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Abstract

The paper describes a system which uses packed parser output directly to
build semantic representations. More specifically, the system takes as input
Packed Shared Forests in the sense of Tomita [Tomita, 1985] and produces
packed Underspecified Discourse Representation Structures. The algorithm
visits every node in the Parse Forest only a bounded number of times, so that
a significant increase in efficiency is registered for ambiguous sentences.

1 Introduction

One of the most interesting problems comes about by the tendency of natural lan-
guage discourse to be ambiguous and open to a wide variety of interpretations.
Generating representations for all the interpretations is not feasible in view of the
strict computational bounds imposed on NLP systems. Instead, two other routes
have been pursued: (1) the integration of further disambiguating knowledge and
heuristics into the system or (2) the generation of a single semantic representation
that summarizes all the interpretations in the hope that the application task will
force a distinction between the interpretations only in few cases. Such a summary
representation is called underspecified if a procedure is given with it to derive a set
of real semantic representations from it. By now, several techniques are known to
underspecify quantifier scope ambiguities [Alshawi, 1992], [Reyle, 1993]. In this pa-
per Discourse Representation Structures [Kamp and Reyle, 1993] are employed as
underlying semantic representations. For underspecification with respect to scope
ambiguities the present approach makes use of Underspecified Discourse Repre-
sentation Theory [Reyle, 1993]. Another strand of research has looked at compact
representations for parse outputs [Earley, 1970], [Tomita, 1985] and efficient pars-
ing algorithms to deliver such representations. Unfortunately, advances made in this
area did not have impact on semantic construction. It was still necessary to first un-
pack the compact parsing representation and derive the individual parse trees from
it before going about generating semantic representations. So in this area another
application for semantic underspecification is lurking.

Several approaches to underspecification are conceivable. (1) Operational Un-
derspecification: Construction operations that involve arbitrary choices are delayed
and carried out only on demand [Alshawi, 1992], [Pinkal, 1995]. (2) Representational

1 This work was funded by the German Federal Ministry of Education, Science, Research and
Technology (BMBF) in the framework of the Verbmobil Project under Grant 01 IV 101 U. Many
thanks are due to M. Dorna, J. Dorre, M. Emele, E. Konig-Baumer, C. Rohrer, C.J. Rupp, and
C. Vogel.
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Underspecification: The ambiguities are represented (explicitly or implicitly) in a
formalism. A resolution procedure derives the full-fledged semantic representations.
This paper opts for the second approach (for motivation see chapter 7). between
the parser and the semantic construction component, too.

e Parse forests/charts [Alshawi, 1992].
e Underspecified “trees” with abstract dominance information [Pinkal, 1995].

e Fully specified parse trees [Egg and Lebeth, 1995]. The syntactic ambiguities
are obtained by re-ambiguation in the semantic component.

Our choice are parse forests since there are well-known methods of construction for
them and it is guaranteed that every syntactic ambiguity can be represented in this
way. Furthermore a wide range of existing parsing systems, e.g. [Block and Schachtl,
1992], produce packed representations of this kind.

2 Outline of the System

Let us begin with a rough sketch of the architecture of the system. The semantic
construction module works on parse forests and presupposes a semantic grammar
of a certain kind (see chapter 6). The semantic grammar must be correlated with
the syntactic grammar so that there is a one-to-one mapping between lexical entries
and rules.

nput string

!

Parser
using: Syntactic Grammar

parse forest
1
Semantic Construction Module
using: Semantic Grammar

1
packed UDRS

Inside the semantic construction module three processes are distinguished. They
are described in turn (see chapter 4 and 6).
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parse forest

!

| Tree naming

7

disambiguated parse forest
4
Semantic construction proper
using: Semantic Grammar

1
packed UDRS

!

| Determining unambiguous arguments

1
packed UDRS

3 Packed Shared Forests

In this section a formal description of packed shared forests in the sense of Tomita
[Tomita, 1985] is given.

