§ i Deutsches DOCU m ent
Forschungszentrum -02-
fur Kunstliche D22
Intelligenz GmbH

|

Indexing Principles for
Relational Languages Applied to
PROLOG Code Generation

Werner Stein

February 1993

Deutsches Forschungszentrum fir Kiinstliche

Intelligenz
GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern D-6600 Saarbriicken 11
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fir Kinstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

oooooo

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

Indexing Principles for Relational Languages
Applied to PROLOG Code Generation

Werner Stein

DFKI-D-92-22

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fir Kiinstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fir Kinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all aplicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fiir Kiinstliche Intelligenz.

Indexing Principles of Relational
Languages Applied to PROLOG
Code Generation

Werner Stein
Universitat Kaiserslautern
W-6750 Kaiserslautern, F.R. Germany

February 24, 1993

Abstract

In this paper we propose an extensible, flexible, multi-argument indexing technique
for relational languages. We present a compiler producing indexing header code for a
PROLOG emulator based on the Warren Abstract Machine. We will show that our
technique combines positive aspects of relational database methods and other existing
WAM-based indexing schemes. All the indexing concepts introduced are implemented
in LISP for the relational-functional programming language RELFUN.

cknowledgements

- to Harold Boley, Micheal Sintek and Hans Ginther Hein for their helpfull discussions and|
for reading this paper before publishing. Thanks to Hans Ginther Hein and Thomas Krause
for their first introductions into RELFUN and WAM techniques. I would like to express my
gratitude to Harold Boley, Michael Sintek and all others working in the ARC-TEC-project
for supporting me in making this paper a success. I also thank my wife Ester for taking
my mind off when I got struck and for giving me new energy when I was down.

The ideas described in this paper were first presented at the Workshop “Sprachen fir KI-
Anwendungen, Konzepte — Methoden - Implementierungen” 1992 in Bad Honnef. Parts of
the paper are puplished in [24].

This paper is part of a collaborative work together with Michael Sintek. The other part is
published in [23].

CONTENTS

Contents

1 Overview

I Introduction

2 Indexing: What is it, Where Does it Come From?

21
2.2
2.3
24

Index Functions
DB-Indexing
Indexing in PROLOG
Index Algorithms

3 What is Indexing Good For?

II Theory

4 Exponentially Large Index Trees

5 NP-Complete Index Problem

IIT Basic State of the Art

6 Looking at Other Approaches

6.1

6.2

6.3

Hardware Oriented Approaches
6.1.1 m-in-n-Coding
Software Oriented Approaches .
6.2.1 General WAM-indexing .
6.2.2 Complete Indexing . . .
Index Assistant Functions . . .
6.3.1 Shallow Backtracking . .
6.3.2 Quadratic Indexing . . .

7 Developmental Environment
Global RELFUN Project Structure

7.1

IV Implementation

.........................

.........................

.........................

.........................

10
10
11

12

13
14

16

19

20
20
20
20
20
)
25
2
25

25
26

27

CONTENTS 4

8 A Partitioned Implementation 27
81 First Part oL 29
82 Second Part 29
8.2.1 The Classified Clauses (indexing part) 29

822 The (v-)WAM L 31

9 Separate Compilation: Indexing-Code, Clause-Code 32
10 Idea 33
10.1 Index Trees o o o i i i e e e e 33
10.1.1 General Informed Index Trees 33

10.1.2 Header Informed Index Trees 34

10.2 Horizontal Compilation Scheme e 35
10.3 Exampleo 37
10.4 Standard Indexing 38
10.5 Improved Indexing I (not only first argument) 43
10.6 Improved Indexing II (not only one argument) 47

11 RFM Indexing 50
11.1 The Way of Compiling Index Code 50
11.1.1 Creating the Index Tree 51

11.1.2 Flattening the Index Tree 51

11.1.3 Cutting the Index Tree, 51

11.1.4 Expanding the Index Tree 53

12 Sample Session 53
12.1 Interface e e e e e e e 59

13 Comparisons 60
14 Extensions 60
14.1 Improved Indexing III (not only main structure) 62

15 Benchmark Results 62
V Appendix 65
A User Commands 65

CONTENTS 5

B Program 65
B.1 MODULE: IDX.LSP 65
B.2 MODULE: IIF.LSP 66
B.3 MODULE: LINEAR.LSP 66
B.3.1 Algorithms 67

B.4 MODULE: ICG.LSP e 70

C Benchmark Sources 71
C.1 nrev Benchmark. 71
C.2 dnf Benchmark 71
C.3 NET Benchmark e 72

D Extended Abstract

76

LIST OF FIGURES 6

List of Figures

Figure 3: uninformed index tree 13
Figure 5: exponentially growing index tree 15
Figure 7: RELFUN’sclauses 19
Figure 12: merge-complete indextree. 24
Figure 13: global RELFUN structure 26
Figure 14: RELFUN structure with indexing 21
Figure 16; separate compilation . . « s « + s o s o« c v o 65 s w s w2 n s s 5 5 5 32
Figure 17: graphical representation & corresponding instructions 34
Figure 19: sample h-i-index tree: no indexing 38
Figure 20: sample h-i-index tree: first argument indexing, partitions 39
Figure 21: block-variable-size =0 40
Figure 22: sample h-i-index tree: first argument indexing, no partitions 42
Figure 23: block-variable-size =max, 42
Figure 24: sample h-i-index tree: second argument indexing 44
Figure 25: sample h-i-index tree: one of two arguments indexed 46
Figure 26: sample h-i-index tree: two arguments indexed 48
Figure 27: sample h-i-index tree: fully indexed 49
Figure 28: tree-sharing . o : . = o o s ¢ 6 5 o o ¢ o 58 5 s 9 8 5 8.8 599 5 w ¢ ® & 51
Figure 29: cut h-i-index tree without tree-sharing 52
Figure 30: cut h-i-index tree with tree-sharing 32
Figure 31: nested index tree 56
Figure 32: flattened indextree. 56
Figure 33: cut index tree 57
Figure 34: extended index tree 57
Figure 35: extension: assert e 60
Figure 36: retract clause number4 61
Figure 38: flattening algorithm, 67
Figure 39: cutting algorithm 68
Figure 40: extending algorithm, 68

LIST OF TABLES 7

List of Tables

Table: 1: Main loop of PROLOG 9
Table: 2: Main loop of a simple DB-language 10
Definition 1: uninformed index tree 13
Table: 4: Procedure with an exponentially large index tree 14
Definition 2: complete-position-set-problem 17
Table: 6: NP-complete index problem 17
Table: 8: general three level indexing scheme 21
Table: 9: WAM indexing instructionset 21
Table: 10: three level complete indexing scheme 23
Table: 11: complete indexing instructionset 23
Table: 150 WAM registers 31
Definition 3: g-i-index tree e e e e 33
Definition 4: h-i-index treeo o 34
Table: 18: constraints L oL oL 35
Definition 5: flow-path through an h-i-index tree. 35
Definition 6: valid h-i-indextree oo 35
Definition 7: depth of a flow-path 36
Definition 8: depth of an h-i-index tree 36
Definition 9: breadth of a flow-path, 36
Definition 10: breadth of an h-i-index tree 36
Definition 11: chw 36
Definition 12: cow oL 37
Definition 13: block-variable-size 37

Table: 3

7: run-timeresults 63

f describe the ideas behind the RELFUN indexing method. Based on index trees produc

VS

@B he second part begins with a short introduction to the theoretical area of indexing. The

. indexing is a non-trivial problem, which should be intelligently solved by heuristics.

1 Overview

n the last few years PROLOG has changed its appearance from an experimental to a
more and more realistic language. This is due to many people’s thinking about good
compiling techniques and useful extensions. Perhaps the single most important factor of
efficiency of large PROLOG programs is indexing, an optimization which can always be
applied (independent of other compiler optimizations). The original WAM (defined by
D.H.D.Warren [29]) only provides a first argument indexing scheme. We will show that a
simple extension of the WAM control instruction set can speed up execution efficiency.

n the first part, we will introduce the idea of indexing and where it comes from. The differ-
ence between relational database indexing methods and those for PROLOG:-like languages
will be discussed. As a result we will show how indexing changes the run-time and the
memory-management behavior of a PROLOG emulator.

two main theoretical problems concerning indexing will be revealed. We will show that

n the third part, we present several possible indexing methods, different implementations;
their advantages and disadvantages. We also enumerate the environment of this work;
namely the characteristics of the implementation of the language RELFUN [7, 17, 18, 19]
which provides the basis of our LISP realization.

n abstract graphical representation scheme for indexing algorithms (called index trees [23]
is introduced to compare several indexing methods and their results. In the fourth part we

from the RELFUN code (descibed in [23]), we show how to generate indexing WAM cod

ast but not least, we demonstrate how our method is implemented and how it is used.
show a few results and compare it with other existing indexing methods such as comple
indexing.

We assume the reader is familiar with PROLOG and its most well-known implementatiofl
environment, the Warren Abstract Machine, called WAM!.

If this is not the case we refer the reader to the following (incomplete) list of publicatioq
(22],[1],(11],[29], .

Y

Part I

Introduction

ince the development of PROLOG the language has become more and more wide-spread.
Kowalsky’s [16] equation:

ALGORITHM = LOGIC + CONTROL

constituted a revolution in the understanding of programming languages. One philosophy
of logic programming languages is to hide control inside a general inference engine. The
declarative semantics of these languages allows the programmer to write down what shall be
done and leave it to the system how to do it. This allows problem formulation which is both
elegant and natural. But logic programming does not only have strong points: in the early
days of PROLOG a lack of efficient control strategies resulted in inefficient problem-solving
behavior. So PROLOG was more of a logic programming ‘toy tool’ than an implementation
environment for serious applications. But researchers like D.H.D. Warren[29, 30], Hickey
and Mudambi[14], P.van Roy[27], R.A.O’Keefe[21] A. Taylor[26, 25], ... have paved the
path to PROLOG compilers now approaching the speed of C.

They use global optimization methods and native-code compilation to obtain these results.
Perhaps the single most important factor of efficiency of large PROLOG programs is index-
ing, an optimization which can always be applied (independent of other compiler optimiza-
tions). The indexing issue is at least as old as PROLOG, because it is (like unification and
backtrack control) a basic mechanism of PROLOG-like knowledge bases. However, there
is not as much research in this area as in the other areas. In this paper we want to explore
new techniques, bringing together DB-technology[14] and results from other WAM-based
indexing schemes.

2 Indexing: What is it, Where Does it Come From?

2.1 Index Functions

A view popular among users is that PROLOG (actually, DATALOG?) is an intelligent
relational database system.

This is suggested by comparing the main loop of PROLOG with the main loop of data-base
languages.

In both cases, we need a function finding entries in a data base (or program) which are
possible candidates to satisfy a querv G. Such a function is called an indez function. Since
data-base techniques are much older (and therefore more elaborated), PROLOG could try
to profit from them.

2Subset of PROLOG without compound terms (lists and structures)

2.2 DB-Indexing 10

Goal G

1. find next clause H : —Gy,Gs,...,G, with: H unifying G (or
Y(H) = ~(G) i.e. v = mgu(H,G) exists).

2. try to solve y(Gy),...,v(Gn)
else goto 1
Figure 1: Main loop of PROLOG

Goal G

1. find set of entries {Ey, Es, ..., E,}
with: E; matched by G.
Figure 2: Main loop of a simple DB-language

2.2 DB-Indexing

Most DB systems provide a set of indexing functions (based on B*, hashing, ...) to the
user. The DB administrator chooses exactly one indexing method for a specific problem
Lots of parameters (key-argument, type, ...) influence the indexing method. Each indexing
function returns the set of matching answers.

Logical formulas over many key-arguments are reduced to set operators (join, diff, merge,...|
with respect to the indexing scheme on single key-argument places.

Obviously, DB-indexing methods are very domain-specific and we shall see that in contrast
to PROLOG, DB-indexing need not cope with problems like side-effects, recursion, the order
of answers, non-DATALOG facts and non-ground facts where recursion and non-DATALOG
leads to infinite answer sets. Moreover, PROLOG indexing has to be automatic or at least
be applicable by an average user.

So, when transferring DB-technology to PROLOG, we are forced to look for new, specially
adapted indexing schemes.

2.3 Indexing in PROLOG

A main feature of PROLOG is its nondeterministic behavior: a definition may be expressed
so that there are alternative evaluation possibilities reached by backtracking.

The order of clauses and even duplicates are characteristic for the procedural seman-
tics of programs. So PROLOG indexing functions do not return sets but sequences’
< Cijy---,Ci, > of clauses for possible alternative answers. Consider a sequence Sg of
clauses ¢;. We say Sg is correct wrt G if all clauses which PROLOG would try successfully
or with any side-effect constitute a subsequence of Sg. We also say a clause ¢ is indispensble
if ¢ is in all correct Sg’s. Moreover we can say that S is better than Sg if both are correct
and Sg; C Se.

3the order is given by the sequence of clauses in the program code;
we will transfer set operators such as “\” and “C” to sequences in the obvious manner

2.4 Index Algorithms 11

In other words: if part 1 of the PROLOG main loop would try, step-by-step, all clauses in
a correct Sg, it would give all correct answers. Now, we can sometimes find out in advance
that an alternative clause ¢; € Sg will not succeed and have no side-effect. Then, we can
hold that St = S\ < ¢ > is better for G than is Sg. If we can control the search for
indispensble clauses so that fruitless alternatives are never tried, we will achieve a more
efficient evaluation.

The reward of cutting down a priori the sequence of alternatives Sg for a goal G seems to
be even more promising. If we look at the and/or-tree of a PROLOG program then S¢ is
the set of all the or-branches for node G. Reducing S¢ is always a reduction of the search
space. Many conditions can be imposed a priori on Sg.

In any case, a necessary (but fruitless since not restricting anything) condition for Sg is:
Se¢ € < c|c € G is a clause of the program, in the original order* >

The most restrictive condition (but also fruitless, since this is the goal of the whole PRO-
LOG unification process) for Sg is:

S¢ =< c|c is an indispensble clause for G >

Such a condition could be found automatically only in DATALOG-like programs without
recursion.

The simplest non-trivial condition takes the relation name into account:

Se¢ =< c|c is a clause from the procedure of the relation called in G >

The task is to come up with more restrictive conditions and methods to constrain, perhaps
step by step, the sequence Sg without spending too-much effort in finding these restrictions.
On the other hand, the conditions must be as restrictive as possible, preventing too much
unnecessary clauses which would result in backtracking. It is well-known that backtracking
is a time-consuming and memory-expensive job (see also section 8.2.2).

2.4 Index Algorithms

We defined indexing, coming from DB techniques, as functions returning a sequence of
potentially matching clauses. In contrast to DB techniques, in PROLOG the global flow
of the program leads to correct answer substitutions, so index functions are not only called
when calling a goal but also during the unification process in the body of a clause. Each
branching (deterministic or non-deterministic) could be seen as performed by an indez
algorithm.

Index algorithms give a more general view for indexing as index functions do.

In the rest of the paper we prefer index functions. As we will see in a later section, they
provide for a separate compilation of index code and clause code, as we need it in our
implementation (see section 9).

12

3 What is Indexing Good For?

PROLOG provides a depth-first tree-search method to the user, so he must live with this
tree-search algorithm. The PROLOG system must organize this search as efficiently as
possible. Thus, we need an adequate method (like indexing) to reduce the branching
attempts. But what is indexing good for? What is the real advantage if we cut down a
priori the branching attempts? -

On the one hand, indexing can reduce the run time of the program. If the retrieval algorithm
deciding whether a clause is in S is fast enough then time is saved by the system not
unifying alternative clauses and pruning the PROLOG and/or-tree at the right time. The
earlier the sequence of alternatives can be reduced, the more efficient the system gets.

