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Abstract  
 

The first part of this thesis is dealing with gravity effect on the synthesis of biphasic 

core/shell Al/Al2O3 composites. By chemical vapor deposition of the precursor 

[tBuOAlH2]2 at 400°C, only spherical nanoparticles were observed on the substrate 

surface. The formation of nanowires was observed at 600°C. It is a good agreement 

with our previous results on earth condition and there is no gravity impact on the 

chemical reaction. At increased gravity levels, the nanoparticles formed large clusters 

and the nanowires showed bundle formation while the nanowires at microgravity 

have predominantly linear structures. It is proposed that the chaotic nature of 

nanowires and cluster formation of nanoparticles were caused by a dominance of 

gravity over the thermal creep.  

 

In the second part the use of Al/Al2O3 nanowire layers for bio applications is 

considered. Contact cell guidance and alignment were studied to understand how 

cells recognize and respond to certain surface patterns. Linear micro channels were 

created on Al/Al2O3 layer by direct laser writing and laser interference patterning. 

Although surface topography was altered, the surface chemistry was always identical 

(Al2O3) due to the unique core/shell nature of Al/Al2O3 nanowires. Human osteoblast, 

normal human dermal fibroblast and neuronal cells were cultured and investigated. 

The results indicate that different cell types show diverse responses to the 

topography independent from the surface chemistry of the material. 
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Zusammenfassung 

 

Der erste Teil dieser Dissertation behandelt die Wirkung der Schwerkraft auf die 

Herstellung biphasischer Kern-Hülle Al/Al2O3 Verbundwerkstoffen. Bei der 

chemischen Gasphasenabscheidung des Präkursor [tBuOAlH2]2 wurden bei 400° C 

nur sphärische Nanopartikel auf der Substratoberfläche beobachtet. Bei 600° C 

wurde die Bildung von Nanodrähten beobachtet. Dies bestätigt unsere früheren 

Ergebnisse. Bei erhöhter Schwerkraft bildeten die Nanopartikel große Cluster und die 

Nanodrähte formten Bündel. In Schwerelosigkeit wiesen die Nanodrähte meist 

lineare Strukturen auf. Eine mögliche Erklärung für das chaotische Verhalten der 

Nanodrähte und das Formen der Cluster könnte eine Dominanz der Schwerkraft 

gegenüber dem thermischen Kriechen sein. 

 

Der zweite Teil behandelt die Verwendung der Al/Al2O3- Nanodrähte als 

Beschichtungen für Bioanwendungen. Das gerichtete Wachstum von Zellen wurde 

untersucht um zu verstehen wie Zellen verschiedene Strukturen erkennen und darauf 

reagieren. Dazu wurden Kanäle auf den Beschichtungen durch direktes 

Laserschreiben und Laserinterferenzstrukturieren erzeugt. Dabei wurde nur die 

Topografie verändert. Die Oberflächenchemie (Al2O3) blieb durch den einzigartigen 

Kern-Hülle Charakter der Beschichtung immer identisch. Menschliche Osteoblast-, 

Fibroblast- und Nervenzellen wurden kultiviert und untersucht. Die Ergebnisse zeigen, 

dass bei gleichbleibender Oberflächenchemie die Zellantwort verschiedener 

Zelltypen unterschiedlich von der Topografie abhängig ist.  
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 Abbreviation 

1D  one dimensional 

AFM   atomic force microscopy 

Al/Al2O3  aluminium-aluminium oxide composite 

CVD   chemical vapor deposition 

CW   continuous wave 

DRG   dorsal root ganglia 

ECM   extra cellular matrix 

FIB   focused ion beam 

HAZ   heat affected zone 

HOB   human osteoblast 

IR   infrared 

LASER  light amplification by stimulated emission of radiation 

LIP   laser interference patterning 

MOCVD  metal-organic chemical vapor deposition 

Nd:YAG  neodymium-doped yttrium aluminum garnet 

NHDF  normal human dermal fibroblast 

NIR   near infrared 

OAG   oxide assisted growth 

PACVD  plasma assisted chemical vapor deposition 

PBS   phosphate buffered saline 

PECVD  plasma enhanced chemical vapor deposition 

PVD   physical vapor deposition 

SEM   scanning electron microscopy 

SHG   second harmonic generation 
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SSP   single source precursor 

TEM   transmission electron microscopy 

THG   third harmonic generation 

UV   ultraviolet 

VIS   visible 

VLS   vapor-liquid-solid 

XPS   X-ray photoelectron spectroscopy 

XRD   X-ray diffraction 
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 Introduction  

Nanowires formed by vapor-liquid-solid (VLS) mechanism have become promising 

building components for nanodevice applications due to their extraordinary physical 

properties. The VLS process is one of the growth methods to fabricate various one 

dimensional (1D) nanostructures from vapor phase 1. In a typical VLS process, the 

whole growth process can be described by three steps. First, nanoparticles act as 

catalysts which absorb reactants from gas phase precursor and then eutectic alloy 

droplets are formed. Finally 1D structures such nanowires or whiskers can grow 

through the liquid droplets due to supersaturation 1-3. Such method allows controlling 

the length of the wires by varying the growth duration while the nanowire diameter 

can be controlled by the size of the catalyst droplet and the growth rate can be 

measured as a function of a driving force and supersaturation 4.  

There are also attempts to synthesize nanowires without using any external catalyst 

particle which is a challenge for coating of large area substrates and for precise 

controlling of the impurity level 5. In such an approach, first the gaseous source 

condensates on the heated substrate and forms nanoscale droplets. Then these 

droplets act as seeds itself for the one-dimensional growth. In contrast to VLS, the 

control of the size and morphology is more complicated in catalyst-free synthesis 

method. In addition to surface properties of the substrate, also the transport process 

itself becomes a critical parameter in the growth mechanism. Beside of conventional 

parameters such as temperature and pressure, the effect of the gravitation on the 

gas transport in a classical chemical vapor deposition (CVD) process has been 

already addressed 6, 7. A final issue concerns the use of microgravity experiments to 

enhance understanding of CVD processes. Experiments of under microgravity 

conditions can be used to test the predictions of models 7. 

Since CVD of single source precursor (SSP) “[tBuOAlH2]2” has been developed by 

Prof. Michael Veith 8, many detailed studies have been carried out to be applied in 

various fields. Especially, the synthesis of Al/Al2O3 core-shell nanowires without the 

use of any additional catalyst was presented 9. This approach is based on the 

formation of a globular seed particle prior to a subsequent 1D growth of wires similar 

to VLS mechanism. By using so called single source precursors (SSPs), the 

generation of such materials can be simplified in such a way that the desired material 
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is forming as the sole product in a chemical cascade reaction. This has the 

advantage, besides others, to occur within short lapses of time (generally seconds) 

as the process is related to a fast molecular reaction. In addition, the unique ease 

and remarkable speed of the reaction of [tBuOAlH2]2 seemed an excellent 

prerequisite to conduct microgravity experiments. Here the direct effect of the gravity 

on catalyst-free synthesis of nanostructures under microgravity environment is 

reported for the first time using a new experimental set-up. 

The uses of nanowires are not limited to use only electronic device applications. For 

example, TiO2 nanowires improved adhesion of muscle tissue while it does not 

adhere well to bulk titanium surfaces because the tissue can anchor itself to the TiO2 

nanowires coated implant 10. It can reduce the failure and risk of implants such as 

stents and orthopedic implants. Furthermore Si nanowires affect the stem cell 

differentiation by a stimulation of electric current 11. Those researches give an idea to 

use of nanowires in the field of biological applications. However, so far only a few 

materials were introduced for use of implant materials, because implant material in 

the living systems should be biocompatible or non-toxic. In this regard, Alumina is a 

good candidate as an implant material because of its excellent biocompatibility and 

inertness. Thus high corrosion resistance, strength and wear resistance of alumina 

allow it to be used in cardiovascular, orthopedic, dental and maxillofacial prosthetics 

implants as a bulk form or a coating for tissue ingrowths 12. In other words, the design 

of surfaces of biomaterials is important for tissue engineering because surface 

modification provide direct interactions between living systems and implanted 

materials.  

There were extensive research efforts to investigate the topographic effect of 

biomaterials with various micro- and nano-structures on cell-material interactions 13-15.  

The fabrication of nanostructures on biomaterials improves their biocompatibility 

effectively with well-defined morphologies 16-19. As reported that linear groove 

patterns led to an increase in endothelial cell and osteoblast adhesions and 

fibroblasts exhibited enhanced contact guidance and filopodia extension on grooved 

nanostructures 13, 20. Despite several top-down and bottom-up methods have been 

used to fabricate various surface patterns, structuring of surfaces by lasers is one of 

the most preferred methods to pattern biomaterials because of its versatility and a 

non-contact processing nature. Especially nanogrooves and nanogratings are 

commonly employed nanotopographical elements for exploring cell surface 
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interactions. Simply a laser beam can be focused on any substrate to create lines or 

holes directly onto the surface so called direct laser writing. On the other hand, laser 

interference patterning (LIP) is another straightforward and efficient method to 

prepare nano- and micro-scale patterns. This method is based on the selective 

modification of surfaces by mixing two or more laser beams to superimpose and form 

an interference pattern 21-23. Although, cell guidance on laser structured surfaces is 

not a new finding, it is still an open question whether the cell behavior is influenced 

by the surface chemistry or topography or both.  

Given that alumina is well established material for dental and orthopedic implant due 

to its biocompatibility, it can be good approaches to control the different morphologies 

of these materials to study the behavior of various cell types. First cell studies on 

Al/Al2O3 nanowires were carried out by Petersen 24, 25 and later on by Aktas 26, 27 who 

studied cell surface interaction by altering the surface topography using pulsed laser 

in the research group of Prof. Veith, following studies which have been introduced 

mostly concerning the surface topography change while keeping the surface 

chemistry 25, 27-32. In addition Al2O3 is known as a biocompatible material and has 

been used in many implant applications. Previously Veith et al. 25 showed that the 

fibroblast adhesion is reduced on Al/Al2O3 composite nanowires, while osteoblast 

adhesion increases on the same surface. This indicates clearly that different cell 

types show diverse responses to the topography independent from the surface 

chemistry. Conversely pulsed laser treated Al/Al2O3 nanowires showed better 

adhesion of fibroblasts 27. As shown there the effect of the topography (with the 

constant surface chemistry) was predominant for the cell adhesion and proliferation. 

On the other hand in some applications such as targeted reinnervation, a directional 

growth of cells is also desired in addition to improved adhesion and proliferation even 

cell differentiation. For instance studying neuron cell guidance on nanostructured 

alumina surfaces can be interesting since up to date mostly fibroblast (tissue cells) 

and osteoblast (bone cells) adhesion on nanostructured alumina surfaces have been 

reported.  

Applications of these works could influence investigations of neural regeneration, 

where cellular and matrix alignment is important. Given that cell-material interactions 

are very important factors to be considered for the tissue engineering. In this context, 

methods for creating nano/micro structures by direct laser writing (DLW) and laser 

interference patterning (LIP) and applications related to cell contact guidance and 
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control of cell alignment are introduced with a wide range of cell types because cell 

alignment and cell migration are direct indicators of cell-topography interaction 33. 

Human Osteoblast (HOB), Normal Human Dermal Fibroblast (NHDF), neuronal cells 

(Dorsal root ganglion and PC12) are cultured and investigated for cell behavior upon 

the surface properties. 
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PART 1: Synthesis of Al/Al2O3 

nanostructures under microgravity 

 

Parabolic flight was originally started mostly to train pilots for military purposes in 

zero gravity. Today, the technique is mainly used to carry out experiments in 

weightless conditions and to test space technologies. Time and place limitations in 

parabolic flights prevented until now to perform gas phase deposition experiments in 

microgravity environment. Although some studies showed the effect of the gravity on 

deposition dynamics these models are mostly based on unjustified assumptions as a 

consequence of insufficient fundamental knowledge about the complex 

physicochemical interactions involved within a CVD process 7, 34, 35. This complexity 

increases especially in the case of nanomaterial synthesis by CVD. The object of this 

present work is to understand the formation of Al/Al2O3 nanocomposite under gravity 

variation for the first time. The nanostructures of Al/Al2O3 were synthesized by the 

chemical vapor deposition (CVD) using the single source precursor, [tBuOAlH2]2 in a 

newly designed CVD system. This work was successfully carried out by collaboration 

with Leibniz-Institute for New Materials  (CVD/Biosurfaces group and workshop), 

the research group of Prof. Michael Veith  (Inorganic chemistry, University of 

Saarland), DLR (Deutsches Zentrum fü r Luft- und Raumfahrt / German Aerospace 

Agency) and NoveSpace (French Microgravity Aviation Company). 
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1. State of the art 
 

One dimensional (1D) nanostructures has high aspect ratio with different forms of its  

morphologies, such as wires, rods, fibers, tubes and belts in nanoscale 36. For the 

use of those products, they should have a stable dispersion of the units or structures 

with controlled size and physico-chemical properties 37. So far various innovative top-

down and bottom-up fabrication methods are introduced to synthesize various 

nanostructures such as thin film deposition and self-assembly processes,  

electrospinning, phase separation, nano-imprinting, photolithography, and electron 

beam etc. 37, 38. Among them CVD is mostly used method to product thin films and 

1D nanostructures of various materials.  

1D nanostructures can be grown by self-assembling of nanotubes or nanofibers 

mimicking some natural entities similar to collagen fibers 39. Of course 1D 

nanostructures also can be directly fabricated by advanced nanolithography 

processes as physical patterning techniques with well ordered features however gas 

phase techniques are more efficient and adaptable for the synthesis of 1D 

nanostructures in large quantities. The CVD process is one of the basic production 

method in the semiconductor industry for the production of functional thin films to be 

used for various applications of nanoelectronic devices including integrated circuits, 

solar cells, liquid crystal displays etc. 40. The majority of CVD applications involve 

applying solid thin film coatings on the surfaces, but it is used also to produce high 

purity bulk materials and powders, as well as to fabricate composites. CVD coatings 

can be applied to elaborately shaped pieces, including the insides and undersides of 

features, and high aspect ratio holes and other features can be completely filled with 

relatively high deposition rates.  

Indeed the basic concept of CVD is quite simple as shown the mechanism of a CVD 

process and reaction steps in Figure 1-1. CVD involves volatile precursor which 

forms a gas phase at room temperature in a common CVD process. The source 

species of the precursor are transported into the reaction chamber under vacuum. 

They pass over or come to the hot surfaces by diffusion and convection while they 

are simultaneously heated. The source species will react or decompose forming solid 

phase on the heated substrates. Usually both gas and surface chemical reactions 

occur, depending on the prevailing heat and mass transport and on the chemical 

kinetic parameters during operation. Thus the substrate temperature is significant 
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and highly influence to the reactions between precursor gases and substrate surface. 

