
Deutsches
Forschungszentrum
fOr KOnstliche
Intelilgenz GmbH

Document
D-91-02

Design and Implementation
of a Finite Domain

Constraint Logic Programming System
based on PROLOG with Coroutining

Jorg P. Muller

November 1991

Deutsches Forschungszentrum fur Kunstliche
Intelligenz

Postfach 20 80
D-6750 Kaiserslautcrn
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

GmbH
Stuhlsatzenhauswcg 3
D-6600 Saarbrilcken 11
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Daimler Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Krupp-Atlas, Mannesmann-Kienzle, Philips,
Sema Group Systems, Siemens and Siemens-Nixdorf. Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Design and Implementation of a Finite Domain Constraint Logic
Programming System based on PROLOG with Coroutining

Jorg P. Muller

DFK1-D-91-02

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fOr Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fur Kunstliche Intelligenz.

Contents

I Preliminaries

1 Motivation
1.1 Logic Programming

1.1.1 The Strong Points
1.1.2 Shortcomings of Logic Programming
1.1.3 Remedies

1.2 Constraint Solving Problems
1.3 Overview

2 Constraint Logic Programming
2.1 The Principles of CLP

2.1.1 The CLP Scheme
2.1.2 The Structure of a CLP system.
2.1.3 Finite Domain Consistency Techniques.
2.1.4 Properties of CLP
2.1.5 Summary ...

2.2 The State of the Art
2.2.1 CLP(R)
2.2.2 CHIP
2.2.3 PROLOG-III
2.2.4 TRILOGY
2.2.5 CC(FD) ...
2.2.6 Relations to FIDO

3 Theoretical Framework
3.1 Motivation
3.2 Domains in Logic Programming.

3.2.1 Declarative Semantics ..
3.2.2 Procedural Semantics ..

3.3 Consistency Techniques in Logic Programming
3.3.1 Constraints
3.3.2 The Forward-Checking Inference Rule
3.3.3 The Looking-Ahead Inference Rule .
3.3.4 Weak Looking-Ahead(WLA)
3.3.5 Consistency..............

II FIDO-II: Concepts and Implementation

4 The Role of FIDO-II within the FIDO Lab
4.1 The Meta-interpretation Approach

1

2

2
2
3
5
5
6

8
8
8
8
9

10
10
11
11
11
12
12
12
12

14
14
15
15
15
17
17
18
19
20
24

25

26
26

CONTENTS

4.1.1 Domain Variable Unification
4.1.2 Achieving Forward-Checking Control.
4.1.3 Results
4.1.4 What We Have Actually Learned from FIDO-I

4.2 The Vertical Compilation Approach

5 A Domain Concept for FIDO-I1
5.1 A General View on a Domain Concept

5.1.1 Motivation
5.1.2 Requirements on a Domain Concept
5.1.3 Domain Representations
5.1.4 Classifying Valid and Invalid Domain Values

5.2 Bringing about Domains in FIDO-U
5.2.1 Domain Variables in FIDO-II
5.2.2 The User's View on Domains
5.2.3 An Example for the Use of define_domain / 3 .

5.2.4 Using Domain Specific Information
5.2.5 Internal Realization of Domains in FIDO-II .. .
5.2.6 Concluding Remarks

5.3 SEPIA Meta-terms: a Simpler Way of Maintaining Domain Variables
5.3.1 Meta-terms
5.3.2 Using Meta-terms in FIDO-II

6 The Integration of Control
6.1 Motivation
6.2 Constraints in FIDO-II ..

6.2.1 Classifying Constraints.
6.2.2 Consistency Techniques: A Motivation.
6.2.3 Forward-Checking in FIDO-II ..
6.2.4 Weak Looking-Ahead in FIDO-II
6.2.5 Handling Equality

6.3 Using delay Mechanisms
6.3.1 Approaches Towards Coroutining .
6.3.2 SEPIA delay Declarations

6.4 Consistency Techniques in FIDO-II
6.4.1 Realizing Forward-Checking via a delay Mechanism
6.4.2 Implementing Looking-Ahead

