

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik , Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM , Insiders , Mannesmann-Kienzle , SEMA Group, and Siemens. Research
projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by
the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science . The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world . The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

A Declarative Integration of Terminological, Constraint-based,
Data-driven, and Goal-directed Reasoning

Philipp Hanschke

DFKI-RR-93-46

This report contains the essentials of the dissertation of the author at the
University of Kaiserslautern and the theoretical foundations of the
terminological reasoning system TAXON. Chapter 3 is a deeply revised
version of DFKI Report RR-92-37, which has also been published in the
proceedings of KR'92.

This work has been supported by grants from The Federal Ministry for
Research and Technology (FKZ ITW 8902 C4 and FKZ 413 5839 ITW
9304/3).

© Deutsches Forschungszentrum fOr Kunstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fOr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fOr Kunstliche Intelligenz.

A Declarative Integration of
Terminological,

Constraint-based,
Data-driven, and

Goal-directed Reasoning

Philipp Hanschke

Abstract

The paper settles a research branch in the realm of logic-oriented, hybrid knowl­
edge representation. Terminological knowledge representation and reasoning can
now be utilized for more realistic applications as an integral component of a com­
putationally complete, declarative hybrid knowledge representation formalism with
integrated special-purpose reasoners of concrete domains such as real-closed fields or
finite-domain constraints. The paper presents technical results exploring the impact
of "role interaction" on the decidability of the subsumption problem of terminolog­
ical logics. In particular, decision procedures are presented for common reasoning
problems in an expressive terminological logic that is parametrized by a concrete
domain. A refined minimal belief logic which avoids certain problems concerning
the non-propositional case (which occurred surprisingly) is the basis of the model­
theoretic semantics of a very general generic rule formalism integrating goal-directed
(i.e., top-down) and data-driven (i.e., bottom-up) reasoning in a declarative man­
ner. A mechanical engineering application (production planning of lathes) is used to
demonstrate how the theoretical results can be employed in realistic applications.

Contents

1 Introduction
1.1 Heuristic Classification
1.2 The Terminological Approach
1.3 The Integrated Approach.

2 An Application Domain

3 Terminological Knowledge Representation
3.1 Introduction
3.2 The Basic Language ..,
3.3 Equality Based Operators
3.4 Operators with Predicates

3.4.1 Concrete Domains
3.4.2 The Additional Operators

3.5 The Assertional Box
3.6 The Basic Algorithm

3.6.1 Unfolding and Implication Normal Form
3.6.2 Transformation Rules ..
3.6.3 Obvious Contradictions.
3.6.4 The Strategy
3.6.5 Summary of Algorithm .

3.7 The Proof

4 Exploring Terminological Knowledge Representation
4.1 Geometric Primitives and Elementary Features.
4.2 Some Limitations

4.2.1 Aggregation
4.2.2 Derived Attribute and Role Fillers
4.2.3 Sequences..............

5 An Epistemic Formalism
5.1 Introduction

5.1.1 Operational Semantics

2

5
7
7
9

12

15
15
19
20
24
24
26
27
31
32
32
35
36
36
37

44
44
47
47
48
48

52
52
53

5.1.2 Logical Reading 55
5.2 Condition Formalisms and Minimal Belief 57
5.3 The Epistemic Rule Formalism 62
5.4 Soundness and Completeness Results . . . 64
5.5 Relation to Horn Logic and CLP Formalisms. 66

5.5.1 Some Relations to Horn Logic 66
5.5.2 Relation to CLP 68

5.6 Integrating Terminological Reasoning, Concrete Domains and the Rule
Formalism . 69
5.6.1 Application of the Scheme to ALCFP(V) 70
5.6.2 Limitations Revisited. 71

6 Summary 74

Bibliography 77

3

List of Figures

1.1 The Heuristic Classification Inference Scheme
1.2 The Inference Scheme with Terminological Formalisms

7
8

2.1 Heuristic Classification Applied to Production Planning of CNC Lathes 12
2.2 A Truncated Cone 13
2.3 Some Simple Features 14
2.4 The Varying-Size Aspect of a Lathe 14

3.1 A Typical Model Structure of a Conventional Concept Term
3.2 Typical Model Structures with Role/Attribute Interaction
3.3 Representing II .. ·Im = 91 .. ·9n .
3.4 Repeating back and forth
3.5 Consistency Test of ALCFP(V) . .

4.1 The Subsumption Graph of the Sample Terminology

5.1 A Naive Implementation of the Rule Formalism ...

4

16
17
22
23
36

46

54

Chapter 1

Introd uction

In his invited talk at the 8th National Conference on AI in 1990 [Brachman, 1990] Ron
Brachman argued that the development of "unified reasoners" is one potential high­
light of the "future of knowledge representation" (p. 1089). Similarly, "incoinplete
reasoners" and "expressiveness vs. tractability" are mentioned in a list of important
open research problems (p. 1090). This thesis contributes to all of these issues. In
particular, research on ""unified reasoners" in a subfield of symbolic, logic-oriented
knowledge representation has been settled to a certain extent. Terminological knowl­
edge representation and reasoning can now be utilized for more realistic applications
as an integral component of a computationally complete, declarative hybrid knowl­
edge representation formalism with integrated special-purpose reasoners of concrete
domains such as real-closed fields or finite-domain constraints.

Concept languages based on KL-ONE are mostly used to represent the termino­
logical knowledge of a particular problem domain on an abstract logical level. In this
thesis some extensions of terminological formalisms serving demands from realistic
applications are considered and analyzed with respect to decidabilityof inference ser­
vices, which is a contribution to the issue of "expressiveness vs. tractability" in the
area of terminological knowledge representation. In particular, Chapter 3 provides
an overview of concept forming operators dealing with role interaction, such as the
well known role-value maps.

Some important representation and reasoning demands can be satisfied by an
enhanced, generic terminological formalism which is introduced in Chapter 3 and is
parametrized by a concrete domain (such as real numbers). However, the trade-off
between expressiveness and tractability imposes significant limitations on the ex­
pressiveness for terminological formalisms (which have decidable reasoning problems
associated with their inference services).

To overcome these limitations a generic, semi decidable rule scheme integrating
data-driven (e.g., production rules) and goal-directed (it la Prolog) reasoning is de­
veloped. Even at this scheme level it is shown how inference algorithms can be
constructed from the reasoning algorithms of the chosen underlying condition logic,
which is a first-order language satisfying certain requirements. It is also shown at

5

this scheme level that the inferences are sound and complete with respect to a min­
imal belief logic. This logic had to be modified to become a 'really' minimal belief
logic, also in the first-order case. This characterization of the operational seman­
tics (which is incomplete with respect to a reading of the rules in classical logic) by
model-theoretic means is a contribution to the issue of "incomplete reasoners".

If the generic terminological formalism is instantiated with an admissible con­
crete domain, and the resulting formalism is then inserted into the rule scheme, a
declarative, hybrid knowledge representation formalism is obtained that integrates
four essential reasoning paradigms: terminological, constraint-based (in the concrete
domain), data-driven, and goal-directed. Thus, with these two schemes powedul
"unified reasoners" for symbolic, logic-oriented knowledge representation can be con­
structed that are accompanied by a declarative semantics.

Taking a knowledge engineering point of view, the generic hybrid formalism can
be described in terms of three layers.

Concrete Domains: This layer provides access to tuned, efficient reasoning algo­
rithms of well understood (concrete) domains.

Terminological Formalism: On this layer a vocabulary tailored to the application
domain and grounded in the concrete domains can be developed. The services
of the terminological formalism aid the knowledge engineer in analyzing his
definitions and minimizing the number of errors.

Rules: On this layer the actual knowledge for problem solving can be represented
on the basis of a "save" vocabulary and efficient special-purpose reasoning
algorithms contained in the lower layers.

This perspective reveals that terminological reasoning can be fully integrated in a
knowledge representation formalism suitable for realistic applications.

The ARC-TEC project [Bernardi et a/., 1991] at the DFKI has considered a
production planning problem in the field of mechanical engineering as a testbed
for AI methodologies. Although it would be possible to present the main results
of this thesis without any reference to this application, it is used for illustration
purposes, since the representation and reasoning demands of this application were
an important driving force for the research. In particular, the experiences made
during the development and use of the hybrid compilation laboratory COLAB [Boley
et ai., 1993] in the ARC-TEe project were valuable for the progress of this thesis.

COLAB comprises declarative components with pragmatic interfaces: a termino­
logical formalism, a constraint system, a forward chaining system and a backward­
chaining system. One challenge for the development of COLAB (and also for the
thesis) was the requirement that the inference scheme underlying the production
planning application can be realized. Chapter 2 gives a short introduction to the
application domain.

6

abstract problem
heuristic
match principal solution

problem solution

Figure 1.1: The Heuristic Classification Inference Scheme

1.1 Heuristic Classification

To demonstrate the results attained in the thesis, the next step is to describe the
inference scheme underlying the application on a more abstract level.

It is well known that. experience and heuristics are essential for problem solving
in realistic domains. Clancey's heuristic classification is a simple inference scheme on
the knowledge level ([Clancey, 1985], Figure 1.1) reflecting this general observation.
The scheme comprises three main phases: an abstraction phase, a heuristic match,
and a refinement phase. Expert systems of various task categories, such as diagnosis,
configuration, and planning have been based on heuristic classification. In the ARC­
TEC project a variation of Clancey's scheme has been identified as the model of
expertise in the production planning application (Schmalhofer et ai., 1991].

The abstraction phase starts with concrete data (knowledge) of a problem and
generates an abstract view of the data that contains triggers [Clancey, 1985], (also
called 'application features' [Klauck et al., 1991]) which are relevant for problem
solving. Contrarily, the refinement phase collects, combines and instantiates prin­
cipal (partial) solutions into a concrete solution. The heuristic match associates
triggers in an abstract problem description (the output of abstraction) to principal
(partial) solutions (the input of refinement). These heuristic associations between
two different terminologies represent experimental experience and avoid reasoning
from first principles, which often would cause severe performance problems.

1.2 The Terminological Approach

From a more general point of view the problem description produced by abstraction
is mapped by a heuristic, non-deterministic match to descriptions of partial, principal
solutions. Hence, description logics play an important role in this inference scheme.

Terminological formalisms in the tradition of KL-ONE [Brachman and Schmolze,
1985], also referred to as description logics, concept languages etc., can be used to

7

concepts, representing
the most specific triggers

terminological
object classification

objects, describing
concrete problem data

heuristic
match

concepts, representing
partial solutions

objects, representing
the concrete solution

Figure 1.2: The Inference Scheme with Terminological Formalisms

represent the terminological knowledge of a particular problem domain on a formal
basis. A terminological box (T-box) is used to represent concepts which can then be
applied to objects in an assertional box (A-box). The formalisms provide reasoning
services such as classification of objects and concepts with respect to a generalization
hierarchy of concepts (Section 3).

At first glance the scheme can be implemented in a terminological formalism as
depicted in Figure 1.2. The initial problem could be represented by objects in the
A-box. The classification of objects with respect to a terminology of triggers would
reveal the most specific triggers which apply to this object. Then a heuristic match,
which could be implemented by trigger rules (e.g., [Brachman et ai., 1991]), would
associate concepts of a terminology of partial, abstract solutions to the triggers.
Finally, a consistency test, which expands the concept definitions involved, could
check the feasibility of the solution.

Terminological reasoning does not have an intuitive operational semantics. Con­
sequently, it should not be the responsibility of the knowledge engineer to check
whether all intended queries will terminate in finite time. But these formalisms do
have an intuitive, precise model-theoretic semantics. Therefore, it has been a research
goal in the field of terminological knowledge representation to find the -most expres­
sive formalisms with decidable reasoning problems, or even better, with tractable
inference algorithms (see e.g. [Levesque and Brachman, 1987; Donini et ai., 1991]).
However the required decidability (tractability) imposes significant limitations on the
expressiveness of these formalisms.

Section 2 exhibits some representation demands that occur in the above-mentioned
mechanical engineering application and various other domains.

• Role Interaction and Concrete Domains
It is often the case that properties or roles of an object are not independent. For
example, a mother is older than her children, or the color of the hair of a good
model should harmonize with the color of the clothes she is going to present.

8

The relation of the properties and roles in the first example can be described
in terms of a concrete domain: the predicate < over integers. In the second
example the interaction is more abstract. Extensions of concept languages for
both kinds of interaction are discussed in some detail in Chapter 3 .

• Sequences
A sequence is composed in a regular manner of a finite, bounded, but previously
unknown number of smaller entities.

In Section 4.2 some principal limitations of terminological formalisms are dis­
cussed. It is recalled from [Baader and Hanschke, 1992] that a concept language that
is capable of representing sequences of finite but unbounded size and that provides
concrete domains has an undecidable subsumption problem. Other problems are re­
lated to the "part-of" relation and derived attributes which turn out to be relevant
for abstraction [Hanschke and Hinkelmann, 1992] as well as refinement.

1.3 The Integrated Approach

How to overcome the limitations of terminological formalisms? One possibility is to
combine the advantages of a concept language with respect to terminological knowl­
edge representation and reasoning with the reasoning power of a more expressive but
semi decidable formalism in a declarative manner.

Constraint Logic Programming (CLP) systems [van Hentenryck, 1989] provide
goal-directed, top-down inferences and enhance search performance by means of con­
straint solving and propagation. Hence, these systems can be relevant for refinement.
But, in general, they do not support terminological reasoning. LOGIN [Ait-Kaci and
Nasr, 1986], which can be seen as a CLP system, integrates a fixed taxonomy in
its feature-unification algorithm, which may be considered as a weak form of termi­
nological reasoning. LIFE [Ait-Kaci and Podelski, 1991] is an extension of LOGIN
that additionally provides functions. Since a function application is evaluated im­
mediately, this may be considered as a data-driven, bottom-up computation. But
this is very different from data-driven reasoning with multiple-premise production
rules. Similarly, Oz [Wurtz et ai., 1993], is a constraint programming language inte­
grating goal-directed reasoning with constraint propagation, but it does not directly
include data-driven inferences with rules of multiple premises, although it may be
possible to implement this feature using the communication primitives get and put.
The operational semantics of Oz is sound but not complete with respect to classical
logic.

Production rule systems as well as bottom-up parsers and bottom-up logic pro­
gramming systems are suitable for data-driven abstraction. But, again, these systems
are not essentially hybrid and integrate only weak forms of terminological reasoning,
if any.

9

Thus, there exist formalisms supporting terminological knowledge which is rele­
vant for all phases, and expressive formalisms supporting abstraction and refinement,
separately. There also exist (partial) pragmatic integrations of terminological or
taxonomic knowledge representation with data-driven, goal-directed and constraint­
based reasoning. MacGregor's LOOM [MacGregor, 1988] and the above-mentioned
COLAB system are examples of pragmatic extensions integrating a terminological
component. See [Firebaugh, 1988] for an overview of (commercially available) hybrid
expert system shells with taxonomic components.

However, to combine a rule formalism (such as definite definitions in Horn logic)
with an expressive condition logic (such as a terminological logic) in a declarative
manner is a non-trivial research problem. For example, the operational semantics of
a rule formalism usually does not capture the contra-position of rules.

For top-down reasoning the generalized CLP scheme proposed by Hohfeld and
Smolka [Hohfeld and Smolka, 1988] is an interesting approach. It shows in a generic
manner how constraint formalisms, which have to satisfy some weak requirements,
can be combined with definite relations such that the operational semantics is sound
and complete with respect to classical logic. This has been achieved by restricting
the head of a rule to positive relational atoms and by considering conditional answers
instead of taking the theorem-proving point of view. I

In fact in [A becker and Hanschke, 1993] this scheme was employed to integrate
terminological reasoning, goal-directed reasoning, and constraint based reasoning.
Data-driven inferences, however, which are of particular interest for the abstraction
phase, are not supported by this CLP formalism. See [Friihwirth and Hanschke,
1993] for an implementation approach of this formalism on top of Prolog and some
examples from a simple configuration domain.

In [Hanschke and Hinkelmann, 1992] we combined terminological with data-driven
rule-based reasoning for abstraction processes. The semantics of this production rule­
like formalism is specified by a fixpoint operator based on 'constructive implication',
i.e., a rule may only be applied to objects explicitly named in the current fact base.

In Chapter 5 a scheme is introduced that combines eLP and production rule-like
inferences. The scheme takes a condition logic and constructs a rule formalism with
rules of the form

<Po 'Vt <PI I ... I <Pn

where the <Pi are formulas of the condition logic and 'Vt is a kind of procedural
implication, which is explained in more detail in Chapter 5. Informally, such a rule
says "if <Po is believed, then one of <PI, <P2, ... ,<Pn is believed."

The operational semantics of the rule formalism generalizes the way production
rules (and trigger rules) are applied to a fact base. If a rule is triggered, one of the
<Pi in the head is non-deterministically selected and added to the fact base. If an
inconsistency occurs, backtracking takes place and another alternative is selected.

lSee [Biirckert, 1991] for a combination of a constraint formalism with a resolution theorem
prover .

10

For n = 0 the rule is a denial saying that whenever 4>0 is believed, the current
state is inconsistent. For n = 1 the rules are very close to production rules. If 4>0 is
very simple and n > 1, the operational semantics of these rules has much in common
with SLD resolution (cf. Section 5.5.1).

For simple trigger rules A ""-+ B, A and B concepts, a semantics based on the
epistemic operator K was proposed in [Donini et ai., 1992] that coincides with the
common operational semantics: "If there is a 'known object' a in the fact base that
is an A, then add B(a) to the fact base." Surprisingly, this semantics does not carry
over to the rule formalism considered here.

To get a reasonable model-theoretic semantics it is necessary to refine this epis­
temic logic (which, by the way, is similar to the logics considered in [Levesque, 1984;
Reiter, 1990; Lifschitz, 1991]). The formalization of a "really" minimal belief logic in
Section 5.2 resolves certain problems (Section 5.1.2) related to (i) the absence of a
unique-name assumption, (ii) certain interactions of more than one existential quan­
tifications with an belief operator, and (iii) formalisms that are expressive enough
to restrict in a formula 4> the cardinality of the domain of the models of 4>. The
operational semantics is sound and complete with respect to this epistemic logic.

Consequently, the rule scheme is a hybrid, generic declarative formalism integrat­
ing deterministic, data-driven, bottom-up reasoning (as required for abstraction) with
non-deterministic, goal-directed, top-down search (as required by the association and
the refinement phase). If the scheme is applied to a terminological formalism that is
extended by concrete domains (Section 5.6), this results in a declarative integration
of terminological, constraint-based, data-driven and goal-directed reasoning. Chap­
ter 5 concludes by showing how the representation and reasoning problems that could
not be handled by the terminological formalisms (Section 4.2) can be handled in the
integrated formalism (Section 5.6.2).

The intended reader of this thesis should be familiar with the basics of formal
logic, logic programming and symbolic knowledge representation. It is not required
in any way that she or he has a background in mechanical engineering.

11

Chapter 2

An Application Domain

The application domain that has been investigated in the ARC-TEC project is pro­
duction planning for CNC lathes. More precisely, the work has been motivated by
the following scenario:

Given the geometry of a rotationally-symmetric workpiece, generate the
process plans as abstract NC macros for turning the workpiece on a CNC
lathe.

Reasoning in this application follows a scheme (Figure 2.1) that is inspired by
Clancey's heuristic classification [Schmalhofer et ai., 1991; Bernardi et al., 1992bl:
The input is a CAD drawing describing the workpiece in terms of primitive surfaces
and basic technological data. The abstraction phase generates a schematic description
of the workpiece in terms of (CAD/CAM) features [Klauck et ai., 1991; Bernardi et
ai., 1992al. Such features (which are the triggers in Clancey's scheme) are often
associated with parts of the workpiece that are characteristic with respect to how
these parts (or the whole lathe) may be manufactured. The second phase heuristically

feature DAG
heuristic

match skeletal plan

CAD drawing NCprogram

Figure 2.1: Heuristic Classification Applied to Production Planning of CNC Lathes

12

Figure 2.2: A Truncated Cone

matches skeletal {production} plans to the features. Finally, the third phase refines
and merges the skeletal plans to a complete program for CNC machines.

This problem domain requires, among other things, the representation of geomet­
ric primitives of the workpiece taken from the CAD drawing, as well as other relevant
technological data. The features characterizing the workpiece and the skeletal plans
are also important parts of the knowledge necessary for solving the application prob­
lem. If all this could be expressed in a concept language, the inference scheme could
be mapped naturally into a terminological framework:

• Arrange the features represented as concepts in a generalization hierarchy using
the concept-classification service.

• Represent a particular CAD drawing of the workpiece with its geometric and
technological information as instances of appropriate concepts in the A-box.

