
Deutsches
Forschungszentrum
tür Künstliche
Intelligenz GmbH

Document
D-92-22

Indexing Principles for
Relational Languages Applied to

PROLOG Code Generation

Werner Stein

February 1993

Deutsches Forschungszentrum für Künstliche
Intelligenz

Postfach 20 80
D-6750 Kaiserslautern
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

GmbH
Stuhlsatzenhausweg 3
D-6600 Saarbrücken II
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the share holder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staft of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

Indexing Principles for Relational Languages
Applied to PROLOG Code Generation

WemerStein

DFKI-D-92-22

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz. Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all aplicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

Indexing Principles of Relational
Languages Applied to PROLOG

Code Generation

Werner Stein
Uni versi tät Kaiserslau tern

W-6750 Kaiserslautern, F.R. Germany

February 24, 1993

Abstract

In this paper we propose an extensible, flexible, multi-argument indexing technique
for relationallanguages. We present a compiler producing indexing header code for a
PROLOG emulator based on the Warren Abstract Machine. We will show that OUf

technique combines positive aspects of relational database methods and other existing
WAM-based indexing schemes. All the indexing concepts introduced are implemented
in LISP for the relational-functional programming language RELFUN.

11
cknowledgements

to Harold Boley, Micheal Sintek and Hans Günther Hein for their helpfull discussions an
for reading this paper before publishing. Thanks to Hans Günther Hein and Thomas Krause
for their first introductions into RELFUN and WAM techniques. I would like to express my
gratitude to Harold Boley, Michael Sintek and all others working in the ARC-TEC-project
for supporting me in making this paper a success. I also thank my wife Ester for taking
my mind off when I got struck and for giving me new energy when I was down.

The ideas described in this paper were first presented at the Workshop "Sprachen für KI
Anwendungen, Konzepte - Methoden - Implementierungen" 1992 in Bad Honnef. Parts of
the paper are puplished in [24J.

This paper is part of a collaborative work together with Michael Sintek. The other part is
published in [23J.

CONTENTS 3

Contents

1 Overview 8

I Introduction 9

2 Indexing: What is it, Where Does it Come From? 9

2.1 Index Functions 9

2.2 DB-Indexing .. 10

2.3 Indexing in PROLOG 10

2.4 Index Algorithms ... 11

3 What is Indexing Good For? 12

II Theory 13

4 Exponentially Large Index Trees 14

5 NP-Complete Index Problem 16

III Basic State of the Art 19

6 Looking at Other Approaches 20

6.1 Hardware Oriented Approaches 20

6.1.1 m-in-n-Coding. 20

6.2 Software Oriented Approaches . 20

6.2.1 General WAM-indexing. 20

6.2.2 Complete Indexing .. 22

6.3 Index Assistant Functions .. 25

6.3.1 Shallow Backtracking . 25

6.3.2 Quadratic Indexing . 25

7 Developmental Environment 25

7.1 Global RELFUN Project Structure .. . 26

IV Implementation 27

LIST OF FIGURES

List of Figures

Figure 3: uninformed index tree

Figure 5: exponentially growing index tree

Figure 7: RELFUN's clauses

Figure 12: merge-complete index tree .

Figure 13: global RELFUN structure .

Figure 14: RELFUN structure with indexing .

Figure 16: separate compilation

Figure 17: graphical representation & corresponding instructions .

Figure 19: sample h-i-index tree: no indexing

Figure 20: sample h-i-index tree: first argument indexing, partitions

Figure 21: block-variable-size = 0

Figure 22: sample h-i-index tree: first argument indexing, no partitions

Figure 23: block-variable-size = max

Figure 24: sample h-i-index tree: second argument indexing

Figure 25: sampie h-i-index tree: one of two arguments indexed

Figure 26: sample h-i-index tree: two arguments indexed

Figure 27: sampie h-i-index tree: fully indexed .

Figure 28: tree-sharing

Figure 29: cut h-i-index tree without tree-sharing

Figure 30: cut h-i-index tree with tree-sharing

Figure 31: nested index tree ..

Figure 32: flattened index tree .

Figure 33: cut index tree

Figure 34: extended index tree

Figure 35: extension: assert . .

Figure 36: retract clause number 4

Figure 38: flattening algorithm

Figure 39: cutting algorithm ..

Figure 40: extending algorithm

6

13

15

19

24

26

27

32

34

38

39

40

42

42

44

46

48

49

51

52

52

50

56

57

57

60

61

67

68

68

B

B
~ ,
'" •
•

B
11
11

8

1 Overview

n the last few years PROLOG has changed its appearance from an experimental to a
more and more realistic language. This is due to many people's thinking about good
compiling techniques and useful extensions. Perhaps the single most important factor of
efficiency of large PROLOG programs is indexing, an optimization which can always be
applied (independent of other compiler optimizations). The original WAM (defined by
D.H.D.Warren [29]) only provides a first argument indexing scheme. We will show that a
simple extension of the WAM control instruction set can speed up execution efficiency.

n the first part, we will introduce the idea of indexing and where it comes from. The differ
ence between relational database indexing methods and those for PROLOG-like languages
will be discussed. As a result we will show how indexing changes the run-time and the
memory-management behavior of a PROLOG emulator .

he second part begins with a short introduction to the theoretical area of indexing. The
two main theoretical problems concerning indexing will be revealed. We will show that
indexing is a non-trivial problem, which should be intelligently solved by heuristics.

n the third part, we present several possible indexing methods, different implementations
their advantages and disadvantages. We also enumerate the environment of this work,
namely the characteristics of the implementation of the language RELFUN [7,17,18, 19J,
which provides the basis of our LISP realization.

n abstract graphical representation scheme for indexing algorithms (called index trees [23]),
is introduced to compare several indexing methods and their results. In the fourth part w
describe the ideas behind the RELFUN indexing method. Based on index trees produce,
from the RELFUN code (descibed in [23]), we show how to generate indexing WAM cod

ast but not least, we demonstrate how our method is implemented and how it is used. WI
show a few results and compare it with other existing indexing methods such as comple
indexing.

We assurne the reader is familiar with PROLOG and its most well-known implementatio
environment, the Warren Abstract Machine, called WAM 1

.

IIf this is not the case we refer the reader to the following (incomplete) list of publicatiollC
[22],[1.] ,[11] ,[29], ..

9

Part I

Introduction

ince the development of PROLOG the language has become more and more wide-spread.
Kowalsky's [16] equation:

ALGORITHM = LOGIC + CONTROL

constituted a revolution in the understanding of programming languages. One philosophy
of logic programming languages is to hide control inside a general inference engine. The
declarative semantics of these languages allows the programmer to write down what shall be
done and leave it to the system how to do it. This allows problem formulation which is both
elegant and natural. But logic programming does not only have strong points: in the early
days of PROLOG a lack of efficient control strategies resulted in inefficient problem-solving
behavior. So PROLOG was more of a logic programming 'toy tool' than an implementation
environment for serious applications. But researchers like D.H.D. Warren[29, 30], Hickey
and Mudambi[14], P.van Roy[27], R.A.O'Keefe[21] A. Taylor[26, 25], ... have paved the
path to PROLOG compilers now approaching the speed of C.

They use global optimization methods and native-code compilation to obtain these results.
Perhaps the single most important factor of efficiency of large PROLOG programs is index
ing, an optimization which can always be applied (independent of other compiler optimiza
tions). The indexing issue is at least as old as PROLOG, because it is (like unification and
backtrack control) a basic mechanism of PROLOG-like knowledge bases. However, there
is not as much research in this area as in the other"areas. In this paper we want to explore
new techniques, bringing together DB-technology[14J and results from other WAM-based
indexing schemes.

2 Indexing: What is it, Where Does it Come From?

2.1 Index Functions

A view popular among users is that PROLOG (actually, DATALOG2) is an intelligent
relational database system.

This is suggested by comparing the main loop of PROLOG with the main loop of data-base
languages.

In both cases, we need a function finding entries in a data base (or program) which are
possible candidates to satisfy a query G. Such a function is called an index function. Since
data-base techniques are much older (and therefore more elaborated), PROLOG could try
to profit from them.

2Subset of PROLOG without compound terms (lists and structures)

2.2 DB-Indexing

Goal G

1. find next clause H : -GI ,G2 , ... ,Gn with: H unifying G (or
,(H) = ,(G) i.e., = mgu(H,G) exists).

2. try to solve ,(Gd, ... ,,(Gn)

else goto 1
Figure 1: Mairiloop 01 PROLOG

Goal G

1. find set of entries {EI, E2 , ••• , En }

with: Ei matched by G.
Figure 2: Main loop of a simple DB~language

2.2 DB-Indexing

10

Most D B systems provide a set of indexing functions (based on B*, hashing, ...) to th
user. The D B administrator chooses exactly one indexing method for a specific problem
Lots of parameters (key-argument, type, ...) influence the indexing method. Each indexin
function returns the set of matching answers.

Logical formulas over many key-arguments are reduced to set operators (join, diff, merge, ...
with respect to the Indexing scheme on single key-argument places.

Obviously, DB-indexing methods are very domain-specific and we shall see that in contras
to PROLOG, DB-indexing need not cope with problems like side-effects, recursion, the orde
of answers, ~on-DATALOG facts and non-ground facts where recursion and non-DATALO
leads to infinite answer sets. Moreover, PROLOG indexing has to be automatie or at leas
be applicable by an average user.

So, when transferring DB-technology to PROLOG, we are forced to look for new, speciallYi
adapted indexing schemes.

2.3 Indexing in PROLOG

A main feature of PROLOG is its nondeterministic behavior: adefinition may be expressed
so that there are alternative evaluation possibilities reached by backtracking.

The order of clauses and even duplicates are characteristic for the procedural seman
tics of programs. So PROLOG indexing functions do not return sets but sequences3

< Ci
l

, ••. , Cin > of clauses for possible alternative answers. Consider a sequence SG of
clauses Ci. We say SG is correct wrt G if all clauses which PROLOG would try successfully
or with any side-effect constitute a subsequence of SG. We also say a clause cis indispensble
if C is in all correct SG's. Moreover we can say that Sb is beUer than SG if böth are correct
and Sb C SG.

3the order is given by the sequence of c1auses in the program code;
we will transfer set operators such as "\" and "eil to sequences in the obvious manner

2.4 Index Algorithms 11

In other words: if part 1 of the PROLOG main loop would try, step-by-step, all clauses in
a correct Sc, it would give all correct answers. Now, we can sometimes find out in advance
that an alternative clause ei E Sc will not succeed and have no side-effect. Then, we can
hold that S6 = Sc \ < ei > is better for G than is Sc. If we can control the search for
indispensble clauses so that fruitless alternatives are never tried, we will achieve a more
efficient evaluation.

The reward of cutting down apriori the sequence of alternatives Sc for a goal G seems to
be even more promising. If we look at the and/or-tree of a PROLOG program then Sc is
the set of all the or-branches for node G. Reducing Sc is always a reduction of the search
space. Many conditions can be imposed apriori on Sc.

In any case, a necessary (but fruitless since not restricting anything) condition for Sc is:

Sc ~ < eie E G is a clause of the program, in the original order" >

The most restrictive condition (but also fruitless, since this is the goal of the whole PRO
LOG unification process) for Sc is:

Sc =< eie is an indispensble clause for G >

Such a condition could be found automatically only in OATALOG-like programs without
recurSlOn.

The simplest non-trivial condition takes the relation name into account:

Sc =< eie is a clause from the procedure of the relation called in G >

The task is to come up with more restrictive conditions and methods to constrain, perhaps
step by step, the sequence Sc without spending too-much effort in finding these restrictions.
On the other hand, the conditions must be as restrictive as possible, preventing too much
unnecessary clauses which would result in backtracking. It is well-known that backtracking
is a time-consuming and memory-expensive job (see also section 8.2.2).

2.4 Index Algorithms

We defined indexing, coming from OB techniques, as functions returning a sequence of
potentially matching clauses. In contrast to OB techniques, in PROLOG the global flow
of the program leads to correct answer substitutions, so index functions are not only called
when calling a goal but also during the unification process in the body of a clause. Each
branching (deterministic or non-deterministic) could be seen as performed by an index
algorithm.

Index algorithms give a more general view for indexing as index functions do.

In the rest of the paper we prefer index functions. As we will see in a later section, they
provide for aseparate compilation of index code and clause code, as we need it in our
implementation (see section 9).

l!.:MU m \ '€EI

13

Part 11

Theory

e have seen that indexing changes the run-time and the memory management behavior of
a PROLOG imp1ementation. We now want to reveal the theoretica1 aspects of index trees
and discuss the worst case performance of an "index tree without choice-point creation".
Index trees are abstract representations of index a1gorithms.

In this section we will speak of uninformed index trees.

