
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

HieraCon

Document
D-91-12

A Knowledge Representation System

with Typed Hierarchies and Constraints

Bernd Bachmann

August 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
Kaiserslautem
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
Saarbrucken 11
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
Kunstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarnrucken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Philips, Siemens
and Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

CJ Intelligent Engineering Systems
CJ Intelligent User Interfaces
CJ Intelligent Communication Networks
CJ Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

HieraC on
A Knowledge Representation System
with Typed Hierarchies and Constraints

Bernd Bachmann

DFKI-D-91-12

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8902 C4).

© Deutsches Forschungszentrum fOr KOnstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr KOnstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr KOnstiiche Intelligenz.

A Knowledge Representation System with

Typed Hierarchies and Constraints

Bernd Bachmann

August 1991

Contents

1 Introd uction

I Fundamentals

2 Constraints
2.1 Definitions and Concepts
2.2 Constraint Satisfaction Problem.
2.3 Solving the CSP

2.3.1 Local Consistency
2.3.2 Exploiting Hierarchies for Local Consistency

3 Struct ured Hierarchy
3.1 Concepts

3.1.1 Hierarchies
3.1.2 The IS-A Relation
3.1.3 Structured Objects

3.2 An Example.
3.3 Definition

4 Constraint Typology
4.1 Example of a CSP

4.1.1 Extensional Denotation
4.1.2 Individuals as n-ary Constraints
4.1.3 Relations between Parameters.

4.2 Requirements for the CSP .. .
4.3 Constraint Typology
4.4 CSP over the Knowledge Base.

5 Constraint Processing
5.1 Concepts
5.2 Propagation.......

5.2.1 Specialization in the Knowledge Base
5.2.2 Value Propagation Methods

5.3 Relaxation
5.3.1 Generalization in the Knowledge Base
5.3.2 Selection of Candidates for Relaxation

5.4 Summary and Conclusions

1

5

7
7
9
9

10
11

13
13
13
14
14
15
16

20
20
21
21
22
23
23
26

27
27
29
29
31
33
34
34
36

II

6 The Configuration Task
6.1 Model
6.2 Insights
6.3 Modeling as CSP

7 }Iiera(Qn
7.1 Functionality
7.2 Dependency Network

7.2.1 Recorded Information
7.2.2 Inconsistency Management
7.2.3 Provided Information by the RMS
7.2.4 Relationship with Problem Solver.

7.3 Relaxation
7.3.1 Weighted Constraints
7.3 .2 Compound Constraints
7.3.3 Limitations

7.4 Optimization ..
7.5 Network Layout . .
7.6 Architecture

7.6.1 Definition of the Configuration Task
7.6.2 Solving the Configuration Task

7.7 Implementation
7.7.1 Language .. .
7.7 .2 Current State.

8 Existing Systems
8.1 ACK
8.2 COSSACK
8.3 IDA .. .
8.4 PLAKON
8.5 Platypus .

9 Conclusions

Bibliography

CONTENTS

37

39
39
40
42

43
43
44
45
45
46
46
46
47
50
51
52
54
56
56
57
59
59
61

62
62
63
64
64
65

66

68

List of Figures

2.1 Backtracking algorithm for solving the CSP
2.2 Graph coloring
2.3 Algorithm for achieving local consistency
2.4 Local consistency over hierarchical domains

3.1 Example of a structured hierarchy
3.2 A hierarchy of structured and primitive types

4 .1 Example of a CSP
4.2 Representing individuals as n-ary constraints
4.3 Constraint as relations between parameters
4.4 Constraints which exploits the structured hierarchy.

5.1 Greatest common subtype (gcs) and real supertype (rst)
5.2 Specialization of two structured types
5.3 Specialization of two structured types with respect to a knowledge base
5.4 Example for value propagation
5.5 Example for the structured type chain (stc)
5.6 Computing of candidates for relaxation

7.1 Recorded information for the variables .
7.2 Propagating relaxability over the network
7.3 Example for the relaxation process
7.4 Exploiting resources for optimization purpose
7.5 Example for a dynamically changing constraint network
7.6 Components of Hier<X:Qn
7.7 Principle algorithm for solving the configuration task.
7.8 Constraint Typology

10
10
11
11

15
17

21
22
23
25

29
30
31
31
35
35

45
48
50
53
54
56
58
60

Chapter 1

Introduction

c;onstramts, naively being dehned as consisting of a set of variables and a relation on them ,
playa crucial part in many fields of AI. Ever since Waltz [Wal72] proposed a methodology to
recognize objects on the basis of their contours, the theoretical aspects and the practical issues
of constraints have been intensively investigated.

Constraints are composed to build more complex structures by coupling single constraints via
common variables. The resulting network is called a constroint network. The problem which
must be solved is to find an assignment of values to the variables such that all constrain ts
respectively, the underlying relations-are satisfied simultaneously. This problem is called the
constroint satisfaction problem (CSP). Depending on the requirements one needs to find either
a single solution or all solutions for the CSP, defined as a constraint network.

The complexity of this class of problems is of great interest. Since the "four color problem"-a
well-known NP-complete problem-can be modeled as a constraint satisfaction problem, the
problems in this class are NP-complete as well. Consequently, the algorithms to solve the CSP
have an exponential complexity in general, unless NP = P . Nevertheless, there are subclasses
which can be solved in polynomial time, cf [Fre82].

The obvious method for solving the CSP over finite domains is the generate-and-test algo
rithm: All possible combinations of values for the variables are systematically generated and
then tested whether they satisfy all constraints. An improvement of this approach is the
chronological backtracking algorithm, which generates the assignment of values incrementally
over the variables and checks whether a constraint is violated at each generation step. If a
value violates a relation this value is retracted and the next one in the domain is tried. This
approach still shows a "pathological" behavior [Mac77].

A key issue in research is how to cope with this pathological behavior. Various approaches can
be found in literature:

• In a preprocessing step some values which cannot contribute to any solution are deleted
from the domain of the variables. Basically, these algorithms have been developed from
the Waltz labeling algorithm [Wal72] which transforms the network to a locally consistent
state; hence, all remaining values of the variables contribute to at least one solution of
the relation. All constraints are taken into account individually, thus no statement can
be made about the contributions of the remaining values to the overall solution. Local
consistency is discussed in more detail in section 2.3.1.

Enhancements of this algorithm are those which take into account more than one con
straint simultaneously or synthesize new, already implicitly defined constraints and add

2 Chapter 1: Introduction

them to the network, cf [Fre78]. They reach a higher level of consistency in the network,
e.g. path consistency [Mac77], k-consistency [Fre82].

• The constraint network is transformed to a relaxed network with equal solutions but
fewer backtraclcing steps (ultimately, without any backtracking step, cf [Fre82]) while
the search for the global solution takes place. This is reached by exploiting the fact that
the sequence of selecting variables and assigning values is arbitrary. Several heuristics can
be used to choose a sequence which most likely implies restrictions on further assignments
of values.

• Also domain/task dependent heuristics can be used to limit the absolute run-time. For
example, a constraint is dynamically added to the constraint network at the time it is
known that a special alternative or a set of alternatives imply an additional constraint
[FBMB90], rather than starting with all possible constraints from the very beginning.

Based on these issues, various research topics concerned with constraints can be distinguished:

• An exhaustive research has been carried out developing efficient constraint propagation
algorithms ([Mes89] and [K um90]) working on CSPs over finite domains.

• Prolog, as being a very declarative programming language also based on relations, uses
an uninformed backtracking algorithm to solve its CSP. Two limitations in the built-in
Prolog control structure (resolution + backtracking) can be found and are tried to be
overcome in a research field, called constraint logic programming (CLP).

- The functional symbols in Prolog are uninterpreted and only used to syntactically
structure the entities in the modeled world. The standard unification algorithm
contains no information about terms which are semantically equal but syntactically
unequal, e.g. set-of-elements(a,b,c) and set-of-elements(b,a,c). Since unification of
terms can be regarded as solving an equality constraint between the terms, en
hancing the unification algorithm with knowledge about the underlying domain
of discourse is in fact an introduction of an algorithm for solving the CSP with
equality relations. An example for this approach has been investigated in CLP(R)
[JMSY90], a constraint logic programming language handling equaJjties and inequal
ities between terms over real numbers.

- Obviously, the backtracking procedure of Prolog must show the same pathological
behavior as mentioned above. An introduction of special CSP algorithms in the case
of finite domains [vH89], like forward-checking, must improve its absolute run-time.

• Constraints themselves can be used as knowledge representation formalisms, providing
a good separation between the problem statement and the problem solving process,
or static and procedural knowledge [Sap89]. Recently developed expert system shells
use this methodology by integrating a constraint module besides rules, terminological
knowledge representation, etc. Examples are CONSAT [Giis89] in BABYLON [CdPV89],
IDA [Pau90], and CONTAX in the ARC-TEC shell [BBK+91].

The representational power and the usage in a great variety of research and development areas
rely on several properties of constraints.

• The declarative power of constraints is based on their mere appearance as relations in
the modeled world. Constraints are used to express relations between variables which

Chapter 1: Introduction 3

have to be maintained by the constraint handler. Hence, they do not have any oper
ational or procedural meaning for the user the time the constraint network is defined.
However, constraints have an attached operational aspect on a deeper level to perform
their task for maintaining the relation. This level is hidden for the user and replaces
the necessity to define these operations himself in conventional programming languages l .

Their operational aspect, e.g. propagation and relaxation, is the main issue clarifying
the relationship between constraints and relations2•

I Constraint-based modeling = Relations + Operations I
The operations are specialized for different domains or, at least, exploit the structure of
the constraints, cf [Ric89] .

• Many problems in AI can be fact be regarded as search problems. The algorithms for
solving the CSP cope with exponentially growing search spaces or infinite domains. The
methods have been developed to prune the search space, thus, reducing the absolute
run-time of the search algorithms. Therefore, constraint propagation mechanism are

I efficient solver for search problems I
in domains where searching is otherwise intractable.

• Modeling complex domains and tasks (configurations, diagnosis, action planning, etc.)
is one of the key objectives of AI. Since constraints enable the knowledge engineer to
focus on local relationships among entities in the domain, constraints and constraint
networks are extremely suitable to model complex domains with a relatively simple and
well defined formalism. Additionally, on account of the local behavior of the operations
defined on constraints, some CSPs can be solved while using parallel algorithms [Kas89].

Constraints describe local relationships between entities.

These characterizing properties were used to define a subclass of constrain t satisfaction prob
lems which are modeled in Hieracon: Dynamic constraint satisfaction problems with structured
hierarchies as domains.

Motivation

Referring to the discussion above, the three main statements have been the guidelines for the
theoretical aspects and the practical implementation of Hieracon'

1. Although taxonomies have already proved its declarativeness and its power by exploiting
its internal structure for the inference process in logic programming [Mon87] very little
research effort has been put into the development of constraints exploiting the structure
of this kind of domains for its variables.

2. The problem definition and the problem solving process are strictly separated by pro
viding a constraint language as a toolbox which can be used to define the knowledge
cognitively adequate. The attached operations propagation and relaxation are defined
for each type of constraint individually or, in general, by exploiting the structure of the
domain. Therefore an object-oriented approach was chosen for the constraints where
"propagation" and "relaxation" are attached methods for a whole class of constraints.

1 Constra.in t Ia.ngua.ges ma.y be rega.rded a.s progra.mming Ia.ngua.ges for specific doma.ins, cf [LeISS].
2From the sa.me point of view Prolog ca.n be rega.rded a.s 'horn-cla.uses + SLD-resolution'.

4 Chapter 1: Introduction

3. Various heuristics for the algorithms have been introduced in order to keep the prob
lem solving process efficiently. Unfortunately, additional functionality like explanation
and optimization features requires an overhead for data and dependency management.
Consequently, the shortly mentioned algorithms for efficient constraint problem solving
cannot be applied directly because they only exploit the finiteness of the domains but
not its structure which is most important in the following application.

4. The user is able to attach constraints to individual entities of the knowledge base or
to a group of entities via type declarations. So, the knowledge base can be built up
incrementally and its maintenance is quite simple. The complexity appears only at run
time such that the problem solver has to cope with it and not the user.

5. Although the proposed general methodology to couple constraints and hierarchies was
introduced from a general point of view a trial to apply it to a real AI task should reveal
its feasi bili ty.

6. Additionally, a proper design of the system on the conceptual level under consideration
of the paradigms of the implementation language was an objective in order to improve
and enhance the algorithms easily which process the constraints.

7. As conventional constraint propagation methods have already proven its power the pre
sented method should be put into relation with them and include their functionality in
specific cases.

However, due to time restriction only a part of the complete system could have been imple
mented. The implementation of a complete system must be an objective for further research.

Outline

As the following documentation is not a complete introduction to "constraints", readers who
are not familiar with this research area are referred to the literature, basically cited in this in
troduction. Throughout the report, it was tried to discuss only the relevant topics exhaustively,
whereas some hints can be found for literature presenting some issues in more detail.

The document is divided into two parts. Part I discusses the problem of integrating constraints
with hierarchies of structured objects. Chapter 2 introduces the basic terminology in the field
of constraint-based reasoning. A method for solving the constraint satisfaction problem over
finite domains is presented. Subsequently, chapter 3 formally defines the object hierarchy based
on an example of the kind of knowledge which has to be represented with the IS-A relation.
In chapter 4 various kinds of constraints are introduced to represent a simple configuration
task over the previously defined hierarchy. The last chapter in this part, chapter 5, describes
how the various types of constraints are processed (constraint propagation and relaxation) by
exploiting the structure of the domain.

In part II, based on a model for the configuration task in chapter 6, the design of the system
}fier«<>n-is discussed. The discussion is motivated both by exploiting the structure of the
knowledge base as well as by the additional requirements evolving from the configuration task.
Therefore, Hieracon is presented on a conceptual rather than on an implementation level.
Finally, in chapter 9, a few other, already existing systems which influenced the design of
Hieracon are discussed and put in a comparative relation with it.

Part I

Fundamentals

Chapter 2

Constraints

This chapter introduces a part of the basic terminology and the concepts used throughout the
documentation. In the first two sections constraints and the constraint satisfaction problem
(CSP) are defined. Subsequently, one approach to solve the CSP over finite domains-local
propagation + backtracking-is discussed in detail. Readers who are familiar with these terms
may skip to section 2.3.2 where the idea of coupling local propagation with hierarchical domains
is introduced . Especially, this chapter may not be regarded as a complete introduction to
algorithms for solving CSPs over finite domains. For that purpose, [Mes89] and [Kum90J
provide a comprehensive overview.

2.1 Definitions and Concepts

Constraints are typically represented as relations over variables with attached domains; hence,
the definition is based on the description of relations as subsets of Cartesian products.

Definition 2.1 A finite set of variables Xl, ... , Xn and their respective domains D 1 , ... , Dn

is given. A n-ary constraint l C(Xb"" xn) over the variables Xl , " ., In is a subset of the
Cartesian product DI X ... X Dn.

As the set of variables is finite a tuple-as instantiation of the Cartesian product-of discrete
values is always suitable to represent a solution of a constraint.

Definition 2.2 A constraint C(Xl, ... , In) is satisfied by a tuple (d l , ... , dn) if (d l , ... , dn)

is in C(Xl, ... , Xn).

This definition does not state how the constraint is actually represented. It can be extensionally
denoted by listing all the tuples which satisfy the constraint or it can be intensionally defined,
describing it by a n-ary predicate which evaluates a given tuple. As one of the results of this
work, it will be shown that even a mixture of both possibilities is sensible in case of a specific
structure of the domain.

In general , constraints are in fact relational without distinguishable variables for the input or
output of values with respect to the computation of the relation . Occasionally, constraints

1 As in this definition, constraints may be regarded as relations over typed variables. Therefore, the terms
"constraint" and "relation" will be used synonymously in case that only their representational character is
addressed.

8 Chapter 2: Constraints

have a functional behavior on different levels. On the one hand , the user has a function in
mind, e.g. an arithmetic function, while he defines the relationship between the variables. On
the other hand, the constraints may be functionally computable the time they are evaluated.
The following definitions identifies this subclass-functional constmints-in more detail.

Definition 2.3 1. A constmint C(Xl, ... ,Xn) is functional with respect to variable Xk
(1 ~ k ~ n) if for all assignments of values to the variables X) (1 ~ j ~ n, j f; k) there
is exactly one value for the variable Xk such that C(Xl, ... ,Xn) is satisfied.

2. A constraint C(Xl, . . . , xn) is completely functional if it is functional for all variables

xk(l~k~n) .

In this case, the solution tuples can be actively computed by the constraint itself and, therefore ,
it has a somehow different behavior than predicative constraints, being either extensionally
or intensionally defined. Typically, arithmetic constraints are functional or even completely
functional. The constraint x+y = z with Dx = Dy = Dz = Z is completely functional, whereas
x * y = z is only functional with respect to z because the result of the division function may
not be defined in Z. Even in R it is not functional with respect to x or y because if 0 is
assigned to y and z there are infinite many possible values for x. Consequently, one has to
carefully select the domains and the properties of the functions which underly the constraint
if one would like to work with functional constraints. This feature is very often used in case of
infinite domains, such that the constraints are only evaluated if n - 1 variables have assigned
values as in [Giis89].

The benefit of functional constraints lies in their effective computation and their deterministic
behavior. There is no need for generating tuples and testing them; instead, partial tuples
can be enhanced to complete solution tuples. Additionally, as the value for some variables is
uniquely determined this values must be used in all other constraints including the variable as
well (cf definition 2.4). The disadvantage of functional constraints is that, though constraints
are relations, the computation becomes directed and has to be deferred until all input variables
of the function have assigned values.

Although the presented examples are defined over infinite domains the method of functionally
computing values from other values can also be applied to symbolic, discrete domains and
thus enable are more directed search for a solution. The idea is exploited in Hier«:Qn and is
discussed later on in this chapter .

Consequently, the way how values for variables are computed can be classified according to the
kind of underlying constraints. Functional constraints provide a constructive computation
new values are functionally derived from given values-whereas, predicative constraints per
form a destructive computation: Initially the complete domain is attached to the variable
and consecutively some of them are retracted due to the evaluation of the predicates.

Most algorithms for handling constraints over finite domains cope with binary constraints
constraints over two variables-due to the fact that there is no loss of generality [Nud83] and
it is easier to compare the complexity of constraint propagation algorithms [Mes89J. Unary
constraints can be regarded as restrictions of the initial domain, e.g. if the variable z in an
arithmetic constraint x + y = z is defined over all natural numbers but the result of the sum
should be restricted to even numbers, the unary constraint "even(z)" is in fact a simple domain
restriction.

2.2 Constraint Satisfaction Problem 9

2.2 Constraint Satisfaction Problem

Single constraints can be coupled via common variables to build more complex structures.

Definition 2.4 A finite set of variables Xl, ... ,Xn and their respective domains DI, . .. ,Dn
is given. A constraint network is a set of constraints C1 , .•. ,Cj where each constraint
Ck(Xk 1, ... , Xk,) (1 ~ k ~ j) is defined over the variables Xki E {Xl, ... ,Xn} (1 ~ i ~ I).

Binary constraint networks are networks which consists only of binary and unary con
straints. Two dual, graphical representations for constraint networks-labeled graphs-are
used in the literature .

