
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Document
D-92-27

Integrating Bottom-up and Top-down
Reasoning in COLAB

Martin Harm, Knut Hinkelmann, Thomas Labisch

September 1992

Deutsches Forschungszentrum fOr KOnstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fUr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Integrating Bottom-up and Top-down Reasoning in COLAB

Martin Harm, Knut Hinkelmann, Thomas Labisch

DFKI-D-92-27

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ IlW-8902 C4).

© Deutsches Forschungszentrum fOr Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all aplicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr Kunstliche Intelligenz.

Integrating Bottom-up and Top-down Reasoning in COLAB

Martin Harm
Knut Hinkelmann
Thomas Labisch

DFKI GmbH, Postfach 2080, D-6750 Kaiserslautern
e-mail: {harm,hinkelma,labisch }@dfki.uni-kLde

Contents

1 The Knowledge Compilation Laboratory COLAB 1

2 Rule System Overview 3

3 The COLAB Toplevel 5

4 Set-oriented bottom-up Reasoning 7

4.1 Semi-Naive Bottom-Up Reasoning 8

4.1.1 The Semi-Naive Algorithm 9

4.1.2 The Differential Function 10

4.1.3 Rule and Fact Indexing 12

4.2 Magic Set Transformation 13

4.2.1 Adornment Step 14

4.2.2 Generation Step 15

4.2.3 Modification Step 16

4.2.4 Fact Derivation 16

4.3 Rule Compilation ... 18

5 Tuple-oriented bottom-up Reasoning 19

5.1 Transformation of Rules 20

5.2 Predefined Control Strategies of Forward Reasoning 21

5.3 Retaining Derived Facts . . 23

5.4 Compilation into the RFM 25

5.4.1 Forward Code Area 25

5.4.2 Retain Stack 27

6 Conclusion 28

A Commands for the Rule Component of COLAB 29

Abstract

The knowledge compilation laboratory COLAB integrates decla.rative knowledge representa­
tion forma.lisms, providing source-to-source and source-to-code compilers of va.rious knowl­
edge types. Its architecture sepa.rates taxonomical and assertional knowledge. The assertional
component consists of a constraint system and a rule system, which supports bottom-up and
top-down reasoning of Horn clauses. Two approaches for forward reasoning have been im­
plemented. The first set-oriented approach uses a fixpoint computation. It allows top-down
verification of selected premises. Goal-directed bottom-up reasoning is achieved by a magic­
set transformation of the rules with respect to a goal. The second tuple-oriented approach
reasons forward to derive the consequences of an explicitly given set of facts. This is achieved
by a transformation of the rules to top-down executable Horn clauses. The paper gives an
overview of the various forwa.rd reasoning approaches, their compilation into an abstract
machine and their integration into the COLAB shell.

Chapter 1

The Knowledge Compilation
Laboratory CoLab

Declarative representations describe logically what the knowledge expresses without at the
same time prescribing imperatively how it is to be used. Such a high descriptive level not
only permits several uses of the same knowledge base but also enhances the readability,
maintenance and parallelization of knowledge bases. Moreover, the orientation towards logic
(usually, variations of first-order predicate calculus) permits a clear semantics for represen­
tation languages and eases the tough business of knowledge base verification/validation.

As a step in that direction the prototypical knowledge Compilation LABoratory COLAB [Bo­
ley et ai., 1991a] has been implemented on the basis of Lisp. It supports a hybrid integration
of four principal representation languages, declaratively developing and extending well-known
AI formalisms: a terminological language TAXON, a constraint system CONTAX and a logic­
programming formalism, which itself is divided into a bottom-up and a top-down reasoning
component with functions, FORWARD and RELFU N, respectively. A hybrid knowledge base
can contain items from all subsystems. Tags indicate the type of a knowledge item and
determine how it has to be processed. Dynamic cooperation of the subsystems is organized
through access primitives providing an interface to the respective reasoning services.

COLAB'S architecture corresponds to terminological systems like KRYPToN[Brachman et ai.,
1983] separating taxonomic and affirmative (often called assertional) knowledge. Taxonomic
knowledge is represented by intensional concept definitions which are automatically arranged
in a subsumption hierarchy. Thereby inconsistencies of concept definitions can be detected.
This contrasts to conventional frame-based and object-oriented expert system shells where
the organization of the class hierarchy is in the responsibility of the programmer. The struc­
ture of the concept hierarchy as well as the 'content' of the concept definitions is available
via access primitives to the other subformalisms. This permits more compact formulations of
affirmative knowledge by referring to concepts and leads to more efficient processing if rea­
soning about individuals can be lifted to reasoning on the concept level. The affirmative part
provides efficient reasoning with different kinds of relational or functional knowledge using
tailored inference engines. For affirmative knowledge represented as net-like, non-recursive
relations, called constraint nets, COLAB supplies constraint propagation as an efficient rea­
soning mechanism. Relational knowledge in the form of Horn rules is processed by forward
and backward chaining. In a single query some rules can be used for top-down problem de­
composition and others for bottom-up deduction. The backward component is also suited for

1

expressing (non-deterministic) functional dependencies.

Besides interpreting these languages for interactive knowledge base development, COLAB

provides source-to-code translators for compiling knowledge bases down to efficient abstract
machines. Also, COLAB provides source-to-source transformers between various knowledge
types, for both user convenience and machine efficiency. For example, bidirectional rules
can be split into rules specially tailored for forward and backward chaining, which then can
be made more efficient in a further transformation step by additional control instructions.
The magic-set transformation presented in Section 4.2 is suitable for goal-directed bottom-up
reasoning. Section 5 will describe a transformation of rules to Horn clauses, which simulate
forward chaining in a backward chaining system.

The following sections will describe the forward-chaining logic programming subsystem of
COLAB. For a more detailed description of COLAB and its other subsystems see [Boley et
al., 199b].

2

Chapter 2

Rule System Overview

Reasoning in rule-based and logic-programming systems can be preformed using two principal
directions: while backward inference applies the rules in a top-down fashion, forward inference
begins with the facts in the knowledge base, reasoning bottom-up to derive new facts. One
major idea of declarative programming is the separation of logic from control shifting the
responsibility for control to the execution mechanism. The programmer should care as little
as possible about it. For a rule system this means, in the ideal case, that the application
direction of a rule need not be visible to the programmer. Deduction rules in general have
the following form:

PI 1\ P2 1\ ... 1\ Pm -+ C I 1\ C 2 1\ ... 1\ C n

The preconditions PI."" Pm on the left-hand side of the rule are literals which must be
satisfied for the rule to fire. The conclusions C I , ... , Cn of such a deduction rule are facts
which are true if the premises are satisfied - as opposed to production rules (cp. ops5 [Forgy,
19811) where the conclusion consists of operations modifying the working memory.

The rule component of COLAB is a declarative logic programming system with Horn clauses
as its basic representation scheme. Horn clauses are clauses with at most one positive literal,
which is equivalent to restricting the syntax of rules to having only one conclusion:

-'PI V -'P2 V ... V -'Pm V C is equivalent to PI 1\ P2 1\ ... 1\ Pm -+ C

In the context of the paper the term Hom rules will be used synonymously for those non-unit
Horn clauses that are used as deduction rules.

It should be noted that the restriction to Horn rules does not too much limit the expressive
power of the rule language, compared to the general form (see above). For instance, a trans­
formation of deduction rules with disjunctions of premises (PROLOG'S ";") and conjunctions
of pairwise independent conclusions to Horn clauses is straightforward and can be performed
by a precompiler [Hinkelmann, 1991al.

Knowledge items in the COLAB system are indicated by tags. The rule system can handle
three types of rules:

rl: Bidirectional rules are indicated by the tag rl and can be used in both forward and
backward direction

up: Rules indicated by the tag up can be used only bottom-up.

3

hn: Rules with the tag hn can be applied only in backward direction. The tag hn is an
abbreviation for "hornisch" clauses and is took over from the RELFUN component.

The COLAS system is implemented in Lisp. Each knowledge item is represented as a list.
Tags indicating the type of the knowledge item are the first element of this list. The second
element is the conclusion of the rule and the remaining expressions are the rule's premises:

«tag> <Conclusion> <Premise! > ... <Premisem »

The syntax of the literals are similar to those in RELFUN. The literals of the rule are again
Lisp lists: the predicate or operator name is the first element, the remaining elements are the
arguments. Predicate names and constants are Lisp atoms, (universally quantified) variables
are Lisp atoms starting with the underscore character" _". Lists are special terms with the
functor "tup". For example the PRoLoG-like rule

shoulder(s(X,Y),[ground(X),flank(Y)]) :- cylinder(X), ring(Y)

is written in COLAS as:

(hn (shoulder (5 _x -y) (tup (ground _x) (flank -y»)
(cylinder _x)

(ring _y»

As a special feature, the bidirectional and the bottom-up rules may have more the one
conclusion. The syntax of these rules is:

({rl I up} «conc1> ... <concn >)<- <premise1> ... <premiseN»

The intended semantics of this rule is the same as the semantics of the following sequence of
Horn rules:

({rll up} <conC1> <premise1> ... <premiseN»

({rll up} <concN> <premise!> ... <premiseN»

The specific variety of a forward reasoning system depends on the facts which initially trigger
a rule and on how the rule premises are proved. The rule system of COLAS offers two indepen­
dent evaluation procedures: The first set-oriented approach (Section 4) interprets bottom-up
rules using a fixpoint computation starting from all the facts in the program. The premises
are verified by look-up in the fact base. A Magic-Set transformation is implemented for
goal-directed reasoning. It is tightly coupled with RELFU N to achieve bidirectional reasoning.
The second, tuple-oriented scheme (Section 5) reasons forward to derive the consequences of
an explicitly given set of initial facts. Bottom-up and bidirectional rules are transformed to
RELFUN Horn clauses, which are finally compiled into an extended RFM-System (a Warren
Abstract Machine for logic programs [Warren, 1983], which is capable to handle functional
clauses of RELFU N, [Boley, 1990)) with a special forward-code area. The premises of triggered
rules are tested by the backward reasoning proof procedure of RELFU N.