• Employ the object-classification service [Nebel, 1990] to compute the most
specific concepts that apply to the particular lathe.

• Associate the skeletal plans to the production features detected by means of
trigger rules (cf. Chapter 5).

• Check the feasibility of the solution with the consistency test for A-boxes.

However, it is easy to see that conventional concept languages cannot be used
for adequately representing this problem domain. Consider for example the concept
of a truncated cone (see Figure 2.2). Since in this domain geometric objects are
regarded as being fixed to an axis, a truncated cone can be characterized by four real
numbers, two for its radii and two for the corresponding centers. But of course, not
each quadruple of real numbers represents a truncated cone. Hence, the values have
to be restricted such that the radii are positive and the surface of the truncated cone
does not degenerate to a line, a circle, or even a point. It seems to be impossible to
represent these restrictions using only "abstract" concept terms without reference to
predicates over, for example, real numbers. This requirement reveals the need for an
integration of concrete domains.

13

~

biconic right shoulder left shoulder groove

Figure 2.3: Some Simple Features

'---+--i-';--';--/-(- -. -... -(E----,...---1f-----+

Figure 2.4: The Varying-Size Aspect of a Lathe

Features often correspond to some neighbored truncated cones. For example
a 'biconic' just consists of two neighboring truncated cones (Figure 2.3). A 'left
shoulder' (resp. 'right shoulder') is a 'biconic' with a surface line approximating the
shape of a human shoulder. A 'groove' is a combination of a left and a right shoulder
that share a common ground.

Note that it is essential for a biconic that its truncated cones are neighbored.
Similarly, the definition of a groove relys on a relation between its subcomponents,
also. From an abstract point of view, the adequate representation of a truncated
cone, a biconic, or a groove requires the formalization of interrelations of parameters
or components. Since terminological formalisms relate parameters or components to
an object via roles, this issue has been termed role interaction. The following chapter
investigates extensions of concept languages for role interaction.

Other features such as an 'ascending sequence of truncated cones' correspond to
sequences of simpler features or geometric primitives with some common property
and certain interrelations. These sequences have a finite, but varying and not a priori
bounded length (Figure 2.4).

14

Chapter 3

Terminological Knowledge
Representation

In the previous chapter role interaction has been identified as an important repre­
sentation and reasoning demand. This chapter investigates extensions of concept
languages dealing with this issue and introduces a new reasoning service, called A­
box subsumption. In the context of the rule scheme (Chapter 5) this service will be
used to check whether a 'fact base' (i.e., A-box) entails a premise of a rule.

3.1 Introduction

Concept languages based on KL-ONE [Brachman and Schmolze, 1985] are mostly
used to represent the terminological knowledge of a particular problem domain on
an abstract logical level. To describe this kind of knowledge, one starts with atomic
concepts and roles, and defines new concepts using the operations provided by the
language. Concepts can be considered as unary predicates which are interpreted as
sets of individuals, and roles as binary predicates which are interpreted as binary
relations between individuals. Examples for atomic concepts may be human and
female, and for roles friend and enemy. Many terminological formalisms concentrate
on the following three categories of operators to build a terminology:

• Boolean connectives (n, U, and ...,) that allow concepts to be combined without
any direct reference to their internal structure. For example, if the logical
connective conjunction is present as a language construct, one may describe the
concept woman as "humans who are female", and represent it by the expression
human n female .

• Role-forming operators that allow new roles to be defined. For example the
composition (0) allows the role ''friend of enemy" to be represented by enemy 0
friend.

15

• Operators on role fillers that allow the 'internal' structure of the concepts to
be operated on. Many languages provide quantification over role fillers which
allows, for example, the concept "human with a friend" (resp. "human with
only female friends") to be described by the expression human n 3friend.human
(resp. humannVfriend.female). An interesting subclass of operators on role fillers
are the operators for role interaction. The frequently used number restrictions
can be seen as a degenerated form to specify role interaction (on one role). For
example, the concept lucky-human could be defined as 3>loofriend n 3<2enemy.
As soon as an individual belonging to this concept has two role fillers for enemy,
it can be deduced that they are equal.

The kind of models that can be specified by the operators considered so far is
quite restricted. If a concept C is satisfiable, then it is satisfiable by an interpretation
that arranges its individuals in a tree structure (d. Figure 3.1). For example, it is
possible to require that the members of a concept have role fillers for a role R, say
an individual a, and a role S, say b. But it is not possible to specify that a equals
b or that a and b have any common (transitive) role-filler, or that their respective
role-fillers are in any relation to each other.

e :Q

S! \R , ,:Q'
/I\F r

R R' '\ •

"-Q" II:Q • / \

/ S' \
, e:Q" e :Q,Q

e :Q Indiviual, instanciating Q

R
e --e Pair of individuals, instanciating R

Figure 3.1: A Typical Model Structure of a Conventional Concept Term

So there is a need for additional means to specify role interaction. The classical
prototypes of this kind of operators are the structural descriptions and role-value
maps (RVMs; see Section 3.3 for a definition) that are discussed and motivated, for
example, in [Brachman and Schmolze, 1985].

An RVM would allow one to specify that the set of all friends of an individual is
equal to the set of all enemies (which may be true for some people if one looks at
some never ending soap operas): enemy =RVM friend where enemy and friend are roles.
A typical model structure is depicted in Figure 3.2.

In [Schmidt-SchauB, 1989; Patel-Schneider, 1989] it has been shown that a con­
cept language with RVMs and a few other common operators has an undecidable sub­
sumption problem. As a reaction on this disappointing negative result, RVMs have

16

A·~~',
/// ,,', . . . ~ •... . : ,.~ ..

: ,. ". ::.,.:
i ,.: •• ,,_./ •
:: .. ,..,..,
! • /"" .: · \.,

.... _""
existential agreement

.f1'~,
,,-#-- il- ~-, ,. . .) - .., -------

role-value map

friend

/ " I ' ,,-, I \ .. -, 1.,.'. 1
,_/ '-"

existential disagreement

---- enemy

---universal agreement

.,
~A ""';-~",
'. • .) I,. .)
,~--". --"
universal disagreement

- - - - - - - best-friend

Figure 3.2: Typical Model Structures with Role/Attribute Interaction

been restricted in existing systems to attribute agreements, see for example [Borgida
et al., 1989]. Attributes are functional roles and are sometimes also called features.
I.e., they have at most one role filler per object. Let best-friend and main-enemy be
attributes. Then an individual belongs to the concept main-enemy =RVM best-friend
if it does not have a main enemy, or if it does not have a best friend, or if its best
friend is at the same time its main enemy.!

In this chapter several other operators for specifying interaction of role and at­
tribute fillers are investigated. The existential role/attribute agreement can be used
to specify that there is at least one enemy that is also a friend: .3(enemy = friend) .
If this operator is restricted to attribute chainings it is just the same-as operator in
CLASSIC.

The expression .3(enemy 0 best-friend = friend 0 best-friend) represents that there
is at least one enemy and one friend who have the same best-friend. The universal
agreement is used in the expression V(enemy 0 best-friend = friend 0 best-friend) to
formalize that the best-friends of all friends and enemies are the same (d. Figure
3.2). On attribute chainings this construct agrees with the RVMs.

The existential role/attribute disagreement can express that there is at least one
enemy and one friend that are not identical: .3(enemy # friend). The expression
V(enemy # friend) says that each member has only true friends and true enemies-

lActually, in CLASSIC the same-as operator requires the existence of one main-enemy and on~
best-friend.

17

there is no filler that is both a friend and an enemy (d. Figure 3.2).
Although it is at least not obvious how RVMs (on roles) can be simulated by this

group of operators, it turns out that the existential and universal agreements lead to
an undecidable subsumption problem (Section 3.3), also.

Section 3.4 introduces a new concept language which is able to relate fillers of
role/attribute chainings. The main idea is to replace the general "=" (resp. "#")
above, by abstract, not further defined predicates or by predicates of a concrete
domain. In [Baader and Hanschke, 1991a] we already proposed an extension scheme
with concrete domains, but there, the predicates are only applied to chainings of
attributes. Following [Hanschke, 1992] this chapter generalizes this extension scheme
considerably.

As an example, consider the classic (toy) domain of families. Let age, wife, and
husband be attributes, child a role, and male, human not further defined concepts.
Then the concept of a family could be represented by

human n female
human n ,female

woman
man
family 3husband.man n 3wife.woman n Vchild.human

The specification can be further refined by enforcing that there is a marriage certifi­
cate and that children are younger than their parents.

normal-family = family n
V(child 0 age < husband a age) n
V(child 0 age < wife 0 age) n
Vh usba nd, wife. marriage-certificate

Here the concrete predicate "<" and an abstract binary predicate marriage-certificate
are used to formulate the additional requirements.

With concrete predicates concept definitions can be 'grounded'. This is, for ex­
ample, useful in technical domains where one is confronted with coordinates in space
(predicates over rational numbers) or technical data sheets or tables (extensionally
defined predicates).

The formalism considered so far deals primarily with intensional concept defini­
tions and is referred to as the terminological box (T-box). The assertional box (A-box)
is a formalism to make assertions about instances of the roles, attributes, concepts
and predicates introduced in the T-box. The A-box formalism, usually provides
services such as consistency test, membership test, and object classification.

In the rule formalisms considered in Chapter 5 A-boxes 2 will occur in premises. In
order to check whether a global A-box entails an instance of such a premise a service
is needed that compares A-boxes with respect to generality. This new service is called
A-box subsumption. It can also be used to compare rules with terminological premises
[Hanschke and Meyer, 1992]. The corresponding reasoning problem is undecidable

2By abuse of notation a collection of assertions is also called A-box.

18

for general A-boxes. The notion of rooted A-boxes defined in Section 3.5 leads to a
restriction of the A-box subsumption problem that is decidable and still useful.

Another way to understand A-box subsumption (and its name) is as follows: Let
the objects in an A-box A be split into two disjoint sets {Xl"" ,Xn }, n > 0, and
Y. If the objects y E Yare considered as being existentially quantified, A induces
an n-ary predicate AXb' .. ,xn.A, which is regarded as an "n-ary concept". A-box
subsumption is then the subsumption service in this extended concept language.
Note that this "concept formalisms" uses objects in its concept definitions.

3.2 The Basic Language

This section introduces the language ALCF as a prototypIcal conventIOnal concept
language. It will be the starting point for the extensions described in the following
sections.

Definition 3.2.1 (T-box syntax) Concept terms are built from concept, role, and
attribute names using concept-forming operators. If C and D are syntactic variables
for concept terms and R· is a role or attribute name, then

CnD
CuD
-,C
3R.C
VR.C

(conjunction) ,
(disjunction),
(negation)
(exists-in restriction), and
(value restriction)

are concept terms.
Let A be a concept name and let D be a concept term. Then A = D is a termi­

nological axiom. A terminology (T-box) is a finite set T of terminological axioms
with the additional restrictions that no concept name appears more than once as a
left hand side of a definition, and T contains no cyclic definitions.3

A concept name that does not occur on the left side of a concept definition zs
called primitive. 0

Please note that the exists-in and the value restrictions are not only defined for
roles but also for attributes. The next definition gives a model-theoretic semantics
for the language introduced in Definition 3.2.1.

Definition 3.2.2 (T-box semantics) An interpretation T for ALCF consists of a
set DOMI and an interpretation function. The interpretation function associates with
each concept name A a subset AI of DOMI, with each role name R a binary relation
RI on DOMI, i.e., a subset ofDOMI x DOMI, and with each attribute name f a partial
function fI from DOMI into DOMI. For such a partial function fI the expression
fI (x) = y is sometimes written as (x, y) E fI.

3See [Nebel, 1990; Baader, 1990] for a treatment of cyclic definitions in concept languages.

19

The interpretation function-which gives an interpretation for atomic terms-can
be extended to arbitrary concept terms as follows: Let G and D be concept terms and
let R be a role or attribute name. Assume that GI and DI are already defined. Then

1. a E (G U D l iff a E GI or a E D I
,

a E (G n D)I iff a E GI and a E nI,
a E (.G)I iff a E DOMI \ GI ,

2. a E (V R.Gl iff
for all b with (a, b) E RI we have bE GI , and

a E (3R.G)I iff

there exists b with (a, b) E RI and b E GI .

An interpretation T is a model of the T-box T iff it satisfies AI = DI for all termi­
nological axioms A = D in T. 0

An important service terminological representation systems provide is computing
the subsumption hierarchy, i.e., computing the subconcept-superconcept relation­
ships between the concepts of a T-box. This inferential service is usually called
concept classification. The model-theoretic semantics introduced above allows the
following formal definition of subsumption and satisfiability.

Definition 3.2.3 (T-box services) Let T be a T-box and let G, D be concepts.
Then D subsumes G with respect to T iff GI ~ DI holds for all models T of T. A
concept C is satisfiable if there is a model T of T that satisfies G, i.e.} C I is not
empty. 0

Note that D subsumes C iff C n oD is satisfiable and that C is satisfiable if
..1 subsumes C where ..1 stands for the empty concept that could be defined by
..1 = D n oD, for some concept D.

All extensions of ALCF in the present chapter involve attribute/role chainings,
which are built from role and attribute names with the binary, associative infix
operator 0 which is interpreted according to

(a, b) E (RIO R2)I iff
there is a c with (a, c) E .Rf and (c, b) E R{

The special attribute name f. is always interpreted as identity.

3.3 Equality Based Operators

In this section a concept language based on ALCF with additional concept forming
operators, called existential and universal role/attribute (dis)agreements, is formally
defined. These concept forming operators are based on equality and negated equality.

20

Let u =RVM V be the original RVM construct, where u and v are two, possibly
empty, chainings of roles and attributes. An individual a belongs to the concept
u =RVM v iff the two sets of (transitive) role-fillers of u and v are identical. Formally,
an interpretation extends to the RVMs according to:4

()I'ff I I a E u =RVM V 1 au = av

Note that each of the following constructs is different from the RVM construct.

Definition 3.3.1 (equality-based operators) Let u and v be two role chainings.
Then the syntax of the concept forming operators based on equality and negated equal­
ity is defined as follows:

V(u = v) (universal agreement)
V(u f. v) (universal disagreement)
3(u = v) (existential agreement)
3(u f. v) (existential disagreement)

To define the semantics of these new operators the interpretation function is extended
as follows:

aEV(u=v)Iiff
for all b, c with (a,b) E vI and (a,c) E uI we have b = c

a E V(u f. v)Z iff
for all b, c with (a,b) E vI and (a, e) E uI we have bf. c

a E 3(u = v)I itT
there exists b with (a, b) E vI and (a, b) E uI

a E 3(u f v)I iff
there exist b, e with (a, b) E vI and (a, e) E u I and b f e o

If u and v are attribute agreements, u =RVM V and V(u = v) are equivalent
concepts. This is not the case if u and/or v contains a role. Moreover, it is at least
not obvious how RVMs with roles can be simulated by the equality-based operators.
Unfortunately, ALCF together with the constructs of the previous definition does not
have a decidable subsumption problem, either.

This will be shown by a reduction of the word problem for semi-groups to the
subsumption problem in the concept language. First, the definition of the word
problem is recalled. Let B be a finite alphabet, let BOO be the set of finite, possibly
empty words over E, and let c be the empty word. Then a set S = {Ii = ri I Ii,
ri E EOO, i = 1, ... ,m} is called a finite presentation of a semi-group. This set induces
a binary relation --+ s on EOO:

4For a binary relation r and an object a the expression ar is defined as the set {bl r(a,b)}.

21

u ---+sv iff
there are words WI, W2 E E*, and an I = rES such that u w I lw2 and
v = WlrW2.

By "'S the reflexive, transitive, and symmetric closure of ---+s is denoted. It is well
known that a finite presentation S exists consisting of seven equations over a two­
element alphabet, E = {a, b} say, such that it is undecidable for two words u and v
whether u "'S v holds or not (see, for instance [Boone, 1959]).

Now let this system S be given. For the two elements a, bEE two attributes a,
b are introduced, respectively. Let start, left, right be additional attributes, let back,
forth be additional role names. Then for two words u, v E E* the following concept
definition scheme is introduced:

equ,tJ = 3(left = start 0 u) n
3(right = start 0 v) n
3(forth = start)

Let u = it··· 1m and v = gl ... gn· Then for any model I (of the terminology
up to this point) satisfying equ,tJ there are (not necessarily distinct) objects, c, ao,
al,·· . ,am, bo, bI,· .. ,bn such that

1. (ai-I, ai) E If, for 0 < i :S m, and (bi-I, bi) E gf, for 0 < i :S n

2. ao = bo, (c, ao) E start, (c, ao) E forth, (c, am) E left, and (c, bn) E right.

This attribute/role structure is depicted in Figure 3.3.

\n fl to go gl gn
a~ -+--a-+----a-b---..b- -b m . . . 1 0- 0 1 . . . _ n

1
forth,
start

c

Figure 3.3: Representing it ... 1m = gl ... gn

A single equation I = rES can be modeled by a concept equationl:=r defined by
the following scheme:

equationl:=r = :3(1 = r)

Assume that the model I satisfies equationl:=r and that ao E equationf:=r. Then
for wE E* we have (lw)I(ao) = (rw)Z(ao). The presentation S = {el, ... ,e7} can
now be easily represented as

localS = equation
e1

n ... n equation
e7

.

22

But how can this restriction be imposed on each element x for which there is awE E*
such that wI (ao) = x? Since the concept language does not provide transitive closure
or cyclic definitions, the element c in Figure 3.3 is used as a 'relay that refreshes' the
restriction. Consider, the following concept definition scheme:

loopu = Vforth.VO".3(back 0 forth = f) n
V(forth 0 0" 0 back = f)

c

Figure 3.4: Repeating back and forth

Any model of the concept equ,v n loop a n looPb leads to a role/attribute structure
similar to the structure depicted in Figure 3.4. More precisely, c has those x as role
fillers for forth that can be reached from ao by a word w E E*. Now it is easy to
impose the requirements of S on each of these elements: globalS = Vforth.locaiS

Proposition 3.3.2 Given two words u, v E E*

3(left = right) subsumes equ,v n looPa n looPb n globalS
iff u "'S v .

Proof.
1) Assume that u rvs v :
Let I be a model of the above concept definitions, and let c be in (equ,v n looPa n
looPb n globaIS)I. Relying on the above construction the following can be proved:

If wI is defined on sta r~ (c), and w --+ s Wi or Wi --+ S w then wI (sta rtI (c)) =
w'I (sta rtI (c)) .

By definition there is a finite derivation of u /'VS v in terms of the symmetric closure
of --+s and thus, uI(star~(c)) = vI (start1(c)) and leftI(c) = rightI(c). This implies
c E 3(left = right).

2) Assume that not u /'VS v:
The interpretation constructed below is a model of the above concept definitions and
a counter example to the subsumption relation in question.

23

Let DOMI = Ej '" s U {c} where Ej "'sis the set of equivalence classes induced

by the congruence relation "'s. The partial functions aI and bI are defined as left
multiplications for all [x] E E*/ :

"'s

aI([x)) = [ax] and bI([x)) = [bx].

The other roles and attributes are defined as suggested by the construction:

1. leftI(c) = [u], rightI(c) = [v], and startz(c) = [t],

2. (c,x) E forthI , for every x E Ej",s' and

3. (x,y) E backI if (y,x) E forthI. o

Corollary 3.3.3 The subsumption problem in a concept language based on ALCF
and extended by the equality-based operators universal and existential agreement is
undecidable. 0

This result shows that, as long as equality is involved, it is wise to restrict oneselfs
to attributes.

3.4 Operators with Predicates

The subsumption problem remains decidable if the equality-based operators are re­
stricted to chainings of attributes. The reduction in the undecidability proof in the
previous section relied heavily on the possibility to specify cyclic role structures (for
instance, 3(back 0 forth = t)).

In this section two ideas are developed that remove the capability to specify
this kind of cyclic structure from the concept language. The first idea is to replace
the equality in the equality-based operators by uninterpreted, possibly negated n­
ary predicate symbols. The second idea is to split the interpretation domain into
two separate domains: the abstract and the concrete domain [Baader and Hanschke,
1991a]. Role and attribute fillers can now be restricted by predicates of the concrete
domain, also. But concepts are always subsets of the abstract domain.

Together with attribute (dis) agreements the abstract and the concrete predicate
based operators are a powerful, still decidable, means to specify structural properties.

3.4.1 Concrete Domains

Before the concept forming operators are introduced the notion "concrete domain"
has to be formalized.