• Variables are represented as nodes and the constraints as links. This representation
is basically utilized for binary constraint networks and will be used throughout this
documentation, cf figure 2.2 .

• In case that n-ary constraints are to be represented, very often the dual graph is chosen
where nodes are representing constraints and links are representing their variables, cf
[SJ80J.

A constraint network is the complete graphical description of the problem which has to be
solved.

Definition 2.5 A constraint satisfaction problem (CSP) is a tuple (V,C) where V de
notes a finite set of variables with their corresponding domains and C denotes a set of con
straints over these variables.

The task is to find an assignment of values to all variables such that all constraints are satisfied
simultaneously.

Definition 2.6 A solution for the CSP (V,C) with V = {VI, ... ,Vn}, a set of variables with
domains DI, ... ,Dn, and C = {CI , ... , Cd, the set of constraints, is a tuple (d1 , ... ,dn) ~
DI x ... xDn, such thatforallCj ~ Dj1 x . . . xDj, inC, (djl, ... ,dj,) withji fixed (1 ~ ji ~ n}
is a solution for Cj.

According to different requirements, one needs to find either one solution, all solutions, or the
"best" solution for the given CSP.

2.3 Solving the CSP

The obvious approach for solving a cSP over finite domains is the backtracking algorithm
described in figure 2.1 (adapted from [DP88]). ComputeCandidates(xl, ... , Xl, xl+d returns
the set CI+I of possible values for XI+I such that all constraints between XI+l and Xl,·· ., XI
are satisfied by the current assignments for Xl, ... , XI and each value in the set CI+I. The use
of this algorithm reveals some maladies of backtracking which are discussed in [Mac77J.

10

Forward(XI,'" ,xd
if I = n then exit *Current Assignment *
CI+ I := ComputeCandidates(Xl,' .. ,Xl, XI+I)
if C'+I f 0

then dl+l := first element of C
'
+I

XI+I := dl+ l
remove dl+ l from C/+ I
Forward(Xl, ... , Xl, xl+d

else Go-back(xl, ... ,XI)
end * Forward *

Chapter 2: Constraints

Go-back(XI,'" ,Xl)
if I = 0 then exit * No Solution Exists!*
if Cl f 0

then d1 := first element of Cl
XI:= d1

remove dl from Cl
Forward(Xl, ... ,Xl)

else Go-Back (Xl, ... , xl-d
end *Go-Back*

Figure 2.1: Backtracking algorithm for solving the CSP

c - ((gJ=n. red)
Ired. green) }

Figure 2.2: Graph coloring

2.3.1 Local Consistency

One of the inefficiencies is based on the fact that the sequence for the variables is fixed; hence,
the following situation typically happens: There is a constrain t C(Xi, X j) and the value a E Dj is
assigned to Xi but there is no value bE Dj such that (a, b) satisfies C(Xj, Xj). The backtracking
algorithm checks all possible assignments (a, di+l, ... , dj) before it finally retracts a from the
list of possible candidates for Xi. Obviously, this inefficiency can be prevented if one would
check whether the domain for Xj includes a solution for C(Xi,Xj) as soon as a is assigned to
Xi. The following definition defines this state as local consistency.

Definition 2.7 Constraint C(Xi, Xj) is locally consistent if for each value di E Di there is
a value dj E Dj such that (di,dj) satisfies C(Xi,Xj).

Obviously, the definition states only the existence of such a value, but does not require that
this value contributes to a solution for the constraint network at all. As the condition of local
consistency is weaker then the one for a global solution , there might be a locally consistent
state for a CSP but a solution for the CSP does not exist. Vice versa, if a global solution exists
then the CSP also has a locally consistent state. A simple example can be found in figure 2.2.
The constraint between two nodes is assumed to be 'f'. The constraint network is obviously
locally consistent: For each color in each node there is another color in the neigh bored node
such that the two colors are different. But a solution for the CSP does not exist: If two
variables have the assigned values 'red' and 'green' there is no possi ble value left for the third
variable.

The algorithm for achieving local consistency in a constraint network is straightforward and
shown in figure 2.3. LC is called with a representation of the complete constraint network .
The internal call NC (node consistency) evaluates all unary constraints, representing the initial
value restriction for a variable. The algorithm runs until no more changes can be found in
the constraint network. The efficiency can be improved because the above algorithm causes

2.3 Solving the CSP

LC(G)
for i := 1 until n do NC(Xi)

Revise(xj, Xj)
Delete := false
for each dx ; E DXi do

11

Q := {(i,j) I (i,j) E arcs(G),i f: j}
repeat

Change := false
if there is no dYi E Dx) such that C(Xj,Xj)

then remove dx from DXi
for each (i,j) E Q do

Change := (Revise(xi, xi) or
Change)

until Change = false
end "LC"

Delete := true
exit Delete
end "Revise"

Figure 2.3: Algorithm for achieving local consistency

constraint constraint := { (x21.y21)
(x22.y21)
(x23.y22)
(x23.y23)
(x24.y24))))

4

Figure 2.4: Local consistency over hierarchical domains

all arcs to be revised after a successful deletion of a value, though only a few are affected, cf
[Mac77].

The usage of the algorithm as a preprocessing step for backtracking prevents the above dis
cussed malady. Enhancements of this scheme are easily imaginable: Taking into account more
than two variables in the preprocessing step would reach are higher level of consistency (cf
[Fre78]); but these approaches are beyond the scope of this work.

2.3.2 Exploiting Hierarchies for Local Consistency

The LC algorithm in figure 2.3 for achieving local consistency starts with an initialization of
all values to the variables in the network. Very often, the domains are structured as hierarchies
where the "IS-A" relationship represents the subset relation between two concepts. Chapter
3 describes the terminology hierarchy in more detail. In that case, it is preferable to assign
a concept to a variable instead of ail the individuals explicitly for which the vertex is an
abbreviation. In [MMH85] the LC algorithm is enhanced for hierarchical domains.

The idea may be summarized as follows. The solution tuples of the constraints are defined
as in case of fiat domains. The constraints are evaluated in a preprocessing step such that a
predicate is attached to each concept in the hierarchy of the domain. This predicate stores
the relation between two concepts: whether there are solutions of the constraints or not. The
current value of a variable is now represented by a set of concepts where each concept represents
a set of values. Figure 2.4 gives an example. The domains are hierarchically structured and the
solutions of the constraint between variable x and yare given extensionally. As an example,
three relationships in the hierarchy are shown. They can be computed once from the fact that
the constraint is satisfied by (x21, y21) and (x22, y21) and that there is no solution for x21
and x22 with y23 or y24. This information is then exploited each time the domains of the
variable are tested for local consistency. A complete set of individuals are retracted from the

12 Chapter 2: Constraints

domains in the negative case without investigating each individual and checking the constraint
several times. For example, if the current value of x is xl! and the current value of y is y12 the
information which is stored in concept xlI states that there is no solution for the CSP at all.
Consequently, this technique saves calls of the predicate C(x, y) in the conventional version of
LC in figure 2.3. The improvement of the complexity is also investigated in [MMH85].

In the above approach, the constraints must still be extensionally denoted on the individuals'
level. An obvious enhancement is to define the constraint solutions already on the concept
level. This idea has been worked out in [MJ91] and will be used in Hieracon as well.

From the viewpoint of constraint processing the idea of functional constraints can be found
here again. Describing the extensional solution as relationship between concepts enables a
functional propagation on a higher level: As soon a.s one of the concepts is assigned to a
variable the other variable gets the other concepts as value which hold the solutions of the
local relationship. This idea is also adopted in Hier~n where the constraints are defined as
relations between classes in the knowledge base.

Chapter 3

Structured Hierarchy

This chapter defines the structure of the domain of the CSPs taken into account. A general
review of the properties of hierarchies under special consideration of the IS-A relation is given
in the first section. Subsequently, an example of a real domain is presented to motivate the
required expressive power of the representation formalism. Finally, a formal definition of the
IS-A relation is evolved to gain a semantics on which the constraints will be based in the next
chapter.

3.1 Concepts

The observation that an extensive part of the knowledge AI has to cope with can be represented
with the aid of conceptual relations between objects has led to the development and widespread
use of hierarchies. The conceptual relations in common use are either the IS-A relation ,
which describes a generalization/specialization relationship between objects or the PART-OF
relation, denoting a composing/decomposing relationship. The decision which one to choose
depends on the intention of what should be represented and how the hierarchy is used for
knowledge processing. As constraint solving is a process of refining values for a set of variables l

and the solution is the composition of the single values in the constraint network, the hierarchy
is necessarily being built over the IS-A relation, whereas the single elements of the solution
are decomposed and represented in the layout of the network. The IS-A relationship then
structures the domains of the variables and is being used for refining the value of a variable
from its initial value-a class-down to a leaf of the hierarchy-an individual.

3.1.1 Hierarchies

The conceptual description of the hierarchy can be performed in two different ways .

• Terminological representation languages, e.g. KL-ONE [BS85] or Krypton [BFL83], pro
vide subsumption algorithms which compute the hierarchy automatically by the use of
the conceptual description of the objects itself. Consequently, the languages must be
based on a formal semantics such that the IS-A relation is well-defined and correctly
computable2 . Originally, terminological represen tation languages were developed for nat
ural language understanding, but may also have some impact on representing technical
knowledge [BH91] in expert systems.

I [Fox86] designates conjtraint jolving, besides jearch and reasoning, as one of the major po in t of views for
problem solving tasks.

2However, subsumption in KL-ONE is undecidable! [SS89a]

14 Chapter 3: Structured Hierarchy

• The hierarchy may be defined by any construct in the representation language that
represents "IS-A". In this case, there need not to be a seman tical relationship between the
objects which were defined as being in the IS-A relation with each other. Additionally,
the user is able to define inconsistent knowledge bases with consistent objects . This
method is usually provided by object oriented languages with all its problems based on
an informal and inconsistent semantics, e.g. multiple inheritance, overwriting of default
values, etc.

The approach taken here is located anywhere in between. The hierarchy is defined just by
using a construct for the IS-A relationship but vice versa if two objects are comparable with
each other, they must fulfill some formal criteria. This is also required to get a well defined
propagation algorithm which partially works on the structure of the hierarchy and assumes that
it is semantically conform. Additionally, multiple inheritance also gets a well defined semantics
and default values can be overwritten if it happens in consistence with a type hierarchy.

In the following, the terms class and individuals are used for the objects of the hierarchy.
An individual represents a physical object in the world and is a leaf in the hierarchy. A class
represents a set of individuals with common properties and thus, may keep properties which
must hold for each of them. Classes are the inner nodes of the hierarchy.

3.1.2 The IS-A Relation

The hierarchy is composed by means of the IS-A relation between the objects of the hierarchy.
There are many different possible interpretations for the IS-A relation [Bra83]. In order
to clarify its semantics the two relations-between two classes and between a class and an
individual-must be explained. The used example will be comprehensively explained in section
3.2 but should be intuitively clear.

• The relation between two classes is regarded as an abstraction/specialization relationship
in the following way: If Monitor(v) is a predicate (or an unary constraint) taken to be an
abstraction of Color-Moni tor(v) then the IS-A relationship between them is interpreted
as "for every individual v if Color-Moni tor(v) then Moni tor(v)". From a constrain t
reasoning point of view this relationship can be regarded as a domain restriction by an
unary constraint, e.g. Color-Monitor is the set of all individ uals of the domain Monitor
for which the unary constraint =(type(x), color) is satisfied.

• The relation between an individual and a class is handled as a predicate (or unary
constraint) where IS-A is applied to an individual involving a type predicate, e.g. if
Moni tor-l is the individual and Color-Monitor the class , IS-A expresses the fact that
Color-Moni tor(Moni tor-l). Consequen tly, classes are symbolic descriptions of sets of
all individuals for which the corresponding type predicate holds.

This informal description of the point of view for the IS-A relation will be formally defined in
section 3.3.

3.1.3 Structured Objects

It already follows from the above example that the objects in the hierarchy are not flat, only
denoted by their class specifier. Additionally, the objects have an internal structure in the

3.2 An Example 15

T

Figure 3.1: Example of a structured hierarchy

sense of frames: Classes and individuals are concretized with attribute/value pairs. In fact the
attribute/value pairs could be factored out by introducing a new class for each value with the
attribute as relation between the object and the new class. This approach is used in seman tic
networks. Nevertheless, defining physical objects in technical domains by their attributes in
a frame-like data structure at least minimizes the size of the hierarchy, but is also much
more declarative. Hierarchies are also used to inherit values for attributes along the IS-A
relationship.

The term structured hierarchy will be used in the following to denote a hierarchy over
the IS-A relation as defined above whose objects-classes and individuals-have an additional
internal structure.

3.2 An Example

The example for a structured hierarchy in figure 3.1 is taken from the HP configuration guide
[HPC90] and shows a hierarchy for workstations, monitors and video interfaces. The indi
viduals are drawn in shaded boxes. The domain includes a couple of workstations which
are not explicitly listed, five monitors, Mon-1, ... , Mon-5, and their three corresponding
video interfaces, Vid-Int-1, Vid-Int-2, and Vid-Int-3. The monitors are technically de
scribed with three parameters type, size, and resolution, whereas the video interfaces
do not have the parameter size3 . As the domain consists of structured classes and struc
tured individuals, the following notation will be used for them, e.g. the class of monitors

[

type Monitor-Type 1
Monitor resolution IntegerBylnteger and an individual which is defined by attaching con-

81ze Integer

[

type color 1
stants for its parameters is Mon-l re8olution 1024by768 . The range of the parameters (type,

size 16inch

size, and resol ut ion) are explici tly declared . In the following, this information will be omi t
ted if it follows from the context.

The class Workstation is assumed to be unstructured; hence, the IS-A relation is only based on
the defini tion of this relationship and not on any seman tics-here: the specification of technical

3If the monitor is bigger having the same resolution only the pixels on the screen are bigger. Hence , this
parameter need not to be defined for the video interface!

16 Chapter 3: Structured Hierarchy

parameters. This part of the hierarchy also has a lattice-like structure. Consequently, the
problem of multiple inheritance must be tackled .

The value of parameters may be overwritten by more specific classes or by individuals, e.g.
the class Color-Monitor overwrites the value for the parameter type with color. If this
specification is well-defined there must a relationship between Monitor-Type (which is a type)
and color (which is a constant).

Individuals are characterized by attaching constants to all of its parameters, which is cognitively
adequate because they represent the physical objects of the modeled world which are uniquely
identified by theses constants.

3.3 Definition

In order to gain a well- defined hierarchy which is capable of representing the knowledge of the
kind of the above example, the hierarchy is formally defined.

The language for the knowledge base consists of the partially ordered, finite sets of symbols
for the

primitive types PT
structured types ST

:= ({T,..L, Pt l, Pt 2, . . . };isa)
:= ({T , ..L,Stl,St2, .. . };isa)

-with "isa' as the transitive, reflexive, and antisymmetric ordering relation-and the following
sets of functions wi th its in terpretations for the

parameters
constants
individuals

P := {PI: Sti '"'-+ Ptj, 1>2 : Stk '"'-+ Pt" . .. }
C := {Ci l : Pti,Ci2: Pti, ... }
INV := {Indil: STi,Indi2: Sti, .. . }

',,-,, ' denotes that this is a partial function. Parameters with the same name but different
types are regarded as being different. All sets are disjunctive from each other except for
PT n ST = {T,..L} with ..L isa T isa T for all types T E PT u ST. Consequently, PT U ST
forms a semi-lattice with T (top) as upper bound and ..L (bottom) as lower bound.

Note that the interpretations for the constants (c: PT) and the individuals (ind: ST) corre
spond to the interpretation of the IS-A relation as type predicates: PT(c) and ST(ind), cf
section 3.1.2.

The sets for the above example are then defined as follows:

PT := ({ T, ..L, Monitor-Type, IntegerByInteger, Integer}; isa)
ST := ({ T,..L , Workstation, 2D-workstation, Color-Workstation, 3D-Workstation,

Monochrome-Workstation,Color.2D-Workstation,Color.3D-Workstation,
Monitor,Color-Monitor,Monochrome-Monitor,Video-Interface,
Monochrome-Video-Interface, Color-Video-Interface};isa)

P { type: Moni tor ~ Monitor-Type,
type: Video-Interface'"'-+ Monitor-Type,
resolution: Monitor ~ IntegerByInteger,
resolution: Video-Interface'"'-+ IntegerByInteger,
size: Monitor "-" Integer}

3.3 Definition

T

monchrome CaIor.2D CD~.3D /;\

/l\ ":', . .
. // !

\.
Mon-I Mon-2 Mon-3 Mon-4 Mon-5 \ \ ... ~ 1:I8Cby I au I :l8Cby768 16 19

Vid-Int-I VkI-lnt-2

VId-lnt-3

Figure 3.2: A hierarchy of structured and primitive types

C := { color: Monitor-Type, monochrome: Monitor-Type,
1024by768: IntegerByInteger, 1280byl024: IntegerByInteger,
16: Integer,19: Integer}

MCW1lI.or-Type

color monochrome

IN1J := { Mon-I: Color-Monitor, Mon-2: Color-Monitor, Mon-3: Color-Monitor,
Mon-4: Color-Monitor, Mon-5: Monochrome-Monitor,
Vid-Int-1: Color-Video-Interface, Vid-Int-2: Color-Video-Interface,
Vid-Int-3: Monochrome-Video-Interface}

17

The isa relation over PT and ST is shown in figure 3.2 and the constants and individuals are
added by the IS-A relation (in dotted lines).

In order to gain the interpretation of the IS-A relation between individuals and its classes
and an ordering of all objects in the knowledge base A the isa relation over PT and ST is
enhanced .

Definition 3.1 1_ c isa PT if c: PT' E C and PT' isa PT

2. Ind isa ST if I nd: ST' E C and ST' isa ST

Eventually, the hierarchy in figure 3.2 is defined where all links become the isa relation as
reflexive, transitive, antisymmetric ordering relation on this hierarchy.

The objective is to build a knowledge base which basically represents the knowledge in figure
3.1 by using the above sets and a composition rule for the structured objects.

Definition 3.2 The knowledge base A consists of

[

Pl Pt/cl

1. a set of structured types St : :

pn Pt/c2
with Pi: St "-+ Pti

1 wi,h St EST, Pt/c, E PT u C, and Pi E P

2. a se' of individuals Ind [~
Pi : St "-+ Pti and Ci : Pti E C

C:' 1 1 with rnd E IN1J, Ci E C U .1, and Pi E P with

Cn

18 Chapter 3: Structured Hierarchy

3. the set PT of primitive types

4. the set C of constants

The notation for the structured types and individuals was already used in section 3.2 where
some examples can be found. 1. is introduced as a possible parameter value to allow the
representation of objects with unspecified characteristics .

The isa relation is now defined for all objects which playa role in the knowledge base. Conse
quently, the IS-A relation as informally described in section 3.1.2 is now defined by use of the
above definitions.