Defini ti on 1: uninformed index tree

An uninformed index tree is a tree whose nodes are 1a
be1ed with a sequence of clause numbers:

1. the root node is 1abe1ed with (1, ... n)

2. for each inner node a with sub-nodes ßi the fo1-
10wing ho1ds:

~ 'I/·ß· C a z z _

Each node is 1abe1ed with the sequence of clauses Sc which must still oe tried at this point.
The edges represent unknown condition5 . If one condition is satisfied we can reduce the set
Sc to the node 1inked with this edge. The following is an examp1e of an uninformed index
tree:

1,2,3,4)

0,2

Figure 3: uninformed index tree

In this examp1e, the root node (= no indexing is yet done) consists of four different con
straints. If one of them is satisfied, we follow the corresponding edge, knowing that we on1y
have to try the reduced set of clauses to get all possib1e alternatives.

5that is why the trees are called uninformed index trees

14

First, we will show that index trees can result in exponentially large code length. This
is due to a worst case intermixed presentation of constants and variables in the argument
positions in the head üf the clauses. In this case, a set of n clauses can be partitioned by
two constraints into a set of (n - 1) clauses and another one with (n - 2) clauses, which are
used recursively to construct the child subtrees until the leaves of the index tree correspond
to single clauses.

Secondly, for any reasonable definition of optimality, the problem of finding an optimal
index tree is NP-complete [l1J. This observation can be made if the index scheme provides
indexing of inner structures. In this case the problem of finding a minimal subset of argu
ment positions such that two rules do not unify in all positions of this set, can be reduced
to the NP-complete set-covering problem [4J.

Solutions for these problems are approximated in two different parts of our indexing method
(see section 10), but this will be explained later.

4 Exponentially Large Index Trees

Consider a procedure p with n rules and n(n - 1)/2 parameters. We want to show that the
number of nodes in the corresponding index tree can have a complexity of O(2n

).

The clauses are numbered from 1 to n. Since p has n clauses, the number of pairs of disjoin~
clauses (i,j) with i < j is

n-l

LX = n(n -1)/2
x=l

Since p also has n(n - 1)/2 parameters, we can select a unique argument position Tij fOI
each pair of clauses (i,j). I

Assurne clause i to be a fact whose k th parameter aik is

1. an anonymous variable (denoted by "_"), if there is no j such that Tij = k or Tji = k.

2. the constant i, if such a j exists.

It is important that for each pair of clauses (i, j) constructed in the above way, the head~
will unify in each argument except for Tij'

For n = 4 and < r;j >= (~
*
*
3
5

*
*
*
6

~) we will give an example:

2. p(2, _,2, _, 2, _).
Since rl,3 = 2 =>
the second argument of
clause 1 is 1 and

3. p(-, 3, 3, -, -, 3). the second argument of
clause 3 is 3

Figure 4: Procedure with an exponentially large index tree

15

We now assume we al ready have an index tree for adefinition p with n rules. The number
of nodes of this index tree is Sn.

We extend the defini tion of p by another clause (w .l.g. we add clause 0) and by the missing
(n + 1)n/2 - n(n -1) /2 = n argument places, filling them in the described manner. Observe
that this can be done incrementally. The new index tree has the following form:

Figure 5: exponentially growing index tree

1. the fOot node (0,1,2, . .. , n)

-+ 1 additional node

2. we must distinguish between the cases that either the input parameter for the observed
argument position is in.stantiated or not:

(a) if it is instantiated:

Without loss oLgenerality, we can distinguish the first two clauses (ra,l = 1).

Then the definition for Pn+l looks like this:
Pn+l(O,)
Pn+l (1,)
Pn+1 (-,)

Pn+1 (-,· ...)

1. if we the first argument is 0 the subtree has the root-node (0,2, ... , n)

-+ Sn-l additional nodes

11. if we the first argument is 1 the subtree has the root-node (1,2, ... , n)

- Sn-! additional nodes

16J

111. else (if we the first argument is neither 0 nor 1) the subtree has the root-node
(2, ... ,n)

- Sn-2 additional no des

(b) if it is not instantiated (we can unify all clauses):6

vVe have a subtree with at least one node (if we stop indexing the rest:

-~ 1 additional node

Thus, the number of no des of the extended index tree is:

{

2Sn-l + Sn-2 + 1
=} sn+! ~ 4

1

x>2
x=2
x=l

The solution of this recurrence equation reveals the complexity of O(2n). Thus, we have an
example for an exponential growth of an index tree. Since each edge in this tree represents
a distinction of a set of clauses, the edge vas to be compiled into at least one indexing
instruction. Thus, the produced indexing code is likewise exponential with respect to the
number of rules.

This result is not as discouraging as it seems since most applications do not have the rate
1 : O(n) between the number of rules and the number of parameters7

. But it is discouraging
enough, since even a linear growth of the code caused by indexing is not desirable with a
large factor.

Note that a compiler producing an index tree in the described manner produces exponen·
tially large index code and a compiler with no indexing only will produce linearly growing
index code (one choice-point constructor for each clause). But in the second case more
memory is used in run-time when the choice-points are created. Then a strongly recursive:
definition of a procedure can quickly exhaust the whole memory. Another point is that
choice-point instructions are a waste of time, whereas the constraints are mostly imple
mented on a low level and therefore permit time saving.

Incidentally, indexing methods using information from mode analysis or other global in
formation gathering systems (or from the user hirnself) can find a good ratio bet ween the
usage of choice-point constructions and indexing instructions. So we can conclude again:
there is not one single way.

5 NP-Complete Index Problem

We have seen that index code can grow exponentially with respect to the number of clauses.
But how can we even find a good set of constraints to reduce the set of alternative pos
sibilities. We will show that this problem is NP-complete if we provide looking to inner
structures to discriminate the clauses.

6 in a tater section this case is called the var-case --+ no reduction of the set of clauses is possible with
respect to this argument position

7Think of a procedure with 6 rules which would have to have at least 15 parameters

17

Consider a procedure P with n arguments . We say a set S (a subset of these n argument
positions) is a complete position set if no two rules unify all positions in S.

The NP-hard complete-position-set problem is the following:

Definition 2: complete-position-set-problem

Find the smallest integer n such that there is for a head
deterministic ll procedure p of sizeb N a complete position
set of size n.

a A procedure p is called head deterministic if at most one rule
of the definition of p is good for any goal with only instantiated
arguments

bA measure could be the number of characters in its ASCII
representation

Such a minimal complete position set could be used to build an index tree with a minimal
use of choice-point constructors.

By reducing the complete position set problem to the well known set covering problem[4],
we show that the first one is at least as hard as the second one:

Let Ck = {(i,j)1 rules i and j differ in the kth position},
Co = {(i,j)1 i and j are rules },
S ~ {il i is the number of a rule }

=? S is a complete position set ~ Co = UkES Ck , since two rules must differ at least in one
argument pqsition.

To show that the complete position set problem is exactly NP-complete we reverse the
above reduction.

Let R = {Cl"'" Cm },

Ci E Co,
ICol = n(n - 1)/2

Then, we have to construct a procedure P such that

Ck = {(i,j)1 rule i and j differ in the kth position of the definition of p}

This is done in the following way:

The parameters of the rules are lists of size n(n -1) /2, constructed similar to the arguments
of the example in section 4, except that if (i, j) is not an element of Ck , then all rij are set
to anonymous variables. The following example helps to understand this construction:

19

Part 111

Basic State of the Art

fter this theoretical approach, we now turn to more practical things. From the beginning
we always spoke about an implementation of indexing methods for PROLOG. In fact, the
implementation is done for RELFUN [5,6, 7, 17, 18, 19] . But we now want to show that
we need not to distinguish between these languages if we introduce indexing methods. The
RELFUN programming language is introduced as an attempt to integrate the capabilities
of the relational and functional styles. We distinguish between hornish and footed clauses.

A hornish clause is a normal PROLOG Horn clause, except that its premises may contain
nested function calls. Footed cIauses ditfer syntacticly from hornish ones by having an "&"
in front of the last premise. The value of this last premise is the return value of a footed
clause.

To show that hornish clauses correspond to a subset of footed clauses you only have to con
sider RELFUN's transformation algorithm Iooten, mapping hornish clauses (in particular,
PROLOG's Horn clauses) to footed clauses:

footen: hornish -+ Iooted
h : -gI, g2,·· ., gn -+ h: -gI, g2, ... , gn&true

fpote n ..
reJatigoaJ1zß

Figure 7: RELFUN's clauses

RELFUN's inverse transformation algorithm is called relationa/ize, which flattens nested
calls and introduces an extra argument taking the return value8

. The latter transformation
shows that it suffices to consider the PROLOG subset of RELFUN when discussing indexing

schemes.

8For other RELFUN features (higher order, ...) you can find similar horizontal transformations in [5, 6,

23)

20

6 Looking at Other Approaches

In this subsection we provide an overview of different indexing schemes. They can b
distinguished into hardware oriented and software oriented approaches.

The hardware oriented approaches are based on DB-techniques. A hash-function returns,
for a given query, a sequence of c1auses as potential matches. This is done separately from
the program, so rules (maybe a very large number of clauses) can be stored separately (e.g.
externally) .

Most software oriented indexing schemes have a mixed storage of index and c1ause code, so
the whole program must be loaded at run time.

6.1 . Hardware Oriented Approaches

Several indexing methods are based on bit-matrix representation of c1auses in a procedure.
They are field encoding, superimposed coding with embedded position and variables, and
superimposed coding with external variables [14].

All those are based on the principle of n-in-m-coding.

6.1.1 m-in-n-Coding

In this method the value of an attribute is compressed into a binary word of width n with
a fix number of m bits set to 1. This number is called the weight. The problem is how
to represent variables so that they can match with anything. In [COLOMB] the three
enumerated possibilities to do this are proposed.

The main advantage of this method is that you can construct hardware that handles up to
8.000 c1auses and more in the presented manner. Together with the linear searching hash
function you reach a very high efficiency. Another key property is that m-in-n-coding results
in highly com pressed code, so that large c1ause-code can be separately stored (externally)
from the small index code and only single rules are loaded.

6.2 Software Oriented Approaches

In contrast to the hardware oriented approaches, the software oriented approaches do not
use hash-function returning a set of potential matching clauses, but the program fiow leads
to all those clauses. That is why the index-code and the clause code are scattered over the
program code.

6.2.1 General WAM-indexing

The WAM provides the user with indexing techniques that can only discriminate the first
argument[29, 31], thinking that PROLOG programmer have a natural tendency to write
code in data structured-directed manner.

6.2 Software Oriented Approaches 21

Hassan Ait-Kaci in [1] introduced a so called three-level-indexing scheme using all the in
dexing instructions from the WAM.

First adefinition of a procedure is partitioned into subsequences. Those clauses who have
a variable at the first argument position are the search bottleneck and separate the subse
quences from each other. The subsequences are linked with a try-chain.

The subsequences were indexed in a three-level-indexing manner of the form :

first level discrimination on type
(constant, structure, list,
empty-list and variables)

second level discrimination on value
(only for constants and struct ures)

third level enumeration of clauses
Figure 8: general three level mdexmg sehe me

The WAM indexing instruction-set is:

I index level I instruction I arguments I
labels to the next level
index instructions for

first switch_on_term
constant, struc-
ture, list, emptylist
and variables (possi-
bly more types)
number of

switch_on_constant
constants (structures)

second and a hashtable with a
swi tch_on_struct ure label for each constant

(functor)
try retry trust

third
(and/or

-
try-me-else retry-me-
else trust- meJ

Figure 9: WAM mdexlllg mstructlOn set

The first anq. second level indexing instructions are deterministic choices. The instructions
of the third level are also called choice-point constructors because of handling the backtrack
mechanism in the WAM. Second level list indexing is really third level indexing on list
structures, the second level being skipped by special handling of lists in the WAM.

As an example you can see the general WAM indexing code for the following program:

6.2 Software Oriented Approaches

pli: try tl
retry 2
trust t2

22

tl: switch-on-type const,fail,fail,fail,varl

pO) .
p(2) .
p(X).
pese!)) :-
p(r(2)) : -' =}

p([J):-

p ([X I y]) ; ~

const: switch-on-const (1,1),(2,2),fail
varl: try 1

trust 2
t2: switch-on-type fail,struc,7,6,var2
struc: switch-on-struc (s/1,4),(r/l,5),fail
var2: try 4

retry 5
retry 6
trust 7

1: code-for-clause-l
2: code-for-clause-2

One of the main ideas in this index scheme is to separate the index code from the rest.
Therefore it can only take the head of a clause into account. Other techniques not only
indexing the head but also during the unification process in the code of the body of the
clause. An other source of optimization for WAM based indexing techniques is the extension
of the WAM by new types and branch-instructions.

We want to describe the most famous indexing scheme which takes these two ideas into
account. Other attempts are more or less comparable with it.

6.2.2 Complete Indexing

In [14] Timothy Hickey and Shyam Mudambi present several indexing techniques based
on the WAM. The first one (complete indexing) uses global information (like mo des) to
perform indexing.

First of all the program is transformed, creating new special code for each mode that might
occur for a procedure call.

As an example we look at the following program:

1. top :- p([1,2,3,4],X), write(X).
2. P ([] ,0) .
3. p([XIY] ,N) :- p(Y,M), N is M+l.

p is only called with a constant argument in the first position and a variable in the second.
The new code for the procedure p is specialized for this mode. It is represented in the
procedure p_cd9 . If we assurne that in the program p is also called with other modes, the

9 C stands for constant and d for don't know

6.2 Software Oriented Approaches 23

compiler will produce other specialized procedures for these modes. The PROLOG clauses
for these specialized procedures will not differ from the original ones, but the produced
WAM code takes the mode information into account. The transformed code is:

1. top :- p_cd([1,2,3,4] ,X), write_c(X).
2. p_cd([] ,0).
3. p_cd([XIY] ,N) :- p_cd(Y,M), N is M+l.