Let a context-free grammar G be a quadruple < N, T, R, S > where N and T’
are finite disjoint sets of nonterminal symbols and terminal symbols, respectively,
R is a set of rules of the form A — a (A is a nonterminal and « a possibly empty
string of nonterminal or terminal symbols), S is a special nonterminal, called start
symbol. An ordered directed graph marked according to grammar G is a triple
< V,E,m > so that V is a finite set of vertices or nodes, E a finite set of edges
e of the form (vq, (va,...,v,)) (v; € V,n > 2, e starts at vy, vy is the predecessor
of ve,...,v,), m is the marking function which associates with each vertex a
terminal or nonterminal symbol or the special symbol €. m is restricted so that the
vertices on each edge are marked with the symbols of a rule in G, the empty string
being represented by the additional symbol €. A parse tree is an ordered directed
acyclic graph (DAG) satisfying the following constraints.

1. There is exactly one vertex without predecessors, called the top vertex or
root. The root is marked with the start symbol.

2. For every vertex there is at most one edge starting at the vertex. Vertices that
do not begin edges are called leaves, such that do are called inner nodes.

3. Every vertex except the root has exactly one predecessor.

A DAG satisfying the constraints (1-2) is called Shared Forest, a DAG only
satisfying (1) is a Packed Shared Forest or parse forest (see figure 1). A packed
shared forest for an input string o obeys the further constraint that there must be
at most one vertex for each grammar symbol and substring of . Thus, if o consists
of n words, there will be at most k * n? vertices in the parse forest for it (k being
constant). Parse forests can be efficiently constructed using conventional parsing
algorithms [Tomita, 1985], [Earley, 1970)].
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Figure 1: a parse forest with a tree reading d; : edges used in d; are shown as broken
lines

4 Determining Tree Readings from a Forest

A tree reading of forest F'is a tree in F' that contains the root and all leaves. Tree
readings are treated as objects. An edge is used in a tree reading if it is one of the
tree’s edges. Let us now define a disambiguated parse forest (DPF for short). A
DPF D is a quadruple < V, D, E',m > such that

e V and D are finite disjoint sets. V is the set of vertices and D is the set of
tree readings.

e E'is a finite set of edges of the form (v1, (v2,...,vn),{d1,...,dn}). The third
element is a set of tree readings (C D) and encodes the tree readings in which
the edge is used.

e m is a marking function from vertices to grammar symbols.

To derive a DPF from a parse forest every edge must be assigned a set of tree
readings. There is no simple way to determine from a parse forest the number of its
tree readings. So instead of postulating a fixed set of readings the present approach
uses pointers (implemented as Prolog variables) to refer to sets of tree readings.
Two operations disjoint union and multiplication are defined for these set pointers.
Both operations are monotonic in the sense that the pointers are not altered, their
value is only specified. Let s; be a set of tree readings.

e 51 U ss
The operator U differs from the set-theoretic notion of disjoint union in that
it is neither commutative nor associative. This is so because on the implemen-
tational level commutativity and associativity would necessitate an abstract
data type, thus a costly overhead.
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® S1 X S»
In general, s; and s» correspond to formulae involving atomic sets and U
operators: s; = s11 U ... U 81, and 83 = 597 U ... U s9,. The operation x

introduces m * n new atomic sets s;; and splits the former atomic sets such
that'Vz':l’SiSm:sli:sglU o Usl,and Vi1 < j < n:osy =
s’lj U...U s’mj. The sets s; and s are now equal modulo associativity and

commutativity. Consider the following example:

(0 0m0m)x (@ 0m) >
(510 52 U sa)=(s1, U 1) O (sh, U shy) U (s}, O sfy)
(Sll u Sb):(slla U Sl2a u SIBa) U (Sllb U Sl2b U Sgb)

We begin by associating a particular set pointer s; with the root vertex. s; refers
to the total set of tree readings of the forest since the root vertex figures in all trees
derivable from the forest. We then traverse the graph in top-down fashion applying
to each new vertex v the following procedure:

Let e; be the set of tree readings at edge i ending in v, and b; the set
of tree readings at edge j starting in v. Then the following actions must
be performed.

e Apply the procedure to all successors of v. This step yields for each
edge j starting in v and for each vertex u at the end of j a set of
tree readings b,
® bj =bjy x...x b, for each edge j starting in v
L] (b1 U U bn) X (61 U Uem)
If a vertex v has already been encountered the only action required is to connect the

edge information on v’s predecessor w with the edge information already present
on vertex v. In particular, the successors of v need not be checked again.

