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Incremental Syntactic Generation of 
Natural Language with Tree Adjoining 
Grammars 

Anne Schauder 

Abstract 

This document combines the basic ideas of my master's thesis - which has been developped 
within the WIP project - with new results from my work as a member of WIP, as far as 
they concern the integration and further development of the implemented system. ISGT 
(in German 'Inkrementeller Syntaktischer Gen~rierer natiirlicher Sprache mit TAGs ') 
is a syntactic component for a text generation system and is based on Tree Adjoining 
Grammars. It is lexically guided and consists of two levels of syntactic processing: A 
component that computes the hierarchical structure of the sentence under construction 
(hierarchical leve0 and a component that computes the word position and utters the 
sentence (positional leve0. The central aim of this work has been to design a syntactic 
generator that computes sentences in an incremental fashion . The realization of the 
incremental syntactic generator has been supported by a distributed parallel model that 
is used to speed up the computation of single parts of the sentence. 
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1 Introduction 

1.1 Motivation 

There are several reasons to develop a natural language generation system. Computer 
scientists are interested in improving the user interfaces of their systems by using natural 
language. Even non-specialist users should be able to communicate easily with, e.g., an 
expert system. It is helpful to study human behavior when developping the concepts 
for a natural language processing system. The complex processes of perception, produc­
tion and acquisition of natural language should exactly be described and explained with 
computational means ([Wahlster 82]) and can thereby contribute to research in linguistics, 
psychology and medicine. What is needed is a cross-disciplinary co-operation of computer 
science, linguistics, psychology (psycholinguistics and cognitive psychology) and medicine 
(neurolinguistics) . 

A natural language generation system must solve three tasks: It has to decide what 
to say, i.e., it must plan the contents of an utterance. It has to compute how to say 
it, i.e., it must design the syntactic form of the utterance. Finally, the utterance has 
to be articulated (spoken or written). The system presented in this work is designed to 
primarily solve the second task. The two other levels of natural language generation are 
treated only as far as they concern the definition of the interfaces. 

The module that solves the second task is the so-called syntactic generator. It strongly 
depends on the underlying grammar formalism controling the combination of words into 
sentences. Tree Adjoining Grarrunar (abbreviated TAG) is a promising formalism that 
seems to ease the simulation of generation processes. In particular, it offers facilities 
for incremental processing. In this case, incremental processing means that the generator 
receives incomplete parts of the message, transforms them into a syntactic form and utters 
first parts of the sentence as soon as possi ble. Later incoming parts of the message are 
integrated into the existing syntactic structure. This style of processing helps to avoid 
long initial delays, i.e., long pauses between single sentences. The focus of the presented 
system lies on incremental generation. 

1.2 Overview 

The system ISGT (in German 'Inkrementeller Syntaktischer Generierer natiirlicher 
Sprache mit TAGs') was the topic of my master's thesis worked out at the DFKI 
Saarbrucken ([Schauder 90]). Being an incremental sentence generator, it represents 
a first prototype for the syntactic component that is part of the project 'Knowledge­
based Presentation of Information' (WIPl, in German 'Wissensbasierte Informations­
Prasentation', see [Wahlster et al. 88]). The WIP system is characterized by 

• context-directed selection of information to be presented, 

• multimodal presentation of information and 

• multilingual presentation of information . 

IThe WIP project is supported by the German Ministry for Research and Technology under contract 
no . ITWS901 S 
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One presentation mode is the textual encoding of information. A syntactic component 
is responsible for the generation of text . It incrementally creates surface structures (sen­
tences with associated syntactic structures) by computing parts of the input and inte­
grating each newly in'coming piece of information into the set of realized fragments of the 
sentence. The incremental natural language generator was planned to be based on the 
grammar formalism TAG. 

In Section 2, psycholinguistic and computational aspects of incremental natural lan­
guage generation are illuminated. They result in a set of criteria for the design of the 
developped system. 

The definitions of the formalism 'Tree Adjoining Grammar' and some extensions are 
briefly described in Section 3 and their suitability for incremental generation is discussed. 

Sections 4 and 5 contain the basic features of the system ISGT. A schematic presen­
tation in Figure 1 eases the orientation. 

Conceptualizer 
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Figure 1: Schematic Presentation of ISGT 
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The interfaces between the module and the conceptualizer (telling what to say) and 
between the module and the articulator represent input and output of the developped 
system. The syntactic generator itself consists of two components. Both are based on 
a distributed parallel model. Active objects (represented as ovals in Figure 1) compute 
related parts of the representation structure on both levels. 

The hierarchical level is explained in Section 4. Its objects are created directly using 
the input from the conceptualizer. The goal of the objects is to build the sentence tree. 
They use knowledge from the lexicon and the LD- (local dominance, see Section 3.4) part 
of the grammar to build their part of the syntactic tree. The complete sentence tree is 
constructed by the interaction of all objects that communicate via message passing. The 
objects are supported by a special object, the 'monitor', that helps them to choose a 
grammar rule and combine the local parts of the structure. 

Partial results from the hierarchical level are handed over to the positional level (rep­
resented in Figure 1 by directed arrows from the single objects of the hierarchical level). 
The positional level is described in Section 5. The objects at this level linearize complete 
parts of the syntactic tree and bring the partial trees into a correct order, according to 
the LP- (linear precedence, see Section 3.4) part of the grammar. The ordered leaves of 
the trees are inflected using the module MORPHIX (see [Finkler & Neumann 89]) and 
uttered as soon as possible (incrementally). 

In the last section (Section 6), the results of this work are summed up. Possible 
improvements and alternative approaches are mentioned in an outlook. 
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2 Criteria for the Development of an Incremental 
Natural Language Generator 

Demands on a system for incremental natural language generation are first of all conse­
quences of results from research in psycholinguistics and artificial intelligence. Psycholin­
guistic observations of human language processing make demands upon the performance 
of natural language human-computer interfaces. Psycholinguistic models offer criteria for 
the processes involved in human natural language production and for a computational 
simulation. From the point of view of artificial intelligence, guiding principles must be 
found for an efficient and adequate realization of natural language generation. Since this 
work is concerned with natural language generation from the computational point of view, 
the psycholinguistic aspects are only briefly described in Section 2.1. Sections 2.2 to 2.4 
deal with questions of system design. 

2.1 Language Production from the Psycholinguistic Point of 
View 

Natural language generation means the production of natural language utterances in order 
to satisfy specific communicative goals ([McDonald et al. 87a]). The human production 
process cannot fully be observed: The input into the generation module - the message 
or contents of the planned sentence - cannot be made visible. But it is essential for the 
interpretation of psycholinguistic experiments that input and output can be controlled. 
Wide-spread experiments today are the examination of speech errors and the observation 
of natural language utterances stimulated by nonverbal input (e.g., during the description 
of visual scenes). 

Just one psycholinguistic model is presented here, because it is most similar to the 
scheme of the presented system. The components of Kempen's model ([Kempen 77]) work 
as follows: The conceptualizer chooses conceptual structures that are to be uttered. It 

Conceptualizer J 
! 

Formulator I 
! 

I Articulator j 

Figure 2: Kempen's Model for Language Production 

creates the idea of the sentence, which is handed over to the next stage as the 'message'. 
The formulator translates the nonverbal idea into verbal structures. The result of this 
process is a syntactic representation that should satisfy the communicative goal as good 
as possible. Finally, the articulator controls the utterance of the sentence. 

The three levels of this model reflect three tasks that have to be solved to generate a 
natural language sentence: 
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1. It must be decided, what to say, i.e., the relevant contents of the utterance have to 
be identified. 

2. It must be decided, how to say it, I.e., the message has to be translated into a 
natural language sentence. 

3. The sentence must be articulated, that means spoken or written. 

Each natural language generation system must have these abilities. They are the kernel of 
all psycholinguistic models and of each computational natural language generation system 
(see Section 2.2). The modular approach is very useful when developping distinct parts 
of a g~nerator. The presented syntactic component is a part of the formulator. 

One special feature of Kempen's model is a feedback loop between the formulator 
and the conceptualizer. Kempen argues, that the conceptualization itself can depend on 
decisions made during the process of formulation. He motivates interdependent processes 
of language production explaining, e.g., that speakers can revise their concepts if otherwise 
the sentence cannot be completed in a synactically correct way. 

Furthermore, Kempen's model allows for parallelism of the processes on the different 
stages. This is called incremental processing: The processes work in parallel and incre­
mentally compute partial results as soon as possible and hand them over to succeeding 
processes. In natural language generation, the time that passes during the utterance of 
first parts of a sentence is used to compute further parts of the message that have to be 
integrated into the same sentence. Thereby, communication can be sped up . Since this 
effect is important for computer systems as well, incremental generation plays a central 
role in today's research. 

2.2 Natural Language Generation in AI 

The following section deals with important principles for modern natural language gen­
eration systems that contribute to an adequate behavior in human-computer dialogue. 
Especially the demands on the formulator are considered. 

The formulator decides how a message should be expressed in a given language. The 
formulator transforms selected conceptual items into an adequate syntactic form and 
must thereby be able to choose among linguistic alternatives. Semantic knowledge must 
be converted into syntactic knowledge, adequate lexemes (i.e., minimal meaningful items) 
must be chosen for the conceptual elements and the relations between them, the syntactic 
structure must be constructed, the leaves of the syntactic tree must be linearized and 
inflected. ISCT starts after word choice is done, so the first two tasks won't be examined 
any further. 

The construction of the syntactic tree, linearization and inflection are based (among 
others) on linguistic knowledge bases containing 

• morphological knowledge (e.g., information for the inflection of words), and 

• a grammar that constrains which words can be combined how, i.e., that defines 
linguistic alternatives and constraints. 
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The system ISGT is based on the Tree Adjoining Grammar formalism. The use of this 
formalism can be motivated by linguistic and computational reasons (see Section 3.6). 

The next two sections briefly characterize the embedding and functionality of the 
formulator as part of a natural language generation system. 

Embedding of the Formulator 

The most adequate model for our demands seems to be the cascade. In a cascade (used, 
e.g., in POPEL, see [Reithinger 88]) every component may have only one predecessor 
and one successor. The form of the cascade reflects the view that the components of a 
generator are arranged vertically. From the computational point of view, a cascade has 
several advantages. Cascades allow for incremental processing, as partial results can be 
handed over from one component to the succeeding one. In this way, all components can 
work in parallel. The connection of every stage with its predecessor supports feedback 
through the whole system. Components on a deeper level can therebv infl1lf~nc.p. thp. work 

of higher modules. 
A discussion of alternative models like hierarchical, blackboard, heterarchical and 

integrated model can be found in [Finkler 89J. 

Alternative Concepts for the Formulator 

The functionality of ISGT can be characterized by the term 'description-directed ap­
proach' introduced by [McDonald 87bJ. 

The basic idea for the description-directed approach consists in inserting an addi­
tional level of explicit linguistic representation between message and utterance. McDon­
ald claims that using a syntactic description of the actual developped text is the most 
effective means for introducing grammatical information and grammatical constraints into 
the realization process. There can be several stages of representation between message 
and word sequence showing the text on distinct levels of abstraction. McDonald calls this 
approach "multi-level, description-directed generation" . Formulation is then organized as 
a sequence of decisions made by specialists, the output of each specialist being a linguistic 
representation of the message. The data on the distinct levels are - as a specialization of 
data-driven control- directly interpreted as instructions for the virtual machine that mod­
els the generator. This principle is used by [McDonald & Pustejovsky 85] in the system 
MUMBLE. 

In the description-directed approach, each existing level should deal only with those 
tasks that have to do with its natural capacity. Not only modularity is an advantage for 
the system design but also the fact that descriptive syntactic representations are used 
instead of procedural ones. Description-directed control allows for an incremental style of 
processing, as the order of decisions is not fully defined . By adequately distributing the 
task over several processes there can by parallelism between and on the various stages of 
the generator. 

An additional motivation for the choice of a description-directed approach is 
the presupposition of the descriptive grammar formalism TAG and the orientation 
at the description-directed, multi-level system POPEL-HOW (see [Neumann 89] and 
[Finkler 89)) . 
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2.3 Incremental Syntactic Generation 

Description-directed control is motivated by the supposition that grammatical information 
can best be introduced into the generation process by a syntactic representation of the 
sentence actually under construction. For a TAG-based generator it must be examined 
if the grammar formalism remains adequate with respect to the additional demand for 
incremental generation. 

The data on the levels of representation inside the syntactic generator (one level for 
the hierarchical structure and one for the word position) are linguistic representations oj 
the message. The incremental input from the predecessing stage activates a process that 
at the best inserts new partial structures into the existing syntactic tree. Otherwise, a 
partial tree is constructed separatly from the existing one and has to wait until it can bE 
associated. At the worst, the existing syntactic tree must be revised. 

Using the TAG formalism means that partial structures are represented as TAG trees. 
that the constructed sentential tree consists of a modified initial tree, and that partial 
structures can be combined by adjunction. These terms are defined in Section 3.1. 

In the following, the consequences of an incremental style of processing are exam­
ined. They will lead to several extensions of the TAG formalism introduced in Section 3. 
[Kempen & Hoenkamp 82J have laid out a catalogue of demands for the organization oj 
an incremental syntactic generator. Some of them will be discussed in the next sections. 

The Levels of Syntactic Generation 

In an incremental generator, hierarchy and order of constituents should be computed by 
distinct components. If a word is fit into the sentential hierarchy and at the same timE 
the word order is fixed, it is not for sure that the most significant rule has been chosen . 
It is possible that the succeeding input elements arrive in another than the defined word 
order. Then they can't be flexibly integrated any more - even if the grammar rules would 
allow for it. It seems useful to postpone the computation of word order and realize it at a 
deeper component (this corresponds to the second demand of Kempen and Hoenkamp). 

