
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI Workshop
on

Document
D-93-03

Natural Language Systems:
Reusability and Modularity

Saarbrücken, October 23, 1992

Proceedings

Stephan Busemann, Karin Harbusch (Eds.)

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11, FRG
Tel.: (+49 681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens­
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a statt of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

DFKI Workshop on Natural Language Systems
Proceedings

Stephan Busemann, Karin Harbusch (Eds.)

OFKI -0-93-03

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-9002 0 und ITW-8901 8).

© Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notics. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

DFKI Workshop
on

Natural Language Systems:

Reusability and Modularity

edited
by

Stephan Busemann (DISCO)
Karin Har busch (WIP)

DFKI
Saarbrücken
October 23rd

1992

Preface

The DFKI internal workshop "Natural Language Systems" was held at the DFKI Saar­
brücken on the 23rd of October. It was attended by about 20 participants not only from the
DFKI but also from the University of the Saarland (e.g., the "Sonderforschungsbereich 314
- Künstliche Intelligenz und wissensbasierte Systeme", and the Computational Linguistics
Department) and the "Institut zur Förderung der Angewandten Informationswissenschaft"
(lAI).

As described below the program consisted of 10 talks of 20 minutes each with 5 minutes
for clarification quest ions. Three additional discussion sections were planned to collect
questions concerning modularity and reusability in other systems. These features were
emphasized in the subtitle of the workshop in order to focus the discussion on these topics.

In respect of the goal of discussing in detail collaborations within the DFKI, we asked
the speakers to touch on the following matters in their talks:

• Describe the general ideas of the approach, and detail the interfaces of the module
presented.

• Discuss the system 's coverage.

• Describe the status of development.

• Sketch relationships to other work in the DFKI, and assess prospects for collaboration
with other projects.

As another 'way of highlighting relations between DFKI projects and focussing on
prospects of cooperations, we ordered the talks to alternate those with an emphasis on
representation and those emphasizing processing aspects.

To summarize the final discussion, a central topic of common interest between the
DISCO and WIP groups was the translation of the Head-Driven Phrase Structure Gram­
mar (HPSG) developed in DISCO into a Tree Adjoining Grammar (TAG) which can be
used in the senten ce generator TAG-GEN in WIP and potentially in the successor project
VERBMOBIL.

Processing based on the DISCO grammar could be more efficient by compiling a "per­
formance grammar" out of the high-level specification. A step in this direction can be
seen in the translation of an HPSG grammar into a TAG grammar proposed by Robert
Kasper from Ohio State University at the last TAG workshop (June 24th to 26th, 1992,
University of Philadelphia). From the perspective of the TAG-GEN group within WIP, the
quest ion whether the resulting TAG grammar can be integrated into WIP's incremental
senten ce generator is essential; i.e., can the transformed HPSG grammar be used directly
for incremental processing?

The quest ion of how the HPSG principles can be translated automatically into TAG
trees was answered during the discussion. It is apparently the case that the principles in

11l

the DISCO gramm ar are sufficiently local to be transformed into the domain of locality in
TAGs.

In the general discussion on reusability and modularity, one concern was consideration of
concrete module reuse between projects. So for NLL, the semantic representation language
developed in DISCO, strong evidence was presented that it could be adapted to WIP's
purposes. WIP processing requires elaborate representation and manipulation tools for
speech acts. One suggestion was that this kind of information can be integrated into NLL.

Another candidate for a reusable module is the presentation planner developed in the
WIP project to generate multi modal documents, which is based on Rhetorical Structure
Theory (RST). It was suggested to investigate an adaptation of this module for the dialogue
planner in the DISCO system.

On a more general level, the question arose in discussion just what should count as a
module. It was argued that the interface to a new application system should be encapsu­
lated as a module. An example of a step towards the realization of this idea is the use of
compiler techniques as realized for the NLL module. In the discussion the terms 'reusabil­
ity' and 'modularity' were not restricted to software but were also applied to methods and
algorithms in general.

The discussion section ended with a list of intended next steps towards collaboration:

• Work on the translation of HPSG into TAG will be initiated during the stay of Robert
Kasper from November 2nd to 18th as guest of the DISCO and WIP projects.

• For NLL the extension to elaborated speech act representations will be tackled.

• WIP's presentation planner will be checked to see whether it can deal with the specific
dialogue information needed in DISCO.

Stephan Busemann and Karin Harbusch

IV

VVorkshop Programme

9.00 - 9.25 Klaus Netter
Structure and Coverage of the DISCO Grammar

9.25 - 9.50 Judith Klein, Ludwig Dickmann, Abdel Kader Diagne, John
and Nerbonne, Klaus Netter
DiTo - A Diagnostic Tool for Syntactic Analysis

9.50 - 10.20 Break

10.20 - 10.45 Anne Kilger
Incremental Generation with Tree Adjoining Grammars
in the WIP System

10.45 - 11.10 Walter Kasper
Integration of Syntax and Semantics in Feature Structures

11.10 - 11.35 Wolfgang Finkler
Effects of Incremental Output on Incremental Natural
Language Generation

11.35 - 12.00 Discussion

12.00 - 13.30 Lunch

13.30 - 13.55 Elisabeth Andre
An Extended RST Planner for the Generation of Multi-
Modal Presentations

13.55 - 14.20 John Nerbonne, Karsten Konrad, logo Neis, and Stephan Oepen
NLL - Tools for Meaning Representation

14.20 - 14.35 Discussion

14.35 - 15.05 Break

15.05 - 15.30 Karin Harbusch
Lexical Choice U nder Constraints

15.30 - 15.55 Stephan Busemann
Configuration of Generation Systems

15.55 - 16.20 Günt~r Neumann
Principles and the Current Status of the COSMA
Architecture

16.20 - 16.35 Discussion

16.35 - 17.00 Break

17.00 - 18.00 Final Discussion

v

Architecture and Coverage of the

DISCO Grammar

Klaus Netter *

Abstract

In this paper we give a rough sketch of the German grammar that was devel­
oped in the DISCO project. The description also includes some characteristks of
the gramm ar formalism and of the various processing components corresponding to
different descriptive layers in the grammar.

1 General Characteristics

The DISCO grammar is a German grammar whose syntactic part was developed by K.
Netter (with support by J. Nerbonne) and which has an integrated semantic representa­
tion developed by J. Nerbonne and W. Kasper [Ner92], [Kas93]. The style of the grammar
follows very much the spirit of Head Driven Phrase Structure Grammar (HPSG) [PS87],
[PS93]. However, it also incorporates insights from other gramm ar frameworks (e.g., cat­
egorial grammar) and extensions to the theory which are not yet part of standard HPSG.
The grammar is implemented in a formalism called Type Description Language (TDL)
which was developed by H.-U. Krieger and U. Schäfer [SK92].

The grammar provides interfaces to a morphological component and to a speech act
recognition module which operates on syntactic and semantic information [HS93]. The
feature structure representation of the semantic representation can be translated directly
into the meaning representation language N!!. Alternatively, the translation module can
operate on the output of a speech act recognition module [NOD+93].

The grammar is at present mainly used for a system modelling discourse between coor­
perative agents. It provides the NL front end to the COSMA system (COoperative Schedul­
ing Management Agent) whose application domain is appointment scheduling [NOS93].

2 Formalism

The grammar (along with the speech act recognition module and parts of the morphological
component providing the grammar input) are written in the typed feature formalism TDL,

°The research underlying this paper was supported by a research grant, FKZ ITW 9002 0, from the
German Bundesministerium für Forschung und Technologie to the DFKI project DISCO.

1

which incorporates the unification engine UDINE developed by R. Backofen. TDL is the
exclusive formal device employed to specify grammar rules, lexical entries and aH other
linguistic knowledge relevant for the grammar. At present, specifications in TDL result in
fuHy expanded feature structures which are then processed by various modules.

In TDL, typed feature structures can be defined through simple or multiple inheritance
relations. TDL performs fuH type expansion at compile-time, i.e., if in a type definition a
type inherits from other types or if the value of an attribute is restricted to a type, these
types are replaced by the associated feature structures with only limited simplification. 1 In
addition to the type hierarchy, TDL also provides parameterized templates as an integrated
descriptive device. The parameter specifications of these templates can be exploited to
specify feature structures which differ in only few (typicaHy deeply embedded) values, as
for example with classes of lexical entries.

Unification of feature structures in TDL and elsewhere in the system is executed by
the unfier UDINE, which presumably is one of the most comprehensive unifiers so far
implemented. It comprises fuH negation, including negation of co-references, and fuH dis­
junction. UDINE provides for so-called distributed disjunction through which disjunctive
information can be kept as local as possible in the structural specification. The main ad­
vantage of distributed disjunction is that it helps to avoid the translation of structures
containing disjunctions into a disjunctive normal form, which, given the size of structures
in question, could lead to a serious efficiency problem. UDINE has a mechanism for treat­
ing values defined by functional constraints. Future extensions of the unifier will allow one
to formulate and apply preferences in the processing of conjunctive and disjunctive feature
specifications.

3 Levels of Processing

Linguistic specifications of the DISCO grammar are processed by four different modules,
which, except for the morphology, were implemented by B. Kiefer:

• a scanner preprocessing the input string;

• a morphological component mapping strings into feature structures;

• a lexical component performing the lexicon lookup;

• the actual parser yielding as output a feature structure containing parallel morpho­
logical, syntactic, semantic and pragmatic information.

Scanner The scanner for the text input is implemented in LEX and YACC and prepares
the string for further processing. Among its tasks are recognition of special characters,
normalization of capitalization, recognition of sentence boundaries, and segment at ion of
the string into tokens which are then passed on to the morphology. The scanner can expand

1 Partial or delayed type expansion, the incremental definition of types, negation, disjunctive types and
partitioning are going to be available in the highly extended functionality of the forthcoming TDL redesign.

2

abbreviations into their fu1l forms, as for example "h" into "Uhr", "Jan." into "Januar",
etc. For tokens algorithmically encoding their denotat ions the scanner also performs a
morphological analysis by assigning a feature structure to them. Such tokens are, above
all , cardinal and ordinal numbers, e.g., "12" and "12.", but also complex time and date
expressions, such as "14:31:15" or "12.03.1993".

Morphology The morphological component receives as input those tokens which have
not been analysed by the scanner. It produces as output a feature structure which contains
as a key or index the lemma of the respective item in its STEH attribute, as weIl as other
relevant morphosyntactic information which uniquely identifies the form. For example, the
output for the forms "alter" and "kam" is the following feature structures.

(1)

STEH (alt)

[

INFL adj -er]
HEAD COMPAR po~

CAT adJ
(2)

STEH (komm)

CAT verb

[
NUM sg 1

HEAD I FIN I AGR PERS {1,.9}

TENSE past
MOOD ind

Figure 1: Feature structure output of morphology

At present, the morphological information is precompiled into a morphological full form
lexicon, so that runtime analysis reduces to the lookup of full forms and the initialization
of the lexical component with the associated feature structures. The precompilation is
performed by the X2MORF system developed by H. Trost and R. Flassig [Tr091]. Part
of this system was redesigned by H. Pirker, with the results that the feature part is now
also specified in TDL, and that the morphology can be integrated into the system for a
full runtime analysis.

Lexical Component The task of the lexical component is to perform lexicallookup on
the output of the scanner and morphology, and to apply lexical rules to the result.

The lexical entries (lemmata) of the grammar are indexed by the values of the STEH
features which occur in the output of the morphology. In the simplest case, the matching
indices are identified and the morphological feature structure is unified into the correspond­
ing lexical entry (or entries). However, there is also the more complex case of so-called
multi-word lexemes which match not a single morphological structure but a finite list of
morphological structures. All but one STEH feature and any other feature in such a mor­
phological sequence may be underspecified.

After the morphological information has been unified with the lexcial information, lex­
ical rules are applied to all suitable lexical structures in the output. The lexical rules are
declaratively specified as unary phrase structure rules, which map a morphological struc­
ture together with the underspecified lexical entry onto a fully specified lexical structure,

3

which is then fed as a terminal node to the parser. We will come back to the precise
structure of the lexicon in the next section.

Parser The parser is a bidirectional bot tom up chart parser which operates on a context­
free backbone implicitly contained in the grammar. The parser provides parametrized
general parsing strategies, as wellas giving control over the processing of individual rules.
For example, it is possible to set the control strategy to a breadth first strategy, to give
priority to certain rules, or to determine in which order types of daughters, e.g., head
daughters, adjunct daughters etc., as weB as individual daughters in a specific rule are
processed. In addition, the parser provides the facility to filter out useless tasks, i.e., tasks
where a rule application can be predicted to fail eventually due to an inevitable unification
failure. So me of the filter information is hand-coded at present, but great care was taken to
ensure that aB necessary information for the parser could also be automatically gathered
from the grammar.

4 Structures of the Grammar

The grammar basically distinguishes five different types of structures, all of which are of
course described as typed feature structures in TDL:

• Lexical Entries

• Multi-Word Lexemes

• Lexical Rules

• Phrase Structure Schemata

• Root Node

These types of structures represent the yield of the sublattice which is rooted in the
HPSG type sign. Thus, certain type specifications, such as categorial specifications, prin­
ciples or immediate dominance schemata can be shared across different types of structures
through inheritance links.

Lexical Entries are feature structures which qualify as terminal no des either of a phrasal
or of a lexical rule. The majority of the lexical entries are lemmatized entries, such that
for each morphological stern there exists only one lexical entry (modulo homonymity). As
already mentioned lexical entries are unified with morphological information in the lexical
lookup step. Lexical entries come in two different types, as full-ßedged lexical entries and
as arche-lexemes.

For those categories where there is hardly any variation over astern, except for the in­
formation carried by inftectional morphology, the lexical entry is fully specified and marked
as a possible terminal to a phrasal rule. These categories comprise nouns, prepositions,

4

adverbs, and other kinds of particles.2 Example (3) shows the entry for a noun in which
some of the necessary head features, such as CASE, GEHDER and NUMBER, are introduced
through a corresponding morphological structure.

(3) I CAT

sm LOCAL

SEM

HEAD [MAJ[t~ll
SUBCAT ()
LEXICAL +

MORPH ([STEM (kUnde)])
HEAD []

Figure 2: Fully specified lexical entry of noun

Next to these, there are also categories, such as verbs and adjectives, for which some
syntactic properties vary as a function of their morphological inflection. For example, a
verb is assigned different syntactic properties depending on whether it occurs as a finite
tensed form, as a non-finite form or as an imperative. Similarly, adjectives have different
infiectional endings depending on whether they have attributive, predicative or adverbial
function. For these categories, the lexical entries are defined as arche-lexemes to which
lexical rules must be applied. The entries for these arche-Iexemes are either radically
underspecified or may contain information which is "transformed" by a lexical rule. For
example, the entries for adjectives (4) are underspecified with respect to whether the form
is eventually used as a modifier or as a (predicative) complement. The entries for verbs,
on the other hand, may have an "overextensive" subcategorization list, which may be
reduced, for example, by a lexical rule deriving imperatives or non-finite forms with a
non-overt subject.

Empty terminal nodes are defined as specific types of lexical entries which do not
correspond to morphologically realized material. They are represented as feature structures
just like any other terminal, i.e., there may be more than one empty terminal, they may
carry category specific information etc. The use of empty terminals in the current grammar
is limited to the derivation of some specific constructions, such as V-initial or empty noun
anaphora; they are not employed in the derivation of non-Iocal dependencies.

Multi-Word Lexemes differ from other lexical entries only in their MORPH feature, which
is specified as a list with more than one morphological structure. Multi-word lexemes serve
primarily for the specification of expressions for which one does not want to assurne a com-

2We ignore or considerably simplify the representation of semantic information here and in the following.

5

(4) CAT

SYN LOCAL

SEM

HEAD [KAJ[: !J]
SUBCAT ()
LEXICAL *nil*

MORPH ([STEH (alt)])

Figure 3: Entry for adjectival arche-lexeme

positional semantics, or which follow very idiosyncratic syntactic construction rules. Multi­
word lexemes are mapped onto a sequence of morphological structures with a fixed length.
Except for one STEM feature any other element in this pattern may be underspecified.

Phenomena which can be profitably described by multi-word lexemes are idiomatic and
phraseological expressions, such as salutations, like Sehr geehrte Herren, or the sublanguage
of dates and time expressions, as in Dienstag, der 19. Januar 1999. In example (5), time
expressions such as 14 Uhr 45 are described. The values of the two cardinal numbers
are underspecified and coindexed with attributes in the semantic structure representing a
generalized time predicate.

HEAO
SYN LOCAL

SUBCAT
LEXICAL +

(5) CAT

SEM [:~: [bme]
MIN m
([

STEM (Cardinal)] [STEM (uhr)] [STEH (Cardinal)])
MORPH HEAD[VALUE []] , HEAO[NUM Sg] , HEAO[VALUE 1]]] ,

np

Figure 4: Multi-word lexeme

From the phrase structure perspective, multi-word lexemes look exactly like any other
terminal node. Since any terminal may be defined to correspond to the category of a
phrasal node, say NP or even S, the "lexical" grammar for these sublanguages blends in
neatly with the the more general rule schemata defining regular constructions.

6

The major advantage of this device is accordingly that it allows one t,o constrain the
description of very specific and exceptional sublanguages to the local domain of the lexicon.
The introduction of additional, idiosyncratic rule schemata, which could always have global
side effects, can be avoided. Thus, it is almost fully at the discretion of the grammar writer
to describe a (non-recursive) pattern by means of phrase structure or else to employ a
multi-word lexeme; and to choose where to draw the boundary between the two types of
description.

Lexical Rules in our system basically have the form of unary phrase structure rules.
These rules can be seen as mapping rules, which take as arguments the specifications of a
morphological full form unified with the lexical entry of a corresponding arche-lexeme and
map them to fully specified lexical structures, qualifying as the terminal nodes of phrase
structure schemata.

As mentioned above, the specification of an arche-lexeme represents the generalization
over all the fully specified forms of a given lemma, where this is possible. Thus, in contrast
to lexical rules as they have been suggested in, say, LFG, where lexical rules operate on
fully specified lexical entries, the input to our lexical rules can be underspecified. By means
of lexical rules one can also model non-monotonie processes in the derivation of a lexical
item, since the specifications in the daughter of the rule do not have to be identical with
the information specified in the mother category. For example, through a lexical rule the
subcategorization requirements of an arche-Iexeme can be modified as they are derived
from an arche-lexeme. Since lexical rules are defined declaratively and do not differ from
any other unary phrase structure schema, they can be applied at run-time without any
restrietions on ?rder in which they are processed.3

In (6), we give as an illustration the lexical rule deriving an attributive adjective from
an adjectival arche-lexeme (e.g., (4) above), together with an appropriately inflected mor­
phological form (e.g., (2) above). The effects of this rule are basically monotonie, since it
does not change information in the HEAO or SUBCAT features of the arche-lexeme. However,
it introduces a large amount of information that would otherwise have to be encoded re­
dundantly in the individuallexical entries. In the distributed disjunction (marked $1) the

' relevant agreement features are added; they are selected as a function of the inflectional
ending of the adjective (as specified by the INFL feature). The rule also introduces the
relevant MOO feature through which a nominal projection is selected in adjunction, and the
specification that this form has to be used non-predicatively [PRO -].

Rule Schemata In standard HPSG, rule schemata are defined as immediate dominance
schemata constraining the phrase structure in combination with linear precedence rules.
Phrase structures additionally have to satisfy certain principles, such as the Head Feature

3In these latter aspects our approach presumably differs from a suggestion by Andreas Kathol to define
arche-lexemes as (generalized) supertypes to which the individual full-forms are defined as ~ubtypes. As
far as we can see, Kathol's approach would require pre-compilation or classification for analysis, as weil as
non-monotonie inheritance for the representation of changes in a lexical specification .

7

(6)

CAT
SYN [LOCAL[:~~AT W]

LEXICAL + J
SEM
MORPH 0

SYN
HEAD

LOCAL

MAJ [~ !]
PRO -

ITJ { er-agr[]}
AGR $1 ~~~gr[]

HEAD-DTR CAT MOD np[]

SUBCAT l1J
LEXICAL *nil*

SEM

([{
adj-er}])

MORPH 0 HEAD INFL $1 ~.d~-e

Figure 5: Lexical Rule for Attributive Adjectives

Principle (HFP) or the Semantics Principle, which are encoded as implicational constraints
over typed feature structures.

Dur grammar differs from this setup insofar as the application of both LP-constraints
and principles are encoded as inheritance relations in the type lattice. To be precise, the
antecedent of an implication, say the type headed-structure in the HFP, is defined as a
subtype to a type which specifies the consequent of the principle. The individual phrase
structure rules are then defined as subtypes of a more general rule schema, of an appropriate
LP-constraint, as well as of all applicable principles. For example, a rule specifying the
combination of a non-verbal head (preposition, determiner or noun) with a complement
would be defined as a subtype of a general head-complement schema, of an LP-constraint
specifying that non-verbal heads precede their complements, and of the types representing
the Head Feature Principle and that part of the Semantics Principle which appl~es to head
complement structures.