Then the clauses are transformed into a normal form:

1. p_c ... cd ... d(T}, ... , Tn , Zl, ... , Zm) : -
2. PI,"" Pr
3. ZI = SI,,,,,Zm = Sm,BI, ... ,B~.

Where:
Ti == arguments with mode constant

Si == argument with mode dont know

Zi == new Variable not yet occuring in the clause

Primitives: goals without
side ef-

Pi == feets and whose parameters
are known to be ground af-
ter head-unification

{

either a non-primitive goal
Bi == or causing side effect or with

unbound arguments after
head-unification.

The generated indexing code is in some sense also a three level indexing of the following
form, corresponding to the normal-form:

first level indexing head-code
second level indexing primitive-code
third level indexing body-code

Fl ure 10: three level com lete indexin g p g scheme

The first one is a sequentially indexing on the first n c-mode arguments. This is done by
unifying the known structure of these arguments and indexing inner different possibilities
with a new index-instruetion called g_switch reg table. This new instruction assurnes that
the argument register reg contains a ground term, and switches to the appropriate location
after a hash-table look up in table.

The indexing primitive-code contains a set of new branch-instructions implemented in the
WAM (e.g i/_gt i/_eq i/_le), so control jumps to a given label.

The indexing bodies are compiled with the standard WAM techniques.

6.2 Software Oriented Approaches

I index level I instruction arguments

first g_switch :l: argument-number and

lLgt
list of tuples latom link)

iLeq
2-

second ifJs
3: test-arguments(1-2) and atomic

functor
true-link

third see WAM
-

in~t,rl1rt.ion spt.
-- -

Figure 11 : complete indexing instruction set

Example:

1. merge_ccd(L,[J ,L).
2. merge_ccd([J ,[BIBsJ ,[BIBsJ).
3. merge_ccd([AIAsJ ,[BIBsJ ,[AICsJ) :- A <= B,

merge_ccd(As,[BIBsJ,Cs).
4. merge_ccd([AIAsJ ,[BIBsJ ,[BICsJ) :- A >= B,

merge_ccd([AIAsJ ,Bs,Cs).

Normal-form:

1. merge_ccd(L,[J ,Xl) :- L=Xl.
2. merge_ccd([J ,[BIBsJ ,Xl) :- Xl=[BIBsJ.
3. merge_ccd([AIAsJ ,[BIBsJ,Xl) :- A <= B, Xl=[AICsJ,

merge_ced(As,[BIBsJ ,Cs).
4. merge_ccd([AIAsJ ,[BIBsJ ,Xl) :- A >= B, Xl=[BICsJ,

merge_ccd([AIAsJ ,Bs,Cs).

Index tree:

./2 first level

ru leI rule2
rulel

Figure 12: merge-complete index tree

unify var Xl
unify=var X2
get_list A2
unify_var X) _______ ~.i'~ ... ~ __ _

XI<X)
------::-~-n-----

r ,3.4)~

rule3 rule4

second leve:

. third level

6.3 Index Assistant Functions 25

In this index tree we have added the constraints to the edges, so we h~ve now no longer
an uninformed index tree but an (informed) index tree. Furthermore, we have added
instructions to the nodes which must be executed if we reach the corresponding node.

6.3 Index Assistant Functions

Indexing can also be performed by some functions not changing the program fiow but
optimizing the time and memory consumption of the index algorithm. We want to separate
these algorithms from the pure indexing scheme and call them index assistant junctions.

6.3.1 Shallow Backtracking

This approach is adapt to the complete indexing algorithm, only performing the backtrack
ing method of primitive deterministic lO procedures. The idea behind this method is the
following:

While unification of the head index code and the primitive index code takes place, only
a link to the next alternative clause is needed as backtrack-information because no heap
variables will be bound, nor will any nonprimitive goal in the body be called, and no side
effect will occure. On the other hand, after successful unification of the head and the
primitives no backtracking in this procedure is possible because the only possible matching
clause is selected.

This reduces the code space requirements at run-time, but good global analyzing methods
are needed to detect primitive deterministic procedures.

6.3.2 Quadratic Indexing

An other approach performing primitive deterministic procedures is the quadratic indexing
scherne. A tree-sharing method reduces the nodes in an index tree to have a size at most
O(n2). The index tree is transformed into a directed acyclic graph (DAG).

7 Developmental Environment

We have seen that there a,re several methods to perform and implement indexing. In this
project we tried to bring together most positive aspects of the above approaches. But
doing this we also had to respect the global structure of our already existing developmental
environment.

Our work is embedded in the ARC-TEC and RELFUN/RFM projects. RELFUN IS a
PROLOG-like language with functional extensions implemented in COMMON LISP.

At the beginning of our work, the state of the RELFUN project was the following:

lOprimitive deterministic is a extended definition of head deterministic which looks not only ta the head
of all c1auses but also to the primitive index-instructions

I

27

Part IV

Implementation

8 A Partitioned Implementation

he previous section has shown that in the compilation environment of RELFUN, it is the
best way to divide the implementation of an indexing method into at least two parts. In
figure 14 the cut line between the two working areas for the implementation parts is given.

'"
rj

öQ

.
c ... ~ - """ ~ t':

l
t""

'
'"

rj

c::

z cn

 ... c ("

)

c ... ~ ~
.

.....

::r

S·

0
..

~

><
 S·

()
q

..::~::
:::::::

:::::::
::::::::

::::::::
::::::::

::::::::
:::::::

:: 0

1,
I~mm

riii
!~ii

~:i1
~~'~

i!~~
~1

~::
Il1

9m~
9*f

11+
 ~Jm

E

L
F

U
N

 P
ro

gr
an

fl

~
;~
'I
 •
•
 W~!

·:·:·
:·:·:

·:···
:····

····
:·

··
··

:il
a

tlo
n:

·:
::~:l~~

m:
g:
:i
::
::::

::;::~:
:::::~:

::::~::
::::

Ii~
[i~

ii~
l~r

 ~i~
~~I

II~
~li

i~1

wO
;1R

T I
f

#9
mP

:M
~~

~R
n

--
-C

la
ss

if
ie

d
C

la
us

es
 -

-
-

-
-

-
-

-
;o

;'k
;;'

g-
a;

;'a
-o

f
.... ;.:

.;.:.;.
:.;.:.;

.;.;.:.
;......

.......
.......

.......
...

·
P

A
R

T
 I

I

J •• •••••
 ••• i~I

~~~
!.·

.~~
~~~

iil
·· ••

 • ••••• td
ex

C
O

d
eG

en
er

at
o

r

:=
>~

~~
"E

II

Lt
H:

~:~
;m:

i:!
:jh

:i:i
:~:~

;!:~
:Hl

:1h
:i~

;:i:
i:!:

!:!
~

A
M

C
d

4

~

In
d

ex
 W

0

e

w

8.1 First Part 29

8.1 First Part

The first implementation area is placed on a high level (between RELFUN and the classified
clauses).

In [23J Michael Sintek explains his ideas on how to extend the classified clauses with indexing
information. In his paper he also proposes the idea of transforming higher-order predicates
(resp. functions) on this high level, wi th respect to indexing handling.

Since for the rest of this paper only indexing is looked at, we can concentrate the introduc
tion of the classified clauses only to the indexing part 13.

In this paper we also do not want to explain how we get the indexing information from the
RELFUN program. Since the general indexing problem is NP-complete, we use specialized
heuristics approximating the solution. If the reader is interested in this aspect, we refer
hirn to the paper of Michael Sintek [23J.

8.2 Second Part

The second part of the implementation is working below the level of the classified clauses.
Its main task is the generation of indexing WAM-code from the indexing information of the
classified clauses. Since the standard WAM only permits us to index the first argument,
another modification extends the emulator with a special index-register. We already said
that one of our philosophies is to be independent from a special low-Ievel language, thus
these last modifications must be as small as possible l4 . In spite of this fact we developed a
general indexing method, able to handle even special features such as higher-order predicates
and domain specific compilation.

Before the introduction of our ideas and implementations, we first want to refresh (resp.
introduce) the two languages involved in this vertical compilation step: the classified clauses
and the WAM instructions.

8.2.1 The Classified Clauses (indexing part)

As a result of our approaches in implementing new indexing techniques in the RELFUN
compiler we had to extend the classified clauses by new index information .

• EBNF for classified clauses - indexing part

<indexing> ::= Cindexing [<iblock>])

<iblock> .. = <pblock> I <sblock>

<pblock> .. = Cpblock <rblock> { <sblock> I <lblock> }+)

13for more detail see [17] and [7]
140nly one new register and one new instruction is added to the 11- WAM

8 .2 Second Part

<rblock> - -= (rblock <clauses> { arg-col }+)

<clauses> - -= (clauses { <clause-number> }+)

<arg-col> - -= (arg <arg-number> { <base-type> }+)

<base-type> - ,= <const> 1 <struct> 1 <var>

<const> - '= (const <symbol»

<struct> - -= (struct <symbol> <arity»

<var> - -= (var <symbol»

<lblock> - -= (lblock <clauses> { arg-col }+)

<sblock> - -= (sblock <rblock> <seqind> [<pblock>])

<seqind> - -= (seqind { <seqind-arg> }+)

<seqind-arg> - -= (arg <arg-number>
(info <inhomogenity»
<constants>
<structures>
<lists>
<empty-lists>
[<others>])

<constants> - -= (const { <element> }*)

<structures> - -= (struct { <element> }*)

<element> - -= (<element-name> <clauses> [<iblock>])

<element-name> - -= <symbol> 1 (<symbol> <arity>)

<lists> - -= (list <clauses> [<iblock>])

<empty-lists> - '= (nil <clauses> [<iblock>])

<others> - -= (other <clauses> [<iblock>])

<clause-number> - -= 1121314151617 __ _

• Explanations:

- iblock = indexed block

~

8.2 Second Part

pblock = partitioned block

sb lock = standard index block

1 block = block consisting of only one clause

rblock = raw block containing the initial data

seqind = sequential indexing

- arg-col = argument column

31

- others = (possibly indexed) clauses for elements not occurring in any hash table

Since we have not yet presented our index method it is not possible at this point to under
stand the full meaning of the index part. But the reader already familiar with the WAM
index scheme can immediately recognize some well known features (e.g. an "sblock" is more
or less the standard WAM "switch on type" instruction).

8.2.2 The (v-)WAM

The WAM is an instruction set and storage model for the efficient execution of PROLOG,
developed by D.H.D. Warren(29]. A short description of the WAM storage model will be
give here, rat her than a precise definition of the instruction semantics [1]. The v-WAM
(22] is a LISP implelemtation of the WAM, usefull for rapid prototyping and experimental
extensions. We use aversion of the v-WAM by Hans Günther Hein (12] (calIed the RFM
WAM) that can handle value returning for RELFUN's footed clauses. However, since
indexing is not infiuenced by these extensions, we can restrict the following treatment to
the original WAM.

The WAM storage model consists of the followingprimary areas:

1. the local stack, contains environment and choice-point frames

2. the heap, stores data structures created by unification

3. the trail, holds bound variables to be unbound during backtracking

4. the code array, stores the WAM code

Various state registers to manage the storage areas and a set of argument registers for
passing parameters and calculating temporary results make the storage model complete.

The WAM registers are the following:

t idx-eode- nerator~

: flattening extendinu
I (.. cutting + mdex co.de
I \.-1' '-../ generating separate __ • __ • __ • __ • __ • __ • __ • __ • __ • __ • __ • __ • __ ••

compilation
I
I
I
I
I
t

.....
codegenerator ... ~--~

~
cg5.lsp instr.lsp

Figure 16: separate compilation

10 Idea

33

+ } WAM Code

Our first task was the introduction of a graphical representation for general indexing meth
ods. This allows us to discuss the advantages and disadvantages of different methods
without implementing them. An index tree is an abstract representation for a special index
algorithm. It describes the procedural semantics of such an algorithm.

10.1 Index Trees

10.1.1 General Informed Index Trees

Definition 3: g-i-index tree

A general-informed-index tree (g-i-index tree) is a tree
with labeled nodes:

1. try-nodes (circles)

2. constraint-nodes (boxes)

3. clause nodes and fail-nodes

A clause node either contains a sequence of machine
instructions or a label to a sequence of machine instruc
tions. All outgoing edges of a constraint node are labeled
with constraints.

In the previous section we described why we prefer separate compilation of index code
and clause code. Therefore we can specialize the definition of g-i-index trees to header
informed index trees (or h-i-index trees) only describing index functions (see section 2.3).

10.1 Index Trees 34

This definition guaranties the possibility of aseparate compilation and storage model for
index and clause code.