On the other hand, nondeterministic execution automatically consumes lots of storage.
There must be storage space for collecting backtrack information in any PROLOG realiza-
tion model. Cutting down the branching attempts a priori relieves the system from saving
this information for many non-unifying clauses, since they are never tried. But if a non-
deterministic execution leads to side-effects or correct answer substitutions then backtrack
information must be stored, and we can only try to minimize the storage used by it. We|
call these optimization functions indez assistant functions (see section 6.3). Unfortunately,
indexing does not only have strong points. We also have to see the negative aspects:

1. indexing information is normally scattered all over the program. Searching and qual-
ifying it is not a trivial task and compilation time can increase in an unbounded
fashion.

2. indexing code increases program size. In addition to the code of the program, there
is a need for storage of the indexing code. It can happen that the amount of indexing
code is exponentially larger than the bare WAM code.

You can already see that there will be no one best way for indexing, because of the negative
and positive points. But a balanced, user-dependent or procedure-dependent compilation
can lead to a fair compromise.

This only gives a qualitative view of the “optimal” behavior of indexing. In a later part
(see part IV) we discuss a more quantitative view for a special PROLOG implementation
based on the WAM and on our indexing method.

13

Part 1II
Theory

3 e have seen that indexing changes the run-time and the memory management behavior of
a PROLOG implementation. We now want to reveal the theoretical aspects of index trees
and discuss the worst case performance of an “index tree without choice-point creation”.
Index trees are abstract representations of index algorithms.

In this section we will speak of uninformed indez trees.

Definition 1: uninformed index tree

An uninformed index tree is a tree whose nodes are la-
beled with a sequence of clause numbers:

1. the root node is labeled with (1,...n)

2. for each inner node « with sub-nodes f; the fol-
lowing holds:

a={JB

— Yo € @

Each node is labeled with the sequence of clauses S¢ which must still ve tried at this point.
The edges represent unknown condition®. If one condition is satisfied we can reduce the set
Sc to the node linked with this edge. The following is an example of an uninformed index
tree:

f N

1,2,3,4)

(1,2

\. J

Figure 3: uninformed index tree

In this example, the root node (= no indexing is yet done) consists of four different con-
straints. If one of them is satisfied, we follow the corresponding edge, knowing that we only
have to try the reduced set of clauses to get all possible alternatives.

Sthat is why the trees are called uninformed index trees

14

First, we will show that index trees can result in exponentially large code length. This
is due to a worst case intermixed presentation of constants and variables in the argument
positions in the head of the clauses. In this case, a set of n clauses can be partitioned by
two constraints into a set of (n — 1) clauses and another one with (n — 2) clauses, which are
used recursively to construct the child subtrees until the leaves of the index tree correspond
to single clauses.

Secondly, for any reasonable definition of optimality, the problem of finding an optimal
index tree is NP-complete [11]. This observation can be made if the index scheme provides
indexing of inner structures. In this case the problem of finding a minimal subset of argu-
ment positions such that two rules do not unify in all positions of this set, can be reduced
to the NP-complete set-covering problem [4].

Solutions for these problems are approximated in two different parts of our indexing method
(see section 10), but this will be explained later.

4 Exponentially Large Index Trees

Consider a procedure p with n rules and n(n — 1)/2 parameters. We want to show that the
number of nodes in the corresponding index tree can have a complexity of O(2").

The clauses are numbered from 1 to n. Since p has n clauses, the number of pairs of disjoint

clauses (7,7) with ¢ < 7 is
n—1

Y z=n(n—-1)/2

r=1

Since p also has n(n — 1)/2 parameters, we can select a unique argument position r;; for
each pair of clauses (¢, 7).

Assume clause 7 to be a fact whose k** parameter a;x is

1. an anonymous variable (denoted by “_"), if there is no j such that r;; = k or rj; = k.

2. the constant 1, if such a j exists.

It is important that for each pair of clauses (i,) constructed in the above way, the head:
will unify in each argument except for r;;.

*

Forn =4 and < r;; >= we will give an example:

[« >N I
* X ¥ ¥

> N = ¥
(&1 ORI

15

() Sincery3=2=
2. p(2,-.,2,.,2,.). the second argument of
clause 1 is 1 and
(-) the second argument of
(.. 4) clause 3 is 3

Figure 4: Procedure with an exponentially large index tree

We now assume we already have an index tree for a definition p with n rules. The number

of nodes of this index tree is s,,.

We extend the definition of p by another clause (w.l.g. we add clause 0) and by the missing
(n+1)n/2—n(n—1)/2 = n argument places, filling them in the described manner. Observe
that this can be done incrementally. The new index tree has the following form:

r)
P 0,1,2,...,n)
pn: (1,2,...,n) (0,2 "'n) (2, 'n) var-case
\ J

Figure 5: exponentially growing index tree

[y

1. the root node (0,1,2,...,n)

— 1 additional node

2. we must distinguish between the cases that either the input parameter for the observed

argument position is instantiated or not:

(a) if it is instantiated:

Without loss of generality, we can distinguish the first two clauses (ro; = 1).

Then the definition for P,4; looks like this:

Pori(0,...))
Pn+1(].,)
PnHE_,....)

i. if we the first argument is 0 the subtree has the root-node (0,2, ..

— 8p—1 additional nodes

16

11, 1f we the first argument is 1 the subtree has the root-node (1,2,...,n)
— $,—1 additional nodes

iii. else (if we the first argument is neither 0 nor 1) the subtree has the root-node
(2,...,n)
— $,_9 additional nodes

(b) if it is not instantiated (we can unify all clauses):$
We have a subtree with at least one node (if we stop indexing the rest’

—2> 1 additional node

Thus, the number of nodes of the extended index tree is:

2Sn_1+Sn_2+l o> 2
= Sp41 2 4 . =2
l &2 #=1

The solution of this recurrence equation reveals the complexity of O(2"). Thus, we have an
example for an exponential growth of an index tree. Since each edge in this tree represents
a distinction of a set of clauses, the edge vas to be compiled into at least one indexing
instruction. Thus, the produced indexing code is likewise exponential with respect to the
number of rules. -

This result is not as discouraging as it seems since most applications do not have the rate
1 : O(n) between the number of rules and the number of parameters’. But it is discouraging
enough, since even a linear growth of the code caused by indexing is not desirable with a
large factor.

Note that a compiler producing an index tree in the described manner produces exponen-
tially large index code and a compiler with no indexing only will produce linearly growing
index code (one choice-point constructor for each clause). But in the second case more
memory is used in run-time when the choice-points are created. Then a strongly recursive
definition of a procedure can quickly exhaust the whole memory. Another point is that
choice-point instructions are a waste of time, whereas the constraints are mostly imple-
mented on a low level and therefore permit time saving.

Incidentally, indexing methods using information from mode analysis or other global in-
formation gathering systems (or from the user himself) can find a good ratio between the
usage of choice-point constructions and indexing instructions. So we can conclude again:
there is not one single way.

5 NP-Complete Index Problem

We have seen that index code can grow exponentially with respect to the number of clauses.
But how can we even find a good set of constraints to reduce the set of alternative pos-
sibilities. We will show that this problem is NP-complete if we provide looking to inner
structures to discriminate the clauses.

6in a later section this case is called the var-case — no reduction of the set of clauses is possible with
respect to this argument position
"Think of a procedure with 6 rules which would have to have at least 15 parameters

17

Consider a procedure P with n arguments. We say a set S (a subset of these n argument
positions) is a complete position set if no two rules unify all positions in S.

The NP-hard complete-position-set problem is the following:

Definition 2: complete-position-set-problem

Find the smallest integer n such that there is for a head
deterministic® procedure p of size’? N a complete position
set of size n.

¢A procedure p is called head determinastic if at most one rule
of the definition of p is good for any goal with only instantiated
arguments

’A measure could be the number of characters in its ASCII
representation

Such a minimal complete position set could be used to build an index tree with a minimal
use of choice-point constructors.

By reducing the complete position set problem to the well known set covering problem[4],
we show that the first one is at least as hard as the second one:

Let Ci = {(¢,7)| rules i and j differ in the k** position},
Co = {(z,7)] ¢ and j are rules },
- § C {z] ¢ is the number of a rule }

= S is a complete position set & Cy = Ures Ck, since two rules must differ at least in one
argument position.

To show that the complete position set problem is exactly NP-complete we reverse the
above reduction.

Let Rz{Cl,...,Cm},
Ci € CO)
[Col =n(n—1)/2

Then, we have to construct a procedure P such that

Cr = {(3,7)| rule 7 and j differ in the k** position of the definition of p}

This is done in the following way:

The parameters of the rules are lists of size n(n—1)/2, constructed similar to the arguments
of the example in section 4, except that if (7, j) is not an element of Cy, then all r;; are set
to anonymous variables. The following example helps to understand this construction:

18

Let Ci = {(12),(23),(34)}
Ca = {(12), (13), (14)}

= (23) € C; means that rule 2 and 3 can (by construction) be unified in
argument position 1

L p([1y oo b (11, 1,).
2. B[22 (20)
CY (AR WU I S |
PO (S N S)

Figure 6: NP-complete index problem

If we define a procedure P in the above way, Cy holds exactly the definition.

In our indexing scheme we must cope with both problems: the exponentially growing
behaviour and the NP-complete index problem.

Since we do not want to generate exponentially growing index trees we “intelligently” limit
the size of an index tree depending on the kind of the program. To make this limit as
flexible as possible we define several measures which constrain the size of the index tree
(see section 10). To get around the NP-complete problem we use “intelligent” heuristics to
approximate the solution. These heuristics are based on domain-specific knowledge about
the program given by the user.

19

Part III
Basic State of the Art

fter this theoretical approach, we now turn to more practical things. From the beginning
we always spoke about an implementation of indexing methods for PROLOG. In fact, the

\;f 9 implementation is done for RELFUN [5, 6, 7, 17, 18, 19]. But we now want to show that

we need not to distinguish between these languages if we introduce indexing methods. The
RELFUN programming language is introduced as an attempt to integrate the capabilities
of the relational and functional styles. We distinguish between hornish and footed clauses.

A hornish clause is a normal PROLOG Horn clause, except that its premises may contain
nested function calls. Footed clauses differ syntacticly from hornish ones by having an “&”
in front of the last premise. The value of this last premise is the return value of a footed

clause.

To show that hornish clauses correspond to a subset of footed clauses you only have to con-
sider RELFUN’s transformation algorithm footen, mapping hornish clauses (in particular,
PROLOG’s Horn clauses) to footed clauses:

footen: hornish — footed
h: —91,92,---39n h: —91, 92, "'agn&true

i)
valued
clause
(rule fact)
footen —
———2xelationalize
\ J

Figure 7: RELFUN’s clauses

RELFUN'’s inverse transformation algorithm is called relationalize, which flattens nested
calls and introduces an extra argument taking the return value®. The latter transformation
shows that it suffices to consider the PROLOG subset of RELFUN when discussing indexing

schemes.
8For other RELFUN features (higher order,...) you can find similar horizontal transformations in [5, 6,
23]

20

6 Looking at Other Approaches

In this subsection we provide an overview of different indexing schemes. They can be
distinguished into hardware oriented and software oriented approaches.

The hardware oriented approaches are based on DB-techniques. A hash-function returns,
for a given query, a sequence of clauses as potential matches. This is done separately from

the program, so rules (maybe a very large number of clauses) can be stored separately (e.g|
externally).

Most software oriented indexing schemes have a mixed storage of index and clause code, so|
the whole program must be loaded at run time.

6.1 Hardware Oriented Approaches

Several indexing methods are based on bit-matrix representation of clauses in a procedure.
They are field encoding, superimposed coding with embedded position and variables, and
superimposed coding with external variables [14].

All those are based on the principle of n-in-m-coding.

6.1.1 m-in-n-Coding

In this method the value of an attribute is compressed into a binary word of width n with
a fix number of m bits set to 1. This number is called the weight. The problem is how
to represent variables so that they can match with anything. In [COLOMB| the three
enumerated possibilities to do this are proposed.

The main advantage of this method is that you can construct hardware that handles up to
8.000 clauses and more in the presented manner. Together with the linear searching hash-
function you reach a very high efficiency. Another key property is that m-in-n-coding results
in highly compressed code, so that large clause-code can be separately stored (externally)
from the small index code and only single rules are loaded.

6.2 Software Oriented Approaches

In contrast to the hardware oriented approaches, the software oriented approaches do not
use hash-function returning a set of potential matching clauses, but the program flow leads
to all those clauses. That is why the index-code and the clause code are scattered over the
program code. '

6.2.1 General WAM-indexing

The WAM provides the user with indexing techniques that can only discriminate the first
argument[29, 31], thinking that PROLOG programmer have a natural tendency to write
code in data structured-directed manner.

6.2 Software Oriented Approaches 21

Hassan Ait-Kaci in [1] introduced a so called three-level-indezing scheme using all the in-
dexing instructions from the WAM.

First a definition of a procedure is partitioned into subsequences. Those clauses who have
a variable at the first argument position are the search bottleneck and separate the subse-
quences from each other. The subsequences are linked with a try-chain.

The subsequences were indexed in a three-level-indezing manner of the form:

first level : | discrimination on type
(constant, structure, list,
empty-list and variables)

second level : | discrimination on value
(only for constants and structures)
third level : | enumeration of clauses

Figure 8: general three level indexing scheme

The WAM indexing instruction-set is:

‘ index leveljinstruction | arguments ‘
labels to the next level
index instructions for
constant, struc-
ture, list, emptylist
and variables (possi-

bly more types)
number of

constants (structures)

first switch_on_term

switch_on_constant

second b and a hashtable with a
switch_on.structure label for each constant
(functor)
try retry trust
) d
third (a.n for —

try-me-else retry-me-
else trust-me)
Figure 9: WAM indexing instruction set

The first and second level indexing instructions are deterministic choices. The instructions
of the third level are also called choice-point constructors because of handling the backtrack
mechanism in the WAM. Second level list indexing is really third level indexing on list
structures, the second level being skipped by special handling of lists in the WAM.

As an example you can see the general WAM indexing code for the following program:

6.2 Software Oriented Approaches 22

p/1: try ti

retry 2
trust t2
ti: switch-on-type const,fail,fail,fail,varil
const: switch-on-const (1,1),(2,2),fail
p(1). varl: try 1
p(2). trust 2
p(X). t2: switch-on-type fail,struc,7,6,var2
p(s(1)):-....... _, struc: switch-on-struc (s/1,4),(r/1,5),fail
PUEL2)) =i wusn var2: try 4
pC[1) =i tt retry 5
pCLKIY]) i=asiaasn retry 6
trust 7
1: code-for-clause-1

code-for-clause-2

One of the main ideas in this index scheme is to separate the index code from the rest.
Therefore it can only take the head of a clause into account. Other techniques not only
indexing the head but also during the unification process in the code of the body of the
clause. An other source of optimization for WAM based indexing techniques is the extension
of the WAM by new types and branch-instructions.

We want to describe the most famous indexing scheme which takes these two ideas into
account. Other attempts are more or less comparable with it.

6.2.2 Complete Indexing

In [14] Timothy Hickey and Shyam Mudambi present several indexing techniques based
on the WAM. The first one (complete indexing) uses global information (like modes) to
perform indexing.

First of all the program is transformed, creating new special code for each mode that might
occur for a procedure call.

As an example we look at the following program:

1. top :- p([1,2,3,4],X), write(X).
2. p([1,0).
3. p([XIY],N) :- p(Y,M), N is M+1.

p is only called with a constant argument in the first position and a variable in the second.
The new code for the procedure p is specialized for this mode. It is represented in the
procedure p_cd®. If we assume that in the program p is also called with other modes, the

9¢ stands for constant and d for don’t know

6.2 Software Oriented Approaches 23

compiler will produce other specialized procedures for these modes. The PROLOG clauses
for these specialized procedures will not differ from the original ones, but the produced
WAM code takes the mode information into account. The transformed code is:

1. top :- p_cd([1,2,3,4],X), write_c(X).
2. p.cd([],0).
3. p_cd([XI|Y],N) :- p_cd(Y,M), N is M+1.

