteristic mode of (3. 

We shall need to allow for the arguments of functional expressions to carry free variables, and 
therefore define extensions a and 0 of a type a, given some negative modes fi (i .e. ft = 0): if a is 
of base type, then both a and 0 equal a. If a = /).#(a1 -t ( ... -t an)), then a = /).#(f1#al -t 

(f2#a2( '" -t [Ui=l.. .(n-l) fi]#an))) and 0 = /).#(f1#a1 -t (f2#a2 -t ( ... -t f n#an )), where 
/). n fj = 0. Unless stated otherwise, when we speak of a in the context of a given a or 0, we 
assume a to be the minimal type, that is, taking away all negative variables on all levels . 

We extract the top-level positive (negative) variables of a type a by a+ (a-), defined as 
f+ U (3+ (f- U (3-) if a = f#(3, and a+ = 0 (a- = 0) if a is a simple type. Further, we shall need 
a function which collects the variables of all levels of a type, the binding potential oj a, defined 
as BP(a) = a+ U a-, if a is not a functional type and BP(a) = BP((3) U BP(-y) , if a = (3 -t -y. 
We write the positive (negative) parts of a's binding potential as BP+ (a) (BP- (a)). The name 
binding potential reflects that BP( a) gives full information on which variables contribute to the 
binding behaviour of an expression which is of type a. The binding behaviour needs to contain 
both positive and negative variables. Further, we need to consider all functional levels of the type, 
since they give information on what happens upon function application . 

Lastly, we need to define a substitution of modes in a type [/)./ X]a by 

[/)./ X]a = [/)./ X]f#[/)./ X]a' if a = f#a' 
= [/)./ X](3 -t [/)./ Xli' if a = (3 -t 'Y 
= a if a base and simple 

[/)./ X]f = /)., (f - X-) if X- E f 
= [/)./ X)n, [/)./ X)(f - n) for some n E N 
= f else 

[/)./ X)n = [.6./ X]n (i.e . substitutions for placeholders are not resolved) 

Defining the well-formed formulae of V£C, we start from a signature E of typed constants, 
consisting of two disjunct subsets EI and EP (for logical constants and parameters, i.e . the non-

1 Modes will also include natural numbers acting like de-Bruijn indices; however, their motivation is too involved 
for the extend of this abstract and may safely be ignored for a first understanding of 1) CC. Still, we will mention 
them in the definitions for completeness. 

87 



logical constants, respectively). For reasons of minimality, we assume that E does not contain any 
constant functions - these may be constructed from atomic expressions by functional application. 

We assume that EI contains at least the operators a, as and 0° which will be called dynamifi
cation operators: 

a : (0- -+ f3 -+ ,) -+ (r#o-) -+ (fl.#f3) -+ (r u fl.)#, 
as : (0- -+ f3 -+ ,) -+ (r#o-) -+ (fl.#f3) -+ (r u fl.)#, where fl. + U r- = 0 
0° : (0- -+ f3) -+ (r#o-) -+ r#f3 

Well-formed formulae will be defined by means of an inference system, where the judgment 
A: 0- holds, iff A is a formula of type 0-. 

Definition 1.1 (Well-formed Formulae of VeC). The syntactic category of well-formed for
mulae consists of constants, variables, applications (AB), and >.-abstractions (>.Xa.A), dynamic 
abstractions (cU a .A). The inference system for the judgment schema of well-typedness with respect 
to some variable context A, denoted by A f- A: r#o-, is given by the following schemata2 : 

E1'(c) = a wff:par 

A f- c:a 
EI (c) = 0- wff:lconst 
A f- c: 0-

A tf. BP(Zi) 
------ wff:var 
A, [A : a] f- A: A-#Zi 

A, [U : fi] f- A : 0-
-------- wff:dyn 
A, [U : /J] \- cUiJ.A : U+#o-

A,[X: ,] f- A:a X tf. Dom(r-) X tf. BP(!) ,= fi 
----------------wff:abs 

[0/ X]I(A) \- (>-'XiJ.A): r-#Ib) -+ [r- / X]I(a) 

A \- A : r-#(fl. -#0- -+ f3) A\- B: 0-
----------- wff:app 
V([a- lOlA) f- AB: r-#v([o-- /O]f3) 

If A f- A: r#o- for some A , where 0- is simple, we shall also write A E wffa(E; r). Note that 0-
depends on the choice of A. 

Note that the definition of 1) e.C well-formed ness is a simple extension of the well-formed ness in 
>-.-calculus, being extended only by the definition of c-abstraction and the management of modes. 
Note in particular that a variable is a member of its own mode, and t~at free variables of a function 

argument are allowed in through the r- on top level and through the fi on functional level. Observe 
that the top level free variables are free in the result type also exactly if the >-.-abstraction is not 
empty. Apologies for this rather brief exposition come with an example for a vec type derivation. 
B, B' and B" are variable contexts such that B = B' - [U : . . . ] = B" - [F : ... ]. 

A,[U: 0), [P: 'Yl f- P: P-#>r 

A, [U : '0'], [P : 71 f- cU.P : U+, P-#>r 

A, [U : OJ f- >-'P.cU.P: (r-#>r) -+ [r- /P]U+, P-#>r 

8', [P , 6.'-#a -t 6."- #(31 f- p, P- #(6.'-#a -t 6."- #(3) 8", [U ,91 f- U , u-#91 L'>'- #=' =1 
B, [U : 0-], [F : fl.'-#o- -+ fl."-#f3] f- F(U) : F-, fl."-#f3 U-#B 

2D and I are defined as the decrement and increment on natural numbers respectively, i.e. 
I(U+, Y- ,I, p+ #(0' -+ (3) = U+, Y-, 2, p+ (I(O') -+ I({3)), and likewise for DO. For purpose of this abstract 
and a first understanding of Dec, ignore these as well as the introduction and substitution of numbers'in modes . 

88 



The latter sub-construction illustrates how both, the type extension (introducing (:).I- which 
is matched with U-) and the negative mode r- of the application rule (being matched with F-) 
are used to derive F(U)'s type. Now, we derive the type of A = >'F.(>'P.c5U.P)F(U), calling the 
above subderivations (1) and (2) respectively. 

(1) (2) 

B, [U : a], [F : ... ] ~ (>'P.c5U.P)F(U): U+, F-, (:).1I-#/3 ~I __ _ 

B, [U: a] ~ >'F.(>'P.c5U.P)F(U): (3-#(U-#a -4 (:).1I-#/3)) -4 U+,3-,{:)."-#/3 

Observe that (:)."- is not yet specified in A's type. This depends on what kind of function will 
be substituted for F. E.g. if we apply A to >.x.s(X) : 0- #{ -4 0 - #0 given [X : {j E B and some 
type 0, we get {:)."- = U-. Alternatively, if we apply A to >'X.r : (0- #{) -4 0, then {:).II- = 0. 

In the first of these alternatives, i.e. A = (>'P.c5U.P)s(U), we may also observe how variable 
capture is mirrored in the types: here, the (:)."- in the type of F(U) contains a negative U- by 
the specification of F. The positive U+, which comes from >'P.c5U.P, overwrites the U-. Thus the 
key to the structural modeling of variable capturing is the overwriting effect of positive variables. 
Note that capturing works regardless of whether the positive variable occurs in the functor or in 
the argument . 

If the mode of an expression contains no positive variables, we call that expression static, 
and dynamic otherwise. In the same spirit, we caIJ >'X.A a static or functional abstraction, and 
c5U.A a dynamic abstraction, since it adds to the degree of dynamicity. Further, for a variable A 
we distinguish between A being functionally bound (bound by a >.-operator) in an expression A, 
defined as in standard >.-calculus, and A being dynamically bound (bound by a c5-operator) in A, 
if A occurs positively in A's type. A is free in A : a, iff A E a-, and we write A E FV(A). 

Substitution (for functional variables) in vec is defined very much like its respective notion in >.
calculus, except that capturing of dynamic variables through substitution is perfectly allowed. With 
veC-types we may also express >.-calculus substitutability by means of types only : An expression 
B: /3 is substitutable for a functional variable Y in an expression A: a, iff 8P(a) n /3- = 0. The 
definition of substitution must be extended by a clause for dynamic expressions, which is trivial 
though: since U is not a functional variable, we have [BjYjA = c5U.([BjY]C). We note that vec 
substitution is type-preserving. 

In vee, we may use the well-studied /3-reduction of type theory for the semantic construction 
process, in the way suggested by Montague. In a similar way, we also need a so-called c5-reduction, 
by which means dynamic expressions are constructed from their dynamic constituents. A particular 
feature of vee is, however, that a-renaming known from type theory is not be confined to >'-bound 
variables alone but extended to c5-bound variables. In fact, a-renaming of dynamically bound 
variables is a problem for the existing systems for compositional discourse semantics mentioned in 
the introduction and vec evolved from an attempt to understand full a-conversion. Facilitated 
by the richer type system, we are able to define a joint a-conversion rule for functionally and 
dynamically abstracted variables (let A and B be either both functional or dynamic variables); 
the operator C! changes B for A everywhere in A itself, including the abstractions, and also in its 
type. 

A I- 0: /3 AI' ¢ BP(/3) BI' ¢ A 

(A ~ D)=a([BjA]A ~ C!(D)) 

The a-rule may be applied if the variable A to be changed in A does not occur in the binding 
potential of A, and B is a new variable (not in A) . This means that a variable, whether functional 
or dynamic, can be renamed if its scope is closed off (note that the scope of free variables can be 
considered boundless), even over functional application, i.e. it does not have an effect on any of 
A's arguments. Note that the substitution [BjA]A is non-empty, if A is a dynamic variable. As 
usual, we will assume a built-in a-equality, i.e. that expressions are syntactically equal, if they are 
a-equal. 

In addition to the above a-rule and the standard (>.-calculus) /3- and 7]-rules, vec also has a 
c5-rule which defines that oR(c5U.A)B -+6 c5U.(oRAB) and oR.A(c5U.B) -+6 c5U.(oRAB), and 
if both A and B's types are static, oRAB -+6 RAB. Similarly for 0$ and 0°. 

89 



The induced equality shows that a and A' are dynamification operators for binary relations 
R, a symmetric and an asymmetric one respectively, and that 0° is a dynamification operator 
for unary relations R . We have chosen a, a' and 0° as primitives for vec instead of A-DRT's 
®-operator (and the asymmetric equivalents of other theories). Indeed, we are convinced that it 
will be possible to characterize the dynamic operators of other approaches in relation to known 
binary relations by means of these dynamification operators. 

2 The Semantics of V.cC 

The main focus on the definition of vec's semantics will be the capturing of dynamic variables, 
as before. Here it means that the interpretation of the variable to be captured must be such 
that it can be mirrored onto the interpretation of the bound variable as a side-effect of function 
application. This effect shall be modelled by delaying the interpretation of the variable until after 
function application. A general technique to do this is the use of intensionalization. The underlying 
idea of vec's semantics is to use this technique implicitely and let the interpretation process itself 
guard all dynamic variables (instead of using explicit" and v-operators). A-bound variables will 
be interpreted as usual, by an assignment function <p that is added to the interpretation function. 

The basis of interpretation of VeC-expressions will be a dynamic pre-structure, a straight
forward extension of the well-known pre-structure of Henkin models of standard A-calculus by a 
domain for (potentially) dynamic structures. 

Definition 2.1 (Dynamic Pre-Structures). Let Vr be a typed collection of sets and I: E --+ 
V be a typed total function, then we call the triple A := (V, @,I) a dynamic pre-structure, if 

l. Va-t{J <;;; F(Va; V{J) 

2. Vr#a = F(Br; Va) 

where Br = UA:::>r F(~ dyn; V)3 is the set of variable assignments for the mode r, also called 
r-states. -

The function I must be defined such that4 

I(o) 
I(o') 
I(oO) 

= An, A, B.{ a1 U b1 
f-t n(a2

, b2
) I a E A, bE B, a111b1} 

=An,A,B.{a1 Ub 1 f-tn(a 2 ,b2
) aEA,bEB,a1 b1} 

= An, A.{ a 1 f-t n(a2
) 1 a E A} 

and the constant @: (r#a -+ f3) -+ (~#a) -+ (ru~#f3) is defined as o@ where @ is the static 
(standard) application operator. 

The collection V is called the carner set or the frame of A, the set Va the universe of type a, 
@ is the dynamic application operator, and the function I is the interpretation of constants. 

Definition 2.2 (Denotation I",(A). Let A = (V, @,I) be a dynamic pre-structure and <p be a 
partial assignment function for A-bound variables. The denotation I",(A) of a well-formed formula 
A E wJfa (E; r) is defined inductively as follows: 

l. I",(c) = I(c) for any c E E 

2. A is a variable: If A = X E Vfun , then I",(X) = <p(X), 
if A = U E Vdyn , then I",(U) = {t f-t t(U) It E B[u:a]} 

3. I",(oU.D) = I",(D)II/ 

4. I<p(AX.D) = AA.I",,[AIX](D)6 

5. I",(AB) = I",(A)@I",(B) 

3We write t:>. dyn to denote the set of dynamic variables in "t:>. . 

4Two partial functions hand 12 agree, h 1112, if for all X E Dom(jd n Dom(h) we have h (X) = h(X) . 

90 



For all s E Dom(L<p(A)) we call L<p(A)(s) the static meaning of A with respect to state sand 
assignment <po 

From the definition of the variables as described above, everything else is simple. Since the 
set of r-states has already been built up recursively in the course of the interpretation of some 
expression A, the J-abstraction has little to add in the interpretation of JU.A. Note that U may 
not occur in A itself, thus the denotation of A may include r-states which are not defined on U. 
In this case, these states have to be eliminated since the mode of JU.A does contain U. 

Note that the job of dynamic binding on the semantic side is mainly done by the dynamification 
operators: they dynamify a static operation by coordinating the states of two dynamic objects 
and applying the static operator on the static meanings belonging to the respective states. This 
coordination is facilitated by the agreement condition a 1 1lb1 and the set union a1 Ubi. 

3 Application to A-DRT 

We introduced vec as an algebraic foundation for (existing) compositional formalisms for discourse 
semantics. Let us demonstrate this for one of such systems, the A-DRT [KKP96, K'us96]. To arrive 
at A-calculus, we only need to fix the set of base types to BT = {e, o} (individuals and truth 
values), and specify the set E', the set of logical constants, thus : 

symbol type 

2r (r#o) -+ (r #0) 

6.rA (r#o) -+ (tl.#o) -+ (r, tl.#o) 
VrA (r#o) -+ (tl.#o) -+ (r-, tl. -#0) 

=>rA (r#o) -+ (tl.#o) -+ ((r ,(tl. /r+)))#o 

The types of these constants fully reflect DRT's notion of accessibility which is, in effect, a 
specification of the dynamic behaviour of certain linguistic constructs. 

Note that the formalization in vec allows a finer analysis of dynamic objects than in [Kus96], 
since the mode r records the exact degree of dynamicity of a DRS - the A-DRT type t for 
DRSes is now expressed by the collection of dynamic types of the form r#o. This points to 
an important and useful property of vec, the merging of DRSes and conditions: these are not 
inherently different, but DRSes are merely dynamic conditions . For one, this means that the 
awkward distinction between the two has been dropped. Further, this means that the logical 
constants now are conglomerations of the respective static and dynamic operator, e.g. 6. unites 
the static A and the 0-operator used in [Kus96]. 

As an example, let us have a look on the type of the representation of a sentence simi
lar to the one quoted in the introduction. The representation of every man with its type is 
B, [U : e] f- AQ.(JU.man(U)=>Q(U)): (tl. -#(U-#e -+ r"-#o)) -+ tl. -, (r"- /U)#o, and sleeps 
is represented by A f- AX.sleep(X):r-#e -+ r-#o. Thus, on application of the two, tl.- will 
be instantiated by 0, since r-#a -+ r-#o matches perfectly on U-#e -+ r"-#o), giving 
r- = U- = r"-. With these, the result type tl. - , (r"- /U)#o gives 0#0. This is as one would 
expect since (JU.man(U))=>sleep(U)) has no dynamic potential. 

The step from vec's semantics to a semantics for A-DRT again is simple. We fix the carrier 
sets for the basic types to the standard carrier sets for expressions of types e and 0, the universe 
of individuals and the set of truth values respectively. The semantics of the logical constants is 
summarized below; for 6. we have a simple dynamification of the static A, whereas the interpretation 
of the other constants needs to take into account some notion of quantification. 

5 We define / II u to be the restriction of / to those elements that contain U in their domain, i.e . / II u = {s >-t 

/(s) I U E Dom(s)}. 
6We use A for lambda-abstraction in the meta-language with the intuitive meaning. 

91 



I",br)@A = 

I",(.~r6.)@A@B = 
I",(Yr6.)@A@B = 
I",( =>r6.)@A@B 

{t I-? r 1 t E Br-, r = T, if for all a 1 I-? a2 E A such that 
all_r+ = t we have a2 = F, else r = F} 

8@I\@A@B 
{allr- U bl l6._ I-? a2 V b2 1 al I-? a2 E A,bl I-? b2 E B, alllb 1} 

{t I-? r 1 t E Br -,(6.-/r+),r = T if for all all-? TEA 
such that Dom( a 11_ r+) ~ Dom( t) there 
exists a b1 I-? T E B such that a 1 1Ibl l_6.+ and 
all_r+ U bl l_6.+ = t, else r = F} 

4 Conclusion 

We are convinced that vec with its new typing system constitutes a powerful algebraic basis for a 
whole class of logical systems combining functional and dynamic logics and that its further study 
may reveal more of the properties of the interplay of their features. In particular, we hope that 
in the same way as the types guide the higher order unification of standard A-calculus, this type 
system may be useful for dynamic higher order unification. 

First experiments have been done to use vec instead of the static A-calculus for applications 
of natural language understanding. It turned out that the type information does indeed improve 
the processing power. Further work to be done abounds. 

References 

[DSP91] 

[EK95] 

[Fit90] 

[GK96] 

Mary Dalrymple, Stuart Shieber, and Fernando Pereira. Ellipsis and higher-order unification. 
Linguistics and Philosophy, 14:399-452, 1991. 

Jan van Eijck and Hans Kamp. Representing discourse in context. In Johan van Benthem and 
Alice ter Meulen, editors, Handbook of Logic and Language. Elsevier Science B.V., 1995. 

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer Verlag, 1990. 

Claire Gardent and Michael Kohlhase. Focus and higher-order unification. In Proceedings of 
the 16th International Conference on Computational Linguistics. Copenhagen, 1996. 

[GKvL96] Claire Gardent, Michael Kohlhase, and Noor van Leusen. Corrections and Higher-Order Unifi
cation. In Proceedings of I<ONVENS96, pages 268-279. De Gruyter, Bielefeld, Germany, 1996. 

[GS90] J. Groenendijk and M. Stokhof. Dynamic Montague Grammar. In L. Kalman and L. P6los, 
editors, Papers from the Second Symposium on Logic and Language, pages 3 - 48. Budapest , 
Akademiai Kiad6, 1990. 

[Hue75] Gerard P. Huet . An unification algorithm for typed A-calculus. Theoretical Computer Science, 
1:27-57, 1975. 

[Kam81] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk, Th. Janssen, and 
M. Stokhof, editors, Formal Methods in the Study of Language, pages 277 - 322. Mathematisch 
Centrum Tracts, Amsterdam, 1981. 

[KKP96] Michael Kohlhase, Susanna Kuschert, and Manfred Pinkal. A type-theoretic semantics for A
DRT. In P. Dekker and M. Stokhof, editors, Proceedings of the 10th Amsterdam Colloquium, 
pages 479-498. ILLC, Amsterdam, 1996. 

[Koh95] Michael Kohlhase. Higher-order tableaux. In Proceedings of the Tableau Workshop, pages 
294-309, Koblenz, Germany, 1995. 

[Kus96] SusalUla Kuschert. Higher Order Dynamics: Relating operational and denotational semantics 
for A-DRT. CLAUS-Report 84, Universitat des Saarlandes, 1996. 

[Mon74] R. Montague. The proper treatment of quantification in ordinary English . In R. Montague, 
editor, Formal Philosophy. Selected Papers . Yale University Press, New Haven, 1974. 

[Mus96] R. Muskens. Combining Montague semantics and discourse representation. Linguistics and 
Philosophy, 14:143 - 186, 1996. 

[Pul94] Stephen G. Pulman. Higher order unification and the interpretation of focus . Technical Report 
CRC-049, SRI Cambridge, UK, 1994. 

[Zee89] H. Zeevat. A compositional approach to DRT. Linguistics and Philosophy, 12:95- 131, 1989. 

92 



Restructuring in Romance and Tree Adjoining Grammar1 

Seth Kulick 

1 Introduction 

Institute for Research in Cognitive Science 
University of Pennsylvania 

93 

Much of the investigation of Tree Adjoining Grammar (TAG) as a formalism for natural language ([KJ85], 
[Fra92]) has focused on determining which members of the TAG family of formalisms are necessary to handle 
various natural language phenomena. Basic TAG allows one tree to adjoin (or substitute) into another tree. 
[Wei88] proposed a family of multi-component (MCTAG) extensions to basic TAG, which allow the grammar 
to consist of tree sets and not just single trees. Tree-local MCTAG requires that all members of a tree set 
adjoin into distinct nodes of a single elementary tree, and set-local allows trees from one multi-component 
set to adjoin into distinct nodes of any of the trees from another multi-component set. Set-local MCTAG is 
known to have a greater generative capacity ([Wei88]). 

In this paper I consider how adequate TAG is to handle clitic climbing in Romance languages. [Ble94] 
has previously argued that tree-local MCTAG is inadequate to handle clitic climbing in Romance, and that 
set-local MCTAG is required. I argue in this paper against that view, and maintain that tree-local MCTAG is 
sufficient to handle clitic climbing and related constructions, commonly grouped together as "restructuring" 
constructions. 

2 A Brief Look at Restructuring in Romance 

"Restructuring" in Romance2 refers to constructions in which normally clausal-bound operations appear to 
take place across a clausal boundary. One such construction is clitic placement3 • An object clitic4 usually 
appears on the verb of the clause that it is associated with, and in most cases cannot appear on the verb of 
a higher clause5 : 

(1) a. Luis insisti6 en comer las manzanas amarillas 
Luis insisted on eating the yellow apples 

b. Luis insisti6 en comer las 

c. * Luis las insisti6 en comer 

But for a certain class of verbs, commonly called "trigger" verbs following the [AP83] usage, clitics can be 
placed higher, called "clitic climbing". As (2c) shows, an object clitic from the lower infinitival can appear 
on the higher verb, if that verb if querer, in contrast to insistir in (Ic). As (3) shows, a clitic can even climb 
over two trigger verbs, where tratar de is also a trigger verb. 

(2) a. Luis quiere comer las manzanas amarillas 
Luis wants to eat the yellow apples 

b. Luis quiere comer/as 

1 I would like to thank Tilman Becker, Tonia Bleam, David Embick, Robert Frank, Heidi Harley, Beth AIUl Hockey, Aravind 
Joshi, Brian Kinstler, Anthony Kroch, Jeff Lidz, Miriam Meyerhoff, and Owen Rambow for valuable conversation· and advice. 
I would also like to thank Carmen Rio Rey and Marisel for their native speaker judgements. This work was supported by NSF 
grant SBR8920230 and ARO grant DAAH04-94-G-0426. 

2 All the following examples, unless otherwise noted, are in Spanish, which I will use as representative of Romance in general, 
although there are some differences which will be pointed out. 

3Two others are the long reflexive passive, and long tough-movement, which I caIUlot discuss here for reasons of space. 
4 A clitic is an unstressed pronominal item associated with an argument of a verb. I will not discuss here the various 

arguments concerning whether they are are base-generated as inflectional affixes or result from movement of an argument, since 
under either view the same locality conditions must be accounted for, and that is the main issue of concern. 

5These examples are taken from (AP83]. In Spanish, clitics appear after a nonfinite verb, and before a finite verb. 



3 CLITIC CLIMBING AND TAG 

c. 

(3) a. 

Luis las quiere comer 

Luis quiere tratar de comer/as 
Luis wants to try to eat them 

b. Luis las quiere tratar de comer 

94 

Both trigger verbs (quiere, tratar de), are usually analyzed as subject-control verbs, but some trigger 
verbs can also be apparent object-control verbs, such as permitir. (4) shows that both the clitic te and 10 
can be moved up to quiere. Some other verbs in this class are mandar (command), ordenar (order), sugerir 
(suggest), aconsejar (advise), and ensenar (teach)6. One other class of trigger verbs (5) that I will discuss 
consists of just two - hacer (make) and dejar (let), commonly referred to as causatives7 8. 

(4) a . Mari qui ere permitirte verlo 
Mari wants to permit you to see it 

b. Mari quiere permitirtelo ver 

c. Mari telo quiere permitir ver 

(5) a . EI me hizo decirlo 

b. El me 10 hizo decir 
He me it made to say 
He made me say it 

3 Clitic Climbing and TAG 

Example (4c) was used as a crucial case in [Ble941's argument that tree-local MCTAG was insufficient to 
handle clitic-climbing. To illustrate the argument, consider first a simpler case such as (6). 

(6) a. Mari quiere verlo 

b. Mari 10 quiere ver 
Mari wants to see it 

(6a), without clitic climbing, would be derived by (7b) substituting into the XP node of (7a)9. [Ble94] 
analyzes the case with clitic climbing by splitting the tree for a clause from which a clitic climbs into a 
multi-component set, as in (8ab), so that (6b) would be derived by (8b) substituting into (7a) while (8a) 
adjoins into (7a) at F. 

(7) (a) IP 

~ 
Mari FP 

~ 
F VP 
I 

quiere-i 
~ 

V XP 
I 

t-i 

(b) FP 

~ 
F VP 
~ 

ver F 
../'--..... 

lo-j F 

6It should be noted that judgements differ on how acceptable clitic climbing is with these verbs (e.g., [Bor88], [Luj80], 
[Suii80]. [AR75]). Also note that the object of permitir has dative case, although it can't be seen here in the clitic form, but it 
can if it was a full NP. Thus these verbs are usually considered as taking a dative NP argument which controls the PRO in an 
infinitival complement. Spanish is unique, as far as I know, among modern Romance in allowing clitic climbing with this class 
of verbs. 

7 For many speakers, clitic climbing with hacer is obligatory, and (5a) would be ungrammatical. 
sOne other class of trigger verbs, that I will not discuss here, is the perception verbs. The causatives and perception verb 

:ases of clitic climbing are sometimes referred to as Clause Union, with the other trigger verbs grouped together as Clause 
Reduction. Restructuring is sometimes used to refer only the latter group of verbs. I am using it as a general cover term here. 

9XP is taken to mean that (7a) can take either an FP or VP complement, where FP is a functional projection. 



4 CLITIC CLIMBING - ANOTHER APPROACH 

(8) (a) F 
~ 
F F 
I 

lo-j 

(b) VP 
~. 

V t-J 

I 
ver 

95 

This much requires just tree-local MCTAG10.But now consider a sentence with two trigger verbs, such 
as (4c). This will require another multi-component tree set, for permitir, parallel to that of ver, as in (9ab) . 

(9) (a) F 

F F 
I 

te 

(b) VP 

~ 
V VP 
I 

permitir 

The derivation takes place by (8ab) adjoining and substituting into (9ab), respectively, and then the two 
complex components adjoin and substitute into (7). This is a set-local, not tree-local MCTAG derivation. 

4 Clitic Climbing - Another Approach 

The trigger verbs can be broken down into two basic categories, depending on whether the subject of the 
complement must be coreferential with that of the trigger verb. I will refer to the case of when such 
coreference is necessary as the "auxiliary-like" category. The second category, without the coreference, 
includes the permitir class and the causatives. 

4.1 Auxiliary-like 

Consider for the moment just the first category, and a sentence like (2c), repeated here: 

(10) Luis las quiere comer 

What must be the analysis if set-local MCTAG is excluded? Assuming that las must be in the same tree 
as comer, then quiere must be adjoining in between them 11. The trees that would be used are shown in (11), 
and (Ub) would adjoin into (lla) at the lower VP node l2

. 

(11) (a) s (b) VP 

~ ~ 
Mario VP NP VP 

~ 
Cl VP 
I ~ 

lo-i V DP 

I ~ 
PRO V VP 

I 
quiere 

I I 
comer t-i 

10 It should be noted, though, that this is not the usual definition of tree-local MCTAG, in which both components adjoin into 
another tree. Here, one component adjoins, while the other substitutes in. Leaving aside the formal issues, this seems to me like 
a not-all-together innocuous method of derivation. For example, one could easily then have a raising-to-object derivation for [ 
believe John to be a. liar, in which a lower clause is split into a multi-component set, John and to be a liar, with a higher clause 
of [ believe S, and to be a liar substitutes into the S node of the believe tree, while John adjoins (or substitutes) into the believe 
tree. Whether or not this is desirable, it's important to note that pure TAG's formal inability to accomplish raising-to-object 
was one of the original arguments in favor of it [KJ8S]. 

11 Another possibility is that Luis and quiere can multi-component adjoin around las, but I put that aside here. In any case, 
it certainly does not affect my argument that set-local MCTAG is not needed. Also, if a sentence with two intervening trigger 
verbs was used, as in (3c) Luis las quiere tratar de comer, then even with tree-local MCTAG, tratar would have to adjoin in 
by itseU. 

12 And there must be some type of argument merger/unification happening between Mario and PRO. 



4 CLITIC CLIMBING - ANOTHER APPROACH 96 

The proposed analysis handles the "auxiliary-like" trigger verbs by adjoining them almost as if they 
actually were auxiliaries or raising verbs. That is, it claims that that they have a sub categorization in which 
they are more "defective" and so can adjoin in a manner not usually done. In fact, not only does this analysis 
allow TAG to handle clitic climbing, but it is well supported by the linguistic facts, as I will now briefly 
discuss. 

First, a raising or auxiliary analysis is appropriate for many of the verbs in this category. Most of the 
verbs in this category are either modals13 like deber (must) (12a), aspectuals like comenzar a (start) (12b) , 
or motion verbs like volver a. The latter is an interesting case, because, as [StrS1) points out, while it can 
mean either "again" or "return (in order to)" when there is no clitic climbing, as in (13a), it can only have 
the aspectual reading when there is clitic climbing, in (13b). 

(12) a. La debi6 comprar en 1950 
She must have bought it in 1950 

b. Lo comenz6 a escribir 

(13) a. 

She started to write it [Suii80) 

Ana volvi6 a empezar a copiarfa 
Ana again began to copy it or 
Ana returned (in order) to begin to copy it 

b. Ana fa volvi6 a empezar a copiar 
Ana again began to copy it 
*Ana returned (in order) to begin to copy it [StrS1) 

[LujSO] and [Pic85) argue for Spanish and Catalan respectively that the aspectuals do not impose any 
selectional restrictions on the subject, and could be treated as raising verbs 14 However, it is apparently 
the case that in at least some dialects of Italian, these aspectuals do impose some selectional restrictions. 
Whether root modals assign a theta-role to its subject has been a matter of debate, but they are commonly 
assumed to not be raising verbs 15 , but it is certainly not unreasonable, in TAG terms, to adjoin them as 
auxiliaries. 

So a raising or auxiliary analysis is already appropriate for most of the verbs in this category. However, 
there do seem to be some verbs in this category that are subject-control verbs, in particular iraiar de (try) , 
and querer ( want). However, there is a good amount of evidence 16 (e .g., [N ap81), [Ros90], [Pic85)) indicating 
that, as [NapS1) concluded in her thorough analysis of clitic climbing in Italian, a trigger verb is limited in 
interpretation when clitic climbing takes place as compared to when it doesn't, and that "these limitations 
basically involve a kind of weakening or bleaching of the lexical value of the verb ." 

I will only mention here one of many pieces of data, in this case from Catalan ([Pic90)) . In Catalan (and 
Spanish), a common analysis is that plural null pronominals may be interpreted as arbitrary in reference if 
they are external arguments of a predicate, although that is not true for an internal argument, as shown 
in (14) for Catalan. However, in (15) the null subject is interpreted as if it were the internal argument of 
passar, not the external argument of want. In other cases a control, non-trigger verb with an embedded 
passar clause wQuld allow the arbitrary reading. So under the TAG view argued for here, in (15), pro is 
acting as the internal argument of passar because it is the internal argument of passar, and volen is simply 
adjoining in l7 . 

(14) a . Sembla que pro hi passen 
seems that there pass by 
It seems that they are passing by there 
*It seems that someone is passing by there 

13 Unlike in English, modal verbs in Romance are not distinguished from other verbs in terms of lacking any verbal morphology. 
14 [Pic8S] does not actually treat them as raising verbs, for reasons that are irrelevant here. 
15 Although epistemic modals perhaps are, which I won't discuss here . 
16 A good amount, but certainly not sufficient. Much of this evidence requires further checking and examination of a wider 

range of cases than has been discussed in the literature . 
17 In the TAG tree for passar, pro would be moved from the object position to subject position, but that is a move internal 

to an elementary tree and is not a problem. 



4 CLITIC CLIMBING - ANOTHER APPROACH 97 

b. Em penso que pro m'enreden 
I think that me-are-fooling 
I think that they are fooling me 
I think that someone is fooling me 

(15) Sembla que pro hi volen passar 
seems that there want to pass by 
It seems that they want to pass by there 
*It seems that someone wants to pass by thE 

It's worth noting in this connection that "want" is a modal in German and that [Mey97] argues that for 
Bislama, a Melanesian creole, wantem (want) and traem (try) can participate in an auxiliary-like manner in 
constructions that are similar to complex predicates18 . 