Definition 3.3 The IS-A relation between two structured types is defined as

[

P1 Pt/ C2 1 [P1
St2 : : 1 IS-A St] :

pn Pt/C2n pn

with Stl,St2 EST , Pi E P, and Ptlcl;,Ptjc2; E PTuC

if St2 isa Stl and 'rIPi (1 ~ i ~ n) Ptjc2; isa Ptlcl;

[

P1 Pt/Cl 1
and for all structured types St : :

pn Pt/cn

[

P1 ~:t/cl1
1. IS-A St pn:

Pt/cn

If follows from the definition that comparable types must have the same number of parameters
with the same names and corresponding types. The similar definition is required for the
relationship between individuals and structured types.

Definition 3.4 The IS-A relation between an individual and a structured type is
defined as

[

P1 c 1 1 [PI
Ind : : IS-A St :

pn c2 pn

~t/CI 1
Pt/cn

with Ind E IN'D , St EST, Pi E P , and Ptlci E PT u C

if Ind isa St and 'rIPi (1 ~ i ~ n) Ci isa Ptjci.

As a special case Ci may be 1. which is also covered by this definition . It is used for in
dividuals which have an unspecified parameter. Obviously, the individuals are defined by
attaching constants of the corresponding primitive type to its parameters. An example is

[

type aonochroae 1 [type aonochrome 1
Mon-5 resolution 1024by768 IS-A Monochroae-Monitor resolution IntegerbyInteger IS-A

size 19inch size Integer

[

type Monitor - Type 1
Monitor r~8olution IntegerByInteger .

81ze Integer

The above definition implicitly forbids the overwriting of values already defined by a superclass
except for specializing this value. Thus , the term default value does not hold for this inheritance

3.3 Definition 19

hierarchy. This is required because otherwise constraints could not exclude complete classes
due to the value of some individual parameters because the value satisfying the constraint
could be defined in one of the subclasses . Multiple inheritance for parameters (primitive types
or constants from various supertypes) is allowed in case that the inheritance is compatible with
respect to the ordering relation over primitive types . Consequently, a class does not need to
hold a supertype preference list defining the sequence of inheriting values from the supertypes .

Finally, the knowledge base over which the constraints will be declared is defined.

Definition 3.5 The knowledge base A is a six-tuple (PT,ST,INV,C, P, IS-A) with the
sets as described above and IS-A as defined in definitions 3.3 and 3.4

Summarized it may be said that with definitions 3.3 and 3.4 the IS-A relationship as discussed
in section 3.1.2 is put on a formal basis such that the value propagation of constraints exploiting
the structured hierarchies can be defined.

Chapter 4

Constraint Typology

In this chapter the various types of constraints required to model a simple configuration task are
introduced. In the first section, based on an elementary example, the objects of the hierarchy
are in vestigated from a constraint reasoning poin t of view and the kinds of occurring constraints
are discussed. The requirements for representing the CSP (cf definition 2.5)-constrain ts and
variables-are derived. Finally, the constraint typology for HierC(Qn is introduced and its
semantics and representational character is investigated. The procedural aspect of these kinds
of constraints are discussed in chapter 5.

4.1 Example of a CSP

The intention is to use the CSP under consideration for a configuration task, circumstantially
discussed in chapter 6. A motivating example is presented in this section from which the kind
of required constraints can be derived .

Focussed on local consistency (cf definition 2.7), the example includes only two variables bu t is
suitable to reveal the basic principles and requirements. Referring back to figure 3.1, the CSP
is assumed to consist of the variables monitor and video-interface and the sets of individuals
with the same name (Monitor and Video-Interface) as domains. Informally, the constraint
between these variables must express that only two compatible individuals-a monitor and
a video-interface-can be connected with- each other. Compatibility in this example can be
described on the level of the parameters (monitor-type and resolution) which must have
equal values. Figure 4.1 shows the CSP together with the domains and the solution of the
constraint between the variables. The solution of the constraint is defined conventionally:
All solution tuples are listed explicitly; thus, the predicate in the algorithm for deriving local
consistency works with this set of solution tuples. The variables are assumed to be flat in
the sense that they can only hold an individual by its name but cannot represent the internal
structure of the objects as well.

In the following, the kind of knowledge which is used for represen ting both, the structured
hierarchy and the constraint solutions, is investigated from a constraint reasoning point of
view. The ad vantages of each approach will be used to overcome some of the limi tations
and to exploit explicitly the structure of the domain for the constraint representation and
hereinafter, in chapter 5, for the constraint processing.

4.1 Example of a CSP 21

1M I.Vld· I ... · 1)
rM-Z.VId· I ... ·2)
1M~.VId·I ... · l)

8-·------li-~11------..-8
Figure 4.1: Example of a cSP

4.1.1 Extensional Denotation

All possible value pairs ot the relation between Monitor and Video-Interface may be
extensionally denoted as {(Mon-i, Vid-Int-i), (Mon-2, Vid-Int-2), (Mon-3, Vid-Int-i) ,
(Mon-4, Vid-Int-2), (Mon-5, Vid-Int-3)}. With this representation classical constraint
propagation algorithms can be applied. For example, in order to keep the relation locally
consistent (definition 2.7) specific values for the variable Video-Interface directly implies a
restriction of possible assignments for the variable representing the class Monitor .

The disadvantage of this approach is that there is no way to refer to individuals via the value
of a parameter, e.g. if all color monitors are required each individual of the class Monitor must
be selected and the parameter type is investigated whether it has the specific value color or
not; theoretically, if the parameters cannot accessed even a new constraint must be defined
whose solution are the color monitors Mon-1 , .. . , Mon-4. In addition , complete individuals are
assigned to a variable, although later on some of them may be retracted by other constraints
requiring for specific values in parameters .

Consequently, two requirements are imposed:

1. As far as classes are already defined in the knowledge base, they should be used as an
abbreviation for complete sets of individuals, adapting the point of view that classes are
symbolic descriptions of such sets.

2. Parameters should be accessible in order to define an unary constraint over them. This
constraint then represents a rest~iction of the initial domain and works as a filter for the
set of individuals .

A mixture of both approaches follows from the fact that some classes are just defined by
factoring ou t values for parameters, e.g. the class Color-Monitor includes all individuals whose
value for the parameter type is color or, expressed as an unary constrain t, Moni tor(x)"
=(type(x), cOlor).

4.1.2 Individuals as n-ary Constraints

The structured individuals of the knowledge base can themselves be represented as relations.
Here, the parameters are regarded as binary constraints between the individual specifier and the
parameter's value where the name of the parameter is the name of the relation. For example,

22

mlor
monochrome

16lnch
191nch

Chapter 4: Constraint Typology

mrwu.inl :-1 (mlor. l024by768. 161n<:h)
(mlor. 1:11!Oby 1024. 161n<:h)
(mlor. l024by768. 19tn<:h)
(mlor. l280by 1024 . 19tn<:h)
(monochrome. l28Obyl024. 19\nchJ I

Figure 4.2: Representing individuals as n-ary constraints

the above individual Hon-l can be represented with three binary relations: type(Hon-l, color),
resolution(Hon-l, 1024by768), and type(Hon-l, 16inch).

The disadvantage of this approach is that new variables for each parameter must be introduced
and that the explicit information-the three values color, 1024by768, and 16inch occur
together in one individual-is factored out and then stored implicitly in one argument of the
relation. A more declarative representation with n-ary constraints is shown in figure 4.2.

A parameter must be interpreted via the fixed position in the relation describing an individ ual.
Thus, the first monitor is represented as the triple (color, 1024by768, 16inch). The first
argument position is interpreted as representing the value of the parameter type, the second
as the value of the parameter resolution, etc. Because more combinatorical combinations
can be built which are not present in the domain, e.g. (monochrome, 1024by768, i9inch),
the relation must he explicitly restricted to the five individuals by denoting the triples of the
relation as described above.

The disadvantage of this approach is obvious. Although the relationship between specific
values of the parameters are already represented in the knowledge base, they are factored out
by flattening the individuals as in figure 4.2. Consequently, they must be reintroduced via a
suitable representation of the relation describing the individuals. This problem is also discussed
in [MF87]. Additionally, it is rather difficult to attach other characteristics to the individuals,
e.g. constraints, except for introducing the specifier, e.g. Monitor-i, via an additional variable.

As a result for constraint processing, one could state that it is preferable to enhance the algo
rithms for constraint handling in order to cope with structured objects rather than compiling
these objects into a conventional CSP with flat domains.

4.1.3 Relations between Parameters

After discussing the problem how to represent the objects of the domain in the CSP an ap
proach by what means to represent the solutions of the constraint must be investigated. The
conventional method was already shown in figure 4.1. On a higher level of abstraction
exploiting the technical knowledge underlying the relation-the constraint may be informally
described by forcing equal values for the parameters type and resolution in both variables.
Figure 4.3 shows this approach. But again it is required that all individuals are assigned to the
variable and then investigated whether they fulfill a specific value for a parameter or not while
the backtracking algorithm (cf figure 2.1) or the algorithm for achieving local consistency (cf

4.2 Requirements for the CSP 23

Figure 4.3: Constraint as relations between parameters

figure 2.3) is running. Both algorithms could be improved by exploiting the structured hier
archy in the following way: If a specific value for a parameter is required and a class exists
which represents this value, the algorithm computes the intersection of the current assignment
for the variables with all individuals satisfying the constraint. The intersection is computed by
determining the greatest common subclass (definition 5.1) of the two classes. If such a class
does not exist then the constraint propagation algorithm must still work on the parameter
values. Consequently, the conventional approach is included in the above scheme.

Summarized it may be said, that the internal structure of the domain should be exploited
as best as it can in order to reduce the number of predicative tests by a relatively simple
computation on the level of classes. Additionally, the unsatisfiability of a CSP may be detected
without investigating the properties of the single individuals.

4.2 Requirements for the CSP

From the above discussion and the specific properties of the domain the requirements for
defining a cSP over structured domains are as follows:

• The variables of the CSP are structured in order to represent the internal structure of
the objects in the knowledge base. The constraint solver must be capable to access to
these values.

• In addition to constraints, restricting the values of parameters, a new type of constraints
must be introduced which explicitly exploits the hierarchical knowledge. Solutions of
constraints are then described by attaching these constraints to the classes.

• The conventional approach of denoting constraint-listing of the solution tuples-should
be included by the constraint model, e.g. the backtracking algorithm should be supported
by reducing its absolute run-time but should work as known as if the constraints were
conventionally defined.

In the next section, a typology for the constraints will be explained in detail. Their operational
behavior is discussed in chapter 5.

4.3 Constraint Typology

In this section, the various types of constraints required to model a CSP over structured
domains are defined . The point of view is adopted that constraints exist between variables and

24 Chapter 4: Constraint Typology

the solution of the constraint may be described by various terminologies or even a mixture of
them. In figure 4.1 an extensional denotation is used whereas figure 4.3 gives an example where
the same constraint is described by two '=' relations between parameters. Both notations
designate the same solutions and may be regarded as being equal from this point of view.
However, the second approach exploits much better the information which was already decoded
in the hierarchy and enables an easier maintenance of the knowledge base: New individuals
can be added in their I4right" place without changing the constraint because it must also be
fulfilled on the parameter level by the new individuals.

The following terminology for descri bing solutions of constraints is defined:

• class-rest (x: St) (class restriction) is an unary constraint expressing that the class of a
variable x must be specialized to the class St which must be a subclass of the variable's
class. -

• not-class-rest(x : St) (not-class restriction) specifies that variable x must not hold
class ST or one of its subclasses.

• class-comp(xI : Stl,X2: St2) (classes compatible) is a binary constraint between Xl

and X2 which states that two subclasses of the variables are compatible with each other.
Specifically, if the current class St' of variable Xl IS-A St l , then the current class St" of
X2 must be subclass of St2 and vice versa.

• class-incomp(xl : St l , X2 : St2) (classes incompatible) is a binary constraint between
Xl and X2 declaring that a class for one variable is incompatible with a class for another
variable, i.e. if the current class St' of variable Xl IS-A Stl, then the current class St"
of X2 must not be a su bclass of St2 and vice versa.

• param-rest(unary-pred, p(x)) (parameter restriction) states that all individuals or
classes of the variable must fulfill the predicate l4unary-pred" on one of its parameters p.

• param-comp(pred, PI (Xd,P2(X2),' .. ,Pn(xn)) (parameter compatibility) is a predicate
between the variables Xl, X2," ., Xn which fixes a predicate "pred" between the param
eters of the classes. The previously defined constraint param-rest is a special case of
this one but was introduced for compatibility reasons. In contrary to the constraints
over classes, the negation of the constraint was not introduced to the typology but has
to be coded in the predicate itself. For example, the negation for the the constraint
param-comp(=, resolut ion(monitor), resolution(video-interface)) must be defined
as param-comp(¥, resolution(monitor), resolution(video-interface))

The class-comp and class-incomp constraints may also have individuals as parameters. In
this case the extensional solution of a constraint is denoted. The unary constraints may be
regarded as a specialization of the binary constraints where one argument holds a fixed value.
They are used to make an instance of the CSP by restricting possible values for one or more
variables . These restrictions may be user requirements, heuristics, external data, etc.

Referring back to the CSP in figure 4.1, the constraint between the variables monitor and video
interface can be defined in various ways which are all equal from the point of the solutions for
the constraint.

1. The extensional denotation on the individuals' level without exploiting the hierarchy is
denoted as
class-comp(monitor: Hon-i, video-interface: Vid-Int-i)

4.3 Constraint Typology

@::::::::- -~I CD_~ 1--1 -~.@~:=-
.-oIut_ ","",ut_ ... _--_

aloe

Figure 4.4: Constraints which exploits the structured hierarchy

class-comp(monitor: Mon-2, video-interface: Vid-Int-2)
class-comp(monitor: Mon-3, video-interface: Vid-Int-l)
class-comp(monitor: Mon-4, video-interface: Vid- Int-2)
class-comp(monitor: Mon-5, video-interface: Vid-Int-3)
and corresponds exactly to the notation of solution tuples.

25

2. The constraint may also be denoted as binary = relation between the parameters type
and resolution.
param-comp(=, type(monitor), type(video-interface))
param-comp(=, resolution(monitor), resol ution(video-interface))
This corresponds exactly to the CSP as defined in figure 4.3 and only exploits that the
variables are structured but not the fact that the IS-A hierarchy itself contains useful
information.

3. A mixture of two types of constraints under consideration of the structured hierarchy is
defined:
class-comp(monitor: Color-Monitor, video-interface: Color-Video- Interf ace)
class-comp(monitor: Monochrome-Monitor,

video-interface: Monochrome-Video-Interface)
param-comp(=, resolution(monitor), resolution(video-interface))
This notation is graphically represented in figure 4.4.

The notation already reveals the idea that the constraints are not added to the con
straint network itself but are assigned to classes in the hierarchy. As soon as this class
is assigned to a variable, the corresponding constraint is activated and added to the
network dynamically. Consequently, in the above case would the constraint between the
parameters resolution would be statically added to the network because the classes the
constraint is attached to, Monitor and Video-Interface, are assigned to the variables
as initial value. Contrarily, the constraints between the classes will be added as soon
as this class is assigned to one of the variables or one of the individuals of the class is
selected.

So far, some ideas of how the constraints are processed have already been mentioned. In the
next chapter, these approaches are discussed in more detail and the algorithms are presented.

26 Chapter 4: Constraint Typology

4.4 CSP over the Knowledge Base

With the notation of chapter 3 the CSP with the above typology and the knowledge base A
can be defined.

Definition 4.1 A CSP over A := (PT,ST,IND,C, P, IS-A) is a tuple (V,CS) with

• V is a finite set of typed variables {x: C/,XI: C/}, ... ,xn : Cln}
with C Ii is a structured class in A

• CS is a set of constraints {CI, C2, .. . } where Cj has one of the following forms:

- class-rest(x: S t)

- not-class-rest(x: St)

- class-comp(xl: Stl,X2: St2)

- c1ass-incomp(Xl: Stl, X2 : St2)

- parom-rest(unary-pred, p(X))

- parom-comp(pred, Pt(XJ),P2(X2), ... ,Pn(Xn))

with Pt, P2, .. . , Pm E P
unary-pred is a unary predicate over a primitive type of PT
pred is a m-ary predicate over Ptt x ... x Ptm with Pt; E PT

The constraint have now been defined statically and its semantics should be clear. Subse
quently, the operational behavior of them must be defined.

Chapter 5

Constraint Processing

This chapter describes the operational behavior of the constraints in the typology. In the
first part the term constraint processing is described and some definitions are given revealing
the benefits of the structured hierarchy for relaxation and propagation. Subsequently, the
algorithm for processing is defined as a specialization procedure in the knowledge base and
descri bed for the various types of constraint. Vice versa relaxation as a generalization process
in the knowledge base is investigated in the next section. Only local mechanisms are provided
here and the global aspects are discussed in section 7.3. Finally, some issues standing out the
proposed methodology are summarized.

5.1 Concepts

The term constraint processing refers to three different operations:

1. Constraint propagation denotes the modification of constraints themselves. Origi
nally, this term was introduced by Freuder [Fre78] to designate a technique of making
constraints explicit already implicitly defined in the network by its definition. In our
context, constraint propagation denotes a method of adding constraints, which were not
in the network before, while the computation of a solution proceeds.

2. Value propagation-already mentioned in section 2.1-describes the process of how
value restrictions in a variable are used to compute restrictions in other variables. The
definition of the constraints is exploited as value restrictions in some variables cause
fewer possible assignments in other variables, e.g. the Le algorithm (figure 2.3) uses
value propagation by recomputing the values of neighbored variables together with the
variable currently under consideration. As the constraint typology (chapter 4) consists
of various kinds of constraints, different techniques must be defined for them. Functional
constraints are extensively used to provide a constructive value propagation as far as
possible .

3. Constraint relaxation is regarded in the sense of [DP88]. Intuitively, a relaxation of a
constraint defines a superset relation compared to the original constraint and is required
if the CSP has no solution, i.e. is in an inconsistent state. Inconsistency may have
several local reasons which are discussed in section 5.3. Finding a superset relation can
obviously be performed in two different ways. On the one hand, a constraint may be
deleted from the network and naively defines a superset relation because there are no

28 Chapter 5: Constraint Processing

more direct restrictions between the variables of this constraint. On the other hand,
;he solutions of the constraint may be enhanced and thus allow more assignments for
;he affected variables. However, the set of additional values must be included in the
nitial domain of the variables. Both approaches are interchangeable in case of finite
iomains . Adding values to variables may enhance the set of possible solu tions for the
ntensionally defined constraint and vice versa, increasing the set of possible solutions for
;he constraint, e .g. adding more solution tuples, allows more assignments for the variables
LS well , i.e. increases its current domain. [Fre89] discusses this point of view.

[he viewpoint of relaxation is only focused on local states. Other authors use this term
for referring to the CSP as a whole which can be solved with fewer backtracking steps
than the original one, cf [Fre78] .

Subsequently, though the objective for solving the CSP is also to find the "best" solution,
which is in any case a global property, the algorithms only cope with local relationships due
to the following reasons.

1. The approach for coupling structured hierarchies and constraints is basically incorporated
for achieving local consistency in a weak sense: All known constraints at a time should be
used as best as it can to eliminate assignments for variables which cannot contribute to
any solution at all. Therefore, only the local value propagation process must be defined for
that purpose. The final Backtracking also activates additional algorithms as constraint
propagation but still only for deriving locally consistent states.