4

Chapter 3

The CoLab Toplevel

The COLAB system is implemented in Common Lisp. After loading COLAB you can enter
the COLAB toplevel by calling the function

> (colab)

The prompt changes to colab> and you can type a number of commands, which are displayed
when typing a question mark "?". From the COLAB toplevel you can switch to a subsystem
by typing the name of the subsystem you want to use. Thus, for instance, typing

colab> forward

switches to the rule system called FORWARD. Each subshell offers specific commands - besides
the general COLAB commands. All the commands described in this paper are commands of
the FORWARD-subsystem toplevel. There are five classes of commands to

• insert and remove knowledge items

• display knowledge items

• compile and transform knowledge items

• evaluate expressions

• call help and debugging facilities

To insert knowledge items into the system there is either the command consult, which loads
a knowledge base from a file, or the commands az and aO, which assert single knowledge
items. Similarly, the command destroy deletes a whole knowledge base, while rx retracts
siJlgle knowledge items. The command replace is equivalent to a sequence of destroy and
consult.

To display knowledge items on the screen there is the family of listing commands, which
can also be spezialized to list particular (kinds of) knowledge items.

As already described in Section 2, besides the rules for bottom-up and top-down reasoning
there are also so-called bidirectional rules, which can be evaluated in both directions. But
since the top-down and the bottom-up reasoning system obtain their input from different

5

internal knowledge bases, the command split-rules has to be executed to split bidirectional
rl-rules into their specialized bottom-up (up) and top-down (hn) versions.

Expressions can be evaluated either by interpretation or by an abstract machine after compi­
lation. To select the evaluation approach the commands fv-inter and fv-emul are available.
To easily recognize, which mode is effective, the prompt of the FORWARD subsystem changes
between fvi> for interpreter and fve> for emulator mode. The spy command displays de­
tailed information of the reasoning process while evaluating an expression. This debugging
facility can be switched off by typing the command nospy.

Further commands for compiling knowledge items and evaluating expressions depend on the
particular evaluation strategy. The various strategies and their compilation are the subject of
the remaining sections of this paper. For a detailed description of the whole set of commands
see Appendix A.

To access the commands of the forward system without COLAB use the function fv. The
calling convention for this function is:

(fv ' <command> ' <argl> ' <arg2> ... ' <argn »

This function works as if the cammand has been called directly in COLAB. The command
rf-query, however, which calls the RELFuNsubsystem for the tuple-oriented forward reason­
ing approach (see Section 5) is treated specially, because no additional solutions can be asked
for by explicit backtracking. Therefore the solutions are calculated all at once. The result
is a list containing all the return values of the last argument. To fetch the values of some
variables use as the last argument (tup <varl> ... <varn >). The backquotes which are
used in the RELFUN subsystem have to be expanded into (inst ...) (see also the RELFUN
manual [Boley et ai., 1991b]).

6

Chapter 4

Set-oriented ' bottom-up Reasoning

We will present two approaches for set-oriented bottom-up reasoning. The first one is the
Semi-Naive evaluation strategy. It computes the least fixpoint of the knowledge items of a
database. This evaluation is started by typing the command

fwi> eval

The derived facts are displayed together with the entire facts by the command

fwi> list-facts

But in some cases we only want to get a subset of these derived facts which satifies a certain
condition, like a query. In this case there is the Magic-set transformation, which rewrites the
rules of the database to avoid the application of rules and facts which are independent from
the query. The Magic-set transformation is initiated by the command

fwi> magic-transform <goal! > ... <goaln >

The arguments <goal!> ... <goaln > are interpreted as a conjunction of goals. If we then
apply the Semi-Naive bottom-up strategy on this new database with the command

fwi> magic-query <goal!> ... <goaln >

only facts, which are necessary to prove the query, are derived. It is possible to transform
and evaluate a rule system for a particular query by using the command

fwi> magic-eval <goal!> ... <goaln >

The following subsections will give an introduction into the Semi-Naive evaluation and the
Magic-set transformation as they are implemented in COLAB.

7

4.1 Semi-Naive Bottom-Up Reasoning

At the beginning of this section we will give the reader a brief overview about the used
denotations, similar to [Bancilhon and Ramakrishnan, 1986]. For a detailed description of
the Semi-Naive bottom-up component see [Labisch, 1991].

A database is an unordered set of Horn clauses. Given a database we can partition it into
a set of ground unit clauses (facts) and the set of the remaining clauses (rules). The set of
facts is called the extensional database and the set of rules is called the intensional database.

Different to [Bancilhon and Ra.makrishnan, 1986] we have the following definitions. A recur­
sive predicate is a predicate, appearing both as a premise and as a head in the rules of the
intensional database, but not necessarily in the same rule. For a recursive rule at least one
predicate of a premise is a recursive predicate. If the body of a rule contains exactly one
recursive predicate, we call this rule linear recursive. In a nonrecursive rule no predicate of a
premise occurs as a head of any other rule of the database. The Rredicates of these premises
are called nonrecursive predicates.

Builtin predicates are also called evaluable predicates. The is-predicate is a special kind of
builtin predicate. Its second argument is evaluated and unified with the first argument. If the
first argument is a free variable its value will be the result of evaluating the second argument.
Then a rule is safe, if all variables appearing in the head also appear in a nonevaluable premise
of the body, or as the first argument of an is-term, whose second argument has not to be a
variable. In COLAS a Horn rule is bottom-up evaluable, if it is safe.

Example: Let the intensional database contain only the following rules:

(rl (cylinder _name _length _radius)
(truncone _name _length _radius _radius»

(rl (rcone _name _length _radius)
(truncone _name _length _radius 0»

(rl (rot-part _name)
(rspear _name _length _radius»

(rl (rspear (c _cyl _cone) _length _radius)
(cylinder _cyl _length1 _radius)
(connected _cyl _cone)
(rcone _cone _length2 _radius)
(is _length (+ _length1 _length2»)

(rl (price _x _y)
(rot-part _x _y)
(> _y 0»

Then there are the following notations:

• cylinder, rcone, rot-part and rspear are recursive predicates.

• truncone and connected are nonrecursive predicates, also called base predicates.

• The third and fourth rule are recursive, the third one is even linear recursive.

8

• The ,first an.dsecond . rule are nonrecursive.

• All but the last rule are safe, because the variable _y in the fifth rule does not appear
as argument of a premise.

There are also premise predicates in the body of a rule, which are neither defined in the
FORWARD databases nor are they builtins, but appear in one of the RELFUN databases. This
indicates, that we cannot prove them bottom-up. But a backward test can be made by a call
to the RELFUN-Interpreter. We call this kind of predicates backward predicates. Examples are
the member- and append-predicates. In our implementation the builtins are proved together
with the backward-predicates in the top-down direction.

4.1.1 The Semi-Naive Algorithm

Semi-Naive evaluation is an improvement of Naive evaluation. Both are iterative, compiled
bottom-up strategies. Their application range is the set of bottom-up evaluable rules.

The Naive evaluation computes all direct successors of the existing facts. These conclusions
(derivations) are added to the fact database. In the next step again all successors of the
extended fact database are evaluated.

For Naive evaluation in the first iteration step all rules whose premises are satisfied by facts
Fo of the extensional database are evaluated. The conclusions Go of these applied rules are
added to the set of the derived facts. So we get a new set of facts Fl = Fo U Co. For all
further iteration steps only those rule are applied that are satisfied by facts of the set Fi and
deliver conclusions Ci. Now we get Fi+l = Fi U Gi, and the evaluation stops, if Fi+1 = Fj.
It is obvious that all facts computed in iteration steps 1, ... , n - 1, are computed again in
iteration step n. The Semi-Naive strategy tries to avoid such multiple computations.

The idea of Semi-Naive evaluation is to compute only the new derived facts for each iteration
step. Therefore for each step n only rules with at least one premise satisfied by a new derived
fact are applied. This method is described in the algorithm below.

Algorithm: S~mi-Naive Evaluation Let F be the set af all facts, NVF be the list of
new facts derived in the current cycle, and PVF be the list fo all facts derived in the previous
cycle.

