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Abstract 

We present the Narrator, an NLG component used 
for the generation of narratives in a digital story­
telling system. We describe how the Narrator works 
and show some examples of generated stories. 

1 Introduction 

The automatic generation of narratives is still a 
largely unexplored field in NLG. Some exceptions 
are STORyBOOK (Callaway, 2000), a narrative 
prose generation system that can generate many dif­
ferent retellings of the same story (Little Red Rid­
ing Hood) and the architecture for a "narratologi­
cally enhanced NLG system" proposed by Lonneker 
(2005). An NLG system that is actually used in a 
digital storytelling application is PRINCE (Hervas 
et a!., 2006). 

Here we present the Narrator: the NLG compo­
nent of the Virtual Storyteller, a multi-agent system 
that automatically creates fairy tales based on the 
actions of autonomous character agents in a sim­
ulated story world, where they can perfonn goal­
oriented actions and experience emotions (Theune 
et a!., 2004). The emerging story is captured in a 
fonnal representation and fed to the Narrator, which 
expresses it in natural language (in our case, Dutch). 
In the rest of this paper, we give a brief overview 
of the subsequent tasks the Narrator carries out to 
generate a fluent, well-fonned narrative. We focus 
on the generation of referring expressions; a more 
detailed description of the entire generation process 
can be found in Theune et a!. (2007). For more in­
formation concerning various design decisions see 
Theune et a!. (2006). 

• Feikje Hielkema carried out this work while she was at the 
University of Groningen, The Netherlands. 
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2 Document planning 

The input for the Narrator is a Fabula (Swartjes and 
Theune, 2006): a story representation in the fonn 
of a causal network linking the following plot ele­
ments: actions, events, perceptions, goals, goal out­
comes, and characters' "internal elements" such as 
emotions and beliefs. Possible links between these 
elements are motivation, enablement, mental and 
physical cause relations. Also, each plot element is 
associated with a time stamp (in terms of time steps 
in the story world). The (simpUfied) example Fab­
ula in Figure 1 represents a very short story about 
a dwarf who is hungry and believes there is an ap­
ple in the house, leading to the goal to eat the apple. 
To achieve this, the dwarf carries out a simple plan: 
taking the apple and then eating it, which leads to 
the perception and the belief that the apple has been 
eaten, signifying a positive goal outcome. 

As a first step in turning a Fabula into a Document 
Plan, all infonnation that is not relevant for narra­
tion must be pruned away. An example is the stan­
dard perception-beUef-positive outcome chain that 
follows a successful action: for the narrative, it is 
sufficient to mention only that the action was carried 
out. Currently, this process is not yet implemented 
in the Narrator; however, we assume that in the ex­
ample Fabula, the nodes following the 'Eat Apple' 
action will be pruned away. The next step is to con­
vert the pruned Fabula to a binary tree, replacing the 
causal links with appropriate rhetorical relations be­
tween plot elements. The basic rhetorical relations 
used in the Narrator are Cause, Contrast, Tempo­
ral and Additive, with more specific subclasses such 
as Purpose and Elaboration. When mapping the 
links in the Fabula to rhetorical relations, consecu­
tive steps of a plan are connected using a Temporal 



IE = Intemal ElC=l11ent, G = Goo1. A = Ad lOn. P = Perception. 0 = OlltCOIllt:, 
e = enablement, III = l11otlva1l011, \{' = psychologIcal cause, <D = physical 
calL~e 

hungry 

take apple 

eat apple apple eaten apple eaten positive! 
successfully 

Temporal·once 

ElabOratiO~ 
Cause - volitional 

~ 
Cause - volltionlll Temporal-lifter 

Figure 1: Fabula (left) and corresponding Document Plan (right) . 

relation. Motivation and psychological cause rela­
tions are mapped to Volitional Cause relations, and 
enablement and physical cause relations are mapped 
to Non-volitional Cause relations. Additive is the 
most general relation. It is used if two plot elements 
cause another plot element together, and more in 
general to connect two plot elements that do not 
have a more specific relation holding between them. 
We are currently investigating the automatic deriva­
tion of Contrast relations. The final step is to extend 
the Document Plan with a setting and background 
information about characters and objects. The ex­
ample Document Plan in Figure 1 shows these ex­
tensions in grey: a Setting element introducing the 
protagonist, and an element specifying the name of 
the protagonist, connected via an Elaboration rela­
tion. They are in a Temporal-once (Once upon a 
time ... ) relation to the rest of the plot; this relation 
was added specifically for the fairy tale domain. 