The substrate can be exposed not only to single precursor but also more volatile 

precursors in order to produce multi-component materials. Finally, volatile by-

products from the chemical reactions are removed from the reaction chamber 

following the gas flow induced by a vacuum pump.  

 

 

Figure 1-1. Schematic diagram of CVD mechanism 

 

Although the basic concept of CVD is quite simple, it is a quite complex process 

which has many factors affecting the deposition of coatings for instance type, shape, 

and size of reaction chamber, precursor gas flow rate, temperature and arrangement 

of the substrate. Therefore in order to satisfy the desired coatings, a number of forms 

of CVD are in wide used and frequently referenced in the literature 41. These 

processes differ in the means by which chemical reactions are initiated and process 

conditions such as: Atmospheric pressure chemical vapor deposition (APCVD), Low 

pressure chemical vapor deposition (LPCVD), Ultrahigh vacuum chemical vapor 

deposition (UHVCVD), Plasma assisted or enhanced chemical vapor deposition 

(PACVD, PECVD), Direct liquid injection chemical vapor deposition (DLICVD), Laser 

assisted chemical vapor deposition (LACVD), Aerosol assisted chemical vapor 

deposition (AACVD) and Metal-organic chemical vapor deposition (MOCVD).  
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1.1 Synthetical methods for the production of 

nanowires by CVD  
 

Among the many of synthetic methods to fabricate functional nanowires, CVD is 

accepted as one of the proper bottom-up approaches. The syntheses of nanowires 

from CVD process are based on the processes where solids form out of catalyst 

seeds so called vapor-liquid-solid (VLS) mechanism which was introduced in 1964 by 

Wagner et al. 1. They applied gold nanoparticles as catalyst seeds to grow one 

dimensional (1D) Si structures. In a typical VLS process, a liquid catalyst (generally 

novel materials) acts as a preferential adsorption site of the gaseous precursor and 

the nanowire is formed by precipitation from the catalyst droplet due to 

supersaturation 2. Thus the synthesis of 1D nanostructures is depend on the 

formation of catalyst droplets and the existence of a eutectic point between the vapor 

source and the catalyst in the corresponding phase diagram. Such methods allow 

controlling the length of the wires by varying the growth duration while the nanowire 

diameter can be controlled by the size of the catalyst droplet 4. However, it is difficult 

to grow nanowires in bulk-quantity and catalyst particles stay as impurities in catalyst 

assisted VLS processes 5. Thus catalyst-free method may be considered as a more 

useful method to produce high purity 1D nanostructures.  

Previously, a synthesis of Si nanowires was introduced by using powder of Si and its 

oxide as vapor sources 42 and simillary alumina nanowires were synthesized on a 

large area silicon substrate  by thermal evaporation of mixture of Al and Al2O3 

powders 43. In both cases, no additional external catalyst was applied and these 

approaches are similar to the oxide assisted growth mechanism 42. In contrast to their 

reports, Sow 44, in the research group of Prof. Veith, fabricated Al/Al2O3 nanowires 

using a single source molecular precursor concept without any foreign external 

catalyst. Different from the classical VLS methods, Al/Al2O3 nanowires were grown as 

catalyst free mechanism while the molecular precursor [tBuOAlH2]2 was decomposed 

on heated substrates. In this process, Al particle may form as a seed during the first 

absorption of the precursor molecule on the heated substrate  because the deposition 

temperature was lower than the melting point of Al2O3 but near to the melting 

temperature of Al. Thus only the Al particle may stay as a molten form. Sow 44 

suggested that Al nanoparticles may work as a self catalyst which can be a driving 

force to the directional growth of Al/Al2O3 core/shell nanowires similar to conventional 
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VLS process. After the observation of branched nanowires formation by Aktas 26, this 

proposed concept was accepted. He explained that Al in the Al/Al2O3 core/shell 

nanowires may act as an active catalyst for the new nanowires formation. Although 

the CVD of the molecular precursor [tBuOAlH2]2 is an effective method to synthesize 

of Al/Al2O3 nanostructures and it provides always reproducible results, the growth 

mechanism is still unclear.  

 

 

1.2 A single source precursor: [
t
BuOAlH2]2 

 

A single source precursor (SSP) is usually a molecular compound which contains all 

the necessary elements of the final product in a well defined molecule. 

Disproportionations of metastable oxidation states of metallic elements may lead to 

metal/metal oxide composites or thermodynamics may be used to create a composite 

of two different metal oxide phases 45, 46. Also intermediates formed in the thermal 

decomposition processes of precursors may reenter the cascades of reactions 

leading to alloys in metal oxide matrices. Although the compound tert-butoxyalane 

[tBuOAlH2]2 was synthesized in 1968 47 the crystal structure was discovered in 1996 

by Veith et al. 8. Almost 2 decades the investigations of precursor [tBuAlOH2]2 have 

been made through the CVD process and further studies have been carried out by 

Prof. M. Veith and his co-workers. The molecular structure of [tBuOAlH2]2 is 

illustrated in Figure 1-2.  
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Figure 1-2. The molecule structure of [tBuOAlH2]2. 

 

As described previously, the precursor is highly volatile and thermodynamically stable 

in gas phase. The molecule bonding has predetermined breaking and recombination 

points thus the decomposition takes place via intra-molecule cascade reaction, 

because both gas phase byproducts isobutene and hydrogen are directly dependent 

from one another 8, 48. Depending on the temperature, two different composites are 

deposited on the substrate. At a substrate temperature above 350 °C the gray-black 

coating appears and below that temperature the metastable aluminumoxidehydride 

(HAlO)n is deposited. According to the mass spectra, the decomposition process of 

[tBuOAlH2]2 is described in following equations (eq. (1), (2) and (3)). In the equation 

(1), Al/Al2O3 is the product which have a shape of nanoballs around 450 °C and 

nanowires above 550 °C, respectively 9, 44, 46. HAlO layer can be transformed to 

biphasic aluminium/aluminumoxide composite with tempering in a furnace under 

vacuum or laser treatment in air 49-51. During those processes, hydrogen is eliminated 

(degassing) from HAlO layer at high temperatures and {AlO} (with formal Al2+) 

intermediately disproportionate to Al0 and Al3+, forming Al/Al2O3 as described in the 

equation (3-1 and 3-2).  
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Depending on the substrate temperature, thermal decomposition of [tBuOAlH2]2  is 

described in below 9, 49, 50 :  

At 370~600°C:  

[tBuOAlH2]2  2(CH3)2C=CH2 + 3H2 + 2/3 Al/Al2O3 (1)  

 

At 290~330°C:  

[tBuOAlH2]2  2H2 + 2H2C=C(CH3)2 +2HAlO (2)  

 

And annealing the HAlO layer above 500°C 49:  

HAlO  1/2 H2 + {AlO} (3-1) 

{AlO}  1/3 Al + 1/3 Al2O3 (3-2) 

1.3 Synthesis of Al/Al2O3 nanowires by CVD of SSP 

[
t
BuOAlH2]2  

 

In general, substrates are cleaned carefully with isopropyl alcohol and dried at 

150 °C to remove any residue. Following the cleaning procedure the substrates are 

placed on a sample holder within a vertical vacuum chamber. CVD system is shown 

in Figure 1-3. Sample holder (susceptor) was made of graphite (80 mm in diameter). 

Before the CVD process, reaction chamber is evacuated more than 30 minutes until 

the vacuum reaches 1x10-3 mbar, then flushed with N2 gas and evacuated again. 

Afterwards the substrates are heated up to the required temperature in a range of 

600-630 °C. High frequency generator is used to heat the graphite susceptor. The 

gas phase precursor is flowed into the reaction chamber after the substrate 

temperature is stable and constant. The precursor flow is controlled manually by a 

hand-valve while keeping the eye on the sensitive pressure sensor. The pressure of 

the chamber is kept at 8x10-2 mbar during the deposition by gradually opening the 

hand-valve. After the deposition process, firstly precursor flow is ended by closing the 

valve and heating of substrates is stopped. Then substrates are cooled down to room 

temperature in the reaction chamber under vacuum to avoid thermal shock which 

might occur due to the difference of thermal conductivity between substrate and 

surface layer. After cooling the deposited substrates are retrieved.  
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Figure 1-3. Conventional vertical cold wall CVD apparatus; (a) over view and (b) 

illustration of set up 28 

 

1.4 One-dimensional (1D) growth by self catalyst 

process 

 
Contrast to Au assisted Si nanowires 52, as-deposited Al/Al2O3 nanowires show 

chaotic nature (Figure 1-4). A possible growing mechanism was proposed by Sow 44 

in her thesis as shown in Figure 1-5. She estimated that aluminium particles form on 

the heated substrate during the absorption of the precursor molecule and they work 

as a catalyst. First aluminium nanoclusters form on the surface as the seeds then 

{AlO} accumulate in the Al droplets and Al-Al-O alloy is formed. Subsequently {AlO} 

nanowires are grown by precipitation of supersaturated {AlO} like in VLS process. 

Finally Al segregates inside of the nanowires while the Al2O3 shell is formed. 

However, the formation of aluminium clsturs was not deeply discussed. 
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Figure 1-4. SEM image of deposited Al/Al2O3 nanowires on a glass substrate. 

 

Veith et al. 9 described a mechanism for the transformation of biphasic Al/Al2O3 

nanoparticles into nanowires. This mechanism is applicable for the deposition 

temperatures around 610 ±  50 °C where {AlO} is the driving force of Al/Al2O3 biphasic 

features by disproportionational process similar to a formation of Si/SiO2 nanowires 

from SiO vapor 42, 53-55. Veith and his co-workers 9, 26 proposed that the 

decomposition reaction of [tBuOAlH2]2 resulting HAlO (eq. 2 in chapter 2.2) may work 

as an intermediate progress at higher deposition temperatures. This provides 

intermediate metastable {AlO} vapor by a subsequent degassing of hydrogen (eq. 3-

1 in chapter 2.2). During the deposition process, the {AlO} molecules are combined 

into nano clusters (fractal ball-like particles) on the substrate by Ostwald ripening 

where diffusion from smaller crystals to bigger ones to reduce the free energy of the 

entire system 56. Subsequently the precipitation of Al nanoparticles starts as a phase 

separation in condensed {AlO} clusters. As shown in eq.3-2 in chapter 2.2, the formal 

Al2+ of {AlO} disproportionate into Al0 and Al3+ with a stoichiometric molecular ratio of 

1:2 9. At a higher temperature (near to the melting point of pure Al) the precipitated Al 

could be a molten form because the surface melting temperature of nanoparticles 

can be much lower than that of their bulk materials 57. Thus metallic Al could act a 

catalyst as preferred nucleation sites similar to typical VLS process. But it is different 

to the conventional VLS process since the catalyst is not a noble metal. The metallic 

aluminium itself serves as a catalyst (self catalyst)  and remains at the tip of the 

deposited nanowires. The intermediate metastable {AlO} vapor is generated 

constantly thus Al nanowires surrounded by oxide shells form continue during the 

deposition process. 

 

1µm
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Figure 1-5. Schematic illustration of the self catalytic growth mechanism for the 

synthesis of Al/Al2O3 core shell nanowires 44.  

 

 
Figure 1-6 shows TEM image of Al/Al2O3 nanowires deposited on a glass substrate 

at 630°C. The size of the nanowires is approximately 30-40 nm in diameter. The 

diameter of nanowire is depending on the Al core at the tip. It can be seen clearly Al 

core at the tip in the TEM image of the deposited nanowires (Figure 1-6 A). Figure 1-

6 B shows Al metallic core encapsulated by Al2O3. The spherical particles at the tips 

of the deposited nanowires remind of a catalyst supported VLS growth mechanism. 

In this case it is possible evidence that Al/Al2O3 nanowires were grown by a self 

catalyst VLS mechanism.  

 

 

 

Figure 1-6. TEM images of nanowires at (A) low magnification for overview and 
(B) at higher magnification of single nanowire. Scale bars represent 20 nm and 

arrows indicate metallic Al core. 
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2. Applications of 1D Al/Al2O3 
nanostructures 

 

The Al/Al2O3 composites can be used in different ways. In the following section, 

some applications are introduced that have been studied in the last few years and 

applied for 2 patents [WO 2012/007401, WO 2011/147569]. The part of this works 

was published in recent 32. 

 

2.1   Surfaces for adhesion 
 

One-dimensional, wire-like Al/Al2O3 nanostructures exhibit adherence to various 

surfaces depending on their aspect ratio, their degree of interpenetration and 

entangling. The formed composite film may be used for permanent bonding of metals 

or ceramics. For example, thin films composed of chaotic Al/Al2O3 nanowires can be 

used as sort of glue between metal or ceramic surfaces. In this application the 

metallic or ceramic surface, which should be planar, is coated with Al/Al2O3 

nanowires. The coated face is now placed on a planar metal or ceramic substrate, 

and the whole system is heated up to 650 °C (either by induction or in an oven). After 

few minutes the two materials stick together in such a way that even under forces up 

to 130 N the two materials cannot be easily separated. The preliminary test was 

performed 4 times and as shown in Figure 2-1. The used substrates were round 

shape copper plates. Apparently the composite has penetrated also into the 

uncoated surface and serves as a connecting film between the two substrates.  
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Figure 2-1. The results from a tensile test of two copper plates bonded with 

Al/Al2O3 nanowires. 

 

The Al/Al2O3 coated surfaces can also be used as adhesion promoters for organic 

layers. By applying a standard peel-off test (ASTM D 3330), the adhesion between 

the Al/Al2O3 composite film and the substrate was estimated then again a very 

interesting result was observed which shows a strong adhesion between the 

pressure sensitive tape (3M Electrical Tape 92, Polyimide Film with Thermosetting 

Silicone Adhesive) and the one-dimensional composite nanostructure. The gain in 

adherence is due to the possibility of entangling between the metal/ceramic 

nanowires and the polymer based adhesive layer of the tape as may be deduced 

from inspection of Figure 2-2. The peel off test was applied on different surfaces and 

definitely the nanowire coated surfaces exhibit an enhanced adhesion on every type 

of coated substrate (glass, aluminium and copper with Al/Al2O3 wire-like composite) 

as shown in Figure 2-3. 
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Figure 2-2. (a) Al/Al2O3 composite nanowire coated glass before sticking the 
adherence tape and (b) Al/Al2O3 composite nanowire coated glass after 

sticking and peeling-off the tape. The arrow shows the accumulated adhesive 
left on the surface of the coated glass after peel-off. 