6.5 Choice Methods in FIDO-II
6.5.1 Motivation
6.5.2 First- Fail Heuristics

6.6 The FIDO-II Preprocessor.
6.6.1 The Preprocessor as a Black Box
6.6.2 Static Structure of the FIDO-II Preprocessor

6.7 Towards a FIDO-II Programming Methodology
6.7.1 Doing Tests Before" Generates"
6.7.2 Achieving Global Consistency
6.7.3 Formulate the Strongest Constraints First

7 Applications
7.1 Logical Puzzles

7.1.1 The n-queens Problem

\I

27
27
27
27
28

29

29
29
30
31
33
33
34
35
36
37
39
39
41
41
41

43
43
44
44
46
46
56
60
65
65
66
70
70
74
74
74
75
77
77
78
87
87
88
88

90
90
90

CONTENTS

7.1.2 The Five Houses Puzzle
7.1.3 Cryptharithmetic.
7.1.4 Crossword Puzzles

7.2 Graph Colouring ..
7.3 Scheduling Problems .. .

7.3.1 The Problem .. .
7.3.2 The Solution to the Problem
7.3.3 Computational Results.

7.4 Conclusion

8 Summary and Outlook
8.1 What Has Been Done?
8.2 What Remains to be Done?

8.2.1 Explicit Maintenance of Domains and Domain Variables
8.2.2 Domain Representation
8.2.3 Dual Variable Concept .
8.2.4 Declarative Semantics .
8.2.5 Constraint Types
8.2.6 Nesting of Inference Engine and Constraint Solver
8.2.7 Weak Constraints and Relaxation

8.3 Outlook

A FIDO-II Example Programs
A.I The Crossword Puzzle ...
A.2 The Map-Colouring Example
A.3 The Scheduling Example.

B Implementation Issues
B.I The Code Portions

Bibliography

III

93
96
98
98
99
99

100
101
101

102
102
102
102
103
103
103
104
104
104
105

106
106
114
116

119
119

121

List of Figures

1.1 G&T Program for the n Queens Problem ' . . 4
1.2 Standard Backtracking Program for the n Queens Problem 4

2.1 The General Structure of a CLP System . 9

3.1 A Domain Variable Unification Algorithm 17
3.2 3-Colouring of a Complete 3-Graph ... ' ,' 20
3.3 A Globally Inconsistent Constraint Net .. 24

5.1 Example: Top Level Definition of General N Queens Problem 36
5.2 Example of a User Defined Predicate Creating a Domain. . . 37
5.3 Example: Different Possibilities to Formulate a Domain Definition 37
5.4 Runtime of N Queens Depending on Domain Declaration 38
5.5 Example: Representation of Lists (a) and Functors (b) on the PROLOG Heap 40
5.6 Implementing Domain Variable Unification Using SEPIA Meta-terms. 42

6.1 Example: Constraint Definition for the N Queens Problem. . . 47
6.2 The A Priori Pruning Effect of Forward-Checking for 6 Queens 47
6.3 Example: A General Forward-Checking Algorithm 50
6.4 Example: Specialized Forward-Checking for Inequality Constraints 54
6.5 A Forward-Checking Algorithm for the < /2 Constraint 55
6.6 Example: Part of the WLA Algorithm for the> /2 Constraint " 60
6.7 Example: A FIDO Program Delivering an Inconsistent Implicit Solution 63
6.8 Turning Things Right by Enforcing Explicit Solutions 63
6.9 Example: Erroneous Implicit Unification. . . . 64
6.10 Example: Use of a SEPIA delay Declaration 67
6.11 Symmetrical Multiplication Predicate sYJD-* /3 . 67
6.12 Yielding Implicit Solutions by Delaying Goals . 68
6.13 A SEPIA Resuming Cascade 69
6.14 Case Distinctions for the forJlIleO Constraint Redefinition 72
6.15 Definition of Specialized = \ = /2 Constraint. 73
6.16 The FIDO-II Preprocessor as a Black Box . . 78
6.17 Static Structure of the FIDO-II preprocessor 79
6.18 An Example Program .. . 80
6.19 Initialized Callsgraph 81
6.20 Intermediate Callsgraph (1) 81
6.21 Intermediate Callsgraph (2) 82
6.22 Final Callsgraph 82
6.23 Overcautiousness of Callsgraph Representation 83
6.24 Another Formulation of KNOW + HOW = DFKI 84
6.25 Constraint Set Resulting from Normalization of KNOW +HOW=DFKI . 85
6.26 Dynamic Structure of the FIDO-II preprocessor. 86

