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Abstract

Distributed Al systems are intended to fill the gap between classical Al and
distributed computer science. Such networks of different problem solvers are
required for naturally distributed problems, and for tasks which exhaust the
resource of an individual node. To guarantee a certain degree of consistency
in a distributed Al system, it is necessary to inspect the beliefs of both sin-
gle nodes and the whole net. This task is performed by Distributed Truth
Maintenance Systems. Based on classical TMS theories, distributed truth
maintenance extends the conventional case to incorporate reason mainte-
nance in DAI scenarios.

'This work was done in Project KIK at the German Research Center for Artificial Intelligence (DFKI).
Project KIK is a collaborative effort between the DFKI and Siemens AG.
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Chapter 1

Introduction

Recent research in the field of Distributed Artificial Intelligence (DAI) has led to a broad
variety of applications characterized by autonomous, loosely connected problem solving
nodes. Each single node, or agent, is capable of individual task processing and able to
coordinate its actions in combination with those of other agents in the net. DAI applications
span a large field ranging from cooperating expert systems, distributed planning and control
to human computer cooperative work. In order to establish a domain independent theory of
interacting autonomous agents, current DAI research focuses on defining an abstract agent
model, which allows the formalization of cooperation strategies and multi agent reasoning
mechanisms.

The requirements of multi agent reasoning algorithms are manifold. In most cases, it is not
desirable to constrain the autonomy of agents by building a ‘superstrate reasoner’ managing
all inferences or rules of a set of different agents. The reasons are discussed fully in [DLC89)].
Instead, we want the agents to be able to reason autonomously; in particular, a single agent
must deal with beliefs, which have probably been created in a complex cooperation process.

This requirement is best fulfilled by providing an agent with a Distributed Truth Mainte-
nance System (DTMS)!. Based on classical TMS theories, distributed truth maintenance
extends the conventional case to make reason maintenance suitable for multi agent scenar-
ios. A DTMS has to represent and manage inferences and rules of interacting agents in a
way that ensures a specified degree of consistency. The various degrees of consistency will
be defined in this paper. Furthermore, other modules of an agent should be able to use
information stored by the DTMS. For instance, a problem solving unit may avoid recom-
putation or a cooperation process might be based on the current context of the consistent
knowledge base.

We start off by presenting a Truth Maintenance System designed for backward reasoning

!We use the term Truth Maintenance System instead of the perhaps more appropriate term Reason
Maintenance System or Beliel Revision System. This is done for historical reasons.
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systems. We shall show that the properties offered by a TMS for forward reasoning sys-
tems, can also be used by backward reasoning systems. Beyond, the amalgamation of the
incrementality and selectivity of a justification based TMS with the properties of back-
ward reasoning allows elegant and efficient programming techniques in a first-order logic
representation.

The basic key features of the DTMS are summarized below:

¢ maintenance of a consistent state of beliefs. Because we record data dependencies
checking consistency involves little recomputation when the knowledge base is modi-
fied.

¢ data dependencies are recorded in the Horn subset of first-order predicate logic instead
of propositional logic.

e explicit representation of proofs allows for easier generation of explanations.
o interface for exchanging beliefs, data and proofs among agents.

e meta level predicates aiding the design of clearly specified autonomous agents. In
addition, it simplifies the classification of goals into those upon which reason mainte-
nance should be performed and those which remain static.

e the DTMS is designed as a generalization of a TMS. As a result, the application
domain is not restricted to the field of DAI.

In these terms, the results of this work may be divided into two main chapters. Chapter 2
introduces the basic terminology and discusses TMS techniques tailored for backward chain-
ing resulting in a Backward Reasoning Truth Maintenance System (BRTMS). This chapter
is not specific to the area of DAI and should be useful to readers interested in areas such
as TMS, meta logic programming and backward reasoning. In Chapter 3, the BRTMS of
Chapter 2 is extended to the distributed case. We define central terms concerning multi
agent reasoning and illustrate the DTMS algorithm.



Chapter 2

A JTMS for Backward Reasoning
Systems

Das Erst war so, das Zweite so, The First was so, the Second so,
Und drum das Dritt und Vierte so; Ergo the Third and Fourth ensued;
Und wenn das Erst und Zweit nicht wir, But given no First nor Second, no
Das Dritt und Viert war nimmermehr. Third, yea, nor Fourth had been or could.

— J. W. v. GoETHE, Faust I

In the last decade, the desire for non-monotonic reasoning systems and more efficient search
strategies in problem solving algorithms, generated a considerable amount of research in
the field of truth maintenance systems (TMS). We distinguish two main categories of TMS.
Justification Based TMSs (JTMS) as introduced by J. Doyle in 1979 and Assumption Based
TMSs (ATMS), presented first in 1985 by J. de Kleer.

A TMS works as an independent module connected to a problem solving unit in a knowl-
edge based system. Based on a set of dependencies, the JTMS assigns belief statuses to
data representing the current context of the database. The truth maintenance procedure
guarantees consistency and a well founded basis for beliefs in the face of a changing set of
dependencies. It keeps track of all inferences made!, so that recomputation of inferences
can be avoided. Additionally, most TMSs allow the problem solver to reason in a non-
monotonic way (e.g., “infer the sensor is ok unless there is evidence to the contrary”) and
to deal with contradictions. Contradiction resolution is performed by a procedure called
dependency-directed backtracking which can be implemented on a JTMS by identifying and
adding absent justifications. Thus, a JTMS ensures a contradiction-free database.

In contrast, the ATMS computes, for each datum, all contexts in which it is valid. A context

!The BRTMS presented here allows one to declare upon which inferences truth maintenance should be
performed.



is defined by a set of consistent assumptions. De Kleer’s ATMS [dK86]* “precomputes all
answers to all possible queries”. Queries must also be posed with a subset of all possible
premises. In addition to the JTMS functionality, the ATMS computes the minimal sets of
assumptions necessary to prove a given formula.

We do not want to discuss ATMS vs. JTMS in detail; there are a lot of publications dealing
with this issue. The reader is referred to [McA90], where a good introduction to Truth
Maintenance is presented. However, we do provide reasons for using a JTMS as the basis
for truth maintenance in distributed scenarios in Chapter 3.

2.1 Forward versus Backward Chaining

Former TMSs have been designed for use with incremental forward reasoning systems. In
a forward reasoning system, each inference step produces new conclusions from antecedent
data, which can be passed to the TMS. In contrast, in a backward reasoning system each
inference step does not produce new conclusions, rather new conditions for the goal®. To
make conclusions, we have to wait untjl the reasoning process is complete. In these terms,
the problem solver would have to keep track its inferences, in order to transmit appropriate
data to a classical TMS.

However, the designer of the problem solver should not have to think about how to represent
inferences. Our system relieves the system designer from this task, all inference control is
done by meta logic predicates in the BRTMS. We shall come back to the differences between
these kinds of reasoning systems in Section 2.2.5 and 2.5.

2.2 Basic Terminology

2.2.1 BRTMS Architecture

Figure 2.1 shows the general architecture of the Prolog-based BRTMS. The BRTMS Meta
Level includes meta logic predicates, user defined justifications, the current state of beliefs,
the BRTMS Kernel system predicates and user defined static predicates. The meta level
controls the evaluation of all goals, performs the bookkeeping of results and defines the
BRTMS interface while the kernel defines low level predicates: predicates, which might be
.evaluated through a meta call, but whose proof is not significant for the BRTMS bookkeep-
ing mechanism (see also Section 3.3.2).

2De Kleer presented a modified version in 1990 [dK90b]. This one allows negative literals in queries, the
dependencies are stored as Boolean Constraints instead of material implications.

3Throughout this paper we use the terminology of logic programming as introduced in [Llo84].
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BRTMS Meta Level

- solve
Meta Logic Predicates - modify
Justifications (User Defined) < E other

Current State of Beliefs

interface

BRTMS Kernel predicates

call » System Predicates

Static Predicates
(User Defined)

Figure 2.1: BRTMS Architecture.

The meta logic predicate dtms_solve/5, that we discuss in more detail later, plays a central
role in the meta level. The definition of dtms_solve/5 realizes a modification of a standard
Prolog meta interpreter. At first sight, this interpreter takes as an argument a Prolog query
g and tries to find a proof for g in accordance with clauses of the kernel, the meta level and
with the current set of beliefs. In the course of doing this, all data dependencies are stored
or updated as necessary. One important feature concerning this meta concept should be
mentioned at this point: The designer of BRTMS applications is freed from creating data
dependencies, all dependencies are implicitly defined by justifications.

Justifications are defined in the meta level. These are dynamic program clauses defining
the atomic formulas (or atoms), on which truth maintenance will be performed. In former
JTMSs, justifications are —in a different form- the only kind of rules. But we will see when
considering BRTMS applications that the combination of a TMS with a Prolog problem
solver increases the TMS functionality by allowing for system predicates. As mentioned
before, these predicates are also evaluated by dtms_solve/5. Furthermore, we will see that
there is a whole class of predicates that should be evaluated in the same manner as system
.predicates. These are predicates that are never be altered such as member/3 or append/3.
Obviously, there is no point in performing truth maintenance on those predicates. Because
of these reasons, we define the BRTMS Kernel. In the kernel all predicates of the meta level
are invisible, but the meta level can evaluate predicates defined here. The proof tree of the
result of a kernel call will not be stored. In other words, you may regard the kernel may be
regarded as the ‘static true world’ and the meta level as the ‘dynamic changing world’.
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Modifications to justifications must be done through the meta-level predicates. This means
in particular, the kernel predicates may not assert or retract justifications. Violating this
principle would result in a undefined behavior of the BRTMS, because each modification
of the justification database invokes the meta level dtms_solve/5 predicate and possibly
a call to the initial kernel predicate again. This architecture allows two different ways of
designing BRTMS applications. We will refer to it in Section 2.5.

2.2.2 Major Data Structures

Querying the BRTMS invokes the interpretation of a finite set of Horn clauses. As mentioned
in the last section, we divide this set into two disjunct sets: the set of (dynamic) justifications
J,* and the set of static and system predicates . When called, the BRTMS will create or
modify beliefs. Informally, a belief is an atomic formula to which is assigned four fields:

o status: one of the symbols in or out
e constraint: a first-order formula in conjunctive normal form
o support: a list of atomic formulas

e consequences: a list of atomic formulas

The status field designates belief (if in) or lack of belief (if out). The formula in constrain
can be regarded as the reason for assigning this status. Furthermore, the fields support and
consequences denotes the dependencies of the atom according to the current set of beliefs.
That is, consequences represents those beliefs which might have to be recomputed if the
status changes. In the other direction, the elements of support are those beliefs, upon which
the status of the atom is dependent.