1. Start with the initial facts F, set NVF := 0 and PVF := F

2. For every clause, H +- PI, ... , Pm in n for which there is a substitution <7, such that
at least one Pw is in PVF and all Pj<7, j E {1, .. . ,m} \ i, are in F, set NVF :=

NVFU{H<7}

3. If NVF = 0, then stop, else set PVF := NVF \ F, F := F U PDF and NVF := 0
and goto 2

D

In practise we have to differentiate the rules: all rules with at least one recursive predicate
in the body are replaced by new generated rules [Ullman, 1989], such that all the new facts

9

are then derived by one of the differentiated rules. For each premise Gi with a recursive
predicate 9i of a rule

we get a rule

Now the rule only can be applied for new derived facts of 9j. To lead to the differential
function d, let us analyze the bottom-up evaluation of a recursive rule. Let the recursive
predicate P appear in the head of rule

where ~ is a first order formula with atoms (PI, Pl, ... , Pn, q}, q2, ... , qm). The Pj are recursive
predicates and the q, are base predicates, backward predicates or builtins. Let pj(i) the value
of the predicate Pi in the iteration step i, i.e. the set of facts that Pi satisfies. Then in
iteration step i we compute

In this iteration step i for each Pi a set of new tuples denoted by ePi(i) can be derived. Thus,
the value of Pi at the beginning of step i + 1 is Pi(i + 1) = Pi(i) U ePi(i). Then at step i + 1
we evaluate

which, of course, recomputes all the previous derivations because of the monotony of~. The
ideal, however, is to compute only the new facts, i.e. the expression:

6~(PI (i), epI(i), ... , Pn(i), ePn(i), q}, q2, ... ,qm) =

~ ((PI (i) U e PI (i)), ... , (Pn (i) U e Pn (i)), qI, q2, ... , qm) -

~(PI(i), P2(i), ... , Pn(i), q}, q2, ... , qm)

The basic principle of the Semi-Naive method is the computation of the differential d~ of ~
instead of the entire ~ at each step. An exact examination of d~ follows in the next section.

4.1.2 The Differential Function

In this section we will develop a differential function for rules with recursive predicates. At
the beginning we inspect the case with only one recursive predicate P as a premise of a linear
recursive rule. In [Ullman, 1989] a simple rewrite rule for generating d~ is presented:

if ~(p, q) = p(X, Y), q(Y, Z) then d~(p, ep, q) = ep(X, Y), q(Y, Z)

More generally, if ~ is linear recursive, then only the recursive predicate P is replaced by ep.
In the case of nonlinear recursive rules we cannot find such an easy solution. Let P and r be
two recursive predicates and q a base predicate. Then the rewrite rule is:

if ~(p, r, q)
then d~(p,ep,r,er,q)

= p(X,Y),r(Y,Z),q(Z,W)
ep(X, Y), r(Y, Z),q(Z, W)+
p(X, Y), er(Y, Z),q(Z, W)+
ep(X, Y), er(Y, Z),q(Z, W)

10

Note, that this is not an exact differential, because the three terms of the sum are not
necessarily disjoint, but it is a reasonable approximation. It is obvious that the amount of
rules generated by the differential function rapidly increases. For a linear recusive rule only
the recursive premise P is replaced by 6p, so that we get one new rule instead of the original
one. For a rule with two recursive premises three new rules replace the old one and 50 on.
Thus, the increase of generated rules is exponential:

Theorem 4.1.1 For a rule with n recursive premises the number of new rules generated by
the above differential function is 2n - 1.

To avoid an exponential increase, it would be favourable to develop an algorithm managing
with linear increase. Indead this is done in the following. In [Labisch, 1991] the following
inferences were done, that lead us after all to the same result as presented in [Balbin and
Ra.mamohanarao, 1987]. Let us inspect here a bigger example. We have a rule

p: -PI,P2,P3, q

with the recursive premises Pi and a base predicate, backward predicate or builtin q. Accord­
ing to the previous theorem we get seven new rule. We can order them into three blocks:

1 ~P CPI P2 P3 q

2 ~P PI CP2 Pa q
~P CPI CP2 Pa q

3 ~P PI 1'2 CP3 q
~P PI CP2 CP3 q
~P CPI P2 CP3 q
~P CPI CP2 CP3 q

Different columns are marked in every block: These columns do not change inside a block;
they have the value CPi, with i being the number of the block. Those columns inside a block
i with an index j, j < i, contain Cpj as well as Pi I while those columns with a index k, k > i,
only contain Pk and q.

For the columns with an index smaller than the number of the block we need not to distinguish
between pj (all relations of the last step) and Cpj (the new relations of the last step), because
both relations are evaluated for a rule. Therefore we introduce a new relation called ap. This
relation contains just the sum of P and Cpo Note, that we only need the sum and not the
union of Pj and CPj, because Cpj is the symmetrical difference of the new and old relations
of the last step. Therefore Pj and CPj are already disjoint . Rewriting the rules we get

1 ~P CPI P2 Pa,q

2 ~P apl CP2 I 1'3, q

3 ~P api aP2 , CP3 I q

From originally seven rules only three are left. So the exponential increase shrinked to a linear
one. The only restriction is, that the recursive predicates have to stand at the beginning of
the rule's body. For bottom~up evaluation such a reordering of the premises does not affect
computation. As a final result we have

11

Theorem 4.1.2 There exists a differential function that generotes for a rule with n recursive
premises only n new differentiated rules.

4.1.3 Rule and Fact Indexing

For a faster access to the facts and rules of the database we will introduce an indexing scheme.
With this method it is possible to find a rule which is triggered by a certain fact, without
sequentialy searching the database.

The facts of the extensional database are collected by their predicate names. For every
predicate of the extensional database there exists a list of tuples called the relation of the
predicate.

Rules are indexed by premise predicates. Thereby we have to distinguish between recursive
and nonrecursive rules. Nonrecursive rules are triggered by nonrecursive premises, while re­
cursive rules can only be triggered by recursive premises. Nonrecqrsive rules with a common
nonevaluable body predicate are collected into one list. This indexing only applies to nonre­
cursive premises. For recursive rules only recursive premises are considered. Also, the number
of recursive premises (called level of recursivity) is needed for the differentiation of recursive
rules. In nonrecursive rules this value is always zero, while in recursive rules it is greater than
zero. For both types we need a criterium to decide whether two rules with different triggers
are actually the same rule. If it has once been applied with the first trigger, it may not be
evaluated anymore in this step. Therefore the same rule with multiple triggers has a unique
number, in order to be able to decide on a former application of it.

The structure of such a rule after indexing, which is important for the differentiation, looks
like the following description:

(Pattern (Conclusion Body Level) Number)

where the single components are described below.

Pattern:
Conclusion:
Body:

Level:
Number:

For example the rule

the trigger of the rule
the head of the rule
the remaining body of the rule without the trigger in the order of

1. remaining recursive premises

2. remaining nonrecursive premises

3. builtins and backward-predicates

the number of all recursive premises of the rule
the unique number of the rule

(rl (rspear (c _cyl _cone) _length _radius)
(cylinder _cyl _length1 _radius)
(connected _cyl _cone)
(rcone _cone _length2 _radius)
(is _length (+ _length1 _length2»)

12

with condusion.rspear,_.recursivepredicates cylinder and rcone, nonrecursive predicate
connected and builtin is is first stored as a list under the property rules of the symbol
cylinder

Pattern:
Conclusion:
Body:

Level:
Number:

(cylinder _cyl Jength1 Jadius)
(rspear (c _cyl _cone) Jength Jadius)
«rcone _cone Jength2 Jadius)
(connected _cyl _cone)
(is Jength (+ Jength1 Jength2)))

2
1

and as a second list, now under the property rules of the symbol rcone

Pattern:
Conclusion:
Body:

Level:
Number:

(rcone _cone Jength2 Jadius)
(rspear (c _cyl _cone) Jength Jadius)
«cylinder _cyl Jength1 Jadius)
(connected _cyl _cone)
(is Jength (+ Jength1 Jength2)))

2
1

The variable-binding which we get by matching a fact against the pattern is propagated to
the premises of the rule, so that every premise has to be proved only once. It should be noted
that all the premises and the conclusion are stored only once. Multiple occurences are shared
by links.

The last optimization treats conclusions which are ground (containing no variables). We only
have to evaluate them once. As soon as the conclusion is derived, all occurences of the rule
can be found by the unique number and then be deleted, because this rule cannot deliver new
facts anymore.

4.2 Magic Set Transformation

Magic Sets optimize the bottom-up evaluation by simulating the sideway passing of bindings
for goal-directed reasoning ala PROLOG [Beeri and Ramakrishnan, 1991]. Depending on the
goals new rules are introduced. This cuts down the number of potentially relevant facts and
rules. The application domain is the set of bottom-up evaluable rules. In our framework we
choose the generalized version of Magic Sets, that can also handle rules with more than one
recursive predicate without a big loss of efficiency. In the original transformation there was
no improvement over Semi-Naive evaluation in this case. The transformation of generalized
Magic Sets can be applied to any program with at least one given query.

This method can be broken down into three essential steps. In the next section we describe
the adornment step, in which the relationship between a bound argument in the rule head
and the bindings in the rule body is made explicit. The generation step, in which the adorned
program is used to generate the magic rules that simulate the top-down evaluation process,
follows afterwards. At last we have a modification step, in which the adorned rules are
modified by the magic rules generated in the previous step.

13

This is similar to the description in [Naqvi and Tsur, 1989], but we do not use the original
Magic Sets method but the generalized version of it, so that there are some essential differences
in the following.

4.2.1 Adornment Step

An adornment a is denoted by a string that denotes the binding status (free or bound) of
each of the arguments of the predicate, e.g. (sg-bf ~ _y) indicates that the first argument
is bound and the second one is free. A distinguished argument is recursively defined by the
following rules:

1. it is bound by an adornment a or

2. it is a constant or

3. it appears in a base predicate occurence that has a distinguished argument.