The linguistic terms connection and position reflect this seperation (see [Engel 77]) . 
Connection means the restriction of word combinations, each word constraining its context 
semantically and syntactically. Position constitutes linear relations between elements . 
thereby defining word order. 

Incremental generation must be combined with a variable computation of word posi­
tion. With the exception of free word order languages new syntactic fragments cannot 
simply be added to the right side of the actual tree. Their insertion depends on the word 
order rules of the grammar. With increasing freedom of word order the output order can 
be oriented at the input order and first parts of the output can be produced very fast. 

The result of this discussion is the separation of the syntactic generator into two levels: 
At the hierarchical level words are inserted into a syntactic tree that can be interpreted 
as a mobile (see Figure 3). 
At the positional level a correct order of trees and subtrees is computed (see Figure 4) . 

As will be shown in Section 3.4, this separation can be realized with help of an exten­
sion of TAG called LD jLP-TAG. In the Local Dominance- (LD) part, trees are treated aE 

mobiles, the Linear Precedence- (LP) part defines the positioning rules. 
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The following section deals with problems of the representation of the syntactic struc­
ture at the hierarchical level. Again, the incremental style of processing plays the central 
part. 

Conceptual and Lexical Guidance at the Hierarchical Level 

Incremental processing at all levels of a system is best supported by handing over partial 
results in a piecemeal fashion. The efficiency of incremental processing at the hierarchical 
level depends on the kind and form of input it gets from the word choice process. 

When constructing the syntactic tree top-down from the definition of global attributes 
by stepwise refinement down to the leaves, the choice between alternative subtrees must 
be made without regarding the respective lexemes. But these lexemes have syntactic 
features (e.g., the valency of a verb) directly influencing the structure of the syntactic 
tree. They should guide the construction process. Additionally, the properties of the 
conceptual input elements should be considered: Functional relationships determine the 
functional insertion of lexemes into the tree (e.g., the definition of a subject in an active 
clause). The following strategy results from these considerations: The incremental input 

of lexemes and functional relations between them guides the construction of the syntactic 

tree. This corresponds to the demands number one and three of Kempen and Hoenkamp. 
Although the structures of the TAG formalism are not yet introduced, it will be 

discussed in the following sections which size the subtrees associated with the lexemes 
should have. Since the rules of a TAG are represented as syntactic trees, this discussion 
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can directly be applied to the formalism and motivates a TAG extension that defines a 
special kind of trees: lexicalized TAG (see Section 3.5). 

We need two more terms from linguistics. Phrase structun;' trees can be called con­
stituency diagrams describing a relationship between nodes of trees (in Figure 5, the tree 
can be read level by level as, e.g., 'S consists of NP and VP', 'NP consists of N' , and so 
on). TAG trees are constituency diagrams, as we will see in Section 3. In contrast with 
constituency diagrams, dependency diagrams represent every element exactly once. The 
vertical order (father-son relationship) defines the dependency relation, i.e., it describes 
which element depends on which other. Each father (regent) rules its sons (dependents). 
There are different linguistic theories underlying dependency relations; for German the 
main verb of a sentence is often viewed as the central element introducing the 'structural 
frame' of the sentence. In Figure 5 a sentence is represented as a constituency (left) and 
as a dependency diagram (right). 

"the man plays tennis" 

Constituency Diagram Dependency Diagram 

s V 

------------ "plays" 

NP VP ------------- ------ N N 
DET N V NP "man" " tennis" 

II II II 
I ~ N 
II DET 

"the" "man" "plays" " tennis" "the" 

Figure 5: Constituency and Dependency Diagram 

The highest element of a node group in a diagram is called head. In the example, V is 
the highest element of the whole diagram, the left N is the highest element of the group 
consisting of Nand DET, and so on. The term phrase means a part of a sentence, whose 
name can be derived from its head (e.g., N P for a nominal phrase). The abbreviations 
X P for X -phrases are often used in constituency diagrams. 

As is visible in Figure 5, a constituency diagram can consist of several phrases: Internal 
nodes are roots of subtrees which themselves represent phrases and which are ruled from 
their central terminal node - their head. This observation has consequences for the size 
of subtrees that can be chosen according to the given lexemes. If such a tree includes 
several phrases and detailed descriptions of their constituency structure and nevertheless 
is chosen for only one lexeme (e.g., the V in example 5), decisions are made that in 
fact depend on the input of the other lexemes (e.g., the two nouns in Figure 5). This 
argument is related to the second demand of Kempen and Hoenkamp: The size of rules 
that are chosen for given lexemes must be oriented at the given information. Therefore 
the syntactic subtrees that are chosen for given lexemes may only reflect details of that 
phrase, whose head the lexeme is. 

The results of this discussion are summed up in the following: 

1. The incremental formulator consists of two stages: the hierarchical and the posi­
tional level. This distinction allows for the structural insertion of lexemes without 
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regarding their position in the sentence. 

2. Incremental processing at the hierarchical level highly depends on a sensible choice 
of subtrees for the representation structure. The chosen parts shall describe only 
that part of information that can be associated with a given lexeme. 

Another concept (see also [Kempen & Hoenkamp 82]) is the parallel computation of in­
dependent structures, which will be motivated in the next section. 

2.4 Parallelism in the Syntactic Generator 

At the hierarchical level, processing takes place without regarding word position; the 
constructed tree is considered as a mobile. This is why, a construction from left to right 

is undefined. The insertion of a new element only depends on its functional relation to 
the rest of the tree. Most efficiently, new lexemes are integrated in their input order. 
Furthermore, one can take advantage of the relative independence of the subtrees by 
computing them in parallel. 

ISGT is designed as a cascade, because of a cascade's usability for incremental pro­
cessing and feedback. The model can best be used not only by working in parallel on 
the distinct levels of the cascade but also by realizing parallelism within those levels. An 
incremental style of processing presupposes an adequate separation of the data into seg­
ments. Single segments can be computed and lead to partial results handed over to the 
next level. A distribution of these segments onto parallel processes allows for the simulta­
neous production of partial results, their simultaneous handing over, and further parallel 
computation on the next level. This kind of parallelism supports incremental processing 
in the cascade. 

The distributed parallel model used for ISGT is based on object-oriented concurrent 

programming. Details can be found in [Yonezawa & Tokoro 87] and [Finkler 89]. There 
are objects at each level of the formulator that can cooperate or work independently. Each 
object can be seen as an integral unit consisting of data and procedures that operate on 
the data. Each object is associated with a process. During the creation of an object, its 
local variables are initialized and a sequential program is handed over to it. The actual 
state of an object is defined by the position in its program and the values of its variables. 
These variables are local and cannot directly be read from the outside. but thev can be 
manipulated by communication with the obiect. 

The Life Cycle of the Object 

Objects are created when there are partial inputs from the higher level. Their goal is to 
transfer a segment into the deeper level. Therefore, they run through an infinite loop of 
their program that describes their basic capabilities. The special tasks of the two levels 
(hierarchical and positional) are realized in respective specializations of the program. At 
each single level, all objects have identical programs as they all have to solve the same 
problem, i.e., the next verbalization step. 

The life cycle of an object is divided into several phases: 

1. initialization, 
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2. computation of the segment by sending messages to other objects or transferring 
data into the next level, 

3. reading messages, 

4. waiting until a new message is received or a defined time span has passed, 

5. reading messages, then go to Step 2. 

This cycle must be traversed again and agam. The object must wait at the end ot each 
pass, because further processing is only senseful if new information is available. But even 
if the object has successfully managed its task, it must not be terminated: Other objects 
could continue to send messages to it . 

It will be motivated in Section 3.5 that there is no real transfer of single segments to 
new objects at the positional level. The object that finishes its task changes its goal of 
computation and uses other methods than before to reach this goal. Thereby, it can make 
use of its previously filled local variables. 

Besides the objects working at the hierarchical and the positional level by changing 
their functionality, there exists one special object at the hierarchical level, called monitor. 
The monitor controls the incremental processing of the other objects as will be shown in 
Section 4. 

The Interaction of Objects 

The objects communicate by 'message passing' in order to guarantee their data encapsu­
lation. Each object has a local variable 'context' describing its partners of communication 
either by patterns or by their direct address. Each new object has to be registered at the 
monitor which transmits its address to other relevant objects. 

The kind of interaction between two objects arises from the contents of the message. 
Value passing means the transfer of values, a remote procedure call demands the object to 
call a procedure. Messages to each object are collected in its 'port ' and read during the 
respective phases of its life cycle. Message passing is either synchronous or asynchronous 
depending on the kind of situation. 

Simulating the Model on the LISP Machine 

ISGT is implemented in an object oriented style on a system with one processor. The 
objects are defined on the basis of a flavor system (see [Steele 90]) . The flavors inherit the 
system-defined si:process. That is why, the scheduler regards them as normal processes 
and supervises them according to the round robin system (see [Symbolics 89]). Parallelism 
can only be approximated by time sharing. In the next extension of our system we will 
realize parallelism by distributing the objects over several machines. 

Segmentation at the Hierarchical and the Positional Level 

The input into the hierarchical level are lexemes associated with special information . 
The goal is to create a syntactic structure tree representing the sentence. Incrementally 
incoming lexemes are added to this tree and completed partial structures are handed over 
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to the next level. The representation structure must be segmented in such a way that the 
segments can be computed in parallel and as independently as possible. There are several 
demands on these segments: 

1. The segments have to be oriented at the grammar rules. Each divergence from the 
original structure causes additional costs for its use. 

2. The segments have to be chosen on the basis of the input incrementally and in the 
given order (see Section 2.3). 

3. The segments have to be as independent as possible, so that they can be computed 
in parallel and without too much communication. 

4. The partial results for the next level have to be computable by single objects and 
not by sets of objects. 

The input into the positional level are partial structures from the hierarchical level. 
The goal is to transform parts of mobiles into an 'ordered' structure tree, to inflect the lex­
emes and to utter them in a correct order. Especially the structures from the hierarchical 
level have to be handed over incrementally. This means that partial trees are separated 
from the mobile and integrated into respective structures at the positional level. These 
two kinds of structures differ in the following points: 

1. The structure tree on the second level represents exactly one possibility of ordering 
the mobile of the first level. 

2. The leaves are substituted by the inflected words . 

It will be shown in Sections 3.4 and 3.5 that lexicalized LD jLP-TAG can be used for the 
definition of segments. As there are no structural differences between the trees of the LD­
and the LP-part (the computation of word order is directed by LP-rules associated with 
the mobiles), there is no use for a real transfer from the hierarchical to the positional 
level. On the contrary, it would lead to redundancy and problems of consistency (see 
Section 3.5). The central point is that hierarchical and positional level are not realized as 
distinct modules with different objects. The separation of the levels is rather implemented 
by changing state and program of the objects . 

The formalism Tree Adjoining Grammar and its relevant extensions are defined in the 
next section. They are motivated with respect to the above formulated demands on an 
incremental syntactic generator. 
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3 Using Tree Adjoining Grammars for Generation 

In the following sections, the TAG formalism and some of its extensions are informall) 
defined. Their relevance for incremental natural language generation will be discussed 
Formal definitions can be found in the literature referred to. 

3.1 Tree Adjoining Grammars (TAGs) 

Tree Adjoining Grammars have been introduced by [Joshi et al. 75]. The basic idea 0 

the formalism is the representation of elementary sentence structures as trees that can b( 
combined to more complex structures (complex sentences). 

A Tree Adjoining Grammar or TAG G can be defined as 5-tupel (N, T, S, I, A). N ane 
T represent finite disjunctive sets of nonterminals and terminals, S is a special symbo 
from N, the start symbol. The union of 1 and A is called the set of elementary trees 
which are the rules of the grammar. I and A represent disjunctive sets of initial (I) ane 
auxiliary (A) trees. A tree a is an initial tree, iff its root is labeled with the start symbo 
5, all leaves represent terminals and all internal nodes are associated with nonterminah 
(see left tree in Figure 6). From the linguistic point of view initial trees represent minima 
sentential trees, that are the basis for each complex sentence. 

s 

Adjunction 
I 

Figure 6: Elementary Trees and Adjunction 

s 

The second type of trees (auxiliary trees) is used to create trees that are not explicitly 
encoded in the grammar. A tree f3 is an auxiliary tree, iff its root is labeled with a 
nonterminal X, there is exactly one leaf - the foot node - that is labeled with the same 
nonterminal as the root, all other leaves of the tree represent terminals (there has to be at 
least one terminal leaf) and all internal nodes are associated with nonterminals (see the 
tree in the middle of Figure 6). Auxiliary trees allow for recursion by defining that root 
and foot node have to be associated with the same label. Seen linguistically, an auxiliary 
tree corresponds to a minimal recursive or iterative construction. The structures are 
minimal because they have to be defined without recursion on a nonterminal. 

There exists an important linguistic constraint for the size of TAG trees: Each tree 
must describe a complete phrase with all obligatory paris. E.g., a sentential tree for a 
transitive verb must contain the object, too. 

Two trees can be combined by adjunction (or adjoining). Adjunction (see right tree 
in Figure 6) inserts an auxiliary tree f3 into an initial or previously modified initial tree 
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'Y (the initial tree a in Figure 6) . 'Y (or a) contains a node n with label X, the so-called 
node of adjunction. It is replaced during adjunction by the auxiliary tree (3, whose root 
and foot node must be labeled with the same symbol. The root node replaces the node of 
adjunction with respect to its father, the foot node becomes the new root of the subtree 
that hung under X. By this, 'Y is modified or enlarged without losing parts of the tree. 