 

 

 

Figure 2-3. Comparison of adhesion behavior for adhesive tape of non-coated 
and Al/Al2O3 composite nanowires coated substrates of glass, aluminium and 

copper. 

 

2.2   Optical property for solar absorber 
 

Since the Al/Al2O3 core/shell nanowires layer is black, the absorption of light by such 

films is a characteristic property. The UV-VIS-NIR spectrum of the deposited layer is 
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plotted in Figure 2-4. As shown in the spectrum, It is possible to see a broadband 

absorption affect in the NIR region between 800 nm and 1200 nm wavelengths which 

can be interesting for ultra-thin solar absorbers. 

 

Figure 2-4. Optical absorption spectrum of Al/Al2O3 composite nanowires 

coated on glass substrates. Inset shows the Al/Al2O3 nanowires coated 
substrate 32. 

 

As shown by Ekinci et al. 58, Al nanoparticles with 40nm in diameter exhibit two 

enhanced absorption peaks in the UV region due to the bulk plasma resonance of Al. 

One peak is at about 250 nm and the other is at about 190 nm due to the dipolar and 

quadrupolar mode, respectively. Similarly, the optical spectra given in Figure 2-5 

show a sharp and narrow peak at about 250 nm thus it could be confirmed as the 

dipolar mode of the surface plasmon resonance from Al cores of Al/Al2O3 composite 

nanowires. Although increased absorption peak was observed near to 200 nm, the 

measurement could not be carried out below 200 nm because the UV-VIS-NIR 

spectroscopy used for analyzing of Al/Al2O3 layers did not cover the whole UV range 

which is needed for the characterization of the Al core. 
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Figure 2-5. UV absorption spectrum of Al/Al2O3 composite nanowires coated on 

glass substrates. 

 

On the other hand when IR light is applied to these nano structures, they absorb also 

the IR light. As can be seen in the Figure 2-6, coated and bare stainless steel 

substrate were exposed to IR light from a fast IR annealing system, the substrate 

temperature was measured from the backside. At the same time the coated sample 

shows the temperature rise higher than the bare substrate. It reveals clearly that, the 

Al/Al2O3 nanowire coated samples enhance the absorption of IR light more than bare 

substrate. 

 

 

Figure 2-6. IR induced temperature incensement of Al/Al2O3 nanowires coated 
and bare stainless steel. Time scale is second. 
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3. The concept of the parabolic flight  
 

Parabolic Flights are an essential way of achieving weightlessness and exclusively 

used for training astronauts and pilots for military achievements. Only few accesses 

of the parabolic flights are dedicated to scientific experiments and technological tests 

of space systems and hardware. Simplicity of preparation and of operations, reduced 

costs, repeated weightlessness phases and opportunity for researchers present on 

board to directly work on their experiment are key points not offered by any other 

available means. The Airbus A300 ZERO-G aircraft is used exclusively for test flights 

and experimental flights. The technically challenging parabola campaign is performed 

by experienced French test pilots, while a team that has been specially trained in 

zero-gravity environments assists the scientists and takes care of safety on board. 

Worldwide, three aircraft are used for parabolic flights: a DC-9 in the USA, an Iljushin 

76 MDK in Russia and the Airbus A300 ZERO-G in Europe. Following information 

was given by DLR (Deutsches Zentrum für Luft- und Raumfahrt / German Aerospace 

Agency) and NOVESPACE (French Microgravity Aviation Company) 59. 

 

For the Parabolic Flights, four specially trained test pilots and flight test engineers are 

together to fly for these unique maneuvers, three of them are responsible for each 

spatial direction. Their goal is to be achieved by fine adjustment of the position and 

heading of the aircraft and of the engine thrust to the longest possible period of 

weightlessness with minimal residual accelerations. Parabolic flights are performed 

onboard aircrafts following a flight pattern which alternates ascents and descents with 

short level flight breaks. Each of those maneuvers, called parabolas, provide up to 22 

seconds of reduced gravity or weightlessness as shown in Figure 3-1. During those 

reduced gravity phases, researchers fly onboard the aircraft perform experiments and 

collect data with conditions impossible to simulate on Earth. 
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Figure 3-1. Illustration of the parabolic trajectory flown by the parabolic 

research aircraft. Approximately 20-25 seconds of microgravity are achieved 
during each parabola 60. 

 

During parabolic flight manoeuvres, from horizontal flight, the aircraft flies straight up 

with its full thrust momentum to achieve a vertical acceleration of 1.5-1.8 g, nearly 

twice the normal force of gravity prevails. After the plane climbs at an angle of 47 

degrees, the pilot throttles the engines back and approximately 22 seconds of 

weightlessness occurs as the plane arcs over into a dive. After the interception of the 

aircraft in a steep downward for 20 seconds at which an increased acceleration of 

about 1.8 g prevails then the gravity level is normalized to 1 g during horizontal flight. 

By default, the parabolic flights from Bordeaux-Merignac airport in France or from the 

airport Cologne / Bonn on behalf of DLR are performed. For its parabolic flights the 

DLR uses the Airbus A300 ZERO-G. The European Space Agency (ESA) and the 

French space agency CNES also use the aircraft, courtesy of French company 

NoveSpace. NoveSpace has been performing Parabolic Flights with the Airbus A300 

ZERO-G since 1996. The technical information is given by NoveSpace and can be 

expressed as follows. 
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Airbus A300 ZERO-G:  

 Experimental aircraft capable of performing parabolic flights  

 Maiden flight: 28 June 1973  

 First commercial parabolic flight: 1997  

 Managed and owned by: Novespace  

 Serviced by: EADS-Sogerma  

 Sponsors: CNES and ESA  

 Flight operations and safety: French test flight centre CEV 

Technical data of the Airbus A300: 

 Length: 53.62 meters  

 Wingspan: 44.84 meters  

 Height: 16.90 meters  

 Turbines: General Electric CF6-50  

 Number of seats: 40 for scientists, 10 for flight team  

 Experimental area: 20 meters x 5 meters 

 

3.1   The CVD apparatus for parabolic flight 

 

The chemical vapor deposition experiments of single source precursor [tBuOAlH2]2 

are usually performed in a vertical tubular quartz reactor operating in a cold wall 

configuration (see Figure 1-3 (a) and (b)). However, this system does not fulfill the 

stringent safety conditions in the airbus especially due to the stability of the 

apparatus. In this context, as shown in Figure 3-2, a newly designed CVD apparatus 

was constructed for parabolic flight.  
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Figure 3-2. (a) CVD apparatus settled in the air bus for parabolic flight and (b) 

schematic drawing of the CVD apparatus. Dimension unit is mm. 

 

In the CVD apparatus for parabolic flight, 4 different reaction chambers (each 

charged by 5 substrates) were installed. Instead of glass, stainless steel is used for 

the reaction chambers, the precursor reservoir, the cold trap and the pipelines. The 

windows to observe the inside of the chambers were made of polycarbonate. Figures 

3-2 and 3-3 show the CVD apparatus for parabolic flight. The reaction chambers are 

located in the corner of the CVD apparatus with polycarbonate windows at the top of 

the reaction chamber (see Figure 3-4). A cold trap filled with dry ice is used to cool 

down decomposition by-products. The byproducts are either condensed in the cold 

trap and removed after the flight on the ground or ventilated outside through the vent 

line of the airbus. 
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Figure 3-3. The installation of the reaction chambers. Yellow arrows indicate 4 
reaction chambers and red arrow indicates the cold trap. 

 

 

Figure 3-4. A polycarbonate window of a single reaction chamber. 

 

Main control unit at the front of the CVD apparatus contains a Programmable Logic 

Controller (PLC) with a monitor (Figure 3-5.) and as shown in Figure 3-6, each 

reaction chamber is controlled by a PLC individually. CVD parameters such as 

temperature, pressure and deposition time for parabolic flight were chosen and 
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controlled for each chamber according to the preliminary test on the ground. In 

addition, there will also be an alarm message on the monitor of the control unit to 

avoid unwanted programming of a heating temperature more than 700°C and 

pressure over 1400mbar. In case of emergency, the PLC will close the valves and 

turn off the heaters automatically.  

 

 

Figure 3-5. Control box of CVD apparatus. 
 

 

Figure 3-6. Reaction chamber controller by a Programmable Logic Controller 
(PLC). 
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4. Experimental procedure 
 

Prior to the deposition the whole CVD system was held at a low pressure about 10-3 

mbar via an oil free vacuum pump. The precursor is exposed at low pressure of 10 -2 

mbar through a stainless steel pipe and to the reaction chamber, where the precursor 

reacts on the surface of heated substrates. The substrate temperature and the 

precursor flux are controlled using a thermocouple and the feedback of the pressure 

measurement in the reactor during the process.  

 

 

4.1   Synthesis of precursor [
t
BuOAlH2]2 

In order to carry out CVD experiment in parabolic flight, the precursor [tBuOAlH2]2 

was synthesized following the established routes 8, 47. As described in the literatures, 

120 mmol (4.554 g) lithium aluminium hydride (LiAlH4) are dissolved in 80 ml diethyl 

ether in a flask including a reflux cooler. Afterwards 40 mmol (5.334 g) of aluminium 

trichloride (AlCl3) are dissolved in 80 ml diethyl ether under cooling and added to the 

LiAlH4 solution at room temperature with a steady flow, which is  followed by the 

precipitation of lithium chloride (LiCl). To this suspension which is left, 160 mmol 

(11.859 g) tert-butanole is added to produce hydrogen and the procedure is done 

between 4 to 5 hours of stirring at ambient temperature. LiCl is separated from the 

mixture by filtration and the solvent is evaporated in vacuo subsequently. The 

remaining solid phase was sublimated at a pressure of 1 mbar and ambient 

temperature to achieve 15.2 g bis(tert-butoxy aluminium dihydride) [tBuOAlH2]2 (93% 

yield); decomposition temperature > 120 °C, melting point 71 °C, sublimation point: 

20°C / 1 mbar and calculated molecular mass 204.22 g/mol. NMR analysis has been 

performed for the synthesized product and values are given by Veith et. al. 8; 1HNMR 

(δ, i-TMS): 1.22 p.p.m. (s, 18H, -C(CH3)3, 4.43 p.p.m. (s, -AlH2), 
13CNMR (δ, i-TMS); 

30.36 p.p.m. (-CH3), 76.43p.p.m. (-C(CH3)3) 

 

The chemical reactions of synthesis process are given according to the literature 8: 

AlCl3 + 3LiAlH4 4{AlH3} + 3LiCl  (1) 

2{AlH3} + 2tBuOH   [tBuOAlH2]2 + 2H2 (2) 
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4.2   CVD of [
t
BuOAlH2]2 in parabolic flight  

 

The precursor is introduced into the reaction chamber by opening the valve and is 

decomposed on the surface of the substrates which are heated up to a temperature 

range of 400-600°C. The precursor flow was maintained generally 15-20 seconds. 

The numbers (1), (2), and (3) in Figure 4-1 indicate the precursor path during the 

CVD process. The CVD apparatus was primarily controlled by a PLC during the 

parabolic flight. The substrates are heated through conductive micro ovens while in a 

conventional CVD system, a high frequency inductive coupling is used to heat the 

substrates by placing on a graphite substrate holder.  

 

 

Figure 4-1. Synoptic diagram of the single reaction chamber. Numbers 
represent: (1) magnetic valve, (2) metal tube and (3) heating stage. 

 

① 

② 

③ 
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Figure 4-2 shows the inside feature of a single reaction chamber of the CVD 

apparatus. In the middle of the chamber an electrically driven resistor heating stage 

is located (red colored) and 5 copper substrates are placed on the heater with a fixing 

plate to prevent any movement of the substrates during the parabolic flight. All those 

parts were made of copper which transfers the heat efficiently and settled in a 

MARCO (ceramic insulator) block which prevents heating up the outer wall of the  

chamber during the CVD process. 

 

 

Figure 4-2. Illustration of the single reaction chamber. 

 

As mentioned, in order to control unintended temperature or pressure increase the 

temperature and the pressure inside of the CVD apparatus were monitored by 

thermo couple combined with the heater and pressure sensors located inside the 

reaction chambers, respectively. The heating rate of the heating stage was 3.5°C per 

second and no interruption among the reaction chambers was observed. 

Afterwards the precursor was introduced into the reaction chambers by opening 

manual and magnetic valves between the precursor reservoir and the reaction 

chambers. The pressure level of the reaction chambers was kept stable prior to the 

deposition process. The precursor reservoir was specially designed for the parabolic 

flight. As shown in Figure 4-3, the precursor reservoir was an assembly of a metal 

reservoir, labyrinth seals and a hand valve. By using labyrinth seals the powder 

formed precursor [tBuOAlH2]2 was prevented traveling into the reaction chambers. 
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Only the gas formed precursor under low pressure was able to travel into the reaction 

chamber. 

 

 

Figure 4-3.  Illustration of the precursor reservoir. 

 

The precursor flow was regulated following the feedback of the pressure sensors in 

the reaction chambers during the processes by manipulation of the valves via PLC. 

Prior to opening the valve, each chamber was kept at pressure level below 3*10-3 

mbar. As shown above (see Figure 3-1) the gravity condition remains 20-22 seconds 

in hyper and micro level, respectively. Due to that limitation the flow of SSP need to 

be introduced in the reaction chamber within 20 ±  5 seconds in order to prohibit 

further reactions at unintended gravity condition. The pressure level of the reaction 

chamber did not exceed more than 10-2 mbar. After many initial CVD tests on the 

ground, parabolic experiments were carried out for 5 days; each with 31 parabolas 

(more 150 parabolas) therefore a total of 50-55 minutes of weightlessness or 

hypergravity were available. 
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5.  Result and discussion 
 

Figure 5-1 shows the variable gravitational acceleration (G) in a parabola given by 

Novespace after the experiment. There are 3 types of G value; Gx and Gy reveal the 

transverse acceleration of the airbus thus they do not change when airbus flies 

straightforward and Gz indicates vertical gravitational acceleration that reveals hyper 

and microgravity level in the airbus. The altitude (Alt) was varied approximately from 

65000 to 95000 meters. It means freefall of the airbus was ca. 3000 meters. A 

relatively stable microgravity phase is observed in the time laps between 25-45 

seconds followed by longer-duration of hypergravity phase. 

 

 

Figure 5-1. Example of the gravitational acceleration obtained during a 
parabola. 

 

A detailed profile of the accelerometer data at microgravity is shown in Figure  5-2. 

Parabolic trajectory flown by the specially designed Airbus A300 produced brief 

periods of microgravity (Ca. 0.04 G) lasting for approximately 20-25 seconds. The 

initial transition into the microgravity phase lasted 1-2 seconds.  
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Figure 5-2. Example of the gravitational acceleration during a micro gravity. 