LIST OF FIGURES

7.1 A FIDO-II Program for the n Queens Problem
7.2 A FIDO-II program Solving the Five Houses Problem
7.3 A FIDO-II Program for KNOW + HOW = DFKI
7.4 The sameletter /4 User-Defined Constraint

1

91
94
96
98

Abstract

Many problems in different areas such as Operations Research, Hardware Design, and Artifi­
cial Intelligence can be regarded as constraint solving problems (CSPs). Logic programming
offers a convenient way of representing CSPs due to its relational, declarative and nondeter­
ministic form. Unfortunately, standard logic programming languages such as PROLOG tend
to be inefficient for solving CSPs, since what could be called constraints in PROLOG is used
only in a passive a posteriori manner, leading to symptoms such as late recognition of failure,
unnecessary and unintelligent backtracking and multiple computation of the same solutions l .

There have been intensive research efforts in order to remedy this. One of them, which has
caught increasing attention over the past few years, is the Constraint Logic Programming ap­
proach:
By integrating a domain concept for logic variables and consistency techniques such as forward­
checking or looking-ahead into PROLOG, the search space can be restricted in an a priori
manner. Thus, a more efficient control strategy can be achieved, preserving the 'clean' dual
PROLOG semantics.

In this issue, I will present a horizontal compilation approach towards a CLP system main­
taining constraints whose variables are ranging over finite domains. Horizontal compilationis
often referred to as optimizing transformation techniques in other context. A PROLOG sys­
tem providing a delay mechanism is used in order to achieve the control behaviour described
above.
The major subtasks of my work are

• Design and integration of a domain concept into logic programming, which allows direct
access to and manipulation of possible values of logic variables.

• Thorough implementation of a forward-checking control strategy in SEPIA.

• Design and prototypical implementation of a looking-ahead algorithm.

• Summary of the main theoretical results underlying to domains and consistency tech­
niques in logic programming.

• Consideration and prototypical implementation of first-fail heuristics.

• Embedding these topics into a preprocessor, which transforms FIDO programs into
SEPIA programs realizing the advanced control strategies.

The general framework of this work is the FIDO lab within the ARC-TEC project, which
explores several approaches towards integrating finite domain consistency techniques into logic
programming.

IThis is an observation which is true not only for CSPs but for general problems: logic programming is
convenient to represent problems but its usability for solving them efficiently is restricted, since solving different
types of problems require different methods. Very often these types cannot be identified from the syntactic
representation only, but are connected with semantic issues.

Part I

Preliminaries

Chapter 1

Motivation

In this chapter, the motivation for my current work is described. I will outline the reasons that
have led to a combination of logic programming and constraint solving. I would like to start
from the logic programming "corner", showing the basic issues which made Constraint Logic
Programming desirable from the logic point of view. In the second part of the chapter, I will
show what logic programming has to offer w.r.t. solving constraint problems. The combination
of these two aspects will lead us to the notion of constraint logic programming in a very natural
way. Third and last, I'll give a short survey of the chapters following.

1.1 Logic Programming

1.1.1 The Strong Points

Since its beginning almost 20 years ago with the development [BM73, Kow74] and the first
implementation [Rou75] of the language PROLOG, logic programming has developed into one
of the most important tools for Artificial Intelligence. The outstanding role of PROLOG for
logic programming justifies talking about PROLOG, if logic programming is actually meantl.
The logic programming paradigm can be described by the following keywords:

• Declarativity: formulating knowledge in facts and rules allows the user to write what
shall be done. How the task is to be performed is left to the system.

• Relational Form: in a mathematical sense, the knowledge items (predicates) are n-ary
relations.