The rules in the current grammar are all defined as binary branching structures, which,

8

on the one hand, complicates the specification of more global word order constraints some­
what, but also considerably simplifies the description of other phenomena, such as the
interleaving of adjuncts and complements.'4

Root Node All structures recognized by the parser have to unify with a specific feature
structure at their root (equivalent to a start symbol). One function of this root node is to
impose certain general, category unspecific well-formedness constraints on structures, such
as, for example, full saturation of the subcategorization list or functional completeness.

The way we employ this device does not constrain permissable phrases to the category
sentence, but permits maximal projections of all major categories to pass as weIl-formed
express ions on their own. It also provides the interface to the speech act recognition module
by coIlecting relevant syntactic, morphological and semantic information under a specific
feature. The value of this attribute represents feature configurations which identify possible
sentence types, such as Yes/No-Question, Imperative, Declarative sentence, etc.

5 Coverage of the Grammar

The coverage of the grammar comprises a fair number of the standard constructions of
German, as weIl as more detailed coverage in so me specific areas.

On the level of nominal phrases, the grammar contains a quite comprehensive descrip­
tion of the different combinations of specifiers-determiners and numerals-and their mor­
phosyntactic interaction with adjectives. The set of possible nominal modifiers comprises
prenominal simple and complex adjectival phrases, postnominal prepositional phrases, ad­
verbs and possessives. Determinerless constructions, such as bare plurals and mass nouns
and the complementary phenomenon of nominal ellipsis or empty nominal heads are cov­
ered in an integrated analysis [Net93].

Adjectival categories may occur as simple and complex adjective phrases in attributive,
predicative and adverbial functions. Prepositional Phrases may be headed by simple or
agglutinated prepositions (like am) and may have the functions of adverbials, complements
and predicatives. The same holds for genuine adverbs.

The different types of verbs covered include main verbs, modal verbs, copula verbs and
separable prefix verbs, aIl of which may occur in all finite forms as weIl as the bare infinitival
form. The extension to other non-finite forms is to a large degree already foreseen and
trivial to achieve. The subcategorization frames of verbs may contain all kinds of nominal,
prepositional and adjectival complement.

On the clause level all possible positions of the finite verb can be analyzed. Non-Iocal
dependencies are limited to topicalization (or left-dislocation) of complements of adjuncts
in the "Vorfeld" including also non-verbal pied piping constructions. (There is no treatment
for extraposition or right-dislocation, yet.) The analysis of these constructions does not
involve empty nodes but operates on a mechanism similar to lexical rules. Currently, the
order of complements in the "Mittelfeld" is fixed to a basic order; however, complements

4See lNet92] for a discussion of clausal structures.

9

may be freely mixed with adjuncts. Clause union phenomena are partially covered, so
that, for example, negation particles may take wide or narrow scope over modal verbs.
All major sentence types (Y /N- and Wh-interrogatives, imperatives and declaratives) are
covered and appropriately classified.

Among the various areas in which the gramm ar still falls short of our goals are two
in which we hope to be able to make significant extensions in the near future. These are
a more comprehensive treatment of non-finite constructions (including passivization and
attributive participle formation), and the entire field of complex sentences.

References
[HS93]

[Kas93]

[Ner92]

[Net92]

[Net93]

Hinkelman, E . / Spackman, S. P. : Abductive Speech Act Recognition and the COSMA
System . In: Black, W. / Gallagher, J . / Sabah, G. / Wachtel, T . (eds.), Proceedings of the
Second ESPRIT PL US Workshop in Computational Pragmatics, New York, 1993. Academic
Press

Kasper, W.: Integration of Syntax and Semantics in Feature Structures. This volume

Nerbonne, J. : Constraint-Based Semantics . In : Dekker, P. / Stokhof, M. (eds .), Proceedings
of the 8th Amsterdam Colloquium , pp . 425-444 . Institute for Logic, Language and Computa­
tion, 1992 . also DFKI RR-92-18

Netter, K. : On Non-Head Non-Movement . An HPSG Treatment of Finite Verb Position in
German . In : Görz , G . (ed.), Proceedings of KONVENS 92. Springer, Berlin/Heidelberg/New
York, 1992

Netter, K. : Towards a Theory of Functional Heads: German Nominal Phrases . In : Ner­
bonne, J. / Netter , K. / Pollard, C. (eds.), German Grammar in HPSG. Chicago University
Press, Chicago, 1993

[NOD+93] Nerbonne, J. / Oepen, S. / Diagne, A. K. / Konrad, K. / Neis, I. : ...vCC-Tools for
Meaning Representation . This volume

[NOS93] Neumann, G. / Oepen, S. / Spackman, S. P.: Design and Implementation of the
COSMA System. Technical report, Deutsches Forschungszentrum für Künstliche Intelligenz,
Saarbrücken, Germany, 1993

[PS87] Pollard, C. / Sag, I.: Information-Based Syntax and Semanties. Vol. I: Fundamentals .
CSLI Lecture Notes, Number 13. Center for the Study of Language and Information , Stanford,
1987

[PS93] Pollard, C. / Sag, I. : Information-Based Syntax and Semanties . Vol. II: Agreement, Binding
and Control. CSLI Lecture Notes. Center for the Study of Language and Information, Stanford,
1993

[SK92] Schäfer, V. / Krieger, H.-V.: TDL extra-light User's Guide: Franz Allegro Common LISP
Version . DISCO, 1992

[Tr091] Trost, H. : X2MORF: A Morphological Component Based on Augmented Two-Level Mor­
phology. Technical Report RR-91-04, Deutsches Forschungsinstitut für Künstliche Intelligenz ,
Saarbrücken, Germany, 1991

10

A Diagnostic Tool for German Syntax*

Judith Klein, John Nerbonne, Klaus Netter,

Adbel Kader Diagnet and Ludwig Dickmann l

tDeutsches Forschungszentrum für Künstliche Intelligenz, GmbH
Stuhlsatzenhausweg 3, D-6600 Saarbrücken 11, FRG

phone: (+49 681) 302-530~
e-mail: klein@dfki.uni-sb.de

lJnstitut für Computerlinguistik, Universität des Saarlandes
Im Stadtwald, D-6600 Saarbrücken 11, FRG

Abstract

In this paper we describe an ongoing effort to construct a catalogue of syntactic data exemplifyin

the major syntactic patterns of German. The data consist of artificially and systematicall:

constructed expressions, including also ungrammatical senten ces. The data are organized into ,

relational database and annotated with same basic information about the phenomena illustratec

and the internal structure of the sampie sentences. This paper also contains a: description of th,

abstract data model, the design of the database and the query language used to access the data

We invite other research groups to participate in our effort, so that the diagnostics tool cal

eventually become public domain. Several groups have already accepted this invitation, an<

progress is being made

1 Introd uction
This paper describes an ongoing effort to construct a catalogue of syntactic date
which is intended eventually to exemplify the major syntactic patterns of the Ger·
man language. Our purpose in developing the catalogue and related facilities i~

to obtain an empirical basis for diagnosing errors in natural language processing
systems analyzing German syntax, but the catalogue mayaiso be of interest tc
theoretical syntacticians and to researchers in speech and related areas. The data
collection differs from most related enterprises in two respects: (i) the material
consists of systematically and artificially constructed senten ces rather than nato
urally occurring text, and (ii) the material is annotated with information about
the syntactic phenomena illustrated which goes beyond tagging parts of speech,
The catalogue currently treats verbal government, sentential coordination, fixed
verbal structures (Funktionsverbgefüge or FVG i.e., semi-idiomatic constructiom
with a semantically almost void verbal head and some more or less fixed nominal ,
prepositional or adjectival complement) and relative clauses. Its total coverage is
about 1300 German sentences.
The data consists of linguistic expressions (mostly short sentences designed to

"This work was supported by a research grant , ITW 9002 0, from the German Bundes­
ministerium für Forschung und Technologie to the DFKI projec.t DISCO and by IBM Germany
through the project LI LOG-SB conducted at the University of Saarbrücken.

11

exemplify one syntactic phenomenon) together with annotations describing se­
lected syntactic properties of the expression. The annotations of the linguistic
material serve (i) to identify and label construction types in order to allow se­
lected systematic testing of specific areas of syntax and (ii) to provide allinguistic
knowledge base supporting the research and development of naturallanguage pro­
cessing (NLP) systems.
In order to probe the accuracy of NLP systems, especially the detection of un­
wanted overgeneration, the test material includes not only genuine sentences, but
also so me syntactically ill-formed strings.
The syntactic material, together with its annotations is being organized into a
relation al database in order to ease access, maintain consistency, faciliate the ex­
tension of the syntactic material and allow variable logical views of the data.

2 Goals of a Diagnostic Tool
Our goal in collecting and annotating syntactic material is to develop a diagnostic
tool for naturallanguage processing systems, but we believe the material may be
of interest to other researchers in naturallanguage, particularly syntactic theoreti­
cians . Finally, although this is not an evaluation tool by itself, our work points to
possiblities for evaluating systems of syntactic analysis by allowing the systematic
verification of claims about, and investigation of, the coverage and precision of
systems. If we are to realize the full benefits of syntactic analysis, then we must
ensure that correct analyses are provided. The devel~pment of a diagnostic tool
serves just this purpose-pointing out where analyses are correct, and where incor­
rect. The diagnostic tool assesses correctness of syntactic analysies-it supports
the recognition of bugs in the linguistic analysis.

3 The Diagnostic Facility
We include here abrief description of DiTo - our diagnostic facility; more de­
tailed documentation, especially for the various areas of coverage of the syntactic
catalogue, is likewise available. (Cf. Diagne [2], Klein and Dickmann [5])

3.1 Sentence Suite
As noted in the introduction, our material consists of sentences we have carefully
constructed to illustrate syntactic phenomena; we have not attempted to collect
examples from naturally occurring text. Several considerations weighed in favor
of using the the artificially constructed data:

• since the aims are error detection, support of system development, and eval­
uation of systematic coverage, we need optimal control over the test data.
Clearly, it is easier to construct data than to collect it naturally when we .
have to examine (i) a systematic range of phenomena or (ii) very specific
combinations of phenomena .

• we wished to include negative (ill-formedness) data in order to test more
precisely (cf. discussion in Section 2.1 on "spurious ambiguity" and also on
the needs of generation). Negative data is not available naturally.

12

• we wished to keep the diagnostic facility small in vocabulary. This is desir­
able if we are to diagnose errors in a range of systems. The vocabulary used
in the diagnostic tool must either (i) be found in the system al ready, or (ii)
be added to it easily. But then the vocabulary must be limited .

• we wished to exploit existing collections of dataln descriptive and theoret­
ical linguistics. These are virtually all constructed examples, not naturally
occurring text.

• data construction in linguistics is analogous to the control in experimental
fields-it allows the testing of maximally precise hypotheses.

The vocabulary for the test suite has been taken from the domain of personnel
management wherever possible. We chose this domain because it is popular in
naturallanguage processing, both as a textbook example and as an industrial test
case. The domain of personnel management would also be useful in case we are
to diagnose errors in semantics as well as syntax (which we are not attempting
to do at present, but which is an interesting prospect for the future). It presents
a reasonably constrained and accessible semantic domain. Where no suitable
vocabulary from the domain of personnel management presented itself, we have
extended the vocabulary in ad hoc ways.

3.2 Syntactic Annotations
In choosing which annotations about the senten ces rrught be sensible, we have
been guided by two considerations. First, the catalogue will be much more useful if
examples from selected areas can be provided on demand. For example, it is useful
to be able to ask for examples of coordination involving deletion of the subject in
the first conjunct-as opposed to simply coordination (an area of coverage). This
means that we need to provide annotations about which area of coverage a given
sentence (or ill-formed string) is intended to illustrate. With regard to these
annotations, we have merely attempted to use standard (traditional) linguistic
terminology.

Besides this information, the annotations contain information about the precise
structure of the sentence such as the position of the finite verb (e.g., as 'fifth
word') and the positions of other phrases. In selecting these properties as worthy
of annotation, we were motivated primarily by a wish to focus on properties about
which there would be little theoretical dispute, which would be relatively easy to
test, and which would still provide a reasonable reflection of a system's accuracy.

3.3 Example: Verbal Government
One of the phenomena which the data collection already covers is the area of
verbal government, i.e., verbal subcategorization frames. The aim was to compile
a comprehensive list of combinations of obligatory complements of verbs, forming
the basis of different sentence patterns in German. We ignore both adjuncts and
optional complements in restricting ourselves to obligatory complements .
We attempted to find instances of all possible combinations of nominal, preposi­
tional, sentential, but also adjectival complements. The result of the collection
is a list of about 70 combinations which are exemplified in about 220 sampie
sentences (440 sentences including the negative examples). Every combination of

13

eomplements is illustrated by at least one example. The sentenees illustrate for
example:

• nominal eomplements only:

(1) Der Manager gibt dem Studenten den Computer.
the manager gives the student the computer

• nominal and prepositional complements with semantically empty (2) or non­
empty prepositions (3):

(2) Der Vorschlag bringt den Studenten auf den Lösungsweg.
the suggestion takes the student to the solution

(3) Der Manager vermutet den Studenten in dem Saal.
the manager assurnes the student in the hall

In addition, each government type is paired with a set of ill-formed sentences,
which illustrate three types of errors relevant for verbal government:

• an obligatory complement is missing;
• there is one complement too many;
• one of the eomplements has the wrong form.

3.4 Database

The syntactie material, together with its annotationsis being organized into a
relational database. Our goal in developing the database was to (i) provide a
coneise organization of syntactic data, (ii) ease access to syntactic information,
(iii) maintain consistency, (iv) allow variable logical vie.ws of data, and (v) faciliate
an effieient extension of the syntactic material to treat further areas.

3.4.1 Abstract Data Model

In this seetion we will present the eoneeptual schema of the database, without
giving details on the implementation. Figure 1 represents the Entity Relation­
ship (ER) schema diagram of the database. Its current eontent (syntactic mate­
rial) treats-enumerating in the order of their development-verbal government,
eoordination, fixed verbal structures (Funktionsverbgefüge or FVC). i.e., serni­
idiomatie constructions with a semantieally almost void verbal head and some
more or less fixed nominal, prepositional or adjectival eomplement and relative
clauses.

The major relation in the database is the entity type SENTENCE. An entry
of SENTENCE contains (i) an identifier s-id for tuple which is unique within
the relation (primary key), (ii) a sentence that exemplifies the given properties
s-example (according to the underlying area of application), (iii) the sentence
length s-length, (iv) a specification of the wellformedness of the sentence example
wf, (v) an error-code for ill-formed sentences error:.code, and (vi) additional
comment s-comment.

14

fA-T~ : CJ <> c=:> ~
EM" ·y.,, ,...... T." ,..,...... IIIMr·.,."' YR.I.llal

Figure 1: The ER-Schema diagram of the database

The following example shows a database entry for sentence (4).

(4) Der Manager hindert den Studenten daran, den Plan zu erklären.

SENTENCE
s-id
1210

s-example s-length wf
(4) 10 1

error-code s-comment
o null

The CATEGORY relation may contain any category specification, e.g., 'np'. Its
participation in the S-CATEGORY relation is partial. A tuple of S-CATEGORY
specifies the position and lexical form of a given category in a given sentence.
A category may occur in several senten ces and a sentence may contain several
categories (m:n relations hip).

S-CATEGORY
s-id cat-desc pos-from pos-to substring pos-comment
1210 np 1 2 der manager null
1210 f-verb 3 3 hindert null
1210 np 4 5 den studenten null
1210 cor 6 6 daran null
1210 np 7 8 den plan null
1210 inf-comp 7 10 den plan zu erklären null

A new application area is recorded in the database by defining a new entity type
whose attributes and values depend on the underlying syntactic phenomenon.
In accordance with this specification new sentences that exemplify the underlying
syntactic phenomenon will then be inserted into the SENTENCE relation . Finally,
a new relationship type with the participants SENTENCE and the new entity type
must be defined to relate each sentence to the syntactical phenomenon it describes
(cL VERBAL-GOVERNMENT, S-VERBAL-GOVERNMENT).

15

3.4.2 Database System

The database is administered in the programming language awk. Some of the
reasons which speak in favor of awk are:

• awk is in the public domain running under UNIX and should run in other
environments; in particular, it runs on MS-DOS .

• Its ability to handle strings of characters as conveniently as most languages
handle numbers makes it for our purposes more suitable than standard rela­
tional database systems; i.e., more powerful data-validation, increasing avail­
ability of information with a minimaillumber of relations and attributes.

Compared to standard databases awk has arestricted area of application and
does not provide fast access methods to information, but it is a good language
for developing a simple relational database where character strings are involved.
Additional resources and tools like areport generator and query languages were
easily implemented. The database includes a reduced sql-like query language.

The material is organized in a relational database, such that queries can ask either
for sentences matching combinations of descriptive parameters (cf. the first two
queries) or for a description or classification of a sentence (cf. last query):

1. retrieve all grammatical senten ces with verb-scond featuring left-deletion in the
second conjunct
retrieve s-id s-example where wJ = 1 and match(coord-desc, NL VLDLA1) and
n2 = 2

s-id : 3007
s-example: Der Professor schenkte der Sekreta.erin den Blumenstrauss und verkaufte
dem Kommilitonen den Roman.
s-id : 3025
s-example: Der Professor schenkt~ der Sekreta.erin den Blumenstrauss und dem
Kommilitonenen den Roman.

2. retrieve all sentences with a nominative np, a dative np and an accusative np
retrieve s-id s-example where comp-desc = "nom_daLacc"

s-id : 1022
s-example: Der Manager gibt dem Studenten den Computer.
s-id: 1023
s-example: Der Manager verdankt dem Studenten den Computer.
s-id : 1235
s-example: *Der Manager gibt.
s-id: 1236
s-example: *Der Manager gibt dem Studenten.

3. retrieve the position and the lexicaJ form of all NPs of sentence 1022.
retrieve cat-desc cat-position substring where s-id == 1022 and cat-desc == "np"

cat- desc: np
pos-from: 1
pos-ta: 2
substring: der manager

16

cat-desc: np
pos-from: 4
post-to: 5
substring: dem studenten

cat-desc: np
pos-from: 6
post-to: 7
substring: den computer

The query language has been developed under SunOS using the GNU utilities
flex and yacc. flex is a lexical analyzer generator designed for processing of
character input streams. yacc, a LALR(l) parser generator, is an ancronym für
Yet Another Compiler Compiler. It provides a general tool for describing an input
language to a computer programm.

3.4.3 Auxiliary Materials

The database of syntactic material is accompanied by a few auxiliary develop­
ment tools. First, in order to support further development üf the catalogue and
database, it is possible to obtain a list of words used (so that we minimize vocab­
ulary size). Besides tools for consistency checking have been developed. Docu­
mentation is available on each of the areas of syntactic coverage included. This is
to cover (minimally) the delimitation of the area of coverage, the scheme of cat­
egorization, and the sources used to compile the catalogue. Furthermore a small
amount of auxiliary code may be supplied to support development of interfaces tü
parsers. This need not do more than dispatch senten ces to the parser, and check
für the cürrectness of results. As figure 2 shows DiTo currently supports this ünly
by writing sentences to a specified file.

DITo - Database

Syntactic Annotations Senlence examples

VERBAL40VERNMENT
SENTENCE-COORDINATlON
FVS ~ SENTENCE

RELA T1VEoCLAUSE

Queries

J.

+
InpUl: s.nt.ncn

Syntactic-Component of
Natural Language Systems

Figure 2: DiTü interface

17

4 Current State, Future Plans

We have contactedresearch groups in NLP and machine translation in the interest
of exchanging specialized (and annotated) data sets in exchange for the rest of
the database. Several groups are now involved in active cooperation: Institut für
angewandte Informationswissenschaft (lAI), Saarbrücken, Institut für Computer­
linguistik at the University of Koblenz (lCL-Koblenz), and the Gesellschaft für
Mathematik und Datenverarbeitung (GMD), Darmstadt.
Brigitte Krenn [6] at the lAI has compiled data on the structure of semi-idiomatic
verbal constructions (Funktionsverbgejüge); Martin Volk [12] at Koblenz has de­
veloped a test suite of relative clauses, and Renate Henschel and Elke Teich at
the GMD have proposed a data collection and annotation effort on the syntax of
modal and auxiliary verbs.
A diagnostic and evaluation tool of this sort ought to be commonly developed,
used and maintained. Diagnosis improves in quality and general acceptance as fur­
ther groups become involved, which in turn enables an increase in the quality and
comparability of systems-the more so as the tool itself improves from common
use. We invite further interested groups to contact us about collaborations.

References
[1] 1. Batori and M. Volk: Das Verhältnis von natürlichsprachlichen Korpora zu system­

atischen Sammlungen konstruierter Texte. Workshop presentation, Repräsentatives
Korpus der deutschen Gegenwartssprache, 15-16.10.1992. to appear in areport of
the Institut für Kommunikationsforschung und Phonetik, Bonn.

[2) A. K. Diagne: DITo - DMS. The DiTo Database Management System. Goncepts,
Implementation Issues and User Guide. DFKI Technical Document D-92-05, DFKI,
Saarbrücken 1992.

[3] D. Flickinger, J. Nerbonne, I. Sag and T. Wasow: Thwards evaluation of natural
language processing systems. Technical report, Hewlett-Packard Lab., 1987.