We define these notions precisely in the following:

Definition 1 (State) Let A be a finite set of positive literals, L(A) the set of all subsets
of elements of A and F(A) the set of all formulas constructed of elements of A. A state ¥
is a 4-tupel ¥ = (A, u,v,€) such that

(i) A: A — {in, out}
(1) pr A— F(A)

(iii) v : A — L(A)

* A justification must be a clause with non empty body. A justification with the symbol true as its body
is called a premise justification.
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(iv) £: A— L(A)

Definition 2 (Instance) Let 8 = {v1/t1,---,vn/tn} be a substitution and j be a justifica-
tion. Then jg is an instance of j, if each occurrence of variable v; in j is simultaneously
replaced by the term t;(i=1,---,n).

Definition 3 Let ¥ = (A, i, v, &) be a state and let jp be an instance of a justification with
head hg and body bg. Furthermore, let P be a set of program clauses. Then jg is

(i) valid (w.r.t. W), if @ is a correct answer substitution for P U {b}°. In this case, for
each positive literal p of bg, A(p) = in and for each positive counterpart of a negative
literal n of jg, M(n) = out. We say, jp justifies hy.

(i1) invalid (w.r.t. ¥), if 6 is not a correct answer substitution for P U {b}. In this case,
there is either a positive literal | of bg with A(l) = out, or a positive counterpart of a
negative literal | of bg with A(l) = in. We say, | invalidates jg.

Example: Let A = {a(2),b(2),¢(2),d(2)} with A(a(2)) = AMd(2)) = in and A(b(2)) =
A(¢(2)) = out. Furthermore, we have three justifications jl: d(X) « a(X),-b(X), j2:
d(X) « a(X),b(X) and j3: ¢(X) « d(X). Then the instance of jl;x/sy is valid, but b(2)
invalidates 72 x/9)-

Definition 3 generalizes the notion of propositional justifications to the first order case. In
these terms, a justification in a first-order logic TMS represents the set of all instances of the
justification. To introduce the central term consistency, we need some further definitions.

Definition 4 (Inval) Let ¥ = (X, pu,v,€) be a state and let jy,---,j, be a set of justifica-
tions with the same predicate a in the head. If each justification j; is invalidated by a b;, we
will denote the set {by,---,b,} by inval (a).

Definition 5 (Definition of a Justification) Let p be a predicate and J be a set of jus-
tifications. The definition of a justification (written def (p)) is the disjunction of all bodies
of clauses of J with the same predicate p in the head.

Definition 6 Let ¢ be a conjunction of atomic formulas ay,---,a,. Then [c] denotes the
set of atoms ay,---,a,.

Definition 7 Let ¥ = (X, u,v,£) be a state. con () is the set of atoms whose members are
those atoms ¢ € A, such that a is a member of v(c).

®That is, ¥(b8) is a logical consequence of P.

13



Definition 8 (Consistency) Let ¥ = (\, u,v,£) be a state, and P = J U S be a union of
disjunct sets of program clauses. ¥ is consistent, if the following conditions hold:

(i) if Mag) = in, then either

(a) thereis aj € J such that j justifies ag. In this case, p = bg,v = [bg), & = con(ay)
or

(b) 0 is a correct answer substitution of S U {a}. In this case, p = systemb, v =
[system],§ = con(ag).

(ii) if A(ag) = out, then 6 is not a correct answer substitution of P U {a}. If there is
a definition for a, then p = cnf(not(def(a)))’, v = inval(a), £ = con(ag). In each
other case p = system, v = [system], £ = con(ap).

(ii1) there is no sequence {(ag,---,a,) of elements of A, such that ap = a, and for i =
1,-:-,n,Xa;) = in and a;_1 is in p(a;).

Definition 8 implies some notable points. Condition (iii) prohibits circularities in the sup-
port of in beliefs in order to establish a well founded set of atomic formulas (see also
Definition 14). Furthermore, a consistent state of beliefs guarantees a correct assignment of
logical states to atomic formulas and a correct linkage of all beliefs in accordance to their
logical dependencies.

Example: The state in the example of Definition 3 is inconsistent: the belief ¢(2) is out
but the instance j3(x/,) is valid. Thus, condition (ii) of Definition 8 is violated.

In order to represent a consistent state of beliefs, the BRTMS stores for an atom datum

the corresponding values of A, u,v,€ in the arguments status, constraint, support and
consequences of dtms_node/6® (Figure 2.2).

dtms_node (datum, status, constraint, support, consequences, rule_id)
Figure 2.2: Definition of dtms_node/6

We say, datum is in, or datum is believed, if the status field of datum has the value in.

Note, the symbol true can occur in the support field of datum in two cases: datum is in and
justified with a premise justification, or datum is out and the justifications matching with

61n these terms, the symbol system denotes the support for a belief that is inferred from kernel predicates
“cnf denotes the conjunctive normal form of a given formula

8The abstract mathematical object set is represented with the Prolog object list.
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datum contain no further subgoals. For instance, the justification p «— fail, is invalidated
by the symbol fail.® Because cn f(not(def(p))) = true, the support field of a belief p
would be the symbol true.

In addition, the argument rule_id denotes a unique identifier of the justification supporting
a believed datum. The general representation of justifications in the BRTMS is shown in
Figure 2.3.

dtms_rule (justification, rule._id)

Figure 2.3: Definition of dtms_rule/2

The heads of justifications define the atoms on which truth maintenance is performed. This
is a noteable difference from classical TMSs, in which these atoms have to be declared
explicitly. We will see this in more detail later. Figure 2.4 defines a family relationship with
justifications.

dtms_rule ((grandchild (X, Y) :- granddaughter (X, Y)), gcl).
dtms_rule ((grandchild (X, Y) :- grandson (X, Y)), gc2).
dtms_rule ((granddaughter (X, Z) :- daughter (X, Y),

child (Y, 2)), gd).
dtms_rule ((grandson (X, Z) :- son (X, Y), child (Y, Z)), gs).
dtms_rule ((child (X, Y) :- daughter (X, Y)), chil).
dtms_rule ((child (X, Y) :- son (X, Y)), ch2).
dtms_rule ((son (jake, bill) :- true), si).
dtms_rule ((son (bill, scott) :- true), s2).

Figure 2.4: Family Tree.

The following figures give an example for a consistent state of beliefs that is created by
the BRTMS with the use of the justifications above. Note that in this example there is no
predicate defined in the BRTMS kernel, all beliefs are inferred by use of justifications only.

In our family example the query
?7- dtms_solve (grandchild(X,Y), Status, Support, Mode, yes).

‘would yield the creation of the beliefs shown in Figure 2.5 and 2.6: Dependencies are
represented as in [Doy79]: Arrows represent justifications pointing to the justified belief.
Positive signed arcs represent positive literals. Note that the first order representation of
dependencies requires regarding justifications as a whole.

9The beliefs true and fail are in and out but not explicitly represented in the BRTMS.
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dtms_node
dtms_node

dtms_node

dtms_node

dtms_node

dtms_node

dtms_node

(daughter(_gs9, _g61), out, true, [true], [1, _gb5).
(child(jake, bill), in, son(jake, bill),

[son(jake, bill)], [J, ch2).

(son(bill, scott), in, true, [truel,

[child(bill, scott)], s2).

(son(jake, bill), in, true, [true],

[grandson(jake, scott), child(jake, bill)], si).
(child(bill, scott), in, son(bill, scott),
[son(bill, scott)], [grandson(jake, scott)], ch2).
(grandchild(jake, scott), in, grandson(jake, scott),
[grandson(jake, scott)], [1, gc2).

(grandson(jake, scott), in,

(son(jake, bill) , child(bill, scott)),

[son(jake, bill), child(bill, scott)],
[grandchild(jake, scott)], gs).

Figure 2.5: Family Tree (cont.).

grandchild (jake, scott)

gc2 IN gel
+ +

grandson (jake, scott) granddaughter (X, Z)
IN

s
Tg gd

+

child (bill, scott) child(jake, bill)

IN

chl chl A T IN +
ch2 + +| +l + + ch2 [+ child (Y, Z)

son (bill, scott) daughter (X, Y) — son (jake, bill)

sl

IN ouT TIN
s2

Figure 2.6: Vizualisation of Dependencies.
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We might interpret the last belief of Figure 2.5 as follows: grandson (jake, scott) is be-
lieved, because both son (jake, bill) and child (bill, scott) are believed. grandson
(jake, scott) is responsible for the current status of grandchild (jake, scott). The
selected justification proving grandchild (jake, scott) is the justification with rule id

gs.

2.2.3 The Meta Level Predicates

As mentioned before, the BRTMS is based on a Prolog meta interpreter. This interpreter
is defined by the predicate dtms_solve/5, which we now discuss. Note that dtms_solve/5
works destructively, because it creates and modifies instances of the data structure dtms_node/6.

Its main tasks are to

e compute the states of atoms according to justifications, static predicates and system
predicates.

e create or modify instances of the data structure dtms_node/6 to maintain a consistent
database and to link the beliefs according to their logical dependencies

Given a consistent state of beliefs, calling dtms_solve/5 will create all those beliefs, such
that the (instantiated) literals of the first argument of dtms_solve/5 will occur in the data
base and the newly created state of beliefs is consistent!?.

Figure 2.7 shows the recursive definition of dtms_solve/5.

The first two clauses split the query and recurs on the first literal and the remainder of the
first argument. status and constraint are constructed in accordance with the state of
the subgoals.

Clauses three and four concern negated literals. A negated atom is in if the positive
counterpart of the atom is out and vice versa (see Definition 3).

The next clause of dtms_solve/5 returns the status in and the corresponding constraint
of an atom g, if there is a database entry for g. Access to the belief database can be avoided,
if the argument Mode is bound to the symbol tms.

Clause six realizes the kernel call. If there is a clause in the kernel whose head matches with

g, then the predicate monotonic_goal/1 succeeds. In this case, the kernel clause is called.
"This fulfills b of Definition 8.i.