4. it appears in a derived predicate occurence that has a distinguished argument.

With the last point we leave the original method of Magic Sets. In the generalized version we
are passing information through derived predicates as well. This kind of information passing
is well known as sideaway information passing (sip) [Beeri and Ramakrishnan, 1991]. Thus,
the sources of bindings are

1. the constants and

2. the bindings in the head of the rule

These bindings are propagated through the base and derived predicates. If we consider each
distinguished argument to be bound, this defines an adornment for each derived literal on the
right. The adorned rule is obtained by replacing each derived literal by its adorned version.

Example: Let the database be:

(rl (cylinder _name _length _radius)
(truncone _name _length _radius _radius»

(rl (ring _name _radius1 _radius2)
(truncone _name 0 _radius1 _radius2»

(rl (rcone _name _length _radius)
(truncone _name _length _radius 0»

(rl (lcone _name _length _radius)
(truncone _name _length 0 _radius»

(rl (I shoulder (c _ring _cyl) _length _tradius _bradius)
(ring _ring _tradius _bradius)
(connected _ring _cyl)
(cylinder _cyl _length _bradius)
(> _tradius _bradius»

(rl (rspear (c _cyl _cone) _length _radius)
(connected _cyl _cone)

14

... __ (cylinder __ ___ cy.1 _len,gth1._radius)
.. (rcone _cone _length2 _radius)

(is _length (+ _length1 _length2»)

and the goal

(rspear _a _b 2)

Then there is the adorned goal (query) (rspear-ffb _a _b 2) and an adorned database:

(rl (cylinder-ffb _name _length _radius)
(truncone _name _length _radius _radius»

(rl (rcone-bfb _name _length _radius)
(truncone _name _length _radius 0»

(rl (rspear-ffb (c _cyl _cone) _length _radius)
(cylinder-ffb _cyl _length1 _radius)
(connected _cyl _cone)
(rcone-bfb _cone _length2 _radius)
(is _length (+ _length1 _length2»)

Note that no adornment for the ring, lshoulder and lcone predicates are generated. This
indicates that they are not needed for evaluation and therefore do not appear in the adorned
database. This cuts down the number of relevant rules.

4.2.2 Generation Step

In the second step of the process the adorned program is used for the generation of the magic
rules. For each of the adorned predicates of the body of an adorned rule do the following:

1. eliminate all other following predicates in the body

2. replace the predicate name p-a with magic. p-a, where a is the adornment of the
predicate, and erase the non distinguished variables

3. eliminate all predicates in the remaining body that do not contain distinguished vari­
ables occuring also in the derived magic predicate above

4. replace the rule head h-a with magic. h-a, deleting all nondistinguished variables in
the transformed head

5. take the derived predicate as the head and the transformed head as the first literal of
the rule's body, giving the generated magic rule

If there is no adorned predicate in the body of a rule, no magic rule will be generated. An
improvement is, not going always back to the head and collecting all involved premises but
only collecting the really needed premises in order to generate a safe magic rule.

15

Eaxmple (continued): In our example we get no magic rules for the first two nonrecursive
rules, but one magic rule for each of the two adorned predicates of the third rule's body. The
second generated magic rule is an improved (minimal) magic rule, in which the redundant
transformed head literal is deleted.

(rl (magic.cylinder-ffb _radius)
(magic.rspear-ffb _radius»

(rl (magic.rcone-bfb _cone _radius)
(magic.cylinder-ffb _radius)
(connected _cyl _cone»

4.2.3 Modification Step

Finally an adorned rule is modified as follows: For each adorned rule with head (h-a X),
where the X denotes the list of distinguished variables, append (magic .h-a X) to the rule's
body. In our example this is

(rl (cylinder-ffb _name _length _radius)
(magic.cylinder-ffb _radius)
(truncone _name _length _radius _radius»

(rl (rcone-bfb _name _length _radius)
(magic.rcone-bfb _name _radius)
(truncone _name _length _radius 0»

(rl (rspear-ffb (c _cyl _cone) _length _radius)
(magic.rspear-ffb _radius)
(cylinder-ffb _cyl _lengthl _radius)
(connected _cyl _cone)
(rcone-bfb _cone _length2 _radius)
(is _length (+ _lengthl _length2»)

We also create a seed for the magic predicates, which is a fact, obtained from the query. The
seed provides an initial value for the magic predicate corresponding to the query predicate.
Here it is:

(hn (magic.rspear-ffb 2»

4.2.4 Fact Derivation

After transformation we have a complete magic database:

(hn (magic.rspear-ffb 2»
(rl (magic.cylinder-ffb _radius)

(magic.rspear-ffb _radius»
(rl (magic . rcone-bfb _cone _radius)

(magic.cylinder-ffb _radius)
(connected _cyl _cone»

16

(rl (cylinder-ffb _name _length _radius)
(magic.cylinder-ffb _radius)
(truncone _name _length _radius _radius»

(rl (rcone-bfb _name _length _radius)
(magic.rcone-bfb _name _radius)
(truncone _name _length _radius 0»

(rl (rspear-ffb (c _cyl _cone) _length _radius)
(magic.rspear-ffb _radius)
(cylinder-ffb _cyl _lengthl _radius)
(connected _cyl _cone)
(rcone-bfb _cone _length2 _radius)
(is _length (+ _lengthl _length2»)

All predicates that are not adorned or builtin predicates are non):ecursive predicates. These
predicates are collected in a special fact database:

I a4
I

la3
1 ______________ _

3 I
I

2 I
I

I a2 \

1 I I
II

la5 \al
\
\

0------------------------------------
1 2 345 678

(hn (truncone al 1 2 0»
(hn (truncone a2 4 2 2»
(hn (truncone a3 0 3 2»
(hn (truncone a4 1 3 3»
(hn (truncone a5 2 0 3»
(hn (connected a5 a4»
(hn (connected a4 a3»
(hn (connected a3 a2»
(hn (connected a2 al»

During bottom-up evaluation of our magic database with these facts we have at the beginning,
in a Oth step, only the magic seed:

o (magic.rspear-ffb 2)

In a first step we can derive only:

1 (magic.cylinder-ffb 2)

Two facts are derived in a second step:

17

2 (magie.reone-bfb a1 2)
(cylinder-ffb a2 S 2)

In the third step we get one fact:

3 (reone-bfb a1 1 2)

Also in the fourth step:

4 (rspear-ffb (e a2 a1) S 2)

After the fifth step, when no new facts are derived, the bottom-up evalution stops with five
derived facts in this case.

Otherwise, applying only Semi-Naive bottom-up evaluation without Magic Sets transforma­
toin we would get:

(ring a3)
(cylinder a2)
(cylinder a4)
(leone as 2 3)
(rcone a1 1 2)
(rspear (c a2 a1) S 2)
(lspear (c as a4) 3 3)
(lshoulder (e a3 a2) 4 3 2)

Here the number of new facts is eight and thereby greater than the number of facts derived
by applying Magic Sets transformation, although the used knowledge base is very small. The
gap between these two evaluation methods increases with the number of rules and facts of
the database.

4.3 Rule Compilation

An Abstract Machine for efficient execution of this set-oriented forward reasoning strategy
has been implemented (FAM - Forward Abstract Machine [Falter, 1992]). It is developed
from the RETE pattern match algorithm with some special features. In particular, it can
access the RELFU N 's relational-functional machine to evaluate top-down premises.

Executing the command

fvi> rule-compile

will compile all bottom-up rules and magic rules into the FAM. After switching to emulator
mode, evaluation of the rules either by applying the eval or the magic-query command will
force the execution to be performed by the FAM.

18

Chapter 5

Tuple-oriented bottom-up
Reasoning

The tuple-oriented forward reasoning approach is implemented by a horizontal transformation
of the Horn rules to backward reasoning Horn clauses of RELFUN, thus performing forward
reasoning in a backward reasoning system [Hinkelmann, 1991a]. While the set-oriented for­
ward reasoning approach described in Section 4.1 computes all the consequences of the whole
knowledge base by a fixpoint operation, the objective of the tuple-oriented approach pre­
sented in this chapter is to compute only the derivations of an explicitly given set of facts.
Another difference to the set-oriented approach of Section 4.1 is that the premises of the rules
are proved by SLD-resolution instead of a simple look-up in the fact base.

The calling convention for forward evaluation is

(<straLname> { </ act> I <lisLof _facts> } <inf erenCLpattern>)

with

<straLname> the name of the control strategy. The predefined strategies are described in
Section 5.2

<fact> a passive RELFU N-structure, representing the initial fact

<lisLof_facts> a structure of the form (tup <factI> ... <factm »

<inference_pattern> is either a variable, or a passive RELFUN-structure

As the result the consequences of the initial facts which are unifiable with <inference_pattern>
are returned. This means that there is a derivation path from at least one of the initial facts
to the result facts.

There is a command rf-query to evaluate queries in the RELFUN subsystem, which do have
forward chaining expressions as (sub)goals. For example:

fvi> rf-query {bf-enum '(parent john peter) ~es)

will enumerate all the consequences of the fact (parent john peter), which are then bound
to ~es.