[4) G. Guida and G. Mauri: Evaluation of naturallanguage processing systems: Issues
and approaches. Proceedings of the IEEE, 74(7):1026-1035, 1986.

[5) J. Klein and 1. Dickmann: DITo - Datenbank. Daten-Dokumentation zu Verbrek­
tion und Koordination. DFKI Technical Document D-92-04, DFKI, Saarbrücken
1992.

[6] B. Krenn: Funktionsverbgefüge: Eine Datenbeschreibung unpub. Documentation,
Institut für angewandte Informationsforschung, Saarbrücken.

[7] J. Klein, 1. Dickmann, A. K. Diagne, J. Nerbonne and K. Netter: DiTo: Ein
Diagnostikwerkzeug für die syntaktische Analyse. In Tagungsband KONVENZ 92.
Springer: Berlin, 1992, pp.380-385.

[8] J. Nerbonne, K. Netter, A. K. Diagne, J. Klein and L. Dickmann: A Diagnostic
Tool for German Syntax. in press

[9] M. Palmer and T. Finin: Workshop on the Evaluation of Natural Language Pro­
cessing Systems. In: Gomputational Linguistics 16(3), 1990, pp.175-181.

[10] W. Read, A. Quilici, J. Reeves, M. Dyer and E. Baker: Evaluating naturallanguage
systems: A sourcebook approach. In GOLING '88, pages 530-534, 1988.

[11] M. Volk and H. Ridder: GTU - eine Grammatik Testumgebung mit Testsatzarchiv
to appear in: LDV-Forum 1.1992

[12] M. Volk: Kurzbeschreibung der Testsatzsammlung zu den Relativsätzen unpub.
Documentation, Universität Koblenz.

18

Incremental Generation with Tree Adjoining
Grammars in the WIP System

Anne Kilger

1 Introduction

A new trend in developing more efficient and flexible naturallanguage generators consists
in exploiting an incremental processing scherne. The text generation group of the WIP
project has designed and implemented such a system, thereby examining the requirements
of incremental generation upon the underlying syntactic representation formalism.

Sequential systems are built of components that - in a strictly serial order - receive
their input, start their computation and hand over the complete output to the next
component. The run time of the global system results from adding the run times of
the single components. Sequential systems cause a long initial delay while completely
planning their output. During incremental processing, one component starts working on
first parts of a stepwise given input and hands over parts of the output to the successor
component as fast as possible. This allows the different components to work in parallel
reducing the global run time so that messages can be verbalized much more efficiently
than by simple sequential systems.

Most of the incremental generators today are only partially incremental: They
deal with a stepwise given input but delay their output until their processing is fin­
ished. Fully incremental generators additionally produce their output in an incremental
way. This increases efficiency and ftexibility since they can start uttering first parts
of the sentence before the processing is finished and even before the input is complete
([Finkler & Schauder 92]). Fully incremental systems can be used in situations where the
verbalization of some ongoing event must be produced in parallel to the event itself (e.g.,
during simultaneous interpretation).

TAG-GEN ([Harbusch et al. 91], [Schauder 92]) has been designed as a fully incre­
mental syntactic generator. It realizes part of the How-to-Say task of a naturallanguage
generator and is located between the microplanner - which decides about the structure of
the sentences and the choice of words - and a simple articulation module. The following
seetions show some details of TAG-GEN that allow the realization of fully incremental
generation.

19

2 Incremental Syntactic Generation

There are several demands that an incremental syntactic generator must fulfill which
have been listed by, e.g., [Kempen & Hoenkamp 82] and [Neumann & Finkler 90]. They
restriet the range of possible architectures for such a system and also have influenced the
design of TAG-GEN.

The first demand for incremental generators is lexical guidance. One subtask of natural
language generation consists in choosing lexical items that verbalize the given message
- which is prepared by the so-called macroplanner - in an adequate way. If they are
chosen before syntactic generation is started the syntactic constraints of the single items
can guide the combination of the syntactic structures. This kind of processing is also
well suited for incremental syntactic generation because the single items suggest a direct
way of distributing the input into several packages of information thereby allowing for
incrementally handing over input elements to the generator.

In order to be most flexible, an incremental generation scheme has to provide for input
elements arriving in an arbitrary order. If they do so, there is no guarantee for top-down
generation which could simply be realized by sequences of downward expansions. Rather,
it must be possible to expand the actual structure in different ways. If an element is given
that structurally encloses the existing tree, upward expansion must take place to attach
it at the top of the structure. If an element specifies the actual structure at some point in
more detail downward expansion has to take place. Modifications of structures may lead
to the insertion of some parts into the existing tree.

During syntactic generation two main tasks have to be solved. Firstly, the hierarchical
structure of the sentence must be constructed. Secondly, it must be linearized in order to
create the surface string that is to be uttered. Kempen and Hoenkamp demand hierarchi­

cal and position al knowledge to be described separately in the grammar. This separation
is the presupposition for handling the two tasks in two steps which is advantageous for
incremental generation: Rules describing hierarchical relations can be selected indepen­
dently from decisions about word order. Those decisions can be made lateron on the basis
of stepwise given information in the input, e.g ., the order of input elements.

The fourth requirement is closely related to the second. Input elements that arrive in
an arbitrary order lead to syntactic structures, parts of which can be built independently
from one another. For those cases, it seems useful to allow different branches of the global
syntactic tree to be expanded simultaneously.

The next seetion illustrates, how the system TAG-GEN fulfills the four demands
described above.

3 Tree Adjoining Grammars for Incremental Syn­
tactic Generation

The syntactic generator TAG-GEN is based on Tree Adjoining Grammars with Substitu­
tion (cf. [Joshi 83,Schabes et al. 88]) as the underlying syntactic representation formalism.

20

The extended domain of locality makes TAGs weIl suited for the representation of natural
language structures.

There are two types of syntactic rules in a TAG: Initial trees consist of root no des and
internal nodes that must be associated with nonterminals. Their leaves are either associ­
ated with terminals or with nonterminals plus a downward arrow marking a substitution
node. Substitution nodes have to be replaced by other initial trees during the derivation.
A uxiliary trees define an additionalleaf, the so-called foot node, that has to be associated
with the same nonterminal label as the root node.

TAGs define two combination operations: Substitution means to replace a substitution
node by an initial tree the root of which has to be labeled with the same nonterminal.
During adjunction an internal node is replaced by an auxiliary tree. The foot node is used
as the new father for the subtree of the node of adjunction.

Initial trees are most of all used to encode complete phrases, auxiliary trees often
introduce modifiers. By associating the trees with feature structures syntactic constraints
can be encoded in a direct and compact way (TAGs with Unification, cf. [Kilger 92]).

TAGs as the basis for an incremental syntactic generator fulfill the demands listed in
Section 2. The different kinds of expansions are realized by the two combination opera­
tions substitution and adjunction. Lexical guidance is made possible by using Lexicalized
TAGs (cL [Schabes et al. 88]). Each tree of an LTAG is associated with at least one ter­
minal which defines the head of the represented phrase and serves as an anchor in the
lexicon. Our realization also supports the simultaneous construction of parts of the syn­
tactic tree. Lexicalized trees form units that are weIl suited tobe managed by objects of a
distributed parallel model (cf. [Finkler & Neumann 89]) which is the basis of TAG-GEN.
The substitution nodes of the single trees serve as natural interfaces between the objects
which communicate by message-passing. Two-level generation can be realized by using
CD L-TAGs (cf. [Kilger 93]). They divide each syntactic rule into a mobile and some
linear precedence rules defining possible positions of the nodes.

4 The TAG-GEN System

The Interface Component (see Figure 4) interprets and prepares the input for syntactic
processing. Since the input packages are centered around lexical items according to the
principle of lexical guidance, they can easily be transferred to syntactic structures using
Lexicalized TAGs. The trees that are handed over to the objects of the distributed parallel
system are computed in three steps: Firstly, the unambiguous reading that is encoded in
the input is used to access to the TAG trees with the respective an chor in the lexicon.
Secondly, additional input information (e.g., 'voice' for verbs) is used to filter out one
of the alternative trees that result from the first step. Thirdly, some information from
the lexicon is added to the chosen tree: There is some syntactic information encoded
in the lexicon in order to make the grammar less redundant, e.g., detailed specification.s
of the complements that are represented in the tree. It is added to the chosen tree by
expanding the respective feature structures of the head node and of the substitution nodes
representing the complements.

21

There is an object hierarchy defined on the basis of dependency relations that hold
between the single lemmas. During further processing each object communicates with its
regent and its dependents from this hierarchy.

Lexicon

Grammar

Interface

Input

Linearization
Component

Figure 1: The Architecture of TAG-GEN

Phrase
Formulator

As so on as an object has been created in the Interface it changes its state to the Phrase
Formulator. The task of the objects in the Phrase Formulator is to build the hierarchical
structure of a sentence from their local knowledge. The global structure is constructed by
means of the two combination operations substitution and adjunction. They are realized
by the objects of the parallel distributed model by exchanging copies of local information.
During substitution, feature structures of the substitution node and the root node of the
substitution tree are exchanged. Adjunction is realized as two coupled substitutions. The
node of adjunction is seen as a quasi node (cf. [Vijay-Shanker 92]) the top part of which is
connected with the root node of the auxiliary tree, the bot tom part is connected with the
foot node. The result of the construction process in the Phrase Formulator is a derived
tree that is represented in a distributed fashion at the single objects. Substitution nodes,
(quasi) nodes of adjunction, root nodes and foot nodes represent the interfaces between
the objects of the distributed parallel system. Each object which has integrated its local
tree into the global structure changes its stat.e to the Linearization Component.

The task of the objects in the Linearization Component is to traverse their trees
in order to create the surface string according to the linear precedence rules defined
in the grammar. CDL-TAGs (TAGs with context dependent disjunctive linearization
rules, cf. [Kilger 93]) are a first approach to solve some problems of linearization during
incremental generation. The description of syntactic structures is separated into mobiles
representing hierarchical relations and linear precedence rules. Those rules consist of lists
of possible permutations of nodes making it possible to describe word order variations
in a flexible way. The disadvantage of listing permutations is that it is hard to define
positions of optional elements that might be integrated by means of adjunction. Future
work will concentrate on the development. of a formalism that is able to describe features
of word order in natural language and at the same t.ime supports incremental syntactic
processmg.

The second important feature of CDL-:-TAGs is that they allow to associate different

22

sets of disjunctive rules with keys referring to specific 'linearization contexts' where the
rules are valid. This compact representation increases the ftexibility of the generator since
it allows to choose the mobile independent from its linearization context which may be
specified later in the input.

Processing in the Linearization Component consists of two kinds of activities. Each
object that enters the Linearization Component first asks its regent for the permission to
utter its part of the sentence. This question is forwarded from regent to regent until an
object is found that is able to decide about it. This kind of message passing leads to a
global synchronization of output activities that allows to produce output incrementally.
Simultaneously, each object locally traverses its tree and utters the collected strings as
soon as it receives the permission for output.

5 Conclusion

TAG-GEN is a syntactic generator on the basis of the representation formalism Tree
Adjoining Grammars. lt can be used for a thorough study of fully incremental natural
language generation. Incremental syntactic processing is realized on a hierarchical and a
positional level that are both based on a distributed parallel model of active cooperating
objects. In the Phrase Formulator, substitution and adjunction are implemented by means
of message passing as virtual combination operations. A first approach to incremental
linearization is facilitated by CDL-TAGs, a new extension of the TAG formalism.

Work on both the Linearization Component and a central control component for re­
visions will be intensified to improve the TAG-GEN generator. Thereby, teamwork with
other DFKI projects could be helpful. E.g., new ideas about cooperating agents which
are developed by AKA-MOD could inftuence the distributed parallel model underlying
TAG-GEN. The large HPSG gramm ar for German that is actually created in the DISCO
project can eventually be transformed into a lexicalized TAG (cL [Kasper 92]). This
would provide the TAG-GEN group with a broader range of syntactic structures that can
be used to test the ftexibility of the generator.

References

[Finkler & Neumann 89] W. Finkler and G. Neumann. POPEL-HOW - A Distributed
Parallel Model for Incremental Natural Language Production with Feedback. In:
11 th International Joint Conference on Artificial Intelligence, pp. 1518-1523, De­
troit, MI, August 1989.

[Finkler & Schauder 92] W. Finkler and A. Schauder. EiJects of Incremental Output on
Incremental Natural Language Generation. In: B. Neumann (ed.), 10th European
Conference on Artificial Intelligence, pp. 505-507, Vienna, Austria, August 1992.
Wiley. also published in this volume.

[Harbusch et al. 91J K. Harbusch , W. Finkler, and A. Schauder. Incremental Syntax
Generation with Tree Adjoining Grammars. In: W. Brauer and D. Hernandez

23

(eds.), 4th International GI Congress on Knowledge-Based Systems, pp. 363-374,
Munich, Germany, October 1991. Springer.

[Joshi 83J A. K. Joshi. Factoring Recursion and Dependencies: an Aspect of TAG and
a Comparison of Some Formal Properties of TAGs, GPSGs, PLGs and LFGs. In :
21st Annual Meeting of the Association for Computational Linguistics , pp . 7-15,
Cambridge, MA, 1983.

[Kasper 92] R. Kasper. Compiling Head-Driven Phrase Structure Grammar into Lexi­
calized Tree Adjoining Grammars. In: Proceedings of the 2nd International TAG+
Workshop, Philadelphia, PA, 1992.

[Kempen & Hoenkamp 82] G. Kempen and E. Hoenkamp. Incremental Sentence Gen­
eration: Implications for the Structure of a Syntactic Processor. In: J. Horecky
(ed.), 9th International Conference on Computational Linguistics. North-Holland
Publishing Company, 1982.

[Kilger 92] A. Kilger. Realization of Tree Adjoining Grammars with Unification. DFKI
Document TM-92-08, German Research Center for Artificial Intelligence (DFKI),
1992.

[Kilger 93] A. Kilger. TAGs with Context Dependent Disjunctive Linearization Ru/es.
Dfki document, German Research Center for Artificial Intelligence (DFKI), 1993.
to appeal'.

[Neumann & Finkler 90] G. Neumann and W. Finkler. A Head-Driven Approach to
Incrementa/ and Parallel Generation of Syntactic Structures. In: 13th Interna­
tional Conference on Computational Linguistics, pp. 288-293 , Helsinki, Finland,
1990.

[Schabes et al. 88] Y. Schabes, A. Abeille, and A. K. Joshi. Parsing Strategies with
Lexicalized Grammars: Application to Tree Adjoining Grammar. In: 12th Inter­
national Conference on Computational Linguistics, Budapest , Hungary, 1988.

[Schauder 92] A. Schauder. Incremental Syntactic Generation of Natural Language with
Tree Adjoining Grammars. Technical Memo D-92-21, DFKI, Saarbrücken, Ger­
many, 1992.

[Vijay-Shanker 92] K. Vijay-Shanker. Using Descriptions of Trees in a Tree Adjoining
Grammar. Computational Linguistics, 1992. to appear.

24

Integration of Syntax and Semantics in Feature Structures

Walter Kasper

1 Introduction

Unification based grammar formalism which have become the standard during the last
decade in computational linguistics employ to a varying degree feature structures as
means of expressing constraints. Older gra.mmar formalisms in this tradition usually
consist of a. backbone of context-free phrase structure rules annotated with feature
structures which are projected along the phrase structure tree.1 Different formalisms
and linguistic theory differ with respect to the kind of phrase structure, they assurne,
what kind of information should be represented in the feature structures, and what
kind of projection principles and rules th,ey assumed. Also, the underlying unification
formalisms differed in the kinds of operations, data structures and constraints they
provided additionally to the core of the attribute-value-Ianguage, such as negation, sets,
disjunction, existential constraints, completeness constraints etc.

In contrast to these formalisms, HPSG encodes all information in typed feature struc­
tures without recourse to phrase structure rules and instead uses a set of general princi­
pIes to constrain possible derivations. The, basic notion of HPSG is that of a sign which
includes information of all levels oflinguistic analysis : phonology, morphology, syntactic,
semantic. This allows at the same time to specify the interdependencies between these
levels in a concise and declarative way.

In the following sections we will describe the integration of the semantics interface
into the gramm ars used by the ASL- and DISCO-projects. The grammars are based
on different syntactic theories and formalisms: the ASL gramm ar is a phrase structure
grammar with annotated feature structures based on Trace fj Unification Grammar
(TUG; Block/Schachtl(1992)). The grammar used in DISCO on the other hand is an
HPSG gra.mmar. Nevertheless, the same semantical representations are built up in these
different grammars. This makes it in principle possible to exchange the two grammars
in an NLP-system without having to re-design other interfaces. This also demonstrates
the practical usefulness of integrating the semantics interface into the grammar.

IFormalisms of this kind are PATR-II (Shieber et al .(1983)), Lexical-Functional Grammar (LFGj
Bresnan/Kaplan(1982)), Categorial Unifica.tion Gra.mma.r (CUGj Uszkoreit(1986)) .

25

2 Scope of Integration

For each of the unification-based formalisms there have been investigations to include
semantics and to build semantic representations by using the same techniques as used
for syntactic structures. There are several advantages to such an approach, additionally
to having a uniform formalism for syntactic and semantic information:

• semantic constraints can be exploited already during syntactic analysis, and con­
strain the analysis.

• it allows to describe the interactions of different levels of analysis in a declarative
way.

• it allows nearly arbitrarily partiality of semantic information which usually would
be impossible to achieve in standard logical formalisms because of their rigid
conditions on wellformedness.

• it relaxes the requirement of having to specify in a rigid way how syntactic anal­
yses of phrases must look like in order to be meaningful to aseparate semantic
interpreter. 2

The current unification formalisms do not allow full descriptions of semantic represen­
tations. It is especially non-Iocal phenomena like the scope of quantifiers and semantic
operators which are not easy or even impossible to describe within these formalisms.
Therefore it has become practise - followed also in our system - to specify the sem an­
tic representation only partially up to a level of 'quasi-Iogical form' which leaves such
non-Iocal phenomena out of consideration. These are left to a second step of semantic
interpretation. Such quasi-Iogical forms contain the following kind of information:

• predicate-argument-structure

• thematic roles of arguments

• the modification relation

• sortal selectional restrictions on predicate-argument-structures and modification.
These have proved to be very efficient means for disambiguation especially of
PP-attachment ambiguities.

Additionally, quasi-Iogical forms can specify other kinds of information relevant for the
second step of interpretation.

3 Semantic Feature Structures

A grammar consists of at least a lexicon and syntactic rules for combining lexemes to
more complex structures. Accordingly, if semantics is to be integrated intthe gram-

2Problems of this kind hve been discussed in Kasper(to appear) with respectto LFG.

26

mar, two things are required: first, to specify the lexical semantics of the lexemes, and
secondly, to specify the rules of how lexical semantic information is combined to build
up the semantics of the complex phrases. The form of semantic feature structures is
influenced essentially by two factors: the underlying logical representation language and
projection principles.

The basic ingredients of logical representation languages are tenns designating objects,
predicates (relations) and formulas (wJJs). The feature structure then takes the form
of a meta-Iogical description of the logical representation, using the logical type of an
expression as feature name (cf. Nerbonne(1991»). Projection principles govern the way
semantic information is combined or passed on, such as the head-feature-principle of
HPSG which states that the (syntactic) features of the head daughter in a tree structure
are inherited by the mother node.

(1) V

ARG1: I SEM: [!]
SYN : I SUBCAT:

ARG3: I SEM:0

PRED : have

CONTENT:
INST: [SORT: state]0
AGENT:0

SEM:

RESTR:

THEME:0

VAR:0 1
[

PRED : present
COND: INST: 0

The above lexical entry for the transitive verb has contains under the SEM-feature the
following information:

1. it specifies the mapping from the syntactic complements to thematic roles in the
predicate-argument-structure under CONTENT by co-indexation with arguments
in the verb's complement list SUBCAT.

2. the verb introduces an entity with a sortal aspectual restriction that the verb
describes astate (in contrast to e.g. an event). This constraint can be exploited
e.g. to exclude that the can be modified by a directional adverbial like to the
station.

27

3. the RESTR specifies further restrictions on the stative entity introduced by the
verb, in this case that the state is temporally located in the present.

Logically, the entry describes the following N.c.c formula: 3

(2) have(inst:{?sl{present{inst:s))) agent:?x theme:?y)

In the feature structure the restriction imposed on the variable s is described in a
separate structure RESTR due to considerations about the projection of information
in analysis: the basic predicate-argument-structure is contained under CONTENT and
passed unchanged to the highest projection of the category while RESTR collects the
restrictions and modifiers of the denoted entities, as the following rule illustrates:

(3)

VP

VP

pp

SYN :0

SEM:

SYN :0

SEM:

CONTENT :0

VAR:0

COND: [CONN : and 1
' SUB-WFFS: (00)

RESTR:

CONTENT :0

RESTR : [VAR : 0 1
COND :0

SEM:
[

CONTENT: [VAR: 0 l]
COND :0

This rule for attaching a prepositional phrase (PP) to a verbal phrase (VP) has been
taken from the ASL-grammar. It states that the CONTENT of the daughter VP which
is the head phrase is passed to the mother VP, while the mother's RESTR collects the
content of the PP and the other restrictions on the head phrase by building their logical

3 N i:. i:. is an extended predica.te logic la.ngua.ge used in our system (La.ubsch/Nerbonne(1991)) .

28

conjunction.4 Since pp and head phrase share variables sortal restrictions of the pp
and the head must be compatible. In a HPSG-style grammar this could be generalized
to a head-modifier-principle which applies not only to attaching a pp to a VP but to
other categories such as NPs as weIl.