10.1.2 Reader Informed Index Trees

Definition 4: h-i-index tree

An h-i-index tree is a g-i-index tree with: clause node
only contains the number of the corresponding clause;
no inner node is a clause node and all leaves are clause
nodes; each constraint node must have a special node
with a so-called "var" edge, which is satisfied in all cases
not satisfied beforea

•

aother restrictions could be: each input must be satisfied by
at least one edge or each constraint node must have a special so
called "else" edge satisfying all inputs, which are not satisfied by
another edge

Based on the WAM, we only have the following nodes and edges in our h-i-index tree:

hl~ choice point (try, retry, trust)

@ ~ dause c(i) / faH

h&~
- C Ct,et,i.i V

)n.tr:fflft! \~ seUweregm
switch_on_type (lag ... J~ J~ ,~Iltb ,lib)

)&lfT·· .. ·· .. ···'l~ switch_on_structure(sUal,labl) (s21a2,labl) .. (mlan,laba) dJe
(switch_on_constant
analogously)

Figure 17: graphical representation & corresponding instructions

10.2 Horizontal Compilation Scheme

Definition 6: valid h-i-index tree

An h-i-index tree is called valid if it corresponds to a def
inition of a predicate (this means if a PROLOG machine
whose index function follows the flow-path through the
h-i-index tree is sound and complete with respect to
PROLOG semantics).

36

This definition allows us to index using a valid h-i-index tree without any loss of the
PROLOG semantics, but tells us not hing about the efficiency of the h-i-index tree.

Definition 7: depth of a fiow-path

The depth of a flow-path through an h-i-index tree is
the number of occurrences of try-nodes not following a
"var" edge.

Since it makes no sense to link two try nodes (they can always be merged together), the
depth of a flow-path corresponds to the number of arguments which constrain the set of
alternative evaluation possibilities reached by backtracking.

Definition 8: depth of an h-i-index tree

The depth of an h-i-index tree is the maximal depth of
a flow-path through the h-i-index tree.

Definition 9: breadth of a flow-path

The breadth of a flow-path through the h-i-index tree is
the number of constrain nodes following only the "va."
edges.

In contrast to the depth of a flow-path, the breadth corresponds to the number of arguments
which are tried to index for until the first succeeds.

Since in normal WAM implementations the instructions for the two constraint nodes
(switch-on-constant and switch-on-structure) have no var edge16

, we had to extend the
definition of these instructions.

Definition 10: breadth of an h-i-index tree

The breadth of an h-i-index tree is the maximal breadth
of a flow-path through the h-i-index tree.

We now still need definitions which give us a quantitative measure for the cost of h-i-index
trees. The first definition (chw) gives us a measure for the costs of building choice-point:
at run-time if we use a special h-i-index tree17

:

16they fail if the constant (or structure) is not found in the hash-table
17This definition also holds if we want to measure the costs of building choice-points at run-time following

one special flow-path in the h-i-index tree. In this case, "max" must be substituted by "first satisfied
constraint"

10.3 Example

Defini tion 11: chw

The choice-weight (chw) of an h-i-index tree is defined
as follows:

chw([c;]) = 0

chw(try-circlet1 tJ = chw(t}) + ... + chw(tn) + n

chw(switch-boxtl tn) = max(chw(t;))

Another definition is needed to measure the memory costs for an h-i-index tree:

Defini tion 12: cow

The code-weight (cow) of an h-i-index tree is defined as
follows:

cow([c;]) = 0

cow(try-circletl tJ = cow(tJ) + ... + cow(tn) + n

cow(switch-boxtl tn) = cow(t}) + ... + cow(tn) + 1

10.3 Example

37

Throughout the rest of this paper, we will consider the following simple 6-fact procedure
(the line numbers are only for use in the index graph):

1: f (1,30) .
2: f(2,10).

3: f(1,20).

%------------
4: f(X,50).

%------------
5: f(4,70).
6: f (1 ,80) .

'vVe think it is simple enough to permit an overview of the code; at the same time it is hard
enough to show all indexing features and the. main ideas. In PROLOG, variables always
need special handling, so in indexing too. Therefore we divide the program into partitions,
separated by those clauses with variables in one fixed argument column. We willlater see
that this "partition-rule" can be weakened, allowing only a maximal number of variables
in a partition block. This led us to a new definition:

Definition 13: block-variable-size

The block-variable-size of a procedure is the maximal
number of variables allowed in a constant block.

10.4 Standard Indexing

Up to now the RELFUN compiler transformed the above program without producing special
indexing code, only trying sequentially all clauses with a try-chain. It should be mentioned
that if all arguments in a goal are unbound then there is no better way than doing this18.

The index graph looks like this:

h&fu C 1,2,3,4,5,6=:>

Figure 19: sam pie h-i-index tree : no indexing

The WAM indexing code is the following:

try 1
retry 2
retry 3
retry 4
retry 5
trust 6

From now on we always want to show first a "horizontally compiled" PROLOG-like
presentation19 for an indexing method (see section 10.2), then show the h-i-index tree
(see section 10.1) and finally the WAM index code. We hope the reader will be able to
understand an h-i-index tree without further explanation, to transform it into WAM code
and even to see that this method is easy to extend by other features.

10.4 Standard Indexing

To illustrate the graphical representation, we start this subsection with standard WA
indexing, introduced in section 6.2.1.

We just have said that the handling of variables in the area of indexing is not unique. In l
first trial we separate the partitions by a try-chain. Thus each partition is either a single
clause with a variable at the indexing position, or a set of clauses with only constants at th
indexing position20 . In this case the block-variable-size is set to zero. Another possibility i
to allow variables in a constant partition. We will see that in this case we must push dOW,
the clauses with variables in the indexing argument position in each leaf of the origin
h-i-index tree of the constant-partition.

But now we want to have a look at the advantages and disadvantages of the first possibility.

One can easily verify the PROLOG-like presentation (the original source is shown above):

18indexing will have no effect
19a general representation scheme for index functions only applicable for cut-less programs
20so second-level-indexing does not need a var link

10.4 Standard Indexing

1 : f(X,Y):- f01(X,Y) .
2: f(X,50).
3: f(X,Y):- f02(X,Y).

4: f01(X,Y) :- bound(X) , ! ,f1(X,Y).
5: f01(1,30) .
6: f01(2,10).
7: f01(1,20).

9: f02(X,Y):- bound(X) , !, f2(X,Y) .
10: f02(4,70).
11 : f02(1,80).

'I. first partition: clauses
'I. second partition : clause
'I. third partition: clauses

'I. indexing possible
'!. no indexing

'!. indexing possible
'!. no indexing

12: f1(X,Y):- constantp(X), !, f3(X,Y).'1. constant constraint
'I. all other fail

13: f2(X,Y):- constantp(X), !, f4(X,Y) .

14: f3(1,Y):- !, f5(Y).
15: f3(2,10) :- ! .

16: f4(1,80):- ! .

17: f4(4,70) :- ! .

18: f5(30).
19: f5(20).

The predicate

• f branches into the three partitions.

• fOl is first-level-indexing including the var-case for the first partition.

1 .. 3
4
5, 6

• f02 is first-level-indexing including the var-case for the second partition.

• fl second-level-indexing for the first partition (only constants are possible).

• f2 second-level-indexing for the second partition (only constants are possible).

39

• f5 third-level-indexing for the first partition in case of constant 1 at the indexing
argument-position.

Now, let us have a look at the graphical representation of the index functionj we will easily
find a corresponding node for each predicate.

10.4 Standard Indexing 41

It is easy to see that chw of a type subtree is the number of choice-point constructors in
the variable case22

. If we split a constant partition in such a way that each new partition
contains at least two clauses than we can verify that

chw(idxd + chw(idx2) = chw(idx 12)

So only the two choice-point constructors in the main try-chain increment the value of chw
by 2.

-+ chw(idxnew) ~ 2 + chw(idxold)

For cow we can state that the two new choice-point constructors again will cost code but
in addition the constraint boxes in the new try subtree will too. For the same reasons as
above the number of choice-point constructors does not grow in the split type subtrees. So
we get:

cow(idxd + cow(idx2) ~ cow(idx12) + no_oLconstrainLboxes

For the new h-i-index tree:

-+ cow(idxnew) 2: 2 + cow(idxold) + numbeLoLconstrainsJn_splitJdxtree

We get similar results under the assumption of inserting a new constant partition.

We can state that in the worst case

chw(idxneu) = 2 + chw(idxold)

cow(idxneu) = 2 + cow(idxold) + numbeLoLconstrainsjn..spliUdxtree

Another possible indexing method is to propagate the variable partition into each possible
subtree. In oUf example this means that the variable partition is involved in the two
constant partitions and we only have one mixed partition:

1 : f(X,Y):- bound(X), !, f1(X, Y) . Y. only one partition
2: f(1,30). Y. no indexing possible
3: f(2,10) .
4: f (1,20) .
5: f(X,50).
6: f(4,70) .
7: f(1,80).

8: f1(X,Y):- constantp(X), I f2(X,Y). Y. constant constraint . ,
9: f1(X,50):- ! . Y. all other -) variable partition

10 : f2(1,Y):- I f3(Y). · ,
11: f2(2,Y) :- I f4(Y) . · ,
12: f2(4,Y):- I f5(Y). · ,
12: f2(X,50):-! .

22this is the worst case for iildexing

10.4 Standard Indexing 42

13: f3(30).
14: f3(20).
15 : f3(50). Y. variable partition included
16: f3(80).

17: f4(10).
18: f4(50). Y. variable partition included

19: f5(50). Y. variable partition included
20: f5(70).

In the h-i-index tree we can see how the variable partition is propagated into each leaf and
how the two constant partitions are merged.

ln.t~lt' tu I • C 1.2.3.4.5.6:;>

_ ~~j!~t~4'1-/""'1

Figure 22: sam pIe h-i-index tree: first argument indexing, no partitions

Again, we want to look at chw and cow. First we can note that:

chw(idx) = 6

and
cow(idx) = 16

But how do they vary if we add new clauses.

Since we now have only one partition23 the try-chains are only in the leaves of the h-i-index
tree and so:

chw(idx) = number of clauses indexed by this tree24

Thus
chw(idxnew) = 1 + chw(idxold)

cow does not behave as benevolent as chw. Assurne we add a new clause with a variable in
the index position. Since this clause must be propagated down to each leaf of the h-i-index
tree, the code for trying this clause could occur many times in the h-i-index tree. If we have
a large h-i-index tree with many difff:'rent constants and structures, the h-i-index tree may
have a lot of leaves and each leaf will be extended by at least one choice-point constructor.

23t he variable-block-size is infinite
24this holds since in the var-case each c1ause must be tried

10.5 Improved Indexing I (not only first argument) 45

Figure 24: sampie h-i-index tree: second argument indexing

In case of mode "constant" for the second argument no choice-point will be created. But
we have seen that we cannot assume that any special argument is a good choice to index
on29 , so it could happen that this index technique has no effect (if the mode for the index
argument is always variable).

Once we can control the register on which we index, we can sequentially index all arguments.
In our example:

• first try to index the second argument

• if this argument is instantiated then we can deterministically choose the solution

• if the second argument is a variable then (instead of trying all clauses) index on the
first argument

• only if this argument is a variable too, try all clauses in a try-chain30

We can simulate a sequential indexing method in the following "horizontal" way:

1 : f(X,Y):- bound(Y), I f2(Y,X). % index second argument . ,
2: f(X,Y):- bound(X), I f1(X, Y). % index first argument . ,
3: f(1,30). % no indexing
4: f(2,10).
5: f(1,20).
6: f(X,50).
7: f(4,70).
8: f(1,80).

9: f1(X,Y):- constantp(X), I f4(X,Y). % first argument index function . ,

10 : f4(1,Y):-
11: f4(2,Y):-
12: f4(4,Y):-

13: f5(30).
14: f5(20).

I f5(Y). · ,
I f6(Y). · ,
I f7(Y). · ,

2geven if it would be in average
30in this case there is no better way

% no deterministic choice

10.6 Improved Indexing 11 (not only one argument) 47

10.6 Improved Indexing 11 (not only one argument)

We first try to index the first argument position with a maximal partition32 • If we assume
to have a 1 at this position, then SG is limited to the sequence < 1,3,4,6 > so the choice
is not yet deterministic. We know that in 30% of the queries the second argument is also
instantiated. So why not index this smaller set of clauses for the second argument position.
This method is called multi-argument indexing.

The following PROLOG-like representation will introduce the multi-argument indexing
method.

1: f(X,Y):- bound(X), !, f1(X,Y).
2: f (1,30) .
3: f(2,10).
4: f(1,20).
5: f(X,50).
6: f(4,70).
7: f (1,80) .

Y. no indexing

8: f1(X,Y):- constantp(X), !, f2(X,Y). Y. first-argument indexing
9: f 1 (X, 50) .

11: f2(1,Y):- I f3(Y). · ,
12: f2(2,Y):- I f4(Y). · ,
13: f2(4,Y):- I f5(Y). · ,
14 : f2(X,50):- ! .

15: f3(Y):- bound(Y), I f6(Y). Y. second argument indexing · ,
16: f3(30).
17: f3(20).
18: f3(50).
19: f3(80).

20: f4(Y):- bound(Y), I f7(Y). Y. second argument indexing · ,
21 : f4(10).
22: f4(50).