Let k£ be the edge over which the vertex v was reached from another
vertex w in the top-down traversal. Let ey, be the set of tree read-
ings determined for edge k at vertex w and ey, the set of tree readings
determined for the edge at vertex v.

® Cry X Ekuw

5 Packed Underspecified Discourse Representa-
tion Structures

In this section an extension to UDRSs [Reyle, 1993] to express referentially under-
specified semantic representations isp resented. First a definition of UDRSs is given.
A UDRS U is a quadruple < L, R,C, <> where L and R are disjoint finite sets of
labels and discourse referents, respectively. The order relation < forms a semilattice
over L with one-element [+. C is a set of conditions of the following form

o [:x, wherel € L,z € R.

e [:p(x1,...,z,), wherel € L, x1,...,2, € R, and p is an n-place predicate
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o [:l; = Iy, where [,l;,ls € L
e [:~ly, wherel,l; € L

e [:1; V Iy, wherel,l;,lo € L
o |1 <ly, wherely,l; € L

In UDRSs £ =L and R = R.

To get packed UDRSs the UDRS language is extended by adding reified contexts
(semantic readings) to it. The idea of using context variables to represent ambigu-
ous structures originally stems from the literature on constraint-based formalisms
[Dérre and Eisele, 1990]. A packed UDRS is a quintuple < L, R, D, C", <> where
L, R, < are the same as in UDRSs, D is a finite set of contexts which is disjoint
from L and R. C' is defined as in UDRSs except that (1) any condition may also
be prefixed by a context set, and (2) label arguments may not only be labels but
also functions from contexts to labels (£ = LU (D — L)), and the same holds for
discourse referents (R = RU (D — R)). If a function {A — 1, B — z3} replaces a
discourse referent in a packed UDRS, this intuitively means that the argument slot
is filled by z; in reading A and by z» in reading B. As an example for a packed
UDRS consider the following representation for I saw every man with a telescope.

lT )

anchor (i, speaker)

lo : see(er, i, x1)

I <lt

I3 <lt

I <ly

l3 : every(mlal57 l4)

I5 : man(x)

{A — lQ,B — l5} : wzth({A — 61,B — 2131},2132)
{A—) lQ,B b d l5} <l
le <lt

lg D)

lg : telescope(xa)

In the implementation contexts are represented by Prolog variables. In this way dis-
ambiguation is ensured to be monotonic?: A context d can be cancelled by grounding
the Prolog variable representing d to a specific atom “no”. The formalism also allows
any kind of partially disambiguated structures since the variables for the readings
do not interact.

In the above version of UDRS packing, disjuncts are reified. Another way to
represent referential ambiguities is to reify argument slots using additional variable
names (L and X below, not to be mistaken as discourse referents). Disjunctions are
then represented directly.

lT )
anchor (i, speaker)

2 Another way to see that the resolution procedure is monotonic is to assume a semi-lattice over
context sets with respect to the subset relation. Cancelling a context from a set makes it more
specific in the semi-lattice.
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lo : see(er, i, x1)

lo <lt

I3 <t

I <ly

l3 : every(mlal57 l4)
I5 : man(x)

L : with(X, z2)
L<lg

le <lt

lg D)

lg : telescope(zs)
(L:lg A X:€1) \Y (L:l5 AN X:Jil)

6 Building Semantic Representations

UDRS construction [Frank and Reyle, 1992], [Bos, 1995] is different from conven-
tional semantic construction in that embedding is not represented directly but by
means of labels. The only semantic composition operation is concatenation. In ad-
dition labels and discourse referents are matched as specified in the semantic part
of the grammar rules (the “semantic grammar”). In the semantic grammar every
nonterminal is assigned a list of arguments. For every operator (e.g. an NP) a lower
label and a series of upper labels must be given. The lower label points to material
which must be in the scope of the operator (e.g. the verb). The upper labels refer
to the minimal scope domain the operator must occur in. This domain differs for
indefinite NPs and quantifier NPs since these types of NPs are subject to different
island constraints (only indefinites can be raised over clause boundaries). Further-
more, the semantic grammar specifies the UDRS conditions introduced by lexical
items and rules and determines the arguments to be matched in rules and lexical
items. It also gives the direction of this matching by fixing in which lexical item an
argument originates (see last slot of lexical entries). If an argument originates in
an item (because it is e.g. its instance discourse referent or label) then the value of
this argument is unambigous for the item?®. In adjunction structures, the modified
constituent assigns and the modifier receives the shared discourse referent. Consider
the following example grammar?.

startsymbol(s/[_Event,_VerbL,Top,Top],
[Top] ). % originating argument

s/ [Event,VerbL,DomL,TopL] --->
np/ [X,VerbL,DomL, TopL],
vp/ [Event,X,VerbL,DomL, TopL] .