4 Outlook

As indicated, at present semantics can be integrated only partia.lly into the grammar.
Therefore, the semantics interface requires two steps though the mapping from gramm ar
to logical representations has become much simpler by having the basic ingredients
already represented in the feature structures. Current research aims at pushing the
borderline between these two steps, and to include more and more into the semantic
feature structures and leaving as little as possible to the second step.

References

Block, H. U ./Schachtl, S. (1992): Trace & Unification Grammar. In: Papers pre­
sented to the 14th International Conference on Computational Linguistics, pp. 87-
93, N antes, 1992

Bresnan, J ./Kaplan, R. (1982): Lexical Functional Grammar: A Formal System for
Grammatical Representation. In: Bresnan, J. (ed.), The Mental Representation of
Grammatical Relations. Cambridge/Mass., 1982

Kasper, W. (to appear): The Construction of Semantic Representations from F­

STRUCTURES. In: Bes, G. (ed.), The Construction of a Natural Language and
Graphics Interface. Results and Perspectives from the A CORD Project, Research
Reports ESPRIT. Heidelberg: Springer, to appear

Laubsch, J./Nerbonne, J. (1991): An Overview ofN!!. Technical report, Hewlett­
Packard Laboratories, Palo Alto, July 1991

Nerbonne, J. (1991): Constraint-Based Semantics. In: Dekker, P./van der Does, J.
(eds.), Proceedings of the 8th Amsterdam Colloquium, 1991

Shieber, S./Uszkoreit, H./Pereira, F./Robinson, J./Tyson, M. (1983): The
Formalism and Implementation of PATR-II. In: Grosz, B./Stickel, M. (eds.), Re­
search on Interactive Acquisition and Use of Knowledge, pp. 39-79. Menlo Park:
SRI International, 1983

Uszkoreit, H. (1986): Categorial Unification Grammars. In: Proceedings of the 11th
Conference on Computational Linguistics, pp. 187-194, Bonn, 1986

4 Strictly, this holds only for intersective modifiers.

29

30

Effects of Incremental Output on
Incremental Natural Language Generation

Wolfgang Finkler and Anne Kilger (nee Schauder)

Abstract

The benefits of incremental processing for naturallanguage generation can only be fully utilized
if the systems produce incremental output. Nevertheless, most of the known generators delay
their output until it is complete. We show some advantages of incremental output and present
its effects on the design and the processing of NL generation systems.
Keywords: incremental NL generation, speech repair.

1 Motivation

In order to use natural language in human-computer interfaces in an effective way, gen­
eration and analysis components have to be flexible and efficient. A promising approach
consists in the use of an incremental processing mode as indicated by psycholinguistical
studies. Incremental systems receive their input in a piecemeal way and immediately start
with the computation of these parts. Therefore, the total time of computation can be
shorter than for sequential systems, approaching real-time behavior (see Fig. 1). If NL
systems additionally produce incremental output, they become more efficient. Producing
incremental output is defined as uttering the first parts of a sentence before its computa­
tion or even the input is complete (see the uppermost scheme in Fig. 1). These systems
are more flexible because they can be used in situations where it is not possible to delay
the output until the input is complete, e.g., during simultaneous interpretation. Generally,
incremental output is more natural for human recipients because it supports fluency in
speech by shortening the initial delay of an utterance and distributing smaller pauses over
the whole sentence.

Although there is an increasing number of systems for incremental NL generation, no
approach is known in which the output of language production is treated adequately. Most
of the systems are only partially incremental. Either their output is delayed until the surface
structure is complete, or the effects of overtly spoken or written parts of an utterance are
not examined (e.g., [Reithinger 91], [De Smedt 90]). In this paper1 we will describe such

IThanks to Wolfgang Wahlster for fruitful discussions.

'processi~g
mo e

incremental li I pi 01 11
partially

incremental li 1 I
p 10

sequential BI processing I~
time

Figure 1: Processing Modes for Generation

effects and elaborate some consequences for the design of a syntactic generation component
currently developed in the WIP project (cf. [Wahlster et al. 93]).

2 Types of Incremental Output

To produce ftuent output, incremental generation systems must be able to begin an utter­
ance and to continue it with respect to the uttered prefix. There are three ways to continue
a senten ce in an incremental way:

In the best case, the verbalization of every incoming part can be articulated foUowing
the uttered prefix. However, the generation process can be impeded, e.g., because parts
of the input are given too late to be correctly integrated into the sentence or the input is
modified. If the senten ce cannot be continued correctly, 'overt repair' leads to utterances
like "The child plays ... uh ... the taU child plays piano". Sometimes it is possible to hide
the repair, e.g., if changes of syntactic constructions don't lead to changes in the already
uttered portion. These 'hidden repairs' can sometimes be recognized by pauses, intonation
or a bad style, as in "The goalkeeper has ... led the ball pass through". When starting the
utterance the reporter might have thought the goalkeeper would stop the ball.

An alternative strategy consists in moving the verbalization of some fragments to an
additional sentence if it seems to be too complicated or impossible to integrate it. This
results in a sequence of sentences, as in "The child plays ... piano. The child is taU.".

3 Design of a System with Incremental Output

In this seetion we investigate the effects of incremental output on description-directed NL
generation (see [McDonald 87]). For syntactic generation, severallevels of description can
be conceived that correspond to levels of processing, i.e., lexical choice, construction of
the constituent, structure and linearization. During incremental generation the represented
data not only trigger their computation but also constrain further processing:

In order to achieve 'lexical guidance' (cf. [Kempen & Hoenkamp 82], [Neumann & Fin­
kler 90]), each selected lemma directs the choice and processing of syntactic structures. The
process of lexical choice not only depends on the given concepts but also on the previously

32

chosen lemmata and their created structures providing a syntactic context.
If grammatical encoding can lead to alternative structures, the decision between them

must observe the existing syntactic structure as the basis for incremental expansions. In
order to integrate new parts in a flexible way, the representation formalism must permit
several kinds of expansions (cf. [Kempen 87], [De Smedt & Kempen 87]). E.g., by means
of 'upward expansion' a structure can be embedded in a hierarchically higher one.

The existing prejix that has already been uttered should be continued in a syntactically
correct way2. If the chosen syntactic structure does not fulfill this constraint, humans often
try to retain the started utterance by means of hidden repair. This capability decreases the
number of overt repairs that are unpleasant because they can be perceived by the hearer.

While the first and second constraint also hold for incremental generation systems with
delayed output, the third one is new. If a system produces incremental output, it is no
longer guaranteed that a correct position can be found for each syntactic structure that can
be integrated on the constituent level. E.g., uttering the prefix "The bag was ... " makes
it impossible to position "man's" in front of "bag". The third constraint additionally infiu­
ences the design of the subcomponents of an incremental generator: Lemmata, constituent
structure and linear order are often computed and represented at different levels realizing
a modular approach with rat her independent components. Producing incremental output
causes a new interrelation between these levels. This task mainly affects the lowest module
of a syntactic generator, the linearization component (LC), which is responsible for order­
ing parts of an utterance and for handing them over to an articulator in an incremental
way. The input for the LC consists of constituent structures and realized words defining
the set of possible linearizations. In the course of incremental output, each uttered frag­
ment constrains the further linearization by reducing the set of linear precedence rules that
describe possible continuations of the sentence. This additional constraint also infiuences
the other components:

• Assurne that a new element that has been structurally integrated at the constituent level
is handed over to the LC. If no linearization rule remains that allows this element to
be positioned to the right of the uttered prefix, it may be necessary to select another
syntactic rule. An example of this dependency is an adjective that can be uttered even
if the noun has already been said by integrating it in a relative dause ("The ball ... that
. d ") JS re

• Another example describes the relation between LC and word choice. In German, com­
plements realized as pronouns have to be positioned in front of complements realized
as nouns if the finite verb has already been uttered. For a transitive verb like "geben"
("to give") the senten ce starting "Ich gebe das Buch" ("I give the book") must not be
continued with a pronoun. If a pronoun is nevertheless chosen, it must be rejected and
replaced by the respective noun, as in "Ich gebe das Buch ... dem Mann" ("to the man")
instead of "ihm" ("hirn").

In this way, the state of output and the linearization rules infiuence the selection of
syntactic structures and lexical material. It is obvious that a modular approach can only

2This demand is comparable with the valid prefix property for parsers (cf. [Schabes 90]).

33

deal with these bidirectional dependencies indirectly, e.g., by means of generate and test
cycles. Therefore, an effective model should attempt to interleave processing and integrate
the related levels to a certain extent.

As discussed above, the uttered prefix strongly inB.uences further computation at the
different levels of an incremental generator. Therefore, the system's decision about when
to utter plays a central part during generation. If the output is delayed, more information
is available to compute aprefix that will not be revised later. But each unnecessary delay
decreases efficiency and B.exibility of the system. It is important to find the right balance
between delaying the output and producing B.uent utterances.

An incremental style of processing relies on the assumption that the decisions made on
the basis of actual information need not be withdrawn later on. This assumption often
turns out to be wrong. During incremental generation it may happen that the constraints
described in the beginning of this section are violated. It is possible that a new part cannot
be integrated into the existing syntactic structure or that the verbalization of an element
would change the uttered prefix. In order to cope with these problems, they first of all
have to be detected by the system ('monitoring '). The effectiveness of controlling the
correction of such failures ('supervising ') depends on the amount of available information.
Monitor and supervisor should have direct access to the internal state of the generation
components. This allows the localization of the origin of the failure as weIl as the reuse of
partial structures during repair. According to the computatio~ally oriented approach to
NL generation we suggest the utilization of this kind of direct inB.uence on the incremental
generator. In contrast to this approach, the so-called 'perceptual theory of monitoring'
([Levelt 89]) only describes monitoring as analyzing the inner or overt speech without direct
access to the processes during grammatical encoding.

As discussed in Section 2, there are several strategies for repair which are candidates
for the supervisor when it tries to direct the continuation of the sentence. To perform a
repair, decisions must be withdrawn, i.e., structures have to be replaced. This can affect
other structures which are connected with them. There is a need for a fast identification
of and access to the affected structures. Storing the dependency data in a reason main­
tenance system supports such revisions. Another way to identify such structures and to
find syntactic alternatives consists in parsing the actual output. This may result in several
readings; one of them can be used as the basis for further expansions.

4 State of Realization

We have realized a prototype for an incremental generator (cf. [Schauder 921) and in­
tegrated it into the WIP system ([Wahlster et al. 93], [Andre et al. 92]). The system is
implemented in an object-oriented style in Common LISP and CLOS on MacIvory ma­
chines.

Our generator includes a hierarchical and a positional level where constituent struc­
tures and their linear order are computed. Word choice will be added in a next step.
Both levels are based on the formalism of 'Lexicalized LDjLP Tree Adjoining Grammars'

34

(cf. [Harbusch et al. 91]). It associates lexical items with syntactic rules, permits flexible
expansion operations and allows the separation of the description of local dominance from
linear precedence rules.

We have implemented a distributed parallel model with active cooperating objects sup­
porting the flexible and efficient processing of incrementally given structures. Each object
is associated with one lemma and one grammar rule representing its syntactic context. On
the hierachicallevel, the objects try to virtually combine their local structures via message
passing. Linearization is realized as traversing the local structures and handing over the
permission for output from one object to the other. Currently, only one simple revision
strategy is realized. It helps to integrate elements that would change the prefix by revising
the respective part of the string and repeating the whole utterance.

Conclusion

We have shown that the production of incremental output strongly infiuences the design
of a generation system. The prefix of an utterance constrains the further construction of
the sentence. Several types of repair can help to overcome the violation of this constraint.
Contrary to the output of current systems, the production of incremental output is more
natural for human recipients because it supports fluency in speech.

References

[Andre et al. 92] E. Andre, W. Finkler, W. Graf, T. Rist, A. Schauder, and
W. Wahlster. WIP: The Automa'tic Synthesis 01 Multimodal Presentations. In:
M. Maybury (ed.), Intelligent Multimedia Interfaces. AAAI Press, 1992. to appear.

[De Smedt & Kempen 87] K. De Smedt and G. Kempen. Incremental Sentence Produc­
tion, Sell-Correction and Coordination. In: Gerard Kempen (ed.), Natural Lan­
guage Generation, pp. 365-376. Dordrecht: Martinus Nijhoff, 1987.

[De Smedt 90] K. De Smedt. Incremental Sentence Generation, a Computer Model of
Grammatical Encoding. PhD thesis, NICI, Nijmegen, 1990.

[Harbusch et al. 91] K. Harbusch, W. Finkler, and A. Schauder. Incremental Syntax
Generation with Tree Adjoining Grammars. In: 4th International GI Congress, pp.
363 - 374, Munich, 1991.

[Kempen & Hoenkamp 82] G. Kempen and E. Hoenkamp. Incremental Sentence Gen­
eration: Implications lor the Structure 01 a Syntactic Processor. In: COLING'82.
North-Holland, 1982.

[Kempen 87] G. Kempen. A Framework lor Incremental Syntactic Tree Formation. In:
10th IJCAI, Milano, 1987.

[Levelt 89] W. J. M. Levelt. Speaking: From Intention to Articulation. Cambridge, MA:
MIT Press, 1989.

35

[McDonald 87] D. D. McDonald. Natural Language Generation: Complexities and Tech­
niques. In: S. Nirenburg (ed.), Machine Translation. Cambridge: Cambridge Uni­
versity Press, 1987.

[Neumann & Finkler 90] G. Neumann and W. Finkler. A Head-Driven Approach to
Incremental and Parallel Generation 0/ Syntactic Structures. In: 13th COLING ,
pp. 288-293, Helsinki, 1990.

[Reithinger 91] N. Reithinger. Eine parallele Architektur zur inkrementelIen Generierung
multimodaler Dialogbeiträge. PhD thesis, University of the Saarland, 1991.

[Schabes 90] Y. Schabes. Mathematical and Computational Aspects 0/ Lexicalized Gram­
mars. PhD thesis, Department of Computer and Information Science, University of
Pennsylvania, Pennsylvania, 1990. MS-CIS-90-48, LINC LAB 179.

[Schauder 92] A. Schauder. Incremental Syntactic Generation 0/ Natural Language with
Tree Adjoining Grammars. Document D-92-21, DFKI, Saarbrücken, 1992.

[Wahlster et al. 93] W. Wahlster, E. Andre, W. Finkler, H.-J . Profitlich, and T. Rist.
Plan-based Integration 0/ Natural Language and Graphics Generation. Artificial
Intelligence, to appear, 1993.

36

An Extended RST Planner for the
Generation of Multimodal Presentations

Elisabeth Andre
Gennan Research Center for Artificial Intelligence (DFKI)
W -6600 Saarbriicken 11, Stuhlsatzenhausweg 3, Gennany

E-mail: andre@dfki.uni-sb.de

Abstract:·
The aim of our work is to develop a presentation system tha1 is abJe to automatically generale illustrated
documents. We start from the assumption tha1 not only tbe genenlion oe text, OOt also the generation of
multimodal documents can be considered as a sequence of communicative acts wbicb aim to acbieve
cenain goals. The coordination of tbe different modes requires mowledge cooceming t.be fuDctions of
textual and pictorial document parts and t.be relations between tbem. Based on textlinguistic wor:k. tbe
structure of an illustrated document is described by t.be bierarcb.ical order oe communicative acts and the
relations between tbem. For t.be automated genenlion oe illusttated documeots, we propose an RST -like
planner that supports data transfer between the content planner and the mode-specific generation
components and allows for revising an initial docmnent structure.

1 Introduction
Recently, there has been increasing interest in the design of systems generating multimodal
output. Research in this area addresses the analysis and representation of presentation
knowledge (cf. [Arens et al. 93]) as weil as computational methods for the automatic synthesis
of multimodal presentations (cf. [Badler et al. 91], [FeinerlMcKeown 91], [MarksIReiter 90],
[Maybury 93], [Roth et al. 91] and lWahlster et al. 93]). There seems to be general agreement
that in these interfaces the presentation of infonnation should incorporate different modes,
particularly text and graphics. Such tailoring requires knowledge concerning the functions of
textual and pictorial document parts and the relations between them. Furtherrnore, a
presentation system must be able to handle the various dependencies between content planning,
mode selection and content realization.

In the following, we will show that concepts applied in natural language generation, such as
communicative acts and coherence relations, can be adapted in such a way that they become
useful for the generation of text-picture combinations. We will present an approach that
integrates content planning and mode selection and allows for interaction with mode-specific
generators.

2 The Structure of IIlustrated Documents
Our approach is based on the assumption that not only the generation of text, but also the
generation of multimodal documents can be considered as an act sequence that aims to achieve
certain goals (cf. [Andre/Rist 90]). We presume that there is at least one act that is central to the
goal of the whole document. This act is referred to as the main act. Acts supporting the main act
are called subsidiary acts.1 Main and subsidiary acts can, in turn, be composed of main and
subsidiary acts. The root of the resulting hierarchical .structure generally corresponds to a
complex communicative act such as describing a process, and its leaves are elementary acts,
i.e., speech acts (cf. [Searie 69]) or pictorial acts (cf. [Kjorup 78]).

* The work presented bere is supported by lbe BMFT under grant ITW8901 8.

I This distinction between main and subsidiary acts essentially corresponds to the distinetion between global an
subsidiary speech acts in [Searle 69], main speech acts and subordinate speech acts in [Van Dijk 80]' dominierenden
Handlungen and subsidiaren Handlungen in [Brandt et al. 83) and between nucleus and satellites in (MannfIbompsoD
87).

37

The structure of a document is, however, not only detennined by its hierarchical act structure,
but also by the role acts play in relation to other acts. In textlinguistic studies, a variety of
coherence relations between text segments has been proposed (e.g., see [Grimes 75] and
[Hobbs 78]). Perhaps the most elaborated set is presented in Rhetorical Structure Theory (RST,
cf. [Mannffhompson 87]). Examples of RST-relations are Motivation, Elaboration,
Enablement, Interpretation and Summary. Text-picture researcbers have investigated the role a
particular picture plays in relation to accompanying text passages. E.g., Levin has found five
primary functions (cf. [Levin et al. 87]): Decoration, Representation, Organization,
Interpretation and Transformation . Hunter and colleagues distinguish between: Embellish,
Reinforce, Elaborate, Summarize and Compare (cf. [Hunter et al. 87]). An attempt at a transfer
of the relations proposed by Hobbs to pictures and text-picture combinations has been made in
[Bandyopadhyay 90]. Unfortunately, text-picture researchers only consider the communicative
functions of whole pictures, Le., they do not address the question of how a picture is
organized. To get an infonnative description of the whole document structure, one has to
consider relations between picture parts or between picture parts and text passages 100. E.g., a
portion of a picture can serve as background for the rest of the picture or a text passage can
elaborate on a particular section of a picture.

MA Request-EDabIe-MoU,..te SA

Request I SA MoUv.te

I ".~'''In I Remoll'8 lhfI COII'8' ~ ~ flH lhfI WIIIJlrc:ontal,.,

~A!- ~~:S·d
- 'Desaibe-§equence

-~
Descrlbe-Trajectory Descrlbe-Tr.jectory

I I
~ t

Fig. 1: A Document Fragment and its Structure

In Fig. 1, an example document fragment and its discourse structure are shown. The goal of
this document fragment is to instruct the user in removing the cover of the water container of an
espresso machine. The instruction can be considered as a composite goal comprising a request,
a motivation and an enablement part The request is conveyed through text (main act (MA)). To
motivate that request, the author has referred to a superordinate goal, namely filling the water
container (subsidiary act (SA)). The picture provides additional infonnation which enables the
addressee to carry out the request (subsidiary act). The generation of the picture is also
subdivided into a main act, which describes the result and the actions to be perfonned, and a
subsidiary act, which provides the background to facilitate orientation.

3 Realization of the Presentation Planning System
As argued in the preceding section, text-picture combinations follow similar structuring
principles as text. In particular, a document is characterized by its intentional structure that is
reflected by the presenter's intentions and by its rhetorical structure that is reflected by various
coherence relations. Therefore, it is quite natural to extend methods for text planning in such a
way that they become also useful for multimodal presentations.

38

In order to generate multi.modal presentations, we have defmed a set of presentation strategies
that can be selected and combined according to a particular presentation task. To represent
presentation strategies, we follow the approach proposed by Moore and Paris (cf. [MooreJParis
89]) to operationalize RST for text planning. However, an additional slot for the presentation
mode must be introduced. The strategies are represented by a name, a header, an effect, a set of
applicability conditions and a specification of main and subsidiary acts. Whereas the header of a
strategy is a complex communicative act (e.g., to enable an action), its effect2 refers to an
intentional goal (e.g., the user knows a particular object). The applicability conditions specify
when a strategy may be used, and constrain the variables to be instantiated.