If a kernel call fails, the BRTMS tries to prove the atom ¢ with justifications. If it succeeds,
the beliefs will be either created or modified in accordance to the previous data dependencies

19The BRTMS is correct, but not complete (see Section 2.3.1).
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dtms_solve ((G1, G2), Status, (Conl, Con2), Mode, Rem) :-
dtms_solve (Gi, Sti, Conl, Mode, Rem),
dtms_solve (G2, St2, Con2, Mode, Rem), !,
status_and (St1, St2, Status).
dtms_solve ((G1; G2), Status, (Coni; Con2), Mode, Rem) :-
dtms_solve (G1, Sti, Coni, Mode, Rem),
dtms_solve (G2, St2, Con2, Mode, Rem), !,
status_or (St1, St2, Status).
dtms_solve ((not Goal), out, Constraint, Mode, Rem) :-
dtms_solve (Goal, in, Constraint, Mode, Rem).
dtms_solve ((not Goal), in, Constraint, Mode, Rem) :- !,
dtms_solve (Goal, out, Constraint, Mode, Rem).
dtms_solve (Goal, in, Constraint, Mode, Rem) :-
Mode \== tms,
clause (dtms_node (Goal, in, Constraint, _, _, _)).
dtms_solve (Goal, in, system, Mode, Rem) :-
monotonic_goal (Goal), !,
call (Goal).
dtms_solve (Goal, in, Body, Mode, Rem) :-
clause (dtms._rule ((Goal :- Body), Rule)),
dtms_solve (Body, in, Constraint, Mode, Rem),
update_node (Goal, in, Body, Rule, Mode, Rem).
dtms_solve (Goal, out, Constraint, Mode, Rem) :-
Mode \== tns,
clause (dtms_node (Goal, out, Constraint, _, -, _)).
dtms_solve (Goal, out, system, Mode, Rem) :-
monotonic_goal (Goal), !,
not call (Goal).
dtms_solve (Goal, out, Constraint, Mode, Rem) :- !
get_all _clauses (Goal, Body),
cnf (not Body, Constraint), !
dtms_solve (Body, out, Con, Mode, Rem),
update_node (Goal, out, Constraint, -, Mode, Rem).

b

Figure 2.7: Definition of dtms_solve/5.
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and those encountered in the call to the predicate update node/6!!. We do not present
the implementation of update node/6 here in more detail, because of its routine nature.
update.node/6 realizes the linkage of each belief w.r.t. the current state, i.e. it computes
and establish the values of consequences and support (see also Definition 8).

Furthermore, if a belief n exists and changes its status, update node/6 calls the predicate
dtms_solve/5 with all consequences of n as the first argument. This downstream propaga-
tion of the changes in the status field of a belief guarantees a consistent state of beliefs if

they do not contain any circularities in their dependencies (see Section 2.4). We also use
update_node/6 to implement predicates modifying the justification database.

The last 3 clauses of dtms_solve/5 are invoked if the status of the atom g is out. In the
last one, we built the conjunctive normal form of all bodies of justifications that match the
current atom. We already mentioned the aspect in Definition 8.

2.2.4 Further Definitions

In this section we briefly present the basic TMS terminology that is necessary for un-
derstanding the following chapters. Most of it has been introduced for classical TMS
by [Doy79].

Definition 9 Let ¥ = (A, pu,v,§) be a state and a € A a belief. Then

(a) the supporting beliefs of a are the set of literals of v(a).
(b) if AM(a) = in we also call the supporting beliefs of a antecedents.

(c) afoundation of a is recursively defined to be either a or a foundation of the antecedents
of a.

(d) an ancestor of a is recursively defined to be either a or an ancestor of the supporting
beliefs of a.

(e) the consequences of a are the set of literals of £(a).!?
(f) if Ma) = in we also call a consequence of a believed consequence.

(9) a believed repercussion of a is recursively defined to be either a or a believed reper-
cussion of the believed consequences of a.

1 Creation or modification of beliefs can be suppressed, if the symbol rem (remember) is bound to no.

21n Doyle’s terminology, this set is called affected consequences.
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(h) a repercussion of a is recursively defined to be either a or a repercussion of the con-
sequences of a.

2.2.5 Comparison with Classical JTMS Data Structures

To bring the introduction of the basic data structures to a close, we compare the BRTMS
data structures with those of the Doyle system. Doyle’s justifications are lists of the form
(in-list out-list). A justification is valid, if each node of its in-list is labeled in, and each
node of its out-list is out. A node is a data structure containing the fields justifications,
consequences, status and support. A node is in, if it has at least one valid justification
in its justifications list, otherwise it is out. For instance, Figure 2.8 shows a network of
dependencies in the Doyle system. q has a premise justification, because its supporting jus-

71:(0(=p))
32:(00)
73 ((PO)

p: -p: ' q:

Jjustifications : (j1) justifications: () justifications:(j2 33)
consequences : () consequences : (p) consequences : ()

status :in status : out status : in

support : (-p) support : () support : ()

Figure 2.8: Dependencies in Doyle’s TMS

tification j2 has an empty in and an empty out list. Doyle calls the symbol p an assumption,
because p is in, unless there is a valid justification for —p. Actually, there are two separate
nodes to represent p and -p with the following behavior: If we add a valid justification to
the justification list of the node - p, =p will go in and p will be out. But if we retract the
justification j1 of p in the initial situation above, both p and —p would go out. Note that
Doyle’s truth maintenance algorithm assigns values to the status and support of each node.
It does not create nodes and does not alter consequences and justifications of nodes.

The corresponding representation in the BRTMS is:

dtms_rule(p :- not '-p’, j1).

dtms_rule(q :- true, j2).
dtms_rule(q :- p, j3).

Querying the BRTMS yield the following beliefs:
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dtmsnode(p, in, not '=p/, ['-p’1, 0, j1).
dtms_node('-p’, out, true, [truel, [p]l, _g55).
dtms_node(q, in, true, [truel, [1, j2).

The creation of beliefs with all fields automatically assigned is a important difference from
Doyle’s system. The user needs only to create justifications, the BRTMS computes all data
dependencies and stores them into instances of dtms_node/6. The particularly implemen-
tation is efficient as a result of the Prolog unification algorithm.

2.3 Discussion

The design of a TMS as a variant of a Prolog meta interpreter yields some notable points
which are discussed in this section.

2.3.1 Completeness of the BRTMS

The current version of the BRTMS is logically correct but not complete. This means, if the
dtms_solve/5 query terminates, the created state of beliefs is consistent w.r.t Definition 8.
On the other hand, there are justification sets admitting the creation of a consistent state
of beliefs, which are not detected by our algorithm. Furthermore, if no consistent state
exists, it runs into an infinite loop instead of reporting failure. Consider the examples of
Figure 2.9. They both have in common circular data dependencies. Example (a) may
be represented with the following rules: dtms_rule ((q :- p), j1), dtms_rule ((p :-
qQ), j2), dtms_rule ((p :- true), j3) while the odd loop in example (b) might be
represented with dtms_rule ((q :- p), j1), dtms_rule ((p :- not q), j2). Clearly,
in example (a) a dtms_solve/5 query should create a consistent state with both p and q
labeled in while a query in example (b) should report failure. In both cases, non-terminating
execution is due to the Prolog depth first search algorithm. A complete algorithm would
have to avoid visiting the same state twice; for instance by collecting the already visited
states in a list. But this might be an expensive task. Imagine the following justification set:

dtms_rule ((a0 :- al), jO).
dtms_rule ((at :- a2), j1).

dtms_rule ((an :- true), jn).

To label the belief a0, at first the labels of the beliefs al ---an have to be computed. Qur
algorithm performs the labeling of a0 in linear time in the size of the justification set.
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Figure 2.9: Loops in BRTMS.

However, a complete algorithm, like Boolean entailment, is coNP complete and no efficient
algorithm can be expected [McA90).

2.3.2 The Lemma Generation Problem

The BRTMS stores, for a given query, the set of beliefs that are necessary for the created
state to be consistent. The same query again does not require recomputation. But difficul-
ties occur if we want more than one solution. Consider again the family example. A first

query

?- dtms_solve (grandchild(X,Y), Status, Support, Mode, yes).
yields the creation of the beliefs of Figure 2.4 and the bindings

X = jake, Y = scott, Status = in, Support = grandson(jake, scott)

by leaving Mode uninstantiated. Doing the same query later on, will results the same bind-
ings by retrieving the information of the database entry. This is perfectly done. But,
initiating backtracking at this point, in order to collect further solutions, results in comput-
ing the same answer again. Certainly, this behavior is contrary to our intention of getting
an answer like ‘no more solution’. The explanation of this misbehaviour is: The first answer
results from the database access, the second from the deduction of the goal with the use of
the internal clauses.
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This is the lemma generation problem'® [Sou90]: The rediscovery of previously found solu-
tions before finding any new ones. Certainly, the lemma generation problem is not to be
solved by modifying our meta interpreter so that dtms_solve/5 fails, if a query is solved by
using the internal program clauses and if a corresponding database entry already exists.!4
However, this would result in the correct behavior but also in redundant computation.

A possible solution of the lemma generation problem consists of explicitly representation
the search tree for a given query [Sou90]. Each node of this tree represents a goal and is
related to a list of program clauses matching the goal. In general, such a search tree contains
exhausted nodes, that is nodes that cannot contribute further solutions, and nodes marked
open. The latter are related to the remaining possibilities. To examine further solutions,
a proof procedure can only find the remaining alternatives in the open search space. For a
more detailed discussion see [Sou90].

In fact, the current version of the BRTMS does not implement a solution of to the lemma
generation problem. But the meta level approach of [Sou90] might be incorporated in our
system in a natural way. This is a subject of further research.

2.4 Altering the Justification Database

In order to allow the problem solver to reason non-monotonically, TMSs allow for assertion
or to retraction of justifications. In general, adding or retracting justifications disrupt a
consistent state of inferences made previously, so that the truth maintenance procedure is
invoked to reestablish a consistent state.

In former TMSs, each node is associated with a list of justifications. Thus, altering the
justifications means adding or retracting a justification to the justification list of one single

13 A lemma corresponds to our term belief

1 This could be realized by modifying clause 7 and 10 of dtms_solve/5 as follows:

dtms_solve (Goal, in, Body, Mode, Rem) :-
clause (dtms_rule ((Goal :- Body), Rule)),
dtms_solve (Body, in, Constraint, Mode, Rem),
test for a database entry
update_node (Goal, in, Body, Rule, Mode, Rem).

dtms_solve (Goal, out, Constraint, Mode, Rem) :- !,
get.all_clauses (Goal, Body),
cnf (not Body, Constraint), !
dtms_solve (Body, out, Con, Mode, Rem),
test for a database entry
updatenode {(Goal, out, Constraint, ., Mode, Rem).
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node. But in the general case one must retract a justification globally, that is not only in
one, but in each node concerning this justification. In order to do this, the TMS has either

to search for all nodes depending on j or to associate justifications with its corresponding
nodes in some way.