An expanded definition of adjunction also allows to insert a tree into auxiliary or 
modified auxiliary trees. The formalism's power remains the same. Compared with the 
above-mentioned definition this leads to further variations with respect to the order of 
combinations. This can have consequences, e.g., for TAGs with Constraints or TAGs 
with Unification. The advantage of the expanded definition of adjunction is that the 
formalism can better be used for incremental generation. Trees should be combined as 
fast as possible, so it is not useful to constrain the order of combinations to a top-down 
processing. In the following, we always mean by adjunction the expanded definition of 
adjunction. 

TAGs are mildy context-sensitive ([Joshi et al. 75]). This power seems to be adequate 
for the description of natural language and is another motivation for the use of this 
formalism. 

In the follOwmg, some extensIOns ot lAGs are descnbed especIally contn buting to a 
more compact representation of complex syntactic structures. 

3.2 TAGs with Constraints (TAGCs) 

Basically, adjunction is allowed if the labels of root and foot node of the auxiliary tree 
correspond to the label of the node of adjunction. Tree Adjoining GraIIllIlars with local 
constraints for adjunction (see [Joshi 85]) allow for the restriction of the set of auxiliary 
trees that may be adjoined. Each nonterminal node of an elementary tree is associated 
with one of the following constraints: 

SA(X) SA is the abbreviation for selective adjunction. It is not allowed to adjoin all 
auxiliary trees with the respective labels in this node , but only the specified su bset 
X of them. 

NAN A is the abbreviation for null adjunction. No adjunctions are allowed at this node. 

OA(X) OA is the abbreviation for obligatory adjunction. At least one tree of the defined 
set X of structurally adjoinable trees must be adjoined. 

The definition of adjunction is the same as for pure TAGs with the addition, that only 
those auxiliary trees may be adjoined in a node, which are contained in its constraint set. 
During adjunction the constraints of the node of adjunction are deleted, the constraints 
of root and foot node are taken over unchanged in the resulting tree. 

Constraints enlarge the power of TAGs, but the resulting formalism is still mildly 
context-sensitive. Especially selective adjunction can be used for the representation of 
natural language, because it helps to express relations by constraints instead of node 
labels and thus avoids redundancy. 
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3.3 TAGs with Unification (UTAGs) 

The expressive power of TAGs (with Constraints) does not allow for a compact encoding 
of complex syntactic information. E.g., agreement tests (for the equality of number, 
gender and case) must be realized by explicitly defining TAG trees with respective node 
labels (e.g., N.l.sg.nom). The combination of TAGs with the unification formalism helps 
to avoid redundancy and makes it easier to design a grammar. 

Unification 

Unification is presented according to the PATR formalism (see [Shieber 86]). The idea of 
PATR is that context-free rules can be associated with so-called unification rules. Such 
a combined rule consists of a constituent list and a specification list. The constituent list 
is derived from the context-free rule by taking the left side as first element and all other 
elements in their given order from left to right (e.g., (5 N P V P) for 5 --+ N P V P). 
The specification list describes the unification rules for each context-free rule. It refers to 
elements of the constituent list by enumerating them from left to right, beginning with 
zero (for (5 N P V P), 0 refers to 5, 1 to N P and 2 to V P). A specification is a list of 
two elements of the form ({ attribute I path} { path I value}). An attribute is a path 
with one element. A path consists of a list of attributes. The right side of a specification 
can define an atomic value. These rules specify a feature structure for each context-free 
rule that can be represented as DAG (Directed Acyclic Graph, see Figure 7). 

Constituent List 

Specification List 

(S NP VP) 

(((1 syntax num) (2 syntax num)) 
((2 syntax num) sing) ... ) 

L 1 - syntax -num~ 

~ 2 - syntax - num ----":-. sing 

Figure 7: Specification List and DAG 

The rule in Figure 7 guarantees that the nominal and the verbal phrase of sentence 
S have the same number value. The attribute num is placed behind syntax, because it 
describes a syntactic information. The second specification defines the value singular for 
the number of the verbal phrase. The first rule makes it possible that this value can also 
be read for the nominal phrase via the path (1 syntax num). 

The identification of two paths and the definition of a value inside feature structures 
are two different sides of a unique process that is used to compile specification rules. It 
is called unification. Unification means the combination of parts of feature structures 
without contradiction. The result of the unification of two DAGs d1 and d2 is a DAG d, 
with 
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2. d = d1 , if d1 consists of a value and d2 is empty, 

3. d = d2 , if d1 is empty and d2 consists of a value, 

4. if neither d1 nor d2 consist of a value, then: 
\f attributes 1, with: 1 -t nl E d1 , I -t n2 E d2 (common path prefices), is 1 -t 

Unification( n l , n2) E d and 
\f attributes 1, with: I -t n E (d1 U d2 ) \ (d1 n d2 ) (i.e., path starting in exactly one 
DAG), there is 1 -t nEd, 

5. otherwise the unification fails and the result is NIL. 

The combination of Tree Adjoining Grammars with unification can easily be motivated. 
Intuitively, each node of a TAG tree can be taken as left side of a context-free rule, its sons 
as the right side. In this way each node can naturally be associated with a specification 
list . 

TAGs with Unification 

While TAG trees can easily be associated with specification lists it is much more difficult 
to define the process of adjunction on trees with feature structures. Unification can 
be understood as monotonic operation because is enlarges feature structures instead of 
really changing them. Adjunction can be viewed as nonmonotonic in the following sense: 
The neighbourhood relations of the node of adjunction to the surrounding nodes are 
destroyed. The father of the node of adjunction becomes father of the root node of the 
inserted auxiliary tree, the sons become sons of the foot node. There is no direct way 
to transfer the feature structures of the node of adjunction to the auxiliary tree in an 
appropriate way. Similar to the transfer of neighbourhood relations , the relations of the 
feature structures of the node of adjunction to the surrounding nodes have to be identified 
and transferred to the auxiliary tree. 

This can be done by dividing the feature structure of a node of adjunction X into two 
parts (see [Buschauer et al. 91]): TX contains all feature structures that relate X with its 
father, tX contains all feature structures that relate X with its subtree. The left tree in 
Figure 3.3 shows that the direct association of nodes with PATR-style specification lists 
leads to local feature structures at nodes describing the relation of this node (represented 
by the substructure under attribute 0) to its sons (represented by the respective reference 
numbers 1 to n). Therefore, TX is always a part of the feature structure of the father of 
X, lX is defined locally with the node X itself. 

This separation can be used for the definition of adjunction with unification. An 
auxiliary tree j3 is adjoined into a node X as follows: 

1. X, its specification lists , and its feature structure are deleted from the tree. The 
relations of the feature structure to the father and to the sons of X are cut off. 

2. The auxiliary tree j3 is inserted. 

3. The feature structure of the foot node of j3 is unified with tX, thereby creating new 
relations to the sons of X. 
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Figure 8: Adjunction with Unification 

4. Since TX is associated with the father of X and the father becomes the father of the 
root node, the relation between these nodes is implicitly transferred. 

An example for adjunction with unification is schematically represented in Figure 3.3. 
The resulting tree shows how the feature structures of the left tree (marked by vertical 
lines) and the feature structures of the auxiliary tree (marked by horizontal lines) are 
combined. 

There are at least two ways to realize this definition of UTAGs (see [Schauder 92]) . 
First, the feature structures of all nodes of each elementary tree are unified destructively 
by default (i.e., the i-substructure of a node is unified with the O-substructure of its ith 
son) . This leads to trees associated with global feature structures that allow for the direct 
inheritance of values by structure-sharing. But in case of adjunction in a node X, it is 
difficult to localize TX and LX. The destructive unification of the feature structure of X 
with the feature structures of the surrounding nodes makes it impossible to identify local 
structures. Therefore, adjunction with unification can only be realized on the basis of 
backtracking. The specification lists must be stored in addition to the feature structures 
at the nodes. During adjunction, the feature structures of both trees are thrown away 
and have to be rebuilt by compiling the specification lists into new feature structures and 
unifying their respective parts. 

In a second kind of realization, the local feature structures of the nodes are kept sep­
arated in order to ease adjunction. The disadvantage of this approach is that there is no 
direct inheritance of values by structure-sharing. They must be accessed to by expensive 
reading operations over all local feature structures that should have been unified. Espe­
cially during incremental generation where it often cannot be guaranteed that no further 
adjunction will take place - then all feature structures could be unified - this reading 
operation is frequently used. 

The decision which realization to use depends on the constraints of the actual system. 
This problem and a comparision with an alternative definition of Feature Structure based 
TAGs (FTAGS, see [Vijay-Shanker & Joshi 88]) are discussed in [Schauder 92J. 

A disadvantage of the combination of TAGs with unification is the increase of power 
for TAGs. But the simple encoding of complex syntactic features and rules is a strong 
motivation, so UTAGs are used in ISGT. 
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3.4 Local Dominance/Linear Precedence-TAGs (LD /LP­
TAGs) 

The trees of the previously discussed extensions of TAGs have the following disadvantage: 
Trees with the same structure but different orderings on their subtrees must be defined 
several times, the grammar becomes redundant. Furthermore, incremental generation 
demands a seperation of structures into hierarchical and positional ones (see Section 2.3). 
The aim of LD/LP-grammars is to distribute the positioning of subtrees from the pure 
hierarchical description. 

An LD/LP-TAG is a 5-tupel (S, N, T, IS, AS). N represents the nonterminals, T the 
terminals (N n T = 0), S is the start symbol from N. The tree sets are defined as follows: 

IS= { (a, LPo:) I a initial tree with root S without linear ordering (i.e., a mobile), LPo: 
set of <-relations on node numbers from nodes of a }, 

AS= { ({3, LP/3) I {3 auxiliary tree without linear ordering (i.e., a mobile), LPa set of 
<-relations on node numbers from nodes of {3 }. 

Figure 9 shows two trees with associated LP rules. In this case, the LP rules define the 
order of the terminals totally, but the freer the word order of a language is, the fewer LP 
rules must be associated with a tree. 

a= 

s NP 
00 

~ 
a _ 10 
f.I-~ 

NP VP DET NP 
000 001 100 101 

I I 
N V 

0000 0010 

LPo: = {OOO < 00l} LP/3 = {100 < 101} 

S 

Adjunction 
I 

"y _ 20 
I-~ 

NP VP 
200 201 

~ I 
DET NP V 
2000 2001 2010 

I 
N 

20010 

LP",! = {2000 < 2001,200 < 201} 

Figure 9: Elementary Structures and Adjunction in an LD/LP-TAG 

LP rules are only allowed if they describe relations between disjunct subtrees of an 
elementary tree. None of the related nodes may be the predecessor of another. This is 
why every LP rule can be transformed into an aquivalent rule between sisters, namely the 
roots of the disjunct subtrees. This property can be used during incremental processing: 
During the top-down or bottom-up traversal of a tree, the <-relations are known for all 
subtrees. These relations help deciding which part of the tree can first start uttering its 
terminal string and which part has to wait for another one. If the decision is not possible 
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at the actual node, the question is handed over to its father (up to the root) and handled 
locally as before (for details see Section 5.2). 

Adjunction for LDfLP-TAGs is defined as follows: Let h, LP"Y) be an LD/LP-TAG 
structure (either elementary or modified), let ({3, LP(3) have root and foot node with label 
X and a corresponding node within ,. The result of an adjunction of ({3, LP(3) in X in 
h, LP"Y) is 

C'?, LP-:y) with: i is the normal adjunction result (as mobile), LP-:y = LP"Y U LP{3 using the 
newly defined node numbers. 

It becomes clear, that the sets of LP rules are unified in the resulting tree. These rules 
cannot contradict because of their locality. 

LD /LP-TAGs allow for a separation of the grammar into a hierarchical and a positional 
part which can be used on the respective levels of the generator (see Section 2.3). Each 
tree is taken as mobile and its definite form is described by the associated LP rules. 
Although LD /LP-TAGs in principle allow for the separation of hierarchical and positional 
descriptions, they don't seem to be adequate with respect to languages with relatively 
free word order. German phrases are often not arbitrarily movable but can be found in 
several permissible orders. Even the primitive sentences "Ich kaufe Apfel" and "Apfel 
kaufe ich" cannot be represented within one single structure by use of LD /LP-TAGs. It 
could be an interesting goal of further investigations to find alternative definitions for 
linear precedence relations. 

Further disadvantages of Tree Adjoining Grammars have to do with the structure 
(especially the size) of their trees. Following the linguistic constraint, each tree must 
describe a complete phrase with all its obligatory parts. Furthermore, they must be 
expanded down to the preterminals. This results in the following problems: 

1. The same subtrees can be found at different places in distinct trees, the grammar 
is redundant. 

2. Trees must not be designed arbitrarily small (as a consequence of the linguistic 
constraint). That is why choosing a tree often means to decide about a larger 
structure than your knowledge about the input lexeme allows for. This contradicts 
to the demand that the syntactic subtrees chosen for given lexemes may only reflect 
details of that phrase, whose head the lexeme is (see Section 2.3). 

3. In spite of that, the linguistic constraint has to be preserved, for it reflects an 
adequate use of the enlarged domains of locality. All obligatory parts in the sub­
categorization frame of a lexeme shall be represented in the chosen tree. 

Lexicalized TA Gs allow for this kind of lexical guidance that has been motivated in Sec­
tion 2.3. 

3.5 Lexicalized TAGs (LTAGs) 

Following [Schabes et al. 88], a lexicalized grammar consists of 

1. a finite number of structures, each associated with a lexeme which must be the head 
of the structure, and 
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2. combination operations for these structures. 

3. There can be constraints specified over the set of structures which are local with 
respect to their lexical heads. 

A grammar that is lexicalized in this way not only produces the same language as the 
original grammar but also derives the same structures. The idea can be applied to Tree 
Adjoining Grammars ([Schabes et al. 88]) and seems to create better presuppositions for 
incremental processing. 