23: f5(Y):- bound(Y), I f8(Y). · ,
24: f5(50).
25: f5(70).

26: f6(Y):- constantp(Y) , I f7(Y). . ,

27: f7(30):- ! .

28: f7(20):- ! .

29: f7(50):- ! .

32the block-variable-size is maximal

10.6 Improved Indexing II (not only one argument) 48

30: f7(80):- I

We want to explain this method by following the evaluation of the query f(l, 50). First
we detect that the first argument is bound, so we can start indexing on it. The cut signals
that f 1 finds all solutions if the first argument is bound. The search space is pruned down
to the clauses <1,3,4,6> (realize that the variable partition is merged in). The call for the
binding of the second argument could find the solution deterministically (only one clause
binds Y to 50).

Now we want to transform this PROLOG-like representation, step-by-step, into an h-i-index
tree.

The first clause contains the constraint bound(X). This means that we want to switch if
the first argument is bound. The graph for this constraint is a type box with the argument
1. The variable edge of the type box is linked with the h-i-index tree indexing all clauses
knowing that the first argument is unbound. Then we stop indexing and try sequentiall)'
all clauses. This is represented by a try circle containing the clauses 1 to 6.

The function called after we have detected that the first argument is bound, first tests
the constant constraint, which is represented as a constant box linked with the constant
edge of the type box. All other edges from the type box only try the variable partition
(clause 4). The constant box is divided into a number of new boxes containing possible
constants and a dummy box called else33box. Each clause of the definition of the constant
case corresponds to apart of the constant box. The else box takes the variable partition.
Last but not least, if the choice is not yet deterministic, we call an index function indexing
another argument with the reduced sequence of branching attempts. This is done the same
way as above.

We only follow the case that the first argument is the constant 1. The other cases are
built the same way. The difference between f3 and f7 is that in the case of definition f3 a
unification is needed for argument binding and in the case of definition f7 only a matchin.
process takes place. So in the first case the solution is not deterministic but in the second
case it is (see the cut). In the h-i-index tree this is represented in the first case by a try
chain (not deterministic) and in the second case by a switch-box (deterministic).

The following h-i-index tree is the described one:

33the else box is the var case of the constraint box

10.6 Improved Indexing 11 (not only one argument) 49

>n·t~d tzarl- C 1,2,3,4,S,v

r--=~ __

Figure 26: sampie h-i-index tree: two arguments indexed

To finish the example we want to show the full h-i-index tree. It is a combination of
figures 24 and 26, a sequential and multi-argument indexing method. The PROLOG-like
representation now gets too large, but we think it is no longer needed for understanding.

c:::: 1,2,3,4,5,~

Figure 27: sampie h-i-index tree: fully indexed

In section 4 we have seen that fully indexed predicates can have an exponentially large
h-i-index tree. Three different methods try to limit the h-i-index tree in an "intelligent"
way.

~
11 RFM Indexing

The most difficult method uses the block variable size. In our experimental applicatio
in the ARC-TEC project we have found for each block variable size programs which a
optimally34 compiled. We have found no, trivial interdependencies between chw and co
and the block variable size. So we cannot give a simple remedy how to set the block variabll
size to get a more time efficient or more memory-space efficient code. This depends 0

many still unknown factors.

The second method to reduce the size of the h-i-index trees is the well known tree shari
method. The gain of this method depends very much on the structure of the program an
the original h-i-index tree.

The last method is an "intelligent" limitation of breadth and depth of the h-i-index tr<
. This means neither to set breadth and depth to zero35 nor to set them to infinity36 bu:
to choose a value in between in order to reduce the code size and optimize the run tim
efficiency as much as possible

We have found out that in real applications there are domain specific values for breadth and
depth (between 2 and 4) to reach such a behavior for h-i-index trees.

The result of our approach is always to index as many arguments as possible in a heuristi
deduced order and a user defined size. The user can manipulate the result with three syste
variables which limit the block-variable-size, the breadth and the depth of the h-i-index tr
So the user is able to control the ratio between cow and chw.

11.1 The Way of Compiling Index Code

We have just seen that the problem of compiling index code for PROLOG-like languag<
can be divided into two parts.

First of all we extract index information from the data base and insert it in the classifi
clauses. This is described in [23).

This code must be compiled into WAM code in several steps:

• create a fuH h-i-index tree using all index information. The result is a h-i-index tr
with maximal breadth and depth.

• Ratten the h-i-index tree and remove equal subtrees (tree-sharing).

• cut the h-i-index tree with respect to the user defined breadth and depth.

• expand the cut h-i-index tree with missing try-chains.

• translate the h-i-index tree into WAM code.

340ptimal w.r.t . time and space
35then the size of the h-i-index tree is minimal but the run-time efficiency is worst case
36then the index tree size is maximal but the run-time efficiency is optimal

11.1 The Way of Compiling Index Code 51

11.1.1 Greating the Index Tree

This function only transforms the still PROLOG-like code (the classified clauses) into more
WAM-like code. The transformation is very simple and can be described as follows37 :

• A pblock is transformed into a try-trust-list

• Alblock is transformed into its corresponding clause-Iabel

• An sblock is transformed into an h-i-index tree with the information of the argument
for which we index, the constant and structure subtrees and the list, nil and var
subtrees. List, nil and var subtrees are normal h-i-index trees, whereas constant
and structure subtrees are linked with h-i-index trees, labeled with the constant (or
struct ure) on w hich we index.

• An rblock is not indexed at all, so we generate a try-trust-list as for pblocks.

The disadvantage of this syntax is that we cannot share inner index trees.

11.1.2 Flattening the Index Tree

Therefore we flat the h-i-index tree. Each subtree is substituted by a label. The labels are
chosen in such a way that the same h-i-index trees have equal labels. Additionally, the set
of possible alternative evaluated clauses of an h-i-index tree (SG) is coded in its label.

We now can simply remove multiple occurrences of the same subtrees.

11.1.3 Cutting the Index Tree

The next step to reduce the size of the h-i-index tree is done by cutting the index tree at the
user defined breadth and depth. Therefore we follow each flow-path through the h-i-index
tree counting breadth and depth of each reached node and copy it into a new list if it is in
the defined range.

If we use this method it is possible that the resulting h-i-index tree has a breadth or depth
larger than defined. This is due to the tree sharing method. We allow to share h-i-index
trees on different levels. Assurne we have an h-i-index tree of the following form (shadowed
circ!es represent the same h-i-index trees):

37For more details in the underlying syntax and semantics for the index part of the classified clauses see
[23]

11.1 The Way of Compiling Index Code 52

1 type 11 ltype 21---+1 type 31---+1 type 41~c => l .
1 ty~e 21

Figure 28: tree-sharing

Cutting the h-i-index tree at depth 3 without linking subtrees on different levels results in
the following:

1 type 11 ltype 21---+1 type 31---+1 type 41~c ~ l -
It~e 21

-cut-.

Figure 29 : cut h-i-index tree without tree-sharing

Allowing links on different levels gives us:

53

-cut-.

Figure 30: cut h-i-index tree with tree-sharing

In the second case we need less code but still get a more efficient program.

11.1.4 Expanding the Index Tree

Since the cut h-i-index tree is only a copy of the original tree without those branches out
of range, it is possible that so me subtrees are lost. Now we can use the information about
the alternative clauses of the index trees coded in the labels to generate try-chains for the
lost subtrees.

12 Sampie Session

In order to show all index features of the compiler we now want to introduce a larger
example and the solutions after each compilation step.

The example is the dnf-procedure which produces the disjunctive normal form of a logic
formula with the operators 'and', 'or' and 'not'.

We begin our example wi.th the PROLOG program of dnf and its indexing header in the
classified clauses:

dnf(X, X) :- literal(X).
dnf(o[X, Y], o[X, V]) :- literal(X) , literal(Y).
dnf(a[X, Y], a[X, V]) :- literal(X) , literal(Y).
dnf(n[n[X]], W) dnf(X, W).
dnf(n[o[X, Y]], W) :- dnf(a[n[X] , n[Y]], W).
dnf(n[a[X, Y]], W) :- dnf(o[n[X] , n[Y]], W).
dnf(o[X, V], W) :- dnf(X, Xl), dnf(Y, Yl), norm(o[Xl, Yl], W).
dnf(a[X, Y], a[a[Xl, X2], V]) .- literal(Y), dnf(X, a[Xl, X2]).
dnf(a[X, Y], a[a[Yl, Y2], X]) :- literal(X) , dnf(Y, a[Yl, Y2J).

dnf(a[X, Y], W) :- dnf(X, a[Xl, X2]),
dnf(Y, a[Yl, Y2]),
norm(a[a[Xl, X2], a[Yl, Y2]], W).

dnf(a[X, Y], W) :- dnf(X, o[Xl, X2]),
dnf(Y, Y1),
dnf(o[a[X1, Yl], a[X2, Yl]], W).

dnf(a[X, Y], W) :- dnf(X, Xl),
dnf(Y, o[Y1, Y2]),
dnf(o[a[X1, Yl], a[X1, Y2]], W).

classified clauses (only index part):

1
5j

«proc
dnf/2
12
(indexing
(sblock
(rblock
(clauses 1 2 3 4 6 6 7
8 9 10 11 12)

(arg
1
(var x)
(struct 0 2)
(struct a 2)
(struct n 1)
(struct n 1)
(struct n 1)
(struct 0 2)
(struct a 2)
(struct a 2)
(struct a 2)
(struct a 2)
(struct a 2)

(arg
2
(var x)
(struct 0 2)
(struct a 2)
(var w)
(var w)
(var w)
(var w)
(stru~t a 2)
(struct a 2)
(var w)
(var w)
(var w)))

(seqind

(arg
2

(arg
1
(info 3)

(const)
(struct
«0 2)
(clauses 1 2 7)
(sblock
(rblock (clauses 1 2 7)

(var x)
(struct 0 2)
(var w»)

(seqind
(arg
2
(info 1)
(const)
(struct «0 2)

(clauses 1 2 7»)

(list)
(nil)

(other (clauses 1 7»»»
«a 2)
(clauses 1 3 8 9 10 11 12)
(sblock
(rblock
(clauses 1 3 8 9 10 11 12)
(arg
2
(var x)

(struct a 2)
(struct a 2)
(struct a 2)
(var w)
(var w)
(var w)))

(seqind
(arg

2
(info 1)
(const)
(struct «a 2) (clauses 1 3 8 9

10 11 12»)
(list)
(nil)

(arg
2

(other (clauses 1 10 11 12»»»
«n 1)
(clauses 1 4 6 6)
(pblock
(rblock (clauses 1 4 6 6)

(var x)
(var w)
(var w)
(var w»)

55

(1block (clauses 1) (arg 2 (var x»)
(1block (clauses 4) (arg 2 (var w»)
(1block (clauses 5) (arg 2 (var w»)
(1block (clauses 6) (arg 2 (var w»»»

(list)
(nil)
(other (clauses 1»)

(arg
2
(info 2)
(const)
(struct
«0 2) (clauses 1 2 4 5 6 7 10 11 12»
«a 2) (clauses 1 3 4 5 6 7 8 9 10 11 12»

(list)
(nil)
(other (clauses 1 4 5 6 7 10 11 12»))))

(fun-den

)))

57

begin sl-or sl-and t2

tr-all

trl,2,7 trl,7
trl,3,8 .. 12 trI, 10 .. 12

trl,2 .. 12 trl,3 .. 12 trl,4 .. 12

trl,2,7 trl,7 trl,4,5,6 trl,3,8 .. 12 trl,1O .. 12 trl,4 .. 12 trl,3 .. 12 trl,2 .. 12 tr-all

~ e e @ @ @

Figure 32: fiattened index tree

Since the depth switch is set to 1 and the breadth switch is set to 2, the cut index tree
looks like this:

t2

tr-all

1

trI ,4,5,6/

trl,2,7 trl,3,8 .. 12 trl,2 .. 12 trl,3 .. 12 trl,4 .. 12

Figure 33: cut index tree

We can now see that some links (i.e. [1,2,7]) are lost and so the index tree must be extended
by the corresponding try-chains:

1
~ -.

trl.4.5.~
trl,2,7 trl,3,8 .. 12

trl,2,7 trl,4,5,6 trl,3,8 .. 12

GW <Io~.D

Figure 34: extended index tree

the resulting index code is:

trl,4 .. 12 trl,2 .. 12

t2

trl,2 .. 12 trl,3 .. 12 trl,4 .. 12

trl,3 .. 12
~
~

tr-all

58'

12.1 Interface

«set_index_number 1)
(svitch_on_term 1 "labelS8" 1 1 "labelSO")
"labelS8"
(svitch_on_structure
3

«(0 2) "label3S") «a 2) "label42") «n 1) "labe149"))
1)

"label3S"
(set_index_number 2)
(svitch_on_term "label36" "labelS9" "label36" "label36"
"labelS9"
(svitch_on_structure 1 « (0 2) "label38")) "label36")
"label36"
(try 1 2)
(trust 7 2)
"label38"
(try 1 2)
(retry 2 2)
(trust 7 2)
"label42"
(set_index_number 2)
(svitch_on_term "label43" "label60" "label43" "label43"
"label60"
(svitch_on_structure 1 «(a 2) "labe14S")) "labe143")
"label43"
(try 1 2)
(retry 10 2)
(retry 11 2)
(trust 12 2)
"label4S"
(try 1 2)
(retry 3 2)
(retry 8 2)
(retry 9 2)
(retry 10 2)
(retry 11 2)
(trust 12 2)
"label49"
(try 1 2)
(retry 4 2)
(retry 5 2)
(trust 6 2)

"label57"
(try 1 2)
(retry 2 2)
(retry 3 2)
(retry 4 2)
(retry S 2)
(retry 6 2)
(retry 7 2)
(retry 8 2)

"label38") (retry 9 2)
(retry 10 2)
(retry 11 2)
(trust 12 2)
"labelS3"
(try 1 2)
(retry 2 2)
(retry 4 2)
(retry S 2)
(retry 6 2)
(retry 7 2)
(retry 10 2)

"labe14S,,)(retry 11 2)
(trust 12 2)
"label54"
(try 1 2)
(retry 3 2)
(retry 4 2)
(retry S 2)
(retry 6 2)
(retry 7 2)
(retry 8 2)
(retry 9 2)
(retry 10 2)
,.cetry 11 2)
(trust 12 2)
"labelS1"
(try 1 2)
(retry 4 2)
(retry 5 2)
(retry 6 2)
(retry 7 2)
(retry 10 2)
(retry 11 2)
(trust 12 2))

59

"label SO"
(set_index_number 2)
(svitch_on_term "labelS1" "label61" "labelS1" "label51" "labelS7,,)1
"label61"
(svitch_on_structure 2 « (0 2) "label53")

2

«a 2) "label54")) "label51")
WAM-code tor clauses

12.1 Interface

We have tried to operate between the modules for the classified clauses and the WAM
compiler with an interface module: iif.lsp. All accessing operators for index information
from the index tree and the classified dauses are handled via this module.