The Prolog unification algorithm allows establishing such a bidirectional association of be-
liefs and justifications without explicit declarations. Thus, if the justification database
implies is altered, the BRTMS will alter all beliefs depending on this justification if neces-
sary.

In the next both paragraphs, we assume a initial state ¥ = (A, u,v,&) to be consistent. We
discuss modifications of the justification database via the predicates assert_justification,
and retract_justification/1.

2.4.1 Adding Justifications

The predicate assert_justification (clause, id) needs in its first argument the justi-
fication and in the second the unique rule id. The algorithm is simple:

collect all database entries of dtms_node/6 whose atomic formula matches the head of the
asserted justification and whose status is out.

call dtms_solve/5 with each of these atoms.

The definition of the predicate update node/6 (see Section 2.2.3) performs the downstream
propagation of changing belief statuses. This involves all depending repercussions of a belief
in the relabeling process. As seen, this algorithm works well for non circular justification
sets. But a complete algorithm needs to be more sophisticated. Consider the example
in Figure 2.10 [Rus85]. Before adding the justification represented by the dotted arcs,
the shown consistent state might have been constructed. To reestablish consistency, the
relabeling procedures have to be able to propagate the changes upstream as well. Relabeling
upstream means, involving all depending foundations of a newly justified belief in the relabel
process. In the example, these are the beliefs r and s. The only known complete relabel
algorithm [Rus85] makes s in and all other beliefs out.

2.4.2 Retracting Justifications

Retracting a justification works in a similar way. retract_justification/1 requires the
rule id of the relevant justification and performs the following:

e collect all those database entries, such that the corresponding belief is in and is
justified with the retracted justification.
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Figure 2.10: Adding a Justification.
o call dtms_solive/S with each of these atoms.
Thus, the query
?- retract_justification (s2).

will cause the beliefs of Figure 2.11 to be created in the family example.

2.5 Designing Applications with the BRTMS

This section discusses how to use the BRTMS in real applications. We present two possi-
bilities that are characterized by the way in which the BRTMS is connected to the problem
solver. In the segregated approach the BRTMS is connected with the problem solver as
an independent module while in the synergetic approach the problem solver also uses the
BRTMS inference mechanisms.

2.5.1 The Segregated Approach

Usually, truth maintenance systems are designed as segregate units connected to the prob-
lem solver (Figure 2.12). This arrangement is appropriate for forward reasoning systems.
Starting with ground facts, the forward inference engine of the problem solver deduces,
after each inference step, ground conclusions that can be easily transmitted to the TMS. In
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dtms_node(child(jake, bill), in, son(jake, bill),
[son(jake, bill)], [1, ch2).
dtms_node(son(jake, bill), in, true, [true],
[child(jake, bill)], si1).
dtms_node(son(bill, scott), out, true, [true],
[child(bill, scott)], _g55).
dtms_node(daughter(bill, scott), out, true, [true],
[child(bill, scott)], _gb5).
dtms_node(child(bill, scott), out,
(not son(bill, scott) , not daughter(bill, scott)),
[son(bill, scott), daughter(bill, scott)],
[grandson(jake, scott)], _g55).
dtms_node(daughter(jake, bill), out, true, [true],
[granddaughter(jake, scott)], _g55).
dtms_node(grandson(jake, scott), out,
not son(jake, bill) ; not child(bill, scott),
[child(bill, scott)], [grandchild(jake, scott)], _g55).
dtms_node(granddaughter(jake, scott), out,
not daughter(jake, bill) ; not child(bill, scott),
[daughter(jake, bill)], [grandchild(jake, scott)], _g55).
dtms_node(grandchild(jake, scott), out,
(not grandson(jake, scott) , not granddaughter(jake, scott)),
[grandson(jake, scott), granddaughter(jake, scott)], [1, _g565).

Figure 2.11: Family Tree Revisited.

contrast, a backward reasoning system deduces, after each inference step, new conditions
for a goal that are inappropriate to transmit to the TMS. If a backward reasoning system
like Prolog uses a TMS in this manner, the transmission of conclusions to the TMS has to
be done after the reasoning process is complete. Thus, the designer of the problem solver
has to realize an algorithm that generates an explicit representation of the proof for a given
goal. This representation of a proof can be transmitted to the TMS. A rough algorithm
schema is (all clauses in the problem solver might be identified by an unique id):

e collect for a given query ¢ the ids id1---idn of those rules used by the interpreter to
deduce the query.

e create with these ids the implication ¢’ — id1& - - - &idn where ¢’ denotes a substitu-
tion of q.

e transmit this implication to the TMS via add_justification. Provided that all ids
are present in the TMS as premises, the TMS creates the belief ¢’ with status to be
in.
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Figure 2.12: TMS Connected to Problem Solver

In these terms, a TMS designed as a segregate module might represent its data dependencies
in propositional logic formulas. However, a backward reasoning problem solver using such a
TMSs, does have to control its inference process to supply the TMS with appropriate data.
Our BRTMS relieves the programmer of this task: He can integrate most of the problem
solver functionality into the BRTMS.

2.5.2 The Synergetic Approach

The synergetic approach of designing BRTMS applications is the result of using the BRTMS
inference mechanisms. As mentioned in Section 2.2.1, we represent in the kernel the ‘static
true word’ and in the meta level the ‘changing dynamic world’. Thus, designing a typical
BRTMS application starts by classifying goals either in dynamic or static. A good advice
might be the remark of Goethe’s Mephisto: E%, was ich weifl, das brauch ich nicht zu glauben
(Ai, what I know I have no need of believing). In other words: Selecting goals on which
truth maintenance is performed is a trade-off between avoiding unnecessary recomputation
and overwhelming the BRTMS with too much information.

Figure 2.13 shows a fragment of an expert system that aids in selling cars. In the BRTMS
kernel, we place the physical car data, and relations depending on physical car data. For
instance, the facts space/3 represent the space inside a car. In the meta level there are
heuristics assigning values to those physical data and beliefs representing the current set of
preferred cars. In contrast to the physical data of the kernel, it is possible to modify these
heuristics later on.

In a connected module we can model algorithms, which modify the justification database of
the BRTMS. In the example, we compare in buy_car/3 the car suggested by the BRTMS
- with experiences other persons have already had. By taking account of negative experiences,
we create a new ‘prefer heuristic’ in order to find another car.

We see, a designer does not have to think about how to pass justifications to the TMS or
how to establish the correct linkage of beliefs. All that is done by the BRTMS. Certainly,
the BRTMS does not save the application designer from creating appropriate heuristics.
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dtms_rule ((prefer (Carl, Car2) :-
larger (Carl, Car2)), j1).

dtms_node (prefer (car3, carl), in, ...).
dims_node (prefer (carl, car2), out, ...).

Meta level

larger (Carl, Car2) :-

space (Carl, _, P1),
space (Car2, _, P2),
P1 > P2.

space (carl, manufactorl, 1.5).
space (car2, manufactorl, 2.0).

space (car3, manufactor2, 1.7).

Kemel

select_car (Carl, Car2, Carl) :-

select_car (Carl, Car2, Car2) :-

buy_car (Carl, Car2, Selected) :-

good_expierences (Selected).
buy_car (Carl, Car2, Selected) :-
modify_justifications (...),

dtms_solve (prefer (Carl, Car2), in, S, _, yes).

dtms_solve (prefer (Car2, Carl), in, S, _, yes).

select_car (Carl, Car2, Selected),

select_car (Carl, Car2, Selected).

Figure 2.13: Example for a Synergetic BRTMS Application

But he can be sure while establishing or changing heuristics that all inferences ever made

are consistent w.r.t. the current heuristics.
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Chapter 3

Extension of the BRTMS to
Distributed Truth Maintenance

Uns trennt das Schicksal, unsere Herzen bleiben einig!
Fate will us separate, but united our hearts remain!

— F. SCHILLER, WALLENSTEIN’S TOD

In the current chapter we present a way to establish reasoning among interacting au-
tonomous agents. We define an abstract terminology that clearly specifies basic terms
of multi agent reasoning. The central term is that of proof consistency. In contrast to
previous attempts, this definition of consistency in multi agent scenarios is characterized by
exchanging beliefs as well as exchanging reasons for the beliefs. We can see this in every-
day life: When debating an issue, we do not want to know what somebody claims, but, in
addition why he claims it. Furthermore, we usually agree with somebody only if we agree
with him in his conclusion and in the foundations of his conclusion.

In these terms, interacting agents, which exchange beliefs along with the corresponding
foundations, reason much more flexibly than agents which only transmit the results of
inferences. If an agent later invalidates the foundation of an acquired belief, it might
reconsult the agent from which the belief was originally acquired.

But, we do not want to overwhelm an agent with too much information by transmitting
complex traces of inferences between agents. We will show that it is sufficient to transmit
only a special representation of proofs and not the whole proof structure. In addition,
the designer of multi agent scenarios can specify a level of consensus, which defines the
knowledge upon which the agents will agree all the time. This feature can greatly improve
efficiency in multi agent reasoning.

We do not force the agents to agree on all information - our notion of a proof consistent
state allows agents to be partially inconsistent with one another. That is, agents might have
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different viewpoints of certain beliefs. If two agents reason together to solve the query “Can
Tweety fly?” it is irrelevant if the agents disagree about matters which have no bearing on
this question. Allowing certain inconsistencies can keep the information exchange between
agents to a minimum with respect to the current task.

For maintaining proof consistent states in multi agent scenarios, we extend the BRTMS to
distributed scenarios. We believe that using a JTMS as the basis for the DTMS is more ad-
vantageous than using an ATMS. The domain of an agent, that is its assumptions, premises
and rules, can be expected to increase greatly in a multi agent cooperation process. An
ATMS has to compute all newly arisen contexts. Fast query response time is overshadowed
by the exponential cost of the ATMS labeling algorithm when maintaining a large domain.
Instead, we extend the BRTMS of Chapter 2 to a Distributed Truth Maintenance System
(DTMS). In contrast to classical, propositional logic based JTMSs, the first-order represen-
tation of beliefs and justifications in the BRTMS allows more expressive interaction between
agents. We discuss the DTMS in a simple multi agent framework in order to demonstrate
its features.
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3.1 Agent

3.1.1 An Abstract Model

As the basis for designing real machine agents, we use the abstract agent model presented
in [SMH90]. This model decomposes an agent into three main parts (Figure 3.1): The agent

Communication
Channels

Communicator

Cooperation
Superstrate

Functionality

Figure 3.1: Parts of an Agent [SMH90].

mouth realizes the communication functionality of an agent. Via communication channels,
it receives and passes messages to the agents head, and in the other direction, it is able to
post agent’s messages coming from its head. The agent’s mouth has to be provided with suf-
ficient network knowledge, such as physical addresses of agents or knowledge about how to
get these addresses. Furthermore, a sophisticated design of an agent’s mouth would be able
to deal with a variety of communication formats (natural language, graphical representa-
tions, bitstreams ...) characterized by several different attributes. The authors of [SMH90]
distinguish, for instance, the priority of a message, its type and the type of answer expected.