 

As shown in chapter 2.4, Veith et al. 9 proposed that at elevated temperatures (near 

to the melting point of Al) the formed in Al2O3 embedded Al particles may stay in 

liquid phase similar to catalyst particles used in a typical VLS process and they act as 

seeds for the growth of Al/Al2O3 nanowires. More than a decade, the research group 

of Veith indicates that the density and the shape of Al/Al2O3 nanowires highly depend 

on the first stage where the Al/Al2O3 particles form after the decomposition of the 

precursor. The method has been addressed also for the synthesis of other 

metal/metal oxide biphasic systems such Ge/GeO2, Sn/SnO2, Pb/PbO2 where Ge, Sn 

and Pb are metals 61. Indeed the temperature is the key factor in the growth of 

Al/Al2O3 nanowires because the temperature of the substrate determines whether 

nucleated Al seeds are in the solid or liquid phase. This current work aimed to 

explore the gravity (at terrestrial, micro- and hypergravity) effect on the nanoparticle 

(which at higher temperatures becomes a seed droplet) and nanowire growth by 

decomposition at low and elevated temperatures, respectively.  

 

Basically two sets of experiments (deposition of Al/Al2O3 material at (a) 400°C and (b)  

600°C) were carried out to investigate the growth mechanism of nanostructures 

within 120 parabolas. As shown in Figure 5-3, at 400°C only solid spherical particles 

were observed on the substrate surface. There is a clear difference in size and 

morphology of those spherical particles obtained at 0.04 G, 1 G and 1.8 G although 
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all other parameters such as time, pressure and temperature were constant . In 

Figure 5-3 (a), similarly to a self-organization manner, the nano-particles with a 

diameter of 8-10 nm are regularly distributed under 0.04 G (microgravity). At 1 G 

(terrestrial gravity) the deposited ball shaped particles formed large clusters in a 

fractal manner rather than separately distributed fine structures (Figure 5-3 (b)). The 

mean diameter of these clusters is around 80 nm. The smallest primary particles 

which form the cluster have a diameter of approximately 8 nm. At a gravity level of 

1.8 G (hypergravity), the similar primary particles on the clusters surface are 

observed and the mean diameter of the clusters is raised up approximately to 120 nm. 

In addition, these clusters were stick together forming globular entities which have a 

diameter of around 300 nm (Figure 5-3 (c)). 

 

 

Figure 5-3. SEM Images of Al/Al2O3 nanoparticles obtained at (a) 0.04 G, (b) 1 G 
and (c) 1.8 G. (d) particle size at different gravity condition. 

 



 40 

In order to understand such agglomeration phenomena, the effects of gas phase and 

their interaction with gravitational induced free convection have been focused. A 

candle experiment under microgravity by National Aeronautics and Space 

Administration, USA (NASA), showed that the absence of buoyancy-driven 

convection leads to a spherical form of the candle flame 62. In a microgravity 

condition, the supply of oxygen and fuel vapor to the flame is controlled by the 

molecular diffusion where there is no upward and downward convection as shown in 

Figure 5-4.  

 

 

Figure 5-4. The shape of candle flame at (a) normal and (b) micro gravity 62. 
 

Thus in normal (atmospheric) pressure CVD, the dominant gravitational effect which 

must be counted for is free convective or buoyancy driven transport. This transport 

process is generally induced by a combination of three factors : temperature gradients, 

variable gas properties, and the gravity body force. Since at microgravity condition 

there is no difference for either horizontal or perpendicular reactors, the flow pattern 

in a cylindrical reactor is truly two dimensional and always diffusion/advection 

dominated 63. In many of numerical analyses under the reduction of gravity, flow 

simulation showed laminar flow without vortex and turbulence 6, 7. Conversely, in the 

presence of a vertical (downward) gravitational field at ambient condition, this is an 

energetically unstable situation which is eliminated by the downward convection of 

cooler, denser gas and a corresponding upward displacement of the hotter, less 

dense gas. The superposition of this gravitationally induced free convection on the 

forced convection of the carrier gas and precursor species is termed mixed flow.  
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However, at low pressures, the conduction is the main heat transfer mechanism. 

Thus the classical convection is not valid because the CVD experiment in this current 

work was carried out at low pressures 64. In such systems, thermal creep may 

strongly influence the whole system 65. Thermal creep basically refers to the motion 

of fluid opposite to the temperature gradient along the gas-particle surface 66. 

Recently, Schwabe et al. presented thermal creep convection using a particle tracing 

method in a plasma chamber in which vertical temperature gradient is prese nt. The 

particles move downwards along the vertical walls of the chamber due to thermal 

creep. When they reach the bottom of the chamber, they move into the middle of the 

chamber and back upwards in the region outside of the creep zone close to the walls. 

This leads to convective vortex motion so called creep induced gas convection 67. At 

ambient pressures, free convection occurs and the gas motion spreads into the 

whole of the vacuum chamber. 

In our case, gravity and thermal creep are counteracting on the substrate where the 

lateral temperature gradients exist. Additionally at terrestrial conditions, gravity 

acceleration is the dominant force inducing the motion of gaseous species 

downwards to the substrate as similar study of gas flow in CVD system under gravity 

acceleration 68. It is believed that this triggers excessive interaction of hotter species 

(moving with higher momentum) with the surface and this leads to agglomeration of 

primary spherical particles. At hypergravity this effect becomes more pronounced 

since larger clusters were observed than those at terrestrial condition. On the other 

hand under microgravity, thermal creep seems to be the dominant driving force of the 

whole system and this leads to a net upwards motion from the substrate surface. 

Thermal creep would be present even in the complete absence of gravity 65. It can be 

suggested that the contact angle of the particle on the substrate affect their surface  

melting temperature and less interaction of liquid particle with surface decreases the 

nucleation density 69, 70. Comparable to this observation, Nagai et al. showed that 

spherical form of the molten metal droplet at a microgravity condition while the shape 

of the molten metal droplet under normal gravity is ellipsoidal as shown in Figure 5-5 

71. The contact surfaces under microgravity were smaller than those at normal gravity 

and constant during the microgravity condition. Therefore microgravity decreases the 

particle interaction with the surface reducing the contact area.  



 42 

 

Figure 5-5. The shape of a molten metal drop on a substrate (a) under normal 

gravity, and (b) under micro gravity 71. 

 

As shown in chapter 1.3 and 1.4, the decomposition of [tBuOAlH2]2 produces 

core/shell Al/Al2O3 nanowires on the substrate at elevated temperatures. As shown in 

Figure 5-6, the formation of nanowires is also observed at 600°C. It reveals that there 

is no apparent effect of gravity on the growing of nanowires. On the other hand, the 

chaos degree of the nanowires was significantly changed when the gravity level 

varies from 0.04 G to 1 G and 1.8 G as shown in Figure 5-6 (a), (b) and (c), 

respectively.  
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Figure 5-6. SEM Images of Al/Al2O3 core/shell nanowires obtained at a) 0.04 G, 

b) 1G and c) 1.8 G. 

 

As shown in Figure 5-6 (a), the deposited nanowires at microgravity have almost 

linear structures. TEM image (Figure 5-7 (a)) of the nanowire grown at microgravity 

shows clearly core-shell nature. Electron Energy Loss Spectroscopy (EELS) 

indicates that the core is Al and the shell is Al2O3 as shown in Figure 5-7 (b). 

Moreover, the spherical particle on the tip of the nanowire was observed which 

composed of Al and Al2O3 from EELS analysis. This result indicates that gravity does 

not affect the chemical process since biphasic nature of nanowires was introduced 

already under normal gravity conditions as shown in chapter 1.4. It can be assumed 

that a dominance of gravity over the thermal creep increased the chaotic nature of 

nanowires at terrestrial and hyper gravity conditions since classical convection theory 

is not valid at low pressure. 
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Figure 5-7. (a) TEM image of Al/Al2O3 core-shell nanowire and (b) EELS spectra 
taken from different regions of a nanowire deposited at 0.04 G (shown with A, B 

and C in Figure a). Scale bar represents 10 nm. 

 

In conclusion, the growth of both spherical particles and nanowires from micro- to 

hyper gravity showed clearly different morphologies. The spherical particles showed 

regular distribution and nanowires were grown linearly without bundle formation at 

micro gravity level. The symmetry of the nanoparticles and nanowires at micro gravity 

level is caused by the absence of the convection. This is in agreement with 

observations of crystal growth which is more ideal under weightless conditions. The 

linear growth of the Al/Al2O3 nanowires was observed at micro gravity condition 

which was not reported at normal gravity experiment. The Al/Al2O3 nanowires grown 

under microgravity have biphasic nature as same as grown under terrestrial gravity. 

Although all experiment parameters were kept constant, the nanowires obtained at 
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terrestrial and hyper gravity were no more linear and highly entangled contrast to 

under micro gravity condition. It is believed that the chaotic nature of nanowires is 

caused by a dominance of gravity over the thermal creep.  
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PART 2: Surface structuring on Al/Al2O3 
surfaces for bio applications 
 

As reported previously, biphasic Al/Al2O3 composite transformed to Al2O2 by laser 

treatment thus surface chemistry was always identical. In this context, methods for 

creating nano/micro structures by direct laser writing (DLW) and laser interference 

patterning (LIP) of biphasic Al/Al2O3 are addressed and Human Osteoblast (HOB), 

Normal Human Dermal Fibroblast (NHDF), neuronal cells (Dorsal root ganglion and 

PC12) are cultured to investigate cell behavior upon the surface topography 

independent from the surface chemistry. The laser process was supported by Mr. 

Cagri k. Akkan and Mr. Alexander May  (CVD/Biosurfaces group, Leibniz-Institut für 

Neue Materialien, Saarbrücken, Germany). The cell experiment for Human 

Osteoblast (HOB) and Normal Human Dermal Fibroblast (NHDF) was carried out by 

Dr. Wolfgang Metzger (Department of Trauma, Hand and Reconstructive Surgery, 

Saarland University, Germany) and for neuronal cells (Dorsal root ganglion and PC12) 

by Mr. Lukas K. Schwarz (University of Applied Sciences Kaiserslautern, Informatics 

and Micro-systems-technology, Campus Zweibrücken, Germany) 

 



 47 

1. Laser structuring 
 

Despite the principle of the laser was first addressed in 1917 by Albert Einstein who 

described the theory and concept of stimulated light emission, the first working 

LASER was invented by Theodore Maiman in 1960 at Hughes Research 

Laboratories. So far, thousands of lasers have been introduced, but only a few of 

them are found practical applications in our life fields for the purpose of scientific 

and/or commercial applications. The term "LASER" originated as an acronym for 

Light Amplification by Stimulated Emission of Radiation 72.  

Laser is a device that produces intense light (monochromatic, coherent and highly 

collimated) through a process of optical amplification based on the stimulated 

emission of photons from active medium (solid or gas state) which is excited by a 

pumping source (flash lamp or other laser) to the amplifying state hence the 

wavelength of a laser is determined by the medium which emits by electron excitation.  

The wavelength produced by laser sources determines the color of laser light. Visible 

light has a wavelength in the range of about 400 nm to about 700 nm. The 

wavelength of the infrared (IR) is in between 700 nm to 1 mm. In contrary, 10nm to 

400 nm of the wavelength is called ultraviolet light (UV). In general, light from a laser 

has very low divergence thus it can travel very long distances or can be focused by 

optical lenses with a high energy.  

Last two decades the preferred laser in materials science was the carbon dioxide 

(CO2) laser with the wavelength at 10.6 µm in the infrared (IR) region, mostly used in 

automobile industries because IR laser is absorbed by ferrous metals more 

effectively compared to the non ferrous metals as shown in Figure 1-1. Au, Ag and 

Cu exhibit sharp absorption edges in visible wavelengths while Al exhibits a low 

absorption below 100 nm in a wavelength. In this regard, the choice of laser for 

material processing is basically dependent of the target materials. Beside of the CO2 

laser, the wavelength of the most conventionally used neodymium-doped yttrium 

aluminum garnet (Nd-YAG) laser is represented. The fundamental wavelength of the 

Nd:YAG laser has 1064 nm and the series of the wavelengths at second harmonic 

generation (SHG) and third harmonic generation (THG) are 532 nm and 355 nm, 

respectively 73.  
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Figure 1-1.  Absorption rate of metals as a function of laser radiation 
wavelength 74. 

 

Basically lasers can be run in two types by operation mode; one is the continuous 

wave (CW) where the power output is basically continuous and the other is pulsed 

mode where its output is the form of pulses of light 73.  

In contrast to CW, pulsed laser emits light in the form of optical pulses in some 

duration at some repetition rate (nanoseconds to picoseconds) as simply shown in 

Figure 1-2. The pulse width is determined at half of maximum amplitude of the pulse 

73. By using focus lenses the laser beam is focused on the target surface and due to 

the very short pulse duration only the surface of the target material can be 

evaporated in a small volume of the material by reduced thermal diffusion 75-77. That 

allows the using of pulsed laser as a cutting tool not only for micro -machining but also 

for surgeries in clinical uses. The most widely used pulsed laser system is a Q-

switched laser which allows the extremely high power of light pulses than the same 

laser operating in a CW mode. A Q-switch is an optoelectric or an acousto-optic 

shutter between the active medium and total reflect mirror in a system that allows the 

energy to build up in the cavity while lasing action is inhibited in a controlled way and 

when the shutter is open rapidly, a high peak power is obtained in a short pulse.  
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Figure 1-2. A principle of a pulsed mode. 

 

Similar to the pulsed mode, CW laser can be manipulated in accordance to an input 

signal to be run as a pulsed laser 78, 79. For example laser operating with a period 

signal (frequency), simply on and off state, gives an output energy periodically; 

maximum at on state and minimum at off state, respectively (Figure 1-3). It is called 

modulated mode and the modulation is generated by a digital signal 79. 

 
Figure 1-3. A principle of a modulated mode. 
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2. Experimental approach 
 

In this study, the molecular precursor [tBuOAlH2]2 was decomposed and Al/Al2O3 

nanowires were grown on the heated substrates up to 630°C. Substrates used for the 

CVD process were borosilicate glasses and stainless steel plates (STS316L). The 

substrate temperature and the deposition pressure were fixed and always the same 

precursor [tBuOAlH2]2 was used. The precursor flow was regulated by the relative 

pressure measurement during the CVD process. The substrate temperature was 

controlled using a thermocouple, which has been calibrated by an optical pyrometer. 

The gaseous by-products of the thermolysis reactions and any unreacted precursor 

were removed through the vacuum pump. 