3 A similar train of thought lies behind the notion of “focus” proposed by Tomita [Tomita, 1985].
A “focus” in a rule is the constituent which gets assigned an argument from the “background”
constituents of the rule. In general this notion of focus must be relativised to individual arguments.
Constituent 1 can be focus with respect to argument ¢ while constituent 2 is focus for argument j
in a rule.

4The Prolog symbol leq represents the UDRS subordination relation <.
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vp/ [Event,X,VerbL,DomL,TopL] --->
vt/[Event,X,Y,VerbL,DomL],
np/[Y,VerbL,DomL,TopL] .

np/ [X,VerbL,DomL,TopL] --->
det/[X,NounL,VerbL ,DomL,TopL],
n/[X,NounL,DomL,TopL] .

lex(a, det/[X,Lab,VerbL, _DomL,TopL],
[ leq(VerbL,Lab),
leq(Lab,TopL),
Lab:X

1, [X]1 ). % originating argument

lex(every, det/[X,ResL,VerbL,DomL,_TopL],

[ leq(+Lab,DomL),
leq(VerbL,Scopel),
Lab:every(X,ResL,ScopeL)

1,

[X,Lab,Scopel] ).

lex(man, n/[X,Lab,_DomL,_TopL],
L Lab:man (X)
1,
[Lab] ).

lex(saw, vt/[Event,X,Y,Lab,DomL],
[ Lab:see(Event,X,Y),
leq(Lab,DomL)
1,
[Lab,Event] ).

Let us turn now to the semantic construction component. The tree readings of
the DPF correspond to the contexts of the packed UDRS. The motivation behind
this layout is that in most cases syntactic ambiguity has some impact on the se-
mantic readings®. The construction algorithm traverses the DPF and assigns to each
vertex the argument list associated with its category in the semantic grammar. The
arguments on this list are not arguments proper as they would be if only parse trees
were considered, but functions from contexts to arguments proper. These functions
are total only for the root and the leaves, for inner nodes v they are restricted to
the union D; of the context sets at the edges starting at v. A predicate matchl
matches arguments proper as given in the lexical entries and the startsymbol dec-
laration onto functions as used in the rules.

Let D; be a context set {d,...,d,}, let LexArg be an argument as
provided by a lexical item or startsymbol declaration I, let Arg be an
argument as occurring attached to a nonterminal on the right-hand side
of a grammar rule.

51f several tree readings correspond to a single context (semantic reading) this is recognised in
the last step (determining unambiguous arguments) where the tree readings are merged.



Semantic Construction from Parse Forests

Then the predicate match1 unifies LexArg with Arg if LexArg does not
originate in I. If LexArg does, Arg is unified with the function {d; —
LexArg,...,d, — LexArg}.

Let us assume a bottom-up traversal of the parse forest and let e be the edge
from v to one of its successors w. Then the arguments already present® at w must
be matched with the arguments predicted for w by the semantic rule corresponding
to e (predicate match2). Let Dy be the context set assigned to e. Then only the
argument values of the contexts in D- are unified. In this way it is guaranteed that
argument matching is done as it would be done in the underlying trees: The contexts
clearly separate the information flow.

Let D5 be the context set {dy,...,d,} at e, let UpperArg be an argument
as provided by the semantic rule corresponding to edge e, let LowerArg
be an argument as attached to the vertex w.

Then the predicate match2 unifies UpperArg with the restriction of
the function LowerArg to the contexts in Dy {dy — v1,...,dp, = vy} (2
subset of LowerArg).

In the final step the packed UDRS is traversed and functions where all contexts
point to a single value are replaced by this value.