Then the clauses are transformed into a normal form:
1o PCovw®icsdlThyeins B Bisens s Bm) i =

2. Py,..., P
3 Z1:Sl,...,ZmISm,B],...,B,.
Where:

T; = arguments with mode constant
S; = argument with mode dont know

Z; = new Variable not yet occuring in the clause

(Primitives: goals without
side ef-
fects and whose parameters
are known to be ground af-
(ter head-unification

£

A\

(either a non-primitive goal
) or causing side effect or with
unbound arguments after
‘head-unification.

B;

The generated indexing code is in some sense also a three level indexing of the following
form, corresponding to the normal-form:

first level : | indexing head-code
second level : | indexing primitive-code
third level : | indexing body-code

Figure 10: three level complete indexing scheme

The first one is a sequentially indexing on the first n c-mode arguments. This is done by
unifying the known structure of these arguments and indexing inner different possibilities
with a new index-instruction called g.switch reg table. This new instruction assumes that
the argument register reg contains a ground term, and switches to the appropriate location
after a hash-table look up in table.

The indexing primitive-code contains a set of new branch-instructions implemented in the
WAM (e.g if_gt if-eq if-le), so control jumps to a given label.

The indexing bodies are compiled with the standard WAM techniques.

6.2 Software Oriented Approaches

ul

| index level ’ instruction [arguments \
: 2: argument-number an

ftest gaviteh list of tuples (atom link)
if_gt
o,

second | V=% 3: test-arguments(1-2) and
atomic .

true-link

functor

third see WAM __
instruction sef.

Figure 11: complete indexing instruction set
Example:

1. merge_ccd(L,[],L).
2. merge_ccd([],[BIBs], [B|Bs]).
3. merge_ccd([A|As],[BIBs],[AlICs]) :- A <= B,
merge_ccd(As, [BIBs],Cs) .
4. merge_ccd([A|As],[BIBs],[BICs]) :- A >= B,
merge_ccd([AlAs],Bs,Cs).

Normal-form:

1. merge_ccd(L,[],X1) :- L=X1.

2. merge_ccd([],[BIBs],X1) :- X1=[B|Bs].

3. merge_ccd([AlAs],[BIBs],X1) :- A <= B, Xi=[AlCs],
merge_ccd(As, [B|Bs],Cs).

4. merge_ccd([AlAs], [BIBs],X1) :- A >= B, Xi=[B|Cs],
merge_ccd([A|As],Bs,Cs).

Index tree:

4 g_switch AL

(1,2,3,4)

g_switch A2

./2

unify var X1
unify var X2
get_list A2

unify var X3

S D S e D S s WD oS SRy
}/{'N
rulel rule2

rulel rule3 ruled

first level

second leveL

third level

Figure 12: merge—complete index tree

6.3 Index Assistant Functions 25

In this index tree we have added the constraints to the edges, so we have now no longer
an uninformed index tree but an (informed) index tree. Furthermore, we have added
instructions to the nodes which must be executed if we reach the corresponding node.

6.3 Index Assistant Functions

Indexing can also be performed by some functions not changing the program flow but
optimizing the time and memory consumption of the index algorithm. We want to separate
these algorithms from the pure indexing scheme and call them indez assistant functions.

6.3.1 Shallow Backtracking

This approach is adapt to the complete indexing algorithm, only performing the backtrack-
ing method of primitive deterministic!® procedures. The idea behind this method is the
following:

While unification of the head index code and the primitive index code takes place, only
a link to the next alternative clause is needed as backtrack-information because no heap
variables will be bound, nor will any nonprimitive goal in the body be called, and no side
effect will occure. On the other hand, after successful unification of the head and the

primitives no backtracking in this procedure is possible because the only possible matching
clause is selected.

This reduces the code space requirements at run-time, but good global analyzing methods
are needed to detect primitive deterministic procedures.

6.3.2 Quadratic Indexing

An other approach performing primitive deterministic procedures is the quadratic indexing
scheme. A tree-sharing method reduces the nodes in an index tree to have a size at most
O(n?). The index tree is transformed into a directed acyclic graph (DAG).

7 Developmental Environment

We have seen that there are several methods to perform and implement indexing. In this
project we tried to bring together most positive aspects of the above approaches. But
doing this we also had to respect the global structure of our already existing developmental
environment.

Our work is embedded in the ARC-TEC and RELFUN/RFM projects. RELFUN is a
PROLOG:-like language with functional extensions implemented in COMMON LISP.

At the beginning of our work, the state of the RELFUN project was the following:

10primitive deterministic is a extended definition of head deterministic which looks not only ta the head
of all clauses but also to the primitive index-instructions

7.1 Global RELFUN Project Structure 26

7.1 Global RELFUN Project Structure

4 N

C)%ELFUIE Progrant™"

Classified Clauses

l

WAM Code <+ { :
\ _J

Figure 13: global RELFUN structure

111 112

The compilation task is divided into several horizontal’' and vertical'® compilation steps]
The reason for this is that we prefer to do most of the compilation work at source level
(rather than at code level) in order to be independent from a special low-level language or
machine structure as much as possible.

Another detail in our compiler is a special language between the RELFUN language and the
low-level WAM-code. This language, called “classified clauses”, was developed by Harold
Boley and Thomas Krause [17, 18, 19] and is based on a tagged PROLOG-in-LISP syntax,
extended with global and local information. .

The right place to collect all indexing information which is necessary for our indexing
scheme is surely this intermediate language. So one modification had to take place in the
first vertical compilation step between the RELFUN program and the classified clauses.

Another modification had to generate the indexing WAM code and thus had to take place
in the second vertical compilation step between the classified clauses and the WAM code.

Finally, the emulator had to be changed a little bit to allow new (better) indexing methods.
Our emulator is based on the v-WAM ([22]), a LISP implementation of the WAM ([29]),
good for rapid prototyping and experimental extensions. It was changed for handling
RELFUN’s functional extensions by Hans-Giinther Hein (see [12]). '

Hgource to source
1250urce to code

27

Part IV

Implementation

8 A Partitioned Implementation

,j@% he previous section has shown that in the compilation environment of RELFUN, it is the
G best way to divide the implementation of an indexing method into at least two parts. In
figure 14 the cut line between the two working areas for the implementation parts is given.

RSN

10} BI9UIN)9PO)XIpU

4
II LIVd

Jo eaxe 3ulyiom

I LIdvd

Jo eaxe 3uryiom

\

<« °P0) INVM X°pU]

]

<« TeI501] ZD,EE_O

Figure 14: RELFUN structure with indexing

8.1 First Part 29

8.1 First Part

The first implementation area is placed on a high level (between RELFUN and the classified
clauses).

In [23] Michael Sintek explains his ideas on how to extend the classified clauses with indexing
information. In his paper he also proposes the idea of transforming higher-order predicates
(resp. functions) on this high level, with respect to indexing handling.

Since for the rest of this paper only indexing is looked at, we can concentrate the introduc-
tion of the classified clauses only to the indexing part!3.

In this paper we also do not want to explain how we get the indexing information from the
RELFUN program. Since the general indexing problem is NP-complete, we use specialized
heuristics approximating the solution. If the reader is interested in this aspect, we refer
him to the paper of Michael Sintek [23].

8.2 Second Part

The second part of the implementation is working below the level of the classified clauses.
Its main task is the generation of indexing WAM-code from the indexing information of the
classified clauses. Since the standard WAM only permits us to index the first argument,
another modification extends the emulator with a special index-register. We already said
that one of our philosophies is to be independent from a special low-level language, thus
these last modifications must be as small as possible'. In spite of this fact we developed a
general indexing method, able to handle even special features such as higher-order predicates
and domain specific compilation.

Before the introduction of our ideas and implementations, we first want to refresh (resp.
introduce) the two languages involved in this vertical compilation step: the classified clauses
and the WAM instructions.

8.2.1 The Classified Clauses (indexing part)

As a result of our approaches in implementing new indexing techniques in the RELFUN
compiler we had to extend the classified clauses by new index information.

e EBNF for classified clauses - indexing part

<indexing> ::= (indexing [<iblock>])

<iblock> ::

<pblock> | <sblock>

<pblock> ::= (pblock <rblock> { <sblock> | <1iblock> }+)

13for more detail see [17] and [7]
45nly one new register and one new instruction is added to the v-WAM

8.2 Second Part

<rblock> ::=.(rblock <clauses> { arg-col }+)
<clauses> ::= (clauses { <clause-number> }+)
<arg-col> ::= (arg <arg-number> { <base-type> }+)
<base-type> ::= <const> | <struct> | <var>
<const> ::= (const <symbol>)
<struct> ::= (struct <symbol> <arity>)
<var> ::= (var <symbol>)
<1block> ::= (1block <clauses> { arg-col }+)
<sblock> ::= (sblock <rblock> <seqind> [<pblock>])
<seqind> ::= (seqind { <seqind-arg> }+)
<seqind-arg> ::= (arg <arg-number>

(info <inhomogenity>)

<constants>

<structures>

<lists>

<empty-lists>

[<others> 1)
<constants> ::= (const { <element> }*)
<structures> ::= (struct { <element> }*)
<elementd ::= (<element-name> <clauses> [<iblock>])
<element-name> ::= <symbol> | (<symbol> <arity>)
<lists> ::= (list <clauses> [<iblock>])
<empty-lists> ::= (nil <clauses> [<iblock>])
<others> ::= (other <clauses> [<iblock>])
<clause-number> ::= 1[/2|3[4[5]|617...

e Explanations:

— iblock = indexed block

8.2 Second Part 31

— pblock = partitioned block

— sblock = standard index block

— lblock = block consisting of only one clause
— rblock = raw block containing the initial data
— seqind = sequential indexing

— arg-col = argument column

— others = (possibly indexed) clauses for elements not occurring in any hash table

Since we have not yet presented our index method it is not possible at this point to under-
stand the full meaning of the index part. But the reader already familiar with the WAM
index scheme can immediately recognize some well known features (e.g. an “sblock” is more
or less the standard WAM “switch on type” instruction).

8.2.2 The (v-)WAM

The WAM is an instruction set and storage model for the efficient execution of PROLOG,
developed by D.H.D. Warren[29]. A short description of the WAM storage model will be
give here, rather than a precise definition of the instruction semantics [1]. The v-WAM
[22] is a LISP implelemtation of the WAM, usefull for rapid prototyping and experimental
extensions. We use a version of the »~-WAM by Hans Giinther Hein [12] (called the RFM
WAM) that can handle value returning for RELFUN’s footed clauses. However, since
indexing is not influenced by these extensions, we can restrict the following treatment to
the original WAM.

The WAM storage model consists of the following primary areas:

1. the local stack, contains environment and choice-point frames

[\

. the heap, stores data structures created by unification
3. the trail, holds bound variables to be unbound during backtracking

4. the code array, stores the WAM code

Various state registers to manage the storage areas and a set of argument registers for
passing parameters and calculating temporary results make the storage model complete.

The WAM registers are the following:

32

Register Contens

E Current environment

P Current instruction pointer

B Current. chaiceryatat.

CP Continuation instruction pointer
H Heap pointer

S Heap structure pointer

HB Heap backtrack pointer

TR Trail pointer

Xn Argument registers
Figure 15: WAM registers

Now lets have a look to the storage areas:

The heap is primarily for storing compound data structures. In the trail addresses of bind-
ings are stored, for unbinding upon backtracking. The most interesting area for indexing is
the stack. It holds two types of variable-length frames: environments and choice-points.

The environments hold both local and bookkeeping information. A choice point
holds arguments passed to a nondeterministic procedure and backtrack information
(E,B,H,CP,P,TR). Both frame-types were linked by different chains.

Remember the main-loop of PROLOG:

For a given goal, we select (by indexing) a sequence of clauses to try. If they are nonde-
terministic, i.e. if we cannot narrow down the field of possible matching clauses to one, a
choice-point is created and loaded with the register and local information.

Now we can imagine the gain that indexing can give us:

Each trying of a clause costs the creation of at least one choice-point with at least 6 pointers
and each returning from a failing call must remove these. In addition to this, a call normally
implies many unifications and compounded data structures (and may be other calls) until
the failing point is reached. Indexing prevents the machine from such fruitless work.

The v-WAM instruction set only provides general WAM-indexing (shown in section 2.5.2)

9 Separate Compilation: Indexing-Code, Clause-
Code

Our goal was to enhance RELFUN, based on the just finished compiler, rather than writing
a new compiler. This led us to the idea to separate the compilation of the indexing code
from the compilation of the clause code. With this technique we are also able to recompile
and store separately the two code types'®. Additionally we can now switch on and off this
indexing method just by skipping the function for generating the indexing code. This could
be necessary if we want to compare the behavior of the different codes (e.g. for debugging
and tuning). The emulator has been changed to run both code types.

5large clause code could be stored externally so that only a small indexing code would be left in main
memory

33

idx-code-generator
* \
|
|
i
1

flattening extendin \
(cutting index code
generating

SEPAraAte e e e e

compilation } WAM Code
Wr‘/

PP ———

cg5.lsp instr.lsp

y)

Figure 16: separate compilation

10 Idea

Our first task was the introduction of a graphical representation for general indexing meth-
ods. This allows us to discuss the advantages and disadvantages of different methods
without implementing them. An index tree is an abstract representation for a special index
algorithm. It describes the procedural semantics of such an algorithm.

10.1 Index Trees

10.1.1 General Informed Index Trees

Definition 3: g-i-index tree

A general-informed-index tree (g-i-index tree) is a tree
with labeled nodes:
1. try-nodes (circles)

2. constraint-nodes (boxes)
3. clause nodes and fail-nodes

A clause node either contains a sequence of machine
instructions or a label to a sequence of machine instruc-
tions. All outgoing edges of a constraint node are labeled
with constraints.

In the previous section we described why we prefer separate compilation of index code
and clause code. Therefore we can specialize the definition of g-i-index trees to header
informed index trees (or h-i-indez trees) only describing index functions (see section 2.3).

10.1 Index Trees 345

:
This definition guaranties the possibility of a separate compilation and storage model for

index and clause code.

10.1.2 Header Informed Index Trees

Definition 4: h-i-index tree

An h-i-index tree is a g-i-index tree with: clause node
only contains the number of the corresponding clause;
no inner node is a clause node and all leaves are clause
nodes; each constraint node must have a special node
with a so-called “var” edge, which is satisfied in all cases
not satisfied before®.

%other restrictions could be: each input must be satisfied by
at least one edge or each constraint node must have a special so-
called “else” edge satisfying all inputs, which are not satisfied by
another edge

Based on the WAM, we only have the following nodes and edges in our h-i-index tree:

7~

choice point (try, retry, trust)

clause c(i) / fail |

= Go

set_idx_reg m
switch_on_type (lab__ J1ab,. Jgh .lab .lgb)

struct m switch_on_structure (sval,labl) (s2/a2,1ab2) ..(sn/an,Jabn) elsels
1se, (switch_on_constant
analogously)

\,

Figure 17: graphical representation & corresponding instructions

10.2 Horizontal Compilation Scheme 35

10.2 Horizontal Compilation Scheme

Another representation scheme for index functions uses a PROLOG-like notation with
auxiliary predicates and extralogicals like cut (!), bound, constantp, The advantage
of this notation is that “intelligent” compilers can compile this code into a normal WAM
(using only first argument indexing) and thus having nearly the same results as with an
extended WAM (using multi-argument indexing) and a multi-argument indexing method.

Figure 17 contrasts the WAM instructions with the corresponding h-i-index tree node types
with the edge types and the PROLOG-like expression for the semantics of the constraints.