 

2.1   Direct laser writing (DLW) 
 

Direct laser writing (DLW) process is one of the fundamental techniques that focused 

laser beam irradiating to the target materials where photothermal and/or 

photochemical reaction occurs. During photo-thermal interaction with metals, light 

energy is first absorbed by electrons on the metal surface. The excited electrons then 

move into the deeper parts of the metal, which dissipate the absorbed energy as 

thermal lattice vibrations, leading to local heated zones. The increased temperatures 

is easily achieved up to several thousand degree which exceeds the melting or 

evaporating temperature of the materials 77, 80, 81. Additionally moving the focal point 

of laser or materials by a control stage operated with computer aided software cutting, 

welding, and drilling can be carried out precisely for the metallic and ceramic 

materials.  

The basic set-up of DLW system used in this study is shown in Figure 2-1. A 

commercially available Ytterbium (Yb) fiber laser (JK100FL: JK Fiber Lasers, United 

Kingdom) is used with modulated mode (50 kHz). The wavelength of this laser is 

1080nm. In this installation, the sample is scanned using a control stage while the 

position of the laser beam is fixed The laser beam is focused on the deposited 

Al/Al2O3 layer on stainless steel substrate (STS316L, Good Fellow, Germany) which 

is moveable to X-axis and Y-axis by a control stage. The scanning speed of the stage 

is 4 mm per second and the moving resolution is 1 µm. The laser beam is focused by 

a laser head system (company GSI, United Kingdom). The laser head is equipped 
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with a 76 mm focal length convex lens, which gives a spot diameter of 19 µm at focus. 

The focused spot is kept on the substrates and the pulse width of the laser is 16µs 

with energy of 2 W. 

 

 

Figure 2-1. Schematic illustration of direct laser writing system. 

 

2.2   Laser interference patterning (LIP) 
 

Laser interference patterning is concerned with the use of interference patterns 

generated from two or more coherent beams of laser radiation for structuring of 

materials. Typically, one laser beam is split into two or more beams that are 

subsequently directed to the target material and the dimensionality of the interference 

patterns depends on the number of beams (N) which involve in the process. 

interference among N ≤4 produces an N-1 dimensional pattern thus two beam 

interference patterning provides one dimensional (linear) periodic structures 23, 82. 

Figure 2-2 shows the principle of a two beam laser interference technique and the 

path of laser beams. The laser beam is split through a beam splitter into two equal 

parts, which are then guided by mirrors and superimposed on the material surface to 

create linear periodic patterns. The pattern period is basically governed by λ / 2sinθ 

derived from Bragg’ law, where λ is the wavelength and θ is the incidence angle of 

the laser beam 23, 83.  

In order to create interference patterns with high energy at one pulse, a commercial 

Q-switched Nd:YAG laser (Quanta-Ray 290: Spectra Physics, USA) operating at 
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second harmonic (λ=532 nm) with a frequency of 10 Hz and pulse width of 10 ns is 

used. The beam diameter is 8 mm without focus lens which allows a large area 

treatment with periodic patterns. All the samples were irradiated at normal 

atmospheric conditions in air using one single laser pulse. 

 

 
Figure 2-2. Experimental setup of a two-beam based LIP system. 

 

Figure 2-3 shows the basic mechanism of the interference patterning that reveals an 

intensity distribution oriented by two interfering plane waves. The dotted line 

represents the fixed threshold (Φ0), which is the key factor of material process of 

laser interference corresponds to the ablation of the materials known as the damage 

threshold 84. If the fluence (radiative flux integrated over time: I(r)Δt) is smaller than 

the Φ0, the material is not modified (Figure 2-3 (A)) while the material is modified with 

the greater fluence than Φ0 as represented in Figure 2-3 (B-D).  
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Figure 2-3 Representation of the interference patterns on target material. (A) 

the fluence is smaller than for any point of the surface, (B-C) the fluence is 
greater than the required threshold in the grey fringes and the material will be 
modified in those areas. (D) the fluence is greater than the required threshold 

of all area of material surfaces thus full surface will be modified 23. 
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To summarize the laser structuring process with direct writing and interference 

techniques for this study, the parameters used are given in Table 1. 

The changes in surface topography and morphology were analyzed by scanning 

electron microscopy (SEM, JEOL-JSM-6400F) and an atomic force microscopy (AFM, 

Nanowizard 3, JPK instruments). Surface chemistry and phase transformation was 

investigated using an X-ray photoelectron spectroscopy by Mg Kα x-ray radiation 

(XPS, Omicron) and an X-ray diffractometer (XRD, D-5000, Siemens). Static water 

contact angle analysis was carried out using a semi-automated and video equipped 

device (Kruess G2). 

 

 

Table 1.Laser parameters  
 

 Direct laser writing Laser interference patterning 

Laser system Yb fiber laser Nd:YAG laser 

Operating mode Modulated Q-switched (pulsed) 

Wave length  1080 nm 532 nm 

Beam diameter 19 µm at focus 8 mm 

Pulse width 15 µs 10 ns 

Pulse repetition rate 50 kHz 10 Hz 

Laser scan speed 4 mm per second - 

Laser power 2 W 0.2 J 
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3. Results and discussions 
 

3.1   Characterization of structures produced by Direct 

Laser Writing (DLW) 

 

Prior to create regular lines on the substrates, the pulse rate of the Yb fiber laser was 

optimized while the speed of the moving stage fixed at 4 mm per second. Figure 3-1 

shows the patterns on the deposited Al/Al2O3 nanowires layer according to the 

variation of pulse rate control of 250 Hz, 500 Hz and 50 kHz. 

   

Figure 3-1. SEM images of the laser treated zone with one direction scanning at  

different pulse rate; at (A) 250Hz, (B) 500Hz and, (C) 50 kHz. The red arrows 
represent the scanning direction and the black arrows indicate the crescent-

like trace marks. 

 

As it can be seen in Figure 3-1 (A), at a low frequency (250 Hz), the treated zone 

shows separated circular shape as a spot. The diameter of those spots is a good 

agreement with the laser beam diameter (19 µm at focus). Since laser beam has a 

Gaussian profile, in the middle of those spots have more flat structure (fully melt and 

solidify with higher intensity) than the outer of the spots. When the pulse rate was 

increased double (500 Hz), the spots were started to duplicating and due to this 

phenomena the trace marks were shown in pre-treated zone as indicated by black 

arrows in Figure 3-1 (B and C). It is more dominant as shown in Figure 3-1 (C) and 

treated zone is continuously making a linear channel on the surface resulting in a 

smooth surface. At a high frequency (50 kHz) crescent like traces were narrow each 

other even below sub micrometer which reminds of a melt flow, furthermore the width 

of the treated area was enlarged (Ca. 25 µm) by increased absorbed energy at the 

surface.  
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Basically, by use of a modulate laser, a periodical signal (on and off state of laser) so 

called pulse rate is created. While the pulse rate is increasing, pulse repetition is also 

increasing. It makes more spots by laser beam on a target material at a same time 

period. Hence, by using a moving stage with same scan speed in one direction, more 

spots are created on the surfaces in the same scanning path and if the pulse 

repetition is high enough, the spots are overlapping. The summary of this mechanism 

is illustrated in Figure 3-2.  

 

Figure 3-2. Laser spot overlapping step by the variation of the pulse rate at 
fixed scan speed. The upper, middle and lower red spots represent Figure 3-1 
(a), (b) and (c), respectively. 

 

In addition protrusion structures were observed at the boundary of treated region to 

non treated region. It is due to the convection flow of molten form of Al/Al2O3 

nanowires by increased temperature gradient. When laser beam is irradiated on the 

surface the surface temperature increases with an increase in energy density. Thus 

the temperature of Al/Al2O3 nanowires might be easily reached to its melting 

temperature forming a molten layer, in which lateral temperature gradient exists 

(higher temperature in the center of molten layer and lower temperature at the 

border). This temperature gradient induces a vertical convection flow in a liquid state 

as called thermo-capillary or Marangoni effect 85-88. Dahotre et al. 89 demonstrated 

this mechanism sequentially as shown in Figure 3-3. The induced lateral temperature 
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gradient leads to the formation of a surface tension gradient towards the border of 

the molten layer and the molten material is thus pulled towards the border of the 

molten layer where it contacts with the solid phase. Then the material is to pile up at 

the edge of the pool and cooled down rapidly due to the contact with cold material. 

Therefore pile up material is accumulated by solidification process and remains at the 

border. 

 

 

Figure 3-3. The evolution steps of the surface morphology at various times 
(t1<t2<t3) by a single laser beam 89. 

 

Figure 3-4 shows high resolution SEM images of a channel induced by the DLW 

process of the modulated Yb laser with a frequency of 50 kHz as shown above in 

Figure 3-3 (C). Figure 3-4 (B), (C) and (D) are correspond to Figure 3-4 (A) indicating 

B, C and D, respectively. At a closer look in high magnified SEM image there are at 

least three different regions where diverse morphologies are observed (Figure 3-4 

(A)). In the region of the channel created by laser (Figure 3-4 (B)), the formation of 

crescent like traces is clearly visible and there are thermal cracks due to the thermal 

shock caused by periodic laser irradiation inducing rapid heating and cooling rates 

during the process. Those cracks are formed near to the border and the middle of the 

channel indicated by red arrows. It is due to the difference in the thermal expansion 

coefficients of re-solidified layer and the underlying layer. Additionally very small 

debris (a few nm) are observed on the surface contrast to continuous wave laser 

treatment of Al/Al2O3 nanowires that creates flat surfaces 26. The debris was caused 

by a re-deposition effect that is typically created by use of pulse laser systems which 

is consequence of cyclic ultra-fast heating, ablation and solidification 90. The profile of 

the channel is shown in inset of Figure 3-4 (B). As aforementioned, pile-up structures 

are clearly seen near to the border and the depth of the channel was approximately 1 

µm. The width was narrow in the middle of the channel (Ca. 10 µm) compare to the 
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upper region (Ca. 25 µm). Figure 3-4 (C) shows sub-micron spherical particles near 

the borders of the channel so called heat affected zone (HAZ). The image was 

obtained from substrate tilted at 30°. It gives more detailed sub structures which look 

like micro cracks as indicated red arrow in Figure (A) and (C). However un-deformed 

Al/Al2O3 nanowires can still be seen in beneath. These cracks were formed by 

densification of Al/Al2O3 nanowires forming surface tension induced spherical 

particles due to the heat conduction from the channel that affect Al/Al2O3 nanowires 

near the borders to be melt and agglomerate via rapid heat transfer from laser 

irradiated area. Figure 3-4 (D) shows as deposited Al/Al2O3 nanowires which were 5 

µm far from the channel. It seems that HAZ is not exceeding more than 3 µm (see 

Figure (A)). One may assume that heat transfer was diminished due to the chaotic 

nature of Al/Al2O3 nanowires which are highly porous and surrounded alumina shell 

acting itself as an insulator compare to laser treatment of bulk materials 73, 91, 92 and 

also due to the short laser irradiation time (15 µs) contrast to the result of CW laser 

treatment on Al/Al2O3 nanowires in the thesis of Aktas 26. In this context a local heat 

treatment of modulated Yb-laser may lead to the deformation of Al/Al2O3 nanowires 

without destroying or deforming of underlying substrate by an excessive heat transfer.  
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Figure 3-4. SEM images at higher magnification; (A) overview of the region of 

interest, (B) treated zone (inset is the profile), (C) Heat affected zone (HAZ) tilt 
at 30°, and (D) untreated zone. Red arrows indicate cracks 

 

Since the laser treatment on Al/Al2O3 nanowires induced re-solidification process, it is 

obvious that the laser beam induces local changes especially near surfaces which 

can be attributed to the oxidation of Al cores and oxide phase transformations of 

Al/Al2O3 nanowires. Thus the phase transformation of Al/Al2O3 nanowires is 

investigated by XRD. Prior to the measurement substrate was partially treated by 

laser. Figure 3-5 (A) shows as deposited Al/Al2O3 nanowires on STS316 and Figure 

3-5 (B) shows laser treated substrate and treated area is 4 mm2, as indicated by the 

red arrow. 
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Figure 3-5. (A) Al/Al2O3 nanowires on STS316 and (B) Laser treated substrate. 
The red arrow indicates treated region having a color of brown from black.  

 

Figure 3-6 shows XRD diagrams of laser treated Al/Al2O3 nanowires on STS316L 

substrate. As it is shown that after laser treatment, Al/Al2O3 nanowires were 

transformed to alpha alumina (α-Al2O3). The corresponding peaks of α-Al2O3 are 

given in Table 2.  

 

Table 2.The peaks of alpha alumina defined by XRD 

 

2θ (°) 25.58 35.15 37.78 43.36 52.55 57.5 61.3 66.21 68.21 76.87 77.22 

hkl 012 104 110 113 024 116 018 214 300 1010 119 

 

 



 61 

 

Figure 3-6. XRD spectrum of laser treated surface. 

 

Previously Veith showed first the α-Al2O3 transformation of Al/Al2O3 nanowires by 

CO2 laser treatment 93 and later on crack free α-Al2O3 from Al/Al2O3 nanowires by 

use of argon laser have been introduced. 94. As shown there, the mechanism of the 

transformation of Al/Al2O3 composite to α-Al2O3 is due to the combination of the 

heating by laser and the combustion of Al core by oxidation. According to the 

literatures, the reaction progress is also described as  

Al/Al2O3 + 3/4 O2  Laser  3/2 α-Al2O3 26, 32 

In fact, laser treatments induce heating of those core/shell nanowires. When the 

temperature reaches over the melting point of Al, metallic Al core will melt and the 

volume is increased up to 6% due to the density changes from 2.7 g/cm3 at solid 

phase to 2.4 g/cm3 at liquid phase. This induces an internal pressure which is a 

driving force to destroy the Al2O3 shell then Al core will contact with oxygen since the 

laser treatment is performed at ambient condition. This reaction is highly exothermic 

(enthalpy ΔH is -1675 kJ/mol 95). The reaction coordinate was schematically given by 

Veith 93 as shown in Figure 3-7 where EA is the activation energy needed to destroy 

the Al2O3 shell and -ΔH is the enthalpy of the oxidation reaction of Al core.  
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Figure 3-7. Reaction coordinate of the transformation of Al/Al2O3 composite to 
Al2O3 93. 

