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Abstract

Many problems in different areas such as Operations Research, Hardware Design, and Artifi-
cial Intelligence can be regarded as constraint solving problems (CSPs). Logic programming
offers a convenient way of representing CSPs due to its relational, declarative and nondeter-
ministic form. Unfortunately, standard logic programming languages such as PROLOG tend
to be inefficient for solving CSPs, since what could be called constraints in PROLOG is used
only in a passive a posteriori manner, leading to symptoms such as late recognition of failure,
unnecessary and unintelligent backtracking and multiple computation of the same solutions®.
There have been intensive research efforts in order to remedy this. One of them, which has
caught increasing attention over the past few years, is the Constraint Logic Programming ap-
proach:

By integrating a domain concept for logic variables and consistency techniques such as forward-
- checking or looking-ahead into PROLOG, the search space can be restricted in an a priori

manner. Thus, a more efficient control strategy can be achieved, preserving the 'clean’ dual
PROLOG semantics.

In this issue, I will present a horizontal compilation approach towards a CLP system main-
taining constraints whose variables are ranging over finite domains. Horizontal compilationis
often referred to as optimizing transformation techniques in other context. A PROLOG sys-
tem providing a delay mechanism is used in order to achieve the control behaviour described
above.

The major subtasks of my work are

¢ Design and integration of a domain concept into logic programming, which allows direct
access to and manipulation of possible values of logic variables.
e Thorough implementation of a forward-checking control strategy in SEPIA.

¢ Design and prototypical implementation of a looking-ahead algorithm.

¢ Summary of the main theoretical results underlying to domains and consistency tech-
niques in logic programming.

¢ Consideration and prototypical implementation of first-fail heuristics.

¢ Embedding these topics into a preprocessor, which transforms FIDO programs into
SEPIA programs realizing the advanced control strategies.

The general framework of this work is the FIDO lab within the ARC-TEC project, which
explores several approaches towards integrating finite domain consistency techniques into logic
programming.

!This is an observation which is true not only for CSPs but for general problems: logic programming is
convenient to represent problems but its usability for solving them efficiently is restricted, since solving different
types of problems require different methods. Very often these types cannot be identified from the syntactic
representation only, but are connected with semantic issues.
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Chapter 1

Motivation

In this chapter, the motivation for my current work is described. I will outline the reasons that
have led to a combination of logic programming and constraint solving. I would like to start
from the logic programming ”corner”, showing the basic issues which made Constraint Logic
Programming desirable from the logic point of view. In the second part of the chapter, I will
show what logic programming has to offer w.r.t. solving constraint problems. The combination
of these two aspects will lead us to the notion of constraint logic programming in a very natural
way. Third and last, I'll give a short survey of the chapters following.

1.1 Logic Programming

1.1.1 The Strong Points

Since its beginning almost 20 years ago with the development [BM73, Kow74] and the first
implementation [Rou75] of the language PROLOG, logic programming has developed into one
of the most important tools for Artificial Intelligence. The outstanding role of PROLOG for
logic programming justifies talking about PROLOG, if logic programming is actually meant!.
The logic programming paradigm can be described by the following keywords:

o Declarativity: formulating knowledge in facts and rules allows the user to write what
shall be done. How the task is to be performed is left to the system.

¢ Relational Form: in a mathematical sense, the knowledge items (predicates) are n-ary
relations.

¢ Nondeterminism: by writing down alternatives without actually specifying a tree
search strategy, nondeterminism is brought about?.

¢ Mathematical Model and Dual Semantics: there is a well-understood underlying
mathematical model for logic programs. In this context, the clear declarative semantics
(least model semantics, fixpoint semantics) and the procedural semantics (which is given
by SLD-resolution for PROLOG) of logic programs should be mentioned.

'For a strict reader, [ will restrict that proposition to the logic part of PROLOG.
20f course, in concrete systems like PROLOG, the order of the alternatives is crucial, if efficiency is taken
into account.
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Thus, logic programming allows problem formulation which is both elegant and natural. This
also facilitates the writing of programs in such a way that they are easy to read. Furthermore,
logic programming is said to shorten program development time, since it supports a top-down
problem-solving method by dividing a goal into less complex subgoals, until the subgoals can
be solved or they turn out to fail. These strong points contributed to make PROLOG a most
important Al tool for both

¢ Knowledge Representation: knowledge about the world can be formulated in a first-
order logic framework by facts and rules.

¢ Knowledge Manipulation: by using SLD resolution new knowledge can be derived
from existing knowledge.

1.1.2 Shortcomings of Logic Programming

Unfortunately, logic programming does not have strong points only. The main negative aspects
of it are

1. the unsound implementation of negation, and

2. the lack of efficient control strategies.

Unsound negation leads to wrong answers, poor control leads to inefficient problem solving
results. My work stresses the control issue. First, I would like to go into more detail about
what I mean by the second point of the above enumeration.

In the previous paragraph, I mentioned the capability of logic programming to allow programs
to be formulated in a natural way as one of its basic advantages. However, programs written
in a natural style often tend to be very inefficient. They support search strategies as generate
& test (G&T) or standard backtracking search3.

Generate & Test Figure 1.1 shows a program for the 8 queens problem that implements a
generate & test control strategy. First, a variable assignment for all the variables is generated.
In the program, that is done by creating a permutation of the values {1,...,8}% Second,
it is tested whether the permutation generated before satisfies the safeness constraints. By
G&T, there is no search space pruning at all. Constraints are used only to check whether the
complete variable assignment is a solution. That fact makes G&T explore the whole search
space. It performes an exhaustive search, which is very inefficient for more difficult problems
as is shown by the run-time results in chapter 7.

Standard Backtracking Search A program for the 8 queens problem embodying standard
backtracking search is shown in figure 1.2. The improvement compared to the G&T algorithm
is the following: each time a value is assigned to a variable, it is tested whether that value is
consistent with the values of the variables assigned before the current variable. If this is not
the case, backtracking occurs, going back to the most recent choice point and trying another
value there. That way, an obvious failure can be detected before values have been given to all

3We certainly can achieve more sophisticated control mechanisms in PROLOG (i.e. forward-checking), but
that will lead to programs neither natural nor easy to understand.

‘Note, that due to that representation, the constraint which excludes two queens from standing in the same
row is made implicit.
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\* permute(List, Permlist) succeeds if Permlist is a permutation of List s\
eight_queens([X1,X2,X3,X4,X5,X6,X7,X8]) :-
permute([1,2,3,4,5,6,7,8], [X1,X2,X3,X4,X5,X6,X7,X8]),
safe([X1,X2,X3,X4,X5,X6,X7,X8]).

safe([]).

safe([HIT]) :-
no_attack(H,T),
safe(T).

no_attack(X, Y) :-
no_attack(X, Y, 1).

no_attack(X, [1,.).
no_attack(X, [(HIT], N) :-
X =\=H + N,
X =\=H - N,
N1 isa N + 1,
no_attack(X, T, N1).

Figure 1.1: G&T Program for the n Queens Problem

variables. Standard backtracking achieves an a posteriori search space pruning, which makes it
essentially superior to generate & test algorithms. However, it has some serious disadvantages,
basically induced by the backtracking mechanism. These will be described in the following.

eight_queens([X1, X2, X3, X4, X5, X6, X7, X8]) :-
queens_aux([X1,X2,X3,X4,X5,X6,X7,x8], 01, [1,2,3,4,5,6,7,8]).
queens_aux([], Placed, [1).
queens_aux([HIT], Placed, Values) :-
delete(H, Values, Newvalues),
no_attack(H, Placed),

queens_aux(T, [H|Placed], Newvalues).

\* no_attack / 2 and no_attack / 3 are the same as in the G&T program! =\

Figure 1.2: Standard Backtracking Program for the n Queens Problem

Backtracking Backtracking [CM81| has the advantage of being a simple search strategy
which can be easily implemented. Unfortunately, backtracking-directed control mechanisms
suffer from a "disease” which can be characterized by the following symptoms:

e Late detection of failures.
¢ Continuous rediscovery of identical partial solutions.

¢ Unintelligent selection of choice points, i.e. the true culprit of a failure is often detected
very late, involving a lot of redundant work beforehand.

o Useless node generations in the search tree.

¢ Recovering instead of avoiding of failure. Backtracking starts only after a failure has
occured.
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From the computational point of view, backtracking is known to be of exponential complexity
in the worst case. Thus, many interesting problems cannot be solved within a reasonable time
using standard backtracking search.

1.1.3 Remedies

Starting from Kowalski’s [Kow79] famous equation
algorithm = logic + control,

we can summarize that the shortcomings of today’s general logic programming PROLOG sys-
tems arise within the control area. That is a very serious problem, since huge search spaces
are typical for many AI problems. Handling these search spaces efficiently, however, can only
be done if a sophisticated control mechanism is available which avoids unnecessary, exhaustive
search. That is why there have been intensive search efforts aimed at improving the control
mechanisms of PROLOG. An important branch of research in that area was e.g. coroutining for
PROLOG, which basically allows G&T programs to perform standard backtracking search (see
section 6.3.1). Another interesting aspect was finding intelligent backtracking mechanisms in
order to optimize choice point selection [SS77, Bru78, Bru81]. The main criticism about using
coroutining mechanisms is that coroutined PROLOG does not remedy the negative symptoms
induced by standard backtracking search. Although it is true that intelligent backtracking can
basically improve the efficiency of standard backtracking, it mainly recovers its shortcomings,
thus only remedies the symptoms, but not the disease. In my opinion, it would be better to
avoid failure a priori, whenever that can be done.

Thus, from the perspective of logic programming, an active a priori reduction of the search
space is desirable. That means not to wait until a failure has occured and react to it, but to
avoid producing failures by eliminating inconsistent variable values.

For this purpose, consistency techniques such as forward-checking or looking-ahead are good
options. They not only guarantee the consistency between the current variable assignments
with assignments made before, but also use information about the currently known variable
values (or value sets) in order to eliminate inconsistent values from the domains of variables
that have not been instantiated yet.

The paradigm of constraint logic programming (CLP) [JL87] embodies this idea in an out-
standing manner. Its principles will be introduced in chapter 2.

In this work, I will present the design and the implementation of a CLP-like control mecha-
nism, which allows to make use of uses forward-checking in order to solve efficiently constraint
problems in logic programming. This will offer a way to overcome the above mentioned short-
comings of logic programming languages w.r.t. to control.

1.2 Constraint Solving Problems

A lot of interesting problems can be regarded as instances of constraint solving problems
(CSPs). Such problems are e.g. graph colouring, graph isomorphism, scene and edge labeling,
logical puzzles or boolean satisfiability [van89a]. Many real-world problems such as scheduling
or warehouse-location problems can be transformed according to one of these representation
classes. In the following, I would like to point out what logic programming has to offer with
respect to solving CSPs, and how logic programming can benefit from methods used for solving

CSPs.
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What makes logic programming especially well-suited for stating constraint problems, are the
relational form it provides, and its nondeterminism.

¢ Relational form: since constraints are nothing but relations between objects symbol-
ized as variables, they can be formulated naturally and conveniently in logic programs.

‘e Nondeterminism liberates the programmer from doing explicit tree search and allows
declarative formulation of problems.

Therefore, logic programming seems appropriate for stating constraints, and so for stating
e.g. discrete combinatorical problems. Unfortunately, standard logic programming does not
support efficient methods for solving CSPs. Therefore, the logic programming scheme should
be extended by more efficient control mechanisms, as they exist for constraint solving.

Constraint Solving Techniques Constraint solving is a well-understood problem solving
method which has been subject to intensive research. There are several standard algorithms
for constraint solving, e.g.

o Generate & Test.

Standard Backtracking.

Forward-Checking.

Looking-Ahead.

Specialized methods for solving linear equations and disequations, such as the Gaussian
and Simplex methods.

As we have seen, G&T and standard backtracking are naturally integrated into logic pro-
gramming. From the point of view of constraint solving, it is interesting to integrate the
more efficient techniques such as forward-checking and looking-ahead into an extended logic
programming scheme. Whereas specialized constraint solving techniques are not taken into
consideration in FIDO, a complete integration of forward-checking is realized. This is de-
scribed in chapter 6.2.3. Looking-ahead is implemented only in an exemplary way and in a
modified form (see section 6.2.4). The theoretical foundations of these techniques are presented
in chapter 3.

1.3 Overview

In the following, the overall structure of this work will be outlined.

Chapter 2: Constraint Logic Programming In chapter 2, the overall framework of
constraint logic programming is presented. The first part of the chapter contains an outline
of the principles of CLP. In the second part, some important systems are described in short.
Emphasis is laid on the comparison of the capabilities of these systems to what FIDO is
supposed to perform.
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Chapter 3: The Theoretical Framework In this chapter, the theoretical foundations
concerning the integration of finite domains and consistency techniques into logic programming
are summarized and the fundamental definitions are given.

Chapter 4: The Role of FIDO-II within the FIDO Lab Here, the location of this
work within the FIDO project is described. The different subprojects of FIDO are described
and preliminary results are reported.

Chapter 5: A Domain Concept for FIDO-II In this chapter, a domain concept for
logic programming is presented. After describing domain concepts in a more general way,
the concrete implementation in FIDO-II is presented. A further paragraph deals with some
problems caused by the domain variable representation in FIDO-II.

Chapter 68: The Integration of Control Here, the realization of the second major issue of
this work is outlined, which is the integration of advanced control strategiesin PROLOG. First,
the notion of constraints in FIDO-II is introduced. Second, I present the implementation of the
important consistency techniques by SEPIA delay declarations. Third, the heart of FIDO-II,
the preprocessor performing the horizontal source-to-source transformation is explained. The
chapter ends with some remarks on a programming methodology in FIDO-II.

Chapter 7: Applications Chapter 6 demonstrates the scope of FIDO-II on several exam-
plary applications taken from different problem classes such as logical puzzles, graph colouring
problems and scheduling. The improvement in efficiency, which is partially drastic compared
to using standard logic control mechanisms is shown by some computational results. The
performance is also compared to some other CLP systems revealing the limitations of the
approach.

Chapter 8: Summary and Outlook In the final chapter, the main results of the work
are summarized. Some problems and limitations are shown, and an outlook is given as regards
further research efforts within FIDO.



Chapter 2

Constraint Logic Programming

2.1 The Principles of CLP

The drawbacks of logic programming outlined in chapter 1 have led to intensive research efforts
aimed at improving the control facilities of logic programming languages. One approach, to
which increasing attention has been paid over the past few years, is contraint logic programming
(CLP). The main idea of CLP is to combine the strong points of logic programming, which
are its declarativity, its simple and clear semantics based on a well-understood mathematical
model and its nondeterminism, with the efficiency of constraint solving techniques such as
forward-checking and looking-ahead. Thus, it becomes possible to formulate a large class of
combinatorical problems in a natural and elegant way and to solve them efficiently. The crucial
point is that the use of consistency techniques provides the ability of pruning the search space
in an active, a priort manner. Values that are known to be inconsistent with the current
variable states can be excluded from further consideration.

In the following, I would like to point out what actually has to be done in order to bring about
the combination between logic programming and constraint solving that characterizes CLP.

2.1.1 The CLP Scheme

The notion of constraint logic programming has been coined by [JLM86, JL87]. It was designed
to generalize the semantics of the logic programming scheme w.r.t. a particular equational
theory. Thus, the CLP scheme CLP(7) was born. Its syntax is a definite clause syntax.

[t is remarkable that the underlying theory is left unspecified. By instantiating it with a special
equational theory!, instances of the CLP scheme can be created, inducing a class of constraints
relevant for that theory. Examples of instances can be found in section 2.2.

Thus, by constraint logic programming, a class of programming languages is defined whose
instances share the same essential semantic properties. For this purpose, some new semantic
concepts had to be introduced.

Meanwhile, in CLP, the original equational theories have been extended by special-purpose
(non-equational) theories.

2.1.2 The Structure of a CLP system

The general structure of a constraint logic programming system reflects its purpose: the com-
bination of logic programming and constraint solving. Figure 2.1 shows the organization of a

'An important requirement for this theory is its unification completeness.
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CLP system. Basically, it consists of two components, an inference machine doing the logic

L
R

N

R

\.;‘%\W

Figure 2.1: The General Structure of a CLP System

part, and an incremental constraint solver, which can be considered as a decision procedure for
a class of constraints. The two modules communicate by an interface. The inference machine
recognizes constraints and passes them to the constraint solver. The latter one incremen-
tally creates a constraint net and tries to solve it, reporting the results back to the inference
machine?.

2.1.3 Finite Domain Consistency Techniques

In the approach underlying my work, techniques for solving constraints over finite domains are
to be examined. In the following, some considerations will be made about what is needed to
do this:

Finite Domains: The restriction to finite domains is convenient for us, since it allows an
explicit representation of the set of values an object (symbolized by a variable) can have.
What we need is a domain concept for logic variables which enables us to restrict the domain
of a variable in an active way. In chapter 3, the theoretical foundations of domains in logic
programming are summarized. In chapter 5, its realization in FIDO-II is described.

?In real systems, this way of job-sharing can be somehow varying, e.g. some simple constraints can be directly
solved by the inference engine.
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Consistency techniques: Here, we have to define the tools to be used in order to achieve
an advanced control, realizing an active a priori use of constraints. These tools will be forward-
checking and looking-ahead:

Forward-checking can be applied in order to restrict the domain of a variable X appearing in
a constraint C, if all other variables of C are ground. Then, C can be regarded as a unary
predicate, and, since constraints must be decidable, the remaining values for X satisfying C
can be computed. Looking-ahead (which is neglected a bit in this work for reasons explained
later on) can be applied to a constraint, even if more than one of its arguments are unbound.
Thus, looking-ahead leads to an earlier restriction of the search space. However, it is far more
expensive than forward-checking.

Formal definitions of the consistency techniques are given in chapter 3, their implementation
in FIDO-II is described in chapter 6.

2.1.4 Properties of CLP

In chapter 1, we have seen that the control strategies supported by PROLOG imply a poor
control behaviour, resulting in search strategies such as generate & test and standard back-
tracking. These mechanisms drastically restrict the applicability of logic programs to complex
real-world problems.

Backtracking, especially, suffers from some pathological maladies. The constraint logic pro-
gramming scheme offers reasonable ways to remedy the above-mentioned shortcomings of logic
programming control:

¢ Constraints are used in an active manner, positively influencing program control.
¢ The search space is kept small, since early pruning is done.

o Less choice points are generated. Thus, fixing the real culprits of a failure is a much
easier job than it is in logic programming.

¢ Since a priori pruning is performed, inconsistencies are detected earlier. Less failures are
produced and unnecessary backtracking is avoided.

o The explicitness of domains allows the use of first-fail heuristics (see section 6.5).

o A large class of problems can be formulated in an elegant and natural way by using
constraints and consistency techniques.

e The semantic background of logic programming can be essentially preserved in CLP. This
has been shown by [JL87, van89al.

2.1.5 Summary

Here, I would like to summarize those aspects of a CLP system which are of special importance
for this work.

1. A domain concept for logic variables is introduced.
2. Consistency techniques are included in the PROLOG computation model.

3. The PROLOG inference engine is coupled with a constraint solver®.

3As we will see, in FIDO-II, these two components will be nested.
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4. The CLP scheme is instantiated with an equational theory over finite domains.

Constraints shall be used in an active, a priori manner.

> o

The negative effects of standard backtracking search can be avoided.
7. The clear semantics of logic programming is basically preserved (see chapter 3).

8. The scope of logic programming languages can be extended to NP complete discrete
combinatorical problems.

2.2 The State of the Art

In this paragraph, a brief overview is given of the most important existing CLP systems and
their features. I would like to start with CLP(R), since it has been developed by the team
of Joxan Jaffar and Jean-Louis Lassez, which can claim to "have invented constraint logic
programming”. The second important system is the CHIP system which has been developed
by the team of Pascal van Hentenryck. It has been a good* benchmark for FIDO, since it can
handle finite domains, too. Apart from these, I would like to mention PROLOG-III, TRILOGY
and the recent work of van Hentenryck, the advanced finite domain CLP system CC(FD).

2.2.1 CLP(R)

CLP(R) [JL87, JM87] can be looked upon as a special instance of the CLP scheme. The
underlying domain are the real numbers, the constraints are linear equations and inequalities.
The methods used for constraint solving are the following:

First, there is a delay-mechanism for non-linear constraints. These are suspended until they
become linear. Linear equations are solved by Gaussian elimination whereas a Simplex algo-
rithm [Dan63] is used for linear inequalities. The main applications for CLP(R) are electrical
engineering problems, option trading and other problems requiring reasoning over the reals.

2.2.2 CHIP

CHIP [DvHS*89] stands for Constraint Handling In PROLOG. Domains in CHIP can be
rational numbers, boolean terms and finite domains. As regards domains, CHIP substantially
differs from systems such as CLP(R) or PROLOG-III, since there is no restricted set of built-in
constraints. In CHIP, the user can define logic programs as constraints. This gives the CHIP
approach much more flexibility. The only restriction which stems from the constraint solver is
the linearity condition for constraints.

The methods used for constraint solving in CHIP are a Simplex algorithm both for linear
equations and disequations. For finite domains, forward-checking, looking-ahead and partial
looking-ahead algorithms are available. The main application areas of CHIP are operations
research problems, such as scheduling, graph colouring etc.

*Well, actually, it has been too good!
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2.2.3 PROLOG-III

Prolog-III [Col87a] has been developed subsequent to PROLOG-II by A. Colmerauer. The
domains supported by it are rational terms (which are represented as infinite rational trees),
strings and boolean terms. The latter can be considered as a very special type of trees. Thus,
although it is represented differently, PROLOG-III could be considered as "CLP(Q)” and
could be integrated as an instance of the constraint logic programming scheme. Constraints in
PROLOG-III can be equality constraints on boolean terms, linear equations and disequations
and inequalities on rational terms. Besides, PROLOG-III provides advanced numerical and
list processing features. The solving methods in PROLOG-III are the following:

¢ for boolean equations, a saturation method combined with SL resolution is used.

¢ linear constraints are solved by a Simplex algorithm.

The main application areas for PROLOG-III are circuit analysis, banking calculation, opera-
tions research problems and, due to the complete boolean algebra it provides, reasoning rules
for expert systems.

2.2.4 TRILOGY

Basically, TRILOGY [Vod88] could be viewed as "CLP(Z)” although it is presented differently.
The language is cut to integer programming. The underlying theory are the integers with the
addition operator. The only constraints are numerical built-in constraints. The constraint
solver is a decision procedure for integers.

As far as [ know, the methods used in TRILOGY are quite expensive and thus, not well-suited
for solving complex real-world problems. So far its only applications have been logical puzzles.

2.2.5 CC(FD)

CC(FD) [van91] is the recent work of van Hentenryck. It has been presented on the occa-
sion of a talk at the PDK workshop 1991 in Kaiserslautern [RB91]. Basically, it presents a
further development of the finite domain handling capabilities in CHIP. Especially, CC(FD)
provides features handling drawbacks of actual constraint programming languages. A com-
mon problem arises e.g. by disjunctive constraints, which appear in disjunctive scheduling
problems. CC(FD) copes with these by extracting information from the disjunctions in order
to use them for pruning, if this is possible. Choices can be avoided in the case of so called
deterministic disjunctions. Other features of CC(FD) are the active use of cardinality and
projection constraints. Besides, it is possible to express universal quantification. Thus, a more
efficient handling of nondeterminism in CLP and to a better control behaviour can be achieved.
However, information about practical results of CC(FD) has not yet been available to me.

2.2.6 Relations to FIDO

Basically, we can divide the systems presented above into two groups. The first group contains
CLP(R), PROLOG-III and TRILOGY. These systems can be characterized by the fact that the
constraint solver is a black box which can handle only a set of built-in constraints. The second
group is represented by the CHIP system. It does not use a complete constraint solver, since
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most of the intended applications are A'P-complete problems. Therefore, using a complete
solver would be too inefficient. Furthermore, the user can specify how constraints shall be
used, and the system is not restricted to a set of built-in constraints, but logic programs can
be considered as constraints.

FIDO can be classified as belonging to the second group, since consistency techniques can
be applied to arbitrary constraints, even if it is not completely implemented in the current
prototype version of FIDO-II, e.g. as regards looking-ahead. Besides, the user can define how
constraints are to be solved. Thus, the functionality of FIDO can be considered as being
similar to CHIP.

However, the philosophy behind the FIDO project is quite different. Up to now, it has not
been our intention to build the newest, best and fastest constraint programming language®. We
are studying the usability of some approaches aiming at a realization and, since each approach
has strong points and drawbacks, the idea is to combine the approaches by making use of the
strong points of each approach. This is especially true for the cooperation between FIDO-II,
where a horizontal compilation is performed, and FIDO-III, which is currently worked on, and
which implements a vertical compilation approach of finite domain constraints. Combining
these two paradigms seems to be a promising idea.

For a more detailed description of the FIDO project and the relation of FIDO-II to it, see
chapter 4.

*Maybe tomorrow!



Chapter 3

Theoretical Framework

3.1 Motivation

One of the very strong points of logic programming is its mighty underlying mathematical
model. The clear declarative and procedural semantics allows an elegant and simple program-
ming style. But this comes at a price in a twofold way:

e Semantics is defined within the restrictive context of the Herbrand universe.

e Only syntactically equivalent terms are unifiable.

That ties logic programming into a hermetic framework. Therefore, many recent PROLOG
systems incorporate some equality theory in order to master the case of semantically equivalent,
but syntactically different terms. Note also that arithmetic is usually dealt with in an ad-hoc
way in PROLOG. The problem with these approaches is that they not always preserve the
logic base, although this is a crucial requirement on extensions to logic programming languages.
PROLOG-II e.g. was defined as a rewriting system in the domain of infinite rational trees and
not as a logic programming language. In [JMSY90], I found the nice citation:

"Forsaking the logic in PROLOG in order to remove some limitations of the language is like
throwing out the baby with the bath water.”

Generalizing the logic programming paradigm to the constraint logic programming scheme
turns out to be a solution of that dilemma. The generalization made it possible to describe
systems as PROLOG-II and PROLOG-III again as instances of the scheme.

A reference for the theory of logic programs is [Llo84]. A more general approach to logic and
logic calculi can be found in [Ric78]. The foundations of CLP have been worked out by Jaffar
and Lassez [JL87, JM87] and by van Hentenryck [van89a] for the case of finite domains. In this
chapter, I would like to outline the most important results of that research, as far as FIDO-II is
concerned. Especially, I will skip the results concerning uncountable domains (CLP(R)), since
these are not relevant for FIDO-II. In the following, I will summarize how a domain concept
can be integrated into the logic programming scheme. In further paragraphs, the inference
rules underlying to the consistency techniques used in FIDO will be defined and some of their
properties will be described.
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3.2 Domains in Logic Programming

In [van89al, van Hentenryck shows how a domain concept can be formally embedded into a
logic programming language. The declarative and procedural semantics of first-order languages
with domain variables are given.

First, I would like to define what a domain is.

Definition 1 A domain d is a non-empty set of constants.

In the following I concentrate on a finite set R of domains which can be looked upon as the
domains used by a program. Especially, deR => e€R for eCd,e# Q.

3.2.1 Declarative Semantics

A declarative semantics of a first-order language I' with domain-variables can be defined ac-
cording to the following steps:

1. Enhance the alphabet of I' by a set of domain variables for each deR. z4 denotes a
domain variable of the domain d.

2. Define terms, definite programs and goals as usual.

3. Give the declarative semantics of a logic program with domain variables by extending
the model theoretic semantics of first-order logic:

e Define the interpretation Z of a domain d as the assignment of a subset d’ of the
universe D of the usual interpretation.

e extend the interpretation of formulas 3z4.P and Vz4.P as follows:
Z(3z4.P) = true iff there exists ¢ € d’ with Z*¢°(P) = true.
I(Vz4.P) = true iff Z%¢¢(P) = true for all c € d’.

4. Define the notions logical consequence, Herbrand interpretations and models as usual.

5. Define substitution, correct substitution and correct answer substitution as usual, however,
providing a special treatment for domain variables:
a domain variable z4 can be substituted by

¢ a value ¢ of its domain, or by

¢ a domain variable y,, ranging over a domain e C d.

Note in that context that domains are basically interpreted as unary predicates. We write
¢ € d instead of d(c).

3.2.2 Procedural Semantics

The procedural semantics in PROLOG is given "by the way it works”, i.e. by SLD resolution
based on the unification algorithm [Rob65]. In the case of a logic programming language
with domain variables, procedural semantics can be described basically the same way. The
difference to SLD resolution in PROLOG is that unification is modified in order to handle
domain variables. First, I should like to introduce the notion of unifier and most general
untfier of two expressions. It can be defined as usual:
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Definition 2 (unifier, mgu) Bet;, t; ezpressions of a first-order language with domain vari-
ables. o, p, T be substitutions.

a) t1 and t; are unifiable with unifier o iff o(t1) = o(t2).

b) Be ty, ty unifiable with unifier 0. o is called the most general unifier of ty, ty iff for each
unifier p of ty, g, p = o0, i.e. 0<p for each unifier p of t; and t;.

The mgu can be extended to sets E = {t1,...,t,} of terms as usual. Now, I would like to
give the redefinition of the unification algorithm for domain variables. The following three
additional cases have to be taken into consideration.

¢ unification of a normal variable with a domain variable. In that case, the normal variable
is bound to the domain variable.

e unification of a domain variable with a constant. If the constant is member of the domain
of the variable, unification succeeds and the domain variable is bound to the constant.
Otherwise, unification fails.

¢ unification of two domain variables. If the intersection of the two domains is not empty,
unification succeeds and binds both variables to a new one ranging over that intersection.
If the intersection is singleton, both variables are bound to the remaining constant. I the
intersection is the empty set, unification fails.

According to the above requirements, a unification algorithm for a first-order language can
be defined as shown in figure 3.1. The algorithm receives as input a set of expressions. Its
output is the mgu for E (if it exists) or fail. The notion of disagreement set in the algorithm
is understood as usual. Theorem 1 asserts termination, soundness and completeness of the
algorithm for finite sets of expressions.

Theorem 1 For the domain variable unification algorithm 3.1 the following holds:

¢ a) The algorithm always terminates.

o b) Let E be a finite set of expressions. If E is unifiable, the unification algorithm gives
the mgu o for FE. If E is not unifiable, the unification algorithm reports that.

The proofs of a) (termination) and b) (which is a generalization of Robinson’s unification the-
orem have been given in [van89a). o

In the following, SLD resolution based on the domain variable unification algorithm will be
referred to as SLDD resolution.