Definition 3.4.1 A concrete domain V consists of a set DOMv, the domain of V,
and a set pred(V), the predicate names of V. Each predicate name p is associated
with an arity n, and an n-ary predicate pV ~ DOMv. 0

24

An important example is the concrete domain n of real arithmetic. The domain
of n is the set of all real numbers, and the predicates of n are given by formulae which
are built by first order means (i.e., by using logical connectives and quantifiers) from
equalities and inequalities between integer polynomials in several indeterminates.5

For example, x + z2 = Y is an equality between the polynomials p(x, z) = x + z2
and q(y) = y; and x > y is an inequality between very simple polynomials. From
these equalities and inequalities one can e.g. build the formulae 3z(x + Z2 = y) and
3z(x+z2 = y) V (x > y). The first formula yields a predicate name of arity 2 (since it
has two free variables), and it is easy to see that the associated predicate is {(r, 8)1 r
and s are real numbers and r ~ s}. Consequently, the predicate associated to the
second formula is {(r, s); rand s are real numbers} = DOMn x DOMn.

Extensionally defined predicates as in finite-domain constraint systems or rela­
tional databases induce another important concrete domain. See [Steinle, 1993] for
details.

To get inference algorithms for the extended concept language which will be
introduced below, the concrete domain has to satisfy some additional properties.

For technical reasons the set of predicate names of the concrete domain is required
to be closed under negation, e.g., if p is an n-ary predicate name in pred(V) then a
predicate name q in pred(V) has to exist such that qV = DOMv \ pV. In addition, a
unary predicate name is needed which denotes the predicate DOMv.

The property which will be formulated now clarifies what kind of reasoning mech­
anisms are required in the concrete domain. Let PI, ... , Pk be k (not necessarily
different) predicate names in pred(V) of arities nI, ... , nk. Consider the conjunction

k

1\ pl~5i)).
i=l

Here ~(i) stands for an ni-tuple (xi", ... , x~!) of variables. It is important to note
that neither all variables in one tuple nor those in different tuples are assumed to be
distinct. Such a conjunction is said to be satisfiable iff there exists an assignment of
elements of DOMv to the variables such that the conjunction becomes true in V.

For example, let Pl(X,y) be the predicate 3z(x + Z2 = y) in pred(n) , and let
P2(X,y) be the predicate x > y in pred(n). Obviously, neither the conjunction
Pl(X, y) 1\ P2(X, y) nor P2(X, x) is satisfiable.

Definition 3.4.2 A concrete domain V is called admissible iff (i) the set of its pred­
icate names is closed under negation and contains a name for DOMv, and (ii) the
satisfiability problem for finite conjunctions of the above mentioned form is decidable.
o

The concrete domain n is admissible. This is a consequence of Tarski's decid­
ability result for real arithmetic [Tarski, 1951; Collins, 1975]. For the linear case

5For the sake of simplicity it is assumed here that the formula itself is the predicate name. In
applications, the user will probably take his own intuitive names for these predicates.

25

(where the polynomials in the equalities and inequalities have to be linear) there
exist more efficient methods (see e.g. (Weispfenning, 1988; Loos and Weispfenning,
1990]). Another important concrete domain is Rip rational numbers with inequalities
between linear polynomials. For Rip efficient, incremental reasoning algorithms are
available (see for example (Jaffar et al., 1990; Jaakola, 1990]).

3.4.2 The Additional Operators

With the above formalization of concrete domains the extension ALCFP(V) of ALCF,
which is parametrized by an admissible concrete domain V, can be defined. The new
concept forming operators can be seen as generalizations of the value restriction and
the exists-in restriction.

Definition 3.4.3 (syntax of ALCFP(V)) The concept formalism of ALCF is ex­
tended by the following operators. Let UI, ... ,Un be role/attribute chainings. Then

VUt, ... , Un.p (generalized value restriction)
:lUI,· .. ,Un.p (generalized exists-in restriction)

are concept terms in each of the following cases: The term p, which is called restrictor,

1. is a predicate of the concrete domain with arity n,

2. is of the form p or ""p, where p is an abstract predicate of arity n,

3. is a concept term and n = 1, or

4. is "=" or "=1=", n is 2, and Ul, U2 are chainings of attributes. o

Since the concrete domain extends the abstract domain DOMT, the interpretation
of all constructs in ALCF has to be reconsidered. This somehow makes the definition
of the semantics complicated at first glance.

Definition 3.4.4 (semantics of ALCFP(V)) The differences of interpretations of
ALCF and the extended language are as follows:

The set DOMT, which is called abstract domain for this language, is required to
be disjoint to DOM£). Because attributes and roles link the abstract with the concrete
domain their interpretation is liberated: An attribute f is interpreted as a partial
function

fT : DOMT --t DOMT U DOM£)

and a role r as a binary predicate

rT ~ DOMT x (DOMT U DOM£)).

An abstract predicate p of arity n is interpreted as pr ~ DOMr and (...,p)T as DOMr\pr,
and a concrete predicate p is interpreted as pr := p£). It remains to define how the
new operators are interpreted:

26

a E (VUI,' .. , un.p? iff
for all bI,"', bn with (a, bI) E uf, " ', (a, bn) E u~ we have (bI,"" bn) E pI

a E (3UI," . ,un.p)I iff
there exists bI,"', bn with (a, bI) E uf, "', (a, bn) E u~ and (b I ,···, bn) E pI

o

Analogous to ALCF the satisfiability problem and the subsumption problem in
ALCFP(V) are interreducible. The satisfiability of a concept C can be reduced to the
consistency of an assertion a : C (cf. next section) and using Theorem 3.5.7 one gets:

Theorem 3.4.5 (T-box reasoning in ALCFP(V)) There exist decision procedures
for the satisfiability and the subsumption problem in ALCFP(V). 0

Since the subsumption algorithm is the crucial subroutine of a concept classifica­
tion algorithm, the theorem implies that a concept classifier can be (and has been)
implemented for this concept language.

3.5 The Assertional Box

The assertional box (A-box) is a formalism to make assertions about objects using the
roles, attributes, concepts and predicates introduced in the terminology. Throughout
this section it is assumed that a terminology T is given. For example, let father be a
concept in T and let child be a role. Then the assertions John: father, (John, Boy) :
child, (John, Bob): child say that John is a father who has a child Boy and a child Bob.

Many systems adopt a unique name assumption (UNA) for the names of the
objects. In the example this would imply that Boy and Bob denote two different
objects. Since attributes and, in particular, attribute (dis)agreements belong to the
concept language of ALCFP(V), the assertional formalism considered here, will NOT
adopt the UNA. Instead, explicit equality and negated equality is introduced. In the
example, without UNA, later reasoning based on more assertions could reveal that
Boy and Bob are in fact the same person (perhaps his name is Bob but his mother
always calls him Boy).

When the rule scheme of Chapter 5 is applied to the terminological formalism
discussed here, there will be a global collection of assertions (a fact base) and various
other little' A-boxes' as premises or consequences of rules. Generic individuals in
premises or consequences of rules will typically be universally quantified on rule
level. Objects occurring in the fact base are existentially quantified on A-box level.
In Section 5.2 this view of quantification will be refined.

Definition 3.5.1 (A-box syntax) Let be Ob an alphabet of object names, a, b, pos­
sibly with indices names from Ob, C a concept, R a role or attribute, Pc a concrete

27

n-ary predicate, and Pa an abstract n-ary predicate. Then the following expressions
are A-box assertions:

a: C
(a, b) : R
(aI, ... , an) : Pc
(at, . . . , an) : Pa

(al ... a) . oF. , , n' a

a=b
a=Jb

(membership assertion)
(role-/ attri bute-filler assertion)
(concrete predicate assertion)
(abstract predicate assertion)
(negated abstract predicate assertion)
(equality assertion)
(negated-equality assertion)

To avoid unnecessary case distinctions each of these assertions is often written as a
generalized membership assertion x : P where x is a (possibly degenerated) tuple of
objects and P is a restrictor (i.e., one ofC, R, Pc, Pa , ..,Pa , =, =I- with the appropriate
arity).
Assertional formulas are inductively defined:

• Every A-box assertion is an (assertional) formula.

• Let A and B be (assertional) formulas and let x be a variable. Then A /\ B,
,,-,A,6 and 3x(A) are formulas .

An A-box is an assertional formula of the form

3YI '" 3Yn(XI : PI /\ ... /\ Xm : Pm)

where Yi, i = 1" .. , n, are the variables occurring in the generalized assertions Xj : Pj,

j = 1"" ,~. 0

An A-box is identified with the set of its A-box assertions. Note that each A-box
is an assertional formula but not vice versa. The semantics of an assertional formula
is defined by extending the notion of an interpretation of a terminology.

Definition 3.5.2 (A-box semantics) Let a terminology T and an assertional for­
mula A be given. Then an interpretation I of A (with respect to T) is a model
of T. An (object) assignment a is a partial function from Db to DOMI U DOM!).

As usual, a is identified with the induced natural homomorphism on the term and
formula structure.

An interpretation I and an assignment a satisfy an assertional formula according
to the following inductive definition. If a formula A is satisfied by I, a, this is
abbreviated as I, a F A.

• I, a 1= x : p if xa E pI.

• I,a FA /\ B ifI,a 1= A and I,a 1= B.

6For negation the symbol rv is used instead of the usual OJ because the latter denotes already
the complement operator with respect to the abstract domain DOMz in the concept language.

28

• T,o: 1= rvA if not I,o: 1= A .

• T,o: 1= 3x(A) if there is a d E DOMI U DOMv and a fresh variable y such that
T,o:[y t-+ d] 1= A[x t-+ y].7

An interpretation T is a model of A (with respect to T) if for all assignments 0:

the pair I, 0: satisfies A. An assertional formula is consistent if it has a model. An
assertional formula is valid if each interpretation is a model. 0

The logical connectives V and => as well as the quantifier V are used to abbreviate
(assertional) formulas in the usual way.

The services that are going to be defined are restricted to A-boxes. Without these
restrictions the corresponding reasoning problems would be undecidable.

Definition 3.5.3 (A-box services) For a terminology T and an A-box A the fol­
lowing services are defined:

Consistency test: Checks whether the A-box is consistent.

(Generalized) membership test: Let x: p be a generalized membership assertion
such that the objects in x occur in A. Then the tuple x is a generalized member
of p (with respect to A and T) ifVx(A' => x : p) is valid where A' is the as­
sertional formula that is obtained from A by omitting the existential quantifiers
belonging to the variables in the tuple x.

A-box subsumption: Let B be a second A-box and let z be an n-ary tuple of pair­
wise different variables occurring in B. 8 Then B subsumes A with respect to
x ifVx(A' => 8') is valid. Here A' (resp. 8') is the assertional formula that is
obtained from A (resp. B) by omitting the quantifiers belonging to the variables
tn x.

Object classification: Let a be an object occurring in A. Then the object classifi­
cation (service) computes a realization of a which is a set M of concept names
satisfying the following requirements:

• The object a is a member of C, for all C EM.

• If there is a concept name C such that a is a member of C, then there
exists C' E M such that C subsumes Ct.

• If C E M and C' E M such that C =I C', then C does not subsume C'
nor does C' subsume C

{
d if z = y

7The assignment a[y t-+ d) is defined by z 1---+ ' th'
za, 0 erWlse,

and A[x t-+ y] denotes the

assertional formula A with all occurrences of x replaced by y .
8These are not necessarily all variables occurring in 8.

29

Informally speaking, M is the set of most specific concept names a belongs to
(where for equivalent concepts only one representative is selected). 0

Setting 8 := 3x(x : p) we see that A-box subsumption is a generalization of the
generalized membership test. It is known that for ALCF with attribute agreements
and disagreements it is undecidable whether for a concept C there is an interpretation
such that C is interpreted as the whole domain (Theorem 5.3 in [Baader et al., 1991]).
Setting A := 0, n = 0, and 8 := 3x(x : rvC) this problem can be reduced to A-box
subsumption 9 and, thus, one gets:

Proposition 3.5.4 A-box subsumption for ALCF extended by attribute agreements
and disagreements is undecidable. Since ALCFP(V) is an extension of ALCF, A-box
subsumption is undecidable for ALCFP(V), too. 0

It is also possible to give a reduction with n > O. The real problem is that
3x(x : rvC) is not related to the assertions in A so that the implication can only hold
if 3x(x : rvC) is valid. This provides a first idea for an appropriate restriction of the
general problem.

Definition 3.5.5 (rooted A-boxes) Let A be an A-box. Then an object a is di­
rectly linked (by attributes) to an object b if there is an assertion (a, b) : R in A,
R a role or attribute (resp. R an attribute). Linked (by attributes) is the reflexive,
transitive closure of directly linked (by attributes). The A-box A is rooted by objects
Xl ... x zf , ,n

1. for each object b in A there exists an a E {Xl,"', xn} such that a is linked to
band

2. for each assertion a =1= b in A there are x, y E {Xl,"', xn} which are not
necessarily distinct such that X is linked by attributes to a and y is linked by
attributes to b.lO

o

Let A and 8 be two A-boxes such that Yl, ... , Yn are objects in A, and 8 is rooted
by YI,' .. ,Yn' Then the problem whether 8 subsumes A with respect to Y},' .. ,Yn is
called the A -box subsumption problem for rooted A -boxes.

T-box and A-box services can be reduced to a consistency test for (a restricted
form of) assertional formulas. In particular, a concept C is satisfiable iff the A­
box c : C is consistent. The A-box 8 subsumes A with respect to Y},"', Yn if
3YI, ... , Yn (A' /\ rv8') is not consistent.

An A-box where some of the objects are not existentially quantified and occur free
is called an A-box formula. A generalized A-box rCA-box) is an A-box 8 (considered
as a set) with free objects Y},' " , Yn that root A' and occur in 8 \ {rvA/}.

9Note, 0 :=} 3x(x : rvC) iff Vx(x : ""rvC) is inconsistent.
l°It is not clear whether Theorem 3.5.7 would still hold if this condition would be dropped.

30

Observation 3.5.6 Satisfiability and subsumption of concepts as well as consis­
tency, membership, and A-box subsumption for A-boxes can be reduced to a con­
sistency tests for generalized A-Boxes. D

In the next section a consistency test for generalized A-boxes is presented. Propo­
sition 3.7.1 implies that this algorithm is a decision procedure for this consistency
problem. Together, with the observation this implies the following theorem.

Theorem 3.5.7 (A-box reasoning in ALCFP(V))
dures for the consistency problem, the (generalized)
A -box subsumption problem for rooted A -boxes.

There exist decision proce­
membership problem, and the

D

Because the membership test is the crucial operation for implementing the object
classification service, the theorem implies that there is also an algorithm that com­
putes in finite time for a given A-box, a terminology, and an object the realization
of the object.

For the next section the following technical remark is needed. Let Band rvA' be
as above. Then rvA' is equivalent to an assertional formula

't/z[(!\(ai, bi) : ~) :::} V Aj]
• j

satisfying the following requirements:

1. The ~ are roles or attributes.

2. All objects in Vj Aj occur in B \ {rvA/} or A(ai, bi) : ~.

3. Each Aj is of the form rv(x : p) where x : p is a generalized membership asser­
tion.

Such a formula is referred to as the implication normal form of ",AI (wt'th respect to
B).

3.6 The Basic Algorithm

This section presents an algorithm that decides in finite time whether a given GA­
box A is consistent. The algorithm is a generalization of the technique that was
introduced in [Schmidt-SchauB and Smolka, 1991] and further elaborated, e.g., in
[Baader and Hanschke, 1991b; Baader, 1991; Hollunder et al., 1990]

Roughly, the algorithm proceeds as follows. It starts with a given GA-box A,
and applies transformation rules to A that make the knowledge represented by the
assertions more explicit. Ultimately, one of the following two situations occurs:

1. The GA-box becomes "obviously contradictory", or

31

2. all knowledge has been made explicit.

In the latter case the GA-box is called complete and induces a model of the original
A. In the other case A is inconsistent.

Sometimes it is necessary to make a case distinction during the transformation
process, since disjunctions occur (implicitly and explicitly) in the formalism. Hence,
a transformation step may replace a single GA-box A by new GA-boxes B1 ,·· ., Bn ,

n > 1. In this case A is inconsistent if all Bj , 1 :::; i :::; n are inconsistent. For that
reason, the algorithm operates with sets of GA-boxes rather than a single GA-box. If
the consistency of an GA-box A has to be checked, the algorithm is initialized with
the singleton set Mo = {Ao} where Ao is a normalized version of A. The following
subsection (3.6.1) describes this normalization.

3.6.1 Unfolding and Implication Normal Form

Let a terminology T and an A-box Ao be given. To simplify the presentation of
the algorithm, the GA-box is first normalized by the unfolding rule. It replaces a
concept name C by its definition t if the concept definition C = t is in T. Because
terminologies do not contain cycles this rule can only be applied finitely many times.
After defined concepts have been replaced, the terminology is not needed any more for
the consistency test. If a negated A-box occurs in Ao, it is replaced by its implication
normal form.

3.6.2 Transformation Rules

This section presents the transformation rules that operate on the set Mo. They
generate a finite sequence (see the next section for a proof of the finiteness) of sets
Mb M 2 , M 3 , •.• Mk of finite GA-boxes. The letters sand t denote concept terms,
p is a restrictor, and the Ri are attributes or roles.

The rules operate on the level of assertions. For these rules an expression of the
form

premtses

consequences

has to be read as follows: if there is an A-box A in the current Mi that fulfills the
premises, then the successor Mi+l is obtained by adding the appropriately instanti­
ated consequences to A.

If vertical bars "I" occur in the consequence of a rule, this means that the A-box
A E M j to which the rule is applied has to be replaced with new A-boxes for each
of the alternatives that are separated by the bar(s). Hence, in these cases M i +1

contains more A-boxes than its predecessor Mi.

32

3.6.2.1 Pushing Negation

The negation rules propagate negation ("-,") towards the leaves of the concept terms.
Recall that -, is a complement operator with respect to DOMI and that attributes
and roles link the abstract domain with the concrete domain. It is convenient to
use the negation operator rv also as a global complement operator for restrictors by
extending its definition by "'pI = (DOMr U DOMv)n \ l where p is a restrictor with
arity n (Definition 3.4.3).

a:s

a: -,(snt)
a : -,s U -,t

a:-,(sut)

a : -,s n .t
a : ''VVI, ... , Vn.p a: .:3VI, . .. , Vn.p

a : :3VI ... vn.rvp a : 'VVI ... vn.rvp

where the Vi are attribute/role chainings.

3.6.2.2 The rv Rules

The following rules deal with the global complement operator if it occurs at the top
level in an assertion.

a: rvrvp

a:p

(RrvV) (al,"', an) : "'"'P _
al : T I ... I an : T I (al," . ,an) : p

if p is a concrete predicate and p is the complement of p with respect to DOMv

(since V is admissible p is also a predicate of the concrete domain), and T is a
specific concept name that is always interpreted as DOMI.

(RrvP) (al,'" ,an): rvp
al : V I ... I an : V I (all' .. ,an) : 'p

if p is a concept term and n = 1 or if it is an abstract predicate.

The case a : .rvp does not occur, because the algorithm is applied to GA-boxes only.

33

3.6.2.3 The Operator Rules

These rules split concept terms into their immediate subterms and generate new
assertions.

(Rn)
a: s n t

a: s, a: t

(RU) a: s U t
a: s I a: t

This rule replaces two A-boxes for each A-box the rule is applied to.

(R3) a : 3VI ... Vn·p

(a, bI) : Vb···, (a, bn) : vn , (b I ,"', bn) : P

Here the bi are fresh individual constants.

(R\I) (a, bl) : VI,···, (a, bn) : vn , a: \lVI··· vn·p

(bI , . . . , bn) : P

A premise (a,b): V is fulfilled by objects x, Y if

1. x = y and V is c or

2. there is (x, z) : R in the A-box, v is of the form R 0 v' where R is an
attribute or role, and, recursively, z, y fulfill (c, b) : v'is fulfilled, for some
c.

(R=}) (all bl) : R ll · .. , (an, bn) : Rn, A
Xl T : "'PI I··· IXkT : "'Pk

where A is a negated A-box formula

\lz[(/\ (Yli, Y2d : R) =} ("'Xl: PI V ... V "'Xk : Pk)]
i=l,,'1l

in implication normal form and T is a substitution such that (Yli, Y2i)T = (ai, bi),
for all i, 1 :S i :S n. This rule replaces each affected GA-box by k GA-boxes.

3.6.2.4 The Role and Attribute Rules

The (R3) rule may generate new assertions of the form (a, b) : v where v is a chaining
of attributes or roles. It may also cause forks. These are pairs of attribute-filler
assertions (a, b) : f, (a, c) : f with b =I c. These expressions are treated by the
following rules:

(Ro) (a, b) : R 0 v
(a,c): R,(c,b): v

Here c is a fresh individual.