Note also that since the derivation of a sentence such as (3c) requires that quiere adjoins into a tree 
for Luis las comer, then the final subject 19 must be the same as the subject of the embedded clause. It is 
formally impossible for it to be otherwise. This of course rules out object-control verbs as trigger verbs, and 
in fact this is in general true20 . This appears to be a problem for verbs like permitir, to which we now turn . 

4.2 The permitir class and the causatives 

The causatives are an interesting case, since they exhibit monoclausal behavior, in a number of ways, aside 
from clitic climbing, most notably in Case marking. I adopt the approach here, following recent work on 
the phrase structure of causatives, that the causative verb is a "spell-out" of a light verb that is associated 
with the lower verb, and in TAG terms that would mean that the causative and its complement are in fact 
part of one TAG tree. [SH88] argue, in a TAG framework, that there is strong evidence for this from Italian, 
since the passive can be constructed with the complement object promoted to matrix subject position, as 
in (16), and so the causative+complement verb forms a complex item in the lexicon over which the passive 
can operate21 . 

(16) a . Questo libro e stato fatto leggere a tutti gli studenti 
this book is been made read to all the students 
This book was made to be read by all the students 

[SH88] argue that since other Romance languages do not permit this long passive, they have a true bi-clausal 
structure, unlike Italian, which must be mono clausal. However, I will instead extend the analysis of Italian 
to the causatives for the Romance languages in general, and assume that the long passive gets ruled out for 
other reasons. So if it assumed that in a sentence like (5) that hacer and decir are in the same TAG tree, 
then there is obviously no problem in handling the clitic movement of /0 without extending TAG. 

As for the permitir verbs, I analyze them as causatives22 , in which permitir is also analyzed as the spell
out of the causation in the TAG tree, leaving aside the details of this for now. Aside from the suspicious 
semantic nature of these verbs, support for this analysis is given by the fact that in some languages, "teach", 
one of the permitir class of verbs, as ensenar, is in fact a morphological causative, meaning "cause to learn" , 
as in the Polynesian language Moari (whakaako : whaka- 'make; cause' and ako 'learn').23 24 

18 I thank Miriam Meyerhoff for this reference and for a discussion of the relevant properties. 
19 By this mean only the item that appears as the subject in the final derived tree. I am not referring to the technical 

Relational Granunar use of "final" . 
20 [Kay89), in his analysis, specifically tries to rule out object-control verbs. 
21 They suggest that fare and the complement must form a "lexically derived complex verb". For my purposes here, it is only 

necessary that fare and the complement verb are co-anchors of a TAG tree. Under a TAG variant such as that of [Ram94J, 
such a long passive would be possible by perfonning the passive after sufficient incremental generation of the proper tree, but 
the tree manipulation required by this analysis is beyond the power of TAG. 

22Thanks to Tony Kroch for this suggestion. [Kay89) also suggests that they be considered as "covert causatives" 
23Thanks to Heidi Harley and Miriam Meyeroff for pointing this out to me. 
24 There are some differences between hacer and dejar and the permitir verbs ([Bor88), [Moo9l]). I won't discuss these differ

ences here, but they do not seem significant enough to cause a problem. Also, it should be noted that even the Wlcontroversial 
causatives hacer and dejar do not act identically. [Bor88) also gives a partially-unified analysis of the permitir verbs and the 
causatives, by treating the latter as object-control verbs Wlder one subcategorization. 



5 SOME CONSEQUENCES 98 

This type of analysis, which solves the problem of the verbs in this category by increasing the size of the 
elementary trees, has always been an option in TAG, of course25

• This is a dangerous option, though, since 
it can easily become a hack that overcomes any problem by making bigger trees, while losing the explanatory 
power of the locality of other cases. In the case of the causatives, though, there is good reason to take this 
approach, since it is limited to a small number of verbs, and to some extent this analysis is even forced by 
the empirical properties of the causatives26 • 

5 Some Consequences 

5.1 Revisiting the Problematic Case 

Now consider again the derivation of (4c). Although I won't go into detail on the phrase structure of the 
trees, it can be easily derived, without needing set-local MCTAG, or even tree-local MCTAG. One initial 
tree will consist of M ari telo permitir ver, where permitir is the spell out of the causation, and permitir and 
ver are the co-anchors of the tree. Then quiere simply adjoins in . 

5.2 Embedding of Causatives 

Since the verbs likes querer simply adjoin in, there is no formal limit on how far the clitic can climb over 
verbs such as these, those in the "auxiliary-like" category. The same is not true for the causatives. If 
clitic climbing is handled by movement within one tree, what happens when one causative is on top of the 
other? This is currently being investigated, but current indications are that in Spanish, at least, a clitic 
cannot climb over two permitir verbs, and the causatives may perhaps admit that only marginally. This is a 
complex matter and cannot be discussed here in full, but for example, (17a) shows la having climbed from 
comprar to permitir. As (17b) shows, it cannot climb higher to ordenar27 

(17) a. El doctor Ie ordeno permitiria comprar a Juan 
the doctor her ordered to-permit-it to-buy Juan 
The doctor ordered her to permit Juan to buy it 

b. * El doctor sela ordeno permitir comprar a Juan 

~.;:S C;onstramts on Multiple Clitic Movement 

It has long been recognized that two clitics associated with a verb cannot be split28 , what [AP83] called the 
"multiple clitic constraint" (MCC): 

(18) a. Puedo mandartela 
I can send it to you 

b. * Te puedo mandaria 

c. Te la puedo mandar 

Under the analysis proposed here, all that needs to be said is that argument clitics belonging to the same 
verb are together on the same node in the elementary tree for that verb, a reasonable assumption. Then 
they obviously cannot separate for clitic climbing, as in (18b), because there is no such "climbing" . The 
clitics tela never move, they simply get stretched away from the lower verb, and they cannot separate. 

2~The earliest TAG work [KJ85] in fact proposed allowing another level of embedding in an elementary tree to handle certain 
constructions in English and Italian. 

26 A similar TAG analysis for French causatives has been suggested by Anne Abeille. [Mo091] refers to some unpublished 
work by C. Rosen in a Relational Grammar framework that makes the same basic distinction between the two sets of trigger 
verbs as is done here, in which she classifies them as "auxiliary triggers" and "serial triggers" . 

27 when Ie and la are together on a verb, they appear as sela. 
28 [I<ay89) claims that this is not so for some nonstandard dialects of Italian and Spanish . I leave this aside for now . 



6 CONCLUSION 99 

A more interesting case of a constraint on clitic movement has to do with an object clitic "climbing" 
to one of the permitir verbs, what [AP83] called "intersecting clitic climbing" and what [Ble94] grouped 
together with the MCC as "bandwagon effects". Essentially, if a clitic in the embedded clause of permitir 
climbs to permitir, then it and the clitic associated with permitir are stuck together: 

(19) a . Mari quiere permitirte verlo 
Mari wants to permit you to see it 

b. Mari te quiere permitir verlo 

c. Mari quiere permitirtelo ver 

d. Mari te 10 quiere permitir ver 

e. * Mari te qui ere permitirio ver 

f. * Mari 10 quiere permitirte ver 

[Ble94] derived this constraint from the use of set-locality. If te and 10 both climb, then the tree sets 
in (8ab) and (9ab) would both be used, and (8a) would have to adjoin into (9a), thus ensuring that the 
clitics have to stay together, ruling out (lge). (19f) is ruled out because if (8a) adjoined into (7a), while (Bb) 
substituted into a tree for permitirte, which then substituted into (7a), set-locality would be violated . 

Under the approach here, it would have to be said that if 10 moves internally in the permitir-ver tree , 
then it appears on the same node as teo Then, again, since quiere is simply adjoining in, the clitics cannot 
be separated. Of course, the clitics do not have to be on the same node in the permitir-ver tree, since te can 
climb by itself, while 10 doesn't have to climb at all. But if 10 does climb internally to the tree, it must be 
on the same node as te, which must be a constraint stated locally on the TAG tree, since otherwise (lgef) 
could be derived. This is perhaps one area in which [Ble94]'s analysis has an advantage over the one here , 
since in her analysis it is argued that the facts follow from the set-locality of the derivation. 

However, it may be the case that it is actually desirable to treat this as a local constraint. As [Mo09l] 
points out, there are cases in which the clitics of the lowest clause must stay lower, such as when the 
downstairs verb is ditransitive: 

(20) a . Te permiti6 mandarmela 
S/he permitted you to send it to me 

b. * Te me la permiti6 mandar 

The obvious thing to say is that a verb (permitir) cannot have two dative clitics on it, such as te and me. 
Under the analysis here, this would be a constraint that rules out (20) by simply prohibiting such a situation 
in an elementary tree - such trees are filtered out before any derivation begins. For [Ble94]' since permitir 
can take a reduced complement, and since both clitics for mandar can climb in other situations (e.g., (18c)) , 
this would have to be a constraint during the derivation (as well as on elementary trees, of course) that a 
verb cannot have two dative clitics, a situation that arises as a result of movement simulated by the sort of 
MCTAG system that [Ble94] uses (see footnote 10). Although this is very far from a definitive argument, 
it does at least suggest that there are some advantages to the analysis here, with regard to the behavior of 
multiple clitics. 

6 Conclusion 

I have argued that set-local MCTAG is not needed to handle restructuring in Romance . In fact, even 
tree-local MCTAG has not been used. Although there are many questions remaining over details of phrase 
structure, it seems to be a fairly successful approach. A crucial area of investigation is to further examine 
the properties of doubled verbs of the permitir class or the causatives, and to extend the analysis to the 
perception verbs, keeping in mind the various similarities and differences between these classes. Finally, 
given the similarities between long distance scrambling (LDS) in German and Restructuring in Romance 
([Sab95]), I hope to be able to extend this analysis to handle LDS, which has also been shown to be a 
problem for TAG. 



REFERENCES 100 

References 

[AP83] Aissen and Perlmutter. Clause reduction in spanish. In Studies in Relational Grammar. University 
of Chicago Press, 1983. 

[AR75] Judith Aissen and Alberto M. Rivas. The proper formulation of the spurious-se rule in Spanish. 
In Proceedings of the First Annual Meeting of the Berkeley Linguistics Society, pages 1-15, 1975 . 

[Ble94] Tonia Bleam. Clitic climbing and the power of tree adjoining grammar. In Symposium on Tree 
Adjoining Grammar, 1994. To Appear. 

[Bor88] Ivonne Bordelois. Causatives: From lexicon to syntax. Natural Language and Linguistic Theory, 
6:57-93, 1988. 

[Fra92] Robert Frank . Syntactic Locality and Tree Adjoining Grammar: Grammatical. Acquisition and 
Processing Perpectives. PhD thesis, University of Pennsylvania, 1992. 

[Kay89] Richard S. Kayne. Null subjects and clitic climbing. In Osvaldo Jaeggli and Kenneth J. Safir, 
editors, The Null Subject Parameter, pages 239-261. Kluwer, Dordrecht, 1989. 

[KJ85] Anthony Kroch and Aravind K. Joshi. The Linguistic Relevance of Tree Adjoining Grammars. 
Technical Report MS-CIS-85-16, University of Pennsylvania, 1985. 

[Luj80] Marta Lujan. Clitic promotion and mood in Spanish verbal complements. Linguistics, 18:381-484, 
1980. 

[Mey97] Miriam Meyerhoff. Be i no gat: Constraints on Null Subjects in Bislama. PhD thesis. Universitv 
of Pennsylvania, 1997. 

[Mo091] John Moore. Reduced Constructions in Spanish. PhD thesis, University of Santa Cruz, 1991. 

[Nap81] Donna Jo Napoli. Semantic interpretation vs. lexical governance. Language, 57:841-887, 1981. 

[Pic85] M. Carme Picallo. Opaque Domains. PhD thesis, CUNY, 1985. 

[Pic90] M. Carme PicaBo. Modal verbs in Catalan . Natural Language and Linguistic Theory, 8:285-312, 
1990. 

[Ram94] Owen Rambow. Formal and computational aspects of natural language syntax. PhD thesis, Uni
versity of Pennsylvania, 1994. 

[Ros90] Sara Thomas Rosen. Argument Structure and Complex Predicates. Garland Publishing, 1990. 

[Sab95] Joachim Sabel. On parallels and differences between clitic climbing and long scrambling and the 
economy of derivations. In Proceedings of NELS, 1995. 

[SH88] Beatrice Santorini and Caoline Heycock. Remarks on Causatives and Passive. Technical Report 
MS-CIS-88-33, University of Pennsylvania, 1988. 

[Str81] Judith Strozer . An alternative to restructuring in Romance syntax. In H. Contreras and J. Klausen
burger, editors, Proceedings of the Tenth Anniversary Symposium on Romance Languages, Seattle, 
1981. University of Washington. 

[Sun80] Margarita Suner. Clitic promotion in Spanish revisited. In F. Nuessel, editor, Contemporary Studies 
in Romance Languages, Bloomington, 1980. Indiana University Linguistics Club. 

[Wei88] David Weir. Characterizing mildly context-sensitive grammar formalisms . PhD thesis, University 
of Pennsylvania, 1988. 



Towards a model-theoretic characterization of 
indexed grammars 

Tore Langholm 

Preliminary Version 

Recent work by Kracht, Rogers and others has opened up a systematic study 
of the relation between two alternative ways of specifying syntactic structures. 
These can be viewed as the possible end results of the construction processes 
described by various grammars, or alternatively as the potential models for the 
sentences of appropriate logics. Both perspectives open up the possibility of de
scribing an infinite set of trees by finite means, either as the set of trees generated 
by a certain grammar, or as the set of models of a certain sentence. With a given 
grammar type or logical language, many sets will not be identifiable in this way, 
but stronger types of grammar or stronger languages will allow the identification 
of more sets of trees. 

A notable result is the correspondence pointed out by Rogers between the 
context-free grammars and the monadic second-order language L~,p over finite 
ordered trees, saying roughly that the sets of trees generated from context-free 
grammars are exactly the sets definable by the sentences of L~ p. , 

The language mentioned is equipped with individual variables ranging over 
nodes, set variables and set constants (the members of P) ranging over sets of 
nodes, truth-functional connectives and existential (and thus universal) quanti
fiers for both types of variables, together with two binary relation symbols <J and 
-< which are restricted to denote immediate dominance and (weak) linear prece
dence, respectively. In addition, various (second-order) definable relations are 
included, such as identity and dominance. 

The precise correspondence between L~,p and context-free grammars is this: 
Following Kracht, allow for a context-free grammar to contain a (finite) set of 
start symbols, rather than just a single one, and define a context-free feature 
grammar (dfg) to be a pair of a cfg and a classification scheme " i.e., a function 
from the (terminal and non-terminal) symbols of the grammar into the powerset 
of the set P of set constants. Moreover, define a feature tree to be a finite ordered 
tree where each node is decorated with a subset of P. Now a feature tree T can be 
viewed as generated from a cffg iff the grammar generates some phrase-structure 
tree which is mapped to T when symbols are replaced by their images under ,. 
Similarly a feature tree can be viewed as a structure satisfying or falsifying the 

101 



sentences of L~,p in the obvious way where a set constant decorates a node iff the 
node is contained in its interpretation. 

Now Rogers has shown that for any set A of trees of bounded out-degree (i.e., 
any set for which there exists some finite number n such that no node in any 
contained tree has more than n children) there is a sentence of L~,p satisfied by 
exactly the members of A iff there is a cffg generating exactly the members of A. 

Over the years a rich selection of grammar types stronger than the context
free has been developed, and it is of interest to determine if any of these can be 
related to corresponding extensions of L~,p. The indexed grammars constitute a 
natural starting point for such investigations. An indexed grammar can be con
sidered to generate a phrase-structure tree of the same type as those generated 
by context-free grammars, after the index-strings have been deleted. Moreover, 
paired with a classification scheme it can also be used to generate feature trees. 
The difference will of course be that such indexed feature grammars (ifg's) will 
be capable of identifying more sets of feature trees, but exactly which new sets 
are identifiable in this way depends on the exact variety of indexed grammars 
considered. Various alternative formulations ("normal forms") exist which are 
equivalent in the sense of generating the same string languages but which are 
seen to differ when attention is shifted to include the trees. A reasonable point 
of departure is the simple formulation given by Hopcroft and Ullman, allowing 
productions of the forms A -t lX and A -t Hf and Af -t lX. Any such grammar 
( or, more accurately, any pair of such a grammar and a classification scheme) 
corresponds to a sentence in an extension L~,P,0 of L~,p obtained by the introduc
tion of unary function variables. (The empty set at the third subscript position 
signifies that no function constants are added, only function variables.) 

This extension of L~,p is perhaps also the obvious first extension to consider, 
but the leap from L~,p to L~,P,0 is more radical than the step from context
free to indexed grammars: while the emptiness problem for indexed grammars 
is decidable, it is easily discovered that satisfiability of general L~,p,0-sentences 
is undecidable. 1 Hence at the very least there can be no algorithm mapping 
the sentences of L~,P,0 to corresponding ifg's. But in fact many sentences of 
L~,P,0 will not correspond to any ifg, algorithmically or otherwise. The reason is 
simple; it was observed by several authors already in the late sixties and early 
seventies that the tree sets generated by indexed grammars are much like the 
string sets generated by context-free grammars; and in particular it can be shown 
that the class of feature tree sets generated by ifg's is not closed under intersection. 
Hence the ifg's correspond to no language on feature trees containing a general 
conjunction operator. 

Hence what one can hope for is to relate the ifg's to a suitable fragment of 
L~ P0 which is not closed under conjunction. One approach along these lines is , , 

1 In fact, it is also undecidable when some finite bound has been introduced on the acceptable 
out-degree of feature trees. To simplify the discussions, the existence of such an implicit bound 
is assumed in the sequel. In a later version this will be brought to the surface in an explicit 
discussion. 

102 



to narrow the attention to sentences implying certain axioms that restrict the 
interaction between the unary functions. Let F be a finite set of unary function 
symbols, containing the distinguished element 1; the following axioms hold some 
interest. 

AXI !\fEF Vx(J(x) = f(l(x)) = 1(J(x))) 

AX2 !\fEF VxVy(J(x) = f(y) ~ f(x) = l(x) V l(x) = l(y) V l(y) = f(y)) 

AX3 /\f,9EFi!i:9 Vx(J(x) = l(x) V l(x) = g(x)) 

AX4 /\fEF Vx3Y(Y(J(x)) 1\ Vz(Y(z) ~ /\9EF Y(g(z))) 1\ (Y(x) ~ x = f(x))) 

AX5 VxVY((/\fEF(J(X) = l(x) 1\ f(y) = l(y))) ~ l(x) = l(y)) 

A set of functions satisfying these axioms corresponds to an assignment of stacks 
over F - {I} to the elements of the domain. The function denoted by 1 can be 
imagined to take each node to a "canonical" node decorated by the same stack. 
Note in particular that f(x) = l(x) for "most" f and x; this would "encode" 
that f is not the top symbol of the stack decorating x. On the other hand, if 
f(x) differs from l(x) then this would encode that f is the top symbol of that 
stack, and popping that symbol yields the stack decorating the node f(x). More 
precisely, the following representation result can be shown. 

A finite model (D,IM,fM, ... ) satisfies AXI-Ax5 ifflM(lM(a)) = 
1 M (a) for all a ED, and there exists a bijection ¢ from the range of 
1M onto a downwards closed set of stacks over F - {I} such that 

• if TOP(¢(IM(a))) = f then fM(a) is the b E range(IM) such 
that ¢(b) = POP(¢(IM(a))) 

• otherwise (for instance when ¢(lM(a)) is empty) fM(a) = IM(a) 

Note that this holds for all finite models, including feature trees. It enables us 
to talk about stacks decorating the nodes without moving to a two-sorted logic 
with a separate domain of stacks. 

Now let G = (V, T, f, R, S) be an indexed grammar as described by Hopcroft 
and Ullman, with the slight generalization that S is now a subset of V. Let Sy 
be V U T, and assume that AI' ... ' Am are the elements of this union. Below 
they will be treated syntactically as set variables. Let iI, ... ,iq be the members 
of f; these will be treated as unary function variables. In addition, 1 is a fresh 
unary function variable. Moreover, let, be a classification scheme over Sy, i.e., 
a function from Sy into the powerset of the set P of set constants. The following 
abbreviations are used. 

l(x) - l(y): 
i(x) = l(y): 
l(x) _ j(y): 

l(x) = l(y). 
l(x) =1= i(x) 1\ i(x) = l(y) 
l(x) = j(y) 1\ j(y) =1= l(y) 

103 

for i E f. 
for j E I. 



root(x): 
leaf(x): 
children(x, Yl,' .. , Yn): 

start(x): 
stop(X): 
empty(x): 
partition: 
classification: 
Axo: 

-,3y Y <l x. 
-,3y x <l y. 
Yl -< Y2 /\ Yl =f. Y2 /\ ... /\ Yn-l -< Yn /\ Yn-l =f. Yn 

/\ \lZ(X<lZ H Z = Yl V ... V Z = Yn). 
VAES A(x). 
VAET A(x). 
AiEl i(x) = l(x). 
\Ix (AI (X) V .. , V Am(x)) /\ Al<k<l<m -,3x(Ak(X) /\ AI(X)). 
AAESy \lx(A(x) -t ApE'Y(A)P(X)/\ /\PE(P-"((A)) -,p(X)). 
\lx(root(x) -t empty(x)). 

For each rule r = A -t Bl ... Bn let I.{Jr(x) be the formula 

A(x)/\3Yl . .. 3Yn(children(x, Yl,···, Yn)/\BI(Yl)/\l(x) - l(yd/\·· .I\Bn(Yn)/\l(x) = l(Yn)) . 

For each rule r = A -t B i let I.{Jr(x) be the formula 

A(x) /\ 3y( children(x, y) /\ B(y) /\ 1 (x) = i(y)). 

For each rule r = A i -t Bl ... Bn let I.{Jr(x) be the formula 

A(x)/\3YI'" 3Yn(children(x, Yl,"" Yn)/\BI(Yl)/\i(x) = l(Yd/\·· ./\Bn(Yn)/\i(x) = l(Yn)). 

Finally let l.{Ja,,,( be the sentence 

313i l ... 3iq( Axo /\ AXl /\ AX2 /\ AX3 /\ 
3Al . .. 3Am( partition /\ classification /\ 

\Ix ( (root(x) -t start(x)) /\ 
(stop(x) -t leaf(x)) /\ 
(-,stop(x) -t VrERI.{Jr(X))))) . 

The axioms AX4 and AX5 are not listed explicitly, but can be shown to follow 
from rpa,,,(, (More accurately, they are satisfied by any pair of a feature tree 
and a variable assignment on {l, iI, ... , iq} that satisfies the subformula of l.{Ja,,,( 

obtained by deletion of the q + 1 outermost quantifiers.) It is then straightforward 
to check that the ifg (G, ,) generates exactly the feature treesthat satisfy l.{Ja,,,(, 

Now the quest ion is which results are obtainable in the opposite direction. For 
instance, is it the case that any L~,p,0-sentence of the form 

313i l ·.· 3iq(Axo /\ AXI /\ AX2/\ AX3 /\ rp) 

or perhaps the form 

313i l · .. 3iq ( Axo /\ AXl /\ AX2 /\ AX3 /\ AX4 /\ AX5/\ I.{J) 

corresponds to an ifg, provided I.{J contains no quantification over function vari
ables? We hope to be able to obtain alternative characterizations of the corre
sponding classes of tree sets in the future, but at first sight they do not appear 

104 



to correspond to any simple version of ifg's. On the other hand, something very 
close to the ifg's considered above appears to be captured when an additional 
restriction is put on the use of function variables inside of cpo For any f and 9 
from the list 1, iI, ... i q , with at least one of the two being equal to 1, let f / g(x) 
be an abbreviation of :3y(y <l x /\ f(x) - g(y)) . Now restrict cp to contain occur
rences of function variables only inside positively occurring subformulas of this 
type. Note that the CPa,-y above can easily be rewritten to have the inner cp satisfy 
this condition. It appears that under this restriction the sentences 

:31:3i l ... :3iq(Axo /\ AXI /\ AX2 /\ AX3 /\ cp) 

or 
:31:3i1 ... 3iq(Axo /\ AXI/\ AX2/\ AX3/\ AX4/\ AX5/\ cp) 

can be shown to correspond to a slight generalization of indexed (feature) gram
mars in the sense of Hopcroft and Ullman, with the before-mentioned generaliza
tion to a set of start symbols, and with a slight generalization of the rule format 
which in particular includes a provision for "memory loss" to occur, in the sense 
of permitting productions like A ---+ B*, which allows the state of the stack to 
be changed arbitrarily when passing from A to B. While it is more general and 
flexible, such a grammar type still appears to be a variety of "indexed grammar" 
in the sense of allowing exactly the indexed string languages to be generated. 

We have not chosen to define this more precisely at this point, since a detailed 
proof has not yet been produced. However, we expect to resolve this shortly, and 
will almost certainly have a positive result of this sort ready for the MOL meeting. 

Note also that no conjecture has been made concerning the original formula
tion of indexed grammars given by Aho. This constitutes an alternative general
ization of the form given by Hopcroft and Ullman in which more than one stack 
symbol may be pushed onto the stack in a single step. At first sight it may appear 
that such a situation is easily describable by a sentence of the approximate form 

:3y(y <l X /\ f(g(h(x))) = l(y)), 

but this will not work with the given axioms, since the intermediate stack situa
tions may not decorate any nodes, in which case no appropriate denotations can 
be had for the subterms h(x) and g(h{x)). 

Selected References 

Kracht, Marcus, 1995. Syntactic Codes and Grammar Refinement, Journal of 
Logic, Language and Information 4, pp. 41-60 & 359-380. 

Rogers, James, 1996. A Model-Theoretic Framework for Theories of Syntax, 
Proceedings of the 34th Annual Meeting of the ACL, pp. 10-16. 

105 



Generative Capacity Matters 

Alexis Manaster Ramer *and Walter Savitch t 

Abstract 

We discuss the relevance of mathematical results on weak genera
tive capacity. We contend that such results can (still) be relevant but 
that they must be handled with more subtle attention to detail than 
they normally receive. 

1 Introd uction 

The question of weak generative capacity of natural language has at times 
been considered a critical issue in Linguistics and at other times been con
sidered irrelevant. Moreover, some segments of the community have moved 
from one position to the other and back again. When Chomsky set up the 
framework from which most mathematical linguistics has evolved he wrote 

... the main problem of immediate relevance to the theory of 
language is that of determining where in the hierarchy of de
vices the grammars of natural languages lie. It would, f.e., be 
extremely interesting to know whether it is in principle possi
ble to construct a phrase structure grammar for English (even 
though there is good motivation of other kinds for not doing so). 
(Chomsky, 1959) 

Later he took the contrary view. Current attitudes in linguistics, pure 
as well as computational, say that weak generative capacity is at best of 
marginal significance. And some (notably, Chomsky 1986) go so far as to 
claim that such issues can in principle have no significance whatsoever in 
the linguistic arena. However, if history is any guide to the future, this view 
is likely to swing back again at some time. 

Part of the problems in dealing with weak generative capacity may stem 
from the fact that the mathematical context seduces us into a simplistic way 
of viewing things. With a formal mathematical definition of "context-free 
language" the question of whether or not a particular (well defined) language 

'Wayne State University Univ . manaster@umich.edu 
tUniversity of California, San Diego. wsavitch@ucsd.edu 

106 



is context-free or not is a mathematically precise question with a definitive 
yes or no answer. Perhaps because of this setting, we tend to think that 
the question "Does weak generative capacity matters to linguistics?" should 
also have a simple yes or no answer. Moreover, we also tend to think that, if 
the answer is yes, then the answer is a very broad yes that applies to almost 
all of linguistics, and if the answer is no, then weak generative capacity does 
not ever matter in linguistics inquiry. We contend that this is too simDlistic 
a view. 

The topic of weak generative capacity is a mathematically precise area 
with mathematically precise results. There are no significant problems with 
the mathematics. The theorems are by and large correct. The only lasting 
controversy has to do with whether or not the mathematics applies'to real 
natural language. In the simplistic case, somebody claims that some natural 
language is not context-free using some data and some theorem deriving a 
result from the data. [Postal, Culy, Shieber, Manaster Ramer] When such 
results are called into question, it is the data that is questioned. The theorem 
holds, but if the data does not hold up under scrutiny, then the theorem 
becomes irrelevant. 

(There are cases where the mathematics itself is called into question. See 
for example, Pullum and Gazdar 1982. However, these cases are rare. Most 
of these cases can arguably be considered a misinterpreting of the data, and 
in any event, mistakes in mathematics can be checked and do not stand the 
test of time.) 

Claims that a given language is or is not context-free are easy to un
derstand and the relevance of the mathematics is, as we have seen, easy to 
characterize. With mathematical results of a more general nature, the situ
ation is a bit more subtle, but is basically the same. The issue almost never 
is whether or not the mathematics is correct. The issue always is whether or 
not the mathematics is relevant to linguistics. For example, when somebody 
proposes a model for natural language or some portion of natural language, 
it is typically true that the model describes a clearly wider classes of lan
guages than natural language (or that portion of natural language under 
study). All proposed models from Chomsky's context-sensitive grammars 
and transformational grammars to various more recent models over gener
ate. In particular, the so called "weakly context-sensitive grammars" over 
generate. In these cases it is not clear whether the grammar model should 
be considered a relevant model or not. In cases where the model grossly 
overgenerates, as when it characterizes all recursive or all recursively enu
merable language, the model is clearly suspect. In those cases the grammar 
can model any algorithmic process what so ever and so it is not at all clear 
that it models any particular process, such as natural language grammar. 
In situations where the model only modestly over generates the relevance of 
the model is less open to attack, but in all cases, the issue is the relevance 
of the model. 

107 



In almost all cases where the mathematical results have fallen into disre
pute, it is the relevance of the result that is questioned, not the mathematics. 
Currently, most results in mathematical linguistics have received criticism 
against their relevance to linguistics. It may appear that there is something 
intrinsic that forces us to choose between mathematical rigor and linguistics 
relevance. We content that things are not that pessimistic. We contend that 
mathematical results can be linguistically relevant. However, this relevance 
requires that we simultaneously become both mathematically and linguis
tically sophisticated in our analysis. We cannot simply take stock theorem 
and their stock intuitive interpretation and apply them to empirical data 
without any further analysis. 

Before going on, we should point out that this misuse of stock theorems 
and their simplistic interpretation is not limited to linguistics. This is a 
general phenomenon in science. One of the most glaring current examples 
is the misuse of NP-completeness results in many branches of science. Sci
entists who learn a few basic techniques manage to prove that some model 
is NP-complete for some problems and then conclude that the problem is 
"computationally impossible." A more careful look at the situation almost 
always reveals that the application of the mathematics to the real world 
situation is very glib and not clearly applicable. In these cases the result 
says something about computation in the model, but it does not say the 
model is computationally impossible. To take a very simple case, the so 
called traveling salesman problem is NP-complete. This says that it is NP
complete to compute a maximally economic route of travel for a traveling 
salesman (or anybody else). Yet, we compute economical schedules every
day, including schedules for traveling salesmen. In this case there are two 
mismatches between the model and the real world. The real world allows 
for approximate solutions and the real word, in these cases, deals with finite 
models while the mathematics deals with infinite models. The application 
of the NP-result says something, but what it says is much more subtle than 
what people interpret it to say. 

There is a certain intrinsic problem in applying mathematical results to 
any real world situation. The mathematics is always an analogy to the real 
situation. As with all analogies, the mathematics correctly models some 
aspects of the real situation and misses other aspects. The researcher must 
show that the mathematics correctly models enough relevant features of 
the real world situation and misses only irrelevant features. We content, 
however, that a good approximation of this goal is not beyond reach. 

In this paper we content that one does not have to choose between math
ematical rigor and linguistics insight. If one uses more precision in applying 
mathematical results, one can have both mathematical rigor and linguistic 
relevance. We illustrate this with a small example from morphology which 
applies the principle of avoiding excess generative capacity. The example 
we have chosen happens to involve languages which are sets of words rather 

108 



than sets of sentences and happens to be concerned with regular, rather 
than context-free languages. These two features mean that it is that much 
easier to present briefly, and, moreover, it happens to represent a more or 
less finished piece of work (while we have nothing comparable to offer at the 
moment in the domain of syntax or of context-free languages). 

2 An Example from Morphology 

There has been a lot ot interest lately in using tinite- state models for mor
phology, which of course implies that the set of word forms of a language is a 
regular language. Recent work by Creider et al. (1994) discusses a l;lumber 
of problems with the finite-state approach, all of which boil down to the 
fact that a simple finite automaton will process words from left to right, yet 
languages sometimes exhibit phenomena which can only be described this 
way with some significant loss of naturalness. For example, Creider et. al. 
mention a language in which some roots and some suffixes trigger a change 
in the vowels of the entire word, including any prefixes. This kind of vowel 
harmony, which can be triggered by a non-initial morpheme in the word, is 
a problem for left-to-right processing. Another problem is the existence of 
morphological patterns where a root can take a given suffix S only if it is 
preceded by a given prefix P. Thus, English allows joy, enjoy, enjoyable, but 
not *joyable. 