2. All processes for relaxation, though having a global point of view, require that the reasons
for inconsistencies must be found locally. This information is then used to compute a
globally consistent state, e.g. by retracting initial value restrictions. Thus, a local point
of view is the basis for all relaxation methods .

3. Methods for relaxation are mostly domain or task dependent. They exploit additional
information, like weighting the constraints [DL85] or defining a metric over the solu tion
space [Fre89]. Consequently, the methods will be deferred until the task and the domain
are discussed in more detail (cf chapter 6 and 7).

In order to explain the constraint processing over the structured hierarchy various terms must
be defined. They are the fundamentals for revealing how the hierarchy is being used for
propagation and relaxation .

Definition 5.1 A gcs (greatest common subtype) vEST of two structured types s, tEST
is defined as 'v isa s ' and 'v isa t' and there is no common subtype v' E ST of sand t with
v ::j:. v' such that 'v isa v' '.

Definition 5.2 A class vEST is a rst (real supertype) of a type s if's isa v ' and there is
a type tEST such that 't isa v' but not 's isa t' and there is an individual ind E INV with
lind isa v' but not lind isa s '.

Informally spoken, the greatest common subtype defines the most general type in the set of
structured types which is a subtype of both input types. The real supertype ensures that
additional individuals are allowed afterwards by the last condition of definition 5.2. Although
the condition "ind isa v' but not "ind isa s' requires that there must be a subtype with the

5.2 Propagation

gcs(s, u) := u

gcs(s,t) := u

gcs(u,y) := y

gcs(w,X) : = 1-

rst(x) := u

rst(x) := s

rst(x) := t

rst(x) := r

rst(u) := t

rst(u) ?? s

Figure 5.1: Greatest common subtype (gcs) and real supertype (rst)

29

properties of t-thus, the condition for t could be omitted-rst was defined this way in order
to reveal how the algorithm for determining the required type will work: Test on the level of
types and then on the level of individuals.

Figure 5.1 shows an example. rst(x) yields all supertypes of x because each has subtypes cl
for which it does not hold that 'el isa x'. If the last part of definition 5.2 would not be added,
rst(t) would yield r although this type does not provide additional individuals with respect to
t. gcs(w, x) results in 1. because there is no common subclass of both classes. Obviously, the
the gcs is uniquely determined whereas the rst of a class is not. Therefore, the algorithm for
computing it is non-deterministic. Similar definitions apply for the greatest common subtype
and the real supertype in PT.

The computation of the rst is very exhaustive: First, search upwards for a superclass and
second, searching downwards for new subclasses. In section 5.3 a heuristic is described which
significan tly prunes this search space.

5.2 Propagation

Value propagation is viewed here as a specialization proced ure with respect that a more special
subclass allows fewer assignments-the individuals-for a variable of the CSP than a more
general class; hence, less search must be performed for finding a solution.

5.2.1 Specialization in the Knowledge Base

Algorithm 5.2 shows the computation of the most specialized structured class of two classes
given as inputs. Obviously, the algorithm computes exactly the inheritance hierarchy as defined

:::w:::g:n::~e::: :~u~~ ~o~s:q[u:~tl~; i]r t:re t::Orui;:r~:h:P::d a~ s:::::::::dcl::s~s ~nr' t:
Pn Un

30

U ' [P:- 1 U:_ ',1 1
pn Un

algorithm specialize(s,t)
tl - gCS(ST3' STt)

if tl = .L
then return .L

else 'V Pi (1 ::; i ::; n)

Chapter 5: Constraint Processing

tli - gcs(pds), pdt))

return u[: U
end *specialize *

Figure 5.2: Specialization of two structured types

are related with each other such that u = u' and r IS-A r', based on the fact that

it is allowed to define a structured class in the knowledge base by overwriting the inherited
values of its superclasses if this value is consistent with the ordering on the primitive types,
i.e. a primitive type may be overwritten by one of its subtypes or by the constants of this type.

As a result, the algorithm does not need to compute the values of the parameters explicitly
because they can be derived from the knowledge base if the two input arguments sand t
are in the knowledge base as well. Hence, the loop in algorithm 5.2 can be omitted and
only the gCS(ST3' STd 1 needs to be computed. This condition restricts the time, parameter
constraints are evaluated. They must not be evaluated if the constraint does not result in a
predefined object of A, e.g. in the example of figure 3.1 the class Cclor-Monitor is specialized
with the current class of the variable monitor if the unary parameter constraint type(COlor)
is activated but the constraint size(19inch) would not be evaluated that way because there is
no corresponding class in A. If the parameter constraint does not result in an existing subtype
the evaluation of the constraint is deferred and eventually applied to all remaining individuals.
Instead, this constraint is only used as a predicate to check whether it can be fulfilled by the
current type of the parameter later on, e.g. it checks whether the constant 19inch is a constant
of the current primitive type of the parameter. If the parameter does not fulfill this condition
there is no individual possible which may provide the value 19inch.

It is intuitively clear how this algorithm is used for class propagation. If an unary class
restriction for the variable is applied, the current class of the variable and the requested new
class are given as arguments to specialize and the result is attached as a new structured class to
the variable. In case that both arguments are already in the knowledge base only the greatest
common subclass of the argument identifiers is computed and the structured class in A as
the new class of the variable is attached to it. In figure 5.3 algorithm complete-specialization
describes this process.

The presented specialization process is in fact a simplified feature unification as in LOGIN, cf
[AKN86]. The difference is based on the simple internal structure of the objects which only
allow primitive types as parameter values. In LOGIN the parameters are called features and
allow arbitrary objects as values. Consequently, in case that the feature values are classes as
well the unifier for the features must be computed recursively whereas the algorithm here is
"flat" .

I ST, denotes the identifier of the structured class s which is an element of ST_

5.2 Propagation

algorit hm complete-specialization(s, t,A)
if sEA and tEA

then return structured class of gCS(ST3' STt) E A
else ret urn specialize (s, t)

end *complete-specialization *

Figure 5.3: Specialization of two structured types with respect to a knowledge base

Figure 5.4: Example for value propagation

31

The knowledge base A is omitted in the following if it follows from the context. Also the
algorithm will be named specialize unless otherwise mentioned

5.2.2 Value Propagation Methods

The value propagation process for the various types of constraints in the typology and the
process as a whole can be declared together with the definition of the greatest common subtype
and the specialization algorithm. The example in figure 5.4 is copied from figure 4.4.

U nary Constraints

Unary constraints restrict the values for one variable and have no direct effect for others. They
may be added to the constraint network in two different ways:

1. They serve as an initial value restriction for some variables and thus, may represent
additional requirements defining the CSP in more detail.

2. Unary constraints may be imposed by other constraints; in this sense being a result of
constraint propagation.

The value propagation process for the three kinds of unary constraints is defined as follows:

• class-rest (x : 5t)

32 Chapter 5: Constraint Processing

If the current class of variable x is St' then the new class of the variable will be
specialize(St, St') . In case that 1. is derived a relaxation must take place.

class-rest(monitor: Color-Monitor) would result in an assignmen t of Color-Monitor
to the variable monitor with the initial class Monitor.

• not-class-rest(x: St)

lfthe constraint is violated-the current type of the variable is St or one of its subclasses
a situation occurs where relaxation is required, cf section 5.3. Otherwise, no action need
to be performed and the constraint is just attached to the variable to make sure that St
can never be assigned to it. Consequently, a relaxation might still happen later on.

not-class-rest(monitor: Monochrome-Monitor) would just be added to the initially as
signed variable monitor. Later on the class Monochrome-Monitor or any of its subclasses
would not be used to find an assignment for this variable.

• param-rest(unary-pred, p(x))

The current class of the variable may be St. If a class St' in the knowledge base exists
which is defined as St " unary-pred(p(St)) then this constraint is transformed into the
equivalent constraint class-rest(x: St').

If there is no such class, the parameter of the current class St is checked whether the
constraint param-rest(unary-pred , peSt)) is satisfied. Again, if it is violated a re
laxation must take place. There might also be a check introduced testing whether the
constraint can be satisfied at all. This procedure is used by exploiting the fact that the
hierarchy of the structured types is well-defined.

If param-rest(=color, moni tor-type(monitor)) is activated it would be immediately
transformed into the equivalent constraint class-rest(monitor : Color-Monitor). In
case that there is no such class, e.g. for class-rest(= 19inch, monitor-size(monitor)) the
constraint is attached to the variable and additionally checked whether the current value
of the parameter is still capable of satisfying the constraint later on. Here, the test results
in true because '19inch isa Monitor-Size '; thus, it may be provided by some individuals
of thp C.llTTPnt rb .<:<:

N-ary constraints

The constraints between classes are only defined as binary constraints. There is no loss of
generality because n-ary CSPs over finite domains can always be transformed into binary
CSPs with equal solutions. The classes in the hierarchy always represent a finite set of values .
However , the constraints between the parameters may be defined as n-ary constraints because
their domains may be infinite in some case, e.g. arithmetic constraints.

The value propagation for the n-ary constraints of the typology takes place by constraint
propagation: New, unary constraints are added to the network as soon as one of the constraints
between classes is activated.

• class-comp(xl: Stl,X2: Stz)

If the current value of Xl is Stl then the current value of X2 must be specialized with Stz
which is achieved by introducing a class restriction constraint for Xz , i.d. class-rest(x2:
St2)' The same mechanism happens vice versa.

5.3 Relaxation 33

class-comp(monitor: Color-Monitor, video-interface: Color-Video-Interface) works
that way. A" ,,()()n :H;~. Colnr-Mnnit:or i", chosen a Color-Video-Interface is enforced
as well.

• class-incomp(xl: Stl,X2: St2)

If the current value of Xl is Stt the value of X2 must not be St2. Consequently, the
constraint not-class-rest(x2: St2) is attached to X2. Again, the same procedure works
vice versa as welL

class-incomp(monitor: Monochrome-Monitor, video-interface: Color-Video- Interf ace)
may be added to the above example, though not providing any additional information
for the constraint solutions. Now all individuals of Color-Video-Interface would be
excluded as possible assignments for video-interface as soon as Monochrome-Monitor is
chosen and vice versa.

• param-comp(pred, PI (Xt),P2(X2), . .. , Pn(Xn))

The evaluation of these constraints highly depends on the attached procedure for the
predicate 'pred' which is defined for each primitive type individually. Therefore no general
statement can be made about the constraint processing. An example should reveal some
of the principles.

The constraint param-comp(=, resolution(monitor), resolution(video-interface))
in the above example states that the parameter resolution must have equal values in
both variables. However, the constraint has an additional functionality by exploiting the
primitive types. Each time the parameter gets a more specific type or constant this val ue
must be forced for the corresponding parameter in the other variable as well. For exam
ple, as soon as an individual of Video-Interface is chosen, therewith the value val for
resolution is fixed, a constraint of the form param-rest(=val, resolution(monitor))
is attached to monitor.

Other methods can be defined for each predicate differently. Consequently, it IS even
possible to introduce full arithmetic in order to allow also infinite domains.

Summarized it may be said that well-defined structure of the hierarchy allows a more con
structive and functional approach to propagation whereas the conventional method would work
destructively and predicatively on the same CSP.

5.3 Relaxation

In general, relaxation is required if the CS P is overconstraint and so no solution is possible
satisfying the current set of constraints with tuples from the currently assigned values for the
variables and may be regarded as being the contrary to the propagation process: A more general
class must be selected in order to find individuals or structured classes which are consistent
with the current constraints on that variable. As discussed in section 2.3.1 an overconstraint
CSP may already be detected while computing a locally consistent solution. However, the
search for a global solution via backtracking may still require a relaxation on account of the
same situations:

• The propagation process computes .1 as the greatest common subclass of two classes for
a variable. In that case, either of the two classes must be retracted as assignment for the
variable. This means on the level of the individuals that the intersection of the extension
of both classes is empty.

34 Chapter 5: Constraint Processing

• A constraint of the type not-class-rest(x: St) is violated. Consequently, a superclass
of the current type must be found which does not violate the constraint any more .

• Due to parameter restrictions no possible assignment of individuals to a variable is pos
sible. In that case, either the constraint for the parameter must be weakened or other
assignments of individuals must be found which do not violate this constraint any more.
An assignment of more individuals requires to find a suitable superclass of the current
class which provides these individuals as its extension.

Summarized it may be said that all situations require that a real supertype of the current type
of the variable must be computed in order to overcome the inconsistent state.

In the above cases the naive relaxation method by retracting the constraint which locally
causes the inconsistency [HGV+88] should not be taken·into account as the sole possibility.
However, this constraint must be compared with the other relaxation methods (retracting
initial constraints, adding new individuals, etc.) in order to perform the "weakest" changes.

5.3.1 Generalization in the Knowledge Base

As mentioned above, the computation of the real supertype of a variable is very exhaustive.
Therefore, a heuristic is introduced which neglects the last part of the condition in definition
5.2 "(ind E I N1) with lind isa v' but not lind isa s')" is omitted and only the types which
have been previously assigned to the variable are taken into account. This is also semantically
founded: There are only corresponding constraints in the network which enforced the assign
ment of one of the classes. Therefore, classes which occur in the hierarchy but have not been
explicitly assigned to the variable before also do not have a corresponding constraint.

By consecutively applying specialize to the initial type So of a variable the current type of a
variable Sn is determined:

Sn +- specialize(Sn-1 , specialize(Sn_ 2, ... , specialize(S1 , so) ...))
In the following, the set structured types chain is a representation of the temporal refinement
of a variable's class.

Definition 5.3 A stc (structured type chain) of a variable x with initial type So and current
type Sn with the above defined relation between 80 and Sn is the set

{Sn,Sn-l, ... ,S1,SO} U {t It +- specialize(si,si_k), 1::; i::; n, 1::; k::; i}

The second set in the definition describes the structured types which have not been directly
applied to the variable but have been computed with the specialize algorithm based on the
lattice-like structure of the hierarchy. The example in figure 5.5 reveals the idea. The algorithm
for computing a suitable class for relaxation uses the stc of the variable and works as in figure
5.6. The algorithm is called with two arguments. The structured type chain of the variable and
a condition which must be an unary predicate appJ..ied to each class in stc. The predicate must
be determined by the procedure which detects the local reasons for the inconsistency; thus,
it may be a not-class constraint or a parameter constraint in case that a specific parameter
restriction cannot be satisfied.

5.3.2 Selection of Candidates for Relaxation

The algorithm ComputeCandidates returns two sets as values. Sfail includes all classes which
cannot be attached to the variable because they violate the condition condo All these classes

5.3 Relaxation 35

z +- specialize(z, specialize(t, specialize(s, r))
u ~ specialize(s,t)

because gcs(s, t) := u

~ stc:= {z,u,s,t,r}

Figure 5.5: Example for the structured type chain (stc)

ComputeCandidates(cond, stc)
Sakay := 0; Sjail := 0
for i := 1 until n do

s := Si E stc
if cond(s) then Sokay := s U Sokay

else Sjail := S U Sjail

stc := Sakay

return Sakay and Sjail

end *ComputeCandidates*

Figure 5.6: Computing of candidates for relaxation

must be deleted from stc and consequently, all constraints which forced these classes to be
assigned to the variable must be deleted as well.

The second returned value describes the set from which the new current class of the variable
must be chosen. Unfortunately, the ordering relation lisa' on the structured types is only partial
and therefore a lower bound of this set does not exist; hence, this class is non-deterministical.
Obviously, for all classes which are in Sokay but cannot be compared with each other, a class
in the hierarchy exists which is the greatest common subclass of both and therefore must
have been previously computed; now being either in Sokay or Sjail. If it is in Sjail one of the
un comparable classes must be retracted as well. If it is in Sokay then it should be chosen as a
new class for the variable because it is more special then the formers.

The set of classes which ultimately violate the constraints is now determined and the decision
must be made whether to retract the classes in Sjail from the variable and the respective
constraints or to deactivate the most recent constraint which was applied to the variable the
time the inconsistency occurred .

As an example assume that a variable x with initial type r in figure 5.5 has the stc :=

{r,s,t,u , w} and a relaxation condition which states not-class-rest(x: u). ComputeCan
didates yields Sjail := {w,u} and Sokay := {r,s,t} from which a new type must be chosen. It
turns out that sand t are incomparable with each other and their greatest common subtype

36 Chapter 5: Constraint Processing

IS In S fail. Consequently, either s or t must be moved from Sokay to S fail as well and the other
one is taken as a candidate for the new class of x. Assume this is t. Finally, all constraints
which previously forced the assignment of the types in {s, w, u} must be compared with the
constraint forcing the relaxation. A measurement must be provided which now performs the
"weakest" relaxation for the CSP, i.e. retracting either of the both sets of constraints.

So far the method only provides information based on a measurement for local decisions.
However, the propagation process spreads itself out over the whole network. As a result,
the reasons for an inconsistent state may be found in value restrictions for other variables.
Unfortunately, the knowledge to provide a relaxation procedure from a more general point
of view is domain and task independent. The approach in Hier«Qn is discussed in section
7.3 where two more global mechanisms are introduced which support the local decision for
relaxation.

5.4 Summary and Conclusions

In order to complete the discussion of constraint processing oy exploltmg structured hierarchies
the method is compared with the conventional constraint processing on the individuals level.
This term refers to local propagation and backtracking as discussed in chapter 2. Also some
additional benefits of the proposed methodology are summarized.

• The propagation is constructive; hence, no superfluous assignments are made for a vari·
able which have to be retracted later on in any case.

• The constraints are partially functionally defined and propagated such that the processing
methods becomes directed though the constraint can still be defined bidirectionally.

• The maintenance is simple because new individuals and classes may just be added to
their "right" place in the structured hierarchy. Because the constraints are defined on
a semantic level, e.g. the physical relationships between them are defined, the CSP still
yields consistent solutions with respect to the new objects.

• Because a constraint typology was defined the operational behavior required by additional
constraint, e.g. new predicates over primitive types, is known. Their operations must
correspond with the other constraint methods in the typology.

• The efficiency is improved because whole sets of individuals are retracted by one step.
Unfortunately, this ad vantage is partially destroyed because the use of Hier«Qn as a
knowledge representation system rather than a constraint system requires additional
expense for data management.

• The data management for storing the actions performed during constraint processing is
minimized by using operations on classes as a whole.

• Although relaxation is one of the hardest problems in constraint systems, the approach
provides a simple mechanism for compu ting local proposals for relaxation.

The first part of this work is now finished. The rest of the documentation reveals how the
proposed method for constraint definition ;wr! nrnrpj;;j;;inu :l.TP :lnnlipn to:l. rp~I_\l1nrIA An",,,in'

the confi~ration of workstations.

Part II

Chapter 6

The Configuration Task

So far, a specific kind of constraint satisfaction problems has been defined, cf definition 4.1,
including a constraint typology and an accurate domain structure. An obvious question
is whether this model has any practical application in order to prove its feasibility. One
possibility-already used in the examples-is the configuration task as defined in this chapter.
In the first section, a model for the configuration task is presented. Some deeper insights for
specific configuration problems are discussed in the following. Finally, the additional require
ments for modeling configuration as a CSP are listed which must be added to the presented
CSP model.

6.1 Model

Felix Frayman in [FM87] defines configuration as a generic problem solving activity in terms
of its inputs and outputs:

Given a fixed pre-defined set of components, an architecture that defines certain
ways of connecting these components, and requirements imposed by a user for spe
cific cases, either select a set of components that satisfies all relevant requirements
or detect inconsistencies in the requirements.