Definition of LTAGs 

The definition of trees is basically the same as in TAGs. In addition to that, the following 
is defined: 

• Elementary trees may have (apart from the foot node of auxiliary trees) leaves 
labeled with nonterminals. These nonterminalleaves must be marked (Xl) in order 
to differentiate them from foot nodes. They are called substitution nodes. 

• Each elementary tree must contain at least one terminal leaf representing the head of 
the linguistic structure described by the tree. For structures with just one terminal 
this must be the head; if there are several terminal leaves the head is linguistically 
defined, e.g., following the dependency theory. The head of the initial S-tree on the 
left side of Figure 10 is V. 

• Apart from the initial S-type trees (initial trees with root S) there may be arbitrary 
initial X-type trees. Initial X-type-trees can replace substitution nodes with the 
same label, in order to create complete derivation structures. In Figure 10, the 
initial N P-type tree can replace the node NP 1. 

s 
~ 

NP! VP 

~ 
Initial S-type tree 

with head V 

NP 

D~ 

Initial NP-type tree 
with head N 

s 
Substitution 

I ~ NP VP 

~ ~ DET N 

Figure 10: Initial Trees and Substitution for Lexikalized TAGs 

Initial X-type trees cannot substitute arbitrary internal nodes of elementary trees, as 
auxiliary trees can. They have no foot node preserving the subtree of the substituted 
node. X -type trees always replace nonterminal leaves labeled with the same symbol X. 
This operation is called substitution: 

• Substitution inserts an initial (or modified initial) X -type tree into an elementary 
tree by substituting a nonterminal leaf Xl (this operation is used by context-free 
grammars). Figure 10 shows an example for substitution. 
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• Substitution nodes can be associated with constraints which are comparable with 
local adjunction constraints. But substitution is always obligatory, only the set of 
trees that may be substituted can be constrained. 

• If substitution is marked at a node, adjunction is forbidden . 

Substitution can be introduced to the TAG formalism without problems because it can 
be simulated by the more powerful operation of adjunction. The new operation enlarges 
the descriptive power of the formalism without changing its generative capacity. The 
advantage of substitution is its natural adequacy for lexical insertion and for syntactic 
constructions where the power of adjunction is not needed. A derivation structure of 
LTAGs is not complete before all substitution nodes are replaced. 

The special rule that the head must be beyond the terminals of each structure of 
lexicalized TAGs has consequences for the lexicon: 

• The category of each word is represented by a tree structure. Phrase structure rules 
and argument structures are not separately defined in grammar and lexicon but 
combined. More details about the linguistic interpretation of lexicalized TAG trees 
can be found in the next section. 

• Lexical entries are duplicated if they refer to different argument structures . This cor­
responds to a semantic differentiation. In this way lexicalized TAG trees represent 
semantic and syntactic units. 

The Use of LTAGs 

The possible applications of lexicalized TAGs in an incremental syntactic generator and 
the use of the different forms of trees are discussed in the following. 

Recall the problem described in Section 2.3: The size of trees should correspond to 
the information associated with single input lexemes. The problem with Tree Adjoining 
Grammars is, that each tree can consist of several phrases (and this will indeed often be 
the case because of the linguistic constraint). Figure 11 shows the tree for an intransitive 
verb which not only includes the verbal phrase but also the nominal phrase of its subject. 

( \ 
I S I NP S 
I ~ I Distribution I ~ I 

I INPI VPI with LTAGs N NPL VP 
\ 1 I 11 I 1 I 

IN I 1 V I V 
'----.) \. ) 

Figure 11: Distribution of Elementary Trees by Use of Substitution Nodes 

If this tree is chosen on the basis of a verbal lexeme or even a noun, then decisions 
must be made about details of the other phrase. Lexicalized TAGs allow for a distribution 
of trees by using substitution nodes. The size of trees can be reduced so that each tree 
in fact describes the phrase of its head lexeme. The substitution nodes serve as stand-ins 
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for obligatory subtrees - which can later be filled in - and thereby preserve the linguistic 
constraint. The sentential tree on the right side of Figure 11 represents the subject as an 
obligatory part as before. 

Lexicalized TAGs can be used for a more 'deterministic' choice of trees: There are 
three (instead of two) types of elementary trees that can be used for special linguistic 
reasons. 

Initial S-type Trees 
An initial S-type tree is the kernel of each generated sentence. The head of the sentence 
often is the verb, but there can be specific predicative nouns or adjectives with the same 
function. The left tree in Figure 12 shows an initial S-type tree with a verbal head. 

s PP NP 
~ ~ ~ 

NP 1 PP P NPl AD}P NP 

I I 
V AD} 

Initial S-type tree Initial PP-type tree Auxiliary tree 

Figure 12: Linguistic Classification of Elementary Trees of LTAG 

According to the linguistic constraint, each tree must contain all complements (see 
[Engel 77]) of its head. Verbs can define 'stand-ins' in the sentence that have to be filled 
by their complements in order to create a grammatically correct sentence. E.g., the verb 
"to praise" must be combined with an accusative object. The left tree in Figure 12 could, 
e.g., represent a verb like "to work" which only needs a subject as its complement. 

Stand-ins are defined by substitution nodes which must be replaced by initial X-type 
trees. 

Initial X-type Trees 
Initial X-type trees are partial trees that have to replace substitution nodes in order to 
create a complete derivation tree. They represent arguments or complements. The label 
of their root reflects the represented phrase, i.e., the projection of the category of their 
lexial head. An initial X-type tree always defines the maximal projection (i.e., again a 
complete argument structure) of this category. Substitution nodes can not only be defined 
in initial S-type trees but also in X-type trees and auxiliary trees. The tree in the middle 
of Figure 12 shows an initial PP-type tree representing a prepositional phrase. 

A uxiliary Trees 
Auxiliary trees can be used to realize adjuncts. Adjuncts (see [Tesniere 59]) can depend 
on all elements of a word class and are in principle optional. The fact that adjuncts can 
modify all elements of a word class is reflected in the structure of auxiliary trees: Root 
and foot node define the category of the modifiable node. Adjuncts modify other phrases 
and can only be used and moved in connection with those. Auxiliary trees guarantee these 
effects: If they have replaced a node they follow all its movements (during linearization) 
in the tree. The right tree in Figure 12 realizes a modifier for a noun. 
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Lexicalized TAGs can realize all structures that can be realized by use of 'normal' TAGs. 
They support the representation of predicates, complements and adjuncts in such a way 
that incremental processing is possible. Nevertheless, another demand on the form of 
elementary trees must be formulated. In the examples shown above, the labels of the 
substituti.on noo.es o.etme tb.e respective realization ot an complements. ln tb.e lett tree \n 
Figure 12, NP 1 represents the subject, but this could also be realized by a subordinate 
clause or something else ("That you call, pleases me"). One simple solution consists 
in using the same label 'A' for all complements and specifying possible realizations by 
feature structures. The grammar can be made even less redundant if we allow for the 
underspecification of root nodes of substitution trees, adding the respective features as 
the incremental input specifies the relation of the tree to its regent. The left tree in 
Figure 13 describes a transitive verb as the head of a sentence. Both arguments are 
represented as substitution nodes with label A, they are differentiated by the associated 
feature 'func'. All phrases that serve as constituents for their regent are specified in an 

s A [ -rune ~ suojJ 

~ I 
subj +- fune +-Al VP Al ....... rune ....... obj NP 

I I 
V N 

Figure 13: Functional Symbols in TAG Trees 

A-type substitution tree (as the NP-tree in the right of Figure 13). After the decision 
about their exact functional relation to their regent is made this information is associated 
with the root node and serves as identifier for the substitution node. 

This design concept is not only a means to reduce redundancy but also helps to improve 
the incremental choice of trees. 

The concept of parallel computation that has been motivated in Section 2.4 requires a 
segmentation of the syntactic structures into parts that can be handled by single active 
objects as independently as possible. The three types of trees within lexicalized TAGs and 
their linguistic characterization eases the segmentation, as will be shown in the following. 

Segmentation with LTAGs 

Lexicalized TAGs make available elementary structures and combination operations suit­
able for incremental natural language generation (see Section 3.5). Elementary trees of 
the form described above have an adequate size and can be chosen incrementally with 
less more than local information. Therefore, they are used as the segments of syntactic 
knowledge that are managed by single objects. This approach has a lot of advantages: 

• The segments correspond to elements of the grammar. This way, existing computa­
tion procedures can be preserved . 

• The size of the segments has structural advantages that are grounded in their domain 
of locality. 
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• The used definition of TAGs with unification allows for further kinds of control. 
The feature structures allow for direct tests during lexical insertion or adjunction . 

• Because of its lexicalization, each tree is associated with its lexical head . This allows 
for incremental and parallel processing of the segments. 

The disadvantages of this segmentation have to do with the size of trees . The grammar is 
redundant and the choice of a tree means the choice of a relatively big structure. But these 
problems seem to be less strong than for 'normal TAGs', as the trees of the lexicalized 
TAGs are kept small because of the substitution nodes. 

The transfer from the hierarchical to the positional level must include the trees them­
selves because they are the basis for the definition of LP-rules and they represent the 
correct relations between the lexemes managed by distinct objects. This means a nearly 
complete transfer of structures that can be modified at the hierarchical level even after 
this transfer . These modifications would have to be simulated at the positional level, too. 
For this reason, hierarchical and positional level are not realized as modules but their 
distinction is defined inside the programs of the objects: If a subtree of an object at the 
hierarchical level is complete and integrated into the global syntactic structure, the object 
changes its state and tries to fulfill the tasks of the positional level. Although there is 
no distinction of data and program, the objects are called in the following 'objects at the 
hierarchical level' and 'objects at the positional level'. These terms refer to the specific 
state of the objects . The use of the same data helps avoiding redundancy. 

With respect to the criticism of LD jLP-TAGs (see Section 3.4) the following has to 
be stated for the design of the positional level: The presented concepts are based on the 
possibilities given by Tree Adjoining Grammar and its extensions. A more flexible and 
efficient processing of word position could be realized by another definition of LP rules , 
e.g., by a real transformation of hierarchical into other positional structures corresponding 
more adequately to word order phenomena of natural language. An interesting approach 
is described by [DeSmedt 90]. 

3.6 The Relevance of TAGs for Generation 

In order to compute a grammatically correct utterance, there must be a grammatical 
component somewhere in the generator. This grammatical component that designs syn­
tactically correct sentences must systematically interact with the planner that decides 
what is to be said. The interface should allow for incremental generation. For this reason 
there can be a set of demands on the grammar concerning the efficient processing of the 
generator and a fast and incremental output. 

Incremental generation on the syntactic level means that incoming elements are to be 
inserted into the syntactic representation structure as fast as possible, and that parts of 
this structure can be found which represent partial input for the next level. According to 
this demand, the size of grammar rules and the kinds of combination operations have to 
be discussed. [DeSmedt & Kempen 87] demand three kinds of syntactic expansion: 

Upward Expansion: Upward expansion means to insert an existing partial tree into a 
bigger one, e.g., a nominal phrase as the subject of a sentence. Upward expansion 
can be realized with TAGs by adjunction of an auxiliary tree into the root of the 
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actual structure or by substituting the actual structure in a substitution node of 
the new tree. 

Downward Expansion: Downward expansion of a node means its further specification 
on lower syntactic levels, i.e., its distribution into its components (e.g., a sentence 
into nominal and verbal phrase). Downward expansion can be realized by replacing 
a substitution node by a corresponding substitution tree. 

Insertion: Insertion means to fit in new syntactic material between existing nodes . An 
example is the modification of a noun by a determiner. Insertions correspond to 
adjunctions at internal nodes in the TAG formalism. 

Tree Adjoining Grammars allow for all three kinds of expansion. The incremental choice 
of conceptual structure and the incremental construction of the sentence can well be 
collated. It is essential that the syntactic structures encode linguistic knowledge in such 
a way that the incremental choice and processing of trees is supported. 

The four most important properties of elementary TAG trees which are additional 
motivations for their use in a syntactic generator result from their extended domain of 
locality: 

1. Many (linguistically relevant) relations between nodes can be defined locally. 

2. Properties can be testet locally (e.g., agreement). 

3. The argument structure can be defined locally (and is demanded as the linguistic 
constraint for the design of TAG trees). 

4. The argument structure is preserved during adjunction. 

These properties make TAG trees adequate structures for the construction of the syntactic 
representation of a sentence. They are defined as linguistically minimal units and are 
therefore usable for incremental processing. 

The realization of this style of processing is explained in the next sections which deal 
with the two levels of computation. 
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4 The Hierarchical Level 

This section describes the co-operation of objects at the hierarchical level. They construct 
a complete sentence tree and transfer partial structures to the positional level. The 
monitor plays a central part at the hierarchical level as it controls the co-operation of all 
objects during the incremental construction of the sentence tree. The next sections will 
deal with the different abilities of the objects. 

4.1 The Creation of Objects 

Each object at the hierarchical level is responsible for the processing of one lexeme. This 
is a consequence of the principle of lexical guidance and leads to a clear and unique 
distribution of tasks over the objects. 

Incremental processing at the hierarchical level is primarily useful if the input to the 
level is also given in a piecemeal fashion. For each lexeme that is created by the component 
for lexical choice, a single object is created at the hierarchical level. It manages the further 
processing of the lexeme and needs some more information for doing so. Parts of this 
processing are the choice of a lexicalized TAG tree whose head the lexeme will be, and 
the choice of a feature structure that will be associated with the preterminal leaf of the 
tree, thereby representing the special features of the head. 