3 Sentence planning, lexicalisation and 
syntactic aggregation 

Next, the leaves of the Document Plan are mapped 
to Dependency Trees. For each type of plot el­
ement a template is available telling exactly how 
its arguments should appear in the corresponding 
Dependency Tree. For example, actions are ex­
pressed using a straightforward active voice con­
~truction , with an optional PP argument to express 
lI1struments, e.g., The knight opened the gate (with 
a key). 1 For internal states, there are templates for 
standard sentences such as The princess was scared 
but also for storytelling-style constructions such as 
Oh, how happy she was! and She had never been so 
happy!, to be used for emotions with a high inten­
sity. After the Dependency Trees are selected, their 
nodes are mapped to Dutch words (except the nodes 
referring to entities, which are lexicalised as part of 

I For reading ease, Narrator output is translated to English. 

llO 

HD 

hungry 

Figure 2: Aggregated Dependency Tree. 

referring expression generation). The lexical choice 
algorithm uses a discourse history, to achieve some 
variation in wording by taking into account which 
words have been used recently. The words added to 
the Dependency Trees are still uninflected, as mor­
phology is taken care of during Surface Realization. 

The Narrator uses a syntactic aggregation algo­
rithm that combines pairs of Dependency Trees and 
adds an appropriate cue phrase to signal their rhetor­
ical relation. The properties of this cue phrase deter­
mine which syntactic construction is used to com­
bine the Dependency Trees. If the resulting tree 
contains repeated elements, these can be ellipted. 
Figure 2 shows an example where the subject of the 
second clause is deleted (Conjunction Reduction). 
A corresponding surface string could be The dwarf 
was hungry and believed there was an apple in the 
house, expressing the Additive relation in the Docu­
ment Plan of Figure 1. To keep the aggregated sen­
tences from getting too complex, at most three sim­
ple Dependency Trees can be combined. In cases 
where this restriction prohibits aggregation, rhetor­
ical relations are expressed using adverbs such as 
then, however etc. For a more detailed description 
ofthe aggregation process, see Theune et al. (2006). 

4 The generation of referring expressions 

To determine whether a pronoun or a noun should 
be used to refer to a certain entity, we use a vari­
ant of the algorithms of McCoy and Strube (1999) 
and Henschel et al. (2000). Based on an analysis of 





Par 1 Cause-v Par 2 Cause-n Par 3 Cause-n 

caus~ture I Te~trast 
con~IOus I ~ caus~ 

Te~se-V 
Te~~ 

~ceonl I sca;f][s;ream I 
Figure 3: Initial Document Plan for the second example story. 

7 Concluding remarks 

The Narrator has been implemented (in Java), but 
so far has only been tested with hand-made input 
structures, because parts of the Document Planner 
and of the Virtual Storyteller's plot generation com­
ponent are still under construction. So far, the only 
evaluations have been informal comparisons with 
earlier versions. The Narrator does not employ 
the kind of narratological knowledge proposed by 
Lonneker (2005), and unlike STORyBOOK it can­
not handle narrative aspects such as multiple view­
points or character dialogue. However, it can gener­
ate well-formed and fluent stories containing some 
typical narrative constructions. Currently being in­
vestigated are the automatic placement of paragraph 
boundaries, detection of contrast relations and lex­
icalisation of emotions, taking their intensity into 
account. In addition, as pointed out by one of our 
reviewers, it would be beneficial to add a form of se­
mantic aggregation to the system, grouping related 
plot elements together during document planning. 

Our main long-term challenge is to generate texts 
that are not only grammatical and coherent, but that 
can also really affect the reader by employing nar­
rative techniques such as the use of subjective per­
spectives to heighten identification, and foreshad­
owing to increase suspense. Ablation tests in the 
style of Callaway (2000) could then be used to eval­
uate the effect of such techniques. 
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used in a referring expression describing either of 
these two entities. In the drawer domain, a hearer 
would always understand the drawer below the or­
ange drawer in the top row to be d7, the drawer 
directly below d2, not d1 0 or d15. 