• Nondeterminism: by writing down alternatives without actually specifying a tree
search strategy, nondeterminism is brought about2 •

• Mathematical Model and Dual Semantics: there is a well-understood underlying
mathematical model for logic programs. In this context, the clear declarative semantics
(least model semantics, fixpoint semantics) and the procedural semantics (which is given
by SLD-resolution for PROLOG) of logic programs should be mentioned.

1 For a. strict rea.der, [will restrict tha.t proposition to the logic pa.rt of PROLOG.
'lOf course, in concrete systems like PROLOG, the order of the a.1terna.tives i" crucia.1, if efficiency is ta.ken

into a.ccount.

Motivation 3

Thus, logic programming allows problem formulation which is both elegant and natural. This
also facilitates the writing of programs in such a way that they are easy to read. Furthermore,
logic programming is said to shorten program development time, since it supports a top-down
problem-solving method by dividing a goal into less complex subgoals, until the subgoals can
be solved or they turn out to fail. These strong points contributed to make PROLOG a most
important AI tool for both

• Knowledge Representation: knowledge about the world can be formulated in a first­
order logic framework by facts and rules .

• Knowledge Manipulation: by using SLD resolution new knowledge can be derived
from existing knowledge.

1.1.2 Shortcomings of Logic Programming

Unfortunately, logic programming does not have strong points only. The main negative aspects
of it are

1. the unsound implementation of negation, and

2. the lack of efficient control strategies.

Unsound negation leads to wrong answers, poor control leads to inefficient problem solving
results. My work stresses the control issue. First, I would like to go into more detail about
what I mean by the second point of the above enumeration.
In the previous paragraph, I mentioned the capability of logic programming to allow programs
to be formulated in a natural way as one of its basic advantages. However, programs written
in a natural style often tend to be very inefficient. They support search strategies as generate
fj test (G&T) or standard backtracking search3 .

Generate & Test Figure 1.1 shows a program for the 8 queens problem that implements a
generate & test control strategy. First, a variable assignment for all the variables is generated.
In the program, that is done by creating a permutation of the values {1, ... , 8} 4 . Second,
it is tested whether the permutation generated before satisfies the safeness constraints. By
G&T, there is no search space pruning at all. Constraints are used only to check whether the
complete variable assignment is a solution. That fact makes G&T explore the whole search
space. It performes an exhaustive search, which is very inefficient for more difficult problems
as is shown by the run- time results in chapter 7.

Standard Backtracking Search A program for the 8 queens problem embodying standard
backtracking search is shown in figure 1.2. The improvement compared to the G&T algorithm
is the following: each time a value is assigned to a variable, it is tested whether that value is
consistent with the values of the variables assigned before the current variable. If this is not
the case, backtracking occurs, going back to the most recent choice point and trying another
value there. That way, an obvious failure can be detected before values have been given to all

3We certainly can achieve more sophisticated control mechanisms in PROLOG (Le. forward-checking), but
that will lead to programs neither natura.! nor easy to understand.

4Note, that due to that representation, the constraint which excludes two queens from standing in the same
row is made implicit.

Motivation 4

\. peraute(List, Peralist) succeeds if Peralist is a perautation of List .\
eight_queens([11,12,13,14,15,16,17,18]) :-

peraute([1,2,3,4,5,6,7,8], [11,12,13,14,15,16,17,18]),
safe([11,12,13,14,15,16,17,18]).

safe ([]).
safe ([H I T])

no_attack(H,T),
safe(T) .

no_attack(I, y) '­

no_attack(I, y, 1).

no_attack(l, [],_).
no_attack(l, [HIT], I)

I -\- H + I,
I -\- H - N,
Nl is N + 1,
no_attack(l, T, Nl).

Figure 1.1: G&T Program for the n Queens Problem

variables. Standard backtracking achieves an a posteriori search space pruning, which makes it
essentially superior to generate & test algorithms. However, it has some serious disadvantages,
basically induced by the backtracking mechanism. These will be described in the following.

eight_queens([11, 12, 13, 14, IS, 16,17. 18]) :-
queens_aux([11,12,13,14,15,16,17,18], [], [1,2,3,4,5,6,7,8]).

queens_aux ([], Placed, []).
queens_aux([HITJ, Placed. Value8)

delete(H, Value8. Ne.value8),
no_attack(H, Placed).
queen8_aux(T. [HIPlaced], Ne.value8).