‘ nodes edges | constraints ‘
type-nodes (type m)

constant edge (bound arg,,)
(constantp arg,)

structure edge (bound arg,)
(structurep arg.)

list edge (bound arg,,)
(listp argm)

nil edge (bound arg,)
(nilp argm,)

variable edge (unbound argm)

structure-nodes (struc m)

func/arity-edge | (eq (functor arg,) func)
(eq (arity arg,) arity)

constant-nodes (const m)

const-edge (eq arg,) const)

Figure 18: constraints

Definition 5: flow-path through an h-i-index tree

A flow-path through an h-i-index tree is built as follows:
Begin with the root node. If it is a

1. try-node: go through each subtree sequentially
(normally from left to right)

2. constraint-node: go through the subtree linked by
the first satisfied edge

3. clause-node: this is always a leaf (the labeled
clause is called)

10.2 Horizontal Compilation Scheme 36/

Definition 6: valid h-i-index tree

An h-i-index tree is called valid if it corresponds to a def-
inition of a predicate (this means if a PROLOG machine
whose index function follows the flow-path through the
h-i-index tree is sound and complete with respect to

PROLOG semantics).

This definition allows us to index using a valid h-i-index tree without any loss of the’
PROLOG semantics, but tells us nothing about the efficiency of the h-i-index tree.

Definition 7: depth of a flow-path

The depth of a flow-path through an h-i-index tree is
the number of occurrences of try-nodes not following a
“var” edge.

Since it makes no sense to link two try nodes (they can always be merged together), the
depth of a flow-path corresponds to the number of arguments which constrain the set o
alternative evaluation possibilities reached by backtracking.

Definition 8: depth of an h-i-index tree

The depth of an h-i-index tree is the maximal depth of
a flow-path through the h-i-index tree.

Definition 9: breadth of a low-path

The breadth of a flow-path through the h-i-index tree is
the number of constrain nodes following only the “va.”
edges.

In contrast to the depth of a flow-path, the breadth corresponds to the number of arguments’
which are tried to index for until the first succeeds.

Since in normal WAM implementations the instructions for the two constraint nodes
(switch-on-constant and switch-on-structure) have no var edge'®, we had to extend the
definition of these instructions.

Definition 10: breadth of an h-i-index tree

The breadth of an h-i-index tree is the maximal breadth
of a flow-path through the h-i-index tree.

We now still need definitions which give us a quantitative measure for the cost of h-i- index{‘
trees. The first definition (chw) gives us a measure for the costs of building chome—pomts!

at run-time if we use a special h-i-index tree'” ‘

6they fail if the constant (or structure) is not found in the hash-table V

17This definition also holds if we want to measure the costs of building choice-points at run-time following
one special flow-path in the h-i-index tree. In this case, “max” must be substituted by “first satisﬁed;'
constraint”

10.3 Example 37

Definition 11: chw

The choice-weight (chw) of an h-i-index tree is defined
as follows:

chw([c]) =0
b)) = chw(ty) + ... 4 chw(t,) +n
1) = maz(chw(t;))

chw(try-circle,

.....

chw(switch-box,,

.....

Another definition is needed to measure the memory costs for an h-i-index tree:

Definition 12: cow

The code-weight (cow) of an h-i-index tree is defined as
follows:

cow([¢]) =0
b)) = cow(t) + ...+ cow(t,) + n
1) = cow(ty) + ...+ cow(t,) + 1

cow(try-circle,

.....

cow(switch-box,,

.....

10.3 Example

Throughout the rest of this paper, we will consider the following simple 6-fact procedure
(the line numbers are only for use in the index graph):

1: £(1,30).
2: £(2,10).
3: £(1,20).
'/. ____________
4: £(X,50)
'/. ____________
5: £(4,70).
6: £(1,80).

We think it is simple enough to permit an overview of the code; at the same time it is hard
enough to show all indexing features and the main ideas. In PROLOG, variables always
need special handling, so in indexing too. Therefore we divide the program into partitions,
separated by those clauses with variables in one fixed argument column. We will later see
that this “partition-rule” can be weakened, allowing only a maximal number of variables
in a partition block. This led us to a new definition:

Definition 13: block-variable-size

The block-variable-size of a procedure is the maximal
number of variables allowed in a constant block.

10.4 Standard Indexing

Up to now the RELFUN compiler transformed the above program without producing specia
indexing code, only trying sequentially all clauses with a try-chain. It should be mention

that if all arguments in a goal are unbound then there is no better way than doing this'®
The index graph looks like this:

Figure 19: sample h-i-index tree: no indexing
The WAM indexing code is the following:

try 1

retry 2
retry 3
retry 4
retry 5
trust 6

From now on we always want to show first a “horizontally compiled” PROLOG-lik
presentation!® for an indexing method (see section 10.2), then show the h-i-index tr
(see section 10.1) and finally the WAM index code. We hope the reader will be able t
understand an h-i-index tree without further explanation, to transform it into WAM cod
and even to see that this method is easy to extend by other features.

10.4 Standard Indexing

To illustrate the graphical representation, we start this subsection with standard WA
indexing, introduced in section 6.2.1.

We just have said that the handling of variables in the area of indexing is not unique. In |
first trial we separate the partitions by a try-chain. Thus each partition is either a singl
clause with a variable at the indexing position, or a set of clauses with only constants at th
indexing position?. In this case the block-variable-size is set to zero. Another possibility i
to allow variables in a constant partition. We will see that in this case we must push dow
the clauses with variables in the indexing argument position in each leaf of the origin
h-i-index tree of the constant-partition.

But now we want to have a look at the advantages and disadvantages of the first possibilit

One can easily verify the PROLOG:-like presentation (the original source is shown above)

8indexing will have no effect
19 general representation scheme for index functions only applicable for cut-less programs
2055 second-level-indexing does not need a var link

10.4 Standard Indexing 39

1: £(X,Y):- £f01(X,Y). % first partition: clauses 1..3
2: £(X,50), % second partition: clause 4
3: £(X,Y):- £f02(X,Y). % third partition: clauses 5, 6
4: f01(X,Y):- bound(X),!',f1(X,Y). % indexing possible
5: £01(1,30). % no indexing
6: £01(2,10).
7: £01(1,20).
9: £02(X,Y):- bound(X), !, £f2(X,Y). % indexing possible
10: £02(4,70). % no indexing
11: £02(1,80).
12: £1(X,Y):- constantp(X), !, £3(X,Y).% constant constraint
% all other fail
13: £2(X,Y):- constantp(X), !, f4(X,Y).
14: £3(1,Y):- ', £5(Y).
15: £3(2,10):- !,
16: f4(1,80):~ !.
17: £4(4,70):- !.
18: £5(30).
19: £5(20).

The predicate

o f branches into the three partitions.

e fO01 is first-level-indexing including the var-case for the first partition.

o f02 is first-level-indexing including the var-case for the second partition.

e f1 second-level-indexing for the first partition (only constants are possible).

e f2 second-level-indexing for the second partition (only constants are possible).

e 5 third-level-indexing for the first partition in case of constant 1 at the indexing
argument-position.

Now, let us have a look at the graphical representation of the index function; we will easily
find a corresponding node for each predicate.

10.4 Standard Indexing 40

type 1 1 type 1
const] struct] list] nil jvar "@ E const] struct| list| nil jvar "’

fail fail fail fail fail fail

const 1 const 1

fail 4 | 1] fail

o b

Figure 20: sample h-i-index tree: first argument indexing, partitions

We now want to discuss the h-i-index tree from a more quantitative point of view. The two
functions chw and cow allow such a quantitative statement:

chw(idr) = 8

cow(idr) = 14

You certainly cannot conclude something for the whole class of h-i-index trees from this
single h-i-index tree. But what happens if the data base grows? Since we allow no variables
in a constant partition®!, the worst case we can assume is to divide a large constant partition
inserting a new clause with a variable at the index position. If we do so the subtree for the
constant partition is split in the middle and the new clause is inserted. We get two new
try-subtrees: one switching to the variable partition and a second switching to one part of
the split constant partition.

(idx old idx new]
/-—_/
/ idx 19 ' / i
\ S)

Figure 21: block-variable-size = 0

21the block-variable-size is set to zero

10.4 Standard Indexing

It is easy to see that chw of a type subtree is the number of choice-point constructors in
the variable case??. If we split a constant partition in such a way that each new partition

contains at least two clauses than we can verify that

So only the two choice-point constructors in the main try-chain increment the value of chw

chw(idz,) + chw(idz,) = chw(idz,s)

by 2.

For cow we can state that the two new choice-point constructors again will cost code but
in addition the constraint boxes in the new try subtree will too. For the same reasons as
above the number of choice-point constructors does not grow in the split type subtrees. So

— chw(tdznew) < 2 + chw(idra)

we get:

cow(zdz,) + cow(idz;) < cow(idz;2) + no_of_constraint_boxes

For the new h-i-index tree:

— cow(1dT pey) > 2 + cow(idz o) + number_of_constrains_in_split_idxtree

We get similar results under the assumption of inserting a new constant partition.

We can state that in the worst case

Another possible indexing method is to propagate the variable partition into each possible

subtree. In our example this means that the variable partition is involved in the two

chw(idT e,) = 2 + chw(idzyq)

cow(1dTpe,) = 2 + cow(idzo1q) + number_of_constrains_in_split_idxtree

constant partitions and we only have one mixed partition:

N O W

(0]

10:
11:
12:
12:

. £(X,Y):- bound(X), !, f1(X,Y).
: £(1,30).
: £(2,10).
. £(1,20).
. £(X,50).
. £(4,70).
. £(1,80).

: £1(X,Y) :- constantp(X), !, f2(X,Y).
: £1(X,50):

£2(1,Y):= 1}, £3(Y).

£2(2,Y):- !, fa(yY).
£2(4,Y):- !, £5(Y).
£2(X,50):-1.

22this is the worst case for indexing

[/
A

h
h

only one partition
no indexing possible

constant constraint
all other -> variable partition

10.4 Standard Indexing 42

13: £3(30).
14: £3(20).
15: -£3(60) . % variable partition included
16: £3(80).
17: £4(10).
18: £4(50). % variable partition included
19: £5(50). % variable partition included
20: £5(70).

In the h-i-index tree we can see how the variable partition is propagated into each leaf and
how the two constant partitions are merged.

r |
type 1
e — s
conat |
l|2[j/
\,

Figure 22: sample h-i-index tree: first argument indexing, no partitions

Again, we want to look at chw and cow. First we can note that:
chw(idz) =6

and
cow(idz) = 16

But how do they vary if we add new clauses.

Since we now have only one partition®® the try-chains are only in the leaves of the h-i-index]
tree and so:
chw(idz) = number of clauses indexed by this tree*!

Thus
chw(1dT e,) = 1 + chw(idzoia)

cow does not behave as benevolent as chw. Assume we add a new clause with a variable in
the index position. Since this clause must be propagated down to each leaf of the h-i-index
tree, the code for trying this clause could occur many times in the h-i-index tree. If we have
a large h-i-index tree with many different constants and structures, the h-i-index tree may
have a lot of leaves and each leaf will be extended by at least one choice-point constructor.

23¢the variable-block-size is infinite
24this holds since in the var-case each clause must be tried

10.5 Improved Indexing I (not only first argument) 43

é idxol.d ide A
”‘/’,I/)g /\/ ’,:,',,’\Q
,,;{D% ’//’;

\ s

Figure 23: Dblock-variable-size = max

i

So we get the following result:
cow(1dTney) 2 m + chw(idz,iq)

with

([number of constants, struc-
tures, lists and nils at an ar-
gument position in the h-i-
index tree
+

| 1 (var-case ...)

We could claim that in many cases (e.g. data bases), the choice weight in the first indexing
method may grow faster than in the second one; on the other hand, the code weight behaves
the other way around. One could believe that there is a trade off between chw and cow
in both index methods. There exist benchmarks for both techniques where one method
behaves better (concerning chw and/or cow) than the other. In our index scheme we take
this fact into account by permitting the user to define whether to optimize chw or cow.

Since up to now we only switch on the first argument, the programmer is forced to choose
a first argument which is good to index on. On the one hand many people think that
this is no restriction®®, but we think there are data bases which have a natural order of
arguments, which should not be changed. On the other hand it cannot be difficult in any
WAM emulator implementation to change the behavior of the switch-instructions to switch
on an argument register other than the first one. We will see that in the case of the v-WAM
this is really a simple thing to do.

10.5 Improved Indexing I (not only first argument)

So a first step was to allow indexing on other arguments than the first. In our example the
second argument is much more discriminative than the first one. In this case the procedure
is even deterministic if the mode for the second argument is constant?®. Our indexing
method uses neither modes nor any otiier global information beyond the procedure level,
for two reasons: '

Z5programmers should write in a data-base like manner: the first argument should be an approximation
of a key-argument
26note: this holds not for other modes

10.5 Improved Indexing I (not only first argument) 44!

1. global analysers make a closed world assumption for the call-modes of all predicates.
This means predicates can only be called in the way they are used in the program.
Another possibility is to produce, for each mode, a specially compiled definition in
addition to the normally compiled definition. However, in this case the code grows
too fast.

2. non-trivial global analysers are compile-time expensive. Most of them have a com:-
plexity of O(2") since they must find fix-points of abstractly interpreted programs.

Since we have no database-global information we can favor the most discriminative’” argu-
‘ment position to index on. In our case we want to switch on the second argument.

This can be done by a simple horizontal transformation on the PROLOG-level, pushing the|
index-argument to the first position:

¢ £(X,Y):- bound(Y), ', f2(Y,X). % index second argument
: £(1,30). % no indexing possible
: £(2,10).

: £(1,20).

: £(X,50).

: £(4,70).

: £(1,80).

N O O WwN -

8: £2(Y,X):- constantp(Y), !, £3(Y,X).

9: £3(30,1):- 1. % deterministic choice
10: £3(10,2):- !.

11: £3(20,1):
12: £3(50,X):
13: £3(70,4):
14: £3(80,1):

If the compilation task is done well, only one register transfer (argument-register 1 &
argument-register 2) and an additional execute-instruction is needed.

We only load the index register (in the standard WAM the first argument register) with
another register. Instead of this, we could also define the index-register as a link to another
argument-register?®, In this case we need no new predicate with only a new order of
arguments, but a new instruction (like set-idz-reg 2) tells the emulator to switch for the
second argument instead of the first one.

Now the index graph looks like this:

27the reader may think of any reasonable definition of “most discriminative” or have a look at a paper
written by Michael Sintek [23]

28another advantage of doing so is that we also could link this index-register with inner structures of an
argument, so we are more flexible.

10.5 Improved Indexing I (not only first argument) 45

type 2 _
copstlstruct! listl pillvar v m
A
/1

const 2
101 201 3A 508 7

@ oo E

\, /

Figure 24: sample h-i-index tree: second argument indexing

In case of mode “constant” for the second argument no choice-point will be created. But
we have seen that we cannot assume that any special argument is a good choice to index
on?®, so it could happen that this index technique has no effect (if the mode for the index

argument is always variable).

Once we can control the register on which we index, we can sequentially index all arguments.
In our example:

o first try to index the second argument
e if this argument is instantiated then we can deterministically choose the solution

e if the second argument is a variable then (instead of trying all clauses) index on the
first argument

e only if this argument is a variable too, try all clauses in a try-chain®°

We can simulate a sequential indexing method in the following “horizontal” way:

: £(X,Y):- bound(Y), !, £2(Y,X). % index second argument
: £(X,Y):- bound(X), !, £1(X,Y). % index first argument
: £(1,30). % no indexing

: £(2,10).

: £(1,20).

: £(X,50).

: £(4,70).

: £(1,80).

O N O O W N -

9: f1(X,Y):- constantp(X), !, f4(X,Y). % first argument index function

10: £4(1,Y):- !, £5(Y).
11: £4(2,Y):- ', f6(Y).
12: f4(4,Y):- ', £f7(Y).