As a conclusion, we can say that domain variables can be embedded into logic programming,
enforcing some extensions but preserving the main results such as the declarative and proce-
dural semantics of the language. By extending unification, an active handling of the equality
constraint is provided. Yet, in order to maintain other constraints that way, additional infer-
ence rules have to be defined, embodying the consistency techniques used in this work.
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k:=0;00 = ¢
while Flag = true do
{
if singleton(o)
then
{ return ox(E); STOP }
else
{
compute disagreement set(ox(E), Di);
if member(v,Dx) and member(t,Dy)
and not occurs_in(v,t)
then \#* unification of simple variable and term @\
{ ok1 i=ox[v—t); k:=k+1}
else
if member(vq, Dix) and is.domvar(vs) and member(a, Dk)
and is_constant(a) and member(a,d)
then \» unification domain variable - constant *\
{ ok+1-:=ok[va—a]; k:=k+1}
else
if member(vq;, Dx)and is_domvar(vs;) and member(vaz, Di)
and is_domvar(vaz, Di) and d2Cdy
then \* unification of two domain variables over the same domain #*\

{ oxs1 1= ok[var—var]; k:=k +1}
else
if member(vs;, Dx) and is_domvar(vaq) and member(vqz, Di)
and is_domvar(v4, Dx) and diNd2 # @
then \s General unification of two domain variables =\
{e :=diNdz; ok41 1= ok[var —We, Va2 —w]; k:=k +1 }
else
Flag := false;
}
RETURN("not unifiable!");
STOP

Figure 3.1: A Domain Variable Unification Algorithm
3.3 Consistency Techniques in Logic Programming

3.3.1 Constraints

First, I want to define what a constraint is. A constraint is characterized by the fact that the
inference rules defined in the next section can be applied to it. Therefore, it must fulfil the
following conditions:

Definition 3 An n-ary predicate p is a constraint iff for any ground terms ty, ..., t, one of
the following is true:

e p(ty,...t) has a successful refutation, or



Theoretical Framework 18

e p(t,...t,) has only finttely failed dertvations

In other words, a predicate p is a constraint, if all its ground instances either succeed or finitely
fail.

3.3.2 The Forward-Checking Inference Rule

In this section, the forward-checking inference rule (FCIR) is presented. The FCIR can be
applied to a constraint if only one of the variables appearing in the constraint, say X, is left
uninstantiated. The domain of that variable can then be restricted by deleting those domain
values from Domyx that don’t satisfy the constraint!. First, I would like to define formally
when the FCIR can be applied to a predicate.

Definition 4 Be p(ty,...,t,) an atom. We say that p(t,.. .,t,) is forward-checkable, if

e p s a constraint

o there exists only one t;, 1 < i < n, that is a domain variable, all others being ground.
t; is often called the forward variable. Now, I will define the FCIR:

Definition 5 (The FCIR) Be P a program, G; = 77— A;,.. ., Ak,..wAn a goal and 0i31 a
substitution. Giy, is derived by the FCIR from G;, P, 041, if the following holds:

1. Ay is forward-checkable, x4 be the forward variable inside Aj.

2. The new domain e is defined as

e = {a €d|P FAi{za— a}} # 0.

3. Then, the new substitution oy is defined as
Oit1 = {za—c}, if e = {c}, or {zg—y.}, where y. is a new domain variable, otherwise.

4. Gip1 =1 —0ip1(Ary .o Ag—1, Akt1,. -, Am) a goal and o;4y a substitution.

Note that, due to the definition of constraints, the new domain e in point 2 can be computed
easily (e.g. by using SLDD resolution). With the help of the FCIR, an a priori pruning can
be achieved, because values are actively eliminated from the domain, i.e. are not considered
again. Another important point is that the forward variable becomes instantiated if its domain
is singleton (see point 3 of definition 4).

The FCIR has some nice properties. The central ones will be summarized in the following.

Theorem 2 (Soundness of the FCIR) Be P a program, G; be the goal?—Ay, ..., Ak, ..., An.
Ag be forward-checkable, z4 be the forward variable. Be d = {ay,...,an,b1,...,0c}, d, e # O.
Let the goal Gy, be obtained from G; as Giyy = 71— di1(Ay, .. o Ak=1, Aks1y- - » Am)-

Then G; is a logical consequence of P iff G4y is a logical consequence of P.

We also write G;11=pG;.

'Here, the constraint is regarded as a unary predicate.
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The proof to this theorem can be found in [van89a]. The theorem gives expression to the fact
that by a derivation step using the FCIR, no wrong results will be achieved, thus the soundness
of the derivation is preserved. In the following, I will denote first-order resolution extended by
the forward-checking inference rule as SLDFC resolution.

The soundness result can be expressed alternatively as follows: If By, ..., By is a proof sequence
in the SLDFC calculus, then

By,..,Bi Fsiprc Biyi = By,.., Bi E Biyp  for 1<i<n.

A result which makes the FCIR, particularly interesting from a computational point of view is
its completeness. In [van89a], the completeness result has been proved for a procedure that

¢ uses the FCIR for forward-checkable predicates and

e uses normal derivation, otherwise.
I will denote such a proof procedure as SLDFC resolution.

Theorem 3 (Completeness of FCIR) P be a logic program, G be a goal. If an SLDD
refutation of PU { G} ezists, then there also ezists an SLDFC refutation of PU {G}. Moreover,
if o is the answer substitution from the SLDD-refutation of P U {G}, and p is the answer
substitution from the SLDFC-refutation of P U {G}, then p < 0.

For the proof of theorem 3, I would like to refer again to {van89a).

Informally, the completeness of the FCIR means that each provable goal is also reached using
forward-checking inference steps in the way specified above. The reason for the completeness
of the FCIR is its very strong application condition. As long as a goal is not forward-checkable,
only normal derivation will be applied to it. Moreover, in a computation sequence, the FCIR
can be applied at most once to one goal, resulting in failure or further restriction of the domain
of the forward-variable.

3.3.3 The Looking-Ahead Inference Rule

In this chapter, the looking-ahead inference rule (LAIR) will be defined. By that rule, con-
straints can be used, even if more than one variable is left uninstantiated. Thus, the LAIR
generally leads to an earlier pruning of the search space than the FCIR. First, I will define the
applicability conditions for the LAIR:

Definition 8 An atom p(ty,...,t,) is lookahead-checkable if

e p is a constraint and

o There ezists at least one t; that is a domain-variable. All other t; are either ground or
domain variables.

Definition 7 (The LAIR) Be P a program, G; = 7— A1,..., Ak,...,Am a goal and 0,1 a
substitution. G4, is derived by the LAIR from Gi, P, 041 if the following holds:

1. Ay is lookahead-checkable, z1,..., 2, are the lookahead variables of Ak.
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2. For each z;,e; = {vj€d;j|Ivni€dy,.. . ,v;_1€dj_1,Vvj41€Edj41,. . ., VnEdn with 0(AE),0 =
{z1=v1,...,20—Vp} i3 a logical consequence of P} # 0.

3. y; is the constant ¢ if e; = {c} or a new variable which ranges over e;, otherwise.
4. iz = {Z1-Y1,- - Ta—Yn}-

5. Giy1 is either?—oi41(Av, .. ., Ak—1, Akt1, - - - Am) if at most one y; is a domain variable,
or? —o0,+1(Aq,. .., Ap), otherwise.

Since, for this work, looking-ahead is not as important as forward-checking, I would like to
shorten a bit the theoretical considerations and refer to [van89a] for a more detailed discussion
of them.

It should be mentioned, however, that for the LAIR, there is no completeness result whereas
its soundness can be proved. The reason for that fact is that looking-ahead only does a
pruning of the search space, but never makes choices. That basically means that we need
to combine normal derivation and the LAIR in order to yield a sound and complete proof
procedure. Particularly, we will have to use normal derivation also for lookahead-checkable
goals in order to achieve global consistent solutions. An example for this can be found in
figure 3.2, which describes an instance of the n-colouring of a complete n-graph for n = 3.

Figure 3.2: 3-Colouring of a Complete 3-Graph

An inference rule which uses looking-ahead for lookahead-checkable goals and normal SLDD
resolution for other goals will never find a solution to the problem. Since the LAIR detects local
consistency for all domain values, it will never eliminate any values from one of the domains.
Moreover, all constraints remain always lookahead-checkable, so that normal derivation steps
will never be made. In order to find a solution, we will have to make choices, e.g. we could
instantiate X; to 1 and see what happens. That seems natural because for solving some
problems, it is necessary to make choices.

Practical consequences of that issue for FIDO-II are described in section 6.2.5. An algorithm
embodying the use of the LAIR for prepruning and the use of normal derivation (combined
with the FCIR) can be found in the next paragraph 3.3.4.

3.3.4 Weak Looking-Ahead(WLA)

The weak looking-ahead strategy combines the use of LAIR and FCIR. That technique has
been informally proposed in [dSPRB90] as ”first-order looking-ahead”. I prefer to call it weak
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looking-ahead because I think that this name is more appropriate for expressing what the
underlying algorithm really does. The basic issue about WLA is that each constraint can be
selected by the looking-ahead part at most one time. After that, only the FCIR (or normal
inference) can be applied to it. That idea is caught by the following definitions.

Definition 8 An atom p(t,,...,t,) is called WLA-checkable if

1. p is a constraint.

2. e p(ty,...,tn) is lookahead-checkable and has not been selected by the LAIR, yet, or
e p(ty,...,ta) i8 forward-checkable.

Definition 8 (WLA) Be P a program, G; = 71— Ay,..., Ak,..., A a goal and 0, a substi-
tution. G;4y ts derived by the WLA from G;, P, gy, if the following holds:

1. Ay is WLA-checkable, with z,,...,z, being the WLA variables in Ay.

2. e If Ay is lookahead-checkable and the LAIR has not been applied to Ay in the actual
proof, then goto 3.

o Otherwise set o} := o; and goto 5.

3. For each z;,e; = {v;ed;|qvni€dy,.. ,v;o1€d;_1,V;41€dj41,. . ., Va€dn with oi(AL), 0! =
{z1~v1,..,2,—v,} is a logical consequence of P} # .

4. y; is the constant ¢ if e; = {c}, or a new variable which ranges over e;, otherwise.
5. Gi=7-0l(Ar,...,Apn).

6. Git1 can be derived from G!, P, 0,41 using SLDFC resolution.

Properties of Weak Looking Ahead The main point of the above definition is point 6,
which uses SLDFC resolution, whose soundness and completeness have been proved, in order
to finish the proof after some prepruning has been done using the LAIR in a definite way. Thus,
if we want to proof soundness and completeness of the WLA, we basically have to check the
LAIR part. Since that part is involved at most one time for each goal, and since this happens
as early as possible (due to point 2 of the definition), the negative aspects of the LAIR such
as its incompleteness can be avoided. For the proof of the soundness of WLA we need the
following lemma, whose proof can be found in [van89a]

Lemma 1 Let P be a program, d = {a;,...,ar},e = {a2,...,ax}, A be an atom contain-
ing z4 as variable, Q) be a conjunction of atoms and z4,2,,...,2, be the variables appear-
ing in A and Q. Assume that Jz;...32,.A[z4—ay] is not a logical consequence of P. Then
J243z1.. .32,..(AAQ) is a logical consequence of P iff 3z.3zy.. . 3z,.(ANQ)[z4—2.] 1s a logical
consequence of P.

Theorem 4 (Soundness of WLA) Be P a program, G; be the goal 7 — Ay, ..., Ak,.. ., Am.
Ar be WLA-checkable. Let the goal Giyy be derived by WLA from G;, P,0;}1 as

Git1 = 1= 0it1(A1, .- Ak—1, Akt1y - -y Am). Gi 18 a logical consequence of P iff Giyy is a
logical consequence of P, denoted by G;y1 =p G;.
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Proof: The proof will be performed in two steps.

1. show that G; =p G..

2. show that G} =p Gi41.

Having shown that, with 1), 2) and the transitivity of =p (which can be proved easily) follows
Gi+l =p G,‘.

ad 1)

Case 1: G! is derived from G; by selecting Ay from G; with Ak is not lookahead-checkable or
A has not been selected by the LAIR in former inference steps. Then G; = G! = G, =p G'.
Case 2: G is obtained from G; by selecting an A which is lookahead-checkable and has not
yet been selected by the LAIR. Then, for each WLA-variable x;, apply lemma 1 for all values
which are included in d;, but which are not included in e;. Doing that delivers that G; is a
logical consequence of P iff o/(G;) is a logical consequence of P. Since G/ = 0}(G;), we have
G; is a logical consequence of P iff G! is a logical consequence of P. That is equivalent to
G,' =p Gﬁ.

ad 2)

Since we only use SLDFC resolution steps in order to derive Gi4, from G! (see point 6 of
the definition), it is obvious that G;=p Gi;; because of the soundness of the FCIR and of
SLDD-resolution. a

A very nice property of WLA is its completeness. This means that we can define a complete
proof procedure using weak looking ahead. This is done in the following

Definition 10 (SLDW-resolution) A first-order resolution proof procedure is called SLDW-
resolution, if it uses

o weak looking-ahead for WLA-checkable goals and

e normal SLDD-derivation for other goals

We can prove completeness of such a proof procedure by making use of the completeness of
the FCIR (see theorem 3), showing that by applying the LAIR at most once to each goal, no
solutions are lost. For this, we need the following lemma.

Lemma 2 Be G a goal, P a program, ¥ an SLDW refutation of PU{G}. If P is not lookahead-
checkable or the LAIR has been applied to G in ¥ before, then the following holds:

a) G is WLA-checkable iff G is forward-checkable.

b) G; can be derived by the WLA from PU{G} with answer substitution o iff G; can be
derived by the FCIR from PU{G} with answer substitution o.

c) There ezists an SLDW refutation ¥ of PU{G} iff there exists an SLDFC refutation ® of
PU{G}. Moreover, ¥ = &.

Proof:

ad a) By the definition of "WLA-checkable”, if G is not lookahead-checkable or the LAIR has
been applied to G before, and if G is WLA-checkable, then G must be forward-checkable and
vice versa.
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ad b) Assume G; can be derived from PU{G} by the WLA with substitution 0. By our
hypowork, G is not lookahead-checkable or the LAIR has been applied to G in a former
inference step. Then, by definition 9, point 2, a WLA derivation step corresponds exactly to a
derivation step using the FCIR for forward-checkable predicates and using normal derivation
for others. It follows directly that G; can be derived by the FCIR from PU{G} with answer
substitution o. The other direction of the equivalence can be shown analogously.

ad c) Using b), we can do the proof by induction on the number of derivation steps of the
SLDW refutation ¥ for PU{G}, showing that each application of a WLA derivation is also an
instance of an FCIR derivation step, showing that the resuiting SLDFC refutation ® of PU{G}
is equal to V. o

Now we can show the completeness of weak looking-ahead. It is expressed by the following
theorem.

Theorem 5 (Completeness of WLA) P be a logic program, G be a goal. If there erists an
SLDD refutation of PU{G}, then there also ezists an SLDW refutation of PU{G}. Moreover,
if o is the answer substitution from the SLDD-refutation of PU{G}, and p is the answer sub-
stitution from the SLDW-refutation of PU{G}, then p < 0.

Proof:

Assume G is WLA-checkable, and there exists an SLDD refutation of PU{G} with answer
substitution o.

Case 1: G is not lookahead-checkable or the LAIR has been applied to G earlier during the
derivation. Then, by the completeness of SLDFC resolution (theorem 3) there exists an SLDFC
refutation ¥ of PU{G} with answer substitution p and p<o. By our hypowork and by lemma
2.c, ¥ is also a SLDW refutation. Thus, there exists a SLDW refutation ¥ of PU{G} with
substitution p and p<o.

Case 2: G is lookahead-checkable and the LAIR has not yet been applied to G. Then, due
to the definition of WLA, the next derivation step is performed using the LAIR on G. Be
z{,...,Zn with domains dy,...,d, the lookahead variables in G, § = {2,~21,...,2,—2,} be
the substitution resulting from applying the LAIR to G. We can restrict ourselves to the
cases where the z; are either constants ¢; or domain variables z.; with e;Cd;. The answer
substitution o of the SLDD refutation of PU{G} can be considered as a suitable restriction
of é to the variables of G. Thus, it follows that there exists an SLDD refutation of PU{6(G)}
with answer substitution 8, which is the same as the SLDD refutation of PU{G} except the
original goal and the unifier.

Now, due to the completeness of the FCIR (theorem 3), there also exists an SLDFC refutation
of PU{6(G)} with answer substitution 7 and 7<#. Since the LAIR is never again used on
6(G), we can apply lemma 2.c to derive that there exists an SLDW refutation of PU{6(G)}
with substitution 7. It follows that there exists an SLDW refutation of PU{G} with answer
substitution p = §or,and p < 7. 0

WLA uses looking-ahead only one time for each predicate call, thus yielding a prepruning of
the search space. After that, control is left to SLDFC resolution, which has been shown to be
complete. Thus, a goal G; with a substitution o; is transformed by WLA into a goal G| with
a substitution o}<o;. Since

e WLA only reduces the search space and
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e WLA always uses normal inference resp. SLDFC resolution after the looking-ahead
prepruning,

for a search procedure based on SLDW-resolution the completeness result can be confirmed.

3.3.5 Consistency

The kind of consistency provided by techniques as looking-ahead is k-consistency. As we will
see later, in FIDO-II we need an additional condition in order to assert global consistency
instead of k-consistency. It will be the condition that choices are made in order to detect
inconsistencies. That means, variables have to be instantiated. Otherwise, e.g. the global
inconsistency of the constraint net shown in figure 3.3 cannot be detected. At the first glance,
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Figure 3.3: A Globally Inconsistent Constraint Net

that seems incompatible with the correctness and soundness of the FCIR. Note, however, that
none of the three constraints shown in figure 3.3 ever becomes forward-checkable unless one of
their arguments is given a value, i.e. the FCIR could not be applied to the above constraint net.
Thus, the putative incompatiblity turns out not to be one. It is a general problem with the
consistency techniques ensuring k-consistency described in this work that global consistency is
only guaranteed if all variables appearing in the constraints have been assigned a value. The
consequences of that fact for FIDO-II will be pointed out in section 6.2.5.
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FIDO-II: Concepts and
Implementation



Chapter 4

The Role of FIDO-II within the
FIDO Lab

In the FIDO lab, which has started in autumn 1990, certain approaches towards an integration
of finite domain consistency techniques into logic programming are to be examined. By that,
experience concerning the strong points and shortcomings of single approaches shall be gath-
ered. The ultimate goal, which just turns out to be visible at the horizon (but how far away
can this be ?!), is something like a CLP system working over hierarchically sorted domains.
An approach to a hierarchical CLP system is described in [BMMW89)]. This goal itself can be
considered as an intermediate result of FIDO, because when we started from scratch almost a
year ago, the direction to go was not so clear. But let me stop here, referring to chapter 8 for
a more detailed description of the results.

Up to now, FIDO is divided into three approaches, which are very loosely coupled. These are

¢ the meta-interpretation approach (FIDO-I).
¢ the horizontal compilation approach (FIDO-II), which is decribed in this work.
o the vertical compilation approach (FIDO-III).

In the following, I should like to give a short presentation of the two other approaches, FIDO-I
and FIDO-IIL.

4.1 The Meta-interpretation Approach

This approach ([Sch91]) is essentially based upon [Hol90b]. SEPIA is enhanced by forward-
checking, using extended unification and meta-interpretation. A most important notion in this
context is the one of meta-terms and meta-variables:

Applying the definition of domain variable unification as specified in chapter 3 to domain
variables in PROLOG implies a problem, since it is actually not possible to reassign values to
logic variables. The way chosen here to escape from that problem is to make use of open data
structures together with a backtracking mechanism. Meta-terms as introduced in [Hol90a] are
such open data structures. A variable can be bound to a meta-term consisting of a reference
to the variable itself (i.e. a new variable which is bound to a unique value iff the variable itself
is to be bound to that value), furthermore of an open data structure whose last non-ground
element incorporates the actual state of the variable (respectively of its domain), and of a list
of references to all constraints the variable appears in.

Domain variable unification and constraint propagation will be handled by meta-interpretation.

;
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4.1.1 Domain Variable Unification

If two meta-variables X and Y are to be unified, a meta-unifying routine picks up the actual
variable states from the meta-terms X,,.¢q and Yi,etq representing X resp. Y. The intersection
of the two domains is computed and added to the meta-terms as new current variable state. If
this causes the domains to become singleton, the singleton value is assigned to the variables.
The unification between a domain variable and a normal variable or a constant is handled

similarly. For a more detailed discussion of this, especially as regards domain representation,
see [Sch91, Hol90b].

4.1.2 Achieving Forward-Checking Control

Corresponding to the definition of the forward-checking inference rule (see chapter 3), a forward
call to a constraint has to be delayed if the constraint is not forward-checkable, i. e. not
sufficiently instantiated. Later on, if all constraint variables up to one (which must be a
domain variable) have received a value, the constraint will be resumed and executed. This
behaviour is obtained by storing constraints that are not forward-checkable in a constraint list.
At the same time, with each variable submitted to a constraint, a reference to this constraint
is stored. Thus, every time a variable is instantiated (or released again on backtracking),
the constraints concerning this variable are reconsidered and executed or resuspended!. The
process of reconsidering constraints is an interesting topic itself: doing it in an unsmart manner
induces a lot of redundant work by testing all constraint variables, even if only the value of a
single variable has actually changed. A more detailed discussion of this problem and a proposal
for its solution can be found in [Hei91].

4.1.3 Results

Using FIDO-I, some of the most known benchmark applications could be formulated and solved,
such as N queens, 5 houses and various puzzles. However, reading the short system description
above should have caused a light feeling of unease, for the implementation of domain variable
unification and control via meta-interpretation let us expect a poor efficiency behaviour of
FIDO-I, compared to systems as those described e.g. in [Col87b, DvHS*88, JL87, Vod88].
Unfortunately (or should I rather say: fortunately?) this was exactly what happened. The
system turned out to be relatively slow. Computing a solution of the N queens problem for
example was a hard trial of the user’s patience for N > 12. For exact performance data, I refer
to the applications in chapter 7.

But, nevertheless, it has been a first step, providing us with essential experience needed for
our further proceeding.

4.1.4 What We Have Actually Learned from FIDO-I

The main point responsible for the relatively poor performance of the system has doubtlessly
been the high overhead needed on one hand for handling control, on the other for domain
variable unification and domain access. Surely, the performance of the system could be im-
proved up to a certain grade by a more sophisticated representation and implementation. But,
essentially, the problem is a general one. It is a refresh of the well known fact that, the higher
the level of abstraction is, the poorer performance tends to be.

lif execution is not possible
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Thus, the conclusion we had to draw was to shift the main system elements described above to
deeper system layers. Our hope was that a deeper integration of domain handling and control
would pay off - and up to now, this hope seems to verify.

Therefore, we decided to start two further, more elaborate approaches: A horizontal compila-
tion approach (FIDO-II), which is described in this work, and a vertical compilation approach
(FIDO-III) [Hei91].

4.2 The Vertical Compilation Approach

The results delivered by FIDO-I and FIDO-II brought to daylight that constraint systems
based upon an existing PROLOG and written in PROLOG can hardly compete with deeply
integrated systems such as e.g. [JL87, DvHS*88| for more complex real-world problems. There-
fore, an integration of finite domain consistency techniques into the WAM [War83] seems to be
a promising way, keeping the advantages of PROLOG such as declarativity, nondeterminism,
dual semantics and relationality on one hand, and avoiding too much overhead on the other.
Thus, the main idea of FIDO-III is to compile finite domain constraints vertically into a WAM
architecture, extending the basic WAM data structures and using a freeze-like control scheme
[Car87].

The two major ingredients to be implemented here are a mechanism for the advanced con-
trol strategies (forward-checking and looking-ahead) and an extension of the WAM unification
routine which can cope with domain unification. This leads to a set of new WAM instructions
specific to domain variables.

This topic is just worked on in our group. A brief sketch of the current state of the work can
be found in [MHM91].



Chapter 5

A Domain Concept for FIDO-II

Together with chapter 6, this chapter can be looked upon as the heart of the master work.
Based upon the foundations laid up to now, I will give an overview of FIDO-IL In this chapter,
the realization of a domain concept is described, which we need in order to introduce variables
ranging over finite domains. After having a general view at conceptual and implementation
issues concerning domains in logic programming, the actual realization of a domain concept in
FIDO-II is described. Finally, an alternative possibility of representation is shortly discussed,
which is based on a new feature of SEPIA PROLOG, the meta-terms.

5.1 A General View on a Domain Concept

In this subchapter, the first important concept of FIDO-II shall be presented. We will see
how domains can be integrated into PROLOG, enabling us to process variables ranging over
finite domains. First, we will discuss the requirements on a domain concept and the design
alternatives resulting from these. Thereafter, the concept finally implemented in FIDO-II is
presented.

5.1.1 Motivation

PROLOG logical variables range over the Herbrand universe, which is the domain of the
ground instances of terms. The only means to handle (or manipulate) these variables in stan-
dard PROLOG is by unification. However, unification can be looked upon as a very special
instance of constraint solving, since it involves substitution, and since each substitution can
be viewed as a destructive step for solving the (syntactical) equality constraint. Particularly,
unification provides no means to handle the domains in an a priori manner. The search strate-
gies supported are standard backtracking and generate & test as described in chapter 2.
What we want is an a priori use of constraints (as a generalization of the unification notion),
thus yielding an early and effective restriction of the search space. Therefore, the logic pro-
gramming scheme shall be enhanced by a domain concept:

e To each variable, a finite domain is attached which can be specified by the program-
mer. The possibility of accessing domain elements and restricting the domains shall be
provided.

e In a second step, which is pointed out in the next subchapter (6), we will show how these
dcmains are processed: unification will be generalized to solving constraints. An advanced
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| N || # Domain Accesses?

4 24
8 473
12 1323
16 493
32 1635
48 3904

Table 5.1: Number of Domain Accesses for the N Queens Problem

control strategy will be introduced, which is capable to access domains directly and
manipulate them. Thus, inconsistent values can be eliminated early from the domains,
leading to a soon detection of failure without doing a lot of backtracking beforehand.

The idea of using domains for variables in logic programming is not new. It can be found
in mathematical logic [End72], in automatic theorem proving [MM77a, MM77b, Coh83], in
unification theory [Wal84a, Wal84b] and in systems for knowledge representation [BFL83].
The LOGIN system [AkN86] has introduced this idea for logic programming. What is new in
the CLP approach is that the domains contribute to an a priori pruning instead of being used
statically during unification. This is why the use of domains described here differs substantially
from the approaches above.

5.1.2 Requirements on a Domain Concept

Introducing domains for logic variables obviously implies a certain overhead. Each time a vari-
able is involved in an action, 1.e. it appears as an argument of a constraint, the domain has to
be accessed in order to lookup for values satisfying the constraint, simultaneously eliminating
inconsistent values from the domain. After each manipulation of a domain, it must be tested
whether it has become singleton. In this case, the remaining value will be assigned to the
variable.

It is important to become aware of the fact that domain access can turn out to be a bottleneck,
whose efficient realization greatly determines the performance of a finite domain CLP system,
since this kind of variable manipulation is a very fundamental operation here (whose impor-
tance is well comparable to PROLOG unification). Table 5.1 shows the number of domain
accesses for a forward-checking version of finding the first solution to the N queens problem
for several N, thus trying to give the feel for how often domains are accessed even in relatively

small programs®.

Thus, the main requirements on a domain concept can be summarized as follows:

e Fast, if possible direct access to single domain elements.
¢ Efficient representation of "valid” and ”invalid” domain elements.

e Structural knowledge about domains should be used if available in order to speed up
search.

o Fast initialization (construction) of domains, if possible at compile time.

'The statistics was created using the SEPIA statistics facility.
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¢ Support to the domain variable intersection operation.
e Easy undoing of operations on the domains?.
¢ Preserving the clear and dual PROLOG semantics.

¢ Simple and declarative syntax.

¢ Hiding internal details from the point of view of the user as much as possible.

In a more general framework and for future extensions of the system, additional requirements
could be thought of, such as

¢ Dynamic modifiability and extendibility of domains.

e Support of the representation of hierarchical taxonomic knowledge, e.g. coupling with a
KL-ONE like representation language.

¢ Connection to a database system.

Let us now have a look at the alternatives which be chosen in order to satisfy the requirements
listed above, before we will describe how domains are actually integrated in FIDO-IL I will
not say much about the three last points I called additional requirements. These points are
not taken into consideration in this work (neither they are in the FIDO lab). They could be,
however, worth some reflection for the future work.

5.1.3 Domain Representations

The most important decision on the design, which influences all other points mentioned above,
consists of choosing an appropriate domain representation. This especially affects the possi-
bilities of an efficient access to domain elements. In the following, I will specify what a good
solution looks like in order to being able to classify the quality of the representation chosen
in FIDO-II. For that, some alternatives are to be described w.r.t. the way they support the
requirements listed above.

5.1.3.1 Domain Representation as General Lists

Representing a domain simply as a list of its elements is an alternative which can be achieved
very simply. The language PROLOG offers features supporting elegant list processing, which
are even extended if special PROLOG hardware is available. Thus, efficient sequential access
to domain elements is guaranteed.

But, in our context, we often need the capability of directly accessing domain elements. Con-
sider e.g. a forward-checking use of the #/2 constraint. Assume there is a constraint of the
form X #Y | X and Y being domain variables.

Assume that Y has become ground and instantiated with the value 2. X be a domain variable
ranging over the domain {1,2,3}. Since Y is ground, the constraint has become forward-
checkable (see chapter 3) and it can be executed. Here, it has to be tested whether the domain
(in the example the domain of X) contains a special value (the value 2). Obviously, a sequen-
tial search through the domains happens to be quite inefficient, since, in general, finding an

3This can be described by the nice word ”backtrackability”.
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element in a domain containing N elements requires an average of N /2 tests. In worst case,
the whole domain has to be scanned. Especially for bigger domains, direct access (or at least
binary search) would lead to a remarkable improvement in efficiency.

5.1.3.2 Domain Representation as Ordered Lists

This representation, which is a special case of the general list representation, allows the use of
binary search methods, having to test In N elements in the worst case in order to find the one
desired (or to fail). Besides, it can be very useful for handling constraints relating to intervals,
such as the > and < constraints. The disadvantages of this representation, however, are the
overhead induced by creating and maintaining the ordered lists and the lack of flexibility of
the concept w.r.t. dynamic changes within domains. Moreover, a domain can be physically
ordered only by one criterion, which also contributes to the inflexibility of the concept. Using
PROLOG as representation language in this context, even an order on the domain elements
does not provide direct access, because PROLOG lists can only be processed in a sequential
manner.

5.1.3.3 Using Trees for Representing Domains

An adequate means to guarantee efficient access to domain elements is the use of tree structures.
In PROLOG, trees can be represented recursively as uninterpreted functors whose arguments
form the subtrees [CM81, Bra86, SS86]. The use of sort and search trees for data storage
and retrieval is well understood and has been a research topic for a long time in the field of
database systems[H87]%. The tree structures used most frequently are

¢ Binary trees
¢ Digital trees

e B and B” trees.

The use of binary trees is described in [Wir75, Knu75, Nie74]. A more theoretic approach
can be found in [Meh75]. Digital trees are discussed in [Mor68, HB78]. The use of B and B*
trees[BM72, Wed74], which enforce good flexibility w.r.t. semantic search criteria by overlay-
ing several access paths over a data set, seems to pay off only for big domains (as found in
database systems), which, in particular, cannot be kept in the main storage and have to be
held on secondary storage media. The access (paging) is managed by a sophisticated buffer
administration.