19

5.1 Transformation of Rules

The horizontal compilation presented in this chapter takes a set of Horn rules P = {Cl , ... , Cn}
and produces a set of RELFUN clauses FP = {C~, ... , C:n}, which are the corresponding
clauses of P for forward reasoning (see below). This transformation is equivalent to the par­
tial evaluation of a forward reasoning meta-interpreter as described in [Hinkelmann, 1991b].
To activate this horizontal compilation there is a command

fvi> fv-transform

Every rule

({rll up} A BI ... Bm)

is translated into a sequence of forward RELFUN clauses following this pattern:

(hn (forvard Bl A) B 2 •• • Bm (retain 'A»
(hn (forvard B2 A) Bl B3 ... Bm (retain 'A»

(hn (forvard Bm A) B1 ••• Bm- l (retain 'A)

The clauses have the following intended semantics:

"If the actual fact is unifiable with Bi with most general unifier 0', then prove the
remaining premises B 10', ... ,Bi-lO',Bi+10', ... ,BmO' . If they are satisfied giving
substitution T ~ 0', retain the conclusion AT for further reasoning."

A goal (forvard Bi A) succeeds, if A is a one-step derivation of Bi. Thus, applying a forward
clause corresponds to a one-step forward execution of the original Horn rule, triggered by Bi.
retain is a built-in operator asserting the derived fact if it has not already been derived in
a previous step.

Because forward evaluation of a Horn clause can be triggered by a fact unifying any premise of
the clause, for every premise B1 , ... , Bm of the original clause a forward clause is generated.
This is an important difference to Yamamoto's and Tanaka's translation for production rules
[Yamamoto and Tanaka, 1986], where only goal-directed forward reasoning is supported.

The command

fvi> list-forvard

shows all these forward clauses on the screen. An optional argument is a pattern which unifies
the head of the listed clause (see Section A).

The transformation of rules with more than one conclusion into Horn rules is called "horni­
fication". The tuple-oriented bottom-up reasoning handles the multiple conclusions directly,
so no hornification of these rules is necessary.
A clause

({rll up} AI . . . An<-BI.· .Bm)

is transformed to the sequence of forward clauses

20

(hn (forward BI _conc) B2 .. . Bm (member _conc (tup AI ... An)) (retain _conc))

(hn (forward Bm _conc) B I ... Bm- I (member _conc (tup AI ... An)) (retain _conc»

The advantage of this transformation is that multiple proves of the premises are avoided. To
use the bidirectional rules as backward rules, hornification is necessary.

Example: The given rules

(rl (p ..x) (q ..x -y) (- (rl..x -.2:) (r2 -.2: _y»

are horizontally transformed into the forward clauses

(hn (forward (rl ..x -.2:) _conc)
(r2 -.2: _y)
(member _conc (tup (p ..x) (q ..x -y»)
(retain _conc»

(hn (forward (r2 -.2: -y) _conc)
(rl ..x -.2:)
(member _conc (tup (p ..x) (q ..x -y»)
(retain _conc»

and split ted into the hornified RELFUN clauses

(hn (p..x -y)

(rl ..x -.2:)
(r2 -.2: -y)

(hn (q..x-.2:)
(rl ..x -.2:)
(r2 -.2: -y)

5.2 Predefined Control Strategies of Forward Reasoning

There is an explicit control strategy necessary to derive all the possible deductions of one
or more facts which calls the corresponding forward rules and administer the results. To
keep the solutions consistent in a given knowledge base, the triggers used within the forward
reasoning must be correct in this knowledge base. So the strategy has to prove first the
triggers and then to continue with all the proved facts.

Each forward clause of Section 5.1 corresponds to the application of one rule in forward
direction. To control the application of these clauses two basic control strategies for the
forward-chaining system are already defined:

depth-first reasoning: the deduction continues with the most recently derived fact, for
which there are applicable rules.

breadth-first reasoning: this algorithm first derives all the possible one-step consequences
of each fact, before it triggers rules with a new one.

Both strategies have been implemented to enumerate their solutions and to return the
derivations all at once. The strategy (bf-enum <fact> <inference_pattern» enumer­
ates all the consequences of <fact> using breadth-first search, unifying the result with
<inference_pattern>. The strategie df-enum is similar, but uses depth-first search.

21

The strategies df-all and bf-all are functions, which have as values the list of all con­
sequences of the initial facts,which are unifiable with <inference_pattern> as vaJues. The
<inference_pattern> remains unbound.

Example: depth-first stra.tegy, enumerating the consequences of a. list of facts

(ft (df-enum (tup _Fact I _Rest) _Inference)
(fe-initialize)
(satisfied '(tup _Fact I _Rest»
(df-elist '(tup _Fact I _Rest) _Inference»

(ft (df-enum _x -y)
(reset-retain)
unknown)

(ft (df-elist (tup _Fact I _Rest) _Inference)
(df-one _Fact _Inference»

(ft (df-elist (tup _First I _Rest) _Inference)
(df-elist _Rest _Inference»

(ft (df-one _Fact _Inference)
(forward _Fact _Conclusion)
(df-one-more _Conclusion _Inference»

(ft (df-one-more _Conclusion _Conclusion) _Conclusion)
(ft (df-one-more _Conclusion _Next)

(df-one _Conclusion _Next»

(hn (satisfied (tup»)
(hn (satisfied (tup _Fact I _Rest»

_Fact
(satisfied _Rest»

(hn (nou _x _x) ! unknown)
(hn (nou _x -y»

Example: Given the rules

(rl (ancestor _x _Y) (parent _x _y»
(rl (ancestor _x _y) (parent _x -2) (ancestor -2 _y»

and the following list of facts

(hn (parent sl s2»
(hn (parent s2 s3»
(hn (parent s3 s4»
(hn (parent s4 s5»
(hn (parent s5 s6»

22

asking the query

fvi> rf-query (df-enum (parent s3 -X) -Result)

will compute all the ancestors of s3:

-Result = (ancestor s3 s4)
fvi> more

_Result = (ancestor s3 s5)
fvi> more

-Result = (ancestor s3 s6)
fvi> more

unknown

Because the strategies are specified in the high-level RELFU N language, it is possible for the
user of the system to define his own reasoning strategies. With the command

fvi> replace-strategies <filename>

the predefined strategies are destroyed and the clauses in file <filename> are consulted
into the strategy database. The actually loaded strategies are displayed when typing the
command

fvi> list-strategies

5.3 Retaining Derived Facts

Derived facts in horizontally compiled forward rules could be retained by assertion [Hinkel­
mann, 1991a]. Such assertions are rather inefficient because program code itself is altered
dynamically. Information about derived facts can be held more compactly at machine level.

To record the derived facts there is an extra database organized as a stack wich is called retain
stack. Some predefined predicates and built-in operators are responsible for the insertion and
access of derived facts. The operator retain which occurs as last premise in every forward
clause (see Section 5.1) has to push the new derived facts on the retain stack. To accept a
derived fact, it must be ensured that it is not subsumed by any structure already existing
on the stack. This subsumption test is done by a special machine [Oltzen, 1992]. If this
subsumption test fails, the derived fact is pushed onto the retain stack.

The retain predicate is defined as:

• (retain _fact) : The functionality is described above. The basic implementation of
this operator is:

(ft (retain -Iact)
(not-r-subsumed _fact)
(push-fact-retain _fact)
-Iact)

23

The predicates not-r-subsumed and push-fact-retain are built-in operators:

• (not-r-subsumed ...fact): Tests whether ...fact is subsumed by any element of the
retain stack or not. Subsumption is a "one-side" unHication:

"Let (PI .. ') and (1)2 ...) be terms then (PI ...) subsumes (P2 ...) if there
exists"a substitution (7 such that (PI ...)(7 = (P2 .. .). "

• (push-fact-retain ...fact): Copies the whole structure ...fact on top of the retain
stack so that there are no references into the heap.

To retrieve facts from the retain stack there are two possibilities: retrieving the most recently
derived fact (called actual node) and retrieving a fact as a trigger for a forward clause. Facts
that have not been selected as a trigger for a forward clause are called open nodes.

• (get-actual-node): This built-in function returns the most recently derived fact from
the retain stack.

• (actual-node _inference): The access procedure to the most recently derived fact.
(hn (actual-node _inference)

(is _inference (get-actual-node»)

The following primitives to access open nodes are specialized for breadth-first reasoning. Since
depth-first reasoning corresponds to the underlying RELFUN system, no extra administration
of open nodes is necessary.

• (get-open-node): Returns the first open node. An open node is an entry on the retain
stack which has not been used to trigger a forward rule.

• (next-open-node): For breadth-first reasoning this function simply sets the open node
to the next entry on the retain stack following the last open node. This instruction
fails if there is none. For more sophisticated search strategies like best-first search this
function has to be redefined.

• (not-open-node-at-end): Test whether there are any open nodes left on the retain
stack.

• (open-node _inference): The access procedure to the last open node. The basic
version maps simply to:

(hn (open-node -Fact)
(next-open-node)
(is -Fact (get-open-node»)

(hn (open-node -Fact)
(not-open-node-at-end)
(open-node -Fact»

The following two operators are neccessary to handle recursive calls of forward chaining.

• (fe-initialize): Initializes a new retain stack.

• (reset-retain): Removes the last retain stack.

24

-5 .. 4 .- .Compilationinto .the RFM

After source-to-source transformation of Horn rules P into a forward clause program FP,
the clauses of FP can be compiled into RFM code by using the command

fvi> fv-compile

In emulator mode a query

fve> rf-query <query>

will be evaluated in the RFM.