\. no_attack / 2 and no_attack / 3 are the saae as in the GtT prograa! .\

Figure 1.2: Standard Backtracking Program for the n Queens Problem

Backtracking Backtracking [CM81J has the advantage of being a simple search strategy
which can be easily implemented. Unfortunately, backtracking-directed control mechanisms
suffer from a "disease" which can be characterized by the following symptoms:

• Late detection of failures.

• Continuous rediscovery of identical partial solutions.

• Unintelligent selection of choice points, i.e. the true culprit of a failure is often detected
very late, involving a lot of redundant work beforehand.

• Useless node generations in the search tree.

• Recovering instead of avoiding of failure. Backtracking starts only after a failure has
occured.

Motivation 5

From the computational point of view, backtracking is known to be of exponential complexity
in the worst case. Thus, many interesting problems cannot be solved within a reasonable time
using standard backtracking search.

1.1.3 Remedies

Starting from Kowalski's [Kow79] famous equation

algorithm = logic + control,

we can summarize that the shortcomings of today's general logic programming PROLOG sys­
tems arise within the control area. That is a very serious problem, since huge search spaces
are typical for many AI problems. Handling these search spaces efficiently, however, can only
be done if a sophisticated control mechanism is available which avoids unnecessary, exhaustive
search. That is why there have been intensive search efforts aimed at improving the control
mechanisms of PROLOG. An important branch of research in that area was e.g. coroutining for
PROLOG, which basically allows G&T programs to perform standard backtracking search (see
section 6.3.1). Another interesting aspect was finding intelligent backtracking mechanisms in
order to optimize choice point selection [SS77, Bru78, Bru8l]. The main criticism about using
coroutining mechanisms is that coroutined PROLOG does not remedy the negative symptoms
induced by standard backtracking search. Although it is true that intelligent backtracking can
basically improve the efficiency of standard backtracking, it mainly recovers its shortcomings,
thus only remedies the symptoms, but not the disease. In my opinion, it would be better to
avoid failure a priori, whenever that can be done.
Thus, from the perspective of logic programming, an active a priori reduction of the search
space is desirable. That means not to wait until a failure has occured and react to it, but to
avoid producing failures by eliminating inconsistent variable values.
For this purpose, consistency techniques such as forward-checking or looking-ahead are good
options. They not only guarantee the consistency between the current variable assignments
with assignments made before, but also use information about the currently known variable
values (or value sets) in order to eliminate inconsistent values from the domains of variables
that have not been instantiated yet.
The paradigm of constraint logic programming (CLP) [JL87] embodies this idea in an out­
standing manner. Its principles will be introduced in chapter 2.
In this work, I will present the design and the implementation of a CLP-like control mecha­
nism, which allows to make use of uses forward-checking in order to solve efficiently constraint
problems in logic programming. This will offer a way to overcome the above mentioned short­
comings of logic programming languages w.r.t. to control.

1.2 Constraint Solving Problems

A lot of interesting problems can be regarded as instances of constraint solving problems
(CSPs). Such problems are e.g. graph colouring, graph isomorphism, scene and edge labeling,
logical puzzles or boolean satisfiability [van89a]. Many real-world problems such as scheduling
or warehouse-location problems can be transformed according to one of these representation
classes. In the following, I would like to point out what logic programming has to offer with
respect to solving CSPs, and how logic programming can benefit from methods used for solving
CSPs.

Motivation 6

What makes logic programming especially well-suited for stating constraint problems, are the
relational form it provides, and its nondeterminism.

• Relational form: since constraints are nothing but relations between objects symbol­
ized as variables, they can be formulated naturally and conveniently in logic programs.

• Nondeterminism liberates the programmer from doing explicit tree search and allows
declarative formulation of problems.

Therefore, logic programming seems appropriate for stating constraints, and so for stating
e.g. discrete combinatorical problems. Unfortunately, standard logic programming does not
support efficient methods for solving CSPs. Therefore, the logic programming scheme should
be extended by more efficient control mechanisms, as they exist for constraint solving.