Some basic issues are intuitively included in this statement and influences the design for a
constraint-based configuration system:

• The configuration task selects a set of components from a given set. It does not design
any new artifacts. Therefore , the domain from which a solution must be derived is finite.
Although other domains which describe the required functionality of the solution may
be stated by constraints over infinite domains, e.g. arithmetic equations. Vice versa, the
domain must be complete enough to provide the required functionality in principle .

• The input for the configuration task consists of three different kinds of knowledge.

1. the fixed pre-defined set of components

2. a description of valid connections between the components

3. a description of the user requirements

40 Chapter 6: The Configuration Task

A crucial part of this knowledge can already be represented in the discussed CSP model.
The structured hierarchy holds the components, the constraints describe the architecture,
and the user requirements are included as initial constraints. An objective of the further
discussion is to elaborate these issues in more detail and to enhance the constraint solver
appropriately.

• The solution of the configuration task-a selection of components-corresponds to a
solution tuple of the CSP. Consequently, all components with equal functionality, e.g. all
monitors, are represen ted with a single variable which provides this functionality to the
overall solution.

• The term relevant implies that the requirements impose an order on the solution space or,
from the user's point of view, are a means to describe preferences on how the system has
to configured. If various components fulfill a required functionality, e.g. several monitors
are finally left over, these criteria must select amongst them. The preferences even define
what an optimal solution is: one which fulfills the most important or even all requirements
as best as possi ble.

• The term inconsistency was already used to describe the situation in which relaxation is
required, i.e. the problem is overspecified and no solution can be found. Consequently,
a configuration system should not only detect the inconsistencies but also provide alter
natives how to get a solution under weaker conditions or, in the specific case here, user
requirements.

Some of the above issues can already be modeled in the CSP presented so far. Others require
addi tional functionality on the one hand for the expressiveness of the representation language
and on the other hand for the constraint solver itself. In the rest of this chapter these additional
requirements are discussed.

6.2 Insights

Subsequently, some additional insights for configuration problems are introduced in order to
provide a more technical point of view. Following this discussion, some additional requirements
for HieraC{m are introduced. Basically, the point of view in [FM87], [MF89], and [MF90] is
adopted .

Functional Architecture

Reviewing existing configuration systems reveals that a typical configuration is based on the
fact that not all the combinatorical possible architectures are taken into account. Instead, only
configurations with similar functionality are investigated, e.g. if one would like to configure
a "von-Neumann architecture" the required kind of components and its tasks in the overall
system are pre-determined.

In terms of constraint reasoning, the layout of the constraint network states the composition
of the solution and therewith the kind of components contributing to it. However, to recognize
the functionality is more difficult. It is basically coded in the domain where all components
providing the same functionality for the solution are comprised as individuals under one class.
This class is then the initial domain of the corresponding variable. Later on, a meta-reasoning
procedure which dynamically changes the layout of the network copes with this problem in

6.2 Insights 41

case that the individuals cannot be easily integrated in a single class. For example, the func
tionality "displaying data" may be overtaken by a simple ASCII terrrtinal as well as by a high
resolution graphics monitor. For obvious reasons, it is sensible not to represent this technically
fairly different kind of components with a single variable. Contrarily, a system should not
simultaneously consists of an ASCII terminal and a high resolu tion e:raohics moni tor.

Key Components per Function

For each function there is a so called key component. This componen t deterrrtines the structure
of the subtask for configuring this function. The other components in the subproblem are
uniquely determined if the properties of the key component are fixed. Over and above it, key
components are typically configured in the sense that user requirements are imposed on them.

For example, the monitor is typically described for designing the "displaying data" function .
A user very rarely cares about the technical data of support components, e.g. video interfaces,
cables, etc. Consequently, the architecture must be defined in a way such that the technical
properties of the components can be derived from the description of the key component. But,
the relations must be also be defined vice versa because sometimes support components im
pose restrictions on the key components as well. For example, some video interfaces may be
incompatible with some workstations, but there is no clirect constraint between monitors and
workstation. Thus, as soon as a workstation is selected the remaining set of monitors is also
reduced indirectly via the coupling through video interfaces ..

There are two consequences for the underlying constraint solver:

1. The problem solving process is functionally driven from the key components of the sub
configuration via its support components to the overall solution. Consequently, the
constraint processing gets a direction or even a complete inference chain starting from
the user requirements on the key components to the support components.

2. At some point it may be required to make assumptions on selecting specific individuals
or classes in order to proceed towards a solution of the CSP. In this case, the assumptions
are made for the variables of the key components, so the support components are direct
follow-ups in the search process.

Once again, this point of view correlates with the strict separation of constraints-represented
as undirected relations- and their underlying operations which may be activated in a directed
manner.

Reusable Components

L;omponents may be used in two different contexts. They may either be reusable for different
functions-temporally or serially-they play in a valid configuration or they cannot be reused
by other components. From a constraint modeling point of view this problem can be easily
tackled. If a component is reusable the variable representing this component has constraints
to all su bproblems in which it overtakes a function. Otherwise for each function a new variable
with the same domain is created and added to the network.

An example may be the reusability of main memory for different software but the disk space
can only be used sequentially.

42 Chapter 6: The Configuration Task

Multi-function components

A special kind of components may have different tasks in different functions, e.g. a tape drive
may be used for backup purpose as well as for software installation. Again, this can be easily
modeled on the level of the network layout but the most difficult problem here is to find a
solution with a minimal number of involved components but still fulfilling all the functions.

Optimization

One of the major differelll;t:ti ueLween a constramt satlSlactlOn problem and a configuration task
is that the configuration problem is really an optimization problem whereas the CSP-finding
any vital solution-is underlying and only a part of the process (see above) . In general, global
optimization is too difficult to cope with, especially, if it is tackled with constraint systems
which usually make local decisions while on the contrary the optimization criteria refer to the
overall solution.

6.3 Modeling as CSP

Some of the above mentioned problems can only be modeled very indirectly as a CSP. Conse
quently, some additional functionality must be provided.

• The issues "multi-function components" and "reusable components" require additional
representation features. A language for describing the layout of the network and the
explicit description of constraints between variables must be introduced. Therefore, the
same classes of the network may serve as initial domains for different variables.

• The constraint network may change its layout dynamically. Additional constructs stating
the situation in which a variable changes its state, e.g. may be deactivated and thus does
not contribute to the solution any more, must be introduced and managed by the problem
sol ver as well.

• The relaxation facility plays an important role for detecting the inconsistencies and pro
viding support for finding weaker restrictions which still are suitable solutions for the
user. So far, only a weak local relaxation mechanism is provided and therefore this issue
must be elaborated in more detail in order to gain a more global point for view.

• Optimization criteria at least should influence assumptions which have to be made in
specific cases, i.e. deciding which class or individual to select, relaxing user requirements ,
etc.

Some of the requirements are exhaustively discussed in the following chapter whereas others
are only shortly mentioned.

Chapter 7

•

Hler~n

This chapter describes the system Hieracon (a knowledge representation system with typed
Hierachies and Constraints. The chapter starts with a summary of the characteristics of the
system. Some additional features which are derived from the discussion of the last section
are intensively investigated and tried to be modeled in the framework of a CSP. Subsequently,
the modularization and the overall problem solving procedure are explained. Finally, some
remarks about the implementation aspects are made, although no source code is discussed.
Instead the principle features of Common Lisp and CLOS used here are explained and the
characteristics of the modules based on the functionality they provide is presented.

7.1 Functionality

So far, the model of the CSP and the requirements of the configuration task have been dis
cussed. Based on these issues the required functionality and also the characteristics of Hieracon
can now be presented.

• The propagation process on the constraint level was already exhaustively discussed in
chapter 5.

• Relaxation is one of the most difficult problems in constraint reasoning but it is also the
major point to realize an "intelligent" configuration system. Therefore, the discussion
in section 5.3 has to be intensified and some additional features have to be provided to
offer a domain/task-dependent relaxation from a global point of view.

• Explanation as one of the major features of expert systems is automatically provided
by the last requirement. Relaxation provides and requires information which reflects the
reason why a specific situation has been established which is exactly what an explanation
asks for as well: In order to clarify the knowledge-based derivations of a (partial) solu
tion for the user the inference steps over time must be monitored an finally worked up.
Obviously, both data are equal from a general point of view. Therefore, the explanation
feature will not be any further discussed in this chapter.

• Optimization is treated here in a weak sense. It is tackled on the basis of so-called
resources-quantities which are either required, e.g. money, or provided, e.g. disk space,
by a feasible solution of the configuration task. The value for each resource may be
changed by each iteration step of the constraint solver. Therefore, this problem is ad
dressed as the constmint resource problem (CRP) (cf [KY89]) in the following.

44 Chapter 7: }lier«:Qn

• Based on some properties of the configuration task it cannot be modeled with a sale CSP.
One of the enhancements require that, in addition to the constraint process, a kind of
meta-reasoning over the layout of the network must be performed.

• One of the major concerns was to design a system which is modularized on several levels.
On the one hand side, a clear separation between the knowledge base and the problem
solver makes the system usable towards an expert system sheil approach 1. On the other
hand, in order to fully exploit the paradigms of object-oriented programming2 the point
of view that constraint-based modeling is "relations + operations" has proved its power.

These issues are the major points of concern in the rest of this chapter describing the func
tionality and the architecture of Hier<X:Qn.

7.2 Dependency Network

In order to provide the discussed functionality of the system, especially explanation and relax
ation, a data structure must be introduced which stores the inference steps and keeps track of
the changes in the variables. Typically these systems are called Reason Maintenance System
(RMS) and have the task to keep the record of how a conclusion is reached. [SS89b] discusses
several requirements for such a system.

As the coupling of a RMS and a constraint system was not the major issue of this work ,
basically a pragmatic approach was taken for such a system. Therefore, it cannot be directly
compared with Doyle's TMS [Doy79] or de Kleer 's ATMS [dK86], although some of their
ger.~ral principles are adopted . The most important one is the strict separation between the
problem solver and the RMS. The problem solver must be able to run without the RMS and
still draw correct conclusions. The only affect is that it is possible to retract previously made
decisions non-monotonically.

Four major issues must be clarified to describe the behavior of the RMS:

• Type of the dependency information recorded

• Inconsistency management

• Type of information provided by the RMS

• Relationship with problem solving mechanism

The first issue was already intimated in section 5.3.1 where the structured type chain of a
variable was defined. This is already a kind of dependency information which locally stores
the modification of the variables' type over time . Additionally, it was mentioned that the con
straints which force these type changes must also be detected but no mechanism was presented.
The rest of this section outlines this and the other issues of the reason maintenance system in
}lier<X:Qn·

1 However, there was no time left to proof this claim by investigating a different domain .
2C LOS was chosen as implementation language, cf section 7.7.

7.2 Dependency Network

'. constraint
"'"

.... network
....

'.
\,

45

-------~~--j;T-.=--~=7--'~:==::==::--=--I;;~-=:T-------
dependency

network

Figure 7.1: Recorded information for the variables

7.2.1 Recorded Information

Three major informations are stored for each variable.

1. structured type chain

2. the constraints activated on these variable, i.e. class restrictions, not-class restrictions
and parameter restrictions

3. the correlation between them, i.e. for each type in stc the constraint which enforced it.

As these are only the local properties of a variable, i.e. the unary constraint activated for it ,
and in order to keep track of the constraint processing, the information which n-ary constrain t
imposed which unary constraints must also be stored in the RMS. Figure 7.1 should reveal
the records. The constraint network is pictured in the upper part of the drawing, whereas the
dependency network with its record is shown in the lower part. There are some links (dotted
arrows) between the two parts which store the information from the constraint propagation
process when new, unary constraints are attached to the variables . These constraints are
assigned to the members of the stc ({ s, u} and {v}) which were derived as a result of applying
them. The constraint in the upper left corner is assumed to be a user restriction and thus
being added to the constraint network. But it is transformed into an equivalent class restriction
constraint which is added to the dependency network as a processing step. The links from the
dashed line to the unary constraints are assumed to be connected to other constrain ts in the
network. The not-class restriction constraints does not have a corresponding class in the stc.
Therefore, it is added to the variable without any further assigned information.

7.2.2 Inconsistency Management

The local inconsistency management was already described in section 5.3. With the data in
the dependency network a more global technique is enabled. The concatenated inference steps
become chains from the initial restrictions to the current type of the variable . Referring back
to figure 7.1, some assumption are made. The constraints are defined as follows:
classes-incomp(variable} : t, variablez : v)

46 Chapter 7: Hier~n

class-comp(variablel : S, variable2: v)
In addition, the initial parameter restriction forces class s to be assigned to variable}. Con
sequently, there is a chain from the initial constraint to the unary constraint which forbids
class t because the two defined constraints are consecutively triggered by classes sand v. This
information can now be exploited as soon as the constraint not-class-rest(variable} : t) is
involved in any relaxation process and the information is provided that the constraint was
eventually initialized by an initial parameter constraint. This issue is discussed in more detail
in section 7.3.

7.2.3 Provided Information by the RMS

There are several kinds of information which can be provided by the RMS as the above picture
already reveals .

• The newly created constraints are stored in combination with the variable they are ap
plied to. In order to keep the system uniformly, this must be the constraints which are
derived as a result of constraint processing as well as the assumptions (selection of classes
of individuals) in form of constraints which are made while no more active constraints
are to satisfy. This information is required to make sure that if a n-ary constraint is
relaxed all consecutive unary constraints are retracted as well .

• The relationship between the types in the structured type chain and the constraints
which enforced them is stored. The information is provided to the relaxation module in
order to get the necessary information what constraints must be deactivated if a class is
removed from the structured type chain.

Both information are only required if a relaxation takes place. Consequently, the paradigm
that the inference engine is able to run without the RMS is fulfilled.

7.2.4 Relationship with Problem Solver

The problem solver-here: the constraint solver-and the dependency network are strictly
separated from each other. The RMS gets the information about changes in the constraint
network together with the "reasons" of these modification. In fact, the problem solver is not
even "aware" of the existence of such a system. Also, after a relaxation took place and some
of the previously derived information are withdrawn from the network the constraint solver
starts its inferences again as if there is a newly instantiated network.

The boundary between the two modules is rather strict. In case of propagation there is only
a data flow from the constraint solver to the RMS and never vice versa. As soon as an
inconsistency occurs the information which is provided by the RMS is given to the special
procedure which computes the alternatives for relaxation and finally performs them . These
modifications are handed to the constraint solver as well as to the RMS in order to keep their
both data structures consistently with each other.

7.3 Relaxation

In chapter 5 a method was introduced to find proposals for relaxations based on local decisions.
Obviously, they do not reflect the actual situation and reasons for an inconsistency. Although

7.3 Relaxation 47

the inconsistent state-no more values are possible for a variable--of the CSP is detected at
a specific location in the network, the actual cause typically is founded anywhere else. As the
objective here is to model the configuration task (cf chapter 6) the objective is to reduce the
reasons for the inconsistency to the initial restrictions for the possible values of the variables3-

the user requirements. Consequently, there are non-local informations necessary and a global
measurement should be provided to perform a relaxation. Additionally, this kind of knowledge
provides rules of thumbs for the configuration task itself which can be represented in the
knowledge base and used by the constraint relaxation algorithm incorporating these expertise.
Two enhancements are presented:

1. The constraints are weighted according to their importance from the user's point of view
as well as from the expert's viewpoint who defines the knowledge base.

2. A constraint on a higher level is provided which groups single constraints in the typology
so far represented. If a relaxation procedure requires to relax such a constraint the
constraint provides alternative solu tions which are in some sense weaker than the original
one.

These mechanisms are discussed III the following and the enhancements for the constraint
solver is presented.

7.3.1 Weighted Constraints

According to [DL85j each constraint gets a value describing its relative importance for an overall
solution. This value also corresponds to the relaxability of the constraint: Very import an t
constraints are unrelaxable, important constraint are hard to relax, unimportant ones are
easy to relax, etc. The mechanism is also a means for the user to express his preferences as
mentioned in the model of configuration (cf chapter 6). For each initial restriction there is
a corresponding weight describing how important it is that the constraint is satisfied by the
final solution from the user's viewpoint. Consequently, the weighting function may provide an
ordering over the solution space. [Sat90j makes a formal investigation of this point of view. In
addition, there are some approaches to incorporate constraint hierarchies into CLP where the
hierarchies are defined according to the importance of constraints [BMMW89J.

In the following, the weights are taken as integers starting from 0 which denotes a very im
portant or unrelaxable constraint. [DL85j introduces 10 different degrees for weighting the
constraints. There are doubts that there is a cognitive adequacy for such a fine-grained mea
sure. However, any kind of weighting function fits into the following scheme as long as it can
be represented on the integer scale with 0 as lower bound. There is no need for an upper
bound.

Constraint Representation

The syntax for the constraints is now enhanced in the following way. An additional argu
ment is provided which represents the importance of the constraints. The same measure
ment is used for the initial restrictions, expressing the user's preferences as well as for the
constraints in the knowledge base expressing the weight of constraints with respect to their
technical importance. For example, the compatibility constraint between classes becomes now
class-comp(xl: St b X2: St2, weight) and similarly for all other types of constraints. In the
following, this factor is called relaxability of a constraint.

3 Provided tha.t the knowledge base is consistent itself!

48 Chapter 7: Hier~n

o

Figure 7.2: Propagating relaxability over the network

Constraint Processing

The constraint processing algorithm must also be modified in order to process the relaxabil
i ty from the initial constraints to the constraints being dynamically added to the network.
[FBMB90] discusses a similar approach.

For that purpose, the terminology of the relaxability of a variable is introduced. It expresses
how easily the currently assigned class can be changed in order to find a more general one.

Definition 7.1 The relaxability ofa variable x (relvar(x)) is defined as minweighdcons(x))
where cons(x) denotes the set of all currently active constraints of the variable.

The initial relaxability of a variable is assumed to be 00. Depending on the relaxability of the
constraint the relaxability of a variable which is modified via that constraint is dynamically
changed:

Definition 7.2 Given are the variables x and y and a constraint between them with relaxability
r. If this constraint affects the value of x while the current value of y activates it, the new
relaxability of x is set to

min(relvar(x),relvar(y) + r).

Consequently, an assignment for a variable can never be relaxed once it has gotten the relax
ability 0 because the function depreciates monotonically. Therefore if an inconsistency occurs
on these variable no relaxation of the CSP is possible. The effect of propagating the relaxability
from the initial constraints over the network is shown in figure 7.2. Variables are represented
in circles whereas constraints are pictured in boxes. The numbers for the constraints denote
the weight which was chosen for its definition. Numbers for variables denote their current
relaxability, i.e. how easy the currently assigned class can be generalized by deactivating the
constraint which enforced it. The picture shows the relaxability propagation in four steps.

7.3 Relaxation 49

a) The initial network consists of three variables, two initial constraints with relaxability
o and 1, and two constraints in the network which are static in the sense that they are
attached to the initial classes of the corresponding variables.

b) The unrelaxable initial constraint is activated and the corresponding relaxabilities for the
variables are computed. As a side affect a new constraint becomes added to the network
and propagates the relaxability to the previously unconstrained variable.

c) The second initial constraint is activated and as a consequence a new constraint is added
to the network.

d) Two variables are affected and their relaxability must be computed according to definition
7.2. Therefore, its value is changed from 2 to 1 since the new restrictions are harder to
relax and the minimum of both is taken.