Creider et al. propose a model which elegantly handles all such problems. 
Their model is a modified version of Rosenberg's (1967) two-tape nondeter
ministic finite automaton (NFA). In their ingenious modification, instead 
of having two tapes, they assume a two-way-infinite tape and two heads, 
one of which can only move to the left (and scans prefixes) and the other 
of which can only move to the right (and scans suffixes). The automaton 
starts out by positioning these heads on the root, which is found by guessing 
nondeterministically. 

The problem with the Creider et. al. model is, as Creider et. al. point 
out, that such automata generate linear context-free languages, a proper 
superset of regular languages. Yet the extra power is not required for any
thing in the kinds of examples Creider et al. discuss. So, in light of our 
opening remarks, what we need instead is to look for a model which has the 
extra descriptive power that Creider et al.'s model has but which does NOT 
generate nonregular languages. 

Such a model is easy to construct once we analyze what it is that Creider 
et al.'s new model does as opposed to what a simple (left-to-right) NFA 
does. Specifically, we would seem to want a kind of nondeterministic one
tape Turing machine which can move its head freely to the left as well as the 
right but which is somehow prevented from accepting nonregular languages. 

This can be accomplished by restricting how much the machine can write 

109 



on its tape (and hence how much memory it has) . Specifically, we will allow 
the machine, like in Creider et al. 's model, to guess nondeterministically 
the location of the root of the word being processed before it does any 
processing of prefixes or suffixes. In order for the guess to do any good, 
the machine must presumably mark the position of the root on the tape in 
some way. That is the only time it is allowed to write. The details here are 
unimportant, but basically, we can have a set of distinguished symbols to 
be used for marking the root, and we will permit the machine to write only 
once. Assuming that the input is presented as a sequence of morphemes, 
this should suffice for the linguistic purposes, since we can always find the 
root. (If the input were written as a sequence of phonemes, we would need 
to mark the beginning as well as the end of the root). At the same 'time it 
clearly suffices to guarantee that only regular languages can be accepted. 

The model can be described in more detail as follows: It is a highly 
restricted one-tape nondeterministic 'lUring machine. The initial tape con
figuration consists of the input string delimited by left and right end markers. 
The machine has one head, which is not allowed to move outside of the end 
markers. For concreteness, let's say that the head starts on the left end 
marker in a designated start state, although these details are of no conse
quence to the results being proved. The machine is nondeterministic and 
accepts by entering a designated accepting state. 

If the one head on our model were a read-only head, then the machine 
would be a standard two-way nondeterministic finite state automata, and 
so would accept exactly the class of regular languages. However, our model 
is allowed to perform a very limited amount of writing. Specifically, the ma
chine in the designated start state continually moves left and remains in the 
start state until it nondeterministically decides to overwrite a single symbol. 
After it writes this single symbol, it never again overwrites a symbol and 
never again returns to the start state. Thus, the model is allowed to write 
at most one symbol and after that behaves as a two-way nondeterministic 
finite automata. 

For notational simplicity, we assume that the start state is not an accept
ing state, that for each input symbol a, there is only one possible symbol a' 
that can be written in place of a, that the symbols a' are disjoint from the 
input symbols a, and that the machine goes to a unique state after its one 
allowed write move. Again, the result does not depend on these simplifying 
details. It is, however, important to note that different symbols a and b can 
be overwritten with possibly different symbols a' and b'. We will refer to the 
symbols that the machine is allowed to write as "primed symbols." We will 
call a machine like this a "write-once machine." To see that these write-once 
machines accept exactly the class of regular languages, let us develop a small 
amount of notation. Let M be one of these write-once machines and let L 
be the language accepted by M. Our goal is to show that L is a regular 
language. 

110 



After the machine M has written its one allowed symbol, it then behaves 
just like a two-way finite state acceptor and so we can define an associated 
finite state acceptor M'. M' is simply M with the start state removed 
and with notational adjustments so that it starts computing where M left 
off. Since M' is an ordinary two-way finite-state automaton it accepts some 
regular language L'. Without loss of generality, we can assume that M' also 
checks the input to make sure it contains exactly one primed symbol so each 
string in L' contains exactly one primed symbol. It will follow that L is a 
regular language because L can be obtained from the regular language L' 
by an operation that always takes regular languages to regular languages. 
Specifically let h be the homomorphism that removes primes. In our prime 
notation h(a') = a and h(a) = a for each input symbol a of our 6riginal 
write-once machine M. With this homomorphism h, L = h(L'). Now, h is 
a homomorphism, L' is a regular language, and the regular languages are 
closed under homomorphism [See, for example, Hopcroft and Ullman, 1979]; 
so L is a regular language. 

Thus, the language accepted by any of these write-once machines must 
be a regular language. Since it is trivial to see that any regular language 
can be accepted by one of these write-once machines, it follows that these 
write-once machines accept exactly the class of regular languageS. 

The write-once machines defined exactly as we have defined them are 
adequate for the linguistic purpose at hand. However, it is of interest to 
note in passing that, if you make almost any minor change that does not 
change the spirit of the definition, then the machines still accept only regular 
languages, although in some cases the proof becomes a bit more cumbersome. 
In particular, the write-once machine need not go to a unique state after 
writing its one symbol, but may go to a state that depends on the symbols 
read and written and it will still accept only regular languages. Also, the 
write-once machine can be redefined so that it can move back and forth 
(rather than only to the right) before it writes its one symbol and it will 
still accept only regular languages. While it is natural to assume that the 
primed and unprimed symbols are disjoint, the result still holds if we relax 
this assumption, although the proof would then be given in terms of finite
state transducers rather than homomorphisms. 

3 Conclusion 

The reason we chose to dwell on this very simple example is that it seems 
to illustrate what should have been done in syntax in the period of the late 
fifties and early sixties, and what should always be our attitude towards the 
development of new models in linguistics. At that time, having concluded 
that phrase structure grammar was an inadequate model of language, Chom
sky introduced a model which happened to generate an even broader class 

111 



of languages, although there was no evidence that even the full context
sensitive generative capacity of phrase structure grammars was required for 
the analysis of natural language syntax. The goal was to capture all the 
cases missed by the phrase structure grammar and the most straight for
ward application of the mathematics says that to get more add more power. 
However, the linguistic goal is not to get more sentences but to get more 
precision in capturing sentences and that requires looking at the mathemat
ics with more subtle attention to real world data. A theory which allowed 
all context-sensitive languages to be generated, such as certain versions of 
phrase structure grammar, was already much too powerful and should have 
been rejected-or constrained, instead of being replaced with an even more 
powerful theory than that of transformations. 

Generative capacity is one of many considerations which can be invoked 
when judging the validity or utility of a model of human language. There 
are many possible criteria by which a linguistic theory may be judged and 
hence a variety of ways in which it can turn out to be wanting. Adequate 
but not excessive generative capacity is surely one such criterion, since that 
amounts to fitting the most conspicuous language data to the model. In this 
paper we have contended, and hope to have illustrated, the point that gen
erative capacity, if handled with enough care to the details of the particular 
case at hand, can produce results that are both mathematically rigorous 
and linguistically insightful. Moreover, this attention to the details of the 
linguistic case at hand is more subtly important than has been reflected in 
the treatment generative capacity typically receives. 

One can argue endlessly about which considerations are more, and which 
are less, important, but the fact remains that, at the end of the day, if a 
given theory is found to be wanting with respect to any of the various pos
sible criteria, then the theory is wanting. In some cases generative capacity 
may turn out to be the crucial consideration that results in sharpening 
our linguistics inSights. Certainly, historically, arguments about inadequacy 
in generative capacity played a vital role in convincing many experts of the 
need for transformational rules in preference to various kinds of phrase struc
ture or combinatorial possibilities (see, for example, Bar-Hillel and Shamir, 
1960). Future research need not, indeed should not, abandon the study of 
generative capacity, but the study of generative capacity must grow in lin
guistic sophistication and not be either abandoned nor allowed to generate 
continually more powerful mathematics with only casual checks of the links 
between the linguistics and the mathematics. 

References 

[1] Bar-Hillel, Y. and E. Shamir, "Finite state languages: formal represen
tations and adequacy problems," 1960, as reprinted in Language and 

112 



Information (Y. Bar-Hillel, ed.), 1964, Addison-Wesley, Reading Mass, 
87-98. 

[2] Chomsky, N., "On certain formal properties of grammars," Information 
and Control 2 (1959), 137-167. 

[3] Chomsky, N. Aspects of the Theory of Syntax, 1965, MIT Press, Cam
bridge, Mass. 

[4] Chomsky, N., Knowledge of Language: Its Nature, Origins, and Use, 
1986, New York, Praeger. 

[5] Creider, Chet, J. Hankamer, and D. Wood, 1994. "Preset two-head 
automata: a basis for morphological analysis of natural languages," 
in Mathematical Linguistics and Related Topics, (G. Paun, ed.), 1994, 
Publishing House of the Romanian Academy of Sciences, Bucharest. 

[6] Culy, C., "The complexity of the vocabulary of Bambara," Linguistics 
and Philosophy 8 (1985), 345-351. (Reprinted in Savitch, et. al., 1987.) 

[7] Hopcroft, J. and J. Ullman, Introduction to Automata Theory, Lan
guages and Computation, 1979, Addison-Wesley, Reading Mass. 

[8] Manaster Ramer, A., "Subject-verb agreement in respective coordina
tions," Computational Linguistics 13 (1987), 64-65. 

[9] Pullum, G. K. and G. Gazdar, "Natural languages and context-free 
languages", Linguistics and Philosophy 4 (1982), 471-504. (Reprinted 
in Savitch, et. al., 1987.) 

[10] Rosenberg, A. L., "A machine realization of linear context-free lan
guages," Information and Control 10 (1967), 175-188. 

[11] Savitch, W. J., E. Bach, W. Marsh, and G. Safran-Naveh, The For
mal Complexity of Natural Language, 1987, D. Reidel Publishing Co .. 
Dordrecht, Holland. 

[12) Shieber, S. M., "Evidence against the context-freeness of natural lan
guage," Linguistics and Philosophy 8 (1983), 333-343. (Reprinted in 
Savitch, et. al., 1987.) 

113 



How to Solve Domain Equations Involving Path Equalities 

M. Andrew Moshier 

January 1997 

1 Introduction 

In (Moshier 96), the author shows that the domain of feature structures ordered by subsumption can 
be constructed using only the tools available in domain theory and logic. That is, one can think of 
the subsumption ordering on feature structures as arising naturally from a domain of trees together 
with the need to reason about path equality in those trees. The results in (Moshier 96) show that 
feature structures with subsumption ordering in fact form a most general solution to the problem 
of constructing a domain of tree-like objects for which assertions of path equality make sense . This 
partly justifies (from the domain theorists' view) the interest in feature structures that marks much 
of computational linguistics and logic programming research. The earlier paper left two important 
and closely related bits of unfinished business, however, both of which are the main subjects of this 
work. 

First, "domain of tree-like objects" simply meant a domain that maps continuously (with some 
side conditions satisfied) onto a specific domain defined to represent trees in an obvious way. That 
is, there was no requirement that this new domain actually carry any tree structure of its own, but 
only that it map in a certain way to a domain that happens to carry the desired tree structure. 
As noted in the paper, the domain of feature structures actually does carry a tree-like structure of 
its own: it is a non-initial solution to the very domain equation for which the domain of trees is 
an initial solution. Nevertheless, the construction used in the paper cannot offer an explanation for 
this. It seemed to the author at the time that it is no coincidence that feature structures are tree-like 
in this stronger sense of being a non-initial solution to the tree-defining domain equation, but the 
constructions considered in the earlier paper simply take a domain, and not the domain equation 
that determines the domain, as data. 

Second, the notions of "path" and "path equality" are defined with respect to the domain of 
trees, and not with respect to the determining domain equation. That is, again the link between the 
original domain equation and the domain of feature structures is lost. The earlier work adequately 
(and completely, in light of the universal construction) explains how the domain of feature structures 
arises from the domain of feature trees plus a definition of path equality. What is missing is any 
explanation of how paths and path equalities relate, if in fact they do, to the very domain equation 
that characterizes what is meant by "tree" (and hence, at least informally, "path") in the first place . 

The two problems sketched above are resolved here, by demonstrating that the domain of feature 
structures can be constructed directly from a domain equation (or system of equations) that defines 
our notion of trees. The construction stands on a proof of existence for a solutions for a certain 
class of problems in domain theory. Importantly, the construction is motivated entirely by concerns 

114 



common in domain theory, principally the notions of continuity and universality. The significance 
of this is that the results reported here provide a natural justification for our interest in feature 
structures with respect to subsumption and unification, and by virtue of the general existence proof, 
show how a wide variety of similar domains can be constructed entirely from formal specifications 
of thier domain theoretic properties . 

2 Review 

The universal construction investigated in (Moshier, JOLLI 4:111-143, 1995) can be simplified for 
the purposes of this paper as follows. A domain is a partially ordered set having a least element 
and suprema for all directed subsets. Domains constitute the objects of a category DCPO in which 
the arrows are simply maps that preserve suprema of directed sets. Maps are not generally required 
to preserve least element . A domain X can also be described as a topological space '(known as the 
Scott topology of X) by taking suprema of directed sets as limit points. That is, take U ~ X to be 
open provided that for all directed D ~ X, V D E U if and only D n U i=- 0. Scott topologies are 
significant because the arrows of DCPO are precisely the maps between domains that are continuous 
with respect to Scott topologies. On this observation, morphisms in DCPO are called continuous 
maps. Also, the Scott open sets of a domain A are important because they can be regarded as 
characterizing the partial order on A precisely as an order of information content. That is, a ::; b 
holds in A if and only if every open neighborhood of a is also a neighborhood of b. So the order on 
A essentially answers the question of how much information with respect to membership in opens 
each element contains. 

A subset J ~ X of a domain X is called inductive provided that every directed subset of J has its 
supremum also in J. Let J(X) denote the collection of inductive subsets of X. Then one can easily 
check that J(X) is closed under finite unions and intersections, and thus is a distributive lattice. In 
fact, open sets are always inductive, so u(X) is a subJattice of J(X) . If 1 is continuous from X to 
Y, then 1- 1 sends inductive sets to inductive sets. So, 1- 1 can be regarded as a homomorphism 
from J(Y) and J(X). 

Fix a 2211 algebra L = (L,I\, V, T , .1..) and subalgebra La . We take La to denote the inclusion 
map from La to L as well. Then we are concerned primarily with interpretations of L in J(X) and 
E(X), i. e. , homomorphisms from L to J(X) and to E(X). Specifically, we define two categories CP 
(constraint problems) and CD (constraint domains) as follows. Objects of CP are pairs (X, [ .]) 
where X is a domain and [.] is a homomorphism from L to J(X) which sends La to u(X). In other 
words, [-] interprets a token in .c as an inductive set and in particular, a token in La as an open set. 
Arrows of C P from (X, U) to (X', [.]/) are continuous maps I: X -+ X' so that 

[.] ::; r 1 
0 [.]' 

[.] 0 La r 1 
0 [-]' 0 La 

where homomorphisms are ordered pointwise. The objects of CD are pairs (X, [.]) so that [.] is a 
homomorphism from L to E(X). Arrows from (X, 1[·]) to (X', [.]/) are continuous maps I: X -+ X' 
so that 

[.] = r 1 ou' 
The central results of (Moshier 1995) simplify to the following two theorems. 

115 



Theorem 2.1. The forgetful functor from CD to CP has a right adjoint, i.e., for each object (X, [.]) 
of C P, there is an object (X*, [.]*) of CD and an arrow u: X* --t X in C P so that for any other 
arrow v from an object (Y, [-]') of CD to (X, [.]), there is a unique CD arrow v for which v = u 0 V. 

Fix a set E, and let L be the free algebra generated by tokens w == v for w, v E E*. Also, let Lo 
be the subalgebra generated by tokens w == w for w E E* . For an arbitrary domain S, let FT be an 
initial solution to the domain equation 

X ~ S + [El. -t. Xl.] (1) 

Here Al. is the partial order obtained by adding a new bottom element to A, + constructs the strict 
sum (disjoint union except that least elements are identified), and --t. constructs the strict function 
space (continuous functions that preserve least element). Elements of FT can be seen as trees with 
leaves labeled by elements of S and edges labeled by elements of E. In FT, each w E F" determines 
a partial map t >-t t/w from FT to FT that picks out a subtree by following the path w, provided 
that the path exists in t. Notice that elements t E FT for which t/w is defined form a Scott open 
set in FT. Now define [-] : L --t J(FT) by 

[w == v] = {t E FT I t/w = t/v both defined} 

Thus [.] picks out inductive subsets of FT and in particular, open subsets when restricted to Lo . 

Theorem 2.2. Feature structures with subsumption form a pre-order that is equivalent to the do
main FT" in (FT*, U*), the right adjoint to (FT, U). Moreover, the counit of the adjunction (the 
required continuous map from FT* to FT) is precisely the "unfolding" map that sends a feature 
structure to its underlying tree. 

The first result provides a general construction (via adjunction) for building domains from (i) a 
domain X and (ii) an interpretation of a positive logic L in the inductive subsets of X . The resulting 
domain X* interprets the same positive logic in open subsets of the result. The adjunction ensures 
that X* is the most general domain in which such an interpretation is possible, while maintaining 
a systematic relationship with X . 

The second result simply demonstrates that the general construction yields feature structures in 
the specific case of a tree domain and path equations. 

3 Results 

On closer inspection of the above results, the reader will notice that the construction of the domain 
of feature structures involves two very distinct stages. First, we specify FT, a domain of trees, via the 
standard technique of domain equations. Then, with no apparent reference to the domain equation, 
we define L, Lo and [l Clearly, however, L, Lo and [ .] are somehow related to the original domain 
equation. In particular, the domain FT*, resulting from the adjunction in Theorem 2.2, turns out to 
be a non-initial solution to the domain equation. The results here show that this is not an accident. 
The data L, Lo and U can be systematically derived from any system of domain equations with 
certain side definitions. The adjunction in Theorem 2.2 from such data is then guaranteed to yield 
a non-initial solution to the system. Furthermore, this solution can be characterized as enjoying a 
certain universal property with respect to the system of equations with its side definitions. 

116 



What we usually call "features" are essentially partial continuous maps, i.e., partial maps from 
one domain to another (in the cases of FT and FT·, the features run from the domain back to the 
same domain). In addition, the domain of definition for a feature is an open set, and the feature 
(viewed as a map) is continuous on this open set. We take these properties as a "qualitative" 
definition of features. Thus, we take a feature from domain A to domain B to be a pair f = (U, m) , 
where U ~ A is open and m: U -+ B is continuous. For example, in FT, each label I E I: determines 
)1, a partial continuous map having an open set as its domain of definition. Thus these partial maps 
)1 can be taken as features from FT to FT. 

Features compose in the following way. Let (U, m) be a natural feature from A to B and let 
(V, n) be a natural feature from B to C. Then the set 

(VoU) = Unm-l(V) 

is open in A. Moreover, elements of (V 0 U) are sent via m to elements of V, and x ' >--t n(m(x)) is 
defined and continuous for elements of V 0 U. Thus we can take (V, n) 0 (U, m) to be (V 0 U, nom). 
with nom understood as being defined only on V 0 U. 

Equality of features relates to inductive sets as by the follow lemma. 

Lemma 3.1. For domains A and B, and features (U, m) and (V, n) from A to B, the set 
e((U, m) , (V, n)) = {a E unv I m(a) = n(a)} is inductive in A. Furthermore e((U, m), (U, m)) = U, 
and hence is open. 

Notice that the "featurehood" of -jl doesn't actually depend on much about FT. Rather, for any 
domain of the form 

F(X) = S + [I:.l -+. X.lJ (2) 

we can define a similar feature from F(X) to X. Namely,)i is defined only on the elements of F(X) 
corresponding to strict functions f E [I:.l -+. X.lJ for which f(l) :/; l.. For such elements f, we have 
f II = f(l). In an important, technical sense, the definition of )i as a feature depends only on the 
functor F defined in (2). This suggests that certain families of features may be taken as natural. 

Given two functors G : A => DCPO and H: A => DCPO, define a natural feature from Gto H as a 
family of features {( U a, ma)} a indexed by objects in the category A, so that for all arrows f: a -+ b 
in A, it is the case that 

Ua ~ G(J)-l (Ub) 

mb 0 U(J) = H(J) 0 ma 

so the notation U (J) is functorial 

The composition of features extends to natural features between functors, in the sense that for 
natural features {(Ua,ma)}a from G to Hand {(Va,na)}a from H to I, the family of features 
{(Va 0 Ua, na 0 ma)}a constitutes a natural feature from G to I. 

In the case of F as defined above, each lEE determines a natural feature )i from F to locpo. 
In words, for any domain of the form F(X) it makes perfect sense to speak about the "feature" I, 
regardless of whether F(X) is anything like a domain of trees or feature structures. Roughly, this 
is because the functor F itself specifies what we mean by "tree-like" with respect to having a root 
and immediate children, and the property of possessing a child along an edge labelled I is a local 
matter that says nothing about the shape the children take. In other words, the particular features 
from which paths are built in FT arise directly from the defining equation (1). 

117 



Suppose that (e: F(A) ~ A, p: A ~ F(A)) is a (possibly non-initial) solution to the equation 
(1). That is, e and p are such that ep :S idA and pe = idF(A). (here p is called a projection, e, an 
embedding). Then it is possible in a uniform way to define paths in A. Specifically, what is needed is 
to connect the natural features -Il, which are (at the object A) features from F(A) to A, to features 
from A back to itself. The map p gives the means of making this connection. That is, more generally 
if {(Ux,mx)} is a natural feature from F to locpo, and (e: F(A) ~ A,p: A ~ F(A)) X::: F(X), 
then (p-l(UA),mA op) is a feature from A to A . Through composition of features, this provides 
a notion of path in A. ay are determined precisely by the 
original functor F (or more generally, the system of functors) that specifies the space of solutions. 

Lemma 3.2. Given a (continuous) functor F: DCPO::::} DCPO and a natural feature {(Ux, mx)} X 

from F to l ocpo, each solution (e: F(A) ~ A,p: A ~ F(A)) of X ::: F(X) determines a feature 
(p-l (U A), mA 0 p) from A to A . Moreover, this feature is natural with respect to p. 

Fix a functor F: DCPO ::::} DCPO and ct> a set of natural features from F to locpo. Then in 
any solution (e: F(A) ~ A, p: A ~ F(A)) determines features from A to A and hence also paths. 
That is, take the set P4! to be the least set of features from A to A so that (A, idA) E Pit.> and if 
(U, m) E PIP and (V, m) E ct>, then (V 0 U, nom) E P4! . 

Take LIP to be the free 2211 algebra generated from P4! x PIP. Generators are written w == v for 
w, v E P4! . Also, take L~ as the subalgebra generated by the diagonal elements w == w. 

Thus each solution of X ::: F(X) determines a constraint problem, (A, [.]) where the homomor
phism U is given by [w == v] = e(w, v). This leads to our main theorem. 

Theorem 3.3. Fix functor F: DCPO ::::} DCPO and set ct> of natural features from F to locpo. 
The right adjoint of the forgetful functor from constraint domains to constraint problems preserves 
solutions of X::: F(X), as well as projections that commute with solutions. 

In the motivating application for this theorem, the domain of feature structures arises as the right 
adjoint of the initial solution to (1). The theorem shows that (i) this right adjoint is guaranteed to 
be a solution to (1) as well, and (ii) because the adjunction also preserves projections that commute 
with solutions, feature structures can be seen as an initial solution for (1) subject to the requirement 
that the solution also must be a constraint domain . 

In the full paper, the main results are show to generalize to systems of equations and appropri
ateness conditions for features . Also, the notion of n-ary features is considered in some detail. 

4 Conclusion 

The results reported here show that feature structures with their subsumption order can be con
structed via methods, the motivations for which are found entirely amongst the standard concerns 
of domain theory, i.e., continuity and the central importance of topology, solutions of domain equa
tions, naturality and universality. This is important for the simple reason that is provides a formal 
justification for the claim that feature structures are, in a fundamental way, the most natural objects 
for the job they are typically put to in unification grammar formalisms. Without this sort of external 
justification, we might agree that feature structures are useful in practice, but will not be able to 
explain to anyone out of the community of users, what exactly makes them useful. The results here 
provide this explanation. 

lIS 



An Efficient Recognition Algorithm for Multiple Context-Free Languages 

Ryuichi Nakanishi1 Keita Takada2 Hiroyuki Seki1 

{nakanisi, seki}@is.aist-nara.ac.jp 

1 Graduate School of Information Science, Nara Institute of Science and Technology 
2 Application Engineering Laboratory, Matsushita Electronics Corporation 

Abstract: Valiant proposed an O(n2 ) time algorithm 
which reduces the recognition problem for context-free 
languages (CFLs) to the boolean matrices multiplica
tion problem. By this algorithm, the recognition prob
lem for CFLs can be solved in O(max{n2, M(n)}) time 
where n is the length of an input string and M(k) is 
the time needed for multiplying two k X k boolean ma
trices. The best known value for M(k) is O(k2•376 ). 

Multiple context-free grammars (MCFGs) were intro
duced to denote the syntax of natural languages. By 
the known fastest algorithm, the recognition problem 
for multiple context-free languages (MCFLs) can be 
solved in O(ne) time where e is a constant which de
pends only on a given MCFG C, called the degree of 
G. 

In this paper, we propose an algorithm which reduces 
the recognition problem for MCFLs to the boolean 
matrices multiplication problem. By this algorithm, 
the recognition problem for MCFLs can be solved in 
O(ne'-3i'+1.M(ni')) time where e' and i' are constants 
which depend only on a given MCFG (e' ~ e, i' ~ 1). 
The time complexity of this algorithm is less than that 
of the forementioned algorithm unless e' = e and i' = 1. 
keywords multiple context-free grammar, boolean 
matrices multiplication, recognition algorithm, pars
ing, formal grammar 

1 Introduction 

It is often pointed out that the generative capacity of 
context-free grammars (CFGs) is too weak to generate 
natural languages, and there are various extensions of 
CFGs introduced to define the syntax of natural lan
guages. Multiple context-free grammar (MCFG) [3]19] 
is one of such extensions of CFGs. A nonterminal of 
an MCFG derives tuples of strings while a nonterminal 
of a CFG derives strings. In an MCFG, it is possible 
to account for structures involving discontinuous con
stituents such as "respectively" sentences or inverted 
sentences in a simple manner. 

Head grammars (HGs) [6] and tree adjoining gram
mars (TAGs) [2] were also proposed to denote the syn
tax of natural languages. The generative power of 
MCFGs is properly stronger than those of CFGs, TAGs 
and HGs, and properly weaker than that of context
sensitive grammars [3]19]. Linear context-free rewriting 
systems (LCFRSs) were also proposed to denote the 
syntax of natural languages [11]. LCFRSs which have 
strings as their domain are essentially the same formal
ism as MCFGs except that LCFRSs are required to sat
isfy non-erasing condition (Condition 1.3( c) of Lemma 
2.1 in this paper). However, the generative power of 
LCFRSs is equal to that of MCFGs. 

In [4][9], the recognition problem for multiple 

context-free languages (MCFLs) 'was shown to be de
cidable in O(ne) time, where n is the length of an input 
string and e is a constant which depends only on a given 
MCFG C, called the degree of C (see Section 2). 

Cocke-Kasami-Younger (CKY) algorithm is a well
known O(n3

) time recognition algorithm for context
free languages (CFLs). Based on CKY algorithm, 
Valiant proposed a recognition algorithm for CFLs. 
Valiant's algorithm reduces the recognition problem for 
CFLs to the n x n boolean matrices multiplication prob
lem in O(n2 ) time [10]. So, the time complexity of 
the algorithm is o (max{n2 ,M(n)}), where M(k) is the 
time needed for multiplying two k x k boolean matri
ces. The best known value for M(k) is O(k2 .370 ) [1]. 
As an extension of [10]' an O(M(n2 )) time recognition 
algorithm for tree-adjoing languages was proposed [7]. 

In this paper, as an extension of [7], we propose an 
O(nC '-3i'+l . M(ni')) time recognition algorithm for 
MCFLs which uses multiplications of boolean matri
ces, where e' and i' are constants which depend only 
on a given MCFG (e' ~ e, i' ~ 1). The time complex
ity of the algorithm is less than the complexity O(ne) 
of the algorithm in (4][9] unless e' = e and i' = 1. 

2 Preliminaries 

We present the definition of MCFG [3][9](5] and some 
related concepts. 

Definition 2.1 : An MCFG C is a 4-tuple (N, T, P, S) 
defined by the following (1) through (4). 

(1) N is a finite set of nonterminal symbols. For each 
A E N, a positive integer d(A), called the dimension of 
A, is defined. A nonterminal symbol A generates d(A)
tuples of terminal strings. The dimension of C, denoted 
d(C), is defined as max{d(A) 1 A EN}. Sometimes 
A is written as (A[ll, ... , A[d(A)l). A[l], ... , A[d(A)] are 

called component symbols of A. Let NCMP = {A[i]IA E 
N, 1 ~ i ~ deAn. 

(2) T is a finite set of terminal symbols. 

(3) P is a finite set of production rules. Sometimes 
a nonterminal symbol, a terminal symbol and a pro
duction rule are called a nonterminal, a terminal and 
a rule( respectivelr A rule, say p, has a form of 
p : (A 11, ... ,A[d(A) ) -+ ('Yl, .. ' ,'Yd(A»), where A E N, 
'Yl, ..• ,'Yd(A) E (Nc M P U T)*. Each rule p satisfies the 
following condition. 

Right-linearity: For each nonterminal B and each 
component symbol B[tl of B (1 ~ i ~ deB)), B[i] ap
pears in the right-hand side (rhs) of p at most once. 

A = (A[ll, ... ,A[d(A)]) is called the nonterminal in the 
left-hand side (lhs) of p. BEN is called a nonterminal 

119 



in the rhs of p if some component symbol B[t1 (1 ~ i ~ 
d(B)) of B appears in the rhs of p. Also we call 'Yk (1 ~ 
k ~ d(A)) the k-th component of the rhs of p. A rule p 
is called terminating if no component symbol appears 
in the rhs of p. Otherwise it is called nonterminating. 

(4) SEN is the start symbol with deS) = 1. 0 

The degree of a rule p: A ~ ... , denoted e(p), is de
fined as the sum of the two numbers, d(A) and the num
ber of component symbols in the rhs of p. The degree of 
an MCFG G, denoted e(G), is defined as max{e(p) I p 
is a rule in G}. 

LG(A), the language generated by a nonterminal A, 
is defined by the following (Dl) through (D3). 

(Dl) (al,'" ,ad(A)) E LG(A) if there exists a term i-
t · I (A[l) A[d(A))) ( ) h na mg ru e , ... , ~ al,"" ad(A) , were 

ak E T* (1 ~ k ~ d(A)). 
(D2) Let p: (A[l), ... , A[d(A))) ~ ('"'tl,"" 'Yd(A)) be a 
nonterminating rule and let B 1, ... , Bn be the non
terminals in the rhs of p. Suppose (ai,l,'" , ai,d(B;)) 
E LG(Bi) (1 ~ i ~ n). Then LG(A) contains the d(A)
tuple of strings obtained from ('Yl,' .. , 'Yd(A)) by replac-

ing each component symbol BVJ with ai,j (1 ~ i ~ n, 
1 ~ j ~ d(Bd). 
(D3) LG(A) has no element other than those obtained 
by (D1) or (D2). 

We often write A ::; (aI, ... , ad(A)) instead of 
(al, ... ,ad(A)) E LG(A) . We call ak (1 ~ k ~ d(A)) 
the string derived from A[k) in the derivation A ::; 
(al, . . . ,ad(A))' If we obtain A::; (at, ... ,ad(A)) by 
applying the above (Dl) or (D2) with a rule p to deriva-

tions Bi ~ (ai,l,'" ,ai,d(B,)) (1 ~ i ~ n, n = 0 if dis 
obtained by applying (Dl) with a terminating rule p), 
then we say that A ::; (al, ... , ad(A)) is a derivation 
rooted by p. 

L(G), the language generated by an MCFG G = 
(N, T, P, S), is defined to be LG(S), The language gen
erated by an MCFG is called a multiple context-free 
language (MCFL). The degree eeL) of an MCFL L is 
defined to be min{e(G) I L(G) = L}. 

Example 2.1 : Consider an MCFG G = (N,T,P,S) , 
where N = {S, A, B} (d(S) = 1, d(A) = deB) = 2), 
T = {a,b,c,d}, P = {PI: S[l) ~ A[l)B[l)A[2)B[2), 
P2: (A[l),A[2)) ~ (aA[l),cA[2]), 
P3: (A[l),A[2]) ~ (a,c), 
P4: (B(1),B[2)) ~ (bB[l),dB[2]), 
Ps: (B[1),B[2)) ~ (b,d)}. 
LG(A) = {(an,cn)ln ~ I}, LG(B) = {(bm,dm)lm ~ 
I}, and LG(S) = L(G) = {(anbmcndm)ln,m ~ I}. By 
definition, d(G) = 2, e(Pl) = 5, e(P2) = e(P4) = 4, 
e(P3) = e(ps) = 2, e(G) = 5 and hence e(L(G)) ~ 5. 0 

Let A be the nonterminal of the lhs of a rule p and 
B 1, ... , Bn be the nonterminals of the rhs of p (n = 0 
if P is terminating). We sometimes write the rule as 
p: A ~ f[B 1 , .•. , Bn]. The following lemma gives a 
normal form of MCFG. A proof is found in [8]. 