Our point here is that the nature of the do­
main has an impact on how the properties avail­
able in that domain might be used to refer to en­
tities. Most importantly, these domain character­
istics impact on the applicability of 'general pur­
pose' algorithms, as we saw in (Viethen and Dale, 
2006) with regard to the poor performance of the 
relational algorithm of Dale and Haddock (1991) 
in a new domain. 

3 The Space of Descriptions 

3.1 The Possible and the Acceptable 

In any domain where entities are described via a 
finite set of properties and relations, there are a 
finite number of possible descriptions of a given 
entity. We might think of these as the set of logi­
cally possible referring expressions. This set will 
of course be combinatorial in the number of prop­
erties and related entities. Even if we limit the set 
to those which are distinguishing descriptions,we 
are still faced with a large set of descriptions to 
choose from. 

Existing algorithms effectively provide ways to 
search this space, generally oriented towards find­
ing shorter solutions before longer ones are con­
sidered. These strategies favour referring expres­
sions which avoid or minimise redundancy and 
stop as soon as one referring expression is found, 
but as we know, human descriptions are often re­
dundant and there is usually more than one accept­
able solution; these algorithms therefore will fail 
to find many descriptions which are in fact quite 
acceptable from the point of view of readers or 
listeners. This is in effect taking an engineering 
perspective: find one good solution that can do 
the job, then stop exploring other possibilities. A 
more interesting approach to the problem might be 
from the speaker's and the listener's perspectives: 
identify all the acceptable referring expressions for 
an object and then rank them by usefulness to the 
parties involved. 

These observations then raise some questions. 
In particular, are all logically possible distinguish­
ing descriptions also acceptable to the speaker or 
listener? And if not, how do we rule out those 
which are not acceptable descriptions? It seems 
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likely that many of these descriptions--especially 
the very long, multiply redundant ones-will not 
be particularly useful. 

Below, we provide some basic statistics that 
demonstrate the size of the space of possible de­
scriptions that are available in even a simple do­
main like the one focussed on here. Then, in Sec­
tion 4, we propose some plausible constraints on 
this space of possible descriptions. 

3.2 The Size of the Space 

In our present work, we use an algorithm which 
is based on the graph-based framework for re­
ferring expression generation described in Krah­
mer et al. (2003) to generate all logically possible 
distinguishing descriptions for a target referent. 
We concentrate on referring expressions contain­
ing simple attributive properties and binary rela­
tions between pairs of entities. More complex ex­
pressions involving plurals, and Boolean combina­
tions of properties or quantifiers (see among others 
(Gatt, 2006), Varges and van Deemter (2005) and 
van Deemter and Krahmer (2007 to appear» are 
not included in our current investigation; but even 
without these, the number of possible descriptions 
we have to consider is very large. 

The attributive properties we encode for the 
drawer domain are colour, row and column for all 
drawers, and position with the value corner for the 
four corner drawers. Of the relational properties, 
only above and left-of are explicitly encoded, so as 
to avoid circularity. It is left to the realisation level 
to determine whether to realise the edge (a above 

b) as A which is above B or B which is below A, 
depending on whether A or B is the entity being 
described.2 

We use a parameter maxNodes to delimit the set 
of descriptions produced by our algorithm; this 
determines how many entities can maximally be 
included in each referring expression. We cur­
rently investigate referring expressions involving 
no more than two entities. Three reasons justify 
this seemingly low cut off: firstly, as each en­
tity in our domain has 3-4 attributive properties, 
it seems unnecessary to consider descriptions con­
taining long chains of relations such as the blue 
drawer above the blue drawer left of the drawer in 
the third row below the yellow drawer; secondly, 
our set of 140 human-produced descriptions for 

2For representational issues in the drawer domain and the 
graph-based framework, see (Viethen and Dale, 2006) and 
(Krahmer et aI., 2003) respectively. 





For example, while the mention of the relatee and 
its colour in the pink drawer in the far right that's 
below the yellow drawer is unnecessary, this de­
scription is clearly more acceptable than the pink 
drawer in the far right that's below the drawer in 
the top row, where instead of colour, the row prop­
erty is included for the relatee. 

Secondly, we observe that, in our human­
produced data, relations are only used under two 
circumstances: 

(a) The attributive properties of the relatee are 
more visually salient than those of the target. 
So, the target gets described mainly in terms 
of its relation to a more salient entity, as for 
example in the book left of the huge black lex­
icon in the bottom shelf. 

