
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Document
D-96-04

Proceedings of the Workshop on
Knowledge Representation and Configuration

WRKP'96

Franz Baader, Hans-Jurgen Burckert,
Andreas Gunter, Werner Nutt (Eds.)

August 1996

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbriicken, FRG
Tel.: + 49 (681) 302-5252
Fax: +49(681)302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrucken is a non-profit organiza
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation .

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Proceedings of the Workshop on
Knowledge Representation and Configuration
WRKP'96

Franz Baader, Hans-Jiirgen Biirckert,
Andreas Giinter, Werner Nutt (Eds.)

DFKI-D-96-04

This work has been supported by a grant from The Federal Ministry of Educa
tion, Science, Research, and Technology (FKZ ITW-95 004).

© Deutsches Forschungszentrum tar KGnstliche Intelllgenz 1996
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and re~arch purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per
mission of the Deutsche Forschungszentrum fOr KOnstliche Intelligenz. Kalserslautem, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying. reproducing. or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr Kunstliche Intelligenz-.
ISSN 0946-0098

Proceedings of the Workshop on
Knowledge Representation and Configuration

WRKP'96

Franz Baader, Hans-Jurgen Biirckert,
Andreas Gunter, Werner Nutt (Eds.)

August 30, 1996

Preface

Configuration of technical systems from given
components is a domain in which AI systems
have been used in industrial applications for
quite a while. The first configuration systems,
such as the legendary XCON/Rl, could only
represent the wayan expert solves the problem,
but it did not provide for means of represent
ing the structure of the configuration problem
itself. These systems were rather hard to main
tain and handle, which was partially due to this
lack of a formal and structured way of represent
ing the problem to be solved. Thus, it is quite
surprising that formal methods from knowledge
representation, which could be used to overcome
these deficits, have not been employed more of
ten in configuration domains, and when so only
with partial success.

While the above mentioned AI systems were
only concerned with the problem of HOW to
configure a technical systems, formal KR ap
proaches could also be used to represent in a
structured and formally well-understood way
WHAT is to be configured. Examples of such
approaches are techniques for handling

• taxonomies of concepts,

• part-whole hierarchies,

• constraints,

• rules,

• vague and uncertain knowledge (e.g. by us
ing fuzzy logic),

• the difference between object and meta
knowledge.

The goal of this workshop was to find out
whether existing KR techniques are appropriate
for treating configuration problems, or whether
they are not necessary at all in this domain. To
this purpose, different groups of people met at
the workshop:

• researchers that are concerned with config
uration problems in general, or are working
on configuration problems in a specific ap
plication domain;

• researcher that are concerned with develop
ing formal KR methods, or are developing
a concrete KR system;

• researchers that already employ a KR sys
tem in a configuration application.

According to our proposal for the topics and
questions to be discussed we got rather differ
ent position papers, which are collected in this
report. They discuss open problems of prac
tical application as well as logical foundation
of configuration systems. Advantages and dis
advantages of several description logics as a
basis of knowledge representation for configu
ration, modeling and representing part-whole
relationships, and usage of fuzzy constraints are
addressed. Some of the papers describe concrete
configuration systems or consider such for their
discussion of problems.

Abstracts of all contributions are published in
the internet

http://www.dfki.uni-sb.de/ ... hjb/WRKP-96

both in German and in English together with
postscript-files of the English extended versions
in this report.

Based on the presented contributions we dis
cussed the following questions in more detail:

• Which methods from formal KR can be em
ployed for modeling and solving configura
tion problems?

• What are the advantages and disadvan
tages of using such methods (e.g., ease of
maintenance VB. performance deficits)?

• Are some of these techniques appropriate
for only a specific subclass of problems?

• How can different techniques be integrated
in one system?

• What is the "logic" of configuration prob
lems? Can they be seen as deductive or
rather as abductive problems?

We plan to connect a summary of the result
ing answers to the internet publications.

August, 1996

Franz Baader, RWTH Aachen
Hans-Jiirgen Biirckert, DFKI Saarbriicken
Andreas Giinter, TZI, Universitat Bremen
Werner Nutt, DFKI Saarbriicken

Content

Franz Baader:
Extensions of Terminological Knowledge Representation Languages

for Technical Applications 3

Hans-JUrgen BUrckert, Werner Nutt, Christian Seel:

The Role of Formal Knowledge Representation in Configuration 11

Anne Engehausen, Simone Pribbenow, U1f Toter:
Multiple Part-Hierarchies .. 17

Andreas GUnter:
Knowledge Representation for Configuration Systems 23

Harald Meyer aufm Hofe:
What Is Still To Do In Order To Solve Configuration Problems In Practice? 25

Wolfgang Oertel, Uwe Petersohn:
Hybrid Knowledge Organization within an Object Framework 33

llka Phillipow, Fred RoB, Ulf Doring:
Fuzzy Logic in Configuration .. 43

Ulrike Sattler:

Knowledge Representation in Process l:!-ngineering .. .49

Carsten Schroder, Ralf Moller, Carsten Lutz:
A Partial Logical Reconsruction of PLAKONIKONWERK 55

Holger Wache, Gerd Kamp:

Using Description Logic for Configuration Problem'! ... 65

Olaf Wolter, Uwe Scholz:

The Necessity of Using Semantic Models for Configuration 69

Andreas Zeller:
Software Configuration with Feature Logic .. 79

2

~xtensions of Terminological Knowledge Representation
Languages for Technical Applications

Franz Baader
Theoretical Computer Science, RWTH Aachen

Ahornstr. 55, 52074 Aachen
baader@informatik.rwth-aachen.de

Abstract

We consider two extensions of traditional
terminological knowledge representation
languages, which are motivated by tech
nical applications such as configuration of
technical systems. The first extension in
tegrates "concrete" domains (such as num
bers) and concrete predicates on these do
mains into the abstract terminological lan
guage. The second extension introduces
transitive closure of roles, which can, for
example, be used to model transitivity of
the "part-of" relation.

1 Introduction

Terminological knowledge representation (KR) sys
tems are used to introduce the relevant concepts of
an application domain (i.e., its terminology). In ad
dition, concrete objects can be characterized with
respect to their membership in concepts and their
interrelations with each other. An important fea
ture of terminological KR systems is that they are
equipped with a formally well-founded semantics,
and that they can deduce implicit knowledge from
the explicitly represented knowledge. For exam
ple, the system can automatically calculate subcon
cept/superconcept relationships (so-called subsump
tion relationships) from the definitions of the con
cepts; these relationships need not be stated explic
itly as IS-A relationships by the knowledge engineer.

Whereas early terminological systems (such as
KL-ONE [Brachman and Schmolze,1985j) have been
developed with natural language processing ap
plications in mind, modern systems (such as
CLASSIC [Brachman et al.,1991a; 1991 b], KREP

[Mays et al.,1991], BACK [Peltason,1991], LOOM

[MacGregor ,1991], and KRIS [Baader and Hol1un
der,1991j Baader et al.,1994j) are more and more
employed in technical domains (such as configura
tion of technical systems). It has turned out, how
ever, that the concept description formalisms of tra
ditional terminological systems are not expressive
enough for such applications. We consider two ex
tensions of terminological KR systems, which were

motivated by applications in mechanical engineering
and in process engineering.

Extension by "concrete domains": In traditional
terminological description languages, all the knowl
edge about the relevant concepts must be expressed
on an abstract logical level. It is not possible to refer
to concrete domains (such as natural numbers, real
numbers) and predefined (built-in) relations and op
erations on these domains (such as comparisons like
S on numbers, arithmetical operations on numbers).
In technical applications, one often needs to state
geometric or other types of numerical constraints,
which explains the need for concrete domains in this
context [Baader and Hanschke,1993].

Extension by transitive closure: The adequate rep
resentation of the complex structure of technical
systems necessitates the use of the part-whole re
lationship in the concept descriptions [Sattler,1995j
1996J. This relationship cannot simply be described
by a new binary relation (an atomic "role" in the
terminological language) since important properties
of part-whole relations (like transitivity) would not
be modeled this way. An extension of the termino
logical formalism by transitive closure of roles allows
for a correct representation of transitivity properties,
which can thus also be used in reasoning about the
concept descriptions.

For both of the above mentioned language ex
tensions, sound and complete inference algorithms
(for subsumption and other important inference
problems) have been developed [Baader and Han
schke,1991j Baader,1991]. Unfortunately, the com
bination of both extensions leads to undecid
ability of these inference problems [Baader and
Hanschke,1993J.

In the next section, we introduce the prototypical
terminological KR language ACe, and the important
inference problems for terminological languages. In
this and in the subsequent settions, we restrict our
attention to the concept description part of the lan
guage, i.e., to the formalism for building complex
concept descriptions. All results can, however, also
be transferred to TBoxes (where names are intro
duced as abbreviations for descriptions) and ABoxes
(where objects and their relationship to concepts and

roles are introduced). The third section considers
the extension of ALe by constructs that refer to con
crete domains, and the fourth section considers the
extension of ALe by transitive closure of roles (and
by union and composition of roles) . The last section
considers the combination of both extensions.

2 The prototypical language A.ce
The description formalism of ALe allows one to built
complex concept descriptions (representing classes
of objects) out of atomic concepts and roles (binary
relations between objects).

Definition 2.1 (Syntax of ALe)
Concept descriptions are built from concept and role
names using the concept-forming operators negation
(-.C), disjunction (C U D), conjunction (C n D),
existential restriction (3R.C), and value restriction
«IR.C). Here C and D are syntactic variables for
concept descriptions, and R stands for a role name.

Using the concept names Human and Female, and
the role name has-child, we can define the con
cept "woman" as Humann Female, "man" as Humann
-.Female, and "father that has only daughters" as

Human n -.Female n 3has-child.Human

n Vhas-child.(Female n Human).

The next definition gives a model-theoretic seman
tics for the language introduced in Definition 2.l.

Definition 2.2 (Semantics of ALe)
An interpretation I for ALe consists of a set
dorn(I) and an interpretation function that asso
ciates with each concept name A a subset AI of
dorn(I), and with each role name R a binary relation
RI on dorn(I), i.e., a subset of dom(I) x dom(I).

The interpretation function can be extended to ar
bitrary concept descriptions as follows:

• (CIJD)I = CIUDI, (CnD)I = CInDI , and
(-.C)I = dom(I) \ C I ,

• (VR.C)I = {x E dom(I) I Vy. (x, y) E RI ~
Y E CI

},

• (3R.C)I = {x E dom(I) I 3y. (x, y) E RI 1\ Y E
CI}.

An important service terminological represen
tation systems provide is computing the sub
sumption hierarchy, i.e., computing the sub con
cept/superconcept relationships between all the con
cept descriptions introduced in a terminological
knowledge base. This inferential service is usually
called classification.

Subsumption: Let C, D be concept descriptions.
Then D subsumes C (symbolically C ~ 'D) iff
C I ~ DI holds for all interpretations I.

The subsumption problem for ALe-concepts is
known to be decidable; more precisely, it is
PSPACE-complete, as shown in [Schmidt-SchauB and

4

Smolka,1991j. The algorithm described there is
based on a tableau calculus. The underlying ideas
can also be used to derive algorithms for various
other concept languages (see, e.g., [Hollunder et
al.,1990; Hollunder,1990; Donini et al.,1991a; 1991b;
1992; Hollunder and Baader,1991)).

3 Integrating concrete domains
In this section we introduce a formalism that is able
to refer to concrete objects (like numbers), and can
use predefined relations on these objects in concept
descriptions. For example, one might think that
being human and female is not enough to make a
woman. As an additional property one could require
that she should be old enough; for example, at least
21. Thus one would like to introduce a new role
age, and define "woman" by an expression of the
form HumannFemalen~21(age) . Here ~2l stands
for the unary predicate {n I n ~ 21} of all nonneg
ative integers greater or equal 21. In the mechan
ical engineering domain described in [Baader and
Hanschke,1993], reference to concrete notions such
as real numbers is mandatory to represent, for exam
ple, the geometric aspects of certain classes of lathe
workpieces. Stating such properties directly with
reference to a given concrete domain seems to be
easier and more natural than encoding them some
how into abstract concept expressions.

Before we can define the extended description lan
guage, we must first formalize the notion "concrete
domain," which has until now only been used in an
intuitive sense.

Definition 3.1 A concrete domain V consists of a
set domeD), the domain of V, and a set pred(V),
the predicate names of V. Each predicate name P
is associated with an arity n, and an n-ary predicate
pV ~ dom(D)n .

The following are examples of concrete domains:

• In the above example we have considered the
concrete domain N, which has the set of non
negative integers as its domain. We have also
used one of the unary predicate names ~ n. In
addition, we assume that we have the binary
predicate >.

• The concrete domain R is defined as follows.
The domain of R is the set of all real num
bers, and the predicates of R are given by
formulae which are built by first order means
(i.e., by using logical connectives and quanti
fiers) from equalities and inequalities between
integer polynomials in several indeterminates. l

For example, x + Z2 = Y is an equality be
tween the polynomials p(x, z) = x + Z2, and
q(y) = y; and x > y is an inequality between

1 For the sake of simplicity we assume here that the
formula itself is the predicate name. In applications,
users will probably introduce their own intuitive names
for these predicates.

very simple polynomials. From these equalities
and inequalities one can, e.g., build the formulae
3z(x+z:l = y) and 3z(x+z2 = y)V(x > y). The
first formula yields a predicate name of arity 2
(since it has two free variables), and it is easy
to see that the associated predicate is {(r, s) I
r and s are real numbers and r :s s}. Conse
quently, the predicate associated to the second
formula is {(r, s) I r and s are real numbers} =
dom(R) x dom(R).

• The concrete domain Z is defined as R, with
the only difference that dom(Z) is the set of all
integers instead of all real numbers.

If we want to use the predicates of the concrete
domain in concept descriptions, we need an appro
priate interface between the concrete domain and
our abstract descriptions. If we reconsider the de
scription Human n Female n ~21(age), we see that
applying the concrete predicate ~21 to age makes
immediate sense only if the role age yields just one
nonnegative integer. 2 Thus, we introduce a new type
of roles, called attributes, which are required to be
functional. We are now ready to define the exten
sion A.cC(D) of ACC, which is parameterized by a
concrete domain D .

Definition 3.2 (Syntax/Semantics of A£C(D))
In addition to concept and role names, we have at
tribute names. Attribute names can be used like roles
in existential and in value restrictions of ACe. In
addition, the concept description formalism of A.cC
is extended by one new construct, called predicate
restriction. Assume that It" .. ,fm are m > 0 at
tributes. Then It ... f m is called an attribute chain.
If UI, ... ,Un are attribute chains and P is an n-ary
concrete predicate then P(Ul, ... ,un) (predicate re
striction) is a concept description.

The only differences between interpretations I of
A.cC(D) and ACC are:

• The abstract domain dom(I) is required to be
disjoint from domeD). As before, concepts are
subsets of the abstract domain, and roles are bi
nary relations on dom(I).

• Attributes f are interpreted as partial functions
P : dom(I) ---t dom(I) U dorn(D). They es
tablish the only link between the abstract and the
concrete domain.

The semantics of the predicate restriction is de
fined as

P(ul, ... ,unfl = {x E dom(I) 13rl, ... ,rn E dorn(D).
uf(x) = rl 1\ ... 1\ u~(x) = rn 1\

(rl' ... ,rn) E pD}.

2If age yielded a set of numbers as possible role-fillers,
it would not be clear what it means that this set is at
least 21 (its minimum, its maximum, its sum, average,
... ?) .

5

Here the application of the interpretation function
to the attribute chains Ui is the composition of the
respective partial functions .

Using the concrete domain N, we can now, for
example, define the concept of a "woman whose
husband is older than her father" as Woman n
(husband age > father age). The concrete domain
n is very useful for describing geometric properties
of objects. For example, assume that we need to
talk about rectangles in the plane whose sides are
paraUel to the axles of the plane. We can represent
such rectangles by their (lower left) corner, and the
(length of) the vertical and horizontal sides. Thus,
the concept "rectangle" can be described as

Axle-parallel-objectn

3corner.(R(x-coord) n R(y-coord)) n

3vertical-side.R+(length) n

3horizontal-side.R+(length),

where corner, x-coord, y-coord, vertical-side,
horizontal-side, and length are attributes, and
R is (a name for) the concrete predicate in n that
consists of all real numbers, and ~ is (a name for)
the concrete predicate in n that consists of all posi
tive real numbers. One can now also define a concept
"pairs of rectangles," which have as first compo
nent and as second component a rectangle (where
first and second are taken as attributes). As spe
cializations of this concept one can define pairs of
overlapping rectangles, rectangles containing each
other etc. by applying appropriate concrete predi
cates from n to attribute chains.

In order to obtain inference algorithms for the ex
tended language, one must combine the known rea
soning methods for A.cC with reasoning algorithms
for the concrete domain. This is only possible if the
concrete domain satisfies some additional properties.

For technical reasons (to be able to push negation
into concept descriptions) we require that the set of
predicate names of the concrete domain is closed un
der negation, i.e., if P is an n-ary predicate name in
pred(D), then there must exist a predicate name Q
in pred(D) such that QD = dom(D)n \ pD. In addi
tion, we need a unary predicate name that denotes
the predicate dom(D). The domain N from above
does not satisfy these properties. We must add the
predicate names <n and ~. The domains n and Z
satiSfy the properties.

The property that will be formulated now clari
fies what kind of reasoning mechanisms are required
in the concrete domain. Let PI, ... , Pk be k (not
necessarily different) predicate names in pred(D) of
arities nl, ... , nk. We consider the conjunction

k

1\ P;(;r(i)).
;=1

H (i) del ((i) (i)) f . ere;r stan s lor an ni-tup e Xl , ... , X n , 0 vari-
ables. It is important to note that neither all vari-

abies in one tuple nor those in different tuples are
assumed to be distinct. Such a conjunction is said
to be satisfiable iff there exists an assignment of ele
ments of dom(V) to the variables such that the con
junction becomes true in V.

For example, let P1(x,y) be the predicate 3z(x +
Z2 = y) in pred(R), and let P2(X,y) be the predicate
x > y in pred(R). Obviously, neither the conjunc
tion P1(x,y) /I. P2 (x,y) nor P2 (x,x) is satisfiable.

Definition 3.3 A concrete domain V is called ad
missible iff (i) the set of its predicate names is closed
under negation and contains a name for dom(V) ,
and (ii) the satisfiability problem for finite conjunc
tions of the above mentioned form is decidable.

The concrete domain R is admissible. This is a con
sequence of Tarski's decidability result for real arith
metic [Tarski,1951; Collins, 1975]. However, for the
linear case (where the polynomials in the equalities
and inequalities must be linear), there exist more
efficient methods (see e.g. [Weispfenning,1988j),
and in the quantifier-free linear case one even
has incremental methods for deciding satisfiabil
ity [Jaakola,1990; Jaffar et al.,1992]. The concrete
domain Z is not admissible since Hilbert's Tenth
Problem-one of the most prominent undecidable
problems [Matijacevic,1970; Davis,1973]-is a spe
cial case of its satisfiability problem.

In [Baader and Hanschke,1991j it is shown how the
tableau-based reasoning algorithm for ACC can be
extended to A£C(V), provided that V is admissible.

Theorem 3.4 If V is an admissible concrete do
main, then the subsumption problem is decidable for
ACC(V).

4 Integrating transitive closure
Transitivity of the "part-of" relation can be repre
sented by introducing a role direct-part-of, and
by defining the role part-of as the transitive clo
sure of direct-part-of. If one wants to allow for
a more fine-grained representation of the different
types of part-of relations (such as "component-of,"
"member-of," ...) and their transitivity-like connec
tions, one also needs composition and union of roles
[Sattler,1995j.

Definition 4.1 (Syntax of A.CC+)
The role descriptions of ACC+ are built from role
names with union (RUS), composition (RoS), and
transitive closure (R+) of roles. Concept descrip
tions in A.cC+ are defined as in ACC, with the only
difference that role descriptions can be used in value
and in existential restrictions.

For example, the relation "part-of" can be expressed
by the role description direct-part-of+, where
direct-part-of is a role name. Now assume that
we want to consider the specific part-of relations
"component-of" and "member-of." In order to ex
press not just that "component-of" is transitive, but

6

also that a member of a component is also a com
ponent, we can use the following description for the
"component-of" relation:

(direct-component-of U

(member-of 0 direct-component-of»+.

Definition 4.2 (Semantics of ACC+)
An interpretation of ACC is extended to role descrip
tions in the obvious way: (R U S)I = RI U SI,
(R 0 S)I = {(x,y) I 3z. (x,z) E RI /I. (z,y) E SI},
and (R+)I := Un~l (RI)n.

Theorem 4.3 The subsumption problem is satisfi
able for A£C+ .

This was shown in [Baader,1991j. The algorithm
is again tableau-based, but it is a lot more in
volved than the one for A.cC. In fact, a naive
adaptation of the tableau algorithm for ACC would
yield a non-terminating procedure. This decidabil
ity result can also be obtained by realizing that
A£C+ is just a syntactic variant of propositional
dynamic logic (PDL) [Schild,1991; Giacomo and
Lenzerini,1994], which is well-known to be decid
able. From the known complexity results for PDL we
can deduce that the subsumption problem for ACC+
is EXPTIME-COmplete, in contrast to only PSPACE
completeness for ACC.

5 Combining both extensions
The language A.CC(V)+ is obtained by combining
the extensions introduced in the previous two sec
tions. To be more precise, the concept description
language of ACC(V)+ is defined as follows:

Definition 5.1 (Syntax of ACC(V)+)
Role descriptions are built from role and attribute
names using the role-forming operators union (R U

S), composition (RoS), and transitive closure (R+).
Concept descriptions are built from concept names

and role descriptions using the concept-forming op
erators negation (.. C), disjunction (C U D), con
junction (C n D), existential restriction (3R.C),
value restriction (rt R.C), and predicate restriction
(P(Ul,"', un»). Here C and D are syntactic vari
ables for concept descriptions, R stands for a role de
scription, and Ul, . .. ,Un stand for attribute chains.

The semantics is the obvious combination of the se
mantics for ACC(V) and A.cC+.

If we take R as the concrete domain, this language
is expressive enough to define concepts that are of
great interest in technical applications. In fact, in
this language one can express both geometric prop
erties of objects (using numerical constraints from
the concrete domain R) and the structural decom
position of objects (using a transitive "part-of" re
lation which is expressed as the transitive closure of
the role direct-part-of+).

Unfortunately, the price one must pay for this ex
pressiveness is that the subsumption problem is no

longer decidable. This can be shown by reducing
the Post Correspondence Problem to the subsump
tion problem for AL:C(V)+.

First, we recall the definition of the Post Cor
respondence Problem. Let L be a finite alphabet.
A Post Correspondence System (PCS) over L is a
nonempty finite set S = {(li,Td Ii = 1, .. . ,m} where
the li, Ti are words over L. A nonempty sequence
1 ~ i l , ... , in ~ m is called a solution of the system
S iff lil .. ·lim = Til'" Tim' It is well-known that
the Post Correspondence Problem, i.e., the question
whether there exists a solution for a given system,
is in general undecidable if the alphabet contains at
least two symbols [Post,1946].

A solution of a PCS describes a sequence of pairs
of words with a previously unknown size. The vary
ing size is represented with the help of the transitive
closure on the abstract level, whereas the words are
encoded as real numbers, and their concatenation is
modeled by predicates of the concrete domain n.

More precisely, words are encoded as follows. For
B := ILl + I, we can consider the elements of L as
digits 1,2, ... , B-1 of numbers represented at base
B. For a given nonempty word W over~, we denote
by tv the nonnegative integer (in ordinary represen
tation at base 10) it represents at base B. We as
sume that the empty word c represents the integer
O. Obviously, the mapping W >-+ tv is a I-I-mapping
from L* into the set of nonnegative integers. Con
catenation of words is reflected on the corresponding
numbers as follows. Let v, W be two words over L.
Then we have vw = v' Blwl + tv, where Iwi denotes
the length of the word w.

We are now ready to define names for the predi
cates of the concrete domain R we shall use in our
reduction. For i = 1, ... , m,

cl(x, z) ¢:::::> z ="4 + x· BII ;!,

C;(x,z) ¢:::::> Z=Ti+ X · Bhl ,

E(x,y) ¢:=} x = y, and L(x) ¢:=} x = O.

Thus, if x is the encoding of the word lil .. ·lik_I'

and if cik (x, z) holds, then z is the encoding of the
word til" ·lik_llik' In addition, for words u, v we
have E(u, v) iff u = v, and L(u) iff u is the empty
word.

Let W" W r , and f be attribute names. The concept
description C(S) corresponding to the Post Corre
spondence System S is now defined as follows:

C(S) =
m

U (Cli(WI, f wI) n C;(wr, f wr)) n
i=l

L(wl) n L(wr) n

vr.(Q (Ci(wl,fWI)nC:(Wr,fwr))} n

=jJ+ .E(WI, wr)'

7

In addition, we consider the concept "bottom" thai
is always interpreted as the empty set. Obviously
this concept can be expressed by the description A r
...,A (where A is an arbitrary concept name).

Theorem 5.2 The concept description C(S) is sub
sumed by A n ...,A if, and only if, the Post Carre·
spondence System S does not have a solution. Can·
sequently, the subsumption problem for AL:C(V)+ it
undecidable.

A proof of this theorem can be found in [Baader and
Hanschke,1993]. It should be noted that in the con
cept C(S) we have used transitive closure of the at
tribute j, and this attribute also occurs in concrete
predicates. Thus, it is not clear whether undecid
ability still holds if transitive closure is restricted to
roles, which (by definition of predicate restrictions)
may not occur in concrete predicates. For example,
the direct-part-of role is usually not functional,
i.e., it cannot be introduced as an attribute, and thus
it must not occur in predicate restrictions.

References

[Baader and Hanschke, 1991] F. Baader and
P. Hanschke. A scheme for integrating concrete
domains into concept languages. In Proceedings
of the 12th International Joint Conference on Ar
tificial Intelligence, pages 452-457, Sydney, Aus
tralia, 1991.

[Baader arid Hanschke, 1993] F. Baader and
P. Hanschke. Extensions of concept languages for
a mechanical engineering application. In Proceed
ings of the 16th German AI-Conference, GWAI-
92, volume 671 of Lecture Notes in Computer
Science, pages 132-143, Bonn (Germany), 1993.
Springer-Verlag.

~Baader and Hollunder, 1991]
F. Baader and B. Hollunder. JCRXS: Knowledge
'Representation and Inference System. SIGART
Bulletin, 2(3):8-14, 1991.

[Baader et al., 1994] F. Baader,
E. Franconi, B. Hollunder, B. Nebel, and H.-J.
Profitlich. An empirical analysis of optimization
techniques for terminological systems, or making
KRlS get a move on. Journal of Applied Intelli
gence, 4:109-132, 1994.

[Baader, 1991] F. Baader. Augmenting concept lan
guages by transitive closure of roles: An alterna
tive to terminological cycles. In Proceedings of
the 12th International Joint Conference on Ar
tificial Intelligence, pages 4"46-451, Sydney, Aus
tralia, 1991.

[Brachman and Schmolze, 1985] R. J. Brachman
and J. G. Schmolze. An oveI:Yiew of the KL-ONE
knowledge representation system. Cognitive Sci
ence, 9(2):171-216, 1985.

[Brachman et al., 1991a] R. Brachman, D. McGuin
ness, P. Patel-Schneider, L. Resnick, and
A. Borgida. The CLASSIC knowledge represen
tation system: Guiding principles and implemen
tation rationale. SIGART Bulletin, 2(3):108-113,
1991.

[Brachman et al., 1991b] R. J. Brachman, D. L.
McGuinness, P. F. Patel-Schneider, L. A. Resnick,
and A. Borgida. Living with CLASSIC: When and
how to use a KL-ONE-like language. In J. Sowa,
editor, Principles of Semantic Networks, pages
401-456. Morgan Kaufmann, San Mateo, Calif.,
1991.

[Collins, 1975] G. E. Collins. Quantifier elimina
tion for real closed fields by cylindrical algebraic
decomposition. In 2nd Conference on Automata
Theory 8 Formal Languages, volume 33 of LNCS,
1975.

[Davis, 1973] M. Davis. Hilbert's tenth problem
is unsolvable. Am. Math. Monthly, 80:239-269,
1973.

[Donini et al., 1991a] F. Donini, M. Lenzerini,
D. Nardi, and W. Nutt. The complexity of concept
languages. In Proceedings of the 2nd International
Conference on Principles of Knowledge Represen
tation and Reasoning, pages 151-162, Cambridge,
Mass., 1991.

[Donini et al., 1991b] F. Donini, M. Lenzerini,
D. Nardi, and W. Nutt. Tractable concept lan
guages. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence, pages
458-463, Sydney, Australia, 1991.

[Donini et al., 1992] F. Donini, B. Hollun-
der, M. Lenzerini, A. Spaccamela, D. Nardi, and
W. Nutt. The complexity of existential quantifi
cation in concept languages. Journal of Artificial
Intelligence, 53:309-327, 1992.

[Giacomo and Lenzerini, 1994] G. D. Giacomo and
M. Lenzerini. Boosting the correspondence be
tween description logics and propositional dy
namic logics. In Proceedings of the Twelfth
National Conference on Artificial Intelligence,
AAAI-94, pages 205-212. AAAI-Press/The MIT
Press, 1994.

[Hollunder and Baader, 1991]
B. Hollunder and F. Baader. Qualifying number
restrictions in concept languages. In Proceedings
of the 2nd International Conference on Princi
ples of Knowledge Representation and Reasoning,
pages 335-346, Cambridge, Mass., 1991.

[Hollunder et al., 1990] B. Hollunder, W. Nutt, and
M. Schmidt-SchauB. Subsumption algorithms for
concept description languages . In Proceedings of
the 9th European Conference on Artificial Intelli
gence, pages 348-353, Stockholm, Sweden, 1990.

R

[Hollunder, 1990J B. Hollunder. Hybrid inferences
in KL-ONE-based knowledge representation sys
tems. In 14th German Workshop on Arti
ficial Intelligence, volume 251 of Informatik
Fachberichte, pages 38-47, Ebingerfeld, Germany,
1990. Springer-Verlag.

[Jaakola,1990] J . Jaakola. Modifying the simplex
algorithm to a constraint solver. In P. Der
ansart and J. MaluszyIiski, editors, Proceedings of
the International Workshop on Programming Lan
guage Implementation and Logic Programming,
PLILP'90, number 456 in Lecture Notes in Com
puter Science, pages 89-105. Springer Verlag,
1990.

[Jaffar et al., 1992] J. Jaffar, S. Michayov,
P. Stuckey, and R. Yap. The CLP(R) language
and system. ACM Transactions on Programming
Languages and Systems, 14(3):339-395, 1992.

[MacGregor, 1991] R. MacGregor. Inside the
LOOM classifier. SIGART Bulletin, 2(3):88-92,
1991.

[Matijacevic, 1970] Y. Matijacevic. Enumerable sets
are diophantine. Soviet Math. Doklady, 11:354-
357, 1970. English translation.

[Mays et al., 1991] E. Mays, R. Dionne, and
R. Weida. K-Rep system overview. SIGART Bul
letin, 2(3):93-97, 1991.

[Peltason, 1991] C. Peltason. The BACK system
- an overview. SIGART Bulletin, 2(3):114- 119,
1991.

[Post, 1946] E. M. Post. A variant of a recur
sively unsolvable problem. Bull. Am. Math. Soc. ,
52:264-268, 1946.

[Sattler, 1995) U. Sattler. A concept language for
an engeneering application with part-whole rela
tions. In A. Borgida, M. Lenzerini, D. Nardi, and
B. Nebel, editors, Proceedings of the International
Workshop on Description Logics, pages 119-123,
Rome, 1995.

[Sattler, 1996) U. Sattler. The complexity of con
cept languages with different kinds of transitive
roles. In 20. Deutsche Jahrestagung fUr Kiinstliche
Intelligenz, K1'96, Lecture Notes in Artificial In
telligence. Springer Verlag, 1996. To appear.

[Schild, 1991) K. Schild. A correspondence theory
for terminological logics: Preliminary report. In
Proceedings of the 12th International Joint Con
ference on Artificial Intelligence, pages 466-471,
Sydney, Australia, 1991.

[Schmidt-SchauB and Smolka,' 1991)
M. Schmidt-SchauB and G. Smolka. Attributive
concept descriptions with complements. Journal
of Artificial Intelligence, 47:1-26,1991.

[Tarski, 1951] A. Tarski. A D(!{;ision Method for EL
ementary Algebra and Geometry. U. of California
Press. Berkley, 1951.

[Weispfenning, 1988] V. Weispfenning. The com
plexity of linear problems in fields. J. Symbolic
Computation, 5:3-27, 1988.

9

01

The Role of Formal Knowledge Representation in Configuration

Hans-Jiirgen Biirckert, Werner Nutt, Christian Seel
German Research Center for Artificial Intelligence - DFKI GmbH

Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
e-mail: {hjb.nutt}<Odfki.uni-sb.de

1 Introduction

Configuration is a traditional application of Ar
tificial Intelligence techniques. However, in con
trast to related areas like Planning, there are
only few attempts to provide a formal defini
tion of configuration problems and to solve such
problems with formally well-founded methods.
One reason to change this situation is related
to the methodology of doing research.

• A formalization of configuration problems
and solutions facilitates the communication
of results within the field and with other
areas. The degree to which such a formal
ization has been achieved can be seen as an
indicator for the degree of maturity of the
field.

In Knowledge Representation (KR) the typ
ical approach is to formulate real world prob
lems as inference problems in a suitable logic,
e.g., for a given expression, decide whether it is
satisfiable, whether it is a consequence of other
expressions, find a model for it, or find a partic
ular kind of consequence.

In the area of configuration, such contribu
tions are rare up to now and they only de
scribe selected' aspects of implemented systems
(see e.g. the abstract formulation of structure
oriented and resource oriented configuration in
[5] or the constructive problem solving (CPS)
model of [2]) describing configuration as model
construction.

One of the advantages to be gained from this
approach is that issues like correctness and ad
equateness of a representation can be discussed
independently of the implemented solution pro
cedure. For example, it is reasonable to ex
pect that generic configuration problems are
NP-hard, but one should be skeptical with a for
malization where configuration problems are no

more in the class NP: it might be difficult to find
a solution, but the size of a solution should be
polynomial in the size of the specification and
it should be "easy" to verify that a structure
satisfies the specification.

A model of configuration problems should be
the basis for designing an adequate domain rep
resentation language and for developing a solu
tion procedure for the addressed configuration
tasks. One can evaluate the procedure with re
spect to the representation and determine prop
erties like correctness and completeness.

As an additional advantage, it will be eas
ier to compare questions in configuration with
questions in other areas and to transfer results.

In the sequel we will give some more evidence
for our argumentation here. We briefly sketch
the model, some results and problems given by
Najmann and Stein [5]. We then recall and dis
cuss the CPS model of Buchheit, Klein, and
Nutt [2]. Finally we summarize some results
by one of the authors [6], who used the latter
approach and compared the usage of a general
KR system CLASSIC [1] and of the CPS system
[2] for customizing retail information systems.

2 The Model of N ajmann and Stein

In Germany two different views of configura
tion systems have been established. The re
source oriented approach is the basis of sys
tems like COSMOS [4] or MOKON [7] while the
PLAKON system [3] is based on a skeleton or
structure oriented approach.

Najmann and Stein [5] developed a formaliza
tions of both resource oriented and skeleton ori
ented configuration problems as mathematical
structures which allows a comparison of the two
approaches. As a main resulUhey show that
from their theoretical point of view-there is
only a minor difference, since the skeleton ori-

11

cnted systems turn out as a special case of re
source oriented ones.