34

(R€) (a, b) : €
a=b

(R) (a,bl): f,(a,b2): f ·ff· tt·b t
1-+ I IS an a n u e.

bl = b2

3.6.2.5 The Identification Rule

The attribute agreements and the functional character of the attributes may lead to
equality assertions. These are treated by the following rule:

(R=) (a,b): =
replace a by b in the affected GA-box

3.6.2.6 The Domain Rules

The abstract and the concrete domain are disjoint. This may lead to obvious contra­
dictions. The domain rules try to make explicit the domain to which an individual
belongs.

(RPT) (al,··· ,an): P
al : T, ... , an : T

if p is a primitive concept or an abstract predicate or a negated abstract pred­
icate.

(RR) (aI, a2) : R ·f R . 1 ·b T I IS a ro e or attn ute.
al: T

()
(al,···,an):p

RVT
al : V,···, an : V

if p is a concrete predicate different from V.

3.6.3 Obvious Contradictions

A single GA-box A is obviously contradictory in each of the following cases:

Primitive Clash: The GA-box contains a pair of assertions of the form x : p, x : -'p
where p is an abstract predicate (resp. a concept term) and x is a tuple of objects
(resp. a single object).

Domain Clash: The GA-box contains a : T, a : V.

Equality Clash: The GA-box contains ai-a.

Concrete Domain Clash: The GA-box contains predicate assertions Xl : PI, ... ,
Xn : pn where the Pi are concrete predicates and the satisfiability test of the
concrete domain says that the conjunction of these predicates is not satisfiable.

35

3.6.4 The Strategy

In order to get a terminating algorithm the rule application has to be restricted.
Identifications of objects have to take place as soon as possible. So the role and
attribute rules (3.6.2.4) and the identification rules (3.6.2.5) are executed with the
highest priority. A GA-box to which none of these rules is applicable is called RI­
reduced.

A rule is applied at most once per set of instances. Some objects in assertions
are replaced during applications of the (R=) rule. Transformation rules must not be
applied again to these assertions (although the premises are not exactly the same).
If the GA-box contains an obvious contradiction (see Section 3.6.3), rules must not
be applied, either.

If the Vi in an assertion a : VVI ... Vn.p are all attribute chainings, the (RV) rule
is applied at most once to this assertion. Applications of the (RV) rule to assertions
that are not of this form and applications of the (R=» rule are called foreign. Foreign
applications take place only if the assertion that would be added is not present.

3.6.5 Summary of Algorithm

Figure 3.5 summarizes the consistency test of ALCFP(V) using a pseudo programming
language. The procedure takes a GA-box A as an argument and checks whether it
is consistent or not.

define procedure check-consistency(A)
An := unfolded-implication-normal-form(A)
r:= 0
Mo:= {An}
while' a transformation rule is applicable to M r' do

r:= r + 1
Mr : = apply-a-transformation-rule(M r-l)

endwhile
if 'there is an A E Mr that is not obviously contradictory' then

consistent
else

inconsistent
endif

Figure 3.5: Consistency Test of ALCFP(V)

36

3.7 The Proof

In this section termination, soundness, and completeness of the consistency test (Fig­
ure 3.5) are proved. Together, these facts imply that the algorithm is a decision
procedure for the consistency of an GA-box A.

Proposition 3.7.1 Assume that the procedure 'check-consistency' (Figure 3.5) 1S

applied to A. Then

1. the algorithm always computes in finite time a set Mr of GA-boxes each of
which is complete or obviously contradictory, and

2. the initial GA-box is inconsistent iff all GA-boxes A E Mr are obviously con­
tradictory.

Proof. The proposition is a consequence of three lemmata (3.7.2,3.7.4,3.7.5) stated
and proved below. 0

Unfolding and transformation into implication normal form terminate and do not
change the consistency of an GA-box. Hence, these preparatory steps are neglected
in the remainder of the proof. RI-reduction, which also terminates and does not
change the satisfiability of an GA-box, is considered to be built into the underlying
data structure. I.e., if any rule is applied, RI-reduction is performed immediately.

The while loop of the algorithm reduces the semantic problem of consistency for
the GA-box Ao to a simple almost syntacticll problem for a finite set Mr of GA­
boxes. This syntactic problem is to check whether there is an GA-box in Mr that
is not obviously contradictory. In order to show the correctness of the reduction,
termination is proved first.

Assume that a computation using the algorithm is given and that in a single
execution of the loop body the RI-reduced GA-boxes 81, ... ,8n , n > 0, have been
derived by an application of one of the transformation rules to an RI-reduced GA-box
B. Then the Bi are called descendants of B.

Lemma 3.7.2 (termination) The algorithm always computes a complete set of
GA-boxes Mr in finite time.

Proof. Assume that a possibly infinite computation is given. In order to show termi­
nation it suffices to prove that there is an infinite chain of GA-boxes AI, A 2 , As, ...
where Ai+! is a descendant of Ai.

Assume to the contrary that there is such an infinite sequence. Each Ai will
be mapped to an element W(A;) of a set Q which is equipped with a well-founded
strict partial ordering ~. Since the ordering is well-founded, i.e., has no infinitely
decreasing chains, a contradiction is obtained as soon as the following lemma has
been established.

llThe problem is syntactic as far as the concrete domain is not concerned.

37

Lemma 3.7.3 If A' is a descendant of A, then w(A) ~ w(A').

The elements of the set Q will have a rather complex structure. They are finite
multisets of 3-tuplesj the first and second component of the 3-tuple being natural
numbers, and the third being a multi set of natural numbers.

Multisets are like sets, but allow multiple occurrences of identical elements. For
example, {2, 2, 2} is a multiset which is distinct from the multiset {2}. A given
ordering on a set T can be extended to form an ordering on the finite multisets over
T. In this ordering, a finite multi set M is larger than a finite multiset M' iff M' can
be obtained from M by replacing one or more elements in M by any finite number
of elements taken from T, each of which is smaller than one of the replaced elements.
For example, {2, 2, 2} is larger than {2} and {2, 2,1,1, o}. [Dershowitz and Manna,
1979] show that the induced ordering on finite multisets over T is well-founded if the
original ordering on T is so.

The nonnegative integer components of the 3-tuples are compared with respect to
the usual ordering on integers. Whole tuples are ordered lexicographically from left
to right, for example, (ct, .. . , C3) is larger than (c~, ... ,~) iff there exists i, 1 ::; i ::; 3,
such that CI = c~, ... , Ci-I = C~_I' and Ci is larger than S. If the orderings on
the components are well-founded, the lexicographical ordering on the tuples is also
well-founded.

The finite multi sets of the 3-tuples are compared with respect to the multiset
ordering induced by this lexicographical ordering. This multiset ordering is the well­
founded ordering ~ on Qmentioned above.

Before we can define the mapping W from GA-boxes to elements of Q, we need a
few more definitions and observations.

The size of a term or assertion is inductively defined as follows:

1. Ix: pi := Ipi

2. The size Ivi of a role/attribute chain v = RIO . .. 0 Rn, n ~ 0, is its length n.
I (concrete predicate) I : = 1, I (abstract predicate) I : = 1,
I = I := 1, I =1= I := 1,
I(concept name) I := 1

3. It I n t21 := Itll + It21, It I u t21 := Itll + It21, I "'P I := 3 * Ipl, l-,pl:= 2 * Ipl
I:3Vl'" vn·pl := Ipl + max{lvII, " ', Ivnl},
IVVI'" vn·pl := Ipl + max{lvII,"', Ivnl}

4. The size of a negated A-box in implication normal form

IV~[(1\ (ai, bi) : R) =} ("'YI : PI V ... V"'Ym : Pm)]1
i=1..n

is n + max{I"'PII,"', I "'pm I}

38

The proof proceeds by establishing some upper bounds needed in the definition
of the mapping w.

1. If a transformation rule for pushing negation, a rv rule, or an operator rule is
applied to a set of assertions S, then for each assertion x : p that is added by
this rule application there is an x' : pi E S such that Ill> Ipl.

2. There is an integer So such that for all terms t occurring in a computation
so> Itl·

3. An (attribute) cluster of a GA-box A is a maximal set of objects CI such that
each pair of objects a, bE CI is linked by an undirected path of attribute filler
assertions in A. For an object a in A CI(a) denotes the unique cluster of A
satisfying a E CI(a).

4. The initial GA-box contains already objects and clusters. These are called old
objects and old clusters, respectively. Objects and clusters introduced during
the computation are called new. If an old and a new object are identified the
'remaining' object is still termed old. If a cluster contains at least one old
object, it is old.

A close look at the transformation rules reveals that each new cluster C I has
exactly one incoming edge (a, b) : R where R is a role, bE CI, and a r/:. CI.

5. The distance d(a, b) of two objects a and b (in a given A-box) is the length of
the shortest undirected path of filler assertions linking a to b.

6. The objects that occur free in the possibly existing negated A-box <p are all old.
Let no be the number of filler assertions occurring in the premise of <p. Then,
if a new object b is affected by the application of the (R::::}) rule, d(a, b) ~ no,
for some object a in <p.12

7. Let b be an object with d(a, b) > no, for every old object a. A close look at the
transformation rules reveals that if there is a membership assertion b: t (resp.
if such an assertion does not exist), then there exists an assertion a : t' such
that

(a) a is linked to b by a path of length ~ So and

(b) WI > It I (resp. WI > 0).

(c) a: tf has been introduced in the GA-box before b : t (resp. b).

8. As a consequence of (6) and (7) there exists an integer v(so, no) depending on
. So and no such that for each new object b there exists an old object a such that

a is linked to b by a path of a length < v(so, no).

12 An object is affected by a rule application, if it occurs in the instantiated rule .

39

9. Each new cluster Cl is linked by a chaining of role-filler assertions and clusters
to an old cluster Cl'

CI' = Cia,
C1I,
C12 ,

(a~,al) : RI,
(a;, a2) : R2,

(a~_llan) : Rn,Cln = Cl

where Cli is a new cluster, ai, a~ E Cli, for i = 1"", n - 1, a~ E Cia, and
an E C In. Since identifications take place only within a cluster or between
objects from two old clusters (cf. Definition 3.5.5 (2)) the path is unique. The
generation of the cluster Cl is the length n of the path.

10. Following (8) the 'generations' that occur in a computation are bounded by an
integer go.

11. Let b be a new object. Then there is an a E Cl(b) such that

(a) there a is linked to b by attributes and

(b) a is old or, otherwise, the unique incoming edge is of the form (c, a) : R.

12. The fact that in an RI-reduced GA-box there is at most one attribute filler per
object and attribute together with (8,10) implies that the number of objects in
a single cluster is bounded.

13. According to the strategy (3.6.4) and (12) for a cluster Cl only finitely many,
foreign member-ship assertions b : t can be asserted by the (RV) rule or the
(R=» rule. Recall that an assertion is called foreign if it comes from the
(R=» rule or from an application of the (RV) rule where a role occurs in a
role/attribute chaining of the value restriction. Let fa be an upper bound of
the number of foreign assertions that can occur for a single cluster.

On the basis of the upper bounds just derived the mapping W : A ~ wA can be
defined. Each cluster Cl is mapped to a 3-tuple 'I/J(Gl) with the following components:

1. go - (generation of G I)

2. fa - «foreign assertions made to G I

3. The multiset of integers Ix : pi where all objects in x belong to GI, p is a value
restriction not comprising a role, or it is not a value restriction and has not yet
been processed by a rule pushing negation, an operator rule, nor a rv rule.13

13Note that if x comprises objects from different clusters, then x : p is a predicate assertion or a
negated abstract predicate assertion . These assertions do not cause any problems with respect to
to termination.

40

Finally, wA is defined as the multiset of 3-tuples tP(Cl) where Cl is a cluster in A.
It follows a case analysis of the rule applications verifying Lemma 3.7.3. Let A'

be a RI-reduced immediate descendant of A and let tP.A(Cl) (resp. tP.A,(Cl)) be the
image of a cluster with respect to A (resp. A').

Case analysis of rule application:

a) Pushing Negation (3.6.2.1): Each application of one of these rules affects only
one cluster Cl. The first and the second component of tP.A(Cl) and tP.A,(Cl) are
the same. The third component gets smaller, because one integer is replaced
by one smaller integer. As the tuples are compared lexicographically the new
tuple is smaller and wA ~ wA'.

b) The Operator Rules (3.6.2.3): An application of the (Rll) or (RU) rule affects
only a single cluster, too, and similar as in (a) we deduce wA ~ wA'.

If an application of the (RV) rule to a member-ship assertion a : Vv! ... Vn.p does
not generate foreign assertions, la : Vv! ... vn.pl is removed and the smaller Ipl is
added to the multiset in the third component. The first and second component
as well as the other 3-tuples are not changed and thus wA ~ wA'. If the
application of the (RV) rule is foreign or if the (R=?) rule is applied, the second
component of another cluster decreases and the other 3-tuples are not changed.
Hence wA ~ wA'.

Consider the application of the (R::I) rule to an assertion a : ::Iv}··· Vn.p. If
there is an i such that Vi contains one or more roles, new clusters {CliLo,
J finite and non-empty, are introduced. But these clusters have a greater
generation and, thus, the first component of the new 3-tuples of these clusters
is smaller than the 3-tuple of Cl(a). The third component of the 3-tuple of
Cl(a) decreases and, thus, wA' is obtained from wA by replacing tP,A(Cl(a))
by the smaller tP,A,(Cl(a)) and tP,A,(Cl j), j E J.

c) The rv rules are treated similarly to the (RU) rule.

Finally, the domain rules generate only new assertions to which none of the trans­
formation or rewrite rules is applicable. This completes the proof of Lemma 3.7.2.
o

To prove the second part of Proposition 3.7.1, the notion of contradictory GA­
boxes is introduced. It is the syntactic equivalent to inconsistent GA-boxes. The
definition is by induction on the relation "descendant" which has just been proved
noetherian. An GA-box A occurring in the computation is contradictory with respect
to a computation iff

• A does not have descendants and is obviously contradictory, or

• all descendants of A are contradictory.

41

Please note that according to this definition Ao is contradictory iff after the loop in
the algorithm all GA-boxes in Mr are obviously contradictory.

Lemma 3.7.4 (soundness) An GA-box that is contradictory with respect to a given
computation is inconsistent.

Proof. The proof is by induction on the definition of contradictory, with a case
analysis according to the transformation rule applied. Assume that a contradictory
GA-box A is given. It has to be shown that it does not have a model.

1) If A does not have a descendant, it must be obviously contradictory and cannot
have a model.

2) For the induction step, assume to the contrary that A has a model I. It has
to be shown that at leaSt one of the descendants of A has a model. This will be a
contradiction to the induction hypothesis, because all descendants of contradictory
GA-boxes are contradictory.

This will only be demonstrated for the case of the (RV) rule. The other cases can
be treated similarly.

Assume that the rule has been applied to the assertions (a, bt) : Vt, "', (a, bn) : V n ,

a : VVt ... Vn.p generating the descendant 8. Please note that 8 is a superset of A
and that the only assertion in 8 that is not in A is (bt, . .. ,bn) : p. Hence, it suffices
to show that I satisfies b : C-which is an immediate consequence of the definition
of the generalized value restriction. 0

Lemma 3.7.5 (completeness) If the initial GA-box Ao is not contradictory with
respect to a given computation, it has a model.

Proof. If Ao is not contradictory then there is an GA-box 8 2 Ao in Mr that is not
obviously contradictory. Next an interpretation I of 8 is defined:

1. Because the clash rule related to the concrete domain is not applicable, there is
a variable assignment a that satisfies the conjunction of all occurring assertions
of the form P(xt, . .. , xn). The interpretation I interprets all x with x : 1) in
8 as a(x).

2. The abstract domain DOMI consists of all remaining objects in 8.

3. Let p be a primitive concept or an abstract predicate. Then (at, ... , an) E pI
iff (at, . .. , an) : p occurs in 8. The domain rules ensure that all ai belong to
DOMI ·

4. Let R be a role or attribute. Then (a, b) E RI iff (a, b) : R is in 8. This is
well defined even if R is an attribute, because of the transformation rule (RI-t) ,
which is not applicable to 8. The domain rules ensure that a belongs to DOMI.

42

It is straightforward, but tedious, to show by induction on the size of the assertions
that I is not only an interpretation but also a model of B.

Here only the cases of the generalized value restriction and the negated predicate
assertions are demonstrated:

Generalized value restriction: Assume a : VVI ••• vn.p is in B. Let any objects
b}, . .. , bn be given. If (a, bd E vi, "', (a, bn) E v~ the transformation rule
(RV) ensures that (bI,"" bn) : p is in B. By induction hypothesis, I satisfies
this assertion.

Since the bi were arbitrary, by definition, I satisfies the generalized value re­
striction.

Negated abstract predicate assertion: Since B is not obviously contradictory,
the interpretation I is also model of the negated abstract predicate assertion
in B. A similar argument holds for assertions of the form a : -,A where A is a
primitive concept.

Finally, Ao ~ B implies that I is also a model for Ao. o

43

Chapter 4

Exploring Terminological
Knowledge Representation

In this chapterl it is explored to which extend the terminological formalismALCFP(D)
of the previous chapter may contribute solving the representation and reasoning de­
mands of the application domain introduced in Chapter 2. On the way from simple to
more complex features some limitations of the representation and reasoning power of
ALCFP(D) will be discovered. In the examples, the generic terminological formalism
has been instantiated by the concrete domain of real numbers n to ALCFP(n).

Some of the discovered limitations are of principal nature. So this chapter serves
as a motivation for the development of the generic rule formalism of the next chap­
ter that takes a first-order logic like ALCFP(D) with restricted expressiveness and
constructs a more expressive, semidecidable rule formalism.

4.1 Geometric Primitives and Elementary Fea­
tures

The geometry, as the main ingredient of a CAD drawing, is given as a collection of
rotational-symmetric surfaces that are fixed to the symmetry axis of the lathe work.
An important geometric element is the truncated cone. Since the surfaces are fixed
to an axis, they can be characterized by four real numbers r}, r2, Cl, and C2 (Figure
2.2).

Because not all quadruples correspond to truncated cones, the values of their com­
ponents have to be restricted: The radii are non-negative and the associated surface
should not be degenerated to a line, a circle, or even a point. If these restrictions are
represented by the four place predicate truncone-condition over the concrete domain

IThis chapter is a revised version of paragraphs in [Baader and Hanschke, 1992; Hanschke and
Hinkelmann, 1992; Boley et a/. , 1993].

44

of real numbers2 the concept of a truncated cone could be defined by

truncone = 3(rt, r2, CI, c2).truncone-condition

This definition can be specialized to a cylinder by further restricting the radii as
being equal using equality on real numbers and the conjunction operator n. Sim­
ilarly, the definitions of ascending and descending truncated cones, rings, etc. can
be obtained by specialization. Truncated cones that are not cylinders are defined
as the most specific generalization of ascending and descending truncated cones us­
ing the disjunction operator U. An equivalent definition would be not-cylinder =
truncone n V(rl =In r2)'

cylinder truncone n V(rl =n r2)
asc-tc - truncone n V(rl <n r2)
desc-tc - truncone n V(rl >n r2)
nng truncone n V(Cl =n C2)
asc-nng ring n asc-tc
desc-ring ring n desc-tc
not-cylinder - asc-tc U desc-tc

To improve readability, infix notation has been used for the comparison operators in
the value restrictions.

The application also needs concepts that describe more than a single surface. So
it is necessary to aggregate the primitive surfaces. For instance, a biconic comprises
two neighbored truncated cones (Figure 2.3).

biconic = 3left.truncone n
3right.truncone n
V(left 0 C2 =n right 0 Cl) n
V(left 0 r2 =n right 0 rl)

Here the attributes left and right play the role of part-of attributes linking a biconic
to its components. Informally speaking, an object is a member of 3left.truncone iff it
has a truncated cone as a filler for left. The expression V(Ieft 0 C2 =n right 0 Cl) forces
the right center of the left truncated cone to be equal to the left center of the right
truncated cone. This role interaction of parameters has been represented using the
equality predicate =n of the concrete domain. An alternative definition of biconic is

3left.truncone n 3right.truncone n
Vleft, right.neighbored

2This predicated of the concrete domain n could be defined by
truncone-condition(rl, r2, Cl,C2):{:> rl ~n 01\ r2 ~n 0 1\

(Cl =n C2 1\ rl in r2 V
Cl in C2 1\ (rl >n 0 V r2 >n 0)).

45

top

~/~
truncone groove biconic

/)mr'ind~ asca~ ?U~ hili

cylinder asc~c /\ ;esc-tc Ishoulder rshoulder

asc-ring desc-ring

Figure 4.1: The Subsumption Graph of the Sample Terminology

where neighbored is a binary, abstract predicate representing the interaction of left
and right. This approach can be more sensible if the CAD model provides an explicit
topological model expressing neighborhood on an abstract level.