7 Comparison with Other Approaches

This section discusses two evaluation criteria for approaches to semantic under-
specification. The present proposal is measured against the criteria, and so are the
Minimal Recursion Semantics approach [Egg and Lebeth, 1995], the Radical Un-
derspecification approach [Pinkal, 1995], and the Core Language Engine approach
[Alshawi, 1992]. The first criterion is coverage. Several types of syntactic ambiguities
can be distinguished.

e adjunction ambiguities (arising from attachment of PPs, adjectives, adverbial
subclauses, and other modifiers)

e coordination ambiguities
e f-role assignment ambiguities (arising from scrambling)

e ambiguities arising from multi-part-of-speech words (A subcase of this type
of ambiguity is the treatment of unknown input words.)

The MRS approach is restricted to adjunction ambiguities, while the other ap-
proaches are applicable to all the kinds of ambiguities mentioned. A drawback of
the MRS approach might be that it generates semantic readings which are not li-
censed by the syntactic structure. To give an example consider the sentence I saw a
man in the apartment with a telescope. MRS produces a spurious reading in which
the PP with a telescope adjoins to the NP a man while the PP in the apartment
modifies the full sentence. Remember that MRS does not use a parse forest as in-
put structure but an arbitrary parse tree, i.e. one specific syntactic reading. MRS

6The bottom-up assumption makes sure that vertex w has been treated.
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PPs | Readings | U-Nodes U-Time (per reading) S-Time (per reading)
n=1 2 16 75 msec  (37.5 msec) 15 msec (7.5 msec)
n=2 5 28 180 msec  (36.0 msec) 70 msec  (14.0 msec)
n=3 14 43 430 msec (30.7 msec) 355 msec  (25.4 msec)
n=4 42 61 1115 msec  (26.5 msec) 2225 msec  (53.0 msec)
n=>5 132 82 3145 msec  (23.8 msec) 16895 msec (128.0 msec)
n=>6 429 106 | 10505 msec (24.5 msec) | 176930 msec (412.4 msec)
n="7 1430 133 | 32195 msec (22.5 msec) | 441630 msec (308.8 msec)
n==8 4862 163 | 131125 msec (27.0 msec) | 4331120 msec (890.8 msec)

Table 1: Result of Experiment

re-ambiguates the parse tree only afterwards within semantic construction. At this
point information about positions in the input string is lost.

Another test is the usefulness of the representation for further processing. Such
processes are

e disambiguation by sort hierarchies
e theorem proving
e transfer and generation

All these processes can successfully handle scopally underspecified structures (for
sortal disambiguation and transfer see the Core Language Engine [Alshawi, 1992],
for theorem proving see the Underspecified DRS formalism [Reyle, 1993]). In the
Core Language Engine approach to syntactic underspecification the representation
must be unpacked to perform disambiguation by sorts. This seems to be true for any
approach relying on delay of semantic construction operations: In order to apply the
sortal restrictions of, e.g., a verb to one of its argument discourse referents it must
be known which discourse referents could possibly fill the argument slot. Moore and
Alshawi [Alshawi, 1992] explain their reluctance to apply sort restrictions already in
the packed structure with the maintenance overhead in associating semantic records
with vertices of the forest. In the packed UDRS approach the problem is handled by
explicitly enumerating all possible readings. Then, the maintenance effort is reduced
to the effort of extrapolating the tree readings from the parse forest. None of the
compared approaches makes any claims about theorem proving and transfer. In the
packed UDRS approach it is conceivable to delay actual disambiguation as long as
possible: Apart from the potential representation of referential ambiguities by func-
tions packed UDRSs look exactly like UDRSs. So if only referentially unambiguous
conditions must be consulted in a proof, a UDRS theorem prover may be used.

8 [Efficiency

This section reports on an experiment in which the efficiency of the proposed un-
derspecified construction mechanism was measured against the cost of generating
all UDRSs separately. Table 1 compares the time behaviour of constructing one
underspecified structure (U-Time) with the time needed for constructing of the

10




Semantic Construction from Parse Forests

whole bunch of specified structures (S-Time). The experiment was conducted on a
SPARCstation 20 using input sentences of the form I saw a man (with a telescope)™.

Visibly the time needed per reading remains approximately constant in the con-
struction of the underspecified representation whereas it grows sharply when the
ambiguities are enumerated.
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