In the following we will briefly sketch their
model and discuss some of the problems with
their abstraction. In their model Najmann and
Stein describe configuration systems as mathe
matical structures with seven components:

• a set of objects,

• for each object:

- a set of properties (functionality-value
pairs),

• a set functionalities,

• for each functionality:

- a set of values,
- an addition operator,
- a test,

• a set of demands (functionality-value
pairs).

The configuration process is modeled as a fi
nite sequence of compositions of objects con
trolled by the addition operators of the func
tionalities. Solutions are determined as config
urations that fulfill the demands which is ap
proved by the tests. With slight adaptation and
less formally we will summarize their approach
through a more convenient "object-oriented"
definition of configuration problems.

A configuration problem consists of three
main parts: the components, the description of
how the components can be composed to config
urations, and the specification of when a com
posed configurations is a solution.

The components are given as objects with at
tributes and values. The attributes are func
tional (Le. single valued) with associated sets of
admissible values. They reflect the functionali
ties of the objects. Najmann and Stein do not
specify the values in detail. Thus there may be
concrete values like strings or integers and there
may be abstract values, which may be objects
again-although the description suggests that
they address concrete values only. For a con
figuration several "copies" of the objects (with
potentially different values for their attributes)
may be composed (see below).

The operators describe how objects can be
composed, in order to obtain configurations. An
operator is a partial function on the set of ad
missible values of an attribute. A composition
of two objects-in slight adaptation of Najmann

and Stein's definition-can be considered as a
new object which inherits all attributes of the
composed objects. If the two objects have an at
tribute in common (with different or the same
values), the operator for that attribute com
putes a new admissible value from the given
ones, that will hold for the composition. A con
figuration is a finite sequence of compositions,
and thus may again be considered as an object.

The tests specify when such a configuration is
a solution with respect to given demands. Tests
are partial boolean functions on the admissible
values of an attribute. The set of demands con
sists of pairs of attributes and values. A test for
an attribute approves whether in the composed
configuration the value of that attribute is ad
missible with respect to the demanded value for
that attribute. Thus the tests decide when a
configuration satisfies the demands, in order to
be a solution to the given configuration prob
lem.

This model is an abstrac~ion of resource ori
ented configuration problems, which models the
resource dependencies of configurations. In ex
tension to that Najmann and Stein's model for
skeleton oriented configuration problems has in
addition rules that specify the structural depen
dencies between components in the sense that
they express the requirement for the existence
of (alternatives of) components, if certain other
components are already included. However, the
above model is abstract enough to express struc
tural dependencies by new functionalities, op
erators and tests, which by the given level of
abstraction is of course not as surprising as the
authors mentioned. The skeleton rules are sim
ple constraints on the admissibility of configu
rations and hence it is not really surprising that
that information can be coded into suitable test
functions, since those are not restricted in any
way.

12

Because of the high abstraction describing
configuration problems as mathematical struc
tures, the model has some deficiencies. For in
stance, it is rather difficult to see for a con
crete system whether and how it fits into the
model. Furthermore, it is hardly possible to use
that model as a basis for comparing configura
tion problems with other problem solving areas
and hence to transfer results between these ar
eas (which, however, was not the intention of
the authors). As tests and operators are mod-

eled as abstract functions, questions concerning
the solvability (of tests) or the composability
(by operators) cannot be addressed adequately.
The model does not allow to distinguish the pro
cess of configuration and its result, the config
ured object. For that reason properties like cor
rectness etc. of the configuration process can
not be studied. Aspects like strategic and con
trol information aren't captured either. It also
does not provide a description of the require
ment specification of specific configuration tasks
to be solved. Since configuration problems are
modeled as finite structures, configurations with
arbitrary values are not captured.

The approach of Najmann and Stein has
turned out useful as it allowed some discussion
and comparison of resource and skeleton ori
ented approaches by polynomial reductions be
tween the two models. Furthermore Najmann
and Stein could show that checking for the ex
istence of a solution is NP-complete for the two
models and therefore computing a solution and
computing cost bounded solutions is at least
NP-hard.

The formalization of Najmann and Stein is
a simple and abstract model of configuration
problems, which to some extent already mod
els the "logic" of configuration systems: The
iterative configuration process can be seen as
an abstraction of a logical inference that com
poses a configuration with a set of functionali
ties. A configuration is a solution, if it satisfies
the demands, i.e. if it is a model of the set of
demands. In the next section we will discuss a
more concrete formalization of configuration as
logical inference process.

3 The Model of Buchheit, Klein,
and Nutt

In contrast to the above model Buchheit, Klein,
and Nutt [2] explicitly describe a configuration
problem as an inference problem. They distin
guish between a (declarative) representation of
the domciin and task knowledge of a configura
tion problem on the one hand and a (rule-based)
operationalization of a configuration problem as
an (abductive) inference process selecting and
composing the components in order to solve the
specified configuration task on the other hand.
In their model they provide the general struc
ture and properties of components and general
constraints for structural composition of ad mis-

sible configurations (summarized as the domain
knowledge) as well as the specification of re
quirements for a specific configuration task (the
task knowledge). The inference process has to
take into consideration and to approve the con
straints for selection and composition, namely

13

• the general conditions for composing com
ponents in order to obtain an admissible
configurations at all, and

• the specific requirements for selecting and
composing components to a solution satis
fying the required functionalities of the con
figuration at hand.

Such an approach allows the comparison of
configuration systems according to their mod
eling of the configuration domain and their re
alization of the configuration process itself as
well as general investigations about represen
tation formalisms and inference processes and
their adequateness for configuration problems.

Formally the knowledge of the configuration
domain is given as a set of logical formulas
(in an adequate logical Ianguage) describing the
components and their functionalities and the
constraints about their composability. The re
quirement specification of a specific configura
tion task is again a set of logical formulae. A
solution of the configuration problem is then a
model of the configuration domain satisfying the
requirement specification. Of course, it is conve
nient to describe a solution not as an arbitrary
logical model of these sets of formulae, but in
terms of the names of the components and their
properties. In that sense, such a solution can be
seen as a (partial) Henkin or Herbrand model of
the configuration domain and the requirement
specification. 1

The inference process is an abductive infer
ence process that generates a (description of a)
partial Henkin model: Given both the domain
knowledge D and the requirement specification

IThat means, the universe of the model are the
ground terms of the logical language. Since the formulae
must not be given in clause form it is not required that
all implicit object (coded through existential quantifiers)
are named by constants or by ground terms (so-called
witnesses) 88 it is usual for Herbrand or Henkin models.
Therefore such a model will not necessarily be described
by a set of ground atoms. More complex ground formulae
may be allowed, for example, the implicit objects have
still to be coded through existential quantifiers. Fur
thermore not all properties may be of interest and hence
be reported in the description of a solution. For those
reasons we will speak of a partial Henkin model.

R over the same logical language E a config
uration solution C is a partial Henkin model
(characterized by a set S of ground formulas)
over a sUblanguage Eo of E, such that C satis
fies the domain knowledge D and the require
ments R, Le., C 1= D and C 1= R. Slightly
more detailed Buchheit, Klein, and Nutt also
differentiate definitional knowledge describing
the structure of the configuration domain (as
types of components and their functionalities
and relationships)2 and integrity constraints ex
pressing necessary conditions which components
of a configuration have to satisfy or ruling out
certain combinations of components as impos
sible. They also define a solution as an arbi
trary Eo-model satisfying the above conditions.
This, however, seems to be to abstract and con
sequently it turns out that their inference pro
cedure in fact constructs partial Henkin models
in terms of sets of ground formulas over Eo.

Buchheit, Klein and Nutt exemplify their ap
proach in detail by providing a sample domain
representation language and for that language a
rule-based, tableaux-like calculus for construct
ing configurations. They show properties of that
calculus like model preservation of the rules and
correctness of the calculus. They mention that
this calculus is a conceptual result, which is not
to be used as an implementation specification,
since strategies and control has to be added as
well as user interaction. Thus their model of a
configuration problem as "the task to construct
for a given specification, which is understood
as a finite set of logical formulas, a model that
satisfies the specification" has still some limits.
Certainly one can use the CPS system directly
as a configuration system. However, its lan
guage is too expressive, in the sense that the
underlying calculus is undecidable. N evert he
less the approach demonstrates that such a.p. ab
stract view is useful in providing the ability of
more detailed general investigation of properties
of configuration problems. It also demonstrates
that a formal view of the knowledge represen
tation of a configuration system together with
a formal description of the configuration as an
inference process allows much more insight in
those properties.

2 Notice, that this knowledge is definitional in the
sense that it can be used in order to uniquely extend
a Eo-model to a E-model.

Based on such an abstraction a configura
tion system can be developed on a much more
serious basis than the usual more experimen
tal approaches: Starting with an analysis of
the configuration domain and the requirements
of the representation model, we can design a
suitable representation language for the com
ponents, their functionality and their relation
ships as well as for the constraints to admissible
configurations. Here several alternatives can be
taken into account and they can be compared
on a formal and solid basis. An abstract calcu
lus can be derived for realizing the configuration
process. Again properties of that calculus can
be investigated on a formal and solid basis. Fi
nally based on that results common software de
velopment techniques can be applied to specify
and realize the configuration system with strate
gic and control information, interaction needs
for the user etc.

The CPS approach has been implemented
prototypically at DFKI. It has been instanti
ated and tested for some applications, e.g. with
sample knowledge bases for PCs and for pro
grammable logic controls. In the next section
we sketch another application, where the ap
proach has been applied to a problem which is
not a classical configuration task.

4 A Summarized Comparative Study

In his diploma thesis [6] one of the authors inves
tigates the usage of configuration approaches for
customizing retail information systems. Based
on the CPS model of Buchheit, Klein, and Nutt
a configuration approach to that problem is con
sidered. In collaboration with a software house
the approach has been implemented as part of
the thesis. We briefly recapitulate one of the
results.

One aim of the thesis was a comparison of
the usage of a classical knowledge representa
tion system on the one hand and a special con
figuration system on the other hand. Based on
an analysis of the domain requirements of cus
tomizing those retail information systems, the
CLASSIC knowledge repr~entation system [1]
and-because a standard configuration system
has not been available-the CPS approach [2J as
potential configurators are compared according
to the following three crucial criteria, language,
functionality, and interactivity.

Language. The main question was, whether
the language provides the constructs needed to
configure such retail information systems. The
development of the sales domain showed that
we need constructs, which can describe a de
composition tree as well as external effects on
the the tree's form. Taxonomic relations and
part-of relations have to be modeled, and con
straints for describing the real part-of-relations
are needed. In addition rules for describing the
external effects are necessary.

Since the two languages of both CLASSIC
and CPS provide all these facilities there is no
conceptual difference between the two. Differ
ences, however, come up, when the detailed syn
tax is considered: the rules of CLASSIC are
to restricted and it does not allow for model
ing disjunctive information, e.g. for alternative
configurations. Therefore CPS came up to be
more suitable for modeling customization of re
tail information systems, and of configuration
in general.

Functionality. It turned out that CLASSIC
originally is developed as a knowledge classi
fication system. That means the classifier is
the heart of the system, which, however, does
not play the important role in configuration.
Much more important is here the functionality
for proving constraints and for applying rules.
A classical, purely rule-based expert system
would on the other hand also not be the op
timal choice, since much information had to be
described as taxonomic and partonomic infor
mation, which would not be that comfortable
with rules.

The two systems have turned out to be nev
ertheless similar suitable for configuring and
parameterizing the retail information systems
form the given specifications. The main dif
ference again comes from the difference in lan
guages. While CLASSIC does not solve nonde
terminism adequately, since it does not support
disjunctive modeling on the class level, CPS
tries to evaluate all possible solutions for the
configuration task at hand. CLASSIC would
need a suitable extension through its implemen
tation language, in order to support this.

Interactivity. Here clearly CLASSIC had
some advantages. The user can interactively
influence the configuration process by propos-

ing modification of the solution. Currently this
is unfortunately only supported by textual in
put. A graphical extension for those interac
tions should, however, be easily possible. In ad
dition CLASSIC's inference engine provides ex
planations, if the user is interested in. Similar
extensions for CPS are currently under devel
opment. Other useful extensions are facilities
for incremental inspection both of the domain
model and of the configuration solutions.

5 Conclusion

We have discussed and compared two abstract
models of configuration systems and sketched
an application of the idea behind one of these
models for a comparison of suitability of two
different approaches to develop a configuration
system.

The reason was to demonstrate the advan
tage of such a formal basis for the field of con
figuration systems and the necessity of such a
direction from a research-methodological point
of view.

A completely different motivation for provid
ing a formal basis to the field is rela.ted to new
potential applications of configuration systems.

• In the future, more and more products will
allow for a sufficient number of variants
such that for every customer an individual
solution can be provided. Thus, configu
ration will become ubiquitous in sales and
production. As a consequence, software
systems for configuration will no longer be
customized for one particular application,
but will solve generic problems.

A system that is intended as a platform for
many different applications has to implement an
abstract model of configuration. This does not
necessarily imply that such a model has to cover
all possible kinds of configuration applications.

On the contrary, it is likely that a situation
will emerge similar to the one for databases,
which are a widely used kind of generic soft
ware. Data models and query languages can be
described logically. But different models (e.g.,
the relational, the multidimensional,the object
oriented) are suited for different classes of ap
plications.

References

15

[1] R. Brachman, D. McGuiness, P. Patel
Schneider, L. Resnick, and A. Brogida. Liv-

ing with CLASSIC, when and how to use
a KL-ONE like language. In Principles of
Semantic Networks. Morgan Kaufmann,
1990.

[2] M. Buchheit, R. Klein, and W. Nutt. Con
figuration as model construction: The con
structive problem solving approach. In
Proc. of the 3rd International Confer
ence on A rtificial Intelligence in Design,
AID '94, 1994.

[3] R. Cunis, A. Giinter, and H. Strecker. Das
PLAKON Buch. Informatik-Fachberichte
266, Springer, 1990.

[4] M. Heinrich and E.W. Jiingst. A Resource
based Paradigm for the Configuring of
Technical Systems from Modular Compo
nents In Proceedings of CAIA '91, pp. 257-
264, 1991.

[5] O. Najmann and B. Stein. A theoretical
framework for configuration. In Proceedings
of the 5th lEA AlE, 1992.

[6] C. Seel. Wissensbasierte Konfiguration
von Warenwirtschaftssystemen. (German)
Diploma Thesis. University Saarbr"ucken,
1996.

[7] B. Stein and J. Weiner. MOKON. Internal
report SM-DU-178, Uni Duisburg, 1990.

16

Multiple Part-Hierarchies

Anne Engehausen, Simone Pribbenow, VlC Toter
Universitat Hamburg

Fachbereich Informatik
Vogt-Kolln-StraBe 30, 22527 Hamburg

e-mail: {lengehau.pribbeno.ltoeter}@infonnatik.uni-hamburg.de

Abstract: The representation of knowledge about
objects is necessary for most configuration tasks.
Especially important for most applications is extensive
knowledge about the compositional or part hierarchy of
the enties to be configured. The goal of this
contribution is to discuss the problems arising by
modeling the part hierarchy of objects. If formalisms
like terminological logics should be used, it is
necessary to consider the specific properties of the part
whole relation. In this article, we first mention the
formal regularities of the relation and the differentiation
into different kinds of part-whole relations. In the
remainder, we will concentrate on the question what
kind of ontological entites could be parts of objects.
The point is discussed for configuration of all kinds of
buildings , e.g., the design or modification of the lay
out of flats, houses, and so on. The discussion leads to
an ontology of design objects and to multiple views on
one and the same entity.

1 Knowledge about parts
The representation of knowledge about objects is
necessary for most configuration tasks. Compositional
and taxonomical relations are used to model the
application domain and to form abstraction principles
claimed as one way to guide the search through huge
configuration spaces. Especially important for most
applications is extensive knowledge about
compositional relations (cp. [Biundo et al. 93], [Cunis
et al. 91]) which are often called "part-whole" or "part
of' relations in knowledge representation contexts.
These compositional or "part-whole" relations build up
hierarchies, sometimes called "partonomies" in parallel
to "taxonomies" representing "is-a" hierarchies. Part
hierarchies or partonomies normally form trees because
the whole object is supposed to be divided into disjunct,
non-overlapping parts, which themselves are divided in
the same way and so on. 1 If a formal representation of
partonomies or part hierarchies should be given, e.g.,

I Please note that the same do not hold for the
mereoJogical "part-of' or "proper part-of' relation, which
was invented as an alternative to set theory (compare for
example [Simons 87] for an overview of Classical
Extensional Mereology). The transitive and asymmetric
mereological "proper part-of" relation forms a lattice
without zero element because there always exists a (unique)
mereological sum for any non-empty class of existing
individuals.

17

by using terminological logics, some problems must be
considered.

First, at least some of the formal properties of the
part-whole relations must be guaranteed. For example,
the transitive closure of the part-whole relation must be
available through inference. Otherwise it is not possible
to compute indirect relations which are nevertheless
important in most of the configuration tasks . As the
contributions of Baader and Sattler in this volume show
the property of transitivity is not easy to implement in
terminological logics. Other properties, which are
interesting, are the irreflexivity and asymmetry on the
individual level, while part-whole relations on the
conceptual I terminological level are reflexive and
antisymmetric. On each level it is normally assumed
that objects are only the same if they do not only have
the same parts but also share the same spatial and
functional relations between these parts. Most of the
mentioned properties cannot be provided in an explicit
way by terminological logics but must be "build-in" in
specialized formalisms. On the long run, it might be
more flexible and adequate to . use a formalism that can
express and handle properties of relations in a more
general way.

Second, a detailed analysis shows that there is more
than one kind of part-whole relation. This assumption
was first made to cope with various problems of
intransitivity. As a result, several classifications of part
whole relations were developed. Perhaps the most
important one is that of Winston, Chaffin and Hermann
[Winston et al. 87] which was designed from a
linguistic point of view. Different part-whole relations
require different ways of processing them. Therefore
some knowledge based systems were build up in the last
years that use more than one kind of part relation. e.g.,
the approaches of [Uschold 95] or [Markovitz et al. 92].
A domain independent and processing oriented approach
for a classification of part-whole relations is given in
[Gerstl & Pribbenow 95]. The approach assumes two
different classes of parts which are represented and/or
processed in different way. The first class are the so
called "structure dependent" parts that are given by the
internal structure of an entity, e.g., the components of a
car. As those decompositions are permanent the
resulting part-whole relations belong to the conceptual
knowledge of the decomposed entity. The second class
of parts are constructed parts which could be computed
by using internal features like color or external schemes
like spatial frames for partitioning an object. Examples
of such parts are "the metal parts -of her car" or "the left

half of his car" . The referred parts are temporary
constructions and do not belong to domain knowledge;
they are computed by construction processes. A first
approach to model some of this different relations in a
rich terminological logic is described in [Gerstl 93].

Third, it is not really clear what kind of entities could
be parts of a configuration. Normally parts are three
dimensional, solid objects like the back, the seat and the
legs of a chair. In many domains it is sufficient to
consider only solid objects as entities. For modeling the
parts of a car this is not enough because it includes
liquid entities like radiator water which must be
considered as mass and even non-material parts like the
interior. In the domain of rooms, flats, and buildings
this problem is even more convincing. We will discuss
this problem and possible solutions in the following
section.

2 Considerations about buildings
For the design of flats, houses, factories, and so on, the
world knowledge needed for the configuration task
includes part hierarchies of buildings. There are at least
two kinds of entities that should be considered. Three
dimensional, solid parts as walls, floors, and roofs are
important if you try to build, rebuild, or modify a
building. "Induced", that means only dependent from
material objects existing entities as interiours and
surfaces are important for designing flats or functional
buildings. We will show that the representation of such
different ontological entities can be achieved by using
multiple partonomies. As preparation, we will have a
look at different possibilities to describe buildings or
flats by single partonomies.

A (minimal) example is given in figure I that shows
a flat consisting of two adjacent rooms, a door between
them and the five walls, that build up the rooms. Is it
possible to give one partonomy that describes the
situation in a correct and adaquate way? The first step to
answer this question is to decide what kinds of entities
should be taken into account.

wall 4

(room I) wall 2

wall I door wall 3

(room 2)1

wallS

Fi Ian of a flat

Alternative A:

The first possibility is to look at material objects
only. In our example, this ontological decision reduces
the flat to five walls and a door. The two rooms cannot

18

be addressed as objects having certain properties like
size or shape. In that situation it even does not make
sense to speak of a two-room-appartmenl. Therefore,
alternative A is only of limited use and will therefore
not be further analyzed.

Alternative B:

The second possibility is to make no distinction in
representation and processing between rooms and
material objects like walls and doors. Figure 2 shows
the resulting partonomy which simply divides the flat
into the two rooms. the five walls and the door.2 No
information about the relations between rooms and
walls is available. e.g., which walls surround each of
the rooms. The missing information leads to a crucial
problem: You can remove wall 2 without melting the
two rooms into one! The reason is that the
representation deny the dependencies of rooms from
walls and treated rooms as independent entities. If
alternative B is used correctness with respect to rooms
cannot be garanteed automatically but must be checked
after each addition or deletion of walls . Local
modification are inefficient and easily faulty if such
kinds of partonomies are used.

flat

room 2 wall 2 wall 4 door

Figure 2: Partonomv of the flat for alternative B

Alternative C:

The next possibility focusses on rooms as primary
objects. The flat is divided into the two rooms which
themselves are built up by the walls that surround
them. For example, room 1 is built up by wall I, wall
2, and the left halves of wall 4 and wall 5. To achieve
that, wall 4 and wall 5 must each be divided into parts a
and b which belong to different rooms (see figure 3).
This view causes two problems. First, the information,
that each wallpart a together with each wallpart b form a
complete wall is lost. Second, the whole wall 2 is used
to build up the two different rooms. Wall 2 cannot be
divided into wallparts in a natural way like wall 4 or
wall 5; a longitudinal separation would be possible but
highly artificial. The resulting partonomy has the form
of a graph and not of a tree because wall 2 belongs to
both rooms. The effect is that the two rooms overlap
which in fact is not true. A formal representation
modeling the two rooms as disjunct, non-overlapping

2 Another possible partonomy for alternative B
represents the door as part of wall. 2 as shown in figure 3.
This slight modification does not soJve the basic problems
of alternati ve B.

entities is not possible. The problem of material objects
like walls and false ceilings belonging to more than one
"induced" object like rooms or floors multiplies if
buildings are considered.

flat

~
room I 1'00I1I2

masonry

Fil!:ure 3: Partonomv of the flat for alternative C

3 Ontological considerations and
multiple partonomies
The problem to build up one single partonomy is
caused by the different ontological status of the entities
involved in the example. The door and the walls are
solid. three-dimensional objects while the rooms are
only cavities. that means "bounded hollow spaces". As
mentioned above a room can only exist if there is at
least one wall to bound it (like the internal space of a
ball). So. in opposition to solid objects. that can exist
by themselves. cavities can be classified as derived
entities. that are induced by other objects and cannot
exist on their own. In addition to cavities the class of
derived objects contains surfaces (two-dimensional),
lines (one-dimensional) and points (null dimensions)
that can be summed up as boundaries. Figure 4 shows
all the entities hierarchically structured in an ontology.

Fil!:ure 4: Ontolo

There has already been made an approach to
distinguish between different kinds of objects by
[Landau & lackendoff 93], whose research about "names
for things" in natural language leads to the distinction
between solids that are three-dimensional. solid objects,
containers. e.g. a cup or a box, negative objects like a
scratch and sUrfaces. Note, that Landau and lackendoff
use the notion of a surface for three-dimensional objects
that are conceptualized as two-dimensional like a sheet
of paper or a record.

The result of considering the ontology given in
figure 4 in constructing the partonomy of the flat is
shown in figure 5. A room is now regarded as a bounded
hollow space with the surfaces of the surrounding walls

19

serving as its boundaries. To achieve this effect. the
surfaces of the solid object. in our example of the walls
and the door. must be introduced as further relevant
(derived) parts. Then. it is possible to describe the
surfaces of the walls. that are visible from the rooms.
The wall-surface 2.1 including door-surface 1 and
mansonery-surface 2 .1 belongs to room I and wall
surface 2.2 including door-surface 2 and mansonery
surface 2.2 is part of room 2. The solid, material wall 2
itself belongs to neither of the rooms but only to the
solid parts of the flat itself.

wall 1

wall 4 r.-------
~ - --, r---,
(room I) fall 2
I I

door~ I
1

I
(room 2)

- - -- L _ __ ,

wall 5
surfaces

-I ,
wall 3

Fil!:ure 5: Flat with solid and derived Parts

Following these considerations, a single partonomy
could be given like the one shown in figure 6.
Unfortunately, for many objects derived and solid parts
exist. Therefore most levels are a mixture 6f
ontologically different entities. Additionally, the new
hierarchy resembles more a lattice structure than a tree
because the surface parts are shared between rooms and
walls. This does not cause the same problems than the
two rooms sharing wall 2 in alternative B described
above. Wall 2 as a material object causes an overlap of
the sharing objects while the surfaces as two
dimensional, derived objects behave neutral.
Nevertheless, an adequate partonomy is normally
supposed to be a tree as we stated in section 1.

flat

w~l ~
:: ;:t:k ... ~,., :::I'"~ >2

masonry

Fi of the flat

One possibility to avoid this mixture is to build up
two partonomies for the flat, one for a solid view and
one for a derived view. according to the distinction
between solid and derived objects. Two possible
partonomies are shown in figure 7a and b; the derived
partonomy is presented in a reduced version. where only
a few of the wall-surfaces are listed. Please note, that
only the two partonomies together give a complete
representation of the whole flat.

flat (solid)

wall 2
wall I ./\

./ \ wall3

door masonry

Fi

wall 5

of the flat

flat (derived)

~
room I

Wal~
surface 2.1

~
door- masonry-
surface I surface 1

room 2

~
wall
surface 2.2

............-.............
door- masonry-
surface 2 surface 2

Fi~ure 7b: Derived partonomy of the flat

To model multiple partonomies it is necessary to use
a representation language able to handle views, e.g. the
BHIPS concept-hierarchy representation language
described by Cunis in [Cunis et al. 91]. In BHlPS the
two views on flats or buildings are similar to view
overlapping concepts with a fixed linking of views, in
our case the derived and the solid one. Contrary to what
we will present in the next section, there seem to be no
possibility to model the existing connection between
the two views.

4 Interaction of multiple partonomies
If an object is described by mUltiple partonomies in
different views, it is normally necessary to have some
kind of correlation between the different hierarchies. One
need for correlation is caused by constraints that
interrelate between components or features described in
different partonomies. If, for example, the breadth of the
door should be exceeded, the effect on other solid objects
must be computed. A larger door would also lead to
larger door-surfaces and this information has to be
processed by some kinds of links connecting the
different partonomies. In general, there are two
possibilities to represent the correlation: a declarative
and a geometric one. A declarative representation
explicitly names every single relation between a
material object and its derived parts, e.g., the relation
between all derived surfaces of a wall. A geometric
representation as a spatial model of the domain
implicitly contains all relations between solid and
derived objects.3 Special procedures are needed to make

3 An analysis of the role of diagrams and other analog
spatial formalisms in the representation of partonomies is
given in [Habel et al. 95) .

20

them explicitly available. The geometric solution is
recommended if a spatial task is carried out which
requires some kind of arrangement model anyway.

The remainder of this section presents a short
description of our system Teigar, that models the part
structure of solid objects and processes concerning
conceptual and constructed parts (for a more detailed
description compare [Pribbenow 95». Figure 8 show
the system which is composed of a propositional and a
diagrammatic module. The propositional module
realizes the concept hierarchy, the partonomies
belonging to the concepts and (upward and downward)
inheritance reasoning between parts and wholes about
attribute values. The diagrammatic module is based on a
CAD-model that handles two- or three-dimensional
spatial models of individual and certain generic objects.

This hybrid system provides a basis for both
correlation possibilities, the declarative and the
geometric one. At the moment, only the declarative one
is implemented. So-called "association slots" are used to
connect derived entities with the solid objects that
induce them (cf. [Engehausen & Toter 96]). The planned
geometrical solution will use the CAD-models of
objects as analog spatial models. Using these models, it
is possible to detect boundaries (easy), e.g., the surfaces
of walls, and hollow spaces (not always easy), e.g., the
roo.ms of a flat. Once the derived objects are computed,
it is possible to combine derived and solid partonomies
of an object.

- - +---+ -41 iil3 ~ '"~''' --.t1\ ""_~ ft-.- (J 0

4\.-1\ - -
Fil!ure 8: Architecture of the h

5 Configuration of flats
The solid view of the flat is more important for all
tasks that deal with construction issues. For example, it
can be used as a basis for computing the thermal
insulation of different walls out of their material and
thickness. The derived view showing rooms and surfaces
can be used for designing flats or the furnishings of
rooms. If the multiple views introduced in section 4 are

used the representation of the flat can serve for both
kind of tasks at the same time. It is not necessary to

construct one representation for constructing issues and
another one for design.

I" -wsU -11' ws2.1

ds 1.2 I:: Ids 2.2
room I ~

wsl.4 ws 1.6 I ds 2.1

ws 1.5
I ws2.6

ws 3.5 100m2 r

I
I

It
ws3.4

I
ws3.6 I I I . ws2.21

room 3
.1,.1

ds 3.31 1 I ds 2.3

~3.3_ -TJ _ws~ I
_I

ws = wallsurface

ds = doorsurface

FiJ~ure 9a: Geometrical model of a three-room-flat

~ ~6 -:.rr:t? ' ~,
..... , ~ I cIoc¥ Z ->'

-,. 1 door I

_lderiWldl

7
~ rooa. Z "iOOin 3

/\ ;.;,;;'i:=Z: ...L_i?S:f::u ::0:-.2.3/\
~ '" ... -,- _u _2.3 doonurf_2.I-..y·

_2.6 _u

Figure 9b: Solid and derived view for the three-room-flat

As the following example shows, the proposed
representation is suitable also for (more or less) realistic
examples. Figure 9a and b shows a three-room-flat and
the two partonomies, representing the solid and the
derived view. The partonomy does not use wallparts in
order to represent the rooms, in contrary to alternative C
described section 2. Therefore it is easy to represent the
splitting of room 2 into two new rooms (figure lOa). In
all approaches dealing with wallparts this modification
would lead to an extensive changes in the partonomy.
However, the use of multiple views allows for local
modifications that do not affect parts taken over from
the fonner partonomies (figure lOb). That shows that
multiple partonomies combined with a geometric model
can be used as a flexibel and versatile fonnalism in the
domain of design and construction of buildings.

21

r

r

ws = wallsurface

ds = doorsurface

-11' 100m2
II

"I I.!f- ws 2.6
ws2.21

;I;-

It
_ I ws 2.7 ~ 2.4--1

'I, wvr.7 =t.Fj
II ws 4.6 *1 room 4

III ds4.3

T
ws4.2

- I I - --

FiJmre lOa: Geometrical model of the modified flat

..ff _=r.,,;p2 S:<s:az ~6
~7 __ ~I door~3

_lcIori...s)

~
IOCMal Iw. •

.. =-:::1.,.1.7 _~ ..

"" ~ _:u :='lj _U =:.;
Figure lOb: Solid and derived view for the modified flat

Literature
[Biundo et al. 93] Biundo, S.I GUnter, A. I Hertzberg,

1.1 Schneeberger, 1. I Tank, W. (1993): Planen und o
Konfigurieren. in: Gorz (Hrsg.): Einfiihrung in die
Kunstliche InteUigenz. Addison Wesley

[Cunis et a1. 91] Cunis, R. I GUnter, G. I Strecker, H.
(1991): Das PLAKON-Buch. Informatik Fach
berichte Nr. 266, Springer Verlag

[Engehausen & Toter 96] Engehausen, A. I Toter, U.
(1996): Implementation eines Systems zur
Verarbeitung multipler Repriisentation. Domane:
Gebiiude. Studienarbeit, Universitat Hamburg

[Gerst! 93] Gerstl, P. (1993): Die Berechnung von
Wortbedeutung in Sprachverarbeitungsprozessen:
Possessivkonstruktionen als Vennittler konzep
tueller Information. Diss.ertation, Universitat
Hamburg

[Gerst! & Pribbenow 95] Gerstl, P. I Pribbenow, S.
(1995): Midwinters, End games, and Bodyparts: oA
classification of part-whole relations. International

Journal of Human and Computer Studies. Vol. 43.
1995

[Habel et al. 95) Habel, Ch. / Pribbenow, S. /
Simmons, G. (1995): Partonomies and depictions:
A hybrid approach. In: 1. Glasgow, H. Narayanan &
B. Chandrasekaran (Hrsg.): Diagrammatic Reaso
ning: Cognitive and Computational Perspectives.
Cambridge, MA: MIT-Press. 627-653.

[Landau & lackendoff93) Landau, Barbara /lackendoff,
Ray (1993): "What" and "where" in spatial language
and spatial cognition. Behavioral and Brain
Sciences, 16.217-238

[Markovitz et al. 92] Markowitz, J. / Nutter, T. /
Evens, M. (1992): Beyond IS-A and Part-Whole:
More Semantic Network Links. in: F. Lehmann
(ed.): Semantic Networks. Pergamon Press, 377-390

[Pribbenow 95] Pribbenow, S. (1995): Modeling
Physical Objects: Reasoning about (different kinds
of) Parts. Proc. TSM'95 (Time, Space and
Movement), Bonas, Fmnce

[Simons 87] Simons, P. (1987): Parts. A Study in
Ontology. Clarendon Press: Oxford

[Usc hold 95) Usc hold, M. (to appear): The Use of
Ontology to Guide Naive Users in Representing
Substructure. Data and Knowledge Engineering,
special issue on part-whole relations

[Winston et al. 87] Winston, M. / Chaffin, R. /
Herrmann, D. (1987): A Taxonomy of Part-Whole
Relations. Cognitive Science 11, 417-444

22

Knowledge Representation for Configuration Systems

Andreas Gunter

Technologie-Zentrum Informatik, Universitllt Bremen
guenter@informatik.uni-bremen.de

Introduction

Configuration is one of the fields in expert system
technology in which the application of AI-methods has
advanced a great deal over the past few years.

To solve a configuration task means to compose a
system (configuration) from single components which
meets all requirements. Configuration tasks have the
following characteristics [GUnter 1991; GUnter et al.
1992]:

large solution space

objects are composed of components

dependencies between the objects

heuristic decisions

consequences of the decisions are not totally
predictable

Expert system technology must provide suitable
formalisms and mechanisms to handle typical problems
of a configuration task. For a long time, the
development of configuration expert systems was

influenced by the rule-based paradigm. The best-known
representative is the system XCON [McDermott 1982].
Although XCON is considered a success and it is one cr
the most-cited expert systems, the concepts of XCON
are not applicable in many domains. The rule-based
paradigm has been criticized [GUnter et al. 1990;
Harmon et al. 1989]. The criticism refers to the
following aspects: serious problems with knowledge
acquisition, consistency checking and in particular
maintenance; missing modularity and adaptability. The
necessity to reverse decisions leads to problems; and the
integration of user instructions and case based
approaches is inadequate.