13: £5(30). % no deterministic choice
14: £5(20).

29

even if it would be in average
30in this case there is no better way

10.5 Improved Indexing I (not only first argument) 46

15: £5(50) .

16: £5(80).

17: £6(10).

18: £6(50).

19: f7(50).

20: £7(70).

21: £f2(Y,X):- constantp(Y), !, £3(Y,X). ;second argument index function
22: £3(30,1):- 1t. ; deterministic choice
23: £3(10,2):- ',

24: £3(20,2):- 1.

25: £3(50,X):- !

26: £3(70,4):- !

27: £3(80,1):- !

In case of using the new WAM instruction set_idr_reg, the tree reduces to the following
h-i-index tree (the h-i-index trees of Section 10.4 and 10.5 are just linked together):

e C2s458>

type 2

Leonstl strucd listl nillva
fa1l] [fai] |fail

consgt

BO5E

Figure 25: sample h-i-index tree: one of two arguments indexed

The multiple occurrénces of a clause 7 only links to one compiled clause-code-version®!.
With this technique we index at most one argument: the first one which is deduced to be
bound. For example, the query £(2,X) is first tried to be indexed on the second (more
discriminative) argument, which cannot be indexed, and then on the first one, on which we
switch.

In our example this is one of the best h-i-index trees to approximate Sg,,,. None of our
WAM-based constraints can be applied to get a better approximation (since indexing the
second argument first results in a deterministic branch). But assume we know that the first
argument position is instantiated in 90% of the queries and the second only in 30%. Then it
would be clever to index first the first argument and then the second one. We then have the
problem that the first argument is not discriminative enough to give a deterministic result.
Only indexing additionally the second argument could result in a deterministic pruning of
the search space.

Ibecause of the separate compilation of index code and clause code, no code will be repeatedly produced

10.6 Improved Indexing II (not only one argument) 47

10.6 Improved Indexing II (not only one argument)

We first try to index the first argument position with a maximal partition3?. If we assume
to have a 1 at this position, then Sg is limited to the sequence < 1,3,4,6 > so the choice
is not yet deterministic. We know that in 30% of the queries the second argument is also
instantiated. So why not index this smaller set of clauses for the second argument position.
This method is called multi-argument indexing.

The following PROLOG-like representation will introduce the multi-argument indexing
method.

: £(X,Y):- bound(X), !, f1(X,Y).

: £(1,30). A no indexing
. £(2,10).

: £(1,20).

: £(X,50).

: £(4,70).

: £(1,80).

~N O U WD

(0]

: £1(X,Y) :- constantp(X), !, £f2(X,Y). % first-argument indexing
: £1(X,50).

©

11: £2(1,Y):- !, £3(Y).
12: £2(2,Y):- ', f4(Y).
13: £2(4,Y):- 1, £5(Y).
14: £2(X,50):- !.

15: £3(Y):- bound(Y), !, £6(Y). % second argument indexing
16: £3(30).
17: £3(20).
18: £3(50).
19: £3(80).

20: £4(Y):- bound(Y), !, £f7(Y). 4 second argument indexing
21: £4(10).
22: £4(50).

23: £5(Y):- bound(Y), !, £8(Y).
24: £5(50).
25: £5(70).

26: £6(Y):- constantp(Y), !, £7(Y).
27: £7(30):- .

28: £7(20):- !.
29: £7(50):- !.

32the block-variable-size is maximal

10.6 Improved Indexing II (not only one argument) 48

30: £7(80):- !t.

We want to explain this method by following the evaluation of the query £(1, 50). Firsl
we detect that the first argument is bound, so we can start indexing on it. The cut signals
that £1 finds all solutions if the first argument is bound. The search space is pruned dowr
to the clauses <1,3,4,6> (realize that the variable partition is merged in). The call for the

binding of the second argument could find the solution deterministically (only one clause

binds Y to 50). ;

Now we want to transform this PROLOG-like representation, step-by-step, into an h-i- mdem
tree.

The first clause contains the constraint bound(X). This means that we want to switch 1[
the first argument is bound. The graph for this constraint is a type box with the argument
1. The variable edge of the type box is linked with the h-i-index tree indexing all clauses
knowing that the first argument is unbound. Then we stop indexing and try sequentially
all clauses. This is represented by a try circle containing the clauses 1 to 6. l

The function called after we have detected that the first argument is bound, first tesfs
the constant constraint, which is represented as a constant box linked with the constan
edge of the type box. All other edges from the type box only try the variable partition
(clause 4). The constant box is divided into a number of new boxes containing possible
constants and a dummy box called else®*box. Each clause of the definition of the constani
case corresponds to a part of the constant box. The else box takes the variable partition
Last but not least, if the choice is not yet deterministic, we call an index function indexing
another argument with the reduced sequence of branching attempts. This is done the same
way as above.

We only follow the case that the first argument is the constant 1. The other cases are
built the same way. The difference between £3 and £7 is that in the case of definition £3 a‘
unification is needed for argument binding and in the case of definition £7 only a ma.tch1ng§
process takes place. So in the first case the solution is not deterministic but in the second
case it is (see the cut). In the h-i-index tree this is represented in the first case by a tryf
chain (not deterministic) and in the second case by a switch-box (deterministic).

The following h-i-index tree is the described one:

33the else box is the var case of the constraint box

10.6 Improved Indexing II (not only one argument) 49

canst

type 2 - : tvpe 2 ‘ | tyne 2

alb

const. 2 const 2

\. v

Figure 26: sample h-i-index tree: two arguments indexed

To finish the example we want to show the full h-i-index tree. It is a combination of
figures 24 and 26, a sequential and multi-argument indexing method. The PROLOG-like
representation now gets too large, but we think it is no longer needed for understanding.

r—

tyne

const

. v

Figure 27: sample h-i-index tree: fully indexed

In section 4 we have seen that fully indexed predicates can have an exponentially large
h-i-index tree. Three different methods try to limit the h-i-index tree in an “intelligent”
way.

.

11 RFM Indexing

The most difficult method uses the block variable size. In our experimental applicatio
in the ARC-TEC project we have found for each block variable size programs which ar
optimally®* compiled. We have found no, trivial interdependencies between chw and ¢

and the block variable size. So we cannot give a simple remedy how to set the block variab
size to get a more time efficient or more memory-space efficient code. This depends o
many still unknown factors.

The second method to reduce the size of the h-i-index trees is the well known tree shari
method. The gain of this method depends very much on the structure of the program an
the original h-i-index tree.

The last method is an “intelligent” limitation of breadth and depth of the h-i-index tr
. This means neither to set breadth and depth to zero® nor to set them to infinity® b
to choose a value in between in order to reduce the code size and optimize the run ti
efficiency as much as possible

We have found out that in real applications there are domain specific values for breadth an
depth (between 2 and 4) to reach such a behavior for h-i-index trees.

The result of our approach is always to index as many arguments as possible in a heuristi
deduced order and a user defined size. The user can manipulate the result with three syste
variables which limit the block-variable-size, the breadth and the depth of the h-i-index tr
So the user is able to control the ratio between cow and chw.

11.1 The Way of Compiling Index Code

We have jusi seen that the problem of compiling index code for PROLOG-like languag
can be divided into two parts.

First of all we extract index information from the data base and insert it in the classifi
clauses. This is described in [23].

This code must be compiled into WAM code in several steps:

e create a full h-i-index tree using all index information. The result is a h-i-index treg
with maximal breadth and depth.

e flatten the h-i-index tree and remove equal subtrees (tree-sharing).
e cut the h-i-index tree with respect to the user defined breadth and depth.
e expand the cut h-i-index tree with missing try-chains.

e translate the h-i-index tree into WAM code.

34optimal w.r.t. time and space A
35¢hen the size of the h-i-index tree is minimal but the run-time efficiency is worst case
36then the index tree size is maximal but the run-time efficiency is optimal

11.1 The Way of Compiling Index Code 51

11.1.1 Creating the Index Tree

This function only transforms the still PROLOG-like code (the classified clauses) into more
WAM-like code. The transformation is very simple and can be described as follows®":

A pblock is transformed into a try-trust-list
e A 1block is transformed into its corresponding clause-label

e An sblockis transformed into an h-i-index tree with the information of the argument
for which we index, the constant and structure subtrees and the list, nil and var
subtrees. List, nil and var subtrees are normal h-i-index trees, whereas constant
and structure subtrees are linked with h-i-index trees, labeled with the constant (or
structure) on which we index.

e An rblock is not indexed at all, so we generate a try-trust-list as for pblocks.

The disadvantage of this syntax is that we cannot share inner index trees.

11.1.2 Flattening the Index Tree

Therefore we flat the h-i-index tree. Each subtree is substituted by a label. The labels are
chosen in such a way that the same h-i-index trees have equal labels. Additionally, the set
of possible alternative evaluated clauses of an h-i-index tree (S¢g) is coded in its label.

We now can simply remove multiple occurrences of the same subtrees.

11.1.3 Cutting the Index Tree

The next step to reduce the size of the h-i-index tree is done by cutting the index tree at the
user defined breadth and depth. Therefore we follow each flow-path through the h-i-index
tree counting breadth and depth of each reached node and copy it into a new list if it is in
the defined range.

If we use this method it is possible that the resulting h-i-index tree has a breadth or depth
larger than defined. This is due to the tree sharing method. We allow to share h-i-index
trees on different levels. Assume we have an h-i-index tree of the following form (shadowed
circles represent the same h-i-index trees):

37For more details in the underlying syntax and semantics for the index part of the classified clauses see

(23]

11.1 The Way of Compiling Index Code

- | type 2

—p|type 3

—

type 4

\—

‘\

g

Figure 28: tree-sharing

Cutting the h-i-index tree at depth 3 without linking subtrees on different levels results itl

the following:

7

.

type 1

- | type 2

—p-| type 3

1

type 2

—_—

type 4

S

-cut-

L I " 8 = - = B = " = B ¥ B LI - - =8 a8 =8)

/ *<1lost subtree

Figure 29: cut h-i-index tree without tree-sharing

Allowing links on different levels gives us:

53

type 1] = |type 2]—>[type 3|—> type4—>©

type 2

-cut-

\. J

Figure 30: cut h-i-index tree with tree-sharing

In the second case we need less code but still get a more efficient program.

11.1.4 Expanding the Index Tree

Since the cut h-i-index tree is only a copy of the original tree without those branches out
of range, it is possible that some subtrees are lost. Now we can use the information about
the alternative clauses of the index trees coded in the labels to generate try-chains for the
lost subtrees.

12 Sample Session

In order to show all index features of the compiler we now want to introduce a larger
example and the solutions after each compilation step.

The example is the dnf-procedure which produces the disjunctive normal form of a logic
formula with the operators ’and’, ’or’ and ’not’.

We begin our example with the PROLOG program of dnf and its indexing header in the
classified clauses:

dnf(X, X) :- literal(X).

dnf(o[X, Y], o[X, Y]) :- literal(X), literal(Y).

dnf(alX, Y], alX, Y]) :- literal(X), literal(Y).

dnf(n[n(X]], W) :- dnf(X, W).

dnf(nlo[X, Y]], W) :- dnf(aln[X], n[Y]l]l, W).

dnf(nlalX, Y]], W) :- dnf(o[n[X], n[YIl]l, W).

dnf(o[X, Y], W) :- dnf(X, X1), dnf(Y, Y1), norm(o[X1, Y1], W).
dnf(al[X, Y], alalX1, X2], Y]) :- literal(Y), dnf(X, a[X1, X2]).
dnf(alX, Y], alalY1l, Y2], X]) :- literal(X), dnf(Y, alY1, Y2]).

54

dnf(al[X, Y], W) :- dnf(X, alX1, X21),
dnf (Y, alY1, Y21),

norm(ala[X1, X2, alY1, Y211, W).

dnf(al[X, Y], W) :- dnf(X, o[X1, X21),

dnf (Y, Y1),

dnf(o[alX1, Y11, a[X2, Y1]], W).
dnf(al[X, Y], W) :- dnf(X, X1),

dnf (Y, ol[Y1, Y2]),

dnf(o[a[X1, Y1], alX1, Y2]], W).

classified clauses (only index part):

55

((proc
dnf/2
12
(indexing
(sblock
(rblock
(clauses 1 23456 7
8 9 10 11 12)

(arg
1
(var x)
(struct o 2)
(struct a 2)
(struct n 1)
(struct n 1)
(struct n 1)
(struct o 2)
(struct a 2)
(struct a 2)
(struct a 2)
(struct a 2)
(struct a 2))
(arg
2
(var x)

(struct o 2)
(struct a 2)
(var w)
(var w)
(var w)
(var w)
(struct a 2)
(struct a 2)
(var w)
(var w)
(var w)))
(seqind
(arg
i
(info 3)
(const)
(struct
((o 2)
(clauses 1 2 7)
(sblock
(rblock (clauses 1 2 7)
(arg
2
(var x)
(struct o 2)
(var w)))
(seqind
(arg
2
(info 1)
(const)
(struct ((o 2)
(clauses 1 2 7)))

(list)
(nil)
(other (clauses 1 7))))))
((a 2)
(clauses 1 3 8 9 10 11 12)
(sblock
(rblock
(clauses 1 3 8 9 10 11 12)
(arg
2
(var x)
(struct a 2)
(struct a 2)
(struct a 2)
(var w)
(var w)
(var w)))
(seqind
(arg
2
(info 1)
(const)
(struct ((a 2) (clauses 1 3 8 9
10 11 12)))
(1ist)
(nil)
(other (clauses 1 10 11 12))))))
((n 1)
(clauses 1 4 5 6)
(pblock
(rblock (clauses 1 4 5 6)
(arg
2
(var x)
(var w)
(var w)
(var w)))
(1block (clauses 1) (arg 2 (var x)))
(1block (clauses 4) (arg 2 (var w)))
(1block (clauses 5) (arg 2 (var w)))
(1block (clauses 8) (arg 2 (var w))))))
(1ist) '
(nil)
(other (clauses 1)))
(arg
2
(info 2)
(const)
(struct
(o 2) (clauses 1 2 4 586 7 10 11 12))
((a 2) (clauses 1 34567 89 10 11 12)))
(1ist) '
(nil)
(other (clauses 1 456 7 10 11 12))))))
(fun*den

56

The compiler switches have the following values:
indexing on :min-clauses 2 :max-vars 10 :max-depth 1 :max-args 2 :debug off

The min-clauses switch is the minimal number of clauses which are tried for indexing by
the compiler. The max-vars switch is the variable-block-size. max-depth and max-args
are the compiler switches for the depth (and breadth) variables of the compiler. Last but
not least the first switch (with no name) is for allowing indexing or disallowing it.

In the following we abbreviate the constraints of the type-box in the index tree: ¢ is the
constant constraint, str is the structure constraint, ! is the list constraint, n is the nil
constraint and the else constraint is the link on the right side of the box (without name).

The index tree corresponding to the index header of the classified clauses is of the following
form:

7

1,2,3,4,56,
9,10,11

\

Figure 31: nested index tree

After flattening the index tree, multiple occurrences of same subtrees (like try-chain [1,2,7])
are now unique. Each subtree is a newly named index tree and links to subtrees refer to it
only by name.