The agent’s head incorporates mechanisms for cooperation and inference control. Thus,
the head of an agent contains both meta knowledge of its own capabilities (autoepistemic
knowledge), as well as meta knowledge of capabilities, status and behavior of other agents
(epistemic knowledge). Designing the agents’ head is a complex task. The following items
are some additional features an agent’s head should be provided with:
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tion structures

knowledge about the state of the current task
task decomposition algorithms

facilities for inter-agent communication

methods to change its cooperation behavior depending on globally available coopera-

We might regard the agent’s head as the “mediator between the agent’s individual func-
tionality and the overall problem solving context.”

Finally, the agent body realizes the basic problem solving functionality of an agent. The
complexity of a body’s functionality is not constrained: A sensor as well as whole expert
systems or humans can be subsumed under the notion of ‘agent body’.

For designing real machine agents, this concept has to be refined, in particular a precise
definition of the mouth-head and head-body interfaces is necessary. As a first step, we
present in the following the realization of one of the most important modules of the head,
the Meta Logic Unit (MLU), and its connection to the agent’s body. In Figure 3.2 we see

mouth Network Data Base =TT = Network Access Knowledge
A

............................................................ lececaciacccirecccaccancccccaccccaanacecacanccnssccnnncanne:
]
]
|
)

Cooperation Unit = -T_ - Agent Control Unit

i
]
|

head Y

MLU
Meta Level Inference Control, Multi-Agent Belief Representation
body .
Problem Solving Expertise

Figure 3.2: Agent Architecture.

the agent’s head split into several units. Its main parts are the Cooperative Unit, the Meta,
Logic Unit and the Agent Control Unit.
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3.1.2 Meta Logic Unit

The Meta Logic Unit is one of the central modules located in the agent’s head. It con-
trols and describes the inference mechanisms of the body, represents its own knowledge
and that of other agents, allows reasoning with other agents’ knowledge, provides a basis
for all cooperation actions and much more. The following items summarize the general
requirements:

e description of the agent’s body functionality: In general, the functionality, as repre-
sented by the body, can be very complex. To establish an efficient interaction with
other modules of the head, we need a description of the body’s interface functions
rather than all function definitions of the body itself. In addition, it might be useful
for cooperation to know how fast or how reliably tasks might be processed by the
agent’s body.

The meta level description of an agent’s body depends greatly on its realization:
Bodies realized by sensor systems might be described by their physical behavior,
logic programs with the aid of meta logic programs, and databases by their top level
functions. The difficulties of finding meta descriptions arise if a body is able to modify
its behavior on his own. For example, a learning inference engine or a neural net might
process tasks faster and more accurately over time. In such systems, a static meta
description of the body is useless; the meta description has to continually reflect the
current state of the body.

¢ enable reasoning with other agents’ knowledge: The agent’s body is designed to reason
autonomously. In fact, we want the body to be independent from the head in order to
build agents with preexisting hard- and software. On the other hand, such bodies are
not able to reason with knowledge acquired from other agents. The MLU combines
the functionality of the agent’s body with functionality acquired by other agents and
allows reasoning with this combined knowledge.

e supporting other modules: Because the MLU represents the entire knowledge and be-
liefs of an agent, it provides the basis for further knowledge processing, in particular it
supports multi agent cooperation. The MLU should provide fast access to beliefs and
inferences, expressive explanation of inferences and fast context switching. Further-

more, it is possible to design special agent bodies that take advantage of the explicit
inference representation in the MLU.

Thus, designing the MLU of a machine agent yields a variety of issues. Some of them we
want to discuss in more detail:

e what knowledge of other agents should be represented?
e how to represent knowledge of other agents

e how to deal with contradictory beliefs in different agents
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3.1.3 Constructing a MLU with a DTMS

Our approach for providing a backward reasoning agent with a MLU is to extend the
BRTMS of Chapter 2 to a Distributed Truth Maintenance System (DTMS). In general, basic
facilities of JTMSs are also useful for MLUs. For instance, JTMSs generate a consistent
state of beliefs, create explicit explanation trees for inferences and allow fast access to
data inferred by the problem solver. On the other hand, JTMSs developed so far are
inappropriate for representing inferences of other agents and their interface functions are
insufficient for supporting multi agent cooperation. Furthermore, we have to redefine the
notion of data consistency: Former TMSs establish global data consistency in a single agent
scenario. In fact, we want to avoid global data consistency in a multi agent scenario. This
would constrain the concept of autonomous agents: We could merge all beliefs of all agents
together. Instead we introduce the concept of proof consistency. We categorize beliefs
into those that might be inconsistent across some agents and those which might be held
consistent across all participating agents. Actually, after a multi agent reasoning process is
complete, the principal of proof consistency guarantees a consistent state of all those beliefs
that have been involved in the reasoning process.

To provide an agent with a MLU we extend the BRTMS of Chapter 2. We give a framework
for designing machine agents based on a backward reasoning system. We focus on the
design of the agent’s Meta Logic Unit and its body and present simple realizations of the
Cooperative- and Agent Control Unit and mouth. Thus, we can establish some simple
distributed scenarios that demonstrate the main features of our MLU.

3.2 DTMS

3.2.1 Beliefs in a DTMS

In the following, we consider a set of agents, each identified by an unique agent identifier.
Each agent contains static predicates, local justifications and its own set of beliefs as dis-
cussed in Chapter 2. Additionally, an agent can acquire beliefs from other agents, or it can
transmit beliefs to other agents. The next definitions make these notions more precise.

Definition 10 (Agent) Let P be a set of program clauses, B be a set of beliefs and ¥ =
(A p,v,€) the state of B. Then we call the triple o = (P,B,¥) an agent. The agent
wdentifier o is logically equivalent to the symbol true.

Definition 11 (Agent Rule) Let A = {ay = (P1,B1, V1), -+, 00 = (Pr, By, ¥y)} be a
set of agents. A positive agent rule of P; is a justification of the form

a — Q;
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and a negative agent rule is of the form
a — "oy

where a denotes an ordinary atomic formula and i € {1,---,n},(i # 7).

Note, Definitions 10 and 11 imply that the positive agent rule a « a; is valid, if A(a) = in
and the negative rule a — —a; is valid, if A(a) = out (with respect to the current state of
beliefs of «;).

This is what an agent rule is intended to do: A belief a that is inferred by an agent with
a positive agent rule might be interpreted as “I believe in a, because agent o; told me so”
and a negative one as “I do not believe in a because neither I nor agent «; can prove a”!.
In these terms, a agent rule represents an inference in another agent.

Thus, the beliefs of an agent may categorized according to the following definitions.

Definition 12 (Beliefs in a Multi Agent System) Let A = {ay = (Py,B1,¥1), -, an
(Pn,Bn,¥a)} be a set of agents. We say a belief b; € B;, denoting the atom l;, is

(i) private to a;, if there is no belief b; in B;, such that l; can be unified with l;, (i # j).

(i1) common to «; and «j, if there is a belief b; in B;, such that l; can be unified with I},
(i # 7). The status of b; might be different from the status of b;.

(ii1) transmitted to agent «;, if P; contains either a positive agent rule of the form l; — «;
or a negative agent rule of the form l; — —o; (i # j).

(iv) acquired from agent aj, if P; contains either a positive agent rule of the form l; — a;
or a negative agent rule of the form l; — —a;, (¢ # j).

(v) mutual to a; and «j, if b; is transmitted to a;.

Transmitting a beliel means passing an agent rule. Thus, an agent acquiring the agent rule
is able to do its own, local, inferences based on this rule. In particular, the acquiring of a
positive agent rule allows an agent to create a belief with the the same atom and status

“as in the transmitting agent. This is why we speak of transmitting beliefs rather than
justifications.

Figure 3.3 shows an example for beliefs in a multi agent scenario in which belief Q is private

! Assuming, of course, the agent does not have its own valid justification for a.
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Agent I1

Agent III

Figure 3.3: Common and Mutual Beliefs.

to Agent I, belief S is common to Agents II and IIT and belief R is mutual to I, IT and III.

Many questions arise, when an agent can transmit its beliefs. We discuss them in the next
section by defining terms for consistency in multi agent scenarios.

3.2.2 Consistency

Definition 11, in connection with Definition 8 of Section 2.2.2, allows us to define an agent’s
consistency. Informally, an agent is locally consistent if its own and acquired beliefs are
consistent in accordance to its own set of program clauses.

Definition 13 (Local Consistency) Let {ay,---,a,} be a set of agents. The agent o; =
(P, B,7¥) is locally consistent, if its state ¥ is consistent.

Definition 14 (Proof Consistency) Let
A= {ay; =(P1,B1,¥1), +,an = (Pn, Bn,¥,)} be a set of agents. A is proof consistent, if
the following conditions hold:
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(i) Each agent a; € A is locally consistent.

(ii) If a belief b € B; is transmitted to agent a;(i # j), then each ancestor fy,---, fm of b
is either transmitted to agent a; or acquired. b and the acquired counterpart in agent
a; are either both in or both out.

(i1i) a belief b; € B; that is acquired is not iransmitted.

(iv) there is no set of beliefs (bg,--+,b,) € By U ---U By, such that bp = b, and for
i=1,---,n, either

(a) A(b;) = in and b;_y is in p(b;)

or

(b) there is a k such that bi_y € By and oy € p(b;).

Definition 14 impli'es that we allow common beliefs in a multi agent system to be labeled
differently. Condition (iv) guarantees a well founded set of mutual beliefs.

Example: Let A = {a) = (P1,B1,¥1), 02 = (P2, B2, ¥2)} be two agents with

Pr={be—a,a—as}
By = {b,a} with A(b) = A(a) = in, v(b) = a, £(b) = {} and v(a) = a3, &(a) = b.

Py ={a —bb— a1}
By = {b,a} with A(b) = A(a) = in, v(a) = b, £(a) = {} and v(b) = 04, £(b) = a.

We assume that belief b is transmitted from a; to az and a from a2 to a3. {ai, a2} is not
proof consistent, because the well-foundedness condition is violated. But each single agent
is locally consistent (see also Footnote 3 in Section 3.2.3).