Some promising suggestions already exist in the field cr
configuration problems and there are also some expert
system applications. Apart from rule-based systems, the
following concepts of AI-research have been employed
for configuration systems:

object oriented representation of the configuration
objects
administration of the dependencies with a
constraint-system
top-down-design
"intelligent" backtracking
case base configuration

23

Discussion

We will discuss same new aspects of knowledge
representation in configuration systems:

description logics and configuration problems
integration of CAD-systems, database-systems
and STEPlExpress
structure-oriented or ressource-oriented
representation and problemsolving
representation of uncertainty

KONWERK

KONWERK is a tool-box for configuration tasks . The
conception and realisation of this modular tool aims to
support a developer of expert systems for configuration
and design tasks. KONWERK (s. [GUnter 1995])
consists of several integrated methods and
representations mechanisms which are well suited fir
configuration and design tasks. Some concepts are based
on the system PLAKON [Cunis et al. 1991].

A central requirement for tools like KONWERK is its
applicability in different domains. Thus its concepts
have to be universal and must not be too special. On the
other hand every domain has its special needs. Therefore
we propose a solution of modules that can be chosen by
the developer in order to solve his problem.

The problem-solving modules are divided in basic
modules and extension modules which either enhance
the abilities of basic modules or provide new abilities.
The basic modules cover the following general tasks in
configuration and design systems

representation of domain objects

representation and processing of constraints
and heuristics

formulation of configuration tasks

control of the configuration process

Extension modules enlarge the functionality cr
KONWERK in several ways. Due to the concept of a
tool-box with a variety of modules the user cr
KONWERK can build his tool in a very flexible way by
selecting the necessary modules ..

Literature

[Cunis et al. 1991] R. Cunis, A. GUnter und H.
Strecker (Hrsg.) Das PLAKON Buch Ein
Expertensystemkern fur Planungs- und
Konjigurierungsaufgaben in technischen Domanen,
Springer Verlag, 1991

[GUnter 1991] A. GUnter. Flexible Kontrolle in
Expertensystemen fur Planungs- und
Konjigurierungsaufgaben in technischen Domanen,
Dissertation, Universitat Hamburg; erschienen in der
Reihe Dissertationen zur KUnstlichen Intelligenz Band
Nr. 3, infix-Verlag (1992),1991

[GUnter 1995] A. GUnter (Hrsg.) Wissensbasiertes
Konjigurieren - Ergebnisse aus dem Projekt PROKON,
infix St. Augustin, 1995

[GUnter et al. 1990] A. GUnter und R. Cunis.
Separating Control from Structural Knowledge in
Construction Expert Systems, in: 3. lEA/AlE,
Charleston, USA, (Seite 601-610), ACM Press, 1990

[GUnter et al. 1992] A. GUnter und R. Cunis. Flexible
Control in Expert Systems for Construction Tasks, in:
Journal Applied Intelligence, Kluwer, Vol. 2, (4),
(Seite 369-385), 1992

[Hannon et al. 1989] P. Harmon und D. King.
Expertensysteme in der Praxis, Olden bourg, 1989

[McDermott 1982] J. McDermott. RI: A Rule-Based
Conjigurer of Computer Systems, in: Artificial
Intelligence, Vol. 19, (1), (Seite 39 - 88), 1982

:24

What Is Still To Do In Order To Solve Configuration Problems In
Practice?

Harald Meyer auf'm Hofe
DFKI GmbH
P /0 Box 2080

D-67608 Kaiserslautern

1 Introduction

So far several methods have been proposed to rep
resent a configuration problem as well as to solve it.
The ability to represent and solve either resource
oriented or structure-oriented configuration prob
lems seem to become a least standard to speak of
a configuration system especially in Germany. How
ever, the ability to be beneficially applicable to real
world has been proved only by some prototypes.
This is a serious situation because in the meanwhile
certain commercial tools are available that claim to
support knowledge based configuration like the prod
uct configuration within R/3 (SAP). Research on
configuration systems enters competition with these
tools and will be, consequently, forced to prove its
relevance for practice. Thus, it is necessary to anal
yse application scenarios of commercial tools and
real world applications of knowledge based config
uration systems in order to work out the benefits,
research on knowledge representation can promise.
Unfortunately, research work is typically still based
upon the following preliminaries that do usually not
hold in the real world:

1. Configuration tasks typically concern certain
and well-founded knowledge. Contradicting
conventional wisdom all human experts and es
pecially engineers are neither accustomed nor
even able to express their results in a well
founded language. There knowledge typically
consists of many "rules of thumb" of unknown
relevance and exceptions. Even certain knowl
edge is mostly given by informal representations
like e.g. construction plans .

2. "Declarative" languages reduce the effort of ac
quiring and maintaining the knowledge base.
This claim has not been proved so far. It de
pends at least on what is understood by declara
tive languages . Unfortunately, most human ex
perts will only consider languages as "declara
tive" in the sense of "relatively easy to under
stand" that they are accustomed to use.

3. The task of configuration is , to compute the
description of a machine that complies with a
given specification. Unfortunately, most real

25

world configuration processes do not fit into this
scheme. Yet, human beings have been the only
available problem solvers in industrial practice.
Thus, in the past there has been no need to
avoid conflicting and fuzzy specifications of con
figuration tasks, because human beings do not
work too accurately. As a consequence, config
uration can only be done dealing with conflicts
and under-specified problems. In many cases,
configuration systems can only hope to assist
an expert, and there are a lot of questions left
open concerning intelligent design or configura
tion assistant systems.

4. Configuration denotes a problem class of indus
trial practice. In contrast to research, configu
ration in the real world never ends in itself. It
is always only a part of e.g. the bidding pro
cess, product development or pricing. Each of
these processes has its own needs, that have to
be concerned by a system that aims to improve
this process. E.g. an engineer will only deploy
assisting systems, where he is allowed to rule
everything. In contrast, a salesman will gener
ally be overtaxed with such a system. Prizing
implies i.e. the ability to represent the specifi
cation of "robustness" of bids. It has to be en
sured that delivering a machine due to a given
bid does not lead to a loss for the company.

Research on configuration will be forced to drop
these preliminaries. This paper analyses own expe
riences with a commercial tool and two real world
problems. Referring to these experiences improve
ments of the described approaches are discussed that
require and justify further research work . A con
cluding section points out consequences that seem
to follow from the given experiences.

2 Experiences

In order to work out some characteristics of real
world configuration problems this section will intro
duce into

• a commercially available configuration tool to
point out industrial practice in configuration,

• a DFKI research project on soft constraints that
led to a commercial scheduling system being
available soon, and

• the analysis of a real world configuration prob
lem that demands further research work in order
to be solved.

For each example the problem is described followed
by a brief introduction into the approach of solving
the problem. This is not intended to be a technical
paper. Thus, the approaches are sketched super
ficially. Finally, potentials for further research are
mentioned from the author's perspective.

2.1 Product configuration within R/3

This section points out aims and abilities of the prod
uct configuration within the R/3-system [SAP AG,
1996]. The system is roughly spoken a programming
environment specialized on relatively simple config
uration tasks. The product data base of a company
comprising all objects to be bought or sold is possi
bly very large. To avoid maintenance intensive re
dundancy in the product data base of R/3, com
pound products are represented in an intensional
manner stating the name of a product class, e.g. car
in fig. 1, followed by some attributes representing re
quirements, like cheap and economical. For certain
tasks e.g. commission this representation has to be
replaced by a reduced bill of materials (BOM) hold
ing all the stuff that the compound product is made
of. This problem seeming to be a typical configu
ration problem exhibits certain characteristics that
are not commonly assumed:

• Requirements are always specified as attributes
of a certain product class. This property
eases representation compared to the more gen
eral problem of structure-oriented configura
tion, where the relation between configuration
goals and object classes is hardly a one-ta-one
relation.

• For efficiency reasons design decisions shall not
be retracted. Thus, a classical search problem
is turned into a problem of programming.

• A typical requirement on designing systems for
use in industrial practice is compliance with tra
ditional processes. In this case the configura
tion programs remove components from a max
imal bill of materials if they are not needed to
satisfy the given requirements. Such maximal
BOMs are generally used to represent compa
sitional relations. Referring to more complex
products they can comprise a hundred and more
materials. Consequently, experts are needed to
maintain them.

Thus, the system is designed especially to handle
large numbers of commissions effectively, each given
by a product class with some attribute values spec
ifying additional requirements. However, it is in the

26

responsibility of the merchant to distinguish con
sistent requirements from unsatisfiable ones. Such
order forms are supposed to be collected over the
day and then transferred to a server, where reduced
BOMs are computed by the configuration system
and concluding processes have to be initiated e.g.
in the forwarding department or the stock-keeping.

The approach

Basically, the configuration procedure within R/3 is
the traditional procedure as sketched in fig . 1. The
knowledge base mainly consists of preconditions for
the selection of materials in the maximal BOM and
of selection rules. The product configuration expert
ensures by introducing such rules, that only the ac
tually needed materials become parts of the reduced
BOM to the current product requirements. If a com
pound product is selected by such rules, then it will
be configured by the system, as well. This mecha
nism implements configuration involving more than
one level in the object hierarchy. In the example of
fig. 1 rule 1 selects the engine 1.6i because the ac
tually configured car is required to be cheap and to
have a 75 PS powered engine. Rule 3 demonstrates
a "special feature" of the system. In fact, the rules
are allowed to cause arbitrary actions ranging from
assigning a certain cardinality, as in the example, to
the execution of arbitrary programs in the R/3 sys
tem.

The "knowledge base" of the configuration system
is embedded in R/3's data base scheme. This spe
cial property, necessary for implementation reasons,
structures the rule base in a manner being rather
intuitive for domain experts. Thus, the domain ex
pert is able to find out conveniently the conditions
that have to hold true to select a certain item of the
BOM.

Lately, the configuration within R/3 has been ex
tended in order to comprise all elements of structure
oriented configuration. Elements of R/3's class sys
tem can be constructed to specify certain classes of
materials. Such material classes then may appear in
BOMs to express that this component of the com
pound product has to be an instance of the mate
rial class. Another extension concerns the introduc
tion of constraints to improve the specification of
integrity and compatibility conditions l . Their con
struction in the dynamic knowledge base is triggered
in a way very similar to the conceptual constraints
in PLAKON [Cunis et al., 1991].

The problem of conflicting requirements has lead
to an additional "interactive" configuration mode.
Stock data can be used to test the availability of
the current configuration. The system tries to dis
play conflicting selections to the user. However,
this information reflects at best the dependencies
within the knowledge base that have been discovered

1 However, R/3's constraints ignore all results of con
straint processing research completely.

configure 8 product of class ·car" I Attribut .. 01 11M car: l
75PS, cheap, economical

,
mul
bill of _teNl. bIUol

• engine 1.3i 1: II 75PS and cheap
• engine 1.61 then _ engine 1.61 . engine 1.61
· engine 1.6d • 2: II 75PS and economical .. ,
• engine 2.01 ""'" _ engine 2,Od
• engine 2,Od 3: " c:hUp and POWER<75PS . engine 2.Od
• engine 2,0gsI g g
· -. 14z ISS (5.)

then action "'" quantily
5._,41155 01_,4" 155 10 Iiv.

·-"41'75 (5.)
... ...

- - - -

Figure 1: Configuration in the R/3-system: Removing components.

through the latest inference steps. In non-trivial
cases this information is only a small hint. It is,
then, in the responsibility of the user to retract the
selection being responsible for the conflict.

Research areas

Nevertheless, configuration within R/3 has many
problems that can basically be described as follows:
Most of the work requiring some intelligence is left
over to the programmer or the user. As mentioned
above this is especially true for interactive configu
ration . Conflict management is certainly an actual
research area. This is the topic of section 4.

But even the stand alone mode exhibits some
problems mainly concerning the task of constructing
and maintaining the knowledge base. The example
in fig. 1 illustrates this . The given attribute values
cause the selection of two engines while a car typ
ically has only one. This error is caused by a lack
of representing invariant properties of the knowledge
base like "a car has only one engine". The example
seems to be too simple to justify research work, but
one has to remind that there might be a quite large
palette of distinguished engines available for the car.
In this case it is very difficult to ensure the selection
of only one engine because one has to consider the
tails of a large number of selection rules distributed
all over the objects of the knowledge base (the max
imal BOM).

Alternatively, the intended invariant property of
the knowledge base could be represented by a mate
rial class engine appearing in the maximal BOM. In
a rather similar way engines could be represented as
a configurable material engine . Unfortunately, the
experts having to construct a knowledge base are
probably rather domain experts than configuration
experts. Thus, they are not familiar with mainte
nance problems of configuration systems and will, as
implementing people usually do, consider any prob
lem being specifyable in their programming language
as solvable. Consequently, they need hints to achieve
robust representations like automatic discovering of

27

product classes etc.
However, such a representation can cause new

problems in R/3. BOM items being material classes
are only reduced to an instance, if enough attribute
values of the class are known to determine an in
stance of the class. Otherwise, the class name either
appears in the reduced BOM as well, or the user
is asked for some technical details he possibly does
not know to distinguish available alternatives. The
result of the first effect are very unsatisfying configu
rations stating for instance only, that a car comprises
a material of class engine and four equal instances of
class wheel without further details. The latter case
is a typical problem of interactive configuration.

This example addresses problems that has been
widely neglected by research. Knowledge bases must
have a structure that makes maintenance easier.
Such problem structures often depend on the main
tenance task to be done actually. Therefore, it is
often necessary to provide more than one view on
the knowledge, e.g. several levels of abstraction,
and conventional terminologies. It is certainly a po
tential of knowledge based systems to provide tech
niques of integration, transformation, and transla
tion of several languages enabling the management
of several views on the same thing. A voidance of
expensive employee training justifies the effort to be
spend on the development of such systems.

For example in R/3 selection rules are appropri
ate to assess some adequacy aspects of the knowl
edge base, while the class system has to be used
in order to state some invariant properties of the
knowledge base . Translation from the first into the
latter view is assumed to be rather valuable improv
ing the construction of the knowledge base. Finally,
a transformation according to the implemented in
ferences can solve the above mentioned performance
problems. However, these approaches have not been
applied beneficially, yet. This will remain true un
less the development process of knowledge bases is
better understood.

Additionally, the necessity of integrating AI in-

ferences effectively with database management is
proved by the application scenario of configuration
within Rj3. Certain properties of the products in
the products database such as availability and espe
cially the price have to be taken into account when
doing configuration. In fact optimization of the re
sults is one of the most important potentials of meth
ods coming from AI research. However, the example
is also a problem, where inferences are necessarily
limited to very effective methods.

3 CONPLAN: Dealing with large
search spaces

Configuration is often told to be a search prob
lem. Whenever this holds not true in any particu
lar case, many configuration problems are too com
plex to hope for a configuration procedure avoiding
any retraction of design decisions. Thus, techniques
to solve similar search problems from scheduling or
more exactly time tabling are of interest here. The
CON PLAN project has been about such a problem:
nurse scheduling. Generally, work on non-trivial real
world problems is not very praiseworthy, because ini
tial requirements are usually hardly satisfied in com
plete and the initial time schedule is never kept2 .

The final result of such work is an increase in the
number of open questions. Nevertheless, exactly
these questions - concerning the representation of
optional requirements and default assumptions as
well as techniques of local and heuristic search -
may be of interest in this context.

The problem of nurse scheduling is illustrated by
fig. 2. At the moment, most hospitals still use
a three-shift model with only one early-morning
shift Fl, one day-turn 51, and one night-shift Nl.
Personnel scheduling is typically done by hand . Due
to cost pressure and the deficiency of qualified and
experienced personnel it has been recently recog
nized that working times must be much more flexible
and efficient. A reasonable and promising solution
seems to be the introduction of additional overlap
ping shifts (e.g. six- or nine-shift model) with less
working hours. The new shifts can be scheduled in
a way, that the overlapping hours are during very
work-intensive periods. Part-time employees can be
flexibly scheduled. Overtime work can be avoided
more easily. There is more room for employees' re-

2This statement considers only work on real applica
tions. Contrary, the term "real world problem" is often
used to denote problems of realistic size and well known
specification that are usually used to prove the relevance
of a given solution approach. Both notions differ in an
important point. When work on a real world problem in
the sense of this paper starts, there is hardly known any
thing about it in detail. The decision to apply certain
tools and techniques is triggered by the increasing knowl
edge on the problem. In contrast, real world problems
in the academic sense are inversely chosen according to
a solution approach whose benefits have to be proved.
The latter task is much easier.

28

quests. Of course, the problem of personnel schedul
ing becomes much harder and the simultaneous sat
isfaction of all constraints can hardly be managed by
hand .

The task of nurse scheduling is to assign a shift to
each nurse on a day in a certain period of time, typ
ically four or five weeks. A variety of requirements
with differing importance must be considered. These
requirements comprise

• compliance with legal regulations,

• minimizing personnel costs,

• optimizing personnel assignment with respect to
expenditure of work,

• consideration of special qualities of employees,

• management of vacation and absence,

• management of working time and shifts,

• consideration of employees' requests,

• established working time models (sequences
of shifts, that comply with legal regulations)
should be followed.

Obviously, compliance with legal regulations is re
quired, whereas the consideration of personnel qual
ities is recommended . Low personnel costs are more
important than the consideration of employees' re
quests.

In the representation of nurse scheduling as a
problem with soft constraints, there is a constraint
variable for each nurse on each day - about 900
to 1000 variables. The domains of the variables con
,ist of possible shifts (also comprising holidays and
idle shifts). Constraints between the variables shall
~nsure compliance with the requirements of the do
main. Weight and priority parameters of the con
,traints are given to enable the system to resolve
conflicts. The task is to find a labeling of each vari
able, that satisfies all hard constraints and as impor
tant soft constraints as possible .

The approach
Optional requirements are explicitly specified by soft
constraints in order to achieve a flexible and com
pact problem representation. State of the art in
combinatorial search is still encoding such informa
tion about preferred solutions into the problem solv
ing procedure3 . The same kind of soft constraints
has been beneficially applied to represent proper
ties of presumably good solutions of the problem.
Prospective processing of such constraints has been
exploited to inform branchf3bound search about the
most promising assignments being probably part of
a sufficient solution [Meyer abf'm Hofe and Tschai
tschian, 1995J. But even this improved tree-search
algorithm failed to compute acceptable solutions for

3For example the ILOG-Solver as the most com
mon constraint solver offers the opportunity to set
choice points explicitly in tree search algorithms like the
branchf3bound [ILOG, 1996] .

resources

.':" · · 1

....
:. ~::

~;:: ..

· •..• r~quiremen~ •

Figure 2: The nurse scheduling problem of CONPLAN.

many relevant problems within a reasonable amount
of time. Consequently, repair-based mechanisms had
to be developed to improve tree-search results. The
algorithm searchs for a Pareto optimum that is good
enough to be accepted as an answer of the system4

[Minton et al., 1992]. Pareto optima of the nurse
scheduling problem are of rather different absolute
quality. First approaches of generic repair heuris
tics have not been able to do their job sufficiently.
Therefore, the current version of the system incorpo
rates problem specific repair strategies. This version
will be commercially available soon. However, future
research is necessary to discover repair strategies ac
cording to the given problem specification automat
ically.

Research areas
This example raises three questions to be answered
by research.

The first one is about the semantics of large
combinatorial optimization problems. Large search
problems like the nurse scheduling example can be
treated in one of the three following ways:

1. The problem representation is modified in a
way that enables the application of exhaustive
search. This may be done adding new con
straints to prune the searching space or avoid
ing certain unkind problem specifications. The
applicability of exhaustive searching algorithms
to such problems ensures the optimality of the

4The applied algorithms have not yet been published.
Nevertheless, the overall procedure has been described
within another context [Meyer auf'm Hofe, 1996a).

29

solution referring to the problem specification,
but this specification is not guaranteed to have
anything in common with the original problem.

2. One tries to inform search as good as possi
ble about consequences of searching steps. This
procedure requires to put large effort on acquir
ing such control knowledge without guarantee,
that it will work (as the CON PLAN example
shows).

3. One applies local or heuristic search proce
dures [Minton et at., 1992, Wallace and Freuder,
1995]. Applied to optimization problems such
procedures do not guarantee optimality accord
ing to the problem specification. One even does
not know how good the returned solution is
compared to the optimal one.

Often approach 1 is told to be the right way because
it's semantic is assumed to be clearer. However, this
argument is only relevant to applications that al
low to estimate the effect of problem simplification.
On the other hand approach 2 and 3 have some ad
vantages from a technological perspective offering
the same opportunities to retrieve good solutions.
They can be combined. For example the CONPLAN
project at first aimed at following approach 2 that
guarantees clear semantics and does not force to sim
plify the problem. As exhaustive searching turned
out to be unable to cope with the problem, the ac
quired control knowledge has been used to inform
local search without further changes.

Secondly, experiences with CON PLAN suggest to
develop more elaborate methods to exploit certain

properties of the actual problem . Adopted re
pair strategies are needed to compute a solution of
reasonable quality. As another example consider
structure-oriented configuration enriched by global
constraints being well known from the scheduling
context . All resource-oriented configuration prob
lems [Heinrich, 1993] can be specified in such a lan
guage. However, for the latter problems an effective
problem solving procedure is known. Thus, trans
formation into resource-oriented configuration is rec
ommended whenever possible5 .

The third question concerns the handling of pref
erences and believe. Certain inferences have been
proposed to deal with fuzzy sets, fuzzy relations,
probability, confidence and so on . Amazingly, man
agement of more or less preferred requirements has
hardly been explored in detail, yet. Most of the ap
proaches mentioned above assume a "commensura
bility between preference levels pertaining to differ
ent constraints, i.e. the user who specifies the con
straints must describe them by means of a unique
preference scale" [Dubois et al., 1993]. The impor
tance of an optional requirement is in contrast ob
viously determined with reference to the other re
quirements because importance is intended to con
trol conflict resolvation. Unless cash prices there is
no global preference scale to distinguish the mer
its of requirements. Nevertheless, prioritized respec
tively fuzzy constraints [Dubois and Prade, 1992]
have been praised as declarative representations of
optional requirement specifications in configuration
systems. This claim contradicts even another intu
itive demand . One generally expects that a compli
ance with more requirements is preferred. In a sys
tem of prioritized constraints the priority of the most
important violated constraint determines the merit
of a labeling of the variables. Representing each re
quirement by a constraint the labelings being consis
tent with more constraints should be preferred. Us
ing prioritized constraints (or fuzzy constraint) this
is not necessarily the case. All solutions consistent
with the most important constraints are considered
to be of equal merit .

More promising seems to be an approach based
upon a partial ordering >- of all sets of requirements
[Meyer auf'm Hofe, 1996b]. The searching algo
rithm tries to find a solution that is consistent with
one of the >--largest satisfiable sets of constraints.
However, specifying such preferences by pairs of sets
of requirements to represent any intended strategy
of conflict resolvation explicitly is too complicated.
Thus, certain methods have to be estimated to de
rive >- from e.g . a partial ordering of single require
ments in a way that leads to the intended behaviour
of the system.

SThis has been the reason for Holger Wache to in
tegrate the balance operation of resource-oriented con
figuration into the TooCon system [Wache and Abecker,
1996].

30

Consequently, this problem still requires a lot of
empirical research. Unfortunately, optional require
ments often appear corresponding with believe for
example in bidding and pricing processes. A bid has
to be computed according to partially optional re
quirements, but prices and availability of products
has to be estimated. Such correspondence has not
been explored, yet.

4 KoALA: Interaction and
conflicting decisions

In contrast to the previous examples this section is
about the results of a problem analysis. Further
work has been canceled because of financial reasons .
Consequently, the section on solution approaches is
left over. Nevertheless, nearly all aspects of interac
tive configuration can be illustrated by this problem.

Client has been a company developing systems for
optical control of manifactoring processes. As illus
trated in fig. 3 a picture is grabbed from a video cam
era and than analysed by a computer. Therefore,
the picture is subdivided in certain regions of inter
est. Each of these regions serves as input to some
fast filter programs that are able to extract some in
teresting attributes from pictures. These attributes
are then used as input of the classifier who deter
mines manifactoring failures. The classifier is built
of software modules that have to be configured. As a
result of the project the modules should as well com
prise some machine learning algorithms to enhance
performance of the system in several situations. The
problem has two important characteristics:

• The system is to be used in various different
situations. Thus, learning scenarios are varying.

• The developers of the system do hardly know
anything about machine learning.

The configuration system is required to improve the
use of the machine learning tools and, additionally,
to provide all the necessary knowledge on machine
learning.

Research areas
Such complex construction processes induce rather
complex problem specifications. Consequently, the
user is always superior to the system in at least one
aspect: He or she know more details about the cur
rent problem. It does not matter whether the system
is better informed in certain relevant areas . It will
always depend on the problem specification given by
the expert that is a priori neither complete nor sat
isfiable. Thus, a close dialog of expert and system is
recommended .

Additionally, the probability of conflicting prob
lem specifications is likely to grow with the com
plexity of the specification language. It is certainly
a task of the configuration system to avoid conflicts,
because retracting design decisions is very difficult
and time consuming. Time arid patience of the ex
pert can be expected to be rather rare and expensive.

3. Section 3 discovered the representation of op
tional requirements as open and urgent ques
tions. With reference to weakly defined or in
complete problem specifications the results of a
configuration systems are often much more re
quired to be good than correct. In these cases
e.g. local or heuristic search is appropriate to
compute optimized solutions.

4. Section 2.l describes a system being specialized
on efficient processing of commissions but un
suitable for another application scenario - as
an intelligent assistant. To prove its relevance
research has to put much more emphasize on
the scope of proposed inference techniques and
system designs referring to typical application
scenarios. Configuration problems are too man
ifold to be solved by a unique approach.

Apparently, it is hardly justified to distinguish be
tween the knowledge itself and available techniques
of knowledge processing. The two (potential) tech
nological advantages of knowledge representation are

• integration of many knowledge resources and

• provision of task specific views on this knowl-
edge.

However, the availability of complex, generic, and
efficient inference techniques determines whether
these claims are hypothetical or not.

References
[Abecker et al., 1996] A. Abecker, H. Meyer auf'm Hofe,

J. P. Miiller, and J . Wiirtz, editors . Notes on
the DFKI- Worbhop: Constraint-Based Problem Solv
ing, Document D-96-D2. Deutsches Forschungszen
trum fiir Kiinstliche Intelligenz, 1996.
http://vvv .dfki.uni-kl.de/
~aabecker/WS-CO. html.

[Bergmann et al., 1994] R. Bergmann, J . Paulokat, A.
M. Schoeller, and H. Wache, editors. PUK-94:
8. Workshop "Planen und Konfigurieren", number
SWP-94-01 in SEKI Working Paper, 1994.

[Cunis et al., 1991] R. Cunis, A. Giinter,
and H. Strecker, editors. Daa PLAKON-Buch, vol
ume 266 of Informatik-Fachberichte. Springer-Verlag,
Berlin-Heidelberg, 1991.

[Dubois and Prade, 1992] D. Dubois and H. Prade. Pos
sibility theory as a basis for preference propagation in
automated reasoning. In Proc. of the 1st IEEE Inter
national Conference on Fuzzy Systems, pages 821-832,
San Diego, CA, 1992.

[Dubois et al., 1993]
D. Dubois, H. Fargier, and H. Prade. The calculus
of fuzzy restrictions as a basis for flexible constraint
satisfaction. In Proc. of the 2nd IEEE International
Conference on Fuzzy Systems, pages 1131-1136, San
Francisco, CA, 1993.

[Giinter, 1993] A. Giinter. Verfahren zur Auflosung von
Konfigurationskonflikten in Expertensystemen. 1([
Kunstliche Inteliigenz, (1):16-23, March 1993.

[Heinrich, 1993] M. Heinrich. Ressourcenorientiertes
konfigurieren. KI - Kunstliche Intel/igenz, (1) :11-15,
March 1993.

31

[ILOG, 1996) ILOG . (LOG SOLVER: White Paper,
1996.
http://wvw.ilog.com/
products/solver/papers/WHITEPAP.ps.

[Jampel et al., 1995] M. Jampei, E. C. Freuder, and
M. Maher, editors. Workshop Notes CP95 Workshop
on Over-Constrained Systems, Cassis, France, 1995.

[Meyer auf'm Hofe and Tschaitschian, 1995] H. Meyer
auf'm Hofe and B. Tschaitschian. PCSPs with hier
archical constraint orderings in real world scheduling
applications. (n [lampel et al. , 1995i, pages 69-76,
1995.

[Meyer auf'm Hofe, 1994] H. Meyer auf'm Hofe. Ver
arbeitung von Constraints in der Expertensystemen
twicklungsumgebung IDAX. [n [Bergmann et al.,
1994J, 1994.

[Meyer auf'm Hofe, 1996a) H. Meyer auf'm Hofe. Par
tial satisfaction of constraint hierarchies in reactive
and interactive configuration. [n (Ruttkay and Hower,
1996i, 1996.

[Meyer auf'm Hofe, 1996b) H. Meyer auf'm Hofe. Rep
resentation of requirements through preference order
ings of soft constraints. [n [A becker et aI., 1996J, J an
uary 1996 .

[Minton et al., 1992) S. Minton, M. D. Johnston, A. B.
Philips, and P. Laird. Minimizing conflicts: a heuristic
repair method for constraint satisfaction problem and
scheduling problems. Artificial Intelligence, 58:161-
205, 1992.

[Petrie et al., 1996] Ch. Petrie, H. Jeon, and M. R.
Cutkosky. Combining constraint propagation and
backtracking for distributed engineering. In [Ruttkay
and Hower, 1996J, 1996.

[Ruttkay and Hower, 1996] Z. Ruttkay and W. Hower,
editors. Notes on the ECAf'96 Workshop on Non
Standard Constraint Processing, 1996.
http://yeats.ucc.ie/
~valter/ECAI96w/announce.html.

[SAP AG, 1996) SAP AG. Product configuration within
R/3's system enterprise resource planning, July 1996.
http://vvv . sap-ag.de/
kiosk/literature/pdf/procon03.pdf.

[Wache and Abecker, 1996] H. Wache and A. Abecker.
Constraint-Processin~ in der Konfiguration. [n
{A becker et aI., 19961, January 1996.

[Wallace and Freuder, 1995] R . Wallace and E. C.
Freuder. Heuristic methods for over-constrained con
straint satisfaction problems. [n [lampel et al., 1995j,
pages 97-101, 1995.

Z£

Hybrid Knowledge Organization within an Object Framework *

Wolfgang Oertel and Uwe Petersohn
Technical University of Dresden

Department of Artificial Intelligence
D-0l062 Dresden

Fax: 49-351-463-8335
Tel: 49-351-463-8430/8431

Email: oertel.peterson@freia.inf.tu-dresden.de

Abstract

The presented paper summarizes the ex
periences of the own application-oriented
work concerning the representation and use
of knowledge in technical configuration and
design domains. The main focus is put not
on theoretical studies of certain models but
on their practicality for solving real world
problems. As a result, we propose to use
objects representing real world phenomena
or conceptual terms of a domain, organize
these objects in a network built by some
semantically predefined relations, and de
fine behaviours to guide the problem sol
ving process. Besides this global structure
of the knowledge, the fine structure is gi
ven by the inside of the objects consisting
of sets of knowledge elements like produc
tion rules, logic clauses, or constraints. Fi
nally, the interface of the knowledge model
to available external design models essen
tially decides about the acceptance of the
knowledge model in an application domain.

1 Introduction
Configuration means the composition of given ele
ments described by parameters or structures to more
and more complex aggregates according to a set of
generic rules to satisfy certain restrictions and to re
ach a certain functionality.

The solving of configuration tasks can be classi
fied primarily as a synthesis process. However, such
a synthesis can not be done correctly without perfor
ming analysis processes, as well. The main problem
of modeling real configuration domains is their com
plexity. So, a model must be found, that divides a
whole domain into a set of smaller parts that are ea
sier to handle both by the system and by the user.
The model must allow an adequate representation
but also an efficient implementation.

·This research was supported by the Federal Mini
stry of Education, Science, Research and Technology
(BMBF) within the joint project FABEL under contract
no. OlIWl04. Project partners in FABEL are GMD
- German National Research Center for Information
Technology, Sankt Augustin, BSR Consulting GmbH,
Miinchen, Technical University of Dresden, HTWK Leip
zig, University of Freiburg, and University of Karlsruhe.

33

The paper describes a rather generic knowledge
organization model that satisfies these demands to
some extent. Section 2 examines the application and
system background of the model. The model itself
is presented in section 3. Section 4 shows how the
knowledge is used in the problem solving process.
In section 5, it is explained how the model works in
connection with external design platforms. Section 6
describes an example system and its knowledge base.
And finally, section 7 imparts some experiences con
cerning the practical work with the knowledge model
and the developed systems based on it.

2 Application Domains and Systems
We have made the main experiences of performing
configurations during the development of the appli
cation system DOM [1] [8]. The special architectural
domain of this system handles the technical installa
tion of buildings. Elementary duct pieces (for water,
sewage, air conditioning, electric power, gas, heating
etc.) are put together to complex duct systems sa
tisfying certain constraints and functionalities. The
system supports the analysis as well as the synthesis
of respective building layouts .

A second developed application system is GEAR,
a simple automatic construction system for multi
stage gear systems in the field of mechanical engi
neering. The knowledge and its representation in
this system are described in [7].

Also, some other - on the first view not configu
rational - applications seemed to have similar de
mands, problems, and solutions. For instance, the
composition of several single connections or diversi
ons to a complex connection or diversion in a traffic
information and dispatching system can also be re
ga.rded as a very simple form of configuration.

Based on the experiences made in these domains,
it has been tried to generalize the necessary structu
res and operations and put them in the form of gene
ric tools into a knowledge-based development system
FAENSY [9] [10]. This system provides the main
structures, operations, and interpreters for the de
velopment of concrete knowledge-based application
systems, also in configuration domains.

All the mentioned systems are implemented in Al
legro Common Lisp and run oll Unix workstations
with user interfaces made in Tcl/Tk. The systems
DOM and FAENSY and the knowledge models they
are based on have been developed within the context

of the FABEL project [11], [3] .

3 Knowledge Model
The developed knowledge organization model descri
bed in [10] can be regarded as a multi-layered hybrid
approach that is based on a consequent object orien
tation. The model represents real world phenomena
of the universe of discourse or conceptual terms of
the respective technical language of the domain as
complex knowledge objects. These objects are em
bedded in a network made by a set of predefined
relations. Behaviour structures, finally, specify pro
blem solving approaches on the object and relation
sets. They also define the semantics of the relations.
The global organization of the knowledge is shown
in figure 1.

Behaviours

Objects Relations

Figure 1: Knowledge Organization

Relations: The decisive semantically predefined
relations of the model are specialization, partiali
zation, realization, and association as well as their
inverse relations. They determine the global struc
ture of the knowledge fundamentally. Some of the
relations are useful not only for getting an adequate
representation of the configuration problem, but also
for technical purposes like storing, changing, reaso
ning, efficiency, and management.

For configuration tasks, the relations specializa
tion and partialization are of special importance.
The specialization distinguishes between specific ob
jects affected by the configuration process and ge
neric objects describing the configuration process.
The generic objects contain analysis rules and syn
thesis rules . The partialization divides complex spe
cific and generic objects into smaller parts that can
be handled easier by the system. So, there are, for
instance, whole complex layouts on the one hand
and single unstructured design elements on the other
hand.

With the help of the realization relation, seman
tic descriptions of a layout can be connected to re
spective pure spatial geometric or graphic represen
tations. Finally, the association relation allows to
connect objects of the same specialization, partiali
zation, and realization level, for instance, to express
similarities between objects that can not be specified
more precisely.

Objects: The internal structure of the generic ob
jects is described by a set of knowledge elements be
longing to several pure knowledge models. The num
ber of usable knowledge models depends on the set of

34

available interpreters. These knowledge elements de
termine the fine structure of the knowledge. For ana
lytic tasks, the logic clause model yields acceptable
results. For synthetic tasks constraints or produc
tion rules seem to be the favorite models. Though,
in principle, these knowledge elements are defined
locally within the objects, they have to refer via in
terfaces to other objects, too. Besides generic know
ledge objects, specific objects contain knowledge ele
ments in the form of relations, hierarchies, or net
works.