The RFM (Relational Functional Machine), a variation of Warren's Abstract Machine (WAM)
for RELFUN, is the target for compiling RELFUN code. A direct compilation of FP would be
rather inefficient, because all clauses of FP have the same predkate forward; this means
that there is one large procedure with with costly search for an applicable rule.

To overcome this deficiency and to handle the retain instruction as described above (Section
5.3) some modifications of the RFM are suggested: first, the code area is split into the usual
backward code area and a new special forward code area for forvard clauses; second, a new
stack for derived facts, called retain stack, is introduced (see Fig. 5_1).

5.4.1 Forward Code Area

The clauses obtained by horizontal transformation have one fundamental drawback: they are
represented with a single predicate forward_ After compilation there is one large procedure
for all the forward clauses. Access is just supported by indexing on the first argument's
functor. A special code area for forward clauses can make this forward predicate implicit
and clauses with the same trigger can be grouped together into one procedure_ The principle
of this special forward code can be explained as follows. A forward clause

(hn (forward Bl A) B2 ... Bm) (retain 'A))

is applied, if the actual fact is unifiable with B1 • Then the remaining premises B2 ... Bm are
tested. If they are satisfied the conclusion A is retained. This can be achieved in principle
by the following clause:

(hn Bl B2 _ . . Bm (retain 'A))

The head Bl is the trigger of the forward clause. Please note that this clause is not applied
to prove Bl but to derive A, if Bl is already known. The advantage of this approach is that
the single forward procedure is decomposed into one procedure for each trigger predicate. By
applying the indexing techniques of the RFM [Sintek and Stein, 1992], the applicable clauses
can be found efficiently.

The access to the forward code area is done with the RFM builtin forvard which has the same
semantics as the interpreted forward clause so that no difference between the interpreted and
compiled program occurs.

25

.........

.........

:: :':;!F>
·:·::: c ::·.
:::: c..:::

:: l <:) ,

. >:~ :::

::::: ::::2 :: .. : ..
:::.: ·:0 :·:·

I
........
. ~ "
:::~::::
........ r.·.·.·
·······0······
:::::~::::: , ...

Figure 5.1: Forward Reasoning Architecture of the Tuple-oriented Approach

26

·5.4.2 Retain Stack

As described in Section 5.3 derived clauses are recorded in a special retain stack. This sta.ck
is also necessary in the RFM to avoid assertions into the code area. The built-in operators
to manage the retain sta.ck are also available at RFM level.

The values on the retain sta.ck are more persist ant than values on the sta.ck or the heap. The
retain sta.ck will not be changed by ba.cktra.cking, because the environment does not contain
any information about the retain sta.ck. But, while values on sta.ck and heap are destroyed
by ba.cktra.cking, no reference from the retain sta.ck to any other memory cell is permitted.
This is why a derived fa.ct is copied onto the retain sta.ck.

27

Chapter 6

Conclusion

Two approaches for integrating bottom-up and top-down reasoning of logic programs have
been presented. The first, set-oriented approach views the bottom-up reasoning component
as primary and provides access to the top-down system for testing premises of rules. The
second, tuple-oriented approach implements bottom-up reasoning by rule transformation and
evaluating the resulting clauses in a top-down manner. The rule transformation can be
achieved from partial evaluation of a meta-interpreter as presented in [Hinkelmann, 1992].
For both approaches interpretative and compilative implementations are available.

The decision whether rules should be applied bottom-up or top-down can be made either
on rule level or on strategy level. A rule-level decision means that for each rule it has to
be determined before the reasoning process starts, whether it should be applied bottom-up
or top-down. On the other hand, the application direction of a rule can also depend on the
strategy. For instance, the tuple-oriented bottom-up approach applies the same rules also
top-down to test premises of triggered rules. A further goal of the project is to automatize
this decision. As a first step several criteria have been set up and cost estimates have been
developed [Hintze, 1992].

The rule component is part of the declarative knowledge representation system COLAB. The
relational-functional language RELFUN proves the top-down queries of the rule component
and is the basis run-time system for the tuple-oriented bottom-up reasoning approach. This
interface also gives access to the functional part of RELFU N. The terminological reasoning
system TAXON allows to establish taxonomies of strutured terms, which can be accessed
during rule application. This integration has been prototypically realized for the tuple­
oriented approach. Currently it is going to be extended also for the set-oriented bottom-up
reasoning. A combination between terminological and rule- based reasoning for abstraction
processes is described in [Hanschke and Hinkelmann, 1992]. Possible interactions between
the constraint system CONTAX and the rule system still have to be explored.

28

Appendix A

Commands for the Rule
Component of COLAB

The bottom-up reasoning component is included in the COLAB system. When COLAB has
been loaded into Lisp, calling the function (colab) starts the COLAB toplevel shell, which
is organized as a read-eval-print loop. A number of commands are available, which are listed
by typing a question mark. A special group of commands are the COLAB system commands
contax, forward, relfun, and taxon, which switch to the corresponding component. Each
such subshell offers - besides the general COLAB commands - specific commands for querying,
listing and managing knowledge items. In the following the commands of the bottom-up
subshell forward will be described.

az:

Format: az <clause>

Options: <clause> a COLAB clause

Effect: The rule <clause> will be inserted at the end of one of the (possibly empty) FORWARD
databases *rule-database* (containing the bidirectional rules with tag rl and the forward
rules with tag up) or *fact-base* (containing only facts) where the tags fact and attrterm
are substituted by the tag hn in order to provide this database for the RELFUN-Interpeter.

see also: consult, destroy, replace

aO:

Format: aO <clause>

Options: <clause> a CO LAB-clause

Effect: The rule <clause> will be inserted in front of one of the (possibly empty) FORWARD
databases *rule-database* (cointaining the bidirectional rules with tag rl and the forward
rules with tag up) or *fact-base* (containing only facts) where the tags fact and attrterm
are substituted by the tag hn in order to provide this database for the RELFUN-Interpeter.

see also: consult, destroy, replace

compile-strategies:

Format: compile-strategies

Options: none

29

Effect: The actual loaded strategies are vertically compiled.

see also: consult-strategies, replace-strategies, fw-compile

consult:

Format: consult <filename>

Options: <filename> a stringified or normal pathname

Effect: Global consulting function. Loading a hybrid database from file <filename> at the
end of the (possibly empty) databases in COLAB depending on the tags of the knowledge
items of the file. In FORWARD there are *rule-database* and *factbase*. If no extension
is provided, CO LAB extends the filename with ". rf II •

see also: consult-facts, consult-rules, consult-strategies, destroy, replace

consult-facts:

Format: consult-facts <filename>

Options: <filename> a stringified or normal pathname

Effect: Loading all the facts of a hybrid database from file <filename> at the end of the
(possibly empty) database *factbase*. If no extension is provided, COLAB extends the
filename with" .rf".

see also: consult, destroy, replace

consult-rules:

Format: consult-rules <filename>

Options: <filename> a stringified or normal pathname

Effect: Loading all the rl- and up- rules of a hybrid database from file <filename> at the end
of the (possibly empty) database *rule-database*. If no extension is provided, COLAB
extends the filename with" . rf".

see also: consult, destroy, replace

consult-strategies:

Format: consult-strategies <filename>

Options: <filename> a stringified or normal pathname

Effect: Loading strategies for tuple-oriented forward chaining trom tile <tilename> at the end
of the database Hc-strategies*. If no extension is provided, COLAB extends the filename
with II .rf".

see also: consult, destroy, replace

destroy:

Format: destroy

Options: none

Effect: Global destroying function. Destroy all existing COLAB databases.

see also: consult, destroy-facts, destroy-magic, destroy-rules, replace

destroy-facts:

30

Format: _destroy-::facts

Options: none

Effect: Destroy the databases *factbase* and *derived-factbase*.

see also: consult, destroy, replace

destroy-magic:

Format: destroy-magic

Options: none

Effect: Destroy the magic databases *magic-rules* and *magic-seeds*.

see also: destroy, magic-transform

destroy-rules:

Format: destroy-rules

Options: none

Effect: Destroy all databases with rules in FORWARD. Their names are *rule-database*,
up-rulebase, *hn-rulebase*, *forvard-rules* and *magic-rules*.

see also: consult, destroy, replace

eval:

Format: eval

Options: none

Effect: Semi-naive bottom-up evaluation is performed on the databases *up-rulebase* and
factbase. The derived facts are added to the database *derived-factbase*.

see also: magic-eval, magic-query

fw-compile:

Format: fv-compile <op>

Options: <op> an operator

Effect : If an operator is given only the matching rules of *rule-database* are regarded oth­
erwise all rules of *rule-database* are splitted. The resulting up-rules will be horizontally
and vertically compiled into the extended WAM. The resulting horn-rules and the *factbase*
are vertically compiled.

see also: fw-compile-facts, fw-compile-rules,fw-transform, hornify-up.

fw-compile-facts:

Format: fv-compile-facts <op>

Options: <op> an operator

Effect: If an operator is given only the matching facts of *factbase* are regarded otherwise
all facts of *factbase* are vertically compiled into the extended WAM.

see also: fw-compile, fw-compile-rules

fw-compile-rules:

31

Format: fv-compile-rules <op>

Options: <op> an operator

Effect: IT an operator is given only the matching rules of *rule-database* are regarded
otherwise all rules of *rule-database* are splitted. The resulting up-rules will be horizon­
tally and vertically compiled into the extended WAM. The resulting horn-rules are vertically
compiled.

see also: fw-compile, fw-compile-facts,fw-transform, hornify.

fw-emul:

Format: fv-emul

Options: none

Effect: With this command you are entering the emulator mode of FORWARD and the prompt
changes to fve> .

see also: fw-inter

fw-inter:

Format: fv-inter

Options: none

Effect: With this command you are leaving the emulator mode of FORWARD, you return to
the interpreter mode and the prompt changes to fvi>.

see also: fw-emul

fw-transform:

Format: fv-transform

Options: none.