In most CLP applications, i.e. discrete combinatorical problems, domain sizes are relatively
small, i.e. they will hardly exceed some 100 elements, so that the overhead caused by these
methods will probably not pay off. This is the reason why we can restrict ourselves here to
considering sorted binary trees. Using these tree structures in order to speed up search might
surely be a promising approach, especially if domains are static, i.e. the trees representing
domains can be built once and for all during compile time. The main problems with binary
trees is on the one hand their low fan-out, on the other it is quite difficult to keep the trees
balanced [Knu75]. Especially if domains are created dynamically, this causes remarkable cost.
That is the reason why binary trees are commonly not used in database systems.

*In database systems, the leaves of these trees normally consist of pointers to whole pages, not to single data
entries, since in this area, one has to face the necessity of secondary storage access.
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5.1.3.4 Using Hashing Methods

The use of hash techniques in order to facilitate direct access is commonly considered as a
good approach w.r.t. efficiency and implementation effort [ML75, Fag79, Cha81]. Doubtlessly,
if only direct access is needed, hashing is about to be nearly optimal. But, there are two
shortcomings of using hashing algorithms for data storage and retrieval:

¢ The problem of finding a good hashing function, which guarantees an equi-distribution of
domain elements into hash classes for arbitrary domains. There is no general solution for
this problem up to now, although, as shown in [H87], there exist some standard methods
which gain good results in most cases.

e For each domain element, the hash adress must be computed every time it is accessed.
This makes hashing inefficient once sequential access to data elements is required.

5.1.4 Classifying Valid and Invalid Domain Values

An important feature of FIDO-II (and so of all CLP systems) is its ability to prune the search
space in an a priori manner by eliminating values from the domains. Sometimes, if assumptions
made before turn out to be wrong (i.e. they fail), the elimination of values which were based
upon these assumptions has to be revised and the elements deleted before have to be restored.
Therefore, we must find an appropriate representation of validity and invalidity of data ele-
ments, which must be

¢ easy to check
and which has to
¢ allow easy revising of changes made beforehand.

Obtaining that by explicitly deleting data elements is certainly no good idea. Especially if we
use sophisticated data structures such as ordered lists or even trees for domains, the process of
revising a change, i.e. re-inserting an element in its old place, can cause an unbearable overhead
which can result in rebalancing the complete tree structure.

Another idea, which is proposed in [dSPRB90], is to make use of the PROLOG backtracking
facilities by adding a valid/invalid flag to each domain element. This can be achieved by
a variable which is instantiated once the element is deleted. The main advantages of this
technique are:

¢ Since value and flag are stored together, once you have found the domain value, you get
the flag for free, without any further search.

e The process of revising modifications can simply be left to the PROLOG backtracking
mechanism.

5.2 Bringing about Domains in FIDO-II

Starting from the considerations made in paragraph 5.1, I will now point out how domains are
integrated in the implementation of FIDO-II.

5This can be the case in our field, i.e. for the domain variable singleton test.
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5.2.1 Domain Variables in FIDO-II

In this paragraph, I describe the representation of domain variables ranging over finite domains.
To each logic variable that is bound to be used as a domain variable, a finite domain must be
attached. The realization of this link can be carried out in several ways. In particular, a global
or a local approach can be chosen.

¢ Global link: Here we could think of a global table with an entry for each domain
variable. This entry can either be the domain itself or it can be a pointer to the domain.

e Local link: In this case we should use a data structure which physically combines the
variable with its domain.

In FIDO-II a local approach has been preferred, since it avoids the search in the global table,
which would have been a very frequent operation otherwise. A FIDO-II domain variable is a
compound data structure, which is internally represented as follows:

Definition 11 (FIDO-II Domain Variables) A domain variable X is a siztuple

X = (8, Idx, Lengthyx, Constraintsx, Valx, Domy ),

where Idy, Lengthx, Constraintsyx, Valy, Domyx are variables.

The components of a domain variable X are described in the following:

e Its first argument, the ampersand, is a flag used to identify the sixtuple as a domain
variable.

e Idy is an atom denoting the unique identifier of the domain of the variableS.

e Valy actually incorporates the value of variable X. As long as Valy is unbound, X is
considered to be unbound. The value Valy is finally bound to denotes the actual value
of X.

¢ Domy carries the domain of X. A detailed discussion of domains in general and of the
concrete structure of Domy in special can be found in the following chapter 5.1.3. Note,
however, that it is a very cheap operation to access a variables domain if the variable is
given, namely a simple variable reference. This is an important advantage of the local
representation of domains in FIDO-II.

o Lengthy is an open list whose last nonground element is interpreted as the actual number
of valid domain elements, thus it represents the actual domain length. This information
is needed for an efficient implementation of the singleton test (see chapter 6.2.3) on one
hand, and it can be used for a first fail heuristics as regards variable instantiation order
(see chapter 6.5).

8which must have been introduced before together with the variable itself by using the define.domain/3
predicate.
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e Finally, Constraintsx shall contain the actual number of constraints a variable appears
in. It shall also be implemented as an open list as it is described for Lengthyx. The
number of constraints can be used for another variant of a first fail heuristics.

As regards the Constraintsy variable, I would like to mention that this is not supported by
the current prototype implementation. In the initialization phase, Constraintsx is simply set
to the open list [0|_] and ignored for further computation. However, I kept it in its place since
this facilitates a later integration of a mechanism keeping track of the number of constraints
for each domain variable, without having to change the internal integration representation
of domain variables. Since many internal procedures refer to the actual structure of domain
variables, such a change would cause great cost and a great deal of debugging, because all
these procedures would have to be adapted to the new domain variable representation.
During the rest of the work, when I refer to domain variables and so to their components, [
will use the names defined here, i.e. Valy for the value of a variable X, Domy for its domain
and so on.

5.2.2 The User’s View on Domains
From the Users’ point of view, in FIDO-II, domains have to be declared locally by a
define_domain(DomainID, VarSpec, DomSpec)

declaration. DomainIDis a PROLOG atom identifying the domain. It can be useful in order to
increase efficiency of some operations on domain variables. Each domain variable carries the
identifier of its domain. Thus, e.g. the unification of two variables sharing the same domain can
be implemented in a simple but efficient manner, since it can be reduced to standard PROLOG
unification once it is known that the variables have the same domain. This, in change, can be
detected very easily using the identifiers’.

The second argument, VarSpec gives a definition of the domain variables used in the clause
containing the define_domain call. VarSpec can be either

o A list of variables, which will be treated as domain variables by the preprocessor, or

o A predicate call of the form gen_var(N, L), which is a FIDO library predicate creating
a list L of N new domain variables, where N has to be an integer. In particular, N can
receive its value at run-time, thus facilitating dynamic domain declarations.

This way, it is possible to formulate e.g. a program for N queens with arbitrary N, as it
is shown in figure 5.1.

The third argument of define_domain / 3, which is DomSpec, specifies the way the domain
actually looks like. It can be of one of the following three forms:

1. A list of PROLOG ground terms, e.g. integers, atoms, strings. This offers a convenient
way to express smaller domains simply by enumerating their elements.

2. An expression of the form n..m, where .. / 2 is a FIDO-II operator which denotes the
closed integer interval [N, M] ranging from the integer N to the integer M. N must be
smaller or equal than M, else an error is raised.

A more serious problem arises if domains are not syntactically, but semantically equal. This will be discussed
later on.
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3. For reasons of convenience, user defined predicates are allowed in order to describe do-
mains. If e.g. a programmer wants to create the domain of all prime numbers less than
1000, an explicit enumeration of this domain would be quite an awkward work. Instead,
the user can write a PROLOG procedure computing the list Primes of prime num-
bers, for example with the call erastothenes(Primes, 1, 1000), add the definition
of erastothenes / 3 to the program and write the procedure call as third argument
into his domain definition. This is what happens in example 5.1, where the user-defined
predicate gen_int_dom / 3 creates an integer domain.

Here, some cautionary remarks should be made on the points 2 and 3:
Using the format N ..M for specifying domains, one should pay attention to the following:

e The operator ../2 may only be used in define_domain / 3 declarations.

¢ N and M are not allowed to be variables, but must be integers.

Concerning domain generation by user-defined predicates, it has to be paid attention to two
conventions:

e The first argument of the user-defined procedure must contain the list of domain elements
resulting from the call. An arbitrary number of arguments may follow.

e The procedure creating the domain must be known to the PROLOG system at run time

n_queens(N, L) :-
define_domain(queens, gen_var(N, L), gen_int_dom(D, 1, N)),
safe(L),
instantiate(L). \# instantiate variables =\

Figure 5.1: Example: Top Level Definition of General N Queens Problem

5.2.3 An Example for the Use of define domain / 3

In this short paragraph, certain ways of representing one problem are shown. Example 5.3
describes three equivalent manners of writing down the definition of a domain for the four
queens domain, which contains the elements {1,2,3,4}.

The first is by explicitly enumerating the domain elements, the second by defining the respective
integer subset and the third is by using a self-defined predicate gen_int_dom / 3 in order to

create the list of domain elements. gen_int_dom / 3 itself is implemented as shown in figure
5.2.3.

Although being semantically equivalent, the use of different domain declaration formulations
provides to the system different additional information. This can lead to differences concerning
efficiency of operations executed on the domains, e.g. the way a forward-checking algorithm
accesses domain elements. A more detailed discussion of this fact can be found in the following
chapter 5.2.4.
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\* gen_int_dom(D, N, M) succeeds if D is the lists of integers from N to M »\

gen_int_dom([], N, M) :-

N>"N, \* stop condition =\
1

gen_int_dom([NIT], N, M) :-
N =< N,
N1 is N + 1,
gen_int_dom(T, N1, M).

Figure 5.2: Example of a User Defined Predicate Creating a Domain

queens ([X1, X2, X3, X41) :-
define_domain(queens, [X1,X2,X3,X4]1, (1, 2, 3, 41),

queens([X1, X2, X3, X4]) :-
define_domain(queens, [X1, X2, X3, X41, 1..4),

queens ([X1, X2, X3, X41) :-
define_domain(queens, [X1, X2, X3, X4], gen_int_dom(D, 1, 4)),

Figure 5.3: Example: Different Possibilities to Formulate a Domain Definition

5.2.4 Using Domain Specific Information

As we will see in chapter 6.2.2, the efficiency of consistency algorithms for constraint prop-
agation on finite domains crucially depends on the knowledge available about the structure
of the specific domains. Thus, e.g. information about orderings on domains can be exploited
for some constraints, e.g. the < and the > constraint. Besides ordering information (is the
domain ascendingly or descendingly ordered?), knowledge about the actual domain length or
about the possibility to compute the adress of single domain elements to provide direct access
to them (which depends from the way the domain is stored and from the domain itself)® can
be used.

This information can be gained quite simply if the contents of the domain are known at
compile-time. It is, however, more difficult once we allow dynamic domain definitions, as can
be achieved by user-defined predicates creating the domains in FIDO-II (see chapter 5.2.2).
In this case, at compile-time, the system does not know anything about the domains. Thus,
an examination of the domain structure has to be performed at run-time, slowing down the
system. Otherwise, advanced domain-specific access methods cannott be used, slowing down
the system, too.

In any case, it would be of great advantage if additional information (e.g. concerning domain
ordering) could be formulated and added to the program by the user.

In the current prototype implementation of FIDO-II, a restricted possibility to do so is pro-

8¢.g. for integer subset domains stored as ordered lists, the offset of each domain value is computable. This
will be used in the prototype implementation
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vided. The programmer can formulate a fact domain_order(Domain_Id, Order, Offset,
Length), which is handled as a declaration. The arguments are explained in the following:

e Domain_Id denotes the identifier of the domain to which the declaration refers.

¢ Order can be either asc for ascendingly ordered domain or desc for descendingly ordered
domain w.r.t. an arbitrary order intended by the user.

e Offset can be either variable, or it can be an integer, which denotes the integer offset of
each domain value in the domain Domain_Id. If it is variable, it is ignored by FIDO.

¢ Length: This variable can be given the length of the domain. This is only required if
the domain is created by a user-defined predicate. Otherwise, or if the value is variable,
it is ignored by the system.

If any arguments of domain_order /4 are left uninstantiated, FIDO-II treats them as unknown.
If no declaration at all is added for a domain, the system assumes worst-case, which means
sequential search within the domain. However, there is an important exception from this:
Domains declared as an integer interval by a domain specification of the form N ..M are rep-
resented and treated as ascendingly ordered, and the offset O of a domain element D; can be
computed as & = D; — N + 1. This facilitates a direct access to domain elements. In order
to give a feel for the consequences of that, table 5.4 compares the run-time for the N queens
program using a domain description of the form 1..M with the run-time for the program
obtained by creating the domain with the help of the user-defined predicate gen_int_dom / 3
as defined in chapter 5.2.3.

| N [ Specialized Decl.(S) | General Decl.(G) | S/ G |

4 0.07 0.07 1.0
8 0.53 1.12 0.47
12 2.23 4.18 0.53
16 0.83 2.08 0.39
32 3.52 12.35 0.29
48 10.2 59.0 0.17

Figure 5.4: Runtime of N Queens Depending on Domain Declaration

Obviously, using domain specific information for the algorithms accessing the domains yields a
remarkable improvement in run-time performance. However, it should be mentioned that the
considerable difference in performance appearing here is nothing more than a shortcoming of
the actual prototype implementation, since it goes against the paradigm of data independence:
Actually, (e.g. as it is the case in declarative data base queries (for example, SQL)) the perfor-
mance (answering time) of the system should be largely independent from the way the problem
(here: the domains, in database systems: the query) is formulated®. A thorough discussion of
the notion of data independence can be found in [H87).

A more sophisticated implementation of FIDO should nivellate these differences in perfor-
mance caused by using different, but semantically equivalent domain definitions. This could
be achieved by an extended program analysis during precompilation, or, if this is not possible,
at run-time (which, however, causes some overhead).

®This could also be looked upon as a further instance of the declarativity / procedurality competition.
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5.2.5 Internal Realization of Domains in FIDO-I1

After weighing the points mentioned in chapter 5.1.3 and chapter 5.1.4, and after experimenting
a bit with some representationsof domains, I decided to use a mixture between tree and list
representation for domains, classifying valid from invalid domain elements by a flag.

A domain dom with N elements is represented as a flat uninterpreted functor, say fy,m with
N arguments Argy,..., Argn. Each argument Arg; ,1 < ¢ < N, consists of a 2-tuple (Val;,
Flag;), where Val; is a ground PROLOG term denoting the actual domain element. Flag;
is a variable which is instantiated to 0 if the element Val; is eliminated from the domain.
Since to each variable its domain is physically attached, the possibility of undoing the flag
instantiations on backtracking is guaranteed. Thus, domain restrictions based on assumptions
that have turned out to be inconsistent with the current state of the constraint net can be
undone.

Since domains have the form of uninterpreted functors, domain elements can be directly ac-
cessed using the PROLOG arg / 3 built-in predicate, provided that their position within the
domain (their adress) can be easily computed (see chapter 5.2.4). Figure 5.5 shows the internal
representation of sequential lists and general N-ary functors on the PROLOG heap, giving a
feel for the qualitative differences as regards access to single elements of these data-structures.
Moreover, by iterating arg / 3 over the domain length, a sequential access is possible, which
is certainly slower than sequential access via lists, since the current argument counter has to
be incremented once for each domain value, which involves an arithmetic operation. However,
due to the flat structure of domains, deeper recursion!® can be avoided. Thus the overhead
will not exceed a constant factor here, making the trade-off between having fast sequential and
direct access to domains still reasonable. Certainly, we cannot claim that the representation
chosen in FIDO-II is always superior to a list representation, but, in many cases, the advantage
of cheap direct access seems to be worth the aditional cost for sequential domain traversal.

5.2.6 Concluding Remarks

In this subchapter, we have seen how domains are brought about in FIDO. I will finish with
some concluding words. First, I would like to add just a few remarks on the use of the
define_domain / 3 predicate for defining domains:

This predicate is used in the clauses where domain variables are desired. Certainly, as the
application examples in chapter 7 show, each domain has to be declared only once for the use
within a program, i.e. in the top level clause of this program. However you should be careful of
using programs providing recursive calls to procedures containing define_domain goals, since
every call to this predicate will create the domain from scratch, thus, destroying currently
existing versions of it.

Note also that the domain definitions are local ones, i.e. they are valid only within the clause
containing them. Defining a domain with the same domain identifier twice within differ-
ent clauses may lead to problems, since only the most recent domain definition will survive.
Therefore, for different domains, different names should be used.

As I said above, FIDO-II uses local domain definitions, whereas CHIP e.g. describes domains
by global declarations. The local solution has the advantage of allowing an explicit identifi-
cation of the domain variables appearing within a program. This is avoided in CHIP, since
global variables are not really compatible with pure PROLOG semantics. It is my opinion

%that would be necessary if general tree structures were used.
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Figure 5.5: Example: Representation of Lists (a) and Functors (b) on the PROLOG Heap

that the local definitions contribute to an easier understanding of the operational program
behaviour (you see where the domain variables appear and what happens to them), preserving
the standard PROLOG semantics. Especially, in clauses that don’t use the domain extensions
no overhead for a global lookup is required.
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5.3 SEPIA Meta-terms: a Simpler Way of Maintaining Do-
main Variables

Since version 3.0.16 [SEP91], SEPIA PROLOG offers a feature by which a more convenient
(and maybe also more efficient) implementation of domains and their maintenance can be
achieved. This is the data structure of meta-termas. In this paragraph, [ will briefly describe
the general idea of this feature, and some considerations towards an implementation of domains
using meta-terms will be made.

5.3.1 Meta-terms

Unification is the kernel of each PROLOG system. Up to now, in SEPIA, it had been the only
part of the system that could not be modified.

This is remedied in the current SEPIA version 3.0.16 by the implementation of a new data
type, meta-terms. By using meta-terms, the programmer can define new generic types and
data-structures, and, what is even more important in our case, he can specify how they should
be treated by the system (i.e. by built-in predicates). That way, unification of domain variables
can be redefined. .

From a logical point of view, a meta-term is considered as a variable. The difference to "normal”
variables is that an attribute can be associated with the variable. This attribute can be any
PROLOG term. Whenever the PROLOG machine encouters a meta-term, an event is raised
which depends on the type of operation to be performed on the meta-term. These events can
be redefined by the user. Thus, we have a facility of controlling the operations on meta-terms
performed by the system. That particularly provides us with a hook for unification, i.e. an
opportunity to recognize and modify it. For a more detailed description of meta-terms, I refer
to the SEPIA 3.0.16 user manual [SEP91].

5.3.2 Using Meta-terms in FIDO-II

The possibility of attaching an attribute to a variable can be very useful for the implementation
of domain variables ranging over finite domains. As I showed in chapter 5.2.1, a FIDO domain
variable is represented as an explicit sixtuple containing the information needed to maintain the
domain variables. According to section 6.2.5.1, the fact that these variables are not considered
as variables by the underlying PROLOG system, leads to problems as regards domain variable
unification. This is particularly true for implicit unification caused by unifying clause heads.

Since meta-terms are recognized and handled as variables by the system, they offer a way to
maintain domain variables in a deper system layer, leading to more consistent and efficient
performance. Example 5.6 shows how domain variable unification can be implemented using
SEPIA meta-terms for the case of two domain variables to be unified. Event 10 is raised if
two meta-terms are unified, i.e. if the predicate = /2 is applied (implicitly or explicitly) to
meta-terms. The handler of this event is set to the predicate dv_unify /2.

Note that the singleton test becomes very simple in the above example. Backtrackability
is guaranteed without having to use flags in order to remove domain elements. Thus, all
the problems I had to face due to the explicit domain variable representation in FIDO can
be avoided. This allows a more elegant implementation that, however, requires much less
programming effort. Since domain variable unification can be left to built-in predicates, I
suppose that a system based upon meta-terms could even run a little faster than it actually
does.
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?7- set_error_handler(10, dv_unify / 2).

dv_unify(X, Y) :-

meta_term(X, DomX), \»

meta_term(Y, DomY), \*
intersection(DomX, DomY, DomZ), \=»
(
if \»
DomZ = [Val]
then \»
meta_bind(X, Val), \*
meta_bind(Y, Val) \»
else \=*

meta_term(Z, Dom2),
meta_bind(X, 2),
meta_bind(Y, Z)

\=*
\*»
\*»

both X and Y are *\
domain variables *\
compute domain intersection *\

intersection singleton? =\

yes! =\
bind X and Y to the \=»

singleton value s\
no! =\
create new variable ranging over =\
the intersection of X and Y and »\
bind X, Y to that new variable =\

Figure 5.6: Implementing Domain Variable Unification Using SEPIA Meta-terms

The problems I see are mainly the lacking experience concerning the stability of the system
and the generalization of the algorithms for arbitrary constraints. It would be necessary to
have a closer look at these issues when starting to implement domain variables based upon

meta-terms.



Chapter 6

The Integration of Control

In this chapter, I would like to describe how an advanced (forward-checking or looking-ahead)
control can be achieved in FIDO-II. After having a closer look at "constraints” in FIDO-II,
the implementation of consistency techniques will be discussed.

After that, the static structure and the dynamic behaviour of the FIDO-II preprocessor will
be outlined. In a further subchapter, I will show some problems revealing limitations of the
approach, joined with a short outlook.

6.1 Motivation

A major goal of logic programming research is to build systems that will efficiently solve prob-
lems stated in a convenient, declarative way. The words efficiently and declarative turned out
to be quite antagonistic, symbolizing the well-known gap between the paradigms of procedu-
rality and declarativity. That has been initiated by the famous paper of Winograd [Win75].
Both these research paradigms have gathered large communities around them. A nice recent
summary of this topic can be found in [RB91].

But what is the actual reason for this struggle? Formulating tasks in a declarative way is
certainly a good thing, because it is much more convenient! to formulate a problem by simply
writing what shall actually be done than by describing how it is to be performed.

But, unfortunately, executing a problem is a different kettle of fish, because the machine cer-
tainly has to know how a problem shall be solved. As experience with logic programming
languages shows, direct transformation of declaratively formulated programs into machine
code (e.g. using SLD resolution as done by PROLOG) turns out to be of a latent inefficiency.
In my opinion, approaches which provide special machine architectures for special declarative
languages as PROLOG, trying to force the machine to 'think’ in declarative structures, start
at the wrong end. So why shouldn’t we write programs in a declarative style, but execute
them following the procedural paradigm, charging the machine with the task of finding the
best (or at least a good) algorithm for solving the problem? A fact that fortifies this belief is
that one of the fastest recent PROLOG systems designed and implemented by Taylor [Tay91]
essentially relies on a preprocessing phase based on global analysis and program transforma-
tion. This means finding out what the user actually wants and reformulating it in a way which
is appropriate to the actual machine (which is a general purpose RISC machine in Taylor’s
approach).

For me, the key to close the gap between declarative formulation and procedural execution
seems to be a compilation mechanism, which solves the 'how? question in an intelligent (why

'and reduces the probability of making mistakes, as well
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not procedural?) way starting with information about the 'what?.?

A crucial point in this context is the choice of appropriate, intelligent control strategies. In this
chapter, we will see how that can be achieved for PROLOG using a coroutining mechanism.
I will refer to the motivation and the definition of the relevant notions such as constraints,
forward-checking, and looking-ahead given in the previous chapters 1, 3.

6.2 Constraints in FIDO-II

As we saw in chapter 3, the definition of a constraint is a very general one. Doubtlessly, this
generality should be reflected by an implementation. Seen from a more practical point of view,
however, some constraints happen to be more important than others. These frequently used
constraints are e.g. constraints expressing various equality relations (subsuming PROLOG uni-
fication - what a mighty concept!), inequality, arithmetic constraints and constraints referring
to set orders, such as >, <, =< or >=. The efficient implementation of these constraints,
strictly speaking of the effects of their execution on the domains of the variables involved is
very important for a satisfactory performance of the system.

6.2.1 Classifying Constraints

There are various ways of classifying constraints. In [van89a], a classification in terms of
elementary and composite constraints is proposed. Van Hentenryck also introduces a distinction
of constraints depending on how they are used, i.e. whether as tests or as choices. In this work
I made a different distinction which is motivated by the pragmatic separation between more
important and less important constraints mentioned above. I introduced two general types of
constraints as they appear from the perspective of the system. The first type is called built-in
constraints, the second type user-defined constraints. Both types will be described in the
following.

6.2.1.1 Built-in Constraints

Basically, there exist a great number of constraints worth being implemented in a particularly
efficient manner, i.e. as built-in constraints. To these belong various arithmetic constraints, e.g.
plus / 3, times / 3, but also comparison constraints, which include various forms of equality
and the ordering relations. Besides, other constraints as e.g. min / 3, max / 3 which find
the minimum resp. maximum of two elements or the element / 3 constraint which, spoken
procedurally, computes the Nth element of a list, can be considered worth a support by the
system, since they are used quite frequently. In a few words, the list could be extended almost
infinitely.

In the current prototype implementation of FIDO-II, I restricted the number of built-in con-
straints to six. Built-in constraints are

e equality constraints:

- the unifiability constraint = /2

— the numeric equality constraint =:= /2

2 Amen!
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¢ inequality constraints:

— the non-unifiability constraint \ = /2

— the numeric inequality constraint =\= /2
o ordering constraints:

— the greater-than constraint > /2

— the less-than constraint < /2

[ made that choice, because many other constraints can be reformulated in terms of these
constraints® For the built-in constraints, specialized versions of forward-checking (and for some
of them for weak looking-ahead, too) are implemented, trying to increase performance for
programs using the built-ins.

A more detailed discussion of this topic can be read later in this chapter, when the realization
of consistency techniques is described.

6.2.1.2 User-defined Constraints

In order to reflect the generality of the constraint notion, a second class of constraints is
introduced: the so called user-defined constraints.

Every predicate which is provided with a forward declaration (see section 6.2.3) and which
is not a built-in constraint, will be handled as such a general, user-defined constraint. That
is, a general consistency algorithm will be applied to it. Since the general algorithm (e.g. for
forward-checking) does not utilize information about special properties of the constraints w.r.t.
the underlying domains, user-defined constraints are normally less efficient than their built-in
counterparts.

8.2.1.3 The User’s View on Constraints

From the semantical point of view, the distinction between built-in and user-defined constraints
can be regarded irrelevant for the user. A predicate ne / 2 which is defined as

ne(X, Y) :-
X \=1Y.

has the same semantical behaviour as the direct call to the forward-checking version of the
built-in constraint \ = /2, if it is used together with a forward declaration. But, suppose X,
Y are domain variables, there will be a difference in efficiency, since the use of the built-in
inequality constraint will exploit constraint specific information* and thus, it will yield better
performance than the call to to the forward user-defined constraint ne /2.

Thus, in terms of efficiency, the user actually should be aware of the two constraint types. I
consider this as a shortcoming of the system, but it is one caused by the current implementation,
not a general one. By providing a greater number of built-in constraints and by a more

3and certainly because I didn’t have three years of time
*This information consists of the fact that at most one domain value will be eliminated by one forward-
checking test using \ = /2.
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sophisticated static program analysis, it would be possible to yield an automatic recognition
and maintenance of constraint use, having the system find the optimal (or at least a good)
algorithm depending on the actual constraints and domains. For example, the system could
try to replace some calls to user-defined constraints by calls to built-in constraints, as it would
be possible with a constraint X =< Y (X, Y be integers), which could be replaced by the
constraint X < Y + 1, taking care of the case when Valy is the maximal element of Domy,
i.e. when Y + 1 is not defined.

6.2.2 Consistency Techniques: A Motivation

In this chapter the realization of advanced control strategies in FIDO-II is described. Here,
emphasis is placed on forward-checking.

Constraint solving is a well-understood technique in the area of Al Various tools for propagat-
ing information (i.e. variable values or sets of values) through constraint networks and various
programming languages supporting constraints exist (see e.g. Sketchpad [Sut63](!!), ThingLab
[Bor79, Bor85a, Bor85b], TK!Solver [KJ84] or JUNO [Nel84] as examples of systems using nu-
meric techniques, (Ste80] or IDEAL [vW80] as examples of systems using symbolic techniques).
Two major methods for ensuring local consistency are forward-checking [HE80] and looking-
ahead. The necessary theoretic principles providing local arc-consistency have been pointed
out in chapter 3. As we saw in chapter 1, due to their a priori use allowing active reduction
of search spaces, these techniques seem to form an ideal completion of the poor generate &
test or standard backtracking search strategies supplied by standard logic programming, say
PROLOG. It is generally believed [ED89] that, for most applications, forward-checking is the
adequate means, for it combines efficient search space pruning with an overhead which is
mostly acceptable. On the contrary, looking-ahead is often regarded as being too inefficient
(since causing too much overhead).

Therefore, in the prototype implementation of FIDO-II, the stress lies upon forward-checking.
looking-ahead is only implemented in a slightly modified version for some distinguished con-
straints.

6.2.3 Forward-Checking in FIDO-II

The formal definition of forward-checking, which is caught by the forward-checking inference
rule (FCIR) [van89b], has been given in chapter 3. Informally, constraints can be used in
a forward-checking manner as soon as only one of their domain variables is uninstantiated.
Then, the set of possible values that can be given to this last variable is reduced.

6.2.3.1 Forward Declarations in FIDO-II

In this paragraph the user’s notion of forward-checking shall be described. The programmer
can enforce a forward-checking use of a predicate p/N within a goal by a local declaration
using the predicate

forward /1.

forward /1 has as its only argument the constraint that shall be executed by forward-checking.
Example 6.1 shows how forward-checking can be used to implement the regular /3 predicate
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regular(X, M, Y) :-
forvard(Y =\= X), \= (1) =\
forvard(Y =\= X + M), \s (2) =\
forvard(Y =\= X - M). \= (3) =\

Figure 6.1: Example: Constraint Definition for the N Queens Problem

which is used to state the constraints in the NV queens program (See figure 7.1 for the complete
program source).

regular(X, M, Y) gives expression to the condition that queen X, which is to be placed in
column ¢, 1 < i < N, and queen Y which is to be placed in column i + M, must not threaten
each other. i.e. the queens X and Y are neither allowed to stand in the same row, which is
denoted by constraint (1) in the example, nor they may be put on a diagonal (as expressed
by the constraints (2) and (3)). =\ = is the numerical inequality predicate, which evaluates
its arguments. The goal 5 =\ = 3 + 2 fails, whereas e.g. 5 \=3 + 2, which only checks non-
unifiability, succeeds.

What is new compared with the way a generate & test or standard backtracking program
works, is how the FCIR prunes the search space:

Assume that, in the above example, queen X in column ¢; has become instantiated with a
value 7, i.e. row ¢ has been assigned to that queen. The call regular(X, M, Y) (where NV is
an integer) will have an a priori pruning effect on the remaining possibilities of placing queen
Y in column ¢, := ¢; + M. This is shown in figure 6.2 with ¢; = 2,7 =3 and M = 2.

Figure 6.2: The A Priori Pruning Effect of Forward-Checking for 6 Queens

Here, three values can be eliminated from the domain of Y.