However, specializations of biconic can be defined using the value restriction op­
erator V. Informally speaking, an object belongs to Vleft.cylinder if it does not have
any attribute filler or it has a cylinder as attribute filler for left.

ascasc biconic n Vleft.asc-tc n Vright.asc-tc
hill biconic n Vleft.asc-tc n Vright.desc-tc
rshoulder biconic n Vleft.cylinder n Vright.asc-ring
Ishoulder = biconic n Vright.cylinder n Vleft.desc-ring
shoulder Ishoulder U rshoulder

The next concept shows how two shoulders can be combined to a groove.

groove 3left.lshoulder n 3right.rshoulder II
V(left 0 right = right 0 left)

Here the relation between the components (i.e., shoulders) of the groove have been
modeled by an universal (attribute) agreement.3 The concept classification service
arranges the concepts as shown in Figure 4.l.

To represent a particular lathe work in a terminological system, the assertional
formalism, called A-box, is employed. It allows to instantiate the concepts with
instances and to fill in their attributes. A single truncated cone could for example
be represented by the following A-box:

(tCl) : truncone,
(tCl,O) : Cll
(tCl, 5) : C2,

(tCl' 10) : rl,
(tCl, 10) : r2

(4.1)

3Note that in V(left 0 right = right 0 left) the symbol = denotes 'global' equality defined as
{(x, x)1 x E DOMz U DOMn}, which is not the equality =n of the concrete domain.

46

Strictly speaking, attribute-filler assertions with concrete objects (like 10) are not
allowed. But, an assertion like (tCI, 10) : rl can be seen as an abbreviation of two
assertions (tCI, a) : rl and PlO(a) where a is a fresh object and PIO is a unary predicate
from the concrete domain with the extension {1O}. The object classification service
of the A-box computes the realization {cylinder} of tCI'

4.2 Some Limitations

Terminological formalisms focus unary (concepts) and binary predicates (roles), and,
furthermore, the structure of the formulas in which these predicates may occur is
rather restricted. As an achievement of the careful design of ALCFP(V) the reasoning
problems associated with the inference services are decidable (if 1) is an admissible
concrete domain) and the formalism is still expressive enough to serve some needs of
realistic applications.

Note, that terminological knowledge is represented independent of its intended
use, it is not necessary for a knowledge engineer to consider restrictions of the op­
erational semantics. In particular, there does not exist a notion of left-to-right,
top-down, or bottom-up evaluation of a terminological knowledge base or query as
it is common with rule formalisms.

Complementary to these advantages there are some limitations with respect to
expressive power. The particular limitations illustrated in the following subsections
concern representation as well as reasoning.

4.2.1 Aggregation

Terminological reasoning systems directly support the abstraction mechanisms gener­
alization and classification. But they do not bother about aggregation. For instance,
consider a truncated cone tC2 that neighbors the cylinder tCI introduced in (4.1):

(tC2) : truncone,
(tc2,5) : CI,
(tC2, 5) : C2,

(tc2,1O) : rl,
(tC2' 15) : r2

(4.2)

The object classification service would derive that tC2 is an ascending ring. But
it cannot detect that tCI and tC2 together form a 'biconic'-unless the objects are
aggregated to a single instance. Once there is an object bi with assertions

(bi, tCI) : left, (bi, tC2) : right (4.3)

bi can be classified as a rshoulder.
But this kind of introduction of new instances is not a standard operation in

terminological reasoning systems. The selection of instances that are composed to a
new object does not depend on terminological knowledge. On the contrary, knowledge
about aggregation of instances is part of the assertional box. This can easily be seen

47

in the case that the aggregation is not unique. To illustrate this, let us consider a
simple configuration example. 4 Let a terminal be defined as a keyboard connected
to a screen. Suppose there are two keyboards kl and k2 and two screens SI and S2. If
and how screens and keyboards are put together is not part of the terminological but
of the assertional component. So there must be a rule which describes under which
particular circumstances (for example because of customer requirements) kl and S2
are connected to form a terminal tl.

Hence, there is a representation deficit (i.e., it cannot be expressed when a ag­
gregation has to take place) and a reasoning deficit (i.e., none of the terminological
inference services aggregates objects to new objects). .

4.2.2 Derived Attribute and Role Fillers

There is a further difficulty associated with assertional reasoning in terminological
systems. Consider the following concept definitions for regular, tall, and flat shoul­
ders:

rshoulder-with-hw

regular-rshoulder
tall-rshoulder
flat-rshou Ider

rshoulder n
:3(height =n. right 0 r2 - right 0 rl) n
:3(width =n. left 0 C2 - left 0 cd
rshoulder-with-hw n V(height =n. width)
rshoulder-with-hw n V(height >n. width)
rshoulder-with-hw n V(height <n. width)

The expression :3(height =n. right 0 r2 - right 0 rd is a mix-fix notation for the appli­
cation of a three-place predicate of n to the attribute chainings height, right 0 r2, and
right 0 rl in a generalized exists-in restriction.

The object classification cannot identify the aggregate bi of the above example
as a regular shoulder. This is a representational problem, because it cannot be
expressed that a height and a width is associated with each shoulder and depends
functionally on its radii and centers, and analogue to aggregation, it is a reasoning
problem, because there does not exist a service that would automatically introduce
the additional attribute fillers.

The problem may occur in the abstraction phase (for example, when the feature
regular-rshoulder is not found in the A-box A comprised of (4.1), (4.2), (4.3)) as well
as in the refinement phase (for example, when it does not lead to an inconsistent
A-box if bi : flat-rshoulder is added to A).

4.2.3 Sequences

Probably the most sever restriction is that sequences cannot be represented in an
adequate manner. For example, in the considered application domai~ it is important
to describe classes of lathes which are sequences of geometric primitives. The problem

4This telling example is due to Knut Hinkelmann.

48

is that these sequences have a finite, but varying and not a priori bounded length.
It is quite simple to define concepts for features such as

'1 truncated cone', '2 truncated cones',

This can be done as in the following terminology:

last
connected
one
two

=
Vtail.l..
Vhead, tail 0 head.neighbored
3head.truncone n last
3head.truncone n 3tail.one n connected

Here l.., as usual, stands for the empty concept.
But it remains the problem to represent the most specific generalization (union)

of these infinitely many features (concepts). The resulting concept could be termed
a 'sequence of neighbored truncated cones'. It should be noted that its specialization
'ascending sequence of truncated cones' (see below in 4.5) is essential for character­
izing the production classes of lathes.

Adding Transitive Closure

The formalism ALCF+ is an extension of ALCF that can satisfy the demands of the
problem domain for representing sequences. 5 The basic idea of this extension is to
allow role and attribute terms in value-restrictions and exists-in restrictions instead
of just allowing role and attribute names as in ALCF.

Definition 4.2.1 (syntax of ALCF+) The role/attribute terms are built from role
and attribute names with

umon
composition
transitive closure

(R US),
(R 0 S), and
(trans(R))

of roles and attributes. Concept terms in ALCF+ are defined as in ALCF with the
only difference that role/attribute terms can be used in value-restrictions and exists­
in restrictions.

For example, a sequence of truncated cones can be defined as follows :

3head.truncone n
Vtra ns(tail).3head. tru ncone

sequence
(4.4)

Since ALCF+ does not provide concrete domains, truncone is a primitive (i.e., not
further defined) concept in this terminology and it is not expressed that the truncated
cones are neighbored.

5This extension is due to Franz Baader, see for example [Baader, 1991], [Baader and Hanschke,
1992].

49

Definition 4.2.2 (semantics of ALCF+) The interpretation can be extended to at­
tribute/role terms in the obvious way: (R U S)I = RI U SI, (R 0 S)I = {(x, y); 3z :
(x,z) E RI and (z,y) E SI}, and trans(R)I:= Un~l (RIt.

In [Baader, 1991] it is shown that for ALC+ (i.e., ALCF+ without attributes) the
subsumption problem is decidable. A close look at the algorithm for ALC+ (which is
much too complex to be sketched here) reveals that the result also holds for ALCF+,
that means, for concept terms C, D and a terminology T over ALCF+ (with attributes
and roles) it is decidable whether C subsumes D.

Combining the Extensions

Up to now ALCFP(V) and ALCF+, which are both extensions of ALCF, have been
considered separately. Now consider the language ALCFP+(V) which is obtained if
both extensions are combined.

To represent all relevant knowledge of the application domain, one would like
to have the representational facilities of both formalisms available. With n as the
concrete domain this language is expressive enough to define concepts that are of
great importance for the ·application domain, such as a 'sequence of neighbored trun­
cated cones' (seq-tc) and its specialization 'ascending sequence of truncated cones'
(aseq-tc):

seq-tc = sequence n (last u connected) n
Vtrans(tail).(last u connected)

aseq-tc seq-tc n Vhead.asc-tc n
Vtrans(tail) 0 head.asc-tc

where the other concepts are as above.

(4.5)

The price that has to be paid for this expressiveness is that it cannot be decided
in general whether a concept C subsumes a concept D in this language.

This can be shown by reducing the Post Correspondence Problem to the sub­
sumption problem for this language. The reduction uses only very simple predi­
cates from real arithmetic, namely equalities between linear polynomials in at most
two variables. The interested reader is referred to [Baader and Hanschke, 1991b;
Baader and Hanschke, 1992] where a similar result is proved. 6 The only difference
is that ALCFP(V) is replaced by a less expressive language without abstract pred­
icates and general roles in generalized value and exists-in restrictions and without
universal or existential attribute (dis)agreements. An analogue result is obtained if
instead of adding transitive closure to ALCFP(V) cyclic definitions were introduced
in terminologies of ALCFP(V).

In [Hanschke and Wurtz, 1993] the undecidability of the satisfiability problem of
a very (most simple?) class of logic programs (comprising one f~ct P(9I, .. . ,9n) one
clause P(lt, ... , In) f- P(rI, .. . , rn) and one goal P(h, ... , in» is proved. Both this

6The proof is due to Franz Baader.

50

result and the undecidablity for ALCFP+ (1)) suggest that as soon as a varying-size
aspect can be represented in a formalism, further extensions have to be made very
careful. Otherwise the associated reasoning problems get undecidable.

51

Chapter 5

An Epistemic Formalism

In the previous chapter it has been demonstrated that terminological formalisms, in
general, and the formalism ALCFP(n), in particular, are both useful for representing
terminological knowledge and limited with respect to their expressive power. The
main issue of this chapter is the homogeneous integration of the special-purpose rea­
soning power of a terminological formalism with the general-purpose representation
and reasoning power of a semidecidable (computationally complete) rule formalism.
Therefore a declarative generic rule scheme is developed and applied to the termi­
nological formalism ALCFP(n). The chapter concludes by showing how the rep­
resentation and reasoning problems left open in the previous chapter can be dealt
with.

5.1 Introduction

The proposed generic rule formalism is based on rules of the form

</>0 "Vt </>1 I ... I </>n (5 .1)

where n ~ 0 and </>i are formulas of a first-order logic satisfying certain requirements
and the symbol ""Vt" stands for a weak form of implication explained later. The
formalism is parametrized by the first-order logic which is referred to as the con­
dition formalism. For instance, it will be shown that the terminological formalism
ALCFP(V) of Chapter 3 can be seen as a condition formalism. Term equations (and
negated term equations) induce another relevant condition logic (cf. Section 5.5).
The operational semantics of the generic rule formalism generalizes the way produc­
tions rules are applied to a fact base. If a rule is triggered one of the </>;, 1 ~ i ~ n in
the head is (don't know) non-deterministically selected and added to the fact base.

Informally, such a rule says "if 4>0 is believed, then one of 4>1, </>2, ... ,</>n is be­
lieved." For n = 0 the rule is a denial saying that whenever </>0 is believed, the current
state is inconsistent. For n = 1 the rules are very close to production rules. If </>0 is
very simple and n > 1, the operational semantics of these rules has much in common
wi th SLD resolution (cf. Section 5.5.1).

52

Hence, this formalism combines deterministic, data-driven, bottom-up reasoning
(as required for abstraction) with non-deterministic, goal-directed, top-down search
(as required by the association and the refinment phase).

5.1.1 Operational Semantics

The operational semantics can be considered as production rule-like inferences com­
bined with backtracking search. First of all, there is a fact base Ao. Objects oc­
curring in the fact base are substituted for variables in the premise of a rule. Then
it is checked whether the fact base entails (defined formally in Definition 5.2.4) the
instantiated premise with respect to the condition logic. If not, other objects may
be tried with another rule. Otherwise, one of the alternatives in the head of the
instantiated rule is added to the fact base. If the fact base gets inconsistent (defined
formally in Definition 5.2.4) with respect to the condition logic, backtracking takes
place: The computation resumes at the most recent point where another alternative
in the head of a rule can be selected. If all instantiations of rules with a premise that
is entailed by the current fact base A have been applied, and if the current fact base
A is consistent, A is an answer computed by the set of rules for Ao.

Figure 5.1 shows a naive implementation of this operational semantics written in
a pseudo programming language.

For a fact base A and a set of rules Pgm the computation started with the call
closure(A, Pgm, 0, 0) enumerates all consistent answers that can be computed for A
by Pgm or the function runs for ever internally generating an infinite consistent
fact-base.

The third and the fourth argument are auxiliary parameters used to organize the
search for an entailed premise. The pairs in the set entailed-triggers represent all
successful rule applications which have led to the current fact base. The pairs in
failed-triggers represents all failed attempts to entail an instantiated premise by the
current fact base.

The don't-know non-determinism of the selection of an alternative of the head of
a rule is explicitly coded in the function do-not-know-apply. The non-deterministic
selection of a trigger for a rule in (i) is don't-care and has to be fair, i.e., if a
certain pair (r, ¢ou) could be selected in a certain stage of the computation, it is
selected eventually or all subsequent selections of alternatives eventually lead to an
inconsistent fact base.

With this fairness property the algorithm cannot loop infinitely in an inconsistent
branch of the don't know search space. In contrast, Prolog with its left-to-right goal
selection may loop infinitely in a goal which could be detected as being not provable
in finite time (with another goal selection strategy).

Note that the function do-not-know-apply implements a depth-first search strat­
egy (as in Prolog). Hence the inference algorithm may run forever (generating in­
ternallyan infinite consistent fact base) although there may exist a finite consistent
answer and (due to the fairness property) the algorithm does not loop infinitely in

53

define closure(fact-base, Pgm, entailed-triggers, failed-triggers) :=

if consistent(fact-base) then
(i) Let </>0 "-+ </>11 ..• I</>n be a renaming with fresh variables of a rule
r E Pgm and let <7 be a mapping from variables of </>0 to objects of
fact-base such that (r, </>0(7) r/:. entailed-triggers U failed-triggers
if this is not possible then

show fact-base
j returning false initiates search for next answer
false

elseif fact-base entails </>0<7 then
do-not-know-apply(

),fact.closure(fact-base U {fact}, Pgm, entailed-triggers U {(r, </>0(7)} , 0),
{</>1<7,·· . ,</>n<7})

else
closu re(fact-base, Pgm, entailed-triggers, failed-triggers U {(r, </>0(7)})

endif
else

false
endif

define do-not-know-apply(f, set) :=

if set = 0 then
false

else
(ii) Let </> E set and result := f(¢)
if result = false

then
do-not-know-apply(f, set \ </»

else
result

endif
end if

Figure 5.1:. A Naive Implementation of the Rule Formalism

54

an inconsistent branch of the computation. Imposing a left-to-right strategy on the
selection of an alternative in the head, would leave some control to the knowledge
engineer who writes down the rules. This would be analogous to the rule-selection
strategy in Prolog. It is also possible to implement a breadth-first search (for exam­
ple, by iterative deepening) to avoid this kind of incompleteness.

Note that the generic inference algorithm of the rule scheme just requires the
functions consistent and entails to be provided by the condition formalism.

5.1.2 Logical Reading

The rules should not be regarded as logical implications in the classical sense. For
example, the operational semantics of the formalism does not take care of contra
positions: If there is a rule </> ~ </>' and -.</>' is believed, it will not derive -.</>. The
operator ~ also differs from classical implication in the following sense: If </> V </>'
holds and there are rules </> ~ </>" and </>' ~ </>", then </>" is not derived by these rules.
Finally, assume that there is a rule </>(x) ~ </>'(x) with a variable x, which is implicitly
universally quantified. Then the rule is only triggered if there is an object a in the
current fact base such that </>(a) is implied by the fact base. Thus, all variables in
the premise of a rule have to be instantiated by objects which occur explicitly in the
fact base.

These restrictions enable efficient processing of the rules. The trigger rules in
[Brachman et ai., 1991; Edelmann and Owsnicki, 1986; MacGregor, 1988] have similar
restrictions in their operational semantics. A trigger rule A ~ B' can be regarded
as a special case of (5.1) where </>0 and </>1 are concepts and n = 1. In [Donini et
ai., 1992] a semantics based on the epistemic operator K, standing for 'knows', is
proposed which coincides with the operational semantics. Levesque has introduced
the K operator in his ask and tell framework [Levesque, 1984].

In [Lifschitz, 1991] Lifschitz relates minimal believe logics to the semantics of
some logic programming formalisms including general, disjunctive logic programs.
He replaced the letter K by the letter B reflecting his preference of 'believe' in place
of 'knowledge' as the intuition behind his logic.

This idea of a minimal believe iogic is also the key to the semantics of the rule
formalism introduced here. However, non of the mentioned formalizations of an
epistemic logic is appropriate as the basis for a model-theoretic semantics of the
rules. Compared to [Donini et ai., 1992] the formalism considered here offers more
complex premises, disjunctions in the conclusions, and variables occurring only in the
head. It is also more general, because it tolerates the possible presence of equality
"=" and the possible absence of a unique-name assumption.

Premises with more then one variable together with the absence of the unique­
name assumption induce a major technical problem. Consider, for instance, a fact
base just consisting of the fact p(x, y), which is associated with the epistemic formula
3x,y(Bp(x,y)), and a program consisting of a rule p(x,x) ~ q, which is associated
with Vx(Bp(x,x) =} q). Note, that the rule cannot be applied to the fact base. The

55

soundness result below (Proposition 5.4.1) implies that each epistemic model of (the
computed answer) 3x,y(Bp(x,y)) satisfies the program and the fact base.

What is an epistemic model? Roughly, the formalizations of epistemic logics in
[Reiter, 1990; Lifschitz, 1991; Levesque, 1984; Donini et ai., 1992] all have the same
structure. The following definitions can be seen as a simplification of the logic pre­
sented in [Lifschitz, 1991] where an additional modal operator not is considered. An
epistemic interpretation (I, M), which is also referred to as a structure, consists of
an interpretation I of an underlying first-order logic and a set M of such interpreta­
tions where all interpretations :I E M and I share the same domain, D say. For the
parameters d E D names nI, n2," . are introduced. These names are in a one-to-one
correspondence to the parameters in D. The notion of satisfiability for structures is
inductively defined as follows . If a structure (I, M) satisfies an epistemic formula </>,
this is written as M, IF</>'

1. M, IF</> :iff IF</>, for a closed first-order formula </>.

2. M,I F </> 1\ </>' :iff M,I F </> and M,I F </>'.

3. M,I F 3x(</>(x)) :iff there exists a name n such that M,I F </>(n).

4. M,I F -'</> :iff not M,I F </>.

5. M,I F B</> :iff :I, M F </>, for all :I E M .

Then an epistemic model (I, M) of </> is a structure with M, IF</> that is
maximal with respect to ~ . Here ~ is defined by (I,M) ~ (I',M') :iff M ~ M'. 1

In the example, let (I,M) be a model of 3x,y(Bp(x,y)). According to the
definition there exist names nI, n2 such that:l F p(nI,n2), for all:l E M. Please
observe that both sets of interpretations, defined below, induce epistemic models of
:Ix, y(Bp(x, y)).

1. M = : = {II I is an interpretation over D and (d, d) E]I}, for some d ED.

2. M;>!: := {II I is an interpretation over D and (d1 , d2) E rl for some d1 , d2 E D
with d1 i= d2 •

Obviously, neither M= ~ M;>!: nor M;>!: ~ M=, and (I, M=) is not an epistemic
model of the rule Vx(Bp(x,x) =} q)-contrary to the desired soundness result.

The example suggests that the problem is related to an interplay of the modal
operator and the quantifiers. There happens something interesting if the scope of
two existential quantifications interact with the scope of an occurrence of the modal
operator.

-Let (I, M) be a structure. For B(p V q) all ways to make p V q true may be
covered by M . Similarly, M : = {II I is an interpretation over D and 3x, y (p(x, y))

lThe definitions of the other approaches vary in the treatment of I and I' .