The obligatory information that is used for the choice of feature structure and TAG 
tree consists of the lexeme, its category, some semantic information for the differentiation 
between readings, the function of the word in the sentence under construction, and some 
morphological information used for the inflection of the lexeme. Knowledge about the 
function is needed to choose an adequate TAG tree (see Section 3.5): Initial trees represent 
the predicate of a sentence or complements, auxiliary trees represent adjuncts. The result 
of this choice process is not a single tree but a set of trees representing equivalent structural 
alternatives for the realization of the input (e.g., a modifier can be realized by an adjective 
phrase or a relative clause). The set is called ATS (alternative tree set). 

Apart from the information guiding the choice in lexicon and grammar, each object 
receives a unique identifier, that helps to initiate communication with other objects (see 
Section 2.4). Additionally, each object gets the identifier of its regent in the sentence 
which is (or will be) represented by another single object. This knowledge will be used 
during aU activities of the object because of a basic principle, that will be motivated later 
(see Section 4.3): Each activity is initiated by the dependent that tries to combine its 
structure with the structure of its regent in order to complete the sentence tree . 

The different parts of input information can be encoded in two groups: Information 
describing the entity itself is marked with the name 'entity'. A unique identifier must be 
given to refer to the object. It can be followed by a list of pairs, each specifying a part of 
information by a keyword and a value. An example is given on the left side in Figure 14. 
These pairs need not be given in one compact package, the object can be incrementally 
supplied with input. 

Information describing the relation of an object to another one is marked with the 
name 'relation' . It must contain the two relevant identifiers, another unique identifier for 
the relation between them, and - in some cases - a further specification of this relation. 
This specification can again be given as keyword-value pairs. An example for a specified 
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(ENTITY VP-1 ((HEAD "put") 
(VALENCE V3) 
(TENSE present) 
(CAT V) 

(RELATION VP-1 MOD-VP-l NP-l) 

Figure 14: Input Entities for ISGT 

relation is shown on the right side of Figure 14. 

4.2 The Initialization Phase 

The first thing an object does, is to carry out the choice process on the basis of the given 
obligatory information (as soon as it is complete). The result is a specification list for the 
feature structure and an ATS. The specification list is enlarJ?;ed by the given morphological 
information. 

In order to start its work at the hierarchical level, the object must choose one tree 
among the ATS. Up to now, this is done with respect to the possible combinations of trees 
at the hierarchical level. For further expansions it seems possible to directly influence this 
choice, e.g., if a specific syntactic style is to be realized. 

Demands on the Choice in an ATS 

The most important decision points for the choice among the trees in an ATS are listed 
in form of questions: 

1. How are alternatives handled? In the system ISGT, just one alternative is to be 
chosen and processed furtheron. A motivation for this approach is, that this form of 
processing is more efficient in the case of success than the processing of alternatives, 
and that redundant work is avoided. 

2. Which information should influence the choice? The choice in an ATS should be 
made on the basis of local information of the object and global information that 
characterizes its relation to other objects. The local information includes, e.g., 

• the syntactic alternatives themselves, as they have been chosen on the basis of 
some local informations , and 

• the history of previously chosen structures, in order not to loose these experi­
ences. 

The global information guarantees, that the chosen tree fits in the actual structure. 
It is helpful to know 

• the structures belonging to other objects (most interesting are the structures 
of regent and dependents), 

• the number of repetitions of a specific syntactic form in order to avoid mono­
tonuous formulations, 
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• the actual 'active' or 'used' form, for humans often use a specific syntactic form 
several times successively, and 

• information about the degree of 'simplicity ' of the syntactic alternatives , so 
that among the set of alternative trees the most simple one can directly be 
chosen (as senseful default). 

3. VYheTe is this information stored? Local information should be stored within the 
respective objects themselves. Furthermore, it is obvious that the number of repeti­
tions or the determination of the actual form can best be controlled. if the different 
ATS structures are stored globally. 

Global information is stored within the monitor object. The monitor observes 
changes and enlargements of the structure tree and can be asked for information by 
the single objects. This approach is well suited for a first realization of the system, 
because it can be developped modularily. 

The next section deals with the question which information the monitor demands from 
the single objects in order to describe the global state at the hierarchical level, and how 
this state is represented. 

Representation of the Global Structure 

In order to represent the actual situation at the hierarchical level, the monitor has to be 
informed about existency, state, and relation of all objects. The following data must be 
part of the global structure: 

1. Address: The monitor needs an object's address in order to communicate with it. 
The monitor transfers this address to all potential partners for conununication . 

2. Unique Identifier: The objects' unique identifiers are used to recognize commu­
nication partners as they are given as patterns with the input. 

3. Regent: The monitor must know the identifier or address of an object's regent in 
order to correctly simulate its integration into the sentence structure. 

4. Tree: The tree managed by an object is the central part of the global structure. 
The sentence structure is to be constructed incrementally from the different trees 
at the hierarchical level. 

5. Used Nodes: The combination of the trees is represented by marking which nodes 
of the trees have been used for which combination operation, and which other object 
has been integrated. 

6. Goal Object: One problem of control is the adjunction of several auxiliary trees 
into the same node (e.g., several modifiers for the same noun) . Only one auxiliary 
tree can be adjoined directly into the node of adjunction, all the others must be 
adjoined into the respective part of the modified tree (an integrated auxiliary tree). 
The address of the object which has sent that tree is stored. 

30 



There are two important factors for the choice of trees by the monitor: Firstly, the action 
takes place during the initialization phase of the object and is in fact the first action at all. 
Secondly, the monitor must integrate the object into the global structure in order to get 
as much information as possible for the tree choice. That is why, the object communicates 
with the monitor before it chooses its tree. 

Construction of the Global Structure 

For the first communication with the monitor, the object must hand over its address, its 
unique identifier, and the identifier of its regent. These data are stored in the global struc­
ture, where the object's address is used as the key. Furthermore, the given information 
is used as far as possible to mediate between the communication partners. The monitor 
uses two local variables to manage this task: 

search-regent stores the unique identifier and the address of each object. It helps to 
find the address of an object when only its identifier is known (e.g., each time when 
an object looks for its regent). 

search-deps associates identifiers with a list of addresses of objects looking for a regent 
with the respective identifier . Each object that cannot identify its regent during 
its registration at the monitor - because it was earlier created than the regent - is 
stored in this variable. For each new object the monitor tests, if its identifier can be 
found here and sends the respective messages to all waiting objects (the dependents 
of the new object). 

The monitor also informs the regent when new dependents are created at the hierarchical 
level. The regents can use this information, e.g., to wait for delayed objects. It is impor­
tant to know if the dependents manage an auxiliary or an initial tree, i.e., if they will be 
adjoined or substituted (for the motivation see Section 4.3) . Address and type of the tree 
are stored in the variable context of the regent. 

The following steps are made during the registration of a new object: First, an entry 
is created under the object's address. It is stored together with the identifier in search­
regent. Then the monitor looks in search-regent for the unique identifier of the object's 
regent. If it can be found, it is integrated into the entry in the global structure. If the 
address could not be found, the object is stored in search-deps, together with the identifier 
of its regent. Finally, the monitor searches for dependents waiting for the actual object 
as their regent in search-deps and informs them in case of success. 

The monitor returns to the registrated object a list of all known dependents and its 
regent. The tree choice is modelled as a distinct process because it can be made several 
times, whereas the registration of an object is made just once. It will be described in the 
next section. 

Tree Choice with the Monitor 

Each object must send some local information to the monitor that tries to choose an 
adequate tree. Relevant data are the ATS and the history of previously tried trees (ab­
breviated as TTS for tried tree set) that is empty during the initialization phase. TTS can 
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be used to prevent the system from doing the same mistake twice. Also, a specification 
of the syntactic form is useful here. 
The algorithm for the tree choice is roughly described in the following: 

1. One tree is chosen according to the given local information of the object. It is called 
temporary-tree. It is a time consuming task to compute all possible trees that could 
be integrated into the overall structure. This is why, the monitor just chooses one 
tree - with very simple means - and tests, if this tree can be integrated. During 
this choice the monitor follows the constraints given by repetition number, active 
forms and so on (see Section 4.2). 

2. If temporary-tree is found and is not an element of TTS, then go to Step 3, else to 
Step 4. 

3. For auxiliary trees, it is roughly tested if the precomputed tree can be integrated into 
the global structure. If the object's regent is known, the monitor searches for a node 
in its tree where temporary-tree might sensefully be adjoined. Obviously, this test 
can be combined with the computation of the goal node, i.e., the node of adjunction 
for the tree. If there are several candidates for this role, it should be possible to 
use further information to restrict the possibilities, e.g., the state of linearization, 
or the current style. In our prototype, the monitor chooses the deepest node (the 
node that is as far away from the root as possible) as a default. It is presupposed 
that the grammar designer restricts all necessary structural combinations with help 
of constraints. 

The only problem with the computation of the goal node again is the case that two 
auxiliary trees need to be adjoined into the same node of their regent tree. One must 
be the first, the second can be adjoined into this one, and so on. These interlocking 
combinations must be synchronized. In order to keep the global structure consistent 
and to compute new combinations on the basis of previous ones, the monitor of 
ISGT fixes the chosen tree and its relation (goal node) to the regent, even before 
adjunction (or substitution) has really taken place. For interlocking adjunctions 
this has the consequence that the order in which the goals were computed by the 
monitor must be kept during the real combination. Otherwise, the goal nodes would 
have to be computed again. The basic principle for this approach can be formulated 
like this: From a set of concurrent auxiliary trees (that need to be adjoined into the 
same node) that tree is adjoined first, which was first registered at the monitor, i.e., 

which corresponds to the earliest given input. 

The test for possible integration of a tree into the global structure is subdivided into 
the following steps: 

a. If the object's regent is known, look in its tree for an adjoining or substitution 
node. 

b. If the regent is known but no goal node could be found, then go back to step 2. 

c. Insert temporary-tree into the entry of the actual object in the global structure. 

d. Return all found structures to the registered object and terminate the tree 
choice. 
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4. Return NIL. 

It becomes clear that an object's initialization phase largely consists of communication 
with the monitor. In the best case, it receives the addresses of its regent and its depen­
dents, the tree that is to realize the represented lexeme, and the goal node in the regent's 
tree, in which the local tree shall be adjoined. Each object stores these results in its local 
variables. 

4.3 Construction of the Sentence Tree 

The goal at the hierarchical level is the construction of a complex sentence tree from 
the single trees that are ruled by the objects. In order to reach that goal, the objects 
must co-operate and communicate. It seems convenient to define a certain 'direction of 
activity'. If it becomes a principle that either the regent initiates the communication 
with its dependents or the other way round, the distribution of tasks and responsibilities 
becomes clear. A 'free communication' would be much harder to handle. 

In ISGT, each dependent is responsible for offering its local data to the regent at the 
appropriate time. If the regent was responsible for those activities, then it would have to 
query its dependents several times in order to find out if they are ready to integrate their 
partial structures into the global tree. The costs for communication would be higher. 
It remains to be described what the appropriate time to communicate with a regent is. 
According to [Neumann 89], the term 'completeness' is used here. 

The Completeness of Dependents 

The test for completeness is made for trees that are to be combined with other ones 
by adjunction or substitution. Their completeness should prevent them from too early 
bindings, for otherwise they would have to hand some data to their regents later which 
in the worst case could lead to failure. What does completeness mean for initial and 
auxiliary trees? 

1. The feature structure of the head must be complete in the sense that it contains no 
path which is not ended by a value. This condition is necessary to guarantee that 
the relevant information is complete when the object tries to integrate its tree into 
the global structure. 

2. Initial X-type trees are integrated into the global structure by unifying the feature 
structure of their root node with the feature structure of the substitution node oj 
their regent. Later adjunctions or substitutions in the dependent trees do not in­
fluence the regent tree, except when the feature structure of the root is changed. 
In this case, the newly constructed feature structure of the root must be sent to 
the regent tree. The change can be non-monotonic (see Section 3.3), i.e., the fea­
ture structure is not purely enlarged but modified in another way. In this case thE 
transfer to the regent tree becomes more difficult, because the two 'interface-featurE 
structures' can not simply be unified. It might be sensible not to declare a sub­
stitution tree complete before all its known dependents have been adjoined into it. 
Substitutions can be left aside, because they only lead to monotonic changes. Up tc 
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now It cOUla not be estImated, now otten tnose late changes ot teature structures ot 
roots can take place. It will be tested by using several different completeness tests 
in the prototype. 

3. In the actual version of the generator, auxiliary trees are structurally embedded in 
their regent trees - adjunction will be realized as a 'parallel' operation within the 
next extension of the prototype. A late adjunction or substitution in an auxiliary 
tree therefore means a structural change of their regent tree. There are different 
definitions for the completeness of auxiliary trees that have to be tested in the 
prototype (e.g., all substitution node~ must be filled, ... ). 

This definition is the presupposition for defining the combination operations themselves. 
As adjunction and substitution imply different demands and different actions, they are 
discussed in two distinct sections. 

Substitution at the Hierarchical Level 

Identification of the Substitution Node: It is very easy to identify the respective 
substitution node for a given tree: Since most substitution nodes in the regent tree will 
be labeled with 'A', the feature structure of the root node of the substitution tree is 
compared with the feature structures of all substitution nodes. The first node whose 
feature structure is compatible with that of the root node is chosen as goal node. Both 
ob jects store the identified node in order to use it as interface for the further flow of 
information. 

Substitution: The trees at the hierarchical level are distributed over different objects. 
They can only be combined by sending messages between the objects. It would be possible 
to send whole trees to the respective regent object, but this would concentrate the struc­
ture more and more in one object (the highest regent in the hierarchy of the sentence) 
and would reduce parallelism. How can the trees remain distributed over the objects 
and be combined all the same? This question is answered by the introduction of TAGs 
with substitution (see Section 2.4). The substitution node can be seen as an 'interface' 
between regent tree and substitution tree, and between the two objects as well. There 
is no structural change inside but rather at the edge of the regent tree. A continuous 
separation of the resulting tree means the duplication of the substitution node, but in the 
regent tree it is only a stand-in for the substitution tree: It is associated with the feature 
structure that results from the unification of (copies of) the feature structures from root 
and substitution node. 