Effect: All rules of the database *up-rulebase* will be horizontally compiled into the
database *forvard-rules*.

see also: fw-compile, fw-compile-facts, fw-compile-rules

hornify-up:

Format: hornify-up

Options: none.

Effect: All rules of *up-rulebase* will be hornified. Hornified means that a rule with more
than one conclusion is splitted into several rules, each with orie conclusion.

see also: fw-compile, hornify

I:

Format: 1
1 <op>
1 <pat>

Options: <op> an operator,
<pat> a head pattern

32

Effect: Shows the knowledge items of the databases *rule-database*, *factbase* and
derived-factbase. If no argument is given, the whole databases will be printed on the
terminal. If an operator <op> is given, only those knowledge items in the databases will be
printed which use this operator as their procedure name. If a pattern is given, only those
knowledge items in the databases will be printed whose head matches the pattern <pat>.

see also: list-facts, list-forward, list-magic, list-rules, list-strategies, consult

list-facts:

Format: list-facts
list-facts <op>
list-facts <pat>

Options: <op> an operator,
<pat> a head pattern

Effect: Shows the knowledge items of the databases *factbase* and *derived-factbase*.
If no argument is given, both databases will be printed on the terminal. If an operator <op>
is given, only those knowledge items in the database will be printed which use this operator
as their procedure name. If a pattern is given, only those knowledge items in the database
will be printed whose head matches the pattern <pat>.

see also: consult, consult-facts, listing

list-forward:

Format: list-forward
list-forward <pat>

Options: <pat> a head pattern

Effect: Shows the knowledge items of the database *forward-rules*. If no argument is
given, the whole database will be printed on the terminal. If a pattern is given, only those
knowledge items in the database will be printed whose head matches the pattern <pat>.

see also: consult, fw-transform

listing:

Format: listing
listing <op>
listing <pat>

Options: <op> an operator,
<pat> a head pattern

Effect: Global listing function. Shows the knowledge items of all databases in COLAB. If no
argument is given, the all databases will be printed on the terminal. If an operator <op> is
given, only those knowledge items in the databases will be printed which use this operator
as their procedure name. If a pattern is given, only those knowledge items in the databases
will be printed whose head matches the pattern <pat>.

see also: I, list-facts, list-forward, list-magic, list-rules, list-strategies, consult

list-magic:

33

Format: list-magic
list-magic <op>
list-magic <pat>

Options: <op> an operator,
<pat> a head pattern

Effect: Shows the knowledge items of the databases *magic-rules* and *magic-seeds*. If
no argument is given, both databases will be printed on the terminal. If an operator <op>
is given, only those knowledge items in the databases will be printed which use this operator
as their procedure name. If a pattern is given, only those knowledge items in the databases
will be printed whose head matches the pattern <pat>.

see also: consult, listing, magic-eval, magic-transform

list-rules:

Format: list-rules
list-rules <op>
list-rules <pat>

Options: <op> an operator,
<pat> a head pattern

Effect: Shows the knowledge items ot the database *rule-database*. 11 no argument is
given, the whole database will be printed on the terminal. If an operator <op> is given,
only those knowledge items in the database will be printed which use this operator as their
procedure name. If a pattern is given, only those knowledge items in the database will be
printed whose head matches the pattern <pat>.

see also: consult, consult-rules, listing

list-strategies:

Format: list-strategies
list-strategies <op>
list-strategies <pat>

Options: <op> an operator,
<pat> a head pattern

Effect: Shows the knowledge items of the databases *fc-strategies*. If no argument is
given, the whole database will be printed on the terminal. If an operator <op> is given,
only those knowledge items in the database will be printed which use this operator as their
procedure name. If a pattern is given, only those knowledge items in the database will be
printed whose head matches the pattern <pat>.

see also: consult-strategies

magic-eval:

Format: magic-eval <goall > ... <goaln >

Options: <goal! > ... <goaln > the initial seeds for magic sets evaluation.

Effect: First magic sets transformation and then semi-naive evaluation is performed wrt to
the given goals. This command is an abbreviation of the sequence of commands magic­
transform, magic-query, where the arguments of both commands are the same.

34

see also.: eval,magic..,query, magic..,.transform

magic-q uery:

Format: magic-query <goal1 > ... <goaln >

Options: <goal1 > ... <goaln > the initial seeds for magic sets evaluation.

Effect: The databases *magic-rules*, *factbase* and *derived-factbase* will be evalu­
ated wrt the given goals using the semi-naive bottom-up strategy. If no goals are given, the
database *magic-seeds* (all seeds of transformation) is taken for evaluation.

see also: eval, magic-eval, magic-transform

magic-transform:

Format: magic-transform <goal1 > ... <goaln>

Options: < goal 1 > ... <goaln > the initial seeds for magic sets transformation.

Effect: The database *up-rulebase* will be used to generate new rules wrt to the given goals
applying the Magic Sets Transformation method. The new rules are stored in the database
magic-rules and the transformed seeds in *magic-seeds*.

see also: eval, magic-eval, magic-query

nospy:

Format: nospy

Options: none

Effect: With this FORWARD command you leave the trace mode.

see also: spy

replace:

Format: replace <filename>

Options: <filename> a stringified or normal pathname

Effect: Global replacing function. Replacing the (possibly empty) databases in COLAB de­
pending on the tags of the knowledge items of the file with the contents of the file <filename>.
In FORWARD there are the *rule-database* and *factbase*. If no extension is provided,
COLAB extends the filename with ". rf".

see also: consult, destroy, replace-facts, replace-rules, replace-strategies

replace-facts:

Format: replace-facts <filename>

Options: <filename> a stringified or normal pathname

Effect: Replacing the (possibly empty) database *factbase* with the facts of the file
<filename> and destroying the database *derived-factbase*. If no extension is provided,
COLAB extends the filename with ". rf".

see also: consult, destroy, replace

replace-rules:

Format: replace-rules <filename>

35

Options: <filename> a stringified or normal pathname

Effect: Replacing the (possibly empty) database *rule-database* in COLAB depending on
the tags of the rules with the rl- and up-rules of a hybrid database of file <filename>. IT no
extension is provided, COLAB extends the filename with" . rf".

see also: consult, destroy, replace

replace-strategies:

Format: replace-strategies <filename>

Options: <filename> a stringified or normal pathname

Effect: Replacing the database *fc-strategies* with the strategies for forward chaining
from file <filename>. If no argument is given the default strategies are consulted. IT no
extension is provided, COLAB extends the filename with" . rf".

see also: consult, destroy, replace

rf-query:

Format: rf-query <query>

Options: <query> a query to RELFUN

Effect: The specified <query> is evaluated either by thr RELFUN-interpreter or emulator
depending on the operating mode in FORWARD. In interpreter mode you are able to retrieve
alternative solutions by typing the command more directly when the answer of the query is
displayed, except the system indicates that there are no more solutions by showing the item
unknown.

see also: magic-query

rule-compile:

Format: rule-compile

Options: none

Effect: Compiles the magic rules (*magic-rules*,*magic-seeds*), the bottom-up rules
(*up-rulbase*) and the facts (*factbase*) into the FAM.

see also: eval, magic-query, magic-eval, magic-transform,

rx:

Format: rx <clause>

Options: <clause> a COLAB knowledge item

Effect: The <clause> will be removed from *rule-database*, *up-rulebase*, *hn-rulebase*
or *factbase* depending on its tag.

see also: consult, destroy, replace

split-rules:

Format: split-rules

Options: none

36

.. Effect:All up~clauses of. the .. database *.rule-database,.. are copie.d to the ~up-rulebase*,
and allrl-clauses are copied to the database *hn-rulebase* by substituting the rl-tags to
hn-tags in order to provide this database for the RELFUN-Interpreter.

see also: hornify-up

spy:

Format: spy

Options: none

Effect: This activates the tracer of the FORWARD system. Mter entering the trace mode for
semi-naive bottom-up evaluation first the indexing of the facts and rules is shown. Then a.ll
new derived facts are shown at each step until no more facts can be derived. For Magic Sets
transformation also the adorned database, the magic rules and magic seeds are shown to the
user.

see also: eval, magic-eval, magic-query, magic-transform, nospy

37

Bibliography

[Balbin and Ramamohanarao, 1987] I. Balbin and K. Ramamohanarao. A Generalization of
the Differential Approach to Recursive Query Evaluation. Journal of Logic Programming,
4:259-262,1987.

[Bancilhon and Ramakrishnan, 1986] Francois Bancilhon and Raghu Ramakrishnan. An
Amateur's Introduction to Recursive Query Processing Strategies. In Proceedings of the
ACM SIGMOD Conference, pages 16-52. ACM, 1986.