56

is true in I} covers all possible ways to satisfy :3x, y(p(x, y)) with interpretations over
a fixed domain D. But consider :3x,y(Bp(x,y)). It is impossible that M covers all
possibilities how p(x,y) can be made true given that there are objects d1 and d2 for
which it is just?- required that (db d2) is in the extension of p. The set M must be
incomplete in this respect, because selecting names nl and n2 either with nl = n2

or nl i= n2 to substitute for x and y is a commitment to either a set of type M= or
M:j:, respectively. Note that this problem does not occur with trigger rules.

In the following section epistemic logics are formalized using partitions with in­
finite equivalence classes as interpretation domains and the notion of pre variable
assignments. This conception enables an epistemic model to vary also over all possi­
ble variable assignments by assigning the elements of the range of a pre assignment to
different equivalence classes in different interpretations. The key result is Proposition
5.2.7.

5.2 Condition Formalisms and Minimal Belief

The semantics of an expression H ¢(x) is usually defined by an intersection of the
extensions of 4> in all possible interpretations, or, as above, by the use of names.
Equivalently, an assignment for the variables in 4>(x) could be fixed, before the truth
values of 4>(x) with respect to to this assignment in all possible interpretations are
conjoined.

An important requirement, stemming from the operational semantics is that pee)
implies :3x(Bp(x)). An epistemic model satisfies the latter if their is an assignment a
to x such that in all interpretations of the epistemic model p(xa) is true. In [Donini
et al., 1992] this problem is solved by fixing the domain and the assignments of
constants to elements of the domain for all interpretations. This was possible since
they do have a unique-name assumption: without loosing generality all constants
can be mapped to pairwise distinct parameters of the domain in the same manner
in all interpretations. But if the logic does not have a unique-name assumption, it
should be possible for two constants to be identified in one interpretation and to be
different in another.

Here a different approach is taken. The object e is considered as a variable
that occurs in the scope of :3 and B and the formula :3y(Bp(y)) replaces pee). As
a by-product, the names of objects introduced in a computation are irrelevant (as
long as they are 'fresh'). If the objects were constants it would have been more
complicated to formulate the completeness result (Proposition 5.4.2), because in a
computation new constants may be generated. The names of these constants are
irrelevant for epistemic models of the program but would restrict epistemic models
of the computed answers.

The following definition formally defines the notion of a 'condition formalism'
which up to this point has only been used in an intuitive sense.

2In particular, there is nothing said about x = y or x -=f:. y.

57

Definition 5.2.1 (condition formalism) A first-order language CF gets a condi­
tion formalism, if the following notational conventions are adopted and CF satisfies
the requirements formulated below.

The domain of an interpretation I of CF is denoted by DOMI. A variable assign­
ment is a partial mapping from variables to elements of the domain. An interpretation
function .I assigns a set <pI of variable assignments to a formula <p such that a is
defined on x iff the variable x occurs free in <p, for all a E <pI. An interpretation I
and a variable assignment a satisfy a formula <p iff a restricted to the free variables
in <p is in <pI. This is written as I, a F <p.

The first-order logic also has to satisfy the following requirements:

• Condition formalisms are closed under conjunction: Let <p and <P' be two formu­
las with sets of variables V and V', respectively. Then <p A <P' is also a formula
of CF, with variables V U V', and

(<p A <p')I = {x t-+ {xa, i! x E V
xaI, if x E V'

a E <pI, al E <pIT, }
and xa = xal,
for all x E V n v'

for each interpretation I. By abuse of notation, sometimes a condition formula
is considered as the set of its conjuncts and vice versa.

• The interpretations are closed under renaming: Let I be an interpretation with
domain DOMI and 7r : DOMI ---+ D be some bijection into another set. Then I7r
is also an interpretation with DOMI?r = D and <pI?r := {a7r1 a E <pI}.

o

The operational semantics as well as the fixpoint semantics (see below) of the
rule formalism may induce potentially infinite sets of formulas. Hence, 'conjunction'
is extended to the countable, infinite case. If variable assignments are identified
with their graphs, (<p A <pI)I could be written as {a U a'ia E <pI, a' E <pII, and aU

a' is functional}. For a (possibly) infinite set <I> of formulas, conjunction is defined
by

(/\ cI»I := {.BI.B = u{~(<p)1 <p E cI>},~: <p t-+ a E <pI,.B is functional}

The epistemic logic CF(B) defined next is parametrized by a condition formalism
CF.

Definition 5.2.2 (syntax of epistemic logic CF(B) The syntax of the epistemic
logic CF(B) is inductively defined as follows:

• Every formula of CF is an epistemic formula.

58

• If </> is an epistemic formula and <P is a set of epistemic formulas, -.</>, /\ <P,
3x(</», and B</> are epistemic formulas. Here x is a finite or countable infinite
tuple of pairwise different variables. 0

The logical connectives V, :::}, and the quantifier V are used in the usual way to
abbreviate formulas. An epistemic formula not containing the modal operator B is
called objective. The mapping V : (epistemic-formulas) ~ V retrieves the set of
free variables of </>.

The semantics of the epistemic logic is defined via sets of interpretations of a spe­
cial structure. An admissible interpretation domain DOMI over D is a non-empty par­
tioning DII of a set D where each equivalence class of a partion comprises infinitely

many elements of D. By reD) the set of all interpretations with an admissible in­
terpretation domain over D is denoted. A pre variable assignment a is an injective3

partial mapping a : V --+ D from variables to elements of D. Note that for T E reD)
a pre variable assignment a : V --+ D induces a variable assignment

a I . {V --+ DIT
. x I-t [xah

Conversely, for each variable assignment a : V --+ DIT there exists a pre variable

assignment f3 such that a = f3I. It follows from the Skolem-Lowenheim Theorem that
it is not a restriction to consider interpretations with an admissible interpretation
domain over D provided that D is large enough. The cardinality of D should be
at least the maximum of wand the cardinality of the signature of the condition
formalism.

Definition 5.2.3 (semantics of epistemic logic (F(B)) Let M ~ reD) be a set
of interpretations for some D, I E reD) an interpretation, and a : Va --+ D a
pre variable assignment. Then M is an epistemic interpretation and the four place
(meta-) predicate F= is inductively defined according to the structure of epistemic
formulas as follows:

• Let </> be an objective epistemic formula. Then M,T,a F= </> :iffI,aI F </>I .

• Let </> be an epistemic formula, <P a finite or countable infinite set of epistemic
formulas, x a finite or countable tuple of pairwise different variables, and V(x)
the set of variables in x. Then F is defined by

1. M,T,a F -.</> :iff not M,T,a F= </>

2. M,T, a F /\ <P :iff M,T, a F </>, for all </> E <I>

3. M,T, a 1= B</> :iff M,.1, a F= </>, for all .1 E M

3 A mapping e is injective :iff x "# y implies xe "# ye, for all elements x, y of the domain of e.

59

4.. M, X, a F= 3x(4» :iff there is a pre assignment f3 : V J3 -t D and a bijection
7r: Vex) -t Vj3 such that M,X,aU f31= </>7r and Vc> n VA = 0

Similar to condition formulas, a set of epistemic formulas cI> is identified with
a conjunction 1\ cI>. The triple M, X, a satisfies 4> :iff M, X, a F= 4>. An epistemic
interpretation M satisfies an epistemic formula 4> :iff M,I,a F 4>, for all X E M
and all variable assignments a. An epistemic model M of an epistemic formula 4>
is a maximal epistemic interpretation M ~ reD) satisfying 4>. I.e., if there is an
epistemic interpretation M' ~ reD) satisfying 4> and M' ;2 M, then M' = M. A
closed epistemic formula is epistemically consistent :iff it has an epistemic model. 0

A fact base Ao is a set of condition formulas, which may also be considered as a
possibly countable infinite conjunction. By abuse of notation, a fact base may also be
considered as an epistemic formula: An epistemic model (resp, interpretation) M of
a fact base A (infinite or not) is an epistemic model (resp, interpretation) of 3x(BA}
where x is a (possible infinite) tuple comprising exactly the variables that occur free
in A.

Definition 5.2.4 (entailment and consistency of CF formulas) Let 4> and 4>'
be two formulas of CF. Then 4> entails ¢/ :iff X, a F= </> implies X a F= ¢/, for all
interpretations X and all variable assignments a. A formula </> is consistent :iff there
exists X and a such that X, a F= </>. 0

Please, recall that the algorithm in Figure 5.1 takes an entailment test and a
consistency test of CF to implement the operational semantics of the rule formalism.

Since fact bases are identified with possibly infinite conjunctions, Definition 5.2.4
carries over to fact bases. Another property of CF, which is always satisfied by a
first-order logic, is compactness.

Definition 5.2.5 (compactness) A condition formalism is compact :iff for each
set of formulas cI> that entails a finite formula 4> there is a finite set cI>' ~ cI> such that
cI>' entails </> and all elements of cI>' are finite. 0

The premises of the rule formalism shall filter the objects present in the fact base.
In particular, they should not be over general (accept any object) and they should not
invent new objects not present in the fact base. The following definition, introduces
the notion of filtering condition formulas which makes the above idea precise.

Definition 5.2.6 (filtering) An objective formula 4> is filtering with respect to a
variable x E V(4» and a fact base A :iff there exists an X and a such that X, a F= A
and DOMI =1= x</>I := {xf31 f3 E </>I}. The objective formula 4> is filtering :iff it is
filtering with respect to all variables in V(</» and all fact bases.

60

For example, the premise of T (x) ~ p(x) is not filtering for any consistent fact
base if T(x) is a unary predicate always interpretated as the whole domain. If such
a rule would be allowed, it would be necessary to represent universally quantified
formulas in the fact base to get complete inferences. In the example, this would
be Vx(Bp(x)). But, then a more general entailment and consistency test would be
needed.4

The following proposition establishes an important interrelation of the epistemic
logic CF(B) and the underlying condition formalism CF: Roughly, an epistemic model
of a fact base comprises all 'characteristic' interpretations.

Proposition 5.2.7 Let a fact base A, an epistemic model M ~ r(D) of A, a fil­
tering objective formula </J, and a pre assignment f3 : V(</J) -. D be given such that
I,(3I F </J, for all I E M, and V(A) and V(</J) are disjoint. Then there exists
(7 : V (</J) -. V (A) such that A entails </J(7.

Furthermore, there exists a pre assignment 0: : V(A) -. D such that I, aI F A,
for all IE M, and (7 can be chosen such that xu = xf3o:-I, for all x E V(</J).

Proof. For a mapping edenote by ran(0 the set {xe I e is defined on x}. According
to the assumptions there exists a pre variable assignment 0: : V(A) -. D such that
I,a! F A, for all I EM.

Claim 1: ran(0:) ;2 ran(f3)

Proof. 1) If ran(0:) = D the claim trivialy holds.

2) Otherwise, assume that the claim does not hold. Then there exists
y E V(</J) such that yf3 ¢:. ran(o:). Since </J is filtering, there exists an
interpretation II and a variable assignment 0:1 such that II, 0:1 F A and
y(</JI1) =1= DOMI1 •

According to the remarks on admissible interpretation domains and the
size of D before Definition 5.2.3 there exists also an interpretation I2
with an admissible interpretation domain DOMI2 such that I 2,0:2 F A
and y(</JI2) =1= DOMI2. Consequently, there exists an e E D such that
[elr2 E DOMI2 \y(</JI2). Since the elements of D are not important for I2 as
a first-order logic, these element can be assigned freely to the equivalence
classes in DOMI2 = DjI2 as long as the domain of I2 remains admissible.

Thus, it can be assumed without loosing generality that yf3 ¢:. ran(0:2)
and yf3 = e.

Because, 0: and 0:2 are injective, there exists a bijection 1r : D -. D such
that xo: = X0:21r, for all x E V(A), and e1r = e. Let.:J := I21r be the
interpretation in r(D) that is induced by .

4For equations over terms of uninterpreted function symbols this would not be a problem. For
example, in order to search for a generic representation of all substitutions u such that the universal
closure of p(t) entails p(su) one would compute the most general (rational) unifier of t = s.

61

• DOM.1 := {p1l"1 P E DOMI2P and

• 'l/J.1 := 'l/JI211" := h'1I"1 , E t/JI2}.

By construction .:J, a.1 F A and [e1l" 1.r ~ y (<//'). Hence.:J E M (be­
cause M is an epistemic model of A) and .:J, f3.1 IF <P (because y f3 = e).
Contradiction. This completes the proof of Claim 1.

Next a is defined by xa = xf3a- l . This is well defined since pre assignments are
injective. It remains to show that A entails <pa.

Assume not. Then there exists I E feD) and a pre assignment, such that
I"I F A and I"I IF </>a. Analogue to a, a2, the pair a, , induces a bijection 11" and
an interpretation I1I" E feD). Again, it turns out that I1I" E M and, according to the
assumption, I1I", f3I1r F <p. Using the definition of a the latter implies I1I", ar1r F </>a.
With a = ,11", one gets I1I",,1I"I1r F <pa, and, finally, I"I F <pa. Contradiction. 0

Last but not least, in this section it is observed that epistemically consistent fact
bases always have an epistemic model.

Observation 5.2.8 Let A be a fact base, and let M ~ feD) be an epistemic inter­
pretation satisfying A. Then by definition there exists a pre assignment a such that
I,ar F A, for all IE M. Then M' = {I E f(D)1 I,ar 1= At is an epistemic
model of A and M ~ M' ~ feD) . 0

5.3 The Epistemic Rule Formalism

This section formally defines the rule scheme which takes a condition formalism CF
and constructs an epistemic rule formalism ER(CF). This rule formalism has an
epistemic, model-theoretic semantics which is based on the epistemic logic CF(B) of
the previous section. It also has a straight forward fixpoint semantics which is sound
nd complete with respect to the epistemic semantics. Given an entailment and an
consistency test for CF the fixpoint semantics can be implemented on a computer to
obtain an inference engine for the rule formalism. Section 5.1.1 has sketched such an
implementation.

The next definition formally defines the syntax of the rules and defines a mapping
into CF(B) .

Definition 5.3.1 (ER(CF)) Let a condition formalism CF with an entailment test
and a consistency test be given, and let <Po, ' .. ,<Pn, n > 0, be n + 1 finite condition
formulas. Then by definition

<Po"-t <PI I· . 'l<Pn

5 Here p7r is defined as {d7r1 d E p}.

62

is a (program) rule in ER(CF) if <Po is filtering. It is identified with the closed epis­
temic formula

'Vxo(B<po ~ V 3Xi(B<pi))
i=l···n

where Xo is the tuple of the variables in V(<Po) and Xi, 1 ~ i ~ n, are the tuples of
variables in V(<Pi) \ V(<Po). For n = 0 the formula Vi=l ... n 3Xi(B<pi) is identified with
..i. The symbol ..1 denotes a formula of CF that is inconsistent.

A program Pgm is a finite set of rules. 0

The operational semantics (described in Section 5.1.1) searches for a consis­
tent answer using backtracking. In the fixpoint semantics described her this non­
determinism is handled with a selection function that acts as an oracle. The selec­
tion function says which alternative to select in an instantiated rule. The fixpoint
operator defined below is parametrized by such a selection function.

Definition 5.3.2 (fixpoint semantics of ER(CF)) Let a program Pgm be given.
A selection function

sel : (r, <Poa) f---+ k

assigns to a pair (r, <poa) consisting of

• a rule r : <Po'Vt <PI I· .. l<Pn and

• a formula <Poa where a is a substitution a : V(<Po) -+ V

an index k, 1 ~ k ~ n.
To each selection function sel a fixpoint operator Tsel,Pgm on fact bases is associ­

ated. If Pgm or sel is clear from the context the corresponding index may be dropped.
The operator is defined as follows:6 If A is inconsistent, Tsel(A) = A, otherwise

there is a renaming <Po 'Vt <PI I ... I <Pn with
fresh variables of a rule r E Pgm,

Tsel : A f--t Au <P a: V(<Po) -+ V(A), A entails ¢Joa,

{
<Pka, if k -; 0

sel(r, <Poa) = k, <P =..1 th .
, 0 erwzse

The iterated applications of the operator to a fact base Ao are abbreviated as
follows:

Tsel,Pgm,Ao jO Ao,
Tsel,Pgm,Ao j'+1 .- Tsel,Pgm(Tsel,Pgm!Ao ji), for i > 0, and
Tsel,Pgm,Ao jW '- U>o Tsel,Pgm,Ao j' .

The indices may be dropped, if they are clear from the context. Trw is the answer to
Ao computed by Pgm with sel. 0

6The phrase 'a renaming rl with fresh variables of a rule r' means that the variables of the rule
r-as usual-have been substituted by pairwise different new variables which do not occur in A.
More precisely, there exists a bijection 11" : V(r) -+ V(rt} such that r1l" = rl and V(rt} n V(A) = 0.

63

Neglecting the incompleteness of the operational semantics which is due to the
depth-first search strategy, it should be clear that the operational semantics of Section
5.1.1 can be understood as an implementation of the fixpoint semantics described
here. For a given fact base ~ and a program Pgm, the incompleteness caused by
the depth-first search strategy may only be problematic if there exists a selection
function sel such that Tsel,Pgm,.Ao jW is infinite and consistent.

5.4 Soundness and Completeness Results

This section states and proves soundness and completeness of the fixpoint semantics
with respect to the epistemic semantics of the program.

Proposition 5.4.1 (soundness) Let a fact base ~, a program Pgm, and a se­
lection function sel be given. Then each epistemic model of Tsel,.Ao,Pgm jW satisfies
Ao U Pgm.

Proof. If TjW is inconsistent, the proposition holds trivially. If not, let M be an
epistemic model of the consistent fact base Tjw. Since T is extending, 7 ~ ~ TjW
and, thus, M satisfies ~.

It remains to show that M satisfies Pgm. Assume not. Then there is a rule
r : VXo(B<po) =} Vi=l oo on ~xi(B<pi) in Pgm such that M does not satisfy r. I.e., there
exists /3 such that I, /3 F <Po, for all I E M and for all i E {I"", n} there exists
some I' E M such that M, I', /3 V= ~xi(B<p;).

By Proposition 5.2.7, there exists a pre assignment a such that M,I,O' F TjW
and, with a := /30'-1, the set of condition formulas TjW entails <Poa.

Since CF is compact, there exists a finite subset A ~ TjW such that A entails
<Poa. Consequently, there exists a j > 0 such that A ~ Tji and, thus, Tji entails
<Poa. Using the definition of T it follows that <Pk(j E Tji+l~ TjW, for some k, and,
thus, M,I, a 1= ~xk(B<pka), for all I E M. Finally, since (j = /30'-1 and I' E M,
M,I/,/31= ~xk(B<pk)' Contradiction. 0

Proposition 5.4.2 (completeness) Let a fact base Ao, a program Pgm, and an
epistemic model M ~ f(D) of Ao U Pgm be given. Then there exists a selection
function sel, such that M is an epistemic model of Tsel,.Ao,PgmiW

•

Proof. The proof of Proposition 3.7.5 is based on the following lemma which is a
weak form of the proposition.

Lemma 5.4.3 (weak completeness) Let a fact base ~, a program Pgm, and an
epistemic model M ~ r(D) of Ao U Pgm be giveon. Then there exists a selection
function sel, such that M satisfies Tsel,.Ao,Pgm jW.

7I.eo, A ~ T(A) for all fact bases A

64

Proof. In the proof a selection function sel is defined step by step as it is
needed in the iterated application of the operator Tsel •

According to the assumption there exists a pre assignment ao : V(..4o) ~
D such that I, d5 F ..40, for each I E M.

Induction hypothesis: I,a[F Tji, for each I E M. Consider the
(i + 1)th iteration of the T operator and let 0', a rule rEP gm, and its
renaming with fresh variables <Po '"'-+ <PII·· ·1<Pn be given as in the definition
of T, that is, Tji entails <pO'. It is also assumed that sel has not been
defined at (r, <PoO') so far.

The induction hypothesis implies I, a[F <pO', for all I E M. Then
I,O'a7 F <p, for all IE M. Since M F r, this implies, M,I,O'ai F
Vi=l ... n 3Xi(B<pi). If n = 0, M would be empty and the lemma would
hold trivially.

Otherwise, the proof proceeds as follows: Using the definition of dis­
junction it can be derived that there is a k, 1 ~ k ~ n, such that
M, I, O'ai F 3Xk(B<pk) and, as an immediate consequence, M, I, ai F
3Xk(B<pkO'). By the definition of F it follows that there is a pre as­
signment (3r,u : V(<PkO') \ V(<poO') ~ D such that I, (ai(3r,ul F <PkO', for
all I EM. Note, that (3r,u is defined on fresh variables. The value of
sel(r, <Po 0') is set to k.