Additionally, it is associated with a pointer to the dependent object, thereby defining 
a quasi-structural relation that remains uncomplicated because adjunctions are forbidden 
in substitution nodes. All modifications of the substitution node must take place in the 
dependent object and are sent (if necessary) to the regent. 

Information Flow over the Substitution Node: If the feature structure of the root 
node of a substitution tree is changed, the new information must be sent to the regent 
tree. Those changes can be caused by adjunctions or substitutions in the object, or by 
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an information flow through its own substitution nodes. If this happens, the object must 
communicate with all partners connected with it via substitution nodes (regents as well 
as dependents), if the respective 'interface feature structure' has been changed. 

A newly sent feature structure can directly be unified with the feature structure of 
the goal node if either this is a substitution call or the new feature structure comes 
from an object where it has also been created by direct unification. This simple kind 
of processing is guaranteed only if the respective feature structure has been changed by 
a monotonic operation (unification). The non-monotonic adjunction (see Section 3.3) 
can modifiy feature structures in a way that they are no more compatible with those 
feature structures which existed before the adjunction took place. These kinds of feature 
structures cannot simply be unified with their partners, because this could lead to a failure. 
They must be 'set' instead of unified. This must happen after adjunction, but also if the 
feature structure comes from an object where another one is set and has thereby caused 
the change. This is why, the sending of new feature structures to or from substitution 
nodes must be associated with information about their genesis as can be seen in Figure 15 

direct Setting 
unification 

( unification J ( setting J 
Substitution 

direct Adjunction Setting 
unification 

Figure 15: 'Types' of Information Flow 

AdjunctIOn in the Hierarchical Level 

Identification of the node of adjunction: Tree choice for an object is carried out 
either during its initialization phase or directly before its combination with the regent 
object. At the same time, a complex description of the goal node is computed which, 
e.g., says if the auxiliary tree is to be adjoined in a node of the original regent tree or in 
a node of another auxiliary tree that has been integrated into the regent before. 

Adjunction: Substitution trees remain separated in spite of the unification of the fea­
ture structure of their root with the feature structure of the substitution node. This is 
possible, because the substitution tree is not inserted into the regent tree but associated 
with it at one edge. If auxiliary trees should also be kept separated, the flow of information 
through their root and foot nodes would have to be simulated - a very complex and costly 
task. Consequently, adjunction is handled in a different way than substitution. Auxiliary 
trees are fully handed over to the regent object. The dependent object starts to sleep 
because it has transferred all its responsibilities to its regent. It must not be terminated 
for two reasons: (a) In the case of backtracking it could be possible that the adjunction 
must be taken back and the original state must be created again, or (b) there could be 
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late messages from its own dependents. The number of these messages can be restricted 
by a more or less strong definition of the completeness condition (see Section 4.3). They 
concern substitutions, adjunctions, and the flow of information via substitution nodes. 

In connection with adjunction and backtracking, the idea of a 'history of trees' in the 
objects has come up. The result of each adjunction will be integrated into this history. 
This allows for taking back adjunctions step by step during backtracking. 

4.4 Transfer to the Positional Level 

Recall the results from Section 2.4: The positional level is not realized as a distinct 
level with new objects. The objects of the hierarchical level change their state, if they 
fulfill some specific demands, which have to be defined in the following. Then they try 
to manage the tasks of the positional level. There is no 'real' transfer of TAG trees to 
structures defining positional relations. Instead, the already existing trees are associated 
with their LP rules. 

The central question that will be discussed in this section is which conditions an object 
must meet, before it is allowed to change to the positional level. The conditions are called 
linearization conditions. 

Linearization Conditions for the Transfer to the Positional Level 

Not all objects at the hierarchical level are transferred to the positional level but only those 
managing an initial tree. All objects with auxiliary trees have started to sleep sometime 
before - their regents are responsible for the further computation of their structures. This 
also holds for linearization. 

The following conditions seem to be senseful preconditions for the transfer of objects 
with initial trees to the positional level: 

1. Initial trees must have been substituted. As LP rules define relations (not absolute 
positions) for elements of TAG trees, the position of a word in the whole sentence can 
only be determined when looking at the global structure from its root. Therefore, 
each object must be able to reach the absolute regent of the sentence, at least its own 
direct regent. For further expansions of the system, you can think of a more variable 
management, e.g., default positions for subjects or other means (see Section 6). 

Substitution itself is bound by completeness conditions. They have to be tested 
again in order to decide if they delay linearization too much. This discussion is 
described in the next section. Anyhow, the completeness of the feature structure of 
the head remains the minimal presupposition for the integration of a substitution 
tree into the global structure. 

2. All dependents managing an auxiliary tree that are known to the object must have 
been adjoined. The reason is, that they can influence the order of the terminals in 
an unpredictable way. 

3. In contrast to this, the object does not have to wait for dependents with initial trees. 
An object whose tree contains unfilled substitution leaves may nevertheless change 
to the positional level. The positional relation of the substitution nodes to the rest 

36 



of the tree reflects the position of the whole subtree which is expected to substitute 
the node. This subtree needs not be integrated in order to linearize the supertree. 

Since linearization and completeness conditions are closely related, they will be compared 
in the following section. 

The Relation of Linearization and Completeness Conditions 

Although objects with auxiliary trees are not transferred to the positional level, the time 
of their completeness and their integration into their regent is relevant for the transfer of 
those regents. This is why, completeness conditions of both auxiliary and initial trees are 
compared in this section: 

Initial Trees: The linearization conditions for initial trees contain their completeness 
conditions, but vary with the realized alternatives. If the completeness conditions 
did not include the test for adjunction of all known dependents with auxiliary trees, 
then it must be carried out additionally. This takes place after the substitution and 
- if necessary - after each further change of the object. If the test is part of the 
completeness conditions then the permission for substitution is at the same time a 
permission for the transfer to the positional level. 

Auxiliary Trees: If an object with an initial tree knows that one of its dependents 
manages an auxiliary tree and has not yet been adjoined, then it must not linearize. 
That is why, completeness conditions of auxiliary trees can delay the linearization 
of initial trees (their regents) by delaying their adjunction. On the basis of these 
considerations, it seems more useful to define a less strong completion test for aux­
iliary trees: They should not be forced to wait for all substitutions before they are 
allowed to be adjoined in the regent tree. 
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5 The Positional Level 

Objects changing from the hierarchical to the positional level exchange their goal for a new 
one: Their local structure must now be linearized, i.e., ordered according to the given LP 
rules, the lexemes must be inflected and uttered. Therefore, the change to the positional 
level can be understood as an object's readiness for the verbalization of its own lexemes. 
The objects need a minimum of information to do that. They have been introduce~ as 
linearization conditions which are tested before the transfer. 

The mixing of objects of the hierarchical and the positional level, whose communication 
links are preserved, has the consequence that many calls which are specific for one of the 
two levels must be realized for both levels. An object at the positional level must be 
able to handle all information it receives from objects of the hierarchical level after its 
transfer. This concerns all late substitutions, the managing of information passing through 
' interface nodes', and the adjunction of latecomers. These late structural modifications 
normally do not influence the fulfillment of the linearization conditions. Especially with 
respect to adjunction it must be noted that the linearization condition demands only the 
adjunction of all actually known dependents with auxiliary trees. 

The objects at the hierarchical level must also be able to react to calls from the 
positional level. Each object that wants to utter its partial structure must know its 
position in the global sentence tree. This can be computed by stepwise calls up to the 
highest regent. These calls also concern objects which are still at the hierarchical level. 

In the following, the methods specific to the positional level will be introduced. Lin­
earization and inflection which must be managed by objects at the positional level can 
in principle be handled locally. The leaves of the managed tree must be ordered in a 
way that is allowed by the associated LP rules. After that, the lexemes are inflected and 
uttered. These processes become complicated, because the objects just deal with parts 
of a global structure, other parts can be created incrementally, new objects can change 
from the hierarchical to the positional level and can work in parallel. 

Since all subtrees are distributed over distinct objects, this also holds for the associated 
LP rules. That is why, an object can not locally decide which position its subtree has 
in the global structure. It must get this information by communication with higher 
objects. This process is called output call here and is described in more detail in the 
next subsection. The output call is the first action of an object at the positional level: 
Without permission 'from above', the terminals of the local tree must not be uttered. 
The time that passes until the answer to that output call is received can be used for 
a first linearization and inflection phase. During this phase the leaves of the local tree 
are ordered as far as possible according to the given LP rules, the lexemes are inflected 
and stored, as they must not yet be uttered. The phase is called first linearization phase 
because the local tree possibly can only be traversed partially. Substitution nodes can 
act as 'breaks' if they lead to subtrees which have not yet been uttered. If the object 
receives a message from its regent allowing for output the prepared sequence of words is 
uttered and the output of the previously 'breaking' subtree is initiated. After this subtree 
has been completely uttered, there can be further linearization phases. They differ from 
the first linearization phase in the fact, that the reached words can now be inflected and 
uttered immediately, as the permission for output has already been given. Again, these 
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phases can be interrupted by substitution nodes. 
The communication with other objects is not the only reason for the complexity of 

processing at the positional level. There must also be plans to handle exceptions like late 
adjunction in objects that already have linearized and/or uttered their trees, or backtrack­
ing at the hierarchical level which also influences objects at the positional level. Some 
of these cases can be integrated into the overall processing without too much difficulties, 
but for others it seems necessary to design new strategies. 

5.1 The Output Call 

Objects at the positional level want to linearize their local trees and inflect their leaves 
with the goal to utter them. The actual utterance must not start before the sentence 
part can be uttered within the global structure. Output phases naturally must not take 
place in different objects in parallel. Nevertheless, the possibility to work in parallel can 
be used to process linearization and inflection locally in the objects, even if output is not 
allowed. 

All actIOns at tne pOSItIOnal level - output call, ilneanzatlOn, mi1ection, and utterance 
- are not useful before at least one lexeme can locally be positioned in the first place. 
This condition is called output condition. Even if it is fulfilled, the output can not start 
before it is allowed by the regent. The time that passes while an object waits for the 
answer can be used to linearize and inflect the local tree as far as possible. This is why, 
the first action at the positional level is the sending of the output call (after the output 
condition is fulfilled) to the regent. After that, the first linearization phase can start . 

Storing the Output State 

Each object at the positional level fulfilling the output condition asks its regent, whether 
it is allowed to utter its part of the sentence. The relation to the regent always consists 
of a substitution node. The regent tests its local structure in order to decide whether the 
dependent may start uttering at this time. 

In order to correctly answer the output cail, the regent must know, which dependents 
have already finished or just begun their output, and how the LP relations of the single 
nodes look like. The state of the subtrees must be stored within the respective objects 
for the following reasons: 

• Objects must be able to answer an output call, i.e., to decide whether parts of their 
tree may be uttered. 

• In order to know the current global output state (compare with the description of 
the problem of consistency in Section 5.1), all objects which send a positive answer 
to one of their dependents must store that the respective object now begins with its 
output. 

• New states are also stored within those objects which are themselves still at the 
hierarchical level, for they must possibly deal with output calls . In these cases, 
the states are not used for the objects themselves but only for the calls from their 
conununication partners. 
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The LD structures can very easily be associated with LP rules (see Section 3.4). There are 
several possibilities to realize this association. The definition can be transferred literally 
and then leads to < -relations with references to node numbers. This kind of definition 
has two disadvantages: During the traversal of a tree for its linearization, the rules must 
be interpreted globally. Furthermore, an adjunction leads to the combination of two 
sets of LP rules whose node numbers must be adapted to the new tree structure. A 
more favourable solution is the following realization of LP rules: A rule 'X < Y' may be 
interpreted as 'Y has to wait for X during linearization'. This suggests the idea to associate 
T with all nodes which have to be uttered before it. Since this only concerns sisters, the 
information remains locally and unchanged even during adjunction. In Figure 16, all 
sisters of Z which have to be uttered before it are associated with the edge from Z to its 
father. Figure 17 shows that these sets are not changed during adjunction. 

X<Z 
y<z 

s 

~ 
x y z 

s 
~Y) 

X Y Z 

Figure 16: The Representation of LP Rules in the Objects 

s 
~(XY) 

X Y Z 

Adjunction 
::::;. 

s (VA 
s V 

~(XY) 
X Y Z 

Figure 17: Consequences of Adjunction on the Internal Representation of LP Rules 

In the next paragraph it will be examined, how it can be stored within the trees 
whether subtrees have started or finished their output. 

Representation of Complete Output: It must be stored whether a lexeme has been 
uttered as well as whether a complete subtree has been uttered. In both cases, the 
respective father nodes are stored in the local variable output-string, together with the 
uttered words. The node numbers can then be compared with the sets on the next 
traversed edges. In the example in Figure 18, the words below X and Z as well as all 
leaves of the subtree of Y have already been uttered. This is marked by boxes around 
the terminals or sequences of terminals. The three nodes are stored in output-string. The 
same is done for W, for its complete subtree (consisting of X and Y) has been uttered. On 
the basis of the entries in output-string, it can now be computed that the word below A 
can be uttered next: All nodes in the set on the edge to A can be found in output-string. 

The list of nodes associated with an edge of a tree only represents the necessary 

condition for linearization. Additionally, another condition must be fulfilled: Even if this 
list is empty at one edge, it is possible that linearization has just begun in a neighbouring 
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completely 

uttered 

output-strlng = 
( ... x ... y W .. . Z) 

Figure 18: Representation of Complete Output 

subtree and is not yet finished there. So the edge must not be traversed before the 
processing of the other subtree is completed. 