6.2.3.2 Arguments of Forward Declared Constraints

Figure 6.1 shows two differences between the representation chosen here and the way forward
declarations are made in CHIP[DvHS*88]. The first thing is that CHIP uses global forward
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declarations. The second difference concerns the amount of information the user can, respec-
tively should include into the declaration. In FIDO-II, the programmer does not have to make
assertions about the arguments w.r.t. being domain variables® or ground. In CHIP [van89a),
the arguments of constraints must be labeled as domain variables or as ground by a flag inside
the domain declaration, which can be 'd’ respectively 'g’. The semantics of a CHIP declaration
regular(d, g, d) is the following:

The FCIR can be applied to any call to the predicate regular / 3 if

e its second argument is ground, and

e regular / 3 is forward-checkable w.r.t. the elements corresponding to a 'd’ in the dec-
laration, i.e. the first and the third argument.

Enhancing the declaration by additional information in CHIP makes life easier for the system,
since only the arguments labeled by a ’d’ can be domain variables and must be treated that way.
In FIDO-II, however, it must be checked for all arguments whether they can contain domain
variables. This requires a thorough static program analysis at precompile time and decreases
run-time performance, since several case-distinctions must be made. Besides, in the current
implementation, the FIDO-II preprocessor can figure out at compile time which constraint
arguments might be instantiated with domain variables, but not, which ones actually will be
at run time. Thus, the information resulting from static analysis does not lead to wrong
computation results, it simply tends to be too cautious in some cases, making the domain
variable test too often, as I will show in section 6.6.

The disadvantage of the CHIP representation is that it enforces the programmer to go deeper
into describing the procedural behaviour of the program. He has to tell the system which
arguments can (or will) be called with domain variable arguments. Certainly, it is a matter
of opinion whether this is an advantage of CHIP or rather a shortcoming, whether the gain of
convenience on the user’s part makes worthwhile the work to be done (even at run-time), and
the additional amount of implementation work, which is considerable.

One of the lessons I learned from this work is the following: if I had to start from scratch,
I would probably choose a representation of the user interface to FIDO-II similar to the one
in CHIP. Since, in most cases, the programmer has a more or less clear idea of the calling
patterns of a predicate, the additional trouble he has to undertake in order to declare it to the
system seems tenable. Essentially, this is just a remake of the well-known trade-off between
two antagonistic questions:

¢ What can be done by the system? and

o What must be done by the programmer?

However, allowing the user to integrate knowledge about the calling patterns, but not forcing
him to do so could be a good compromise®. If he does not add information, then the system
itself should master the task of finding possible calling patterns. This would answer the two
questions above in a very simple way:

The system has to do the things the programmer himself cannot (or doesn’t want to) do!

by the way, even if he would like to, he couldn’t do so. This is certainly another shortcoming of the system.
See chapter 8.2 for this.
® really don’t know whether this is possible in CHIP
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6.2.3.3 Formats of Constraint Arguments in FIDO-II

Let me come back now to the format of constraint arguments themselves. In FIDO-II, any
argument of a constraint must have one of the following formats, depending on the constraint
type:

o If the constraint is a built-in, it must be of a simple polynomic form

o If it is a user-defined constraint, it must be simple

In the following, the formats used in italics above will be defined.

Definition 12 A PROLOG term is called simple, if it has ezactly one of the three forms

e A PROLOG variable
¢ A domain variable

o An atomic ezxpression, i.e. an atom, a string or an integer.

Deflnition 13 A PROLOG term is called to be of a simple conjunctive form , if it has
ezactly one of the two forms

o a simple term
o Be X, Y simple conjunctive terms, then (X *Y') ts again a simple conjunctive term

Note that Definition 13 only defines syntactically correct terms. Whether such a term makes

sense if it is used as an argument of a constraint is a different question 7.

Now, we can define simple polynomic terms as disjunctions of simple conjunctive terms:
Definition 14 A PROLOG term is called simple polynomic, if it is

e simple conjunctive, or

e Be By, ..., B, simple conjunctive terms, then @, By @, ... ®, By, ®; € {+,-}, is
again a simple polynomial term

An example for a simple polynomic term ¢ is:
t=—(A*B*xC)+(10x2Z)-5.

Parentheses are normally left out for convenience.

Thus, a convenient way to state a large class of arithmetic constraints is provided. Internally,
during preprocessing, these expressions are transformed by a normalizer into a form that can
be handled by the forward-checking mechanism. For this I refer to the next section 6.3.

The recognition of the predicates that actually use domain variables is left to the system, which
performs a static data flow analysis in order to find out which predicates are possibly called
with domain variable arguments.

"e.g. the term "zwei" * 3 is a syntactically correct simple conjunctive term, even it is not appropriate due
to the interpretation of the */3 predicate.
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6.2.3.4 The General Forward-Checking Algorithm in FIDO-II

In this paragraph the realization of a forward-checking algorithm for arbitrary constraints is
described. Figure 6.3 shows how the algorithm is implemented in SEPIA PROLOG. Let us

\* Semantics of the arguments »\
\* Dom = Domain of the forvard Variable VAR =\
\* Call = Original Constraint Call : =\
\» N = Arity of the DOM term (maximal domain length) .\
\* Length = Actual domain length (number of valid elements) *\

\* Argnum = Number of the argument of DOM containing the forward variable =\

gen_fc(Dom, Var, Call, Length, Argnum) :-
functor(Dom, _, N),
gen_fc_restrict(Dom, N, Call, Argnum, Length, 1),
! ’

gen_singleton_test(Dom, Length, Var).

gen_fc_restrict(Dom, N, Call, Argnum, Length, M) :-
M >N,
]

gen_fc_reatrict(Dom, ¥, Call, Argnum, Length, M) :-

arg(M, Dom, (Val, Flag)), \* Access to Mth domain element =\
(
it
Flag \== 0
then \* Domain element is valid »\
copy_term(Call, Calll), \* create copy of term with new var’s =\
arg(Argnum, Calli, Val), \* insert value VAL into the =\
( \#* corresponding place *\
if
Callt
then \#* Constraint satisfied s\
true
else \* Constraint not satisfied: =\
Flag = 0, \* --> remove domain element *\
dec_length(Length) \# increment domain length by one #\
else
true
),
M1 is M+ 1, \* test rest of domain »\

gen_fc_restrict(Dom, N, Call, Argnum, Length, M1).

Figure 6.3: Example: A General Forward-Checking Algorithm

have a look now at what the algorithm actually does:

it is activated by a call to the gen_fc / 5 predicate. A description of the arguments can be
found in the documentation of example 6.3. The algorithm runs in two phases. The first phase
consists of a sequential scan of the domain Dom, trying for each valid domain element Val
whether it satisfies the constraint Call if used as value for the forward variable. If an element
does not, it will be eliminated from the domain by instantiating its validity flag to 0. In this
case, the domain length variable is updated by decrementing its value.
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The second phase is the so called singleton test. After every forward-checking, it has to be
tested which of the following three cases is true. The domain can contain

¢ more than one valid element: nothing happens, computation goes on.

e exactly one element: this element must be found and assigned to the domain variable
Var.

¢ no more valid elements: The gen_fc / 5 call (and so the constraint itself) fails.

[n order to decrease cost for the singleton test, it is important to offer a cheap way to access
the actual domain length, which is stored in Lengthx for each variable X.

As I showed in section 5.2.1, Lengthx is presented as an open list, whose last valid element is
an integer representing the actual number of admissible domain values. Thus, at the beginning
of each forward-checking call, Lengthx has to be traversed once in order to get the acual length
of the domain.

Efficiency Considerations From a logical point of view, one call of gen_fc / 5 can be
looked upon as performing an atomic operation. Since this implies that on backtracking, all
changes made in it will be revised, it is not necessary to keep track of each deletion of a domain
value within this call by decreasing and restoring domain length 8. Rather,the initial value can
be locally decreased, then be used for the singleton test and finally be rewritten as new value
of Lengthyx.

This way, the cost for maintaining domain-length can be limited to a tenable degree, even if
programming it in PROLOG. If we assume that the average length of the length list of a domain
with cardinality N is ¥ / 2 (this corresponds to the situation after half the domain values are
eliminated), the cost computes to 2 (N/2) list element accesses per forward-checking call. In
the worst case 2 N accesses are necessary. The cost for the singleton test can be kept low by
using the actual domain length. If the domain is not singleton, this can be detected by only
one comparison. If it is singleton, the last remaining domain value will be found by average
N/2 list comparison operations (N in the worst case).

It is clear that the price to pay for the generality of the general forward-checking algorithm
is a minor efficiency. This is caused by the fact that no specific knowledge is used about
‘peculiarities of the predicates w.r.t. the domains. As we will see in the next subsection 6.2.3.5,
the availability of such kind of knowledge facilitates much more efficient algorithms.

6.2.3.5 Using Specialized Forward-Checking Algorithms for Built-in Constraints

The notion of built-in constraints makes it possible for the system to master the forward-
checking task in a more efficient way. For each built-in constraint and each relevant domain
type, a specialized version of forward-checking is implemented, which uses knowledge about
specific behaviours of these constraint w.r.t. different domains.

Domain Types In FIDO-II, several criteria can be used to classify domain types. This
classification is performed at precompile time whenever possible®. During preprocessing, it is
kept track of which predicates are called with domain variables as arguments, also storing the

8 which would mean one traversal of the length kst for every value to be eliminated

®This is not possible in all cases, since FIDO-II gives support to dynamic domain definitions (see section
5.2.2).
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domain identifiers of the domains used.

If any information is available about the domains, it can be used by the preprocessor in order
to find and load an appropriate definition of the forward-checking algorithm to be used in the
actual case. The following criteria are examined by the preprocessor:

1. Is there information available about a physical order underlying to the domain, i.e. as-
cending, descending or none ?

2. Is the arity of the functor representing the domain (i.e. the all over domain length) known
at compile-time, or has it to be computed dynamically ?

3. Is an offset computable for the domain values, i.e. can the address of a domain element
be computed by its value ?

The answers to these questions can be gathered by looking at the define-domain /3 goals
defining the occuring domains, or by examining the domains themselves. According to this
information, a suitable algorithm is chosen and code is added in order to load the definition of
this algorithm.

The way the information is actually used depends on the constraints themselves. It will be
outlined in the following paragraph.

Forward-Checking for FIDO-II Built-In Constraints In this paragraph, the principles
of forward-checking use of the three classes of built-in constraints!® is sketched w.r.t. the
integration of knowledge concerning the behaviour of these constraints on certain domain
types.

Equality If the user decides on using an equality constraint in a forward-checking man-
ner, the following has to be done in the respective forward-checking call, which shall be
forward(X =Y), for example:

Assume Y is ground, and the domain Domy of X is to be restricted by eliminating all the
values which are not equal to Valy. Practically, this task can be solved by looking up the
value Valy of Y in Domy, instantiating X to that value, if Valy is a valid element of Domy,
or stopping with a failure, otherwise. Since this processing is logically regarded as one atomic
action (also concerning backtracking), domain length and domain flags actually don’t have to
be recomputed. As soon as a domain variable is instantiated, noone ever looks at domains,
and if the binding must be revised after a failure, so are all changes concerning the domain
made in that context.

Now let us see how efficiency of forward-checking equality constraints can be increased using
pieces of information described above (see paragraph 6.2.3.5), coming back to our example:
If the offset of the value Valy within the domain of X can be computed, the test whether Domy
contains that value happens to be very simple. If the offset is within the interval allowed for
referencing the term Domy (which ranges from 1 to the arity of Domy), the value can be
accessed by using the PROLOG arg /3 predicate with the address computed.

If this is not possible, sequential search within the domain must be started, until the value
is found or it is sure that it is not contained in the domain. As regards the latter, order
information can be used to detect failure earlier. If the domain is e.g. ordered ascendingly,
search can be stopped after the first element has occured with a value greater than the value

1®These are equality, inequality and ordering constraints.
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to be retrieved. For descending order it works vice versa.

There are several forward-checking algorithms for equality provided. The decision about which
ones to choose in a special case is taken by the preprocessor, depending on the domain-specific
information available.

Let me say one more word concerning the forward-checking use of equality. To me, equality
constraints seem to be the class of constraints to be handled most difficult. Especially, I think
it is no good idea at all to use them in a forward-checking manner. In order to be forward-
checkable, at least one of the two arguments must be ground. Equality, however, is such a
strong constraint, providing strong relations between objects, that it should be used earlier
in order to restrict search spaces. Therefore, I refer to section 6.2.5 where equality-specific
problems are handled.

Inequality Forward-checking of inequality can be considered similar to the way equality is
handled. The only difference is that, coming back to the notation used above, the inequality
value Valy in a constraint X \=Y, Y be ground, has to be removed from Domyx instead of
instantiating Domx to it, as done in the case of equality. Therefore, the considerations made
for equality can be applied here, too.

Figure 6.4 shows the PROLOG-Code of two different forward-checking algorithms for inequal-
ity, handling two cases. Case 1, the procedure fc_ne.o_1 / 5, can be applied if the domain is
ordered ascendingly, the offset of domain values is available, and the domain arity is given as
an argument to the forward-checking call. As I pointed out in section 5.2.4, FIDO can access
this information, if the domain has been specified by an expression of the form N ... M. For
example, fcne.o.l / 5 can be used for the inequality constraints of the Five-Houses Prob-
lem, described in section 7.1.2. The FIDO-II source code of this problem is shown in figure
7.2. Figure 6.4 shows the forward-checking algorithm for an even more special case, i.e. if the
address offset of all values is equal to zero. This correseponds to a domain, where the first
element is 1, the second is 2 and so on. In this case, the value Valy can be directly used as
first argument of the arg / 3 access predicate, without any further computation necessary.

Generally, inequality constraints are predestinated for forward-checking use [van89b), since they
allow straightforward elimination of domain values. Problems such as the N queens problem,
where only inequality constraints appear, can be solved very efficiently by forward-checking,
as it is shown in section 7.1.1.

Ordering Constraints Concerning efficient forward-checking use of the > and < constraint,
it turns out to be crucial to have an order underlying to the domains, since this is the pre-
condition for using these constraints in a way that physically refers to domain intervals, thus
allowing efficient processing methods. There are two things varying, depending on the under-
lying domain order and the constraint itself:

e The starting point of search (i.e. from the last or from the first domain element).

o The exit condition (when can search be stopped?).

Assume for example, we want to use the constraint X < Y, with X rangingover {1,2,..., N},and
Y bound to the value Valy = M €N, in a forward-checking manner. We assume that the do-
main is physically ordered ascendingly. In the following, I will refer to the validity flag of the
ith element of the domain Domx with Domx([i].Flag and to the value of the ith element itself
with Domx[i].Value . Figure 6.5 shows the forward-checking algorithm used in this case.
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\* Specialized forvard-checking algorithm for \= / 2 and =\= / 2 constraints »\
\* Input variables: DomX, LX, ValY, Offset, Maxarg =\
\* Output variables: X, DomX, LX =\

1) fc_ne_o_1(X, DomX, LX, ValY, Offset, Maxarg) :-
Arg is ValY + Offset, \s compute offset *\
vithin(Arg, 1, Maxarg),
arg(Arg, DomX, (ValY, Flag)),

(

if : \* domain element valid? =\
Flag \== 0

then \* yes! »\
Flag = 0, \#* eliminate value #*\
dec_length(LX, Newlength)

alse \* no! *\

true \#* finished, yet »\
))

singleton_test (DomX, Newlength, X).

2) fc_ne_o0_1(X, DomX, ValY, Offset, Maxarg) :-
within(valY, 1, Maxarg),
arg(ValY, DomX, (ValY, Flag)),
(
if
Flag \== 0
then
Flag = 0,
dec_length(lLX, Newlength)
else
true
)’
singleton_teat(DomX, Nevlength, X).

Figure 6.4: Example: Specialized Forward-Checking for Inequality Constraints

The efficiency of the forward-checking use of ordering relations could benefit a lot, if the value
of the smallest and the biggest element were stored and maintained separately. Coming back
to the example above, in a situation described by

Domyx = {3, 4, 5, 6, 7}, Valy = 2,

the algorithm 6.5 would scan the whole domain, instantiating the flags of all the domain ele-
ments to zero and finally find out that there is no value left for Valx compatible with Valy,
thus produce a failure in the singleton check (step 3 of the algorithm). Having direct access
to the minmal value Miny = 3 would yield an immediate failure, since 3 < 2 is certainly
insatisfiable. This could help us fulfilling one of our goals defined in in chapter 1, i.e. achieving
an early detection of failure.

However, maintaining this data leads to a respectable overhead, since every time the domain is
manipulated, a check is necessary whether its minimum respectively maximum have changed,
and if necessary, the values have to be recomputed. In the prototype implementation of FIDO-
II, minimum and maximum are not separately stored, but every time this information is needed
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\* Input variables: Dom_X: Domain to be restricted =\
\=» Length_X: Actual length of Dom_X =\
\* Val_Y: Ground value of Y \
\= N: Maximal domain size *\

\* Output variables: =\
\* Val_X: The value X will be bound to if the singleton test is successful *\
\* Dom_X, Length_X: vill be modified by the algorithm s\

\* Temporary variable: ArgPtr =\
1.  ArgPtr := N \» choose last domain element as starting point =\

2. while (ArgPtr > 0) and Dom_X([ArgPtr]. Value >= Val_Y
do
Dom_X[ArgPtr].Flag := 0
Length_X := Length X - 1
ArgPtr := ArgPtr ~ 1
od
Goto 3.

3. if Length X =0 \# singleton test =\
then
STOP FAIL
else
if Length X = 1
then
find_single_element (Dom_X, El),
Val_X := E1
else
true
fi
fi

Figure 6.5: A Forward-Checking Algorithm for the < /2 Constraint

11 it has to be computed by checking the domain.

Finally, I would like to examine how well-suited forward-checking is for ordering constraints.

The main pruning effect achievable by using ordering constraints is that some kind of quali-
tative reasoning over domains can be supported. i.e. without knowing the exact values that
can be assigned to the constraint values, it can be possible to exclude values from further
considerations if these appear "too small in any case” or "too big in any case”.

This qualitative interval reasoning facility is not satisfactorily exploited by forward-checking,
since it can be only activated if all up to one variable have been instantiated. In general, that
is at a later point during search. This goes obviously against the CLP paradigm of reduc-
ing the search space as early as possible. This is why, for the >, <, =< or >= constraints,
looking-ahead seems to be a more appropriate consistency technique. Coming back again to
our example:

Having Domx = {5, 6, 7} and Domy = {2, 3, 4}, a looking-ahead use of the constraint X <
Y could directly find things going wrong here, whereas forward-checking would have to wait
just until one of the variables becomes instantiated.

However, it is true that, since looking-ahead is quite an expensive technique, it can turn out

it will be needed mainly for looking-ahead techniques.
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to be better to use forward-checking - but, this must be decided from case to case. By the
way, in this context, it seems to be an important feature that the user can change the control
behaviour of a program by replacing a forward declaration e.g. by a lookahead declaration
and recompile the program. Thus he can check in a convenient way which strategy works
better in the specific application.

6.2.3.6 Local or Global Control

As opposed to e.g. CHIP, FIDO-II uses local forward and lookahead declarations. Advantages
of global control are:

e Elegant formulation of programs.
o Shorter programs.

o Global control is a feature which is assessed positively in many recent approaches [van89a].
By global declarations, it can be organically supported.

[ decided to use local control in FIDO-II for the following reasons:

e Using global declarations, a collision semantics has to be defined, if one constraint shall
be used under several control regimes.

e Local declarations allow to submit a constraint to different control mechanisms in one
program.

e No collisions of declarations for a predicate possible.
e relatively simple implementation.

e The correct declaration to which a constraint is submitted is locally decidable.

6.2.4 Weak Looking-Ahead in FIDO-II

Looking-Ahead [van87b, van87a, Mac77, Lau78| offers a powerful possibility to reduce the
number of values that can be assigned to variables of a constraint, even if this constraint is
not yet forward-checkable, because there is still more than one domain variable uninstantiated.
First, I will shortly repeat the main idea of looking-ahead described in chapter 3.

For every domain variable X; appearing as an argument of an N-ary constraint P, and for
every value within the domain of X;, it must be checked if there exist value combinations
from the domains of the other variables (e.g. at least one admissible value from the domain
Dom x j of each domain variable X; appearing in P) so that the constraint P is satisfied. The
arguments of P which are not domain variables must be ground.

Since general looking-ahead is regarded as too expensive for most applications, as I pointed
out at the beginning of the chapter, for FIDO-II I implemented a somewhat modified strategy
called Weak Looking Ahead (WLA), that is similar to the one proposed in [dSPRB90]. A
definition of the underlying inference rule is given in chapter 3. Since, in this work, I put
the stress on forward-checking as a consistency algorithm, [ implemented WLA only in an
exemplary manner to give an idea of how well-suited it is for a CLP-system based on PROLOG
with coroutining. I re-implemented the following constraints in a looking-ahead-like way:
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e The equality constraint = /2.
¢ The < and > constraints without evaluation of their arguments.

¢ Evaluating versions of < and > working for a class of numeric expressions, i.e. for patterns
of the form X <Y + Z resp. X >Y + Z.

As we will see in section 6.3, where the implementation of lookahead behaviour is described,
there is a principial difficulty in implementing pure looking-ahead using a delay mechanism
in PROLOG, since we cannot easily formulate the lookahead conditions by delay clauses.
Particularly, looking-ahead can be used several times for one constraint, and its applicability
must be tested very often during computation, i.e. after any change in the domains of the
constraints variables. The problem with SEPIA delay is that the expressiveness of delay
statements is limited. Thus, it would turn out to be a bigger problem to enforce the system
to remember, wake and resuspend the constraint based on more complex conditions by using
delay declarations.

In order to solve this problem, weak looking-ahead follows a different strategy:

WLA strategy

e When a WLA constraint call is regarded the very first time, a looking-ahead check is
performed on it, hopefully yielding a considerable pruning effect.

e After this, the constraint is not "thrown away”, since, in general, it does not have a
solved, but a simplified form, yet. Keeping the constraint for solving it later, if additional
information is available, is brought about by a forward-checking call of the constraint.

The proceeding described above allows to burden the underlying PROLOG system with the
looking-ahead control task. By doing looking-ahead only one time, i.e. quite in the beginning of
the constraint solving process, overhead is limited, and a looking-ahead like behaviour can be
achieved, which performs a pre-pruning of the search spaces, hopefully making some constraints
forward-checkable. Certainly, as it is the case for any heuristic algorithm, there are examples
where it works very well and there are examples where using WLA yields no effect at all,
even if standard looking-ahead finally would have reduced the search space at a later time
during computation. But, this is the price to pay for applying looking-ahead only once for
every constraint, and thus for reducing computation overhead and moreover for preserving the
completeness of the algorithm.

8.2.4.1 The User’s View on Weak Looking-Ahead in FIDO-II

The programmer can declare a predicate call to be submitted to weak looking-ahead control by
simply calling it as the first argument of lookahead /1. This is exactly the same as described
for forward declarations in section 6.2.3.1. Since no general WLA algorithm is provided in
the current implementation, it will work only for the constraints listed above. If a different
constraint is called using a lookahead declaration, the FIDO preprocessor will print a warning
and the declaration will be ignored. Because of the modularity of constraint redefinitions,
however, additional redefinitions and specialized versions of the algorithm can be added to the
system by creating a new entry for them into the global constraint description table, which is
implemented as a database of PROLOG facts. Thus, the expressiveness of the system and the
convenience of programming can be enhanced, if this is desired.
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Why There is no General Looking-Ahead in FIDO-II The decision not to implement
a general looking-ahead algorithm is based on a couple of considerations.

o First of all, as I said, looking-ahead is an expensive method for ensuring arc-consistency.
Using a general algorithm which neither uses knowledge about constraint-specific pecu-
liarities nor exploits domain-specific information, will not counteract this fact, on the
contrary, we must expect that the efficiency resulting from this will be relatively poor.

¢ That is why, in my opinion, it is a better approach to show the usefulness of the method
by implementing specialized versions of it for a few constraints whose looking-ahead
execution seems promising.

¢ Another reason is certainly the amount of time and work necessary for implementing it.
To me, it was necessary to set limits to the scope of this work, and I decided to set them
in the looking-ahead area.

e Therefore, for an exemplary examination of consistency techniques in logic programming,
forward-checking seems to be more appropriate since it yields better results than looking-

ahead for many applications!?.

However, by explaining the concept of WLA in chapter 3 and by the exemplary implementation
of it, I hope to have laid the foundations for an interested reader to understand and implement
it for himself without greater problems!?.

In the following, I would like to have a glance at the way WLA is brought about for the
constraints mentioned above.

For a looking-ahead use of the equality constraint, however, I would like to refer to section
6.2.5, where that issue is thoroughly discussed.

6.2.4.2 Using Ordering Constraints in a WLA Manner

As I mentioned in section 6.2.3.5, ordering constraints such as > or < are well-suited to looking-
ahead methods. Since they incorporate rather reasoning over intervals of values than reasoning
about values themselves, they often can be used early and thus, the set of possible values that
can be given to the domain variables can be reduced. Their efficient implementation, however,
depends on the availability of the minimal and maximal values of the domains, because only
in this case, the step from quantitative to a more qualitative reasoning is supported. Let us
see now by an example, how WLA works:

An Example Assume the constraint to be solved is

X <Y + Z, where X,Y, Z are domain variables,
X ranges over the domain {9, 10,11,12},
Y ranges over the domain {2,3,4,5} and
Z ranges over the domain {3,4,5,6}.

If this constraint is called by introducing a goal lookahead (X < Y +2), the following happens:

230 why should we start again inventing the wheel?
3'm just kidding, there will be greater problems, as soon as someone tries that!
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First Step For each variable X; and each value Valy; within its domain, values from the
other variables’ domain have to be found which satisfy the constraint. If no such tuple(s) can
be found, the value Valy; is eliminated.

Starting with X in our example, we can find values Valy, Valz for Y and Z which satisfy the
constraint

X < Valy+ Valy

for X € {9,10}. Especially, instead of testing all the values from Domy resp. Domz, we can
use the maximum values Maxy and Maxz and compute

Boundy := Maxy + Maxgz,

removing from Domy all the values Val which are not less than Boundx. Thus, we can
eliminate the values 11 and 12 from the domain of X. For Y, in turn, we have to find values
Valy, Valz so that

Y > Valy — Valz

is true. This is especially guaranteed for all these values of Domy greater or equal than the
difference between the maximum of Domyx and the minimum of Domz. Thus, Boundy can be
computed as

Boundy := Miny — Maxgz

and the condition Y > Boundy has to be tested. As a resuit of this, all values which are less
than 3 can be eliminated from Domy, resulting a new domain Domy = {4,5}. Analogously,
Boundyz results as Miny — Maxz, leaving a new domain Domz = {5,6}. Thus, just by doing
one lookahead turn, we restricted the domains to

Domyx = {9,10}, Domy = {4,5} and Domz = {5,6}.

Second Step In order to keep track of the further execution of the constraint, the WLA
routine now starts a call to a forward-checking version of the constraint!?. As long as more
than one of the three variables X, Y and Z remain uninstantiated, nothing will happen. This
condition is supervised by the forward-checking control mechanism, which will be thoroughly
described in sectiondelays. If, however, only one variable remains uninstantiated, forward-
checking will start and the domain of this variable will be restricted by eliminating values
which are not compatible with the assignments to the other variables.

The processing described above is reflected in the definition of the looking-ahead version of
our example constraint shown in figure 6.6 for the case that X, Y and Z are domain variables.

What is not visible in figure 6.6 and what will be shown in the next chapter is how the ini-
tial call lookahead(X < Y + Z) is transformed into the call of the specialized constraint
look.ahead_<_d.dpd(X,Y,Z). Note that in the program above, knowledge about the be-
haviour of the < constraint is integrated, especially as regards the computation of appropriate
bounds for X, Y and Z.

"Since we’re dealing with built-in constraints here, a specialized forwvard version will be available
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lookahead_<_d_dpd((%,I1dX,LX,CX,X,DX), (¢,IdY,LY,CY,Y,DY),(%,1dZ,L2,CZ,Z,DZ)) :-
get_min(DX, MinX), \* Get boundary values =\
get_max (DY, MaxY),
get_max(DZ, MaxZ),
BoundX is MaxY + MaxZ, \* Compute bounds to be checked #\
BoundY is MinX - MaxZ,
BoundZ is MinX - MaxY,
fc_1t(X, DX, LX, BoundX), \* Remove inconsistent values from DomX s\
fc_gt(Y, DY, LY, BoundY), \= " " " " DomY =\
fc_gt(Z, DZ, LZ, BoundZ), \# " " " " DomZ *\
forvard_<_d_dpd((&,1DX,LX,CX,X,DX),(&,1dY,LY,CY,Y,DY),

(x,1dz,L2,CZ,Z,DZ)).

Figure 6.6: Example: Part of the WLA Algorithm for the > /2 Constraint

6.2.5 Handling Equality

There are some problems concerning equality, which occur as a consequence of the representa-
tion of domain variables and which are to be outlined in this section. I would like to describe
the realization of domain variable unification in FIDO-II and the user’s possibilities to influence
it.

8.2.5.1 Unification

The representation of a domain variable as a sixtuple with an explicit identifier (see section
5.2.1) has some consequences for the realization of the general domain variable unification (see
chapter 3). This especially concerns unification between two domain variables. Here, we have
to make a difference between

1. explicit unification using the = /2 predicate.

2. implicit (clause head) unification internally performed by the PROLOG inference engine
calling the unification routine.

These two cases will be regarded in the following.

Explicit Domain Variable Unification Assume there are two domain variables

X = (&, Idx, Lengthx, Constraintsx, Valx, Domy),
Y = (&, Idy, Lengthy, Constraintsy, Valy, Domy).

These two variables shall be unified by an explicit call to a goal X =Y in a FIDO-II source
program. Again, we have to make a distinction between two cases:

1. Idx = Idy, i.e. both variables have the same domain (strictly speaking, the domain
identified by the same identifier, which is a much stronger notion, as we will see).

2. Idx \= Idy, i.e. the domains of the two variables are denoted by different identifiers in
the define_domain calls defining the respective domains.
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Equal Domain Identifiers Due to its representation of domain variables chosen, in FIDO-
I1, unification of variables sharing the same domain happens to be quite straightforward. If Idx
= Idy is true, we can directly map unification to PROLOG unification, i.e. the goal X =Y
can be handled by PROLOG’s unification routine. Especially the computation of domain
intersection is very simple, since it is computed automatically by calling the goal

Domy = Domy.

By this, since the domains are really unifiable structures, elements marked invalid in Domy
will be marked invalid in Domy too, by unifying the validity flag of the domain values.

The only thing that remains to be done is to compute the new domain length Lengthx resp.
Lengthy !® and to perform the singleton test, i.e. to check, if the domain contains valid elements
after the intersection.

Different Domain Identifiers However, if Idx and Idy are different atoms, things are
getting worse. In this case, the two domain variables incorporate different (i.e. not unifiable)
syntactical objects, since the different identifiers prevent unification and the internal represen-
tation of Domx and Domy can be different!®. Thus, more complicated actions have to be
performed.

The main problem in this context results from the underlying language, which is PROLOG.
The general domain variable unification algorithm requires that, if two domain variables X
and Y are unified, both of them are bound to a new variable ranging over the intersection
Dom = Domy (| Domy. But, we actually can’t do this in PROLOG, since a variable cannot
change its value, cannot be reassigned.