At many points of the knowledge elements, the ex
pressiveness and the efficiency of the used knowledge
models are not enough . So, it is necessary there to go
back to the implementation language of the system
and to include expressions of it on the knowledge
level.

Behaviours: At first, there are necessary basic be
haviours that define the semantics of the introduced
relations. Especially, such properties of the relati
ons as transitivity, symmetry, and reflexivity must
be guaranteed . But also, interdependencies between
the relations may occur.

For configuration domains, the most important
behaviour structures are analysis and synthesis.
Analysis means that a conceptual/semantic re
presentation of a layout is computed from a given
spatial or structural layout. With the help of this
representation, it can be decided if there are incon
sistencies within the layout or not and what are the
functionalities of the layout. Synthesis behaviours
describe the process in the opposite direction. They
take this or another semantic representation to ge
nerate or change a spatial layout satisfying the given
restrictions and functionalities.

During a configuration process, a permanent
switching between analysis and synthesis is neces
sary. The global behaviours should be defined in a
straightforward way to restrict undoings and revisi
ons to local levels.

Analysis and synthesis can not only be done in a
deductive manner using generic rules. Also, the sto
red specific case knowledge in combination with ge
neric similarity and adaptation knowledge supports
the problem solving processes. This is done by ana
logical reasoning.

Finally, behaviours for learning and reorganiza
tion are possible.

4 Problem Solving
The configuration process is understood as a pro
blem solving process. It starts with a semantic spe
cification and a given initial layout. Within the pro
cess, all kinds of stored knowledge can be used to
transform the actual layout. The process terminates
when the semantic specificati~ns are satisfied and a
result layout is reached .

The problem solving process is performed locally
by the internal knowledge of the objects in com
bination with respective knowledge-based interpre
ters. There are interpreters for production rules,
logic clauses, constraints, similarity functions, and
adaptation rules.

The process is guided globally by behaviours defi
ned upon the semantic network linking the objects.
To activate such behaviours, global interpreters are
necessary. For this purpose, the Lisp interpreter as
well as the production rule interpreter is used.

By defining and activating behaviour structures,
the whole configuration process can be organized in
different ways. So, it is possible to define a lot of ele
mentary behaviours. The user can activate them in
a sequence and interact, if necessary, after each sin
gle step. On the other hand, elementary behaviours
can be combined to complex behaviour structures
carrying out the whole process automatically and
deciding on their own what to do in which situation.

5 Design Model Interface
For the implementation of practically usable know
ledge models for configuration domains, interfaces to
other models are essential. Real composite objects
are not developed within a knowledge-based system
today. In most cases, external graphical or geome
trical design platforms like AutoCAD or DANCER
[5] are used. If a knowledge-based configuration sy
stem shall be successful, it must take into account
the models offered by these design-based systems.

The first advantage of such an interface is the co
operative or alternative use of problem solving faci
lities of the different systems. The second advantage
is that there is almost always a large set of layouts
available in design systems that can be used as spe
cific case knowledge in the knowledge-based system.

How is the configuration knowledge usually orga
nized in a design system? It must be distinguished
between specific and generic knowledge.

The specific knowledge is represented in the form
of three-dimensional geometrical layouts consisting
of sets of design elements. In order to reduce the
complexity, subsets of design elements can be cluste
red to complex design elements like blocks, layers, or
groups . Additionally, non-geometrical, mostly tex
tual, data can be glued to the single design elements
to refer to certain semantics.

The generic knowledge on the other hand is made
by pieces of program code or textual data. The pro
gram code can be interpreted and evaluated by the
system. It does for instance complex calculations or
checks of the consistency.

Because of the differences, it is often not possi
ble to transform between the whole design model
and the whole knowledge model. A possible way is,
however, to take the layouts for the purpose of an
interface and define transformations for the specific
knowledge. So, we get the paradigm of a common
design board where layouts can be loaded and trans
formed in different representations. Different me
thods - design-based methods and knowledge-based
methods - operate on them. The approach of the
interface is shown in figure 2.

In [6] a transformation between a design-based
and a knowledge-based representation of layouts was
implemented. It uses the DXF language as the cen
tral interface language. Doing this transformation,
it must be observed that there are different seman
tics of the elements in the single models. So, as for

35

Design Tools - Generic Knowledge I

and Interpreters J

L 1
I

Design Layouts i Specific Knowledge
J

Interface

Figure 2: Design Model Interface

the semantics, there are three kinds of elements in
each representation:

• elements with semantics only in the knowledge
based system,

• elements with common semantics, and

• elements with semantics only in the design
based system.

When a transformation is done, the elements of
the one model that have no semantics in the other
model, must be saved and recreated during a later
transformation back. Because, in general, the trans
formation is not a unique mapping, it should be con
trolled by knowledge, too. So, it is possible to get
different transformations on different levels of ab
straction . A typical example for this is the use of
bounding boxes in the knowledge-based system of
design elements described in a detailed geometrical
manner in the design-based system.

Finally, there is a list of problems to be aware
of when working knowledge-based in a real design
environment. The design level is characterized by:

• detailed geometric data,

• several existing geometry models (2D, 3D),

• several co-ordinate systems,

• additional graphic data,

• additional structuring concepts like blocks,
layers, and groups,

• additional product and administrative data,

• programs operating on the data,

• a lot of domain-specific implicit semantics (con
ventions), and

• restrictive possibilities to specify semantics of
data explicitly.

6 Example System DOM

The components of the introduced knowledge model
shall now be illustrated at some examples extracted
from the knowledge base of the building application
system DOM. Most of the definitions and example
structures are taken from [2].

The system DOM has been developed for suppor
ting architects in the process of designing highly in
stalled buildings. Especially, the technical installa
tion of the buildings is modeled in the knowledge
base of the system. The system is able to handle
concrete layouts of buildings, analyse them, or syn
thesize them automatically or guided by the user.

The analysis and synthesis of concrete layouts can
of course be done using generic domain knowledge.
But, not all problems of the domain can be solved in
this way. Additionally, some kind of case knowledge
is necessary to use former handled layouts for solving
the actual problem. If there are gaps of knowledge
in the model still again, simple learning methods try
to fill them.

The generic knowledge used to build up a do
main ontology is the building installation model
ARMILLA [4]. The representation for the specific
knowledge is based on the A4 model used in the sy
stem DANCER (5].

System Structure: One major characteristic of
the architectural design is that the requisite know
ledge is accumulated experimentally. The important
implication is that we have to deal with incomplete
knowledge and to take precautions for a stepwise
extension as well as for a goal-oriented modification
of the knowledge without incurring the full cost of
re-representation and re-organization of the whole
system.

Therefore, the whole system is organized using two
technologies: the object-oriented technology and the
knowledge-based technology. The main system com
ponents are defined as classes. There are the classes
behaviour, knowledge, data, and transfer. Each class
includes static components (slots) and dynamic com
ponents (methods). A class specification together
with its set of instances build a so-called base. So
we get a transfer base, a data base, a knowledge
base, and a behaviour base. The slots are containers
for sets, for instance sets of files, design elements,
connections, concepts, or assistance functions. The
methods are defined to operate on whole instances
of a base, on slots of an instance, or on single ele
ments of the sets stored in the slots of the instan
ces. Examples for these methods are create, delete,
get, eval, draw, load, save, open, close. The system
structure is shown in figure 3.

Because the main parts of the system are realized
as object classes, an arbitrary number of instances of
these classes can be created during one session with
the system.

The knowledge base (AKB) is the heart of the sy
stem. It incorporates concepts, schemes, and cases.
Under the term concept, a variety of generic domain
knowledge chunks are subsumed, such as the definiti
ons of permissible design entities, aggregate objects,
topological relations. These concepts can be used as
rules or maxims for analysis and synthesis tasks.

On the lower abstraction levels, we have specific
cases representing former design states. That means
syntactic layouts possibly with glued semantics. The
schemes can be regarded as intermediate objects bet
ween generic concepts and specific cases. They ab-

36

I _Behaviour Base I
Knowledge Base ,. r-

Concepts

Schemes Connections

Cases

Shorttime Data Base

Objects Aggregates Connections

Transfer Base

Figure 3: System Structure

stract from detailed case data but are not yet generic
enough to be concepts. Here, we find prototypical
layouts, layout patterns that can be instantiated, or
heuristics.

Additionally, there exist connections between the
single knowledge objects. There are partialization,
specialization, realization, and association relations.
They are important for getting the whole knowledge
base structured. Especially, they represent the par
tonomy and taxonomy of the ontology.

So, the slots of the knowledge base have the follo
wing meaning:

• Concepts: set of concepts which describe certain
design terms with analysis and synthesis parts,

• Schemes: set of schemes which describe cer
tain design patterns with analysis and synthesis
parts and a set of design elements (objects),

• Cases: set of cases with sets of design elements
(objects) belonging to them,

• Connections: set of partialization, specializa
tion, realization, and association relations bet
ween knowledge objects.

Each knowledge object, additionally, is determi
ned by an identifier (that makes a direct access pos
sible) and the creation space and time (as an infor
mation about where and when the object was defi
ned) .

The second main part of the system is the short
time data base (ADB). It builds the actual working
memory - the internal design poard - of the system.
External building layouts can be loaded in this base,
internal operations can query or update this base,
and finally the resulting internal structure can be
saved in an external format again. The reasons for
using a separate internal building structure are ma
nifold. The most important ones are the indepen
dence from the changes of outside data formats and
activities of other modules, and the possibility to

maintain additionally and temporarily inconsistent
data.

The shorttime data base contains a set of objects
representing as design elements the current state of
the design layout. Furthermore, these objects can be
involved in topological relations, here called connec
tions. Special connections refer from single objects
or object clusters to concepts of the knowledge base
in order to define their semantics. The object clu
sters are called aggregates. The slots of the short
time data base have the following meaning:

• Objects: set of defined elementary design ele
ments belonging to one layout,

• Connections: set of pairs of geometrically con
tacting, including, overlapping, or otherwise re
lated design objects, as well as relations between
objects of the shorttime data base and concepts
of the knowledge base,

• Aggregates: set of composite design elements.

Figure 4 shows an example layout handled in the
shorttime data base of the DOM system. It contains
ceilings, floors, walls, as well as four duct systems
for cold water, warm water, sewage, and return air.
The duct systems of the different aspects and the
whole layout can be regarded as a composite object
made from single design objects within a configura
tion process.

:6t:§§~~~~~i~f·

Figure 4: Example Layout

The third main part is the behaviour base (ABB).
It contains a set of behaviour structures. Each beha
viour structure describes the solution steps for com
plex system tasks such as collision check or cohe
rence test. These behaviour structures serve as a
direct interface to the user of the system. They can
be divided into query operations and update opera
tions. A query operation realizes a complex task of
getting information about the actual state of the sy
stem. An update operation realizes a complex task
of changing the internal state of the system. The
corresponding slots of the behaviour base are:

• Queries: set of query operations,

• Updates: set of update operations.

37

Finally, it is important for DOM to be able to in
teract with other design systems. In order to make
the system independent on different and changing
external design models, it supports an internal and
an external data structure for building layouts. Ex
ternal layout structures are stored in a separate,
changeable transfer base (ATB). Because of the dif
ferences between external and internal structures,
operations are necessary to transform them into each
other. Now, if the external structure changes for any
reason, only the transformations have to be custo
mized but not the whole data structure functionality
in the system.

In the following, the bases of the system DOM are
described more precisely in order to get an idea of
how the knowledge is organized in the system. We
will start with the transfer base and conclude with
the behaviour base.

Transfer Base (ATB): The transfer base con
tains a set of external building layout structures.
Each of these layout structures is stored in a sepa
rate file. It contains a set of design elements. As
an example, we show the structure of the elements
of the A4 design model. A design element in A4 is
called an A4 object. It is a Lisp structure with the
following slots :

(detstruct (a4object)
id project x dx y dy z dz time dtime ttag
dttag aspect morphology precision scale
user alternative meta' composition
a-v-value ancestor descendant subobjects
color line~idth graphic-type)

An instance of this structure has the following
form.

(:id 6914 :project murten :x 0.001511 :dx
1440.002075 :y 960.000061 :dy 2160.000244
:z 760 :dz 40 :time 0 :dtime 0.01 :ttag
754935109 :dttag 999999999 :aspect zuluft
:morphology verbindung :precision huelle
:scale 6 :user lUdger :alternative nil
:meta case : composition nil :a-v-value ()
:ancestor 0 :descendant 0 :subobjects
(3935 2394 1714 1707 1433 3844 3827 3845
3828 3913 3912 3889 3867) :color

(:l-red 0 :l-green 0.400006 :l-blue
0.466674 :l-alpha -1 :till notill)
:line~idth 0 :graphic-type rectangle)

As an interface to commercially available design
systems (like AutoCAD), the DXF language is used.

Short time Data Base (ADB): The shorttime
data base (ADB) is the actual working memory of
the system. Loaded external building structures can
be manipulated here. For the'representation of lay
outs, a special internal format is used. The structure
of the short time data base is given by a class defini
tion.

(defclass adb ()
«objects) (oconcepts) (aggregates)
(contacts) (includes) (overlaps)
(relations»)

In the system, an arbitrary number of instances of
this class can be created. Each slot of a shorttime
data. base contains as value a set of further structu
red elements. The element structure is given by the
following slot definitions.

• Objects : set of elementary design objects of a
layout; each entry is determined by the iden
tifier (id), the x-value (x), the x-distance (dx),
the y-value (y), the y-distance (dy), the z-value
(z) the z-distance (dz), the time (time), the
time distance (dtime), the aspect (aspect), the
morphology (morphology), the precision (preci
sion), the scaling factor (scale), the graphical
presentation type (presentation), the presenta
tion color (color), a list of references to other
objects (references), and a list of subordinated
objects (subobjects)

(defstruct (aobject (:type list»
id x dx Y dy z dz time dtime aspect
morphology precision scale
presentation color references
subobjects)

• Oconcepts: set of connections between design
objects and concepts of the knowledge base re
presented by an object identifier (id) and a con
cept name (name)

(defstruct (aoconcept (:type list»
id name)

• Aggregates: set of composite objects represen
ted by a design object structure which especially
contains a list of included partial design objects
(subobjects)

(defstruct (aaggregate (:type list)
(:include aobject»)

• Contacts: set of pairs of geometrically contac
ting design objects represented by two identi
fiers (idl and id2)

(defstruct (acontact (:type list»
id1 id2)

• Includes: set of pairs of geometrically inclu
ding design objects represented by two identi
fiers (idl and id2)

(defstruct (ainclude (:type list»
id1 id2)

• Overlaps: set of pairs of geometrically overlap
ping design objects represented by two identi
fiers (idl and id2)

(defstruct (aoverlap (:type list»
id1 id2)

• Relations: set of not predefined relations repre
sented by the relation name (id) and a set of
tuples (tuples)

(defstruct (arelation (:type list»
id tuples)

The following example shows the contents of a
concrete short time data base. I contains two design
objects, two aggregates, their connection to concepts
of the knowledge base, and their topological relati
ons.

38

(OBJECTS «3843 400.0 40.0 2620.0 180.01
720 40 0 0.01 zuluft verbindung
huelle 6 rectangle "#006677" nil
nil)

(6914 0.0 1440.0 960.0 2160.0 760
40 0 0 . 01 zuluft verbindung
huelle 6 rectangle "#006677" nil
(3936 2394»»

(OCONCEPTS «3868 astleitung)
(3911 astleitung)
(3910 astleitung)
(g264 astansatzleitung)
(g263 astansatzleitung)
(g262 astansatzleitung»)

(AGGREGATES «g267 0.0 1440.0 960.0 2160.0
760 40 0 0.01 zuluft
verbindung huelle 6 rectangle
"#006677" ilL (3868 6914»

(g263 300.0 140.0 1760.01
240.0 720 80 0 0.01 zuluft
verbindung huelle 6 rectangle
"#006677" nil (3913 3846»»

(CONTACTS «3913 6914) (3912 6914)
(3889 6914) (3843 3911»)

(INCLUDES «6914 3913) (6914 3912)
(6914 3889) (6914 3868»)

(OVERLAPS nil)
(RELATIONS nil)

Some necessary slots are not stored statically, but
can be derived dynamically via function calls. They
can be regarded as dynamic slot elements:

• aobject-centre, aobject-radius,
aobject-direction,

• aocontact, aooverlap, aoinclude,

• aointersection, aounion, aocompound.

Knowledge Base (AKB): The knowledge base
is intended to collect all domain knowledge. So, we
need structures for cases, schemes, concepts, as well
as connections between them. The knowledge base
has the following internal structure given as class
definition.

(defclass akb 0
«concepts) (schemes) (cases)
(partials) (reals) (specials)
(assocs»)

In the system, an arbitrary number of instances
of this class can be created. Each slot of the know
ledge base structure contains as value a set of further
structured elements. The element structure is given
by the following definitions.

• Concepts: set of concepts, which describe a cer
tain design term; each entry is determined by an
identifier (id), the creation space (crspace), the
creation time (crtime), an analysis part (ana
lyse), and a synthesis part (synthesize)

(defstruct (aconcept (:type list»
id crspace crtime
analyse synthesize)

• Schemes: set of schemes which describe a cer
tain design pattern; each entry is determined by
an identifier (id), the creation space (crspace),
the creation time (crtime), a set of su bordina
ted objects (objects), an analysis part (analyse),
and a synthesis part (synthesize)

(defstruct (ascheme (:type list»
id crspace crtime
objects
analyse synthesize)

• Cases: set of cases which describe a certain state
of a design layout; each entry is determined by
the case identifier (id), the creation space (cr
space), the creation time (crtime), and a set of
objects (objects)

(defstruct (acase (:type list»
id crspace crtime
objects)

• Partials: set of partialization relations between
concepts, schemes, and cases represented by an
identifier (id) and a list of identifiers of partial
objects (ids)

(defstruct (apartial (:type list»
id ids)

• Reals: set of realization relations between con
cepts, schemes, and cases represented by an
identifier (id) and a list of identifiers of real ob
jects (ids)

(defstruct (areal (:type list»
id ids)

• Specials: set of specialization relations between
concepts, schemes, and cases represented by an
identifier (id) and a list of identifiers of special
objects (ids)

(defstruct (aspecial (:type list»
id ids)

• Assocs: set of association relations between con
cepts, schemes, and cases represented by an
identifier (id) and a list of identifiers of asso
ciated objects (ids)

(defstruct (aassoc (:type list»
id ids)

The interpreter that works on analysis parts is a
Prolog-like deduction clause interpreter that tries to
prove goals with the help of horn clauses by using the
approaches resolution and depth-first-search. Each
clause consists of a head (the first list element) and
a tail (the rest of the list elements). The character
+ stands for a disjunction, - for a negation, $ for
a function call, and % for a function predicate call.
Constants begin with the character '.

The synthesis parts contain sets of production ru
les that are evaluated by a respective production rule
interpreter. A single production rule consists of the
number, the condition, the arrow --->, and the ac
tion. The elements of the condition and the action
can be positive, negative (preceded by -), or func
tion calls (preceded by $). Variables begin with the
character %.

39

The following example shows the contents of a
concrete knowledge base. There are three concepts
for the terms astleitung, astansatz1eitung, and
stammleitung. Each of the fist two concepts con
tains only a clause in the analysis part . The last
concept has additionally three production rules in
the systhesis part. Further, there are not empty par
tialization and specialization relations.

(COICEPTS
«ast1eitung (mu-sh) 9409060935

«('ast1eitung 0) ('leitung 0)
(+ ('x-1eitung 0)

('y-1eitung 0»
('ast1eitungsebene 01)
(%(' aoinc1ude 01 0»»

0)
(astansatzleitung (dd-ul)
9409060948
«('astansatzleitung 0)

('stamm-ansch1uss s)
('1eitung 01)
(+ ('x-1eitung 01)

('y-1eitung 01»
(%('aocontact s 01»
('leitung 02) ('z-1eitung 02)
(- ('stammleitung 02»
(%('aocontact 01 02»
($('aocompound 01 02 0»»

0)
(stamm1eitung (dd-~o) 9409060910
«('stammleitung 0)

('1eitung 0) ('z-leitung 0)
($('aobject-dz 0 dz»
('deckenhohlranm d)
(%('aoover1ap 0 d»
($('aobject-dz d ddz»
(%('> dz ddz»»

«1«stammleitung %1)
($('aobject-aspect %1 %la»)

--->
«stammleitungsaspekt %la»)

(2«b1attleitung %1)
($('aobject-aspect %1 %1a»
(-(stammleitungsaspekt %la»
(anschlussort %0)
($('neue-stammleitung %la %0 %11»)

---> «stammleitung %11»)
(3«stammleitung %11)

(stammleitung %12)
($('aoinclude %11 %12 t»)

--->«-(stamm1eitung %12»»»»

(SCHEMES nil) (CASES nil)
(PARTIALS «astansatz1eitung (leitung»»
(REALS nil)
(SPECIALS «leitung

(ASSOCS nil)

(astleitung stammleitung
astansatz1eitung»»

Behaviour Base (ABB): With the shorttime
data base and the knowledge base, a set of passive
structures and corresponding operations are defined.
Using the whole Lisp facility and some special func-

tions, behaviour structures can be defined that de
termine which operation is to be applied on which
data structure to solve which problem. Theseoeha
viours are stored in DOM in a separate behaviour
base. So, it is possible to modify them if necessary
analogously to the elements of the other bases of the
system. The behaviour base has the following struc
ture given as class definition .

(defclass abb ()
«queries) (updates)))

In the system, an arbitrary number of instances
of this class can be created . Each slot of the beha
viour base contains as value a set of further structu
red elements. The element structure is given by the
following definitions.

• Queries: set of query functions or methods; each
entry is determined by the query name (name),
the list of used variables (calllist), and the defi
nition of the query function or method (defini
tion)

(defstruct (aquery (:type list))
name call1ist definition)

• Updates: set of update functions or methods;
each entry is determined by the update name
(name), the list of used variables (calllist) , and
the definition of the function or method (defini
tion)

(defstruct (aupdate (:type list))
name call1ist definition)

The following example shows the contents of a be
haviour base. The first behaviour describes the com
puting of the include relation for a given layout, the
second one determines not allowed collisions in a lay
out.

(UPDATES
«build-aincludes (adb)

(defmethod build-aincludes «adb adb))
(!join (objects adb)

#'(lambda(01 02)
(and (not (equal 01 02))

(aoinclude 01 02)
(def-ainclude adb

(list(aobject-id 01)
(aobject-id 02)))

nil))
(objects adb)) t))))

(QUERIES
«assess-acollision (adb)

(defmethod assess-acollision «adb adb))
(!restr (overlaps adb)

if. , (lambda (ovl)
(!subset ovl

(!restr-proj
(oconcepts adb)
#' (lambda (s)

(equal 'lei tung
(second s)))

#'car))))))))

40

7 Discussion
Finally, some thesis are formulated that can be re
garded as general experiences collected during the
work with the knowledge model and the developed
application systems.

• Configuration without a solid amount of generic
background knowledge of the domain represen
ting the semantics of the universe of discourse
can not be successful.

• It is not possible to achieve a complete ge
neric knowledge model of a configuration do
main. Other techniques (like case-based, lear
ning, but also traditional manual and algorith
mic methods) are necessary to fill the gaps and
to make the model dynamic.

• Configuration tasks demand a close interaction
between analysis and synthesis methods. Syn
thesis fails without a powerful analysis.

• One-level knowledge models are not suited for
configuration tasks. Models on different spe
cialization, partialization, and realization levels
have to co-operate with each other .

• Configuration systems can not work adequately
and efficiently using a pure knowledge repre
sentation language. Different representational
formalisms - including the basic programming
language for the worst case - must be used.

• With a knowledge-based approach, one gets a
rather declarative working model of the domain
after a certain acquisition phase. But, the lon
ger the model exists and is in practical use, the
more submodels are transformed into more pro
cedural representations for the reasons of exact
ness and efficiency.

• In each of the handled configuration domains,
a taxonomy of technical terms as well as proce
dures for their application are available. They
can be used directly for structuring the know
ledge and guiding the problem solving process.
Using these specific characteristics of the do
main, a lot of general technical and representa
tional problems can be avoided .

• Knowledge models for configuration tasks must
have a close connection to design models ac
tually used in concrete application domains.
The interface between the knowledge model and
the design model must be organized knowledge
based, too.

8 Conclusion
The presented multi-layered hybrid approach is a
useful way to handle configuration domains of prac
tically relevant sizes. The developed application
systems, especially the buildi"ng application system
DOM, prove this fact. This way involves a com
promise between the adequate representation of a
universe of discourse on the one hand and the effi
cient implementation of a system on the other hand.
Of course, the main focus within this compromise is
shifting during the time of existence of a system. To
improve this compromise, further investigations will

oe necessary In the theoretical foundation as well as
the practical use of the model.

References
[1] Bakhtari, S.; Bartsch-Sporl, B.; Oertel, W.:

DOM-ARCADE: Assistance services for construc
tion, evaluation, and adaptation of design layouts.
in: Gero, J. S.; Sudweeks, F. (Eds.): AI in De
sign'96 . Kluwer Academic Publishers, Dordrecht,
Standford, 1996

[2] Bakhtari, S.; Bartsch-Sporl, B.; Oertel, W .; Eltz,
U.: DOM: Domain Ontology Modelling for Archi
tectural and Engineering Design. FABEL Report
Nr. 33, GMD, Sankt Augustin, 1995

[3] Borner, K. (Ed.) : Modules for Design Support.
FABEL Report Nr. 35, GMD, Sankt Augustin,
1995

[4] Haller, F. : ARMILLA - ein Installationsmodell.
Institut fur Baugestaltung, Baukonstruktion und
Entwerfen, Universitat Karlsruhe, 1985.

[5] Hovestadt, L.: A4 Digital Building: Extensive
Computersupport for the Design, Construction,
and Management of Buildings. FABEL Report Nr.
15, GMD, Sankt Augustin, 1993

[6] H. Lein: Schnittstelle AutoCAD - DOM. Di
plomarbeit, Technische Universitat Dresden, Fa
kultat Informatik,.1996

[7] Oertel, W.: Eine funktionale Methode der Wis
sensreprasentation. Dresden, Techn. Universitat,
Fak . Elektrotechnik-Elektronik, 1988, Disserta
tion A

[8] W. Oertel, S. Bakhtari: Interaction of Generic
Knowledge and Cases in DOM. In: Proceedings
of the Third Congress on Computing in Civil En
gineering, Anaheim, USA. ASCE, New York, 1996

[9] W. Oertel : FAENSY: Fabel Development Sy
stem. FABEL Report Nr. 27, GMD, Sankt Au
gustin, 1994

[10] Oertel, W. : Zur Integration von fall- und
regelbasierten Verfahren im Entwicklungssystem
FAENSY. in: Burkhard, H.; Lenz, M. (Eds.) :
Fourth German Workshop on Case-Based Re
asoning: System Development and Evalua
tion, Informatik-Berichte, Berlin, Humboldt
Universitat, 1996

[11] Schmidt-Belz, B. (Ed.): Scenario of FABEL
Prototype 3 Supporting Architectural Design. FA
BEL Report No. 40, GMD, Sankt Augustin, 1995

41

Z17

Fuzzy Logic in Configuration

Ilka Philippow i
, Fred RoB', Vlr Doring2

'Technische Universitat llmenau

Fakultat fUr Inforrnatik und
Automatisierungstechnik:

0-98684 Ilmenau

fred.ross@systemtechnik.tu-ilmenau.de

The authors research on development of fuzzy based
systems for years, in which systems for conttol of
complex andlor non-linear systems (fuzzy conttoller,
fuzzy classificators) as well as large knowledge based
systems (diagnoses and management systems) were
investigated. Regarding our experiences especially in
the latter field we want to discuss to what extent the
use of fuzzy based techniques to solve complex con
figuration tasks is possible and sensible.

In principle a configuration task may be divided into
the two spheres ,,automated configuration" and
,,man/machine communication". In both spheres we
see (partly different) possibilities to use fuzzy techno
logy.

1 Fuzzy Logic

Semantics of Degrees3

The degrees (values between 0 and 1) processed using
fuzzy logic may have different semantics, usually
uncertainty and fuzziness. But it's very possible that
they carry the semantics of weights or priorities. The
concrete semantics of a degree depends on its source as
well its further employment in algorithms.

If a degree d is calculated as correctness of a
premise (eg ,,x is high", the degree of membership of x
to the set of high ones is calculated according to a
membership function) it's called fuzziness. In this
example a degree d = 0.8 means that x is relatively
high.

Degrees of uncertainty may caused by (automa
tically) detected violations of integrity or by explicit
definition done from outside of the system. Degrees of
uncertainty can carry the semantics of possibility,
probability or certainty, where the possibility is an
upper boW1d and the certainty is a lower bOW1d of the
probability of a premise (refer to [Zimmermann91]).

3 The term "degree" is used as generic term for
"degree of probability", "degree of fuzziness" ...
An alternative may be the term ,,measure".

43

2R3M Softwarebiiro

Unterporlitzer StraBe 8

0-98693 llmenau

Tel (+49 3677) 670295
Fax (+49 3677) 840578

But mostly the original semantics is ignored and
degrees of different semantics are mixed. Those
systems are not so flexible, however they are often
sufficient to solve simple tasks. Nevertheless to solve
complex problems in a proper way extended modelling
methods and extended information flows are necessary,
see [Dijring94] or [Philippow96].

Input interface Output interface

fig.!: Common flow of information in a fuzzy system

Choice of algorithms and operators

For the transformations made in the flow of
information in a fuzzy system (see fig.!) - which can
be part of a greater knowledge based system - a lot of
standard algorithms and operators exist, see
[Driankov93], [Mayer93]:

• fuzzy operators (t-norms, t-conorms, average
operators and other), which may have parameters.
They are used to combine degrees to a new (overall)
degree . Important properties of operators, which
have to be taken into account, are for instance null
dominance for t-norms (t(O,dl,d2, .. dn)=0) and one
dominance for t-conorms (sO,dl,d2, .. dn)=l)

• weighted fuzzy operators (see [R3M96] or
[Philippow96]), which are used if weights are
attached to the degrees. These weights may be
constant (set during modelling) or calculated
during inference. They are useful to make
differences between the premises of a rule.

• defuzzification algorithms, which are used to
compute an exact value based on the degrees
estimated during inference

• comparison operators, they can check premises like
,,x is (equal to) middle" and other relations eg .. x is
smaller than middle". If the value x is not exact but
fuzzy itself, special algorithms may be defined to
handle different semantics of comparisons like ,,x is
somehow grater than middle" or ,,x is greater than
middle on average"

For adequate representation in large systems (eg
configuration systems) the variety has to be used. If in
special cases no algorithm or operator gives proper
results a new one (suitable) has to be designed and to
be attached to the development tool (if the tool supports
such extensions).

Membership functions

Linguistic TetmS (.. small", ,,seldom") can be assigned
to linguistic variables for representation of properties
(eg .. width", ,,appearance"). The linguistic terms are
defined by means of membership functions (msO. A
msf is used, if an exact value is to be transformed into
a degree (membership to a fuzzy set, which is
represented by a linguistic term).

To define the shape of a membership function a lot
of different types exist. Often parametrized standard
types are used, because they can be described easier
and may allow optimized algorithms (fig.2).

1

o 1 ~

fig.2: Example for a trapezoid shape, the height of
the trapezoids is one parameter

, ~ ••..

-"
01 Ii =--,'.~

fig.3: Example for a definition by means of free
setable control points

More complicate shapes are modelled using control
points. Between these points (usually linear)
interpolations are made (fig.3). An exclusive use of eg
simple trapezoid shapes (as usual for controllers) may
soon lead to inadequate results.

44

Fuzzy constraints

The usefulness of constraints in modelling
configuration problems seems to be widely accepted,
especially if the variety of possible forms is taken into
account, eg tables, functions, (in-)equations or rules.
Constraints are (always dependant on the abilities of
the algorithms) used in different ways. A constraint
like

a = [0.2 ... 0.5]*b (1)

eg:

• to estimate a value for a if b is known

• to assign an interval to a if b is known

• similar for b if a is known - this requires that the
inversion of (1)

b = [2 ... 5]*a

can be found

(2)

• to check the fulfilment of the relation between a
and b modelled in (1) if a and b are known

The constraint example (1) models only a simple
version of fuzziness - an interval defmition, which can
be handled using interval arithmetic. Considerable
more possibilities gives the use of fuzzy numbers and
fuzzy intervals, see [Mayer93] or [Zimmermann91].

1

o I') , " ~

fig.4: Example for fuzzy numbers

Furthermore the check of fulfIlment of constraints
::an be done in different ways. Conventional algorithms
will return a binary result. The corresponding
::onventional constraints shall be seen here as hard
constraints, because they have to be fulfilled
completely. With soft constraints (fuzzy constraints)
can be modelled:

• that the hart fulftlment is striven for in a certain
degree, that has the consequence that the hart non
fulftlment of the original hard constraint decreases
the quality in a certain degree (so we have weights
or sentences for not fulfilled hard constraints)

• or constraints are not hard (and therefore soft) in
the sense that a degree of fulfIlment can be
calculated (possibly in combination with weights)
and so a quality for the whole configuration or for a
part of the configuration can be computed (using
operators). These qualities caribe compared and the
best configuration may be selected. Soft constraints

like "a is about b" may be used lO model rules of
thumb, where ,,about" is defined as msf with
variable centre (similar to fig.4).

In addition lO the use in checks the softness can be
used in assignments. During assignments the instances
of variables (eg a from the example above) can store
infolUlation about the softness of the used constraints
too. If in (1) b is equal to 20 and for the constraint was
defined a probability = 0 .8, then the assigned value
(a=[4 .. 1O]) has a probability of 0.8 too.

2 Automated Configuration
The use of conventional methods in modelling
knowledge about a problem and about the way of
solution forces developers to assign exact values to
variables even if the exact values do not exist or are
unknown. The developers have to estimate the
parameters or lO define them arbitrarily. So the search
space for a valid solution is cut. Mostly this has the
advantage of a faster inference but possibly the search
space is cut in a way that only poor or sometimes no
solutions are found. Concepts like "unknown" are a
binary step into the ,,right" direction (extend of
possibilities lO model). From the fuzzy logical point of
view "unknown" can mean ,,any value with no degree
of membership, certainty or probability". The
semantics "with no degree of possibility" would not be
correct because if "unknown" is assigned to a variable
each value keeps possible.

Choice of Components

In the representation of knowledge about a problem
(eg using msf) as well as during solution of
configuration tasks (execution of appropriate algo
rithms) the consideration of known fuzziness or I and
uncertainty can lead lO better results.

So an adequate choice of components can be reached
if not only a binary ,,suitable" or "unsuitable" is used
but also a degree of suitability. Such degrees can be
defined as single values (regarding possible choices) or
as membership functions (according to a design para
meters represented as number).

degree of suitability

1 T----·\
\
\
\
\
\
\ .
I .'
I.'
.\

.' I
.' \

.' \

tw 1

tw 2

tw 3

o I .' \ " ~

parameter p

fig.5 Example for different suitability for 3 types
of a component according to a parameter p

In fig.5 is shown, how membership functions can be
used lO model different suitabilities of 3 types of a

45

component according to a parameLer p which is
assigned based on the state of a certain configuration
during configuration process. As you see type 2 is nOl
so suitable at all however in-the middle no alternative
exists. Thus when suitabilities of different configu
rations are compared such configurations with a p that
is in the middle will be estimated as not so suitable.