Lemma 2.1: Let G be an MCFG such that € (j. L(G). 
An MCFG G' can be constructed from G such that 
L( G') = L( G), e( G') ~ e( G) and G' satisfies the fol
lowing Conditions 1 through 3. 

Condition 1: For every rule p: A -+ ('Yl, . .. , 'Yd(A)) = 
f[Bt, . .. , Bn], 
1.1 'Yk i= c for every 1 ~ k ~ d(A), 
1.2 if p is terminating, then d(A) = 1 and bd = 1, 
1.3 if p is nonterminating, then 
(a) 'Yk E NCMP for every 1 ~ k ~ d(A), i.e., no termi
nal symbol appears in the rhs of p, 
(b) n = 2, 
(c) Non-erasing condition: every component sym-

bol B~j] (i = 1,2 and 1 ~ j ~ d(Bi)) appears in 'Yk for 
some 1 ~ k ~ d(A), and 
(d) no pair B[j], B[k] (1 ~ j < k ~ deB), B = B 1, B2) 
of component symbols of the same nonterminal appear 
adjacently in the rhs, i.e., component symbols of Bl 
and B2 appear alternately. 
(e) There exist i(1 ~ i ~ d(A)) such that l'Yil ~ 2. 

Condition 3: 2d( G') + 1 ~ e( G') ~ 3d( G'). 0 

By Lemma 2.1, we assume that 'a given MCFG satisfies 
Conditions 1 through 3 in the rest of the paper. 

3 Algorithm 

Let G = (N, T, P, S) be an MCFG of dimension m 
and let w = ala2'" an be an input string where 
n ~ 1 and ai E T (1 ~ i ~ n). The proposed 
algorithm uses a 2m-dimensional matrix M of size 
J n + 1) x (n + 1) x ... x (n + 1 ),' Each entry of M is 

2m 
a subset of N. We design the algorithm so that the 
following 1 and 2 are equivalent when the algorithm 
terminates (see Lemma 3.2) . 

1. A::; 
(al,+l . . , ar" a1 2 +1 ... ar" ... , ald (A)+l . .. a"d(A))' 

2. A E M[l1,rl,l2,r2, ... ,ld(A),rd(A)'~ 

2(m-d(A)) 

If the above two conditions are equivalent, then S ::; 
al ... an if and only if S E M[O, n, 0, ... ,0]. In what 
follows, we abbreviate 
M[II,rl,l2,r2, ... ,li,ri'~ (i ~ m) as 

2(m-i) 
M[11,rl,l2,r2, .. . ,li,ri!, omitting the tailing Os for 
short. Suppose that a rule 

( 
A[l)) ( B[l}C[2] ) 

p: A[2] ~ C[3]B[2]C[1] (* 1) 

belongs to P. Then, there exists a derivation rooted 
by p: 

(dl) ( AP] ) ::; ( al,+l ... ar, ) 
A[2] al.+l··· ar2 

where rl ~ l2 or r2 ~ II (i.e., ai, +1 ... ar , and 
al,+l : .. ar, are non-overlapping), if and only if there 
exist derivations 

( 
B[l] ) • (alb'+1'" arb, ) and 

(d2) B[2] => alb,+! . . . arb, 

( 
CP]) ( alc, +1 ... a,·c, ) 

(d3) C[2] ::; alc.+1··· arc. , where 
C[3] alc3 +1 ... arc3 

120 



(b1) II = Ib 1 , (b2) rl = rC2, (b3) I2 = lC3, (M) 
r2 = rCI, and 
(el) rb 1 = lcz, (c2) rC3 = lb2, (c3) rb2 = lei 
for some Ibi,rbi (i = 1,2), ICi,rci (i = 1,2,3) in 
{O, 1, . .. ,n}. 

From already known derivations such as (d2) and 
(d3), the algorithm checks whether the conditions 
(el) through (c3) hold by boolean matrices multipli
cation. If they are satisfied, then the algorithm ob
tains the information on the longer derivation (d1). 
More precisely, the algorithm performs the following 
(P1) through (P4). 

(P1) Before analyzing the input string w, construct 
linear lists end_withJ3(p), alterJ3(p), end_with_C(p), 
alter _C(p) and end..oJ -A(p) for each rule pEP. Each 
list has no duplicate element. Possible elements in 
these lists are IBI, ... , lBd(B), rBI, ... , rBd(B), ICll 

... , ICd(c), rCI, ... ,rCd(C)' For example, IBi (resp. 
rB;) stands for the left-end (resp. right-end) of the 
string derived from B[i]. Let LB = {lBill ~ i ~ 
d(B)}, RB = {rBil1 ~ i ~ d(B)} and LR~ = 
LB U R.B' Similarly, let LC = {ICiI1 ~ i ~ dlC)}, 
RC = {rCil 1 ~ i ~ d(C)} and LRC = LC U RC' 
Sometimes we treat the lists as sets when the order of 
the elements in them are not significant. These lists 
are defined as follows. 

(i) end_withJ3(p) contains IBi (resp. rBi) if and only 
if Bli] is the leftmost (resp. rightmost) symbol 
of some component in the rhs of p. alter J3(p) 
is defined as LRB - end_withJ3(p). For rule p 
in (* 1), end_withJ3 (p) = [IB d and alter J3 (p) = 
[rBI, IB 2 , rBz]. 

(ii) end_with_C{p) and alter_C(p) are defined in 
the same way as in (i). For rule p in 
(*1), end_with_C(p) = [rC2 ,IC3,rCd and 
alter_C{p) = [ICz,rC3,ICd. 

(iii) For 1 ~ i ~ d(A), the i-th element of end_oj -A(p) 
is a pair (IBj/ICj,rBk/rCk) if and only if 
Bli] / C[j] is the leftmost symbol of the i-th compo
nent in the rhs of p and B[k)/C[k) is the rightmost 
symbol of the same component. For rulep in (*1), 
end..oJ -A(p) = [(IBI,rCz), (lC3,rCd]. 

By Condition 1.3 in Lemma 2.1, we have: 

Proposition 3.1: lalterJ3(p)1 = lalter_C(p)l. 0 

(P2) Construct two boolean matrices Bp and Cp from 
a current matrix M (which contains the informa
tion on sub-derivations such as the above (d2) and 
(d3)), end_withJ3(p), alterJ3(p), end_with_C(p) and 
alter_C(p). We will explain the construction by using 
rule p in (*1). For dj (0 ~ dj ~ n, 1 ~ j ~ q), let 
(dq • dq - l . .. d l ) denote the (n + 1)-ary number, i.e., let 

q 

'" . I (dq . dq - 1 •.. d l ) = ~(dj x (n + 1)1- ). 
j=l 

From end_withJ3(p) = [IBtl and alterJ3(p) = 
[rBI, IB2 , rB 2 ], construct (n) x (n . n . n) matrix 
Bp such that Bp[(lbl ), (rb l . lb2 • rbz)] = 1 iff B E 
M[lb 1, rbi, lb2, rb2 ]. 

(lb1) \ (rb l ·l~· r~) 

(0 . 0 . 0) (0·0 · 1) (n· n· n) 

(0) ( 
(1) 
(n) ) 

Figure 1: Bp 

From alter_C(p) = [IC2 , rC3, ICd and 
end_with_C(p) = [rCz,IC3,rCd, construct (n·n·n) x 
(n. n· n) matrix Cp in the same way as Bp. 

(lc2 . rC3 . lCI) \ (rc2 . lC3 . rCI) 

(0 . 0 ·0) (0 · 0 . 1) 

(0·0·0) ( 
(0 . 0 . 1) 

(n· n· n) 

Figure 2: Cp 

(n· n . n) 

) 
Note that since lalter J3(P)1 = lalter _C(p) I by Proposi
tion 3.1, the width of Bp and the height of Cp are equal, 
and hence Bp x Cp is well-defined. For example, if 

B ~ (a3a4a5,aI3aI4) and C =* (aI5,aGa7,alOaualz)' 
then B E M[2, 5, 12, 14] and C E M[14, 15,5,7,9,12]. 
We set Bp[(2), (5·12.14)] = 1 and Cp[(5· 12·14), (7. 
9· 15)] = 1. 

(P3) Compute Ap = Bp X Cpo Suppose that Bp((lb l ), 

(rb l ·lbz ·rb2)] = 1 and Cpr (lC2 ·rc3 ·lCl), (rcz ·lC3 ·rCI)] = 
1. If (rb l ·lbz . rb2) = (lcz . rC3 . lei ), or equivalently, the 
forementioned conditions (el) through (c3) holds, then 
Ap[(lbl ), (rc2 . lC3 . rCl)] = 1. In the above example, 
Bp[(2), (5 ·12·14)] = 1 and Cp((5 ·12 · 14), (7·9 ·15)] = l. 

(5 . 12 . 14) 

Ap = Bp x Cp = (2) (: 

(51214{ 

: (2) ( • : (7 ','S) : ) 

Therefore, Ap[(2), (7·9·15)] = 1. 

: ) x 

(7 . 9 . 15) 

) 

(P4) By using Ap, update M. The i-th element 
(IBj/ICj,rBk/rCk) of end_oJ-A(p) represents that 
the left-end of the string derived from A[i] is the 
left-end of the string derived from Bli] / Clj] and the 
right-end of the string derived from A[i] is the right
end of the string derived from B[k]/C[k]. For p in 
(*1), end..oJ-A(p) = [(lB l ,rC2 ), (IC3, rCd]. So, if 
Ap[(2), (7·9 ·15)] = 1, then we add A to M[2, 7,9,15] 

and we know A ~ (a3'" a7, aiD'" aI5) . 
Here, we present the recognition algorithm. Let G = 

(N, T, P, S) be an MCFG. For a nonterminal A E N, 
a 2d(A)-tuple v = (It, rl, . .. , ld(A) , r d(A») of integers in 
{O, 1, ... , n} is called a position vector for A. Let VA 

121 



be the set {(lll rl, ... ,ld(A), r d(A») Ili, ri E {O, 1, ... ,n} 
(1 :::; i :::; d( A))} of all position vectors for A. 

procedure MAIN 
G = (N,T,P,S) : an MCFG, m = d(G) 
Input: 

w = ala2···an (ai E T,1 :::; i :::; n): an input 
string 

Variable: 

M a 2m-dimensional matrix of size 
(n + 1) x (n + 1) x ... x (n + 1) whose entries are 

, # 

2m 
subsets of N 

1. Set all the entries of M to 0 ; 
2. for i = 1 to n 

for each terminating rule Xj -+ ai 
add Xj to M[i - l,i] ; 

3. repeat (3.1) n times 
(3.1) for each nonterminating rule p: A -+ I[B, C] 

(a) CONSTRUCT .J3pCp(P) ; 
(b) compute Ap = Bp x Cp ; 
(c) TRANS-.Ap..TOM(p) ; 

4. if S E M[O, n] then accept else reject 
end of procedure MAIN 

Definition 3.1: Let p : A -+ I[B, C] be a nontermi
nating rule and let 

a = (ll,rl, ... ,ld(A),rd(A») EVA, 
f3 = (lbI, rb1 , • •• ,lbd(B» rbd(B») E VB, 
'Y = (lCl,rCl, ... ,ICd(C),rCd(C») E Vc· 
Also let end_with_B(p) = lsI, ... ,Sh], 
alter ~(p) = [Sh+!, ... ,S2d(B)], 
end_wzth_C(p) = [tl, ... ,tkj, 
alter _C(p) = [tk+l, ... , t2d(C)], 
end_ol -.A(p) = [(ul,vd,··., (Ud(A),Vd(A»)] 

where Si E LRB (1 :::; i :::; 2d(B)), ti E LRC (1 :::; i :::; 
2d(C)), Ui E LB ULC ' Vi E RB URC (1:::; i :::; d(A)) . 

We define mappings <{Jf3 and <{J-y as 
«Jf3(lBi) = lbi, «Jf3(rBi) = rbi (1:::; i :::; deB)) and 
«J-y(ICi) = lCi, «J-y(rCi) = rCi (1 :::; i :::; d(C)). Also 
define 

<Pp,B(f3) = (<{Jf3(sI)··· «Jf3(Sh)), 
Wp,B(f3) = (<{Jf3(sh+d··· «Jf3(S2d(B))), 
<Pp,c{t) = (<{J-y(tk+d··· «J-y(t2d(C») , 
wp,c{t) = (<{J-y(td··· «J-y(tk)), 
<Pp,A(a) = (dll ... dlh), wp,A(a) = (d21··· d2 k), 

where dli = Ij (resp. rj) if Si = Uj (resp. Vj) for some 
1 :::; j :::; d(A), 
d2i = lj (resp. rj) if ti = Uj (resp. Vj) for some 1 :::; 
j :::; d(A). 0 

Example 3.1 : Consider rule p in (* 1) again. Let f3 = 
(2,5,12,14) and 'Y = (14,15,5,7,9,12). In this case, 
<{Jf3(lBd = 2, «Jf3(rB l ) = 5, «Jf3(lB2) = 12, «Jf3(rB2) = 
14, <{J-y(ICd = 14, «J-y(rC l ) = 15, «J-y(lC2 ) = 5, 
<(l-/,l:C'l.\ = 7, 'P.,.\\C3) = <d 'O:n,Q. 'P7\l:C3) = \.'2.. 'i',o, 

<tip,Bce} = (2), I}i p,B(f3) = (5 ·12 ·14), <Pp,c{t) = (5 ·12· 
14) and Wp,c{t) = (7·9·15). Also let a = (2,7,9,15). 

Since end_ol-.A(p) = [(lB 1,rC2 ), (lC3,rCl )], we have 
<pp,A(a) = (2) and Wp,A(a) = (7·9·15). 0 

The following procedure constructs 2-dimensional 
boolean matrices Bp and Cp from end_with_B(p), 
alter.J3(p), end_with_C(p) and alter_C(p). 

procedure CONSTRUCT_BpCp(p) 
for each f3 E VB 

if B E M[f3] then Bp[<P p,B(f3), 'l'p,B(f3)] = 1 
else Bp[<P p,B(f3), Wp,B(f3)] = ° ; 

for each 'Y E Vc 
if C E Mb] then Cp[<pp,c{t), wp,c{t)] = 1 
else Cp[<pp,c{t), wp,c{t)] = ° ; 

end of procedure CONSTRUCT .J3pCp(p) 

By the definition of end_with_B(p) and alter.J3(p), 

{<{Jf3(sd,··· ,«Jf3(S2d(B»)} = 
{lbl , rb l , ... ,1bd(B) "rbd(B)}· 

Therefore, ((<P p,B(f3), Wp,B(f3)) I f3 E VB} has 
one-to-one correspondence with VB and hence 
CONSTRUCT .J3pCp(p) assigns a value exactly once 
for each entry of Bp- The same property holds for C. 

The following procedure translates the address of 
each entry of Ap which contains 1 to the address of 
an entry of M, and adds A to that entry of M. 

procedure TRANS-.Ap_TO..M(p) 
for each a = (lllrl, ... ,ld(A),rd(A») E VA 

if Ap[<pp,A(a), Wf,A(a)j = 1 and 
{ll + 1, .. . ,rlj,{l2 + 1, ... ,r2}, . .. , 

{ld(A) + 1, ... , rd(A)} are not overlapping 
then add A to M[a] ; 

end of procedure TRANS-.Ap..TO_M(p) 

We can prove the following lemma which states the 
correctness of the algorithm. A proof is found in [8]. 

Lemma 3.2: The followings are equivalent for each 
nonterminal A after Step 3 is executed: 

(1) A =* (aI1+l ... ar" ... , ald(A)+!··· ard(A)). 
(2) A E M[h,rl, ... ,ld(A»rd(A)]. 0 

Theorem 3.3: When algorithm MAIN terminates, 
S =* al ... an if and only if S E M[O, n]. 0 

4 Complexity 

In this section, we will analyze the time complexity 
of the algorithm. Let G = (N, T, P, S) be an MCFG 
with d( G) = m and e( G) = e. Obviously, linear lists 
end_wi th.J3 (p ), alter .J3(p), end_with_C(p), alter _C(p) 
and end_ol-.A(p) (p E P) can be constructed in 
0(1) time. Procedures CONSTRUCT .J3pCp(p) and 
TRANS_Ap_TOM(p) can be executed in 0(n2m) 
time since the numbers of entries of Ap , B p , Cp and M 
are all at most 0(n2m). Next, we will evaluate the time 
needed for computing Bp x Cpo Assume that the sizes 
of boolean matrices Bp and Cp are (n + l)q x (n + It 
and (n+lYx (n+1)3, respectively. Let t be min{q, r, s} 
and u, v be the rest of them. Bp x Cp can be computed 
in time 

(n + 1) ... -t . (n + 1),,-t . M((n + In 
= (n + 1)(q+r+8)-3t . M((n + l)t). (*2) 

122 



Definition 4.1 : For a rule p: A -t f(B, CJ, define 
the number i(p), called the multiplication unit of p, as 
d(A) + deB) + d(C) - 2 . max{d(A), deB), d(C)}. 0 

Lemma 4.1: e(p) = q + r + sand i(P) = min{q,r, s}. 
Proof By the construction of Bp and Cp, 

q + r = 2d(B), r + s = 2d(C), q + s = 2d(A) (*3) 

and hence q + r + s = d(A) + deB) + d( C) . Moreover, 
e(p) = d( A) + d( B) + d( C) by the definition of degree, 
Conditions 1.3(b)( c) in Lemma 2.1 and right-linearity. 
Therefore, e(p) = q + r + s. By (*3), 

q = d(A) +d(B) -d(C), r = -d(A) +d(B) +d(C), 
s = d(A) - deB) + d(C), 

which imply min{q, r, s} = d(A) + deB) + d(C) -
2· max{d(A),d(B),d(C)}=i(p). 0 

Note that i (P) satisfies 0 ~ i(P) ~ m. By (*2), 
Lemma 4.1 and [1], Bp x Cp can be computed in 
O(ne(p)-3i(p) . M(ni(p))) < O(ne(p)-0.624i(p)) time. 

Hence, ( a) through (c) of Step 3.1 in MAIN can be 
executed in max{O(n2m), O(ne(P)-0.624i(P))} time for 
a rule p. 

Let p' be a rule such that e(p') - 0.624i(p') = 
max{e(p) - 0.624i(p) I pEP}, and let e' = e(p'), 
i' = i(p') . Since the number of rules is a constant, Step 
3.1 can be executed in max{O(n2m), O(ne'-0.624i')} 
time. Moreover, the following lemma holds [8]. 

Lemma 4.2 : i' ~ 1 and e' - 0.624i' > 2m. 0 

By Lemma 4.2, Step 3.1 can be executed in 
O(ne'-0 .024i') time. As Step 3 dominates algorithm 
MAIN, it can be executed in O(ne'-0.624i'+1) time. 

5 Conclusions 

In this paper, we proposed a recognition algorithm for 
MCFLs which uses multiplication of boolean matri
ces. Let p' be a rule such that e(p') - 0.624i(p') = 
max{e(p) - 0.624i(p) I pEP}, and let e' = e(p')' 
i' = i(p'). Its time complexity is O(ne'-0.624i'+1), 

where n is the length of an input string. We com
pare the time complexity of the algorithm proposed 
in this paper with O(ne), which is the time complex
ity of the known fastest algorithm. If e' t- e i.e. 
e ~ e' + 1, then O(ne) > O(ne'-0.624i'+l) by Lemma 
4.2. Consider the case that e' = e. If i' ~ 2, then 
O(ne) > O(nC'-O .624i'+1). Onlywhene' = eandi' = 1, 
O(nC'-0.624i'+1) = O(ne+O.376) > O(ne) and the known 
algorithm is faster. 

In [10] and [7], a technique is proposed which re
duces the number of multiplication of boolean ma
trices by recursive multiplication of submatrices. By 
this technique, the time complexity of the algorithm 
in [10] is improved from O(nM(n)) to O(M(n)J and 
the algorithm in [7] is improved from O(n(M(n )) to 
O(M(n2 )). If this technique can be applied to our al
gorithm, then the time complexity of ours may be im
proved from O( n e ' -0.624i'+1) to O(ne' -0.624i'). 

Parallel multiple context-free grammars (PMCFGs) 
were introduced as an extension of MCFGs 13][9]. Re
cently, we extend the recognition algorithm proposed in 

this paper to recognize the class of languages generated 
by PMCFGs [12]. By this algorithm, some MCFLs are 
recognized faster than the recognition algorithm pro
posed in this paper. 

References 

[1] D. Coppersmith and S. Winograd: "Matrix Multipli
cation via Arithmetic Progressions," Proc. 19th An
nual ACM Symp. Theory of Computing, 1-6, 1987, 
also in J. Symbolic Computation, 9, pp.251-280, 1990. 

[2] A. K. Joshi, L. Levy and M. Takahashi: "Tree Adjunct 
Grammars," J. Comput. System Sci., 10, 1, pp.136-
163,1975. 

[3] T. Kasami, H. Seki and M. Fujii: "Generalized 
Context-Free Grammars and Multiple Context-Free 
Grammars," Trans. IEICE, . J71-D-I, 5, pp.758-765, 
1988 (in Japanese). 

[4] T. Kasami, H. Seki and M. Fujii: "On the Membership 
Problem for Head Languages and Multiple Context
Free Languages," Trans. IEICE, J71-D-I, 6, pp.935-
941,1988 (in Japanese). 

[5] R. Nakanishi: "A Study on Some Context-Free Gram
mar Based Formalisms," Ph. D. dissertation, Osaka 
University, 1994. 

[6] C. J. Pollard: "Generalized Phrase Structure Gram
mars, Head Grammars, and Natural Language," 
Ph. D. dissertation, Stanford University, 1984. 

[7] S. Rajasekaran and S. Yooseph: "TAL Recognition 
in O(M(n2 » Time," Proc. 33rd Annual Meeting of 
Assoc. for Comput. Ling., pp.166-173, 1995. 

[8] K. Takada: "An Efficient Recognition Algorithm for 
Multiple Context-Free Languages," Master's Thesis, 
Osaka University, 1996. 

(9] H. Seki, T. Matsumura, M. Fujii and T. Kasami: "On 
Multiple Context-Free Grammars," Theoretical Com
puter Science, 88, pp.191-229, 1991. 

[10] L. G. Valiant: "General Context-Free Recognition in 
Less than Cubic Time," J. Comput . and System Sci., 
10, pp.308-315, 1975. 

[11] K. Vijay-Shanker, D. J. Weir and A. K. Joshi: "Char
acterizing Structural Descriptions Produced by Var
ious Grammatical Formalisms," Proc. 25th Annual 
Meeting of Assoc. Comput. Ling., pp.104-111, 1987. 

[12] H. Nii, R. Nakanishi and H. Seki: "An Efficient Recog
nition Algorithm for Parallel Multiple Context-Free 
Languages", !EICE Technical Report, COMP96-82, 
pp.31-39, 1997(in Japanese). 

123 



Solving the correct-prefix property for TAGs 

Mark-Jan Nederhof" 

University of Groningen 
Faculty of Arts - Humanities Computing 

P.O. Box 116 
NL-9100 AS Groningen 

The Netherlands 
markjan@let.rug.nl 

Abstract 

We present a new upper bound for the compu
tational complexity of the parsing problem for 
TAGs, under the constraint that input is read 
from left to right in a way that errors in the in
put are observed as soon as possible, which is 
called the correct-prefix property. 

The former upper bound was O(n9
), which we 

now improve to O(n6 ), which is the same as that 
of practical parsing algorithms for TAGs without 
the additional constraint of the correct-prefix 
property. Thereby we show that the correct
prefix property does not require significant ad
ditional costs. 

1 Introduction 

Traditionally, parsers and recognizers for regular 
and context-free languages process input from 
left to right. If a syntax error occurs in the input 
they often detect that error immediately after its 
position is reached . The position of the syntax 
error can be defined as the last input symbol of 
the shortest prefix which cannot be extended to 
be a correct sentence in the language L. 

In formal notation, this prefix for a given er
roneous input w tJ. L is defined as the string va, 
where w = vax, some x, such that vy E L, for 
some y, but vaz tJ. L, for any z . (The symbols 
v, w, ... denote strings, and a denotes an input 

"This research was carried out within the framework 
of the Priority Programme Language and Speech Tech
nology (TST). The TST-Programme is sponsored by 
NWO (Dutch Organization for Scientific Research) . 

symbol.) The occurrence of a in w indicates the 
error position. 

If the error is detected as soon as it is reached, 
then all prefixes of the input that have been pro
cessed at preceding stages are correct prefixes, or 
more precisely, they are prefixes of some correct 
strings in the language. Hence, we speak of the 
correct-prefix property. 1 

For context-free and regular languages, the 
correct-prefix property can be enforced without 
additional costs of space or time. Strangely 
enough, it has been claimed by (SW95] that 
this property is problematic for the weakly 
context-sensitive languages represented by tree
adjoining grammars (TAGs): the best practical 
parsing algorithms for TAGs have time complex
ity O(n6

) (VSJ85] (see (Sat94] for lower theoret
ical upper bounds), whereas the only published 
algorithm with the correct-prefix property, viz. 
that in [SJ88], has complexity O(n9

). 

In this paper we present an algorithm that 
fulfils the correct-prefix property and operates 
in O(n6

) time. This algorithm merely recognizes 
input, but it can be extended to be a parsing 
algorithm, with the ideas from [Sch91]. 

2 Notation 

For a good introduction to TAGs, the reader is 
referred to [Jos87]. In this section we merely 
summarize our notation . 

A tree-adjoining grammar is a 4-tupJe 
(~, NT, I, A), where ~ is the set of terminals, 

1 We adopt this term from [SSS88]. In some publica
tions, the term valid prefix property is used. 

124 



I is the set of initial trees and A is the set of 
auxiliary trees. We refer to the trees in I U A as 
elementary trees. The set NT, the set of non
terminals, does not play any role in this paper. 

For each leaf M in an elementary tree, except 
when it is a foot, we define label(M) to be the 
label of the node, which is either a terminal from 
1: or the empty string (. For each other node 
M we define Adjunct(M) as the set of auxiliary 
trees that can be adjoined at M. For each non
leaf node M we define children(M) as the list of 
daughter nodes. 

We refer to the root of an elementary tree t as 
Rt . We refer to the foot of an auxiliary tree t as 
Ft. 

For technical reasons, we assume an addi
tional node for each elementary tree t, which we 
denote by T. This node has only one daughter, 
viz. the actual root node R t . We also assume an 
additional node for each auxiliary tree t, which 
we denote by L This is the daughter of the 
actual foot node Ft. 

The input to the recognition algorithm is 
given by a1 a2 ... an, where n is the length of 
the input. 

3 The algorithm 

The algorithm operates by means of least fixed
point iteration: a table is gradually filled with 
elements derived from other elements, until no 
more new ones can be found. A certain collec
tion of steps indicate how table elements are to 
be derived from others. 

For the description of the steps we use a 
pseudo-formal notation. Each step consists of 
a list of antecedents and a consequent. The an
tecedents are the conditions under which an in
carnation of the step is executed. The conse
quent is a new table element that the step then 
adds to the parse table, unless of course it is 
already present. An antecedent may be a ta
ble element, in which case the condition that it 
represents is membership in the table. 

The main table elements, or items, are 6-
tuples [h, N -+ Q • /3, i, j, h, 12]. Here, N is 
a node from some elementary tree, and Q/3 is the 
list of the daughter nodes of N. The daughters 
in Q, together generate the input from position 
i to j. The whole tree generates input from po
sition h onwards. 

R 
, , , , , , 

N " 
..,d~'\ -.. 

~- '-. 
, I 

, I 
, I 

, I 
, I 

1\ 
II 

I 

I 

" I 

~ ,-----_.\_-~ 
h if I f 2 j 

Figure 1: An item [h, N -+ Q • /3, i, j, h, 12] 

Internal in the tree there may be adjunctions. 
Furthermore, the tree in which N occurs may 
itself be an auxiliary tree, in which case it is 
adjoined in another tree. Then, the foot may 
be dominated by one of the daughters in Q, and 
the part of the input generated by the foot is 
given by the interval (h, h). When the tree is 
not an auxiliary tree, or when the foot is not 
dominated by one of the daughters in Q, then h 
and 12 both have the dummy value "-". 

See Figure 1 for a pictorial representation of 
the meaning of items. The solid lines indicate 
what has been established; the dashed lines indi
cate what is merely predicted. The shaded sub
tree indicates the lower half of a tree in which 
the present tree has been adjoined. This tree 
may not exist, as explained above. Rand Fare 
the root and foot of the elementary tree to which 
N belongs; F may not exist. 

There is one special kind of item, with only 5 
fields instead of 6. This is used as intermediate 
result in the adjunctor steps to be discussed in 
Section 3.5. 

3.1 Initializer 

The initializer step predicts initial trees t start
ing at position 0; see Figure 2. 

Init 

tEl, 
I-

[0, T -+ • Rt , 0, 0, -, -] 

3.2 Scanner 

The scanner steps try to shift the dot rightward 
in case the next node in line is labelled with a 

125 



, , , , 
t '-, , , !
'Rt 

-------- " 
o 

Init 
n 

Figure 2: The initialization 

terminal or [, which means the node is a leaf but 
not a foot; see Figure 3. 

Scan 1 

I-

Scan 2 

I-

[h, N -t a - M{J, i, j, h, 12), 
label(M) = aj+l 

[h, N -t aM - (J, i, j + I, h, 121 

[h, N-ta-M{J, i, j, h, 12), 
label(M) = [ 

[h, N -t aM - (J, i, j, h, 121 

3.3 Predictor 

The first predictor step predicts a fresh oc
currence of an auxiliary tree t, indicated by a 
shaded area in Figure 4. The second predicts a 
list of daughters, lower down in the tree, ab
staining from adjunction at the current node M. 
The third predicts the lower half of a tree in 
which the present tree t was adjoined. 

Pred 1 

I-

Pred 2 

I-

[h, N -t Q' - M{J, i, j, h, 12), 
t E Adjunct(M) 

[j, T -t - Rt , j, j, -1 

[h, N -t a - M{J, i, j, h, 12], 
children(M) =" 
adjunction not obligatory at M 

[h, M -t -" j, j, -1 

, , 

, , 
" , , , , , , 

I I I 

" I " 
~ - - -- - :\. - - - ~ 

h fi fz j j+l 
Scan 1 

Figure 3: The first scanner step 

Pred 3 

I-

[j, Ft -t - 1., k, k, -, -), 
[h, N -t a - M{J, i, j, h, 12], 
t E Adjunct(M), 
children(M) = , 

[h, M -t -" k, k, -] 

3.4 Completor 

The first completor step completes recognition 
of the lower half of a tree in which an auxiliary 
tree t was adjoined, and asserts recognition of 
the foot of t; see Figure 5. The second and third 
completer steps complete recognition of a list of 
daughter nodes " and initiate recognition of the 
list of nodes (J to the right of the mother node 
of ,. 

Comp 1 

I-

Comp 2 

I-

126 

[h, M -t ,-, k, l, f~, 12), 
t E Adjunct(M), 
[j, Ft -t - 1., k, k, -, -), 
[h, N-ta-M{J, i, j, h, 121 

[j, F t -t 1. -, k, I, k, II 

[h, N -t a. M{J, i, j, -, -), 
M dominates foot of tree, 
[h, M-t,-, j, k, h, 121 

[h, N -t aM - {J, i, k, h, 121 



, , , , , 

,~- \ 
I I I 

I I 
I I 

I I I 
I I I 
I I I 

I I 
I I 

" " " " " 

, , 
, , 

, 

M ~ I ' 
I I 

6.' - I 

Y 
\ 't 

I I 

- - -, \ \ 't 
.',' " 

\ \ " 
" " \' II 
\, II 

'I " II I, 

(~- \ 
I , 

I I 
I , 

I I 
I I 
I I 
I I 
I I 
I, 

" " 
" " \1" \ 

1\ 't I ____________ l_ J ___ 't _\i __ ~\ " I _1 ___ 't 
h j h j h j k 

Pred 1 Pred 2 Pred 3 

Figure 4: The three predictor steps 

Comp 3 

r-

[h, N -+ 0: - M/3, i, j, 11, 12], 
M does not dominate foot of tree, 
[h, M -+ , -, j, k, -, -1 

[h, N -+ o:M - /3, i, k, 11, 121 

3.5 Adjunctor 

The adjunctor steps perform the actual recogni
tion of an adjunction of an auxiliary tree t in an
other tree at some node M. The first adjunctor 
step deals with the case that other tree is again 
adjoined in a third tree (the two darkly shaded 

Adj 0 

f-

Adj 1 

areas in Figure 6) and M dominates the foot r-
node. The second adjunctor step deals with the 
case that either the other tree is an initial tree, 
or has the foot elsewhere, i.e. not dominated by Adj 2 
M . 

The two respective cases of adjunction are 
realised by step Adj 0 plus step Adj 1, and 
by step Adj 0 plus step Adj 2. The auxil
iary step Adj 0 introduces items of a somewhat 
different form than considered up to now, viz. 
[M -+ , -, j, k, If, 121. The interpretation is 

f-

[j, T-+Rt -, j, k, 11,12]' 
[h, M -+ ,-, 11, 12, If, /2], 
t E Adjunct(M) 

[M -+ ,-, j, k, If, 121 

[M -+ , -, j, k , If, 12], 
M dominates foot of tree tf, 
[h, Ftt -+ 1- -, If. 12' If. 12], 
[h, N -+ 0: - M/3, i, j, -, -1 

[h, N -+ o:M - /3, i, k, J( , 121 

[M -+ , _, j, k, -, -], 
[h , N -+ 0: - M/3, i , j, If. 121 

[h, N -+ o:M - /3, x, k, If, 12] 

suggested in Figure 7: at M a tree has been ad
joined. The adjoined tree and the lower half of 4 
the tree that M occurs in together generate the 
input from j to k. In the case that M dominates 

Properties 

a foot note, as suggested in the figure, If and 12 
have a value other than "-". 