One possibility of achieving domain variable unification despite that would be to keep track
of domains by maintaining an open list where a history of domain states is stored. This is
certainly not a good solution, since

e it is expensive in terms of memory,

o domain access causes considerable cost, for the domain itself has to be found, before the
values of it can be retrieved, and

e this does not solve the problem of how to guarantee semantic equality of domain variable
structure which are syntactically not unifiable.

The latter will turn out to be the hardest, up to now unsolved problem.

Therefore, the desired behaviour has to be simulated somehow. For unifying domain variables
of different domains, 1 propose the following algorithm which is described informally in the
following:

Algorithm

1. Traverse Domy and Domy, eliminating from both domains each value that does not
appear in both of them'”. As the smart reader will remark, this essentially corresponds

'%since they must be equal, only one of them has to be recomputed.

8 Note that it can be different even if the domains are semantically equal, e.g. a domain d; = {1,2,3} and a
domain d; = {3,2,1} will be internally represented differently.

"Here it can be very useful to exploit information about orders on the domains, for this can drastically
decrease search effort.
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to some kind of looking-ahead version of the = /2 constraint. We check for each possible
value of the one variable if there exists a value satisfying the equality constraint within
the domain of the other variable. And indeed, the implementation of this algorithm will
use a WLA version of the equality constraint.

2. Recompute the values of the variables Length y, Lengthy, Constraintsy and Constraintsy.

3. Ensure that equality between X and Y is guaranteed even if further modifications con-
cerning the domains of the variables are made.

Note that step 3 turns out to be crucial here: in step 1, we have computed the intersection of
the two domains Domx and Domy at a fixed moment during computation. If we left it that
way, we would have done only half a job, because further modifications in one of the domains
could be made without being triggered to the other domain. Thus, as we will see, intermediate
inconsistencies can appear, and the semantic requirement on equality between X and Y would
not be consequently fulfilled. So, how can we solve this problem, or rather, can we solve it, at
all? We will see that there is no unique answer to this question.

Ensuring Equality by Unification? If we decide on solving the problem by linking X and
Y together simply by unifying their values Valy and Valy, we’d finally guarantee consistency,
since, as soon as one of the variables is instantiated to a ground value, due to unification, the
same happens to the other one, respectively. The problem with this is that we can produce
inconsistent intermediate states of the domains, as I will show in a small example:

Assume that, by the first step of the unification algorithm described above, the domains of X
and Y have been restricted to the set {1,2,3}. Later on, during computation, the value 2 is
removed from Domy. Since we don’t have a survey mechanism to trigger this change to all the
domains linked to Domx by the unification condition, yet we have a state which is semantically
inconsistent to the equality constraint between X and Y. This inconsistency remains until the
moment one of the variables is instantiated. Then, PROLOG unification works as a trigger
mechanism itself and recovers consistency.

Now, it depends from the desired representation of our solutions, whether this is only silly
behaviour or whether it leads to really wrong output. If we always and only consider a vector
of variable substitution as a solution of our constraint problem, the phenomenon described
above does not matter at all and stays invisible to the user, for in the moment values are
assigned to the variables, consistency is satisfied again. In this case, we merely use efficiency.
In our example above, we could have removed the value 2 from Domy earlier, thus pruning
the search tree a bit more.

But, considering existing CLP systems, such as [JL87], by the authors emphasis is laid on the
fact that these systems facilitate an implicit representation of solutions, such as characterizing
a solution as the set of remaining domain elements. If we want to provide such an implicit
representation, the behaviour described above will lead to an error, as the following example
6.7 describes.

Handling explicit unification as described above first reduces the domains of X and Y to the
set {1,2,3} (steps (1) and (2) in figure 6.7). The \ = /2 constraint actualizes Domx to {1,3},
since it is forward executed. An implicit solution of this program could be gained by simply
printing the resulting variable domains together with the actually delayed constraints. Since
X = Y is not really delayed, but only known to the underlying PROLOG system as having
the same value, an explicit solution of this program would be
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erroneous_example(X, Y) :-
define_domain(di, [X], [1, 2, 3, 41), \s (1) =\
define_domain(d2, [Y], [0, 1, 2, 3]), \* (2) =\
X =Y, \= (3) =\
forvard(X \= 2). \* (4) =\

Figure 6.7: Example: A FIDO Program Delivering an Inconsistent Implicit Solution

correct_oxample(X, Y) :-
define_domain(di, [XJ, [1, 2, 3, 41), A= (1) =\
define_domain(d2, [Y], [0, 1, 2, 3], \= (2) =\

L=y, \x (3) =\
forvard(X \= 2), \*  (4) =\
instantiate([X, Y]). \= (5) =\

Figure 6.8: Turning Things Right by Enforcing Explicit Solutions

e X €{1,3},Y € {1,2,3}

¢ The empty set {} of delayed goals.

This is actually not the semantics intended by the standard interpretation of the program!

A simple possibility to remedy this from the user’s view is simply to swap the program lines
marked with (3) and (4), since then WLA would directly remove the value 2 from Domy.
Another possibility to yield a correct result is shown in figure 6.8. By instantiating the variables
using the FIDO-II library predicate instantiate / 1, which binds a list of domain variables
to admissible values from their domains, consistency is forced. On backtracking, all solutions
will be created!®. A possibility of solving this dilemma is pointed out in the following.

Using Forward-Checking Execution to Ensure Equality? Having unification of the
variable values as a first step, a second thing one could do is calling a forward-checking version
of the equality constraint in order to ensure consistency!®. The advantage of doing that is that
the goal '

forward(X = Y),

which will be called after the first and the second step of Algorithm 6.2.5.1, is supervised by
the delay mechanism of the system. Coming back to our example shown in figure 6.7, the
situation is the following, if an implicit solution is desired: We have

¢ The variable domains Domyx = {1,3}, Domy = {1,2,3}
e A set of delayed goals {X =Y} .

8 Note, however, that in systems managing infinite domains, explicit enumeration is not satisfatory. There,
the possibility of an implicit description must be given.
9For a detailed description of forward-checking, see section 6.2.3.
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Thus, by combining these two pieces of information, the implicit soundness of this solution
can be made explicit. This can be done by applying algorithm 6.2.5.1 (or I could also say a
WLA call) to each equality constraint still in the delayed-goals list. In the above example,
by such a call, the value 2 would be removed from the domain Domy, delivering a correct result.

How to Do it in FIDO-II Since we have finite, discrete domains in FIDO-II, representing
solutions implicitly is not such an important feature. That is why [ implemented step 3 of
algorithm 6.2.5.1 by unifying the value variables Valx and Valy of X and Y and by calling
the forward-checking version in order to ensure final correctness of the examples. But I have
not taken the pain here to implement the last transformation which combines the information
from the domains of not instantiated variables with the goals remaining in the delay-list.

Conclusion Since we can’t reassign values to PROLOG variables, a modification of explicit
domain variable unification is necessary. It is correct for programs finally instantiating the
variables, e.g. for all programs working in a generate & test manner, whereas it sometimes
yields erroneous results if an implicit solution is desired, i.e. if variable instantiations are
avoided. However, I pointed out a general way how to remedy this.

Implicit Unification of Domain Variables Up to the current SEPIA version, it has not
been possible to control and modify unification. Thus, implicit unification of domain variables
of different domains cannot be handled by FIDO-II. An example of such a (forbidden) situation
is shown in figure 6.9.

erroneous_example2(X, Y) :-
define_domain(di, [X1, [i, 2, 31),
define_domain(d2, [Y], [1, 2, 3],
erroneous_example2(Y, X).

Figure 6.9: Example: Erroneous Implicit Unification

What is striking with this example is the fact that, although X and Y range over (semanti-
cally) identical domains, their implicit unification fails. By the recursive call with swapped
arguments, PROLOG tries to apply its standard unification routine to the variables X and Y
- which does not work due to the syntactically different structure of the variables. Thus the
call to erroneous_example2(X, Y) fails instead of running in an infinite loop, as one would
expect.

However, in the latest SEPIA version 3.0.16 [SEP91], it will be possible to check and redefine
unification in an appropriate manner by combining the SEPIA event handling mechanism and
the new concept of meta-terms. Unfortunately, that came too late to be considered in this
work. This new feature and the effects it could have had on the implementation of FIDO-II
are outlined in section 5.3.

Thus, in the current FIDO-II implementation, the user has to take care of not applying clause
head unification to domain variables. As we’ve seen by example 6.9, that kind of unification
will always fail. Even the clause head unification between a domain variable and a constant
cannot be performed, since PROLOG’s unification routine actually can’t interpret the domain
variable structure in a correct way. Certainly, by a more sophisticated static program analysis
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and horizontal program transformation, some of these cases could be recognized and, instead
of produce a failure that will be quite miraculous to the programmer, at least a warning could
be created concerning implicit unification involving a domain variable. However, this remains
a general problem and a lack of expressiveness of the approach.

6.2.5.2 How the User Can Influence Unification

If the standard = /2 predicate is used in order to express unification involving domain variables,
FIDO-II will use the algorithm described in the previous paragraph. It will redefine the equality
constraint performing a case distinction in order to handle different argument patterns.
However, if the user is content with a simplified, but more efficient version of = /2, which does
not support explicit unification between domain variables ranging over different domains (i.e.
which fails in this case), he can use a special FIDO-II equality operation :=: /2, denoting a
restricted domain variable unification operator. The behaviour of :=: /2 subsumes standard
PROLOG unification. Besides, it can handle explicit unification between

e a domain variable and a constant,
e a domain variable and a normal variable,

e two domain variables whose domains share the same identifiers.

It fails, however, if it is applied to domain variables of different domains. Thus, if not needed,
the overhead caused by domain variable unification can be decreased. Moreover, the prepro-
cessor is able to check whether a predicate is called with domain variable arguments. If this is
not the case for unification in a program, it does not have to be redefined, but can be handled
by the fast PROLOG unification routine.

6.3 Using delay Mechanisms

In this chapter I will descibe how an advanced control behaviour is achieved in FIDO-IIL
Constraints provided with a forward declaration will be redefined using the SEPIA delay
mechanism in order to simulate the forward-checking inference rule. delay conditions will be
formulated on the redefined constraints, thus deferring the execution until the variables of the
constraints are sufficiently instantiated.

After a few words about coroutining in PROLOG, I should like to introduce SEPIA’s delay
features by an example and show how forward-checking can be implemented on top of such a
mechanism.

6.3.1 Approaches Towards Coroutining

The idea of providing a coroutining mechanism for logic programming originates from the
effort aimed at making PROLOG control strategies more efficient. This idea has been given
expression to several times since the end of the seventies. Pioneer work in this direction has
been done by [CM79] with IC-PROLOG, by Colmerauer {Col82, CKv83, Col87a} introducing
the geler predicate in PROLOG-II, by [Car87] introducing dif and freeze and by the conceptual
and practical work of Naish [Nai82](MU-PROLOG). Also the work of [DL84] (METALOG)
and of [GL80] should be mentioned in this context. During the last years, almost all important
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PROLOG systems followed offering a coroutining mechanism.

The idea which is common to all these approaches is the following:

Sometimes, it may be desired that not all input arguments of a predicate should be instantiated
when the predicate is called. In the case of being called with some uninstantiated input
arguments, the operational behaviour of the predicate should be modified:

it shall not fail, but its execution shall be deferred until, later on during computation, values
are assigned to the respective variables.

Thus, from the view of constraint solving, a constraint net is built, which can be propagated
later on by giving values to some variables. That idea is pursued in this work. Generally,
coroutining gives the possibility to obtain partial evaluation in logic programming and thus,
to enhance the scope and the efficiency of logic programming languages, while preserving their
logic part. Its main effect is to enable programs written in a generate & test style to simulate
standard backtracking search. Thus, the elegance of generate & test and the (relative) efficiency
of standard backtracking can be combined. This is achieved by adding control information to
the program. A fundamental paper dealing with this issue is [Nai85].

However, a mere use of coroutining aimed at achieving a better control strategy for logic
programming languages is nothing more than cosmetics to generate & test programs, since it
only yields passive pruning and does not improve the behaviour of standard backtracking at all.
What we are doing here is making use of coroutining in order to implement a forward-checking
behaviour. This opens up to us a higher level of efficiency, because it allows constraints to
reduce the search space actively.

6.3.2 SEPIA delay Declarations

As many PROLOG systems do (e.g. MU-PROLOG [Nai82], IC-PROLOG [CM79], NU-PROLO!
[TZ88]), a coroutining facility is integrated in the advanced feature PROLOG system SEPIA
[MAC*89, SEP90, SEP91]: the SEPIA delay mechanism. That feature is to be used in the
practical work accompanying this work. PROLOG is extended by the possibility of formulating
delay declarations on predicates. That way, execution conditions (or rather: delay conditions)
can be expressed, thus directing control in the way desired. Example 6.10 shows what such a
delay declaration on a predicate call can look like. The example shows the implementation
of a symmetrical verison of the real multiplication predicate /3. Thus, sym_*/3 can be used
in order to ask the queries, shown in figure 6.11. Especially interesting is the last case. Since
the first and the last argument of the goal are uninstantiated, the call to sym x(X, 5, Y)
remains delayed. This gives us the possibility to express implicit solutions for problems. That
can be very convenient, as example 6.12 shows. Assume the predicate admissible / 3 checks
whether a combination of three values X, Y and Z is admissible for some purpose. The se-
mantics of admissible is obvious. By the use of coroutining, implicit solutions can be given.
i.e. the query

?- admissible(6, Y, 3)

yields the following answer:

Y = _d58 Delayed constraints:
6 > _d58
-ds8 > 3

yes.

[sepial:
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\* implementation of the symmetrical multiplication operator based on delay =\

sym_»(X, Y, Z) :-
nonground(Y),

Y is X / Z.

sym_*(X, Y, 2) :-
nonground(Z),

1
»

Zis X/ Y.

sym_*(X, Y, Z) :-
Xis Y = Z.

delay sym_»(X, Y, 2)
if nonground(X),
nonground(Y) .

delay sym_=»(X, Y, Z)
it nonground(X),
nonground(Z).

delay sym_»(X, Y, Z)
if nonground(Y),
nonground(Z) .

Figure 6.10: Example: Use of a SEPIA delay Declaration

[sepial: sym_=»(6, 3, X).

X =2.0
yes.
[sepial: sym_*(Z, 7, 3).

Z =21
yes.
[sepial: sym_»(4, X, 12).

X = 00.333333
yes.
(sepial: sym_s(X, 5, Y).

_d74
_d66 Delayed conatraints:
symn_*(_d74, 5, _d66)

1=
Y =

Figure 6.11: Symmetrical Multiplication Predicate sym_x/3

Thus, the implicit solution condition for variable Y (Y must be between Z and X) can be
fomulated even without giving an explicit numerical solution concerning the value(s) that can
be assigned to Y.
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admissible(X, Y, 2) :-
X>y,
Y»>72Z,
X > 2zZ.

delay admissible(X, Y, Z)
it nonground(X),
nonground(Y).

delay admissible(X, Y, Z)
if nonground(X),
nonground(Z2).

delay admissible(X, Y, Z)
if nonground(Y),
nonground(2).

Figure 6.12: Yielding Implicit Solutions by Delaying Goals

Let me come back now to example 6.10. Before each call to the goal sym x / 3, it is tested
whether the delay condition still holds. If it does not, the goal is executed like a normal PRO-
LOG goal, else the goal is delayed, i.e. it is pushed on a delay stack. Each time a variable
appearing in the delayed goal is bound or unbound, it is tested again if the delay condition
holds. If not, the goal will be popped from the delay stack (it is resumed) and it will be made
current goal.

Peculiarities of the SEPIA Resuming Strategy In this context, I would like to make
a short remark on an interesting effect of the SEPTA behaviour described above. Figure 6.13
shows an example situation:

Assume there is a goal

AI—Al,...,AN.

By the execution of the current goal, which shall be Aps, 1 < M < N, a variable, say X is
instantiated, causing a number of delayed goals

Cll) sy ClJa vy ClKl

to be resumed?. Due to SEPIA resume strategy, the first of the woken goals, i.e. Cy1, becomes
new current goal. During the execution of a C;x, however, another variable, X, can be
instantiated, again causing constraints Coz, to be resumed, and so on. Thus, a resuming cascade
can arise resulting from the initial variable assignment to X;. This is shown graphically in
figure 6.13. The problem resulting from this is that the most recently woken goals become
current goals. There is a depth first search behaviour resulting from that, starting from a

20it is obvious that by instantiating one variable, several constraints can be resumed since a variable can
appear in mce than one constraint.
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Figure 6.13: A SEPIA Resuming Cascade

variable instantiation (which can be not guaranteed to be right itself, i.e. which can turn out
to be wrong later on, causing backtracking), thus potentially creating lots of new goals. By this
depth-first resuming strategy, the number of choice points is drastically increased, so that also
backtracking probability is increased. It is well-known that, for infinite search trees, depth first
is not a safe method for finding a solution, since it resembles shooting into the night, hoping
to hit something edible.?!

In my opinion, a better behaviour would be to try first the goals resumed first (i.e. a FIFO
organization of resuming). Thus, backtracking frequency as well as the number of goals to
consider could be decreased in many cases, the probability of discovering a failure early would
increase. In our actual example 6.13, this would mean to continue from goal C,; with goal
CiJ+1, queuing the new resumed goals Cqq, ..., Cax2 behind Cygy. That way, a breadth-
first component could be introduced into the search. In my opinion, this would be a more
appropriate method for straightforward "left-to-right-with-backtracking” algorithms such as
N queens and other discrete combinatorical problems discussed in this work (see chapterT).

[ talked about that issue to some people from ECRC. They had their doubts whether changing
the goal-selection-strategy from depth-first to breadth-first could yield positive results. Their
main arguments were that

¢ the idea of introducing a breadth-first method for subgoal selection in the case of resume
cascades would not correspond to the depth-first goal-selection philosophy of PROLOG?2.

¢ nobody had ever complained about this up to now.

21 The risc of starving is said to be quite high, that way!
*2How puristic people can be if it comes to avoiding additional work!
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It is certainly true that both strategies discussed are heuristics. That implies that for each of
them, examples can be found that work wonderful, whereas other examples yield pathological
results. However, the idea of introducing a breadth-first component into PROLOG seems
interesting to me (many efforts of introducing and/or parallelism into PROLOG [WRCS87,
van89b| aim at a similar direction). At least, it could be worth trying it and watching the
results.

6.4 Consistency Techniques in FIDO-II

6.4.1 Realizing Forward-Checking via a delay Mechanism

In this section, I describe the way a forward-checking control behaviour is obtained in FIDO-IL
This is done by using SEPIA delay declarations on specialized constraints in order to defer
the execution of a goal which is not sufficiently instantiated.

6.4.1.1 Built-in Constraints

Here, using the =\ = constraint as an example, the realization of control for built-in constraints
will be shown.

Assume the user formulates a forward declaration on = \ =, e.g. as happens in the N
queens program in figure 7.1. What the preprocessor has to do is to replace each call to
forward(=\= /2) by a call to fornne /2, which is the built-in forward redefinition of
=\=/2.

The forward redefinitions of the built-in constraints are predefined and can be accessed (i.e.
loaded) by the system. That is a difference to the way the redefinitions of user-defined con-
straints are provided. The latter ones are dynamically created by a code generating module
during precompilation.

The predefined constraints, however, are implemented more efficiently, loading only the defi-
nitions which are really needed.?® Let us have a glance now what the redefinitions are imple-
mented like.

The transformation of the FIDO constraints into executable PROLOG code is performed in
three steps:

1. Instance Test All constraints pass a normalizer during preprocessing. There they are
transformed into a normal form. Numerical constraints, as e.g. =\ = /2 are reshaped into a
set of new constraints, each of them being an instance of one of the following patterns:

e X =\=Y

e X=\=Y+2

o X=\=Y=xZ

e X=\=Y+N+2Z,

30One could achieve that using a dynamic generator, too, but this is not performed by the prototype
preprocessor.
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where X, Y, Z are simple (see definition 12).

This is done because specialized redefinitions are implemented for these patterns which allow
efficient processing. Thus, the first step is to detect the pattern corresponding to the actual
constraint call. e.g. the expression X =\ =Y would match the first of the above cases. Thus,
a clause

(1) for_nne(X, Y) :-
for_nne0(X, Y).

is added to the source code. We cannot simply replace for nne /2 by for_nne0 /2, because it
is still possible that the source program contains a goal using =\ = /2 in a forward-checking
way, but with a different argument pattern, e.g. a call to

forvard(A =\= B + C).
In this case, another clause,

(2) for_nne(X, Y) :-
instance(Y, X1 + Y1),
]

for_nnei(X, Y).

must be added, where for nnel / 2 handles the sum in the second constraint argument. By.
the way, in order to achieve the desired procedural behaviour, clause (2) must be added before

clause (1) in the destination file.

These pattern-dependent case distinctions are created dynamically. Thus, only necessary cases

are taken into account, reducing the fan-out and avoiding redundant search effort and nonde-

terminism.

2. Domain Variable Test Since it is not clear at compile time, which constraint arguments
will be domain variables at run-time and which will not, we have to check that by an explicit
case distinction during run-time. For each argument combination domain variable < normal
variable, a specialized version of the constraint will be called. Note that this leads to an
explosion of possible cases for constraints having a bigger number of arguments, since for an
N-ary constraint, there exist 2V possible combinations, for each argument can be a domain
variable or a normal variable. However, from a practical point of view, this is not too bad,
because most interesting constraints do not have more than three or four arguments. Many of
them are even binary constraints.

That potential combinatorical explosion is the reason, why, for user-defined constraints, the
maximal number of arguments is restricted to 5 in the current FIDO-II implementation. Figure
6.14 shows the case distinctions for the for nneQ(X, Y') constraint.

3. Specialized Redefinitions At the third level of redefinition, the delay mechanism be-
comes visible. Following the definition of the FCIR, a constraint can ”fire” in a forward-
checking manner if all except one of its domain variable arguments are ground, and if all other
arguments are ground, too.

. . k
For an n-ary constraint C' with k < n variable arguments, this can be formulated using ( 9 )
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for_nne0(X, Y) :- \* both X and Y are domain variablaes =\
x = (t’-’—’—,—’n)’
Y = (&’—’-’—I—l—)’

for_nne_dd(X, Y).

for_nnel0(X, Y) :- \#* only X is a domain variable »\
x = (t,-)—'—l—’-)i

for_nne_dn(X, Y).

for_nneO(X, Y) :- \* only Y is a domain variable #\
Y - (.)-)—l—l—’—)’

for_nne_dn(Y, X).

for_nne0(X, Y) :- \* neither X nor Y are domain variables »\
X "= Y. \* --> use SEPIA sound inequality constraint #\

Figure 6.14: Case Distinctions for the for_nne0 Constraint Redefinition

delay declarations since C must be delayed if any two variables X and Y out of the k ar-
g = 1 delay declaration,
which expresses that the execution of the constraint shall be delayed if both its arguments are
nonground. Figures 6.15a. and b. show the specialized constraints for two cases:

In figure 6.15a., X and Y are domain variables, whereas in figure 6.15b., only X is a domain
variable. Each definition of specialized constraints contains again a case distinction, because
the "non-delay” condition is nondeterministic. If the specialized constraint can fire, we only
know that not both its arguments are nonground, or, in other words, that at most one argu-
ment is nonground. To find out which on it is, we need to consider & + 1 cases for a constraint
with k variable arguments: it can be each of the k variables, or there is no unbound variable
remaining in the call, which corresponds to case number &£ + 1.

In our example, for each of the specialized redefinitions, we have three clauses reflecting the
possible case distinctions.

In the bodies of the definitions, a forward-checking algorithm is called in order to restrict the
domain of the remaining nonground variable. The general call to forward_ne /5 will be replaced
by a call to a specialized forward-checking algorithm later on during preprocessing, when more
information about the domains involved is available (This information is gathered from the
static program analysis). For more information about specialized constraints see section 6.2.3.

guments of C are nonground. In our example, we need only

6.4.1.2 User-Defined Constraints

In principle, the way things go here is the same as proposed for built-in constraints in the last
paragraph. However, instead of loading predefined redefinitions, they are generated dynamically
by a code generator module following the three-level description given in paragraph 6.4.1.1.
In order to restrict the combinatorical explosion induced by the domain variable case distinction
(level 2), the number of arguments of user-defined constraints is limited to 5 in the current
FIDO-II implementation.



The Integration of Control 73

a. for_nne_dd((a,I1d,LX,CX,X,DX), (&,_,_,_,Y,_)) :=

nonground(X),

forvard_ne(X, Id, DX, LX, Y).

for_nne_dd((x,_,_,_,X,_), (&,Id,LY,_,Y,DY)) :-

nonground(Y),
]

forvard_ne(Y, Id, DY, LY, X).

for_nne_dd((t,_r-v_;xy_) ’ (t,_,_,_,Y,_)) B
'y
X =\= Y,
delay for_nne_dd((%,_,_,_,X,.),(&,_,_,_,Y, )
it nonground(X),
nonground(Y) .

b. for_nne_dn({(&,_,_,_,X,.), Y) :-

nonground(Y),

]
<

X "= Y,

for_nne_dn((&,Id,LX,CX,X,DX),Y) :-

nonground(X),
]

forvard_ne(X, Id, DX, LX, Y).

delay for_nne_dn((&,_,_,_,X,.),Y)
if nonground(X),
nonground(Y).

Figure 6.15: Definition of Specialized =\ = /2 Constraint
6.4.1.3 Evaluation

In the following, a short assessment of achieving forward-checking control by a delay mecha-
nism is given.

I myself feel a little uneasy about the way of obtaining forward-checking behaviour presented
for built-in and user-defined constraints. The main point for that is the distinction between
domain and ”"normal” variables leading to a variety of cases that must be handled on PRO-
LOG level. This is awkward, since the distinction is not a logical one, since each variable is a
domain variable, even if the domain happens to be the Herbrand universe, as it is the case for
PROLOG logic variables. The problems resulting from the duality of variable representation
in FIDO-II have been outlined in section 6.2.5.1. That way, the system could greatly benefit
from a closer integration of domain variables and normal variables in a common framework.
The theoretic work of Jaffar, Lassez[JL87, JM87] and vanHentenryck[van89a] shows that such
an integration is possible on a conceptual layer. I think that the realization of an integration
of domain variables can be merely achieved on a lower system level, i.e. in a deeper integrated
system, since it actually requires the modification of the unification routine. Implementing
such a concept on a higher level has always something unnatural. Looking at the way FIDO-II
does it seems to justify that statement:

The current state of the FIDO-art implies a three level processing of each n-ary constraint C:
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e On the first level, there are (maximally) four pattern distinctions

¢ On the second level, there have 2" domain variable case distinctions to be made, and,
finally

¢ On the third level, for each case distinction made before, there are maximally (n + 1)

cases to be considered, plus ( n

9 ) delay declarations to be made

Thus, the all over amount of possible case definitions is

4*2"*((’2‘)+n+1),

which implies exponential space requirements.

As I said before, it is true that this is not acceptable in general, but it is acceptable if it is
guaranteed (either by convention or by normalization) that the arity of constraints is kept
relatively small.

As a matter of fact, for most problems, the performance of FIDO-II is really tenable, as we
can see for several applications in chapter 7. This partially justifies the approach chosen here.
But if we intend to make the system comparable with high-performance CLP systems such as
CHIP, a deeper integration of control seems one of the most urgent things to do, especially as
regards the consistency techniques manipulating domain variables. As a conclusion, we can say
that, once more, the domain variable representation turns out to be the bottleneck of FIDO-II.

6.4.2 Implementing Looking-Ahead

The implementation of looking-ahead does not induce any new concepts concerning the use of
delay mechanisms. Rather, it is implemented by forward-checking and standard PROLOG.
Looking-ahead could be implemented by making use of recursive calls to the forward-checking
algorithm. I discussed the implementation of forward-checking using delay declarations in
section 6.4.1. The realization of weak looking-ahead has been described in chapter 6.2.4.
Concerning delay aspects, it is implemented by forward-checking, too. Thus, I would like to
refer the interested reader to these chapters instead of repeating that stuff here.

6.5 Choice Methods in FIDO-IT

6.5.1 Motivation

By using consistency techniques such as forward-checking, it is possible to obtain an a priori
reduction of the search space. Thus, one of the goals postulated in chapter 1 has been achieved.
Also the number of choices that have to be made in order to find a solution of a problem can
be reduced by those techniques.

However, since the nature of most CSPs is AP-complete, we cannot entirely avoid making
choices. The way choices are made is crucial for the overall efficiency of problem solving,
since choices introduce nondeterminism and contribute that way to the phenomenon known
as combinatorical search space explosion. Wrong or awkward choices will lead to failure, thus
invoke backtracking with all its negative consequences.
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Thus, CLP algorithms should be regarded as combining the processes of constraint solving
and of making choices in a clever manner [van89a], since both activities determine the overall
system performance. Making choices in CLP means instantiating variables, i.e. assuming that
a variable has a distinct value. That additional information can be used by the constraint
solver in order to restrict the domains of other variables. In this chapter, I would like to show

how first-fail heuristics can be used in order to select the variables to be instantiated in a smart
24
way“*,

6.5.2 First-Fail Heuristics

So what is a first-fail heuristics? What we want is to choose the variable to be instantiated next
as cleverly as possible. That variable shall be selected whose instantiation will make failure
obvious as early as possible. Thus, the first-fail principle [HE80] says that

"To succeed, try first where you are most likely to fail.”

In terms of CSPs, we could reformulate this in

"To succeed, instantiate the most constrained variable first”. In standard logic programming
languages, finding out which is "the most constrained variable” is a problem which is not easy
to solve. The FIDO domain concept, however, gives a convenient possibility of achieving that
goal, as we will see in the following.

6.5.2.1 Realizing First-Fail Heuristics

There are basically two ways of obtaining a first-fail behaviour, which can be used indepen-
dently or can be combined. The methods are called

e first-fail on domain size (written as FF4,) and

e first-fail on constraint number (written as FF.,).

First-fail on Domain Size The strategy here is to select the variable with the smallest
domain to be instantiated next. This embodies a first-fail heuristics for two reasons:

1. Since each domain value corresponds to a choice point, the number of potential choice
points induced by a variable instantiation is minimized.

2. Since a constraint fails iff there are no values left within the domain of one of its variables,
choosing the smallest domain promises discovering failure as early as possible.

First-fail on Constraint Number The motivation behind that heuristics is to instantiate
first the variable that appears in the greatest number of constraints. Having instantiated that
variable, say X, each constraint containing X can use the information delivered by the new
variable binding. Some of them may become able to prune the domains of other variables,
thus, again leading to an earlier detection of failures.

4 There are other possibilities of optimizing choices, e.g. the use of constraints as choices or techniques such
as domain splitting (see [van89a]). Those, however, are not taken into consideration in FIDO-II.
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Combining Both Methods Using only one of the methods introduced above has a disad-
vantage. At the beginning of computation, when the domains have not been restricted a lot,
and when no constraints can "fire”, it is often the case that a choice has to be made?®. If
we use only FFy,, there will be probably many variables having the same domain size. Thus,
the quality of choices based upon FF4, tends to be quite poor in the beginning of constraint
propagation.

To overcome that, a combination of both methods can make sense, according to the following:

1. Compute a list of domain variables with minimal domain sizes.

2. From that list, choose the variable that appears in the biggest number of constraints. If
there is more than one variable, choose any of them.