This construction can be made for all r,O' that trigger a rule in this
iteration. The pre assignments (3r,u can be chosen such that they have
pairwise disjoint domains. Hence, by identifying the pre assignments with
their graph, ai+l can be defined as ai U Ur,u (3r,o-' Finally, I, a[+I F Tji+I ,
for each I EM, because I, a[F Tji and, I, (3;'0- F <pO', for <Psel(r,t/>oo-)O' E
Tji+I \Tji. 0

With this lemma the proposition can be proved as follows: Let Ao, Pgm, and an
epistemic model M of ..40 U Pgm be given. Then Lemma 5.4.3 implies that there
exists a selection function sel such that M satisfies Tjw. By Observation 5.2.8 there
exists an epistemic model M' ~ r(D) of TjW with M ~ M' . Proposition 5.4.1
implies that M' satisfies ..40 U Pgm. The maximality of M as an epistemic model of
Ao U Pgm implies M = M'. Hence, M is an epistemic model of TjW, too. 0

The soundness result (Proposition 5.4.1) cannot be strengthened such that each
epistemic model of T jW is also an epistemic model of Ao U Pgm as the following
example shows.

Example 5.4.4 Let p '"'-+ alb and q '"'-+ bla be a program and Ao = {p, q}. Then
Tjw= {p, q, a, b} , for some selection function. But, the epistemic models of TjW do not
correspond to maximal epistemic interpretations satisfying Al, because already the
smaller fact bases {p, q, a} and {p, q, b} are sound answers that have larger epistemic
models. 0

65

In the general ca.se, it is computationally very expensive (in an informal sense)
to check whether a selection function leads to a computed answer that is redundant
in a way analogue to the example. For each formula that may be added to the fact
ba.se it would be necessary to check, whether one of the alternatives of this formula
is already entailed by the fact ba.se and, even worse, it would have to be checked
whether the newly introduced formula makes previous selections obsolete because
the new fact ba.se would entail another alternative.

Example 5.4.5 Consider, Ao := {p, q} with the rules p ~ alb and q ~ b. Now
a.ssume that the first rule is considered first and that a ha.s been selected. In a later
stage of the computation when the second rule is considered the first choice gets
obsolete since at this moment it gets obvious that b is necessarily contained in the
computed answer. 0

5.5 Relation to Horn Logic and CLP Formalisms

In this section, it will first be shown how Horn logic programs can be translated to
the epistemic rule formalism. The section concludes by discussing the relation to
Q.LP languages a.s described in [Hohfeld and Smolka, 1988; Jaffar and La.ssez, 1986J.
Note that the primary intention for the translations developed in this section, is to
provide the reader with a better intuition of the capabilities of the rule formalism
and to demonstrate how goal-directed and data-driven inferences can be represented,
in principle.

5.5.1 Some Relations to Horn Logic

If either bottom-up, or top-down rea.soning is a.ssociated with the rules this oper­
ational a.spect can be represented in the epistemic formalism. First note that a
Herbrand term f(tl, t2) can be represented by f(Xl, X2), Xl = t I , X2 = t2. So, in
order to represent Horn logic programs, it suffices to consider a condition formalism
with the following kind of formula.s:

1. Atoms of the form P(Xl'· .. ,xn) where the Xi are pairwise different variables
and p is a predicate name.

2. Equations Xl = X2 and Xo = f(Xl,· .. ,xn) where the Xi are pairwise different
variables and f is. an n-ary function symbol.

These formula.s are interpreted a.s usual in first-order logic with equality. Note
that a fact ba.se A entails p(Xl, ... ,xn) if p(Xl, ... ,Xn) E A.

66

Top-down Rules

Let be given a Horn logic program and an n-ary predicate p where

p(x) +- G1 V ... V Gn

is the homogeneous formS of the rules defining the predicate p. These rules are then
translated to a single rule p(x) "-+ G~I" 'IG~ where each Gi is obtained from G t by
translating terms into sets of equations.

Let a goal G and substitution (J' be given. Then (J' is a correct answer substitution
for G [Lloyd, 1987] iff there exists a selection function sel such that Tsel jW is finite
and (J' restricted to the variables in G can be extended to a unifier of Tseljw.

Example 5.5.1 The append program

append(X, Y, Z) +- X = nil, Y = Z.
append(X, Y, Z) +- X = cons(Car, Cdr),

Z = cons(Car, Z'),
append(Cdr, Y, Z').

is translated into

append(X, Y, Z) "-+ X = nil, Y = Z
I X = cons(Car, Cdr),

Z = cons(Car, Z'),
append(Cdr, Y, Z') .

For the fact base (i.e., query) append(X, Y, Z), X = cons(A, nil), Y = cons(C, D) the
applications of the T operator add the following sets (for an appropriate selection
function):

1. Selecting the second (alternative of the) head, the formulas

X = cons(Car, Cdr), Z = cons(Car, Z')' append(Cdr, Y, Z')

are added. Together, with the initial query this would imply Car = A, Cdr =
nil, Z = cons(A, Z').

2. Selecting the second head again would lead to an inconsistency whereas select­
ing the first head adds Cdr = nil, Y = Z'.

At this point T gets stable and a most general unifier for the equations in the fact
base would assign cons(A, cons(C, D)) to Z. 0

If all predicates are translated in this manner, all queries are answered just as if
SLD resolution would have been used-with one difference: All atoms and conditions
on variables occurring in the SLD-derivations are kept and the intermediate goals are
considered as sets.

8For example, the homogeneous form of p(a) +- G, p(b) +- G' is p(X) +-- ((X = a 1\ G) V (X =
b 1\ G')) where X is a fresh variable, not occurring in G or G'.

67

Bottom-up Rules

In this case the rules have to be range restricted (i.e., each variable in the head is
bound in the body). 9 Each rule H ~ G is just translated to G ~ H. Obviously,
then the operational semantics of the epistemic rule formalism directly implements
naive bottom-up computation.

See [Hinkelmann, 1993] for a more evolved discussion of consequence finding
strategies [Slagle et al., 1969; Minicozzi and Reiter, 1972; Inoue, 1991] with mixed
top-down/bottom-up computation in the context of logical programming.

5.5.2 Relation to CLP

In the CLP schema proposed in [Hohfeld and Smolka, 1988] and refined in [Smolka,
1989] a CLP clause is of the form

po(Xo) ~ Pl(xd,'" ,Pn(xn)&¢ (5.2)

where Pi are "relational predicates", Xi are tuples of pairwise different variables, and
¢ is a constraint (i.e., a formula of a first-order logic satisfying certain requirements).
Atoms over relational predicates and constraints are disjoint classes of formulas.
A query to a set of such clauses is a conjunction of atoms and constraints. The
operational semantics (see, for example, [Smolka, 1989]) then tries to enumerate
constraints such that if a variable assignment of a model of the program satisfies an
answer constraint, the query is satisfied, too. If for a query, the operational semantics
detects in finite time that there is only the trivial answer ..i that entails the query,
the query belongs to the finite failure set of the program.

Relational versus Constraint Predicates

In this formalization of CLP the knowledge engineer is forced to decide which portion
of knowledge to represented by which kind of predicates. More recent CLP formalisms
(see for example [Wurtz et ai., 1993]) tend to blur the distinction between these
two kinds of predicates-the formalisms only deals with constraints. The semantics
may then be defined in terms of a closure of certain constraint propagation and
simplification operations. These formalisms can also be given a semantics based on
classical logic. In general, the operational semantics is sound, but not complete with
respect to these semantics.

The rule formalism introduced here, is also uniform in the sense that there is
only one class of formulas: condition formulas. But here, this is also reflected by the
model-theoretic semantics.

9To relax this requirement, explicit universal quantification of the variables in a fact base would
be necessary. See also the note on (filtering' after Definition 5.2.6.

68

Translation

The CLP clauses defining a predicate of a CLP program P, can be translated analogue
to the case of top-down rules in Section 5.5.1 into an epistemic program P'. I.e., the
homogeneous form of a predictate definition10

(5.3)

is translated into

(5.4)

The entailment test is defined as follows: A fact base A entails p(x) :iff p(x) E A.
The consistency test is just the consistency test of the CLP formalism. ll

Observation 5.5.2 Let P be a eLP program and G a eLP goal. If pi and G' are
the respective translations then G belongs to the finite failure set of P iff G' U pi does
not have an epistemic model. 0

Note that a condition formalism is always compact. Hence, the above observa­
tion can only be made for CLP formalisms with a compact constraint formalisms.
Equations of Herbrand terms which are only interpreted over Herbrand terms (as in
Prolog) do not induce a compact constraint formalisms: The set of equations

(5.5)

is inconsistent although each finite subset is consistent.

5.6 Integrating Terminological Reasoning, Con­
crete Domains and the Rule Formalism

In this section it is shown how the generic rule scheme can be combined with the
generic terminological formalism ALCFP(V). After some preliminary discussion how
ALCFP(V) can be considered as a condition formalism (cf. Section 5.6.1) the rule
scheme is applied to ALCFP(R). On the basis of this three layered formalism (rules
on top of a terminological formalism on top of concrete domains) the representation
and reasoning demands left open in Section 4.2 are reconsidered in Section 5.6.2. In
particular, it is demonstrated how aggregation, derived attributes, and sequences can
be dealt with.

IOThe Gi are conjunctions of relational predicates with pairwise different variables, and the <Pi

are constraint formulas .
11 More precisely, the relational predicates have to be dropped before the consistency test can be

applied to the constraints .

69

5.6.1 Application of the Scheme to ALCFP(V)

The formulas of the condition formalism are finite A-boxes. More precisely, a fact
base is a set of generalized membership assertions where the occurring objects are
considered as variables. An alternative in a head is also a collection of generalized
membership assertions. Premises are filtering12 A-boxes (i.e., also collections of gen­
eralized membership assertions) which are rooted by some objects Yb··· , Yn. These
objects are the free variables in the premise. 13

According to Chapter 3 the domain of a terminological interpretation is divided
into disjoint sets: an abstract domain DOMI and a concrete domain DOMv. To avoid
a name clash with the domain of an interpretation of a condition formalism the
abstract domain is denoted by DOMI,a from here on. In the original definition the
set DOMv remains the same for a given concrete domain V and does not depend
on T. This conflicts with the definition of an admissible interpretation domain of a
condition formalism.

Hence, in the context of the rule formalism an interpretation domain is of the
form DOMI,a U DOMI,V and is denoted by DOMI. Note that the concrete domain is
denoted by DOMI,V to express that it depends on T. It is also required that the
'abstract domain' DOMIo,a and the 'concrete domain' DOMI,V are disjoint, which is
not problematic with respect to the definition of a condition formalism. The relation
of DOMv to DOMI,V is established by requiring that for each interpretation there
is a bijection 7rI : DOMv --+ DOMI,V and the interpretation of a concrete predicate
P(Xl,···,Xn) is defined by pr := {(el7r,···,en 7r)1 (el,···,en) E pV}. With these
modifications, the domain of DOMI can still be a partition with infinite equivalence
classes, as it is required by the definition of an epistemic interpretation.

The definition of a rule requires that the premise should be filtering. An example
of a premise that is not filtering is x : T, if DOMv = 0. The more complex premise
x : (T U't:I€.V) is not filtering also if DOMv #- 0. A premise </J is not filtering with
respect to a fact base A and a variable x E V if there exists a substitution u such
that A entails </Ju and xu is a fresh variable. But a premise </J is filtering with respect
to a variable and all fact bases, for example,

• if x is a member of a concept C that is not equivalent to x : (T U VE.V),

• if x occurs in a concrete or abstract predicate assertion,

• if x occurs in a role/attribute filler assertion.

Theorem 3.5.7 implies that the A-box consistency test may check effectively
whether a fact base is consistent and that the A-box subsumption test may check
effectively whether a fact base A entails an instantiated premise </Ju. Hence, the rule

12 Discussed belowo
13To avoid writing quantifiers, objects in the premise that are not intended to participate in

rooting the A-box may be marked by a leading "_".

70

formalism instantiated with ALCFP(1)) where 1) is an admissible concrete domain
can be implemented, for example, as sketched in Section 5.1.1.

5.6.2 Limitations Revisited

To reconsider the limitations of Section 4.2 the rule scheme is applied to ALCFP(n)
where n is the concrete domain of real numbers. With the additional expressiveness
the representation and reasoning requirements left open can be satisfied. It should
be noted that the rule formalism is a semidecidable formalism. Hence the knowledge
engineer is responsible of the termination of the inference algorithms for the intended
queries. This task is facilitated by the easy to understand, intuitive operational
semantics of the rule formalism and the fact that the terminological reasoning steps
initiated by the rule level always terminate and have a declarative semantics.

Aggregation

The problem is to formulate when objects are aggregated and to introduce an object
that corresponds to an aggregate when the condition of an aggregation are satisfied.
In the example of Section 4.2.1 two truncated cones have to be aggregated if they
are neighbored. This can be expressed by the following rule:

X : truncone /\
Y : truncone /\
(X, Y) : neighbored "-+ (N, X) : left /\

(N, Y) : right
(5.6)

If this rule is applied to the A-box comprising (4.1) and (4.2), a new object N would
be introduced that can be classified as a rshoulder.

Sometimes one would like to represent that an aggregate is completely determined
by its components. In the example this can be done by the following rule, which would
be problematic if the terminological formalism have had a unique-name assumption.

(Bb Lt) : left /\ (BI' Rd : right /\
(B2' L 2) : left /\ (B2, R2) : right /\
LI = L2 /\ RI = R2 "-+ BI = B2 (5.7)

Derived Attributes

Similar to aggregation, it can be formulated in the premise of a rule when a new
attribute or role filler has to be introduced. In the example of Section 4.2.2 the
problem is to introduce height and width of a biconic once it is known that it is a
shoulder. All that has to be done is to add the following simple rule.

B : shoulder ~ B : rshoulder-with-hw (5.8)

Note that it is not necessary to know the values of the radii and the centers of the
involved truncated cone.

71

Sequences

It has already been shown in Section 4.2.3 how it can be represented that consecutive
truncated cones in the sequence are connected. Since rules may be recursive, the
varying length aspect of a sequence can easily be represented, here. The following
rule is a definition of the concept 'sequence of truncated cones' from a goal directed
point of view a la Prolog.

S : seq-of-tc 'Vt (S, H) : head 1\

H : truncone 1\

S: last
S : connected 1\

(S, H) : head 1\

(S, S') : tail 1\

H : truncone 1\

S' : seq-of-tc

(5.9)

According to the operational semantics a given fact B : seq-of-tc is recursively ex­
panded. Using terminological constructs a much more compact definition can be
obtained:

S : seq-of-tc 'Vt S: connected 1\

S : :3head.truncone 1\

S : Vtail.seq-of-tc

(5.10)

The definition of an 'ascending sequences of truncated cones' aseq-of-tc is analogue:

S: aseq-of-tc 'Vt S: connected 1\

S : :3head.asc-tc 1\

S : Vtail.aseq-of-tc

(5.11)

If one is interested in finding sequences in a given fact base from elementary data,
this can be represented by the following two (production rule-like) rules.

H : truncone 'Vt (S, H) : head 1\

S : seq-of-tc 1\

S: last

H : truncone 1\

S' : seq-of-tc 1\

(S', H') : head 1\

(H, H') : neighbored 'Vt S: seq-of-tc 1\

(S, H) : head 1\

(S, S') : tail

(5.12)

Note that these rules contain more knowledge then the 'goal-directed versions' (5.9
,5.10). They explicitly represent (in the premise of the second rule) when a truncated

72

cone and an already existing sequence of truncated cones have to be aggregated to a
longer sequence and they describe in the head what has to be added to the fact base
for aggregation.

It should be noted that the reversed rules (5.13) of (5.12) can also be used to
traverse an existing sequence of truncated cones similar to (5.9). The difference is
that the reversed rules (5.13) terminate in more cases.

(S, H) : head /\
S : seq-of-tc /\
S : last ~ H : truncone

S : seq-of-tc /\
(S, H) : head /\
(S, S') : tail ~ H : truncone /\

S' : seq-of-tc /\
(S', H') : head /\
(H, H') : neighbored

(5.13)

However, the specialization of the goal-directed version of the definition of' a sequence
of truncated cones' to 'an ascending sequence of truncated cones' is very simple. If
the rules (5.12), which encode the aggregation knowledge, are in the program, it is
sufficient to add the following rule:

S : Vtail.aseq-of-tc /\
S : Vhead.asc-tc ~ S : aseq-of-tc (5.14)

73

Chapter 6

Summary

In his invited talk at the 8th National Conference on AI in 1990 [Brachman, 1990] Ron
Brachman argued that the development of "unified reasoners" is one potential high­
light of the "future of knowledge representation" (p. 1089). Similarly, "incomplete
reasoners" and "expressiveness vs. tractability" are mentioned in a list of important
open research problems (p. 1090). This thesis has settled research on "unified rea­
soners" in a subfield of symbolic, logic-oriented knowledge representation to a certain
extent. Terminological knowledge representation and reasoning can now be utilized
for more realistic applications as an integral component of a hybrid knowledge rep­
resentation formalism.

The structure of the thesis can be understood on the basis of the following simple
observation: the expressiveness of a decidable knowledge representation formalism is
limited.

Hence it has first been explored how the expressiveness of terminological for­
malisms could be maximized with respect to relevant representation demands of
applications under the global requirement of decidable inferences. After a certain
optimum has been found (for instance, the terminological formalism ALCFP(V)), the
idea was to delegate the remaining representation demands that could not be satisfied
so far to an embedding formalism that is computationally complete.

For this purpose a scheme has been developed that constructs for a given de­
cidable logic formalism CF satisfying certain requirements (such as ALCFP(V)) a
computationally complete rule formalism that contains CF as an integral component.
In this generic rule formalism data-driven (bottom-up) and goal-directed (top-down)
rule inferences have been integrated, because

• rule-based knowledge representation is a centerpiece of symbolic, logic-oriented
knowledge representation,

• both data-driven and goal-directed inferences occur in realistic applications,
and

• rules are suitable to represent varying-size aspects, which were problematic for
terminological systems.

74

In the generic rule formalism the reasoning direction of each portion (so to say) of
knowledge is explicit. This knowledge about reasoning direction constrains the search
space and enables more efficient reasoning than in approaches where the embedding
system is a general purpose theorem prover as for example in [Biirckert, 1991] or
[Brachman et al., 1983].

The price for the enhanced efficiency is the incompleteness of the operational
semantics with respect to a reading of the rules in classical first-order logic. To com­
pensate this deficit a model-theoretic semantics based on a minimal belief logic has
been developed that characterizes this "incomplete reasoner". Existing formaliza­
tions of minimal belief logics for the first-order case had surprising deficits, which
had to be resolved to obtain soundness and completeness results.

It should be noted that the mechanical engineering application considered in the
ARC-TEC Project [Bernardi et al., 1991] at the DFKI has been a rich, valuable source
of representation and reasoning problems. The need for a simultaneous treatment of
these problems in one application has led to this more integrated view of knowledge
representation.

The following list provides pointers to the technical results of the thesis.

• The subsumption problem is undecidable for the conventional concept language
ALCF extended by certain concept-forming operators for role interaction that
are based on = and =J. and generalize attribute (dis)agreements in a manner
different than role-value maps (Theorem 3.3.3).

• Generic decision procedures for the reasoning services of a concept language
that is parametrized by a concrete domain and supports role interaction by at­
tribute (dis)agreements, abstract predicates and concrete predicates (Theorems
3.4.5, 3.5.7, and algorithm in Figure 3.5).

• A new reasoning service, called A-box subsumption comparing A-boxes with
respect to generality (Definition 3.5.3). A-box subsumption is undecidable in
general (Proposition 3.5.4). It is decidable for rooted A-boxes (Definition 3.5.5).
A-box subsumption is needed in the context of the generic rule formalism.

• A rule schema (Section 5.3) that is parametrized by a condition logic (i.e.,
a first-order logic satisfying certain requirements) and that integrates data­
driven and goal-directed reasoning on the basis of the inference algorithms of
the condition formalism.

• A "really" (Section 5.1.2) minimal belief logic (Section 5.2) for the first-order
case wi th modal operator B.

• Soundness and completeness (Section 5.4) of the operational semantics of the
rule schema with respect to a model-theoretic semantics based on the "really"
minimal belief logic.

75

• A declarative integration of terminological, constraint-based, data-driven and
goal-directed reasoning (Section 5.6) obtained by an application of the rule
scheme to the assertional formalism of a terminological formalism parametrized
by a concrete domain.

76

Bibliography

[Abecker and Hanschke, 1993] A. Abecker and P. Hanschke. TaxLog: A flexible ar­
chitecture for logic programming with structured types and constraints. In Notes
of the Workshop on Constraint Processing held in conjunction with CSAM'93,
Petersburg, 1993.

