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ABSTRACT

In almost all applications of automatic speech recognition,
especially in spontaneous speech tasks, the recognizer voca-
bulary cannot cover all occurring words. There is always
a significant amount of out-of-vocabulary words even when
the vocabulary size is very large. In this paper we present a
new approach for the integration of out-of-vocabulary words
into statistical language models. We use category informa-
tion for all words in the training corpus to define a function
that gives an approximation of the out-of-vocabulary word
emission probability for each word category. This informa-
tion 1s integrated into the language models. Although we
use a simple acoustic model for out-of-vocabulary words, we
achieve a 6% reduction of word error rate on spontaneous
speech data with about 5% out-of-vocabulary rate.

1. INTRODUCTION

In almost all speech recognition applications out-of-
vocabulary (OOV) words pose an important problem. In
real time dictation applications, the user can control via the
screen if a word was misrecognized. S/he can replace it with
the correct word or extend the lexicon with the unknown
word. In other applications like information retrieval over
the telephone the user might not even know that the system
misrecognized because of an OOV word. So if a user asks our
train timetable inquiry system [3] “I want to go from Sussex”
and Sussexis not in the lexicon, the system might recognize
I want to go at six and it might respond with “You want to
leave at six o’clock. Where do you want to go?’. The user
does not know, what the system understood and might react
unpredictably. In addition to leading to a recognition error
for itself, the OOV word often causes additional errors for
the words that follow directly [11].

Thus it seems desirable to have a filler model that covers
OOV words during the recognition process. Obviously, this
is not an easy task: The filler model should in the ideal case
cover all possible OOV words, which, by their nature, can-
not be predicted in advance. Besides, it should not cover
the words in the lexicon to avoid false alarms. The acoustic
modeling of such filler models has been subject of several

recent publications, mostly in the context of word-spotting
applications [9, 8]. But obviously, language model informa-
tion 1s similarly important to recognition of OOV words. For
example, the probability of an OOV word following is com-
paratively high after the word sequence “Hello, my name
ts”. The straightforward approach of substituting all OOV
words in the language model training corpus by the label 00V
before training an n-gram model has two basic drawbacks:

e The training corpus is usually taken into account when
the vocabulary of a word recognizer in a specific appli-
cation is determined. Conventionally, almost all words
(except for word fragments and mispronounced words)
in the training corpus are added to the vocabulary for
optimal recognition performance. This leads to a dra-
stic mismatch in the frequency of OOV words in the
training corpus and in independent test sets. A solu-
tion to this problem called Iterative Substitution has
been proposed in [5].

e A single 00V label for all OOV words cannot incorpo-
rate much language model information, because it has
to cover fundamentally different classes of OOV words
such as word fragments and proper names.

In this paper, we propose a solution to the problem of buil-
ding language models for recognition of OOV words that is
based on a system of word categories, which may be eit-
her constructed manually or automatically. We estimate
emission probabilities of OOV words for each word category,
which even allows us to provide category information on the
OOV word that may be used by a parser. The resulting
language model can easily be transformed into a word based
model if necessary. In section 2 and 3 we describe the corpus
based vocabulary design which is used in many applicati-
ons, and the basic idea of category based n-gram language
models, which build the framework for our approach. In
section 4 we explain our method of integrating OOV words
into a category based language model. In section 5 we show
how we model OOV words on the acoustic level and present
first results with the approach. In the last section we will
conclude the paper with some remarks on future work.



2. CORPUS-BASED VOCABULARY
DESIGN

A fundamental problem of designing word recognizers for all
practical applications is the definition of an appropriate vo-
cabulary. It should cover as much of future user utterances
as possible. At the same time, it should not contain unne-
cessary words because they may lead to recognition errors,
and computation time increases with growing vocabulary.
For a detailed discussion of optimizing recognizer vocabu-
lary see [11].

What system designers have to do before defining a vocabu-
lary is to predict future user utterances as good as possible.
The best way of predicting future user behavior is the obser-
vation of real users in the desired application. This is why
multi-user speech recognition systems are often enhanced in
a bootstrap procedure: The first version of the system con-
tains a rather small vocabulary that may be based on wizard-
of-oz experiments (e.g. [7]). The vocabulary may have been
enhanced by an expert through adding a certain amount of
words that seem useful for the application, e.g. completion
of word categories or through adding inflections of observed
words. Recognizer performance will certainly not be optimal
in this state, because only little domain specific training data
could be used, and because the out-of-vocabulary rate is rat-
her high. Thus, it will be useful to record all user utterances
to increase the amount of training data. After running the
system for a certain time, the user utterances collected by
the system can be transcribed. The vocabulary is now incre-
ased by those words in the corpus that seem useful for the
application (again possibly modified by an expert). After re-
training the system, the recognition performance should now
be better than that of the previous version.