60

The label generation is done with the LISP function gen-tempo Since it could be necessary
to expand a label to its corresponding try-chain, we always begin an index tree with its
indexed clauses (the sequence Sa).

A single detail in the switch-on-type instruction has been changed to allow indexing on
other arguments than the first one.

13 Comparisons

Our method is placed between the ordinary WAM indexing method and the complet
indexing method, but in any case free to be extended for complete indexing.

We have tried to implement the main features of complete indexing and quadratic indexin,
and combine these researches with the WAM based compiler. Switches allow to relate thei
different strong points of several methods (code-optimization versus run-time-optimization)

In large database-like programs (like many domain specific applications) we reach the sam
performance as complete indexing (since they are nearly head deterministic) with not t
much code-overhead in relation to no indexing.

14 Extensions

We now have to think about how to combine RELFUN-like features (like higher-ord
operators) and PROLOG-like features (like assert and retract) with indexing. The solutio:
of the higher-order problem seems to be more a horizontal compilation problem rat her th
a problem on lower levels [5, 6].

But assert and retract is really a low-level problem. One simple solution is to allow n
indexing for asserted clauses, only trying them in any case with a try-chain:

asserta assertz

Figure 35: extension: assert

This solution also ensures "correct"38 intended behavior concerning the semantic issues ~
the program. Predicate calls after an assertion use the new definition; all calls to a predicat~

38see [15]

61

before the assertion use the old definition. An example (using the SEPIA PROLOG system
[10]) illustrates this behaviour:

SEPIA Version 3.0.5, Wed Jul 25 16:33 1990 Copyright ECRC GmbH
[sepia]: dynamic f/1.

yes.
[sepia] : [user].
f (1) .

f(2).
f(3).
f(4) '- assert(f(5)).
user compiled 296 bytes in 0.03 seconds

yes.
[sepia] : feX).

X = 1 More? (;)

X = 2 More? (;)

X = 3 More? (;)

X = 4
yes.
[sepia] : feX).

X = 1 More? (;)

X = 2 More? (;)

X = 3 More? (;)

X = 4 More? (;)

X = 5
yes.

We can see that the first call of f / 1 only returns the numbers form 1 to 4, even if the
assertion of a new clause changes the definition of f /1.

A clause can be retracted by only deleting its occurence in the index tree and recompiling
the index tree (possibly a "ghost" clause survive in the program which is never tried).
In the following figure we see the fully indexed index tree of the example (simple 6-fact
procedure) after deleting clause number 4.

63

The second benchmark (dnf) is the complete program from section 12.

The third test was the NET benchmark. NET is an automatically generated tool-selection
program for ARC-TEC's engineering domain. Its task is to select a cutting tool for a special
workpiece for a CNC-lathe machine.

Last but not least we test the well know naive reverse benchmark.

Since the v-WAM was conceived as a didactic prototype written in higher-Ievel LISP, not as
a PROLOG product, the absolute values are not yet competitive with weH known produc
tion PROLOGs. The average speed-up gained by indexing in our database-like applications,
however is a factor between 20 and 30. But even rat her deterministic procedures like append
and reverse produce a speed-up of at least a factor of 2.

We are currently thinking of a lower-level version of our indexing scheme which should give
us competitive absolute speed.

64

- -- -

I test-name
I test-en vironment I time I

nrev:
weil known naive reverse benchmark
6 lines
arity of procedures: 2-3

SUN 4
125 MB RAM 13 sec
no indexinp;
SUN 4
125 MB RAM 7 sec
indexinp;

dnf:
tool from Hans Günter Hein (see
[13])
105 lines
arity ofprocedures: 2-3

IVORY
LISP-BOARD 84 sec
no indexinp;
IVORY
LISP-BOARD 24 sec
indexinp;
SUN 4
125 MB RAM 425 sec
no indexinp;
SUN 4
125 MB RAM 120 sec
indexinp;

NET:
312 lines
arity of procedures 2-3

IVORY
LISP-BOARD 288 sec
no indexing
IVORY
LISP-BOARD 15 sec
indexinp;
SUN 4
125 MB RAM 1460 sec
no indexinp;
SUN 4
125 MB RAM 72 sec
indexinp; _.

~- .' g

65

Part V

Appendix

A User Commands

ince indexing should be automatie the index-structure is hidden from the RELFUN user.
The only instruction to control indexing is:

indexing {on I off I :min-clauses <no> I :max-vars <no> I :max-depth <no> I :max-args
<no> I :debug on I :debug off}

The effect of calling indexing without any option is displaying the current settings.

The switches have the following effects:

on (off) switches indexing on (off),
:min-clauses < no> sets the minimal number of clauses for an indexable operator definition
to <no>,
:max-vars <no> sets the maximal number of variables allowed in a constant block (block
variable-size) to <no>,
:max-depth <no> sets the maximal depth of the index tree to <no>,
:max-args <no> sets the maximal number of parallelly indexable arguments (index tree
breadth) to <no>,
:debug on (off): for internal use only

Mutually excluding options result in executing oniy the last one.

Example:

rfe> indexing
indexing on :min-clauses 2 :max-vars 10 :max-depth 3 :max-args 2 :debug off

rfe> indexing :min-clauses 3
indexing on :min-clauses 3 :max-vars 10 :max-depth 3 :max-args 2 :debug off

rfe> indexing :max-depth 4 :max-args 3 :max-depth 5
indexing on :min-clauses 2 :max-vars 10 :max-depth 5 :max-args 3 :debug off

B Program

We show the LISP function heads defined in the modules. A few algor~thms are also
explaind (rather than giving the LISP definitions)

B.I MODULE: IDX.LSP

(defvar idx.*indexing* t)
(defun idx () ..)
(defvar idx.*dbg* nil)

B.2 MODULE: IIF.LSP

(defvar idx.*min-no-of-proc-clauses* 2)
(defvar idx.*max-no-of-vars* 10)
(defvar idx.*maxdepth* 3)
(defvar idx.*numberofargs* 2)
(defun idx.show-idx-constants () ..)
(defun idx.idx-1cmd (paras) ..)
(defun idx.idx-cmd (paras) ..)

66

The variables are used to set the compiler switches; they are initialized with useful values.
The functions are all extensions of the RELFUN run-time-Ioop (for example the command
to set the compiler switches: indexing ...). This module should include all general functions
and variable declarations which are used from the RELFUN main-Ioop.

B.2 MODULE: IIF .LSP

(defun iif.number-or-nil-p (item) ..)
(defun iif.tag-of-idxtree (idxtree) ..)
(defun iif.s-label-f-idxtree (idxtree) ..)
(defun iif.s-label-f-lab+idxtree (idxtree) ..)
(defun iif.s-clauses-f-idxtree (idxtree) ..)
(defun iif.s-idxtrees-f-try-trust (try-trust) ..)
(defun iif.s-arg-f-indextree (indextree) ..)
(defun iif.s-sequindparts-f-indextree (indextree) ..)
(defun iif.if-s.o.?-sequindpart (sequindpart) ..)
(defun iif.s-s.o.?-f-sequindpart (sequindpart) ..)
(defun iif.s-idxtree-f-sequindpart (sequindpart) ..)
(defun iif.s-switchparts-f-sequindpart (sequindpart) ..)
(defun iif.s-atom-f-switchpart (switchpart) ..)
(defun iif.s-idxtree-f-switchpart (switchpart) ..)
(defun iif.s-clauses-f-clauses (clauses) ..)
(defun iif.mk-tree (class-proc) ..)
(defun iif.mapindex (blocks) ..)
(defun iif.mk-indextree (block)
(defun iif.seqind-list-car-cdr (block rest clauses) ..)
(defun iif.element-from-seqind-elementlist (element) ..)
(defun iif.mk_block_from_element (element) ..)

This module is called indexing interface module. It should include all interface functioni
and predicates to access the indexing information from the classified clauses or the inde)
tree.

B.3 MODULE: LINEAR.LSP

B.3 MODULE: LINEAR.LSP

(defun flatten-idx (idxtree) ..)
(defun iif.s-idxtree-f-indextree (indextree) ..)
(defun linearize (lab+idxtree list-of-idxtrees) ..)
(defun lin.unique (list-o-idxtrees) ..)
(defun lin.s-label-f-idxtree (idxtree) ..)

67

(defun lin.cut-down-next-one (list-o-idxtrees idxtree max-args max-depth) ..)
(defun lin.find-label (label list-o-idxtrees) ..)
(defun lin.cut-down (list-o-idxtrees next-label max-args max-depth) ..)
(defun lin.mk-try-trust-label-f-label (label) ..)
(defun iif.sub-label (idxtree idxtrees list-o-all-idxtrees) ..)
(defun lin.insert-t-t (list-o-idxtrees) . .)
(defun lin.insert-try-trust (list-o-idxtrees next-label) ..)
(defun iif.mk-label-f-idxtree (idxtree) ..)
(defun lin.search-try-trust-labels (idxtree list-o-idxtrees) ..)
(defun lin.search-idxtrees-f-try-trust (idxtree list-o-idxtrees) ..)
(defun lin.s-a-label (idxtree list-o-idxtrees) ..)
(defun lin . s-a-label-if-found (idxtree list-o-idxtrees) ..)
(defun lin.search-indextree-labels (idxtree list-o-idxtrees) ..)
(defun lin.s-indextrees-f-idxtree (idxtree) ..)
(defun iif.s-typetag-f-sequind (sequind) ..)

This module includes the code for generating, flattening, cutting and extending an index
tree from the index information of the classified clauses.

B.3.! Algorithms

We show the algorthms for flattening, cutting and extending an index tree:

B.3 MODULE: LINEAR.LSP 6

-
Input : h-i-index tree
L := ()
next := (Input)

flatten:
V trees E next: label

if tree is try-circle: gen-lab; L=L u (label.~ ... - I); next= next u {try-link I ...• try-link } ---<::: label •

if tree is type-box: gen-lab; L=L abel Üll

u (label. ... label ... ~
. abeillil

aux(coIlSt-link)

- aux.(struc-link)

next= next u {nil-link, list-link. var-link}

retrun L;

aux:
next= next u {hash -link ,hash -link} ;

I •

R = {label. CE la~l hub I

label hub .
retrun R;

Figure 38: flattening algorithm

Input : flatted h-i-index tree

} ;

L :- {}
cut(root-label,max-depth,max-breadth);

cut:
if (max-depth=O) or (max-breadth=O) STOP ;

N= fmdOabel,lnput) ;
L= Lu N;

} ;

if N is try-circ\e: cut(try-label .{niax-depth - l).max-breadth); ... ; cut(try-label .(m~-depth - l),max-breadth) ;

if N is type-box: cut(nil-label.max-depth.max-breadth);

rerum L;

cut(list-lable.max-depth,max-breadth);
cut(hasp -label,max-depth, max-breadth);

cut (h~ -label.max-depth.max-breadth);
cut(var-label,max-depth,(max-breadth - 1»;

Figure 39: cutting algorithm

~

B.3 MODULE: LINEAR.LSP

I nput : flatted cutted h-i-index tree
L := (Input}
next= (root-label};

extend:
'r;f labels E next:

N= fmd(label.Input) ;

if N is "not found" : L= L u ~en-try-trust(label);

else: L= L u N;

next=nexl u successors(N);

gen-try-trust:
dause

return: (label.~ .. _. 1);
~clause

Figure 40: extending algorithm

69

BA MODULE: ICG.LSP

BA MODULE: ICG.LSP

(defun icg.mk-header (idxtree x1579) ..)
(defun icg.mk-t-r-t-list-f-idxtrees (idxtrees x1579) ..)
(defun icg.gen-t-r-t (idxtree x1579 tag) ..)
(defun icg.mk-s.o.t.-f-indextree (idxtree x1579) ..)
(defun icg.gen_switch_on_? (sequind) ..)
(defun icg.mk-symbol-label-f-idxtree (idxtree) ..)