Constraint Solving Techniques Constraint solving is a well-understood problem solving
method which has been subject to intensive research. There are several standard algorithms
for constraint solving, e.g.

• Generate & Test.

• Standard Backtracking.

• Forward-Checking.

• Looking-Ahead.

• Specialized methods for solving linear equations and disequations, such as the Gaussian
and Simplex methods.

As we have seen, G&T and standard backtracking are naturally integrated into logic pro­
gramming. From the point of view of constraint solving, it is interesting to integrate the
more efficient techniques such as forward-checking and looking-ahead into an extended logic
programming scheme. Whereas specialized constraint solving techniques are not taken into
consideration in FIDO, a complete integration of forward-checking is realized. This is de­
scribed in chapter 6.2.3. Looking-ahead is implemented only in an exemplary way and in a
modified form (see section 6.2.4). The theoretical foundations of these techniques are presented
in chapter 3.

1.3 Overview

In the following, the overall structure of this work will be outlined.

Chapter 2: Constraint Logic Programming In chapter 2, the overall framework of
constraint logic programming is presented. The first part of the chapter contains an outline
of the principles of CLP. In the second part, some important systems are described in short.
Emphasis is laid on the comparison of the capabilities of these systems to what FIDO is
supposed to perform.

Motivation 7

Chapter 3: The Theoretical Framework In this chapter, the theoretical foundations
concerning the integration of finite domains and consistency techniques into logic programming
are summarized and the fundamental definitions are given.

Chapter 4: The Role of FIDO·II within the FIDO Lab Here, the location of this
work within the FIDO project is described. The different subprojects of FIDO are described
and preliminary results are reported.

Chapter 5: A Domain Concept for FIDO-II In this chapter, a domain concept for
logic programming is presented. After describing domain concepts in a more general way,
the concrete implementation in FIDO-I1 is presented. A further paragraph deals with some
problems caused by the domain variable representation in FIDO-I1.

Chapter 6: The Integration of Control Here, the realization of the second major issue of
this work is outlined, which is the integration of advanced control strategies in PROLOG. First,
the notion of constraints in FIDO-I1 is introduced. Second, I present the implementation of the
important consistency techniques by SEPIA delay declarations. Third, the heart of FIDO-II,
the preprocessor performing the horizontal source-to-source transformation is explained. The
chapter ends with some remarks on a programming methodology in FIDO-II.

Chapter 7: Applications Chapter 6 demonstrates the scope of FIDO-I1 on several exam­
plary applications taken from different problem classes such as logical puzzles, graph colouring
problems and scheduling. The improvement in efficiency, which is partially drastic compared
to using standard logic control mechanisms is shown by some computational results. The
performance is also compared to some other CLP systems revealing the limitations of the
approach.

Chapter 8: Summary and Outlook In the final chapter, the main results of the work
are summarized. Some problems and limitations are shown, and an outlook is given as regards
further research efforts within FIDO.

Chapter 2

Constraint Logic Programming

2.1 The Principles of CLP

The drawbacks of logic programming outlined in chapter 1 have led to intensive research efforts
aimed at improving the control facilities of logic programming languages. One approach, to
which increasing attention has been paid over the past few years, is contraint logic programming
(CLP). The main idea of CLP is to combine the strong points of logic programming, which
are its declarativity, its simple and clear semantics based on a well-understood mathematical
model and its nondeterminism, with the efficiency of constraint solving techniques such as
forward-checking and looking-ahead. Thus, it becomes possible to formulate a large class of
combinatorical problems in a natural and elegant way and to solve them efficiently. The crucial
point is that the use of consistency techniques provides the ability of pruning the search space
in an active, a priori manner. Values that are known to be inconsistent with the current
variable states can be excluded from further consideration.
In the following, I would like to point out what actually has to be done in order to bring about
the combination between logic programming and constraint solving that characterizes CLP.