Note that a belief is only transmitted once in the net. That is, an agent cannot transmit

a belief that it has already acquired. On the other hand, the number of agents that can
acquire another agent’s belief is not constrained.

3.2.3 Example

To motivate and explain our definition of consistency in a multi agent scenario, we give an
example of a typical situation. Consider Figure 3.4.
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dynamic clauses of agent I:

dtms_node(engine_ok, in, (valvel_open , not ’temp>30°’),
[valvel_open, ’temp>90°’]1, [1, j1).
dtms_node(valvel open, in, true, [true], [engine_ok], j2).

dtms_node(’temp>90’, out, true, [true], [engine_ok], _g55).

dtms_rule(engine ok :- (valvel_open , not ’temp>90’), j1).
dtms_rule(valvel_open :- true, j2).

dynamic clauses of agent II:

dtms_node(engine ok, in, (valve2_open , not ’temp>90’),
[valve2_open, ’temp>90°]1, [], j1).
dtms_node(valve2_ open, in, true, [true], [engine_ok], j2).

dtms_node(’temp>90’, out, true, [truel, [engine_ok], _g55).

dtms_rule(engine ok :- (valve2.open , not ’temp>90’), j1).
dtms_rule(valve2_open :- true, j2).

Figure 3.4: Simple Multi Agent Scenario.
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Agent I and agent II are two autonomous control systems controlling the correct behavior
of an engine. They reason that the engine works correctly, if either valve 1 or valve 2 is
open but the temperature of the engine does not exceed 90°C. Because the temperature is
so important, we decide to use two autonomous cooperative agents, each able to detect a
high temperature on its own. Furthermore, they each control a different valve. We want
the agents to reason cooperatively about the belief engine_ok (represented by the dashed
line in Figure 3.4), that is, we don’t want the agents to have different statuses of engine_ok.
Initially, querying the agents about engine_ok would yield the solution engine_ok is in,
in accordance with both agents. Now, suppose agent II acquires a new justification for the
belief temp>90 because its sensor detects a temperature of more than 90°C. This would
cause agent II to relabel the beliefs temp>90 and engine_ok in and out, respectively, in
contradiction to the corresponding labels of agent I.

The only known distributed labeling algorithm [BH90], would now create the symbol in?
for belief engine_ok of agent II, because agent I still has a valid justification for engine_ok.
(Agent I’s temperature sensor did not recognize the high temperature for some reason.)
However, we do not want the system to believe that the engine is still functioning. The
reason for this undesired behaviour is: In the scenario, only the result of an inference
is shared between agents, but not reasons for it. Agent II does not ‘know’ that agent I
continues to believe the engine is ok because it has no reason to believe the temperature is
higher than 90°C. Thus, agent II does not inform agent I about his recognition of the high
temperature and agent I will dominate, even though it has less information.

In our terms, the created state above would not be proof consistent, because condition (ii)
of Definition 14 is violated. We require the transmission of all ancestors of a transmitted
belief as well. If we want the agents to yield a cooperative solution about a belief b in our
system, the following will happen. Via a cooperation process, the agents will select one
single proof for b of one single agent. We say, this agent is responsible for b. In this agent,
all ancestors f--- f, of b will be marked as transmitted. Furthermore, all of the agents
involved in the cooperation process will acquire agent rules represented as

dtms_rule ((f; :- responsible_agent), id;).
or
dtms_rule ((f; :~ not responsible_agent), id;).

for each ancestor fy--- f,. The positive agent rule is added if the corresponding ancestor
in the responsible agent is in, otherwise the negative one is added.?

?Precisely, the labeling algorithm as described in [BH90] will create the symbol external. It is logically
equivalent to the symbol in, but denotes that the valid justification for the belief is in another agent.

3Thus, we could represent the example of Definition 14 in Prolog code as follows:

agent I:
dtmg_rule((b:~a), j1).
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The following clauses show the effect of an agent query in our engine example (the algorithms
will be discussed in more detail in 3.3.5 and 3.3.7):

dynamic clauses of agent I:

transmitted node(engine ok, [agent_2]).
transmitted_node(valvel_open, [agent_2]).
transmitted_node(’temp>90’, [agent_2]).

dtms_node(engine ok, in, (valvei_open , not ’temp>390’),
[valvel_open, ’temp>90°], [], j1).

dtms_node(valvel_open, in, true, [true]l, [engineok], j2).

dtms_node(’temp>90’, out, true, [true], [engine ok], _gb5).

dtms_rule(engine ok :- (valvel_open , not ’temp>90’), j1).
dtms_rule(valvei_open :- true, j2).

dynamic clauses of agent II:

dtms_node(valve2_open, in, true, [true]l, [], j2).
dtms_node(engine_ok, in, agent.i, [agent_1], [], j3).
dtms_node(valvel_open, in, agent_1, [agent_1], [], j4).
dtms_node(’temp>90’, out, agent_1, [agent_1], [1, _-g55).

dtms_rule(’temp>90’ :- not agent_1, j5).

dtms _rule(valvel_open :- agent_.l, j4).
dtms_rule(engine_ok :- agent_.i, j3).

dtms_rule(engine_ok :- (valve2_open , not ’temp>90’), j1).
dtms_rule(valve2_open :- true, j2).

We assume agent I is responsible for the belief engine_ok. Agent I transmitted its be-
liefs engine ok, valvel_open, temp>90 to agent II. For each transmitted belief, there is

dtms_rule((a:-agentII), j2).

dtmsnode(b, in, a, [al, [1, j1).
dtmsnode(a, in, agentlI, [agentII], [b], j2).

agent II:
dtms_rule((a:-b), ri).
dtms_rule((b:-agentl), r2).

dtmsnode(a, in, b, [bl, [1, r1).
dtmsnode(b, in, agentI, [agentI], [al, r2).
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an entry of the form transmitted node (node, agent_list) representing, in its second
argument, all agents to which the belief has been transmitted. The three DTMS-nodes
represents its current set of beliefs, just as described in Chapter 2.

Agent II, however, acquired three agent rules from agent I. These are the rules with rule
ids j1---jn. We see from the current set of beliefs of agent II that the belief engine_ok is

now supported by agent I and not by its own justification jl. Nevertheless, j1 of agent II is
still valid.

The agents shown above are proof consistent: Each agent is locally consistent, all mutual
beliefs have the same status and all ancestors of transmitted beliefs are also transmitted.
Furthermore, the set of in beliefs is well founded w.r.t. condition (iv) of Definition 14.

Now suppose agent II acquires a new valid justification for the belief temp>90 which disrupts
proof consistency. Because temp>30 changes its status originally supported by agent I, agent
IT ‘tells’, that is transmits, its new belief to agent I via passing the agent rule temp>90 :-
agentII. Acquiring a new valid justification from agent II for its belief temp>90, agent I
relabels downstream its belief engine_ok to status out. This involves belief engine_ok in
agent II again, because engine_ok had been transmitted from agent I to agent II. In these
terms, we get the labeling of engine_ok to out in both agents:

dynamic clauses of agent I:
transmitted node(engine ok, [agent.2]).
transmitted node(valvel open, [agent 2]).

dtms_node(valvel_ open, in, true, [truel, [], j2).

dtms_node(’temp>90’, in, agent.2, [agent_ 2], [engine_ok], j3).

dtms_node(engine_ok, out, not valvel_open ; ’temp>90’,
[>temp>90°], [], _g55).

dtms_rule(’temp>90’ :- agent_2, j3).
dtms_rule(engine ok :- (valvel open , not ’temp>90’), j1).
dtms_rule(valvel_open :- true, j2).

dynamic clauses of agent II:
transmitted_node(’temp>90’, [agent_1]).

dtms_node(valve2_open, in, true, [truel, [], j2).

dtms node(valvel open, in, agent_1, [agent_1], [1, j3).

dtms node(’temp>90’, in, true, [truel, [engine_ok], j6).

dtmsnode(engine_ok, out, ((not valve2_open ; ’temp>90’) , agent_1),
[’temp>90°’, agent_1], [], _g55).

dtms_rule(engine ok :- not agent_1, j5).
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dtms_rule(’temp>90’ :- not agent._i, j4).
dtms_rule(valvel_open :- agent_i, j3).

dtms_rule(engine_ok :- (valve2_.open , not ’temp>390’), j1).
dtms_rule(valve2 open :- true, j2).

dtms_rule(’temp>90’ :- true, j6).

As we see in this example, both agents are responsible for the status of engine_ok being
out: Agent I inferred valvel_open and transmitted it to agent II, while vice versa agent Il
inferred temp>90 and transmitted it to agent I.

So far we have discussed basic terms in a multi agent scenario. Our concept allows an agent
to reason about its own justifications and rules acquired by other agents while guaranteeing
a defined degree of consistency. This degree of consistency ensures solutions to queries that
are correct and consistent with all agents involved in the reasoning process with a minimal
exchange of knowledge. Thus, our definition of proof consistency can be seen as a trade-off
between exchanging as little knowledge as possible and guaranteeing consistent solutions
with respect to all involved agents.

Furthermore, an agent does not have to know about the structure and the dependencies
of another agent’s proof; only the ancestors and the statuses of the ancestors has to be
transmitted. This allows an agent to store and access knowledge of other agents in a very
efficient way.

3.3 DTMS in a Multi Agent Scenario

3.3.1 DTMS Architecture

Figure 3.5 shows the architecture of the DTMS. The extension allowing for distributed truth
maintenance does not alter the basic architecture of the BRTMS. However, the functionality
of the meta level is greatly enhanced. We have to add predicates for incorporating beliefs of
other agents, for transmitting beliefs to other agents and for establishing proof consistency
in the whole scenario. Furthermore, a complete algorithm has to detect circularities in the
set of beliefs spanning several agents in order that execution will terminate.

Actually, there are no predicates for synchronizing the exchange of beliefs in the scenario
in the DTMS; this is part of the cooperation process. The framework here is appropriate
for designing scenarios with logically distributed agents. But it is necessary that only one
agent be active at a time in order to prevent deadlocks. In fact, there are tasks that could
be done in parallel without changing the algorithm. We will mentioned this later when
discussing the algorithm.
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Figure 3.5: DTMS Architecture.
3.3.2 Level of Consensus

In Section 2.2.1 we discussed the basic features of the kernel. In multi agent scenarios,
we can use the DTMS kernel advantageously in order to increase the efficiency of belief
exchange among agents. Definition 14 requires exchanging beliefs along with its ancestors.
But, in general, the inference chain represented in a belief might be long. Actually, there
is no point for transmitting conclusions as part of its ancestors which will have the same
status in all agents at all times. In order to define a level, on which no cooperation is
necessary, we can use the kernel. Predicates defined here are evaluated without performing
truth maintenance, that is, the result of a kernel call will be represented in a belief without
representing the reasons for it. In these terms, the exchange of beliefs can be greatly
minimized without violating the principal of proof consistency.