 

Subsequently continuous channels were produced by altering the distance of each 

other while laser parameters were kept constant. Figure 3-8 shows the substrates 

having the channels created with an interval (distance between a channel and 

another) of 50 µm (A), 100 µm (B) and 200 µm (C), respectively. In addition to the 

primary micro-scale channels, between two parallel channels the surface is 

composed of Al/Al2O3 nanowires which are few tens of nm in diameter. Although the 

channels by laser are accounted as microstructures, the non treated areas are sti ll 

remaining as nano-scale structures.  
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Figure 3-8. SEM images of DLW patterned substrates with different interval of 
(A) 50 µm, (B) 100 µm, and (C) 200 µm. Red arrows indicate laser treated region 
and blue arrows indicate non treated Al/Al2O3 nanowires. 
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3.2   Contact angle measurement of sessile drop  

 
The measurement of contact angle using distilled water drop was carried out using 

Contact Angle Measuring System G2 (Krues GmbH, Germany) combined with by 

Drop Shape Analysis software at room temperature. Especially, when substrates 

have channels, anisotropic wetting behavior was observed as shown in Figure 3-9. 

Water drop has spread parallel to the channels more than orthogonal direction thus 

contact angles were measured both in orthogonal and in parallel direction to the 

channels as illustrated in Figure 3-10.  

 

 

 

Figure 3-9. Anisotropic water contact on patterned surface at top view. The 
arrow indicates parallel direction to the channels. 

 

 
Figure 3-10. The direction denoted as orthogonal and parallel to the patterns 
are indicated by arrows.  



 65 

The contact angle is the angle at which a liquid/vapor interface meets the solid 

surface. The contact angle is specific for any given system and is determined by the 

interactions across the three interfaces. The shape of the droplet is determined by 

the Young relation 96 which assumes a perfectly flat and rigid surface. Most often 

used concept is illustrated with a small liquid droplet resting on a flat horizontal solid 

surface as shown in Figure 3-11. Consider a drop of liquid on a solid substrate  which 

can be characterized by: γGS = γSL + γLG·cosθ. Here γGS, γSL, and γLG are the 

surface tensions (or surface energy) of gas-solid, solid-liquid and liquid-gas interface, 

respectively and θ is the contact angle of the liquid with respect to the solid substrate 

surface.  

 

 
Figure 3-11. Contact angle and surface tension. 

 

The wetting characteristic of the surface can be generally described as; θ = 0 

complete wetting, 0 < θ < 90: partial wetting, and θ > 90: non-wetting where θ is the 

contact angle. So the contact angle is a very useful inverse measure of wettability, as 

a smaller contact angle implies smaller surface tension, but higher surface wettability 

97. However surfaces in many cases are far from this ideal situation and contact 

between liquid droplets and solids is controlled by adhesive, capillary and other 

forces, the balance of which determines the regime of wetting 98. Thus Wenzel’s 

model dealing with a homogeneous wetting regime and Cassie-Baxter’s model 

dealing with a heterogeneous regime were introduced for rough and porous surfaces, 

respectively 99, 100. The Wenzel model reveals the whole sample to be wetted such 

that the droplet is in complete contact with the surface. Conversely, the Cassie-

Baxter model reveals the droplet to rest on the roughened surface forming air-gaps 

between the droplet and the surface. The schematic explanation of each model 

including its mixture model is shown in Figure  3-12.  
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Figure 3-12. Schematic illustration of (a) Wenzel, (b) Cassie-Baxter, and (c) 

Mixed model 101. 

 

The measured wetting angle is shown in Figure 3-13. The measurement of contact 

angle was repeated 10 times per each substrate  type. Contrast to the wetting angle 

of as deposited Al/Al2O3 nanowires, the substrates with channels show very 

hydrophobic wetting behavior. The highest wetting angle (122°) is shown on the 

substrate with the 50 µm periodic channels at parallel direction. Actually this wetting 

behavior does not agree with Wenzel model in which the contact angle should 

decrease with increasing surface roughness for initially hydrophilic materials. It 

seems that water drop on the DLW patterned surfaces is governed by Cassie-Baxter 

or mixed model. 
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Figure 3-13. Water contact angle of as deposited and DLW patterned Al/Al2O3 

nanowires. 50 µm, 100 µm and 200 µm in X axis represent the spacing of the 
channels created by laser on Al/Al2O3 nanowires layer. 

 

As shown in Figure 3-9, it is believed that the linear channels on the substrates give 

rise to anisotropic wetting properties, which lead to different spreading behavior of 

water droplet in orthogonal and in parallel directions because the edges of the 

channels may provide a location for the pinning of the liquid-solid-vapor interfaces as 

shown in various reports 102-104. Recently Hans et al. showed a mechanism of a 

perpendicular contact-line pinning on a sharp edge of periodically created linear 

structures 105. It can be an explanation how an increase in contact angle was 

observed on the laser patterned substrates. When water droplet is prohibited to 

spread in orthogonal direction, subsequently it spread in parallel where it may 

penetrate into the channels and Al/Al2O3 nanowires layer. Thus the latter result in an 

equilibrium shape of the droplet on the surface which is ellipsoid. In this context the 

morphology of linear structure plays a significant role in establishing the anisotropy of 

the surface wetting.  

Keep this in mind, the pinning effect on patterned substrate was estimated. Simply 

the amount (volume or mass) of the water droplet on the substrate was increased by 

a manual control. Figure 3-14 shows the water droplet behavior on the substrate 

having the channels at the period of 50 µm. Wetting angle was measured in parallel 
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direction where pinning effect is observed. As it can be seen, the first stage of the 

water contact is shown on the top of the image and then following images show how 

water droplet behave at an increased water amount. The blue dotted line 1 and 2 

reveal the contact area of the water drople t on the substrate surface. While the 

amount of the water was increasing, contact area was kept constant. It gives higher 

wetting angle than small droplet. On the other hand, the contact area of the water 

droplet was increased when the amount of the water reached certain value as 

indicated by blue dotted line 3. In this case, water droplet cross the channels and the 

wetting angle was decreased. It means conversely, that more channels prohibit more 

the wettability due to a larger energy barrier along the orthogonal direction to the 

channels. In this context it is clear that how the substrate with 50 µm periodicity in 

channels repetition (highest channel density) shows more hydrophobic behavior than 

the other prepared samples. Likewise the substrate with 100 µm periodic channels 

showed more hydrophobicity than substrate with 200 µm periodic channels which 

has the minimum channel density. 
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Figure 3-14. Wetting behavior of a water droplet steadily increasing in volume 

on patterned substrate. Blue dotted lines 1, 2 and 3 exhibit the edge of the 
water droplet on the surface. 

 

Many reports showed that anisotropic wetting can be observed by chemical gradients 

alternating hydrophilic and hydrophobic stripes with dimensions in the low-

micrometer range 102. Also super hydrophobic surface from hydrophilic surface was 

introduced by combination pattern with hydrophobic coatings such as silane or 

fluorinated agent 106-108. In contrast to those reports, increased wetting angle of 

Al/Al2O3 nanowires layer was observed by only altering the surfaces topography 

without using any chemical modifications. 
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3.3   Characterization of structures produced by Laser 

Interference Patterning (LIP) 
 

Al/Al2O3 nanowires were deposited on glass substrates by CVD of a single source 

precursor (SSP) [tBuOAlH2]2 at elevated temperatures. Round shaped borosilicate 

glass slides (diameter of 12 mm, Carl Roth, Germany) were used as substrates. The 

surfaces of Al/Al2O3 nanowires irradiated with constructive interference of laser 

beams undergo melting and subsequently re-solidification as schematically shown in 

Figure 3-15. As one can depict from the schematic drawing, Al/Al2O3 nanowires have 

an oxide shell (grey color) and an Al core (yellow color). Following the selective heat 

treatment, Al core seem to melt. The Al2O3 shell is then cracked due to the internal 

pressure caused by phase transformation of Al core (solid to liquid). Subsequently 

oxygen diffuses into the nanowires resulting of oxidation of Al core which is 

transformed to Al2O3. This reaction is highly exothermic and remarkable as described 

in chapter 3.1. In both cases outer surface chemistry seems to stay identical. 

Contrast to the modulated Yb-laser, Laser Interference Patterning (LIP) was carried 

out with a very short time pulse rate of 10 ns. It makes slowness of heat transfer in a 

certain volume of material thus only upper region of deposited nanowires were mostly 

modified. It leads nano/micro porous layer while the Yb-laser created flat cast layer 

on the substrates.  

 

 

Figure 3-15. Illustration of LIP process on deposited Al/Al2O3 nanowires. 

 

(a)

(b)
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As shown in Figure 3-16 (a), biphasic core/shell Al/Al2O3 nanowires exhibit a chaotic 

nature. Figure 3-16 (b) shows SEM image of patterned nanowires at incidence angle 

of 3.8°.which creates 2 µm periodic linear patterns. In Figure 3-15 (b) it is clearer 

since non altered nanowires were still seen in the beneath of porous re-solidified 

layer. At regions subjected to a non-constructive interference, hill-like structures 

composed of globular and wire-like structures were observed. When the high energy 

laser pulse heats nanowires locally, it seems that a high lateral temperature gradient 

forms and this induces also a gradient of surface tension. It is known that such a high 

gradient forces movement of the molten particles to the periphery of the non-exposed 

(less heated) areas 109. This leads to the formation of nano-porous and globular 

particles due to a fast re-solidification with minimized surface energy at the boundary 

of the solid material.  

 

  

Figure 3-16. SEM images of Al/Al2O3 nanowires (a) before LIP and (b) after LIP 
(Scale bar is 1µm).  

 

Contrast to the DLW treated substrates, LIP patterned substrates show rainbow 

colors under the sun light (Figure 3-17). This is because of the light diffraction from 

the periodic patterns which acts as a diffraction grating110. In general, diffraction 

gratings split the monochromatic light such as laser beam into several beams which 

are called diffraction orders indicated as “m”. This light separation is related to the 

incoming and diffracted angle of the light from the periodic patterns and it can be 

expressed as: “mλ = d (sinα + sinβ)”, where λ is the wavelength of incident light, d is 

the spacing of the grating (in this case, periodicity), α is the incident light angle, and β 

is the angle of the diffracted light. Especially, these periodic structures separate the 
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wavelengths of a broadband light source. As it can be seen in Figure 3-17, when the 

incidence angle keep identical, diffraction angle will be varied according to the 

wavelength of the incoming light. Therefore, broadband light sources such as sun 

light is separated by the periodically patterned surfaces and it can be easily seen at a 

visual wavelength by human eyes. 

 

Figure 3-17. Light reflection on LIP modified surfaces. 

 

Prior to cell culture experiments, four different linear patterns with periodicity of 1 µm, 

2 µm, 4 µm and 8 µm were prepared by simply altering the incidence angle of laser 

beams at 15.2º, 7.6º, 3.8º and 1.9º, respectively. Figure 3-18 shows the SEM images 

of the patterned Al/Al2O3 nanowires at different incidence angles of laser beams. At 

higher magnification Images were obtained from LIP treated substrates at tilt angle of 

52° as shown in Figure 3-19. Porous re-solidified zone by LIP and Al/Al2O3 nanowires 

can be clearly seen.  
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Figure 3-18. Low magnification SEM images of the substrates treated by LIP at 
period of (A) 1µm, (B) 2µm, (C) 4µm, and (D) 8µm. 

 

  

  

Figure 3-19. High magnification SEM images of the substrates treated by LIP at 
period of (A) 1µm, (B) 2µm, (C) 4µm, and (D) 8µm. Images were obtained from 
the substrates tilt at 52°. 
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In order to measure the depth of the channel induced by LIP, the substrates were 

prepared by focused ion beam cutting which gives direct observation of the structures 

at cross view. The depth of these structures was in a range of Ca. 300-650 nm. As it 

can be seen in Figure 3-19 (A) and 3-20 (A), (at the periodicity of 1 µm), the channels 

were not clearly separated from each other and they show irregular depth profiles. 

The depth of the channels of the substrates with larger periodicity shows similar scale 

in Figure 3-19 (B), (C) and (D). This deviation at a narrow periodicity can occur due to 

the chaotic nature of Al/Al2O3 nanowires since such multi-component and randomly 

distributed structures are known to exhibit some non-linear optical effects and also 

irregular thermal conductivity. 

 

 

Figure 3-20. Cross section of the substrates treated by LIP at period of (A) 1µm, 

(B) 2µm, (C) 4µm, and (D) 8µm.  
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3.4   Wetting behavior of the LIP treated substrates 

 

As shown in Figure 3-21, while as-deposited Al/Al2O3 nanowires layer shows quite 

hydrophilic nature, after LIP a more hydrophobic behavior was observed. Water 

contact angle was measured 10 times per each type of the samples. Bhushan et al. 

showed such an increase in the wetting angle on micro patterned surfaces composed 

of nano-fibers 111. More similarly Yang et al. showed that laser interference induced 

periodic patterns alter the surface contact angle enormously from hydrophilic to 

hydrophobic 112. In addition an anisotropic wetting was also observed on patterned 

nanowires. Similarly to the DLW treated substrates, water droplets exhibit an 

elongated shape parallel to laser induced channels. This is because a water droplet 

is blocked by discontinuous structure of Al/Al2O3 nanowires layer in orthogonal 

direction and the momentum of the water droplet is then consumed in parallel 

direction. It is assumed again that the increase of the contact angle might be due the 

hierarchical structures composed of micro and nano scale features and pinning effect 

is also encountered.  

 
Figure 3-21. Water contact angle of as deposited and LIP treated Al/Al2O3 
nanowires. 1µm, 2µm, 4µm and 8 µm of X-axis represent the periodicity of the 

laser induced channels. 
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3.5   Surface chemical analysis of LIP treated 

substrates with XPS 
 

To examine surface chemical nature of the substrates, XPS was used. XPS spectra 

of as-deposited and LIP treated Al/Al2O3 nanowires show similar results as shown in 

Figure 3-22. The species of aluminum, carbon and oxygen can be seen clearly in full 

spectra of all substrates. Given in the reference 113, the binding energies at 531.6 eV, 

72.65 eV and 74.7 eV represent for O 1s, Al0, and  Al3+, respectively. The peak of Al 

2p from as deposited Al/Al2O3 nanowires was 74.2 eV, which corresponded to the 

Al3+ state. After the LIL treatment, Al 2p at 75 ±  0.6 eV was observed which also 

indicates clearly the oxidized Al state, Al2O3. In bulk aluminum it could be possible to 

detect two aluminum peaks at Al 2p from metallic aluminum (Al0) and aluminum oxide 

(Al3+). The present carbon seems to be accumulated from the system (ex. Oil from 

the pump or sealing oil from the vacuum chamber). 
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Figure 3-22. XPS spectra of (A) as deposited and LIP treated Al/Al2O3 
nanowires at period of (B) 1 µm, (C) 2 µm, (D) 4 µm and (E) 8 µm. 
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The measured surface chemical composition of the substrates was summarized in 

Table 3. As it can be seen, the oxygen was slightly increased due to the oxidation of 

Al core exposed to the air since LIP treatment was carried out at ambient condition. 