2.1.1 The CLP Scheme

The notion of constraint logic programming has been coined by [JLM86, JL87]. It was designed
to generalize the semantics of the logic programming scheme w.r.t. a particular equational
theory. Thus, the CLP scheme CLP(T) was born. Its syntax is a definite clause syntax.
It is remarkable that the underlying theory is left unspecified. By instantiating it with a special
equational theoryl, instances of the CLP scheme can be created, inducing a class of constraints
relevant for that theory. Examples of instances can be found in section 2.2.
Thus, by constraint logic programming, a class of programming languages is defined whose
instances share the same essential semantic properties. For this purpose, some new semantic
concepts had to be introduced.
Meanwhile, in CLP, the original equational theories have been extended by special-purpose
(non-equational) theories.

2.1.2 The Structure of a CLP system

The general structure of a constraint logic programming system reflects its purpose: the com­
bination of logic programming and constraint solving. Figure 2.1 shows the organization of a

I An important requirement for this theory is its unification completeness.

Constraint Logic Programming 9

CLP system. Basically, it consists of two components, an inference machine doing the logic

Figure 2.1: The General Structure of a CLP System

part, and an incremental constraint solver, which can be considered as a decision procedure for
a class of constraints. The two modules communicate by an interface. The inference machine
recognizes constraints and passes them to the constraint solver. The latter one incremen­
tally creates a constraint net and tries to solve it, reporting the results back to the inference
machine2 •

2.1.3 Finite Domain Consistency TechniQues

In the approach underlying my work, techniques for solving constraints over finite domains are
to be examined. In the following, some considerations will be made about what is needed to
do this:

Finite Domains: The restriction to finite domains is convenient for us, since it allows an
explicit representation of the set of values an object (symbolized by a variable) can have.
What we need is a domain concept for logic variables which enables us to restrict the domain
of a variable in an active way. In chapter 3, the theoretical foundations of domains in logic
programming are summarized. In chapter 5, its realization in FlDO-II is described.

lIn real systems, this wa.y of job-sharing can be somehow varying, e.g. some simple constraints ca.n be directly
solved by the inference engine.

Constraint Logic Programming 10

Consistency techniques: Here, we have to define the tools to be used in order to achieve
an advanced control, realizing an active a priori use of constraints. These tools will be forward­
checking and looking-ahead:
Forward-checking can be applied in order to restrict the domain of a variable X appearing in
a constraint C, if all other variables of C are ground. Then, C can be regarded as a unary
predicate, and, since constraints must be decidable, the remaining values for X satisfying C
can be computed. Looking-ahead (which is neglected a bit in this work for reasons explained
later on) can be applied to a constraint, even if more than one of its arguments are unbound.
Thus, looking-ahead leads to an earlier restriction of the search space. However, it is far more
expensive than forward-checking.
Formal definitions of the consistency techniques are given in chapter 3, their implementation
in FIDO-II is described in chapter 6.

2.1.4 Properties of eLP

In chapter 1, we have seen that the control strategies supported by PROLOG imply a poor
control behaviour, resulting in search strategies such as generate & test and standard back­
tracking. These mechanisms drastically restrict the applicability of logic programs to complex
real-world problems.
Backtracking, especially, suffers from some pathological maladies. The constraint logic pro­
gramming scheme offers reasonable ways to remedy the above-mentioned shortcomings of logic
programming control:

• Constraints are used in an active manner, positively influencing program control.

• The search space is kept small, since early pruning is done.

• Less choice points are generated. Thus, fixing the real culprits of a failure is a much
easier job than it is in logic programming.

• Since a priori pruning is performed, inconsistencies are detected earlier. Less failures are
produced and unnecessary backtracking is avoided.

• The explicitness of domains allows the use of first-fail heuristics (see section 6.5).

• A large class of problems can be formulated in an elegant and natural way by using
constraints and consistency techniques.

• The semantic background of logic programming can be essentially preserved in CLP. This
has been shown by [JL87, van89a].

2.1.5 Summary

Here, I would like to summarize those aspects of a CLP system which are of special importance
for this work.