How serious this unsuitability influences the overall
suitability depends on the choice of weights and
operators. So the estimation of a group of components
could be calculated as the minimum or a kind of
average of the suitabilities of its components (eg
arithmetic mean or geometric mean). During selection
of an operator some decisions have lO be made, eg
whether a total unsuitability (represented by 0) leads lO

the total unusability of the whole group or not. Such
restrictive behaviour (null dominance) can be reached
using t-norms (eg minimum or algebraic product). In
this place we want lO point out that the often used min
max-inference (use of minimum and maximum in the
according inference steps) leads to a leak of
information which is mostly not wanted. Thus the
suitability of operators has to be proved in each case.

If the single suitabilities Pi are to be accumulated
differently in the overall suitability then weights
(numbers between 0 and 1 too, but dependant on the
algorithms other domains may be possible) can be
assigned to the Pi. These weights have influence on the
result according to the chosen scheme of computation.
In the following differences between possible schemes
of computation shall be shown. As operator the
algebraic product was chosen,

" I1Pi (3)
i=l

because it's null dominant and (in contrast to the
minimum) it always leads to an above-average decrees
of overall suitability if components are not full suitable
(example: 0.5*0.5 = 0.25). No information about
decreased suitabilities of components is lost

For the use of weights generally two approaches
exist [R3M96]. To simplify the examples it should be
assumed that the weights Wi of the values Pi which have
to be accumulated are nOlUlalized (wmax=l). The frrst
approach assumes that a decreased weight (smaller
than 1 or rather than wmax) causes that the according
values fall out of the computation and therefore the
number of original n values is ,,fuzzy" decreased. For
the algebraic product this leads to the fact that if some
weights are smaller than 1 the result is never smaller
than the result got if all Wi are 1. Because the
unweighLed algebraic product (3) is a special case (Wi =
1 for all i) of the weighted versions (eg (4) and (5»
these weighted versions never return results which are
smaller than the result of (3). The behaviour of/ailing
out is reached by producing neutral elements according
to the Wi (for t-nolUls like the algebraic product 1 is the

neutral element). Two simple algorithms of the
approach shall be shown:

n

IT ((pi - 1). Wi + 1) (4)
i=1

n

IT Pi" (5)
;::1

In equation (5) the null dominance of the Pi is kept
if the WI is not 0 (see example No.2 in tab.I). This is
mostly wanted and therefore the linear version (4) is
only good for soecial cases.

I 1 I result according to

I No·1 11=111=211=3 1 (3) I (4) I (5)

I
I

[1 [~i [~:~ [~:~ [~:: [0.125 [0.404 [0.379 [

[2 [~i [~ : ~ [~:~ [~.3 [0.0 [0.45 [0.0 [

[3 [:i [~:~ [~:~ [~:: [0.16 [0.608 [0.494 [

tab.l : Examples for the influence of weights

The other approach assumes that dependant on the
Wi the according values are replaced by a mean (eg
weighted arithmetic mean). This approach is not so
good for accumulating weighted suitabilities because
the replacement by a mean of the values assumes that
values are dependant from each other. But the
suitabilities of the components are independent and so
the first approach is better for this accumulation. A
replacement by means is useful for instance if the
values are estimations of the value of the same variable
and the weights are the according degrees of
uncertainties.

As example for choices using membership functions
refer to [Aroold95] too. There is shown how bearings
are chosen according to the degree of their suitability
for specific loads of bearings.

Choice of Parameters

As shown above fuzzy techniques can be used to model
choice of components. In addition to that modelling the
choice of parameters may be supported too, especially
if the knowledge are only rules of thumb.

Provided that all needed data can be accessed,
according to the rules of thumb a fuzzy rule base can
be formulated and then optimized in a suitable
development tool [RoB94]. Such a rule base would
make inferences as shown in flg.l and could be
encapsulated into functions and be attached to the
configuration tool.

46

Furthermore fuzzy (and possibly weigbted)
constraints could be used to model knowledge about
parameters. These constraints describe the aim of
configuration. The configuration that fulfils the set of
constraints in the highest degree is the best
configuration (the best choice of parameters) . So we
have to solve an optimization task - the parameters are
the inputs of the quality function, the maximization of
quality (of fulfllment of the constraint set) is the aim of
optimization. In contrast to hard constraints the quality
function doesn't return "fulflUed" or ,,not fulfllled", but
it returns the degree of fulf1lment for a certain
parameter set. To solve the optimization task several
algorithms can be used. For large parameter sets it
could be necessary to develop special optimization (Le.
problem solving) strategies which take problem
specific aspects into account to reduce search costs.

Even to model problem solving strategies fuzzy
techniques can be applied to - at least if linguistic
variables (eg search spaces for parameters and step
sizes of search), linguistic terms (eg ,,large", ,,right") or
distributions of search power are to be specified.

3 Man I Machine Communication
The exchange of information between man and
computer takes place based on terms, numbers and if
applicable graphics. Regarding a configuration task
usually large amounts of data describe a problem / the
actual state of the solution. These data can hardly be
represented as pure numbers. Where structure and
semantics of data support a visualization that should be
done in an appropriate way because this kind of
representation is mostly more effective than the other
ones (pictures are more expressive than numbers).

However for abstract assessments the transformation
form numbers to terms is better. Corresponding trans
formations can be defined based on linguistic variables
!linguistic terms. The aim is to build a vocabulary for
description of properties of configuration objects. This
vocabulary makes it possible to use (a certain number
of) terms from human language to formulate questions
to the system or to process automatic formulation of
results in a human like form . This is especially
important if the receiver of the data is no expert (a
designer) but a layman (a customer) which can hardly
estimate the sense of specific numbers. For a layman
the statement "capacity is high" would be better than a
statement "capacity is 1.7GB".

The choice from components or groups of
components from a data base may be supported, by that
that in questions linguistic terms are allowed and
transformed. So according to a choice:

,,LIST FROM motors WITH price=middle"

the list of motors sorted by membership to the motors
with a middle price can be returned, possibly only up to
a certain minimum membership. Especially the ftrst
example illustrates that it's sOlJletimes necessary to
maintain membership functions because it's possible

that the meaning of linguistic terms moves (What is a
high capacity nowadays?). Furthermore possibly
different user types or contexts of use have to be taken
into account which demand different sets of
membership functions. If there are problems to accept
predefined shapes of membership functions these
sbould/could be modified by the user according to his
ideas. Displaying membersbip functions and allowing
their adaptation misunderstandings can be avoided or
rectified.

The representation of linguistic terms and the
realisation of corresponding fuzzy cboices in
KONWERK, a workbench for solving design or
configuration tasks, is exemplarily shown in
[Muller95].

Wbile the use of linguistic terms, i.e. their
adaptation to different user, can be done in a proper
way - the choice of operators is a problem. Regard
following query:

,,LIST FROM motors WITII price=middle AND
revolu tionsPerS econd=bigh"

Wbich operator should be used to perform the AND?
Depending on the chosen operator different motors
could be selected. During defmition of knowledge
bases appropriate operators may be found with trail and
error method. Because the knowledge base is usually
longer in use and it is worth the cost of finding a good
operator - trail and error may be a proper way, but
during formulation a query the user can hardly decide
always which operator fits his question best. At last a
standard operator will be cbosen wbich during
validation time of the system was proved to be
worthwhile for a group of questions.

4 Sununary
From our point of view systems wbich are based on
fuzzy logic are far better adaptable to configuration
knowledge and different user types than binary logic or
the exclusive use of a degree of certainty or fuzziness
allows it. because the variation of membership function
parameters and shapes, parametrized operators and
weights are a stronger mean to describe fuzziness in a
human sense. In contrast to modelling membership
functions the choice of operators is not so clear and
demands bigber effort so that bere proved standard
operators are often used.

Literature:

[Arnold95] Olaf Arnold, Konfigurierung, Auswabl
und Auslegung von statiscb belasteten, hydrodyna
misch geschmierten Gleitlagem in KONWERK, in
[PuK95] pages 165-169

[Doring94] Ulf Doring, Inferenzmechanismen unter
Beriicksicbtigung von Unscharfe und Unsicherheit,
Diplomarbeit 200-94D-08, TV Ilmenau. Fakulllit fur

47

Informatik und Automatisierung, Institut fur
Theoretische und Tecbnische Informatik, 1994

[Driankov93] Dimiter Driankov, Hans Hellendoom,
Micbael Reinfrank, An Introduction to Fuzzy
Control, Berlin: Springer 1993

[Mayer93] Andreas Mayer, Bernhard Mecbler,
Andreas Schlindwein, Rainer Wolke, Fuzzy Logic,
Bonn: Addison-Wesley 1993

[Muller95] Karin Muller, Fuzziness in KONWERK,
Proceedings of EUFIT'95, Aachen, Germany,
august 95, pages 1245-1250

[Pbilippow96] Ilka Philippow, Fred RoB, Ulf Doring,
Methods to bandle Large Fuzzy Rule Bases, Procee
dings of EUFIT'96, Aachen, september 96

[PuK95] Susanne Biundo, Wolfgang Tank (eds.),
PuK - 95, Beitrage zum 9. Workshop "Planen und
Konfigurieren", DFIG-D-95-01

[R3M96] Ulf Doring, Ableitung gewichteter
Varianten n-stelliger ()peratcren, R3M-Forschungs
bericht 4/96

[RoB94] Fred RoB, Ulf Doring, FuzzyEXPERT -
Ein Entwicklungssystem ftic Fuzzy-Systeme zur
Entscheidungsfindung, 39. Internationales Wissen
schaftliches Kolloqium. Ilmenau, 1994

[Zimmermann91] Hans-JOrgen Zimmermann, Fuzzy
set theory and its applications, Boston: Kluwer
Academic Publishers 1991

Knowledge representation in process engineering

Ulrike Sattler
RWTH Aachen, uli@cantor.informatik.rwth-aachen.de

Abstract

Process engineering is surely no pure con
figuration application, but modeling the
structure of chemical processes confronts
us, in the field of knowledge representation,
with similar problems. First, the tasks we
are concerned with in process engineering
are described as well as how knowledge
representation systems can support these
tasks. Roughly speaking, this support con
sists in helping the user in the handling of
an object-oriented database. Then it is ar
gued why terminological knowledge repre
sentation systems are suitable tools for gi
ving this support and how this support can
be realized by these systems. In the last
section, we describe some problems that
arise because this task asks for a knowledge
representation system with special expres
sive power.

Process engineering
Process engineering is concerned with the design and
operation of chemical processes that take place in
huge chemical plants. This engineering task inclu
des activities like deciding on an appropriate flows
heet structure (e.g. reaction and separation system
configurations), mathematical modeling and simula
tion of the process behavior (e.g. writing down ma
thematical equations and performing numerical si
mulations), sizing of components like reactors, heat
exchangers etc. as well as costing and enginee
ring economics. All these tasks are based on ap
propriate models of the process that is to be desi
gned or operated. These models can be different
graphical models, verbal or mathematical models.
To support these engineering tasks by appropriate
software tools, the development of process models
has to be supported. The process models are ba
sed on standard building blocks [Marquardt, 1994j
Bogusch and Marquardt,1995] which are objects re
presenting, among others,

• material entities such as reactors, pipes, control
and cooling units,

• models of these entities such as device-,
environment-, and connection-models,

• interfaces between these models and so-called
implementations describing their behaviour,

49

• symbolic equations specifying these implemen
tations and variables occuring in these equati
ons which are related to each other as specified
in the interfaces,

•
Our aim is to support the development of these mo
dels. The task of modeling chemical processes is su
rely no pure configuration task, but especially the
modeling of the structure of a chemical plant con
fronts us with similar problems and tasks: Devices
and connections are chosen, their respective inter
faces are coupled, complex devices are decomposed
into their components or segments, etc ..

Problems we want to help with
The highly complex task of modeling chemical plants
can be heavily supported by appropriate software
tools such as CAD, decision support and numerical
tools. In order to give this support, the domain spe
cific knowledge is stored in a frame-based system.
This frame-based system is able to store a great va
riety of the standard building blocks. As the user
has to be able to find building blocks (s)he is loo
king for, standard building blocks are grouped in
classes, and these classes are ordered with respect to
the is-a-specialization-o! relation (known also as the
is-a relation) which yields the class hierarchy. This
ordering has to be explicit ely stated in each class
definition by giving, for each class, the set of its su
perclasses. As the frame-based system includes po
werful features such as methods and triggers, it is far
too expressive to compute the implicit subsumption
relation on the defined classes. On the other hand,
it is flexible in that it can be extended by additional
classes of building blocks. This second feature is ne
cessary because in process engineering, the number
of standard building blocks increases permanently.

In the sequel, by database we refer to the set of
class definitions in the frame-based system. As the
complexity of the database increases, navigation in
its hierarchy becomes again difficult and modifying
or extending the taxonomy becomes dangerous in
the sense that they might not yield the desired chan
ges. In fact, the user (the person building models
and sometimes extending the database by new clas
ses of standard building blocks) is confronted with
the following problems:

1. Navigation in the class taxonomy will become
difficult, especially in those parts of the data-

base not often used by the user. Searching for
a certain class whose names is not known may
take a long time of browsing the hierarchy and
comparing different class definitions until the
appropriate class is found.

2. Definig a new class A, the user has to arrange it
into the existing taxonomy according to its in
tuition or common sense. (S)he knows that A is
a subclass of B, but might be uncertain whether
there is a more specific subclass B' of B such
that A is a subclass of B'. Because of this uncer
tainty it is rather probable that the taxonomy
gets broader than necessary-which is, on one
hand, disadvantageous for the performance of
the database system, and, on the other hand,
makes navigation more difficult than necessary.
Furthermore, it could happen that the user de
fines an inconsistent or unintendent class. The
extension of the database by such a definition
can cause needless work.

3. As the database can be modified by more than
one user, it is probable that the same class is
defined twice-in syntactically different terms
and with different names. This does not only
blow the size of the database, but is also a source
of misunderstanding and trouble.

How these problems can be solved
To help the user with these problems, the database
should be equipped with a system that is able to
compute implicit specialization relation between de
fined classes and that is able to test consistency of
class definitions. Unfortunately, the frame-based sy
stem has far to much expressive power to allow for
this automatic reasoning, e.g., the according infe
rence problems are undecidable. The main reason
for this fact is the possibility to define triggers and
powerful methods in the frame based system.

Fortunately, there is still something that can be
done: The content of the database can be mirrored
in a knowledge base whose reasoning services are po
werful enough to help the user with the problems
mentioned above. As a consequence of the above
observation, this translation cannot be exact-if it
were exact, the interesting problems would still be
undecidable-but, by choosing an appropriate know
ledge representation system, they can be sufficiently
exact. An important point of this mirroring is that
the taxonomy of the knowledge base has to beequi
valent to the class hierarchy of the database. Even
if some properties described in the database cannot
be translated accordingly, this equivalence has to be
assured. Then the knowledge representation system
should be able to help the user with the navigation
and modification of the database. It should include
an intelligent browser to help finding classes, pro
pose places in the taxonomy where to place a new
class, clarify the meaning of a new class definition
before the database is extended by this class, and
detect semantically identical classes.

Why we chose a TKR-system
In this section, we will argue why a terminological
knowledge representation system (TKR-system) is

50

the appropriate representation system for the task
described above. Before doing so, we will briefly de
scribe TKR-systems.

TKR-systems differ mainly in their underlying de
scription language, which are characterized by the
sets of so-called concept-forming and role-forming
operators. Using these operators, one can de
fine complex concepts (which are interpreted as sets
of elements of the interpretation domain) and ro
les (which are interpreted as binary relation on
the interpretation domain) using primitive concepts
and roles. Operators available in almost all im
plemented systems are union, intersection, nega
tion, value restrictions, as well as restrictions on
the number of role successors. A terminological
knowledge base is a set of concept and role defi
nitions stored in a so-called TBox. A small ex
ample for a TBox is given in Figure 1. In this
TBox, the concepts Material-Entity, Model, and
Implementation are defined (for a matter of space,
these definitions are presented only partly). For ex
ample, a Material-Entity is a Modeling-Concept
that is associated by the is-modeled-by relation
to instances of the concept Model only, and by the
relation has-function to instances of the concept
Function only. A Model is, among others, associa
ted by the relation is-implemented-by to exactly
one Interfaces. The concept Model are further re
fined, for example, to concepts like Device-Model
or Connection-Model, which themselves are refined,
and so on.

TKR-system are suitable for this task because of
the following points:

• TKR-systems can be viewed as a unified frame
work for class based representational formalisms
[Calvanese et al.,1994], and are closely related
to frame-based systems. The translation from a
class definition in a frame-based database to a
concept definition in a TBox is natural for many
of the properties describable in frame-base sy
stems, hence this translation can be performed
automatically.

• For most description languages, there exist so
und and complete inference algorithms for the
answering of queries. In most cases, these que
ries are reduced to the basic inference problems
such as satisfiability (the question whether a
concept can ever be instantiated) or subsump
tion (the question whether a concept is more
general than another one) . Soundness and com
pleteness of the inference algorithms implemen
ted in a system imply that queries are always
answered correctly after a finite amount of time.
The advantage of TKR-systems with sound and
complete inference algorithms is that, if the
user explicitely describes properties of objects,
then these properties are always dealt with by
the algorithm-they are not simply disregarded
when the algorithm reasons about these objects.

• It is possible to keep the TBox taxonomy equi
valent with hierarchy of the database: There
are two reasons why a corrcept could be placed
at a different place in the (implicit) taxonomy

Material-Entity

Model

Modeling-Concept n (Vis-modeled-by.Model) n (Vhas-function.Function)

Structural-Modeling-Concept n (Vpossible-al ternati ve.Model) n

(Vactive-alternative.Model) n

(Vis-implemented-by.Implementation) n (= 1 is-implemented-by) n

(Vactive-interfaces.Interfaces) n (~ 1 active-interfaces)

Implementation := Structural-Modeling-Conceptn

(Vbehaviour.Equation) n (~ 1 behaviour) n

(Vvariables.Symb-vars) n (~ 1 variables)

Figure 1: Example TBox

of the TKR-system than the according class in
the database hierarchy: It can be (I) because of
the inexactitude of the translation and (2) be
cause the user placed the class too high in the
database hierarchy. If such a mismatch occurs,
the user is asked to verify which of the cases
did arise. In the first case, the definition of the
concept is modified such that afterwards, this
concept is placed correctly. In the second case,
the superclasses of the new class are modified
accordingly.

• The services required for the support of the
modeller in the usage of the database can be
achieved by TKR-systems. Standard services
provided by TKR-systems comprise the calcu
lation of the implicit subsumption relation bet
ween two concepts, the calculation of the impli
cit concept taxonomy, as well as testing whether
a concept is satisfiable.

Based on these services, navigation can be sup
ported in the following way: First, the user is
asked to describe-in an incomplete way-the
class (s)he is looking for. Then the TKR-system
gives him/her the most specific classes subsu
med by this description. The user should then
be able to give more information concerning the
class (s)he is looking for by looking more closely
at these classes. Naturally, this information can
also include some of the classes proposed by the
system which are more general than the one the
user is looking for. By iterating this ask-and-tell
procedure, the user is guided to the class (s)he
is looking for.

Before adding a new class definition to the da
tabase, the user can ask the TKR-system to ar
range the according concept into the TBox ta
xonomy. Investigating this taxomony, we can
prevent the user from unintended definitions.

Testing satisfiability of a concept before adding
its according class to the database can prevent
from extensions by inconsistent classes.

• Its declarative semantics enables the user to cor
rectly define the concepts (s)he has in mind.
Rule based formalisms may seem more natural,
but when characterising a class one has in mind,
it is difficult to fix all rules necessary to define
this class.

51

Which TKR-system to choose?
TKR-systems differ in the expressive power of the
underlying description language, and we are now
confronted with the question which TKR-system
is the most appropriate one for the task descri
bed above. In the last decade, a great variety of
TKR-systems has been investigated [Levesque and
Brachman,1987j Nebel,1988j Schrnidt-Schauss,1989j
Patel-Schneider,1989j Hollunder et al.,1990; Donini
et al.,199Ij Baader and Hanschke,I993j De Giacomo
and Lenzerini,I994j Calvanese et al.,1995]. Howe
ver, there are still many open questions concerning
TKR-systems, their expressivity as well as their be
havior in realistic applications. It is clear that, for a
given application, the description language has to be
expressive enough to represent relevant properties of
the objects in the application domain. Unfortuna
tely, the more expressive a description language lan
guage is, the more time or space is needed to com
pute query answersl. Hence a compromise has to
be found between' computational complexity and ex
pressive power. Furthermore, as "expressive power"
is not I-dimensional, it is difficult to tell whether the
expressive power of one description language is "bet
ter" for a given application as the expressive power
of another one.

This process engineering application is surely no
pure configuration application. Nevertheless, the
structural modeling of a plant can be seen as a con
figuration task: Devices and connections are chosen
from a set of generic devicesj they are possibly mo
dified according to the actual constructionj connec
tions between these devices have to be definedj they
are possibly decomposed into their parts in order
to get a more precise modelj and finally, devices are
aggregated from different sub devices modeled by dif
ferent users. As a consequence, in the field of kno
wledge r~presentation, we are confronted with pro
blems which occur also in configuration applications:

Part-whole relations: As the plants to be mo
deled are very complex, the user should be able to
decompose and aggregate devices and connections of
the process to be modeled (this is also important for

1 However, driven by demands from other applica
tions, it could be shown in [Baader et al.,1994] that
worst-case intractable languages may behave Quite well
in practice.

the reuse of models as well as for distributed mo
deling) . Hence the TKR-system has to be able to
represent composite objects appropriately.

For this appropriate representation of compo
site objects, part-whole relations have to be trea
ted correctly by the inference algorithms of the
TKR-system. As for other applications [Gerstl and
Pribbenow,1993; Franconi,1994; Artale et al.,1994;
Pribbenow,1995], we are confronted with the que
stion

• which part-whole relations are needed for the
appropriate representation of the complex ob
jects in our application. It turned out
that objects are decomposed with respect to
the component-composite, segment-entity, and
member-collection relation, each of them a
spezialisation of the general part-whole rela
tion. Roughly speaking, parts with respect to
the member-collection are not coupled to each
other and are "of the same kind" , whereas com
ponents can be coupled to each other in any way
and may be quite different one from each other,
and segments are from a similar kind, but cou
pled to each other. As the user might want to
refer to a part, not knowing on which level of
decomposition it can be found, we have to repre
sent the general, transitive part-whole relation
as well.

• how these relations interact: If, in the intui
tion of the user, the segment-entity is transitive,
then it has to be represented as a transitive role.
But what about a component a of a segment b
of a whole c - ist a also a component of c?
Questions concerning these interactions are not
yet completely answered, but they have to be
answered in order to handle composite objects
appropriately.

• which properties concerning part-whole relati
ons are relevant in the application: For exam
ple, the existence of a certain part can be es
sential for the proper definition of the whole, in
contrast to parts being optional; a part can be
exclusive in the sense that it might be a part of
at most one object b without the possibility to
be shared by other objects beside those having b
as a part; a part can be functional for an object
in that this object does no longer work correc
tly if this part is broken; and many others more
[Simons,1987j. The representation of these pro
perties is quite useful because knowledge con
cerning these properties is required for powerful
consistency-testing procedures: It thus can be
verified, for example, if all essential parts are
specified and, if this is not the case, either a
suitable one can be determined or the user is
informed on this missing part.
As at least the general part-whole relation is
transitive, an appropriate TKR-system has to
be able to handle some kind of transitive rela
tions. Using transitive relations, the user can
refer to parts along a number of decomposition
levels not known in advance or along any (fi
nite) number of decomposition levels. Hence

52

an interesting question is, in which ways tran
sitive relations can be included into description
languages and handled by their inference algo
rithms. We investigated this question for an
expressive, well-known description language in
[Sattier,1996].

Number restrictions: As for configuration pro
blems, objects are often characterized by the number
of objects they are related to by some relation. For
example, we want to describe devices having at least
7 inputs or exactly 5 outputs. In description langu
ages, this can be done using number restrictions as
in

(device n (2: 7 input)),
(devicen (= 5 output)).

This possibility is available in almost all imple
mented TKR-systems, but not sufficiently expressive
for our application: We wanted to describe devices
having the same number of inputs as of outputs, as
in

(device n (= 0 input) n (= 0 output)),

or devices having less inputs as each of its parts have,
as in

(device n (= 0 input) n ('v'has-part.(> 0 input)).

In [Baader and Sattier,1996a], these symbolic num
ber restrictions are introduced and investigated. Un
fortunately, it turned out that the basic inference
problems such as satisfiability or subsumption get
very complex, even undecidable, if this kind of num
ber restriction is allowed in a unrestricted way. Ne
vertheless, it could be shown that, if their usage is
restricted, then we can reason in a sound and com
plete way about concepts containing symbolic num
ber restrictions.

Furthermore, we want to restrict the number of
objects that are related via a complex path of relati
ons to an object. For example, we are interested in
describing devices which have at most 7 parts that
are components of its components, as in

(device n (~ 7 has-component 0 has-component)),

or we want to describe a device where all the de
vices it is connected to are controlled by the same
controller:

(device n (= 1 connected-to 0 controlled-by)).

The complexity of the basic inference algorithms
depends on which operators, beside/instead of com
position 0 are allowed inside number restrictions. In
[Baader and Sattier,1996bj it is shown that some
combinations lead to undecidability of the basic infe
rence problems whereas for other combinations, we
could give sound and completQ algorithms solving
these problems.

References
[Artale et al., 1994] A. Artale, F. Cesarini, E. Graz

zini, F. Pippolini, and G. Soda. Modelling compo
sition in a terminological language environment.
In Workshop Notes of the ECAI Workshop on
Parts and Wholes: Conceptual Part- Whole Rela
tions and Formal Mereology, pages 93-101, Am
sterdam, 1994.

[Baader and Hanschke, 1993] F. Baader and
P. Hanschke. Extensions of concept languages
for a mechanical engineering application. In
Proc. of the 16th German AI-Conference, GWAI-
92, volume 671 of LNCS, pages 132-143, Bonn,
Deutschland, 1993. Springer-Verlag.

[Baader and Sattler, 1996a] F. Baader and U. Satt
ler. Description logics with symbolic number re
strictions. In Proc. of ECAI-96, 1996. To appear.

[Baader and Sattler, 1996b] F. Baader and U. Satt
ler. Number restrictions on complex roles in de
scription logics. In Proc. of KR-96. M. Kaufmann,
Los Altos, 1996. To appear.

[Baader et al., 1994] F. Baader, E. Fran-
coni, B. Hollunder, B. Nebel, and H. Profitlich.
An empirical analysis of optimization techniques
for terminological representation systems, or: Ma
king KRlS get a move on. Applied Artificial In
telligence, 4: 109-132, 1994.

[Bogusch and Marquardt, 1995] R. Bogusch and
W. Marquardt. A formal representation of pro
cess model equations. Computers and Chemical
Engineering, 19:211-216, 1995.

[Calvanese et al., 1994] D. Calvanese, M. Lenzerini,
and D. Nardi. A unified framework for class based
representation formalisms. In J. Doyle, E. San
dewall, and P. Torasso, editors, Proc. of KR-94,
pages 109-120, Bonn, 1994. M. Kaufmann, Los
Altos.

[Calvanese et al., 1995] D. Calvanese, G. De Gia
como, and M. Lenzerini. Structured objects: Mo
deling and reasoning. In Proc. of DOOD-95, vo
lume 1013 of LNCS, pages 229-246, 1995.

[De Giacomo and Lenzerini, 1994] G. De Giacomo
and M. Lenzerini. Concept language with num
ber restrictions and fixpoints, and its relationship
with mu-calculus. In Proc. of ECAI-94, 1994.

~Donini et al., 1991] F. Donini, M. Len-
zerini, D. Nardi, and W. Nutt. The complexity
of concept languages. In Proc. of KR-91, Boston
(USA), 1991.

~Franconi, 1994] E. Franconi. A treatment of plurals
and plural quantifications based on a theory of
collections. Minds and Machines, 3(4):453-474,
November 1994.

:Gerstl and Pribbenow, 1993] P. Gerstl and S. Prib
benow. Midwinters, end games and bodyparts.
In N. Guarino and R. Poli, editors, International
Workshop on Formal Ontology-9S, pages 251-260,
1993.

:Hollunder et al., 1990J B. Hollunder, W. Nutt, and
M. Schmidt-Schauss. Subsumption algorithms for

53

concept description languages. In ECAI-90, Pit
man Publishing, London, 1990.

[Levesque and Brachman, 1987] H. Levesque and
R. J . Brachman. Expressiveness and tractability
in knowledge representation and reasoning. Com
putational Intelligence, 3:78-93, 1987.

[Marquardt, 1994J W. Marquardt. Trends in
computer-aided process modeling. In Proc. of
ICPSE '94, pages 1-24, Kyongju, Korea, 1994.

[Nebel, 1988] B. Nebel. Computational complexity
of terminological reasoning in BACK. Artificial
Intelligence, 34(3):371-383, 1988.

[Patel-Schneider, 1989) P. F. Patel-Schneider. Un-
decidability of subsumption in NIKL. AIJ,
39:263-272, 1989.

[Pribbenow, 1995] S. Pribbenow. Modeling physi
cal objects: Reasoning about (different kinds of)
parts. In Time, Space, and Movement Workshop
95, Bonas, France, 1995.

[Sattler, 1996) U. Sattler. The complexity of con
cept languages with different kinds of transi
tive roles. In 20. Deutsche lahrestagung fUr
K unstliche Intelligenz, LN AI. Springer-Verlag,
1996. To appear.

[Schmidt-Schauss, 1989) M. Schmidt-Schauss. Sub
sumption in KL-ONE is undecidable. In Proc. of
KR-89, pages 421-431, Boston (USA), 1989.

[Simons, 1987] P. M. Simons. Parts. A study in On
tology. Oxford: Clarendon, 1987.

A Partial Logical Reconstruction of PLAKON /KONWERK

Carsten Schroder and Ralf Moller and Carsten Lutz
Universitat Hamburg, Fachbereich Informatik,

Vogt-Kolln-StraBe 30, 22527 Hamburg, Germany,
{schroeder ,moeller ,lutz }@kogs.informatik.uru-hamburg.de

1 Introduction
The main goal of the projects TEX-K and
PROKON, carried out at the Dept. of Computer
Science, University of Hamburg in the years of 1986-
1990 and 1991-1995, respectively, and dealing with
knowledge-based configuration in technical domains,
was to develop suitable representation languages tai
lored to the needs of the configuration domain and a
methodology for actually solving configuration tasks
[Cunis et al. 1991, Giinter 1995bl. The emphasis of
these efforts was on building practical, useful soft
ware tools instead of formal methods and culminated
in the system PLAKON and its successor KONWERK.

In this contribution we argue that the methods of
formal knowledge representation, especially descrip
tion logics, first, are valuable tools for analyzing ex
isting systems and open problems, second, should
be used by developers in order to make clear state
ments about the performance of their systems, and
third, can even directly be used for building sys
tems. In the following we present a partial logical re
construction of PLAKON and KONWERK. Section 2
introduces the view that the methodology used in
PLAKON and KONWERK for solving configuration
tasks can be seen as a special instance of a process re
sulting from a precise definition of the configuration
problem in logical terms. Section 3 shows how most
of the concept definitions and some of the constraint
definitions using PLAKON'S representation languages
can be transformed to terminological axioms of a de
scription logic and explains some of the peculiarities
of the languages. Section 4 discusses how the use of
formal methods helps in understanding open prob
lems of the configuration domain. The paper ends
with a conclusion.

2 The Configuration Methodology
In this section we give an introduction to the way
the configuration space is defined in PLAKON and
KONWERK. After dicussing how a given configu
ration task is solved in these systems by repeated
application of four basic configuration steps we give
a formal interpretation of the configuration process
in terms of a description logic and a specific method
for satisfiability testing.

55

2.1 Defining the Configuration Space
PLAKON'S as well as KONWERK's approach to con
figuration of technical devices is a model-based one.
The main idea. of the configuration methodology of
both systems is to use a conceptual domain model
to describe the space of possible configurations of
the devices in a certain domain. For defining the
conceptual domain model, a. frame-based language
is used. A configuration task is given as a goal ob
ject (defined by instantiating a certain concept of the
domain model) and optionally a set of additional ob
jects (components) which must be part of the goal
object in the final configuration. The construction
process of PLAKON and KONWERK proceeds by ap
plying the following four basic configuration steps
until the goal object is completely specified.

1. Determine a slot (or parameter) value for a con
struction object (either a concrete value or a
value restriction).

2. Specialize a construction object by asserting
(Le. hypothesizing) that it is an instance of one
of the explicitly given subconcepts of its current
concept.

3. Aggregate a set of ' construction objects, i.e. cre
ate a new object by instantiating the concept
the construction objects to be a.ggregated must
be parts of, or add an object to an existing ag
gregate.

4. Decompose a construction object and configure
the parts.

Obviously, more than one step might be applicable
in a certain state during the configuration process
and, in turn, with each step different possibilities
are available. For instance, there might exist several
ways to decompose an object into its parts. PLAKON
and KONWERK provide an explicit control module to
structure the configuration search space (applying a
construction step is called a "heuristic decision" in
PLAKON'S and KONWERK's terminology). The con
trol module can be adapted to the problem using an
explicit model with "strategies" for traversing the
construction space (see [Giinter 1991}). The con
struction of the goal object, i.e:- the configuration of
the required device, is finished either if none of the

four construction steps can be applied any more, or
if there does not exist a consistent solution. Thus.
each of the construction objects contained in the so
lution is specialized as much as possible, i.e., it is an
instance of a leaf node of the concept hierachy given
by the domain model, and all required parts and pa
rameter values of each of the construction objects
are determined.

In the following section we will present a logical
interpretation of this process.

2.2 Formal Interpretation of the
Configuration Process

One of the first formal approaches to configuration
problems was given by Owsnicki-Klewe [1988]. He
used the terminological language of a KL-ONE-like
description logic for defining a domain model and
the corresponding assertionallanguage for specifying
the device to be configured (the goal object). Given
a knowledge base of his logic he then used the ob
ject classification service (Le. realization) provided
by description logics for computing the most special
concepts of the objects given in the specification.
These concepts were defined to be the solution of the
configuration problem: They provide a description
of all the properties of the given objects. However,
this process only generates interesting solutions, if
the concepts of the domain model are properly de
fined by giving necessary as well as sufficient condi
tions, for object classification is a purely deductive
process. If only necessary conditions are given, no
new information can be generated (except the de
tection of inconsistent specifications, of course). In
addition, note that no new objects are generated by
this process. Neither does it aggregate objects to
a new one nor does it construct the required parts
of an object. It is quite obvious that this formal
approach to configuration does not explain the ap
proach taken by PLAKON and KONWERK: although
deductive reasoning is clearly needed, hypothetical
reasoning l is needed as well.

However, the methodology used in PLAKON and
KONWERK for generating solutions of a configura
tion task described above can be seen to be a spe
cial instance of the model construction approach of
Buchheit et al. [1995] tailored to the peculiarities of
the BHIBS representation language. Following this
approach, a solution of a configuration task is de
fined to be a logical model of the given knowledge
base containing both the conceptual domain model
as well as the task specification. A logical model con
sists of a set of objects (the domain of di3course) as
well as an interpretation function which maps object
names to the objects of the domain of discourse and
concepts as well as slot names to unary and binary
relations on the domain of discourse, respectively,

lWe hesitate to call it abductive reasoning, for config
uration is not a task of generating explanations.