Furthermore the carbon content was decreased significantly by LIP treatment. It 

indicates that detected carbon was contamination from the outside. Therefore two-

beam LIP provided linear periodic patterns on the Al/Al2O3 nanowires and XPS 

investigation showed that as-deposited and LIP treated Al/Al2O3 nanowires exhibit 

identical chemical state of the surfaces. It is believed that the core-shell Al/Al2O3 

nanowires act as a self-healing material. Following the laser treatment Al core seems 

to melt and oxidize. In this context, as-deposited and laser treated surfaces exhibit 

always the same outer chemical state, Al2O3. Such surfaces are ideal for studying the 

direct topography effect on cell-surface interaction independent from the surface 

chemistry because the initial stage of cellular responses on surfaces is governed by 

surface chemistry 114. 

 

 
Table 3. Surface chemical composition of the substrates by XPS 
 

Substrate Al (at.%) O (at.%) C (at.%) 
Atomic ratio 

Al:O 

Al/Al2O3 nanowires 21.4 ± 0.2 59.3 ± 0.4 19.3 ± 0.1 2.8 

LIP period of 1 µm 21 ± 0.2 62.7 ± 0.5 16.3 ± 0.4 3.0 

LIP period of 2 µm 25 ± 0.4 63.7 ± 1.1 11.3 ± 0.2 2.6 

LIP period of 4 µm 23.6 ± 0.4 65.6 ± 1.2 10.8 ± 0.2 2.8 

LIP period of 8 µm 22.9 ± 0.3 67 ± 0.9 10.1 ± 0.1 2.9 

 

On the other hand, there was no relevant factor with increased wetting angle of the 

substrates and it did not show a clear tendency. Moreover as shown in Table 4, the 

effect of surface oxygen content and the roughness are not conclusive and it seems 

that the induced topographical patterns (nano-micro features) can be the dominating 

factor in this instance. It should also be noted that the XPS data showed no other 

elements present before or after the laser treatment, except aluminium and oxygen 

which are the main constituents of Al/Al2O3 nanowires. 
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Table 4. Mean roughness, oxygen content and water contact angle 

 

Substrate Ra (nm) O (at.%) 
Water contact angle 

(degree) 
   Orthogonal     Parallel 

Δ° 

Al/Al2O3 nanowires 48 59. 3 5.4 ± 0.6 5.1 ± 0.3 - 

LIP period of 1 µm 73 62.7 49.4 ± 0.5  66.6 ± 1.4 17 

LIP period of 2 µm 167 63.7 54.3 ± 3.2 76.4 ± 2.4 22 

LIP period of 4 µm 186 65.6 40.2 ± 0.2 49.5 ± 1.1 9 

LIP period of 8 µm 224 67 46.2 ± 0.4 62.8 ± 0.7 17 

 

* Δ° represents the difference of water contact angle between the angles measured orthogonal and parallel to the line pattern.  
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4.  Neuron cells behavior on LIP treated 
substrates 

 

Prior to the cell culture experiment, all substrates were sterilized with 70 % isopropyl 

alcohol for 10 min and washed three times with distilled (DI) water. Following drying 

step, these substrates were stored in 24 cell culture well for following cell culture 

experiment. Dorsal root ganglia (DRG) were isolated from newborn Sprague Dawley 

rats between postnatal day 1 and 5 (P1-P5) and prepared following all regulations of 

local animal welfare. One DRG per each substrate was seeded and incubated at 

37°C at an atmosphere of 4 % CO2 (CO2-Incubator MCO-17AIC, Sanyo) in 30 μL of 

the culture medium for 4h to support attachment. It was avoided to use any additional 

specific coatings (laminin, fibronectin and etc.) in order to observe the direct effect of 

the surface topography upon the cellular adhesion. After attachment, the well was 

filled with additional 500 µ l culture medium. The space between the wells was filled 

with 10 mL DI water to maintain humidity and thermal conductivity. Non-treated 

Al/Al2O3 nanowires were used as control since glass cover slips showed no 

attachment of DRGs. 

 

Immunohistochemical staining for microscopic analsys 

 

After six days, culture medium was removed and washed with phosphate buffered 

saline (PBS) then DRGs on the substrates were fixed with 4 % formaldehyde (FA 

solution dissolved in PBS) for 12 min and washed three times with PBS. Afterwards 

they were incubated with 4’,6-diamidino-2-phenylindole (DAPI) and Anti-Tubulin beta 

III (Millipore MAB1637) combined with goat-anti-mouse 488 (Invitrogen, A11029) to 

stain for cell nuclei and for axons, respectively. Glial cells were identified by S100 

staining. The samples were evaluated using a fluorescence microscope (Observer Z1, 

Carl Zeiss). In order to analyze the angle of cell nuclei an image processing software 

“ImageJ” (US National Institute of Health) was used. 



 81 

5.  Results and discussions 

 

In contrast to current literature, substrates were not pre-coated with any organic 

substances which may affect cell behavior such as adhesion or proliferation 18, 20. 

Interestingly, DRGs exhibited an increased attachment on patterned and even on 

non-treated nanowires while no attachment of DRGs was observed on glass 

substrates. This is a clear evidence for a specific topography effect upon the cells. It 

has been shown that inorganic surfaces may imitate nanoscale biological 

topographies 115, 116. In this regard, it is assumed that the Al/Al2O3 nanowires 

represent a new material combination for cultivation of DRGs without need of any 

chemical treatment, which mostly affects the cell behavior. It is known that the 

outgrowing axons are influenced by the migrating schwann cells and glial cells 117, 118 

as well as by specific molecules such as Laminin 119 or Neuronal Growth Factor 

(NGF) 120 and/or even their topography on engineered surfaces 121. Therefore similar 

disposal of cell nuclei and fibers of DRGs on different patterned Al/Al2O3 nanowires is 

an indication of the direct effect of the topography on the cellular behavior. As it can 

be seen in Figure 5-1, there are axonal alignments of DRG on all LIP treated 

substrates while DRG shows radial distribution on as deposited Al/Al2O3 nanowires in 

Figure 5-2. It reveals that such patterns seem to have an enhanced affect to axons to 

be elongated along the paralle l direction of the patterns.  

 

 

Figure 5-1. Anti-Tubulin beta III stained DRG cell on as deposited Al/Al2O3 
nanowires. 
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Figure 5-2. Anti-Tubulin beta III stained DRGs on LIP treated surfaces with 

period of (A) 1 µm, (B) 2 µm, (C) 4 µm and (D) 8 µm. Arrow indicates the parallel 
direction of the patterns. 

 

However this does not give a direct answer how the axonal guiding progress  is 

working, but it may reasonable to suppose that the cellular mechanisms underlying 

axonal guidance are comparable to those responsible for guidance of immigrated 

cells from DRGs. It is known that g lial cells are the most abundant cell types in the 

central nervous system 122. They provide support and protection for neurons. They 

are thus known as the supporting cells of the nervous system. The main functions of 

glial cells are: to surround neurons, hold them in place and to supply nutrients and 

oxygen to neurons. In this context, glial cells were investigated in order to quantify 

the enhancement of the neurite guidance of DRGs since they could indicate the 

contact guidance of neural axons. As an example Figure 5-3 shows DAPI stained 

immigrated glial cells from DRG on the substrates. It can be seen clearly that cells 

were randomly distributed on non LIP treated surface (Figure 5-3(a)) while they were 

aligned along the parallel direction to the linear patterns (Figure 5-3 (b)). The angle of 

cell direction on the substrate was measured as shown in Figure 5-4. It shows the 

represent angle of cell nuclei on the surfaces. 90 degree represent that cells are 
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totally parallel to the linear patterns while 0 degree represent that cells are totally 

perpendicular to the linear patterns. 

 

 
 

 
 
Figure 5-3. Fluorescence image of DAPI stained immigrated cells from a DRG (a) 

on as-deposited and (b) patterned Al/Al2O3 nanowires at period of 2 µm (scale 
bar: 100 µm). 
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Figure 5-4. Illustration of the cell angle measurement. 

 

The data presented in Figure 5-5 confirm the visual observation of the angle in a 

range of 85-95° (90° means a perfect alignment to the parallel direction of the 

patterns) of outgrown cell nuclei attached and elongated on the as-deposited and 

patterned Al/Al2O3 nanowires. The percentage value was obtained in comparison to 

total cell numbers on each substrate. Especially 2 µm periodic patterns showed 

highest cell alignment rate in a range of 85-95° with 36.72% ±  1.1 in comparison to 

other substrates; non treated Al/Al2O3 nanowires (8.21% ± 0.04), period pattern of 4 

μm (32.92% ±  1,81), period pattern of 8 μm (27.45% ± 0.8), and period pattern of 1 

μm (22.63% ± 0.13), respectively.  

 
Figure 5-5. Percentage of aligned cell nuclei in a range of 85-95° on as 
deposited and LIP treated nanowires.  
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Figure 5-6 shows that axons follow the glial cells and arrange parallel to the linear 

patterns created by LIP. Arrows in Figure 5-6 (B) and (D) shows the parallel direction 

of patterns. More detailed observation is shown in Figure 5-7. Fluorescence pictures 

as well as the results of cell nuclei alignment reveal clearly that neuronal axons are 

closely orientated to aligned glial cells. 

 

 

Figure 5-6. (A) and (C) Random growth of neurites on as-deposited nanowires. 
(B) and (D) Aligned growth of neurites on patterned nanowires. Glial cells 

(stained with S100 (red) protein) similarly exhibit (C) random growth on non-
treated nanowires and (D) aligned growth on laser patterned nanowires. (Blue: 
DAPI stained cell nuclei, Green: Anti-Tubulin beta III stained axons and Red: 

S100 staining). 
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Figure 5-7. Fluorescence images of immigrated cells of DRG on 2μm patterned 

substrate with DAPI (blue) for cell nuclei, anti-S100 (red) for glial cells and anti-
tubulin beta III (green) for axons; (A) overview (B-E) magnified regions marked 

with arrow in overview.  

LIP demonstrates a novel patterning approach of biphasic Al/Al2O3 nanowires. The 

periodic energy distribution provides a selective melting and re-solidification of 

biphasic Al/Al2O3 nanowires and oxidation of Al core to Al2O3 due to a crack 

formation of Al2O3 shell 93. This ensures that in every case an identical outer surface 

contacts with cells. This study on DRGs thus shows the direct effect of the 

topography on the enhanced cellular adhesion and directional neurite outgrowth. 

Of course anisotropic wetting behavior may play a role on the cell response since 

more hydrophilic behavior is observed in parallel direction to the periodic patterns. 

Similarly Leclair et al. showed neural cell alignment at the surface with anisotropic 

wettability. They showed that the glass windows promoted cell adhesion, whereas 

the surrounding fluoropolymer displays a cell-repelling character 123. However, a 

question sti ll remains whether cell react due to physical and/or chemical properties.  
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Obviously, the size of periodic patterns plays a major role for the alignment. The 2 

µm periodic patterns allow the optimal alignment of cells. Furthermore enhanced 

attachment of DRGs on all substrates was observed in contrary to non-adhering 

behavior observed on standard glasses. Further investigations will be necessary to 

explore the reasons for this specific behavior. Especially the analysis of focal 

adhesion points might lead to more detailed information. Maybe the most interesting 

finding is the fact, that the sole topography of the Al/Al2O3 nanowires leads to an 

increased attachment of the DRGs, which is usually achieved when specific gels are 

used. This property allows the investigation of the direct influence of signaling or 

trophic molecules upon the dorsal root neurons (by eliminating any side-effects which 

may be induced by the extra cellular matrix (ECM) gels such as matrigel 124. Most 

probably, this surface modification approach can also be interesting for studying 

other primary neuronal systems to be applied in various medical applications.  
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6. HOB and NHDF cells behavior on DLW 
treated substrates 

 

Prior to the cell culture experiment, all substrates were sterilized with 70% ethanol for 

20 minutes and washed three times with phosphate buffered saline (PBS). Human 

osteoblasts (HOB, Promocell, Heidelberg, Germany) were incubated and cultured in 

Dubelcco ś modified eagle medium (DMEM, PAA, Pasching, Austria), supplemented 

with 15 % fetal calf serum (FCS, PAA) and 1 % penicillin/streptomycin (P/S) in a 

standard incubator (37 °C, 5% CO2 , 95 % humidity). Similarly, normal human dermal 

fibroblast (NHDF, Promocell, Heidelberg, Germany) were cultured with Q333 (PAA, 

Pasching, Austria) as a complete medium for fibroblasts. It is supplemented with 

selected serum components and growth factors. HOB were seeded at a density of 

100 cells/mm2 and NHDF at a density of 63 cells/mm2 on the substrates, respectively. 

The incubation time was 2 days for both cell types.  

 

6.1   Immunohistochemical staining for microscopic 

analsys 
 

After two culture days, the cells were washed with PBS one time after removing the 

medium at 37°C. Afterwards HOB and NHDF were incubated at 37°C for 30 min with 

CellTrackerTM Green 5-chloromethylfluorescencein diacetate (CMFDA, Invitrogen) for 

the cell body. Subsequently they were rinsed 2 times with PBS and fresh culture 

medium was added for the second incubation at 37°C for 30 min. The fixation was 

done by incubation in ice cold methanol (-20°C) for at least 10 min. Cell nuclei of 

HOB and NHDF were counterstained by 4’,6 -diamidino-2-phenylindole (DAPI, 

Vectashield, Vector Laboratories). The substrates were dried with air and fixed on 

standard microscopic slides for the microscopic analysis. An Axioskop microscope 

(Carl Zeiss, Jena, Germany) was used for the microscopic analysis.  

 

6.2   Fixation for SEM analysis 
 

Cultured cells (HOB and NHDF) on the samples were fixed with 2 % glutardialdehyde 

in 0.15 M cacodylate buffer at RT (room temperature) for 1 h (2 times 30 min). After 
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fixation the samples were incubated in osmium tetroxide (1 % in 0.2 cacodylate buffer)  

for 1h in the dark at RT to increase the contrast. Afterwards, the substrates were 

washed 3 times with DI water and then dehydrated using ethanol (2 times for 5 min at 

30 %, 50 %, 70 %, 80 %, 90 % and 2 times for 10 min at 100 %) under movement at 

4°C. The samples were dried by Critical-Point-Drying (Polaron CPD 7501, Quorom 

Technologies) after dehydratation procedure and they were sputtered with gold-

palladium (Polaron, Sputte rCoater). The SEM analysis was carried out using a FEI 

XL 30 ESEM FEG SEM device (Hilsboro). 
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7. Results and discussions 
 

Figure 7-1 shows fluorescence images of human osteoblast cells (HOB) and normal 

human dermal fibroblasts (NHDF) cells on as deposited Al/Al2O3 nanowires. As it can 

be seen, NHDF cells were barely observed on Al/Al2O3 nanowires while HOB cells 

covered well the surface. HOB exhibited a normal well-spread morphology whereas 

NHDF were very small with an untypical cell-nucleus ration. The overall number of 

NHDF was clearly reduced. It shows obviously converse behavior of both cell types 

on identical surface.  