The reason that the auxiliary step is needed 
for each case is that otherwise 8 variables would 
be involved in one step, resulting in a complexity 
of O(n8

). See Section 5 for more explanation. 

The first claim we make about the algorithm 
pertains to its correctness as recognizer: 

Claim 1 After completion 01 the algorithm, the 
item [0, T -+ R t -, 0, n, -, -], for some t E I, 
is in the table if and only if the input is in the 
language described by the grammar. 

127 



h 

, , , 
, , 

, , , , , , , , 

t~- \ , . 
, " . " , '. , " , . 

j k I 

Compl 

, , , . , . 
'. 
" " 
_tj 

h j fi 12 k 

Comp2 

Figure 5: Two of the completor steps 

The intuition behind the proof of the "if" part 
is that for trees constructed from the grammar 
we can indicate a left-to-right depth-first tree 
traversal that is matched by corresponding steps 
of the algorithm. When nodes are visited, cor
responding items are added to the table, as sug
gested earlier by Figure l. 

The "only if" part can be proven along with 
the second claim: 

Claim 2 The algorithm satisfies the correct
prefix property, provided the grammar is reduced. 

A TAG is reduced if it does not contain any ele
mentary trees that cannot be part of any parse 
tree. 2 

The proof requires us to refine the interpre
tation of items [h, N --t a. {3, i, j, h, hj· 
Apart from the requirements suggested in Fig
ure 1, we require that the elementary tree is part 
of a parse tree, of which the part to the left of 
that elementary tree generates the input from 
position ° to h. Given the correctness of this in
terpretation, the second claim follows: if the in
put up to position i has been read, then there is 
a string y such that al .. . aiY is in the language. 
This y is the concatenation of strings generated 
by {3, by the nodes to the right of N, etc. For 
the "only if' part of the first claim we consider 
the interpretation of [0, T --t R t ., 0, n, -, -]. 

2 One reason why an auxiliary tree might not be a part 
of any parse tree is that at some node it may have obliga
tory adjunction of itself, leading to "infinite adjunction". 

The interpretation of items can be proven cor
rect by verifying that if the items of the an
tecedents of some step satisfy the interpretation, 
then so does the item of the consequent . A slight 
technical problem is caused by the obligatory ad
junctions. This can be solved by noting that for 
each node with an obligatory adjunction some 
finite adjunction at that node exists, since the 
grammar is reduced. 

The full proofs are straightforward but te
dious. Furthermore, they do not depart in any 
significant way from those for existing recogni
tion algorithms for TAGs [VSJ85, SJ88, Lan88, 
Sch91]' and therefore including the full proofs 
here does not seem desirable. 

5 Complexity 

The steps presented in pseudo-formal notation 
in Section 3 can easily be composed into an 
actual algorithm [SSP95j. As a first approxi
mation, the complexity of such an algorithm is 
given by O(nP }, where p is the largest number 
of input positions in any antecedent. A more 
refined analysis excludes the variables for input 
positions that only occur once in a step, the so 
called don't-cares. This is because an implicit 
intermediate step [ r [' may be applied that re
duces an item [ with q input positions to another 
item [' with q' ::; q input positions, omitting the 
don't-cares. That reduced item [' then takes the 
place of [ in the antecedent of the actual step. 

128 



h j iiJ,.' 1;'/2 k 

Adj 1 
h 

, , 

, , , 

" " " II 

• \ I 

- _\ - - -' 

j fi 12 k 

Adj 2 

Figure 6: The two adjunctor steps, implicitly combined with Adj 0 

For example, there are 9 variables in Comp 1, 
of which i, h, 12, If, I~ are all don't-cares, since 
they occur only once in that step. Therefore, 
the contribution of this step to the overall time
complexity is 0(n4) rather than 0(n9 ). 

Under these considerations, the maximum 
number of relevant variables for input positions 
per step is 6. Thereby, the complexity of left-to
right recognition for TAGs under the constraint 
of the correct-prefix property is 0(n6 ). 

In terms of the size of the grammar, the com
plexity is 0(101 2

), since at most 2 elementary 
trees are simultaneously considered in a single 
step. 

6 Further research 

In [SVS90] an attempt was made to add further 
sophistication to left-to-right parsing for TAGs: 
the idea of LR parsing, as usually applied to 
grammars with an underlying context-free struc
ture, was extended to TAGs.3 For some TAGs, 

3It seems obvious that that algorithm is actually in
correct. It accepts input that is not in the language. 
This is because the action that matches the parts of an 
elementary tree to the "south" and "north-east" of an 
adjunction to that to the "north-west" is defective. The 
verification merely checks the number of terminals in the 
"north-west" part, which is insufficient to ensure that the 
same elementary tree is used. This observation does not 
seem to have appeared in print before, although it is very 
easy to demonstrate, and has been confirmed by personal 

the parser is even deterministic; in fact, deter
minism was the primal objective of that work. 

The comparison of our work with that in 
[SVS90] raises a few questions. The algorithm 
in the present paper operates in a top-down 
manner, being very similar to Earley's algorithm 
[Ear70], which is emphasised by the use of the 
"dotted" items. As shown in [NS94], a family 
of parsing algorithms (viz. top-down, left-corner, 
PLR, ELR, and LR parsing [Ned94]) can be car
ried over to head-driven parsing. An obvious 
question is whether such parsing techniques can 
also be used to produce variants of left-to-right 
parsing for TAGs. Thus, one may conjecture, 
for example, the existence of an LR-like parsing 
algorithm for arbitrary TAGs that operates in 
0(n6

) and that has the correct-prefix property. 
The definition of such an algorithm is not at 

all straightforward . The additional benefit of 
LR parsing, in comparison to, for example, left
corner parsing, lies in the ability to process mul
tiple grammar rules simultaneously. If this is to 
be carried over to TAGs, then one needs to de
cide in what way multiple elementary trees can 
be handled simultaneously. A straightforward 
combination of this objective with the mecha
nism we used to ensure the correct-prefix prop
erty does not seem useful, except for the most 
simple cases when a TAG contains many, almost 

communication with colleagues. I see no possibilities for 
a straightforward patch. 

129 



M 

j f..' f; k 

Figure 7: An item [M -t I., j, k, If, I~] 

identical, elementary trees. 
Therefore, further research is needed not only 

to precisely define such left-to-right algorithms 
for TAGs, but also to determine whether there 
are any benefits for practical grammars. 

Acknowledgements 

An error in a previous version of this paper was 
found and corrected with the help of Giorgio 
Satta. 

References 

[Ear70] J . Earley. An efficient context-free 
parsing algorithm. Communications of 
the ACM, 13(2):94-102, February 1970. 

[Jos87] A.K . Joshi. An introduction to tree 
adjoining grammars. In A. Manaster
Ramer, editor, Mathematics of Lan
guage, pages 87- 114. John Ben
jamins Publishing Company, Amster
dam, 1987. 

[Lan88] B. Lang. The systematic construction 
of Earley parsers: Application to the 
production of O(n6 ) Earley parsers for 
tree adjoining grammars. Unpublished 
paper, December 1988. 

[Ned94] M.J. Nederhof. An optimal tabular 
parsing algorithm. In 32nd Annual 
Meeting of the ACL, Proceedings of 
the Conference, pages 117-124, Las 
Cruces, New Mexico, USA, June 1994. 

[NS94] M.J. Nederhof and G. Satta. An 
extended theory of head-driven pars-

ing. In 32nd Annual Meeting of the 
A CL, Proceedings of the Conference, 
pages 210-217, Las Cruces, New Mex
ico, USA, June 1994. 

[Sat94] G. Satta. Tree-adjoining grammar 
parsing and Boolean matrix multi
plication. Computational Linguistics, 
20(2):173-191,1994. 

[Sch91] Y. Schabes. The valid prefix prop
erty and left to right parsing of tree
adjoining grammar. In Proc. of the Sec
ond International Workshop on Pars
ing Technologies, pages 21-30, Cancun, 
Mexico, February 1991. 

[SJ88] Y. Schabes and A.K. Joshi,. An Earley
type parsing algorithm for tree adjoin
ing grammars. In 26th Annual Meeting 
of the A CL, Proceedings of the Con
ference, pages 258-269, Buffalo, New 
York, June 1988 . 

[SSP95] S.M. Shieber, Y. Schabes, and F.C.N. 
Pereira. Principles and implementation 
of deductive parsing . Journal of Logic 
Programming, 24:3-36, 1995 . 

[SSS88] S, Sippu and E. Soisalon-Soininen. 
Parsing Theory, Vol . I: Languages and 
Parsing, EATCS Monographs on The
oretical Computer Science, volume 15. 
Springer-Verlag, 1988. 

[SVS90] Y. Schabes and K. Vijay-Shanker. De
terministic left to right parsing of tree 
adjoining languages. In 28th Annual 
Meeting of the A CL, Proceedings of 
the Conference, pages 276-283, Pitts
burgh, Pennsylvania, USA, June 1990. 

[SW95] Y. Schabes and R.C. Waters. Tree 
insertion grammar: A cubic-time, 
parsable formalism that lexicalizes 
context-free grammar without chang
ing the trees produced, Computational 
Linguistics, 21(4):479-513, 1995 . 

[VSJ85] K, Vijay-Shankar and A.K. Joshi . 

130 

Some computational properties of tree 
adjoining grammars. In 23rd Annual 
Meeting of the ACL, Proceedings of the 
Conference, pages 82-93, Chicago, Illi
nois, USA, July 1985. 



Parametric Types for Typed Attribute Value Logic 
(Preliminary Version) 

1 Motivation 

Gerald Penn 
SFB 340, Universitat Tiibingen 

gpenn@sfs.nphil.uni-tuebingen.de 

Parametric polymorphism has been combined with inclusional polymorphism to provide natural 
type systems for Prolog ([DH88]), HiLog ([YFS92]) and constraint resolution languages ([Sm089]), 
and, more recently, HPSG-like grammars to classify lists and sets oflinguistic objects ([PS94],Figure 1). 
This abstract summarizes work in progress on the incorporation of parametric types into the typed 

WO\ld hrase Vist nelistlX) 
HEAD:X 

. . r) TAIL: list(X) 
S2~PtX ... 

..L 

Figure 1: A fragment of the HPSG type signature. 

attribute value logic of [Car92j. This logic is distinguished by its strong interpretation of appro
priateness, a set of conditions which tell us which features an object of a given type can have, 
and which types a feature's value can have. Its interpretation, total well-typedness, says that every 
feature structure must have an appropriate value for all and only the appropriate features of its 
type. In contrast to other logics which are concerned with models of the feature terms themselves 
(e.g. SRL,[Kin89]), it takes feature structures themselves to represent partial information states 
obtained through the closure of inference procedures (e.g. total well-typing) over a description, 
relative to some type signature. 

In this context, the relevant question to ask is what different kinds of information one can 
represent relative to a signature! with parametric types, than relative to a signature without them. 
This enquiry has yielded an interpretation of parametric types with several specific properties 
necessary to conform to their current usage by linguists and implementors who work with feature
based formalisms. What is at stake, however, is not just how to represent lists and sets in HPSG. 
Parametric types have a wide range of possible applications throughout knowledge representation, 
including HPSG. 

Previous approaches have required that every parameter of a subtype should be a parameter 
of all of its supertypesj thus, it would not be possible to encode Figure 1 because .1 !;;:;; list(XP 
The present one eliminates this restriction by requiring the existence of a most general type (which 
[Car921's logic requires anyway), which is then used during type-checking and inferencing to in
terpret new parameters. All previous approaches deal only with fixed-arity termsj and none but 
one use a feature logic, with the one (CUF,[Dor92]) only permitting one parametric type, lists, 
which are simply hard-wired into that implementation. The present approach provides a general
ization of appropriateness which permits both unrestricted parametricity and incremental feature 
introduction. 

This enquiry has also provided a better understanding of the trade-off between using features 
or more refined typing, with or without parametric polymorphism, in a type signature - a degree 
of freedom with respect to which linguistic applications typically commit themselves on the basis of 
arbitrary criteria. The purpose of this paper, however, is not to argue for some principle or heuristic 
to improve these criteria, nor even to argue that parametric types are necessary for linguistics at all. 

I By "signature," I refer to a partial order of types plus feature appropriateness declarations. The partial order 
itself, I shall refer to as a "type (inheritance) hierarchy." 

21n this paper , the most general type will be called .L. 

131 



Its purpose is simply to illustrate both the expressive and computational consequences of adding 
them to a signature. 

In particular, section 5 proves that parametric types are not simply a macro language for 
types. They significantly extend the expressive power of finite type signatures. In spite of this, 
feature-based NLP systems can use parametric types efficiently. The two most common previous 
approaches have been to use the most general instance of a parametric type, e.g. nelist(J..) without 
its appropriateness, or manually to "unfold" a parametric type into a non-parametric subhierarchy 
which suffices for a fixed grammar (e.g. Figure 2). The former does not suffice even for fixed 

nelisLphon 

list 

Figure 2: A manually unfolded sub hierarchy. 

grammars because it simply disables type checking on feature values. The latter is error-prone, in
convenient, and subject to change with the grammar. Section 6 provides two methods for unfolding 
parametric signatures automatically. 

2 Parametric Type Hierarchies 

Parametric types are not types. They are functions which provide access or a means of reference to 
a set of types (their image) by means of argument types, or "parameters" (their domain). Figure 1 
has only unary functions; but in general, parametric types can be n-ary functions over n-tuples 
of types.3 This means that hierarchies which use parametric types are not "type" hierarchies, 
since they express a relationship between functions (here, we can regard simple types as nullary 
parametric types): 
Definition 1: A parametric (type) hierarchy is a partial order, (P, ~p), plus a partial argument 
assignment junction, ap : P X P x Nat -t NatU {O}, in which P consists of (simple and) parametric 
types, (i.e. no ground instances of parametric types), including the simple type, 1... For parity n, 
q arity m, ap(p, q, i), written aZ(i), is only defined when p ~p q and 1 ~ i ~ n, and only attains 
a value between 0 and m. If there is at least one non-simple parametric type, the hierarchy is 
properly parametric. 

The argument assignment function encodes the identification of parameters between a paramet
ric type and its parametric subtype. The number, n, refers to the nth parameter of a parametric 
type, with 0 referring to a parameter which has been dropped. In practice, this is normally ex
pressed by the names given to type variables. In the parametric type hierarchy of Figure 1, list 
and nelist share the same variable, X, because an;~ist(l) is 1. If an;~ist(l) = 0, then nelist would 
use a different variable name. As a more complicated example, in Figure 3, ag(l) = 1, ag(2) = 3, 
a~(2) = 2, a~(l) = 0, and al. and ae are undefined (t) for any pair in P x Nat. 

3In this paper, "parametric type" will refer to such a function, written as the name of the function, followed by 
the appropriate number of "type variables," variables which range over some set of types, in parentheses, e.g. list(X). 
"Type" will refer to both "simple types," such as 1. or elistj and "ground instances" of parametric types, i.e. types 
in the image of a parametric type function, written as the name of the function followed by the appropriate number 
of actual type parameters in parentheses, such as list(.J..), set(psoa) or list(set(1.)). I will use letters t, u, and v to 
indicate types; capital letters to indicate type variablesj capitalised words to indicate feature namesj p, q, and r for 
names of parametric types; and 9 to indicate ground instances of parametric types, where the arguments need not 
be expressed. 

132 



d~} 
b(X,~e 

.1 

Figure 3: A subtype that inherits type variables from more than one supertype. 

3 Ind uced Type Hierarchies 

The relationship expressed between two functions by ~p, informally, is one between their image 
sets under their domains,4 while each image set internally preserves the subsumption ordering of its 
domain. It is, thus, possible to think of a parametric type hierarchy as "inducing" a non-parametric 
type hierarchy, populated with the ground instances of its parametric types, which obeys both of 
these relationships. 
Definition 2: Let:-: I(P)-tP be the function which maps ground instances, P(t1, ... , tn) back 
to their parametric types, p(X1 , .•• , Xn), in P. Given parametric type hierarchy, (P, ~p, a), the 
induced (type) hierarchy, (I(P), ~I), is defined such that: . 

• I (P) is the smallest set, I, such that, for every parametric type, p( X 1, ... , Xn) . E P, and for 
every tuple, (t1 ... tn)Eln, P(t1' ... ' tn)EI. 

• For 91 = P(t1, ... ,tn), and 92 = q(U1, ... , urn), 91 ~I 92 iff 91 ~p 92, and, for all l~i~n, 
either a~(i) = 0 or ti !:;;I uaW)· 

Note that, in the case of n = 0, this function maps simple types to themselves, and that, therefore, 
I(P) contains all of the simple types of P. In the case where 91 is simple, 91 ~[ 92 iff 91 !:;;P 92. 

Figure 4 shows a fragment of the type hierarchy induced by Figure 1. If list and nelist had not 

nelist(,WO~el~· t(phmse) . . 

I 
nelis (sign ~nelzst(lzst( .i)) . . 

nefst(.1) ~t(nelist(.1)) 
list( r~ l~ (phmse;lSl(~listrlist(.1)) . .. 

lzst szg~ V 
lis t (.i) 

Figure 4: Fragment induced by Figure 1. 

shared the same type variable (an~~ist(l) = 0), then it would have induced the type hierarchy in 
Figure 5. In the hierarchy induced by Figure 3, b(e,e) subsumes types d(e, Y,e), for any type Y, 

nelist(wor.d.L--nelist(phmse) : 
nelist(signJ ...-nelist(list(.1)) 

~. 
list (word}vlist(phmse) : 

list(sig~list(list(.1) ) 

list (.i) 

Figure 5: Another possible induced hierarchy. 

for example d(e,c(e,e),e), or d(e,b(J..,e),e), but not d(c(J..,e),e,e), since eil[c(J.., e). Also, for any 
types, W, X, and Z, c(W,e) subsumes d(X,e,Z). 

40ne can restrict these domains with "parametric restrictions," a parallel to appropriateness restrictions on feature 
values. This abstract assumes that these domains are always the set of all types. This is the most expressive case of 
parametric types, and the worst case, computationally. 

133 



The present approach permits parametric types in the signature, but only ground instances 
in a grammar relative to that signature. If one must refer to "some list" or "every list" within a 
grammar, one may use list(1.), while still retaining groundedness. An alternative to this approach 
would be to attempt to deal with parametric types themselves directly within descriptions. From a 
processing perspective, this is problematic when closing such descriptions under total well-typing, as 
observed in [Car92J. The most general satisfier of the description, list(X) !\HEAD:HEAD=TAIL:HEAD, 

for example, is an infinite feature structure of the infinitely parametric type, nelist(nelist(. .. because 
X unifies with nelist(X). 5 

Induced type hierarchies have the following nice property, which allows us to speak of an induced 
unification operation:6 

Theorem 1: If (P, ~p) is a join semilattice, then (I(P), ~/) is a join semilattice. In particular, 

given g1 = P(t1, ... , tn), g2 = q(Ul"'" um)EI(P), gl U/g2 is g3 = r(v1"'" vs), where?h Up 92 = 93 , 
and, for all 1;Sk;Ss, 

ti U/ Uj if there exist i and j such that 
a~(i) = k and a~(j) = k 

Vk = ti if there is such an i, but no such j 
Uj if there is such a j, but no such i 
1. if there is no such i or j. 

So g1 U/ g2 t, if 91 Up 92 t, or there exist i, j, and k ~ 1 such that a~(i) = k, and a~(j) = k, but 

ti Ur Uj t· 
In the induced hierarchy of Figure 3, for example, b(e, 1.) U/ b(1., e) = b(e, e); b(e, e) U/ c(1.) = 

d(e, 1., e); and b(e, e) and b(c(1.), e) are not unifiable, as e and c(1.) are not unifiable. Note that joins 
in an induced hierarchy do not always correspond to joins in a parametric hierarchy. In those places 
where ap attains 0, types can unify without a corresponding unification in their parameters. Such 
is the case in Figure 5, where every instance of list(X) ultimately subsumes nelist(1.). One may 
also note that induced hierarchies can have not only deep infinity, where there exist infinitely long 
subsumption chains, but broad infinity, where certain types can have infinite supertype branching 
factors, as in the case of nelist(1.) or, in Figure 1, elist. 

4 Appropriateness 

So far, we have formally considered only type hierarchies, and no appropriateness. Appropriateness 
constitutes an integral part of a parametric type signature's expressive power, because the scope 
of its type variables extends to include it. 
Definition 3: A parametric (type) signature is a parametric hierarchy, (P, ~p, ap), along with 
finite set of features, Featp, and a partial (parametric) appropriateness function, Appropp : 
Featp x P --7 Q, where Q = UnENat Qn, and each Qn is the smallest set satisfying the equa
tion, Qn = {1, ... , n} U {P(ql"'" qk)lp E Parity k,qi E Qn}, such that: 

1. (Feature Introduction) For every feature f E Featp, there is a most general parametric type 
Intro(J) E P such that Appropp(J, Intro(J)) is defined 

2. (Upward Closure / Right Monotonicity) For any p,q E P, if Appropp(J,p) is defined and 
p ~p q, then Appropp(J,q) is also defined and Appropp(J,p) ~Q Appropp(J,q), where ~Q 
is defined as ~/(p) with natural numbers interpreted as universally quantified variables (i.e. 
a(1) ~Q b(1) iff V'xa(x) ~p c(x)) 

3. (Parameter Binding) For every pEP of arity n, for every f E Featp, if Appropp(J,p) is 
defined, then Appropp(J,p) E Qn. 

5 Occasionally, one also sees parameterized lists used in HPSG with general descriptions as parameters, e.g. 
list(LOCAL: CAT: HEAD : verb) . Attempting to interpret these either as types or macro descriptions is also quite 
problematic, in general, as explained in the full version of this paper. 

6The proofs of these theorems can be found in the full version of this paper 

134 



The special construction of Q is required to ensure that only those natural numbers less than or 
equal to the arity of a given parametric type are used in its appropriateness declaration. Appropp 
maps a feature and the parametric type for which it is appropriate to its value restriction on that 
parametric type. The first two of these conditions are the usual conditions on appropriateness, taken 
straight from [Car92]. The third says that the natural numbers in its image refer to the parametric 
variables of the appropriate parametric type - we can use one of these parameters wherever we 
would normally use a type. Notice that ground instances of parametric types are permitted as 
value restrictions, as well as instances of parametric types whose arguments are bound to these 
parametric variables, as well as the parametric variables themselves. The first is used in HPSG 
for features such as SUBCAT, whose value must be list(synsem)j whereas the second and third 
are used in the appropriateness specification for nelist(X) in Figure 1. The use of parameters in 
appropriateness restrictions is what conveys the impression that ground instances of lists or other 
parametric types are somehow derived from their parameter types. 

A parametric signature induces a type hierarchy as defined above, along with the appropri
ateness conditions on its ground instances, determined by the substitution of actual types for 
parametric variables. We can also prove that this is a bona fide signature: 
Theorem 2: If Appropp satisfies properties (1)-(3) in Definition 3, then Approp[(p) satisfies 
properties (1) and (2). 

5 Equivalence 

Parametric signatures can encode universes of information states that non-parametric signatures 
cannot. Taken literally, this means that there are parametric signatures whose feature structures 
do not correspond, respecting unification, to those of any non-parametric signature, abstracting 
away from issues such as whether information is represented by subtypes or by feature values:7 

Definition 4: Two type signatures, P and Q, are equivalent (P -;.:;:,s Q) if there exists an 
isomorphism (w.r.t. unification) between the totally well-typed feature structures of P and those 
of Q. 

Of course, for the purposes of processing with a parametric signature, we only need to ensure 
that there is a non-parametric signature into which we can embed its feature structures: 
Definition 5: Type signature, P, subsumes signature Q (P ~s Q) if there exists an embedding 
(w.r.t . unification) from the totally well-typed feature structures of P to those of Q.8 

Both of these definitions naturally extend to parametric type signatures, simply by substituting 
their induced type signatures. Even with this weaker notion of correspondence, some parametric 
signatures will still be a problem: 
Theorem 3: For any finite parametric signature, P, for which there is a maximal simple type, 
s, a maximal non-simple type, q(X1, .•• , Xn), a non-maximal non-simple type, p(YI, ... , Ym ), and 
a subtype r ~ p for which a; attains zero, then there is no finite non-parametric signature, N, for 
which P ~s N. 
There are many, however, which are better behaved: 
Definition 6: Parametric type signature, P is persistent if: 

• ap never attains zero, and 

• For every f E Featp and pEP such that Appropp(f,p) exists, Appropp(f,p) E Qn, where 
n is the smallest number such that Appropp(f,Intro(f)) E Qn. 

Theorem 4: For any persistent parametric signature, P, there is a finite non-parametric signa
ture, N, such that P ~s N. 

7Taken as models of information states, it makes sense to reason, and compute, with feature structures induced by 
signatures in this way. If we are interested in finding models of feature terms themselves, however, then, as [Mos95] 
observes, not all models of one signature may be suitable models of other signatures which correspond in this sense. 

8 Actually, these mappings must also respect equivalence classes under alphabetic variance, the discussion of which 
I omit for simplicity; but the results of this section hold in this case. 

135 



Persistence means that parameters do not disappear as one moves up (more specific) in subtyping 
or down (more general) in appropriate value restrictions. Loosely speaking, persistence, combined 
with the normal restrictions on appropriateness, allows us to treat parameter values like feature val
ues. Notice that Figure 1 satisfies the conditions of Theorem 3 (s=phrase, q=nelist,p=list, r=elist). 
If we change elist to elist{X}, i.e. give every kind of list its own empty list, then it satisfies the 
conditions of Theorem 4. This does not mean that users can dispense with parametric types in 
HPSG, however. It means that implementors can pretend to handle parametric types in HPSG, 
when, in fact, they are secretly doing their computations without them. To force users to use the 
non-parametric signatures directly is dangerous - unless the stronger correspondence, ~s, holds, 
they will be creating a collection of totally well-typed information states, some of which correspond 
to no real state relative to the parametric signature; and the implementor can do nothing to warn 
them. Theorem 3 gives us some indication of when it does not hold; but I believe: 
Conjecture: For any properly parametric signature, P, with appropriate features, there exists no 
finite non-parametric signature, N, such that P ~s N. 

These statements do not span all cases of parametric signatures; but they show that the use 
of parameters in appropriate value restrictions and the ability to drop parameters playa central 
role in the extra expressive power of parametric signatures. Figure 1, furthermore, satisfies the 
conjecture, with or without the repair to elist. Of course, if one possesses a powerful enough theory 
of relations (e.g. [Meu97]), one can use them as constraints in a theory to force an eauivalence 
between any two signatures relative to that theory. 

6 Finiteness 

For the purposes of feature-based NLP, one cannot simply unfold any parametric type signature 
into its induced signature at compile-time and then proceed as usual. This is particularly true 
for systems which precompile all of their type operations, as many induced signatures contain 
infinitely many types.9 On the other hand, given that one will only see finitely many ground 
instances of parametric types in a theory, it is certainly desirable to perform some precompilation 
specific to those instances, which will involve some amount of unfolding. What is needed is a way 
of precomputing, given a signature and a grammar, what part of the induced hierarchy will be 
needed at run-time, so that type operations can be compiled only on that part. 10 

There are essentially two ways by which one can identify this part. Both of them work even 
when Theorem 3 says that there is no embedding in general, because here, we only need to be 
concerned with an embedding which is good enough for a fixed grammar, much as Figure 2 may 
be a satisfactory approximation of Figure 1 for some grammars. The first is to use all ground 
instances of a bounded parametric depth: 
Definition 7: Given a parametric hierarchy, P, the parametric depth of a type, t = p{tl," . , tn) E 
I(P), 8(t), is 0 if n = 0, and 1 + max19:'Sn 8(td if n > O. A type hierarchy, I ~ I(P) is of bounded 
parametric depth if, for some k, for every type tEl, 8(t)<S,k. 
So, for example, 8(list{list(list(1..))))= 3. 

If P is finite, then, trivially, I is finite. The virtues of this approach are that it is very easy to 
conceptualize which types belong to such a fragment, and that, in many cases,l1 a theory requires 
only ground instances of some bounded parametric depth anyway. Its principal problem is that it 
typically does not produce a subalgebra (i .e. closed under u/(P)), although this is not a problem for 
every attribute-value logic (notably SRL), or for every implementation. Depth-bounded hierarchies 

9In fact, without parametric restrictions (fn. 4), the induced hierarchy of any properly parametric hierarchy will 
be infinite. 

IOSystems where some type operations are computed at run-time, can still memoize computations on instances of 
parametric typeS as they are witnessed to achieve much of the same savings, perhaps along with some precompilation. 

II The suggestion (p. 396, fn. 2) in [PS94j that the domain of the type variable in Figure 1 might be restricted to 
non-parametric sorts would place a bound of k = I, although there has been a limited use of lists of lists in HPSG, 
e.g. [MSI94j. 

136 



can also contain many unnecessary types for a given theory. 
The second way is to identify some set of ground instances (a generator set) which are necessary 

for computation, and close that set under U[(P): 

Theorem 5: If parametric hierarchy, P, is a finite join semilattice, and G ~ I(P) , is finite, then 
the subalgebra of I(P) generated by G, I(G), is finite. 
There is also a polynomial time algorithm for computing I(G). One can easily construct a generator 
set: simply collect all ground instances of types attested in the grammar, or collect them and add 
all of the simple types, or add the simple types along with some extra set of types distinguished by 
the user at compile-time. When the generator set is chosen in this way, knowing which types will 
eventually belong to I(G) (which, in general, is more difficult) becomes far less important because, 
whatever they are, they will be sufficient for computation with the grammar. In fact, I(G) will be 
the least set of types which is adequate for unification-based processing with the given grammar, 
even though I(P) may be infinite. 

These techniques have another application. One can translate a signature to a ~s-equivalent 
one in which formerly feature-encoded information is expressed by the use of additional subtypes. 
This is particularly desirable in systems that precompile their type operations, since this translation 
can increase run-time efficiency. The problem is that this generally involves an exponential type 
explosion, which cannot be avoided with bit vectors or other disjunctive type encodings because 
there can be exponentially more maximal types. In certain cases, however, one can automatically 
translate a feature encoding to a parametric type encoding in polynomial time, simply by using 
one parameter for every former feature. 12 The resulting signature can then be unfolded to provide 
as many types as a given grammar requires. 

References 

[Car92] Carpenter, B., 1992. The Logic of Typed Feature Structures. Cambridge University Press . 

[DR88] Dietrich, R. and Ragl, F., 1988. A Polymorphic Type System with Subtypes for Prolog. 
Proceedings of the 2nd European Symposium on Programming, Spring LNCS 300, pp. 79-93. 

[Dor92] Dorna, M., 1992. Erweiterung der Constraint-Logiksprache CUF urn ein Typsystem. Diplo
marbeit, UniversiUit Stuttgart. 

[MSI94] Manning, C., Sag, 1., and !ida, M., 1994. The Lexical Integrity of Japanese Causatives. 
To appear in G. Green and R. Levine eds., Readings in RPSG, Cambridge. 

[Kin89] King, P. J., 1989. A Logical Formalism for Head-Driven Phrase Structure Grammar. Ph.D. 
thesis, University of Manchester. 

[Meu97] Meurers, D., Richter, F., Sailer, M., and Winhart, H., 1997. Ein HPSG-Fragment des 
Deutschen, Teil 1: Theorie. Arbeitspapiere des SFB 340. Universitt Tbingen 

[Mos95] Moshier, M. A., 1995. Featureless HPSG. Unpublished ms. Presented at MOL 4. 

(PS94] Pollard, C. and Sag, 1., 1994. Head-Driven Phrase Structure Grammar. University of 
Chicago Press . 

[Sm089] Smolka, G., 1989. Logic Programming over Polymorphically Order-Sorted Types. Ph.D. 
Dissertation, U niversitiit Kaiserslautern. 

[YFS92] Yardeni, E ., Friiwirth, T. and Shapiro, E., 1992. Polymorphically Typed Logic Programs. 
In F. Pfenning, ed., Types in Logic Programming. MIT Press, pp. 63-90. 

12The full version of this paper elaborates on the cases for which this translation can be ~s-equivalent . In general, 
it requires the use of parametric restrictions (fn . 4) . 

137 



A Polynomial Model for Unrestricted Functional 
Uncertainty 

Owen Rambow 
CoGenTex, Inc. 

840 Hanshaw Road, Suite 11 
Ithaca, NY 14850-1589 

USA 
owen@cogentex.com 

1 Introduction: LFG and TAG 

LFG (Kaplan and Bresnan, 1982) is based on the now fairly standard assumption 
that there are several interrelated but independent levels of representation. LFG's 
c-structure is a representation of phrase structure, and is derived by the underly
ing context-free grammar (CFG). f-structure is a representation of the functional 
structure of a sentence, using categories such as SUBJECT, OBJECT, and so on. 
C- and f-structure are related by functional constraints associated with CFG rules, 
called functional schemata. As has been discussed in the LFG and related literature 
(Maxwell and Kaplan, 1993), parsing grammars that are associated with functional 
constraints is computationally costly, the run time being exponential in the length 
of the input string in the worst case. 