With the above terminology it is now clarified how the locally computed sets of alternatives
for relaxation is evaluated in order to find the weakest one. The example implies a heuristic
which can be applied: The most important initial constraints should be processed first because
they impose the least possibilities for relaxation or, in terms of constraint reasoning, constrain
the CSP most. Unfortunately, as already seen in the example, the relaxability as a function
of the constraints variable is not monotonically because constraints in the knowledge base can
already be defined with an arbitrary relaxability. Therefore, the most recent constraint need
not always to be also the easiest to relax.

As all constraints gets the additional relaxation factor, the ones in the dependency network
in figure 7.1 are also enhanced that way. The set of all constraints which must be relaxed
to resolve the inconsistent situation is explained in section 5.3.2. The computed set describes
the classes which must be retracted as assignments for the variable if a relaxation takes place.
The additional information how easy the corresponding constraints are to relax can now be
used as a measurement for the weakest changes by comparing them with the constraints which
actually caused the inconsistency. First, the definition of what a weak relaxation is provided.

Definition 7.3 The relaxability of a set of constraints C (re/axa(C)) is defined as the
minimum of the relexabilities of its constraints.

Definition 7.4 Given are two sets of constraints C1 and C 2 . A weak relaxation is a re
laxation which deactivates all constraints in Cj (i = 1,2) such that relaxa(Cj) < relaxa(Cj)
(ii:j).

The decision of how to relax is based on this definition. The locally computed sets of constraints
from the structured type chain and the assumed reasons for the local inconsistency can now
be compared with each other on a global basis because the relaxability is propagated to each
constraint dynamically. Figure 7.3 gives an example for the overall relaxation procedure. The
additional information in the dependency network for the bounded area is pictured on the
right hand side. The two unary constraints added as a result of the constraint processing
are stored in the dependency network together with their relaxability. The left constraint is
assumed to be the reason for the inconsistency because it does not allow class v for the variable.
The only relaxation which can be performed on the previous constraints is deactivating class
rest(v). This is deterrruned by the algorithm in section 5.3.2 which computes {v} from the
structured type chain. The attached class v is assigned with the right constraint from which
the relaxability for this class is determined to 2. A comparison with the constraint which is

50 Chapter 7: Hieracon

: ". : .~

--------~------------------------~--------------
1 2

'§J

Figure 7.3: Example for the relaxation process

supposed to be the reason for the inconsistency shows that the weakest relaxation at that point
is the deactivation of the constraint class-rest(v).

The changes have to be propagated through the whole network in order to keep the CSP
consistent. Consequently, all constraints of which the deactivated one is the sole result are
deactivated as well, but only as far as relaxable constraints are affected. In the above example
only the deactivation of the immediate predecessor is performed because it has already been
defined as relaxable in the knowledge base itself and there is no relaxation possible in the
variable: its relaxability is O.

7.3.2 Compound Constraints

In addition to the weight function which has revealed its power an additional means is presented
which supports the internal relaxation of the knowledge. The idea is motivated by an example.
The following knowledge must be expressed:

It is recommended to have LISP running with at least 16MB main memory; but 12
MB is the absolute minimum.

This kind of knowledge is a typical rule of thumb used by the expert. From a constraint point
of view it gives hints how the requirement of 16MB memory can be relaxed in case that it does
conflict with more important preferences, e.g. price, etc. It can be regarded as an alternative
constraint which can only be exclusively satisfied. For that purpose, compound constmints
are added to the constraint typology. They group constraints and provide a semantics for the
constraint processing. One such functor is the XOR constraint with the semantic that exactly
one of the set of constraints which are compound must be satisfied simultaneously. For the
previous example it would be used as follows:

XOR (class-comp(software: LISP, memory: 12MB,0),

class-comp(software: LISP, memory: 16MB, 1),
0)

Also this constraint gets a relaxability in order to be able to compare the constraint as a whole
with other constraints. The semantics for propagation and relaxation is a follows:

7.3 Relaxation 51

• If the constraint is propagated try the "best" one first. In the above example, this is
hard-coded in the relaxability of the constraint. Otherwise, this information can be
detected from other user Dreferences. like nrice_ oerform:'lnrp pt.r

• If the relaxation procedure returns to such a constraint it deactivates the current one
and tries the next one with lower relaxability. If there is none the complete constraint
has to be relaxed according to the relaxability of the XOR if it is possible in the current
context.

This would mean for the above example, that the first trial would be to add 16 MB to the
configuration. If it is forced to be relaxed a new trial is made with 12 MB. If LISP was chosen
with weight 0 than the selection is a minimal configuration and therefore unrelaxable. If LIS P
was selected as a relaxable preference then the complete constraint can be relaxed if 12MB is
also impossible.

Two other compound constraints are added to the constraint typology as well:

• The compound AND constraint which states that as first trial all grouped constraints
are activated simultaneously describing the best solution. If a relaxation of one of the
constraints is required this constraints is removed and the other ones are not affected;
the AND constraint is still satisfied.

• The compound OR constraint groups a set of constraints from which at least one must
be satisfied. At first trial the one which is easiest to relax is added to the network and it
is not a fault if other constraints are satisfied automatically by other propagation steps.
If a relaxation takes place the single constraint is removed and it is checked whether
another in the group is already satisfied. In that case no action is required. Otherwise
the next constraint, measured on the base of its relaxability is taken and added to the
network.

Obviously, the compound constraints can be intermixed with each other such that a complete
boolean language is provided. Naturally, the unary NOT constraint would fit in this schema as
well but is was already coded into the unary and binary constraints of the typology in section
4.3.

Although the grouped constraints need not to have any common semantics, i.e. they are con
straints between the same objects, in general they have. In the example above they provide
an alternative solution between the same classes. From a general point of view the compound
constraints may not be regarded as complex constraints but as a means to describe the solution
of a constraint by set composition, alternative sets and difference sets, cf [DP88J. Therefore,
the relaxation process exploiting the semantics of compound constraints can be regarded as a
procedure manipulating the solution sets of these constraints by various set operations.

7.3.3 Limitations

Although a couple of proced ures are introduced to provide a whole variety of relaxation meth
ods the mechanisms can only be regarded as heuristics in order to design an "intelligent"
system. Therefore, the limitations of the methods have to be discussed.

The computation of the alternative sets for local relaxation in section 5.3.2 is based on two
assumptions.

52 Chapter 7: Hier~n

1. The most recent constraints applied to a variable the time the inconsistency occurred is
a sensi ble candidate for relaxation. Especially, in case of parameter restrictions this may
not be true because this constraint may have a lower relaxability than other parameter
constraints before which excluded only a subset of the individuals compared to the set
excluded by the most recent constraint. These other constraints are not taken into
account by the algorithm because they need not necessarily enforce a class restriction.
For example, a constraint with relaxability 1 excludes the remaining individuals {a, b, c}
and is taken into account as an alternative for relaxation, besides the constraints derived
from the structured type chain. A previously activated constraint with relaxability 2 has
excluded {a, b} and is not taken into account, although, based on its higher relaxability
it may even be a better candidate. To compute the optimal set of constraints to relax in
this situation an exhaustive number of combinations4 must be investigated at this point.

2. The not-class restriction may be used moving upwards the structured type chain but
a complete logical description in the sense that the complementary set-intuitively de
scribed with the constraint-may not have a corresponding single class in the hierarchy5.

The extension of this kind of constraints can only be decided on the individual level: It is
the difference set of the individ uals of the initial class and the current class. Obviously,
this is not what it is intended based on the fact that the constraint processing algorithm
should work as much as possible on the class level in order to reduce the number of
predicate checkings.

The two issues include a lot of simplifications but should still work reliably and can be improved
by investigating a real knowledge base in more detail.

Another problem occurs while the relaxation factor is dynamically being processed and recom
puted at each constraint processing step according to specific formulas. However, the factors
are statically being defined by the expert and the user. Its status at a specific situation while
the network is being process may not correlate to the user's/expert's intention. Consequently,
this algorithms must be thoroughly monitored it order to verify them pragmatically.

So far, the intention has been conveyed that the whole configuration process can run fully
automatically. As the above restrictions reveal some user feedback is sensible while the con
figuration proceeds and even some additional information is required in any case because the
problem may be underspecified. But the weltanschauung adopted here and one of the objec
tives of this work was to develop some mechanisms which can work independently in principle;
an introduction of additional user feedback is then straightforward and any point because the
algorithms may still provide sensible proposals.

7.4 Optimization

As previously mentioned, the optimization aspect is put on a weaker basis in Hieracan' An opti
mization criteria typicaUy copes with quantitatively defined sizes, e.g. money in $, performance
in MIPS, number of users to support, etc. or a qualitative description of user requirements,
e.g. cheap price, high performance, etc. These criteria are introduced into the problem solving
procedure and into the structured hierarchy as well. In order to limit the complexity of the

iTheoretically, all possible combinations of constraints have to be taken into account which are 2::~=l (7) if

there are n constraints, e.g. 15 combinations for 4 constraints.
5There is also no way to refer to classes by terminological descriptions in case that there is no object already

representing this class as in KL-ONE [BS85].

7.4 Optimization 53

Figure 7.4: Exploiting resources for optimization purpose

task it is assumed that all optimization criteria are provided quantitatively; thus, there is no
need to map from qualitative descriptions to quantitative sizes. These numbers are called
resources in the following.

The individuals get a specific parameter which holds its resources. Also the classes get addi
tional parameters with the same name and hold, in case of required resources, the minimum
or, in case of provided resources, the maximum of the resources of all its direct subclasses
or individuals. Figure 7.4 shows an example. The maximum/minimum of the resources of
the individuals are attached to its direct superclasses which provide the information to its
superclasses and so on. A special variable called the resource variable is added to the network.
While the propagation process proceeds the variable get the values of all resources and sums
them up. Consequently, in case of a required resource it holds the minimum of the resources
which can be provided by all individuals still under consideration and vice versa in case of a
provided resource it holds the maximum of these resources. The variable's update is performed
dynamically at each time the value of a variable is refined. At that point the previous value is
replaced by the current one. The value of the resource variable is monitored and as soon as a
specific amount is exceeded or falls short (defined as a parameter restriction constraint on the
resource variable) the remaining solution cannot fulfill the resource constraint.

Similar propositions as for the relationship between the locally consistent state and the global
solution holds. If a state fulfills the conditions on the resource variable there may be no global
solution at all for this restriction . For example, this methods sums up the price. As being a
required resource it evolves if for all remaining individuals the cheapest one would be chosen.
However, the cheapest components of different variables may be incompatible with each other
due to technical reasons. Therefore again, this approach can only solve as a heuristic to cope
with the optimization criteria in a weak sense.

Introducing an additional variable for monitoring this kind of data also satisfies the problem
that the constraints involved with resources typically have an arbitrary number of arguments
increasing with each variable in the network , e.g. the constraint for a price restriction would
have to be defined as param-comp(< price, L:i=l price(Xi)) with n as the number of variables
in the network therefore requires a variable number of arguments positions as new variables
are activated or deactivated. With the above approach binary constraints can still be used
uniformly because there is already a method for retracting and adding them .

The second situation were optimization controls the solving process addresses the point were all
active constraints are evaluated and assumptions must be made how to proceed, i.e. selecting
a class or an individual for a variable. In that case, statements like "low costs" or "high

54 Chapter 7: Hier«Qn

Figure 7 .5: Example for a dynamically changing constrain t network

performance" can be directly translated into a control information for the problem solver .

7.5 Network Layout

As mentioned in section 6.2 the configuration task requires that a more sophisticated language
is provided to describe the layout of the network and to describe some dynamic changes per
formed while the propagation process proceeds. Variables must be connected in order to define
constraints between them. In addition to this static description , variables must be activated
and deactivated at run-time. An example is pictured in figure 7.5. It shows a network includ
ing four variables and the hierarchy for the class workstation. As it is seen the layout of the
network changes due to the assignments for workstation. If the class 2D-workstation or one
of its subclasses is assigned a video-interface is required . Otherwise, if 3D-workstation is a
value of workstation a display-controller6 is required instead. In addition , a component of
class display-controller requires a display controller interface. Because 3D-workstation
and 2D-workstation do not have a common subclass the two variables are exclusively acti
vated. This kind of dynamic behavior must be introduced to the representation of the network
layout. As a consequence, the solution of the CSP also varies dynarrucally. The size and
composition of the solution refers to the variables finally being active.

From a more general point of view, this behavior can be interpreted as a simulation of a
dynamic PART-OF relationship already mentioned in section 3.1.1 which describes the com
position functions in the configuration task, cf section 6.2. In the example a fragment of
the "displaying data" function is represented which consists of either a monitor (not intro
duced) and a video interface, or a monitor, a display controller and a display controller inter
face, exclusively. Obviously, this could have also been performed by summarizing the classes
display-controller and video-interface to a common class but as they have different
parameters because they have a physically different composition this approach would be very
unadequate. The issue of reasoning over the layout of the constraint network is also discussed
in [MF90j.

The language for the layout of the network includes the following constructs:

6 A display controller includes special hardware providing high graphical power, e.g. for running a 3D CAD
system, whereas a video interface does not provide independent computational power.

7.5 Network Layout 55

• def-var(x: initial class) (define variable)

A variable is defined and initialized with the most general class in the hierarchy it can
adopt. Also it can be defined as being active from the very beginning, e.g. a workstation
is required in any case.

• group-vars(xl,." ,xn) (group variables)

Variables are grouped together in order to specify between which variables the constraints
are defined. This allows an addition of various variables with the same initial class,
e.g. if a distributed system is configured a server workstation and the clients must be
configured but both have as initial class workstation. Additionally, the problem of
reusable components (cf section 6.2) can be represented by adding a variable to multiple
groups.

• def-key-var(x) (define key variable)

The key component property is modeled by labeling some variables as being key compo
nents. This information is exploited when an assumptions is made and was also discussed
in section 6.2.

• act-var-class(x, class) (activate variable by class)

A variable is activated as soon as a class is attached to another variable. The example
above reveals the necessity of modeling this behavior.

• act-var-var(Xl, xz) (activate variable by variable)

The same situation on another variable in the network can happen because another
variable is added.

• deact-var-class(x, class) (deactivate variable by class)

• deact-var-var(Xl, Xz) (deactivate variable by variable)

With this notation the constraint network in figure 7.5 is modeled:

def-var(workstation: workstation)
def-var(video-interface: video-interface)
def-var(display-controller: display-controller)
def-var(display-controller-int: display-controller-int)
group-vars(monitor, video-interface)
group-vars(workstation, video-controller, display-controller-int)
act-var-class(video-interface, 2D)
act-var-class(display-controller, 3D)
act-var-var(display-controller, display-controller-int)

Unfortunately, this additional requirements enormously complicates the reasoning process.
The RMS (section 7.2) must now also store information about the activation and deactivation
of variables in order to undo such an action. It might happen that a class, which previously
activated a variable, is later on retracted again. In that case the variable must be deacti
vated again as well. Another situation-a dynamically added variable cannot contribute to a
solution-requires that a relaxation is performed for a class which previously activated this
variable. All these information must be updated and kept consistently by the RMS in addition
to its data management on the constraint level.

56 Chapter 7: Hier«Qn

define and attach Structured
Hierarchy

...
~L..----.r-----l

~
'. new constraints

·······~7 dyn~c

. me s

"~

1;~7~f·········~~~········~C-N-O~-tw...lltrain'-o-r-k-t..,i'-........ .
"' ...

r------Pr-O-:-l~-~..ILram-S-o-I~-v-e-r....&..---·....,····~·~::::
constraint processing

Constraint
Typology

6

defines

r----~--.,

---------r---------'--+--+Tl}JJropagation I relaxation -+-----4 ::::,,··::::::User ··

hierarchical

information

modifications current state

~..... defining the CSP Dependency
Network

solving the CSP

Figure 7.6: Components of Hier~n

ReqUiremen~

7.6 Architecture

So far, some single functionalities have been explained and it must now be clarified how they
work together and thus, determine the modularization of Hier~n' Figure 7.6 shows the
components and how they interact with each other . The dotted arrows show the links required
to define the specific configuration problem whereas the solid arrows picture the data flow
while the problem is solved .

7.6.1 Definition of the Configuration Task

Reflecting the inputs and outputs of the configuration task the overall procedure for defining
a specific CSP includes the following steps:

1. The constraint typology and the principle structure of the hierarchy are fixed. The
knowledge base A := (PT,ST,INV,C, P , IS-A) (cf definition 3.5) must now be defined
by fixing the sets (PT,ST,INV,C , P) and the relationship between the objects with

7.6 Architecture 57

the aid of the IS-A relation. In addition, the predicate constraints which are used as
parameter restrictions must be defined appropriately and attached to its corresponding
primitive types in PT.

2. The next step is to define an architecture for connecting the components, describing
a feasible solution by attaching constraints to classes in the knowledge base. This is
performed by making instances of the constraints of the typology and of the predicative
constraints of the primitive types.

3. With this knowledge a specific configuration task is defined by three different kinds of
knowledge, pictured in shaded boxed.

(a) The network layout is defined by the usage of the constructs in section 7.5. The static
network description as well as its dynamic behavior, while variables are activated
through classes, are described and added to the appropriate places. Herewith, the
network is initialized with variables and its corresponding classes.

(b) The user is now able to define additional restrictions on the constraint network
representing his needs for the functionality of the system, e.g. what software should
run on the system, what kind of monitor is preferred, as well as physical values, e.g.
a workstation has been already selected and it should be enhanced to a complete
system. These restrictions are added to the constraint network also in the form of
constraints which are taken from the constraint typology as well. The quantitative
restriction of resources are also in this category and they are added as constraints
to the resource variable, cf section 7.4.

(c) Additional requirements describing the optimization criteria from a qualitative point
of view are also defined and provided to the constraint solver as additional infor
mation which can be used for making assumptions on the selection of components,
e.g. the cheapest class/individual should always be taken, etc.

The configuration task is now defined and a solution can be computed.

7.6.2 Solving the Configuration Task

The main procedure of HieracQn is shown in figure 7.7. The set Pending-Constraints includes
all constraints which have still to be evaluated. At the very beginning, these are all initial
constraints of the network . At run-time the set is enhanced with all constraints dynamically
being added by constraint processing. In case of a relaxation this set may also be altered
because some constraints must not be evaluated any more because their activating values are
retracted. The relaxation process is activated in two cases: Either an inconsistency is detected
at a variable or the restrictions on the resource variable are violated. This loop is performed
until all constraints have been evaluated and the current state is consistent such that is does
not require a relaxation. It corresponds to a locally consistent state of the network (cf section
2.3.1) where no further local constraints can be applied and no inconsistency occurs. At his
point assumptions must be made how to proceed. Any variable representing a key component
is selected and further assignments are enforced by adding a corresponding constraint. This
method roughly equals the backtracking algorithm (cf figure 2.1) which also assumes values
for variables and checks its consistency in the current state with the difference that here
the assumptions for attaching values to a variable are not based on a fixed sequence but
on task/domain dependent knowledge. Summarized it may be said , that the two-stepped,
conventional method for solving CSPs over finite domains (local consistency + backtracking)

58 Chapter 7: JPer~n

Solve(Initial-Constraint-N etwor k)
Pending-Constraints := acti ve-constraints(Ini tial-Constrai nt-Network)

repeat select one constraint b
if the constraint is not satisfied

then satisfy it
if inconsistent/non~ptimal state

then relax network
Pending-Constraints := active-constraints(N etwork)
if Pending-Constraints = 0

then if solution found
then return solution
else if no solution possible

then explain no solution

2.
<==

else Pending-Constraints := assumptions b
until Pending-Constraints = 0

end *Solve*

Figure 7.7: Principle algorithm for solving the configuration task

is reflected in this algorithm as well. The major difference is that the procedure taken here is
knowledge-driven and not purely data-driven.