Figure 19: Linearization of Subtrees 

Figure 19 shows that the edge to node B could theoretically be traversed because the 
associated list is empty. But output has already begun in the subtree under W (with the 
terminal WI) and is not yet finished because of Y 1. 

Representation of 'Uttering' Subtrees: If a regent receives the message that one of 
its dependents has begun with the output but not yet finished it, this information must 
be stored. The reason is, that other subtrees must not utter their terminal strings even if 
they would not have to wait for the first one with respect to the LP rules, because output 
must be sequentialized. The easiest solution for this problem is another local variable 
output-by containing information about the question whether the object itself, one of its 
dependents, or its regent is actually occupied with the output. The variable can contain 
the following values: NIL (neither the object itself nor one of its dependents are actually 
or have already been occupied with the output), the own address (the object itself has 
started uttering), the address of a dependent (the dependent has started uttering), or the 
address of the regent (the object and all its dependents have completed their output and 
reported this to the regent). The computation of an answer for an output call is based 
on the first three possible values of output-by, the fourth is used during corrections of 
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the output (see Section 5.4). As can be seen in the next section, an output call can be 
handed over by several objects until one is found which is able to compute an answer. 
On the way back to the original questioner, each object stores the respective dependent 
in output-by if the answer is positive. Figure 20 shows, how 0 1 sends an output call (in 
the picture O-C) to O2 that is passed to 0 3 • 0 3 computes a positive answer (O-R stands 
for output result), so in a first step O2 and then 0 1 are stored within their regents as the 
object which (or whose dependent) is now occupied with the output. 

~ O-C 

output-by = O2 

II O-R 
U = T 

output-by = 0 1 

II O-R 
U = T 

Figure 20: Representation of 'Uttering' Subtrees 

The following section shows how an object answers an output call on the basis of its 
local information. If the local information is not sufficient, the object passes the call to 
its own regent. 

Answering the Output Call 

Three situations can be identified in the called object which are represented in Figure 21. 
The position of the terminal string and the important substitution node always reflect 

Regent Regent 

w 

n Output Call n Output Call n Output Call 

Figure 21: The Regent Answering the Output Call 

that this node is placed as far left as possible with respect to the LP rules. The trees 
in this and the next figures always represent mobiles. Either they are shown in one 
allowed ordering for reasons of clarification, or are traversed according to these LP rules 
in another than the represented ordering. The reaction of the regent to the output call of 

its dependent depends on the state of its local tree: 
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1. 'To the lett' of the respective substitution node is a terminal string WI that has 
already been uttered completely (see left tree in Figure 21). In this case, no further 
call to the regent's own regent is necessary: As the regent already has the permission 
for output, this is also valid for its subtrees and therefore for all its dependents. The 
answer now depends on the fact, which value is stored in output-by. If the value 
is not the regent's address, this means that another dependent is occupied with 
uttering and the answer must be 'NIL'. If the value is the address of the regent 
itself, it may allow for the output for the calling dependent (the answer is 'T'). At 
the same time, the address of the calling dependent is stored in output-by. 

2. 'To the left' of the respective substitution node is a terminal string WI that has not 
yet been uttered (see tree in the middle of Figure 21). This situation can be found 
if a) the regent is still at the hierarchical level, or b) the regent is at the positional 
level but either does not fulfill its own output condition or waits for an answer to 
its own output call. This is reflected by the value 'NIL' in output-by. In both cases, 
the call of the dependent can immediately be answered with ' NIL '. 

3. If the substitution node can be positioned in the first place of the sequence of leaves 
(see right tree in Figure 21), the output call is handled like this : 

a. The regent itself is the highest object of the regent-dependent hierarchy. Then 
it can decide about the output call. The decision depends on the value in 
output-by as in Point 1. If it is the address of a dependent, the actual question 
is refused. Otherwise, the answer is 'T' and the calling dependent is stored in 
output-by. 

b. The regent is not the highest object. If output-by is NIL (it is not known to the 
regent that another object is occupied with uttering), and the regent knows 
the address of its own regent , it forwards the output call. Otherwise, it cannot 
decide if the calling dependent may start the output and answers 'NIL' . Output 
will also not be allowed if another dependent is stored in output-by. 

It becomes clear that an output call is probably sent over several regents before it can be 
uttered. 

Forwarding the Output Call 

In order to return the answer to an output call to the originial questioner, the call must 
be associated with a list of 'callers'. The answer can then be handed over to the correct 
object by traversing this list in reverse direction. 

During the downward transfer of the answer, it should have side effects if it is a ' NIL'. 
A dependent. that wants to utter its local structure should not have to call its regent again 
and again, so it is stored within its regent in the variable ready-for-output. The same is 
done for all objects which have forwarded the call to their own regents. If an object is 
actually occupied with uttering and has traversed its local tree up to a substitution node, 
it looks for the respective dependent in ready-for-output and sends a permission, if it has 
found the address. 
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1'Igure a snows how two dependents ot an object HI send output calls close on one 
another. The circled numbers define the order of actions. Think of a situation where the 
respective substitution nodes can be positioned so that both dependents could potentially 
utter their local string. If the regent can not locally decide if its dependents may utter, 
both output calls are forwarded. Thereby one of the two dependents must be handled 
first. As the call from 0 1 has reached the highest object first (and RI is allowed to utter 

A-A 
G) 

output-by = RI 
ready-for-output = (Rd 

output-by = 0 1 

ready-for-output = O2 

Figure 22: Forwarding the Answer to the Output Call 

its partial tree), the answer is 'T' and R1 is stored in output-by. RI forwards the answer 
to 0 1 and stores 0 1 in output-by. In contrast to this, the call from O2 reaches R2 at a 
time when another one of its dependents is occupied with uttering. This dependent is the 
same as the direct caller, but the list of callers differs in a deeper level. The output call is 
refused, but R2 as well as R1 store the respective dependent (R1 or O2 ) in ready-for-output. 

Obviously, it is redundant to store RI in the variables output-by and ready-for-output of 
R2 , but this redundancy does not disturb the processing and is maintained for reasons of 
simplicity and uniformity. 

Reacting to the Answer 

If the answer is positive, the partial string that has been computed in the meantime is 
presented on a special part of the screen (see Section 5.2). If the answer is NIL, the 
object waits for the permission, because its readiness is now known to its regent. In spite 
of its complexity, the forwarding of the output call and the respective answer over several 
objects functions without deadlocks and in a finite number of steps. The reason is the 
concept of one direction of activity. If an object itself can not answer a call, it forwards 
it to its own regent. Only this one (or a higher object) can have enough information to 
decide about the positioning of the calling object. The forwarding of the call must end at 
the absolute regent of the hierarchy of objects. There are no crossings of calls, because 
their transfer is synchronized. 

No object has to send its output call twice and its readiness is stored in the variable 
ready-for-output of the regent after the first call. So the time for handling each output 
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call stays linear (with the number of objects or the number of words of the sentence) . 

During the time that passes between the first output call of an object and the reception of 
the answer, the object tries to find a local connected partial terminal string and prepares 
it for output. It must be able to linearize and inflect. 

5.2 Linearization and Inflection 

Linearization 

As mentioned above, the trigger for the first linearization phase is sending the output call. 
This may only happen if the object fulfills the output condition, i.e., if there is a lexeme 
which can be uttered locally in the first position. The next goal is to look for this lexeme 
and as many directly connectable other lexemes as possible, and to store their order (as 
the output is not yet allowed). The substitution nodes possibly divide the linearization of 
the local tree into several steps, namely if there is no order of the terminal leaves which 
allows for a continuous sequence of words. The first linearization part is computed during 
the output call and the respective string is stored. All further connected sequences of 
words can be uttered directly during several output processes. The two different phases 
of linearization are described in more detail in the following paragraphs . 

Linearization during the Output Call: The goal of the linearization process during 
the output call is to compute a local string of lexemes which is as long as possible. 
Therefore, parts of the tree must be linearized, the found lexemes must be inflected (see 
Section 5.2) and stored in the local variable output-string. If the answer to the output 
call is positive, this string may be uttered immediately. 

The linearization process traverses the actual subtree from its root depth-first in order 
to find a path leading to a lexeme without contradicting any given LP rule. The LP 
condition sets are examined with respect to the elements which are already stored in 
output-string. In Figure 23, X and Y have been identified as possible start of the terminal 

Output Call 

(X) (A) 
y B 

~ output-string: (w~ X w~ Y W) 

Figure 23: Computation of output-string during the First Linearization Phase 

string. Their lexemes are inflected in this order (and called w~ and w~ for reasons of 
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distinction) and stored in output-string. This does not only finish the linearization of X 
and Y but also of the complete subtree under W. These three nodes are also stored in 
output-string. This variable is used during the further phases of linearization and is filled 
incrementally. 

Linearization and Output after Completion Messages from Subtrees: Substi­
tution nodes are 'breaks' for the first linearization phase. If all possible - according to 
the given LP rules - lexemes to the left of the first substitution node are uttered, further 
output can not start before the respective dependent objects have completed their own 
utterance. For this reason, each message from a dependent about the completion of its 
output triggers a new linearization phase. First, the uttered string and the respective 
node numbers are stored in output-string. In Figure 24, this is the string VI and the node 
Z. During the next phases, linearization and entries in output-string are processed as 

ff U u 
completely w3 w~ 

uttered U U 
~ Output Output 

output-string: (w~ X w2 Y W) -+ (w~ X W2 Y W Vt Z) ---- ... ---- (w~ X w2 Y W Vt Z w~ A w~ B) 

Figure 24: Linearization and Output after Completion Messages from Subtrees 

before but - in contrast to the first linearization phase - each reached lexeme can directly 
be inflected and uttered. In Figure 24, these are the lexemes W3 amd W4 (inflected w; and 
w~). 

If another substitution node breaks a linearization phase, the readiness of the respec­
tive dependent can be found in ready-for-output. If its address is found, it is requested to 
linearize its subtree. 

The above described depth-first search in the trees in several phases is a simple and 
basical principle of the positional level. It can easily be shown that this processing is 
disturbed by structural changes of the actual tree. The order of subtrees can be changed 
by late adjunctions, so that in this case linearization has to start again for the whole tree. 
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Inflection 

The lexemes are inflected with help of the morphological module MORPHIX 
(see [Finkler & Neumann 89]). MORPHIX allows for generating and analyzing word 
forms. The details can be found in the cited literature. 

Linearized and inflected words are uttered from time to time, as has been shown in Sec­
tion 5.2. Although the output is realized as simple as possible, it is briefly described in 
the next section. 

5.3 Output at the Positional Level 

The first output of an object - after its first linearization phase - is read from the variable 
output-string. Each further output is produced directly during the linearization of further 
subtrees. Each time, the respective roots of the subtrees are stored in output-string. 

If the output is complete, a message is sent to the regent and the object starts 'sleep­
ing'. The regent can store the respective substitution node and eventually some others 
in output-string. Another consequence of the message is that it means an output permis­
sion for the regent if it is at the positional level. Its variable output-by is set to its own 
address. In the worst case, the regent can not directly start to utter but has to wait for 
other dependents first. 

Together with the message that the output is complete the output string is transferred 
to the regent (see Figure 24). It is stored in output-string. This duplication of terminal 
strings simplifies a local correction of the output in the case of late structural changes. 
This problem is handled in the following. 

5.4 Late Adjunction in Objects at the Positional Level 

Two Cases of Late Adjunction 

There are two different problems with late adjunctions in objects at the positional level 
that have to do with the actual situation of the object. 

After Sending the Output Call: After an object has entered the positional level, 
fulfilled the output condition, and sent the output call, the output condition can later be 
changed by adjunctions. Figure 25 shows, that the object fulfilled the output condition 
because of the leaf WI that could be positioned at the left. After another adjunction, 
the object's state has changed. The first element of the output string must now be the 
terminal string of a dependent. So the output condition is no more fulfilled. 

Corrections in incremental generation systems are a very complicated task. In the 
presented module, a very simple and uniform solution has been realized, which is on the 
other hand very costly. Better solutions can be imagined, e.g., by using communication 
between objects or by realizing a central component for control. The solution for this 
prototype is that the state of the object remains the same. In the worst case, the output 
is hereby delayed. If the answer to the output call is negative, the problem is less relevant. 
If it is positive, the object must not produce any output itself, but it can react fast (and 
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Output Call 

Adjunction 

Figure 25: Late Adjunction after Sending the Output Call 

positively) to an output call of the problematic dependent which hopefully is received 
soon. 

There are other cases where the results of linearization (the entries in output-string) 
must be newly computed. 

During the Output Phase: Late adjunctions can only become visible to the user if the 
respective object is in the output phase and if the structural change leads to a situation, 
where parts of the utterance must be drawn back. Figure 26 shows two situations that 
can come up after a late adjunction during the output phase. On the left side, the worse 
case is shown: WI and W2 have already been uttered (which is marked by the boxes). The 

Figure 26: Situations with Late Adjunctions during the Output Phase 

consequence of the adjunction of tl is, that the terminal string v is inserted between the 
previously uttered parts. 

There can also be adjunctions that do not change the output string but only add some 
words to the right (see the example on the right side of Figure 26). The situation becomes 
problematic if, e.g., the subtree below X that now is placed below the foot node X, has 
already been marked as completely uttered. There must be a correction, too. 

Again, a simple and uniform solution is realized. Overt revisions in the output phase 
should be prevented or at least limited. One possibility is to influence the hierarchical 
level with the aim to choose another auxiliary tree. If such a tree cannot be found, output­
string is newly computed and compared with the previous state. According to the result, 
overt revisions are produced. 