Burheim (1996) proposes to replace the CFG-based characterization of c-structure 
with a tree adjoining grammar (TAG) (see (Joshi and Schabes, 1991) for an overview 
of TAG; also see (Kameyama, 1986) for an earlier proposal to relate LFG and TAG). 
The elementary structures in TAG are trees; the extended domain of locality (i.e., 
extended over that of CFG) allows us to devise lexicalized grammars in which each 
elementary structure is associated with exactly one lexical item and its entire pro
jection, and which has positions for all the arguments of the predicate structure of 
the lexical item. In LFG terms, in a TAG we "pre-assemble" into a single tree all 
those c-structure rules whose left-hand side nonterminal will be associated with the 
same f-structure predicate through the use of the t=.!. equation (which indicates 
syntactic projection in LFG). In a TAG derivation, the action of substituting or 
adjoining a tree to another corresponds directly to making the lexical item of the 
first tree an argument or an adjunct of the lexical item of the second tree. Thus, 
we can annotate the leaves of elementary trees with functional schemata such as 
.!.=t OBJECT (which says that the tree substituted at this node will be the object 
of the anchor). In fact, if we assume that each functional schema is associated with 
a single node in a tree, then the f-structure can be read off from the derivation 
structure (which records which trees were composed how during the derivation).l 
More precisely, the derivation structure is a tree and it represents syntactically 
determined co reference (such as in control constructions) using features, while in 

1 For a discussion of some problematic cases in which f·structure (the syntactic dependency 
structure) and derivation structure do not match, see (Rambow et al., 1995). Additional problems 
arise with control, which however can be dealt with in a number of ways, which will not be 
discussed here. 

138 



LFG f-structure is represented as a feature structure with a notation suggesting 
reentrancy. Therefore, to obtain a standard LFG f-structure, the derivation tree 
of TAG would have to be converted to the feature structure-based notation. This 
can be achieved in a standard and deterministic manner. It is possible to devise 
a methodology for deriving TAGs from LFG grammars which obey certain restric
tions (i.e., "compiling" LFG into TAG). There should be considerable benefits for 
efficiency in parsing because of this pre-assembly.2 

Unfortunately, many grammars in the LFG framework do not meet the criteria 
necessary for easy conversion to a TAG grammar. There are two reasons for this. 
First, the same functional schema can be used at different nodes in a derivation 
tree which themselves are associated with the same f-structure. This will have 
the effect of inducing two dependent derivations from two different nodes, and 
has been used in the LFG literature to handle the crossing dependencies of Dutch 
(Bresnan et al., 1983). While TAG can handle these Dutch constructions, it cannot 
derive the phrase structure proposed by Bresnan et al. (1983), which has two 
"spines", one carrying the nouns, and the other carrying, in the same order, the 
verbs. These types of cases can, however, be derived by multiple CFGs (Seki et al., 
1991), which are the same formalism as string-based LCFRS (Weir, 1988), and 
which can be seen as a generalization of TAG. Seki et al. (1993) show that a 
particular type of restricted LFG is weakly equivalent to MCFG/LCFRS. This is 
significant, since MCFG/LCFRS is known to have restricted generative capacity 
and to be polynomially parsable. 

The second reason why many LFG grammars cannot simply be converted to a 
TAG grammar is the use of functional uncertainty (Kaplan and Zaenen, 1989) in 
functional schemata. In functional uncertainty, a functional equation uses regular 
expressions, which are interpreted as a shorthand for an infinite set of "ordinary" 
functional equations. This device is used in LFG grammars to handle long-distance 
extraction of wh-words in English, and for a variety of word order phenomena in 
West Germanic (Zaenen and Kaplan, 1995). Using functional equations such as 
t=t XCOMp·OBJECT, one can specify that, for instance, the filler at a specifier 
position of CP (Le., the left daughter of an S node) is in fact the object of an 
arbitrarily deeply embedded clause (designated by XCOMP). (Since the Kleene-star 
notation also allows the deletion of the XCOMP, we also get that the position may be 
filled by the same clause's object.) Functional uncertainty is not considered by Seki 
et al. (1993). Vijay-Shanker and Joshi (1989) show that functional uncertainty is a 
corollary in TAG, but this is of course only true for those cases in which TAG can 
provide an analysis oflong-distance extraction. As Becker et al. (1991) and Rambow 
et al. (1995) argue, there are cases in which TAG cannot provide a linguistically 
motivated analysis (word order in West Germanic, wh-movement in non-wh-initial 
languages such as Kashmiri); functional uncertainty also covers such cases. This 
paper proposes, for the first time, a TAG-related framework that directly models 
functional uncertainty.3 

2 Also see (Maxwell and Kaplan, 1993) for a discussion of how modifying the c-structure CFG 
in a less radical manner can also lead to improvements in parsing. 

3Burheim (1996) mentions a possible treatment of functional uncertainty, but the approach is 
not worked out in any detail. 

139 



2 UVG-RegDL 

Rambow (1994) introduces a new formalism called UVG-DL (unordered vector 
grammars with dominance links).4 In UVG-DL, the elementary structures are sets 
of context-free productions, which are linked by dominance links. A dominance link 
links a rhs nonterminal of a production to the lhs nonterminal of a different produc
tion in the same set. A derivation proceeds like a CFG derivation, except that (a) 
if a single production from an instance of a set is used, then all other productions 
from that set must also be used in the same derivation (all exactly one time); and 
(b), in the derivation tree, the dominance links introduced by application of rules 
from instances of sets must correspond to dominance relatiomL 

(S' [Fun: XCOMP), S, Vpr r-----------, 
Vp* r-------, . . . . 

S' : S VP 
{~. ~ ~ 

NP [Fun: OBJ) S : NP [Fun: SUBJ) VP likes . . . . 
f... ____ .J 

{ ~ 
NP [Fun: SUBJj VP 

L __ .J 

vp* ,..-------, 

VP 

thi~XCOMJ 

Figure 1: Elementary structures for like and think 

e 
} 

In UVG-RegDL (Unordered Vector Grammars with Regular Expression-Restricted 
Dominance Links), introduced here, the dominance links are furthermore augmented 
with regular expressions (regexps). During a derivation, these regexps are inter
preted as path conditions in the (context-free) derivation tree between the rhs non
terminal of the relevant instance of the dominating rule and the lhs nonterminal of 
the relevant instance of the dominated rule. They can be seen as a generalization 
of the subsertion-insertion constraints of DTG (Rambow et al., 1995). We refrain 
from a formal definition for lack of space, but discuss an example. In Figure 1, two 
elementary structures are shown. In the set for like, we see that the direct object has 
been moved above the subject, and the sister node to the direct object dominates 
the S node of likes through a link. This represents a long-distance wh-movement (or 
"topicalization"). The regexp annotation on the link says that the path that the 
link "stretches" over in a derivation may only contain nodes labeled VP, S, and S' 
[Fun: XCOMPj. (We consider bounded feature structures to convenient notational 
extensions to node labels.) This annotation thus prevents island violations (and 
corresponds to a largely similar stipulation in all linguistic theories.) Furthermore, 
in both sets, the two VP nodes are connected by a link which is annotated Vp·, 
reflecting the fact that no clause boundary may intervene between two VP nodes of 
the same verbal projection. A derivation structure is shown in Figure 2. The dom-

4DTG, introduced in (Rambow et aL, 1995), can be seen for the purposes of this paper as 
UVG-DL equipped with a definition of derivation defined with respect to the elementary sets, not 
the elementary trees or rules in the sets. 

140 



inance links connecting the two VP pairs have collapsed, but the link connecting 
the object to rest of the likes clause has been stretched over a path with labels S, 
VP, and S' [Fun: XCOMPj (top-to-bottom), and thus conform with its regexp. 

S' 

~ 
NP [Fun: OBJj S 

I ~------------: 

apples NP [Fun: SUBJj VP (5' [Fun: XCOMPj, S, VP)* 

I~ 
I 

Mary thinks S' [Fun: XCOMPj 

~-~ 
that S 

~ 
NP [Fun: SUBJj VP 

I~ 
John likes e 

Figure 2: Derived structure for Apples, Mary thinks John likes 

The principal formal results of this paper are that, like UVG-DL, UVG-RegDL 
generates only context-sensitive languages when lexicalized (i.e., every set of pro
ductions contains at least one terminal symbol) and that it is polynomially parsable 
when lexicalized. (Note that in linguistic applications, the restriction to lexicaliza
tion is standard.) 

To see that L(UVG-RegDL) ~ L(CSG), let G be a UVG-RegDL. We construct a 
linear bounded automaton (LBA) M which recognizes exactly £(G). M starts with 
the input word w on the tape and then proceeds to derive w from the start symbol 
of the grammar. Whenever a rule is used whose rhs contains a nonterminal at which 
a link starts, this link is recorded in an annotation following the nonterminal in the 
sentential form. The number of possible links is fixed by the grammar and hence 
each link can be encoded by a single symbol. In addition, we must keep track of the 
path this link is stretched over. For this purpose, the associated regular expression 
is converted to a deterministic finite automaton. In addition to recording the open 
links, we record the state of each open link. Again, the number of states per link is 
determined by the grammar, and each state can also each be expressed by a single 
tape symbol. The state transitions are expressed in the finite control of the LBA 
(as are, of course, the rules of G). Once the derivation has completed, the input 
copy of w and the derived copy are compared and M goes into an accepting state if 
they are equal. Crucially, since G is assumed to be lexicalized, the number of open 
links is linearly bounded in n, the length of w. Therefore, the derivation can be 
carried out in a space linearly bounded in n. 

The proof of polynomial parsability is based on the construction of a CKY-style 
parser for UVG-RegDL. The CKY parser is a parser for CFG, except that the 
nonterminal entries in the squares of the parse matrix must be augmented with 

141 



information about open links. We represent the open links using an array of integers 
indexed on the links in the grammar and the states associated with the state machine 
of that link's regexp. In order to see that the resulting parser operates in time 
polynomial in n, we need to estimate the possible number of entries in the squares 
of the matrix. The maximal number of different combination of open links is linearly 
bounded by n L , where L is a grammar constant designating the number of different 
links in the grammar. Furthermore, each link can be in a finite number of different 
states. Let SL be the maximal number of states of a state machine associated with 
a regular expression on a link in G. Then the number of states that links may be in 
is LSL, and the number of entries in each square of the matrix is in O(nLSL). As 
overall complexity we get O(nLSd3 ). 

This complexity result is polynomial in the length of the input string, but of course 
exponential in the size of the grammar. However, as Becker and Rambow (1995) 
discuss, in fact the exponent will be much smaller, since the types of "stretchable" 
dominance links in a grammar are quite limited and can be related to specific 
linguistic phenomena (such as, in English, Raising and wh-movement). In bottom
up parsing, it need only be recorded which type of link is being traced, not exactly 
which elementary set the link came from. Therefore, the exponent does not reflect 
the number of lexical items in a language, but rather the number of long-distance 
constructions that the language supports. Furthermore, it is possible to develop 
parsing strategies that do not hypothesize a "stretched" link unless no parse without 
stretching is available. 

3 Outlook: Modeling LFG 

Frequently, what seems to an outsider to be a notational variant is considered by 
followers of a linguistic framework to be a crucially different representation which 
fails to express the framework's deep insights. It is therefore important to address 
the following issue: on the face of it, UVG-RegDL really does not look much like 
LFG at all. Most importantly, there is no f-structure. 

The formalism introduced above, UVG-RegDL, shares the same extended domain 
of locality of TAG. Again, the sets of phrase-structure rules can be seen as "pre
assembling" parts of c-structure. Therefore, if we annotate the leaf nodes of a set 
with functional annotations (as done in the examples), we can again read off the 
f-structure from the derivation structure (with the same remark about syntactically 
determined co reference as for the case of TAG). The notion of derivation structure 
we are using is exactly that defined for DTG (Rambow et al., 1995): it records not 
when and how individual context-free rules from sets are used, but rather when 
and how the entire sets are used. Roughly the same kind of heuristics that would 
allow us to derive a TAG from annotated c-structure rules will allows us to derive 
a UVG-RegDL. In addition, we can now deal with functional schemata involving 
unrestricted functional uncertainty (which result in dominance links annotated with 
regexps). 

Several extensions are possible to make UVG-RegDL look even more like LFG. First, 
we can use a synchronized extension to UVG-RegDL to model the construction of 
the f-structure more explicitly (see (Rambow and Satta, 1996)). However, we are 
still left with the fact that f-structure is not defined as a tree, but as an attribute
value structure, a generalization of a tree. However, if we think of a UVG-RegDL 
set as a description of a tree rather than as a rewriting system (following (Vijay
Shanker, 1992)), then we can see that that description can also be specialized into 

142 



an attribute-value structure, with the addition of some additional constraints. It 
is therefore possible to envisage a synchronous extension to UVG-RegDL, which, 
without changing the essential formal properties, comes very close to modeling the 
formal machinery of LFG. This is a topic of ongoing research. 

4 Linguistic Relevance: Germanic Word Order 

There are (at least) two reasons why one may want to study formal properties 
of linguistic theories. First, this may be done for its own sake or for the sake of 
implementing efficient parsers. But second, and no less important, such a study 
allows us to compare linguistic analyses expressed in different frameworks, because 
the formal study allows us to relate formal devices in the two frameworks. Setting 
aside right now the issue of how to best represent LFG in terms of a UVG-RegDL
style formalism, let us consider the two LFG analyses of West Germanic word order 
presented in (Bresnan et al., 1983) and in (Zaenen and Kaplan, 1995) (which revises 
the previous analysis). As mentioned above, the earlier analysis suggests that the 
cross-serial dependencies of Dutch are, in c-structure, represented by two dependent 
derivations (of the nouns and of the verbs). This is achieved by using the same 
functional schema at different points in the derivation (c-)structure. The later paper 
rejects this analysis on theoretical, formal, and linguistic grounds. Instead, Zaenen 
and Kaplan (1995), considering a wider range of data from Dutch, Swiss German, 
and Standard German, uses functional uncertainty to relate nominal arguments to 
their verbs. Cross-serial dependencies, mandatory in Dutch (but not in the other 
languages), which functional uncertainty cannot impose, are achieved by a special 
type of LP rules. 

In terms of the rewrite systems discussed in this paper, this shift corresponds ex
actly to the shift from using the "locality" of MCFG/LCFRS (which, we have seen, 
corresponds to the type of device used in (Bresnan et al., 1983» to the use of "verti
cal context conditions" (of which functional uncertainty can be seen as an instance) 
as implemented by dominance links in formalisms such as UVG-DL, UVG-RegDL, 
and DTG. Becker et al. (1992) argue that MCFG/LCFRS are not powerful enough 
to derive German (and Swiss German) scrambling, while Rambow et al. (1995) 
argue for the use of DTG based on different types of arguments, including evidence 
from wh-movement in languages such as Kashmiri, the relation to dependency (Le., 
functional structure), and the desire for monotonic derivations. What is striking 
is that the evidence adduced in (Zaenen and Kaplan, 1995) in favor of the func
tional uncertainty-based analysis is again completely independent of the evidence 
discussed in the context of formal rewrite systems by Becker et al. (1992) and 
Rambow et al. (1995). This can be taken as strong independent evidence that, 
across different approaches to syntax, the use of "vertical context" is emerging as a 
necessary and standard device. This generalization is only meaningful if backed up 
by the kind of formal analysis sketched in this paper. 

At the same time, it is interesting to note that, under the "vertical context con
dition" approaches (both LFG and TAG-related), Dutch cross-serial dependencies, 
which simple TAG can easily derive, pose a problem. It has been conjectured that 
UVG-DL and DTG cannot derive the copy language {wwlw E {a,b}·}, and the 
same appears to be true for UVG-RegDL. Similarly, Zaenen and Kaplan (1995) 
must use a special type of ad-hoc LP rule to obtain the correct ordering for Dutch. 
We conclude that either UVG-RegDL and the current formal framework for LFG 
need to be refined in order to provide a more elegant derivation of the Dutch facts, 
or that the linguistic interpretation of the Dutch facts needs to be re-evaluated 

143 



(for example, Dutch competence grammar allows for free scrambling of nominal 
arguments but other factors effectively rule out all word orders but the cross-serial 
ordering). This issue remains open. 

Bibliography 

Becker, T., Joshi, A., and Rambow, O. (1991). Long distance scrambling and 
tree adjoining grammars. In Fifth Conference of the European Chapter of the 
Association for Computational Linguistics (EACL'91), pages 21-26. ACL. 

Becker, T. and Rambow, O. (1995). Parsing non-immediate dominance relations. 
In Proceedings of the Fourth International Workshop on Parsing Technologies, 
Prague. 

Becker, T ., Rambow, 0., and Niv, M. (1992). The derivational generative power, 
or, scrambling is beyond LCFRS. Technical Report IRCS-92-38, Institute for 
Research in Cognitive Science, University of Pennsylvania. A version of this 
paper was presented at MOL3, Austin, Texas, November 1992. 

Bresnan, J., Kaplan, R., Peters, S., and Zaenen, A. (1983). Cross-serial dependen
cies in Dutch. Linguistic Inquiry, 13:613-635. 

Burheim, T. (1996). Aspects of merging lexical-functional grammar with lexicalized 
tree-adjoining grammar. Unpublished abstract, University of Bergen. 

Joshi, A. K. and Schabes, Y. (1991). Thee-adjoining grammars and lexicalized gram
mars. In Nivat, M. and Podelski, A., editors, Definability and Recognizability 
of Sets of Trees. Elsevier. 

Kameyama, M. (1986). Characterising Lexical Functional Grammar (LFG) in terms 
of Thee Adjoining Grammar (TAG). Unpublished Manuscript. Dept. of Com
puter and Information Science, University of Pennsylvania. 

Kaplan, R. M. and Bresnan, J . W. (1982). Lexical-functional grammar: A formal 
system for grammatical representation. In Bresnan, J. W., editor, The Mental 
Representation of Grammatical Relations. MIT Press, Cambridge, Mass. 

Kaplan, R. M. and Zaenen, A. (1989). Long distance dependencies, constituent 
structure, and functional uncertainty. In Baltin, M. and Kroch, A., edi
tors, Alternative Conceptions of Phrase Structure. University of Chicago Press, 
Chicago. IL. 

Maxwell, J. T. and Kaplan, R. M. (1993). The interface between phrasal and 
functional constraints. Computational Intelligence, 19(4) :571-590. 

Rambow, O. (1994). Multiset-valued linear index grammars. In 32nd Meeting of 
the Association for Computational Linguistics (A CL '94). ACL. 

Rambow, O. and Satta, G. (1996). Synchronous models of language. In 34th 
Meeting of the Association for Computational Linguistics (ACL'96), pages 116-
123. ACL. 

Rambow, 0., Vijay-Shanker, K., and Weir, D. (1995). D-Thee Grammars. In 33rd 
Meeting of the Association for Computational Linguistics (ACL'95), pages 151-
158. ACL. 

144 



Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free 
grammars. Theoretical Computer Science, 88:191-229. 

Seki, H., Nakanishi, R., Kaji, Y., Ando, S., and Kasami, T. (1993). Parallel multiple 
context-free grammars, finite state translation systems, and polynomial-time 
recognizable subclasses of lexical-functional grammar. In 31st Meeting of the 
Association for Computational Linguistics (ACL'93), pages 121-129, Colum
bus, OH. ACL. 

Vijay-Shanker, K. (1992). Using descriptions of trees in a Tree Adjoining Grammar. 
Computational Linguistics, 18(4):481-518. 

Vijay-Shanker, K. and Joshi, A. K. (1989). Long distance dependencies in LFG 
and TAG. In 27th Meeting of the Association for Computational Linguistics 
(ACL'89), Vancouver, B.C. 

Weir, D. J. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms. 
PhD thesis, Department of Computer and Information Science, University of 
Pennsylvania. 

Za.enen, A. and Kaplan, R. M. (1995). Formal devices for linguistic generalizations: 
West Germanic word order in LFG. In Dalrymple, M., Kaplan, R. M., Maxwell, 
J., and Za.enen, A., editors, Formal Issues in Lexical-Functional Grammar, 
pages 215-239. CSLI Publications, Stanford, CA. 

145 



A Unified Notion of Derived and Derivation Structures in 
TAG 

(Preliminary Version) 

J ames Rogers, :U niversity of Central Florida, j rogers(ks . ucf . edu 

Generalizing CFGs 

It has been recognized for some time that TAGs can be viewed as a particular 
sort of generalization of CFGs. Vijay-Shanker, Weir, and Joshi [VSWJ87] and 
Weir [Wei88], for instance, note a number of parallels between CFLs and TALs
both in their formal properties and in the fact that a number of characterizations 
of the CFLs can be generalized to provide characterizations of the TALs and 
TAG tree sets. Some of these generalizations iterate naturally, constructing 
infinite hierarchies of languages falling between the CFLs and the CSLs. This 
view of CFLs and TALs as adjacent levels of natural hierarchies of language 
classes is attractive in that it supports the transfer of results between the two 
and provides a route to more powerful formalisms which come with many of 
their properties already established. 

But there is a discontinuity between the CFGs and the TAGs and their 
higher-order generalizations. The relationship between the set of structures 
that characterize the derivations of a CFG (i.e., its derivation trees) and the set 
of structures it derives is extremely simple regardless of whether we understand 
it to derive trees (in which case the relationship is identity) or strings (in which 
case it is the yield). This is true because the derivation structures embody the 
effect of the derivation steps-the expansion of a non-terminal into a string
directly. This is not the case for the traditional derivation structures for TAGs, 
where a derivation step involves the expansion of a non-terminal into a tree. If 
the derivation structures are taken to be trees themselves they cannot directly 
embody the actual expansion. Rather they just encode which trees are adjoined, 
which tree they adjoin into, and at which node of that tree the adjunction takes 
place. To obtain the derived tree from the derivation tree one must actually 
carry out these adjunctions. Thus the derived structure is not a substructure of 
the derivation structure. This separation of derived and derivation structures is 
extremely useful in that it abstracts away from the form of the derived struc
tures. This allows formalisms which derive quite distinct classes of structures to 
be compared. Indeed, such comparison is the main thrust of Weir's dissertation. 
It does, however, introduce an asymmetry that mars the analogy between CFGs 
and TAGs and, we argue here, masks regularities that can be identified in the 
progression from regular sets, through CFLs and TALs, and beyond. 

In this paper we take the parallel between string substitution in CFGs and 
tree adjunction in TAGs absolutely at face value. Just as we understand a CF 
rewrite rule to license the expansion of a node in a tree into a string of child 
nodes, we interpret an auxiliary tree in a TAG as licensing the expansion of a 
node in a three-dimensional tree-like structure into a tree of child nodes . Because 
we define these structures uniformly across an arbitrary range of dimensions, we 

146 



provisionally refer to them as (labeled) tree manifolds. These (3-dimensional) 
tree manifolds encode derivations in TAGs in precisely the same way that trees 
(2-dimensional tree manifolds) encode derivations in CFGs. There is, in fact, 
an easy mapping between TAG derivation trees of the traditional sort and these 
structures. Note that there are two distinct notions of immediate dominance in 
these structures, the immediate dominance relations in the elementary trees of 
the TAG and the relationship between a node and the nodes of the tree that 
expands it. When we take the maximal set of points with respect to this second 
relation-the two-dimensional yield of the three-dimensional structure-we get 
exactly the phrase-structure tree the derivation generates. When we then take 
the maximal set of points with respect to the domination relation within that 
tree-the one-dimensional yield of the two-dimensional structure-we get the 
string the derivation generates. In this way the operation taking the d~rivation 
structure into the derived phrase-structure tree is a higher-dimensional analog 
of the operation taking the derivation structure of a CFG into the string it 
generates. We take, then, these 3-dimensional tree manifolds to be both the 
derived and derivation structures of the TAG in exactly the same way that 
derivation trees can be taken to be both the derived and derivation structures 
of a CFG. 

Tree Manifolds 

We build the formal notion of labeled tree manifolds by analogy with tree do
mains [Gor67] in which nodes in a tree are assigned addresses which are strings 
in W* with the root at address c and the children of the node at address w 
at wO, wI, . .. in left-to-right order. A labeled tree domain includes a mapping 
assigning labels from some alphabet E to the nodes in the domain. Tree do
mains are subject to two well-formed ness properties: they must be downward 
closed (wv E T => wET for all w, v E W*) and they must be left-sibling closed 
(wi E T and j < i => wj E T for all wE N*, i,j E N). These two properties can 
be expressed uniformly if one employs unary encoding for the natural numbers. 
Thus nEW is encoded as 1 n and node addresses become sequences of strings of 
'l's (e.g., the address 1031 becomes ((1), (), (Ill), (I)}).l The left-sibling clo
sure property then becomes a downward closure property at the level of these 
strings of 'I's: s, (wv) E T => s· (w) E T for all w,v E {If, S E ({I}*)*. From 
this perspective, strings are just a specialization of the notion of labeled tree 
domain-a prefix closed set of sequences of 'I's (rather than sequences of such 
sequences) along with a labeling function. 

One can interpret the address of a node in a tree domain as the sequence of 
string addresses one follows in traversing the path from the root to that node. 
This gives us the point of view we need in generalizing to higher dimensions. 
An address of a node in a 3-dimensional tree manifold is the sequence of tree 
addresses one follows in traversing the path to it from the root. Thus a 3-
dimensional tree manifold is a set of sequences of sequences of sequences of 'l's 

1 We could be pedantic and employ sequences of empty sequences (), but the notation is 
difficult enough to read as it stands. 

147 



(a third-order sequence of '1 's). As with the first two levels this set of sequences 
must also be prefix closed. In general, an i-dimensional tree manifold will be a 
set of ith -order sequences of '1 's that is hereditarily prefix closed. 

There is, however, a problem here. In the case of tree domains we are 
expanding nodes to linear structures. There is no ambiguity about how these 
structures fit together; the rightmost node dominated by a given node must 
immediately precede the leftmost node dominated by its immediate right sibling. 
In the case of 3-dimensional tree manifolds, however this is not the case. In 
expanding a node into a tree, anyone of the nodes in the yield of that tree 
could be taken to dominate the subtree rooted at the original node.2 If the set 
of maximal points (in the third dimension) are to form a coherent tree, each 
of the trees expanding a node must have a distinguished node at which the 
subtree will be spliced; in TAG terminology there must be a designated foot 
node. Projecting this down to the string level one gets a requirement that each 
string must be headed. Thus we will take our string addresses to be sequences 
of 'I's, designating positions to the left of the head, or 'r's, designating positions 
to the right of the head. Tree addresses are, again, sequences of such sequences, 
and the spine of a tree is just the path that follows heads at each step. The 
designated foot node, then, is the maximal node at an address that is a sequence 
of empty sequences. Note that we do not need to modify the downward closure 
property in any way.3 

Tree Manifold Grammars and Automata 

This notion of tree manifolds gives us a natural hierarchy of grammars. A gram
mar at level n is a finite set oflabeled local (depth one in the major dimension) 
n-dimensional tree manifolds. The set of structures derived by such a gram
mar is the set of labeled n-dimensional tree manifolds that can be constructed 
by concatenating the local tree manifolds in the grammar. Note that maximal 
nodes of the tree manifold form trivial tree manifolds-consisting of a node and 
an empty set of children. As these must each be licensed by a tree manifold in
cluded the grammar just like every other local tree manifold, we can identify the 
set of symbols labeling trivial tree manifolds in the grammar as the terminals of 
the grammar, albeit terminals that potentially may be rewritten. Similarly, we 
will usually be interested in sets of tree manifolds in which the root is labeled 
with (one of) a designated (set of) start symbol(s). At the 2-dimensionallevel 
this gives us a straightforward generalization of CFGs in the form of sets of local 
trees [GS84j. A I-dimensional tree manifold grammar consists of pairs of labels 
licensing the expansion of labeled nodes into labeled nodes to form strings, with 
the label of each node in the string depending only on the label of its predeces
sor. These generate the strict 2-locally testable languages, a much weaker class 

2Note that our operation expanding nodes to trees is adjunction-like-the subtree rooted 
at the node is preserved as a single subtree, its children may not be split into multiple subtrees . 

3While this approach is successful for the 3-dimensional case, its generalization to the 
higher-dimensional cases is yet incomplete. For our purposes here the first four levels suffice. 
(O-dimensional tree manifolds, of course, are just points.) 

148 



than the regular languages. At the 3-dimensionallevel we get TAGs generalized 
in the sense that the label of the node at which the adjunction is taking place, 
the label of the root of the adjoined tree, and the label of its foot may all be 
distinct. The fact that the possibility of adjunction depends only on the label of 
the node makes these grammars look superficially like pure TAGs-those with
out adjoining constraints. The requirement that maximal nodes be licensed, 
however, has the same effect as Obligatory Adjoining (OA) constraints while 
the fact that auxiliary trees may adjoin at dissimilarly labeled nodes has the 
same effect on generative capacity as Null Adjoining (NA) constraints. While 
one cannot, in the strictest sense, directly express Selective Adjoining (SA) con
straints in these grammars, as we will see shortly they can generate any tree 
set generated by a TAG with such constraints. By generalization from the 2-
dimensional terminology, we will refer to the sets licensed by these griUllmars 
as local sets of tree manifolds. 

We also get a natural hierarchy of automata. An n-dimensional tree manifold 
automaton is a finite set of pairs associating labels (in the alphabet ~) and local 
n-dimensional tree manifolds labeled with states from a finite set Q. A run of the 
automaton on a ~-labeled n-dimensional tree manifold is an assignment of states 
to the nodes of the manifold in which the states assigned to each local manifold 
are associated by the automaton with the label of its root.4 Such an automaton 
accepts a labeled n-dimensional tree manifold relative to some set of initial states 
iff there is a run of the automaton in which the root is assigned a state in that set. 
In the one dimensional case we get ordinary Finite State Automata. In the two 
dimensional case we get exactly the (non-deterministic) tree automata and in the 
three dimensional case we get exactly TAGs with adjoining constraints, modulo 
the generalization permitting adjunction of auxiliary trees at dissimilarly labeled 
nodes. Again by generalization from the 2-dimensional terminology, we will refer 
to the sets licensed by these automata as recognizable sets of tree manifolds. 

It should be noted that the hierarchy of languages associated with the gram
mars and automata of this hierarchy is not the hierarchy of Linear Context-Free 
Re-writing Systems of Weir's dissertation [Wei88], but rather appears to be 
closer to the hierarchies of [VSWJ87]. 

Analysis 

The key property of the local sets is the fact that the set of structures that 
may expand a node depends only on the label of that node-in other words, 
the features that constrain the form of the structure must be explicit in its 
labeling. This is the property that distinguishes them from the recognizable 
sets, where these features may be "hidden" in the state. It is this ability to 
hide features that allows us to capture SA constraints directly in the automata. 
Note, though, that a simple lift of Thatcher's [Tha67] proof that the yield 
languages of recognizable sets of trees are CFLs establishes that 3-dimensional 
tree manifold grammars and automata are equivalent in the sets of trees they 

4Here we have notions of licensing of terminal nodes and restriction to tree manifolds with 
roots assigned states in a distinguished set analogous to the similar notions in the grammars. 

149 



yield (and, a fortiori, in the sets of strings they yield). The construction of the 
proof also dispels the apparent paradox in the fact that tree manifold grammars 
can directly express OA and N A constraints but not SA constraints while the 
strong generative capacity of pure TAGs is generally understood to be unaffected 
by SA constraints and extended by OA or NA constraints. In capturing SA . 
constraints in a pure TAG one must extend the labels to explicitly encode the 
constraints in exactly the way that Thatcher's construction extends the labels 
of the grammar to encode states. In both contexts the classes of tree sets are 
equivalent modulo a projection. Of course, in the case of tree manifolds there is 
no need to extend the labels of the maximal nodes, and so trees they yield may 
have the original labels. The distinction between the local and recognizable sets 
arises at the level of the derivation structure-at the level of trees in the CF 
case, at the level of tree manifolds in the TAG case. This level has to do with 
the way in which the elementary structures are analyzed, with the structure of 
strings in CFGs, with the structure of trees in TAGs. It is at this level that the 
properties of elementary trees can be formalized and it is at this level that the 
linguistic significance of the distinction between local and recognizable sets of 
tree manifolds will arise if it exists. 

One can limit the grammars to generate only pure TAG tree sets by restrict
ing them to local tree manifolds in which the root node and the root and foot of 
the child tree are identically labeled, and by requiring all nodes to be licensed 
to have null expansions. Thus the distinction between pure TAGs and TAGs 
in general, from this point of view, is a consequence of stipulations that have 
been placed on the form of the grammar. To the extent that the formalism is 
intended to capture characteristics of natural language, such stipulations are 
explicit expressions of the theory of syntax it embodies. Here they are conse
quences of two of the most basic aspects of the linguistic motivation of TAGs. 
The restriction on the labeling of the local tree manifolds is a consequence of 
the fact that auxiliary trees are intended to capture recursive structures. The 
requirement that every label be licensed as a terminal is a consequence of fact 
that initial trees are intended to capture the minimal non-recursive structures 
of the languages-and thus every "sentential form" of a derivation will be in 
the language. Adjoining constraints, in part, have the effect of moderating the 
formal effect of these restrictions. 