Note that the design of the DTMS kernel has to be done very carefully. Unpredictable

behaviour may occur if two agents infer different statuses of the same query with kernel
predicates.

As mentioned before, we will discuss the DTMS embedded in a simple agent framework
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containing some essential properties of an agent. In the following, we will discuss a scenario
of such agents. We start the discussion by setting up the scenario. Step by step, we fulfill
the abstract remarks of the previous sections with the counterparts of a backward reasoning
agent.

3.3.3 Multi Agent Scenario

A multi agent scenario can be set up with an unlimited number of agents. Here, each agent
has it own id and can access the ids of other agents from a network database. For instance,
if set a scenario is created with the agents {bond, hari, smiley}, agent bond will be provided
with the following three facts:

whoami(bond) .

agent (hari).
agent(smiley) .

An agent (or the user) can access another agent via a call of the following form:
call (Goal, Agent_id)

This call will resolve Goal with the set of program clauses denoted by Agent_id in the
usual manner. The set of predicates that are visible outside an agent will be defined later.
In addition, the setup defines all valid agent identifiers allowing the DTMS to distinguish
ordinary symbols from those describing another agent. This realizes the basic functionality
of an agent’s mouth.

This has setup a scenario with several agents, each with its own network knowledge and its
own problem solving expertise. Apart from that, the agents are equal to each other.

Furthermore, we require the initial state of the scenario to be proof consistent.

3.3.4 Top Level Predicates

Fach agent of the net can be queried in two different ways. A local query concerns only a
single agent. That is, the agent resolves the query with its own set of program clauses (pos-
sibly containing acquired agent rules) but without interacting with other agents. Actually,
a local query is just a call to a modified dtms_solve/5% as described in Chapter 2.

See Figure 3.7
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The second way an agent can be queried is by calling the predicate agent_query/3. In
general, this invokes several agents in the reasoning process. Figure 3.6 shows its definition.
agent_query/3 is called with an atomic formula as its first argument. The arguments

agent_query(Atom, Status, Support) :-
knowledge(Atom, Agents),
discuss(Atom, Agents, Supportproof, Supportagent, Otheragents),
call(transmit_proof (Supportproof, Otheragents), Supportagent),
install_proof_globally(Supportproof, Otheragents, Supportagent),
call(dtms_solve (Atom, Status, Support, db, no), Supportagent).

Figure 3.6: Agent Query.

Status and Support will be bound to the status and support, respectively, of the belief,
representing Atom, that the DTMS will create.® First, an agent finds all® agents of the net
whose set of predicates contain a definition for Atom. This is done in the second argument
of the predicate knowledge/2. No other agent will take part in the following reasoning
process; this may even include the queried agent itself. In this case, the queried agent is
called a moderator of the reasoning process between other agents. If Atom is not defined
anywhere knowledge/2 will fail.

The predicate discuss/5 defines the interface to the cooperation unit in the agent’s head.
A call to discuss/5 returns in the fourth argument, Support_agent, the id of the respon-
sible agent for the belief representing Atom and in its third argument, Support_proof, all
ancestors of Atom with the corresponding states. The fifth argument, Otheragents, returns
all other agents that have been involved in the cooperation process. These are precisely
those agents that have to acquire the proof of Supportagent.

A discussion in our scenario is implemented very simply: The strategy for selecting a
responsible agent for Atom is to search for the agent with the most ancestors with status in
of the belief representing Atom. Certainly, this strategy is too simple for use in practise, but
it is sufficient for demonstrating the DTMS features. In particular, the DTMS supports the
cooperation unit in generating merged proofs for a belief incorporating rules and beliefs of
different agents, as in the previous example. However, the cooperation unit is constrained
to select one agent to be responsible for Atom.

The next call in agent_query/3 marks, in the responsible agent, all ancestors of the belief
denoting Atom as transmitted. The definition of transmit_proof/2 is straightforward; it
simply asserts or modifies facts of the form transmitted node(Atom, Agentlist) for each

® A more sophisticated definition of agent_query/3 could allow complex goals in queries. This requires
implementing a task decomposition facility that generates subgoals for specific agents.

6Certainly, it might be useful to involve only some agents in the reasoning process instead of all which
have knowledge about the current goal. knowledge/?2 is, like the following discuss/5, user-defined and can
be modified in a such a way. In particular, knowledge/2 could work in parallel.
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atom of Supportproof.

install_proof_globally/3 allows Otheragents to acquire the members of Support_proof
transmitted by Support_agent. But, in general, the elements of Support_proof con-
flict with the belief statuses of the ancestors for the belief representing Atom in one of
Otheragents. That is, it is possible that a status of a transmitted belief is in, but the
local counterpart in an acquiring agent is out, or vice versa. Thus, additional work needs
to be performed when transmitting a belief to another agent as described in the algorithm
of section 3.3.5.

At the end of agent_query/3, we query the responsible agent for getting the status and
support of Atom via dtms_solve/5. Actually, the call to dtms_solve/5 at this point is
reduced to simply accessing the stored beliefs, because the previous reasoning process before
ensures the creation of a corresponding belief for Atom in all involved agents.

In our agent model, the definition of agent_query/3 is located in the head’s Control Unit
and discuss/5 in the Cooperation Unit of the agent’s head (see Figure 3.2). discuss/5
is the only predicate located in the Cooperation Unit, thus, it simultaneously defines the
interface between the Cooperation and the Control Unit.

The interface between the MLU and the Control Unit is defined via the three predicates
transmit_proof/2, install_proof_globally/3 and dtms_solve/5. Note that the lat-
ter meta predicate defines a set of interface predicates, including all predicates concern-
ing the agent’s problem solving expertise. We see from the location of the predicate
install_proof_globally/3 in the DTMS, that an agent’s DTMS directly accesses the
DTMS of other agents in order to establish proof consistency in the agent scenario.

3.3.5 Algorithm for Transmitting a Belief

The following presents the algorithm for transmitting a belief as announced above.

pre: proof consistent state of @ and &, such that the set of beliefs in o contain the belief
b, representing the atom [l Its set of justifications does not contain circular dependencies.”

action: & acquires belief b, from o.
post: proof consistent state of @ and &. & acquired the belief b, from . This implies the

beliefs b, and by are mutual to {e, &}.

(i) status (b,) = in, but there is a common belief b4 in &, with status out.

In this case, & does not have its own valid justification for I. Thus, asserting the (valid)
agent rule (1 :- «) via the predicate assert_justification/2in &, will change the

"For a discussion of circular dependencies, see Section 3.4.
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status of bs from out to in. If there are consequences of bs;, & invokes downstream
propagation of the repercussions of b, probably by invoking the algorithm in 3.3.7.

(ii) status (b,) = out and there is a belief b4 in & common to a with status in.

It is not sufficient to assert the agent rule (1 :- not a), because the local jus-
tification for [in & is still valid and the relabeling procedure in & will not alter
bs’s status to out. Instead, we have to retract all valid justifications for !in & via
retract_justification/1 by successively relabeling its repercussions downstream.
This might invoke the algorithm of 3.3.7. After that, we assert the (invalid) agent rule
(1 :- not «). The relabeling mechanism of & will guarantee that the supporting
list of bs will contain the agent identifier a.

(iii) status (by) = out and there is a belief bs in & common to o with status out.

This equals (ii) without the preceding retraction of all valid justifications for ! in é&.
Thus, invoking downstream relabeling is not necessary.

(iv) status (by) = in and there is a belief bs in & common to a with status in.

Similar to (i), we assert the agent rule (1 :- a) at the beginning of the agent’s
justification database. In these terms, agent rules will get the highest priority of all
justifications, ensuring that these rules will support the beliefs in an agent, if possible.
No downstream relabeling is necessary.

(v) bs with status in is private to a.

We assert the positive agent rule (1 :- «) in the set of justifications of & via
assert_justification/2. & will create a belief bgy with status in.

(vi) b, with status out is private to a.

We assert the negative agent rule (1 :- not «a) in the set of justifications of & via
assert_justification/2. & will create a belief b5 with status out.

3.3.6 Meta Predicates

In order to compute an agent’s state of beliefs that might depend on agent rules, the
predicate dtms_solve/5 of Chapter 2 must be extended. Following Definition 10, this is
easily done: Because an agent identifier is logically equivalent to the symbol true, all
beliefs matching the head of a positive agent rule can be labeled in with the support
field [agent_-id]®. Thus, modifying the definition of dtms_solve/5 as shown in Figure 3.7
will allow correct resolution of goals with predicates including agent rules. Note that the
evaluation of negative agent rules can be subsumed under the evaluation of negated goals
in general (see clauses 3 and 4 in Figure 2.7).

8 The DTMS distinguishes agent identifiers from ordinary symbols with the aid of the facts
agent (agent_id) as introduced in the beginning of Section 3.3.3.
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dtms_solve ({not Goal), in, Constraint, Mode, Rem) :- !,
dtms_solve (Goal, out, Constraint, Mode, Rem).
agent (Agent), !.

dtms_solve (Agent, _, Agent, Mode, Rem) :-
agent (Agent), !, fail.

dtms_solve (Goal, in, Constraint, Mode, Rem) :-
Mode = tms,
clause (dtms_node (Goal, in, Comstraint, _, _, .)).

Figure 3.7: Modified dtms_solve/5.

Additionally, we have to modify the relabeling mechanism of the BRTMS, because belief
relabeling in the BRTMS has so far only been applicable to a single agent scenario. The
following algorithm proceeds from a proof consistent state of agents, in that one agent
changes the status of a belief that is either transmitted or acquired. The goal of this
algorithm is to reestablish proof consistency.

3.3.7 Algorithm for Relabeling Mutual Beliefs

pre: proof consistent state of agents o and & such that the set of beliefs in « contain a belief

b, representing the atom L Its set of justifications does not contain circular dependencies®.

actlon:

1. a changes a belief b, that it has transmitted to & by modifying its local justification
set.

or

2. & changes a belief bs that it has acquired from a.

post: proof consistent state of o and &.

1. a changes a belief b, that it has transmitted to & by modifying its local justification
set.

(a) a changes the support of by, but the status of b, remains the same.