This gives us the following situation: We have a vocabulary
View that was defined after the training corpus was obser-
ved and that will be used for our recognizer, and a basic
vocabulary Veasic € Vigw that was defined without taking
the training corpus of our language model into account. Any
words that may have been in previous recognizer vocabula-
ries that are not in Vygw may be ignored. The vocabulary
Vbasic may also be empty, e.g. if the training corpus is
sufficiently large before the first version of the recognizer is
trained. This partition of the vocabulary will be essential for
estimating OOV word probabilities in section 4.

Before we show how we use this information for calculating
OOV word probabilities of word categories, we summarize
some of the basic ideas of category based language models
in the next section.

3. CATEGORY-BASED LANGUAGE
MODELS

Category based n-gram models are a type of stochastic
language model where words are pooled in categories or
word classes. This can be done manually under linguistic

aspects [2], or automatically (e.g. [10, 1, 4]). For the ap-
proach proposed in this paper we assume a disjoint category
system. Each word w; of a word sequence w = wiwaz ... wn,
then belongs to a unique category ¢; = c(w;), and the con-
ditional probabilities of a category-based n-gram are written
as a product of the word membership score and a category
n-gram probability.

Plw) =

)P(wi]er)-

P(C1
JI Pleil cimntr - cica) - Plwi ] ei)
=2

n—1

This type of language model can easily be transformed into
a word based n-gram language model, e.g. for a trigram
model:

P(wluv) = Pe(w)]c(we(v))- P (wle(w))

Transition probabilities P(cy, | ¢1 ... cn—1) between word ca-
tegories can be estimated in the same way they are estimated
for word based n-gram models: A maximum likelihood (ML)
estimator

#(c1...cn)
#(C1 e Cn_1)

(where the function # counts the frequency of a given cate-

ﬁ(cn|C1...Cn_1) =

gory sequence in the training corpus) is smoothed using sui-
table discounting, backing-off or interpolation strategies [12].
An estimation P(w | ¢) of the word emission probabilities is
obtained by smoothing the ML estimator JS(w | ¢) that is
calculated by dividing the frequency #(w) of a word w in
the training corpus by the frequency of all words v that are
in the same category as w:

#(w)
Z{v|c(v)=c(w)} #(U)

Our approach of estimating OOV probabilities does not as-

P(w|c) =

sume any specific smoothing techniques. We do not reesti-
mate the category transition probabilities, and for simplicity
we reduce the smoothed word emission probabilities P(w | ¢)
linearly by a factor (1 — JS(OOV | ¢)) where JS(OOV | ¢) is
an estimation of the OOV probability in the word category
¢*. In the following section we will explain how we estimate

o~

P(OOV | ¢).

4. ESTIMATION OF OOV
PROBABILITIES

We will motivate our approach with the following example:
Assume a manually constructed word category CITY, and
a basic vocabulary Viasic (see section 2) that contains 500
city names. In the training corpus we have a total of 1000

1 More sophisticated methods of reestimating ernAission probabi-
lities seem possible. Especially for large values of P(OOV | ¢) the
OOV probability mass should be taken mainly from those words
with few observations in the training corpus.
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Figure 1: Estimation of the current OOV rate for the
EVAR-system.

occurrences of a word in category CITY. Fifty of these obser-
vations are city names that are not in Vsasic, each of which
appears once. We add the fifty new city names to the voca-
bulary Vyew and calculate estimates P(w | CITY) for every
word w in category CITY. Obviously, it would be useful to
take into account that actually 5% of our CITY-observations
were OOV-words, and we have no reason to believe that this
probability will be much lower for future test samples. But
traditional methods of estimating language model probabili-
ties ignore this, and the resulting emission probabilities for
the 550 city names in Vygw will sum up to 1.

We will now define a function that enables us to estimate the
total OOV probability, or the OOV probability for arbitrary
word categories. We will first define the framework for esti-
mating the total OOV probability: Let w; be the 1-th word
in the training corpus (corpus size t) and

Li= [ J{ws}

the set of all words that have been observed up to the i-th
word of the training corpus. We now define the vocabulary V;
that we would have chosen if we had redefined our vocabulary
after only observing the first ¢ words of the training corpus.
It would have contained all words of the basic vocabulary
Veasic, and, additionally, all words that have been observed
up to the ¢-th word of the training corpus that we integrated
into Vagw:

‘/i = VBASIC U (VNEW N Li)

This enables us to count observations of words that would
have been out of vocabulary if we had redefined our vocabu-
lary after each observed word:

N 1, ifw; ¢ Viy
i = {0, else
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Figure 2: Estimation of the current OOV word probability
for word category CITY.