57

~)
begin sl-or sl-and t2
| | Jpez tr-all
type 1 type 2 1,2,7 type 2 1,3,8..12
c:'f:ln cstrln/tr cstrln/tr calr] o
tr1,10..12 tr1,10..12
tr1,2,7 trl,7 ’ '
14,5, tr1,3,8..12tr1,10..12
sl-or sl-and trl,2..12 tr1,3..12 tr1,4..12
trl,2,7 trl,7 trl4,5,6 trl,3,8..12 tr1,10..12 trl,4..12 trl,3..12 trl,2..12 tr-all
@ O
\ J
Figure 32: flattened index tree
Since the depth switch is set to 1 and the breadth switch is set to 2, the cut index tree
looks like this:
(N\
befin t|2
tr-all
2 /
type 1 ctg In
cstrin \\\
\}m trl,4.1 tr1,4..12 trl,4..12
tr1,4,5,6/ \
tr12.7 trl1,3.8..12 tr1,2..12 tr1,3..12 tr1,4..12
\, J

Figure 33: cut index tree

We can now see that some links (i.e. [1,2,7]) are lost and so the index tree must be extended

by the corresponding try-chains:

befin
type 1
cstrln

trl,2,7 trl,3,8..12

trl,2,7 tr1,4,5,6 trl,3,8.12 tr1,4.12 trl12.12

14,5,6,
L

i
type 2 / tr-

cstrln

tr1,2..12 tr1,3..12 trl,4..12

trl,3..12
,3,4,5,6, 1,2,34,5,6,
8.9 10 11 18 8.9,10,11

Figure 34: extended index tree

the resulting index code is:

59

12.1 Interface

((set_index_number 1) zlab°157"
(switch_on_term 1 "label58" 1 1 "label50") try 1 2)
"label58" ' (retry 2 2)
(switch_on_structure (retry 3 2)

3 (retry 4 2)

(((o 2) "1label35") ((a 2) "label42") ((n 1) "label4d9")) (retry § 2)

1) (retry 6 2)
"label35" (retry 7 2)
(set_index_number 2) Ere:ry g g;
(switch_on_term "label36" "label59" "label36" "label36" "label38") .. c 1Y

"label59"
(switch_on_structure 1 (((o 2) "label38")) "label36")

(retry 10 2)
(retry 11 2)

"label36" (trust 12 2)
(try 1 2) "label53"
(trust 7 2) (try 1 2)
"label3s" (retry 2 2)
(try 1 2) (retry 4 2)
(retry 2 2) (retry 5 2)
(trust 7 2) (retry 6 2)
"label4q2" (retry 7 2)

(set_index_number 2)
(switch_on_term "label43" '"label60" "label43" "label43" "label45")
"label60"

(retry 10 2)
(retry 11 2)
(trust 12 2)

(switch_on_structure 1 (((a 2) "label45")) "label43") "labelb4"
"label43" (try 1 2)
(try 1 2) (retry 3 2)
(retry 10 2) Ere:ry ; 3;
(retry 11 2) retry
(trust 12 2) (retry 6 2)
“"label45" (retry 7 2)
(try 1 2) (retry 8 2)
(retry 9 2)
(retry 3 2)
(retry 8 2) (retry 10 2)
(retry 9 2) retry 11 2)
(trust 12 2)
(retry 10 2) e
(retry 11 2) (t: 61 »
(trust 12 2) y
"label49" (retry 4 2)
(try 1 2) (retry 5 2)
(retry 4 2) (retry 6 2)
(retry 5 2) (retry 7 2)
(trust 6 2) (retry 10 2)
"label50" (retry 11 2)

(set_index_number 2)
(switch_on_term "label51"™ "label61" "labelS51" "labelb1" '"labelS7")
"label61"
(switch_on_structure 2 (((o 2) "labelB53")
((a 2) "labelb54")) "labelb1")

(trust 12 2))

1

WAM-code for clauses

12.1 Interface

We have tried to operate between the modules for the classified clauses and the WAM-
compiler with an interface module: iif.Isp. All accessing operators for index information

from the index tree and the classified clauses are handled via this module.

60

The label generation is done with the LISP function gen-temp. Since it could be necessary
to expand a label to its corresponding try-chain, we always begin an index tree with its
indexed clauses (the sequence Sg).

A single detail in the switch-on-type instruction has been changed to allow indexing on
other arguments than the first one.

13 Comparisons

Our method is placed between the ordinary WAM indexing method and the complete
indexing method, but in any case free to be extended for complete indexing.

We have tried to implement the main features of complete indexing and quadratic indexing
and combine these researches with the WAM based compiler. Switches allow to relate the
different strong points of several methods (code-optimization versus run-time-optimization)

In large database-like programs (like many domain specific applications) we reach the same

performance as complete indexing (since they are nearly head deterministic) with not tog
much code-overhead in relation to no indexing.

14 Extensions

We now have to think about how to combine RELFUN-like features (like higher-ordé
operators) and PROLOG:-like features (like assert and retract) with indexing. The solutio
of the higher-order problem seems to be more a horizontal compilation problem rather thag
a problem on lower levels [5, 6].

But assert and retract is really a low-level problem. One simple solution is to allow ¢
indexing for asserted clauses, only trying them in any case with a try-chain:

4)

new

new

asserta assertz
\. J

Figure 35: extension: assert

This solution also ensures “correct”®® intended behavior concerning the semantic issues g

the program. Predicate calls after an assertion use the new definition; all calls to a predicat

38see [15]

61

before the assertion use the old definition. An example (using the SEPIA PROLOG system
[10]) illustrates this behaviour:

SEPIA Version 3.0.5, Wed Jul 25 16:33 1990 Copyright ECRC GmbH
[sepial: dynamic f/1.

yes.

[sepia]: [user].

£(1).

£(2).

£(3).

£(4) :- assert(£f(5)).

user compiled 296 bytes in 0.03 seconds

yes.
[sepial: £f(X).

X=1 More? (;)
X =2 More? (;)
X =3 More? (;)
X=4

yes.

[sepial: £(X).

X =1 More? (;)
X=2 More? (;)
X =3 More? (;)
X =4 More? (;)
X =25

yes

We can see that the first call of £/1 only returns the numbers form 1 to 4, even if the
assertion of a new clause changes the definition of £/1.

A clause can be retracted by only deleting its occurence in the index tree and recompiling
the index tree (possibly a “ghost” clause survive in the program which is never. tried).
In the following figure we see the fully indexed index tree of the example (simple 6-fact
procedure) after deleting clause number 4.

14.1

Improved Indexing III (not only main structure) 62

type 1
struct listl nillvar

[d 4%

— s>

const |

tvpe 2 type 2
i nillva onst ruct H nilk
v [l [l [f Tai] [[E @
const 2
\. fail ail ail

Figure 36: retract clause number 4

To ensure “correct” behavior of still called clauses we have to copy the index tree and
change the copy.

Another possibility is not to change the index tree but the program code. We can substitute
the complete clause code (which we want to delete) with the instruction fail. In this case
an “empty” clause is tryed in the index tree.

Then we not only have to copy the index tree but also the program code to save the old
definition.

We see that the first proposal takes advantage of head-informed index trees: the possibility
of separate compilation of index code and clause code.

14.1 Improved Indexing III (not only main structure)

Another problem is the extension of RFM indexing to complete indexing. This extension is
not difficult since instead of linking the index register to an argument register we can also
allow a link to any X-register which can be bound to any inner structure. The question is if
it makes sense to produce complete indexing code, since this code is a mixture of indexing
code and clause code and no local recompilation is possible (see assert and retract).

15 Benchmark Results

The next table gives an overview of three benchmarks®:

The first benchmark is the well known naive reverse benchmark.

39these benchmark results are not very exact, since run-time was taken by hand (our emulator has no
run-time-measure-predicate). In an experimental C implementation of the WAM the Unix function time
was used. We found out that the effect of indexing also depends on the low-level WAM implementation.

63

The second benchmark (dnf) is the complete program from section 12.

The third test was the NET benchmark. NET is an automatically generated tool-selection
program for ARC-TEC’s engineering domain. Its task is to select a cutting tool for a special
workpiece for a CNC-lathe machine.

Last but not least we test the well know naive reverse benchmark.

Since the v-WAM was conceived as a didactic prototype written in higher-level LISP, not as
a PROLOG product, the absolute values are not yet competitive with well known produc-
tion PROLOGsS. The average speed-up gained by indexing in our database-like applications,
however is a factor between 20 and 30. But even rather deterministic procedures like append
and reverse produce a speed-up of at least a factor of 2.

We are currently thinking of a lower-level version of our indexing scheme which should give
us competitive absolute speed.

64

\ test-name

test-environment

time |

nrev .

well known naive reverse benchmark
6 lines

arity of procedures: 2-3

SUN 4
125 MB RAM
no indexing

13 sec

SUN 4
125 MB RAM
indexing

7 sec

dnf :

tool from Hans Ginter Hein (see

[13])
105 lines
arity of procedures: 2-3

IVORY
LISP-BOARD

no indexing

84 sec

IVORY
LISP-BOARD
indexing

24 sec

SUN 4
125 MB RAM
no indexing

425 sec

SUN 4
125 MB RAM
indexing

120 sec

NET :
312 lines
arity of procedures 2-3

IVORY
LISP-BOARD
no indexing

288 sec

IVORY
LISP-BOARD
indexing

15 sec

SUN 4
125 MB RAM
no indexing

1460 sec

SUN 4
125 MB RAM
indexing

72 sec

Figure 37: run-time results

65

Part V
Appendix

A User Commands

ince indexing should be automatic the index-structure is hidden from the RELFUN user.
The only instruction to control indexing is:

indezing {on | off | :min-clauses <no> | :maz-vars <no> | :maz-depth <no> | :maz-args
<no> | :debug on | :debug off }

The effect of calling indering without any option is displaying the current settings.

The switches have the following effects:

on (off) switches indexing on (off),

:min-clauses <no> sets the minimal number of clauses for an indexable operator definition
to <no>,

:maz-vars <no> sets the maximal number of variables allowed in a constant block (block-
variable-size) to <no>,

‘maz-depth <no> sets the maximal depth of the index tree to <no>,

:maz-args <no> sets the maximal number of parallelly indexable arguments (index tree
breadth) to <no>,

:debug on (off): for internal use only

Mutually excluding options result in executing only the last one.

Example:

rfe> indexing
indexing on :min-clauses 2 :max-vars 10 :max-depth 3 :max-args 2 :debug off

rfe> indexing :min-clauses 3
indexing on :min-clauses 3 :max-vars 10 :max-depth 3 :max-args 2 :debug off

rfe> indexing :max-depth 4 :max-args 3 :max-depth 5
indexing on :min-clauses 2 :max-vars 10 :max-depth 5 :max-args 3 :debug off

B Program

We show the LISP function heads defined in the modules. A few algorithms are also
explaind (rather than giving the LISP definitions)

B.1 MODULE: IDX.LSP

B.2 MODULE: IIF.LSP 66

(defvar idx.*indexing* t)

(defun idx () ..)

(defvar idx.*dbg* nil)

(defvar idx.*min-no-of-proc-clauses* 2)
(defvar idx.*max-no-of-varsx 10)
(defvar idx.*maxdepth* 3)

(defvar idx.*numberofargs* 2)

(defun idx.show-idx-constants () ..)
(defun idx.idx-1cmd (paras) ..)

(defun idx.idx-cmd (paras) ..)

The variables are used to set the compiler switches; they are initialized with useful values.
The functions are all extensions of the RELFUN run-time-loop (for example the command
to set the compiler switches: indezing ...). This module should include all general functions
and variable declarations which are used from the RELFUN main-loop.

B.2 MODULE: IIF.LSP

(defun iif.number-or-nil-p (item) ..)

(defun iif.tag-of-idxtree (idxtree) ..)

(defun iif.s-label-f-idxtree (idxtree) ..)

(defun iif.s-label-f-lab+idxtree (idxtree) ..)

(defun iif.s-clauses-f-idxtree (idxtree) ..)

(defun iif.s-idxtrees-f-try-trust (try-trust) ..)
(defun iif.s-arg-f-indextree (indextree) ..)

(defun iif.s-sequindparts-f-indextree (indextree) ..)
(defun iif.if-s.0.?7.-sequindpart (sequindpart) ..)
(defun iif.s-s.o0.?.-f-sequindpart (sequindpart) ..)
(defun iif.s-idxtree-f-sequindpart (sequindpart) ..)
(defun iif.s-switchparts-f-sequindpart (sequindpart) ..)
(defun iif.s-atom-f-switchpart (switchpart) ..)

(defun iif.s-idxtree-f-switchpart (switchpart) ..)
(defun iif.s-clauses-f-clauses (clauses) ..)

(defun iif.mk-tree (class-proc) ..)

(defun iif.mapindex (blocks) ..)

(defun iif.mk-indextree (block)

(defun iif.seqind-list-car-cdr (block rest clauses) ..)
(defun iif.element-from-seqind-elementlist (element) ..)
(defun iif.mk_block_from_element (element)..)

This module is called indezing interface module. It should include all interface function:

and predicates to access the indexing information from the classified clauses or the inde;
tree.

B.3 MODULE: LINEAR.LSP

B.3 MODULE: LINEAR.LSP 67

(defun flatten-idx (idxtree) ..)

(defun iif.s-idxtree-f-indextree (indextree) ..)

(defun linearize (lab+idxtree list-of-idxtrees) ..)

(defun lin.unique (list-o-idxtrees) ..)

(defun lin.s-label-f-idxtree (idxtree) ..)

(defun lin.cut-down-next-one (list-o-idxtrees idxtree max-args max-depth) ..)
(defun lin.find-label (label list-o-idxtrees) ..)

(defun lin.cut-down (list-o-idxtrees next-label max-args max-depth) ..)
(defun lin.mk-try-trust-label-f-label (label) ..)

(defun iif.sub-label (idxtree idxtrees list-o-all-idxtrees) ..)

(defun lin.insert-t-t (list-o-idxtrees) ..)

(defun lin.insert-try-trust (list-o-idxtrees next-label) ..)

(defun iif.mk-label-f-idxtree (idxtree) ..)

(defun lin.search-try-trust-labels (idxtree list-o-idxtrees) ..)

(defun lin.search-idxtrees-f-try-trust (idxtree list-o-idxtrees) ..)
(defun lin.s-a-label (idxtree list-o-idxtrees) ..)

(defun lin.s-a-label-if-found (idxtree list-o-idxtrees) ..)

(defun lin.search-indextree-labels (idxtree list-o-idxtrees) ..)

(defun lin.s-indextrees-f-idxtree (idxtree) ..)

(defun iif.s-typetag-f-sequind (sequind) ..)

This module includes the code for generating, flattening, cutting and extending an index
tree from the index information of the classified clauses.

B.3.1 Algorithms

We show the algorthms for flattening, cutting and extending an index tree:

B.3 MODULE: LINEAR.LSP 68.ﬂ
o ;
Input : h-i-index tree A‘h
L := {}
next := {Input}
flatten:
V rees € next: _ label .
if ree is trycircle: gen-lab; L=L v [label.é abel } ; next=next v {ry-link , ..., try-link)
a a
- abel wa
if tree is type-box : gen-lab; L=L v {label. —~label };
—>laml e
aux(const-link)
= Faux(struc-link)
next= next v {nil-link, list-link, var-link}
retrun L;
aux:
next= next v {hashl-link, ... ,hash -‘link} H
R = {label. L Vs
T label pan
retrun R;
\.