[Beeri and Ramakrishnan, 1991] Catriel Beeri and Raghu Ramakrishnan. On the Power of
Magic. Journal of Logic Programming, 10:255-299, October 1991.

[Boley et al., 1991a] H. Boley, P. Hanschke, K. Hinkelmann, and M. Meyer. COLAB: A
Hybrid Knowledge Compilation Laboratory. Presented at 3rd International Workshop
on Data, Expert Knowledge and Decisions: Using Knowledge to Transform Data into
Information for Decision Support, Reisensburg, Germany, September 1991.

[Boley et al., 1991b] Harold Boley, Klaus Elsbernd, Hans-Guenther Hein, and Thomas
Krause. RFM Manual: Compiling RELFUN into the Relational/Functional Machine.
Document D-91-03, DFKI GmbH, 1991.

[Boley, 1990] Harold Boley. A Relational/Functional Language and Its Compilation into the
WAM. SEKI Report SR-90-05, Universitat Kaiserslautern, Fachbereich Informatik, April
1990.

[Brachman et al., 1983] Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque.
KRYPTON: A functional approach to knowledge representation. IEEE Computer,
16(10):63-73, October 1983.

[Falter, 1992] Christian Falter. Compilation von Vorwartsregeln in einer hybriden Exper­
tensystem-Shell. Diplomarbeit, Universitat Kaiserslautern, FB Informatik, Postfach 3049,
D-6750 Kaiserslautern, 1992. In German.

[Forgy, 1981] Charles 1. Forgy. OPSS User's Manual. Carnegie-Mellon University, Depart­
ment of Computer Science, Pittsburgh, Pennsylvania 15213, 1981.

[Hanschke and Hinkelmann, 1992] Philipp Hanschke and Knut Hinkelmann. Combining Ter­
minological and Rule-based Reasoning for Abstraction Processes. In GWAI-92. Springer­
Verlag, April 1992.

[Hinkelmann, 1991a] Knut Hinkelmann. Bidirectional Reasoning of Horn Clause Programs:
Transformation and Compilation. DFKI Technical Memo TM-91-02, DFKI GmbH, Jan­
uary 1991.

38

, (Hinkelmann, 1991b] Knut Hinkelmann._ Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter. Technical Report Technical Memo TM-91-13,
DFKI GmbH, October 1991.

[Hinkehnann, 1992] Knut Hinkelmann. Forward Logic Evaluation: Compiling a Partially
Evaluated Meta-interpreter into the WAM. In Proceedings German Workshop on Artificial
Intelligence, GWAI-92. Springer-Verlag, September 1992.

[Hintze, 1992] Helge Hintze. Kriterien fUr die effiziente Interpretation deklarativer Regelsys­
teme. Diplomarbeit, Universitat Kaiserslautern, FB Informatik, Postfach 3049, D-6750
Kaiserslautern, 1992. In German.

[Labisch, 1991] Thomas Labisch. Implementierung einer semi-naiven Strategie fUr bottom­
up Evaluierung von RELFUN Hornklauseln. Projektarbeit, Universitat Kaiserslautern, FB
Informatik, Juni 1991.

[Naqvi and Tsur, 1989] Shamim Naqvi and Shalom Tsur. A Logical Language for Data and
Knowledge Bases. Computer Science Press, Rockville, Maryland USA, 1989.

[Oltzen, 1992] Thomas Oltzen. Term Subsumtion in der WAM. Projektarbeit, 1992. In
German.

[Sintek and Stein, 1992] Michael Sintek and Werner Stein. A Generalized Intelligent Indexing
Method. Workshop "Sprachen fur KI-Anwendungen, Konzepte - Methoden - Implemen­
tierungen" in Bad Honnef, May 1992.

[Ullman, 1989] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 2. Computer Science Press, Rockville, Maryland USA, 1989.

[Warren, 1983] David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note
309, SRI International, Menlo Park, CA, October 1983.

[Yamamoto and Tanaka, 1986] Akira Yamamoto and Hozumi Tanaka. Translating Produc­
tion Rules into a Forward Reasoning Prolog Program. New Generation Computing, 4:97-
105, 1986.

39

'. :
.; '9. >(

, ~

Deutsches
Forschu ng szentrum
fOr KOnstilche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI V ~ffentlichungen sowie die
aktuelle Liste von allen bisher ersehienenen
Publikationen kOnnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden. wenn nieht anders
gekennzeichnel. kostenlos abgegeben.

DFKI Researcb Reports

RR-91-28
RolfBackofen. Harald Trost. Hans Uszkoreit:
Linking Typed Feature Formalisms and
Tenninological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger. John Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-U. Krieger. J. Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
RolfBackofen. Lutz Euler. Ganther GiJrz:
Towards the Integration of Functions. Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader. Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel. Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

DFKI
-Bibliothek­
PF 2080
D-6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of all
pubJisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-35
Winfried Grat. Wolfgang MaajJ: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-01
Werner Nutt: Unification in Monoidal Theories is
Solving Linear Equations over Semirings
57 pages

RR-92-02
Andreas Dengel. Rainer Bleisinger. Rainer Hoch.
FranJc Hones. Frank Fein. Michael Malburg:
IloDA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR-92-05
Ansgar Bernardi. Christoph Klauck.
Ralf Legleitner. Michael Schulte. Rainer Stark:
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Tooics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

OFKI · Documentf

0-92-02
Wolfgang MaajJ: Constraint-basierte PJazienmg in
multimodalen Dokumenten am Beispiel des Layout­
Managers in WIP
111 Seiten

0-92-03
Wolfgan MaafJ, Thomas SchijJmann, DudJUlg
Soetopo, Winfried Graf: LA YLAB: Ein System zur
automatischen Plazierung von Text-Bild­
Kombinationen in multimodalen Dokumenten
41 Seiten

0-92-04
Judilh Klein. Ludwig DiclanLJnn: DiTo-Datenbank -
Datendolrumentation zu Verbrektion und
Koordination
55 Seiten

0-92-06
Hans Werner Hoper: Systematik zur Beschreibung
von Werkstlicken in der Terminologie der
Featuresprache
392 Seiten

0-92-07
Susanne Biundo. Franz Schmalhofer (Eds.) :
Proceedings of the DFKI Workshop on Planning
65 pages

0-92-08
Jochen Heinsohn. Bernhard Hollunder (Eds.): DFKI
Worlcshop on Taxonomic Reasoning Proceedings
56 pages

0-92-09
Gernod P. wu.fkOtter: Implementierungsmoglich­
keiten der integrativen Wissensaicquisitionsmethode
des ARC-TEC-Projektes
86 Seiten

0-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser fUr attributierte Graph-Grammatiken
87 Seiten

0-92-11
Kerstin Becker: M~lichkeiten der Wissensmodel­
lierung fUr technische Diagnose-Expertensysteme
92 Seiten

0-92-12
Otto Kilhn. Franz Schmalhofer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Plarming: a Picture Gallery (Integrierte
Wissensaicquisition zur Fertigungsplanung ffir
Drehtei1e: eine Bildergalerie)
27 pages

0-92-13
Holger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application­
Independent Software-Analysis
55 pages

0-92-14
Johannes Schwagereit: Integration von Graph­
Grammatiken und Taxonomien zur Reprasentation
von Features in ClM
98 Seiten

D-92-15
DFKI Wissenschaftlich-Technischer Jahresbericht
1991
130 Seiten

0-92-16
Judith Engelkmnp(Hrsg.): Verzeichnis von Soft­
warek:omponenten fUr natiirlichsprachliche Systeme
189 Seiten

0-92-17
Elisabeth Andre. Robin Cohen. Winfried Graf. Bob
Kass. Cecile Paris. Wolfgang Wahlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for II
nominal charge of 25 DM (or 15 US-$).

0-92-18
Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme
109 Seiten

0-92-19
Stefan Dittrich. Rainer Hoch: Automatische.
Deskriptor-basierte Unterstiitzung der Dokwnenl­
analyse zur Fokussierung und Kiassifizierung von
Geschliftsbriefen
107 Seiten

0-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

D-92-2S
Martin Buchheit: Klassische Kommunikations- und
KoordinationsmodeUe
31 Seiten

0-92-26
Enno Tolzmann:
Realisierung eines Wertzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

0-92-27
Martin Harm. Knut Hinkelmann. Thomas Wisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

	D-92-270001
	D-92-270002
	D-92-270003
	D-92-270004
	D-92-270005
	D-92-270006
	D-92-270007
	D-92-270008
	D-92-270009
	D-92-270010
	D-92-270011
	D-92-270012
	D-92-270013
	D-92-270014
	D-92-270015
	D-92-270016
	D-92-270017
	D-92-270018
	D-92-270019
	D-92-270020
	D-92-270021
	D-92-270022
	D-92-270023
	D-92-270024
	D-92-270025
	D-92-270026
	D-92-270027
	D-92-270028
	D-92-270029
	D-92-270030
	D-92-270031
	D-92-270032
	D-92-270033
	D-92-270034
	D-92-270035
	D-92-270036
	D-92-270037
	D-92-270038
	D-92-270039
	D-92-270040
	D-92-270041
	D-92-270042
	D-92-270043
	D-92-270044
	D-92-270045
	D-92-270046
	D-92-270047
	D-92-270048
	D-92-270049
	D-92-270050