(b) The combination of properties of target and 
relatee, including the relation holding be­
tween them, is more or as visually salient as 
the target alone. An example of this, taken 
from our human-produced data set, is the 
yellow drawer that's above another yellow 
drawer for drawer d6. 

Note also, as discussed in Section 3.1, that we 
have already ruled out those descriptions which 
are not distinguishing descriptions. We then pro­
pose the following constraints to further reduce the 
space of acceptable referring expressions. 

Cl: No relatees without attributes: A refer­
ring expression should at least contain one attribu­
tive property for each relatee to the referent. In 
most domains the minimum requirement is that 
the type of each entity is included. This is a com­
monly observed phenomenon, of course, and is of­
ten catered for in algorithms by means of a spe­
cial case ' necessary-inclusion ' rule. Note, how­
ever, that for highly connected domains where all 
the referents are of the same type (as in our drawer 
domain) , this constraint also excludes descriptions 
containing only type as the attributive property 
used for a relatee. Consequently, Examples (1) 
and (2) are excluded by this constraint, while Ex­
ample (3) is not: 

(1) the blue drawer in the first column below an­
other drawer 

(2) the thick book in the third shelf from the top, 
left of another book 

(3) the bush under the tree 
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This constraint reduces the average number of de­
scriptions per drawer from about 212 to 200. 

C2: No relatee without salient properties: Ei­
ther the relatee itself or the combination of the re­
latee and the intended referent need to be as read­
ily locatable as the referent described in only at­
tributive terms. If this is not the case, the men­
tion of the relatee renders the expression more in­
formative than required and adds the potential for 
confusion. While the visual salience of an entity 
or specific properties is difficult to determine for 
most domains , in the drawer domain it is straight­
forward that the two properties that can contribute 
to the visual salience of an entity are its colour and 
its being in the corner position. We therefore ex­
clude descriptions containing relatees without ei­
ther of these two properties, such as: 

(4) the yellow drawer in the second row, third 
column that 's left of the drawer in the second 
row, fourth column 

(5) the pink drawer left of the drawer in the bot­
tom row, third column. 

This constraint reduces the average number of de­
scriptions per drawer by another 65 to about 135. 

C3: No grid properties for less salient relatees: 
In regular grid-based domains, it appears there is 
no good reason to include row and column proper­
ties for relatees. This information can either be in­
ferred from the intended referent, or forces the lis­
tener to perform the opposite inference to find the 
location of the intended referent. This constraint 
excludes descriptions such as the following: 

(6) the big red book next to the little booklet, 
which is the fourth book from the left in the 
second shelf from the bottom 

(7) the blue drawer in the second row left of the 
yellow drawer in the third column 

The only cases where grid information for a rela­
tee might be useful are (i) situations where the re­
latee is more easily locatable than the intended ref­
erent (as in Example 8), and (ii) si tuations where 
the relatee only has the bit of grid property it 
shares with the intended referent and no other grid 
information is contained in the referring expres­
sion (as in Example 9).4 

4Note that, in the second case, the PP attachment ambigu­
ity means that we can see in. the leftmost column to be either 













(3) remediation strategies that do occur across do­
mains may have different success rates for differ­
ent domains, and (4) few dialogues can be collected 
since a large amount of time is needed to organize 
and conduct corpora collection between scarce hu­
man experts and students. For instance, in the cor­
pus described below, 25 hours of dialogue were re­
quired to obtain 198 instances of remedial feedback 
(i.e., 8 per hour of collected dialogue). 

To provide an empirical basis for selecting reme­
diation strategies, we have explored the use of reme­
dial feedback in our tutoring system in the domain 
of symbolic differentiation (Callaway et aI., 2006). 
By annotating remediation dialogue acts, adjacent 
dialogue acts related to remediation, along with fea­
tures such as problem type, we hope to find evidence 
of patterns in existing human-human dialogues that 
can be correlated with measures of problem-solving 
success. To measure the degree of success, we de­
fined a performance metric to compare remediation 
strategies with their local outcomes, rewarding re­
mediations that led to the student overcoming an 
impasse and penalizing cases where the tutor's re­
mediations were ineffective or the tutor was forced 
to "bottom out" by supplying the correct answer. 