Combining these two heuristics to a new one, we can expect that, even relatively early in the
constraint solving process, good choices are made.

6.5.2.2 FIRST-FAIL in FIDO-II

Introducing a first-fail heuristics requires keeping track of various statistical data concerning
domain variables, such as the number of constraints and the domain length. Since, in FIDO-II,
due to the PROLOG variable concept, it is not possible to change the value of a variable (e.g.
decrementing the length of a domain by one), storing and accessing that data causes some
overhead to the system.

o For each value removed from the domain, the length variable X.ng:n of @ domain variable
X has to be decremented.

o For each constraint the variable X appears in, the variable Xconstraints must be in-
cremented and later on, if the constraint execution has been finished, be decremented
again.

In FIDO-II, the actual domain length is used for the singleton test. Thus, there is only a small
overhead (finding the variable with the smallest domain) in realizing an FFy, heuristics.
However, I didn’t implement FF.,, mainly for reasons of time. The internal representation
of FIDO-II domain variables (see section 5.2.1) provides a variable for storing the constraint
number for each variable. Thus, integrating an extension maintaining that variable can be
done quite easily if it is desired. For every call to a constraint redefinition calling a consistency
algorithm, the following has to be done:

¢ Before the call, for each variable X appearing in the constraint, an instruction increment-
ing the Xconstraints variable has to be inserted.

¢ Directly behind the call, an instruction decrementing X . nstraints must be added.

e an additional instantiation predicate realizing the FF., or the combined instantiation
strategy has to be provided.

For using FFy, in FIDO-II, a new library predicate has been provided:

2 especially, if we use forward-checking which can be done only if all up to one argument of the constraint
are bound.
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instantiatedl / 1

accepts a list of domain variables as input argument and, spoken procedurally, instantiates
each variable of the list according to a FFg4, heuristics. Thus, by simply using instantiate_dl
instead of instantiate, normal instantiation order can be changed into first-fail instantiation
order. Which one works better for a specific application, can be checked very easily that way.

6.5.2.3 Results for First-Fail Heuristics

The performance of many problems can be drastically improved by using first-fail heuristics.
e.g. the 32 queens problem can be solved within ca. 3 seconds using a first-fail heuristics,
whereas without first-fail, even after one hour no solution has been found (see tables 7.1, 7.2).
For other problems, using first-fail doesn’t show a visible effect, see e.g. table 7.3 for the five
houses problem. That should not surprise, since it actually is an heuristic with strong points
and shortcomings. Exact run-time data is displayed in chapter 7.

6.6 The FIDO-II Preprocessor

In this chapter, we’ll have a glance at the internal structure and the behaviour of the FIDO-II
preprocessor. After giving a brief description of the preprocessor interfaces, I will present the
single components (static structure) and the internal data and control flow (dynamic structure)
in the preprocessor.

6.6.1 The Preprocessor as a Black Box

The main task of the FIDO-II preprocessor is to transform a program written in PROLOG with
some extensions into an executable PROLOG program. The resulting program can handle do-
main variables and it simulates advanced control mechanisms according to control instructions
in the source program. In short, FIDO-II performs a horizontal source-to-source transforma-
tion.

Figure 6.16 shows a view on the preprocessor as a black box. The user interface to FIDO-II
allows the declaration of domains and domain variables, and the declaration of advanced con-
trol strategies for particular constraints. Finally, first-fail heuristics can be chosen in order to
achieve a good instantiation order for variables.

The back-end of the preprocessor, i.e. the system interface, consists of a set of library pred-
icates taking on the task of generating domains and domain variables, predefined constraint
redefinitions with delay declarations and first-fail library predicates. The generation includes
"?- compile ..” instructions for loading files as well as PROLOG code for constraint redef-
inition. The source program is read from an input file, the resulting PROLOG program is
written to an output file. Both source and destination file can be specified using the goal

?- fido(InFile, OutFile).

This starts the preprocessor with the file denoted by InFile. The ouput file, QutFile, is created
and the source-to-source transformation is performed. FIDO automatically loads the redefini-
tion files needed and compiles the destination file. Thus, after the successful finish of FIDO-II,
the desired query can be put to the system.
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Figure 6.16: The FIDO-II Preprocessor as a Black Box

6.6.2 Static Structure of the FIDO-II Preprocessor

Let us now have a look at the components of FIDO-II and the tasks they fulfil. Figure 6.17
shows the static structure of the FIDO-II preprocessor. I would like to describe in more detail
the most important features of the components shown in that figure.

6.6.2.1 The I/O Module

This module is responsible for file in- and output (don’t be surprised!). It reads the FIDO
source file and writes back the output to the destination file denoted by the programmer.
Tightly coupled to I/O is a classifier component which performs a first scan of the input
file. For reasons of efficiency, this is done while reading the source file. Thus, physically, the
classifier is nested into the I/O module. From the logical point of view, however, it can be
regarded as an independent module, as illustrated in figure 6.26.

The Classifier Basically, the classifier performs two tasks. The first one is to split the source
code in two portions,

e a normal PROLOG part and

¢ a part containing FIDO extensions.

By that, it can be easily detected whether the source code contains FIDO extensions, i.e.
domain and consistency declarations. If not, the preprocessor will write the original code into
the destination file since the input program is a standard PROLOG program. The second task
of the classifier within the I/O module is to initialize an internal representation of the source
program. I denote that representation callsgraph, because it is a graph that represents "who
calls whom ”:
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Internal Representation

Figure 6.17: Static Structure of the FIDO-II preprocessor
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p(Xt, Y, X2) :-
define_domain(xyz, [X1, X2], [1, 2]),
q1(x1, Y),
q2(Y, X2).
qi{X, Y) :-
q2(Y, X).
q2(X, Y) :-
X =< Y,
Y \= 1.
q2(X, Y) :-
X =Y.

Figure 6.18: An Example Program
Definition 15 (Callsgraph) A callsgraph is a graph G = (N, ), where

o N is a set of nodes. Each node is labelled with two pieces of information:

— A predicate P/N occuring in the current program.

— A list containing a free variable for each of the arguments of P.

o & is a set of directed edges from nodes to nodes. Two nodes pl and p2 are connected with
an edge from pl to p2 if the predicate denoted by pl calls the predicate denoted by p2 in
the actual program.

For each predicate P, there is a node in the callsgraph. It represents information about which
of the arguments of the predicate can be called with domain variables, and which other predi-
cates call P, respectively are called by P. The callsgraph will be described in more detail by
an example in the following section 6.6.2.2.

6.6.2.2 The Static Analyzer

The task of this module is to complete the internal representation of the input program. Basi-
cally, that means to find out which predicates can be called with domain variables, especially
which of their arguments can be called with domain variables of which domains. To know this
is important because of the explicit representation of domain variables, which enforces FIDO
to know where to expect them. The static analysis is done in two phases:

1. First, the information obtained by the explicit define_domain / 3 goals within the
source program is used.

2. Starting from that information, the callsgraph is recursively traversed, propagating pos-
sible calls with domain variable arguments through it, until no further changes appear.

I would like to demonstrate the way static analysis works by the help of a small example. Look
at the small program shown in figure 6.18: The callsgraph for this program after initialization,
but before static program analysis, is shown in figure 6.19. After the first static analysis
phase, using the information from the define_domain /3 goal, the callsgraph is modified as
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SAARARN

Figure 6.19: Initialized Callsgraph

shown in figure 6.20. In the second phase, starting from p/3, the domain variable appearances
are recursively propagated through all descendants of p within the callsgraph. Figure 6.21

shows the state of the callsgraph after the propagation through the goal q,(X;,Y) inside the
definition of p/3. Figure 6.22 shows the final form of the callsgraph.

R R

Figure 6.20: Intermediate Callsgraph (1)

The Callsgraph The information represented by the callsgraph can be used e.g. to detect

that \= / 2 is not called with its first argument being a domain variable. Note however, two
facts concerning the callsgraph:

1. The callsgraph entry for < / 2 displays that this predicate can be called with both its
arguments being domain variables. As a matter of fact, in the above example, < / 2 will
never be called with two domain variable arguments simultaneously. It will be called
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Figure 6.21: Intermediate Callsgraph (2)

Figure 6.22: Final Callsgraph
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either directly by p/3, in which case the second argument is a domain variable, or it will
be called by q; /2. Then, the first argument is a domain variable, whereas the first one
is not.

2. The nondeterministic predicate qg is represented by one single node in the callsgraph.

The predicates called by q; are treated by the callsgraph as if they were conjunctive
clauses inside a single goal.

The effect of these two simplifications is that the static analyzer will achieve overcautious
results. It will predict predicate arguments to be called with domain variables which actually
will not.

An alternative approach would be not to handle a predicate as a node, but to introduce a
node for each alternative clause defining a predicate. That would make keeping track of each
path through the program a much more difficult task. The additional knowledge gained by
this refined strategy could be used in order to optimize code generation.

Nevertheless, for many examples, the simple analyzer implemented in FIDO-II does its work
very well. Most important is that its analysis never yields wrong results. It will just do too
much work, if domain variable definitions are used for a nondeterministic predicate. Especially,
if some of the clauses for a predicate contain define_domain declaration while others do not,
the domain variable arguments will be propagated through all goals appearing in the body of
the definition, even if other clauses defining the predicate don’t use domain variables, at all.
That is because the callsgraph treats alternatives defining the same predicate as conjunctions.
This is the effect shown in example 6.23, where the predicate > /2 is treated as if it was called
with its first argument being a domain variable. Actually, since > /2 appears inside the second
clause for p/2, it will never have a domain variable as its argument.

p(X, Y) :-
define_domain(d, [X], [1, 2]),
X\=1Y.

p(X, Y) :-
X>Y.

Figure 6.23: Overcautiousness of Callsgraph Representation

I don’t think this is such a bad shortcoming of the system. It is hard to imagine that a
nondeterministic definition of a predicate that uses domain variables in one case and that does
not use them in another case makes much sense. At least, if the programmer is aware of the
problem, it should be no problem to reformulate that by an explicit case distinction. For these
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puzzle([K, N, O, ¥, H, D, F, I}) :-
define_domain(digits, [K,N,0,¥,H,D,F,I], 0..9),
forvard(1000#K + 100#N + 100 + W + 100«H + 10%0 + § =:=
1000=D + 100#F + 10#K + I),
instantiate([K, N, 0, W, H, D, F, I]).

Figure 6.24: Another Formulation of KNOW + HOW = DFKI

regards, FIDO-II offers the built-in predicate is_domvar / 1 which succeeds if its argument is
a FIDO domain variable.

6.6.2.3 The Constraint Normalizer

From the point of view of the system, the realization of constraint propagation by redefining
constraints and formulating delay declarations on them turns out to be quite awkward for
more complicated constraints. Therefore, a constraint normalizer is used in order to simplify
constraints, i.e. to reduce them to a few basic formats that can be handled efficiently by pre-
defined algorithms. In the current implementation, user-defined constraints are not submitted
to normalization. It is the concern od the user to use them appropriately (see section 6.2.1.2).
For built-in constraints, a normalizer is provided which allows the user a convenient formula-
tion of constraints. This normalization is especially cut to arithmetic constraints. In section
6.2.1.1 I defined that arithmetic constraints must have a simple polynomic form. What the
normalizer does, is converting one constraint C having a simple polynomic form into a set of
"smaller” constraints C; being of one of the patterns

Ci(X,Y),
CiX,Y + 2),
Ci(X,Y*2Z)or
Ci(X, Y+ N=x2),

where X, Y, Z, and N must be simple. Consider e.g. the kryptarithmetic puzzle K NOW +
HOW = DFKI. A FIDO-II program solving that problem is shown in figure 7.3. That pro-
gram reflects the arithmetic view, using carries in order to perform the arithmetic operations
the way expected. For a programmer, however, it could be more convenient to formulate one
big constraint instead of using one constraint for each adder operation. Figure 6.24 shows
what that big constraint could look like. This is an example for a constraint in simple poly-
nomic form. However, the constraint contains eight variables. Mentioning what [ wrote before
about constraint redefinitions, we would need 28 case distinctions only at level 2 of the re-
definition process (see section 6.4.1.1), inducing an enormous requirement of memory. Thus,
the constraint should better be transformed in a set of smaller constraints. The result of that
redefinition is shown in figure 6.25.

The variables T01 to T11 are new variables used to connect the constraints.

6.6.2.4 The Code Generator

This module actually creates the destination program from the FIDO source code. It performs
several tasks, using information from the callsgraph: It creates the domain and domain variable
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{T01 =:= K = 1000,
T02 =:= TO1 + N = 100,
TO3 =:= TO2 + 0 = 10,
T04 =:= TO3 + W,

TOS =:= T0O4 + H = 100,
TO6 =:= TO5 + 0 = 10,
TO7 =:= T06 + W,

TO8 =:=T09 + I,

TO09 is T10 + K = 10
T10 is Ti1 + F « 100,
T11 =:= D = 1000}

Figure 6.25: Constraint Set Resulting from Normalization of KNOW+HOW=DFKI

definitions necessary according to the define_domain / 3 declarations in the source program.

Fach define_domain call will be replaced by calls to FIDO-II library predicates
create_domain / 3 and create_domvars / 3,

creating the actual domains resp. domain variables. How these predicates are actually called

can be derived from the respective define_domain / 3 goals. Assume there is a
define_domain(DomId, Varspec, Domspec)

declaration. It will be replaced by a

create_domain(Domld, DomProc,Dom) and a create_domvars{DomId, VarProc,Varlist) call

as follows:

b

If Domspec is a list of domain elements, Domproc contains that list.

If Domspaec is a call to a predicate, Domproc contains this predicate call with Dom as its
first argument.

¢ If Varspec is a list of variables, Varlist contains that list and Varproc is set to true.

o If Varspec is a predicate call of the form genvar(N, L), Varproc is unified with this
call and Varlist is unified with the resulting list L of domain variables.

For a better understanding of that, you should recall what I said about domain declarations
in chapter 5.2

The second task of the code generator is to create the 7- compile(...) declarations for the
constraint redefinitions, or, in case of user-defined constraints, generate the redefinitions them-
selves. Finally, some built-in predicates in the source program have to be redefined if they are
called with domain variable arguments. Otherwise, they could show an unexpected behaviour.
Here again, the problem of variable duality appears as a general problem of FIDO-II. The
explicit distinction between domain variables and non-domain variables causes problems, since
it is a merely syntactical one (which stems from the internal representation), but in principle
not a semantical one. I would like to show that by an example: assume e.g. that the source
program contains a goal write(X) where X is a domain variable. The user is interested in
the value of X, which is represented by Valy, but not in the structure of the domain variable
X. If we left the call as it is, write / 1 would print the sixtuple representing the domain
variable X as an answer substitution. There are two possibilities of handling that situation:

1. The programmer should be somehow aware of the way domain variables are represented
by the system and avoid calling built-in predicates with domain variable arguments
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2. The system can automatically recognize that case and replace the call to write /1 by a
call to a redefined predicate

write_dv((&,_,.,_,ValX,_)) :-
write(ValX).

Which solution should be preferred is a matter of opinion. Once more, there should be a
trade-off between what must be burdened to the user and what can be done by the system.
In the FIDO-II approach I chose the second way. Built-ins called with domain variables are
automatically redefined the way shown above.

At the end of this chapter, the dynamic structure of the FIDO-II preprocessor is shown in
figure 6.26. It incorporates the issues I mentioned concerning the single components. Note,

Figure 6.26: Dynamic Structure of the FIDO-II preprocessor

that three scans of the source program are made.

¢ The first one happens during reading the source, classifying it and initializing the calls-
graph.

¢ The second scan (which is the most complex one and takes the greatest part of compila-
tion time) is done for static analysis.

o- By the third and last scan the source is modified due to the information obtained by the
previous scans.

6.8.2.5 Conclusion

Up to here, I hope to have given an idea of how the preprocessor actually performs its tasks,
transforming a source program containing additional information concerning domains and con-
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sistency techniques into an efficiently executable SEPIA PROLOG program that can handle
domain variables and achieves advanced control strategies according to the declarations in the
source file.

6.7 Towards a FIDO-II Programming Methodology

In this chapter, I will try to give an idea of how FIDO-II programs should be written. The
language provides facilities to integrate constraint solving techniques into logic programming.
A central issue is, however, that the user has to make his/her contribution to that, namely by
practising an adequate programming style. In FIDO-II, the constraint solver (or what we could
call constraint solver there) is nested with the inference engine by the SEPIA delay mechanism.
Thus, there is no clear inherent distinction between these two components in FIDO-II. That
implies that the programmer has to care about handling constraints in an appropriate way.
In the following, I would like to give some advice of how that can be done, providing an optimal
use of the FIDO-II control mechanisms.

6.7.1 Doing Tests Before ”Generates”

The idea of constraint solving is to propagate values through a constraint net, whose nodes
are the variables and whose edges are the relations between the variables. Constraints shall
be used as early as possible to support an early pruning of the search space. This implies the
usefulness of the following general proceeding during constraint solving:

1. State the constraints as early as possible, i.e. first build the constraint net!

2. If not all variables can be instantiated by propagating value sets through the constraint
net, start instantiating the variables as far as necessary.

3. In the following, use constraint propagation whenever possible.

4. If new constraints appear, add them incrementally to the constraint net.

Let’s see now how we can integrate that methodology in FIDO-II. Obviously, point 1, which
says to state the constraints first, can be fulfilled by writing the program constraints before
instantiating the variables. Thus, FIDO programs should be written in a "test & generate” style
instead of the usual "generate & test” manner. Since.the selection of subgoals is done following
the PROLOG strategy, i.e. top-down left-to-right, the programmer himself is responsible for
stating the constraints in an appropriate order, calling the instantiation predicates thereafter.
FIDO-II does not check whether the user does that the right way. Instead, if he decides to
instantiate the variables before generating the constraint net, the resulting program will show
a standard generate & test behaviour. Since the constraint variables will be instantiated before
the constraints themselves are called, the call to a constraint will

e either succeed or

¢ immediately fail, thus imply backtracking,

but not be delayed. Then, the desired effect of using lazy evaluation in order to construct
the constraint net and to obtain advanced control strategies, cannot be achieved. Thus we
postulate
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Law 1 (First FIDO Law) Always state constraints before instantiating the variables appear-
ing in the constraints

If attention is given to this, the points 2 to 4 of the general proceeding shown above are
guaranteed by the use of the delay mechanism for program control.

Instantiating Variables in FIDO-II
FIDO-II offers two built-in predicates in order to give values to domain variables. These are

¢ instantiate /1 and

¢ instantiate_dl /1.

Both predicates receive a list [ X3, X5, ..., X,] asinput and succeed if to each variable X;, 1<i<n,
a value from its domain can be assigned. instantiate_dl /1 achieves a first-fail heuristics,
which has been described in more detail in section 6.5.

Having stated the constraints first, the call to instantiate /1 with the list of domain variables
as its argument does the choices necessary to solve the problem or to detect its inconsistency.
Furthermore, if instantiate /1 succeeds, we can be sure that the solution it has found is
globally consistent.

6.7.2 Achieving Global Consistency

Using the FIDO instantiation predicates, we can enforce global consistency, respectively the
detection of global inconsistencies within the constraint net. The notion of global inconsisten-
cies in FIDO-II first came along with the problems caused by equality in FIDO-II (see section
6.2.5). Actually, it is not restricted to that special kind of constraint, furthermore it is a gen-
eral problem, if no choices are made during problem solving in order to yield a complete and
explicit solution of the constraint problem. In order to avoid inconsistent intermediate states
of the constraint net, we have to postulate

Law 2 (Second FIDO Law) Don't leave the domain variables uninstantiated, and propagate
the constraint net as far as possible.

Then, we can be sure (because of the soundness and completeness of the FCIR) to obtain
globally consistent variable assignments.

6.7.3 Formulate the Strongest Constraints First

Due to the PROLOG selection strategy, there is a sequential generation of the constraint net.
It turns out to be a wise decision to formulate strong constraints before constraints regarded
as weaker. Strong constraints are constraints that are expected to have a strong pruning effect.
Which constraints are actually considered as strong, actually depends on the problem to be
solved. But, there are are some heuristics that can be often used as a guideline for that, e.g.

e equality constraints are very strong constraints, especially they are stronger than in-
equality constraints or ordering constraints,
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¢ ordering constraints are often stronger than inequality constraints,

e lookahead declared constraints can often be used earlier than forward declared ones.
These observations can be subsumed by
Law 3 (Third FIDO Law) Write strong constraints before weak constraints.

The fact that the order constraints are formulated plays a role at all, goes against the declara-
tivity paradigm. It is caused by the sequential goal selection strategy of PROLOG and by the
way the SEPIA delay-stack is organized?é.

Conclusion Writing FIDO programs in the way described in this paragraph gives good
support to an efficient use of consistency techniques in logic programming. Examples of FIDO-
II programs for diverse example applications can be found in chapter 7.

26 Ag a conclusion, we could postulate the Fourth FIDO law: a) don’t think the order you write down
constraints has no effects on performance!, and b) don’t think it’s declarative!. But this is awful, so it’s just a
footnote.



Chapter 7

Applications

After the theoretical and practical framework has been introduced in the previous chapters,
I would like to give a feel for how FIDO-II can be used to support the solution of discrete
combinatorical problems. Computational results will be compared with results yielded by
other CLP systems. A special intention of this chapter is to show what FIDO-II can do, and
what lies beyond its scope. In the following, some applications are shown for solving problems
which are instances from thes following problem classes:

e Logical puzzles, e.g. n-queens, five-houses, kryptharithmetic puzzles, crossword puzzles.
¢ Graph colouring problems.
¢ Scheduling problems.

The run-times for all FIDO programs were taken on a SUN/4 SPARC station. The CHIP
run-time results stem from van Hentenrycks book [van89a] and were measured on a VAX-785.

7.1 Logical Puzzles

The problems presented in this chapter can be characterized as problems where, starting
from a finite (but big) set of possible combinations, one or a few have to be found. I
present some well-known puzzies, such as the n queens problem, the five houses problem,
the SEND+MORE=MONEY puzzle or a crossword puzzle. The importance of these puzzles,
which are of small to medium complexity, is founded by two issues:

1. Their use as benchmarks comparing the computation results of different systems.

2. As vanHentenryck points out [van89al, if a system can’t solve these problems within an
acceptable time, how can it ever be able to solve more complex, real-world problems?!

7.1.1 The n-queens Problem
7.1.1.1 The Problem and its Solution

The task of this well-known problem is to place n queens safely on an n xn chessboard. ”Safely”
means that no queen must be threatened by another one. The solution to that problem can
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be represented as follows:
The task is to find a safe row for each queen X;,1<i<n. That way, we can implicitly express
the constraint that each queen must be placed into a column of its own.

The constraints of that problem have already been explained in chapter 6.2.3.1. Program 7.1

queens(N, L) :-
define_domain(queens, gen_var(N, L), gen_int_dom(D, 1, N)),
safae(L), \* generate conatraint net s\
instantiate_dl1(L). \% instantiate variables @\

safe([]).

safe((X]).

safe([X, YIZ]) :-
no_attack(X, [Y|Z]),
safe([Y)Z]).

no_attack(X, Y) :-
no_attack(X, 1, Y).

no_attack(X, N, []).
no_attack(X, N, [(HIT]) :-
regular(X, N, H),
NiL is N + 1,
no_attack(X, N1, T).

regular(X, N, Y) :-
forward(Y =\= X),
forwvard(Y =\= X + N),
forvard(Y =\= X - N).

Figure 7.1: A FIDO-II Program for the n Queens Problem

shows how a solution to that problem can be formulated in FIDO-II, using forward declarations
on the constraints. There are three things to be stressed in that program:

1. The safe /1 predicate which states the safeness constraints for the queens is placed
before the instantiate /1 predicate. Thus, the test & generate paradigm described in
chapter 6.7 can be implemented.

2. The define_domain goal defines a dynamic domain using a number of variables that will
be determined at run-time (see chapter 5.2.2).

3. The forward declarations denote that their arguments shall be executed in a forward-
checking manner (see chapter 6.2.3). I pointed out that forward-checking is well-suited
for inequality constraints (chapter 6.2.3.5).

4. Variable instantiation is performed using a first-fail heuristics.

7.1.1.2 Computational Results

In the following, I will compare the run-time for finding the first solution of the n queens
problem needed by FIDO-II and I will compare them with the times needed by other systems.
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fjj F21 | F22 | F23 | F24 | F25 |
0.03 | 0.05 | 0.03 | 0.07 | 0.02
8 1.10 [ 1.12 | 0.48 | 0.53 | 0.14
12| 4.61 | 4.10 | 1.2 | 1.43 | 0.35
16 || 50.4 | 2.03 0.83 | 0.57
320 77 | 1220 ?7 | 3.52 | 3.08
48 || 77 | 59 | ?7 | 10.2 | 8.55
96 || 77 ? 7?7 | 122.8 | 66.5

Table 7.1: Results for Several FIDO-II Versions for N Queens

Solving the n queens problem efficiently is not only a matter of the system used, but it is
also greatly determined by the representation of the problem within one system. Table 7.1

compares the following versions of FIDO-II programs for solving the n queens problem for
some 7n:

. F21: a FIDO-II forward-checking program using the normal instantiation predicate

instantiata /1.

F22: the program shown in figure 7.1.

. F23: the same program as F21, but for each n, an explicit domain definition of the form

1...n is made. Thus information about the domain structure can be exploited.

. F24: the same program as F23, but variables are instantiated using a first-fail heuristics

(see chapter 6.5).

F25: the program is basically the same as F24, but besides the first-fail heuristics, we
perform variable instantiation not from left to right, but from the center of the chessboard
to the left and to the right. That is achieved by ordering the variable list which is input
argument for the instantiate_dl /1 predicate the following way (e.g. for n = 8):

instantiate d1([X5, X4,X3,X6,X2,X7,X1,X8]).

Thus, we see that in FIDO-II, the efficiency of solving the n queens problem depends drastically
on the variable instantiation order. Table 7.2 compares the best FIDO-II results to the results
yielded by the following programs:

1.

A~ W N

5.

The generate & test program for the n queens problem from figure 1.1.
The standard backtracking program from figure 1.2.
A FIDO-I program for solving the n queens problem.

A CHIP program run on the CHIP prototype interpreter. That is denoted as "CHIP(1)”
in the table.

Recent computational results for CHIP, denoted as "CHIP(2)”.

The recent CHIP run-time results were taken from [Tv89]and run on KCM. A "7” in the tables
means that the run-time is not known to the author. A ”?7”, however, means that computation
takes too long (i.e. more than ca. 1000 cpu seconds).
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[ N G&T [ S.B. ] FIDO-I | FIDO-II | CHIP(1) | CHIP(2) |

4 0.1 | 0.08 0.9 0.02 0.09 ?

8 ? 0.73 6.0 0.14 0.77 ?
12 ? 3.75 ? 0.35 1.74 ?
16 ? 620 ” 0.57 1.09 0.01
32 7”7 7 7 3.08 4.05 ?
48 7 7 7 8.55 ? ?
64 77 7 7 17.42 14.05 ?
96 7 77 7 66.5 36.23 ?

Table 7.2: Results for the N Queens Problem

7.1.1.3 Evaluation of the Results

The tables 7.1 and 7.2 allow the following conclusions:

1. FIDO-II yields the expected improvement compared with FIDO-II.

2. Using domain-specific information in FIDO brings drastically better results (compare
programs F22 and F24!).

3. A good instantiation order, which is achieved by using a first-fail heuristics (or the
heuristics to start from the mid of the chessboard) has astonishing positive effects on the
performance of FIDO-II.

4. FIDO-II outperforms standard PROLOG strategies (such as G&T, Standard Backtrack-
ing) already for relatively small problems.

5. For small- or medium-sized applications, FIDO-II can compete with early CHIP versions.

6. For more complex problems, the deeper integration of domains and consistency tech-
niques in CHIP pays off.

7. Recent CHIP clearly outperforms FIDO-II.

The greatest n for which the n queens problem could be solved by FIDO-II, has been 96.
For the 128 queens problem, even after three hours, no solution has been computed. The
limitations of FIDO-II become quite clear once you compare that to the recent CHIP results.
As is pointed out in recent papers, CHIP can actually solve the 1500 queens problem.

7.1.2 The Five Houses Puzzle
7.1.2.1 The Problem and its Solution

The Five Houses Problem can be described as follows: Five people with five nationalities
live in the first five houses of a street. Each of them has a different profession, animal and
has a favourite drink. Besides, the five houses are painted differently. It is known that the
englishman lives in a red house, the spaniard owns a dog, the japanese is a painter, the italian
drinks tea, the owner of the green house drinks coffee, the sculptor breeds snails, the diplomat
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lives in the yellow house, the owner of the middle house drinks milk, the violinist drinks fruit
juice, the norwegian lives in the first house on the left and the green house is on the right of the
white one. The problem is made more complicated by the following disjunctive constraints:
the norwegian lives next to the blue house, the fox is in the house next to the doctor’s and the
horse is in the house next to that of the diplomat.

The question is, now, who owns a zebra and who drinks water’. A FIDO-II program for solving
that puzzle using forward-checking is shown in figure 7.2. The following issues should be noted

houses( [England, Spain, Japan, Italy, Norvay,
Green, Red, Yellow, Blue, White,
Painter, Violinist, Diplomat, Doctor, Sculptor,
Dog, Zebra, Fox, Snails, Horse,
Juice, Water, Tea, Coffee, Milk]) :-
define_domain(houses, [England, Spain, Japan, Italy, Norway,
Green, Red, Yellow, Blue, White,
Painter, Diplomat, Violinist, Doctor, Sculptor,
Dog, Zebra, Fox, Snails, Horsae,
Juice, Water, Tea, Coffee, Milk],
1..5),
Norvay = 1, Milk = 3,
neighbour (Norway, Blue),
neighbour (Fox, Doctor),
neighbour (Horse, Diplomat),
forvard(Green =:= White + 1),
England = Red, Spain = Dog,
Japan = Painter, Italy = Tea,
Green = Coffee, Sculptoer = Snails,
Diplomat = Yellow, Violinist = Juice,
all_different([England, Italy, Spain, Norway, Japan]),
all_different([Green, Red, Yellow, Blue, White]),
all_different([Painter, Diplomat, Violinist, Doctor, Sculptorl),
all_different([Dog, Zebra, Fox, Snails, Horsel),
all_different([Juice, Water, Tea, Coffee, Milk]),
instantiate([England, Spain, Japan, Italy, Norwvay,
Green, Red, Yellow, Blue, White,
Painter, Violinist, Diplomat, Doctor, Sculptor,
Dog, Zebra, Fox, Snails, Horse,
Juice, Water, Tea, Coffee, Milk]).

neighbour(X, Y) :-
forvard(X =:= Y - 1),

neighbour(X, Y) :-
forvard(X =:= Y + 1),

all_different([]).

all_different([X|Y]) :-
out_of(X, Y),
all_different(Y).

out_of(_, [1).
out_of (X, [YIZ)) :-

forvard(X =\= Y),
out_of(X, 2).