The three crucial places where heuristics play an important role are marked in the algorithm
with an '<=='.

1. The constraints with the lowest relaxability should be selected first because they impose
the hardest relaxable restrictions on the network. One expectation is that therewith
overconstraint problems can be detected early. Additionally, constraints over classes are
preferred to those which are value restrictions on parameters because the whole processing
is based on the benefits of these kind of constraints.

2. The relaxation is based on several heuristics which were exhaustively explained in section
7.3. In addition, user feed-back can be included here which is intimated in figure 7.6 by
an arrow from the "user" to the relaxation mod ule.

3. Additional assumptions made by the problem solver are based on two heuristics. First,
the requirements define an order on how the alternatives are selected, e.g. "take always
the cheapest component". This is only a locally optimal decision and obviously needs
not necessarily lead to a globally optimal solution as well. However, together with the
resource variable it overcomes its strict locality with the following observation. As a
new assumption is made also new constraints can be derived from the knowledge base.
Evaluating these constraints leads to further restrictions in other variables. Monitoring
the changes on the resource variable gives a hint whether its value is refined towards the
intended direction. For example, (cf figure 7.5) if the cheapest workstation is chosen and
therewith only a video interface and not a display controller is possible, the performance
for graphical operations will also decrease which can already lead to a retraction of the
assumption at that point that the cheapest workstation should be taken although a great
part of the search space, e.g. selecting a prin ter, disk cartridges, etc. has not even be
touched. Second, the idea of key components restricts the number of variables which
have to be taken into account for refining the values assuming that by attaching values
to these variables the others are automatically deterrruned by constraint processing. Also
a user feed-back on how to proceed may be introduced here.

7.7 Implementation 59

Again, the heuristics may serve as a support to propose continuations for the user at any
point or they can be applied fully automatically. However, they need to be refined by investi
gating a real world application and also by taking into account the expert's approach to the
configuration problem.

7.7 Implementation

The modules of HieraC{m have been outlined on a structural and functional level. This section
elucidates some of the implementation aspects. So far, a kernel of the described system has
been implemented.

7.7.1 Language

Although Common Lisp with CLOS [Ste90j was chosen for some environmental restrictions
it has proven its feasibility because this language includes several programming paradigms
reflected by the component's functionality as shown in figure 7.6.

Structured Hierarchy

The structured hierarchy is an inheritance hierarchy and therefore implemented in CLOS. The
objects in the structured hierarchy are defined by a CLOS "defclass" function automatically
providing class and slot access functions. .

The major functionality of the hierarchy for the problem solver is the computation of the
greatest common subclass of two classes and the general IS-A relationship which is automat
ically provided by the Lisp "subtypep" function because CLOS introduces a new type to the
hierarchy of Common Lisp types for each class. As there is no direct way to access to the
properties of a class, e.g. default slot values, a prototypical instance of a class is assigned to
a variable. In order to get the direct sub- and superclass of a class the non-standard CLOS
functions "clos:class-direct-subclasses" and "clos:class-direct-superclasses" have to be used.

Also the constraints between the classes are prototypical instances of an object in the constraint
typology. Another instance of the same class is then attached to the variables as soon as these
variables are grouped with each other. Therefore, several variables with the same initial class
can be defined.

Constraint Typology

The classes of the constraint typology which is also enhanced by the compound constraints
are shown in figure 7.8. Each kind of constraint is defined as an own class in this hierarchy.
The slots are labeled with a colon. Adopting the object oriented poin t of view there are some
generic functions whose methods are individually defined for each class:

• a predicate which checks whether a constraint is satisfied taking into account the current
state of the constraint network

• a method which satisfies a constraint, i.d. activates the propagation or relaxation module

60

constraintsO"n classes

~
unary binary
: class : class 1

constraint
:relaxabtl1ty

-------- I
parameter constraints

:pred1cate

~
param-rest
: parameter

param-comp
:l1st of parameters

Chapter 7: Hier«:Qn

compound constraints
:l1st of constraints

~
XOR AND OR

A'Bss2
n01<o"""-res' dass-",,' A

class-comp ciass-tncomp

Figure 7.8: Constraint Typology

• a method for relaxing a constraint, i.d. handing its negation as the relaxation condition
to the module

• a method which undoes a previously performed action on a variable

Also the ":predicate" slot of the class "parameter constraints" is filled with a predicate also
defined as a method attached to the primitive types which are its arguments.

Consequently, the it object oriented CLOS-feature generic functions can be fully exploited for
this module.

Problem Solver

The basic algorithm of the problem solver is shown in figure 7.7. It is obvious that is has
mainly proceduml aspects. The main loop, which is also the major control structure of the
whole systems, is controlled by a set of constraints sorted by relaxability and their type as sort
key. The algorithm activates the modules for constraint processing depending on the current
state of the constraint network. Therefore, the procedural aspects of Lisp have been intensively
exploited for this module.

Its input are the structured hierarchy, the constraint network and the constraint typology. The
output is a solution for the defined problem. Embedded are the constraint propagation and
the constraint relaxation module requiring for information on the current state of the network.

Constraint Network

The constraint network is implemented as an abstract data structure in a functional style with
the following methods which are basically representing the language for defining the layout of
the network, cf section 7.5:

• a method which adds a variable with the initial class to the network

• a method grouping variables together in order to define constraints between them

• a function for labeling the variables which represent key components

• functions which deactivate and activate variables

7.7 Implementation 61

• a predicate which checks the consistency of a variable's value

• a method which adds and deletes constraints

Dependency Network

The dependency network includes the RMS and is also functionally realized by providing several
methods:

• add a new constraint to the network together with its attached class

• delete a constraint and undo modification it enforced

• a method which computes the candidates for relaxation from the structured type chain

Also, a JuncttOnaL point of view on this module seems to be appropriate using this Lisp
paradigm.

7.7.2 Current State

To date some major aspects for proving the feasibility of the ideas has been implemented.

Chapter 8

Existing Systems

This chapter tries to put Hieracan into relation with five other already existing systems. One
ACK-is merely a programming tool but was implemented in CLOS as well and so gives some
useful hints of how to cope with specific CLOS restrictions while implementing a constraint
system. The others are also complete configuration systems-COSSACK-or shells-IDA,
PLAKON, Platypus-with a functionality corresponding to the presented system. Vice versa,
these systems also influenced the conceptual structure of Hieracan. Only the cited literature
was taken into account; meanwhile, the systems may have been continuously developed further
on. The lack of describing a feature was not taken to be a hint that the functionality is not
provided. Additionally, only those features are intimated here which shows similarities to
Hieracan·

8.1 ACK

ACK (a Constraint Kit) [LDKT88j provides a collection of classes, methods and functions
allowing to define constraints between instances of CLOS [Ste90j classes. Therefore, it may
be regarded as an enhancement of the object-oriented paradigm of CLOS in order to define
also constraint-style relationships such that they are invertible in contrary to ordinary Lisp
functions. It is intended as well to establish constraint primitives which can be inherited by
other CLOS classes to provide a platform for building more complex constraint mechanisms on
the basis of ACK. Its functionality is motivated by the design task rather than the configuration
task. Therefore, the methods emphasize the point to propagate values actively from one
variable to another.

The classes constrained-object and alg-constraint are provided and must be defined as super
classes of the user-defined classes such that the constraint methods are inherited. In general,
classes are additionally structured by having instances of other classes as values for their slots
which also might have slots and so on.

(slot-value

(slot-value
(slot-value my-class 'var-l)
'var-2)

'var-n)

8.2 COSSACK 63

is an example for such a "nested" data structure. For the purpose of accessing a slot in a
nested structure the notation of a path is introduced which references to a slot by denoting
aU the slot names of all included objects, e.g. (:path <var-1> <var-2> ... <var-n». In
Hier~n the objects are assumed to have a flat structure (primitive types as slot values).

Various functions are defined to manipulate the values of the slots, accessed by paths, which
serve as variables. The value of slots can be actively determined by forcing all constraints
referencing to that slot to become active. As each constraint is taken into account individually
this procedure corresponds to computing the locally consistent solution for a variable.

The second class alg-constrain t copes with algebraic constraints such that equations between
terms over real numbers can be defined between classes. However, the constraints are based
on Lisp functions and do not enable a handling of equations on a symbolic level. But in a
very straightforward way the user is able to define.more elaborated numeric proced ures by
exploiting pre-defined "hooks", ":before" and ":after" methods.

Methods for defining compound constraints and relaxability are already discussed in the doc·
ument an can be easily introduced. Summarized it may be said, that ACK provides some
features on the CLOS level which are also required in Hier~n; thus, it gives some hints of
how to include constraints into a hierarchy of objects (CLOS classes).

8.2 COSSACK

COSSACK [FM87] is a constraint-based configuration system from which the model of config
uration (cf chapter 6) was derived. Therefore, it sets value on the understanding of user needs
and optimization criteria, too. Its application domain is the configuration of micro-computer
systems. The major point of view in Hieracon that configuration modeled as a CSP includes
constraint satisfaction and a meta-reasoning over the layout of the network can be found as
well [FM87]:

A generalized constraint reasoning problem involves two interwoven search spaces:
first-a space defining relevant variables and constraints identifying a standard con
straint satisfaction problem, and second-a space of solutions to the defined CSP
problem or finding a consistent assignment of values to the variables which in turn
changes the first space.

The second difference to a CSP is also addressed as "the configuration problem is really an
optimization problem".

The components are represented in a hierarchy according to their functional, physical, and
electrical properties. In addition to the subcomponent relation (IS-A) a "required compo
nent" relation is used to structure the hierarchy. Constraints can also be defined on structures
as symbolic descriptions of a set of components in order to exploit this information for con
straint processing. The search space is additionally pruned by applying the "partial choice"
strategy [MF87] also exploiting the internal structure of the components. For evaluating the
constraints a goal driven approach is chosen. For each class of components that is addressed
by a constraint, a goal is created and satisfied by an appropriate method through selecting a
particular component which may consecutively also add new constraints. The whole process
is also initialized and started by the user requirements which are translated into goals.

A specialized dependency maintenance scheme allows choices to be retracted such that also
multiple configurations from a single problem description can be produced. Optimization

64 Chapter 8: Existing Systems

criteria are only included for making local decisions. The implementation is performed in a
tool for building domain-independent, knowledge-based systems for design problems.

8.3 IDA

IDA [Pau90], an expert system shell for modeling the concept phase in construction problems,
includes a constraint module for defining relations between plan variables. Its knowledge in
the domain hierarchy (static knowledge base) is structured by two relations: the IS-A and an
enhanced PART-OF relation such that solution alternatives can be represented statically and
control the inference process.

The constraint system is closely coupled via the constrai"nt variables with an ATMS which is
only capable of storing directed dependencies whereas the constraint system represents undi
rected dependencies. It is also organized as a typology with various attached methods to each
constraint class.

The solution of the CSP is derived by using the local propagation method (cf section 2.3.1).
The values of variable assignments are chronologically stored with each variable, similarly to
the structured type chain. However, the propagation procedure works destructively. Reasons
for an inconsistency are locally derived on similar assumptions and, by exploiting the informa
tion stored in the the ATMS, the necessary backtracking steps are performed. Additionally,
constraints being already implicitly defined between non-neighbored variables are made ex
pli-cit and become added to the network such that later on the same inconsistency will not
occur again. For controlling the relaxation process by retracting constraints, the constraints
are weighted. The information is used to define a metric on the CSP. It locally decides the
weakest relaxation by backpropagating constraints to their assumed reasons which are either
assumptions in ATMS nodes or technical requirements defined in the static knowledge base.

8.4 PLAKON

PLAKON [CGS89] is an expert system shell for planning- and configuration tasks. An out
standing property is the feature of providing various modes for controlling the inference process
(backtracking-free, intelligent backtracking, TMS supported mode, and an ATMS supported
mode). A so-called dynamic knowledge base stores all dynamically created objects whereas
the static knowledge base holds taxonomical knowledge, based on the IS-A, and a composi
tional hierarchy based on the PART-OF relationship. A classifier for automatically introducing
new objects into the static knowledge base is provided to support knowledge acquisition and
knowledge base maintenance. Here, the major difference to Hier~n is that the PART -0 F
relationship is modeled in the static knowledge base and not in the layout of the constraint
network itself.

Constraints in PLAKON are used to represent and evaluate dependencies between objects.
They may either constrain properties or make statements about the existence or non-€xistence
of objects. Therefore, they roughly correspond to classes in the constraint typology of Hier~n
with "constraints on classes" and parameter constraints. PLAKON also provides generic types
of constraints which can be instantiated and added to the static knowledge base. The overall
constraint system is based on CONSAT [Giis89]. Because objects with attached constraints are
incrementally being added to the dynamic knowledge base the constraint network also grows
dynamically. This mechanism corresponds to duplication of constrain t instances in Hier«:Qn in

8.5 Platypus 65

case that multiple variables with the same domains exist. The constraint definition is pattern
based. A precondition is added to the constraint in form of a pattern which fixes the situation
the constraint can be activated.

The problem of coping with resource constraints with an arbitrary number of input arguments,
in Hierac'on modeled with the resource variable, is here represented with constraints having a
variable number of arguments, so-called "set-valued" constraints. The predicates over prim
itive types provide a more uniform approach to non-standard data structures, e.g. intervals,
complex numbers, in constraints than the approach taken in PLAKON because here conceptu
ally, there is no difference while defining or propagating such a constraint. PLAKON provides
different algorithms for all of these constraints and does not assume a well-defined type hier
archy. Relaxation factors for weighting the constraints and the compound constraints (here:
constraint bundles) are also introduced but they cannot cope with the relaxation of class or
not-class deoendencies.

8.5 Platypus

Platypus [HR89] is an expert system shell modeling synthesis and diagnosis problems as
constraint-based recognition tasks. It basically allows an incremental refinement of the so
lution description where only the necessary incremental amount of work is done at each step.

Configuration in Platypus is based on the same model of configuration, cf chapter 6. Its major
technologies involved are a model-based knowledge representation (schemas), a rule processor
engine (horn logic rules driving the reasoning process), a constraint propagator engine, and a
truth maintenance system (for exploring alternative search paths or network inconsistencies).
The TMS supports backtracking for both components, the constraint propagator and the rule
engine. Constraints are merely defined between parameters of the objects. The constraint
propagation algorithm is derived from [MMH85] as discussed in section 2.3.2. There is no
method introduced to define preferences over constraints. Instead, an ordering among the
possible values of a parameter can be defined which controls the sequence they are selected for
completing the solution.

Chapter 9

Conclusions

Hier~n so far discussed on a conceptual level need to be further developed and implemented.
It should have become clear how the three major point of views mentioned in the introduction

Constraints = Relations + Operations

efficient solver for search problems

Constraints describe local relationships between entities.

have been exploited to design a constraint-based configuration system. Based on the intended
functionality and characteristics of Hier«:Qn (cf section 7.1) some final conclusions are drawn
here.

• The propagation process on the constraint level was defined to exploit the structure of
the domain intensively. Typically, classes represent as set of individuals with common
properties. However, not all values for parameters are represented as an own class.
Therefore, a mechanism may be provided which recompiles the hierarchy for solving
subsequent configuration tasks by introducing new classes representing specific parameter
restrictions which may have frequently occurred in previous sessions.

• The relaxation procedures are basically heuristics applying static domain dependent
knowledge to the inference process. Additionally, the weights of constraints are manipu
lated. The question is whether they keep their declarative meaning with the computation
rule in definition 7.2. This issue can only be answered through a pragmatic analysis of
configuration session applying the proposed methods.

• A sophisticated explanation becomes extremely important through the inclusion of user
feed back for controlling the problem solving. Consequently, not only final solutions
(non-existence of a solution) must be explained but also questions of the kind "How
does the performance change if I select a 3D workstation?".

• Finding an optimal solution was reduced to fulfill number restrictions on resources. How
ever, the term optimization is not even clear from a cogni ti ve viewpoin t as humans even
cope with contradictory criteria such as low price and high performance and still find an
optimal solution from their point of view. Consequently, a model should be developed
to cope with inconsistent user preferences in an adequate way.

• One of the outstanding properties of Hier~n is that the configuration task, although
at a first glance very strongly differs from a CSP , can be modeled in an enhanced

Chapter 9: Conclusions 67

framework for CSPs: dynamic CSPs over structured domains. This issue should be
further on developed in order to incorporate other CSP techniques and algorithms as
shortly mentioned.

The meta-reasoning feature over the layout of the network also shows that an enhanced
methodology may incorporate features which are derived from the task specific require
ments very naturally .

• The modularization of the whole system, especially the constraint typology makes it
possible to introduce more sophisticated constraint types, e.g. constraints which can
handle equations over real numbers svmbolicallv. as lone: as thev can orovide the methoos
for the constraint processing.

Not mentioned features are additionally imaginable, like an ATMS based RMS for investigating
several configuration simultaneously, operations research methods for providing sophisticated
optimization procedures, etc. However, even the features presented so far are not proven to be
feasible as long as they cannot be applied to a real-world knowledge base (which is the lack of
many AI projects) provided by configuration experts.

Bibliography

[AKN86] H. Alt-Kaci and R. N asr. LOGIN: a logic programming language with built-in
inheritance. The Journal of Logic Programming, 3:185-215, 1986.

[BBK+91] A. Bernardi, H. Boley, C. Klauck, P. Hanschke, K. Hinkelmann, R. Legleitner,
O. Kuhn, M. Meyer, M.M. Richter, F. Schmalhofer, G. Schmidt, and W. Sommer.
ARC-TEC: Acquisition , Representation and Compilation of Technical Knowl
edge. In Proc. 11th International Workshop on Expert Systems fj and their Ap
plications, Avignon, France, volume 1, pages 133-145. EC2, 1991.

[BFL83] Ronald J. Brachman, Richard E. Fikes, and Hector J . Levesque. Krypton: A
functional approach to knowledge representation. IEEE Compu.ter, 16(10):67-73,
1983.

[BH91] F. Baader and P. Hanschke. A scheme for integrating con rete domains into concept
languages. In Proc. 12'-h International Joint Conference on A rtificial Intelligence,
1991. forthcoming.

[BLR89] R.J. Brachman, H.J. Levesque, and R. Reiter, editors. Proc. l~t International
Conference on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers, Inc., 1989.

[BMMW89] A. Borning, M. Maher, A. Martindale, and M. Wilson. Constraint Hierarchies
and Logic Programming. In Proc. of ICLP 89, pages 149-164, 1989.