56

and it is required to satisfy the formulas of the given
knowledge base.

A bit of analysis reveals that the set of objects and
relations represented by slots which are constructed
by the configuration process in PLAKON and KON
WERK is a representation of a logical model of itself
as well as the domain model containing the concept
descriptions. This model maps each object to itself,
each concept to the set of instances of this concept
contained in the constructed configuration and each
slot to the set of object/filler tuples.

Interestingly, although the classification services
usually provided by description logics are not the
central mechanisms needed for configuration (as
noted by Giinter [1995al), the tableau calculi which
became popular for realizing these services can be
directly used as a basis for configuration systems
[Buchheit et al. 1995]. The algorithm for the satisfi
ability test provided by these calculi tries to contruct
a logical model of the given knowledge base. When a
logical model can be constructed, a knowledge base
is satisfiable. Therefore, extended by suitable con
trol mechanisms tableau calculus algorithms can be
used for emulating the configuration technique used
in PLAKON and KONWERK.

Note, however, that the language proposed by
Buchheit et al. [1995] which is based on a feature
logic is not suitable for the configuration domain.
One of its central notions, the whole-part relation
[Lutz 1996], cannot be represented using functional
roles (features).

3 The Language
PLAKON provides a language called BHIBS which can
be used for modeling a domain by defining concepts
[eunia 1991]. In this section we present the main
ideas behind BHIBS and illustrate how the language
constructs can be transformed to description logics
or, if this is not possible, to First-Order Predicate
Logic.

3.1 Concept Descriptions

BHIBS is a frame language using single inheritance
which allows one to describe the properties of in
stances by specifying restrictions for the required
values of named slots. The values can be either sin
gle objects or sets and sequences of objects, and the
restrictions can be specified extensionally by directly
giving concrete values like numbers, symbols or in
stances of concepts, or by intensionally describing
sets and sequences of objects. The following exam
ple of an expression of the BHIBs-language describes
the concept of a cylinder:

(is! (a Cylinder)
(a Hotorpart

(part-of (a Hotor»
(capacity [lcem 1000~cm])
(has-parts

(:set '[(a Cylinderpart) 4 6] :-

,,[(a Piaton) 1 1]
'[(a C0I1l18cting-Rod) 1 1]
'[(a Valve) 2 4]»»

A Cylinder is required to be a Motorpart, to be part
of a Motor, to have a capacity of 1 to 1000ccm, and
to have a set of 4 to 6 parts (has-parts) which are
all Cylinderparts and it consists of exactly 1 Piston,
exactly 1 Connecting-Rod, and 2 to 4 Valves. This
expression can be transformed to a terminological
inclusion axiom of a description logic providing con
crete domains [Hanschke 1992] as follows (the term
Avol c. (...) is a unary predicate of a numeric con
crete domain for the dimension Volume with base
unit m3):

Cylinder !; Motorpart n
(= 1 part-of) n V part-of . Motor n
(= 1 capacity) n
V capacity. AVol c. (0.001 ~ C /I. C ~ 1) n
V has-parts .

(Cylinderpart n
(Piston U Connecting-Rod U Valve)) n

(~4 has-parts Cylinderpart) n
(~6 has-parts Cylinderpart) n
(= 1 has-parts Piston) n
(= 1 has-parts Connecting-Rod) n
(~ 2 has-parts Valve) n
(~ 4 has-parts Valve)

Note that the given restrictions are only necessary
conditions for a Cylinder. This is not at all clear
on first sight, but was deduced from the procedural
semantics of BHIBS defined by the system PLAKON.

In an effort to provide a formal declarative seman
tics for BHIBS we found that all concept definitions
except those containing sequence description can be
transformed to terminological inclusion axioms. Fig
ure 1 specifies a set of transformation rules. Read
the functions TTA and TSD as Tram/arm TBox Ax
iom and Tram/arm Slot De&cription, respectively. A
Me48Ure is a number either with or without a unit
for a specific dimension, e.g. 42 or 25km. The func
tion DIM returns the dimension of a "measure", e.g.
Vol for 1000ccm, and the function VALUE returns the
value of a given "measure", 1000 in this example.

There are a few things to note in this transfor
mation. First, we are using more than one con
crete domain--Qne for each dimension-although all
of them are numeric. This helps in seperating the
dimensions from each other, they can be handled in
dependently. Second, what we have called a SlotDe
scription (in accordance with one of the developers
of the system KONWERK) is transformed to a con
cept term of a description logic, for it intensionally
describes a set of objects of the domain. Third, in
PLAKON as well as in KONWERK the slots of an ob
ject are assumed to have only one filler. This might

57

be either a single object (a number, a symbol, or
an instance of a concept) or a set of objects. We
transform slots to roles of a description logic which
may have more than one filler. Slots are not trans
formed to features which are interpreted as partial
functions. Therefore, objects having a set of objects
as a slot filler are seen as objects having multiple
fillers of a role in our transformation, so, there is no
reification of a set of objects.

After transforming a BHIBS knowledge base by ap
plying the rules shown in Figure 1 some additional
axioms must be added in order to retain the in
tended meaning. In PLAKON as well as in KON

WERK, the domain model given by a knowledge
base is assumed to be complete in the sense that
all the different types of objects (Le. concepts) are
known and explicitly given (see [Cunis et al. 1991,
Giinter 1995bl). Therefore, concepts are assumed
to be completely covered by its direct subconcepts,
and the direct subconcepts are assumed to be pair
wise disjoint. In both systems these assumptions
manifest themself in configuration step 2 shown in
Section 2.1. Objects are specialized to a leaf node of
the concept hierarchy. In our transformation these
assumptions must be made explicit by adding a num
ber of cover and disjointness axioms (see Buchheit
et al. [1995]). If, for example, a concept A has the
direct subconcepts B, C, and 0, then the following
axioms must be added to the TBox:

A~BUCUO

B !; ...,C B !; -,0 C !; -,0

After adding cover and disjointness axioms, "special
ization to leaf concepts" is done by a model construc
tion process as well. Note that this formalization of
the original assumption of a complete domain model
easily shows that it does not correspond to a closed
world assumption as claimed by Cunia et al. [1991]
and Giinter [19958,1.

The basic PLAKON and KONWERK systems sup
port only incomplete reasoning services for checking
the domain model. For instance, the cover axioms,
might implicitly add additional restrictions to A. Let
us assume the following declarations impose restric
tions on B, C and O.

A !; (~ 10 r) n (~60 r)
B !; A n (~ 15 r) n (~20 r)
C ~ A n (~20 r) n (~30 r)
o !; A n (~ 30 r) n (~50 r)

The generated cover axiom A !; B U C U 0 imposes
the following additional restrictions on A:

A ~ (~ 15 r) n (~ 50 r)

Thus, there is more to TBox reasoning than only
consistency checking. The KONWERK system tries
tc

TTA((is! (a ConceptName)
(a SuperConceptName

SlotDescriptionl
SiotDescription2
... »

TTA((det-relation :nam& SlotNamel
: inverse SlotNam(2»

TSO((SlotName (a ConceptName»)

TSO((SlotName
{ObjectNamel ObjectName2 ... }»

TSO((SlotName [Measurel Measure21»

TSO((SlotName
(: 80lle (a ConceptName) m n»)

TSO((SlotName
(: 8&t (: 8011& (a ConceptNamel) m1 n1) : >

(:8011& (a ConceptName2) m2 n2)
(: 8011& (a ConceptName3) m3 n3)
... »)

TSO((SlotName
(:set (:8011& (a ConceptName1) m1 n1) :

(:8011& (a ConceptName2) m2 n2)
(: 8011& (a ConceptName3) m3 n3)
... »)

-+

-+

-+

-+

-+

-+

-+

ConceptName!; SuperConceptName n
TSO(SlotDescriptionl) n
TSO(SlotDescription2) n

SlotNamel == SlotN ame2- 1

(= 1 SlotName) n
V SlotName. ConceptName

(= 1 SlotName) n
V SlotName. {ObjectNamel ObjectName2 . . . }

(= 1 SlotName) n
VSlotName.

AD1 .. (M ') x.
(VAL(Measurel) ~ x 1\ x ~ VAL(Measure2»

(~ m SlotName ConceptName) n
(~ n SlotName ConceptName)

V SlotName . ConceptNamel n
TSO((SlotName

(:8011& (a ConceptNam(1) ml nl») n
TSO((SlotName

(:8011& (a ConceptNam(2) m2 n2») n
TSO((SlotName

(:8011& (a ConceptName3) m3 n3») n

V SlotName.
(ConceptNamel n
(ConceptName2 U ConceptName3 U ... » n

TSO((SlotName
(:8011& (a ConceptNamel) m1 n1») n

TSO((SlotName
(:80118 (a ConceptName2) m2 n2») n

TSO((SlotName
(:80118 (a ConceptName3) m3 n3») n

Figure 1: Rules for transforming a B HIBS terminology.

called TAX [Giinter 1995al. The main idea of using
TAX is to reduce the search space for constructing
objects. For instance, if a construction object is spe
cialized to an A, it will be known in beforehand that
there is no need to try whether e.g. only ten role
fillers for r are sufficient for an A. [Giinter 1995al
uses an example with intervals to demonstrate the
facilities of TAX.

In our reconstruction of PLAKON and KONWERK

using description logics with the model construction
view of realizing the satisfiabUity test we used the
following language constructs:

8 Conjunction,

8 Qualified number restrictions,

• Qualified existential restriction,

8 Negation and disjunction with primitive con
cept names and

• Concrete domains over lR.

58

Furthermore, it should be noted that formulas are
not arbitrarily nested, i.e. we use a limited kind of
description logic.

Considering the formal semantics for BHIBS we
defined in this paper, it is obvious that reasoning
would be incomplete if the TAX module was not
loaded into the KONWERK system. Currently, it is
still not clear whether the inference services of BHIBS

together with TAX are complete with respect to the
semantics we defined in this paper

3.2 Mixins and Views
PLAKON'S and KONWERK'S concept languages are
restricted to single inheritance. The restriction to
single inheritance can easily be understood when
PLAKON'S and KONWERK'S technique used for gen
erating solutions of a configuration task is seen from
a logical point of view. If multiple inheritance were
used, construction step 2 (~ Section 2.1) would
not be sufficient to traverse the configuration space.

Domain-Oblect MOCSe-of.<)oeration

I_--------~
v"T" --~""

Mo~tor-V~;: -- --~~~rtven D':~kjrtven Electr1clty-drtven

.... '" '" '" /

.... "" /

lAotorbtke Cor Truck

.. ~ .. ~
Fire-Truck UPS-Truck

Figure 2: Example for a concept hierarchy with mix
ins.

When a concept is specialized to a certain subcon
cept with multiple predecessors it must also be spe
cialized to subconcepts of these superconcepts, Le.,
in general, there would no single leaf concept to de
scribe a configuration object. Furthermore, since the
subconcepts of a concept are defined to be pairwise
disjoint (see the semantics of BHIBS), declaring two
concepts A and B as a superconcept for a concept
C would result in an inconsistency (we assume that,
implictly, every concept is a subconcept of the cen
tral root Domain-Object).

However, single inheritance causes modeling re
dundancy in many domains. In order to provide
a more flexible modeling language, Hotz & Vietze
[199590\ extended the concept language of KONWERK

by introducing the notion of mixins (see Figure 2 for
an example). Mixins are not instantiated but they
provide a restricted form of multiple inheritance and
can be seen as macro definitions. The restrictions
defined for a mixin are inserted where the name of
a mixin appears in a concept definition.

The control mechanjsm of KONWERK does not
attempt to specialize objects to any subconcept of
a mixin because mixins are expanded like macros.
In the description logic translation, mixins can be
transformed to terminological axioms as well, but in
contrast to normal concepts no cover and disjoint
ness axioms are created for subconcepts of a mixin.
Mixins are translated to terminological equality ax
ioms because the semantics for using a mi.xin name
in a concept definition and for directly including the
mixin definition term (right side of the concept def
inition) should be identical.

To support the knowledge acquisition phase,
PLAKON suggests the notion of a view. The main
idea of using views is to provide a structured way to
use multiple inheritance while preserving a domain
model skeleton with single inheritance. The seman
tics of views was not very well understood and quite
confusing when first specified by Cunia [1991] . Re
cently, Hotz & Vietze [1995a\ gave an interpretation
of this notion in terms of a restricted form of multi-

59

operation-Medium

Domaln-Oblecl / ' A

L
./' ' ' Land Water

_ / - ' Mode-of-Operatlon

--------~---
Vehicle

L
Motorized Non-motortzed

-----~ -- / \ --------
Motor-Vehicle Gos-dttven Dlesel-drlven EIectrIctty-drtven

Figure 3: Example for a concept hierarchy with
views.

pIe inheritance with mixins.
A view is used to describe aspects of an object that

can be separated from other aspects. For instance,
the mode of operation of a vehicle (Gas-driven, Diesel
driven, Electricity-driven) can be separated from the
medium the vehicle is constructed for (land, water) .
In Figure 3 the Mode-of-Operation mixin concept
tree from Figure 2 is presented as a view.

A view is a separate concept hierarchy with sin
gle inheritance that is coupled to the main hierar
chy. In Figure 3 the nodes for Mode-of-Operation and
Operation-Medium are linked to Vehide and the con
cept Motorized is linked to Motor-Vehide. In the fol
lowing we will consider the Mode-of-Operation view
only.

The semantics of view links is different to that of
mixin links (see Figure 2). The procedural seman
tics of view links as given by Hotz & Vietze is defined
as follows. For each main concept C that is linked
to a view concept V, two sets are constructed. The
first set (C-Set) contains the leaf Bubconcepts of the
main concept C that can be reached by traversing
the subclass inheritance hierarchy without touching
a concept that is also linked to a view concept. The
second set (V~Set) contains the leaf concepts that
can be found by traversing the view subconcept hier
archy starting from V without touching a view that
is also linked to a main concept. The elements of
the cross-product C-Set x V~Set define new subcon
cepts of C. In Figure 4 the new subconcepts for the
main and view hierarchy of Figure 3 are presented:
For Vehide an additional subconcept Non-motorized
Vehide and for Motor-Vehide three new Bubconcepts
Gas-driven-Motor-Vehide, Diesel-driven-Motor-Vehicle
and Electridty-driven-Motor-Vehide. The new con
cepts are created to avoid multiple inheritance. For
each of these new concepts, the view concept of the
corresponding cross-product tuple is used as a mixin,
i.e. the concept definition is expanded like a macro
and only a single superconcept remains. In order
to avoid a combinatorial explosion, the new con
cepts are created on demand, Le. a concept Diesel
driven-Motor-Vehicle is only created when an object
is known to be Motor-Vehicle. _

With description logics no restructuring of the in-

Domain-Oblect M()(j~~-()f:() . . ration

l
.. ..

Vehicle Motortzed Non-motorized

\

~otortzed
~hlcle

Motor-Vehicle GaS-drlven Dlesel-drtven Electrlctty-drtven
/ / I

I I

v ~ ~

I
I

Gos-drtven- Dlesel-drtven- EIectr1ctty-drlven-
Motor-Vehicle Motor-Vehicle Motor-Vehicle

Figure 4: Expanded concept hierarchy.

heritance graph is necessary. View links (dotted lines
in Figure 4) are treated as ordinary superconcept
links. A view concept V connected to a main concept
C via a view link is simply included in the concept
definition of C as an additional restriction. Similar
to the approach presented above, for each concept
in the view hierarchy cover and disjointness axioms
are generated. However, only the view subconcepts
are combined in a disjunction (or cover) term. For
instance, for the main concept Motor-Vehicle and for
the view concept Motorized (see Figure 4) the follow
ing axioms are generated:

Motor-Vehicle I; Vehicle n Motorized

Motorized I; Gas-driven U Diesel-driven U

Electricity-driven

Gas-driven I; -,Diesel-driven

Gas-driven I; -,Electricity-driven

Diesel-driven ~ -,Electricity-driven

Considering the model construction process of the
description logic reasoner, the axioms ensure that a
Motor-Vehicle will be either Gas-driven, Diesel-driven
or Electricity-driven. Using the facilities of descrip
tion logics, there is no need to create additional con
cepts (see the cross-products mentioned above).

3.3 Object Descriptions
During the configuration process, instances are cre
ated (see the configuration steps in Section 2.1).
These instances are then manipulated by the con
trol system of PLAKON or KONWERK.

In a description logic, assertions about concrete
instances are gathered in the so called ABox. The as
sertionallanguage of a description logic can be used
for specifying a device to be constructed in a configu
ration task as well as for representing the solutions of
the configuration task. The configuration steps men
tioned in Section 2.1 generate the following kinds of
ABox assertions:

• Creation of instances (construction steps 3
and 4)

60

• Asserting primitive concepts for instances (con
struction step 1)

• Asserting concrete fillers for roles (construction
step 2) -

• Asserting restrictions for role fillers for a specific
instance (construction step 2).

In PLAKON and KONWERK there does not exists a
simple language for making these assertions. Making
assertions about instances is explicitly done by using
the functions slot-value and (sett slot-value)
of the underlying implementation language CLOS as
well as a number of other functions. For the sake
of a simple description we invented a language with
a single construct (set-slot) and provide a formal
declarative syrnantics for it by showing how it can
be transformed to the assertional language of a de
scription logic. Figure 5 specifies the set of transfor
mation rules. Read the function TAA as T'ran3form
.ABox Axiom.

As mentioned earlier, PLAKON'S and KONWERK'S
concept languages are frame languages based on the
idea of slots. From a logical point of view this has
no effect on the interpretation of the languages. It
does have an effect on the expressivity of the asser
tional language, however. If, for example, a Motor
Vehicle and its subconcept Truck (see Figure 2) are
not required to have a color, while the subconcept
Fire-Truck is required to have the color REO·and, for
instance, a UPS-Truck is required to have the color
BROWN, then in PLAKON as well as KONWERK it
is not possible to construct any Motor-Vehicle with
color RED other than a Fire-Truck, and worse, when
specifying a device to be configured, it is not possi
ble to specify a Motor-Vehicle with color RED. The
absence of a color slot must not be confused with
the requirement of not having a color, however, for a
Fire-Truck clearly is a Motor-Vehide. The assertional
language simply does not allow to express something
like this. This anomaly of the language must be
taken into account when modeling a domain, and it
clearly prevents something like innovative configura
tion (see Section 4).

This feature of the assertiona! language of
PLAKON and KONWERK has an additional effect:
Whenever a slot which is defined to be the inverse
of another slot is used in a SlotDescription of a con
cept, its inverse must be used in a SlotDescription
of the concept of the fillers of the slot. In order to
provide adequate restrictions for the configuration
space, value restrictions must be declared for the
corresponding slots. Note that this might result in
cyclic concept definitions.

The control system of PLAKON or KONWERK can
be configured to use different strategies for travers
ing the configuration space (chronological backtrack
ing, TMS-based construction of a single version of an
artifact with knowledge-based backtracking, ATMS
based construction of multiple versions of an arti-

TAA((set-slot
ObjectNamel SlotName ObjectName2»

(ObjectNamel, ObjectName2): SlotName

ObjectName: (3 SlotName. :c. (:c = VAL(Mea.!ure)))
..... AIl, .. CM)

TAA((set-slot
ObjectName SlotName Mea.!ure»)

TAA((set-slot
ObjectName SlotName ObjecWucriptor»

..... ObjectName: TSD((SlotName ObjecWescriptor»

Figure 5: Rules for transforming assertions.

TSD((has-parts
(: ct (: klt-menge (a Vertex) ml nl

(an Edge) m2 n2»»

TSD((has-parts
(: ct (Vertex Vertex Vertex Vertex)

«Edge 1 2) (Edge 2 3) (Edge 3 4»»)

.....

.....

V has-parts. (Vertex u Edge) n
(~ ml has-parts Vertex) n
(:5 nl has-parts Vertex) n
(~m2 has-parts Edge) n
(:5 n2 has-parts Edge)

{a 13 Vl, 112, V3, V4, el, e2, e3 :
has-parts(a, VI) " ... " has-parts(a, V4)"
has-parts(a, el) " ... "has-parts(a, e3)"
Vertex(vl)" .. , " Vertex(v4)"
Edge(vl) " ... " Edge(v3)"
has-vertex(el, Vl)" has-vertex(el, 112)"
has-vertex(e2, V2) "has-vertex(e2, V3)"

has-vertex(e3, V3)" has-vertex(e3, V4) }

Figure 6: Rules for transforming graph structure specifications.

fact}. Different strategies can also be implemented
for the model construction system for testing sa.tis
fiability (see Section 2.2).

3.4 Constraints
PLAKON'S constraint language [Cunis et al. 1991,
Chapter 6] can be used to express n-ary constraints
on the fillers of role chains of objects. These include
equality as well as inequality constraints, which in
some cases are identical to the well known role value
maps, as well as numeric constraints.

Role value maps are important for describing has
parts relations. For instance, in the following TBox
we define graph structures. A graph consists of ver
tices and edges which also are set into relation to
one another.

has-vertex ,;, vertex-of-1

has-parts ,;, part-of-1

Graph-Object ~ (= 1 part-of)

Vertex ~ Graph-Object
Edge!; Graph-Object n

V has-vertex. Vertex n
(= 2 has-vertex) n
-.Vertex

Graph-Object ~ Vertex u Edge

Graph';' V has-parts. Graph-Object n
«has-partsl Edge 0 has-vertex) =

has-parts I Vertex) n
«has-parts I Vertex 0 vertex-of) =
has-partsl Edg:e)

61

Role value maps are required to ensure that if an
edge is part of a graph, then the vertices that are
set into relation to an edge are part of the same
graph.

In case of a numeric constraint, if the arguments
of an n-ary constraint are specified by n differently
named slots, then this can be transformed to a pred
icate of a concrete domain. In general, however,
the constraint language is much too expressive to be
transformed to description logics; it allows to quan
tify over more than one or two variables. The con
straint reasoner of PLAKON and KONWERK is in
complete in general, it uses local propagation. FUr
thermore, constraint solving can be explicitly p0st
poned by defining a certain control strategy (see Sec
tion 2.1).

In this section we have used general graph struc
tures as an example for the use of constraints. More
specific graph structures are discussed in the next
section.

3.5 Configuration of Graph Structures
In KONWERK special modeling constructs have been
added to BHIBS to represent the construction space
for graph structure'!! (see [Bartuschka 19951). In
a similar way as the object descriptors presented
above, special constructors for vertex and edge struc
tures are supported. Figure 6 defines the map
ping for slot descriptions that,contain graph struc
ture specifications. While the first descriptor can
be mapped to description logic constructs, the sec
ond descriptor is mapped to First-Order Predicate
Logic. In this description, the.. parts are explicitly
named (see the existential quantifier). The second

graph (polyline with three edge elements) requires
seven parts to be named. Thus, in general, the con
struction or configuration space for graph structures
cannot be represented in description logics.

vl

v2

v3

Figure 7: Two examples for configurations of ver
tices and edges: a star and a polyline.

In Figure 7 we present a few examples for graph
structures. From a data representation point of
view, graph structures (e.g. a star) can easily be rep
resented in the ABox. Furthermore, it is not very
difficult to define a TBox that can be used to "rec
ognize" a certain graph structure. In this paper, we
discuss a small TBox for recognizing the star of Fig
ure 7:

End-Vertex ='= Vertex n
($ 1 vertex-of)

Middle-Vertex ='= Vertex n
(= 3 vertex-of) n
V'vertex-of. End-Edge n
-,End-Vertex

Star == Graph n
(= 7 has-parts) n
(= 3 has-parts Edge) n
(= 3 has-parts End-Edge) n
(= 4 has-parts Vertex) n
(= 3 has-parts End-Vertex) n
(= 1 has-parts Middle-Vertex)

To represent configurations like the star in Figure 7
corresponding concepts and relations are defined.
Furthermore, initial assertions must be submitted
to the ABox.

vI: Vertex, v2: Vertex, v3: Vertex, v4: Vertex

el: Edge, e2: Edge, e3: Edge,

(el, vI): has-vertex, (el, v4): has-vertex

(e2, v2) : has-vertex, (e2, v4) : has-vertex

(e3, v3): has-vertex, (e3, v4): has-vertex

It can easily be seen that the ABox classifies the
vertices vI, v2 an d v3 as End-Vertices. Therefore,
all edges are End-Edges and v4 is a Middle-Vertex.
The graph the objects are part of is classified as a

62

Star. The main idea of the "recognition process" has
been published in [Haarslev et a1. 19941.

In a model construction prover the object repre
senting the graph is automatically generated. If a
structural subsumption prover is used, an aggregate
to actually represent the star can be created using a
rule. The vertex v4 can be seen as a representative
for the star and Middle-Vertex can be used in the
antecedent part of the rule. A semantics for rules
with epistemic operators and the use of rules to cre
ate aggregates is defined in [Hanschke 1993]. Han
schke [19931 also introduces transitive closure as an
extension to role specifications. Transitive closures
are required e.g. to represent polylines. Transitive
closures are also required to augment the task spec
ification in PLAKON and KONWERK. We have seen
that one main goal object and a set of additional goal
objects can be given as a specification of a construc
tion task. The additional objects must be part-of*
the main goal object.

We have seen that graph structures can be inter
preted as a special case of part-whole relations. The
quintessence is that the construction space for graph
structures in general cannot be represented with de
scription logics. However, for "recognizing" specific
graph structures, adequate concepts and relations
can be defined. That is what description logic is
all about: It provides a basis that allows domain
specific concepts and relations to be defined and,
thus, allows inference steps to be formally modeled.
Completeness of a description logic ABox reasoner
ensureS that a model developer must not deal with
control aspects such as the correct sequence of el
ementary inference steps or the administra.tion of
trigger events etc. If concepts and relations can
not be defined using the constructs of description
logics, a. more expressive logic could be used. How
ever, if full First-Order Predicate Logic were used,
the satisfiability problem would be undecidable, i.e.
the reasoner must be incomplete.

3.6 Defaults

PLAKON's and KONWERK'S concept languages pro
vide a means for specifying defaults for the slots of
certain objects, but their intended meaning is not
quite clear. They are used for focusing the search
mechanism, but there is no notion of quality of s0-

lutions in PLAKON and KONWERK. By using the
approach of Quantz & Royer [Quantz & Royer 19921
("Preferential Default Description Logics") defaults
can be used for defining a preference relation on the
set of solutions. However, it can be shown that
PLAKON's and KONWERK's use of defaults for fo
cusing search does not guarantee the generation of
the optimal solution with respect to this preference
relation.

4 Innovation and Creativity in
Configuration Tasks

A formal, logical approach to configuration as advo
cated in this contribution might be very helpful for
analyzing open problems, e.g. the intended meaning
of notions like innovative or even creative configura
tion [Hotz & Vietze 1995b\. In this paper we define
innovation in the context of configuration problems
in terms of in description logics as a process of dy
namic classification. The definition is motivated by
an example.

Let us assume there exists a domain model with
concepts for various real world objects, for instance,
ships, houses etc. Maybe houses of different kinds
are represented using defirwi, concepts (i.e. concepts
with necessary and sufficient conditions) and houses
and ships are not disjoint. In our example we assume
the initial construction task is to design a Ship that
satisfies certain restrictions (e.g. number of persons,
number of bedrooms as well as convenience or luxury
criteria). Let us further assume that a certain ship
51 has been designed. Due to the cover axioms in
the TBox (see above), the ABox instance 51 is sub
sumed by a leaf subconcept of Ship. After the design
has been completed, the customer is asked whether
he is satisfied with the result. Maybe the customer
adds additional constraints to the designed artifact
51 using the relations defined in the domain model.
The additional restrictions might cause the sufficient
conditions for a House concept to be satisfied. If this
happenes, the construction process will try to fur
ther specialize the ship 51 using the house concepts
(see the cover and disjointness axioms). Thus, the
designed Ship can also be used as House. The fact
that the ABox discovers that House (a sibling of the
initial concept Ship) also holds and the subsequent
specialization of the sibling concept can be inter
preted as the task of designing a houseboat. The
House concept (or a subconcept of House) serves as
a dynamically instantiated view in this respect that
imposes additional constraints because of the ass0-

ciated cover axioms. The new artifact might better
satisfy certain optimization criteria.

In this case, innovative design is possible because
additional restrictions are asserted for a single ABox
instance 51 (innovative design by imposing addi
tional restrictions). Note that there is no concept
definition for a Houseboat in the domain model. If
there had been such a concept definition as a subcon
cept of Ship (with the same additional restrictions),
the TBox classification process would have inferred
in advance that the defined concept House is a su
perconcept of Houseboat. Thus, there would be no
innovation at all. Innovation can be defined to be
a task reformulation by adding restrictions in order
to find additional defined concepts to hold together
with the subsequent specialization of these defined
concepts. When the concept term describing the in
stance sl is computed and inserted into the TBox,

63

a new concept Houseboat is created (of course, the
name would have to be computed by additional pro
cesses).

Note that this isjmpossible when storage-oriented
slots are used as a basis for expressing ABox re
strictions. With PLAKON'S and KONWERK's limited
ABox expressibility (see Section 3.3), additional re
strictions that trigger the derivation of House cannot
be expressed without knowing in beforehand that a
Ship sl is also a House.

Innovation can also require goal-directed relax
ation of restrictions. -For instance, minimum car
dinality restrictions for certain roles might be re
laxed such that more restricted maximum cardinali
ties can be asserted (either explicitly or by applying
the closed world assumption by "closing" a role). In
our example, the "goal" would be to relax the con
straints of 51 such that a defined concept (like House)
can be proved to hold. This concept will again be
subclassified to leaf concepts etc.

5 Conclusion
The paper demonstrates that PLAKON and KON
WERK can be interpreted as a special purpose d~
scription logic reasoner, i.e. a model-constructing
prover for a very specific description logic with a
limited sort of ABox. The construction or configu
ration process as defined by PLAKON and KONWERK
can be "simulated" by a model-constructing satisfia
bility prover for description logics. The constructed
logical model represents the artifact to be designed.

The semantics for PLAKON and KONWERK we
gave in this paper indicates what kinds of term
constructors are required for BHIBS and its exten
sions (see Section 3.1 and Section 3.4). Further in
vestigations must show whether the resulting lan
guage is decidable. Although, in general, including
role value maps leads to an undecidable language
(see Ha.nschke-92a), we must be careful here because
there are some restrictions on term forming opera
tors (e.g. negation and disjunction only with names
for primitive concepts).

In our opinion, Giinter's [1995a\ and Richter's
[1995] argument that terminological systems are in
adequate for reasons of efficiency is misleading as
long as the complexity of configuration tasks is un
known, for a careful analysis of the terminological
language used in our transformation might show that
the satisfiability problem - which is central for con
figuration tasks - is intractable or even undecidable
for this language. Efficiency (or tractability) is not
a question of using a description logic or not but it
is a question of how complete a solution to a con
figuration problem is expected to be wrt. a formally
defined semantics.

With the implementation of KONWERK, several
prototype applications have been built. In compari
son to PLAKON, in KONWERK many additional mod
ules have been added (Fuzzy values, optimization

strategies, etc.}. This research clearly demonstrates
the necessity of adequate representation and reason
ing systems. In this paper, we cannot discuss all
aspects of this large system (see also, for instance,
[Heinsohn 1992] for an approach for modeling uncer
tainty in description logics) . Especially, we do not
claim that the usual syntax for description logics is
adequate for all users. Maybe the syntax and mod
eling philosophy of BHIBS (with object descriptors,
see Figure 1) is better suited. to engineers. With this
paper however, we hope to provide a basis for defin
ing an integrated semantics for the submodules of
KONWERK. The contribution shows that both ap
proaches - practical and theoretical approaches - are
valuable contributions to AI research and both can
complement each other.

Acknowledgments
We thank Lothar Hotz for explaining numerous de
tails of the systems PLAKON and KONWERK.

References
[Bartuschka 1995] Ulrike Bartuschka. Reprii.senta

tion von Graphstrukturen. In Giinter [1995bl.
chapter 19.

[Buchheit et al. 1995] Martin Buchheit, Rudiger
Klein, and Werner Nutt. Constructive Prob
lem Solving: A Model Construction Approach
towards Configuration. DFKI Technical Memo
TM-95-01, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz, Saarbriicken, January
1995.

[Cunis et al. 1991] Roman Cunis, Andreas
Giinter, and Hellmut Strecker, editors. Das
PLAKON-Buch - Ein Expertensystemkern
fUr Planungs- und Konfigurierungsaufgaben
in technischen Domanen, volume 266 of
Informatik-Fachberichte. Springer-Verlag, Berlin
- Heidelberg - New York, 1991.

[Cunis 1991] Roman Curus. Modellierung technis
cher Systeme in der Begriffshierarchie. In Cunia
et al. [1991], chapter 5.

[Giinter 1991] Andreas Giinter. Begriffshierarchie
orientierte Kontrolle. In Cunia et al. [1991], chap
ter 7.

[Giinter 19950.] Andreas Giinter. Ein pragmatis
cher Ansatz zur Auswertung von taxonomis
chen Relationen bei der Konfigurierung. In
[Gunter 1995b], chapter 7.

[GUnter 1995b] Andreas Gunter, editor. Wissens
basiertes Konfigurieren - Ergebnisse aus dem
Projekt PROKON. infix, Sankt Augustin, 1995.

[Ha.arslev et 0.1. 1994] Volker Haarslev, Ratf Moller,
and Carsten Schroder. Combining Spatial and
Terminological Reasoning. In Bernhard Nebel
and Leonie DrescWer-Fischer, editors, KI-94:

Advances in Artificial Intelligence - Proc. 18th
German Annual Conference on Artificial Intelli
gence, Saarbrucken, September 18-23, 1994, vol-

- ume 861 of Lecture Notes in Artificial Intelli
gence, pages 142-153. Springer-Verlag, Berlin -
Heidelberg - New York, 1994.

64

[Hanschke 1992] Philipp Hanschke. Specifying Role
Interactions in Concept Languages. In [KR 1992],
pages 318-329.

[Hanschke 1993] Philipp Hanschke. A Declara-
tive Integration of Terminological, Constraint
based, Data-driven, and Goal-directed Reason
ing. DFKI Research Report RR-93-46, Deutsches
Forschungszentrum fUr Kiinstliche Intelligenz,
Kaiserslautern, October 1993.

[Heinsohn 1992] Jochen Heinsohn. A Hybrid Ap
proach for Modeling Uncertainty in Terminolog
ical Logics. DFKI Research Report RR-92-24,
Deutsches Forschungszentrum fiir Kiinstliche In
telligenz, Kaiserslautem, August 1992.

[Hotz & Vietze 1995a] Lothar Hotz and Thomas
Vietze. Erweiterung der Begriffshierarchie urn
Sichten und Mehrfachvererbung. In Giinter
[1995bl. chapter 11.

IHotz & Vietze 1995b] Lothar Hotz and Thomas
Vietze. Innovatives Konfigurieren als Er
weiterung des modellbasierten Ansatzes. In
Giinter [1995b], chapter 4.

[KR 1992] Bernhard Nebel, Charles Rich, and
William Swartout, editors. Principles of Knowl
edge Representation and Reasoning - Proc. of
the Third International Conference KR '92, Cam
bridge, Mass., October 25-29, 1992. Morgan
Kaufmann Publ. Inc., San Mateo, CA, 1992.

[Lutz 1996] Carsten Lutz. Untersuchungen zu Teil
Ganzes-Relationen - Modellierungsanforderun
gen und Realisierung in Beschreibungslogiken.
Memo FBI-Iffi-M-258/96, Fachbereich Infor
matik, Universitat Hamburg, April 1996.