Figure 7.2: A FIDO-II program Solving the Five Houses Problem

about the problem and its solution::

IThere exists a unary solution for that problem: the spaniard owns the zebra, and he also drinks water.
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| Algorithm || Min. Runtime | Avg. Runtime | Max. Runtime |

SB 1.28 82.06 717.1
Fi ? 14.6 ?
F21 0.22 0.70 2.16
F22 0.30 0.65 1.13
CHIP 0.24 1.49 4.95

Table 7.3: Results for the Five Houses Problem

e The problem is represented by numbering the houses from left to right, thus, yielding a

very simple domain which ranges from 1 to 5.

o Here, we use the normal instantiation predicate instantiate /1, since it is faster than

using first-fail heuristics. That shows that first-fail is not appropriate to all cases!

e Although the variables used in the equations are domain variables, the general unification

operator = /2 can be used. The FIDO-II preprocessor recognizes and maintains the
appearance of domain variables. In the five houses example, however, since there are
only domain variables from a single domain, the restricted domain variable unification
operator = /2 could be used. I described that operator in chapter 6.2.5.2.

e The order the constraints are written embodies the heuristics that strong constraints

7.1.

should be formulated before weak constraints (see chapter 6.7).

2.2 Computational Results

We compare the following program concerning their run-time performance:

1
2
3
4
)

. SB: a standard backtracking program.

. F1: a FIDO-I program for solving the five houses puzzle.

. F21: the FIDO-II program shown in figure 7.2.

. F22: the same program as F21, but using a first-fail heuristics.

. CHIP: A forward-checking CHIP program solved by the CHIP prototype interpreter.

The run-time results of the programs are shown in table 7.3. Since the run-time needed
for solving the problem largely depends on the variable instantiation order, I implemented
an instantiation predicate producing random instantiation orders and took the average of
about 100 instantiation orders in order to get expressive results. Looking at table 7.3, we can
summarize the following interesting notions:

1

. FIDO-II clearly outperforms FIDO-I and the standard backtracking program.

2. For the five houses problem, the use of first-fail heuristics doesn’t pay off the way it did

e.g. for n queens. Both algorithms yield almost the same results. First-fail soothes the
negative effects of awkward instantiation orders a bit, but doesn’t pay off as regards the
average runtime.
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3. FIDO-II yields better results than the CHIP prototype interpreter. However, that must
not be assessed too positive for FIDO-II. First, the five houses problem is a relatively
simple problem, and we saw, that for simple and medium sized problems, FIDO-II is
well-suited. Second, recent CHIP versions will show a greatly improved performance,
and, third, the machines the programs run on are different (see chapter 7.1.1).

7.1.3 Cryptharithmetic
7.1.3.1 The Problem and its Solution

A well-known problem is the SEND+MORE=MONEY puzzle. The letters shall be replaced
by digits so that the addition

SEND
+ MORE

gives a correct result. The problem can be formulated by defining an adder for each column,
returning a carry and a value. Figure 7.3 shows a FIDO-II program achieving forward-checking
control for a slight variation of that example, for the

puzzle. The following interesting issues about that program should be mentioned:

puzzle([X, N, O, W, H, D, F, I],[C1,C2,C3]) :~
define_domain(digits, (K, N, O, W, H, D, F, 1], 0..9),
define_domain(carry, [C1,C2,C3], 0..1),
forvard(K =\= 0),
forvard(H =\= Q),
forvard(D =\= 0),

all_different([K, N, O, W, H, D, F, I1), \* see five houses problem »\
forvard(C1 + K a;= D), \* adder conditions #*\
forvard(C2 + N + H =:= F + 10 = C1), \* e i A
forvard(C3 + 0 + 0 =:= K + 10 = C2), \» ——— M —ee— s
forward( W+W==14+ 10 = C3), \= ———— M e\

instantiate([Ct,C2,C3, K, N, O, W, H, D, F, I]),

Figure 7.3: A FIDO-II Program for KNOW + HOW = DFKI

1. The problem is solved by forward-checking use of the adder constraints. In [van89a], a
looking-ahead use of constraints is proposed. Since FIDO-II does not provide looking-
ahead for inequality and =:= /2, we can’t do that here.

2. Variable instantiation is performed using a first-fail heuristics.



Applications 97

| Algorithm || Min. Runtime | Avg. Runtime | Max. Runtime |

SB 10.25 2874 25140
F1 ? 22.4 ?

F21 0.25 ? 633.1
F22 0.16 1.18 5.4
CHIP ? 0.08 ?

Table 7.4: Results for the SEND+MORE=MONEY Puzzle

3. The two domains digits and carry are defined by two seperate define_domain calls.

4. The inequality constraints are formulated before the equality constraints. At the first
look, that seems to be an exception from the third FIDO law (see chapter 6.7), but,
since one argument of the = \ = /2 constraints is ground from the beginning, it can
be considered as stronger than the equality constraints, which contain more unbound
variables.

7.1.3.2 Computational Results

Table 7.4 shows the run-times for the SEND-MORE-MONEY puzzle for the following algo-
rithms:

1. SB: A standard backtracking algorithm?.

2. F1: A FIDO-I program using forward-checking.

3. F21: A FIDO-II program using forward-checking and normal instantiation ordering.
4. F22: Like F21, but using a first-fail heuristics.

5. CHIP: A looking-ahead program on the CHIP prototype interpreter.
The results allow the following conclusions:

1. FIDO-II outperforms FIDO-I.
2. The use of first-fail heuristics in FIDO-II is adequate for this problem.

3. CHIP yields much better results, since looking-ahead is a more appropriate strategy for
cryptarithmetic problems than forward-checking is. There is no information available
about the time a CHIP forward-checking program would need.

4. Instantiation ordering is very important in that example. A forward-checking program
without first-fail heuristics will be not much better than standard backtracking, if an
awkward instantiation order is chosen.

The KNOW+HOW=DFKI problem has been solved in 0.87 seconds by the FIDO-II program
shown in figure 7.3.

2The average execution time on 50 instantiation orderings was taken.
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\* substring(Word, Position, Length, Subword) succeeds if Subword is the =\
\* substring of Word which begins with the ’Position’th character and has s\
\* length Length. (SEPIA built-in predicata) »\
sameletter(Wi, I, W2, J) :-

substring(Wi, I, 1, Letter),

substring(w2, J, 1, Letter).

Figure 7.4: The sameletter /4 User-Defined Constraint

7.1.4 Crossword Puzzles
7.1.4.1 The Problem and its Solution

Crossword puzzles can be represented as constraint problems, since the words in the puzzle’s
rows and columns are constrained to have letters in common. That relation can be expressed
by a constraint sameletter(Wordl, I, Word2, J), which succeeds iff the Ith letter of the
word Wordl1 is equal to the Jth letter of the word Word2. The definition of the sameletter
/4 constraint in figure 7.4. [ implemented the crossword puzzle example used in [van89al, p.
138f, and provided a foward-checking use of the sameletter /4 constraint. That example
contains 146 words and induces 1902 constraints.

7.1.4.2 Computational Results

In FIDO-II using a first-fail heuristics, the problem has been solved in about 16.4 seconds.
The same program using normal variable instantiation needs 14.4 seconds in order to solve the
problem3.

Besides, a precompile time of ca. 70 seconds must be added. The CHIP prototype interpreter
needs 48 seconds to find a solution of the problem, using forward-checking, and a little more
than one minute, using looking-ahead. Note that the constraint sameletter /4 is an example
of a user-defined constraint as described in chapter 6.2. The redefinition of that constraint is
created automatically during precompilation. Therefore, a lot of redefinition code is generated,
exploding the size of the output file to about 330 kilobytes. Besides, the big number of domain
variables (146) makes preprocessing going quite slowly, as the precompilation time reveals.
That clearly shows the limitations of FIDO-II facing bigger-sized problems. The listing of the
FIDO-II program solving the crossword-puzzle can be found in appendix A.l.

7.2 Graph Colouring

Many important real-life problems can be represented as instances of graph colouring prob-
lems. Examples of such problems are operations research applications as warehouse location
problems or production scheduling. One instance of graph colouring is colouring a geographical
map:

given a map which shows several regions (countries), the task of graph colouring is to colour
each region with one out of a fixed number of colours. The important constraint is that no
two adjacent regions must have the same colour.

A FIDO-II program which colours the map of Europe is shown in appendix A.2. The program

3However, the program using first-fail heuristics is certainly more stable for bad instantiation orders.
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contains 74 inequality constraints and can be solved very efficiently by a forward-checking
algorithm. Moreover, the efficiency of the FIDO-II algorithm for that problem can be es-
sentially influenced by an appropriate representation. That representation should be tuned
w.r.t. the FIDO-II implementation peculiarities: we’ve seen that some domain types, namely
integer subsets {n,n + 1,...,m}, defined as n...m in the define domain call, can be pro-
cessed very efficiently. Assume we want to use four colours, which corresponds to a set
{yellow, red, green, blue}. By representing each colour by an integer, using the set {1,2,3,4}
instead, efficiency can be remarkably increased. The following run-time results were gained:

¢ Using normal instantiation and an integer subset representation of the domain, the map
was coloured by FIDO-II in 0.06 seconds.

¢ Using a first-fail heuristics, the task could be solved in 0.21 seconds. Here, we have
another example where first-fail heuristics does not pay off?.

o Using explicit domain representation (i.e. the domain has been represented as {yellow,
red, green, blue}), FIDO-II needed 0.09 seconds respectively 0.25 seconds with first
fail.

e Using the standard instantiation predicate, it took the program about 0.9 seconds to find
out that the map could not be coloured by using only three different colours. Using a
first-fail heuristics, the run-time was 1.5 seconds.

o The time needed for precompiling the program has been about 4 seconds.

. The only comparison available stems from [Hol90b]. A program written in Holzbaur’s META-
Prolog, which is based on meta-interpretation, has coloured the map within 1.75 seconds® on
an APOLLO workstation. As I pointed out in chapter 6.2.3.5, inequality constraints are very
well-suited for forward-checking use.

7.3 Scheduling Problems

Scheduling problems are an important real-world application for discrete combinatorical prob-
lems. In this section, an idea shall be presented how to solve the following handcrafted schedul-
ing problem in FIDO-II.

7.3.1 The Problem

In the computer department of an enterprise nine people, Harry, Sally, Fred, Isabel, Paul,
Pamela, Tina, Anna, and Mary are employed. Since we are in the nineteen-nineties, the staff
has to work only three days a week. In order to strengthen the motivation of the employees, the
executive has decided to introduce a three-shift system. On each shift, exactly three employees
have to be present. Now, the task is to manage the schedule for these three days, satisfying
the following constraints:

1. Nobody may work during two subsequent shifts.

2. On each shift, exactly three persons must be present

*The main reason for that is the small domain-size of 4 in this problem.
®at a time when the map of Europe was still much easier to colour!
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3. Each employee must do exactly three shifts a week.

These are the constraints given from the enterprise management, which turn the problem
hard enough. You, however, as a connaisseur of the department internals are to know some
additional constraints that keep your uneasy feeling increasing:

4. Harry and Sally are married. That’s why they would like to have the same working
schedule.

5. Fred and Isabel are married. That’s why they would not like to have shared shifts.

6. Pamela is afraid of Paul. That is why she does neither want to have her shifts directly
before Paul nor together with Paul or directly after Paul.

7. Tina hates Mary and therefore, you’d better not give these two for the same shift.

8. Since Paul seems unable to remember his password and Anna is the only person to know
it, you should always give her the shift before Paul, so she can tell him the password.

9. Harry is always frightened during the night. Because you are a wise man, you decide
never to give him the last shift of the day.

10. Since Tina has two little children, but no husband, she’d like to be at home n in the
morning. Thus, she should not be given the first shift.

11. Mary does likes to work neither in the morning nor during the night. Therefore, it should
be tried to give her the second shift.

12. Since Fred is in love with Pamela, his creativity will greatly benefit from working together
with her.

This is what the situation looks like. Now, you should try to find an appropriate schedule
satisfying all the constraint, the official ones and the inofficial ones.

7.3.2 The Solution to the Problem

There are many ways to represent the problem as a constraint problem over finite domains.
The main problem with it is that some constraints refer to persons (e.g. constraint no. 4 to
11.), while other constraints refer to shifts, such as constraint no. 2.

¢ For constraints referencing persons, it would be better to define for each person one
domain variable, ranging over the number of shifts.

o For shift constraints, it would be favorable to have a domain variable per shift, which
ranges over all triples of workers which can be put on that shift.

I chose the first representation, since there are more person constraints than shift constraints
in the examples and since the domains are smaller that way. I tried to represent the shift
constraints in an implicit manner, e.g. constraint 3 by introducing five variables per person,
implying the five shifts. However, t find a good possibility to represent the constraint num-
ber 2, which gives expression to the fact that on each shifts, there must be exactly three
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members. The only possibility I found was to express this constraint as a test after all ac-
tive constraints have been executed. For this, I implemented a special instantiation predi-
cate instantiate_card(List, Dom, Cardinality), which instantiates a list List of domain-
variables with values from [1...Dom], testing that each value must not be assigned to more
than Cardinality variables. Note that this merely implements a standard backtracking search
on the pre-pruned search space.The prepruning has been done by the other constraints, before-
hand. This is much better than solving the whole problem with standard backtracking search,
but is not convincing for more complex problems. The above program is much too slow for
computing a four-day schedule or even a five-day schedule, since too much backtracking has
to be performed®.

In order to remedy this, it would be very useful to implement a forward-checking use of a
cardinality constraint as it is proposed in van Hentenrycks CC(FD) (see chapter 2) for these
issues. Thus, by cardinality restrictions, values could be actively removed from the domains.
This, however, is not yet performed in FIDO-II. The complete FIDO-II program finding a
solution to the scheduling problem can be found in appendix A.3.

7.3.3 Computational Results

FIDO-II has found a solution to the problem in 48.3 seconds using the specialized instantiation
predicate instantiate_card /3 described above. Since the example has been ’hand-made’,
there is no comparison possible to other systems. FIDQ-II precompilation time for the schedul-
ing example was 2.8 seconds.

I already mentioned the problems connected with this example: the fact that a standard back-
tracking component is introduced again makes the program too inefficient for handling more
complex scheduling problems. As a conclusion we can formulate that these problems lie be-
yond the capacities of FIDO-II, since they imply too many constraints and too many variables,
even if smaller problems, such as the example above, can be handled satisfactorily. However,
a possibility to master a bigger class of scheduling problems would be to integrate the active
a priori use of cardinality constraints into FIDO.

7.4 Conclusion

In this chapter, the applicability of finite domain constraints in FIDO-II has been shown by
some examples belonging to different problem classes. We’ve seen that, for small- and medium-
sized problems, FIDO-II yields good results which are comparable to the performance of early
CHIP versions. For very complex real-world problems, however, which can be mastered by
systems as CHIP, the performance of FIDO-II is not sufficient. The main reason for that
fact is the expensive way FIDO-II handles domain variables (see chapter 5.2.1). Domain and
consistency technique management are performed on PROLOG level, which makes them quite
costly. Also the active use of cardinality constraints is not provided in FIDO.

As I stated several times before in this work, an approach providing deeper integration seems
much more promising for handling really complex problems.

6Much too slow means that the program runs longer than one hour!



Chapter 8

Summary and Outlook

In this chapter, the main results of this work shall be summarized. [ will briefly discuss the
most important problems which occurred in connection with my work. This will show the scope
of application, but also the main limitations of FIDO-II as an approach for integrating finite
domain constraints in logic programming. Finally, an outlook will be provided concerning
possible extensions of FIDO-II, and also concerning the further development of the FIDO
project.

8.1 What Has Been Done?

In this work, I’ve been presenting the design and the implementation of the FIDO-II finite do-
main CLP system. FIDQ-II provides a way of conveniently formulating discrete combinatorical
problems using constraints. It allows variables to be defined as domain variables and predi-
cates to be declared submitted to a forward-checking or looking-ahead execution strategy.The
approach has started from an advanced-feature PROLOG system offering a coroutining mech-
anism. An explicit domain concept has been implemented in PROLOG and the advanced
control strategies have been simulated by doing partial (lazy) evaluation using the coroutining
mechanism.

The main differences between this work and other approaches towards constraint logic pro-
gramming over finite domains have been outlined in section 2.2.6.

The approach turned out to yield tenable run-time results for small or medium sized problems
(see chapter 7 for run-time results). But for real-life problems, limitations of the approach
become evident. There are some main issues responsible for this, some are due to special
representation and implementation issues, others due to more general reasons. These will be
discussed in the following section.

8.2 What Remains to be Done?
In the following, some drawbacks of FIDO-II will be presented.

8.2.1 Explicit Maintenance of Domains and Domain Variables

The problems caused by the necessity of maintaining the domains on a layer on top of the
PROLOG system are responsible for the difficulties described in chapter 6.2.5. The main
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shortcomings are

o the expensive tests and case distinctions needed to localize and handle domain variable
appearances, and

e the currently unsolved problem of how implicit unification of domain variables can be
mastered.

8.2.2 Domain Representation

The realization of domains as uninterpreted functors with validity flags (see chapter 5.2) has
some advantages, e.g. easy backtrackability. One disadvantage consists in the fact that op-
erations on domains become high level PROLOG operations and thus, they become quite
expensive. It would be preferable to represent domains as bit vectors, allowing fast (possibly
machine-level) bit manipulation operations, such as bitwise Xor or Nand, to work on them.
Experience with bit vector representation of domains in SEPIA has been made with FIDO-IL
It showed that SEPIA is not well-suited for such representation, since the biggest number of
bits that can be processed is 32 (maxint = 23% — 1). In order to represent bigger domains, lists
of integers have to be maintained, so that much of the efficiency originally gained by making
use of bit vectors is lost.

Shifting domain handling to machine (or at least pseudo-machine (WAM)) level could bring
an immense improvement in efficiency. The second aspect concerning domains in FIDO-II is
that semantically equivalent domains are not always treated equally by the system if they are
enumerated in different orders. e.g. the domains [1,2,3] and [3, 2, 1] have an internal represen-
tation in FIDO-II which is not unifiable. This problem could have been solved by pre-sorting
the domains, but it has not been provided in FIDO yet. In general, it is by no means a trivial
problem to check whether two domains are equal’.

8.2.3 Dual Variable Concept

A conceptual drawback of FIDO-II is the distinction made between domain variables and "nor-
mal” variables. This duality is awkward for semantical reasons, since even normal variables
are domain variables in fact, but not over finite domains. This semantical aspect is not suf-
ficiently integrated into FIDO-II. In CHIP e.g., a flag "h" is provided for denoting Herbrand
logic variables. Thus, a duality is introduced which should not be subject to the user’s view.

8.2.4 Declarative Semantics

An important aspect of logic languages is their dual semantics. Thus, for a language as FIDO-
II, which is based on PROLOG , the question of an exact declarative and procedural semantics
should be examined. The procedural semantics of FIDO-II, which is essentially covered by
the constructs define_domain /3, forward /1 and lookahead /1, is obvious. It is defined
by the preprocessor that transforms appearances of these goals (which are rather declarations,
from a logical point of view) into new PROLOG code in an algorithmically specified manner.
The declarative semantics of these structs, however, requires a closer look. The first awkward
fact is that the FIDO extensions are formulated as PROLOG goals (mainly for reasons of
convenience of implementation), but a FIDO program cannot be executed by PROLOG because

'e.g. is the domain [1,2,3,4] with the elements 3 and 4 removed equal to the domain [1,2]?
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define_domain /3, forward /1, lookahead /1 are no defined PROLOG predicates. They
rather give information to the preprocessor about how to handle control over the program.
Moreover, they localize where domain variables are used, and are replaced by PROLOG goals
later on by the preprocessor. Thus, from the viewpoint of PROLOG declarative semantics,
the effects of these language structs could be best described as side-effects, i.e. they always
succeed and fulfill their main tasks through side-effects. But I am not too happy with the
word side-effects, because FIDO extensions are not PROLOG predicates, thus they are not
evaluated by PROLOG, and therefore cannot have side effects in a PROLOG sense. They
simply provide preprocessing information.

Formulating the FIDO-II extensions as real PROLOG predicates which use output variables
would have been nothing more than syntactic sugar. However, it would have facilitated solving
the question of a declarative semantics of the FIDO extensions. In this work, not too much
thought has been given to this issue. Since the transformations done by the preprocessor have
a clear procedural semantics, whose soundness and completeness have been shown (domain
concept, forward-checking), I am not too concerned about this point. However, finding a clear
declarative semantics for FIDO (which could probably be made easier by some changes in the
language) seems to be subject of future work.

8.2.5 Constraint Types

The distinction between built-in constraints and user-defined constraints (se chapter 6.2) is
also an arbitrary one, since it only exists from the viewpoint of the system. The remarkable
differences in efficiency caused by using or not using built-in constraints can be regarded as
a shortcoming of the current implementation and could be reduced to an acceptable limit
by using domain specific information for non-built-in constraints, too, and by increasing the
scope of built-ins. For the time being, the user must be aware of the two types and their
particuliarities and use built-in constraints whenever it is possible.

8.2.86 Nesting of Inference Engine and Constraint Solver

In FIDO-II, the constraint solver and the advanced control strategies achieved by linking the
inference engine to the solver are only simulated with the help of the coroutining mechanism.
There is not such a clear physical modularization (of FIDO-II code) into an inference part
and a constraint solving part as in other CLP systems (see figure 2.1). In FIDO, both issues
are left to the PROLOG system and can be influenced merely in an indirect manner, i.e. by
formulating delay declarations on constraints. The distinction between inference engine and
constraint solver can only be made on a logical level. This makes the way control is brought
about in FIDO-II a little difficult to understand. Yet, it is a general shortcoming caused by
the approach itself, not by its implementation.

8.2.7 Weak Constraints and Relaxation

FIDO-II is essentially based on first-order logic. Therefore, all constraints that appear in
FIDO-II programs are hard constraints, i.e. all constraints appearing in the body of a goal
definition have to be satisfied in order to make the goal succeed. In many real-life applications,
however, there are no such "black & white” problem solving strategies. Assume, e.g. we want
to use a constraint system for the tool selection module of a program that transfers a CAD
drawing of a lathe part into a CNC program. The latter shall manufacture automatically the
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lathe part specified by the drawing?. Implementing a good tool selection program based on
hard constraints only is impossible for several reasons, e.g.

e It is surely desirable to manufacture as many features of a lathe part as possible with
the same tool, but this is certainly not a hard constraint.

o [t is often helpful to weigh alternatives in order to express preferences, e.g. ”if tool A
is available, we will use it, if not, we will use tool B instead”, or "for roughing, we will
better use a tool with a big edge angle, but if we can avoid a change of tools by using
one with a smaller one, we will do that!”.

¢ If no tool is found that satisfies the problem constraints, some of them will have to be
relaxated in order to find a solution.

In FIDO-II, it is hardly possible to achieve these more flexible control strategies since the
maintenance of constraints is the task of the PROLOG system, which can hardly be influenced
by FIDO without loosing much of the efficiency that was gained by leaving the constraint
handling to the system. However, it will be subject to further research.

8.3 Outlook

As we have seen in the last paragraph, the main shortcoming of FIDO-II is caused by the
necessity of explicitly representing and maintaining domain variables at the PROLOG level.
It seems that a deeper integration of these features could yield considerable improvements.
Basically, I see two approaches going in this direction:

¢ Automatizing unification using a mechanism like the meta-terms presented in chapter
5.3.

e Providing a deeper integration of domains (and of consistency techniques, too) into the
WAM.

The main problem with the first point is how it can be generalized w. r. t. using meta-terms
for handling arbitrary constraints, thus allowing an efficient processing of the domains.

The second approach is pursued in the third part of FIDQ, FIDO-III (see chapter 4.2). There
have not been any results available concerning FIDO-III yet. Thus, my expectations as regards
a better run-time behaviour are purely speculative. But, looking at the performance of systems
based on similar principles (e.g. CHIP), where changes were made in the underlying abstract
machine, the approach seems promising.

After we will have implemented FIDQO-III, and after some experience with it will have been
gained, we will be able to study further refinements and extensions of it. For example, the
integration of weak constraints and of relaxation techniques will be much simpler in a deeply
integrated system such as FIDO-III, since there, constraints can be handled explicitly.

A further prospect is the integration of hierarchical domains in FIDO. Thus, structural infor-
mation can be used to improve system performance. An idea in this context would be e.g. a
coupling with the KL-ONE-like taxonomic language TAXON [ADH91], which has been devel-
oped in the ARC-TEC project at DFKI. These will be the tasks for the future.

2such a "CAD2NC” project is currently under development at the ARC-TEC project at DFKI, Kaiser-
slautern, Germany.



Appendix A

FIDO-II Example Programs

A.1 The Crossword Puzzle

In chapter 7.1.4, it has been shown how FIDO-II can be used to solve crossword puzzles. In
the following, you find the source code of the crossword puzzle program from [van89a).

cvp([W10, W28, W70, W92, Wi131],
(W12, W15, W30, W32, W33, W38, W41, W45, W49, W55, W57, W60, W76, W77, W81, W85, W94, W95,
w101, W108, W122, Wi26, W127, W129, W134, W141, W142],
[w18, W22, W25, W31, W34, W39, W40, W43, W53, W56, W62, W63, W64, W68, W71, W73, W75, W83,
w102, W10S5, W106, Wi11, Wi13, Wi16, W117, W121, W128, Wi32, W137, W138, W140, W145, W146]
(w3, W4, W5, W9, W16, W21, W23, W26, W27, W44, W47, W52, W65, W66, W69, W72, W79, W86,
w87, W91, W93, W98, W99, W100, W107, W109, W125, w130, W133, ¥139],
w7, W8, W11, W14, W29, W48, W67, W74, W82, W89, W103, W120, W124, W136, W143],
(W2, W37, W50, W54, W59, W61, W80, W84, W8, W90, W96, W97, W112, W1i4, W118, Wii9, W123],
[w1, W6, W20, W35, W36, W42, W51, W110, W115, W135, W144],
(w13, W17, W19, W104],
(W24, w46, W58, W78]) :-

define_domain(word2, [W10, W28, W70, W92, Wi31], ["ci", "id", "in", "ir", "le"l),
define_domain(word3, [W12, W15, W30, W32, W33, W38, W41, W45, W49, W55, W57,
W60, W76, W77, W81, W85, W94, W95, Wi01, W108, W122,
w126, W127, W129, W134, Wi41, W142],
["ain", "ave", "bis", "bol", "cou", "eau", "eta", "feu",
"gre", "ils", "ios", "les", "lie", "lue", "mer", "nep",
"nie", 'ohe", "ole", "olt", "ost", "oui", "sem", "sic",
"tue", "usa", "use"l),
define_domain(word4, (W18, W22, W25, W31, W34, W39, W40, W43, W53, W56, W62,
W63, W64, W68, W71, W73, W75, W83, W102, Wi05, W106,
Wii1, W1i3, Wii6, Wi17, W121, W128, Wi32, w137, Wi38,
W140, W145, Wi46],
["ados", "aere", "anel", "apis", "aria", "armo", "bref”,
"cede", "dada", "demi", "eden", "eole", "epte", "etui,
"evoe", "feue", "ille", "ilot", "isar", "lave", "loge'",
"nato”, '"nier", 'noel", "ouir", 'rion'", "rode", '"rose",
"soir", "tera", "trou", "user", "vert"]),
define_domain(word5, [W3, W4, W5, W9, W16, W21, W23, W26, W27, W44, W47, W52,
W65, W66, W69, W72, W79, W86, W87, WOt, W93, W98, W99,
W100, W107, W109, W125, W130, W133, w1391,
["butin", "casse", "cirer", "deite", "doter", "eclos",
"acrin", "emier”, "envol", "eolie'", "esope’, "etier",
"evier”, "isole", "lieue", "lippe", "mulet', 'norme",
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%
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"ointe'", "peler", "pitrae", "raler", "reina", '"seine",
"timon', "tirer", "tueur", "tulle", "vaine", "valse"]),
define_domain(word6, [W7, W8, W11, Wi4, W29, W48, W67, W74, W82, W89, W103,
w120, Wi24, w136, W143],
["aleser"”, "alliee", "attire", "avilir", "aviser",
"blonde", "caisse", "client”, "ecrase", "elever",
"lacere", "ratier", "rotule", "tavele", "tiroir"]),
define_domain(word7, [W2, W37, W50, W54, W59, W61, W80, W84, W88, W90, W96,
W97, W112, w114, W118, Wi119, W123],
["apivore", "blocage", "caverne", "colibri", "corsets",
"coussin”, "ecuries", "egrisee", 'eserine", "etoilee",
"initier", '"notaire", "odieuse", "usuelle", "usurper",
"utilise", "voleter"]),
define_domain(word8, [W1, W6, W20, W35, W36, W42, WS1, W110, W11S5, W135, Wi44],
["cultiver', "ecervele”, "enliasse", "etendard",
"fraisier", 'gambader", 'levrette", '"nidifier",
"orienter”, "savonner", "stimuler"]),
define_domain(word9, [W13, W17, Wi9, Wi04],

["attristee", "elevation", "puissante", "tresorier"]),
define_domain(wordi0, [W24, W46, W58, W78]),
["etroitesse", "europeenne", "hesperides”, "vilipender"]),

Woerter mit 10 Buchstaben
all_different([W24, W46, W58, W78]),
Woerter mit 9 Buchstaben
all_different([W13, W17, W19, Wi04]),
Woerter mit 8 Buchstaben
all_different([W1, W6, W20, W35, W36, W42, W51, W110, W115, Wi35, Wi44]),
Woerter mit 7 Buchstaben

all_different([W2, W37, W50, W54, W59, W61, W80, W84, W8, W90, W96, W97,
¥Wii2, Wil4, W118, Wi19, W123]),

Woerter mit 6 Buchstaben

all_different([W7, W8, Wi1, W14, W29, W48, W67, W74, W82, W89, Wi03,
W120, Wi24, W136, W1431),

Woerter mit 5 Buchstaben

all_different([W3, W4, W5, W9, W16, W21, W23, W26, W27, W44, W47, W52,
W65, W66, W63, W72, W79, W86, W87, W91, W93, W98, W99,
w100, W107, W109, W125, W130, W133, Wi33]),

Woerter mit 4 Buchstaben

all_different([Wi8, W22, W25, W31, W34, W39, W40, W43, W53, W56, W62,
W63, W64, Wes, W71, W73, W75, W83, w102, Wi05, Wi06,
Wwill, W113, Wi116, Wi17, Wi121, W128, W132, w137, Wi38,
w140, W145, W146]),