Schabes and Shieber [SS94] have proposed an alternative notion of derivation 
in TAG in which multiple trees may be adjoined at a single node. One of their 
motivations is the fact that when a phrase is multiply modified the auxiliary 
trees encoding the modifiers must nest when they adjoin to the node rooting that 
phrase. Nevertheless, the significant relationships are between the modifier trees 
and the modified node. By admitting derivation trees with each of the modifiers 
adjoined at the same node, those relationships can be expressed locally even 
though the trees are not locally related in the derived tree. From the standard 
point of view, the restriction that no more than one tree adjoin to a node is 
primarily stipulative. If we take our derivation structures to be tree manifolds, 
however, the restriction becomes a simple physical fact. Schabes and Shieber's 
conception of derivation can, nonetheless, be accommodated if one recognizes 

150 



that their goal is to express what, from the point of view of tree manifolds, 
are non-local relationships.5 As shown by Joshi and Levy [JL77] there is a 
very rich class of such constraints that can be employed in defining sets of 
trees without leaving the realm of recognizable sets. In fact, in their original 
conception, adjoining constraints were expressed by such domination and proper 
analysis predicates [JLT75]. By lifting Joshi and Levy's proofs to the level of 
tree manifolds one can show that such predicates do not extend the capacity of 
TAGs with only SA, OA and NA constraints. 

This leads us, at last, to the original motivation for these studies. We expect 
that tree manifolds will provide us with the class of models needed to extend 
the model theoretic techniques we have applied to local and recognizable sets 
of trees to apply to TAG tree sets. This approach allows the properties of the 
derived and derivation structures to be expressed as ordinary logical predicates, 
providing an extremely natural way of capturing linguistic intuitions, including 
those that might be expressed by domination and proper analysis predicates. 
More importantly, this approach provides a uniform framework for formalizing 
linguistic theories. Whereas in the past its applicability has been limited to 
theories that license CF (and regular) string languages, the extension to TAG 
tree sets and higher dimensional generalizations will enable us to address a range 
of mildly context-sensitive formalisms. 

References 

[Gor67] 

[GS84] 

(JL77] 

(JLT75] 

[Shi94] 

[SS90] 

[SS94] 

Saul Gorn. Explicit definitions and linguistic dominoes. In John F. Hart 
and Satoru Takasu, editors, Systems and Computer Science, Proceedings of 
the Conference held at Univ. of Western Ontario, 1965. Univ. of Toronto 
Press, 1967. 

Ferenc Gecseg and Magnus Steinby. '!ree Automata. Akademiai Kiad6, 
Budapest, 1984. 

Aravind K. Joshi and Leon S. Levy. Constraints on structural descriptions: 
Local transformations . SIAM Journal of Computing, 6(2):272-284, 1977. 

Aravind K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars. 
Journal of Computer and System Sciences, 10:136-163, 1975. 

Stuart M. Shieber. Restricting the weak-generative capacity of synchronous 
tree-adjoining grammars. Computational Intelligence, 10(4):371-385, 1994. 

Stuart M. Shieber and Yves Schabes. Synchronous tree-adjoining gram
mars. In Proceedings of the 13th International Conference on Computa
tional Linguistics, volume 3, pages 253-258, Helsinki, 1990. Association 
for Computational Linguistics. 

Yves Schabes and Stuart M. Shieber. An alternative conception of tree
adjoining derivation. Computational Linguistics, 20(1):91-124, 1994. 

5In the case of synchronous TAGs, it appears that the variation between Shieber and 
Schabes's original definition [SS90] and the revised definition of [Shi94, SS94] manifests itself 
as a variation in the permissible mappings between tree manifolds much as the modifications 
to the revised definition explored in [Shi94] are expressed as variations in the permissible 
mappings between derivation structures. 

151 



[Tha67] J . W. Thatcher. Characterizing derivation trees of context-free grammars 
through a generalization of finite automata theory. Journal of Computer 
and System Sciences, 1:317-322, 1967. 

[VSWJ87] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. On the progression 
from context-free to the tree adjoining languages. In A. Manaster-Ramer, 
editor, Mathematics of Language, pages 389--401. John Benjamins, Ams
terdam, 1987. 

[Wei88] David J. Weir. Characterizing Mildly Context· Sensitive Grammar For· 
malisms. PhD thesis, University of Pennsylvania, 1988. 

152 



Separating Dependency from Constituency in a 
Tree Rewriting System * 

Anoop Sarkar 
Department of Computer and Information Science 

University of Pennsylvania 
200 South 33rd St, Philadelphia PA 19104 

anoop~linc.cis.upenn.edu 

1 Introd uction 

We define a new grammar formalism called Link-Sharing Tree Adjoining Gram
mar (LSTAG) which arises directly out of a concern for distinguishing the notion of 
constituency from the notion of relating lexical items in terms of linguistic depen
dencyl(Mel'cuk, 1988; Rambow and Joshi, 1992). This work derives directly from 
work on Tree Adjoining Grammars (TAG) (Joshi, Levy, and Takahashi, 1975) where 
these two notions are conflated. The set of derived trees for a TAG correspond to the 
traditional notions of constituency while the derivation trees of a TAG are closely 
related to dependency structure (Rambow and Joshi, 1992). A salient feature of 
TAG is the extended domain of locality it provides for stating these dependencies. 
Each elementary tree can be associated with a lexical item giving us a lexicalized 
TAG (LTAG)(Joshi and Schabes, 1991). Properties related to the lexical item such 
as subcategorization, agreement, and certain types of word-order variation can be 
expressed directly in the elementary tree (Kroch, 1987; Frank, 1992) . Thus, in an 
L TAG all of these linguistic dependencies are expressed locally in the elementary 
trees of the grammar. This means that the predicate and its arguments are always 
topologically situated in the same elementary tree. 

However, in coordination of predicates, e.g. (1), the dependencies between pred
icate and argument cannot be represented in a TAG elementary tree directly, since 
several elementary trees seem to be 'sharing' their arguments. 

(1) a. Kiki frolics, sings and plays all day. 
h. Kiki likes and Bill thinks Janet likes soccer. 

The idea behind LSTAG is that the non-local nature of coordination as in (1) (for 
TAG-like grammar formalisms) can be captured by introducing a restricted degree 
of synchronized parallelism into the TAG rewriting system while retaining the ex
isting independent parallelism2(Engelfriet, Rozenberg, and Slutzki, 1980; Rambow 
and Satta, to appear). We believe that an approach towards coordination that ex
plicitly distinguishes the dependencies from the constituency gives a better formal 

'Thanks to Christy Doran, Aravind Joshi, Nobo Komagata, Owen Rambow, and B. Srinivas 
for their helpful comments and discussion. 

lThe term dependency is used here broadly to include formal relationships such as case and 
agreement and other relationships such as filler-gap. 

2It is important to note that while the adjunction operation in TAGs is "context-free", synchro
nized parallelism could be attributed to the TAG formalism due to the string wrapping capabilities 
of adjunction, since synchronized parallelism is concerned with how strings are derived in a rewrit
ing system. We note this as a conjecture but will not attempt to prove it here. 

153 



understanding of its representation when compared to previous approaches that use 
tree-rewriting systems which conflate the two issues, as in (Joshi, 1990; Joshi and 
Schabes, 1991; Sarkar and Joshi, 1996) which have to represent sentences such as 
(1) with either unrooted trees or by performing structure merging on the derived 
tree. Other formalisms for coordination have similar motivations: however their 
approaches differ, e.g. CCG (Steedman, 1985; ·Steedman, 1997b) extends the no
tion of constituency, while generative syntacticians (Moltmann, 1992; Muadz, 1991) 
work with three-dimensional syntactic trees. 

2 Synchronized Parallelism 

The terms synchronized parallelism and independent parallelism arise from work 
done on a family of formalisms termed parallel rewriting systems that extend 
context-free grammars (CFG) by the addition of various restrictive devices (see (En
gelfriet, Rozenberg, and Slutzki, 1980))). Synchronized parallelism allows deriva
tions which include substrings which have been generated by a common (or shared) 
underlying derivation process3 . Independent parallelism corresponds to the instan
tiations of independent derivation processes which are then combined to give the 
entire derivation of a string4 • What we are exploring in this paper is an example of 
a mixed system with both independent and synchronous parallelism. 

In (Rambow and Satta, to appear) it is shown that by allowing an unbounded 
degree of synchronized parallelism we get systems that are too unconstrained. How
ever, interesting subfamilies arise when the synchronous parallelism is bounded to 
a finite degree, i.e. only a bounded number of subderivations can be synchronized 
in a given grammar. The system we define has this property. 

3 LSTAG 

We first look at the formalism of Synchronous TAG (STAG)(Shieber and Schabes, 
1990) since it is an example of a tree-rewriting system that has synchronized par
allelism. 

As a preliminary we first informally define Tree Adjoining Grammars (TAG) . 
For example, Figure 1 shows an example of a tree for a transitive verb cooked. Each 
node in the tree has a unique address obtained by applying a Gorn tree address
ing scheme. For instance, the object NP has address 2.2. In the TAG formalism, 
trees can be composed using the two operations of substitution (corresponds to 
string concatenation) and adjunction (corresponds to string wrapping). A history 
of these operations on elementary trees in the form of a derivation tree can be used 
to reconstruct the derivation of a string recognized by a TAG. Figure 2 shows an 
example of a derivation tree and the corresponding parse tree for the derived struc
ture obtained when a(John) and a(beans) substitute into a(cooked) and (J(dried) 
adjoins into a(beans) giving us a derivation tree for John cooked dried beans. Trees 
that adjoin are termed as atLXiliary trees, trees that are not auxiliary are called 
initial. Each node in the derivation tree is the name of an elementary tree. The 
labels on the edges denote the address in the parent node where a substitution or 
adjunction has occured. 

Definition 1 In a TAG G = b I 'Y is either an initial tree or an auxiliary tree 
} I we will notate adjunction (similarly substitution) of trees 'Y1 ... 'Yk into tree 'Y at 

3The Lindenmayer systems are examples of systems with only synchronous parallelism and it is 
interesting to note that these L systems have the anti-AFL property (where none of the standard 
closures apply) . 

4CFG is a formalism that only has independent parallelism. 

154 



a (cooked) a (John) a(beans) ~ (dried) 
Os NP NP A I~ I I 

NPl 2 VP N N ADJ N' 

~ I I I 
2.1 V 2.2 NP o} 

John beans 
dried 

I 
cooked 

Figure 1: Example of a TAG 

a(cooked) 

~ 
a(John) a(beans) 

II 
~(dried) 

Derivation Tree 

~P 
,

P 

~NP 
N V I 
I I N 

John cooked ~ 

N ADJ I 
I beans dried 

Figure 2: Example of a derivation tree and corresponding parse tree 

addresses al ... ak giving a derived tree 'Y' as 

'Y' = 'Y[al,'Yd··· [ak,'Yk] 

Definition 2 Given two standard TAGs GLand G R we define (from (Shieber, 
1994)) a STAG as {('Y,y,'-") I 'Y E GL,'Y' E GR}, where '"""' is a set of links from a 
node address in'Y to a node address in 'Y'. A derivation proceeds as follows: 

• for'Y = bL' 'YR,'-"}, pick a link member aL '-"i aR, where the a's are node 
addresses and '-"i E ,-... For simplicity, we refer to ,-.. as link and its elements 
"-"'i as link members. 

• adjunction (similarly substitution) of (f3L, f3 R, ",') into 'Y is given by 

b~, 'Yk, ,-..II} = bdaL, f3L], 'YR[aR, f3R], ,.-.,.II} 

where all links in '" and ,.-.,.' are included in ,.-.,.11 except "'i. 

• b~, 'Yk, ,""",II} is now a derived structure which can be further operated upon. 

In (Abeille, 1992; Abeille, 1994) STAGs have been used in handling non-local 
dependencies and to seperate syntactic attachment from semantic roles. However, 
STAG cannot be used to seperate the dependencies created in (pairs of) derivation 
trees for coordinate structures from the constituency represented in these derivation 
trees. In this particular sense, STAG has the same shortcomings of a TAG. Also 
the above definition of the inheritance of links in derived structures allows STAG to 
derive strings not generable by TAG (Shieber, 1994). We look at a modified version 
of STAGs which is weaker in power than STAGs as defined in Defn 2. We call this 
formalism Link-Sharing TAG (LSTAG). 

155 



Definition 3 An LSTAG G is defined as a 4-tuple (GL,GR, 6., cp) where GL,GR 
are standard TAGs, 6. and cP are disjoint sets of sets of links and for each pair 
'Y = bL, 'YR), where 'YL E GLand 'YR E G R, 6"1 E 6. is a subset oflinks in 'Y and 
¢'YR E cP is a distinguished subset of links with the following properties: 

• for each link ,-... E ¢'YR' T} ,-... T}, where 1} is a node address in 'YR· i.e. ¢'YR is a 
set of reflexive links. 

• 6 Rand ¢'YR have some canonical order -<. 

• adjunction (similarly substitution) of (fh,(3R) into 'Y is given by 

('Y~,'Yk) = ('YL[aL,{hl,'YR[aR,.BR]) 

and for all 'Yi E 6'Y,.Bi E ¢/3R(1 ~ i ~ n) (card(6'Y) 2: card(.BR)) 

del 
6"1 U ¢/3R = '-"'''11 U '-"'/31 U ... U '-"''Yn U '-"'/3n 

where 
'-"'''11 -< '-"'''121 .•. , '-"''Yn -1 -< '-"''Yn 

and 

'-"'/3Rl -<'-"'/3R2" .. , '-"'/3R n _ 1 -<'-"'/3R n 

• '-"'i U '-"'j is a set of links defined as follows. If aLi '-"'i aRi and aRj '-"'j aRj' 
then 

'-"'i U ,-.../;/ {aLi ,-... aR.} U {aLi ,-... aR;} 

• b~, 'Yk) is the new derived structure with new set of links 6"1 U ¢/3R" 

cP is used to derive synchronized parallelism in GR. The ordering -< is simply 
used to match up the links being shared via the (non-local) sharing operation U. 

This ordering -< can be defined in terms of node addresses or "first argument -< 

second argument" , i.e. ordering the arguments of the two predicates being coordi
nated. 

It is important to note that only the links in cP are used non-locally and they are 
always exhausted in a single adjunction (or substitution) operation. No links from 
6. are ever inherited unlike STAGs. Hence, non-locality is only used in a restricted 
fashion for the notion of 'sharing'. 

4 Linguistic Relevance 

To explain how the formalism works consider sentence (2). 

(2) John cooks and eats beans. 

Consider a LSTAG G = b,.B,a,v} partially shown in Fig. 3(a) and Fig. 3(b). 
a and v are analogously defined for John and beans respectively (see Fig. 1). In 
Fig. 3(a) 6"1 = {1, 2}5and ¢'YR = n, while for Fig. 3(b) 6"1 == nand ¢'YR == {1,2}. 

It is important to note that our initial motivation about seperating dependency 
from the constituency information is highlighted in .B (see Fig. 3(b)) where the 
first projection will only contribute information about constituency in a derivation 
tree while the second projection will contribute only dependency information in a 
derivation tree. We conjecture that this is true for all the structures defined in an 

156 



s s 
/"'-. /"'-. 

(a)-y: ( 
NP.\.1 VP 

/"'-. 
V NP.J.2 

I 

NP.\.1 /VP"'-. ) 

V NP.\.2 

I 
cooks cooki 

V 

/I~ 
V. and V 

/I~ 
S. ant! S 

I 
eats 

/"'-. 
NP.\.1 VP 

/"'-. 
) (b) {3 : ( 

V NP.\.2 

I 
eat' 

Figure 3: 'frees'Y and {3 from LSTAG G 

LSTAG. the kind of questions addressed in (Rambow, Vijay-Shanker, and Weir, 
1995) can perhaps be answered within the framework of LSTAG6. 

The derived structure after (3 adjoins onto 'Y is shown in Fig. 4(a). Fig. 5(a) 
shows the derived tree after the tree Q (for John) substitutes into 'Y. Notice that 
due to link sharing, substitution is shared, effectively forming a "tangled" derived 
tree7 . In Figs. 4 and 5 the derivation trees are also given (associated with each 
element). The derivation structure for the second element in Fig. 5(b) is a directed 
acyclic derivation graph which gives us information about dependency we expect. 
The derivation tree of the first element in Fig. 5(b), on the other hand, gives us 
information about constituency. 

The notion of link sharing is closely related to the schematization of the coordi
nation rule in (Steedman, 1997b) shown below in combinatory notation. 

bxy 

bIg 

bIg 

= bxy 

Ax.b(Jx) (gx) 

AX.Ay.b(Jxy)(gxy) 

Link sharing is used to combine the interpretation of the predicate arguments I 
and 9 (e.g. cooks, eats) of the conjunction b with the interpretation of the arguments 
of those predicates x, y, .... However, it does this within a tree-rewriting system, 
unlike the use of combinators in (Steedman, 1997b). 

5We are just using numbers 1,2, ... to denote the links rather than use the Gom notation to 
make the trees easier to read. Here, link number 1 stands for 1 ,..... 1 and 2 stands for 2.2 ,..... 2.2 

6In (Rambow, Vijay-Shanker, and Weir, 1995) a new formalism called D-'free Grammars was 
introduced in order to bring together the notion of derivation tree in a TAG with the notion of 
dependency grammar (Mel'cuk, 1988). Perhaps the kind of questions addressed in (Rambow, 
Vijay-Shanker, and Weir, 1995) can also be handled using the current framework. Such an ap
plication of the formalism would motivate the need for trees like 'Y in Fig. 3 independent of the 
coordination facts since they would be required to get the dependencies right. 

7While this notion of sharing bears some resemblance to the notion of joining node in the three
dimensional trees used in (Moltmann, 1992; Muadz, 1991) the rules for semantic interpretation 
of the derivations produced in a LSTAG is considerably less obscure than the rules needed to 
interpret 3D trees; crucially because elementary structures in a TAG-like formalisms are taken to 
be semantically minimal without being semantically void . 

157 



(a) ( 

s 
/\ 

NP.j..l VP 

/\ 
V NP.j..2 

/1"'" v and V 

1 I 
cooks eats 

s 

S/J~S 
NP{ \p NP{ \p ) 

1\ 1\ 
V NP~ V NP~ 

I I 
cooki roti 

(b) (2.d 10 ) 
[3 [3 

Figure 4: Derived and derivation structures after /3 adjoins into 'Y. 

S 

/"'-
NP VP 

(a) (JoL vi ~.j..2 
/1"'" V and V 

I I 
cooks eats 

/1S~ 
S ani! _::.5 

/_~-------- I 
NP-- VP VP 

1 1\ 1\ John V NP.j..2 V NP.j..2 

I I 
cooki roW 

(b) ( 1 i\ 2.1 1 i\ 0 ) 
a [3 (X- --[3 

1 

Figure 5: Substitution of a 

158 

) 



5 Restrictions 

Having defined the formalism of LSTAG, we now define certain restrictions on the 
grammar that can be written in this formalism in order to capture correctly certain 
facts about coordinate structures in English. 

For instance, we need to prohibit elementary structures like the one in Fig. 6 
because they give rise to ungrammatical sentences like (3) . 

(a) ( 

5 

/I~ 
5* and S 

/""-
NP VP 

I /\ 
almonds V NP 

I I 
hates e 

5 

/I~ 
S· and 5 

NP/~5 
I /\ 

almonds NP .!-2 VP 

/\ 
V NP 

) 

I I 
hates { 

Figure 6: Discontiguous elementary structure 

(3) *Peanuts John likes and almonds hates. (Joshi, 1990) 

However, such restrictions in the context of TAGs have been discussed before. 
(Joshi, 1990) rules out (3) by stating a requirement on the lexical string spelled 
out by the elementary tree. If the lexical string spelled out is not contiguous then 
it cannot coordinate. This requirement is stated to be a phonological condition 
and relates the notion of an intonational phrase (IP) to the notion of appropriate 
fragments for coordination (in the spirit of (Steedman, 1997a)). It is important to 
note that the notions of phrase structure for coordination and intonational phrases 
defined in (Joshi, 1990) for TAG are not identical, whereas they are identical for 
CCG (Steedman, 1997a). 

We can state an analogous restriction on the formation of elementary structures 
in a LSTAG, one that is motivated by the notion of link sharing. The left element 
of an elementary structure in a LSTAG cannot be composed of discontinuous parts 
of the right element. For example, in Fig. 6 the segment [8 [N p~][ v p]] from the right 
element has been excised in the left element. This restriction corresponds to the 
notion that the left element of a structure in a LSTAG represents constituency. 

6 Conclusion 

We have presented a new tree-rewriting formalism called Link-Sharing Thee Ad
joining Grammar (LSTAG) which is a variant of synchronous TAGs (STAG). Using 
LSTAG we defined an approach towards coordination where linguistic dependency 
is distinguished from the notion of constituency. Appropriate restrictions on the 
nature of elementary structures in a LSTAG were also defined. Such an approach 
towards coordination that explicitly distinguishes dependencies from constituency 
gives a better formal understanding of its representation when compared to previous 
approaches that use tree-rewriting systems which conflate the two issues (see (Joshi 
and Schabes, 1991; Sarkar and Joshi, 1996)). The previous approaches had to rep
resent coordinate structures either with unrooted trees or by performing structure 
merging on the parse tree. Moreover, the linguistic analyses presented in (Joshi 

159 



and Schabes, 1991; Sarkar and Joshi, 1996) can be easily adopted in the current 
formalism. 

References 
Abeille, Anne. 1992. Synchronous TAGs and French Pronominal Clitics. In Proc. of 

COLING-92, pages 6~6, Nantes, Aug 23-28. 

Abeille, Anne. 1994. Syntax or Semantics? Handling Nonlocal Dependencies with MC
TAGs or Synchronous TAGs. Computational Intelligence, 10(4}:471-485. 

Engelfriet, J., G. Rozenberg, and G. Slutzki. 1980. Tree transducers, L systems, and 
two-way machines. Journal of Computer and System Science, 43:328-360. 

Frank, Robert. 1992. Syntactic locality and 1Tee Adjoining Grammar: grammatical, ac
quisition and processing perspectives. Ph.D. thesis, University of Pennsylvania,IRCS-
92-47. 

Joshi, A. and Y. Schabes. 1991. Tree adjoining grammars and lexicalized grammars. In 
M. Nivat and A. Podelski, editors, 1Tee automata and languages. North-Holland. 

Joshi, Aravind. 1990. Phrase Structure and Intonational Phrases: Comments on the 
papers by Marcus and Steedman. In G. Altmann, editor, Computational and Cognitive 
Models of Speech. MIT Press. 

Joshi, Aravind and Yves Schabes. 1991. Fixed and flexible phrase structure: Coordina
tion in Tree Adjoining Grammar. In Presented at the DARPA Workshop on Spoken 
Language Systems, Asilomar, CA. 

Joshi, Aravind K., L. Levy, and M. Takahashi. 1975. Tree Adjunct Grammars. Journal 
of Computer and System Sciences. 

Kroch, A. 1987. Subjacency in a tree adjoining grammar. In A. Manaster-Ramer, editor, 
Mathematics of Language. J. Benjamins Pub. Co., pages 143-172. 

Mel'cuk, I. 1988. Dependency Syntax: Theory and Practice. State University of New York 
Press, Albany. 

Moltmann, Friederike. 1992. On the Interpretation of Three-Dimensonal Syntactic Trees. 
In Chris Barker and David Dowty, editors, Proc. of SALT-2, pages 261-281, May 1-3. 

Muadz, H. 1991. A Planar Theory of Coordination. Ph.D. thesis, University of Arizona, 
Tucson, Arizona. 

Rambow, O. and A. Joshi. 1992. A formal look at dependency grammars and phrase
structure grammars, with special consideration to word-order phenomena. In Intern. 
Workshop on the Meaning-Text Theory, pages 47-{)6, Arbeitspapiere der GMD 671. 
Darmstadt. 

Rambow, O. and G. Satta. to appear. Independent parallelism in finite copying parallel 
rewriting systems. Theor. Comput . Sc. 

Rambow, 0., K. Vijay-Shanker, and D. Weir. 1995. D-Tree Grammars. In Proceedings of 
the 33rd Meeting of the ACL. 

Sarkar, Anoop and Aravind Joshi. 1996. Coordination in TAG: Formalization and im
plementation. In Proceedings of the 16th International Conference on Computational 
Linguistics (COLING'96), Copenhagen. 

Shieber, S. 1994. Restricting the weak generative capacity of synchronous tree adjoining 
grammars. Computational Intelligence, 1O(4}:371-385, November. 

Shieber, Stuart and Yves Schabes. 1990. Synchronous Tree Adjoining Grammars. In 
Proceedings of the 13 th International Conference on Computational Linguistics (COL
ING'90), Helsinki, Finland. 

Steedman, Mark. 1985. Dependency and coordination in the grammar of Dutch and 
English. Language, 61:523-568. 

Steedman, Mark. 1997a. Information Structure and the Syntax-Phonology Interface. 
manuscript. Univ. of Pennsylvania. 

Steedman, Mark. 1997b. Surface Structure and Interpretation: Unbounded and Bounded 
Dependency in Combinatory Grammar. Linguistic Inquiry monograph. MIT Press. 

160 



Some algebraic properties of higher order 
modifiers 

R. Zuber 
CNRS, Paris 

rz@ccr.jussieu.fr 

Modifiers are expressions of category C/C, for any C: they combine with 
expressions of a category C to form others still in the category C. Thus de
pending on the choice of C there are various modifiers. Informally a modifier 
is a higher order modifier, HOM for short, if its argument expression denotes 
an object of an order higher than the order of sets of individuals. Thus adjec
tives and adverbs are not HOMs since their arguments denote properties. In 
this paper I will show (1) the existence of HOMs, more specifically of modifiers 
modifying determiners and (2) propose an algebraic analysis of them extending 
the analysis of "simple" modifiers as proposed by Keenan. The algebraic notion 
of atom and, consequently, of atomicity of the relevant Boolean algebras will 
play an essential role in this analysis. 

The theoretical background is that of the theory of generalized quantifiers 
in conjunction with Boolean semantics as developed by Keenan (Keenan 1983, 
Keenan and Faltz 1985). This means in particular that all logical types Dc (de
notations of expressions of the category G) form atomic (and complete) Boolean 
algebras and the partial order defined in them can be interpreted as the relation 
of generalized entailment. This relation is defined for any category G. The set 
of functions from the algebra A onto the algebra B is noted Af B. Thus a mod
ifier of category G/C denotes in Dc/c. Given that C can vary this means that 
there might exists categorially ambiguous modifiers. This is indeed the case, in 
particular with so-called focus particles, as we will see. 

Not all elements of the set C fC are necessary for the interpretation of nat
ural language modifiers. For instance concerning (extensional) adjectival and 
adverbial modifiers Keenan distinguishes a specific set R(P) of (positively) re
stricting functions which interpret such modifiers. Thus fEB f B is positively 
restrictive, relative to algebra B, iff f(x) ~ x for any x E B. The set R(B) of 
all restricting functions (relative to a given algebra B) forms a Boolean alge
bra (denoted by R(B)) with the operation of meet and join defined pointwise 
and the complement t of f is defined as t(x) = x n (f(x))' , where (f(x))' 
is the complement of f(x) in B. A sub-class of restricting functions is consti
tuted by (positively) intersecting functions I NT(B) defined as: f E I NT iff 
f(x) = x n f(IB) for all x E B . Thus any positively intersecting function is 
a positively restricting function and, in addition, the set I NT(B), considered 
as an algebra, is a sub-algebra of the corresponding restricting algebra R(B) 

161 



(Keenan 19983) . 

Some additional tools are needed: a class N R(B) of modifier interpreting 
functions called negatively restricting, and its sub-class N I NT(B) of negatively 
intersecting functions. By definition (cf. Zuber 1997a) f E NR(B) iff f(x) :S x' 
for any x E B. The set NR(B) forms a Boolean algebra with operations as 
in B f B except that the complement operation is relativised to the negative 
identity function f(x) = x'. Thus the algebra NR(B) is a factor algebra (of 
B) generated by the negative identity function . If B is atomic then N R(B) 
is atomic and if B is complete then N R(B) is complete. The set N I NT(B) 
is defined as: f E NINT(B) iff f(x) = x' n !COB), for any x E B. Thus 
negatively intersecting functions are negatively restricting and, in addition one 
can show that N I NT(B) forms a sub-algebra of N R(B) and that N I NT(B) 
is isomorphic to B (Zuber 1997a). A simple class of positively intersecting and 
negatively intersecting functions is indicated in 

Fact 1 Let B be a Boolean algebra. Then for any a E B the function fa(x) = 
x n a is positively intersecting and the function ga(x) = x' n a is negatively 
intersecting (in B) 

I will also make use of the notion of intersective and co-intersective functions 
as defined by Keenan (cf. Keenan 1993). By definition, F, a function of type 
< 1, 1 >, is intersective iff for all properties X, Y, V, Z, if X n Y = V n Z then 
F(X)(Y) = F(V)(Z). Similarly, F is co-intersective iff for all properties X, 
Y, V, Z if X - Y = V - Z then F(X)(Y) = F(V)(Z). In particular intersec
tive functions interpret determiners in exclusion clauses. Thus the determiner 
N o .. . but A is interpreted by the intersective function F such that F(X)(Y) 
iff X n Y = A and in addition this function is an atom in the algebra of in
tersective functions. Similarly the determiner All ... but A is interpreted by the 
co-intersective function F such that F(X)(Y) iff X - Y = Ai this function is 
an atom in the algebra of co-intersective functions . 

There are many constructions involving HOMs. For instance in slavic lan
guages there is a specific comparative construction which can be considered 
as a modifier of the adjectival modifier (cf. Zuber 1997b). Among all possi
ble constructions involving HOMs I consider here mainly modifiers one finds 
in exclusion (EXCL) clauses and in inclusion (INCL) clauses and in some re
lated constructions. The EXCL clauses are represented by schemas like N P 
but/except E as instanciated in (1). Similarly INCL clauses, represented by 
schemas like N P including E, are instanciated in (2): 

(1) NP but/except E 
(la) All students but Leo were sleeping 
(lb) All students but five failed 
(lc) No teacher but Lea and Leo drank 
(ld) All student but the Albanian (students) went to the library 
(2) NP, including E 
(2a) Most students, including Max were singing 
(2b) Some students, including the Albanian ones, were unhappy 
(2c) All teachers, including the oldest one, were at the party 
(2d) Five teachers, including Leo, slept in the library 

162 



(2e) All students, including the five at the back, were listening 

In the above schemas (1) and (2), the NP is the first argument of the EXCL 
or INC L clause and the expression E is the second argument. As we wi 11 SP. 

the expression E will be considered as being logically complex. 

EX C L, but not INC L, clauses have been extensively studied . One no
tices similar problems in both cases: thus, there are severe restrictions on the 
type of expressions which can occur as the first argument in the above schemas: 
these are so-called quantifier constraints. For instance it is well-known that in 
EXCL clauses only the quantifiers all/each and no can occur on this position. 
In INC L clauses there are similar, although weaker 1 restrictions: they cannot 
contain monotone decreasing quantifiers on this position: 

(3) *No student/?at most three students, including Leo went to the pool 

My analysis basically takes into account the case of EXCL clauses and the case 
of INC L clauses. I also indicate how the more general case of focus particles 
which are logically related to these clauses can be treated. 

One can distinguish two approaches to EXCL clauses. Keenan considers 
that they result from the application of a discontinous determiner to a common 
noun. Thus All students but Leo is a result of the application of the (disconti
nous) determinerAll ... but Leo to the common noun students. Such determiners 
denote co-intersective functions and consequently the N P corresponding to the 
EXCL clause denotes the value of this function at the property corresponding 
to students. In fact Keenan shows that in general exclusion determiners denote 
in the set of intersective or co-intersective functions (Keenan 1993). Of course 
his approach is compatible with an approach in which the analysis of exclusion 
determiners is pushed further to the point showing their syntactic or semantic 
com posi tion. 

Under the second approach, proposed in particular by Moltmann (Moltmann 
1995, Moltmann 1996), the EXCL clauses result, syntactically, by the appli
cation of some functional expressions to N Ps: one gets a N P in the form of 
an EXCL clause by applying the "complement expression" but/except NP to 
a quantified N P (in fact to N Ps of the form All CN or No CN). So, although 
in general N Ps are rarelt modified, we have to do in this case, according to 
Moltmann, with a modification of N Ps. 

I am going to suggest that the modification also takes place in EXCL (and 
INCL) clauses but what is modified is not an NP but a determiner. Further
more, the determiner which is modified occurs as a "logical constituant" in the 
second argument in EXCL or INCL clauses: it is a a "logical part" of the 
expression E in the above schemas. Thus exclusion determiners that Keenan 
treats globally are complex determiners obtained by a modification of simpler 
ones and the modifier corresponds to the function interpreting the expression 
No ... but/except or All ... but/except. 

From a purely formal point of view it is not important how functional depen-

163 



dence is established in a complex expression in which various elements can be 
considered as arguments or as functions. However, if we consider that it is the 
expression E (or rather its part) which varies in EXCL clauses then the range 
of possible arguments is much greater than if it is the first N P that varies. In
deed, in EX C L clauses the variation of the first argument, the quantified N P, 
is very limited, which is counter-intuitive for an expression to be considered as 
argument. 