~

The name of this module is: indexing codegenerator. Its task is to generate general WA
index header code from a given index tree. This code is pushed in front of the compil
clause code. We assurne that the label of a clause i is its number i and there are no oth
numeric labels in the code. So calling the first clause of adefinition is just a jump to labe
1.

C.2 dnf Benchmark 71

C Benchmark Sources

We now present the benchmarks used in sec
tion 15.

C.1 nrev Benchmark

The nrev procedure is tested with a list of
fifty elements.

nrev ([] , []) .

nrev([XIY] ,Z) :- nrev(Y,Zl),
append(Zl, [X] ,Z) .

append([] ,L ,L) .

append([XIY] ,L,[XIZ]) '- append(Y,L,Z).

C.2 dnf Benchmark

We called this benchmark with the proce
dure g04. Only the time for finding the first
solution is mesured.

literal(zO) .
literal(zl) .
li teral(z2) .
literal(z3) .
li teral(z4) .
literal(z5).
literal(z6) .
li teral(z7) .
literal(z8) .
literal(z9) .
literal(n[X]) .- literal(X) .

norm(X, x) :- literal(X).
norm(o[X, Y], o[X, y]) :

literal(X),
li teral(Y) .

norm(a[X, Y], a[X, Y]) :
literal(X) ,

li teral(Y) .
norm(o[X, Y], o[Xl, y]) :

li teral(Y) ,
norm(X, Xl).

norm(o[X, o[Y, Z]], W) :-
norm(o[o[X, Y], z], W).

norm(o[X, a[Yl, Y2]] , o[Xl, Y12]) .
norm(X, Xl),
norm(a[Yl, Y2], Y12).

norm(a[X, Y], a[Xl, Y]) :-
li teral (Y) ,

norm(X, Xl).
norm(a[X, a[Y, Z]], W) :

norm(a[a[X, Y], Z], W).
norm(a[X, o[Yl, Y2]] , a[Xl, Y12]) '

norm(X, Xl),
norm(o[Yl, Y2], Y12) .

dnf(X, X) :- literal(X).
dnf (0 [X, Y], 0 [X, Y]) :

li teral(X) ,
li teral(Y) .

dnf(a [X, Y], a [X, Y]) :
literal(X),

li teral (Y) .
dnf(n[n[X]], W) .- dnf(X, W).
dnf(n[o[X, Y]], W) :- dnf(a [n [X] , n[Y]] , W).
dnf(n[a[X, Y]], W) :- dnf(o[n[X] , n[Y]] , W).
dnf(o[X, Y], W) :- dnf(X, Xl),

dnf(Y, Y1),
norm(o[Xl, Yl], W).

dnf(a[X, Y], a[a[Xl, X2], Y]) .
li teral (Y) ,

dnf(X, a[Xl, X2]).
dnf(a[X, Y], a[a[Yl, Y2], X]) '

li teral(X) ,
dnf(Y, a[Yl, Y2]).

dnf(a[X, Y], W) :-
dnf(X, a[Xl, X2]),

dnf(Y, a [Yl, Y2]),
norm(a[a[Xl, X2], a[Yl, Y2]], W).

dnf(a[X, Y], W) :-
dnf(X, o[Xl, X2]),

dnf(Y, Y1),
dnf(o[a[Xl, Yl], a[X2, Yl]], W) .

dnf(a[X, Y], W) :-
dnf(X, Xl),

dnf(Y, o[Yl, Y2]),
dnf(o[a[Xl, Yl], a[Xl, Y2]], W).

C.3 NET Benchmark

go1(X) : - dnf (a [zl,
a[z2,

isa(20, spitz).
is-leaf(20).
isa(30, spitz) .
is-leaf(30).
isa(60, spitz).
is-leaf(60) .
isa(80, spitz).
is-leaf(80).
isa(180, stumpf).
is-leaf(180) .
isa(150, stumpf).
is-leaf (150) .
isa(140, stumpf).
is-leaf (140) .

o [z3,
a[z4,

a [z5, z6J J J J J ,
X).

go2(X) :- dnf(o[o[a[zl, z2J, z3J,
o[a[z4,

X) •

a[a[z5, z6J,
z7J J ,

o[z8, z9JJJ,

go3(X) :- dnf(a[a[zl, a[o[z2, z3J, z4JJ, isa(130, stumpf).
a[z5, o[z6, z7JJJ, is-leaf(130).

X). isa(100, stumpf).
go4(X) :- dnf(n[o[a[n[o[zl, z2JJ, is-leaf(100).

n[a[z3, z4JJJ, isa(stumpf, winkel).
a[n[z5J, isa(spitz, winkel).

o[a[z6, a[z7, z8JJ,isa(rechter, winkel).
z9JJJJ, isa(rund, nicht-eckig) .

X), is-leaf(rund).
dnf(n[o[a[n[o[zl, z2JJ, isa(quader, viereck).

n[a[z3, z4JJJ, is-leaf(quader).
a[n[z5J, isa(quadrat, viereck).

o[a[z6, a[z7, z8JJ,is-leaf(quadrat).
z9JJJJ, isa(viereck, eCkig).

X). isa(dreieck, eCkig).
is-leaf(dreieck).

C.3 NET Benchmark

The run-time for finding the first solution of
the predicate call tool-selectionCX,Y). is
given in the benchmark results.

t-isa(X, X).
t-isa(X, Y) : - tt-isa(X, Y).

isa(rhomb, eCkig).
is-leaf(rhomb).
isa(eckig, geometrie).
isa(nicht-eckig, geometrie).
isa(sl, stahl).
is-leaf(sl) .
isa(s2, stahl).
is-leaf(s2).
isa(s3, stahl).
is-leaf(s3).
isa(s4, stahl).
is-leaf(s4). tt-isa(X, Y)

tt-isa(X, Y)
isa(X, V).
isa(X, Z), tt-isa(Z, Y). isa(s5, stahl).

is-leaf(s5) .

isa(90, rechter) .
is-leaf(90).
isa(O, spitz).
is-leafCO) .
isa(10 , spitz).
is-leaf (10) .

isa(s6, stahl).
is-leaf(s6).
isa(k741, k74).
is-leafCk741).
isa(k742, k74).
is-leafCk742).

72

isa(k743, k74).
is-leaf(k743).
isa(k7l, k7).
is-leaf (k7l) .
isa(k72, k7).
is-leaf(k72).
isa(k73, k7).
is-leaf(k73).
isa(k74, k7).
isa(k75, k7).
is-leaf(k75).
isa(k76, k7).
is-leaf(k76).
isa(k77, k7).
is-leaf (k77) .
isa(k7S, k7).
is-leaf(k7S).
isa(k79, k7).
is-leaf(k79).
isa(k7l0, k7).
is-leaf(k710).
isa(k2l, k2).
is-leaf (k2l) .
isa(k22, k2).
is-leaf(k22),
isa(k23, k2).
is-leaf(k23).
isa(k24, k2).
is-leaf(k24) .
isa(kll, kl).
is-leaf (kll) .
isa(k12, kl).
is-leaf(k12).
isa(k13, kl).
is-leaf(k13).
isa(kl, keramik),
isa(k2, keramik).
isa(k3, keramik).
is-leaf(k3) .
isa(k4, keramik).
is-leaf(k4).
isa(k5, keramik).
is-leaf(k5).
isa(k6, keramik).
is-leaf(k6).
isa(k7, keramik).
isa(kS, keramik).
is-leaf(kS).
isa(k9, keramik).
is-leaf(k9).

C,3 NET Benchmark

isa(klO, keramik).
is-leaf (klO) .
isa(stahl, material).
isa(keramik, material).
isa(hss, material).
is-leaf(hss).

tool-num(Wkl, Hat) :
s-tool(Hat,Down-geo-l),
s-angle(Dovn-geo-l, Wkl),
s-position(Wkl, Hat),
numeric-test(Wkl, Hat).

mixed-selection(Wkl, Hat) :
s-tool(Hat, Down-dovn-geo-l-l),
s-angle(Dovn-dovn-geo-l-l, Wkl),
s-position(Wkl, Hat),
s-wrk(Hat,Dovn-dovn-geo-2-l),
s-angle(Dovn-down-geo-2-l, Wkl),
s-position(Wkl, Hat),
s-lager(Hat, Geo).

h-selection(Wkl, Hat) :
s-tool(Hat,Down-geo-l),
s-angle(Down-geo-l, Wkl),
s-position(Wkl, Hat),
s-wrk(Hat,Down-geo-2),
s-angle(Down-geo-2, Wkl),
s-position(Wkl, Hat).

tool-selection2(Wkl, Hat) '
s-wrk(Hat, Geo),
s-angle(Geo, Wkl),
s-position(Wkl, Hat),

s-wrk(A, B) ' - is-leaf(A) ,
is-leaf(B),
t-isa(A, sl),
t-isa(B, rund).

s-wrk(A, B) '- is-leaf(A),
is-leaf(B),
t-isa(A, s2),
t-isa(B, nicht-eckig).

s-wrk(A, B) ' - is-leaf(A),
is-leaf(B) ,

73

C.3 NET Benchmark ~
t-isa(A, k12),
t-isa(B, rund).

10-tool-selection(Wkll, Wk12) :
s-tool(Matl, Dovn-geol-l),
s-angle(Dovn-geol-l, Wkll) ,
s-position(Wkll, Matl),
s-tool(Mat2, Dovn-geo2-1),
s-angle(Dovn-geo2-1, Wk12) ,
s-position(Wk12, Mat2) ,
s-tool(Mat3, Dovn-geo3-1),
s-angle(Dovn-geo3-1, Wk13) ,
s-position(Wk13, Mat3) ,
s-tool(Mat4,Dovn-geo4-1),
s-angle(Dovn-geo4-1, Wk14) ,
s-position(Wk14, Mat4) ,
s-tool(MatS, Dovn-geoS-l),
s-angle(Dovn-geoS-l, WklS) ,
s-position(WklS, MatS) ,
s-tool(Matl, Dovn-geol-2),
s-angle(Dovn-geol-2, Wkll),
s-position(Wkll, Matl),
s-tool(Mat2, Dovn-geo2-2),
s-angle(Dovn-geo2-2, Wk12) ,
s-position(Wk12, Mat2) ,
s-tool(Mat3, Dovn-geo3-2),
s-angle(Dovn-geo3-2, Wk13) ,
s-position(Wk13, Mat3) ,
s-tool(Mat4, Dovn-geo4-2),
s-angle(Dovn-geo4-2, Wk14) ,
s-position(Wk14, Mat4),
s-tool(MatS, Dovn-geoS-2) ,
s-angle(Dovn-geoS-2, WklS) ,
s-position(WklS, MatS).

S-tool-selection(Wkll, Wk12)
s-tool(Matl, Geol),
s-angle(Geol, Wkll),
s-position(Wkll, Matl),
s-tool(Mat2, Geo2),
s-angle(Geo2, Wk12) ,
s-position(Wk12, Mat2),
s-tool(Mat3, Geo3),
s-angle(Geo3, Wk13),
s-position(Wk13, Mat3) ,
s-tool(Mat4, Geo4) ,
s-angle(Geo4, Wk14) ,
s-position(Wk14, Mat4) ,

s-tool(MatS, GeoS) ,
s-angle(GeoS, WklS) ,
s-position(WklS, MatS).

tool-selection(Wkl, Mat)
s-tool(Mat, Geo) ,
s-angle(Geo, Wkl) ,
s-position(Wkl, Mat).

s-lager(A, B) :- is-leaf(A),
is-leaf (B) , .
t-isa(A, stahl),
t-isa(B, 100).

s-lager(A, B) :- iS-leaf(A),
is-leaf(B),
t-isa(A, keramik),
t-isa(B, 150).

s-lager(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, hss),

s-position(A, B)
t-isa(B, 90).

is-leaf(A),
is-leaf(B),
t-isa(A, stumpf),
t-isa(B, stahl).

s-position(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(a, rechter)
t-isa(B, keramik)

s-position(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, 10),
t-isa(B, kl).

s-angle(A, B) :- is-leaf(A),
is-leaf(B) ,
t-isa(A, viereck),
t-isa(B, 150).

s-angle(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, viereck),
t-isa(B, 100).

s-angle(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, dreieck),
t-isa(B, 180).

s-angle(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, rund),

C.3 NET Benchmark

t-isa(B. spitz).
s-tool(A. B) .- is-leaf(A).

is-leaf(B).
t-isa(A. s2).
t-isa(B, eckig).

s-tool(A. B) .- is-leaf(A),
is-leaf (B) •
t-isa(A. s5).
t-isa(B. eckig).

s-tool(A. B) is-leaf(A).
is-leaf(B) •
t-isa(A. kl).
t-isa(B. nicht-eckig).

s-tool(A, B) .- is-leaf(A),
is-leaf(B),
t-isa(A, k12),
t-isa(B, rund).