Woerter mit 3 Buchstaben
all_different([W12, W15, W30, W32, W33, W38, W41, W45, W49, W55, W57,

w60, W76, W77, W81, W85, W94, W95, Wi01, w108, W122,
W126, W127, W129, W134, Wi41, W142]),
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% Woerter mit 2 Buchstaben

all_different([W10, W28, W70, W92, W131]),

% sameletter ~ Constraints:

forvard(sameletter (Wi, 2
forvard(sameletter(Wi, 4
forvard(sameletter(¥Wi, 6,
forvard(sameletter(Wi, 8

forvard(sameletter(W2, 2,
forvard(sameletter (W2, 4,
forvard(sameletter (W2, 6,

forvard(sameletter(¥3, 2,
forvard(sameletter(W3, 4,
forvard(sameletter(¥3, 5,

forvard(sameletter(W4, 2,
forvard(sameletter (W4, 4,
forvard(sameletter(W4, 5,

forvard(sameletter(WS, 1,
forvard(sameletter(WS, 3,
forvard(sameletter(Ws, 5,

forvard(sameletter(w6, 1
forvard(sameletter(W6, 3
forvard(sameletter(Wé, 4
forvard(sameletter(W6, 5,
forvard(sameletter(W6, 6
forvard(sameletter(Wé, 8

forvard(sameletter(W7, 1
forvard(sameletter (W7, 2
forvard(sameletter(¥W7, 3
forvard(sameletter (W7, 4,
forvard(sameletter(W7, 5
forvard(sameletter (W7, 6

forvard(sameletter (W8, 1
forvard(sameletter(W8, 2
forvard(sameletter(W8, 3
forvard(sameletter(W8, 4,
forvard(sameletter(ws, 5
forvard(sameletter(¥8, 6

forvard(sameletter(W9, 1
forvard(sameletter(W9, 2
forvard(sameletter (W9, 3,
forvard(sameletter(W9, 4
forvard(sameletter(wW9, S

forvard (sameletter(¥W10, 1,
forvard(sameletter (W10, 2,

forwvard(sameletter(¥Wis, 1,
forvard(sameletter(¥15, 2,
forvard(sameletter(¥is, 3,

forvard(sameletter(¥16, {,

¥13, 2)),
wi9, 2)),
w26, 2)),
w33, 2)),

¥13, 4)),
wi9, 4)),
w26, 4)),

w13, 6)),
W19, 6)),
w24, 1)),

W13, 8)),
wi9, 8)),
w24, 3)),

vit, 2)),
wi7, 2)),
w24, 6)),

Wwii, 4)),
W17, 4)),
¥20, 1)),
¥24, 8)),
w27, 1)),
w35, 2)),

wit, 6)),
wi4, 1)),
Wiz, 6)),
W20, 3)),
¥24, 10)),
w27, 3)),

Wiz, 1)),
wi4, 3)),
wi7, 8)),
W20, 5)),
w25, 1)),
w27, S)),

v12, 2)),
Wi4, 4)),
w17, 9)),
W20, 6)),
w25, 2)),

w12, 3)),
wi4, 5)),

wi4, 2)),
wi7, 7)),
¥20, 4)),

Wi4, 6)),
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forvard(sameletter(Wi6, 3, W20, 8)),
forvard(sameletter(Wi6, 4, W25, 4)),
forvard(sameletter(W16, 5, W28, 2)),

forvard(sameletter(W18, 1, W17, 5)),
forvard(sameletter(W18, 2, W20, 2)),
forvard(sameletter(Wis8, 3, W24, 9)),
forvard(aameletter(Wis, 4, W27, 2)),

forvard(samelatter(W21, t, W19, 7)),
forvard(sameletter(W21, 2, W24, 2)),
forvard(sameletter(W21, 4, W29, 2)),
forvard(sameletter(W2t, 5, W34, 3)),

forvard(sameletter(¥22, 1, Wi9, 9)),
forvard(sameletter(W22, 2, W24, 4)),
forvard(sameletter (W22, 4, W29, 4)),

forvard(sameletter(W23, 1, W20, 7)),
forwvard(sameletter(W23, 2, W25, 3)),
forvard(sameletter(W23, 3, W28, 1)),
forvard(sameletter (W23, 5, W35, 8)),

forvard(sameletter(W30, 1, W29, 1)),
forvard(sameletter(W30, 2, W34, 2)),
forvard(sameletter(¥30, 3, W43, 4)),

forvard(sameletter(W31, 1, W29, 3)),
forvard(sameletter(¥31, 2, W34, 4)),
forvard(sameletter(W31, 3, W44, 1)),
forvard(sameletter (W31, 4, W49, 2)),

forvard(sameletter(W32, 1, W29, 5)),
forvard(sameletter(W32, 3, W44, 3)),

forvard(sameletter(W36, 1, W33, 1)),
forvard(samelatter(W36, 4, W54, 1)),
forvard(sameletter(W36, 6, W65, 1)),
forvard(sameletter(W36, 8, W73, 1)),

forvard(sameletter(wW37, 1, W34, 1)),
forvard(sameletter (W37, 2, W43, 3)),
forvard(sameletter (W37, 4, W54, 5)),
forvard(sameletter (W37, 6, W65, 5)),
forvard(sameletter(W37, 7, W68, 1)),

forvard(sameletter(W42, 4, W57, 1)),
forvard(sameletter(W42, 5, W62, 2)),
forvard(sameletter(W42, 6, W67, 4)),
forvard(sameletter (W42, 7, W70, 2)),
forvard(sameletter(¥42, 8, W75, 3)),

forvard(sameletter(W46, 1, W33, 3)),
forvard(sameletter(W46, 2, W43, 1)),
forvard(sameletter(W46, 4, W54, 3)),
forvard(sameletter(W46, 6, W65, 3)),
forvard(sameletter(W46, 8, W73, 3)),
forvard(sameletter(W46, 9, W81, 2)),
forvard(sameletter(W46, 10, W86, 3)),

forvard(sameletter(W47, 1, W44, 2)),
forvard(sameletter(W47, 2, W49, 3)),
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forvard(sameletter (W47,
forvard(sameletter(Wa7,
forvard(sameletter (W47,

torvqrd(saleletter(i48,
forvard(sameletter (W48,
forvard(sameletter(W48,

forwvard(sameletter(W51,
forvard(sameletter(W51,
forvard(aameletter(WSi,
forvard(sameletter(W51,
forvard(sameletter(WSi,
forvard(sameletter(W51,
forward(sameletter(W51i,

forvard(sameletter(W52,
forvard(sameletter (W52,
forvard(sameletter (W52,
forvard(sameletter (W52,
forvard(sameletter(W52,

forvard(sameletter(WS3,
forvard(sameletter (W53,
forvard(sameletter (W53,

forvard(sameletter (W58,
forvard(sameletter(WS8,
forvard(sameletter (W58,
forvard(sameletter (W58,
forvard(sameletter(W58,
forvard(sameletter(Wss,
forvard(sameletter(W58,
forvard(sameletter (W58,
forvard(sameletter(W58,
forvard(sameletter (W58,

forvard(sameletter (W59,
forvard(sameletter(W59,
forvard(sameletter(WS9,
forvard(sameletter(WS9,
forvard(sameletter (%S9,
forvard(sameletter(WS9,
forvard(sameletter (W59,

forvard(;aleletter(ﬂ60.
forvard(sameletter (W60,
forvard(sameletter (W60,

forvard(sameletter(W63,
forvard(sameletter (W63,
forvard(sameletter (W63,
forvard(sameletter (W63,

forvard(sameletter(W64,
forvard(sameletter(Wé4,
forvard(sameletter(Wé4,
forvard(sameletter(Wé4,

forvard(sameletter(W71,
forvard(sameletter(W71,
forvard(sameletter(W71,

1,
2,
4,

1,
2,
3y
4,
5,
6,
7,
8,
9,

10, W104, 4)),

1,
2!
3,

W55,
w61,
w66,

W57,
w62,
N67,

w49,
W54,
¥é1,
wés,
W74,
w82,
w87,

w50,
Wsé6,
wéi,
w66,
wes,

¥so,
W56,
we7,

wss,
w61,
wes,
w69,
W74,
w82,
w87,
w92,
was,

WSS,
W61,
Wée6,
w69,
W74,
w82,
W87,

w57,
w62,
we7,

w61,
w66,
w69,
W74,

W62,
w67,
w70,
w75,

wés,
w74,
w82,

1),
3,
1)),

3,
1)),
6)),

1))’
™,
1,
3)),
1))-
2)),
1),

2)),
1)),
),
5,
4),

),
3)),
1),

2)),
1)),
2)),
1)),
1)),
5)),
4)),
2))v
2)),

3,
5,
3));
2)),
5,
6)),
5))»

2)),
3,
5,

6)),
1),
3,
6)),

1),
3,
1),
2,

1),
2)),
3,
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forvard(sameletter(W71,

wa

w87, 2)),

forvard(sameletter (W72, 1, W69, 5)),
forvard(sameletter(W72, 3, W83, 2)),
forvard(sameletter(W72, 4, W88, 2)),
forvard(sameletter(¥W72, 5, W93, 3)),

forvard(sameletter(W76, 1, W73, 2)),
forvard(sameletter(W76, 2, W81, 1)),
forvard(sameletter(W76, 3, W86, 2)),

forvard(sameletter (W77, 1, W73, 4)),
forvard(sameletter(¥77, 2, W81, 3)),
forvard(sameletter (W77, 3, W86, 4)),

forvard(sameletter (W78, 1, W74, 3)),
forvard(sameletter(W78, 2, W82, 4)),
forvard(sameletter (W78, 3, W87, 3)),
forvard(sameletter (W78, 4, W92, 1)),
forvard(sameletter(W78, 5, W98, 1)),
forvard(sameletter (W78, 6, W104, 3)),
forvard(sameletter(W78, 7, W108, 3)),
forvard(sameletter(%78, 8, W112, 2)),
forvard(sameletter (W78, 9, Wi17, 3)),
forvard(sameletter (W78, 10, Wi124, 1)),

forvard(sameletter(W79, 1, W75, 1)),
forvard(sameletter (W79, 2, W83, 4)),
forvard(sameletter (W79, 3, W88, 4)),
forvard(sameletter(¥79, 4, W93, 5)),
forvard(sameletter(W79, 5, W99, 1)),

forvard(sameletter(W80, 1, W75, 4)),
forvard(sameletter(W80, 3, W88, 7)),
forvard(sameletter(W80, 4, W94, 2)),
forvard(sameletter(W80, S5, W99, 4)),
forvard(sameletter(W80, 6, W105, 3)),
7

forvard(sameletter(W80, 7, W109, 4)),

forvard(sameletter(W84, 1, W83, 1)),
forvard(sameletter(W84, 2, W88, 1)),
forvard(sameletter(W84, 3, W93, 2)),
forvard(sameletter(W84, 4, W98, 5)),
forvard(sameletter(W84, 5, Wi04, 7)),

7

forvard(sameletter(W84, 7, Wi12, 6)),

forvard(sameletter (W85, 1, W83, 3)),
forvard(sameletter (W8S, 2, W88, 3)),
forvard(sameletter(W85, 3, W93, 4)),

forvard(sameletter(W89, 1, W86, 1)),
forvard(sameletter(¥89, 3, W97, 1)),
forvard(sameletter(W89, 5, W107, 1)),

forvard(sameletter(W90, 1, W86, S5)),
forvard(sameletter(W90, 3, W97, S)),
forvard(sameletter(W90, 5, W107, 5)),
forvard(sameletter(¥W90, 6, Wili, 3)),
forvard(sameletter(W90, 7, W112, 4)),

forvard(sameletter(W91, 1, W88, 6)),
forvard(sameletter(W91, 2, W94, 1)),
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forvard(sameletter(W91, 3, W99, 3)),
forvard(sameletter(W91, 4, W105, 2)),
forvard(sameletter(W91, 5, W109, 3)),

forvard(sameletter(W95, 1, W93, 1)),
forvard(sameletter(W95, 2, W98, 4)),
forvard(sameletter(¥W95, 3, Wi04, 6)),

forvard(sameletter(W96, i, W94, 3)),
forvard(sameletter(¥96, 2, W99, 5)),
forvard(sameletter(W96, 3, W105, 4)),
forvard(sameletter(W96, 4, W109, 5)),
forvard(sameletter(W96, 6, W1i8, 7)),
7

forvard(sameletter(W96, 7, W125, 5)),

forvard(sameletter(W100, 1, W97, 3)),
forvard(sameletter(W100, 3, W107, 3)),
forvard(sameletter(W100, 4, Wil1, 1)),
forvard(sameletter(¥W100, 5, W116, 2)),

forvard(sameletter(W101, 1, W97, 7)),
forvard(sameletter(W101, 2, W104, 1)),
forvard(sameletter(W101, 3, Wi08, 1)),

forvard(sameletter(W102, 1, W98, 3)),
forvard(sameletter(¥102, 2, Wi04, S5)),
forvard(sameletter(W102, 4, Wi12, 4)),

forvard(sameletter(Wi103, 1, W99, 2)),
forvard(sameletter(W103, 2, W105, 1)),
forvard(sameletter(W103, 3, W109, 2)),
forvard(sameletter(W103, 5, W118, 4)),
forvard(sameletter(W103, 6, W125, 2)),

forvard(sameletter(W106, 1, W104, 2)),
forvard(sameletter(Wi06, 2, W108, 2)),
forvard(sameletter(W106, 3, W112, 1)),
forvard(sameletter(W106, 4, W117, 2)),

forwvard(sameletter(W110, 1, W107, 4)),
forvard(sameletter(¥WiiQ, 2, Wilt, 2)),
forvard(sameletter(W110, 3, W116, 3)),
forvard(sameletter(Wi10, 5, W128, 4)),
forvard(sameletter(W110, 6, W135, 3)),
forvard(sameletter(W1ii0, 7, W138, 4)),

8

forvard(sameletter(W110, 8, W143, 3)),

forvard(sameletter(d113, 1, W112, 3)),
forvard(sameletter(W113, 2, W117, 4)),
forvard(sameletter(W113, 3, W124, 2)),
forvard(sameletter(W113, 4, W130, 1)),

forvard(sameletter(Wii4, 1, W112, 5)),
forvard(sameletter(W114, 3, W124, 4)),
forvard(sameletter(W114, 4, W130, 3)),
forvard(sameletter(W114, 5, W136, 2)),
forvard(sameletter(Wii4, 7, Wi44, 1)),

forvard(sameletter(W115, 1, W112, 7)),
forvard(sameletter(Wi15, 2, W118, 1)),
forvard(sameletter(W115, 3, W124, 6)),
forvard(sameletter(W115, 4, W130, 5)),
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forvard(sameletter(¥W115,
forvard(sameletter(W115,

forvard(samelatter(W119,
forvard(sameletter(Wii9,
forvard(asameletter(W119,
forvard(sameletter(Wii9,
forvard(samelettar(W119,

forvard(sameletter(¥Wi20,
forvard(sameletter(W120,
forvard(sameletter(W120,
forvard(sameletter(W120,
forvard(sameletter(¥W120,

forvard(sameletter(W121,
forvard(sameletter(Wi2i,
forvard(sameletter(W121,

forvard(sameletter(W122,
forvard(sameletter(W122,
forvard(sameletter(¥i22,

forvard(sameletter(W123,
forvard(sameletter(W123,
forvard(sameletter(W1i23,
forvard(sameletter(W123,
forvard(sameletter(Wi23,
forward(sameletter(Wi23,

forwvard(sameletter(W126,
forvard(sameletter(W126,

forvard(sameletter(W126,

forvard(sameletter(W127,

forvard(sameletter(W127, 2

forvard(sameletter(W127,

forvard(sameletter(W132,
forvard(sameletter(W132,
forvard(sameletter(W132,
forvard(sameletter(Wi132,

forvard(sameletter(W133,
forvard(sameletter(W133,
forvard(samelatter(W133,
forvard(sameletter(W133,

forvard(sameletter(W134,
forvard(sameletter(W134,
forvard(sameletter(¥W134,

forvard(sameletter(W137,
forvard(sameletter(W137,
forvard(sameletter(W137,

forvard(sameletter(Wi4t,
forvard(sameletter(Wi4i,
forvard(sameletter(Wi4l,

forvard(sameletter(W142,
forvard(sameletter(W142,

~

w136,
Wi44,

wiie,
w128,
W13s,
w138,
w143,

w117,
w129,
w135,
w139,
w143,

w118,
w125,
Wi36,

w118,
w1iz2s,
w131,

w118,
Wi2s,
wi3li,
w140,
Wi44,
wi46,

Wi24,
w130,
w136,

wi24,
w130,
w136,

wizs,
w135,
w138,
w143,

w129,
w135,
w139,
w143,

w129,
w135,
w139,

w135,
w139,
w145,

w140,
Wi44,
w146,

Wi40,
wi44,

4),
3N,

1),
2)),
1)),
2,
1)),

0,
20,
6)),
2)),
6)),

3N,
1),
6)),

5)),
3,
1),

6)),
),
2)),
3,
8)),
3,

3,
2)),
1),

5)),
1)),
3,

3,
2)),
N,
2)),

1),
5)),
1)),
5)),

3)),
),
3)),

8)),
4)),
2)),

1),
6)),
1),

2)),
),
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forvard(sameletter(W142, 3, W146, 2)),

writeln(’Starting instantiating variables now!’),

writeln(’Instantiating word10’),

inatantiate([W24, W46, WS8, wW78]),

writeln(’instantiating word9’),

instantiate({W13, W17, W19, W104]),

writeln(’instantiating words’),

instantiate([W1, W6, W20, W35, W36, W42, WS1, W110, W115, Wi35, Wi44]),

writeln(’instantiating word7’),

instantiate([W2, W37, W50, W54, W59, W61, W80, W84, W8, W90, W96, W97,
w112, Wi14, w118, W119, W123]),

writeln(’instantiating wordé6’),

instantiate([W7, W8, Wil, W14, W29, W48, W67, W74, W82, W89,
w103, W120, W124, W136, W1431),

writeln(’instantiating wordS’),

instantiate([W3, W4, W5, W9, W16, W21, W23, W26, W27, W44, W47, W52, W65,
W66, W69, W72, W73, W86, W87, W91, W93, W98, W99, W100, Wi07,
w109, w125, W130, W133, W139]),

vriteln(’instantiating wvord4 '),

instantiate([W18, W22, W25, W31, W34, W39, W40, W43, W53, W56, W62,
W63, W64, W68, W71, W73, W75, W83, Wi02, W105, W106, Wi1ll,
w113, Wi16, Wi17, w121, w128, W132, W137, W138, W140, W145,
wi46]),

vriteln(’instantiating word3 ’),

instantiate([W12, W15, W30, W32, W33, W38, W41, W45, W49, W55, W57,
W60, W76, W77, W81, W85, W94, W95, W101, W108, W122,

) w126, w127, W129, W134, Wi41, W142]),
writeln(’Instantiating wvord2 ’),
instantiate([W10, W28, W70, W92, W131]).

all_different([]).

all_different([X|Y]) :-
out_of(X, Y),
all_different(Y).

out_of(_, [1).

out_of (X, [Y[Z]) :-
forvard(X \= Y),
out_of(X, Z).

sameletter(Wi, P1, W2, P2) :-
substring(W1, P1, 1, Letter),
substring(wW2, P2, 1, Letter).

A.2 The Map-Colouring Example

In the following, a FIDO-II program colouring the map of Europe is displayed. See chapter 7.2
for a description of the problem that can be regarded as instance of graph-colouring problems.

map([Norvay,Sveden,Danmark,Finland,Russia,Poland, CSFR,Romania,Hungary,
Bulgaria,Greece,Albania,Turkey,Germany, Austria,Italy,Switzerland,
Luxemburg,Belgium,Netherlands,Spain,France,Croatia,Serbia,Slovenia,
Bosnia, Macedonia,Montenegro,Scotland,Wales,England,Ireland,Ulster,
Iceland, Portugal]) :-
define_domain(colours, [Norvay, Sveden,Danmark,Finland,Russia,Poland,CSFR,
Romania,Hungary, Bulgaria,Greece,Albania,Turkey,
Germany,Austria,Italy,Svitzerland, Luxemburg,
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Belgium,Netherlands,Spain,France,Croatia,Serbia,

Slovenia, Bosnia, Macedonia,Montenegro,Scotland,

Wales,England, Ireland,Ulater, Iceland, Portugall],
(1, 2, 3, 41,

forvard(Norway \= Sveden),
forvard(Norway \= Finland),
forvard(Norway \= Iceland),
forvard(Norway \= Scotland),
forwvard(Sweden \= Finland),
forvard(Sweden \= Danmark),
forvard(Danmark \= Germany),
forvard(Danmark \= England),
forvard(Finland \= Russia),
forvard(Russia \= Poland),
forvard(Russia \= CSFR),
forvard (Russia \= Hungary),
forvard(Russia \= Romania),
forvard(Poland \= Germany),
forvard(Poland \= CSFR),
forvard (CSFR \= Germany),
forwvard(CSFR \= Hungary),
forvard(CSFR \= Austria),
forvard(Romania \= Hungary),
forvard(Romania \= Bulgaria),
forvard(Romania \= Serbia),
forvard (Hungary \= Austria),
forward (Hungary \= Serbia),
forvard(Hungary \= Slovenia),
forvard(Hungary \= Croatia),
forvard(Bulgaria \= Greece),
forvard(Bulgaria \= Macedonia),
forwvard(Bulgaria \= Turkey),
forvard(Bulgaria \= Serbia),
forvard(Greece \= Albania),
forvard(Greece \= Turkey),
forvard(Greece \= Macedonia),
forward(Albania \= Montenegro),
forvard(Albania \= Macedonia),
forward(Albania \= Italy),
forvard(Germany \= Austria),
forvard(Germany \= Switzerland),
forvard(Germany \= France),
forvard(Germany \= Luxemburg),
forward(Germany \= Belgium),
forvard(Germany \= Netherlands),
forvard(Austria \= Switzerland),
forvard(Austria \= Slovenia),
forvard(Italy \= Slovenia),
forvard(Italy \= France),
forward(Italy \= Switzerland),
forvard(Switzerland \= France),
forvard (Luxemburg \= France),
forvard(Luxemburg \= Belgium),
forvard(Belgium \= Netherlands),
forvard(Belgium \= England),
forvard(Netherlands \= England),
forvard(Spain \= France),
forvard(Spain \= Portugal),
forvard(Spain \= Ireland),
forvard(France \= England),
forvard(Croatia \= Slovenia),
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forvard(Croatia \= Bosnia),

forvard(Croatia \= Serbia),

forvard(Serbia \= Bosnia),

forvard(Serbia \= Macedonia),

forvard(Serbia \= Montenegro),

forvard(Serbia \= Slovenia),

forvard(Bosnia \= Montenegro),

forvard(Macedonia \= Montenegro),

forvard(Scotland \= England),

forvard(Scotland \= Ulster),

forvard(Scotland \= Iceland),

forvard(Wales \= England),

forvard(Wales \= Ireland),

forvard(Wales \= Ulster),

forvard(England \=Ireland),

forvard(England \= Ulster),

forvard(Ireland \= Ulster),

forvard(Ireland \= Iceland),

instantiate([Norvay,Sweden,Danmark,Finland,Russia,Poland,CSFR,Romania,
Hungary, Bulgaria,Greece,Albania,Turkey,Germany,Austria,Italy,
Switzerland, Luxemburg,Belgium,Netherlands,Spain,France,
Croatia,Serbia,Slovenia, Bosnia, Macedonia,Montenegro,
Scotland,Wales,England,Ireland,Ulster, Iceland, Portugall).

A.3 The Scheduling Example

In the following, the FIDO-II source code for the scheduling problem of chapter 7.3 is listed.

/* scheduling example. The shifts are mapped to the integers from 1 to 9, =/
/* Each employee has five shifts per week, which are defined by the five =/
/* variables XXX1 to XXX5 for each employee XXX. */

schedule( [Harryi,Sallyt, Fredil, Isabell, Paull, Pamelal, Tinal, Annal, Maryl,
Harry2,Sally2, Fred2, Isabel2, Paul2, Pamela2, Tina2, Anna2, Mary2,
Harry3,Sally3, Fred3, Isabel3, Paul3, Pamela3, Tina3, Anna3, Mary3 ]) :-
define_domain(shifts, [Harry1,Sallyl, Fred1l, Isabell, Paull, Pamelal,
Tinal, Annal, Mary1, Harry2,Sally2, Fred2, Isabel2,
Paul2, Pamela2, Tina2, Anna2, Mary2,Harry3,Sally3,
Fred3, Isabel3, Paul3, Pamela3, Tina3, Anna3, Mary3 ],
1..9),
\* Constraint { : =\
not_subsequent ([Harryl, Harry2, Harry3l]),
not_subsequent ([Sallyt, Sally2, Sally3]),
not_subsequent ([Fred1, Fred2, Fred3]),
not_subsequent ([Isabell, Isabel2, Isabel3]),
not_subsequent ([Paull, Paul2, Paul3]),
not_subsequent ([Pamelal, Pamela2, Pamela3]),
not_subsequent ([Tinal, Tina2, Tina3l),
not_subsequent([Annat, Anna2, Anna3l),
not_subsequent ([Maryl, Mary2, Mary3]),
\* Constraint number 9 =\
forvard(Harryl \= 3),
forwvard(Harry2 \= 6),
forvard(Harry3 \= 9),
\* Constraint number 10 =\
forvard(Tinai \= 1),
forvard(Tina2 \= 4),
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\#

\=

\*

\*

\»

forvard(Tina3 \= 7),

Constraint number 6 *\
forvard(Pamelal =\= Paull + 1),
forvard(Pamelal =\= Paull - 1),
forvard(Pamelal \= Paull),
forvard(Pamela2 =\= Paul2 + 1),
forvard(Pamela2 =\= Paul2 - 1),
forvard(Pamela2 \= Paul?2),
forvard(Pamela3 =\= Paul3 + 1),
forvard(Pamela3 =\= Paul3 - 1),
forvard(Pamela3 \= Paul3),

Constraint number 5 =\
forvard(Fredl \= Isabell),
forvard(Fred2 \= Isabel?2),
forvard(Fred3 \= Isabel3),

Constraint number 7 =\
forwvard(Tinal \= Mary1),
forvard(Tina2 \= Mary?),
forvard(Tina3 \= Mary3),

Constraint number 12 =\
forvard(Fredi = Pamelal),
forvard(Fred2 = Pamela?2),
forvard(Fred3 = Pamela3),

Constraint number 4 =\
forvard(Harry! = Sallyil),
forvard(Harry2 = Sally2),
forvard(Harry3 = Sally3),

Constraint number 8 =\

forvard(Annal =:= Paull - 1),
forvard(Anna2 =:= Paul2 ~ 1),
forvard(Anna3 =:= Paul3 - 1),

constraint number 11 =\
forvard(Maryt = 2),
forvard(Mary2 = 5),
forvard(Mary3 = 8),

instantiate_card([Harryl,Sallyl, Fredi, Isabell, Paull, Pamelal, Tinal, Annal, Maryl,
Harry2, Sally2, Fred2, Isabel2, Paul2, Pamela2, Tina2, Anna2, Mary2,Harry3,
Sally3, Fred3, Isabel3, Paul3, Pamela3, Tina3, Annal, Mary3 ],

9, 3.

not_subsequent({]).
not_subsequent ([H]).
not_subsequent ([HIT]) :-

not_subsequent_aux(H, T),
not_subsequent(T).

not_subsequent_aux(El, [1).
not_subsequent_aux(El, [H|T]) :-

forvard(El =\= H ~ 1),
forvard(El < H),
not_subsequent_aux(El, T).

empty_intersection(, _).
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empty_intersection([H|T], List) :-
out_of (H, List),
empty_intersection(T, List).

out_of(_, [1).

out_of(X, [HIT]) :-
forvard(X \= H),
out_of(X, T).

in_between([], _, _).

in_between([HIT], From, To) :-
forvard(H >= From),
forvard(H =< To),
in_between(T, From, To).



Appendix B

Implementation Issues

In the following a listing is given of the files used by and needed for FIDO-II. From a logical
point of view, the code can be divided into the following portions:

1. The FIDO main shell program which starts precompilation of an input file.
2. The code needed for the first preprocessing scan.

3. The code required for the second preprocessing scan.

4. The code for the third preprocessing scan.

5. The normalizer code and the code for the redefinition of user-defined constraints.
6. The database facts and declarations.

7. The code for stream output.

8. A domain variable predicates library.

9. A control library containing the definitions of the consistency algorithms.
10. A library providing utility function for open lists.
11. Diverse utility functions.

12. The redefinitions of the built-in constraints.

B.1 The Code Portions

¢ /home/jmueller/clp/transform/fido.pl: The file contains the PROLOG implemen-
tation of the FIDO-II main program. It embodies the top-level of the FIDO-II prepro-
cessor and contains the calls to the specific preprocessing scans.

¢ /home/jmueller/clp/transform/process_sl.pl: This file contains the source code
for the first scan of the input program.

¢ /home/jmueller/clp/transform/process_s2.pl: The code implementing the second

preprocessing phase, which performs the handling of the domains, can be found in this
file.
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¢ /home/jmueller/clp/transform/process_s3.pl: This file contains the implementa-
tion of phase three of the FIDO-II preprocessor. It performs the changes necessary in
the source code and handles the consistency declarations.

¢ /home/jmueller/clp/transform/normalize.pl, explode.pl: This file contains the
code defining the constraint normalizer and the code generator of the redefinitions of
user-defined constraints.

¢ /home/jmueller/clp/lib/clplib_ff.pl: Here, the FIDO library predicates providing
facilities for the creation and the maintaining of domain variables at run-time and the
instantiation built-ins are contained.

¢ /home/jmueller/clp/lib/utils.pl: This file consists of several helpful predicates used
by other FIDO-II predicates.

¢ /home/jmueller/clp/lib/openlists.pl: This is a library which provides important
predicates for handling open lists which are represented as lists whose last element is a
variable. For example, the list (1,2, 3|Var]| is an open list. The library contains operations
such as membership and set operations on open lists.

¢ /home/jmueller/clp/control: This directory contains the forward-checking algorithms
working on built-in and user-defined constraints.

e /home/jmueller/clp/redef: This directory contains the four sub-directories eq, ne,
gt, and It which provide the constraint redefinition of the equality, inequality respectively
ordering built-in constraints.

¢ /home/jmueller/clp/transform/etc.pl, declarations.pl: These two files contain
the database facts characterizing the built-in constraint and the declarations of dynamic
predicates and of the operators used by FIDO-II.

Known Restrictions

In this section, some known restrictions of the current FIDO-II prototype version are listed.
The listing contains some details mentioned in the work, but also some new issues interesting
for the programmer.

e The maximal number of arguments permitted for user-defined constraints is five.

e The implicit unification of domain variables, i.e. by clause-head unification is forbidden.
It is not automatically recognized by the system and will lead to unpredictable behaviour
of the program.

e First-fail heuristics using the number of constraints of a domain-variable is not imple-
mented.

e The FIDO-II built-in constraints which are available in the current version are = /2, =:=
/2,\=/2,=\=/2,> /2, and < /2.

o The use of some SEPIA library predicates, which are not regarded as built-ins by SEPIA
(i.e. the is_built_in /1 predicate fails), but which are no user-defined predicates either,
must be added to the definition of the FIDO built_in /1 predicate which is defined in
/home/jmueller/clp/lib/utils.pl’.



Implementation Issues 121

e For big examples such as the crossword puzzle program or n» queens with n>64, the
global and/or local PROLOG heap must be resized. This can be achieved by starting
SEPIA with the command:

sepia -g n; —1 ny?

ny and n should be chosen sufficiently big. For most applications, n; = 5000 and
ny = 2000 should suffice.

e For reasons of time, the program code implementing weak looking-ahead does not have
"product niveau”. It is not thoroughly tested. Thus, its correctness cannot be asserted
even if soundness and completeness of the algorithm itself have been proved in this work.

I do know exactly that somebody is going to type "sepia -g n1 —l n2” right now!
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