Figure 38: flattening algorithm

Input :
L = {}

cut:

N= find(label,Input) ;
L=Lv N;

return L;

\

flatted h-i-index tree

cut (root-label, max-depth,max-breadth);

if (max-depth=0) or (max-breadth=0) STOP ;

cut (hagh -label,max-depth,max-breadth);
cut(var-label, max-depth,(max-breadth - 1));

if N is trycircle: cut(try-label ,{niax-depm - 1),max-breadth); ...; cut(try-label .(maxn-dep(h - 1).max-breadth) ;

if N is type-box: cut(nil-label,max-depth,max-breadth);
cut(list-lable,max-depth,max-breadth);
cul(hasp -label,max-depth, max-breadth);

Figure 39: cutting algorithm

B.3 MODULE: LINEAR.LSP

69

Input : flatted cutted h-i-index tree
L := {Input} .
next= {root-label};

extend:
Y labels ¢ next:

N= find(label.Input) ;

if Nis "not found" : L=L v glen-t:ry-trust(label);
else:L=L v N;

next=next v successors(N);

gen-try-trust:
clause .

return: [label.é)
L clausen

Figure 40: extending algorithm

B.4 MODULE: ICG.LSP

B.4 MODULE: ICG.LSP

(defun
(defun
(defun
(defun
(defun
(defun

The name of this module is: indezing codegenerator. Its task is to generate general WA)
index header code from a given index tree. This code is pushed in front of the compile
clause code. We assume that the label of a clause 7 is its number ¢ and there are no othe
numeric labels in the code. So calling the first clause of a definition is just a jump to labe

L

icg.mk-header (idxtree x1579) ..)
icg.mk-t-r-t-list-f-idxtrees (idxtrees x1579)
icg.gen-t-r-t (idxtree x1579 tag) ..)
icg.mk-s.o.t.-f-indextree (idxtree x1579) ..)
icg.gen_switch_on_? (sequind) ..)
icg.mk-symbol-label-f-idxtree (idxtree) ..)

C.2 dnf Benchmark 71

C Benchmark Sources literal(Y).
norm(o[X, Y], o[X1, Y]) :-

We now present the benchmarks used in sec- literal(Y),

tion 15. norm(X, X1).

norm(o[X, o[Y, Z]], W) :-
norm(o[o[X, Y], Z], W).

C.1 nrev Benchmark norm(o[X, alY1, Y2]], o[X1, Y12]) :-
norm(X, X1),
The nrev procedure is tested with a list of norm(alY¥1, Y2], Y12).
fifty elements. norm(a[X, Y], a[X1, Y]) :-
literal(Y),
norm(X, X1).

norm(a[X, alY, Z]1], W) :-
norm(ala[X, Y], 2], W).
norm(a[X, o[Y1, Y2]], a[X1, Y12]) :-
norm(X, X1),
norm(o[Y1, Y2], Y12).

nrev([],[]).

nrev([X|Y],Z) :- nrev(Y,Z1),
append(Z1,[X],2Z).

append([],L,L).

dnf (X, X) :- literal(X).
dnf(o[X, Y], olX, Y]) :-
literal(X),
literal(Y).
dnf(alX, Y], alX, Y]) :-
C.2 dnf Benchmark literal(X)
literal(Y).
dnf (n[n[X]], W) :- dnf(X, W).
dnf(n[o[X, Y]], W) :- dnf(al[n[X], n[Y]], W).

append([X1Y],L,[X|Z]) :- append(Y,L,Z).

We called this benchmark with the proce-
dure go4. Only the time for finding the first

solution is mesured. dnf(n[alX, Y]], W) :- dnf(o[n[X], n[Y]], W).
dnf(o[X, Y], W) :- dnf(X, X1),
dnf (Y, Y1),
literal(z0). norm(o[X1, Y11, W).
literal(z1). dnf(alX, Y], alalX1, X2], Y]) :-
literal(z2). literal(Y),
literal(z3). dnf (X, a[X1, X2]).
literal(z4). dnf(a[X, Y], alfalY1, Y21, X]) :-
literal(z5). literal(X),
literal(z6). dnf (Y, alY1, Y21).
literal(z7). dnf(al[X, Y], W) :-
literal(z8). dnf (X, a[X1, X21),
literal(z9). dnf (Y, alY1, Y2]),
literal(n[X]) :- literal(X). norm(ala[X1, X2], alY1, Y2]], W).

dnf(al[X, Y], W) :-
dnf (X, o[X1, X2]),

norm(X, X) :- literal(X). dnf(Y, Y1),
norm(o[X, Y], o[X, Y]) :- dnf(o[a[X1, Y1], alX2, Y1]], W).
literal(X), dnf(a[X, Y], W) :-
literal(Y). dnf (X, X1),
norm(a[X, Y], alX, Y]) :- dnf (Y, olY1, Y21),

literal(X), dnf(ol[a[X1, Y11, a[X1, Y211, W).

C.3 NET Benchmark

72

go1(X)

go2(X)

dnf(alz1,

alz2,
o[z3,

X).

alz4,

alz5, 2611111,

dnf(o[o[al[z1, z2], z3],

ola[z4,

X).

go3(X)

go4(X)

ala[z5, z6],
z7]],
o[z8, 29]]1],

dnf(alalz1l, alo[z2, 23], z4]],

a[z5, o[z6, z7]]],
X).

x)’
dnf (n[o[aln[o[z1, z2]],

dnf(n[o[a[nlo[z1, 22]],

nla[z3, z4]]1],
a [n [25] ’

olal[z6, a[z7, =z8]],

291111,

nl[a[z3, z4]]],

a[n[z5],

X3 .

o[a[z6, a[z7, z8]],

z9]111,

C.3 NET Benchmark

The run-time for finding the first solution of
the predicate call tool-selection(X,Y). is

given in the benchmark results.

t-isa(X, X).

t-isa(X, Y) :- tt-isa(X, Y).

tt-isa(X, Y) :- isa(X, Y).

tt-isa(X, Y) :- isa(X, Z), tt-isa(Z, Y).

isa(90, rechter).

is-leaf (90).
isa(0, spitz).
is-leaf(0).
isa(10, spitz).
is-leaf(10).

isa(20, spitz).
is-leaf (20).

isa(30, spitz).
is-leaf(30).

isa(60, spitz).
is-leaf (60).

isa(80, spitz).
is-leaf (80).

isa(180, stumpf).
is-leaf (180).
isa(150, stumpf).
is-leaf(150).
isa(140, stumpf).
is-leaf (140).
isa(130, stumpf).
is-leaf(130).
isa(100, stumpf).
is-leaf (100).
isa(stumpf, winkel).
isa(spitz, winkel).
isa(rechter, winkel).
isa(rund, nicht-eckig).
is-leaf(rund).
isa(quader, viereck).
is-leaf (quader).
isa(quadrat, viereck).
is-leaf(quadrat).
isa(viereck, eckig).
isa(dreieck, eckig).
is-leaf(dreieck).
isa(rhomb, eckig).
is-leaf (rhomb) .
isa(eckig, geometrie).

isa(nicht-eckig, geometrie).

isa(sl, stahl).
is-leaf(sl).
isa(s2, stahl).
is~-leaf(s2).
isa(s3, stahl).
is-leaf(s3).
isa(s4, stahl).
is-leaf(s4).
isa(s5, stahl).
is-leaf(s5).
isa(s6, stahl).
is-leaf (s6).
isa(k741, k74).
is-leaf (k741).
isa(k742, k74).
is-leaf (k742).

C.3 NET Benchmark

73

isa(k743, k74).
is-leaf(k743).
isa(k71, k7).
is-leaf (k71).
isa(k72, k7).
is-leaf (k72).
isa(k73, k7).
is-leaf (k73).
isa(k74, k7).
isa(k75, k7).
is~-leaf (k75).
isa(k76, k7).
is-leaf (k76).
isa(k77, k7).
is-leaf (k77).
isa(k78, k7).
is-leaf (k78).
isa(k79, k7).
is-leaf(k79).
isa(k710, k7).
is-leaf (k710).
isa(k21, k2).
is-leaf(k21).
isa(k22, k2).
is-leaf (k22).
isa(k23, k2).
is-leaf(k23).
isa(k24, k2).
is-leaf (k24).
isa(k11, k1).
is-leaf(ki11).
isa(k12, ki1).
is-leaf(k12).
isa(k13, k1).
is-leaf(k13).

isa(k1l, keramik).
isa(k2, keramik).
isa(k3, keramik).

is-leaf(k3).

isa(k4, keramik).

is-leaf (k4).

isa(k5, keramik).

is-leaf (k5).

isa(k6, keramik).

is-leaf(k6).

isa(k7, keramik).
isa(k8, keramik).

is-leaf(k8).

isa(k9, keramik).

is-leaf(k9).

isa(k10, keramik).
is-leaf(k10).
isa(stahl, material).
isa(keramik, material).
isa(hss, material).
is-leaf(hss).

tool-num(Wkl, Mat) :-
s-tool(Mat, Down-geo-1),
s-angle(Down-geo-1, Wkl),
s-position(Wkl, Mat),
numeric-test(Wkl, Mat).

mixed-selection(Wkl, Mat) :-
s-tool(Mat, Down-down-geo-1-1),
s-angle(Down-down-geo-1-1, Wkl),
s-position(Wkl, Mat),
s-wrk(Mat, Down-down-geo-2-1),
s-angle(Down-down-geo-2-1, Wkl),
s-position(Wkl, Mat),
s-lager(Mat, Geo).

h-selection(Wkl, Mat) :-
s-tool(Mat, Down-geo-1),
s-angle(Down-geo-1, Wkl),
s-position(Wkl, Mat),
s-wrk(Mat, Down-geo-2),
s-angle(Down-geo-2, Wkl),
s-position(Wkl, Mat).

tool-selection2(Wkl, Mat) :-
s-wrk(Mat, Geo),
s-angle(Geo, Wkl),
s-position(Wkl, Mat).

s-wrk(A, B) :- is-leaf(a),
is-leaf(B),
t-isa(A, si1),
t-isa(B, rund).

s-wrk(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(a, s2),

t-isa(B, nicht-eckig).

s-wrk(A, B) :- is-leaf(a),
is-leaf(B),

C.3 NET Benchmark ﬂ

t-isa(A, k12),
t-isa(B, rund).

s-tool(MatS, GeoS),
s-angle(Geo5, Wkl5),
s-position(Wkl5, Mat5).

10-tool-gelection(Wkl1l, Wkl2) :-

s-tool(Mat1l, Down-geol-1),
s-angle(Down-geol-1, Wkl1),
s-position(Wkl1l, Matl),
s-tool(Mat2, Down-geo2-1),
s-angle(Down-geo2-1, Wkl2),
s-position(Wkl2, Mat2),
s-tool(Mat3, Down-geo3-1),
s-angle(Down-geo3-1, Wk13),
s-position(Wkl3, Mat3),
s-tool(Mat4, Down-geo4-1),
s-angle(Down-geo4-1, Wkl4),
s-position(Wkl4, Mat4),
s-tool(Mat5, Down-geo5-1),
s-angle(Down-geo5-1, Wk15),
s-position(Wkl5, Mat5),
s-tool(Matl, Down-geol-2),
s-angle(Down-geol-2, Wkll),
s-position(Wkll, Matl),
s-tool(Mat2, Down-geo2-2),
s-angle(Down-geo2-2, Wkl2),
s-position(Wkl2, Mat2),
s-tool(Mat3, Down-geo3-2),
s-angle(Down-geo3-2, Wkl3),
s-position(Wkl3, Mat3),
s-tool(Mat4, Down-geo4-2),
s-angle(Down-geo4-2, Wkl4),
s-position(Wkl4, Mat4),
s-tool(Mat5, Down-geo5-2),
s-angle(Down-geo5-2, Wk15),
s-position(Wkl5, Mat5).

tool-selection(Wkl, Mat) :-
s~tool(Mat, Geo),
s-angle(Geo, Wkl),
s-position(Wkl, Mat).

s-lager(A, B) :- is-leaf(A),
is-leaf(B), .
t-isa(A, stahl),
t-isa(B, 100).
s-lager(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, keramik),
t-isa(B, 150).
s-lager(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, hss),
t-isa(B, 90).
s-position(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, stumpf),
t-isa(B, stahl).
s-position(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(a, rechter)
t-isa(B, keramik)
s-position(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, 10),
t-isa(B, ki1).
s-angle(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, viereck),
t-isa(B, 150).
s-angle(A, B) :- is-leaf(A),
is-leaf (B),

5-tool-selection(Wkl1l, Wkl2) :-
s-tool(Mat1, Geol),
s-angle(Geol, Wkl1),
s-position(Wkl1l, Matl),

s-tool(Mat2, Geo2),
s-angle(Geo2, Wkl2),

s-position(Wkl2, Mat2),

s-tool(Mat3, Geo3),
s-angle(Geo3, Wkl3),

s-position(Wkl3, Mat3),

s-tool(Mat4, Geo4),
s-angle(Geo4, Wkl4),

s-position(Wkl4, Mat4),

s-angle(A, B) :-

s-angle(A, B) :-

t-isa(A, viereck),
t-isa(B, 100).
is-leaf(A),
is-leaf(B),
t-isa(A, dreieck),
t-isa(B, 180).
is-leaf(A),
is-leaf(B),
t-isa(A, rund),

C.3 NET Benchmark

75

s-tool(A, B)

s-tool(A, B)

s-tool(A, B) :

s-tool(A, B)

t-isa(B, spitz).
is-leaf(A),
is-leaf(B),
t-isa(A, s2),
t-isa(B, eckig).
is-leaf(A),
is-leaf(B),
t-isa(A, s5),
t-isa(B, eckig).
is-leaf(A),
is-leaf(B),
t-isa(A, k1),
t-isa(B, nicht-eckig).
is-leaf(A),
is-leaf(B),
t-isa(A, ki12),
t-isa(B, rund).

76

D Extended Abstract

n the last few years PROLOG has changed its appearance from an experimental to a more
and more serious language. This is due to many people thinking about good compiling

techniques and useful extensions.[1] [29] We show that the use of simple control instruc:
tions based on the Warren Abstract Machine (WAM)[29] can speed up execution efficiency
enormously.

In a first part we introduce the idea of indexing and where it comes from. The difference
between DB-indexing methods and those for PROLOG-like languages are discussed. Then
the main advantages for indexing and their disadvantages are compared. As a result we show
that indexing changes the run-time and the memory management behavior of a PROLOG
emulator.

In a second part we give short theoretical background information about the general index-
ing problem.[11]

e First, index trees can increase to an exponential code size if constants and variabl
are mixed in a specific way in the argument positions of the heads of clauses. In thi
case a set of n clauses can be partitioned into two sets of (n — 1) and (n — 2) clauses
which are then used recursively to construct the child subtrees until the leaf of the
index tree corresponds to only a single rule.

e Second, for any reasonable definition of “optimal”, finding an optimal index tree
NP-complete. This could happen, if the index scheme provides indexing of inn
structures of arguments. In this case the problem of finding a minimal subset ¢
argument positions such that two rules do not unify in all positions of this set can
shown equivalent to the set-covering problem, which is known to be NP-complete.

Several possible indexing methods, different implementation techniques and a step-by-ste
introduction into our RFM-indexing method are given. Existing indexing methods can
grouped as follows:

1. hardware-oriented approaches|14]
(a) m-in-n-coding
2. software-oriented approaches (WAM-oriented)[14]

(a) general WAM-indexing[29]
(b) complete indexing

(c) shallow backtracking

(d)

d) quadratic indexing
We discuss three different possibilities for the implementation task:

1. horizontal transformation on PROLOG-level

REFERENCES 77

2. vertical transformation down to WAM-level

3. WAM-extensions

Our implementation of an indexing method is an amalgamation of (as we think) the positive
aspects of the software-oriented approaches and easy to extend with other features like
assert. In order to explain our method we introduce a new graphical representation for
general indexing methods. Step by step, beginning with a non-indexed example, we derive
a extensible, flexible, non-first, multi-argument indexing method.

In a short section we explain, why we call our indexing method an “intelligent” one. Heuris-
tics, which determine which argument position should be indexed, why, and in which order,
are presented.

Last but not least, we show benchmark results and give ideas for further work in this
area. We indicate that our method is able to handle features like higher-order operators
as well as assert and retract. We also discuss the idea of extending our technique to a
complete-indexing method.

References

[1] Hassan Ait-Kaci. The WAM: A (Real) Tutorial. Report 5, Digital, Paris Research
Laboratory, January 1990.

[2] Alain Callebaut Bart Demoen, Andre Marien. Indexing PROLOG Clauses. Jounal of
Logic Programming, page 1001 ff, 1989.