1. A domain concept for logic variables is introduced.

2. Consistency techniques are included in the PROLOG computation model.

3. The PROLOG inference engine is coupled with a constraint solver3 .

3 As we will see, in FIDO-II, these two components will be nested.

	D-91-02-001-0005
	D-91-02-002-0006
	D-91-02-003-0007
	D-91-02-004-0008
	D-91-02-008-0009
	D-91-02-009-0010
	D-91-02-010-0011
	D-91-02-011-0012
	D-91-02-012-0014
	D-91-02-013-0015
	D-91-02-014-0016
	D-91-02-015-0017
	D-91-02-016-0019
	D-91-02-017-0020
	D-91-02-018-0021
	D-91-02-019-0022
	D-91-02-020-0023
	D-91-02-020-0076
	D-91-02-021-0024
	D-91-02-022-0025
	D-91-02-022-0077
	D-91-02-023-0026
	D-91-02-024-0027
	D-91-02-025-0028
	D-91-02-026-0029
	D-91-02-027-0030
	D-91-02-028-0031
	D-91-02-029-0032
	D-91-02-030-0035
	D-91-02-031-0036
	D-91-02-032-0039
	D-91-02-033-0040
	D-91-02-034-0041
	D-91-02-035-0042
	D-91-02-036-0043
	D-91-02-036-0078
	D-91-02-037-0044
	D-91-02-038-0045
	D-91-02-039-0046
	D-91-02-040-0047
	D-91-02-041-0048
	D-91-02-042-0049
	D-91-02-043-0050
	D-91-02-044-0051
	D-91-02-045-0052
	D-91-02-046-0053
	D-91-02-047-0054
	D-91-02-048-0055
	D-91-02-049-0056
	D-91-02-050-0057
	D-91-02-051-0058
	D-91-02-052-0059
	D-91-02-053-0060
	D-91-02-054-0061
	D-91-02-055-0062
	D-91-02-056-0067
	D-91-02-057-0068
	D-91-02-058-0069
	D-91-02-059-0070
	D-91-02-060-0071
	D-91-02-061-0072
	D-91-02-062-0073
	D-91-02-063-0074
	D-91-02-064-0082
	D-91-02-065-0083
	D-91-02-066-0085
	D-91-02-067-0087
	D-91-02-068-0089
	D-91-02-069-0090
	D-91-02-070-0096
	D-91-02-071-0097
	D-91-02-072-0098
	D-91-02-073-0099
	D-91-02-074-0100
	D-91-02-075-0101
	D-91-02-076-0102
	D-91-02-077-0103
	D-91-02-078-0104
	D-91-02-079-0105
	D-91-02-080-0107
	D-91-02-08-0075
	D-91-02-081-0108
	D-91-02-082-0109
	D-91-02-083-0110
	D-91-02-084-0111
	D-91-02-085-0112
	D-91-02-086-0113
	D-91-02-087-0114
	D-91-02-088-0080
	D-91-02-088-0117
	D-91-02-089-0118
	D-91-02-090-0079
	D-91-02-090-0120
	D-91-02-091-0121
	D-91-02-092-0002
	D-91-02-093-0003
	D-91-02-094-0004
	D-91-02-095-0005
	D-91-02-096-0007
	D-91-02-097-0008
	D-91-02-098-0009
	D-91-02-099-0010
	D-91-02-100-0011
	D-91-02-101-0012
	D-91-02-102-0013
	D-91-02-103-0014
	D-91-02-104-0015
	D-91-02-105-0016
	D-91-02-106-0017
	D-91-02-107-0018
	D-91-02-108-0019
	D-91-02-109-0020
	D-91-02-110-0022
	D-91-02-111-0023
	D-91-02-112-0024
	D-91-02-113-0025
	D-91-02-114-0027
	D-91-02-115-0028
	D-91-02-116-0029
	D-91-02-117-0030
	D-91-02-118-0031
	D-91-02-119-0032
	D-91-02-120-0033
	D-91-02-121-0034
	D-91-02-122-0035
	D-91-02-123-0036
	D-91-02-124-0037
	D-91-02-125-0038
	D-91-02-126-0040
	D-91-02-127-0041
	D-91-02-128-0042
	D-91-02-129-0043
	D-91-02-130-0044
	D-91-02-131-0045
	D-91-02-132-0046
	D-91-02-500-0081