[Owsnicki-Klewe 1988] Bernd Owsnicki-Klewe.
Configuration as a Consistency Maintenance
Task. In Wolfgang Hoeppner, editor, GWAI-88
12th German Workshop on Artificial Intelli
gence, Eringerfeld, September 1988, volume
181 of Informatik-Fachberichte, pages 77-87.
Springer-Verlag, Berlin - Heidelberg - New York,
1988.

[Quantz & Royer 1992] Joachim Quantz and
Veronique Royer. A Preference Semantics for
Defaults in Terminological Logics. In [KR 1992],
pages 294-305.

[Richter 1995J Michael M. Richter. Komrnen-
tierung und Wertung der PROKON-Ergebnisse.
In Giinter [1995bj, chapter 7.

Using description logic for configuration problems

Holger Wache
Universit" at Bremen

P.O. Box 330 440
28334 Bremen

wache@informatik.uni-bremen.de

In order to use a model-based approach
for describing configuration problems the fol
lowing types of knowledge have to be repre
sented:

• the components of which a configuration
can consist. Generally the components
are collected in a catalog.

• the allowed/necessary relationships be
tween the components, that define a
valid set of components in a configura
tion solution.

• a specification of the configuration prob
lem to solve.

The configuration problem is solved, when
a set of components is selected from the cat
alog in such a way, that the components sat
isfy the specifications and . do not contradict
any relationships.

The main difficulty in representing con
figuration problems lies not in modeling
the components but in describing the re
lationships. In comparsion to other exist
ing model-based configuration systems like
PLAKON [Re91], KONWERK [G"u95a,
G"u95b], or COSMOS [Hei93], the term "re
lationship" is sweeping. Several kinds of re
lationships can be identified in configuration
problems:

• part-whole taxonomy: components are
described as composition from other
components

• functional dependencies: components
can be considered as function providers.
For providing these functions they need
other functions provided by other com
ponents and so on.

Gerd Kamp
Universit" at Hamburg

Vogt-K" olln-Str.30
22527 Hamburg

kamp@informatik.uni-hamburg.de

• physical laws in a technical domain:
such as U = R * I or m = r * f

• procedures in the mechanical engineer
ing domain there are procedures verify
ing and/or calculating values like tem
perature in crankshaft · ...

Therefore, to describe components and
their relationships a KR system needs a rich
and expressive language. In our opinion, ter
minological systems provide such a language.

On the inference level of solving configura
tion problems, one important task is the se
lection of appropriate components from the
catalog. Normally a component is not iden
tified by its name but by its properties. So
selection of components can be seen as a clas
sical classification task.

The difficulty in the classification task lies
in the way how the properties of a com
ponent are determined. The relationships
between the components impose certain re
quirements (Le. their properties) and con
straints on the components that have to be
obeyed. Computing the relevant require
ments for a component have to be taken into
account during the classification task. De
sciption logics provides a powerful mecha
nism for classification. The main advantage
is that procedures for evaluating the rela
tionships can interact with the classification
mechanism.

65

In our oppinion description logics are use
ful for solving configuration problems be
cause they provide a rich representation lan
guage for modelling the _ components and
their relationships and a powerful classi-

fication mechanism for the selection task.
As best to our knowledge there is no
other knowledge representation formalism
that provides this two features on the base of
a clear semantics. Many representation for
malism allow the object centered representa
tion of the components but do not directly
support the classification task.

A terminological system can only act as a
part of a configuration system. It is desig
nated for representing the components and
relationships and supporting a few infer
ences (Le. classification). Representing other
knowledge (e.g. control knowledge for guid
ing the configuration process) or additional
inferences (e.g. aggregation of components)
have to be done in the other part of the con
figuration system. The other parts (e.g. a
rule based system for aggregation) use de
scription logic as a service provider: descrip
tion logic holds the (incomplete) problem so
lution and offers a few inferences.

In a terminological system the compo
nents and (a few) relationships are repre
sented as concepts and relations in the T
Box. Our description formalism is based on
the non-trivial ACe language (including OR
and NOT) [HN90j. To describe component
properties the language must be extended
with features. Roles can be used to repre
sent relationships between components. For
the part-whole taxonomy a role hierarchy is
useful.

While modeling components and their re
lationships can be expressed in aT-Box,
more important for a configuration task are
the inferences in the A-Box. Computing the
subsumption graph of the components is per
haps an interesting task during knowledge
acquisition, but really needed only for a cor
rect behaviour of the A-Box inferences. Im
portant inferences are the consistency test
checking the configuration solution wrt. the
components and relationships in the T-Box,
and the two kinds of individual classification
(strong and weak realisation). Strong real
isation computes the set of components an
individual has to classify to; weak realisa
tion determines the components to which an

66

individual can possibly classify to, if new in
formation is available.

Unfortunately, a few modifications and
extensions of the terminological system are
needed: First, not all relationships between
components can be expressed in the concept
language. In a technical domain it must
be possible to represent physical laws like
U = R * I. Thus algebraic (in)equalities
can be handled by an algebraic constraint
solver. For correct inferences in the termi
nological system (especially in the T-Box),
a constraint solver has to be integrated into
the terminological part. Baader and Han
schke [BH91] describe a generic Concrete Do
main interface for integrating external de
cision procedures. An algebraic constraint
solver can be considered as such a decision
procedure. But the most available termi
nological systems do neither provide such a
generic interface nor algebraic constraints.

Second, the A-Box inferences needs an
adaptation. Normally, the consistency test
returns a boolean value. In order to do so,
a terminological system based on a tableaux
method implicitly generates a model. In the
configuration task the calculated model is
of interest to guide the next configuration
steps. Therefore, the consistency test should
also return the computed model, which in
the end is the solution to the configuration
problem specification.

Returning the computed model also re
quires an adaption of the decision procedures
integrated via a concrete domain interface.
The procedures should to be capable of re
turning their computed model. E.g. an alge
braic constraint solver should return the val
ues or ranges of its variables. This require
ment restricts the choice of the appropriate
decision procedure.

Furthermore, the individual classification
can be improved. Description logics are
based on an open world semantic. For this
reason the individual realisation algorithms
are very conservative in classifying. It as
sumes that a new concept description could
be added to the T-Box anytime. During a
configuration task it can be assumed that no

new component descriptions will be added
to the T-Box. Through a (time-consuming)
combination of the strong an~ weak reali
sation, individuals can be classified to more
specific concepts than the pure strong reali
sation: if the most specific concept, to which
an individual i must be classified (strong re
alisation), is C and if there exists only one
subconcept D of C, to which the individual
i can be classified (weak realisation), then
assume that the individual i is from concept
D.

In our experience terminological systems
extended by Concrete Domains offer a rich
and expressive language to represent the do
main knowledge (i.e. the components and

Artificial Intelligence. "infix", St.
Augustin, 1995.

[G"u95b] A. G"unter, editor. Wissens-
basiertes K onfigurieren - Ergeb
nisse aus dem Projekt PROKON.
Dr. Ekkehard Hundt, "infix"
Verlag, St. Augustin, 1995.

[Hei93] M. Heinrich. Ressourcenorien-
tiertes Konfigurieren. KI,7(1):11-
15, 1993.

[HN90] B. Hollunder and W. Nutt. Sub
sumption algorithms for concept
languages. Technical Report RR-
90-04, DFKI, Kaiserslautern, Ger
many, April 1990.

relationships). An open problem is the for- [Re91] A. Strecker R. Cunis, A. G"unter,
editor. PLAKON - "Ubersicht
"uber das System. Informatik
Fachberichte. Springer, 1991.

malisation of the specification. Normally,
the specification is vague and uncertain. It
is not clear, how such a specification can be
transformed into a configuration solution.

Another problem are the inferences - es
pecially the time consuming realisation. To
speed up the realisation process the model
generation should be shifted from a goal
driven to a data-driven inference. This
means, that the system does not generate
a hypothesis (can a individual x be realised
to concept C) and then tests this hypothe
sis but computes the classification direct by
using the information in the A-Box (because
of that the individual x has the feature f it
has to classify to the concept C). A data
driven terminological system has to analyse
a.nd compile the T-Box before any A-Box in
ferences will be done.

References

:BH91] F. Baader and P. Hanschke.
A scheme for integrating con
crete domains into concept lan
guages. Technical Report RR-91-
10, DFKI, April 1991.

[G"u95a] A. G"unter. KONWERK
Ein modulares Konfig-

urierungswerkzeug. In F. Maurer
and M.M. Richter, editors, Ex
pertensysteme 95, Proceedings in

67

89

The Necessity of Using Semantic Models for Configuration*

Olaf Wolter
Institute of Material Handling and Logistics

Otto-von-Guericke-University Magdeburg

P.O. Box 4120, D-39016 Magdeburg

email: wolter@mb.uni-magdeburg.de

Abstract

The subject of this paper is the integration
of configuration of material flow systems
and material flow processes in the area
of material flow plants. It will be shown
the using of knowledge representation for
the configuration process of matertial flow
plants. Furthermore the necessity of an
new quality in representation is illustrated.
The described configuration process is very
complex. In different to the conventional
process the configuration is understand as
a process that can be described by steps,
loops, and versions, at which the unit of
synthesis, analysis, and evaluation is of de
cisive meaning.
The principal objective is the integration of
configuration of material flow plants in an
extended model-based configuration con
cept. This can be represented by seman
tic models. Such an integrated concept of
fers the ability of systematically treating
the necessary interrelations of the different
models of material flow systems and ma
terial flow processes and achieves a more
effective overall configuration process.

1 Introduction
The configuration of material flow plants is a prob
lem of mechanical engineering in the special field of
material flow and logistic. The material flow plant
consist of the logistic system (technical material flow
system and controlling system) and the lOgistic pro
cess (material flow process and controlling process).
The following characterized configuration problem
relates to the material flow system, the material flow
process (physical process), and the controlling pro
cess (logical process). In the sequel the summary of
the physical and the logical process is designated as
material flow process.

• Parts of this work has been sponsored by the ger
man country Sachsen-Anhalt under grant 1957 A/025
and 1969A/025.

69

Uwe Scholz
Institute of Technical Information Systems

Otto-von-Guericke-University Magdeburg

P.O. Box 4120, D-39016 Magdeburg

email: uscholz@iti.cs.uni-magdeburg.de

The configuration problem of this domain is a
common development of the technical material flow
system and of the material flow process. Config
uration steps and configuration decisions influence
the modelling of the material flow system during the
modelling of the material flow process and vice versa.
An integrated view on these two aspects is required
in order to handle the interactions, to describe all
interdependencies, and to fulfill the requirements of
the configuration task. Possibilities of an integra
tion of different aspects and models are described in
[CBRR90, GKN096, Lan94, Had95J.

oftc.2

.f::.:._

Figure 1: Example for a simple material flow plant

Current configuration concepts are insufficient in
the way that they do not support or represent the
procedures and the connections of the configuration
of material flow plants in a comprehensive form. Up
to now there is no possibility to record the connec
tions between the material flow system, the mate
rial flow process, and the material flow control in
a simple and integrated form. Another problem is
the insufficient possibility to assess (sub-)solutions
of the configuration. The described problem is to be
led back, that the configuration concept is limit up
in most kind to synthesis functions, where by part
whole relations find special regard [Giin93].

Further it is introduced an approach of using
semantic models as an extension possibility and
as a possibility for an integrated model descrip
tion. predicated Unit-Relationship-Models (pUR
Models [DT94]) will be used for the representation
of semantic models.

action plan

functional I instrumental

.----ta-sk-c:l-arifj-·-oca-tion-)1 ~~)1 ~ ~)1r-S-Yl-I--:::-~--.proca-~ss)1 ma:now

goal search

I

f
~
~

il IOlUlion

I
aeard1

I
:::=-. ,.......

IOIution
Mlection

~

<MUll

problem

situation analysis

goal fonnuIatian

IlIsuH

goal fonnuIation

I
function ayntheaia

! t
anaIysia

1
1

deciaion

1
resUt

situation anaIyaia situation analysis

I I
goal fonnIAation goal fonnuIatian

I I
qualitatiYe quantitative

1tS srtt.st'
analysis analysis

1 1
_I .. _ament

deciaion deciaIon

IlISUH lUI.«

tech ooIogicIII and detailed

..--_.L-___ --*-..J.. ---_~~~_~ __ m I~ ,---"------"---'-. --
function and op4ntion ~tian

Figure 2: Action plan and problem solving cycle according to [Kra90]

A small parcel distribution plant is described as
an example of the mentioned configuration problem.
The plant distribute parcels according to a simple
criterion (figure 1).

2 Configuration of Material Flow
Plants

The configuration problem of material flow plants
can be described as an evolutionary process of steps,
iterations, variants, and versions with different de
gree of model abstraction of the material flow plant.
Moreover the configuration process is generally sep
arated into several phases. The phases of developing
models can be divided into functional, principle, and
system/process phases (see figure 2). A sequence of
phases is defined by an action plan and by a problem
solving cycle. A set of rules, control knowledge, and
other methods of synthesis and analysis are associ
ated with each phase. The steps of the process are
models of different abstraction level which build up
on each other by generalization/specialization.

During the solution development there is a per
manent change of analyzing and working steps with
synthesizing and assessing steps. At the same time
the knowledge problem and the views on the mod
els are changing. First of all it is looked for suitable
and fitting solution elements. After this the elements
must be tuned that they fulfill the demanded total
function.

The used configuration techniques are heteroge
neous and depended on the kind of knowledge prob
lem, on the reached degree of the solution, and on the

70

kind of the available information. The techniques
contain methods for synthesis and analysis models
and methods for a selection of model components
with different detail. Further the management of
model versions and variants must be possible. The
methods of analysis describe simple determinate and
complex stochastical calculation models in form of
analytical formulas.

Existing model states can be analysed by statisti
cal models of process simulation. Analytical meth
"ds support the establishing of

• suitable versions and variants,

• solution properties,

• conditions for the work of solutions, and

• consequences, which are shown through the so
lutions.

Furthermore assessments and views of versions
and variants are realizable by state management and
by interactive work. Because of that the complexity
can be reduced.

The development of models is characterized by
permanent changing of view and between abstrac
tion levels and through a step by step increasing of
information during the problem solving process. The
solution development is influenced through the com
mon configuration of the material flow process and
of the material flow system.

3 pUR-Models as Formalism for
Modelling

A possibility for representing semantic models
are predicated Unit-Relationship-Models (pUR
Models [DT94]). Brodie [Br084] defines semantic
models as a scheme which describes the following
properties of an universe of discourse (UoD):

• The static properties of an UoD are described
by fixing objects, properties of objects, and re
lationships between objects.

• The dynamic properties of an UoD are de
scribed by assigning operations to objects, prop
erties of these operations, and relationships be
tween these operations.

• Integrity rules about objects (static conditions)
and operations (dynamic conditions) are de
scribed by additional requirements and admissi
ble states or state transitions of the considered
mini world.

pUR-Models fulfill all these requirements. They
represent objects, their attributes, belonging tar
gets, and constraints on three levels: object level,
attribute level, and assessment level.

Real objects of an UoD can be represented as ob
ject units. There exist units which describe one real
world object or object set units which describe a set
of equal real world objects. In pUR object units are
expressed by boxes with small lines and object set
units by boxes with big lines (see figure 3).

I roUe< -conveye<. , I I roI«_~eyet I
object unK object set unit

Ihroughpul90 nlM1ll>er

attribute unit attribute set unit

~roughputouftldan9 (Ih~PIrt)

assessment unlt assessment set unit

Figure 3: Object, attribute, and assessment units

The properties of objects can be described on the
attribute level. For each object (object units or ob
ject set units) attribute units could be modelled.
They are represented by boxes with rounded cor
ners (figure 3). The assessment level is character
ized through assessment units which are expressed
by boxes with sloped corners (figure 3).

FUrthermore pUR allows to model space and time
relations (see figure 4). This relations describe rela
tionships between object units, attribute units, or
assessment units themselves, or between the ele
ments on the three levels. For an example see fig
ure 5. This pUR-Model describes a material flow

71

sDace relations time relations

-r included i~ during

....L...
equal ~~ -r equal

....L...
overlaps 1~ -r ovef1aps

....L...
disjoint

1
-r

~
before

c-r space coupling t time coupling

Figure 4: Space and time relations

plant. Every plant has an attribute throughput. If
the throughput of the plant is greater than 900 than
this plant fulfills the requirement for an sufficient
throughput.

With pUR it's also possible to model combina
tions of time and space relations, e. g. an inclusion
(the space relation include(/) which exits only for a
determined time.

Through the summary of similar real world ob
jects in object set units the abstraction concept of
classification is representable. FUrthermore the ab
straction concepts of aggregation, association, and
generalization/specialization could be modelled (fig
ure 6). In an easy way constraints can be repre
sented by description of an UoD on three levels (ob
ject, attribute, and assement level).

4 Model-based Configuration

The configuration of material flow plants is a prob
lem of model based configuration, whereby models
are of decisive meaning. In different to [Tan9l] and
[KBN94] the configuration is not only a problem of
design rather of technical system planning. The con
figuration is understand as a modelling process of a
material flow system and a material flow process.
Basis of a systematic configuration is a correspond
ing configuration process with a structured and over
lapping procedure. Thereby suboptima of solutions
will be avoid and an approach at a main solution
ensured.

The result of the configuration process is a de
tailed description of different models of material flow
system and material flow process. In the sequel this
description defines the requirements on the control
ling system and the controlling program. Especially

trouQhput

(number)

600 .. 1000

good throughput

(number)

.. 1000

throughput assessment

throughput. sufficient

Figure 5: Connection between object, attribute, and
assessment level

the complexity of the domain material flow plant
requires an integrated model development. In par
ticular the integrated model description will be used
for the representation of solutions and for the check
of the solution variants and versions in the differ
ent phases of abstraction and granularity. A sim
ilar approach of integrated modelling is shown in
[GKN096] . The goal of this approach is the inte
gration of action planning and configuration in the
area of planning of flexible assembly systems.

The advantages of an integrated model description
are

• a better combination of different subsolutions
(e.g. in the area of material flow systems and of
material flow processes),

• the improvement of data consistency,

• a better transparency of models,

• an expressive common model description,

• the ensurence of flexible and suitable models
with an uniform concept, and

• the development of problem adequate model
views.

Today all known configuration concepts are re
stricted to single-stage configuration problems. In
this context single-stage means that the solutions

72

C?

Cb

generalization/
specialization

aggregation

Figure 6: Example for aggregation and generaliza
tion / spezialization

of configurations are developed at one step of ab
straction with existing configuration objects (see e.g.
[CGS+90, SW91, Giin93, Som93, Lan94, GKN096] .
This does not agree with the requirements which ap
pear during the configuration of material flow plants
in the area of mechanical engineering. In this pro
cess the focus of interest is the development of in
tegrated models of the material flow plant. The re
sulting models are the solutions to the mentioned
configuration problem (see section 2).

Different models on different hierarchical abstrac
tion will be developed in the configuration process.
There are correlations between the models which de
pend ' on the special configuration task. During the
problem solving process there is an information ex
tension step by step which is supported by methods
(see section 2). In the configuration process used
methods are case based and ambiguous, therefore it
is necessary to develop a variety of different solutions
(proper configurations) and a flexible and variable
assignment of different methods. The methods can
not assigned to a special task of configuration (see
also [Giin95]). The common development directions
are present through the specific configuration task,
the function order, and the configuration steps (fig
ure 7). To simplify the further work it is useful to
model the process for the primary working function,
the functional, principle, geometrical, and process
oriented aspects of the material flow plant, first. The
complexity of the configuration process can be re
duced by determining the primary functions (as de
scribed above) followed by extra functions and help
functions. An orientation on primary functions can
be described as a opportunistic procedure of configu
ration. Another possibility ofreducing the complex
ity can be achieved by modularisation. This means
there is a reducing on interfaces between subsystems
and objects. Furthermore are used rough constraints
in context with object interfoces. In this situation
interfaces are predefined and can not change. This

kind is often used in the configuration process of ma
terial flow plants. Another aspect is the assumption
that some subsystems and objects (components) and
there properties are known in order to carry Olit a
proper configuration.

In the first step of developing the configuration
models a simplified view is taken on the formula
tion and on given relevant constraints and objec
tives. The formulation describes with the given ini
tial state and the desired final state the material
flow objects and their transformations. The func
tional/operational model is a specified formulation
for the selection of technical elements (functional
ressources). Functional/operational models will be
represented mostly by graphs. The nodes represent
functions/operations und the edges represent rela
tions between nodes. The edges also characterize
the Bow process. On functional/operational models
operate process chains and simple mathematical and
analytical operations. Then suitable functions and
fitting solution components (technical elements) are
added to the principle model. This model allows to
describe and to compare technical and technological
information. In the third and last step this princi
ple model must be tuned to fulfill the required plant
function (system and process). Result of this step is
the system and process model.

In this configuration process the focus of interest
is the development of models, which are of different
granularity and application and, of course, are prob
lem adequate. The level of granularity can be char
acterized through models on different stages with
various details. The granularity or abstraction level
can change permanently during the process of con
figuration. The resulting models are the solutions to
the mentioned configuration problem. The resulting
models can be also of different granularity and are
the proper configurations of the plant.

The basic operations of the configuration process
which have to be realized by different configuration
methods are

• synthesis:

- generation/elimination
The generation corresponds to the generat
ing of a new component, a solution, and/or
a partial solution. The inverse operator for
the generation is the elimination, which is
used for the deletion of a component.

- classification
Classification stands for the acquisition of
a set of different objects with equal type.
The objects are described by homogeneous
properties and equal possibilities.

- aggregation/decomposition
With the bottom up approach aggregation
objects/models will be assigned to another
complex one. The decomposition corre
sponds with the top down approach and

73

break an complex object/model into it's
simple one's.

generalization/specialization
Generalization assigns an object/model to
a general class and specialization is the in
vers operation.

association
Association describes relations between ob
jects/models.

combination

Combination is used to arrange subsolu
tions of variable complexity to a solution.
substitution
With substitution an object/partial model
will be replaced by another one.

selection
Is used to select an object which will be
used in the configuration process.

transformation
Transformation is used for a stepwise re
finement of partial solutions that means
for representation of increasing the infor
mation. Transformation describes the elab
oration process.

specification
The specification is used for the refinement
of a model. This refinement determines ad
ditional system attributes.

• analysis:

evaluation (assessment, decision)
An assessment is undertaken through
a judgment by potential (sub-)solutions
thereby particular points of view and fea
tures. The choice contains the decision of
a (sub-)solution from a final (sub-)solution
set.

interpretation
When interpreting connections are evalu
ated, whereby these lead to determined re
sults.

- testing
The testing serves the consistency and cor
rectness of structure and flow of the plant
and the completeness of a configuration.

situation analysis
The formulating of goals serves to com
plete, to structure, and to capture goals of
the resulting material flow plant and sub
aspects as well as goals of the configuration
procedure.

simulation
The discrete-event simulation is used to de
termining and analyzing the models and
controlling strategies. of the material flow
process.

functional
modelling

principle
modelling

system and
process
modelling

controlling
system

!material flow

/ ',mem

controlling
process

process

Figure 7: Modelling Space for configuration of material flow plants

The models can be described by versions and vari
ants. Now the configuration of a model on one level
can be isolated from the others, but also integrate
with models on another level in a larger context. The
evaluation of the system model can furthermore re
sult in a replacement of one or more components.
But, this replacement is only permitted when all in
formation about possible predescessors, successors,
and the function properties are preserved. To guar
antee this there exist relations inside the model, be
tween model modules and part models, and also be
tween different models (figure 7) .

The possibility to combine and translate mod
els using mapping relations is an important crite
ria for their efficiency and effectiveness. Therefore
the description of the models must be unique, in
terpretable, detailable, manipulable, and analysable.
Using the appropriate abstraction concepts it can be
guaranteed that the mapping relations are correct.

A multi-aspect-modelling, which is possible
through space and time structures, allows to de
scribe static and dynamic models in an integrated
representation. With the integrated representation,
connections can be expressed between resource (ob
ject), system, process, and flow material. Further
more it is usable for the creation of jointly realizable
structures by an uniform concept.

5 Knowledge Representation with
pUR

Because of the necessity of permanent changes to the
model view and the resulting complexity, emerges
the demand on using an extended model based con
figuration. Such an extended configuration concept
can be presented by semantic models. The knowl
edge representation is based on an object oriented
hierarchical model concept called predicated U nit-

74

Relationship-Model (pUR-Model) [DT94j.
With pUR-Models it's possible to represent the

whole configuration knowledge. pUR describes the
knowledge in a hybrid form. Hybrid means in this
context that different categories of knowledge and
their combinations can also be represented through
pUR-Models. In particular the solutions of the con
figuration process are also pUR-Models. The knowl
edge representation implies component and system

. models, the belonging discriptional, and controlling
data as well as the configuration knowledge.

In [KB90j the different knowledge forms is struc
tured. Refer to the contents of the knowledge it's
distinguished between problem solving dependent
and problem solving independent knowledge. Re
fer to the representation it's distinguished between
formal and informal description. pUR-Models al
low and support a formal and an informal knowledge
representation in form of diagrams or pictures (see
[DF96]). During the configuration process of mate
rial flow plants three different categories of knowl
edge must be handled: domain knowledge, problem
solving knowledge, and dynamic model knowledge.

The domain knowledge describes the specific prop
erties and the combinations of these properties in the
area of material flow plants. The classification of ma
terial flow functions in a taxonomic representation,
e.g. transport functions and distribution functions,
the relations between material flow components, e.g.
the connection between a component and a mate
rial flow subsystem, and a part-whole representa
tion for components are described through the do
main knowledge. Consequently domain knowledge
is a part of problem solving independent knowledge.

Further the problem solving knowledge charac
terizes the procedure of the configuration process.
It describes, how the configura.tion problem can be
solved. This knowledge is also a part of the problem

solving independent knowledge.
The following characterized dynamic model

knowledge belongs to the problem solving depen
dent knowledge. Therefore dynamic model knowl
edge contains the whole solutions and describes the
history of the configuration process.

The goal of modelling is to configure and to de
fine a material flow plant. The plant must fulfil
the requirements and can be described through a
conceptual model description. This description con
tains the complete form of the plant, which implies
structural and functional completeness (see [SG91]).
Structural completeness is fulfilled if all objects of
the structure are defined and all values of their prop
erties (attribute values and layout relationships) are
determined. A description is functional complete if
all requirements of the configuration task are ful
filled. FUnctional completeness expects the consis
tency of model description but not expects structural
completeness.

The pUR paradigrna offers a straigth-forward
method to represent relationship concepts. Adding
temporal relations, fundamental dynamic dependen
cies can be described. pUR-models are rated - pred
icated - by adding relations and data with which you
can e.g. model constraints. Constraints are used for
representing and evaluating of interdependencies be
tween objects. They may refer to objects properties
or to the existence of objects. A basis for using of
constraints could be the 3-step constraint model of
[Giin92j

• the claim of existence and non-existence con
straints,

• to fade in and to fade out of constraints, and

• relaxation of constraints.

FUrthermore the pUR-concept is applicable for
recording the process of solution by model based
elaboration and for an integrated description of dif
ferent modelling aspects.

As mentioned earlier, the configuration solution
are defined by models. During the configuration pro
cess the models are refined, perfected, and adapted.
The transformation of a partial model into a new one
by executing a configuration method is called elab
oration [CGS+90j. The elaboration characterizes
the different relationships between models on various
development or abstraction levels and on one level
(see figure 7). An elaboration tree can be built dur
ing the configuration process. The nodes of the tree
characterize the models and the edges of the tree de
scribe the model transitions or the working states.
The resulting elaboration tree represents the com
plete history of the configuration process. "It stores
the necessarJ information for 'intelligent' backtrack
ing in case of conflicts, and for an explanation mod
ule" [Giin93]. So it's possible to document and to
understand the problem solving process.

I ~-i=
__ 00tTYey0<.1 r-I - --:;:=----1

di_.l -I

1_ -00tTYeY0< 21
i-__ ·3f

..... ,

I

1Iow _

Figure 8: Structure and transport direction of a ma
terial flow plant

Another advantage of the model-based configura
tion with pUR is the practicability of an multi-aspect
modelling (see also section 4). MUlti-aspect mod
elling means that different facts can be represented
by one pUR-Model. A different consideration of the
integrated model description provides different as
pects (views). Such views represent e.g. structure
oriented and flow oriented properties. A view does
emerge through fading out of all relevant properties,
whereby an own subaspect model is defined. For
example, a consideration of this structure oriented
subaspect model can lead to a simulation model
[DT96] . The model in figure 8 describes the solu
tion of a configuration task (for the example see also
figure 1). The structure of the material flow plant
and the transport direction of a flow material can
be derived from this one pUR-Model. So it's pos
sible to describe many facts and relationships with
few pUR-Models. The objects represent in case of
system view components, technical functions, and
ressources. In case of process view objects are gen
eral operations, work processes, and actions (see also
section 4). The relations represent the structure re
lations between the objects and subsystems. They
represent also the flow of material and the flow of
information.

An additional example for the multi-aspect mod
elling is represented in figure 9. The controlling pro
cess of the material flow plants is described in this
figure. This pUR-Model contains also infonnation
or aspects about the structure of the material flow
plant which is shown in figure l.

Finally is to remark that the models can be sim
plified by hiding of irrelevant properties or aspects .

6 Conclusion

In this paper an outline of a model-based configura
tion concept with pUR-Models was described. The
meaning of the introduced concept for model-based
configuration in the domain of material flow plants is
the creation of an integrated description form . This
integrated representation form-allows to define prob
lem adequate model descriptions. By using of inte-

75

fur Planung, Bildung und Priisentation
'96, Magdeburg, 29.2.-1.3.96, volume 2,
pages 213-220. ASIM, Arbeitsgemein-

r -1') [DT94J

schaft Simulation in der Gesellschaft fur
Informatik, March 1996.

V. Dobrowolny and Ch. Tietz. On Se
mantic Modeling of Real World Struc
tures. In R. Wieringa and R. Feen
stra, editors, Working papers of the

Figure 9: Controlling of a material flow plant

grated representation it is possible to realize a gen
eral computer aiding and a reduction of necessary
model developments during the configuration pro
cess of material flow plants.

CAD-oriented configuration techniques in the do
main of material flow plants (see [ZRW96]) were
the starting point for the development of a model
based configuration concept with pUR-Models. A
first approach for using pUR-Models was described
in [RWS96]) .

The introduced method was validated on a simple
example (see figure 1). In future works the valida
tion of complexer plants must be realized. Simulta
neously a concept for mapping of a pUR-Model to
an object-oriented scheme or to a relation scheme
will be defined. The final goal is the prototypical
development of a model-based configuration tool for
material flow plants using pUR-Models.

References
[Br084] M. L. Brodie. On the Development

of Data Models. In On Conceptual
Modeling, pages 19-47. Topics in Infor-
mation Systems, Springer-Verlag, New
York,1984.

[CBRR90j R. D. Coyne, M. Balachandran, M. A.
Rosenman, and A. D.
Radford. Knowledge-based design sys
tems. Addison Wesley, Reading, Mass.,
1990.

Int. Workshop on Information Sys
tems - Correctness and Reusability, IS
CORE '94, pages 321-331. Vrije Univer
siteit Amsterdam, RapportNr. IR-357,
1994.

[DT96] V. Dobrowolny and Ch. Tietz. Uber
Konzeptionelle Raum-Zeit-Modelle als
Integrationsrahmen bei Simulation und
Animation. In Proc. Fachtagung Simu
lation und Animation fUr Planung, Bil
dung und Priisentation '96, Magdeburg,
pages 17-27. ASIM, Arbeitsgemein
schaft Simulation in der Gesellschaft fUr
Informatik, March 1996.

[GKN096] P. Ganghoff, A. Kohne, G. Nager,
and U. Osmers. KNOSPE
Ein unterstutzendes Planungssystem fUr
die integrierte Montagesystemplanung.
Informatik-Forschung-Entw., 11(1):37-
43,1996.

[Gun92]

[Gun93]

fGun951

A. Gunter. Flexible Kontrolle in Ex
pertensystemen zur Planung und K onfi
gurierung in technischen Domanen. In
fix , Sankt Augustin, 1992.

A. Gunter. Modelle beim Konfigurie
reno In O. Herzog, T. Christaller, and
D. Schutt, editors, 17. Fachtagung fUr
Kiinstliche Intelligenz "Grundlagen und
Anwendungen der Kiinstlichen Intelli
genz It, pages 169-176. Springer-Verlag,
Berlin, 1993.

A. Gunter. Architektur des domiinenun
abhiingigen Konfigurierungswerkzeuges
KONWERK. In A. Gunter, editor, Wis
sensbasiertes Konfigurieren: Ergebnisse
aus dem Projekt PROKON, pages 39-60.
Infix, Sankt Augustin, 1995.

[CGS+90] R. Cunis, A. Gunter, I. Syska, H. Peters, [Had95] S. Hader. Einsatz von Simulation beim
Konfigurieren. In A. Gunter, editor,
Wissensbasiertes Konfigurieren: Ergeb
nisse aus dem Projekt PROKON, pages
229-235. Infix, Sankt Augustin, 1995.

and H. Bode. PLAKON - An Approach
to Domain-Independent Construction.
LKI-Report LKI-M-4/90, Universitat
Hamburg, Labor fUr Kunstliche Intelli-
genz, 1990. [KB90]

[DF96] V. Dobrowolny and H. Fischer. Nutzer
weltorientierte Visualisierung kon
zeptueller Raum-Zeit-Modelle. In Proc.
Fachtagung Simulation 'Und Animation

76

R. Koller and S. Berns . Strukturierung
von Konstruktionswissen. Konstruk
tion: ZeitschriJt fUr Konstruktion und
Entwicklung im Maschinen-, Apparate
und Geratebau, 42(3):85-90, 1990.

[KBN94] R. Klein, M. Buchheit, and W. Nutt.
Configuration as Model Construction:
The Construction Problem Solving Ap-

- proach. In Proceedings of the 4th Inter
national Conference on Artifical Intelli
gence in Design, Lausanne, Switzerland,
August 1994, pages 201-217. Kluwer
Academic Press, London, 1994.

[Kra90] H. Krampe. Ihmsport- Umschlag-
Lagerung. Fachbuchverlag, Leipzig,
1990.

[Lan94] V. Lange. Entwerfen von Fer
tigungsanlagen mit Modell- und Er
fahrungsunterstutzung. Fortschritt
Berichte Reihe 2, Nr. 302. VDI Verlag,
Dusseldorf, 1994.

[RWS96] K. Richter, O. Wolter, and U. Scholz.
Konfigurierung materialflufitechnischer
Systeme mit Hilfe von Raum-Zeit
Beschreibungen. In J. Sauer, A. Giinter,
and J . Hertzberg, editors, Planen und
Konfigurieren 96: Beitriige zum 10.
Workshop "Planen und K onfigurieren"
(PuK-96) 15.-17. April 1996, Bonn,
pages 239-242, April 1996.

[SG91] J. Schmidt and P. Ganghoff. Wis
sensbasierte Planung der Aufbau- und
Ablaufstruktur von Montagesystemen.
VDI-Zeitung, 133(11):85-92, 1991.

[Som93]

[SW91]

[Tan91]

C. Sommer. MoKon - ein Ansatz
zur wissensbasierten K onfiguration von
Variantenerzeugnissen. Infix, Sankt Au
gustin, 1993.

B. Stein and J. Weiner. MOKON
- Eine modellbasierte Entwicklungs
plattform zur Konfigurierung techni
scher Anlagen. In A. Giinter and R. Cu
nis, editors, PuK-91, Beitiige zum 5.
Workshop "Planen und Konfigurieren",
22.-23.4, Hamburg, LKI-M-1/91, pages
100-106, 1991.