We then statistically analyzed the resulting data 
in order to provide advice to an intelligent tutoring 
system on which strategy to use in a given context. 
We hope to be able to empirically answer four ques­
tions: (1) what is the variation of success of individ­
ual remediation strategies, (2) do multiple remedi­
ations have better results than single remediations, 
and (3) which remediation strategies are correlated 
with particular types of problems (such as polyno­
mials or trigonometric functions). The resulting in­
formation can be directly used to help decide which 
remediation strategy is best to use when the student 
answers incorrectly in a particular context. 

We begin by examining related work in dialogue 
generation and tutoring, then introducing our tutor­
ing domain of symbolic differentiation and the cor­
pus we analyzed, describing the annotation scheme 
and evaluation methodology, presenting and analyz­
ing the resulting empirical data, and discussing its 
implications for NLG. 

2 Related Work 

Adding generated natural language dialogue to a 
tutorial system is a complex task whether using 
templates or deep generation since interactivity al­
lows for a wide range of local variation in context. 
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Many existing tutorial dialogue systems rely on pre­
authored curriculum scripts (Person et aI., 2000) or 
finite-state machines (Rose et al., 200 I) without de­
tailed knowledge representations. These systems 
are easier to design for curriculum providers, but of­
fer limited flexibility because the writer has to pre­
dict all possible student responses. Representations 
of domain knowledge and reasoning, along with a 
record of past student problem sol ving behavior and 
misconceptions, is vital for adaptively interacting 
with students via natural language. 

Newer generations of tutoring systems have con­
centrated more on the tutor's utterances than on be­
ing able to understand free natural language input. 
CIRCSIM is a tutor in the cardiac physiology do­
main (Michael et aI., 2003) that parses student input 
via finite state machines, arrives at a diagnosis, and 
then selects and realizes a response for the student, 
notably with the systematic use of discourse mark­
ers. This project also used annotation as a means 
of identifying key domain phenomena, but without 
relating it to a success measure (Kim et al., 2006). 

The BEETLEl system (Moore et aI., 2004) de­
scribes a tutor for teaching basic electricity concepts 
and components in circuits. The focus of this work 
was to explore how affective factors should effect 
the response given. The DIAG-NLP2 system (Euge­
nio et aI., 2005) in the domain of appliance repair 
takes menu-based input for determining students' 
actions in a schematic environment and employs 
high-level abstract revision operations when creat­
ing tutorial feedback to make the tutor's responses 
sound more natural. A formal evaluation showed 
that a version with revision significantly improved 
learning gain over a version without it. 

In addition to CIRCSIM, annotation has been 
used in the generation community to attempt to 
discover relationships or prove effectiveness. Lit­
man and Forbes-Riley (2006) annotated a large ar­
ray of factors that might potentially affect learn­
ing and used X-square tests over sequences of di­
alogue moves to discover which of those factors 
had the greatest influence on learning gain. The 
GNOME project (Poesio, 2004) created annotation 
schemes of noun phrases and their co-referring pro­
nouns in order to be able to utilize them for evaluat­
ing pronominalization algorithms. 

3 Background 

We are attempting to semi-automatically form ulate 
remediation strategies using a corpus of human-









































languages or equivalent machine-readable represen­
tations on demand (Androutsopoulos et al., 2007). 
NLG can, thus, be seen as a key technology of the SW, 
which makes knowledge accessible to both humans 
and computers, a major target of the SW. 

In this paper , we introduce NaturalowL, a pro­
totype open-source natural language generator in­
tended to demonstrate what NLG can offer to the 
sw.3will be announced in the final version of this pa­
per. NaturalowL is heavily based on ideas from ILEX 
and M-PIRO, but unlike its predecessors it provides 
full support for OWL OL, the most principled version 
of OWL that corresponds t o description logic (Baader 
et al. , 2002); many NLG researchers will be familiar 
with this form of logic. Our previous attempts to 
support OWL in M-PIRO's generator ran into prob­
lems, because of incompatibilities between OWL and 
M-PIRO 'S ontological model (Androutsopoulos et al. , 
2005) . Compared to ILEX and M-PIRO, NaturalowL 
is also simpler ; for example, it is entirely template­
based, as opposed to the Syst emic Grammars its 
predecessors employed. 4 Although future work may 
enhance some of NaturalowL's components, the sim­
plicity of t he current system makes it easier to ex­
plain to sw researchers, who may not be familiar 
wit h NLG. It also simplifies the task of ext ending 
the syst em to support additional natural languages . 
NaturalowL currently supports English and Greek. 