To determine the logical form of the expression E and the part of it which 
is modified, one observes that in the following examples the expressions in (a) 
are equivalent to those in (b): 

(4a) No student but Leo 
(4b) No student but Leo who is a student 
(5a) All students but five 
(5b) All students but the five students 
(6a) All students but the Albanian ones 
(6b) All students but the Albanians who are students 

These and similar observations indicate that the second argument in exclu
sion clauses (the expression E in the sechema) are definite N Ps, i.e. N P which 
are interpreted by filters. This is even more obvious given that (7) is not ac
ceptable in comparison with (8): 

(7) *Most students, including five 
(8) Most students, including the five (at the back) 

Given that in both arguments in an EXCL clause we have the same common 
noun which can vary, the modified element is not a definite N P but a determiner 
creating such an N P. For instance the clauses in (4a) and (4 b) correspond to 
(9), where X varies over properties: 

(9) No (X) but Leo, who is (X) 

Thus, I claim that semantically the second argument is a quantifier of type 
< 1,1 > which I call filter creating function (or FCF). By definition, for any 
property A, IA E FCF iff IA(X) = 0 if A is not a subset of X and otherwise 
it is equal to the filter generated by A. So the expression E will be interpreted 
by a FC F determined by a property A. This property is the specific propery 
indicating exception or inclusion. For instance in (Ia) and (4b) it corresponds to 
the singleton whose only element is the referent of Leo, in (Ic) it corresponds to 
the set of two elements, roughly Leo and Lea and in (2b) and (6b) the property 
A corresponds to a set of specific Albanian students. 
Concerning FC F one proves the following: 

Fact 2 II I E FC F then f is intersective 

Thus EX C L clauses can be considered as resulting from the application of 
the modifier All... but/except or No.. . but/except to an expression denoting 
an intersective function. So we have two types of exclusion modifiers and the 

164 



functions they denote: those which are based on No and those which are based 
on All. Observe now that when the function is based on the quantifier No, it is 
a restricting function, and when it is based on All, it is a negatively restricting 
function . For instance (4a) entails Leo, who is a student and (6a) entails not 
the Albanian students. Furthermore, the property A determines not only an 
intersective function but also atoms of the algebra of intersective functions and 
of co-intersective functions: for any property A the function iA(X)(Y) = 1 iff 
X n Y = A is an atom (based on A) in the algebra of intersective functions 
and the function CA(X)(Y) = 1 iff X - Y = A is an atom (based on A) in the 
algebra of co-intersective functions (Keenan 1993). It follows from this and the 
semantics of exclusion clauses that 

Fact 3 NO - but (FA) is the atom based on A of the intersective algebra and 
ALL - but (FA) is the atom based on A of the co-intersective algebra. ' 

So the restricting function interpreting the exclusion modifier based on No, 
the function NO - but associates with any FA E FCF the atom based on A 
(and thus contained in FA) of the algebra of intersective functions. Similarly the 
negatively restricting function based on All interpreting the exclusion modifier, 
the function ALL - but associates with any FA E FCF the atom based on 
A (and thus not contained in FA) of the algebra of co-intersective functions. 
Furthermore, the restricting function based on No is not intersecting since it 
is not monotone increasing. The negatively restricting function based on All is 
not negatively intersecting since it is not monotone decreasing. 

In many languages there exists a lexicalized modifier which corresponds, un
der one of its categorization, to the modifier No - but. In English it is the 
"particle" only. It is easy to show that with the appropriate categorisation No 
student but Leo is equivalent to only the student who is Leo. As a restricting 
function, and thus an element of the Boolean algebra, Only has a negation, 
which, interestingly enough, is the denotation of the "particle" Also. Thus we 
have NO - but(F A) = ONLY(FA) and ONLY'(F A) = ALSO(F A). 

The above observation will help us to analyse INC L clauses. One might think 
that the simplest way to represent them is to use the fact 1: for instance the 
clause Some(X), including A would be represented by a positively intersect
ing function based on Some defined as: SOME - incl(F A) = SOME n FA. 
Similar definitions can be given for including functions interpreting Most ... , 
including A or At least jive ... , including A. There seems to be, however, an 
empirical problem with such representations since they do not account for the 
fact that including clauses in many cases must be interpreted as involving the 
universe which contains more elements than the universe of just the determiners 
on which such clauses are based. Thus the clauses All/most/some/ students, 
including Leo and Lea all entail that there are at least three students. In other 
words the "inclusion" in INCL clauses is a "strict inclusion". If this second 
interpretation is accepted (which is possible in all cases, whereas non-strict in
clusion isn't) one obtains interesting algebraic properties of INCL clauses and 
an interesting relationship between them and ECXCL clauses. 

Observe that the "strict inclusion" interpretation is the interpretation which 
entails the negation of the exclusion modifier based on No and thus it entails 

165 



Also, the negation of only. For instance All/most/some (X), including Leo all 
entail not only (X) who is Leo. So, a bit more formally any INCL clause 
of the form D - incl(F A), with D, an appropriate determiner, should entail 
ONLY'(F A). From this follows 

FaCt 4 If D - incl is a function denoted by the inclusion modifier based on the 
det D, then D - incl(FA) == D n ONLY'(FA) = D n FA n (NO - but(FA))'. 

Thus, informally, any function denoted by an inclusion modifier is a positively 
restricting function which associates with any filter creating function FA the 
meet of this function and of the co-atom determined by A. 

There are also negative inclusion, NINCL, clauses such as No student, not 
even Leo or, maybe, Few students, in particular not Albanian students, For 
their description we need the notion of the postnegation D - not of a quantifier 
of type < 1,1 >: for any X, D - not(X) = D(X) - not, where D(X) - not 
is the postnegation of the quantifier of type < 1 > .. Now, one notices that all 
N I NCL clauses above entail the post-negation of Not only the student Leo (or, 
roughly, No student, even not Leo entails Also the student who is Leo (did) not). 
By analogy with positive INCL clauses we have 

Fact 5 If D - negincl is a function denoted by the negative inclusion mod
ifier based on the det D, then D - negincl(F A) = D n ALSO(F A) - not= 
D n (FA - not) n ALL' - but(FA), where ALL' - but is the complement of 
the restricting function ALL - but 

Thus negative inclusion clauses such as No, even not A, or Few, not even A, are 
interpreted by negatively restricting functions. One has to check whether these 
functions are negatively intersecting. 

There are restrictions on the type of the determiner D which occur in ex
pressions discussed in the fact 3, 4 and 5. Various known constraints on pos
sible occurrences can be explained by languages universals concerning the co
directionality of monotonicity which must take place in some conjunctions. If 
INCL or EXCL clauses contain connectives (including or except) then it is 
possible that these connectives, like standard Boolean connectives force partic
ular arguments. 

EXCL and INLC clauses, which have been shown to contains HOMs and 
thus to involve restrictive functions in their interpretation, have been related 
to focus particles. These are well-known to be categorially ambiguous (being 
HOMs) expressions. The algebraic analysis proposed for EXCL and INCL 
clauses extends easily to "logical' focus particles of any category like Only and 
Also: they also are interpreted by restricting functions and these functions 
essentially involve the atomicity of the corresponding denotational algebra. For 
instance for the particle ONLY which can have in its scope expressions of 
various categories, we have 

Fact 6 If the scope of Only is E of the category C, and Only(E) is also of the 
category C then ONLY(E) is an atom in the algebra Dc. 

Similarly with the categorially ambiguous particle ALSO: when it is applied 
to an expression of the category C, the resulting expressions denotes co-atoms 

166 



of the algebra Dc. 

The case of the particle Even is more complicated, since this particle has a 
strong pragmatic import. The "purely logical II content of Even can be captured 
by considering that Even(F A (X)) is equivalent to All(X) , including(F A(X». 

I would like to conclude by makin some general remarks concerning the 
above results .. The expressions in EXCL and INCL clauses which have been 
interpreted by restricting functions are still complex exprerssions. Thus No/all 
but are composed of the determiner and the connective but. Similarly with in
clusion clauses, where one finds the connective including. So one can ask what 
is the meaning of these connectives and whether they are binary or unary. The 
results presented above show that, informally, we have with HOMs four logi
cally related situations represented by the following schemas: 

(10) A and only A 
(1l) A and not only A 
(12) Not-A and only not-A 
(13) Not-A and not only not-A 

These schemas strongly remind us of the traditional square of oppositions. Fur
thermore, looking at these schemas one notices that HOMs involve unary, and 
not binary, connectives, since only one variable is involved. Furthermore, the 
connectives represented by the above schemas neither correspond directly to 
nor are generalisations of the classical unary propositional connectives. One 
can easily check that in the algebra of functions which interpret classical unary 
propositional connectives all positively restrincting functions are positively in
tersecting and all negatively restricting ones are negatively intersecting. The 
connectives represented by the schemas above are not intersecting since they 
are neither monotone increasing nor monotone decreasing. 

My second remark is related to the preceding one. Keenan conjectured that 
to interpret (extensional) natural language modifiers one needs only positively 
restricting functions. He considered, however, mainly modifiers of lower order. 
Keenan's claim has been challenged precisely in the case of HOMs (Zuber 
1996). Indeed, the analysis presented here might suggest that we need also 
negatively restricting functions. For instance the function AIL.but is negatively 
restricting. This is not obvious, however, since we have the following: 

Fact 7 F is intersective iff F - not is co-intersective 

From this fact it fallows that the quantifier All - but(F A) is equivalent to 
No - but(F A - not). In other words, the negatively restricting function inter
preting determiner modifiers can be replaced by a positively restricting function 
applied to the post negation of the argument. Whether a similar way out is 
always possible is another question. 

167 



References 

[1] Keenan, E.L. (1983) Boolean Algebra for linguists, Working Papers in Lin
guistics, UCLA 

[2] Keenan, E.L. (1993) Natural Language, Sortal Reducibility and General
ized Quantifiers, J. of Symbolic logic 58-1, p.314-325 

[3] Keenan, E.L. and Faltz, L.M. (1985) Boolean Semantics for Natural Lan
guage, D. Reidel Publishing Company, Dordrecht 

[4] Moltmann, F. (1995) Exception sentences and polyadic quantification, Lin
guistics and Philosophy 

[5] Moltmann, F. (1996) Resumptive Quantifiers in Exception Sentences, in 
Kanazawa, M. et al. (eds.) Quantifiers, Deduction, and Context, CSLI Pub
lications, Stanford, p.139-170 

[6] Zuber, R. (1996) 81. Two Semantic Components of Noun Phrases, in 
Dubach Green, A. and Motapanyane, V. (eds). Proceedings of ESCOL'96, 
Cornell University Press, 1996, p. 347-354 

[7] Zuber, R. (1997a) On negatively restricting Boolean algebras, Bulletin of 
the section of logic, 26-1, p. 50-54 

[8] Zuber, R. (1997b) The category of modifiers and comparatives in Polish, in 
Junhganns, U. and Zybatov, G. (eds.) Formale Slavistik, Verveurt Verlag, 
Frankfurt am Main, 1997, p. 523-532 

168 



• , I ) ~I< 
f . 

Deutsches 
Forschungszentrum 
fUr Kunstliche 
Intelligenz GmbH 

Veroffentlichungen des DFKI 

-Bibliothek, Information 

und Dokumentation (BID)-

PF 2080 

67608 Kaiserslautern 

FRG 

Telefon (0631) 205-3506 

Telefax (0631) 205-3210 

e-mail 
dfkibib@dfki.uni-kl.de 

WWW 
http://www.dfki.uni

sb.de/dfkibib 

Die folgenden DFKI Veroffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio
nen konnen von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per 
anonymous ftp von ftp.dfki.uni-kl.de (131.246.241.100) im Verzeichnis pub/Publications bezogen werden. 
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben. 

DFKI Publications 

The following DFKI publications or the list of all published papers so far are obtainable from the above ad
dress or {if they are marked as obtainable byftp} by anonymous ftp from ftp. d/ki.uni-kl. de {131.246.241.100} 
in the directory pub/Publications. 
The reports are distributed free of charge except where otherwise noted. 

DFKI Research Reports 

1997 
RR-97-04 
Serge Autexier, Dieter Hutter 
Parameterized Abstractions used for Proof-Planning 
13 pages 

RR-97-03 
Dieter Hutter 
Using Rippling to Prove the Termination of Algorithms 
15 pages 

RR-97-02 
Stephan Busemann, Thierry Declerck, Abdel Kader 
Diagne, Luca Dini, 
Judith Klein, Sven Schmeier 
Natural Language Dialogue Service for Appointment 
Scheduling Agents 
15 pages 

RR-97-01 
Erica Melis, Claus Sengler 
Analogy in Verification of State-Based Specifications: 
First Results 
12 pages 

1996 
RR-96-06 
Claus Sengler 
Case Studies of Non-Freely Generated Data Types 
200 pages 

RR-96-05 
Stephan Busemann 
Best-First Surface Realization 
11 pages 

RR-96-04 
Christoph G. Jung, Klaus Fischer, Alastair Burt 
Multi-Agent Planning 
Using an Abductive 
EVENT CALCULUS 

114 pages 

RR-96-03 
Giinter Neumann 
Interleaving 
Natural Language Parsing and Generation 
Through Uniform Processing 
51 pages 

RR-96-02 
E.Andre, J. Miiller , T.llist: 
PPP-Persona: Ein ob.iektorientierter Multimedia-Pra
sen tat ions agent 
14 Seiten 

RR-96-01 
Claus Sengler 
Induction on Non-Freely Generated Data Types 
188 pages 



1995 

RR-95-20 
Hans- Ulrich Krieger 
Typed Feature Structures, Definite Equivalences, 
Greatest Model Semantics, and Nonmonotonicity 
27 pages 

RR-95-19 
Abdel Kader Diagne, Walter Kasper, Hans-Ulrich Krie
ger 
Distributed Parsing With HPSG Grammar 
20 pages 

RR-95-18 
Hans- Ulrich Krieger, Ulric11 Sc1lafer 
Efficient Parameterizable Type Expansion for Typed 
Feature Formalisms 
19 pages 

RR-95-17 
Hans-Ulrich Krieger 
Classification and Representation of Types in TDL 
17 pages 

RR-95-16 
Martin Muller, Tobias Van Roy 
Title not set 
o pages 

Note: The author(s) were unable to deliver this docu
ment for printing before the end of the year. It 
will be printed next year. 

RR-95-15 
Joachim Niehren , Tobias Van Roy 
Title not set 
o pages 

Note: The author(s) were unable to deliver this docu
ment for printing before the end of the year. It 
will be printed next year. 

RR-95-14 
Joachim Niehren 
Functional Computation as Concurrent Computation 
50 pages 

RR-95-13 
Werner Stephan, Susanne Biundo 
Deduction-based Refinement Planning 
14 pages 

RR-95-12 
Walter Hower, Winfried H. Graf 
Research in Constraint-Based Layout, Visualization, 
CAD, and Related Topics: A Bibliographical Survey 
33 pages 

RR-95-11 
Anne Kilger, Wolgang Finkler 
Incremental Generation for Real-Time Applications 
47 pages 

RR-95-10 
Gert Smolka 
The Oz Programming Model 
23 pages 

RR-95-09 
M . Buchheit, F. M . Donini, W. Nutt, A. Schaerf 
A Refined Architecture for Terminological Systems: 
Terminology = Schema + Views 
71 pages 

RR-95-08 
Michael Mehl, Ralf Scheidhauer, Christian Schulte 
An Abstract Machine for Oz 
23 pages 

RR-95-07 
Francesco M. Donini, Maurizio Lenzerini, Daniele Nar
di, Werner Nutt 
The Complexity of Concept Languages 
57 pages 

RR-95-06 
Bernd Kiefer, Thomas Fettig 
FEGRAMED 
An interactive Graphics Editor for Feature Structures 
37 pages 

RR-95-05 
Rolf Backofen, James Rogers, K. Vijay-Shanker 
A First-Order Axiomatization of the Theory of Finite 
Trees 
35 pages 

RR-95-04 
M. Buchheit, H.-J. Burckert, B. Hollunder, A. Laux, W . 
Nutt, 
M . W6jcik 
Task Acquisition with a Description Logic Reasoner 
17 pages 

RR-95-03 
Stephan Baumann, Micbael Malburg, Hans-Guenther 
Hein, Rainer Hoch, 
Thomas Kieninger, Norbert Kuhn 
Document Analysis at DFKI 
Part 2: Information Extraction 
40 pages 

RR-95-02 
Majdi Ben Hadj Ali, Frank Fein , Frank Hoenes, Thor
sten Jaeger, 
Achim Weigel 
Document Analysis at DFKI 
Part 1: Image Analysis and Text Recognition 
69 pages 

RR-95-01 
Klaus Fischer, Jorg P. Muller , Markus Pischel 
Cooperative Transportation Scheduling 
an application Domain for DAI 
31 pages 



1994 

RR-94-39 
Hans- Ulrich Krieger 
Typed Feature Formalisms as a Common Basis for Lin
guistic Specification. 
21 pages 

RR-94-38 
Hans Uszkoreit, Rolf Backofen, Stephan Busemann, Ab
del Kader Diagne, 
Elizabeth A . Hinkelman, Walter Kasper, Bernd Kiefer, 
Hans- Ulrich Krieger, 
Klaus Netter, Gunter Neumann, Stephan Oepen, Ste
phen P. Spackman. 
DISCO-An HPSG-based NLP System and its Applica
tion for Appointment Scheduling. 
13 pages 

RR-94-37 
Hans- Ulrich Krieger, Ulrich Schafer 
TDL - A Type Description Language for HPSG, Part 
1: Overview. 
54 pages 

RR-94-36 
Manfred Meyer 
Issues in Concurrent Knowledge Engineering. Knowl
edge Base and Knowledge Share Evolution. 
17 pages 

RR-94-35 
Rolf Backofen 
A Complete Axiomatization of a Theory with Feature 
and Arity Constraints 
49 pages 

RR-94-34 
Stephan Busemann, Stephan Oepen, Elizabeth A . Hin
kelman, 
Gunter Neumann, Hans Uszkoreit 
COSMA - Multi-Participant NL Interaction for Ap
pointment Scheduling 
80 pages 

RR-94-33 
Franz Baader, Armin Laux 
Terminological Logics with Modal Operators 
29 pages 

RR- 94-31 
Otto Kuhn, Volker Becker, Georg Lohse, Philipp Neu
mann 
Integrated Knowledge Utilization and Evolution for the 
Conservation of Corporate Know-How 
17 pages 

RR-94-23 
Gert Smolka 
The Definition of Kernel Oz 
53 pages 

RR-94-20 
Christian Schulte, Gert Smolka, Jorg Wurtz 
Encapsulated Search and Constraint Programming in 
Oz 
21 pages 

RR-94-19 
Rainer Hoch 
Using IR Techniques for Text Classification in Docu
ment Analysis 
16 pages 

RR-94-18 
Rolf Backofen, Ralf Treinen 
How to Win a Game with Features 
18 pages 

RR-94-17 
Georg Struth 
Philosophical Logics-A Survey and a Bibliography 
58 pages 

RR-94-16 
Gert Smolka 
A Foundation for Higher-order Concurrent Constraint 
Programming 
26 pages 

RR-94-15 
Winfried H. Graf, Stefan Neurohr 
Using Graphical Style and Visibility Constraints for a 
Meaningful Layout in Visual Programming Interfaces 
20 pages 

RR-94-14 
Harold Boley, Ulrich Buhrmann, Christof Kremer 
Towards a Sharable Knowledge Base on Recyclable 
Plastics 
14 pages 

RR-94-13 
Jana Koehler 
Planning from Second Principles-A Logic-based Ap
proach 
49 pages 

RR-94-12 
Hubert Comon, RaIf Treinen 
Ordering Constraints on Trees 
34 pages 

RR-94-11 
Knut Hinkelmann 
A Consequence Finding Approach for Feature Recogni
tion in CAPP 
18 pages 

RR-94-10 
Knut Hinkelmann, Helge Hintze 
Computing Cost Estimates for Proof Strategies 
22 pages 



RR-94-08 
Otto Kuhn, Bjorn HoBing 
Conserving Corporate Knowledge for Crankshaft De
sign 
17 pages 

RR-94-07 
Harold Boley 
Finite Domains and Exclusions as First-Class Citizens 
25 pages 

RR-94-06 
Dietmar Dengler 
An Adaptive Deductive Planning System 
17 pages 

RR-94-05 
Franz Schmalhofer, J. Stuart Aitken, Lyle E. Bourne jr. 
Beyond the Knowledge Level: Descriptions of Rational 
Behavior for Sharing and Reuse 
81 pages 

DFKI Technical Memos 

1996 

TM-96-02 
Harold Boley 
Knowledge Bases in the World Wide Web: 
A Challenge for Logic Programming 
8 pages 

TM-96-01 
Cerd Kamp, Holger Wache 
CTL - a description Logic with expressive concrete do
mains 
19 pages 

1995 

TM-95-04 
Klaus Schmid 
Creative Problem Solving 
and 
Automated Discovery 
- An Analysis of Psychological and AI Research -
152 pages 

TM-95-03 
Andreas A becker, Harold Boley, Knut Hinkelmann, Hol
ger Wacbe, 
Franz Schmalbofer 
An Environment for Exploring and Validating Declara
tive Knowledge 
11 pages 

TM-95-02 
Michael Sintek 
FLIP: Functional-plus-Logic Programming 
on an Integrated Platform 
106 pages 

RR-94-03 
Cert Smolka 
A Calculus for Higher-Order Concurrent Constraint 
Programming with Deep Guards 
34 pages 

RR-94-02 
Elisabeth Andre, Thomas Rist 
Von Textgeneratoren zu Intellimedia-Prasentationssy
stemen 
22 Seiten 

RR-94-01 
Elisabeth Andre, Thomas Rist 
Multimedia Presentations: The Support of Passive and 
Active Viewing 
15 pages 

TM-95-01 
Martin Buchheit, Rudiger Klein, Werner Nutt 
Constructive Problem Solving: A Model Construction 
Approach towards Configuration 
34 pages 

1994 

TM-94-05 
Klaus Fischer, Jorg P. Muller, Markus Pischel 
Unifying Control in a Layered Agent Architecture 
27 pages 

TM-94-04 
Cornelia Fiscber 
PAntUDE - An Anti-Unification Algorithm for Ex
pressing Refined Generalizations 
22 pages 

TM-94-03 
Victoria Hall 
Uncertainty-Valued Horn Clauses 
31 pages 

TM-94-02 
Rainer Bleisinger, Berthold Kroll 
Representation of Non-Convex Time Intervals and 
Propagation of Non-Convex Relations 
11 pages 

TM-94-01 
Rainer Bleisinger, Klaus-Peter Cores 
Text Skimming as a Part in Paper Document Under
standing 
14 pages 



DFKI Documents 

1997 

D-97-03 
Andreas Abecker, Stefan Decker, Knut Hinkelmann, Ul
rich Reimer 
Proceedings of the Workshop "Knowledge-Based Sys
tems for Knowledge Management in Enterprises" 97 
167 pages 

D-97-01 
Thomas Malik 
NetGLTool Benutzeranleitung 
40 Seiten 

1996 

D-96-07 
Technical Staff 
DFKI Jahresbericht 1995 
55 Seiten 

Note: This document is no longer available in printed 
form. 

D-96-06 
Klaus Fischer (Ed.) 
Working Notes of the KI'96 Workshop on Agent
Oriented Programming and Distributed Systems 
63 pages 

D-96-05 
Martin Schaaf 
Ein Framework zur Erstellung verteilter Anwendungen 
94 pages 

D-96-04 
Franz Baader, Hans-Jurgen Burckert, Andreas Gunter, 
Werner Nutt (Hrsg.) 
Proceedings of the Workshop on Knowledge Represen
tation and Configuration WRKP '96 
83 pages 

D-96-03 
Win fried Tautges 
Der DESIGN-ANALYZER - Decision Support im Desi
gnprozess 
75 Seiten 

D-96-01 
Klaus Fischer, Darius Schier 
Ein Multiagentenansatz zum 
Scheduling-Problemen 
72 Seiten 

Lasen von Fleet-

1995 
D-95-12 
F . Baader, M. Buchheit, M. A. Jeusfeld, W. Nutt (Eds.) 
Working Notes of the KI'95 Workshop: 
KRDB-95 - Reasoning about Structured Objects: 
Knowledge Representation Meets Databases 
61 pages 

D-95-11 
Stephan Busemann, Iris Merget 
Eine Untersuchung kommerzieller Terminverwaltungs
software im HinbJick auf die Kopplung mit natiirlich
sprachlichen Systemen 
32 Seiten 

D-95-10 
Volker Ehresmann 
Integration ressourcen-orientierter Techniken in das wis
sensbasierte Konfigurierungssystem TOOCON 
108 Seiten 

D-95-09 
Antonio Kruger 
PROXIMA: Ein System zur Generierung graphischer 
Abstraktionen 
120 Seiten 

D-95-08 
Technical Staff 
DFKI Jahresbericht 1994 
63 Seiten 

Note: This document is no longer available in printed 
form . 

D-95-07 
Ottmar Lutzy 
Morphic - Plus 
Ein morphologisches Analyseprogramm fUr die deutsche 
Flexionsmorphologie und Komposita-Analyse 
74 Seiten 

D-95-06 
Markus Steffens, Ansgar Bernardi 
Integriertes Produktmodell fur Behalter aus Faserver
bundwerkstoffen 
48 Seiten 

D-95-05 
Georg Schn eider 
Eine Werkbank zur Erzeugung von 3D-Illustrationen 
157 Seiten 

D-95-04 
Victoria Hall 
Integration von Sorten als ausgezeichnete taxonomische 
Pradikate in eine relational-funktionale Sprache 
56 Seiten 

D-95-03 
Christoph Endres, Lars Klein, Markus Meyer 
Implementierung und Erweiterung der Sprache ALCP 
110 Seiten 



D-95-02 
Andreas Butz 
BETTY 
Ein System zur Planung und Generierung informativer 
Animationssequenzen 
95 Seiten 

D-95-01 
Susanne Biundo, Wolfgang Tank (Hrsg.) 
PuK-95, Beitrage zum 9. Workshop »Planen und Kon
figurieren", Februar 1995 
169 Seiten 

Note: This document is available for a nominal charge 
of 25 DM (or 15 US-$). 

1994 

D-94-15 
Stephan Oepen 
German Nominal Syntax in HPSG 

- On Syntactic Categories and Syntagmatic Relations 

80 pages 

D-94-14 
Hans- Ulricll Krieger, Ulricb Scbafer 
TDL - A Type Description Language for HPSG, Part 
2: User Guide. 
72 pages 

D-94-12 
Arthur Selin, Serge Autexier (Hrsg.) 
Proceedings des Studentenprogramms der 18. Deut
schen Jahrestagung flir Klinstliche Intelligenz KI-94 
69 Seiten 

D-94-11 
F. Baader, M. Bucllheit, M. A . Jeusfeld, W . Nutt (Eds.) 
Working Notes of the KI'94 Workshop: KRDB'94 - Rea
soning about Structured Objects: Knowledge Represen
tation Meets Databases 
65 pages 

Note: This document is no longer available in printed 
form. 

D-94-10 
F. Baader, M. Lenzerini, W . Nutt, P. F. Patel-Scbneider 
(Eds.) 
Working Notes of the 1994 International Workshop on 
Description Logics 
118 pages 

Note: This document is available for a nominal charge 
of 25 DM (or 15 US-$). 

D-94-09 
Tec1lDical Staff 
DFKI Wissenschaftlich-Technischer Jahresbericht 
1993 
145 Seiten 

D-94-08 
Harald Feibel 
IGLOO 1.0 - Eine grafikunterstlitzte Beweisentwick
lungsumgebung 
58 Seiten 

D-94-07 
Claudia Wenzel, Rainer Hoch 
Eine Ubersicht liber Information Retrieval (IR) und 
NLP-Verfahren zur Klassifikation von Texten 
25 Seiten 

Note: This document is no longer available in printed 
furm. . 

D-94-06 
Ulric1l Bullrmann 
Erstellung einer deklarativen Wissensbasis liber recy
clingrelevante Materialien 
117 Seiten 

D-94-04 
Franz Scllmalhofer, Ludger van Elst 
Entwicklung von Expertensystemen: Prototypen, Tie
fenmodellierung und kooperative Wissensevolution 
22 Seiten 

0-94-03 
Franz Scllmalllofer 
Maschinelles Lemen: Eine kognitionswissenschaftliche 
Betrachtung 
54 Seiten 

Note: This document is no longer available in printed 
form. 

0-94-02 
Markus Steffens 
Wissenserhebung und Analyse zum EntwicklungsprozeB 
eines Druckbehalters aus Faserverbundstoff 
90 pages 

0-94-01 
Josua Boon (Ed.) 
DFKI-Publications: The First Four Years 
1990 - 1993 
75 pages 



P
ro

ce
e

d
in

g
s 

o
f 

th
e

 
F

if
th

 M
e

e
ti

n
g

 o
n

 M
a

th
e

m
a

ti
cs

 o
f 

L
a

n
g

u
a

g
e

 

M
O

L
5

 

T
ilm

a
n

 B
e

ck
e

r 
a

n
d

 H
a

n
s-

U
lr

ic
h

 K
ri

e
g

e
r 

(e
d

s.
) 

D
-9

7-
02

 
D

oc
um

en
t 


	D-97-02-0001
	D-97-02-0002
	D-97-02-0003
	D-97-02-0004
	D-97-02-0005
	D-97-02-0006
	D-97-02-0007
	D-97-02-0008
	D-97-02-0009
	D-97-02-0010
	D-97-02-0011
	D-97-02-0012
	D-97-02-0013
	D-97-02-0014
	D-97-02-0015
	D-97-02-0016
	D-97-02-0017
	D-97-02-0018
	D-97-02-0019
	D-97-02-0020
	D-97-02-0021
	D-97-02-0022
	D-97-02-0023
	D-97-02-0024
	D-97-02-0025
	D-97-02-0026
	D-97-02-0027
	D-97-02-0028
	D-97-02-0029
	D-97-02-0030
	D-97-02-0031
	D-97-02-0032
	D-97-02-0033
	D-97-02-0034
	D-97-02-0035
	D-97-02-0036
	D-97-02-0037
	D-97-02-0038
	D-97-02-0039
	D-97-02-0040
	D-97-02-0041
	D-97-02-0042
	D-97-02-0043
	D-97-02-0044
	D-97-02-0045
	D-97-02-0046
	D-97-02-0047
	D-97-02-0048
	D-97-02-0049
	D-97-02-0050
	D-97-02-0051
	D-97-02-0052
	D-97-02-0053
	D-97-02-0054
	D-97-02-0055
	D-97-02-0056
	D-97-02-0057
	D-97-02-0058
	D-97-02-0059
	D-97-02-0061
	D-97-02-0062
	D-97-02-0063
	D-97-02-0064
	D-97-02-0065
	D-97-02-0066
	D-97-02-0067
	D-97-02-0068
	D-97-02-0069
	D-97-02-0070
	D-97-02-0071
	D-97-02-0073
	D-97-02-0074
	D-97-02-0075
	D-97-02-0076
	D-97-02-0077
	D-97-02-0078
	D-97-02-0079
	D-97-02-0080
	D-97-02-0081
	D-97-02-0082
	D-97-02-0083
	D-97-02-0084
	D-97-02-0085
	D-97-02-0086
	D-97-02-0087
	D-97-02-0088
	D-97-02-0089
	D-97-02-0090
	D-97-02-0091
	D-97-02-0092
	D-97-02-0093
	D-97-02-0094
	D-97-02-0095
	D-97-02-0096
	D-97-02-0097
	D-97-02-0098
	D-97-02-0099
	D-97-02-0100
	D-97-02-0101
	D-97-02-0102
	D-97-02-0103
	D-97-02-0104
	D-97-02-0105
	D-97-02-0106
	D-97-02-0107
	D-97-02-0108
	D-97-02-0109
	D-97-02-0110
	D-97-02-0111
	D-97-02-0112
	D-97-02-0113
	D-97-02-0114
	D-97-02-0115
	D-97-02-0116
	D-97-02-0117
	D-97-02-0118
	D-97-02-0119
	D-97-02-0120
	D-97-02-0121
	D-97-02-0122
	D-97-02-0123
	D-97-02-0124
	D-97-02-0125
	D-97-02-0126
	D-97-02-0127
	D-97-02-0128
	D-97-02-0129
	D-97-02-0130
	D-97-02-0131
	D-97-02-0132
	D-97-02-0133
	D-97-02-0134
	D-97-02-0135
	D-97-02-0136
	D-97-02-0137
	D-97-02-0138
	D-97-02-0139
	D-97-02-0140
	D-97-02-0141
	D-97-02-0142
	D-97-02-0143
	D-97-02-0144
	D-97-02-0145
	D-97-02-0146
	D-97-02-0147
	D-97-02-0148
	D-97-02-0149
	D-97-02-0150
	D-97-02-0151
	D-97-02-0152
	D-97-02-0153
	D-97-02-0154
	D-97-02-0155
	D-97-02-0156
	D-97-02-0157
	D-97-02-0158
	D-97-02-0159
	D-97-02-0160
	D-97-02-0161
	D-97-02-0162
	D-97-02-0163
	D-97-02-0164
	D-97-02-0165
	D-97-02-0166
	D-97-02-0167
	D-97-02-0168
	D-97-02-0169
	D-97-02-0170
	D-97-02-0171
	D-97-02-0172
	D-97-02-0173
	D-97-02-0174
	D-97-02-0175
	D-97-02-0176
	D-97-02-0177
	D-97-02-0178
	D-97-02-0179
	D-97-02-0180
	D-97-02-0181
	D-97-02-0182
	D-97-02-0183
	D-97-02-0184
	D-97-02-0185
	D-97-02-0186
	D-97-02-0187
	D-97-02-0188