[Bra83]

[BS85]

[CdPV89]

[CGS89]

[dK86]

[DL85J

[Doy79]

[DP88]

Ronald J. Brachman. What IS-A is and isn't: An analysis of taxonomic links in
semantic networks. IEEE Computer, 16(10):30-36, 1983.

Ronald J. Brachman and James G. Schmolze. An overvi€w of the KL-ONE
knowledge representation system. Cognitive Science, 9:171-216, 1985.

Th. Christaller, F. di Primo, and A. Vol3. Die KI- Werkbank BABYLON. Addison
Wesley, 1989.

R. Cunis, A. Glinter, and H. Strecker , editors . Das PLAKON-Buch, volume 266
of Informatik Fachberichte. Springer-Verlag, 1989.

J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162,1986.

Y. Descotte and J.-C. Latombe. Making Compromises among Antagonist Con
straints in a Planner. Artifical Intelligence, 27:183-217,1985.

J. Doyle. A Truth Maintenance System. Artificial Intelligence , 12:231-272, 1979.

R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction
problems. A rtificial Intelligence, 34: 1-38, 1988.

BIBLIOGRAPHY 69

[FBMB90]

[FM87]

[Fox86]

[Fre78]

[Fre82]

[Fre89]

[Giis89]

[HPC90]

[HR89]

[JMSY90]

[Kas89]

[Kum90]

[KY89j

[LDKT88]

[LeI88]

[Mac77]

[Mes89]

B. Freeman-Benson, J. Maloney, and A. Borning. An Incremental Constraint
Solver. Communications of the ACM, 33(1):54-63, January 1990.

F. Frayman and S. Mittal. COSSACK: A constraints-based expert system for COn
figuration tasks. In D. Sriram and R.A. Adey, editors, Knowledge Based Expert
Systems in Engineering: Planning £3 Design. Computational Mechanics Compu
tation, 1987.

M. Fox. Observations on the Role of Constraints in Problem Solving. In Proc. ffh

Canadian Conference on Artificial Intelligence, Montreal, 1986, pages 172-187.
Presses de l'Universite de Quebec, May 1986.

E. C. Freuder. Synthesizing constraint expressions. Communications of the A CM,
21(11):958-966,1978.

E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the
Association for Computing Machinery, 29(1):24-32, 1982.

E.C. Freuder. Partial Constraint Satisfaction. In Sridharan [Sri89], pages 278-283.

H.-W. Giisgen. CONSAT - A System for Constraint Satisfaction. Pitman, Lon
don, 1989.

J. Hertzberg, H.- W. Giisgen, A. VoB, M. Fidelak, and H. VoB. Relaxing Constraint
Networks to Resolve Inconsistencies. In Proc. of GWAI '88, pages 61-65, 1988.

HP 9000 Workstations - Configuration Guide. Hewlett-Packard Company, Prod
uct Number 5954-8594, January 1990.

W.S. Havens and P.S. Rehfuss. Platypus: a Constraint-Based Reasoning System.
In Sridharan [Sri89], pages 48-53.

J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. Yap. The CLP(R) language
and system. Technical Report CMU-CS-90-181, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, October 1990.

S. Kasif. Parallel solutions to constraint satisfaction problems. In Brachman et al.
[BLR89], pages 180-188.

V. Kumar. Algorithms for constraint satisfaction problems: a survey. Technical
Report ACT-RA-041-90, Microelectronics and Computer Technology Corpora
tion, Austin, TX, February 1990.

N. Keng and D.Y.Y. Yun. A planning/scheduling methodolgy for the constrained
resource problem. In Sridharan [Sri89j, pages 998-1003.

M. Lemon, J. Dailey, A. Kuchinsky, and I. Tou. ACK (A Constraint Kit). Tech
nical Report STL-TM-88-06, Hewlett-Packard Laboratories, August 1988.

W. LeIer. Constraint Programming Languages - Their Specification and Genera
tion. Addision-Wesley Publishing Company, 1988.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

P. Meseguer. Constraint satisfaction problems: An overview. AI Communications,
2(1):3-17,1989.

70 BIBLIOGRAPHY

[MF87] S. Mittal and F. Frayman. Making partial choices in constraint reasoning prob
lems. In Proc. of the 1h National Conference on A rtificial Intelligence, Seattle ,
pages 631-636, 1987.

[MF89] S. Mittal and F. Frayman. Towards a generic model of configuration tasks. In
Sridharan [Sri89], pages 1395--1401.

[MF90] S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In
Proc. of AAAI 90, pages 25-32, 1990.

[MJ91] M. Meyer and C. Jakfeld. CONTAX: A constraint system for taxonomical knowl
edge. Research report, German Research Center for AI (DFKI), Kaiserslautern,
Germany, 1991. forthcoming.

[MMH85] A. K. Mackworth, J. A. Mulder, and W. S. Havens. Hierarchical arc consistency:
Exploiting structured domains in constraint satisfaction problems. Computational
Intelligence, 1:118-126, 1985.

[Mon87] G. Montini. Efficiency considerations on built-in taxonomic reasoning in Prolog.
In John McDermott, editor, Proc. of the J{lh International Joint Conference on
Artificial Intelligence, Milan, pages 68-75. Morgan Kaufmann Publishers, Inc.,
1987.

[Nud83] B. Nude!. Consistent-labeling problems and their algorithms: Expected
complexity and theory-based heuristics. Artificial Intelligence, 21:338-342, 1983.

[PaugO] H.-J. Paulokat. Ein System zur Verarbeitung und Relaxierung von Constraints.
Master's thesis, University of Kaiserslautern , Department of Computer Science,
November 1990.

[Ric89] M. M. Richter. Prinzipien der Kilnstlichen Intelligenz, pages 126-138. Teubner
Verlag, 1989.

[Sap89] M. Sapossnek. Research on constraint-based design systems. In John S. Gero,
edi tor, A rtificial Intelligence in Design - Proceedings of the 4th International Con
ference on the Applications of Artificial Intelligence in Engineering, Cambridge,
UK, July 1989, pages 385-403. Springer Verlag, 1989.

[Sat90] K. Satoh. Formalizing soft constraints by interpretation ordering. In Luigia Car
lucci Aiello, editor, Proc. of the gth European Conference on A rtificial Intelligence,
Stockholm, pages 585-590. Pitman Publishing, 1990.

[SJ80] G. J . Sussmann and G. 1. Steele Jr. CONSTRAINTS - a language for expressing
almost-hierarchical descriptions. A rtificial Intelligence, 14: 1-39, 1980.

[Sri89] N .S. Sridharan, editor. Proc. of the 11th International Joint Conference on A rti
ficial Intelligence. Morgan Kaufmann Publishers, Inc., 1989.

[SS89a] M. Schmidt-SchauB. Subsumption in KL-ONE is undecidable. In Brachman et aI.
[BLR89J, pages 421-431.

[SS89b] M. Shanahan and R. Southwick. Search, Inference and Dependencies in A rtifi
cial Intelligence. Ellis Horwood Series in Artificial Intelligences. Ellis Horwood
Limited, 1989.

BIBLIOGRAPHY 71

[Ste90j

[vH89]

[Wal72]

G .L. Steele Jr. Common LISP: The Language. Digital Press, Bedford, MA, 2nd

edition, 1990.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, 1989.

D.L. Waltz. Generating semantic descriptions from drawings of scenes with shad
ows. Technical Report AI-TR-271, Massachusetts Institute of Technology, Cam
bridge, Massachusetts, 1972.

Deutsches
Forschungszentrum
fOr KOnstilche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen oder die
aktuelle Liste von erh!iltlichen Publikationen
kbnnen bezogen werden von der oben angegebenen
Adresse.
Die Berichte werden, wenn nicht anders
gekennzeichnet. kostenlos abgegeben.

DFKI Researcb Reports

RR-90-01
Franz Baader: Terminological Cycles in KL-ONE
based Knowledge Representation Languages
33 pages

RR-90-02
Hans-Jurgen BUrckerr. A Resolution Principle for
Clauses with Constraints
25 pages

RR-90-03
Andreas Dengel , Nelson M. Maltos : Integration of
Document Representation, Processing and
Management
18 pages

RR-90-04
Bernhard Hollunder, Werner NUll: Subsumption
Algorithms for Concept Languages
34 pages

RR-90-0S
Franz Baader: A Formal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR-90-06
Bernhard Hollunder: Hybrid Inferences in KL-ONE
based Knowledge Representation Systems
21 pages

RR-90-07
Elisabeth Andre, Thomas Rist: Wissensbasierte
Informationsprasentation:
Zwei Beilti1ge zum Fachgesprach Graphik und K1:
1. Ein planbasierter AnsaLZ zur Syntbese

illustrierter Dokumente
2. Wissensbasierte Perspektivenwahl ftiT die

automatische Erzeugung von 3D
Objektdarstellungen

24 pages

DFKI
-Bibliothek
PF 2080
6750 Kaiserslautern
FRO

DFKI Publications

The following DFKI publications or the list of
currently available publications can be ordered from
the above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR-90-09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
I? pages

RR-90-10
Franz Baader. Hans-JUrgen BUrckert, Bernhard
Hollunder, Werner NUll, Jorg H. Siekmann :
Concept Logics
26 pages

RR-90-1l
Elisabeth Andre, Thomas Rise: Towards a Plan
Based Synthesis of Illustrated DocumenLs
14 pages

RR-90-12
Harold Boley: Declarative Operations on NeLs
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR-90-14
Franz Schmalhofer, Ouo Kuhn. Gabriele Schmide:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases. and Expert Memories
20 pages

RR-90-1S
Harald Trost: The Application of Two-level
Morphology to Non-concatenati ve German
Morphology
13 pages

RR·90·16
Franz Baader, Werner NUlt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR·90·17
Stephan Busemann
Generalisiene Phasenstrukturgrarnmatiken und ihre
Verwendung zur maschinelJen Sprachverarbeitung
114 Seiten

RR·91·01
Franz Baader, Hans·Jiirgen Bwcken, Bernhord
Nebel, Werner NUll, and Gert Smolka :
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR·91·02
Francesco Donini, Bernhard Hollunder, Maurizw
Lenzerini, Alberto Marchetti Spaccamela, Daniele
Nardi, Werner NUlt:
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR·91·03
BEol/under, Franz Baader: Qualifying Number
Restrictions in Concept Languages
34 pages

RR·91·04
Harald Trost
X2MORF: A Morphological Component Based on
Augmented Two-Level Morphology
19 pages

RR·91-05
Wolfgang Wahlster, Elisabeth Andre. Win fried
Graf, Thomas Rist: Designing lIIustrated Texts:
How Language Production is Influenced by Graphics
Generation.
17 pages

RR·91-06
Elisabeth Andre. Thomas Rist: Synthesizing
TIlustrated Documents
A Plan-Based Approach
II pages

RR·91·07
Giinter Neumann. Wolfgang Finkler: A Head
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR·91·08
Wolfgang Wahlseer. Elisabeth Andre. Som
Banciyopadhyay, Winfried Gra[. Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

RR·91·09
Hans·Jilrgen BUrc/cert, Jilrgen Maller. Achim
ScJwpeta
RATMAN and its Relation to Other Multi-Agent
Testbeds
31 pages

RR·91·10
Franz Baader. Philipp Hanschke
A Scheme for Integrating Concrete Domains into
Concept Languages
31 pages

RR·91·11
Bernhard Nebel
Belief Revision and Default Reasoning: Syntax
Based Approoches
37 pages

RR·91·12
J.Mark Gawron, John Nerbonne. and Stanley Peters
The Absorption Principle and E-Type Anaphora
33 pages

RR·91·13
Gert Smolka
Residuation and Guarded Rules for Constraint Logic
Programming
17 pages

RR·91·15
Bernhard Nebel, Gert Smolka
Attributive Description Formalisms ... and the Rest
of the World
20 pages

RR·91·16
Stephan Busemann
Using Pattern-Action Rules for the Generation of
GPSG Structures from Separate Semantic
Representations
18 pages

RR·91·17
Andreas Dengel & Nelson M. Mattos
The Use of Abstraction Concepts for Representing
and Structuring Documents
17 pages

RR·91·20
Christoph Klauck. Ansgar Bernardi, Ralf Legleicner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR·91·23
Pro!. Miehael RiehJer. Ansgar Bernardi. Christoph
Klauek. Ralf Legleitner
Akquisition und Reprtlsentation von technischem
Wissen fUr Planungsaufgaben im Bereich der
FertigungsteChnik
24 Seiten

RR·91·25
Karin Harbuseh. Wolfgang Finkler. Anne Sehauder
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

DFKI Technical Memos

TM·89·01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM·90-01
Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse
18 pages

TM-90-02
Jay C. Webt>r: Thp. Mvth ('If nom~in_Tnrlp.nPnrlpn'

Persistence
18 pages

TM-90-03
Franz Baader. Bernhard Hol/under: KRIS:
Knowledge Representation and Inference System
-S ystem Description-
15 pages

TM-90-04
Franz Baader. Hans-JiJrgen Bwckert. Jochen
Heinsohn. Bernhard Hollunder. JiJrgen MUlier.
Bernhard Nebel. Werner Nutt. Hans-JiJrgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM-91-01
Jana Kohler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM -91-02
Knul Hinkelmann
Bidirectional Reasoning of Hom Clause Programs:
Transformation and Compilation
20 page~

TM·91·03
Otto Kuhn. Mare Linster. Gabriele Schmidl
Clamping. COKAM. KADS. and OMOS:
The Consuuction and Operationalization
of a KADS ConcepUlal Model
20 pages

TM-91·04
Harold Boley
A sampler of RelationaVFunctional Defmitions
12 pages

TM·91·0S
Jay C. Weber. Andreas Dengel and Rainer
Bleisinger
Theoretical Consideration of Goal Recognition
Aspects for Understanding Information in Business
Letters
10 pages

DFKI Documents

D-89-01
Michael H. Malburg. Rainer Bleisinger:
HYPERBIS: ein betriebliches Hypermedia
lnformationssystem
43 Seiten

D-90·01
DFKI Wissenschaftlich-Technischer Jahresberichl
1989
45 pages

D-90-02
Georg Seul: Logisches Programmieren mil Feature
-Typen
107 Seiten

D-90-03
Ansgar Bernardi. Chrisloph Klauck. Ral!
Legleilner: AbschluBbericht des Arbeitspaketes
PROD
36 Seiten

D-90-04
Ansgar Bernardi. Chrisloph Klauck. Ralf
Legleilner: STEP: Uberblick tiber eine zulctinftige
SchnittsteUe zum Produktdatenaustausch
69 Seiten

D-90-05
Ansgar Bernardi. ChrislOph Klauck. Ral!
Legleilner: Formalismus zur Repti1sentation von
Geo-metrie- und Technoiogieinformationen als Teii
eines Wissensbasierten Produkttnodells
66 Seiten

D·90-06
Andreas Becker: The Window Tool Kit
66 Seiten

D·91·01
Werner Stein. Michael Sintek
RelfunIX - An Experimental Prolog
Implementation of Relfun
48 pages

D·9l·03
Harold Boley. Klaus Elsbernd. Hans-Gilnther Hein.
Thomas Krause
RFM Manual: Compiling RELFUN into the
Relational/Functional Machine
43 pages

D·91·04
DFKI Wissenschaftlich-Technischer Jahresbericht
1990
93 Seiten

D·91·06
GerdKamp
Entwurf. vergleichende Beschreibung und
Integration eines Arbeitsplanerstellungssystems fUr
Drehteile
130 Seiten

D·91·07
Ansgar Bernardi. Christoph Klauck. Ralf Legleitner
TEC-REP: Reprllsentation von Geometrie- und
T echnologieinformationen
70 Seiten

D·91·08
Thomas Krause
Globale DatenfluBanalyse und horizontale
Compilation der relational-funktionalen Sprache
RELFUN
137 pages

D·91·09
David Powers and Lary Reeker (£tis)
Proceedings MLNLO'91 - Machine Learning of
Natural Language and Ontology
211 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D·91·10
Donald R. Steiner. Jurgen Muller (Eds.)
MAAMA W'91: Pre-Proceedings of the 3rd
European Workshop on .. Modeling Autonomous
Agents and Multi-Agent Worlds"
246 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D·91·11
Thilo C. Horstmann
Distributed Truth Maintenance
61 pages

D·91·12
Bernd Bachmann
Hieracon - a Knowledge Representation System
with Typed Hierarchies and Constraints
75 Seiten

E
CD -VI
>en
c
.~ !!!
- c ca ._ ca
c ...
CD -VI VI
! g
c.O
CD a: " c
CD as
C)

" VI .! .!
~
o
c
~

.r:.
o ...
ca ...
CD

c(J:
." C CD
oc.

c
c
ns
E
.c
()
ns
ID o >

ca I
... '0

.! E E
:I: ~ ~

	D-91-09-0.1-0002
	D-91-09-0.1-0003
	D-91-09-0.1-0004
	D-91-09-0.1-0005
	D-91-09-0.1-0006
	D-91-09-0.1-0007
	D-91-09-0.1-0008
	D-91-09-0.1-0046
	D-91-09-0.1-0047
	D-91-09-0.1-0048
	D-91-09-0.1-0049
	D-91-09-0.1-0050
	D-91-09-0.1-0051
	D-91-09-0.1-0052
	D-91-09-0.1-0053
	D-91-12-002-0004
	D-91-12-003-0010
	D-91-12-004-0005
	D-91-12-005-0011
	D-91-12-007-0006
	D-91-12-008-0007
	D-91-12-009-0012
	D-91-12-010-0008
	D-91-12-01-0009
	D-91-12-011-0009
	D-91-12-012-0013
	D-91-12-013-0014
	D-91-12-014-0015
	D-91-12-015-0010
	D-91-12-016-0011
	D-91-12-017-0016
	D-91-12-018-0012
	D-91-12-019-0013
	D-91-12-020-0014
	D-91-12-021-0017
	D-91-12-022-0015
	D-91-12-023-0018
	D-91-12-024-0019
	D-91-12-025-0020
	D-91-12-026-0021
	D-91-12-027-0016
	D-91-12-028-0022
	D-91-12-029-0023
	D-91-12-030-0017
	D-91-12-031-0018
	D-91-12-032-0024
	D-91-12-034-0026
	D-91-12-035-0027
	D-91-12-036-002
	D-91-12-037-0029
	D-91-12-039-0019
	D-91-12-040-0030
	D-91-12-041-0031
	D-91-12-042-0032
	D-91-12-043-0020
	D-91-12-044-0033
	D-91-12-046-0021
	D-91-12-046-0034
	D-91-12-047-0035
	D-91-12-048-0036
	D-91-12-049-0022
	D-91-12-050-0023
	D-91-12-051-0037
	D-91-12-052-0024
	D-91-12-053-0025
	D-91-12-055-0039
	D-91-12-056-0026
	D-91-12-057-0040
	D-91-12-058-0041
	D-91-12-059-0027
	D-91-12-060-0028
	D-91-12-061-0042
	D-91-12-062-0043
	D-91-12-063-0029
	D-91-12-064-0030
	D-91-12-065-0044
	D-91-12-066-0031
	D-91-12-067-0045
	D-91-12-072-0032
	D-91-12-073-0033
	D-91-12-54-0038