It has been argued (Mellish and Sun, 2006) t hat 
in most OWL ontologies, classes and propert ies are 
given names t hat are either English words (e.g., 
Laptop, cost) or concatenations of English words 
(e.g., manufacturedBy, hasMemory) . Based on this 
observation, Sun and Mellish (2006) generate texts 
from ROF descriptions, ROF being t he descript ion 
formalism on which OWL is based, wit hout any 
domain-dependent linguistic resources. T hey use 
WordNet to t okenize t he names of classes and prop­
er ties, as well as to assign part-of-speech (pos) t ags 
to tokens, and this allows them to guess tha t a class 
name like Laptop above is in fact a noun that can be 
used to refer to t hat class, or that <manufacturedBy 
rdf : r e source="#toshiba" /> should be expressed in 
English as "[This laptop] was manufactured by 
Toshiba". Hewlett et al. (2005) adopt very sim­
ilar techniques. This approach , however , is prob­
lematic when texts have to be generated in multiple 
languages . Even in the monolingual case, t here are 
significant problems: for example, a pos-tagger is 
often needed to distinguish between noun and verb 
uses of the same token, and morphological or even 
syntactic analysis is needed (especially in highly in­
flected languages) t o extract tokens from class and 

3Naturalow L and its Prot ege plug-in can be downloaded 
from http : //,,,,,, . aueb . gr/users/ion/publications. html. 

4 Consult http : //,,,,,, .ltg . ed. ac . uk/methodius / for an­
other offspring of M-PIRO'S generator t hat uses eeG grammars. 
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property names and convert them into grammatical 
phrases; in effect , this re-introduces the need to in­
terpret text s. Furthermore, our experience is that 
generating high-quality texts often requires linguis­
tic information that is not present , not even indi­
rectly, in OWL ontologies, nor can it be embedded 
conveniently in them (Androutsopoulos et al. , 2005). 

We, t herefore, propose to annotate OWL ontolo­
gies with stand-off ROF markup that associates el­
ements of the ontologies (e.g., classes, properties) 
with domain-dependent linguistic resources (e.g., 
lexicon ent ries, templates). We believe t hat this kind 
of linguistic annotation should be a st andard par t of 
ontology engineering for t he sw ; apart from allowing 
parts of the ontology to be presented to end-users in 
natural language, it facilita tes presenting ontologies 
to domain experts for validation; and the annota­
tions can also be useful when querying or extending 
ontologies via natural language (Katz et al. , 2002; 
Bernstein and Kaufmann, 2006). NaturalOwL's RDF 
linguistic annotations will hopefully contribute to­
wards a discussion in the NLG community on how to 
annotate OWL ontologies wit h linguistic information, 
and this may eventually produce standards that will 
allow alternative NLG components to render OWL on­
tologies in natural language, in the same way that al­
ternative browsers can be used to view HTML pages. 

Below we present briefly Naturalo wL's processing 
stages and its annotations of OWL ontologies. Fol­
lowing Wilcock (2003), the processing stages com­
municate in XML, but t hey are implemented in Java, 
instead of XSLT, and there is a clearer separation be­
tween processing code and linguistic resources. 

2 Document planning 
When instructed to produce a natural language de­
scription of an instance, N aturalowL first selects 
from the ontology all the logical facts that are di­
rectly relevant to that instance; for example, when 
describing the laptop of t he first page, it would se­
lect the fact t hat the instance is a Laptop, t he fact 
that its manufacturer is Toshiba, etc.5 NaturalowL 
may be instructed to include facts that are furt her 
away in a graph representation of t he ontology, up 
to a maximum (config urable) distance; setting the 
distance to two when describing a statue, for exam­
ple, would also include in the selected facts informa­
tion about the statue's sculptor (e.g., t he country 
and year they were born in). T his is very similar 

5To save space, we restric t t he discuss ion to descriptions of 
instances. NaturalOWL can also descri be classes, b ut it con­
veys only information t hat is explicit in t he ontology, unlike 
t he work of Mellish and Sun (2005), where class descriptions 
also convey inferred facts. T here are also separate stand-off 
annotations t hat specify how interesting each type of fact is 
per user type, and other user modelling in formation , much as 
in ILEX and M-PIRO. T he ordering annotations could also be 
made sensit ive to user type and target la nguage. 
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