If we now construct a linear approximation fin alocal neigh-
borhood of 1, its slope gives us a good approximation of the
OOV rate that corresponds to the vocabulary V;. For ¢ = ¢,
we have an approximation of the expected OOV rate for
Vaew. The neighborhood should be large enough to be ro-
bust to local fluctuations of the OOV rate. On the other
hand, it should not be too large to capture long term chan-
ges of the OOV rate. These can be due to the increasing
vocabulary size, but also to changes in user behavior. Fi-
gure 1 shows the function g for the EVAR train timetable
inquiry corpus (see section 5 for details). Although the vo-
cabulary size increases from 1110 (Vgasic) to 1558 (View),
the OOV rate gets even higher. The reason for this is that
in the beginning the users were typically friends of the sy-
stem designers and were aware of the restricted capabilities
of our system. When the telephone number of our system
circulated via newspapers, the amount of users with very
little knowledge on automatic speech recognition increased.
The figure also shows a linear approximation of the part of
g that corresponds to the more recent user utterances. Its
slope 0.035 gives an estimation of the OOV rate we should
expect when using Vygw in the current version of our system

(3.5%).

We can now use the same methods for estimating analogous
functions that correspond to each category ¢ of our language
model.
for each category, where w; then gives us the i-th occurrence
of a word from category ¢ in the training corpus. Figure 2
shows the function g on the same corpus for word category
CITY, which indicates a current OOV probability of about
2.4%.

The same measures as described above are defined

For most of our manually constructed word categories the
OOV probability is 0, because they describe a finite set of
words. We have 5 word categories that are practically un-
limited for our domain (e.g. REGION, SURNAME). Ad-
ditionally we define categories for rare words that are not
in other categories (OOV probability 73%) and for garbage
(e.g. word fragments, OOV probability 100%).



5. EXPERIMENTS AND RESULTS

We used a SCHMM two-pass recognizer (Mel-cepstrum-+A-
features, 250 codebook classes, bigram-+polygram language
model) for the experiments described in this paper [6]. The
acoustic model is rather simple: It is a ’flat’ model that con-
sists of a fixed number of HMM states with equal probability
density functions. The number of HMM states was determi-
ned empirically on an independent validation sample. The
probability density function is obtained by averaging over all
frames in our training data that do not belong to silence- or
noise-periods. The number of recognized OOV-words was
tuned on the validation sample with a parameter that in-
creases the acoustic score of the OOV-model HMM-states in
each time frame.

Experiments were performed on the EVAR corpus of spon-
taneous speech data collected by our spoken dialog sy-
stem [3, 13] which is able to answer inquiries about German
Intercity train connections. The data were divided into a
training sample, a validation sample and a test sample (Ta-
ble 1). We used our initial Vaasic vocabulary (1110 words)
for the experiments to have a higher number of OOV words in
the test sample. Using this vocabulary, the OOV rate in the
test sample is 5.3%. The OOV probabilities were estimated
as described in the previous section. For calculation of word
error rates we substituted all occurrences of OOV words in
the reference by 00V, which is the symbol also produced by
the word recognizer for OOV words.

Without OOV models, the word error rate is 22.9%; with
OOV models, it is 21.49%. This is a 6% word error rate
reduction, although the OOV detection rate of about 15% is
rather poor, and the false alarm rate of about 75% is very
high. This has no negative effect on the word error rate
because most of the false alarms are due to words that would
have been misrecognized in any case.

6. CONCLUSION & FUTURE WORK

The method presented in this paper allows the estimation of
language models for OOV words based on an arbitrary sy-
stem of word categories. Although we used a rather primitive
acoustic model for OOV words, we achieved a 6% reduction
of word error rate on spontaneous speech data. Further im-
provements will be possible when enhanced acoustic models
are used, e.g. phone- or syllable-grammars. We will also
investigate more sophisticated techniques of taking into ac-
count OOV probabilities when word emission probabilities
are estimated.

| sample | phone calls | utter. | words | diff. words |
training 804 7732 | 27852 1112
validation 54 441 1577 273
test 234 2383 8346 580

Table 1: Overview of training-, validation-, and test sample
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