W. Tank. Modell-basiertes vs. assozia
tives Konstruieren. In A. Giinter and
R. Cunis, editors, PuK-91, Beitiige zum
5. Workshop "Planen und Konfiguri
eren", 22.-23.4, Hamburg, LKI-M-1/91,
pages 214-215, 1991.

[ZRW96] D. Ziems, K. Richter, and O. Wolter.
CAD-Modelle mit Planungs-Know-how
zur Konfigurierung von MaterialfiuBsys
temen. In D. Ruhland, editor, CAD
'96, Verteilte und intelligente CAD
Systeme: Tagungsband; K aiserslautern,
7./8. Miirz 1996, pages 135-149, 1996.

77

8L

Software Configuration with Feature Logic

Andreas Zeller
Technische Universitat Braunschweig

A bteil ung Softwaretechnologie
D-38092 Braunschweig

zeller@acm.org

Abstract
Software configuration management (SCM) is the
discipline for controlling the evolution of software
systems. The central problems of SCM are closely
related to central artificial intelligence (AI) topics,
such as knowledge representation (how do we rep
resent the features of versions and components, and
how does this knowledge involve in time?), configu
ration (how do we compose a consistent configura
tion from components, and how do we express con
straints?), and planning (how do we construct a soft
ware product from a source configuration, and what
are the features of this product?).

Although the research communities of both SCM
and AI work on configuration topics, the knowl
edge about the mutual problems and methods is
still small. We show how feature logic, a descrip
tion logic with boolean operations, can be used to
represent both knowledge about versions and com
ponents, as well as to infer the consistency of possible
configurations and thus solve configuration problems
in SCM. This interplay of knowledge representation
and configuration techniques shows immediate ben
eficial consequences in SCM, such as the integration
and unification of SCM versioIllng concepts. More
over, SCM may turn out as a playground for testing
and validating new AI methods in practice.

1 Introduction
Software Configuration Management (SCM) is the
discipline for controlling the evolution of software
systems. While early SCM tools were confined to ba
sic tasks such as revision control (e.g. RCS, SCCS),
variant control (e.g. CPp) or system construction
(e.g. MAKE), today's SCM systems provide inte
grated support for tasks such as identification and
retrieval of components and configurations, revision
and variant control, or consistency checking.

One of the benefits of SCM is that it can be easily
automated, since its items are already under com
puter control; all properties of configuration items
can be immediately observed and deduced. It is thus
surprising that the artificial intelligence (AI) config
uration community has not yet discovered SCM as
a fruitful application domain for configuration prob-

79

lems, just as it is surprising that the SCM literature
is essentially devoid of formal approaches, let alone
formal approaches to configuration problems. A pos
sible reason for this gap is that SCM touches a wide
range of divergent subjects, from component identifi
cation and configuration problems over software pro
cess modeling to general management issues, each
with its distinct research community.

Our research group in Braunschweig aims to ex
ploit recent fundamental achievements for the ben
efit of practice, notably the application of AI tech
niques in software engineering. We found the core
techniques of SCM closely related to well-established
AI research topics:

Knowledge representation. How do we express
knowledge about a software component, such
that we can identify and retrieve components
and configurations? How does this knowledge
evolve in time, and how does it propagate to
configurations?

Configuration. How can we determine the con
sistency of a configuration of software compo
nents? How do we express configuration con
straints, and how are these related to compo
nent identification?

Planning. How is software constructed and deliv
ered? How do the properties of source compo
nents determine the properties of derived com
ponents?

Starting with these relationships, we decided to
examine the current state of practical SCM, to iden
tify SCM problems, and to devise possible solutions
from AI research.

2 The Versioning Problem
We begin with a short introduction to SCM. In the
SCM domain, we have the problem of maintaining
components in several versions. Versions are cre
ated in several versioning dimensions, depending on
the intentions of their creator. SCM research distin
guishes three versioning dimensions.

Historical versioning. VersiQns that are created
to supersede a specific version, e.g. for mainte
nance purposes, are called revisions. \\Then a

new revision is created, evolution of the orig
inal version is phased out in favor of the new
revision. In practice, a revision of a compo
nent is usually created by modifying a copy of
the most recent revision. The old revisions are
permanently stored for maintenance and docu
menting purposes.

Logical versioning. In contrast to revisions, a
variant is created as an alternative to a spe
cific version. Permanent variants are created
when the product is adapted to different envi
ronments. Variance can again arise in several
dimensions, including varying user requirements
and varying system platforms, but also variants
for testing and debugging.

Cooperative versioning. A temporary variant is
a variant that will later be integrated (or
merged) with another variant. Temporary vari
ants are required, for example, to change an old
revision while the new revision is already un
der development, or to realize cooperative work
through parallel development threads.

Of these three versioning dimensions, only logical
versioning is visible in the final product as different
permanent variants. Since maintaining several prod
uct variants is more expensive than maintaining one
single product, it is a general software engineering
issue to keep the number of variants as smaij as pos
sible. This is achieved through well-known software
engineering principles like abstraction, parameteri
zation, generalization, and localization.

One must be aware that only logical versioning
can be planned in advance. The creation of revi
sions and temporary variants may be necessary at
any time during the development process, resulting
in a huge set of possible configurations, which must
be identified and tested.

The problem becomes worse when individual
changes are considered rather than versions, since
each combination of changes results in a different
configuration. While software engineering principles
help to confine the impact of changes behind a cer
tain abstraction, change combinations nonetheless
must be identified and evaluated.

Furthermore, there is a transition from static con
figuration at compile-time to dynamic configuration
at run-time, which results in new configuration prob
lems in the final software product. Already in a small
software system with but a few thousand compo
nents, SCM can rapidly turn into a nightmare unless
intelligent tools help to manage this mess.

3 SCM Versioning Issues

The maintenance of several versions can be dramati
cally simplified by using an automated SCM system.
Even the easiest SCM system provides some basic
support for the following SCM tasks.

Identification. Each component in a software
product must be uniquely identifiable and and
accessible in some form. Identification schemes,
as found in SCM systems, range from simple re
vision numbering (revision 1.0, 1.1, 1.2 . . .) up
to faceted classification using attribute/value
pairs (state = experimental A. version = 1.0).
The mechanisms to select component ver
sions include creation dates, revision numbers,
boolean attribute/value combinations, as well
as high-level database query languages.

Composition. As specific versions of components
are composed to configurations, these configu
rations must be identifiable and accessible as
well. Simple SCM tools allow to tag individ
ual component versions with a label identify
ing the configuration. Selecting a configuration
is done through a label selecting the appropri
ate component versions. For instance, the label
REV_LO may denote a configuration including
revision 1.4 of component A and revision 1.7
of component B. More advanced SCM systems
allow versioning of configurations just like ver
sioning of components.

Consistency. Advanced SCM systems allow users
to specify configuration rules constraining pos
sible configurations. Such configuration rules
may denote that certain changes imply or ex
clude each other, that changes may be applied
to certain variants only, or that only specific
variants and revisions result in a well-tested
configuration.

Modern SCM systems provide adequate mecha
nisms to identify and compose software component
versions in a software product. The most impor
tant SCM issue in this area is generalizing-that is,
to find a common subset of versioning techniques to
improve the interoperability of SCM systems.

80

Consistency control, however, is still a challenge
especially because most consistency problems arise
through the integration of versioning dimensions,
which is still at a very early stage.

As a simple example of the consistency problems
as found in SCM, consider figure 1, illustrating the
dependencies between changes and revisions. Each
revision ~ is the product of some changes OJ ap
plied to a baseline revision Ro. In the diagram, each
set I:::. j contains the revisions the change OJ has been
applied to. Hence, revision R5 is the product of the
changes 01 to 65 applied to no, but the change 66

has not been applied.
We see that the changes are not orthogonal to each

other. For instance, the change 02 implies that 01 be
applied first, since .1.2 is a subset of .1.1 • Likewise,
the changes 62 and 06 exclude each other, since the
sets 1:::.2 and 1:::.6 are disjoint. The SCM system must
ensure that these constraints are satisfied. The prob
lem becomes worse if not only six, but several thou-

~6 ~5

~4 ~3 ~1

Figure 1: Changes and revisions

sand changes are involved, some of them restricted to
a particular variant or configuration, which in turn
may impose other constraints.

Finally, constraints are subject to changes as well.
For example, a change may be initially visible in a
user's temporary variant only. This means that there
is a constraint associated with this change that im
plies a specific user. Later, the same change may be
incorporated into the delivered product. This means
that the original constraint must be replaced by a
new constraint implying a specific configuration.

Just like constraints, the system hardware, pro
cess models, or even SCM policies may evolve in ways
that cannot be foreseen, and this evolution may be
subject to constraints again. This is the true chal
lenge of SCM: Changes and constraints pervade ev
ery single item considered, from components to con
figurations to the processes themselves.

4 A SCM Foundation
In our quest for a SCM foundation, we searched for
a formalism that allows us to capture and unify the
core techniques of SCM, supporting evolution and
versioning on every SCM level. As stated in the
introduction, we have examined logical formalisms
supporting knowledge representation as well as con
figuration and planning in the SCM domain. We
identified two possible foundations:

Description logics. In the SCM area, it is common
to identify component versions by faceted classi
fication, using a set of attribute / value pairs. For
us, description logics turned out to be a first
order choice for identifying components and ex
pressing knowledge about their possible use in
a configuration.

First-order logic. Another technique frequently
found in SCM systems is to use first-order logic
expressions to select and identify configurations,
as well as to express consistency constraints;
only configurations satisfying the constraints
are consistent. Supporting first-order logic was
essential for us in order to capture these selec
tion schemes.

81

Fortunately, we found a formalism which captures
both description and first-order logic: Feature logic,
as defined by Smolka [1], is a well-founded descrip
tion logic that, in contrast to most description log
ics, includes quantification, disjunction, and nega
tion over attribution terms, forming a full boolean
algebra. Feature logic gives us one single formalism
for both knowledge representation and configuration
problems.

5 Configuration with Feature Logic
Using feature logiC, all components are identified by
a feature term, describing the component through
Features-that is, a pair feature-name: feature-value.
Typically, components and component versions are
identified by a conjunction ("n" or "[...]") of their
features. For instance, we can distinguish two ver
sions of a printer component with respect to their
respective printer language:

printer1 = (print-language: postscript)

printer2 = (print-language: text] .

Feature logic now allows us to express feature nega
tions ("-"), expressing undefined features, or dis
junctions ("U" or "{ ... }"), expressing alternatives.
In figure 2, we have summarized the syntax of fea
ture terms.

The ability to express alternatives is essential in
SCM, since one frequently must handle all versions of
a component as a single item or component family.
Using alternatives, we can identify the component
family printer containing both printerl and printer2

as

printer = printerl U printer2

= [print-language: {postscript, text} J

and thus immediately determine the features of the
printer component family.

Negations can be used to identify component re
visions by distinguishing whether a change has been
applied ("8i : T"), or not ("",,8 i : T"). For instance,
consider a screen component, where the 81 change
introduces a new revision which can handle disolav
PostScript:

screenl = [-81 : T, screen-language: bitmap)

screen2 = [81: T, screen-language: bitmap)

screen3 = [81: T, screen-language: postscript)

This change determines the screen component fam
ilyas

screen = screenl U screen2 U screen3

= (screen-language: {postscript, bitmap})

n (screen-language: postscript] -t [01: Tn
stating in an implication ("-t" Y'ith A -t B == -Au
B) that selecting the [screen-language: postscript]
version implies that the 81 change has been applied.

Notation Name Interpretation
a Literal
V Variable

-
T (also 0) Top Ignorance
.1 (also {}) Bottom Inconsistency
1:S Selection The value of 1 is S
1:T Existence 1 is defined
it Divergence 1 is undefined
1 ig Agreement 1 and 9 have the same value
ftg Disagreement f and 9 have different values
S n T (also [S, TJ) Intersection Both S and T hold
SuT (also {S,T}) Union S or T holds
",S Complement S does not hold
S-+T Implication If S holds, then T holds
S-;JT Subsumption S subsumes T; T implieS S

Figure 2: The syntax: of feature terms

When composing configurations, they inherit the
features from their components; the feature values
are unified. This allows us to use feature terms
as configuration constraints. As an example, take
a component dumper which copies data from the
screen to a printer. Both formats must be identi
cal, as expressed through the common variable D:

dumper = [screen-language: D, print-language: D]

Now consider the configuration subsystem composed
from the three components dumper, screen, and
printer. Its features are determined as:

subsystem = printer n screen n dumper

= [61 : T, print-language: postscript,

screen-language: postscript] ,

where all other configurations have been excluded by
the features of dumper and screen. We see how fea
tures can represent knowledge about the component
as well as constraints about its usage in a specific
configuration.

6 Constraints as Features
Our primary aim for using feature logic is to use
one single identification formalism in all versioning
dimensions. The resulting version set model uses
feature terms to identify arbitrary versions: revi
sions are identified by changes applied or not applied
(847 : T), temporary variants are identified by spe
cific users (user: lisa) or teams (team: microserfs),
and permanent variants are identified by general fea
ture terms (os: { windows95 , windows-nt }). Feature
terms are used for identifying and selecting arbitrary
subsets in all versioning dimensions. Many exam
ples illustrating the usage of this model are given
in [2, 3, 4], and especially in [5].

Besides this SCM-specific integration of version
ing concepts, feature logic has another substantial

82

advantage: the representation of configuration con
straints as component features (or version features).
Among the most important benefits are:

Distributed constraints. Rather than having one
central instance defining the possible configura
tions, each component and each version defines
the constraints related to its usage. If the com
ponent is excluded from a configuration, its us
age constraints are excluded as well. Since the
constraints are evaluated incrementally while
the configUration is composed, developers can
detect inconsistencies already at the subsystem
or even at the component level, which avoids
propagating inconsistencies across subsystem or
workspace boundaries.

Constraint evolution. Since configuration con
straints are associated with components, they
are versioned like the components themselves.
Upon creating a new component version, devel
opers can choose whether to inherit · the features
and constraints of the base version, or to assign
new features and constraints. Consequently,
versions of the configuration space and compo
nent versions determine each other.

One single representation. Finally, through the
exclusive use of feature logic, there is no hi
erarchy between objects to be configured and
the configuration rules themselves. Configura
tion rules may imply other features, and vice
versa-constraints may be subject to version
ing just as specific versions may imply specific
constraints. For instance, we may select config
urations by stating their constraints ("Show all
configurations where the 843 change implies the
UNIX operating system").

The drawback of this flexibility is computation
complexity. Feature unification, the primary method
to determine consistency of feature terms, is N'P

complete, which results in exponential worst-case

complexity for all SCM operations. However, "classi
cal" SCM operations-that is, the ones that are used
in today's SCM systems-impose no special com
plexity problems when modeled using feature logic.
We found that the majority of SCM problems either
imposes very tight or very loose configuration con
straints. Tight constraints, as in change dependen
cies, are easy to handle since they reduce the con
figuration space. Loose constraints, .as in orthogonal
variance dimensions, are also easy to handle since
their satisfaction is easily computed.

However, these simplifications apply to today's
SCM systems only. Future SCM systems support
ing arbitrary versioning dimensions and arbitrary
configuration constraints will hurt this complexity
barrier. This is a challenge for both SCM and AI
researchers. In the SCM domain, we must find out
how far new SCM tasks and procedures can go with
out being endangered by the underlying complexity.
And in the AI domain, we must devise and exchange
methods to handle huge sets of intertwined configu
ration constraints and alternatives.

7 Conclusion
Using feature logic for both knowledge representa
tion and configuration constraints turned out to be
a valuable contribution to the SCM area. Among the
preliminary results are:

• The efficient integration of the four main SCM
versioning models, resulting in a general SCM
foundation [2];

• A unified versioning model for SCM, increasing
flexibility in the software process [5];

• The development of FFS, a virtual file system
which allows transparent access to arbitrary file
and directory versions just by stating attribute
constraints [3];

• The implementation of ICE, an inference-based
SCM system supporting deductive software con
struction as well as interactive exploration of
the configuration space on top of the FFS [4].

As a conclusion, the application of a theoreti
cal AI foundation to a practical software engineer
ing problem resulted in a success story. The in
terplay of knowledge representation and configura
tion techniques raised a number of potential com
plexity problems, but also showed immediate ben
eficial consequences in SCM. In general, the SCM
domain may turn out as a valuable playground for
testing and validating new AI methods in practice
hopefully somewhat closing the gap between config
uration practice and configuration theory.

ICE is part of the inference-based software de
velopment environment NORA 1• NORA aims at

lNORA is a figure in Henrik Ibsen's play "A Doll
house". Hence, NORA is NO Real Acronym.

83

utilizing inference technology in software tools.
ICE software for UNIX systems and related tech
nical reports can be accessed through the ICE
WWW page, http://www.cs.tu-bs.de/softech/ice/
as well as directly via anonymous FTP from
ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/.

Acknowledgments. This work was funded by the
Deutsche Forschungsgemeinschaft, grants 8n11/1-2
and 8n11/2-2.

References
[1] SMOLKA, G. Feature-constrained logics for unifi

cation grammars. Journal of Logic Programming
12 (1992), 51-87.

[2] ZELLER, A. A unified version model for config
uration management. In Proc. 3rd ACM SIG
SOFT Symposium on the Foundations of Soft
ware Engineering (Washington, DC, Oct. 1995),
G. Kaiser, Ed., vol. 20 (4) of ACM Software En
gineering Notes, ACM Press, pp. 151-160.

[3] ZELLER, A. Smooth operations with square
operators-The version set model in ICE. In
Proc. 6th International Workshop on Software
Configuration Management (Berlin, Germany,
Mar. 1996), 1. Sommerville, Ed., Lecture Notes in
Computer Science, Springer-Verlag. To appear.

[4] ZELLER, A., AND SNELTING, G. Handling ver
sion sets through feature logic. In Proc. 5th Eu
ropean Software Engineering Conference (Sitges,
Spain, Sept. 1995), W. Schafer and P. Botella,
Eds., vol. 989 of Lecture Notes in Computer Sci
ence, Springer-Verlag, pp. 191-204.

[5] ZELLER, A., AND SNELTING, G. Unified ver
sioning through feature logic. Computer Science
Report 96-01, Technical University of Braun
schweig, Germany, Mar. 1996. Invited for sub
mission to ACM Transactions on Software Engi
neering and Methodology.

! "
\ B? ~'. \ ;, .. ., ,',

Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Veroffentlichungen des DFKI

Telefon (0631) 205-3506

Telefax (0631) 205-3210
und Dokumentation (BID)- --.-----

e-m&l

-Bibliothek, Information

PF 2080

67608 Kaisel'Slautem

FRG

dCkibib@dCki.uni-kl.de
WWW

http://www.dfki.uni
sb .de/dfkibib

Die folgenden DFKI Veroffentlichungen sowie die aktuelle Liste von allen bisher erschienenen Publikatio
nen konnen von der oben angegebenen Adresse oder (so sie als per ftp erhaeltlich angemerkt sind) per
anonymous ftp von ftp.dfki.uni-kl.de (131.246.241.100) im Verzeichnis pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekennzeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of all published papers so far are obtainable from the above ad
dress or (if they are marked as obtainable by ftp) by anonymous ftp from ftp·dfki.uni-kl.de (131 .246.241.100)
in the directory pub/Publications.
The reports are distributed free of charge except where otherwise noted.

DFKI Research Reports

1996
RR-96-05
Stephan Busemann
Best-First Surface Realization
11 pages

RR-96-03
Gunter Neumann
Interleaving
Natural Language Parsing and Generation
Through Uniform Processing
51 pages

RR-96-02
E.Andre, J. Muller, T.Rist:
PPP-Persona: Ein objektorientierter Multimedia-Pra.
sentationsagent
14 Seiten

1995
RR-95-20
Hans- Ulrich Krieger
Typed Feature Structures, Definite Equivalences,
Greatest Model Semantics, and Nonmonotonicity
27 pages

RR-95-19
Abdel Kader Diagne, Walter Kasper, Hans-Ulrich Krie
ger
Distributed Parsing With HPSG Grammar
20 pages

RR-95-18
Hans- Ulrich Krieger, Ulrich Schiifer
Efficient Parameterizable Type Expansion for Typed
Feature Formalisms
19 pages

RR-95-17
Hans- Ulrich Krieger
Classification and Representation of Types in TDL
17 pages

RR-95-16
Martin Muller, Tobias Van Roy
Title not set
o pages

Note: The author(s) were unable to deliver this docu
ment for printing before the end of the year. It
will be printed next year .

RR-95-15
Joachim Niehren, Tobias Van Roy
Title not set
o pages

Note: The author(s) were unable to deliver this docu
ment for printing before the end of the year. It
will be printed next year.

RR-95-14
Joachim Niehren
Functional Computation as Concurrent Computation
50 pages

RR-95-13
Werner Stephan, Susanne Biundo
Deduction-based Refinement Planning
14 pages

RR-95-12
Walter Hower, Winfried H. Gra{
Research in Constraint-Based Layout, Visualiza.tion,
CAD, and Related Topics: A Bibliographical Survey
33 pages

RR-95-11
Anne Kilger, Wolgang Finkler
Incremental Generation for Real-Time Applications
47 pages

RR-95-10
Gert Smolka
The Oz Programming Model
23 pages

RR-95-09
M. Bucbbeit, F. M. Donini, W. Nutt, A . Schaerf
A Refined Architecture for Terminological Systems:
Terminology = Schema + Views
71 pages

RR-95-08
Michael MeW, RaJ[Scheidbauer, Cbristian Schulte
An Abstract Machine for Oz
23 pages

RR-95-07
Francesco M. Donini, Maurizio Lenzerini, Daniele Nar
di, Werner Nutt
The Complexity of Concept Languages
57 pages

RR-95-06
Bernd Kiefer, Tbomas Fettig
FEGRAMED
An interactive Graphics Editor for Feature Structures
37 pages

RR-95-05
Rolf Backofen, James Rogers, K. Vijay-Sbanker
A First-Order Axiomatization of the Theory of Finite
Trees
35 pages

RR-95-04
M. Bucbbeit, H.-J. Burckert, B. Hollunder, A. Laux, W.
Nutt,
M . W6jcik
Task Acquisition with a Description Logic Reasoner
17 pages

RR-95-03
Stephan Baumann, Micbael Malburg, Hans-Guentber
Hein , Rainer Hoeb,
Thomas Kieninger, Norbert Kubn
Document Analysis at DFKI
Part 2: Information Extraction
40 pages

RR-95-02
Majdi Ben Hadj Ali, Frank Fein, Frank Hoenes, Tbor
sten Jaeger,
Achim Weigel
Document Analysis at DFKI
Part 1: Image Analysis and Text Recognition
69 pages

RR-95-01
Klaus Fischer, Jorg P. Muller, Markus Pischel
Cooperative Transportation Scheduling
an application Domain for DAr
31 pages

1994

RR-94-39
Hans-Ulricb Krieger
Typed Feature Formalisms as a Common Basis for Lin
guistic Specification.
21 pages

RR-94-38
Hans Uszkoreit, RolfBackofen, Stepban Busemann, Ab
del Kader Diagne,
Elizabetb A. Hinkelman, Walter Kasper, Bernd Kiefer,
Hans-Ulricb Krieger,
Klaus Netter, Gunter Neumann, Stepban Oepen, Ste
pben P. Spackman.
DISCO-An HPSG-based NLP System and its Applica
tion for Appointment Scheduling.
13 pages

RR-94-37
Hans- Ulrich Krieger, Ulricb Schiifer
TDL - A Type Description Language for HPSG, Part
1: Overview.
54 pages

RR-94-36
Manfred Meyer
Issues in Concurrent Knowledge Engineering. Knowl
edge Base and Knowledge Share Evolution.
17 pages

RR-94-35
Rolf Backofen
A Complete Axiomatization of a Theory with Feature
and Arity Constraints
49 pages

RR-94-34
Stephan Busemann, Stepban Oepen, Elizabeth A . Hin
kelman, '
Gunter Neumann, Hans Uszkoreit
COSMA - Multi-Participant NL Interaction for Ap
pointmimt Scheduling
80 pages

RR-94-33
Franz Baader, Armin Laux
Terminological Logics with Modal Operators
29 pages

RR-94-31
Otto Kiihn, Volker Becker, Georg Lohse, Philipp Neu
mann
Integrated Knowledge Utilization and Evolution for the
Conservation of Corporate Know-How
17 pages

RR-94-23
Gert Smolka
The Definition of Kernel Oz
53 pages

RR-94-20
Christian Schulte, Gert Smolka, Jorg Wiirtz
Encapsulated Search and Constraint Programming in
Oz
21 pages

RR-94-19
Rainer Hoch
Using IR Techniques for Text Classification in Docu
ment Analysis
16 pages

RR-94-18
Rolf Backofen, Ralf Treinen
How to Win a Game with Features
18 pages

RR-94-17
Georg Struth
Philosophical Logics-A Survey and a Bibliography
58 pages

RR-94-16
Gert Smolka
A Foundation for Higher-order Concurrent Constraint
Programming
26 pages

RR-94-15
Winfried H. Gra£, Stefan Neurohr
Using Graphical Style and Visibility Constraints for a
Meaningful Layout in Visual Programming Interfaces
20 pages

RR-94-14
Harold Boley, Ulrich Buhrmann, Christof Kremer
Towards a Sharable Knowledge Base on Recyclable
Plastics
14 pages

RR-94-13
Jana Koehler
Planning from Second Principles-A Logic-based Ap
proach
49 pages

RR-94-12
Hubert Com on, Ralf 'freinen
Ordering Constraints on Trees
34 pages

RR-94-11
Knut Hinkelmann
A Consequence Finding Approach for Feature Recogni
tion in CAPP
18 pages

RR-94-10
Knut Hinkelmann, Helge Hintze
Computing Cost Estimates for Proof Strategies
22 pages

RR-94-08
Otto Kiihn, Bjorn Holling
Conserving Corporate Knowledge for Crankshaft De
sign
17 pages

RR-94-01
Harold Boley
Finite Domains and Exclusions as First-Class Citizens
25 pages

RR-94-06
Dietmar Dengler
An Adaptive Deductive Planning System
17 pages

RR-94-05
-Franz Schmalbofer, J. Stuart Aitken, Lyle E. Bournejr.
Beyond the Knowledge Level: Descriptions of Rational
Behavior for Sharing and Reuse
81 pages

RR-94-03
Gert Smolka
A Calculus for Higher-Order Concurrent Constraint
Programming with Deep Guards
34 pages

RR-94-02
Elisabeth Andre, Tbomas Rist
Von Textgeneratoren zu Intellimedia-Prasentationssy
stemen
22 Seiten

RR-94-01
Elisabeth Andre, Tbomas Rist
Multimedia Presentations: The Support of Passive and
Active Viewing
15 pages

DFKI Technical Memos

1996

TM-96-01
Gerd Kamp, Holger Wache
CTL - a description Logic with expressive concrete do
mains
19 pages

1995

TM-95-04
Klaus Schmid
Creative Problem Solving
and
Automated Discovery
- An Analysis of Psychological and AI Research -
152 pages

TM-95-03
Andreas Abecker, Harold Boley, Knut Hinkelmann, Hol
ger Wache,
Franz Schmalhofer
An Environment for Exploring and Validating Declara
tive Knowledge
11 pages

TM-95-02
Michael Sintek
FLIP: Functional-plus-Logic Programming
on an Integrated Platform
106 pages

DFKI Documents

1996

D-96-05
Martin Schaaf
Ein Framework zur Erstellung verteilter Anwendungen
94 pages

D-96-03
Winfried Tautges
Der DESIGN-ANALYZER - Decision Support im Desi
gnprozess
75 Seiten

1995

D-95-12
F. Baader, M . Buchheit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'95 Workshop:
KRDB-95 - Reasoning about Structured Objects:
Knowledge Representation Meets Databases
61 pages

TM-95-01
Martin Buchheit, Riidiger Klein, Werner Nutt
Constructive Problem Solving: A Model Construction
Approach towards Configuration
34 pages

1994

TM-94-04
Cornelia Fischer
PAntUDE - An Anti-Unification Algorithm for Ex
pressing Refined Generalizations
22 pages

TM-94-03
Victoria Hall
Uncertainty-Valued Horn Clauses
31 pages

TM-94-02
Rainer Bleisinger, Berthold Kroll
Representation of Non-Convex Time Intervals and
Propagation of Non-Convex Relations
11 pages

TM-94-01
Rainer Bleisinger, Klaus-Peter Gores
Text Skimming as a Part in Paper Document Under
standing
14 pages

D-95-11
Stephan Busemann, Iris Merget
Eine Untersuchung kommerzieller Terminverwaltungs
software im Hinblick auf die Kopplung mit natiirlich
sprachlichen Systemen
32 Seiten

D-95-10
Volker Ehresmann
Integration ressourcen-orientierter Techniken in das wis
sensbasierte Konfigurierungssystem TOOCON
108 Seiten

D-95-09
Antonio Kriiger
PROXIMA: Ein System zur Generierung graphischer
A bstraktionen
120 Seiten

D-95-08
Technical Staff
DFKI Jahresbericht 1994
63 Seiten

Note: This document is no longer available in printed
form.

D-94-02
Markus Steffens
Wissenserhebung und Analyse zum Entwicklungsprozefi
eines Druckbehlilters aus Faserverbundstoff
90 pages

D-94-01
Josua Boon (Ed.)
DFKI-Publications: The First Four Years
1990 - 1993
75 pages

D-95-07
Ottmar Lutzy
Morphic - Plus
Ein morphologisches Analyseprogramm fUr die deutsche
Flexionsmorphologie und Komposita-Analyse
74 pages

D-95-06
Markus Steffens, Ansgar Bernardi
Integriertes Produktmodell fUr Behlilter aus F'aserver
bundwerkstoffen
48 Seiten

D-95-05
Georg Schneider
Eine Werkbank zur Erzeugung von 3D-Illustrationen
157 Seiten

D-95-04
Victoria Hall
Integration von Sorten als ausgezeichnete taxonomische
Prii.dikate in eine relational-funktionale Sprache
56 Seiten

D-95-03
Cbristopb Endres, Lars Klein, Markus Meyer
Implementierung und Erweiterung der Sprache ACCP
110 Seiten

D-95-02
Andreas Butz
BETTY
Ein System zur Planung und Generierung informativer
Animationssequenzen
95 Seiten

D-95-0l
Susanne Biundo, Wolfgang Tank (Hrsg.)
PuK-95, Beitrlige zum 9. Workshop "Planen und Kon
figurieren", Februar 1995
169 Seiten

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$).

1994

D-94-l5
Stepban Oepen
German Nominal Syntax in HPSG

- On Syntactic Categories and Syntagmatic Relations

80 pages

D-94-l4
Hans-Ulricb Krieger, Ulrich Schafer
TDL - A Type Description Language for HPSG, Part
2: User Guide.
72 pages

D-94-12
Arthur Sebn, Serge Autexier (Hrsg.)
Proceedings des Studentenprogramms der 18. Deut
schen Jahrestagung fUr Kiinstliche Intelligenz KI-94
69 Seiten

D-94-11
F. Baader, M. Bucbbeit, M. A. Jeusfeld, W. Nutt (Eds.)
Working Notes of the KI'94 Workshop: KRDB'94 - Rea
soning about Structured Objects: Knowledge Represen
tation Meets Databases
65 pages

Note: This document is no longer available in printed
form.

D-94-10
F. Baader, M. Lenzerini, W. Nutt, P. F . Patel-Schneider
(Eds.)
Working Notes of the 1994 International Workshop on
Description Logics
118 pages

Note: This document is available for a nominal charge
of 25 DM (or 15 US-$) .

D-94-09
Technical Staff
DFKI Wissenschaftlich-Technischer Jahresbericht
1993
145 Seiten

D-94-08
Harald Feibel
IGLOO 1.0 - Eine grafikunterstiitzte Beweisentwick
lungsumgebung
58 Seiten

D-94-07
Claudia Wenzel, Rainer Hoch
Eine Ubersicht iiber Information Retrieval (IR) und
NLP-Verfahren zur Klassifikation von Texten
25 Seiten

D-94-06
Ulricb Bubrmann
Erstellung einer deklarativen Wissensbasis iiber recy
clingrelevante Materialien
117 Seiten

D-94-04
Franz Scbmalbofer, Ludger van Elst
Entwicklung von Expertensystemen: Prototypen, Tie
fenmodellierung und kooperative Wissensevolution
22 Seiten

D-94-03
Franz Scbmalbofer
Maschinelles Lemen: Eine kognitionswissenschaftliche
Betrachtung
54 Seiten

Note: This document is no longer available in printed
form .

P
ro

ce
e

d
in

g
s

o
f t

h
e

 W
o

rk
sh

o
p

 o
n

K

n
o

w
le

d
g

e
 R

e
p

re
se

n
ta

tio
n

 a
n

d
 C

o
n

fi
g

u
ra

ti
o

n

W
R

K
P

'9
6

F
ra

n
z

B
aa

de
r,

 H
an

s-
JO

rg
en

 B
O

rc
ke

rt
,

A
n

d
re

a
s

G
O

nt
er

,
W

er
ne

r
N

u
tt

 (E
ds

.)

0-
96

-0
4

D
oc

um
en

t

	D-96-04-0001
	D-96-04-0002
	D-96-04-0003
	D-96-04-0004
	D-96-04-0005
	D-96-04-0006
	D-96-04-0008
	D-96-04-0009
	D-96-04-0010
	D-96-04-0011
	D-96-04-0012
	D-96-04-0013
	D-96-04-0014
	D-96-04-0015
	D-96-04-0016
	D-96-04-0017
	D-96-04-0018
	D-96-04-0019
	D-96-04-0020
	D-96-04-0021
	D-96-04-0022
	D-96-04-0023
	D-96-04-0024
	D-96-04-0025
	D-96-04-0026
	D-96-04-0027
	D-96-04-0028
	D-96-04-0029
	D-96-04-0030
	D-96-04-0031
	D-96-04-0032
	D-96-04-0033
	D-96-04-0034
	D-96-04-0035
	D-96-04-0036
	D-96-04-0037
	D-96-04-0038
	D-96-04-0039
	D-96-04-0040
	D-96-04-0041
	D-96-04-0042
	D-96-04-0043
	D-96-04-0044
	D-96-04-0045
	D-96-04-0046
	D-96-04-0047
	D-96-04-0048
	D-96-04-0049
	D-96-04-0050
	D-96-04-0051
	D-96-04-0052
	D-96-04-0053
	D-96-04-0054
	D-96-04-0055
	D-96-04-0056
	D-96-04-0057
	D-96-04-0058
	D-96-04-0059
	D-96-04-0060
	D-96-04-0061
	D-96-04-0062
	D-96-04-0063
	D-96-04-0064
	D-96-04-0065
	D-96-04-0066
	D-96-04-0068
	D-96-04-0069
	D-96-04-0070
	D-96-04-0071
	D-96-04-0072
	D-96-04-0073
	D-96-04-0074
	D-96-04-0075
	D-96-04-0076
	D-96-04-0077
	D-96-04-0078
	D-96-04-0079
	D-96-04-0080
	D-96-04-0081
	D-96-04-0082
	D-96-04-0083
	D-96-04-0084
	D-96-04-0085
	D-96-04-0086
	D-96-04-0087
	D-96-04-0088
	D-96-04-0089
	D-96-04-0090
	D-96-04-0091
	D-96-04-0092
	D-96-04-0093
	D-96-04-0094
	D-96-04-0095
	D-96-04-0096
	D-96-04-0097
	D-96-04-0098
	D-96-04-0099