®For a discussion of circular dependencies, see Section 3.4.
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The arisen situation conflicts with condition (ii) of Definition 14, if the new
support contains beliefs, not yet transmitted to &. In this case, we transmit the
new ancestors for b, to & following the Algorithm 3.3.5. Actually, there is no
reason that the old ancestors of b, have to be marked as transmitted any longer.
Without invalidating the reestablished proof consistency, we could retract all the
corresponding entries in the responsible agent and the agent rules in &. But,
in most cases, & inferred further beliefs depending on these agent rules. Thus,
retracting these agent rules would invoke a superfluous relabeling of beliefs in &.

(b) o changes the status of b, from in to out.

This causes condition (ii) of Definition 14 to be violated in any case. Condition
(i) is violated in e, if there are consequences of bg.

In order to satisfy condition (ii) again, we will distinguish two cases: 1(b)i &
still has its own valid justification for by, and 1(b)ii & does not have a valid
justification for b,.

i. in this case, the DTMS in o makes & responsible for the belief. That is,
the entry transmitted_node (b, Agents_a) in a will be deleted and the
fact transmitted_node (b, Agents_b) asserted in &. The list Agents_b
results from exchanging the id & with o in the list Agents_a. Furthermore,
& transmits all its ancestors for bg to all members of Agents_b as described
in Algorithm 3.3.5 and « will retract all corresponding (positive) agent rules
in all members of Agents_a!®. After that, b, is labeled in again with support
[&]. This implies that o will be locally consistent, because the status of b,
is the same as before. Furthermore, the transmission of the ancestors of b,
to o causes condition (ii) to be satisfied.

ii. we retract the positive agent rule in & and assert the negative one. Because
& lacks a valid justification in &, the relabeling Algorithm of & will set the
status of b to out. But this might also cause & to be locally inconsistent,
forcing a relabeling downstream of repercussions of bs. When relabeling of
& is complete, a relabels downstream its repercussions of b, and transmits
the new ancestors of b, to &, following Algorithm 3.3.5.

(¢) o changes the status of b, from out to in.

« is now the only agent that has a valid justification for b in the whole scenario.
We retract in & the negative agent rule and assert the positive counterpart. In
general, this makes & locally inconsistent. To reestablish proof consistency, we
follow the procedure of 1(b)ii.

2. & changes belief bs acquired from «a.

(a) & changes the status of bs from out to in. Changing an acquired belief from
out to in equals 1(b)i above: The DTMS of & will make & responsible for b.

1%1n these terms, an in belief in an agent dominates an out belief, that denotes the same atom in another
agent. Alternatively, we could make o responsible for the belief b. In this case, we have to retract all valid
justifications in all agents to which the belief was transmitted. Both possibilities make sense in certain cases,
so that a preceding cooperation process should decide, which alternative is to be used.
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The entry transmitted node (b, Agents._a) in a will be deleted and the fact
transmitted node (b, Agents_b) asserted in &. The list Agents_b results from
exchanging the id & with o in the list Agents_a. Furthermore, & transmits all its
ancestors for b, to all members of Agents_b as described in algorithm 3.3.5. After
that, b, is labeled in with support [&]. But, in contrast to 1(b)i, a will be locally
inconsistent, because the status of b, changes. Thus, a downstream propagation
of the consequences of b, will be performed, possibly by invoking relabeling of

further mutual beliefs. Finally, & will relabel downstream its repercussions of
b,

(b) Other cases are actually not possible, due to the fact that agent rules are asserted
in the beginning of an agent’s justification database. Thus, the dtms_solve/5
procedure of an agent will always justify acquired beliefs with a agent rule and
not with its own, if possible. But, as mentioned in Chapter 2, the support field of
a belief only changes, if its supporting justification changes. Besides, one single
agent is certainly not allowed to retract acquired agent rules, this can be done
only by the responsible agent.

3.3.8 Example

Consider again Figure 3.4 showing the set of beliefs and justifications in two agents after
the set up procedure as described in 3.3.3 is complete!2. If we want agent 1 to yield a
cooperative solution about the goal engine_ok, we do the following query:

call(agent_query(engine_ok, St, Su), agent_1).

Thus, agent_query/3 in agent 1 is invoked. After calling knowledge/2, Agents will be
bound to the list [agent_1, agent_2], because both agents have a definition for the goal
engine_ok. The cooperation via discuss/5 yields the following variable bindings.

discuss(engine_ok, [agent_1, agent_ 2],
lengine ok - in, valvel_open - in, ’temp>90’ - out],
agent_1, [agent_2])

1 This might cause unnecessary relabeling, see 3.4
12The facts

whoami (agent_1).
agent (agent2).

in agent 1 and

whoami (agent_2).
agent (agent.1).

in agent 2 are not shown.
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Agent 1 is now responsible for engine_ok'® and generates the Supportproof for it in the
third argument. After calling transmit_proof, all ancestors (the members of the list
Supportproof) are transmitted to agent 2 as done in the example of 3.2.3.

The following call to install_proof_globally invokes algorithm 3.3.5: Transmitting engine_ok
from agent 1 to agent 2 invokes (iv) of 3.3.5; valvel_open is private to agent 1, thus (v)

is invoked, while transmitting ’temp>90°’ invokes (iii). Because there are no circular de-
pendencies in the set of justifications, algorithm 3.3.5 will terminate and create the proof
consistent state as shown in 3.2.3.

Finally, the call to dtms_solve/5 unifies St and Su with the status and support of the belief
engine_ok of agent 1.

Now suppose agent 2 justifies its node ’temp>90’ with a premise justification making the
agents inconsistent. 2a of algorithm 3.3.7 will perform the following: The DTMS of agent
2 transmits the agent rule ’temp>90’ :- agent_2 to agent 1. This implies the DTMS of
agent 1 will make its belief representing ’temp>30’ in and causes relabeling of engine_ok to
out. Because engine_ok is transmitted to agent 1, algorithm 3.3.7 is invoked a second time.
1(b)ii of 3.3.7 will make engine_ok of agent 2 out. Because there are no consequences of
engine_okin agents 1 and 2, we are done after agent 2 relabels downstream the consequences
of its belief ’temp>30°.

The resulting beliefs are shown in the example of 3.2.3.

3.4 Discussion

The algorithms of 3.3.5 and 3.3.7 describe how two interacting DTMSs reestablish proof
consistency, if one agent disrupts a proof consistent state by modifying its justification
database. Changes in the statuses of mutual beliefs cause its propagation to other rele-
vant agents. Furthermore, the transmission of all ancestors of mutual beliefs according to
Definition 14 is performed.

The algorithms of 3.3.5 and 3.3.7 will terminate, if the following conditions are satisfied:!*

1. there are no circularities in one agent’s Jocal set of justifications.

2. there are no circularities in the set of justifications across several agents.

We discussed 1. in Section 2.3.1 already. The discussion of 2. is similar, because analogous

13Both agents have the same number of in-ancestors for engine.ok. Because agent 1 is queried first, it
will be responsible.

" Note, these conditions imply the well-foundedness of beliefs w.r.t (iii) of Definition 8 and (iv) of Defini-
tion 14.
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arguments hold. Figure 3.8 shows a proof consistent state of agents I and II. All beliefs are
labeled out. It is easily seen that supporting b in agent I with a valid justification will not
allow creating of a proof consistent state. But the current version of the DTMS will not
terminate, because the repercussions of an acquired belief & contain a belief that is in the
ancestors of the corresponding transmitted belief a. A complete algorithm would be coNP
complete, see Section 2.3.1.

Avoiding circularities, we can apply our algorithm to scenarios with more than two agents:
If a belief is transmitted to more than one agent, we apply the algorithm successively to all
the relevant agents. Finally, the created state of beliefs will be proof consistent. Indeed,
unnecessary computations of states may occur: Suppose we have the situation presented in
Figure 3.9: Obviously, the status of d in agent Iis in, independent of the status of bin agent
I. But if b changes status from out to in, our algorithm will cause cin agent II to be labeled
out. Because d now has no valid justification (e is still out), the expensive relabeling of the
consequences of d in agent Iis invoked. Once that is complete, agent I relabels downstream
the consequences of its belief b and invokes the relabeling of d a second time. Modification
of the algorithm in order to avoid such cases is a subject for further research.
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Chapter 4

Conclusion

Zwel mal zwei gleich vier ist Wahrheit. Twice two equals four: ‘tis true
Schade, daf sie leicht und leer ist, But too empty, and too trite.
Denn ich wollte lieber Klarheit What I look for is a clue
Uber das, was voll und schwer ist. To some matters not so light.!

— W. BuscH, SCHEIN UND SEIN

In Chapter 3 we presented a new concept supporting reasoning among autonomous inter-
acting agents in distributed scenarios and demonstrated its usefulness in a concrete imple-
mentation. Central to this concept is the new term proof consistency which clearly defines
a state of consistency of mutually dependent beliefs across different agents. This state is
characterized by exchanging inferences and their foundations. We showed that in contrast
to previous approaches, our definition of consistency allows agents to reason in a more com-
plex way. Information, lost in former approaches, will now be propagated to all relevant
agents: Because one agent knows the foundations of an acquired inference of another agent,
it can inform this agent when a foundation becomes invalid. We showed the agents will
not be overwhelmed with information. It is sufficient only to exchange a special, minimal
representation of inferences between agents.

Our algorithm for establishing proof consistency in a multi agent scenario is based on a
first-order truth maintenance system, BRTMS, introduced in Chapter 2. In contrast to
propositional based TMSs, a first order representation of beliefs provides for more ex-
pressive interaction between agents while simultaneously guaranteeing a precise theoretical
background. Furthermore, our approach of defining a TMS as a variant of a Prolog meta
interpreter relieves the application designer from evaluation control tasks; this is delegated
to meta evaluation by the BRTMS. In addition, meta logic control allows the application
designer to distinguish between goals on which truth maintenance will be performed and

"This translation is due to Karl R. Popper in “Conjectures and Reflutations: The Growth of Scientific
Knowledge”, Harper Torchbooks TB 1376. Popper said about his own translation that it renders “it perhaps
more like a nursery rhyme than Busch intended”.
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goals which remain static. This yields higher performance and avoids unnecessary exchange
of information between agent’s.

Nevertheless, meta logic control of goal evaluation incurs additional costs that can over-
shadow the performance of the BRTMS in some cases. For single agent contexts, the
BRTMS is used to best advantage on applications where certain goals can be expected to
be selected frequently. We are still confronted with the lemma generation problem (see
Section 2.3.2) that is not solved in the current version of the BRTMS.

The use of our DTMS will constrain the autonomy of an agent in one important aspect:
Only one agent is allowed to be active at one time. There is no provision for two agents to
change their beliefs simultaneously. Handling such cases is not trivial and is a subject for
further research.
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