Name:
Provide-Background

Header:
(Background PA ?x 1~x 1picture Graphics)

Effect:
(BMB PA (Encodes 1p-x 1x 1picture»

Applicability Conditions:
(AND (Bel P (Perceptually-Accessible A 1x»

(Bel P (part-of 1x 1z»)
Main Acts:

(S-Depict P A (Object 1z) ~z 1picture)
Subsidiary Acts:

(Achieve P (BMB P A (Encodes 1p-z 1z ?picture» ?mode)

E.g., the strategy above may be used to enable the identification of an object shown in a picture
by depicting alandmark object (for more details see [Andr&Rist 93]). Whereas the strategy
prescribes graphics for the main act, the mode for the subsidiary acts is still open.

For the automatic generation of illustrated documents, the presentation strategies are treated as
operators of a planning system. During the planning process, the planner tries to fmd strategies
that match the presentation goal and expands the nodes to generate a refmement-style plan in the
form of a directed acyclic graph (DAG). The leaves of the planning DAG are specifications for
elementary acts, such as S-Depict or S-Assen. that are forwarded to the mode-specific
generators. The planning process terminates if all goals are expanded to elementary acts that can
be realized by the text or graphics generator.

To ensure that document fragments in multiple modalities are smoothly tailored to each other in
the document to be generated, one has, however, to consider various dependencies between
content determination, mode selection and content realization. Previous work on natural
language generation has shown that content selection and content realization should not be
treated independently of each other (see also [Hovy 87] and [Reithinger 91]). A strictly
sequential model in which data only flow from the "what to present" to the "how to present"
part has proven inappropriate becausethe components responsible for selecting the contents
would have to anticipate all decisions of the realization components. This problem is
compounded if, as in WIP, content realization is done by separate components (currently a text
and a graphics generator) of which the content planner has only limited knowledge.

It seems even inappropriate to sequentialize content planning and mode selection although mode
selection is only a very rough decision about content realization. Selecting a mode of
presentation depends to a large extent on the nature of the information to be conveyed. On the
other hand, content planning is strongly influenced by previously selected mode combinations.
E.g., to graphically refer to a physical object, we need visual information that may be irrelevant
to textual references.

A better solution is to interleave content planning, mode selection and content realization. In the
WIP system, we interleave content and mode selection using a uniform planning mechanism. In
contrast to this, presentation planning and content realization are performed by separate
components that access disparate knowledge sources. This modularization enables parallel
processing, but makes interaction between the single components necessary.

2 In [MoorelParis 891, this distinetion between header and effect is not made because the effect of their stralegies may
be an intentional goal as weU as a rbetorical relation.

39

next
task

TaskQueue

Design Modules

Plannlng Monitor
etermination of the next
ction and the next node to
xpand

ext

Layout
Manager

Plan
EvalulitlonlRevlalon
apply critics and
revision strat ias

Dealgn
,-----I==:JCI-----,

resultI
Fail

next
task

TaskOueue

Design Modules

reaultl
Fail

Fig. 2: The Architecture of the Presentation Planner

Interactions are, however, only useful if the realization components are able to process
infonnation in an incremental manner. As soon as the content planner has decided which
generator should encode a certain piece of information, this piece should be passed on to the
respective generator. Conversely, the content planner should incorporate the results of the
realization components as soon as possible.

These considerations have led to the architecture shown in Fig. 2. The basic planning module
selects operators that match the presentation goal and expands the nodes to generate a
refinement-style plan in the form of a DAG. The plan evaluation/revision module evaluates
plans and applies restructuring methods. To allow for altemating revision and expansion
processes, WIP's presentation planner is controlled by a plan monitor that detennines the next
action and the next nodes to be expanded. All components of the presentation planner have
readlwrite access to the document plan.

In the overall WIP system (cf. [Wahlster et al. 93]), the presentation planner collaborates with a
text generator (cf. [Harbusch et al. 91]), a graphics generator (cf. [Rist/Andre 92]) and a layout
manager (cf. [Graf 92]). As shown in Fig. 2, the leaves of the document plan are connected to
entries in the task queues of the mode-specific generators. Thus, the document plan serves not
only as an interface between the planner and the generators, but also enables a two-way
exchange of information between the two generators.

4 Conclusion
In this paper, we have argued that not only the generation of text, but also the synthesis of
multimodal documents can be considered as a communicative act which aims to achieve certain
goals. We have shown that methods for planning text and discourse can be generalized in such
a way that they become useful in the broader context of multimodal presentations. To represent
knowledge about how to present infonnation, we have proposed presentation strategies which
relate to both text and picture production. For the realization of a system able to automatically
generate illustrated documents, we have presented a plan-based approach that supports data
transfer between the content planner and the mode-specific generators and allows for global
plan evaluation after each plan step.

40

References '
[AndrelR.ist 90] E. Andre and T. Rist, Towards a Plan-Based Synthesis of Dlustraled Documents, In: Proc. of

ECAI-90, Stockholm, Sweden, pp. 25-30, 1990.
[AndreIRist 93] E. Andre and T. Rist, The Design of Illustraled Documents as a PlanDing Task. to appear in: M.

Maybury (ed.): Intelligent Multimedia Interfaces, AAAI Press, 1993.
[Arens et al. 93] Y. Arens, E. Hovy and M. Vossers. Tbe Knowledge UDderlying Multimedia Presentations,

to appear in: M. Maybury (ed.): Intelligent Multimedia Interfaces, AAAJ. Press. 1993.
[Badler et al. 91] N.I. Badler, B.L. Webber, J. Kallta and J. Esakov. Animation (rom Instructions. In: N.I.

Badler, B.A. Barsky and D. Zeltzer (eds.), Making tbem Move: Mecbanics, Control, and Animation of
Articula1ed Figures, Morgan Kaufmann Publishers: San Mateo, pp. 51-93, 1991.

[Bandyopadbyay 90] S. Bandyopadhyay. Towards an Understanding of CobeI'ence in Multimodal Discourse.
Teehnieal Memo DFKI-TM-90-01, Deutsches Forschungszentrum für Künstliche Intelligenz,
Saarbrücken, 1990.

[Brandt et al. 83] M. Brandt, W. Koch, W. Motsch and I. Rosengren. Der Einfluß der kommunikativen
Strategie auf die Textstruktur - dargestellt am Beispiel des Geschäftsbriefes. In: I. Rosengren (ed.),
Sprache und Pragmatik. LUIlder Symposium 1982. Almqvist & Wiksell: Stockholm, pp. 105-135, 1983.

[Van Dijk 80] T. A. van DlJk. Textwissenschafl dtv: Müocben. 1980.
(FeinerlMeKeown 91] S.K. Feiner and K.R. McKeown. Automating tbe Generation of Coordinated

Multimedia ExpIanatioos. In: IEEE Computer, 24(10), pp. 33-41, 1991.
[Graf 92] W. Graf. Constraint-Based Grapbical Layout of Multimodal Presentations, to appear in: Proc.of the

International Workshop on 'Advanced Visual Interfaces', Rome, May 27 - 29 1992, World Scientifie
Press, Singapore, 1992.

[Grimes 75] 1.E. Grimes. The Thread ofDiscourse. Mouton: Tbe Hague, Paris, 1975.
[Harbusch et al. 91] K. Harbusch, W. Flnkler and A. Schauder, Incremental Syntax Generation with Tree

Adjoining Grammars, in: Proc. Fourth International GI Congress, Munich, Germany, pp. 363-374, 1991.
(Hobbs 78] J. Hobbs. Wby is a discourse coherent? Technical Report 176, SRI International, Menlo Park, CA,

1978.
[Hovy 87] E. H. Hovy. Generating Natural Language under Pragmatic Constraints. PhD thesis, Department of

Computer Science, Yale University, New Haven, CT., 1987.
[Hunter et al. 87] B. Hunter, A. Crlsmore and PD. Pearson. Visual Displays in Basal Readers and Social

Studies Textbooks. In: DM. Willows and H. A. HoughtoD (eds.), The Psychology of Illustration, Basie
Research, Vol. 2, Springer. New York, Berlin, Heidelberg, Loodon, Paris, Tolcyo, pp. 116-135, 1987.

[Kjorup 78] S. Kjorup. Pictorial Speech Acts. In: Erkenntnis 12, pp. 55-71, 1978.
[Levin et al. 87] J.R. Levin, G.J. Anglln and R. N. Carney. On Empirieally Validating Funetions of

Pictures in Prose. In: DM. Willows and H. A. Hougbton (eds.), Tbe Psychology of Illustration, Basic
Research, Vol. 1, Springer: New York, Berlin, Heidelberg, Loodon, Paris, Tolcyo, pp. 51-85, 1987.

[Manntrhompson 87] W.C. Mann and S.A. Thompson. Rhetorical Structure Theory: Description and
Construetion of Text Structures. In: G. Kempen (ed.), Natural Language Generation: New Results in
Artificial Intelligence, Psyehology, and Linguisties, Nijhoff: Dordrecht, Boston, Lancaster, pp. 85-95,
1987.

(MarksIReiter 90] J. Marks and E. Reiter. Avoiding Unwanted Conversational Implicatures in Text and
Grapbics. In: 8th AAAI, pp. 450-455, 1990.

[Maybury 93] M. Maybury. Planning Multimedia Explanations Using Communicative Acts, to appear in: M.
Maybury (ed.): Intelligent Multimedia Interfaces, AAAI Press, 1993.

[MoorelParis 89] J.D. Moore and C.L. Paris. Planning Text for Advisory Dialogues. In: Proc. of the 27th
Annual Meeting of the ACL, pp. 1504-1510,1989.

[RistJAndrt 92] T. Rist and E. Andre. From Presentation Tasks to Pictures: Towards a Computational
Approach to Graphics Design, in: Proc. of ECAI -92, pp. 764-768, Vienna, Austria, 1992.

[Roth et al. 91] S.F. Roth, J. Mattls and X. Mesnard. Graphies and Natural Language as Components of
Automatie Explanation. In: 1. Sullivan and S. Tyler (eds.), Intelligent User Interfaces: Elements and
Prototypes, Addison-Wesley, pp. 207-239, 1991.

[Reithinger 91] N. Reithinger. POPEL - An Incremental and Parallel Natural Language Generation System.
In: C.L. Paris, W.R. Swartout, and W.C. Mann (eds.), Natural Language Generation in Artifieial
Intelligence and Computational Linguisties, pp. 179-200, Kluwer: Norwell, 1991.

[Searie 69] J.R. Searle. Speech Aets: An Essay in the Philosophy of Language. Cambridge University Press:
Cambridge, MA, 1969.

[Wahlster et al. 93] W. Wahlster, E. Andre, W. Flnkler, H.-J . ProfitIich and T. Rist. Plan-Based
Integration of Natural Language and Grapbics Generation. to appear in: AI Joumal, 1993.

4 1

42

NCC - Tools for Meaning Representation

John Nerbonne, Kader Diagne, Stephan Oepen,
Karsten Konrad, Ingo Neis

Deutsches Forschungszentrum für Künstliche Intelligenz
Stuhlsatzenhausweg 3

D-6600 Saarbrücken 11, Germany
{nerbonne I diagne I oe I konrad I neis}@dfki.uni-sb.de

Abstract

The paper discusses a concrete and implemented application of the meaning rep­
resentation language Nee and the use of compiler technology both in semantics
processing and in interfacing a computationallinguistics core engine to a distributed
AI application system. Various steps necessary in simplifying and resolving an ini­
tial (grammar-driven) meaning representation and mapping it into an appointment
planner language, Le. an application-specific logical form, are presented by virtue of
detailed examples from the application domain (cooperative schedule management).

1 Introd uction: Design Goals in Meaning Representation
The focus of this paper is the design and IMPLEMENTATION of semantic representation
languages (SRLs). Given the need of such modules to represent naturallanguage meanings,
we assurne that they should apply linguistic semanties, the specialized study of natural
language meaning. But because of the focus on design and implementation, we examine
quite generally the uses to which such modules may be put, abstracting away from details
which distinguish such superficially distinct approaches as generalized quantifier theory
(GQT), discourse representation theory (DRT), situation theory, or dynamic logic.

The appropriate design for any module can only be determined by elose analysis of
the uses to which it is to be put. We do not consider applications for semantics in pro­
viding test tools for linguistic hypotheses or in adding constraints to recognition tasks
([Young et al. 1989]), because these provide less elear design criteria. But the numeri­
cally most important group of applications, that of understanding and generation, give
rise to fairly elear requirements . Independent semantics modules are used with these ap­
plications for semantic representation, inference, and in order to support meaning-related
processing-disambiguation, resolution, and speech act management. The importance of
these points confirms the good sense of current practice in the field-that of viewing the
main task of the semantic module as the implementation of a linguistic semantic theory
(with selected AI enhancements for resolution and disambiguation). But we suggest that
insufficient attention is paid to the following four goals, which we focus on below:

43

Goals PL SRL

modularity
tools

independent definition (BNF)
parser, printer

parser-generator
compiler

parser (%), printer
modifiabili ty
mappings in, out
inference program transformation resolution, backward-chaining ...

Figure 1: Design goals common to PLs and SRLs plotted against "standard" solutions in the
two areas. The analogy suggests filling the gaps for standard solutions for SRLs by using PL
solutions: language specification tools for definition together with parser-generators to provide
the SRL reader, and compiler technology for interfaces to semantics modules. Finally, program
transformation techniques suggest a simple implementation for at least some inference rules.

• modularity-independence from syntax and application

• modifiability-for experimentation

• interface support-for mapping into and out of module

• support for independent use (reader, printer, tracer)

These prompt us to a comparison to programming language technology and compiler con­
struction.

2 Analogy to Programming Languages
It is axiomatic that modern PLs should meet the last four goals listed in the design goals
for SRLs. Standard introductions ([Aho et al. 1986]) detail how a programming language
syntax is specified in definitions independent of specific machines and environments (mod­
ularity) which are, moreover, easily modifiable given tools for parsing (parser-generators)
and printing. The parsers automatically created from language specifications take well­
formed strings as input and produce abstract syntax trees (like linguistic parse trees) as
output. Modern tools also provide printers (unparsers) which reverse the process: given
an abstract syntax tree, they produce a print form ([Friedmann et al. 1992), 85ft}

Just as a modular SRL must interface to more than one application, a programming lan­
guage needs to be able to run on different machines. In the latter case, this is accomplished
by compiling: the abstract syntax trees produced by the PL's parser are transformed into
(the abstract syntax trees representing) express ions of another lower-Ievellanguage (often
a machine-specific assembler language). The SRL correspondence is the use of compiler
technology to translate into SRLs, viz., in syntax/semantics interfaces (in NLU) or appli­
cation/semantics interfaces (in generation). Further details below.

Some of the transformations performed by compilers are not simple translations into tar­
get languages, but rather transformations to alternative structures in the source language
(cf. [Aho et al. 1986), 592ff) , or immediate evaluation of parse structures (cf. "transla­
tion during parsing" [Aho et al. 1986), 293-301). The use of these techniques suggests an
implementation for some inference facilities for SRLs-those arising from equivalence rules.

44

3 Nf2f2: Data Structures and Interfaces
NCC is an SRL which borrows heavily from linguistic semantics in order to provide rep­
resentational adequacy, using, e.g., on the one hand work from generalized quantifier the­
ory and on the other from the logic of plurals. [Laubsch et al. 1991J and [Nerbonne 1992J
present an overview of NCC and the background linguistic and model-theoretic ideas, which
will not be repeated here. For the sake of understanding examples below, we note that
atomic formulas in NCC are composed of a predicate together with a set of role-argument
paIrs, e.g.

'Anterist ships to Hamburg' ship(agent:'anterist' goal:'hamburg')

The NCC formula may also be read: 'anterist' plays' the role of agent and 'hamburg' that
of goal in so me shipping situation. An advantage of identifying arguments via roles rather
than positions (as is customary in predicate logic) is that one can sensibly use the same
predicate, e.g., shipO, with various numbers of arguments; thus even though something
must also playa theme role in this situation (what is shipped), it need not be expressed in
the role-coded set of arguments. Cf. [Nerbonne 1992J for formal development.

Following the PL lead, we begin with a formal syntactic specification of NCC in a
form usable by a parser-generator. l We uSe Zebu ([Laubsch 1992aJ), a public-domain too!
in Common LISP. 2 Zebu grammar specifications consist of a set of RULES, each of which
specifies a SYNTAX for a grammatical category and an ACTION to be taken by the parser
when the category is found. These specifications are easily modified in case extensions,
variations or even substantial modifications of the language become interesting. In addition
to syntax ruIes, Zebu grammars mayaiso contain Iexical restrictions ([Laubsch 1992a], 15)
needed for generating a lexical analyzer (which, however, is not used in NCC). From the
NCC grammar, Zebu generates an LALR(1) parser ([Aho et al. 1986], § 4), which is the
NCC reader. The reader immediately supports experiments with the semantics module by
easing the creation of semantic data structures. The Zebu grammar compilation process
detects any inconsistencies or ambiguities in the grammar definition.

Zebu go es beyond the capabilities of parser-generators such as UNIX yacc in further
optionally generating (automatically) the definition of a DOMAIN, a hierarchy of data struc­
tures (LISP structures) for abstract syntax. If this option is chosen, then Zebu defines a
structure type for each expression type; the structure for a given expression has as many
fields as the expression has subexpressions (e.g., Predicate and Role-Argument-Pairs). On
the basis of the domain Zebu then also generates an "unparser" , in this case the NC!
printer (which in turn may be called by the LISP printer).

The dual access provided by the PL approach aiready allows an interesting degree of
freedom. For example, the opportunity to create NCC via constructor functions allows the
implementation of a syntax-semantics interfaceof the sort suggested by [Johnson et al. 1990J

1 We are eoneentrating here on the more reeent N.c.c implementation; an earlier implementation in
REFINE ([Laubseh et al. 1991]) is no longer the foeus of our efforts, even though we eontinue to maintain
it for its usefulness in rapid prototyping. REFINE is a trademark of Reasoning Systems, Palo Alto.

2Zebu was originally developed in Seheme by William Wells .

45

in -.vhich the syntax/semantics interface is constituted by a set of generic constructor func­
tions attached to syntactic rules (and therefore nonterminal nodes). NC,C, has been em­
ployed this way in a syntax/semantics interface in an extensive NLP system, viz. the hp-nI
system ([Nerbonne et al. 1987]). This is appropriate when relatively complex structures
are created in aseries of simple increments. Alternatively,one may invoke the NC,C, reader
to create Nc'c', and an interface from the COSMA appointment manager (cL below) to
NC,C, (for generation) invokes the reader extensively. This made the single-step creation
of complex structures much simpler.

But given the relatively easy access to abstract syntax trees provided by the Zebu
reader, the construction of interfaces through genuine compilation (transformation based
on abstract syntax) is also feasible. NC,[,'s basic scheme of compilation is TREE REWRITING

([Aho et al. 1986], 572ft) An abstract syntax tree is traversed, and at each node, each of
a sequence of REWRITE RULES is applied. A rewrite rule abstractly takes the form:

meta-syntactic-pattern -+ replacement-node

A rewrite rule checks whether a meta-syntactic-pattern is satisfied at the current node, and
returns the replacement node together with a boolean flag indicating whether the rule has
fired: (replacement-node, 8?:bool). In case we are translating from one abstract syntax to
another, then the meta-syntactic-pattern describes anode in the source language, while
the replacement node belongs to the translation target language. The traversal routine
replaces the current node with the replacement-node in case the rule has fired.

The top-down tree-rewriting algorithm PREORDER-TRANSFORM inputs a tree t and a
sequence (rl . .. r n) of rewrite rules. It then traverses the tree in preorder ([Aho et al. 1983],
78-9), and at each node, attempts to rewrite using each of the rules rio If any rule in the
sequence fires, then the entire sequence is tried again, until no rules fire. Then the traversal
continues, until the leaf nodes of the tree. The algorithm is attractive because it reduces
the tree-transformation problem to the specification of transformations on local subtrees .
An analogous POSTORDER-TRANSFORM invokes sequences of rewrite rules in a bottom-up
traversal of the abstract syntax tree.

In addition to optimized control routines for tree-transformation NC,C, provides a li­
brary of access and manipulation functions (for substitution, construction, simplification)
to support the transformation process. [Laubsch 1992] reports on the required transforma­
tions for NC,C, compilers to SQL and to the New Wave task language the following sections
present transformations implemented in the COSMA system, a distributed cooperate ap­
pointment and schedule manager.

Compilation is normally an effective translation technique because it abstracts away
from irrelevant details of the concrete syntaxes of target and source languages. It is espe­
ciallyappropriate: (i) when communication between modules is limited (e.g., when mod­
ules run on separate machines or in separate processes, so that communication is limited
to strings)j (ii) when the nature of target data structures is unknown or unspecifiedj or (iii)
when there is minor variability in targets (e.g., different versions of the same programming
Ianguage or query language).

46

4 NCC in the Scope of the COSMA System
In building the COSMA (Cooperative Schedule Management Agent) system we connected
a natural language core engine (viz. the DISCO system) to an appointment planner that
was provided by another in-house project. When interfacing the DISCO meaning process­
ing modules to the planner internal representation language (henceforth IR) the compiler
approach as taken in)lee design has been proven especially useful because the target
language has undergone syntactic change several times.