 

 

Figure 7-1. Fluorescence images of (A) HOB and (B) NHDF on Al/Al2O3 
nanowires, respectively. The cell body was stained with CMFDA in green and 

the nuclei were counterstained with DAPI. Scale bar is 100 µm. 

 

For more detailed investigation, SEM images were taken. It gives more information 

how those cells behave on prepared substrates. Indeed both cells were preferred to 

outgrow on flat stainless steel (STS316L) surface (Figure 7-2 (A) and (C)). They were 

well spread and flattened, indicative of good adhesion but on Al/Al2O3 nanowires they 

show clearly selective outgrowth. Especially NHDF exhibit a smaller number of cells 

with a smaller cell size, indicative of poor adhesion although HOB is not flattened as 

before.  
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Figure 7-2. HOB (A and B) and NHDF (C and D) cultured on stainless steel 

(STS316L) and Al/Al2O3 nanowires, respectively. 

 

In magnified SEM images (Figure 7-3), cell morphology can be distinguished clearly. 

While both cells on smooth STS316L surfaces show well spread and flattened with 

dense and longer filopodia, indication of cell-cell interaction as well as cell-surface 

interaction, HOB and NHDF were shown much shorter length of the filopodia 

extension on Al/Al2O3 nanowires. Although the filofodia extension of both cell types 

was reduced on Al/Al2O3 nanowires, HOB can adhere on Al/Al2O3 nanowires as 

similar as on STS316L. Such flattened cell morphologies of both cell types were 

previously reported by use of smooth surfaces compare to alumina. Malik et al. 

showed a morphology change of osteoblasts on well polished alumina and 

polystyrene surfaces which are biocompatible materials 125. The osteoblasts cultured 

on both surfaces showed completely spread and flattened morphology independent 

of material types. In a similar way, Marchi et al. cultured fibroblast on as sintered and 

polished alumina which had different roughness 126. The fibroblasts were well 

attached and spread on polished surfaces as similar to Figure 7-3 (C). However 

highest adhesion of fibroblasts was observed on well polished alumina surface while 

lowest adhesion was shown on as sintered alumina surfaces. It may demonstrate 

that common cell morphology is governed by material surface. NHDF is favor of 

smooth surface compared to HOB. In other word NHDF is more sensitive to rougher 
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surfaces in terms of cell surface interaction as they showed significant morphology 

change and smaller number of cells. 

 

 

Figure 7-3. Morphology of HOB (A and B) and NHDF (C and D) cultured on 
stainless steel (STS316L) and Al/Al2O3 nanowires, respectively. Arrows indicate 
filopodia. 

 

Consequently those cells were cultured on DLW patterned substrates at period of 50 

µm, 100 µm and 200 µm. Figure 7-4 shows the fluorescence images of HOB and 

NHDF recorded at the culture periods of 2 days. It can be seen that NHDF shows 

morphology of linear elongation on all substrates. HOB shows similar elongation only 

on the substrates with 50 µm periodic channels and more cells were observed than 

NHDF. As compared to the insets which represent the direction of the channels, 

elongated NHDF showed its lateral distance similar with the distance of the channels.  
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Figure 7-4. Fluorescence images (same staining as in figure1) of HOB (A, B and 
C) and NHDF (D, E and F) on DLW patterned substrates at period of 50 µm, 100 

µm and 200 µm, respectively. Inset of each image represents the patterned 
substrate. Green and blue indicate stained cell body and cell nuclei, 

respectively. Scale bar is 100 µm. 
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The SEM images were used for cell morphology analysis as summarized in Figure 7-

5 for NHDF and in Figure 7-6 for HOB cultured on patterned substrates. In the case 

of NHDF, the cell elongation increased as indicated by arrows in Figure 7-5 (A), (B) 

and (C). In addition filopodia extended mostly within the channels and edge without 

going to the Al/Al2O3 nanowires, as indicated by arrows in the Figure 7-5 (D), (E) and 

(F). Moreover NHDF was well spread and flattened on the channels similar to them 

on smooth surfaces, as seen on the STS316L. The cell protrusions extended in 

parallel direction to the channels remained longer than those in orthogonal direction 

to the channels. It seems that cells use filopodia for spatial sensing in their movement 

around the environment as it was frequently observed that the filopodia extended 

along the channels. Filopodia is a cellular tool to explore the environment. NHDF and 

HOB are migrating cells. Before they migrate, they explore the environment with the 

filopodia. If the environment is good, the cell migrates. Otherwise the filopodia are 

retracted 127. Thus NHDF elongated and aligned along the channels not spread on 

the Al/Al2O3 nanowires as indicated by the red arrow in Figure 7-5 (F) since NHDF 

showed bad adhesion the Al/Al2O3 nanowires as shown in Figure 7-2 (D).  
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Figure 7-5. SEM images of NHDF cultured on DLW patterned substrates at 
period of 50 µm (A and D), 100 µm (B and E) and 200 µm (C and F). Arrows in A, 
B and C indicate aligned cells on the channels. White arrows show filopodia 

extension in D, E and F and red arrow in F indicates a cell on non treated 
Al/Al2O3 nanowires.  

 

Contrast to NHDF, HOB shows better adhesion property on both as -deposited 

(Figure 7-2 (B)) and patterned Al/Al2O3 nanowires (Figure 7-6 (A), (B) and (C)) than 

NHDF. The higher degree of cell alignment was shown on patterned substrates at 

period of 50 µm (Figure 7-6 (A)). Indeed HOB was frequently observed to cross over 

to the surface in Figure 7-6 (B) and (C). On the other hand, the cells on Al/Al2O3 

nanowires show elongated morphology (red arrows in Figure 7-6 (A), (B) and (C)) 

when they were near to the neighboring cells which were adhered on the channels 

(white arrows in Figure 7-6 (A), (B) and (C)), and then aligned also in the parallel 
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direction. It can be seen clearly in Figure 7-6 (A) and it may explain why cells show 

better elongation and alignment on narrow patterned substrate rather than larger 

periodic patterned substrate. The cells on the channels mostly show cylindrical 

morphology with less filopodia. However some filopodia extended to the edge rather 

than the surface of the channel, as indicated by arrows in the Figures 7-6 (E). In this 

case cells were shown flattend as similar as NHDF. It indicates clearly filopodia 

extension is the most predominant key to define cell morphologies. 

 

 

Figure 7-6. SEM images of HOB cultured on DLW patterned substrates at 

period of 50 µm (A and D), 100 µm (B and E) and 200 µm (C and F). White 
arrows indicate cell on the channel and red arrows show cell on non treated 

Al/Al2O3 nanowires in A, B and C. Arrows in E show filopodia extension to the 
edge of the channel. 
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In conclusion, HOB and NHDF showed converse reaction on Al/Al2O3 nanowires 

although physical and chemical properties were identical. Both cell types showed 

flattened morphology on smooth surfaces. NHDF were more sensitive, whereas HOB 

were still able to adhere on Al/Al2O3 nanowires. For the investigation of cell guidance, 

as summarized in Figure 7-7, NHDF exhibited an enhanced elongation and a higher 

degree of alignment on all patterned substrates although the cell number was 

significantly decreased. The improvement of the NHDF adhesion and alignment were 

most prominent on laser induced channels since they do not adhere well on Al/Al2O3 

nanowires.  

HOB showed better cell elongation on the substrates with 50 µm periodic channels. 

On the other hand, HOB were not performing same elongation and alignment 

behavior on both 100 µm and 200 µm period as shown in Figure 7-7 (B) and (C). This 

phenomenon could be explained by highlighting the difference of size between cells 

and structures. It is known that the size of HOB ranges between 10 to 30 µm in 

diameter 128. The distances between the produced channels were in the range of 50 

µm, 100µm and 200µm. The width of the laser created channel was around 20 µm in 

all substrates. In the case of 50 µm periodicity, cells have higher tendency to contact 

with the channels compared to other substrates. Therefore more cell alignment could 

be observed.  

In contrast, HOB are exposed more to Al/Al2O3 nanowires than to the channels in the 

case of 100 and 200 µm periodicity. Therefore cell alignment is less observed since 

good adhesion and proliferation of HOB on Al/Al2O3 nanowires was shown before. It 

could be concluded that the HOB cell alignment is reversibly proportional to the 

periodic channel distance. It decreases while the distance of the channels on the 

substrate increases.  
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Figure 7-7. Fluorescence images overlapped on SEM figures of HOB (A, B and 
C) and NHDF (D, E and F) on DLW patterned substrates at period of 50 µm, 100 
µm and 200 µm, respectively. Scale bars represent 100 µm. 
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8.  Future aspect 
 

As a preliminary study, single neuron cells (PC12) were cultured on DLW patterned 

substrates. PC12 cells were incubated in RPMI-Medium (Sigma-Aldrich) with 10% 

(Fetal Calf Serum) FCS and 100ng/mL (Neuronal Growth Factor) NGF for 14 days, 

medium was changed every day. 20,000 cells per substrate were seeded. For 

scanning electron microscopy analysis, the samples were fixed with 4 % 

formaldehyde (FA) + 1 % Glutaraldehyd in phosphate buffered saline (PBS) for two 

hours, washed three times with PBS and dehydrated with an increasing alcohol 

concentration (50 %, 70 %, 80 %, 90 %, 2x 100 %). The cell culture wells were 

flooded with Hexamethyldisilazane (HMDS, Sigma-Aldrich, 379212) for 5 min and 

kept under the exhaust hood for out-gasing and dried in one day. The samples were 

then coated with gold-palladium (Polaron, Sputter Coater) for following SEM analysis.  

 

The PC12 neuron cells were adhered only on the channels and axons were 

connected to other neuron cells (cell-cell interaction) as shown in Figure 8-1. PC12 

cells were approximately rounded while human osteoblast cells (HOB) and normal 

human dermal fibroblasts (NHDF) were either elongated or aligned on the channels. 

It gives another idea concerning topography effect of the surfaces in terms of  

geometry. It means that cell alignment might be affected geographically due to the 

depth of the channel regardless of surface roughness.  

 

 

Figure 8-1. Single neuronal cells on DLW treated substrate. (A) Overview and 

(B) magnified region of interest. Arrows indicate axonal extension. 
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In contrast, when HOB and NHDF were cultured on LIP treated substrates (Figure 8-

2), any alignment of cells was observed following the patterns in comparison to 

previous results of DRGs where a strong alignment of neural fibers and glial cells 

was observed on LIP treated Al/Al2O3 nanowires (see Figure 5-7). There was a direct 

elongation of cells which were perfectly aligned along the linear patterns induced by 

LIP treatment of Al/Al2O3 nanowires. It reveals clearly that as cellular responses to 

physical cues may vary based on the cell type. Since these experiments show early 

stage of cell surface interaction, a longer cell culture period and co-culture systems 

with various cells will be desired for further investigations. 

 

 
Figure 8-2. HOB and NHDF on LIP treated substrate. (A) HOB and (B) NHDF. 
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9.  Conclusions 
 

In Part 1, chemical vapor deposition (CVD) of the single source precursor [tBuOAlH2]2 

were performed in parabolic flights which induce gravity (G) variation from 0.04 to 1.8 

G. Two temperature ranges (at 400°C and at 600°C) were applied during the 

parabolic flights while other deposition parameters were kept constant. In general, 

only spherical nanoparticles were observed at 400°C and the formation of core/shell 

nanowires was observed at 600°C on the substrate surface. It reveals that there is no 

gravity impact on the chemical reaction compare to previous experiments on earth 

condition. On the other hand, the growth of both spherical particles and nanowires 

from micro to hyper gravity showed clearly different morphologies. The spherical 

particles showed regular distribution and nanowires were grown linearly without 

bundle formation at micro gravity condition. At increased gravity levels, the 

nanoparticles formed large clusters in a fractal manner and the nanowires showed 

bundle formation due to a dominant gravity force over the thermal creep.  

 

In Part 2, Al/Al2O3 nanowires were deposited on glass and metal substrates by CVD 

of a single source precursor (SSP) [tBuOAlH2]2. Moreover, methods for creating 

nano/micro structures by direct laser writing (DLW) and laser interference patterning 

(LIP) and applications related to cell surface interaction are introduced with a wide 

range of cell types while keeping the identical surface chemical state . The water 

contact angle on the laser treated surfaces was increased by only altering the 

surfaces topography without any chemical modification and also static anisotropic 

wetting behavior on linear periodic patterned surfaces was observed.  

In contrast to current literature, substrates were not pre-coated with any organic 

substances. This is an ideal way to study the direct effec t of the topography on 

cellular behavior. Axons and glial cells of dorsal root ganglia (DRG) neurons grew 

along the direction of LIP treated Al/Al2O3 nanowires while they showed random 

outgrowth on non-patterned Al/Al2O3 nanowires. Especially 2µm periodic patterns 

showed highest cell alignment rate. Human osteoblast cells (HOB) and normal 

human dermal fibroblasts (NHDF) showed a controverse behavior on Al/Al2O3 

nanowires. NHDF exhibited an enhanced elongation and a higher degree of 

alignment on all DLW patterned substrates. The improvement of the cell adhesion 

and alignment were most prominent on laser induced channels for both cell types. 
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Contrast to NHDF, HOB shows better adhesion property on both as -deposited and 

patterned Al/Al2O3 nanowires than NHDF. The higher degree of cell alignment was 

shown on patterned substrates at period of 50 µm. Nevertheless HOB did not well 

spread on Al/Al2O3 nanowires, they showed similar cell density comparable to the 

result on smooth surfaces. Since this experiment shows early stage of cell surface 

interaction, further investigation is needed. Regardless of general behavior of each 

cell, DLW induced channel lead cell guidance on the channels while LIP treated 

surfaces affected mostly neuronal fibers and glial cells. These results demonstrate 

that the topography effect on the cell guidance and the cell adhesion is independent 

from the surface chemistry. Cell adhesion, orientation and migration were strongly 

influenced not only by surface topographies in the micrometer and nanometer range 

but also cell type dependent. It can be suggested that multiscale texturing of surfaces 

will provide predominant impact on the growth and adhesion of cells on surfaces for 

implants application or other medical devices.  
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