[3] H. Benker, J. Beacco, S. Bescos, M. Dorochevsky, Th. Jeffré, A. Péhlmann, J. Noyé,
B. Poterie, A. Sexton, J.C. Syre, O. Thibault, and G. Watzlawik. KCM*- A Knowledge
Crunching Machine. In Proceedings of the International Symposium on Computer
Architecture, Jerusalem, May 1989.

[4] Claude Berge. Graphs and Hypergraphs. North Holland Publishing-Company, 1973.

[5] Harold Boley. A Relational/Functional Language and Its Compilation into the WAM.
SEKI Report SR-90-05, Universitat Kaiserslautern, Fachbereich Informatik, April
1990.

[6] Harold Boley, editor. Beitrdige zum Arbeitstreffen iber WAM-Erweiterungen am DFKI
Kaiserslautern, number 91-2, Marz 1991.

[7] Harold Boley, Klaus Elsbernd, Hans-Guenther Hein, and Thomas Krause. RFM Man-
ual: Compiling RELFUN into the Relational/Functional Machine. Document D-91-03,
DFKI GmbH, 1991.

[8] Harold Boley and Michael M. Richter, editors. Proceedings of the International Work-
shop on Processing Declarative Knowledge (PDK’91), number 567 in Lecture Notes in
Artificial Intelligence (LNAI). Springer-Verlag, Berlin, Heidelberg, 1991.

REFERENCES 78

[9] K.L. Clark. Predicate Logic as a Computational Formalism. Report, Imperial College
of Science and Technology, December 1979.

[10] ECRC. SEPIA PROLOG 3.0: Manual. ICL, 1990.

(11] John Gabriel, Tim Lindholm, E. L. Lusk, and R.A. Overbeek. A Tutorial on the Warres
Abstract Machine for Computational Logic. Report ANL-84-84, Argonne Nationd
Laboratory, Argonne, Illinois 60439, June 1985.

[12] Hans-Glinther Hein. Adding WAM-Instructions to support Valued Clauses for the

Relational/Functional Language RELFUN. SEKI Working Paper SWP-90-02, Uni-i
versitat Kaiserslautern, Fachbereich Informatik, December 1989.

[13] Hans Gilinther Hein. WAM Indexing and Footening Techniques for RELFUN - A casé
study on the DNF benchmark. Discussion Paper 91-11, DFKI Kaiserslautern, August«!
1991. !

[14] Timothy Hickey and Shyam Mudambi. Global Compilation of Prolog. Journal ofLogiofI
Programming, 7:193-230, 1989. l

[15] ISO. PROLOG ISO-draft. electronic mail, 1992. |

[16] Robert Kowalski. Algorithm = Logic + Control. Communications of the ACM
22(7):424-436, July 1979.

(17] Thomas Krause. Klassifizierte relational/funktionale Klauseln: Eine deklarative Zwis
chensprache zur Generierung von Register-optimierten WAM-Instruktionen. SEKI
Working Paper SWP-90-04, Universitat Kaiserslautern, Fachbereich Informatik, Mal
1990.

[18] Thomas Krause. Globale Datenflussanalyse und horizontale Compilation der relal

ional-funktionalen Sprache RELFUN. Document D-91-08, DFKI GmbH, 1991.

[19] Thomas Krause. Program Transformations in a RELFUN subset. Diplomarbeit.!
Universitat Kaiserslautern, FB Informatik, March 1991. Also available as DFKE
Document. |

[20] Peter Kursawe. How to-invent a Prolog Machine. In E. Shapiro, editor, Third Interna

tional Conference on Logic Programming (ICLP), LNCS 225, pages 134-148, London;

July 1986. Springer Verlag '

3

[21) Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for prolog. Artificid
Intelligence, 23:295-307, 1984.

[22] Sven Olof Nystrgm. Nywam - a WAM emulator written in LISP.

[23] Michael Sintek. Indexing PROLOG Procedures into DAGs by Heuristic Classification,
DFKI document, DFKI GmbH, Forthcoming 1992.

[24] Werner Stein and Michael Sintek. A generalized intelligent indexing method. In Work:
shop “Sprachen fir KI-Anwendungen, Konzepte - Methoden - Implementierungen” i
Bad Honnef, 12/92-1. Institute of Applied Mathematics and Computer Science, Uni:
versity of Munster, May 1992.

REFERENCES 79

[25] Andrew Taylor. High Perfomance PROLOG Implementation through Global Analysis.
In Harold Boley Michael M.Richter, editor, International Workshop on Processing
Declarative Knowledge, 1991.

[26] Andrew Taylor. Lips on a Mips. Technical report, University of Sidney, AU, 1991.

[27] Peter Lodewige van Roy. Can Logic Programming Ezecute as Fast as Imperative Pro-
gramming. PhD thesis, University of California, 1990.

(28] Hans W. A Complete Indexing Scheme for WAM Based Abstract Machines. In Pro-
graming Language Implementation and Logic Programing, page 232 ff. 1992.

(29] David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, Menlo Park, CA, October 1983.

[30] David S. Warren. Database Updates in Pure Prolog. In International Conference on
Fifth Generation Computer Systems, pages 244-253, 1984.

[31] Maurer Wilhelm. Ubersetzerbau. Theorie, Konstruktion, Generierung. Springer
Lehrbuch, 1992.

Deutsches
Forschungszentrum
far Kdnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Verdffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen kénnen von der oben angegebenen
Adresse bezogen werden.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI

-Bibliothek-

PF 2080

D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.

The reports are distributed free of charge except
if otherwise indicated.

DFKI Research Reports

RR-92-14
Intelligent User Support in Graphical User
Interfaces:
1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle, Markus A. Thies
2. Plan-Based Graphical Help in Object-
Oriented User Interfaces

Markus A. Thies, Frank Berger
22 pages

RR-92-1§

Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations

23 pages

RR-92-16
Jochen Heinsohn, Daniel Kudenko, Berhard Nebel,
Hans-Jiirgen Profitlich. An Empirical Analysis of

Terminological Representation Systems
38 pages

RR-92-17

Hassan Ait-Kaci, Andreas Podelski, Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment

23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19

Ralf Legleitner, Ansgar Bernardi, Christoph
Klauck: PIM: Planning In Manufacturing using
Skeletal Plans and Features

17 pages

RR-92-20

John Nerbonne: Representing Grammar, Meaning
and Knowledge

18 pages

RR-92-21

Jorg-Peter Mohren, Jiirgen Miiller
Representing Spatial Relations (Part II) -The
Geometrical Approach

25 pages

RR-92-22
Jorg Wiirtz: Unifying Cycles
24 pages

RR-92-23

Gert Smolka, Ralf Treinen:
Records for Logic Programming
38 pages

RR-92-24

Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain

20 pages

RR-92-2§

Franz Schmalhofer, Ralf Bergmann, Otto Kiihn,
Gabriele Schmidi: Using integrated knowledge
acquisition to prepare sophisticated expert plans
for their re-use in novel situations

12 pages

RR-92-26

Franz Schmalhofer, Thomas Reinariz,

Bidjan Tschaitschian: Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems

16 pages

RR-92-27

Franz Schmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system

18 pages

RR-92-29

Zhaohui Wu, Ansgar Bernardi, Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach

13 pages

RR-92-30
Rolf Backofen, Gert Smolka

A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlister

Automatic Design of Multimodal Presentations
17 pages

RR-92-33

Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp Hanschke: Terminological Reasoning and

Partial Inductive Definitions
23 pages

RR-92-35

Manfred Meyer:

Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36

Franz Baader, Philipp Hanschke:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37

Philipp Hanschke: Specifying Role Interaction in
Concept Languages

26 pages

RR-92-38
Philipp Hanschke, Manfred Meyer:
An Alternative to ©-Subsumption Based on

Terminological Reasoning
9 pages

RR-92-40

Philipp Hanschke, Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes

17 pages

RR-92-41

Andreas Lux: A Multi-Agent Approach towards
Group Scheduling

32 pages

RR-92-42

John Nerbonne:

A Feature-Based Syntax/Semantics Interface
19 pages

RR-9243

Christoph Klauck, Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM

17 pages

RR-92-44

Thomas Rist, Elisabeth André: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP

15 pages

RR-92-45
Elisabeth André, Thomas Rist: The Design of

[llustrated Documents as a Planning Task
21 pages

RR-92-46

Elisabeth André, Wolfgang Finkler, Winfried
Graf, Thomas Rist, Anne Schauder, Wolfgang
Wahlster: WIP: The Automatic Synthesis of
Multimodal Presentations

19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach

towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48

Bernhard Nebel, Jana Koehler:

Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective

15 pages

RR-92-49

Christoph Klauck, Ralf Legleitner, Ansgar Bernardi:
Heuristic Classification for Automated CAPP

15 pages

RR-92-50

Stephan Busemann:

Generierung natiirlicher Sprache
61 Seiten

RR-92-51

Hans-Jiirgen Biirckert, Werner Nutt:

On Abduction and Answer Generation through
Constrained Resolution

20 pages

RR-92-52

Mathias Bauer, Susanne Biundo, Dietmar
Dengler, Jana Koehler, Gabriele Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-54

Harold Boley: A Direkt Semantic
Characterization of RELFUN

30 pages

RR-92-55

John Nerbonne, Joachim Laubsch, Abdel Kader
Diagne, Stephan Oepen: Natural Language
Semantics and Compiler Technology

17 pages

RR-92-56

Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader, Bernhard Hollunder:
How to Prefer More Specific Defaults in

Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On Principles

and Problems of Defeasible Inheritance
14 pages

RR-92-60

Karl Schlechta: Defaults, Preorder Semantics and
Circumscription

18 pages

RR-93-02

Wolfgang Wabhlster, Elisabeth André, Wolfgang
Finkler, Hans-Jiirgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and

Graphics Generation
50 pages

RR-93-03

Franz Baader, Berhard Hollunder, Bernhard

Nebel, Hans-Jiirgen Profitlich, Enrico Franconi:

An Empirical Analysis of Optimization Techniques

for Terminological Representation Systems
28 pages

RR-93-04

Christoph Klauck, Johannes Schwagereit:

GGD: Graph Grammar Developer for features in
CAD/CAM

13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination Tech-

niques and Decision Problems for Disunification
29 pages

RR-93-08

Harold Boley, Philipp Hanschke, Knut Hinkelmann,
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory

64 pages

RR-93-09
Philipp Hanschke, Jorg Wiirtz:
Satisfiability of the Smallest Binary Program

8 Seiten

DFKI Technical Memos

T™M-91-12
Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des

D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13

Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially
Evaluated Meta Interpreter

16 pages

T™M-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:

ODA-based modeling for document analysis
14 pages

TM-91-15

Stefan Busemann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

T™-92-01

Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werkstiickreprisentationen

34 Seiten

T™M-92-02
Achim Schupeta: Organizing Communication and

Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03

Mona Singh:

A Cognitiv Analysis of Event Structure
21 pages

T™M-92-04
Jiirgen Miller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages

TM-92-05

Franz Schmalhofer, Christoph Globig Jorg Thoben:
The refitting of plans by a human expeit

10 pages

TM-92-06

Otto Kiihn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures

14 pages

TM-92-08

Anne Kilger: Realization of Tree Adjoining
Grammars with Unification

27 pages

DFKI Documents

D-92-07

Susanne Biundo, Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08

Jochen Heinsohn, Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings

56 pages

D-92-09
Gernod P. Laufkétter: Implementierungsméglich-
keiten der integrativen Wissensakquisitions-

methode des ARC-TEC-Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter

Chart-Parser fiir attributierte Graph-Grammatiken
87 Seiten

D-92-11

Kerstin Becker: Moglichkeiten der Wissensmodel-
lierung fiir technische Diagnose-Expertensysteme
92 Seiten

D-92-12

Otto Kihn, Franz Schmalhofer, Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensakquisition zur
Fertigungsplanung fiir Drehteile: eine
Bildergalerie)

27 pages

D-92-13

Holger Peine: An Investigation of the
Applicability of Terminological Reasoning to
Application-Independent Software-Analysis
55 pages

D-92-14

Johannes Schwagereit: Integration von Graph-
Grammatiken und Taxonomien zur
Reprisentation von Features in CIM

98 Seiten

D-92-15

DFKI Wissenschaftlich-Technischer
Jahresbericht 1991

130 Seiten

D-92-16

Judith Engelkamp (Hrsg.): Verzeichnis von Soft-
warekomponenten fiir natiirlichsprachliche
Systeme

189 Seiten

D-92-17

Elisabeth André, Robin Cohen, Winfried Graf, Bob
Kass, Cécile Paris, Wolfgang Wahister (Eds.):
UMB92: Third International Workshop on User
Modeling, Proceedings

254 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten

Diagnose technischer Systeme
109 Seiten

D-92-19

Stefan Diutrich, Rainer Hoch: Automatische,
Deskriptor-basierte Unterstiitzung der Dokument-
analyse zur Fokussierung und Klassifizierung von
Geschiftsbriefen

107 Seiten

D-92-21

Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars

57 pages

D-92-22
Werner Stein: Indexing Principles for Relational

Languages Applied to PROLOG Code Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der

Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jirgen Miller, Donald Steiner (Hrsg.):

Kooperierende Agenten
78 Seiten

D-92-25

Martin Buchheit: Klassische Kommunikations-
und Koordinationsmodelle

31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit

Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27

Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning
in COLAB

40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell

zur Reprisentation von Nachrichtentypen
56 Seiten

D-93-01

Philipp Hanschke, Thom Frihwirth: Terminological
Reasoning with Constraint Handling Rules

12 pages

D-93-02

Gabriele Schmidt, Frank Peters,

Gernod Laufkstter: User Manual of COKAM+
23 pages

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fir Kiinstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all apiicable

1uawnoog ujaiS Jaudam
cc-¢c6-a "uollelauan apod HOTOHd o1 paiddy ssbenbue jeuonejay o) sajdioulld Buixapuj

	D-92-22-0001
	D-92-22-0002
	D-92-22-0003
	D-92-22-0004
	D-92-22-0005
	D-92-22-0006
	D-92-22-0007
	D-92-22-0009
	D-92-22-0010
	D-92-22-0011
	D-92-22-0013
	D-92-22-0014
	D-92-22-0015
	D-92-22-0016
	D-92-22-0017
	D-92-22-0018
	D-92-22-0019
	D-92-22-0020
	D-92-22-0021
	D-92-22-0022
	D-92-22-0023
	D-92-22-0024
	D-92-22-0025
	D-92-22-0026
	D-92-22-0027
	D-92-22-0028
	D-92-22-0029
	D-92-22-0030
	D-92-22-0031
	D-92-22-0032
	D-92-22-0033
	D-92-22-0034
	D-92-22-0035
	D-92-22-0036
	D-92-22-0038
	D-92-22-0039
	D-92-22-0040
	D-92-22-0041
	D-92-22-0042
	D-92-22-0043
	D-92-22-0044
	D-92-22-0046
	D-92-22-0047
	D-92-22-0049
	D-92-22-0051
	D-92-22-0052
	D-92-22-0053
	D-92-22-0054
	D-92-22-0055
	D-92-22-0056
	D-92-22-0057
	D-92-22-0058
	D-92-22-0059
	D-92-22-0061
	D-92-22-0062
	D-92-22-0063
	D-92-22-0064
	D-92-22-0065
	D-92-22-0067
	D-92-22-0068
	D-92-22-0069
	D-92-22-0070
	D-92-22-0071
	D-92-22-0072
	D-92-22-0073
	D-92-22-0074
	D-92-22-0075
	D-92-22-0076
	D-92-22-0077
	D-92-22-0078
	D-92-22-0079
	D-92-22-0081
	D-92-22-0083
	D-92-22-0084
	D-92-22-0085
	D-92-22-0086
	D-92-22-0087
	D-92-22-0088
	D-92-22-0089