The)lee transformations implemented so far in the COSMA prototype can be classified
according to theory vs. domain dependence and target language ()lee vs. IR) as follows:

(I) core)lee inference: purely logical (theory-independent) equivalence transforma­
tion, e.g. flattening of nested conjunctions (example below)

(u) simplification: meaning preserving transformation generating a 'canonical' form,
e.g. grouping of multiple restrictions on the same variable (example below)

(m) disambiguation and domain-specific inference: transformation based on do­
main knowledge, e.g. scope resolution, anchoring of underspecified temporallocations

(IV) translation: mapping into different abstract syntax - mediation of difference in ex­
pressive power, e.g. translation to SQL or the COSMA planner internal representation
(example below)

5 Initial Sentence Semantics (NCC Representation of Parse)
Based on a concrete example from the appointment domain, viz. the noun phrase

(1) Ein Termin am 23. Oktober um 13:30 Uhr. (A meeting on October 23 at 1:30 pm.)

the following sections will present in some detail the major transformation steps that are
taken in mappi'ng the initial senten ce semantics into an appropriate application directive,
As in the current DISCO architecture the disambiguation and domain-specific inference
components are still under development we focus on steps (I), (u) and (IV),

The initial semantics as input to the semantics module in feature structures is heavily
determined by purely syntactic conditions, i.e. the structure derived from the underlying
grammar. Because (1) is rich in prepositional phrases (free adjuncts in the HPSG-style
DISCO grammar), the attachment problem shows up in the grouping of restrictions on
the restricted parameter ?x in Figure 2. Basically, the variable ?x is constrained to be an
instance of an appointment (terminO) and to stand in various spatial relations to expressions
originating from the prepositional phrases on October 23 and at 1:30 pm.

6 Equivalence Transformation and Simplification
An instance of logical equivalence transformation relevant to the given example is the
following:

• flattening of nested conjunctions:

and{p, and{ q, r}} -+ and{p, q, r}
and{p} -+ p

47

(?x I and{and{termin(instance:?x)
temp-um(theme:?x goal:(?t2 I time(instance:?t2 hour:13 min:30»)}

tem p-am(theme:?x
goal:(?tl I time(instanCe:?tl mon:(?m I oktober(instance:?m» day:23»)})

Figure 2: (Part of the) Parsing result of the phrase 'Ein Termin am 23. Oktober um 13:30
Uhr.' after simple translation into N!!. The nesting and order of conjuncts in the restriction of
the variable ?x is semantically arbitrary, reßecting the gra.mmatically convenient treatment of
adjunct semantics in the DISCO gra.mmar by introduction of additional conjunctions.

Applied to the Nee expression in Figure 1 the nested binary conjunctions restricting the
variable ?x are 'flattened' to a single conjunction with three order-independent conjuncts.

While a set of core logical rewrite rules comes built-in with the Nee semantics module,
the second dass of transformations listed above, viz. the generation of a 'canonical' form
by simplification, depends on the concrete linguistic theory of semantics assumed. With
respect to example (1) we exdusively look at the representation of temporal constraints in
the DISCO framework.

The basic format of temporal expressions is given by the atomic predicate timeO with
roles instance, year, month, day etc. down to second - we think of formulae of this type as
representing either a moment or interval of time (much like a temporallocation in situation
theory) with varying granularity (cf. [Kasper 1993]). However, as Figure 2 shows, the
actual distribution of temporal data from the example phrase is determined by the number
of prepositional phrases and the syntactical nesting of adjuncts. Moreover, the two chunks
of temporal restrictions on the appointment stand in the scope of two distinct predicates
(viz. temp-amO' and temp-umO)3 as they are lexically introduced by the corresponding
German prepositions.

Two similar examples from the DISCO grammar yield structurally quite different results
(with temporal units abbreviated by the corresponding English phrases):

• 'am Freitag um 13:30 h' (on Friday at 1:30 pm)

temp-am(... goal:(?t 1 I and{time(instance:?t 1 Friday)
tem p-um(theme:?t1

goal:(?t2 I time(instance:?t2 1:30 pm)))

• 'am Nachmittag des 23.10.' (on the afternoon 0/ October 23 [genitive case])

temp-am(... goal:(?t1 I and{time(instance:?tl afternoon)

poss(possessed: ?t1

possessor:(?t2 I time(instance:?t2 23.10.)))

The first case exhibits typical nesting of prepositional phrases while the second example
reflects a (grammatically) comfortable treatment of genitive attributes. All example config­
urations show the need for simplification into a canonical representation, thus abstracting

3The temp- prefix results from sortal disambiguation based on the type of complements (both temporal
in this case) as it is integrated into the feature structure (meta-) representation of NCC expressions and
evaluated at parse time. Cf. [Kasper 1993].

48

(?x I and{termin(instance:?x)
temp-in(theme:?x goal:(?t I time(instance:?t

- «type. :appointment)

mon:(?m I oktober(instance:?m» day:23
hour:13 min:30»)})

(time. (month . :october) (day-of-month . 23) (hour. 13) (minute. 30»

Figure 3: NCC representation of example phrase after equiva.lence transformation and simplifica­
tion (top) and corresponding structure in COSMA IR (bottom). Neste<! conjunctions and multiple
restrictions on the variable ?x have been simplified in the NCC formula according to the rewrite
rules given in section 3 and the generic temp-inO relation has been substitute<! for the lexically
determined predicates.

from syntactic structure and allowing uniform further processing. The DISCO general time
semantics legitimates the grouping of multiple (and possibly nested) temporal restrictions
on the same variable into the scope of a single timeO predicate by 'unification' of all exist­
ing information. For all the given examples Nl.l. transformations have been implemented4

that fire on appropriate meta-syntactic configurations and rewrite to a unified structure.

7 Translation into Target Language
The internal representation of the appointment planner as the interface language to the
semantics module in the COSMA system (besides the interface to feature structure descrip­
tions) is far more restricted in expressive power than Nl.l.. The IR language is syntactically
elose to Common-Lisp (all data structures are represented as nested association lists) - it
basically provides a fixed set of negotiation primitives that take one or more appointment
descriptions (of the type given in Figure 3) as arguments.

Despite the obvious simplicity of the target language in the COSMA prototype we have
chosen to follow the general Nl.l. compiler approach in mapping into IR. Just as inside
the Nl.l. module expressions of the target language are represented as (hierarchically
organized) Common-Lisp structures thus allowing us to view the process of translation
as aseries of tree transformations again and to make use of the optimized Nl.l. tree
travers al drivers. The Common-Lisp surface syntax of IR expressions is generated from a
(yet hand-coded) pretty printer (unparser) that makes IR abstract syntax trees print as
Lisp association lists.

Adapting the compiler approach to the Nl.l. to IR interface, the translation module is
construed as a set of rewrite rules that are applied in post-oder (bottom-up) tree traversal5

just like the other transformations and simplifications we have seen so far. Though the

4In the current state of Nee implementation rewrite rules are realized as hand-coded Common-Lisp
functions that are applied to abstract syntax trees by use of an optimized tree traversal driver. Ongoing
Nee research and implementation is devoted to the realization of a rule compiler that compiles appropriate
transformation routines from meta-syntactic descriptions of rewrite rules.

5Bottom-up processing is the control regime of choice because several high-level rewrite rules depend
on the argument type of embedded structures. Generally a mixed control strategy might be achieved by
splitting transformations into (not necessarily disjoint) sets and applying these sequentially.

49

example phrase has been chosen because it maps nicely into an appropriate IR expression
(see Figure 3) by strictly Iocal rewrite rules the tree transformation mechanism has turned
out to be suitable in handling Iarger and more complex structures as weIl and to effectively
support the mediation of different expressive power needed in mapping Nl.l. into COSMA

IR.

References
[Aho et al. 1983]

[Aho et al. 1986]

Alfred Aho, John Hopcroft a.nd Jeffrey Ullman. Data Stroctures and
Algorithms. Addison Wesley, 1983.

Alfred Aho, Ravi Sethi a.nd Jeffrey Ullman. Compilers: Principles, Tech­
niques and Taols. Addison Wesley, 1986.

[Friedmann et al. 1992] Daniel Friedman, Mitchell Wand and Christopher Haynes. Essentials 0/
Programming Languages. McGraw-Hill, New York, 1992.

[Johnson et al. 1990]

[Kasper 1993]

[Laubsch et al. 1991J

Mark Johnson and Martin Kay. Semantic abstraction and anaphora.
In Hans Karlgren, editor, Proceedings 0/ COLING-90, pages 17-27,
Helsinki, 1990. COLING.
Walter Kasper. Integration of Syntax and Semantics in Feature Struc­
tures. In Stephan Busemann and Karin Harbusch, editors, DFKI Work-
shop on Natural Language Systems: Modularity and Reusability, DFKI
Document, DFKI, Saarbrücken, 1993.

Joachim Laubsch and John Nerbonne. An Overview of NLL. Technical
Report, Hewlett-Packard Laboratories, Palo Aho, 1991.

[Laubsch 1992] Joachim Laubsch. The semantics application interface. In Hans Hau­
geneder, editor, Applied Natural Language Processing, 1992.

[Laubsch 1992aJ Joachim Laubsch. Zebu: A tool for specifying reversible lalr(1) parsers.
Technical report, Hewlett-Packard Laboratories, Palo Aho, CA, July
1992.

[Nerbonne et al. 1987J John Nerbonne and Derek Proudian. The hp-nI system. Technical re­
port, Hewlett-Packard Labs, 1987.

[Nerbonne 1992] John Nerbonne. NLL Models. Research Report, DFKI, Saarbrücken,
1992.

[Nerbonne et al. 1993] John Nerbonne, Joachim Laubsch, Kader Diagne and Stephan Oepen.
Natural Language Semantics and Compiler Technology. Research Re­
port, DFKI, Saarbrücken, 1993.

[Neumann et al. 1993] Günter Neumann, Stephan Oepen and Stephen P. Spackman. Design
and Implementation of the COSMA system. Technical Report, DFKI
Saarbrücken, 1993

[Young et al. 1989J Sheryl Young, Alexander Hauptmann, Wayne Ward, Edward Smith, and
Philip Werner. High level knowledge sources in usable speech recognition
systems. Communications 0/ the ACM, 32(2):183-194, 1989.

50

• Micro plannung (MIP) consists of the conceptual planning which includes decisions
like determination of the information perspective, its topic, its focus and the way in
which it could attract the addressee's attention .

• Sentence formulaton (SF) involves the tasks of accessing lemmas, inspecting the
grammatical relations, and mapping these onto inßectional and phrasal structure to
form the surface structure given to the phonological encoder.

It has been shown that the boundaries between the individual tasks cannot be drawn
separately because for many decisions, knowledge of another component is required. This
can lead to dead ends as a result of local decisions in MAP or MIP or SF, respectively.
Therefore the architecture of a generation realizing MAP, MIP, and SF in individual com­
ponents should provide features for backtracking or feedback (see, e.g., the system TEXT
by [McKeown 85J for a sequential model or POPEL by [Reithinger 91J for a cascaded model
with feedback). In an integrated approach this problem is avoided by allowing access to
all knowledge sources for each task where the order of processing is not predetermined
(see, e.g., the KAMP system by Appelt [Appelt 85]). The approach concerned here in
the naturallanguage generation in WIP follows the paradigm of Reithinger for a cascaded
model with feedback [Wahlster et al. 93J because it provides the fiexibility necessary for
the incremental processing without the drawbacks of an integrated system.

Lexical choice (LC) is the process of selecting a lemma or a number of lemmas, respec­
tively, describing a net of concepts and roles adequately in the current situation. With
this characterization, the decision where to locate a component for lexical choice in a non­
integrated generation system infiuences the performance of the system. If the lexical choice
is postponed during sentence formulation, a propositional structure can be selected where
the obligatory finite verb position cannot be filled by the lexical choice. Conversely, e.g.,
the lexical choice in the micro planning can determine a valency description for the verb
where the obligatory positions cannot be filled later on in the senten ce formulation.

In the incremental naturallanguage generator in WIP where each component must be
able to run with partial information and defaults - which can be revised by contradictory
input - processed from a piece-meal wise input of a higher component the lexical choice is
located in MIP. There it plays the role of adefault generating routine where in a feedback
step SF can add further constraints for a new search process in the lexical choice2

.

But we do not want to go as far as Levelt [Levelt 89J who proposes that the whole
formulation process is lexically driven, i.e. the grammatical and phonological encoding are
mediated by lexical entries. The preverbal message triggers lexical items into activity. The
syntactic, morphological, and phonological properties of an activated lexical item trigger,
in turn, the grammatical, morphological, and phonological encoding procedures underlying
the generation of an utterance (lexical hypothesis). In his framework, e.g., the decision for
active or passive constructions is triggered by mediating lexical items instead of a direct
encoding in the speaker's message. .

2See the syntactic constraints in the input description of the lexical choice component where these
constraints are formulated .

52

Our decision against the lexical hypothesis results from the idea of building an LC com­
ponent fitting into different generators which can or cannot follow the lexical hypothesis.
Thus, in the input specification of the lexical choice component in WIP, a direct encoding
is provided. We hope to subsurne the lexical hypothesis by this approach in the sense
that an empty specification in this position and an early call of the LC component in MIP
produces the mediating lexical items, although this hypothesis must be discussed in more
detail in future investigations.

In the following section, the current state of our incrementallexical choice component
is described in more detail.

2 The Input Specification for the Lexical Choice Com­
ponent in WIP

The input consists of two kinds of information. On the one hand a net of concepts and
roles of arbitrary size is described. On the other hand a list of generation parameters is
specified for each concept node. This list can be empty.

The net of concepts and roles is given descriptively by a uniquely interpretable bracket
structure. A description of generation parameters can be associated with each concept
node in the net.

The list of generation parameters which constrain all processes in the WIP system are
the following:

• processing time for the task (here 5 different degrees (" (J' -" 4") are given as an abstract
description instead of an absolute cpu time or an interrupt of an external control
process),

• space for the utterance (same as for processing time an abstract description - at the
moment simply a binary choice between "'short" and "lonrt),

• style of the utterance ("written text" or "spoken language" or "slang' etc.),

• jrequency (on the latice between "1" and "1(1'), which is a specific parameter of
lexical choice and not of the overall generation system, to select less common words
- in order to allow for more flexible texts3 ,

• another constraint most intensively interpreted4 in the lexical choice process are the
syntactic constraints which are specified, e.g., by a previous attempt in the sentence
formulation process. They are written in the terminology of the lexicon, e.g., VAL=4
for a valency description with direct and indirect object.

3For the next prototype it should be discussed how this parameter should be extended - especially
towards a weil funded decision between hypernyms.

4In the case of a feedback from SF, MIP can also react, e.g., by deciding for another propositional
structure.

53

Two further specific cases are encoded in the lexical choice process:

• The selection of the lexical entries describing the relation between propositions is
initiated by the specification of the kind of relation (anteriority, reason, condition,
etc.) and the specification of the kind of sentence in the particular role (main clause
or subordinate clause or nominalization of a clause).

• The determination of prepositions for semantic roles will be produced by specifying
the role and the selected lexical item for the corresponding concept as input.

Each input can be associated with the above mentioned generation parameters.
For easy processing in the LC component, all three kinds of input can be identified

separately by reading the first sign (by convention "!" introduces all concepts and "$" all
roles).

3 Description of the Lexica for our LC

Another input resource of the Lexical Choice process are the lexica where the correspon­
dence between concepts and roles with lexical entries is specified.

The lexical choice component in WIP uses four different lexica:

• RELLEX contains the specifications of relations between sentences. For example,
the relation condition between a subordinate and a main clause is "wenn - dann" in
spoken language and "bevor - ." in written text.

• PREPLEX contains the prepositional items for semantic roles. For example, loca­
tionaLgoaLon_top_of is expressed as "auf+accusative_obj".

• PREPSPEC imposes further constraints on prepositions in combination with specific
lexical items in the object position. For example, location_goaLin in combination with
a "Dessertteller' becomes "auf" instead of "in".

• CONLEX contains a word or a list of words corresponding to a net of concepts and
roles in order to express the net. For example , the net concept motion_by_means +
role instrument + concept plane is related to "fliegen" for a verb and "Flug" for a
noun in written text, with "düsen" for a verb in slangs.

In the preliminary implement at ion to test the algorithm for the selection of lexical
items all lexica are realized as assoc lists containing structures [Steele 84]. The key is a
concept net, relation or preposition. In the individual structure the lexical item and the
best characterization of constraints is described (e.g., motion_by_means with(V (zischen_1)

SYNTRESTR = (VAL = 1 MODE = ACTIVE) FREQ = (3) LENGTH = SHORT STYLE

5This entry is annotated with a reduced frequency so that "fliegen" can also be a valid choice during
the evaluation of generation constraints where "slang is required .

54

= SLANG) (N (heißer_RitLl) SYNTRESTR = (IDIOM GEN = MAS NUM = SING)
FREQ = (1) LENGTH = LONG STYLE = SLANG) ete.

For large lexica more sophisticated methods of storing and searching should be adopted
in the next prototype.

4 The Processing in our Incremental LC Component

By the input specification the three different kinds of processing in the lexical choice
process can be identified separately by reading the first input sign. The first element (net
of concepts and roles or relation or semantic role) becomes the search key for the lexica.
In all three cases the generation parameters are associated with individual variables. If a
generation parameter is not specified in the input it is initialized with the following default:
synrestr := ni/, freq := 10, length := short, time:= 4, style := written_text.

For all three types of processing the most important parameter during processing is
the time constraint. If it is "(J' the most primitive filter selects the lexical item of the first
entry under the search key in the corresponding lexicon and returns it as an answer6 . If
the time restriction is greater than zero a number of nested filters is applied to the list of
entries found under the search key in the specific lexicon. Each test produces a new list
where the currently tested constraint is satisfied. If a test comes up with the empty list the
resulting list of the last test becomes valid again. Therefore a result is always produced
except when the key is not in the lexicon.

For the input of a net of concepts and roles the filtering is the following. The next
filter checks the category restriction for a concept. Only entries with the required category
remain in the resulting list. If time = "1" ,the first entry in the resulting lists becomes the
answer . For time greater than 1 the further syntactic restrictions are checked. For time
greater than 2 the style is tested. For time greater than 3 the length is considered. The
most extended test selects entries with a frequency best fitting the input specification in
this constraint position.

The processing of prepositions is carried out in the same fashion. For the relation
between sentences no syntactic restriction beside the nominalization of a clause can be
specified.

As a basic requirement of the WIP system the input can be incrementally extended.
This can mean that either the concept-role net or the generation parameters are extended
or modified. Since in the case of lexical choice an extension of the net can lead to different
lexical items - e.g., if the instrument "plane" occurs at a later stage the choice for "fahren"
must be revised - at the moment the whole processing in the LC component is repeated.
In the next version, intermediate results should be considered and reused as far as possible.
Especially, returning to the finally processed set of results should be possible if the time
constraint has diminished i.e. the number is increased. This is an important step towards
fulfilling the requirements of an anytime approach.

6This can be seen as a very basic anytime a{gorithm [Dean, Boddy 88] where the interrupt is simulated
by an explicit specification in terms of a duration time.

55

5 Conclusions

Here a straight-forward realization of an incrementallexical choice under generation con­
straints is presented. The main emphasis placed on the consideration of generation con­
straints especially of the time restrietion which always leads to a result which is more or
less adequate.

The next steps go towards investigations in a more weIl funded theory of representation
of relations between lexical items. As suggested in [Pustejovsky 91], techniques known from
know ledge representation ca.n be adapted for that purpose (e.g., the lexical choice can be
interpreted as a classifying problem in this framework).

There are ideas of taking a more general and more flexible approach in running the
filters according to the current specification of constraints. As realized in the sentence
generator of the WIP system for the selection of grammar rules, according to the generation
parameter a geometrie representation of all constraints is computed [Kilger 93]. For this
measurement a more or less restricted approximation is required - in our case in the
lexicon where entries are represented accordingly by this global measurement.

References

[Appelt 85] D. E. Appelt. Planning English Sentences. Cambridge University Press, Cam­
bridge, MA, 1985.

[Dean, Boddy 88] T. Dean and M. Boddy. An analysis of time-dependent planning. In
AAAI-88, pages 49-54, 1988.

[Kilger 93] A. Kilger. Incremental generation with tree adjoining grammars. Computa­
tional Intelligence, 1993. to appear.

[Levelt 89] W . J. M. Levelt. Speaking: From Intention to Articulation. MIT Press, Cam­
bridge, MA, 1989.

[McKeown 85] K.R. McKeown .. Text generation. University Press, Cambridge, MA, 1985.

[Pustejovsky 91] J. Pustejovsky. The generative lexicon. Computional Linguistics,
17(4):409-441, 19~1.

[Reithinger 91] N. Reithinger. Eine parallele Architektur zur inkrementelIen Generierung
multimodaler Dialogbeiträge. PhD thesis, University of the Saarland, 1991.

[Steele 84] G. 1. Steele. Common Lisp: The Language. Digital Press, Hanover, MA, 1984.