It has been motivated that in the case of a late adjunction the variable output-string must 
be adapted to the new state. This is done by a new computation. In the following, it will 
be explained how the produced utterance is overtly repaired on the screen. 
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Repairing the Output 

Either the concerned object is able to repair the output itself, or it must transfer the 
newly computed output-string to its regent. This depends on the question if the object 
has already finished its output phase. 

Output Phase not yet finished: If the output phase of the object is not yet finished, 
either the object itself, or one of its dependents is actually occupied with the computation 
0\ its O\lt~\lt str\n~. 'This can be examined. b'J a \ook at the vat\a'o\e output-h1)'. 

1. output-by = own address: The object itself is actually occupied with the com­
putation of its output string and therefore can repair it locally. The kind of repair 
depends on the result of the comparison of the old and the new value of output­

string. If the new one results from a simple addition to the old one, the utterance 
can be succeeded to the right. But if the terminals in the new string have another 
order than the terminals in the old one, the repair becomes visible. The most simple 
realization of repair on the screen is the jump into a new output line and the total 
repetition of tne sentenc.e. Tne example in Fi~\lre '2.7 snows now a late ad.~\lnc.t\on 
inserts terminals between the previously uttered lexemes WI and W2' Furthermore, 

output-string 

(w~Xw~Y) 

Adjunctio~ 

"W~W2" 

=> "w~ v'" 

Figure 27: Local Repair 

output-strtng 

(w~Xv' B) 

an additional substitution node is inserted between X and Y. So not only the order 
of terminals in the new and the old value of output-string are different, v' must 
also be added. The object starts a new line on the screen and utters the changed 
beginning of the sentence. This total repetition can only be locally computed if the 
object is the absolute regent within the hierarchy. Otherwise, it must hand over a 
respective message to its regent which is forwarded to the absolute regent. 

Repair can be realized in a more flexible and adequate way, e.g., words could be 
crossed out or erased, new parts could be inserted into the sentence, and so on. 

2. output-by = address of a dependent: The simplest solution in this case is: 
The object does not try to stop the dependent's output - which could lead to 
corrununication over several levels. Instead it waits for its message 'output complete'. 
At this time, the object itself can again become active and can handle as described 
for Point 1. 
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1I tne oDJect nas already nlllsned Its output phase ~ output-by = address of the regent), its 
regent must repair the output. 

Output Phase already finished: As above, the object newly computes its output­

string. It sends a message to its regent which is forwarded if necessary and leads to the 
interruption of output, no matter which object is actually occupied with it . When the 
ob ject has received the confirmation and again has finished its local linearization, it sends 
a new terminal string to its regent which must care for the realization of the overt repair. 
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6 Conclusion and Outlook 

6.1 Main Results of the Work 

The goal of this work was to develop concepts for a syntactic generator that uses Tree 
Adjoining Grammars to generate natural language sentences in an incremental style. In­
cremental processing within the formulator suggests that input from the conceptualizer 
and output to the articulator should be incremental, too. The model of cascades allows 
for the transfer of partial results to the succeeding components, so that there may be 
parallelism at all levels. 

ISGT is a description-directed generator (see Section 2.2). The idea of this approach is 
to insert several levels of explicit linguistic representation between message and sentence 
string representing the text on several levels of abstraction. Thereby, the data on the 
distinct levels guide the syntactic generation and allow for a more efficient processing. 
We use Lexicalized TAGs with Unification and Constraints, as this extension of the for­
malism fulfills the requirements upon a syntactic representation of natural language (see 
Sections 3.1, 3.2 and 3.3). 

During the construction of the sentence structure, there should be as few as possible 
fixings with respect to the final position of subtrees. The order of input and the construc­
tion of subtrees should influence the order of output, thereby supporting an incremental 
style of processing. Hierarchy and position of constituents are therefore computed in dis­
tinct components. LD/LP TAGs allow for such a use of TAG trees (see Sections 2.3 and 
3.4). The syntactic generator ISGT is separated into two components: 

• At the hierarchical level, the syntactic structure of the sentence is built using the 
LD parts of TAG structures, i.e., mobiles (Section 4). 

• At the positional level, word order is computed with the help of the LP rules, the 
lexemes are inflected and uttered (Section 5) . 

At the hierarchical as well as at the positional level, processing is incremental. The use 
of parallel interactive communicating objects allows for a further gain in efficiency. These 
objects manage subtrees of the overall structure (see Section 2.4). 

The contributions of this work to the use of TAGs for incremental and parallel syntactic 
generation are 

• a motivation for the use of lexicalized TAGs, 

• the choice of an adequate segmentation of the representatlOn structure, 

• concepts for the incremental and parallel construction of syntactic structures at the 
hierarchical level and 

• strategies for an incremental and parallel linearization at the poitional level. 

The following sections will deal with these points. 
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A Motivation for the Use of Lexicalized TAGs: 

The system ISGT uses conceptual and lexical guidance to guide the choice of alternative 
trees and the construction of the sentence tree (see Section 2.3). The input for ISGT 
consists of lexemes and information about their functional relationship with the aim to 
make the choice of TAG trees as deterministic as possible. 

Trees of basic TAGs contradict this demand. They should - this is a linguistic con­
straint - always present the predicate of the represented substructure together with all 
its obligatory arguments. As the structure of the regent and all substructures of its ar­
guments must be expanded down to the terminal nodes, the choice of such a tree means 
the decision over structures which are not described by the input information associated 
with the regent. The choice component should therefore wait until all dependents of the 
respective regent have been specified by input information. This would cause a delay of 
the choice of trees and of the construction of the syntactic structure and directly leads 
to the demand for a further separation of TAG trees into smaller, more adequate parts. 
The formalism of lexicalized TAGs fulfills this demand: Each tree can be identified by the 
syntactic information of its regent and its functional relation to the surrounding structure. 

An Adequate Segmentation of the Representation Structure: 

Since the tasks of the hierarchical and the positional level should be solved by interactive 
objects working in parallel, the representation structure must be adequately segmented 
in order to minimize the communication between the objects (see Section 2.4). The 
elementary trees of a lexicalized TAG serve as segments for ISGT. With the input of one 
lex erne and its functional relation to its regent, a tree can be chosen and an object can 
be created which manages its further processing. 

Substitution nodes are an ideal interface between the regent object and the object 
that manages the substitution tree. Objects with auxiliary trees hand over all their local 
information during their adjunction into the regent. This saves costly management and 
communication. In the final state, the only active objects at the hierarchical and the 
positional level are objects with initial (and in the meantime integrated auxiliary) trees . 
In this way, the processing becomes uniform and simple. Furthermore, the resulting size 
of segments seems to be advantageous for an incremental and parallel computation on 
both levels of the formulator 

The Incremental and Parallel Construction of the Syntactic Structure at the 
Hierarchical Level: 

Objects at the hierarchical level (see Section 4) are created incrementally on the basis 
of the input from the conceptualizer. Part of their local variables are instantiated with 
the input data. They are used during the initialization phase to choose an equivalent 
TAG tree, and additionally to identify other objects, with which the recent one can 
communicate and cooperate to build the overall structure. The communication partner 
for the initialization phase is the monitor. It receives information from each object that 
wants to be registered and builds a global structure on this basis giving an overview of 
the state of the hierarchical level. The monitor uses its global knowledge for the choice 
of trees and the computation of the addresses of communication partners. The other way 
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round, the monitor inlorms aU objects about newly registered objects that are functionally 
related, thereby guaranteeing the construction of all necessary communication links. 

After its initialization phase, each object tries to fit its tree into the existing syntactic 
structure. An efficient strategy to control this construction is the definition of a direction 
of activity from the dependent to the regent. One reason for this is, that the dependent 
has to fulfill specific completeness conditions in order to integrate its local tree into the 
syntactic structure. These criteria differ for objects with inital and objects with auxiliary 
trees. Objects with auxiliary trees are incorporated during adjunction in the regent tree . 
Therefore, they have to have solved all their tasks before this combination. During substi­
tution, the feature structure of the substitution node and the feature structure of the root 
of the substitution tree are unified. Substitution is realized as exchange of information 

between the dependent and the regent objects. The hierarchical level converges to a state 
where only objects with initial trees are active, whose substitution and root nodes are 
ideal interfaces for a distributed sentence tree. 

Strategies for Incremental and Parallel Linearization at the Positional Level: 

Since in the final state there are only objects with initial trees at the hierarchical level, 
only these trees must be transferred to the positional level (see Section 5). The change is 
done within the work at the hierarchical level when an objects fulfills specific linearization 
conditions which allow for a further processing at the positional level. As the linear prece­
dence rules which are relevant at the positional level refer to the hierarchical structures 
(mobiles) of the hierarchical level, these are not copied into new objects. Instead, the 
objects of the hierarchical level change their state when fulfilling the linearization condi­
tions and exchange their goal against a new one: The locally managed structures are to 
be linearized, the lexemes are to be inflected and uttered. 

As the LP rules of the TAG structures only allow for a local definition of positions of 
partial trees, one object alone cannot decide about the position of its subtree in the whole 
syntactic tree. This can only be done by the regent of the complete syntactic tree. Each 
object that fulfills the linearization condition, i.e ., that has a leaf (not a substitution node) 
in the first local position, must ask its regent if output is allowed. The call is forwarded 
by several objects to their respective regent until the top object is found, or until one 
is asked which can give a unique answer because of its situation. Even if the answer is 
negative, the object needs not call again: It is stored at its regent and the regent will 
inform it if it may utter its terminal string. 

The time that passes between sending the output call and getting the answer can be 
used for a first linearization phase. Coming from the lexeme that can be positioned at the 
leftmost place, the tree is traversed according to the LP rules so that a terminal string is 
computed that is as long as possible. The lexemes are inflected and stored. They can be 
uttered immediately, when output is allowed for the object. 

The first linearization phase stops if a substitution node is found. Only if the respective 
subtree has been uttered (the dependent is called to do so), the output can be continued. 
Further linearization phases can again be interrupted by substitution nodes and differ from 
the first phase in that each reached lexeme can be inflected and uttered immediately. 

Thereby, the output activity passes over from one object to another. It is always 
checked by output calls that the local tree may be uttered next within the global struc-
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ture. The output activity is passed over from each object to its dependents or to its 
regent if the output is locally complete. In this way, the sentence tree is completely and 
efficiently traversed at the positional level. 

The presented concepts for incremental syntactic generation with Tree Adjoining Gram­
mars can be further developed at several points which are briefly discussed in the following. 

6.2 Further Developments 

In addition to pure practical extension - like the development of a large-sized grammar 
and a lexicon - there are several theoretical problems that have been mentioned within 
the respective sections of this work and that are interesting starting-points for a further 
development of the system. On one hand, they concern a more detailed specification of 
concepts, on the other hand alternative concepts especially questioning the role of Tree 
Adjoinin~ Grammars within the formulator. 

Starting-Points for a more Detailed Conception: 

Generally, the system must be tested not in connection with a simulated input, but with 
a real conceptualizer which hands over the input, and with a more complex articulator. 
If several levels are realized, it must be thought over if a heterarchical model (which, e.g., 
allows for direct influence of the conceptualizer to the articulator) should be preferred to 
the cascade. 

Additionally, the system should be implemented on a machine with several processors. 
Measurings of performance could show possible speed ups by parallelism. 

The concepts of the hierarchical and the positional level that are to be worked out 
in more detail are mentioned in the respective sections. They affect the choice of TAG 
trees during the initialization phase, the different completeness conditions, and a better 
control of the information flow over the interfaces represented by substitution nodes and 
root nodes. Up to now, revision is solved with minimal means. Much work can be done 
to develop concepts for a more sophisticated realization of revision on a psycholinguistical 
and computational basis. This is important especially because an incremental style of 
generation often causes conflicts and leads to the correction of previously uttered parts. 

The Role of TAGs in an Incremental Syntactic Generator: 

There are several points of criticism to the used extensions of TAGs which have partially 
been mentioned in Section 3. 

TAGs with unification are too powerful for the representation of natural language. A 
useful restriction of the formalism should be worked out to allow for a more adequate 
representation and a more efficient generation of natural language. 

Lexicalized TAGs are used with the additional constraint that each tree must con­
tain terminal leaves. A less restricted formalism could be used, e.g., to define structures 
without leaves, i.e., without connection to the lexicon. This approach could be similar to 
the formalism Segment Grammar (see [DeSmedt 90]): Trees, that have only substitution 
nodes instead of terminal nodes, can be used to define purely syntactic (functional) rela­
tions between partial structures. This helps to avoid redundancy in the definition of the 
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grammar and possibly improves the use of the trees within an incremental system. 
The most problematic extension of TAGs is LD/LP-TAG. It is not very useful for a 

skillful formulation of word order rules of natural language (e.g., German) . The concepts 
of this work have been developped with the presupposition of using an existing TAG 
extension, and not to define a new one. The definition of LD /LP-TAGs strongly influences 
the realization of the positional level. The presented approach is an applicable solution 
with respect to the given situation. But it does not allow for a flexible realization of all 
possible word positions of German. One idea inspired by [DeSmedt 90] consists in the use 
of another representation formalism at the positional level. For ISGT, this would mean 
not to use Tree Adjoining Grammars for the representation of positional relations between 
constituents. DeSmedt's idea is to turn away from the local and relative definitions of 
LP rules. He arrives at the definition of absolute positions in the sentence. It could be 
interesting to try to find a similar approach for an incremental syntactic generator based 
on TAGs. The transfer between hierarchical and positional level would then be a real 
transformation and the positional level would have to be totally redesigned. 

Within this work, concepts for an incremental TAG-based syntactic natural language 
generator have been developped and basically implemented. The result is the module 
ISGT that has been presented and reviewed in this chapter. 
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