75

REFERENCES 11

2. vertical transformation down to WAM-Ievel

3. WAM-extensions

Our implementation of an indexing method is an amalgamation of (as we think) the positive
aspects of the software-oriented approaches and easy to extend with other features like
assert. In order to explain our method we introduce a new graphical representation for
general indexing methods. Step by step, beginning with a non-indexed example, we derive
a extensible, flexible, non-first, multi-argument indexing method.

In a short section we explain, why we call our indexing method an "intelligent" one. Heuris
tics, which determine which argument position should be indexed, why, and in which order ,
are presented.

Last but not least, we show benchmark results and give ideas for further work in this
area. We indicate that our method is able to handle features like higher-order operators
as weil as assert and retract. We also discuss the idea of extending our technique to a
complete-indexing method.

References

[1] Hassan Ait-Kaci . The WAM: A (Real) Tutorial. Report 5, Digital, Paris Research
Laboratory, January 1990.

[2] Alain Callebaut Bart Demoen, Andre Marien. Indexing PROLOG Clauses. Jounalof
Logic Programming, page 1001 ff, 1989.

[3] H. Benker, J. Beacco, S. Bescos, M. Dorochevsky, Th. Jeffre, A. Pöhlmann, J. Noye,
B. Poterie, A. Sexton, J.C. Syre, O. Thibault, and G. Watzlawik. KCM' A Knowledge
Crunching Machine. In Proceedings of the International Symposium on Computer
Architecture, Jerusalem, May 1989.

[4] Claude Berge. Graphs and Hypergraphs. North Holland Publishing-Company, 1973.

[5] Harold Boley. A RelationaljFunctional Language and Its Compilation into the WAM.
SEKI Report SR-90-05, Universität Kaiserslautern, Fachbereich Informatik, April
1990.

[6] Harold Boley, editor. Beiträge zum Arbeitstreffen über WAM-Erweiterungen am DFI([
[(aiserslautern, number 91-2, März 1991.

[7] Harold Boley, Klaus Eisbernd, Hans-Guenther Hein, and Thomas Krause. RFM Man
ual: Compiling RELFUN into the RelationaljFunctional Machine. Document D-91-03,
DFKI GmbH, 1991.

[8] Harold Boley and Michael M. Richter, editors. Proceedings of the International Work
shop on Processing Declarative Knowledge (PD[('91), number 567 in Lecture Notes in
Artificial Intelligence (LN AI). Springer-Verlag, Berlin, Heidelberg, 1991.

REFERENCES 79

[25] Andrew Taylor. High Perfomance PROLOG Implementation through Global Analysis.
In Harold BoleyMichael M.Richter, editor, International Workshop on Processing
Declarative K nowledge, 1991.

[26] Andrew Tay lor. Li ps on a Mi ps. Technical report, Uni versi ty of Sidney, AU, 1991.

[27] Pet er Lodewige van Roy. Can Logic Programming Execute as Fast as Imperative Pro
gramming. PhD thesis, University of California, 1990.

[28] Hans W. A Complete Indexing Scheme for WAM Based Abstract Machines. In Pro
graming Language Implementation and Logic Programing, page 232 ff. 1992.

[29] David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, Menlo Park, CA, October 1983.

[30] David S. Warren. Database Updates in Pure Prolog. In International Conference on
Fifth Generation Computer Systems, pages 244-253, 1984.

[31] Maurer Wilhelm. Ubersetzerbau. Theorie, Konstruktion, Generierung. Springer
Lehrbuch, 1992.

Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden. wenn nicht anders
gekennzeichnet. kostenlos abgegeben.

DFKI Researcb Reports

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle. Markus A. Thies

2. Plan-Based Graphical Help in Object
Oriented User Interfaces
Markus A. Thies. FranJc Berger

22 pages

RR-92-1S
Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations
23 pages

RR-92-16
lochen Heinsohn. Daniel KudenJco. Berhard Nebel.
Hans-lllrgen Profitlich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR-92-17
Hassan Aft-Kaci. Andreas Podelski. Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
lohn Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleitner. Ansgar Bernardi. Christoph
Klauek: PIM: Planning In Manufacturing using
Skeletal Plans and Features
17 pages

RR-92-20
lohn Nerbonne: Representing Grammar. Meaning
and Know ledge
18 pages

DFKI
-Bibliothek
PF 2080
D-6750 Kaiserslautern
FRO

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.
The reports are distributed free of charge except
if otherwise indicated.

RR-92-21
16rg-Peter Mohren. lllrgen Müller
Representing Spatial Relations (part 11) -The
Geometrical Approach
25 pages

RR-92-22
16rg Wllrtz: Unifying Cycles
24 pages

RR-92-23
Gert Smolka. Ralf Treinen:
Records for Logic Programming
38 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-2S
Franz Schmalhofer. Ralf Bergmann. Otto Kühn.
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans
for their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer. Thomas Reinartz.
Bidjan Tschaitschian: Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems
16 pages

RR-92-27
Franz Schmalhofer. 16rg Thoben: The model-based
construction of a case-oriented expert system
18 page.

RR-92-29
Zhaohui Wu. Ansgar Bernardi. Christoph Klauek:
Skeletel Plans Reuse: A Restticted Conceptual
Graph Classification Approach
13 pages

RR-92-30
Rolf Backofen. Gen Smollca
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlster
Automatie Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp HanschlCl!: Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader. Philipp HanschlCl!:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37
Philipp HanschlCl! : Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke. Manfred Meyer:
An Alternative to 0-Subsumption Based on
Tenninological Reasoning
9 pages

RR-92-40
Philipp HanschlCl!. KnUl Hinke/mann: Combining
Terminologica1 and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-92-41
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-92-42
lohn Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43
Christoph KlaucJc. lakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Rist. Elisabeth Andre: Incorporating
Graphics Design and Rea1ization into the
Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre. Wolf gang Fink/er. Winfried
Graf. Thomas Rist. Anne Schauder. Wolf gang
Wahlster: WIP: The Automatie Synthesis of
Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Trafiic Scenarios
24 pages

RR-92-48
Bernhard Nebel. lana KoehJer:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR·92-49
Christoph KlaucJc. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR·92·SO
Stephan Busemann:
Generierung natürlicher Sprache
61 Seiten

RR·92·S1
Hans-1ÜTgen BÜTCJcert. Werner NUlt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR·92·S2
Mathias Bauer. Susanne Biundo. DietmaT
Dengler. lana KoehJer. Gabriele Pa",: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR·92·S4
Harold Bo/ey: A Direkt Semantic
Characterization of RELRJN
30 pages

RR·92·SS
lohn Nerbonne. loachim Laubsch. Alxkl Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-S6
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-S8
Franz Baader, Bernhard Hollunder:
How to Prefer More S pecific Defaults in
Terminological Default Logic
31 pages

RR-92-S9
Karl SchlechJa and David Makinson: On Principles
and Problems of Defeasible Inheritance
14 pages

RR-92-60
Karl SchlechJa: Defaults, Preorder Semantics and
Circumscription
18 pages

RR-93-02
Wolf gang WahJster, Elisabeth Andre, Wolf gang
Finkler, Hans-Jürgen Profitlieh, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard HolIU1lder, Bernhard
Nebel, Hans-JÜTgen Profitlieh, Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-9J..04
Christoph Klauck, Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-0S
Franz Baader, Klaus Schulz: Combination Tech
niques and Decision Problems for Disunification
29 pages

RR-93-08
Harold Boley, Phiüpp Hanschke, KnUl Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64pages

RR-93-09
Philipp Hanschke, Jörg Würtz:
Satisfiability of the Smallest Binary Program
8 Seiten

DFKI Tecbnical Memos

TM-91-12
Klaus Beckl!r, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partial1y
Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-1S
Stefan Busemann: ProlOtypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werksttickrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
MonaSingh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jargen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-OS
Franz Schmalhofer, Christoph Globig !örg Thoben:
The refitting of plans by a human expert
\0 pages

TM-92-06
0110 Kühn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

DFKI Documents

D-92-07
Susanne Biundo, Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn. Bernhard Hollunder (Eds .):
DFKI Workshop on Taxonomie Reasoning
Proceedings
56 pages

D-92-09
Gernod P. Laufköller: Implementierungsmöglieh
keiten der integrativen Wissensak:quisitions
methode des ARC-TEC-Projektes
86 Seiten

0-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser für attributierte Graph-Grammatiken
87 Seiten

D-92-11
Kerslin Beclcer: Möglichkeiten der Wissensmodel
lierung für technische Diagnose-Expertensysteme
92 Seiten

0-92-12
0110 Kühn. Franz SchnuJlhojer. Gabriele Schmidl :
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensak:quisition zur
Fertigungsplanung für Drehteile: eine
Bildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the
Applicability of Terrninologieal Reasoning to
Applieation-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereil: Integration von Graph
Grammatiken und Taxonomien zur
Repräsentation von Features in CIM
98 Seiten

D-92-15
DFKI Wissenschaftlich-Technischer
Jahresbericht 1991
130 Seiten

0-92-16
Judilh EngelJcamp (Hrsg.): Verzeichnis von Soft
warekomponenten für natürliehsprachliche
Systeme
189 Seiten

0-92-17
E/isabelh Andre. Robin Cohen. Winjried Graf. Bob
Kass. Cicile Paris. Wol/gang Wahlsler (Eds.):
UM92: Third International Workshop on User
Modeling. Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 USoS).

D-92-18
Klaus Beclcer: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

D-92-19
Slejan Dillrich. Rainer Hoch: Automatische.
Deskriptor-basierte Unterstützung der Dokument
analyse zur Fokussierung und Klassifizierung von
Geschäftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars
57 pages

D-92-22
Werner SIein: Indexing Principles for Relational
Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Herjerl: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jargen Müller. DOfUJld Sleiner (Hrsg .):
Kooperierende Agenten
78 Seiten

D-92-2S
Martin Buchheil: Klassische Kommunikations
und Koordinationsmodelle
31 Seiten

D-92-26
E1JII() Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONT AX
28 Seiten

D-92-27
Marlin Harm. Knur Hinkelmann. Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning
inCOLAB
40 pages

D-92-28
Klaus-Peler Gores. Rainer Bleisinger: Ein Modell
zur Repräsentation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hansch/ce. Thom Frühwirlh: Terrninological
Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidl. Frank Pelers.
Gernod Lau/köller: User Manual of COKAM+
23 pages

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ IlW-8902 C4).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz. Kaiserslautern. Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all aplicable

Ne
Na>

I E
NB

'0) 0
I Cl

C

c
0 -tU ...
CI)
c
CI)

" CI)

'0
0
0

" 0
-I
0
a::
a.
0 -
'0
CI)

c..
c..
<
UI
CI)

Cl
tU
:J
Cl
C
tU
-I

tU
C
0 -tU
CI)

a::
...
0 -
U)
CI)

c..
u
c .-... c: a.

CI) -Cl Cf)

C . - ...
)(CD
CI) c:
'0 ...

CI)
c ~

	D-92-22-0001
	D-92-22-0002
	D-92-22-0003
	D-92-22-0004
	D-92-22-0005
	D-92-22-0006
	D-92-22-0007
	D-92-22-0009
	D-92-22-0010
	D-92-22-0011
	D-92-22-0013
	D-92-22-0014
	D-92-22-0015
	D-92-22-0016
	D-92-22-0017
	D-92-22-0018
	D-92-22-0019
	D-92-22-0020
	D-92-22-0021
	D-92-22-0022
	D-92-22-0023
	D-92-22-0024
	D-92-22-0025
	D-92-22-0026
	D-92-22-0027
	D-92-22-0028
	D-92-22-0029
	D-92-22-0030
	D-92-22-0031
	D-92-22-0032
	D-92-22-0033
	D-92-22-0034
	D-92-22-0035
	D-92-22-0036
	D-92-22-0038
	D-92-22-0039
	D-92-22-0040
	D-92-22-0041
	D-92-22-0042
	D-92-22-0043
	D-92-22-0044
	D-92-22-0046
	D-92-22-0047
	D-92-22-0049
	D-92-22-0051
	D-92-22-0052
	D-92-22-0053
	D-92-22-0054
	D-92-22-0055
	D-92-22-0056
	D-92-22-0057
	D-92-22-0058
	D-92-22-0059
	D-92-22-0061
	D-92-22-0062
	D-92-22-0063
	D-92-22-0064
	D-92-22-0065
	D-92-22-0067
	D-92-22-0068
	D-92-22-0069
	D-92-22-0070
	D-92-22-0071
	D-92-22-0072
	D-92-22-0073
	D-92-22-0074
	D-92-22-0075
	D-92-22-0076
	D-92-22-0077
	D-92-22-0078
	D-92-22-0079
	D-92-22-0081
	D-92-22-0083
	D-92-22-0084
	D-92-22-0085
	D-92-22-0086
	D-92-22-0087
	D-92-22-0088
	D-92-22-0089