[Wahlster et al. 93] W. Wahlster, E. Andre, W. Finkler, H.-J. Profitlieh, and T. Rist.
Plan-based Integration of Natural Language and Graphics Generation. Artifi­
cial Intelligence, to appear, 1993.

56

Towards the Configuration of
Generation Systems:

Some Initial Ideas

1 Introduction

Stephan Busemann*
busemann~dfki.uni-sb.de

Many systems for NL generation that serve as NL front end to some application system
(e.g. a database, or an expert system) are designed in such a way that general, linguistic
parts are not carefully distinguished from application-dependent parts. Often decisions
made in the course of generation implicitly rely on properties of the application system,
or they are based on knowledge that combines domain-specific aspects with more general
ones. For instance, a generator used in dialogues about appointment scheduling might
deterministically generate the speech act REQUEST if it encounters the domain concept
arrange since, in this application situation, arrange always represents the intention of
arranging a meeting.

If such domain dependencies are placed in a generation front end, it is difficult, or
even impossible, to transport the system to other applications. There is an obvious need
for reusable generation components. What is called for is a better way of modularization.

The problem is well known, and partial solutions have been suggested. For instance,
transportable surface generators do exist and are used for various application classes.
Beyond the surface-oriented levels, however, there is as yet no overall design strategy for
generators that would help in achieving better modularity and reusability.

There is an obvious reason for this deficiency. The large variety of possible genera­
tion tasks, including discourse generation, dialog contributions and machine translation l ,

obviously cannot be dealt with by one single system. Moreover, the kind of input given
to a generator by an application system is in no way standardized. For instance, focus
assignment may or may not be reflected; word choice may already be done or may be left
to the generation system; segmentation (into clause-sized portions) may be an issue at
stake, etc.

*This work was supported by the German Ministry for Research and Technology (FKZ ITW 9002 0).
1 We exclude the problems of generating spoken output in this paper .

57

U nder these circumstances, a modular and reusable generation system cannot be
monolithic. Rather generation front ends should be configurable depending on the gen­
eration task at hand and on the respective communicative competence of the application
system. The basic idea is that, based on a shared formalism, different combinations of
modules can be configured. The application-dependent parts reside in other modules than
the generalizable parts, thus allowing for better transport ability. To be clear, this should
be understood as a design strategy that allows various system architectures.

This paper gives so me preliminary ideas about configurable generators. After dis­
cussing a generic application situation, the idea of configurable system architectures is
presented. We then show how both static and dynamic (run-time) configuration can be
achieved in the generator of DFKl's COSMA system, which is involved in multi-agent
e-mail dialogues about appointment scheduling.

2 Adaptation to different application situations

When a generation front end system is coupled with an application system to make the
results of the latter available in NL, the distribution of tasks is important. A generator
can legitimally expect an explicit representation of a communicative goal as its input.
However, many existing application systems (e.g. databases) are overburdened with this
requirement as they do not have a notion of communicative goals. They do, for instance,
not know the differenc~ between what they know and what they say. Other application
systems are more intelligent in this respect (e.g. some explanation com ponents of expert
systems). Obviously an application-dependent adapter is needed that provides the gen­
erator with a ~ommunicative goal (in the case of a database, this may be the goal of
informing the hearer by default). 2

On the basis of a communicative goal the content of an utterance can be determined.
Usually this involves concept selection from a knowledge base containing the domain
model. As the generator must refer to such knowledge at several stages of the generation
process, another kind of adaptation problem arises. We suggest relying on an U pper Model
approach (cf. [Bateman, 1990]) for transportability. It would be the task of the adapter

. (or a requirement for the application system) to guarantee that the domain knowledge is
available in such a way that it can be classified according to an Upper Model.

In general, adaptation is the task of mediating between the application system and
the generator. It includes all application-dependent decisions (it is here where the above­
mentioned decision about REQUEST should be made), and all application-dependent gen­
eration parameters should be set here. Adaptation does, however, not include application­
independent aspects of generation. These are left to the transportable generator.

Finally the adapter serves also solving the technical problem of translating between
application-specific and generator-specific formal devices.

2Note that this does not necessarily suggests a single component; adaptation could as weil be realized
by providing various components with special extensions.

58

The adapter tasks are subject to modification or even redesign for every new applica­
tion . This will allow us to keep the generation system by and large unchanged and will
thus serve as an important prerequisite for reusability.

3 Towards configuration in generation systems

In this section we restrict ourselves to the determination of linguistic form. We have
nothing to say about content determination. We do not specify how elose the input
representation should be to the surface; we want to be able to deal with input specifications
of varying depth.

In addition to the adaptation of input structures it is necessary to accustom the gen­
eration system to the tasks corresponding to various application situations. We suggest,
as a guideline for the architecture of generation systems, to make the systems config­
urable in the sense that different tasks can be achieved by activating different subsets of
components.

We distinguish static and dynamic configuration. The linguistic and communicative
demands of the application system determine which generation components are required.
For instance, the application system might use discourse knowledge to represent the focus
of attention in the generator's input structure. If this is not the case, the generator should
activate a focus determination component. The equipment of a generation system in view
of such tasks is called static configuration.

What amount of flexibility should the generation interface allow for? The generator
must apparently assurne certain properties of its input. A given input may have these
properties; it may have less or even more than required. If there is, for instance, no
representation of a communicative goal, the generator mayassume adefault goal according
to the application situation. We leave it to future research to identify the demands placed
on an application system.

Properties of a particular input structure can also activate a component, or exelude it
from being activated. For instance, a large excerpt of a database is often better readable
for the user if it is presented in a tabular form rather than by a complex naturallanguage
text. Moreover, the generation of idiomatic or often needed expressions is best achieved
by using so me form of canned text or templates rat her than the full power of linguistic
knowledge. The decision about which method should be adopted can only be made at
run time. We subsurne these decisions under the notion of dynamic configuration.

The configuration can be achieved by parameterizing a complex generation system
that is equiped with a large set of integrated modules. For static configuration the system
developer specifies the parameters. Dynamic configuration is performed by the generation
system and based on criteria for the adapted input structure.

Some prerequisites are necessary for a configurable system to work. First of all, the
components need to be usable as modules in different generation contexts. Second, all
components need an interface to a shared formalism, which allows for the communication

59

and flow of control between the components. Possible candidates are logical representation
languages such as NLL (see [Nerbonne et al., this volumeJ) or typed feature descriptions,
as proposed in e.g. [Krieger et al., 1993]. FinaIly, a dear distinction between declaratively
represented knowledge and processing is necessary, as is convincingly argued in e.g. [Paris
and Maier, 1991] .

4 Dynamic configuration: The COSMA generator

In one of DISCO 's application scenarios, several people try to find a meeting time. They
communicate via e-mail, and most use a system called COSMA (Cooperative Schedule
Management Agent), which can be authorized to negotiate and in the end commit to
a meeting time. A COSMA has a built-in planner that can initiate the request for a
meeting and determine with help of an electronic calendar database whether arequest
can be met . In addition, a COSMA contains a naturallanguage dialogue system for e-mail
analysis and generation. 3 From the point of view of the dialogue system, the planner
works as an application system. For details on the COSMA architecture see [Neumann,
this volume] .

The representations at the interface between the planner and the dialogue system
specify sender and addressee of the letter as weIl as a set of actions. Here is an excerpt:
arrange corresponds to the goal of the sender to arrange a meeting; confirm and reject
represent the expected intentions; ref ine accepts and concretizes some data (e.g. from
tomorrow afternoon to 14 :30 h); modify rejects but suggests an alternative. A sam pie
structure for arrange is shown in Figure 1.

Starting from such an expression decisions regarding linguistic form must be made and
afterwards realized in natural language. For the determination of form , the first order
semantic representation language NLL (see [Nerbonne et al., this volume)) can be used
as the basic formalism. Several modules transform NLL expressions until most decisions
about the surface form are made. During surface generation an HPSG-type constraint­
based grammar of German is used that is encoded by typed feature structures. This
grammar combines semantic structures (see [Kasper, this volumeJ) with syntactic ones
(see [Netter, this volume]). Surface generation is based on a Lisp variant of the semantic­
head-driven algorithm described in [Shieber et al., 1990].

NLL is conceived as a standard semantics module with a fixed core and various exten­
sions for diverse language understanding systems. NLL offers a formal basis for disam­
biguation - this cannot be completely done with syntax and compositional semantics -
and supports access to diverse application systems by, ainong other things, allowing to
encode and apply domain-specific inferences. This design fits weIl with the idea of hav­
ing modules working in different contexts. However, the use of NLL and typed feature

3N atural language is required for those participants that still read their e-mail themselves and use
their old fashioned, leather bound calendar . Besides the naturallanguage e-mail text.aninternal COSMA

representation is sent tha.t can be directly processed by COSMA recipients.

60

((from . tlschulz~dfki.detl)

(to . ("smith~research.detl»

(message-id . 4711)

(actions . ((arrange ((type. :meeting)
(topic . tlCOSMA-Architecture tl)
(participants . (lischulzGdfki.de li

IIsmithOresearch.de li

IIbrovnOdevelopment.de ll »
(time. ((this-year)

(add (this-week) (week . 8»
(day-of-week . :tuesday)
(hour . 14)

(minute. 30»)
(place . IIDFKI 1.01 11 »»»

Figure 1: Input Structure for the Generation System

structures involves two distinct formalisms. We are presently invesÜgating whether the
representation of NLL expressions as feature structures might ease the communication
between the modules.

How is linguistic form determined in COSMA? There is an adapter component for
translating expressions provided by the planner (cf. the one in Figure 1) into NLL. The
planner has no linguistic knowledge available to it. As a consequence, the adapter must
produce suitable speech acts from the actions (e.g., arrange is interpreted as aREQuEsT).
Static configuration accounts for the following tasks to be fulfilled by different interacting
modules: access to the domain model, access and maintenance of the dialog model and the
discourse memories (including anaphora generation), choice of content words, translation
of NLL expressions into feature structures, surface generation with help of the grammar. 4

Besides the free generation of text, which involves fuIl linguistic processing, the use
of prefabricated text is reasonable in certain generation contexts. The exclusive use of
canned text has been criticized correctly for being too inflexible. A deli berate integration
of canned parts and freely generated parts, however, can be extremely useful expescially in
standard situations of the respective application situation. In COSMA, the linguistic form
can either be generated freely, as in (1), or by using a tabular form (Figure 2). Dynamic
configuration of the generation method depends on the complexity of the underlying NLL
expression. A plausible criterion is the number of arguments of arrange (in addition to
type) . If there is just one or two, free generation is preferred; if there are more than two,
a tabular form is preferred.

4 At present, static configuration does not allow the treatment of textual relations, but we expect that
an appropriate extension can be made without having to redesign the architecture.

61

Date : Tue, 7 Jul 92 16:17:14 +0200
Message-Id : <9207071417.AA03280~sol.dfki.de>
Received: by sol.dfki.de; Tue, 7 Jul 92 16:17:14 +0200
arganization: DFKI Saarbruecken GmbH, D-W 6600 Saarbruecken
From: schulz~dfki.de (Peter Schulz)
To: smith~research.de

Subject: Meeting
Reply-To: schulz~dfki.de

Dear Mr Smith,

I would like to arrange the following meeting:

Time:
Place:

September 1, 1992, 14:30 h
DFKI Saarbruecken, room 1.01

Participants : Mr Brown, Schulz, Smith
Topic: CaSMA Architecture

Sincerely yours,
Peter Schulz

Figure 2: Letter in Tabular Form

The system decides to use a table for the input structure in Figure 1. The speech act
is verbalized by an introductory sentence that is generated by virtue of a template. A
tabular description of the meeting's parameters folIows. The message is surrounded by
suitable forms of salutation and greeting. This text structure is very simple, and again,
this is due to properties of the domain and the planner's communicative competence.

(1) I would like to meet you, Mr Brown and Mr Smith on September
1st, 1992, 14:30 h at DFKI Saarbrücken, room 1.01. We would like
to talk about the topic "COSMA Architecture".

If the system decides to produce a table, the introductory sentence must be generated.
Since its content depends solelyon the action (in this case, arrange), the adapter com­
ponent provides an underspecified NLL representation of the sentences. The generator
has available to it a set of templates associating NLL expressions with surface sentences.
The NLL representation of the arrange request is matched against the templates . If the
match doesn't succeed, free generation is chosen as the escape case. Which templates are
available should depend on the frequency of their use. Note that templates are generated
by using the analysis component of the dialogue system, thus ensuring that template-

62

Date: Tue, 8 Jul 92 10:10:18 +0200
Message-Id: <9207081018.AA03391Omac.research.de>
Received: by mac.research.de; Wed, 8 Jul 92 10:10:18 +0200
Organization: Research Inc., D-W-6000 Frankfurt/M.
From: smith~research.de

To: schulz~dfki.de
Reply-To: smith~research.de

Dear Mr Schulz,

I can't attend the appointment as scheduled since I have to travel
to Bonn for negotiations. Could ve postpone the meeting to Sept. 9 ?

Smith

Figure 3: Partially Freely Generated Letter

based utterances can be understood by other COSMA systems. An example for a freely
generated text as a possible answer to the above letter is shown in Figure 3. It is based
on the domain action modify. Free generation occurs when non-standard reactions or
elaborations are produced. In the present scenario argumentations for rejections are the
most typical examples. One task of the generator is to determine sentence borders and
what should go into a sentence. The problem is not as difficult as in the general case since
the domain often provides good heuristics for what should be said next.

5 Conclusion

The design sketched so far has been implemented to a small extent. Many details of the
interactions between the different components are not defined yet. Future plans include
the use of canned text and template mechanisms not only as an alternative to but also as
part of free generation.

As long as only one application area is investigated, static configuration only serves
as a guideline for design; the adaptation of other kinds of input structures is, however,
envisaged.

Configuration of generation systems certainly can solve many problems with input
specifications of varying depth. In this paper, we have assumed an ideal world in which
a superset of a system performance possibly required is available. This is acceptable for
more surface-oriented modules, e.g. the grammar or the realization component, where we
know fairly weIl how to extend them in an appropriate fashion. For "deeper" modules
such as the domain model and anaphora generation suggestions for modularization are

63

much more experimental.
This is partly due to a lack of scientific agreement about knowledge modelling for NL

processing (cf. e.g. the discussion in [Klose et al., 1992]) and to the fact that only apart
of the naturally occurring anaphoric phenomena can be modelled appropriately, given the
current state of linguistic knowledge. In practice, only approximations to the ideal picture
will be achievable. Fortunately, this will already be beneficial and increase the chances of
reusability.

An important quest ion is how much effort it will be to redesign the adapter. The ideas
presented here are based on the plausible assumption that the redesign of larger parts of
the generator will usually cost more.

Important advantages of configuration that will justify the considerable software­
technical effort over the medium-term include:

• Generation front-ends can be adapted more easily to diverse application systems.

• Existing modules can be reused.

• Comparison of generation front-ends is easier.

References

[Bateman, 1990] J. A. Bateman. Upper modeling: organizing knowledge for naturallan­
guage processing. In Proceedings 0/ the 5th International Workshop on Language Gen­
eration, Pittsburgh, PA., 1990.

[Klose et al., 1992] Gudrun Klose, Ewald Lang, and Thomas Pirlein, editors. Ontologie
und Axiomatik der Wissensbasis von LILOG. Springer, Berlin, Heidelberg, 1992. IFB
Bd.307.

[Krieger et al., 1993] Hans-Ulrich Krieger, Ulrich Schäfer, Stephan Diehl, and Karsten
Konrad. TDL, A Type Description Language for HPSG. Part 1: Overview. 1993.

[Paris and Maier, 1991] Cecile L. Paris and Elisabeth Maier. Knowledge resources or
decisions? In Marie Meteer and Ingrid Zukerman, editors , Proc. IlCAI-9l Workshop
on Decision Making Throughout the Generation Process, pages 11-17, Sydney, 1991.

[Shieber et al., 1990] Stuart M. Shieber, Gertjan van Noord, Robert C. Moore, . and Fer­
nando C. N. Pereira. A semantic-head-driven generation algorithm for unification-based
formalisms. Computational Linguistics, 16(1):30-42, 1990.

64

The DISCO DEVELOPMENT SRELL and its
Application in the COSMA System

Günter Neuman.n*

Deutsches Forschungszentrum für Künstliche Intelligenz
Stuhlsatzenhausweg 3

D-6600 Saarbrücken 11, Germany
neumann @dfki. uni -s b. de

Abstract

This paper describes the DISCO DEVELOPMENT SHELL, which serves as a basic
tool for the integration of natural language components in the DISCO project, and
its application in the COSMA system, a Cooperative Schedule Management Agent.
Following an object oriented architectural model we introduce a two-step approach,
where in the first phase the architecture is developed independently of specific com­
ponents to be used and of a particular flow of control. In the second phase the
"frame system" is instantiated by the integration of existing components as well as
by defining the particular flow of contral between these components. Because of the
object-oriented paradigm it is easy to augment the frame system, which increases the
flexibility of the whole system with respect to new applications . The development of
the COSMA system will serve as an example of this claim.

1 Introd uction

Today's natural language systems are large software products. They consist of serveral
mutually connected components of different kinds, each developed by different researchers
often placed on different loeation. The integration of these components has therefore
become a software engineering and mangement problem. We will consider the project
DISCO (Dlalogue Systems for COoperating agents) from this perspective. DISCO 's primary
goal is processing of multiagent natural language dialogue. Multiagent capabilities make
it an appropriate front end for autonomous cooperative agents, exemplified by the COSMA
system described in seetion 3. The primary task of DISCO is to serve as a kernellinguistic
system in order to support distributed cooperative dialogues.

"The research underlying this paper was supported by a research grant , FKZ ITW 9002 0, from the
German Bundesministerium für Forschung und Technologie to the DFKI project DISCO .

65

The use of modern programming techniques in system integration is crucial to supporL
the following desiderata:

• modularity of NLP components

• experiment at ion with fiow of control

• incorporation of new modules

• building of subsystems and standalone applications

• accommodation of alternative modules with similar functionality

The architecture of the DISCO system and COSMA have both been realized using the
DISCO DEVELOPMENT SHELL, which we are introducing in the following section. Because
of the lack of space we give only a short description of the basic ideas.

2 Overview of the DISCO development shell

In order to perform the tasks mentioned above we have chosen a two-step approach to
realize DISCO's architecture:

1. In a first step the architecture is described and developed independently of the com­
ponents to be used and of the particular fiow of contro!. Possible components are
viewed as black boxes and the fiow of control is described independently of specific
components. In such an abstract view the architecture realizes only a 'contentless'
schema called the frame-system.

2. Next the frame-system has to be 'instantiated' by the integration of existing modules
and by defining the particular fiow of control between these modules.

It is useful to divide the system components into different types according to their
specific tasks. Currently, we distinguish: 1

• tool components (e.g., graphic devices, printer, debugger, errror handler)

• naturallanguage components (e.g., morphology, parser, generator, speech act recog­
nition)

• control component

In order to obtain a high degree of fiexibility and robustness (especially d uring thc de­
velopment phase of a system) the control unit directs and monitors the fiow of information
between the other components. The important tasks of the control unit are:

I 'Ne do not assurne that this list is complete. For example, it is also possible to realize knowledge
sources as components of the frame system.

66

• t.o direct the data fiow between the individual components

• to define which components should run together to realize a 'subsystem'

• to check the data received from one component before they are sent to another one

• to manage global memory and call specific tools

There is a c~mand level for direct communication with the kernel. The purpose of
the command level is to provide commands that allow users to run subsystems, to activate
or inactivate tracing of modules and to specify printing devices. Users mayaiso specify
values for global variables interactively or with configurati~n files for each module.

Object Oriented Design If a new component must be integrated, one would like to
concentrate only on those parts that are of specific interest for these new components.
Algorithms or data which are common to all components (or components of a specific
type) should be defined only once and then be added automatically for each new component
without side-effects to other already integrated components.

We have choosen an object-oriented programming style (OOP style) using the Common
Lisp Object System (CLOS) in order to realize the two-step approach described above. In
the object-oriented paradigm a program is viewed as a set of objects that are manipulated
by actions. The state of each object and the actions that manipulate the state are defined
once and for all when tbe object is created. The essential ingredients of object-oriented
programming are objects, classes and inheritance. Objects are modules that encapsulate
data and operations on that data. Every object is an instance of a specific dass which
determines its st:ructure and behaviour. Inheritance allows new classes to specialize already
defined dasses. The result is a hierarchy of dasses where dasses inherit the behaviour (data
and operations) from su perclasses. The advantage for the programmer is that she need
only specify to what extend the new dass is different from the dass(es) it inherits from.
This supports the design of modular and robust systems that are easy to use and extend. 2

CLOS The main programming language for the DISCO project is Common Lisp. Be­
cause CLOS is defined to be a standard language extension to Common Lisp it is easy to
combine 'ordinary' Lisp code with OOP style. CLOS allows us to define an hierarchical
organization of dasses that models the relationship among the various kinds of objects.
Furthermore, because CLOS supports multiple inheritance it is possible to define methods
that are defined for particular combinations of dasses. Therefore a large amount of control
ftow is automatically realized by CLOS. This helps us to concentrate on the individual
properties of new components, which simplifies and speeds up their integration extremly.
Of course, CLOS itself does not enforce modularity or makes it possible to organize pro­
grams poorly; it is just a tool that helps us to achieve such modular systems.

2The reader should consult e.g., (Keene, 1988) for an excellent introduction into CLOS if more detailed
information on object oriented programming is of interest.

67

DISCO's Class Hierachy The DISCO DEVELOPMENT SHELL consists of the class hi­
erarchy and the specifkation of dass specific methods. Every type of component and j ts
specidizations are defined as CLOS dasses. Figure 1 shows a portion of the current hier­
archy.

Module

To-o-l----------lr-~-=== Con-t-ro-ll-er---C-o-m-mand-Shell

~ Language Component

Trace Handler

Scanner MorphoJogy Lexicon Pars'er NLL

~ !\ \ Lisp Scanner Yacc Scanner

X2morf Morphix Disco Puser

Figure 1: A portion of the current dass hierarchiein the DISCO system.

~IODULE is the most general dass. All other classes inherit its data structure and asso­
ciated methods. The dass LANGUAGE COMPONENT subsurnes all modules of the current
sys tem which are responsible for language processing. A module that is actually used in
the system is an instance of one of the classes.

New modules are added to the system by associating a dass with them. CLOS supports
dynamic extensi~n of the dass hierarchie so that new types can be added even at run-time.
For example, if we wanted to add a new parser module we would either use the already
existing dass PARSER or define a new dass, say ALTERNATIVE-PARSER. In the first case
we assurne that we only need the methods that have al ready been defined for the PARSER

dass. In the second case we would have to add new methods or could specialize some of
the methods that ALTERNATIVE-PARSER inherits from PARSER. In principle it could also
happen that the new parser shares many properties with DISCO-PARSER. This would mean
th at we have to refine the parser subnet in order to avoid redundancy.

Protocols The ftow of control between a set of components is mediated by means 01'
protocols. Protocols are methods defined for the class co!}troller. They specify the set
of language components to be used and the input/output relation between the language
components. All current protocols are defined using the schema:

Ccall-cornponent controller cornponent-l)
Ccheck-and-transforrn controller cornponent-l cornponent-2)
Ccall-cornponent controller cornponent-2)
Ccheck-and-transforrn controller cornponent-2 cornponent-3)
(call-cornponent controller component-3)

68

(check-and-transform controller component-(n-l) component-n)
(call-component controller component-n)

The controller uses the generic function CALL-COMPONENT to activate an individual
language component instance, specialized to the appropriate subclass. Control ftow is
determined by the sequence of CALL-COMPONENT invocations. Between calls, output is
verified and converted to the following component 's input format by calling the generic
function CHECK-AND-TRANSFORM. This mechanism is very important to support robusl­

ness especially during the development phase of the system. Specific methods are defined
for each module that indicate what to do if a module does not come up with a correct result.
These methods are activated by the controller during the call of CHECK-AND-TRANSFORM.

In the current version of the system further processing is then interrupted and the user is
informed about the problem that occured.

For example, the output of MORPHOLOGY defines the input to PARSER and so on.
By calling (CHECK-AND-TRANSFORM CONTROLLER MORPHOLOGY PARSER) the controller
checks whether the morphology yielded a valid output and eventually transforms the output
for the parser. lf MORPHOLOGY detected an unknown word X further processing would
be interrupted and the user receives a message notifying hirn that X is unknown to the
morphological component.

Some Remarks lf two adjacent components have been proven to work together without
problems CHECK-AND-TRANSFORM need not be called for them as it is the case in the
following example:

(call-component controller component-l)
(check-and-transform controller component-l component-2)
(call-component controller component-2)
(call-component controller component-3)

(check-and-transform controller component-(n-l) component-n)
(call-component controller component-n)

In this example, COMPONENT-2 and COMPONENT-3 interact directly, as shown in Fig­
ure 2.

Input and output for the whole system is specifed using general communication chan­
nels. In the normal case this is the standard terminal input/output stream of Common
Lisp. In the COSMA system an e-mail interface for standar<ie-mail is used as the principle
communication channe!. Besides the general input/output device the controller also man­
ages working and long-term memory. These memories are used to process a sequence of
sentences. In this case the controller stores each analysed sentence in long-term memory.

69

" ,., ,.... ,-, ,.... ,
'\,,",," ,

" '.' ,.' ' ' ,.' ' '

Figure 2: Flow of control between four components. In this protocol component 2 and
3 interact directly. The controller views them as being one component (indicated by the
dotted lines around them).

The architecture by itself is not restricted to pipeline processing but would be used
In modeling cascade or blackboard architectures as weil. -In the latter case the working
memory can be used to realize the (possibly structured) blackboard. This has already
been partially realized in the current version. In principle, the architecture appeels to be
general enough to realize negotiation-based architectures.

Status of the DISCO kernel We will give a very brief overview of the current status
of the DISCO kerne!. We are using an HPSG style of linguistic description (see Netter this
volume). The gramm ar is formalized using the type description language TDL. The basic
machinery for linguistic processing is UDINE, a powerful feature structure unifier. The
unifier is used in TDL and in almost alliinguistic processing units (like parser, generator).
The grammar, TDL and UDINE (see Netter this volume for references) constitute the basic
Jinguistic resources. They are not part of the dass hierarchy (but accessible from the
command level). The basic tool we are using for tracing, debugging and editing feature
structures is FEGRAMED, developed by Bernd Kiefer in the DISCO project. FEGRAM ED

also serves as generic printing device in the kernel machinery as weil as in the COSMA

system. For grammar debugging it is possible to run serveral subsystems (calIed standalone

70

applications), which are activated via the command level. For example, one might want to
run the parser and generator without morphology or only the set of components necessary
during analysis aso. In each case the same functionality is available as weIl as the same set
of tools. In principle it would be possible for a user to define protocols hirnself e.g., to test
self-written modules because the integration of modules and the definition of protocols
takes place in a standardized fashion.

3 Overview of the COSMA system

In this final section we will give abrief overview of the COSMA system. Today, there
already exists appointment and resource scheduling tools that allow to display day, week,
month, year views or schedule single or repeating events and set beeping, flashing, or
pop-up reminders. The principle idea behind the COSMA system is to support scheduling
of appointments between several human participants by means of distributed intelligent
calendar assistents. Instead of using a centralized solution where only one planner mantains
aglobai calendar data-base we have choosen a distributed solution. We assurne that
each person has its own (therefore local) calendar data-base available on hers computer
where each calendar is managed by an individual plannning component. Scheduling of
appointments between several participants is viewed as a cooperative negotiation dialogue
between the different agents.

It is assumed that electronic mail will be used as a basic means of communication.
Information concerning the schedule of particular appointments (e.g., request to arrange
a meeting, cancelation of a previously setup appointment or other information relevant in
performing some negotiation) is sent around the set of relevant participants via e-mail.
Using standard e-mail software has the advantage that scheduling of appointments can be
done in a distributed and asychronous way.

Natural language (NL) comes into play because we allow humans to participate who
have no calendar assisent access. The only restriction is that they have electronic mail
available. Such a (poor) person is responsible for mantaining an old-fashioned calendar
but is allowed to use naturallanguage during appoinment negotiation. Consequently, each
COSMA system needs to be able to process natur,al language, either to understand a NL
dialogue contribution or to produce one. To sum up, each COSMA consists of three basic
components

• An intelligent assistent that keeps and manages the calendar database

• A graphical user interface to the calendar data-base application planner

• The natural language system DISCO

Each user of a COSMA system has access to the calendar data-base by means of a
graphical user interface. The graphical user interface - developed by Stephan Spackman
who named the tool DUI - is used to display and update existing items and enter new items
into the data-base. The intelligent calendar manager mantains the calendar database.

71

The current version (developed by the AKA-MOD group) consists of time processing
functions, a finite-state protocol for arranging appointments, and an action memory storing
the protocol state and original e-mail for each arrangement in progress. The natural
language system is used to analyse natural language dialogue contributions, which is the
normal case for non-COSMA participants. The naturallanguage system has been developed
in the DISCO project, and hence is what we refer as DISCO. The principle task of the DISCO
system is to extract that information from an natural language expression that can be
used by the calendar manager. Netter (this volume) and Nerbonne et al. (this volume)
describe in detail the several knowledge sour ces and processes that are currently in use to
salve this task. DISCO is also responsible for the production of natural language text from
the internal representation of scheduling information computed by the calendar manager.
The produced text is sent in addition to the internal structure of scheduling expressions
to the participants via e-mail. Buseman (this volume) describes the current approach for
generating natural language expressions in DISCO in more detail.

Short Example Figure 3 gives an overview of a configuration where three participants,
a human (Tick) and two COSMAs (Trick, Track) are involved.

TICK

Human

(tradilional)

e-mail

This Cosma is awlhmizui

10 miJU appoinl1Mnrs

TRACK

Figure 3: General Overview of the Sam pie Scenarios

A possible appointment scheduling is as follows (abstracting away from details):
Track to Trick and Tick:
arrange(meeting, 21.10.l992,lp.m.)
Trick to Track:
accept(meeting)
Tick to Track:

72

Human
(loves AI)

Ich bin mit dem Termin einverstanden. (I accept the appointment).
Track to Trick and Tick:
confirm (meeting)

In words: Track wanted to arrange a meeting and sends this request to Trick and
Tick. Trick automatically sends an acception. Because there are no confiicting entries in
his calendar data-base, Tick sends an acception using NL. Track will update its calendar
while sending a confirrnation to the two participants notifying them that all participants
accepted the appointment.

The current version of the system is able to handle more complex dialogs, e.g., appoint­
ment scheduling initiated by a non-COSMA user, cancellation and modification of already
set up appointments.

To be able to integrate the DISCO system into this domain the following modules have
been integrated or modified:

• Exchange of a Lisp-based scanner for a more powerful one implemented using the
Unix tools YACC and LEX.

• Integration of a surface-based speech act system (SAR which has been placed between
the parser and NLL, cf. (Hinkelman and Spackman, 1992)).

• Application interface for mapping NLI expressions into an internal representation
language for the planner (see Nerbonne et al. (this volume)).

• exchange of the semantic head-driven generator with-a 'canned text' generator

• A set of communication interfaces to e-mail, the graphical user interface and the
planner

4 Conclusion

The DISCO DEVELOPMENT SRELL has been proven very useful in setting up the COSMA
system. It was possible to intergrate the new modules independently from the rest of the
system. Existing modules have been exchanged by new ones without the need of adding
new methods. Because different researchers were able to run subsystems the development
of the whole system could be done in a distributed way. Therefore eight very different
modules have been intergrated in less than three weeks including test phases.

Based on these experiences we believe that the oject-oriented architectual model of
our approach is a fruitful basis for managing large-scale projects. It makes it possible
to develop the basis of a whole system in parallel to the development of the individual
components. Therefore it is possible to take into account restrictions and modifications of
each component as early as possible.

73

References

Elizabeth A. Hinkelman and Stephen P. Spackman. Abductive speech act recognition ,
corporate agents and the cosma system. In W. J. Black, G. Sabah, and T. J. Wachtel,
editors, Abduction, Beliefs and Gontext: Proceedings of the second ESPRIT PL US
workshop in computational pragmatics, 1992.

Sonya E. Keene. Object-Oriented Programming in Gommon Lisp. A Programmer's Guide
to GLOS. Addision-Wesley, 1988.

74

Deutsches
Forschungszentrum
tOr KOnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
s.ekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System 10 Navigate through
Interactions and Plans
Tlwmas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object­
Oriented User Interfaces
Markus A. Thies. Frank Berger

22 pages

RR-92-1S
Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations
23 pages

RR-92-16
Jochen Heinsahn. Daniel Kudenko. Berhard Nebel.
Hans-Jargen Profillieh: An Empirical Analysis of
Tenninological Representation Systems
38 pages

RR-92-17
Hassan Au-Kaci. Andreas Podelski. Gerl Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleilner. Ansgar Bernardi. Chrisloph
Klauck: PIM: Planning In Manufacturing using
Skeletal Plans and Features .
17 pages

RR-92-20
John Nerbonne: Representing Grammar, Meaning
and Know ledge
18 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of a1l
published . papers so far can be ordered from the
above address.
The reports are distributed free of charge except
if otherwise indicated.

RR-92-21
Jörg-Peler Mohren. Jargen Müller
Representing Spatial Relations (part II) -The
Geometrical Approach
25 pages

RR-92·22
Jörg Warlz: Unifying Cycles
24 pages

RR·92·2J
Gerl Smolka. Ralf Treinen:
Records for Logic Programming
38 pages

RR·92·24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR·92·2S
Franz Schmallwfer. Ralf Bergmann. Ouo Kühn.
Gabriele Schmidl: Using integrated knowledge
acquisition 10 prepare sophisticated expert plans
for their re-use in novel situations
12 pages

RR-92·26
Franz Schmallwfer. Tlwmas Reinarlz.
Bidjan Tschailschian: Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems
16 pages

RR-92-27
Franz Schmallwfer. Jörg Tlwben: The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohui Wu. Ansgar Bernardi. Chrisloph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

RR-92-30
Rolf Backofen, Gerl Smolka
A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlsler
Automatie Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34
Philipp HanschJce : Terminological Reasoning and
Partial Inductive Definitions
23 pages

RR-92-35
Manfred Meyer:
Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36
Franz Baader, Philipp HanschJce:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in
Concept Languages
26 pages

RR-92-38
Philipp Hanschke, Manfred Meyer:
An Alternative to 0-Subsumption Based on
Tenninological Reasoning
9 pages

RR-92-40
Philipp Hanschke , Knul Hinkelmann : Combining
Terminological and Rule-based Reasoning for
Abstraction Processes
17 pages

RR-9241
Andreas Lux: A Multi-Agent Approach towards
Group Scheduling
32 pages

RR-9242
John Nerbonne:
A Feature-Based Syntax/Semantics Interface
19 pages

RR-9243
Chrisloph Klauck, Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Risl, Elisabeth Andre: Incorporating
Graphics Design and Rea1ization into lhe
Multimodal Presentation System WIP
15 pages

RR-9245
Elisabeth Andre, Thomas Risl: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabelh Andre, Wolfgang Finkler, Winfried
Graf, Thomas Risl, Anne Schauder , Wolfgang
Wahlster : WIP: The Automatie Synlhesis of
Multimodal Presentations
19 pages

RR-9247
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Trafiic Scenarios
24 pages

RR-92-48
Bernhard Nebel , Jana Koehler :
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-9249
Chrisloph Klauck, Ralf Legleitner , Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-SO
Slephan Busemann:
Generierung natürlicher Sprache
61 Seilen

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar
Dengier, Jana Koehler, Gabrie/e Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-54
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubseh, Abdel Kader
Diagne, Slephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages .

RR-92-54i
Armin Laux: Integrating a Modal Logie of
Knowledge inlO Terminologieal Logies
34 pages

RR-92-58
Franz Baader. Bernhard Hollunder:
How lO Prefer More Specifie Defaults in
Terminologieal Default Logie
31 pages

RR-92-59
Karl SchJechta and David Makinson: On Prineiples
and Problems of Defeasible Inheritanee
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semanties and
Cireumseription
19 pages

RR-93-02
Wolf gang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-JÜTgen Profitlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphies Generation
50 pages

RR-93-03
Franz Baader. Berhard Hollunder. Bernhard
Nebel. Hans-Jürgen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminologieal Representation Systems
28 pages

RR-93-04
Christoph Klauck. JoJ;zannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-0S
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunifieation
29 pages

RR-93-08
Harold Boley. Philipp Hanschke. Knut Hinkelmann.
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation LaboraLory
64 pages

RR-93-09
Philipp Hanschke. Jörg Würtz :
Satisfiability of the Smallest Binary Program
8 Seilen

DFKI Tecbnical Memos

TM-91-12
Klaus Becker. Christoph Klauck. Johannes
Schwagereit: FEAT -PA TR: Eine Erweiterung des
D-PA TR zur Feature-Erkennung in CAD/CAM
33 Seilen

TM-91-13
Knut Hinkelmann: Forward Logie Evaluation:
Developing a Compiler from a Partially
Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger. Rainer Hoch. Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann: ProlOtypieal Concept Formation
An Alternative Approach LO Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
W erkstüekreprä5en tationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communieation and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Strueture
21 pages

TM-92-04
Jürgen Müller. Jörg Müller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-0S
Franz Schmalhofer. Christoph Globig. Jörg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn. Franz Schmalhofer: Hierarchieal
skeletal plan refinement: Task- and inferenee
struetures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unifieation
27 pages

DFKI Documents

D-92-08
Jochen Heinsohn. Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomie Reasoning
Proeeedings
56 pages

D-92-09
Gernod P. Laufkötter: Implementierungsmöglich­
keiten der integrativen Wissensakquisitions­
methode des ARC-TEC-Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser für attributierte Graph-Grammatiken
87 Seilen

D-92-11
Kerstin Becker: Möglichkeiten der Wissensmodel­
Iierung für le(;hnische Diagnose-Expertensysteme
92 Seiten

D-92-12
Otto Kühn, Franz Schmalhofer , Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensakquisition zur
Fertigungsplanung für Drehteile: eine
Bildergalerie)
27 pages

D-92-13
Holger Peine: An lnvestigation of the
Applicability of Terminological Reasoning to
Application-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur
Repräsentation von Features in CIM
98 Seiten

D-92-1S
DFKI Wissenschaftlich-Technischer
Jahresbericht 1991
130 Seiten

D-92-16
Judith EngelJcamp (Hrsg.): Verzeichnis von Soft­
warekomponenten für natilrlichsprachliche
Systeme
189 Seilen

D-92-17
Elisabeth Andre, Robin Cohen, Winfried Graf,
Bob Kass, Ceeile Paris , Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
MOdeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose le(;hnischer Systeme
109 Seilen

D-92-19
Stefan Dittrich, Rainer Hoch: Automatische,
Deskriptor-basierte Unterstützung der Dokument­
analyse zur Fokussierung und Klassifizierung von
Geschäftsbriefen
107 Seilen

D-92-21
Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars
57 pages

D-92-22
Werner Stein: lndexing Principles fOT Relational
Languages Applied LO PROLOG Code Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seilen

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-2S
Martin Buchheit: Klassische Kommunikations­
und Koordinationsmodelle
31 Seilen

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm , Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning
inCOLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Repräsentation von Nachrichtentypen
56 Seilen

D-93-01
Philipp Hanschke, Thom Frühwirth: Tenninological
Reasoning with Constraint Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters,
Gernod Laujkötter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

Me oa>
• E

MÖ
m o
.0

C

(I)

E
Cl) -(I) >-cn
Cl)
0)
ca
~
0)
c:
ca
..J

ca ...
~ -ca
Z
c:
0
C.
0
.r:. (I)
(1)0)

t c: o .-;:-g
- Cl)
~ ()

lL ~
on.

-ui
'0
UI -s::.
~
::J
€
ca
~

I:
-.:::
ca
~

I:
I:
ca
E
5l
::J

111
I:
ca s::.
c.
CD -tJ)

	D-93-03-0001
	D-93-03-0002
	D-93-03-0003
	D-93-03-0004
	D-93-03-0005
	D-93-03-0006
	D-93-03-0007
	D-93-03-0008
	D-93-03-0009
	D-93-03-0010
	D-93-03-0011
	D-93-03-0012
	D-93-03-0013
	D-93-03-0014
	D-93-03-0015
	D-93-03-0016
	D-93-03-0017
	D-93-03-0018
	D-93-03-0019
	D-93-03-0020
	D-93-03-0021
	D-93-03-0022
	D-93-03-0023
	D-93-03-0024
	D-93-03-0025
	D-93-03-0026
	D-93-03-0027
	D-93-03-0028
	D-93-03-0029
	D-93-03-0030
	D-93-03-0031
	D-93-03-0032
	D-93-03-0033
	D-93-03-0034
	D-93-03-0035
	D-93-03-0036
	D-93-03-0037
	D-93-03-0038
	D-93-03-0039
	D-93-03-0040
	D-93-03-0041
	D-93-03-0042
	D-93-03-0043
	D-93-03-0044
	D-93-03-0045
	D-93-03-0046
	D-93-03-0047
	D-93-03-0048
	D-93-03-0049
	D-93-03-0050
	D-93-03-0051
	D-93-03-0052
	D-93-03-0053
	D-93-03-0054
	D-93-03-0055
	D-93-03-0056
	D-93-03-0057
	D-93-03-0058
	D-93-03-0059
	D-93-03-0060
	D-93-03-0061
	D-93-03-0062
	D-93-03-0063
	D-93-03-0064
	D-93-03-0065
	D-93-03-0066
	D-93-03-0067
	D-93-03-0068
	D-93-03-0069
	D-93-03-0070
	D-93-03-0071
	D-93-03-0072
	D-93-03-0073
	D-93-03-0074
	D-93-03-0075
	D-93-03-0076
	D-93-03-0077
	D-93-03-0078
	D-93-03-0079
	D-93-03-0080
	D-93-03-0081
	D-93-03-0082
	D-93-03-0083
	D-93-03-0084
	D-93-03-0085
	D-93-03-0086
	D-93-03-0087
	D-93-03-0088