[Alt-Kaci and Nasr, 1986] H. Alt-Kaci and R. Nasr. LOGIN: A logic programming
language with built-in inheritance. The Journal of Logic Programming, 3, 1986.

[Art-Kaci and Podelski, 1991] H. Ait-Kaci and A. Podelski. Towards a meaning of
LIFE. In J. Maluszyllski and M. Wirsing, editors, Proceedings of the 3rd Int.
Symposium on Programming Language Implementation and Logic Programming,
PLILP91, Passau, Germany, pages 255-274. Springer Verlag, August 1991.

[Baader and Hanschke, 1991a] F. Baader and P. Hanschke. A scheme for integrating
concrete domains into concept languages. In Mylopoulos and Reiter [1991].

[Baader and Hanschke, 1991b] F. Baader and P. Hanschke. A scheme for integrating
concrete domains into concept languages. Research report RR-91-10, DFKI, 1991.
Extended version with proofs and algorithms.

[Baader and Hanschke, 1992J F. Baader and P. Hanschke. Extensions of concept
languages for a mechanical engineering application. In Ohlbach [1992J.

[Baader et al., 1991J F. Baader, H.-J. Burckert, B. Nebel, W. Nutt, and G. Smolka.
On the expressivity of feature logics with negation, functional uncertainty, and
sort equations. Technical report, DFKI, 1991.

[Baader, 1990J F. Baader. Terminological cycles in KL-ONE-based knowledge repre­
sentation languages. In Proceedings of the Eighth National Conference on Artificial
Intelligence, volume 2, pages 621-626, 1990.

[Baader, 1991J F. Baader. Augmenting concept languages by transitive closure of
roles: An alternative to terminological cycles. In Mylopoulos and Reiter [1991J .

[Bernardi et al., 1991J A. Bernardi, H. Boley, K. Hinkelmann, P. Hanschke,
C. Klauck, O. Kuhn, R. Legleitner, M. Meyer, M. M. Richter, G. Schmidt,
F. Schmalhofer, and W. Sommer. ARC-TEC: Acquisition, Representation and

77

Compilation of Technical Knowledge. In Expert Systems and their Applications:
Tools, Techniques and Methods, 1991.

[Bernardi et al., 1992a] A. Bernardi, C. Klauck, and R. Legleitner. FEAT-REP:
Representing feature languages in CAD/CAM. In Ko and Tan [1992].

[Bernardi et al., 1992b] A. Bernardi, C. Klauck, and R. Legleitner. PIM: Skeletal
plan based CAPPo In Ko and Tan [1992].

[Boley et al., 1993] H. Boley, P. Hanschke, K. Hinkelmann, and M. Meyer. COLAB:
A hybrid knowledge representation and compilation laboratory. Annals of Opera­
tions Research, 1993. forthcoming.

[Boone, 1959] W. W. Boone. The word problem. Ann. of Mat., 1959.

[Borgida et al., 1989] A. Borgida, R. Brachman, D. McGuinness, and L. Resnick.
CLASSIC: A structural data model for objects. In International Conference on
Managment on Data. ACM SIGMOD, 1989.

[Brachman and Schmolze, 1985] R. J. Brachman and J. G. Schmolze. An overview
of the KL-ONE knowledge representation system. Cognitive Science, 9(2), 1985.

[Brachman et al., 1983] R. J. Brachman, R. E. Fikes, and H. J . Levesque. KRYP­
TON: Integrating terminology and assertion. In Proceedings of the Third National
Conference on Artificial Intelligence, pages 31-35. AAAI, August 1983.

[Brachman et al., 1991] R. Brachman, D. McGuinness, P. Pate-Schneider, and
L. Resnick. Living with CLASSIC: When and how to use a KL-ONE-like lan­
guage. In Principles of Semantic Networks. Morgan Kaufmann, 1991.

[Brachman, 1990] R. 1. Brachman. The future of knowledge representation. In
Proceedings Eight National Conference on Artificial Intelligence, volume two, pages
1082-1092. AAAI, The MIT Press / AAAI Press, 1990.

[Biirckert, 1991] H.-J. Biirckert. A Resolution Principel for a Logic with Restricted
Quantifiers. Number 568 in LNAI. Springer, 1991.

[Clancey, 1985] W. J. Clancey. Heuristic classification. Artificial Intelligence, 27:289-
350, 1985.

[Collins, 1975] G. E. Collins. Quantifier elimination for real closed fields by cylin­
drical algebraic decomposition. In 2nd Conference on Automata Theory & Formal
Languages, volume 33, 1975.

[Dershowitz and Manna, 1979] N. Dershowitz and Z. Manna. Proving termination
with multiset orderings. Communications of the ACM, 8(22):465-476, 1979.

78

[Donini et al., 1991] F. Donini, D. Lenzerini, D. Nardi, and W. Nutt. Adding epis­
temic operators to concept languages. In Mylopoulos and Reiter [1991].

[Donini et al., 1992] F. Donini, D. Lenzerini, A. Schaerf, and W. Nutt. Adding epis­
temic operators to concept languages. In Nebel et al. [1992].

[Edelmann and Owsnicki, 1986] J. Edelmann and B. Owsnicki. Data models in
knowledge representation systems: A case study. In GWAI-86 and 2. Osterre­
ichische Artificial-Intelligence Tagung, pages 69-74. Springer, 1986.

[Firebaugh, 1988] M. W. Firebaugh. Artificial Intelligence, A Knowledge-Based Ap­
proach, chapter 13.3. PWS-KENT Publisher Company, Boston, 1988.

[Fruhwirth and Hanschke, 1993] T. Friihwirth and P. Hanschke. Terminological rea­
soning with constraint handling rules. In Position Papers for the First Workshop
on Principles and Practice of Constraint Programming, Newport, Rhode Island,
April 1993. A preliminary version is available as DFKI Document DD-93-01.

[Hanschke and Hinkelmann, 1992] P. Hanschke and K. Hinkelmann. Combining ter­
minological and rule-based reasoning for abstraction processes. In Ohlbach [1992].

[Hanschke and Meyer, 1992] P. Hanschke and M. Meyer. An alternative to ()­
subsumption based on terminological reasoning. In C. Rouveirol, editor, Workshop
on Logical Approaches to Machine Learning, ECAI 92, Vienna, August 1992.

[Hanschke and Wurtz, 1993] P. Hanschke and J. Wurtz. Satisfiability of the smallest
binary programm. Information Processing Letters, 45, April 1993.

[Hanschke, 1992] P. Hanschke. Specifying role interaction in concept languages. In
Nebel et al. [1992].

[Hinkelmann, 1993] K. Hinkelmann. Consequence finding and logic program-
ming. Presented at the workshop "Neuere Entwicklungen der Deklarativen KI­
Programmierung" held at 17. Fachtagung fur Kunstliche Intelligenz, 1993. A re­
vised version will be available as DFKI report.

[Hohfeld and Smolka, 1988] M. Hohfeld and G. Smolka. Definite relations over con­
straint languages. Lilog-Report 53, IBM Deutschland, October 1988.

[Hollunder et al., 1990] B. Hollunder, W. Nutt, and M. Schmidt-SchauB. Subsump­
tion algorithms for concept description languages. In 9th European Conference on
Artificial Intelligence (ECA 1'90) , 1990.

[Inoue, 1991] K. Inoue. Consequence-finding based on ordered linear resolution. In
Mylopoulos and Reiter [1991].

79

[Jaakola, 1990] J. Jaakola. Modifying the simplex algorithm to a constraint solver. In
P. Deransart and J. Maluszynski, editors, Programming Languages Implementation
and Logic Programming, Linkoping, Sweden, 1990. Springer-Verlag.

[Jaffar and Lassez, 1986] J. Jaffar and J.-L. Lassez. Constraint logic programming.
Technical report, Monash University, Department of Computer Science, June 1986.

[Jaffar et al., 1990] J. Jaffar, S. Michaylov, P. J. Stuckey, and Y. R. H. C. The
CLP(R) language and system. Technical Report CMU-CS-9-181, Carnegie Mellon
University, 1990.

[Klauck et al., 1991] C. Klauck, R. Legleitner, and A. Bernardi. FEAT-REP: Rep­
resenting features in CAD/CAM. In 4th International Symposium on Artificial
Intelligence: Applications in Informatics, Cancun, Mexiko, 1991. An extended
Version is also available as Research report RR-91-20, DFKI.

[Ko and Tan, 1992] N. W. M. Ko and S. T. Tan, editors. Proc. of the international
conference on manufacturing automation. University of Hong Kong, August 1992.

[Levesque and Brachman, 1987] H. J. Levesque and R. J. Brachman. Expressivity
and tractability in knowledge representation and reasoning. Computational Intel­
ligence, 1987.

[Levesque, 1984] J. Levesque, H. Foundations of a functional approach to knowledge
representation. Artificial Intelligence, 1984.

[Lifschitz, 1991] V. Lifschitz. Minimal belief and negation as failure. In Mylopoulos
and Reiter [1991].

[Lloyd, 1987J J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
Heidelberg, New York, 1987.

[Loos and Weispfenning, 1990] R. Loos and V. Weispfenning. Applying linear quan­
tifier elimination. Technical report, Wilhelm Schickard-Institut fur Informatik,
Universitat Tiibingen, Germany, 1990.

[MacGregor, 1988] R. MacGregor. A deductive pattern matcher. In AAAI, pages
403-408, 1988.

[Minicozzi and Reiter, 1972J E. Minicozzi and R. Reiter. A note on linear resolution
strategies in consequence-finding. Artificial Intellligence, 3:175-180, 1972.

[Mylopoulos and Reiter, 1991] J. Mylopoulos and R. Reiter, editors. 12th Interna­
tional Joint Conference on Artificial Intelligence, 1991.

[Nebel et al., 1992] B. Nebel, C. Rich, and W. Swartout, editors. Third International
Conference on Principles of Knowledge Representation and Reasoning (KR '92).
Morgan Kaufmann, 1992.

80

[Nebel, 1990] B. Nebel. Reasoning and Revision in Hybrid Representation Systems,
volume 422 of LNAl. Springer, 1990.

[Ohlbach, 1992] H.-J. Ohlbach, editor. Proceedings of the 16th German AI-
Conference (GWAI-92), volume 671 of LNAI. Springer, April 1992.

[Patel-Schneider, 1989] P. Patel-Schneider. Undecidability of subsumption in NIKL.
Artificial Intelligence, 39(2), 1989.

[Reiter, 1990] R. Reiter. On asking what a database knows. In Computational Logi(
Symposium Proceedings, November 1990.

[Schmalhofer et al., 1991] F. Schmalhofer, O. Kuhn, and G. Schmidt. Integrated
knowledge acquisition from text, previously solved cases and expert memories and
expert memories. Applied Artificial Intelligence, 5:311 - 337, 1991.

[Schmidt-SchauB and Smolka, 1991] M. Schmidt-SchauB and G. Smolka. Attributiw
concept descriptions with complements. Journal of Artificial Intelligence, 48(1):1-
26, 1991.

[Schmidt-SchauB, 1989] M. Schmidt-SchauB. Subsumption in KL-ONE is undecid­
able. In First International Conference On Principles of Knowledge Representation
and Reasoning, 1989.

[Slagle et al., 1969] J. R. Slagle, C. 1. Chang, and R. C. T. Lee. Completenes~
theorems for semantic resolution in consequence-finding. In Proc. of the 1 st IJCAI
pages 281-285, 1969.

[Smolka, 1989] G. Smolka. Logic Programming over Polymorphically Order-SorteG
Types. PhD thesis, University of Kaiserslautern, Germany, 1989.

[Steinle, 1993] F. Steinle. HAMLET: Erweiterung eines Constraint-Systems urn
Negation und Disjunktion und dessen Anbindung an eine Konzeptbeschrei­
bungssprache, March 1993. Projektarbeit, FB Informatik, Universitat Kaiser­
slautern. In German.

[Tarski, 1951] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
U. of California Press. Berkley, 1951.

[van Hentenryck, 1989] P. van Hentenryck. Constraint Satisfaction in Logic Pro·
gramming. MIT Press, Cambridge, Ma., 1989.

[Weispfenning, 1988] V. Weispfenning. The complexity of linear problems in fields .
Journal of Symbolic Computation, 5, 1988.

[Wurtz et al., 1993] J. Wurtz, M. Henz, and G. Smolka. Oz - a programming lan­
guage for multi-agent systems. In IJCAI'93, 1993. forthcoming.

81

Deutsches
Forschungszentrum
fOr KOnstllche
Intelllgenz GmbH

DFKI Publikationen

Die folgenden DFKI Ver6ffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen k~nnen von der oben angegebenen
Adresse oder per anonymem ftp von ftp.dfki.uni­
kl.de (13l.246.241.100) unter pub/Publications
bezogen werden.
Die Berichte werden. wenn nicht anders gekenn­
zeichnet. kostenlos abgegeben.

DFKI Research Reports

RR-92-4S
Elisabeth Andre. Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth Andre. Wolfgang Finkler. Winfried Gra./.
Thomas Rist. Anne Schauder. Wolfgang Wahlster:
WIP: The Automatic Synthesis of Multimodal
Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach towards
Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel. Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-S0
Stephan Busemann:
Generierung natiirlicher Sprache
61 Seiten

RR-92-S1
Hans-JurgenBiirckert. Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-S2
Mathias Bauer. Susanne Biundo. Dietmar Dengler.
Jana Koehler. Gabriele Paul: PHI - A Logic-Based
Tool for Intelligent Help Systems
14 pages

DFKI
-Bibliothek­
PF 2080
67608 Kaiserslautem
FRO

DFKI Publications

The following DFKI publications or the list of
all published papers so far are obtainable from
the above address or per anonymous ftp
from ftp.dfki.uni-kl.de (131.246.241.100) under
publPublications.
The reports are distributed free of charge except if
otherwise indicated.

RR-92-S3
Werner Stephan. Susanne Biundo:
A New Logical Framework for Deductive Planning
15 pages

RR-92-S4
Harold Boley: A Direkt Semantic Characterization
ofRELFUN
30 pages

RR-92-SS
John Nerbonne. Joachim Laubsch. Abdel Kader
Diagne. Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-S6
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-S8
Franz Baader. Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-S9
Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults. Preorder Semantics and
Circumscription
19 pages

RR-93-02
Wolfgang Wahlster. Elisabeth Andre. Wolfgang
Finkler. Hans-Jiirgen Profitlich. Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader. Berhard Hollunder. Bernhard
Nebel. Hans-Jargen Profitlich. Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Tenninological Representation Systems
28 pages

RR-93-04
Christoph Klauck. Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-0S
Franz Baader. Klaus Schulz: Combination Tech­
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jilrgen Bilrckert. Bernhard Hollunder. Armin
Laux: On Skolemization in Constrained Logics
40 pages

RR-93-07
Hans-Jargen Barckert. Bernhard Hollunder. Armin
Laux: Concept Logics with Function Symbols
36 pages

RR-93-08
Harold Boley. Philipp Hanschke. Knut Rinkelmann.
Manfred Meyer: COLAB: A Hybrid Knowledge
Representation and Compilation Laboratory
64 pages

RR-93-09
Philipp Hanschke. Jorg Wurtz:
Satisfmbility of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit. Francesco M. Donini. Andrea
Schaer[: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel. Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren. Andreas Podelski.RalfTreinen:
Equational and Membership Constraints for
Infinite Trees
33 pages

RR-93-1S
Frank Berger. Thomas Fehrle. Kristof K16ckner.
Volker SchlJlIes. Markus A. Thies. Wolfgang
Wah/ster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka. Martin Henz. Jorg Wartz: Object­
Oriented Concurrent Constraint Programming in
Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Tenninological Cycles and the
Propositional J.l-Calculus
32 pages

RR-93-20
Franz Baader. Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Fonnalisms
34 pages

RR-93-22
Manfred Meyer. Ji5rg Maller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Plannmg
17 pages

RR-93-23
Andreas Dengel. Ottmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch. Andreas Dengel:
Document Highlighting -
Message Classification in Printed Business Letters
17 pages

RR-93-2S
Klaus Fischer. Norbert Kuhn: A DAI Approach to
Modeling the Transportation Domain
93 pages

RR-93-26
Ji5rg P. Maller. Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger. John Nerbonne.
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-Agent
Worlds viaTerminological Logics
35 pages

RR-93-33
Bernhard Nebel. Jana Koehler:
Plan Reuse versus Plan Generation: A Theoretical
and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley. Fran,ois Bry. Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI­
Programmierung - Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of25 DM (or 15 US-$).

RR-93-36
Michael M. Richter. Bernd Bachmann. Ansgar
Bernardi. Christoph Klauck. Ralf Legleitner.
Gabriele Sclunidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini. Maurizio Lenzerini. Daniele
Nardi. Werner NUll. Andrea Schaer[:
Queries, Rules and Defmitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LA YLAB: A Constraint-Based
Layout Manager for Multimedia Presentations
9 pages

RR-93-42
Hubert Comon. RalfTreinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-44
Martin Buchheit. Manfred A. Jeusfeld. Werner
NUll. Martin Staudt: Subsumption between Queries
to Object-Oriented Databases
36 pages

RR-93-4S
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

RR-93-46
Philipp Hanschke: A Declarative Integration of
Terminological, Constraint-based, Data-driven,
and Goal-directed Reasoning
81 pages

DFKI Technical Memos

TM-91-1S
Stefan Busemann: Prototypical Concept Fonnation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung eines
Compilers zur Transformation von
Werlcstiiclcreprl1sentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jargen Muller. Jorg Muller. Markus Pischel.
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer. Christoph Globig. Jorg Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kahn. Franz Schmalhofer: Hierarchical
skeletal plan refmement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kuhn. Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production Plans
20 pages

TM-93-02
Pierre Sablayrolles. Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley. Ulrich Buhrmann. Christof Kremer:
Konzeption einer deklarativen Wissensbasis uber
recyclingrelevante Materialien
11 pages

TM-93-04
Hans-Gunther Rein: Propagation Techniques in
W AM-based Architectures - The FIOO-ill
Approach
105 pages

OFKI Oocuments

0-92-23
Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELRJN
51 Seiten

0-92-24
Jurgen MUlier, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

0-92-25
Martin Buchheit: KIassische Kommunikations- und
Koordinationsmodelle
31 Seiten

0-92-26
Enno Tolzmann:
Realisierung eines Werlczeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

0-92-27
Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning in
COLAB
40 pages

0-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Reprlisentation von Nachrichtentypen
56 Seiten

0-93-01
Philipp Hanschke, Thorn Fruhwirth: Tenninological
Reasoning with Constraint Handling Rules
12 pages

0-93-02
Gabriele SchmidJ, Frank Peters,
Gernod Lau.jkOuer: User Manual of COKAM+
23 pages

0-93-03
Stephan Busemann, Karin Harbusch(Eds.):
OFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D-93-04
OFKI Wissenschaftlich-Technischer Jahresbericht
1992
194 Seiten

D-93-05
Elisabeth Andre, Winfried Graf, Jochen Heinsohn,
Bernhard Nebel, Hans-Ju.rgen Profitlich, Thomas
Rist, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages .

D-93-06
Ju.rgen Maller (Hrsg.):
Beitrage zum Grtindungsworkshop der Fachgruppe
Verteilte Kiinstliche Intelligenz Saarbriicken 29.-
30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur
partiellen Textanalyse
53 Seiten

0-93-08
Thomas Kieninger, Rainer Hoch: Ein Generator
mit Anfragesystem fUr strukturierte WOrterbiicher
zur Unterstiitzung von Texterkennung und
Textanalyse
125 Seiten

0-93-09
Hans-Ulrich Krieger, Ulrich Schlifer:
TOL ExtraLight User's Guide
35 pages

0-93-10
Elizabeth Hinkelman, Markus Vonerden,Christoph
J ung: Natural Language Software Registry
(Serond Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Law: (Eds.):
OFKI Workshop on Knowledge Representation
Techniques - Proceedings
88 pages

0-93-12
Harold Boley, Klaus Elsbernd, Michael Herfert,
Michael Sintek, Werner Stein:
RELRJN Guide: Programming with Relations and
Functions Made Easy
86 pages

0-93-14
Manfred Meyer (Ed.): Constraint Processing­
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a
nominal charge of 25 OM (or 15 US-$).

D-93-15
Robert Law:: Untersuchung maschineller
Lemverfahren und heuristischer Methoden im
Hinblick auf deren Kombination zur UntersUltzung
eines Chart-Parsers
86 Seiten

D-93-20
Bernhard Herbig:
Eine homogene Implementierungsebene fUr einen
hybriden Wissensreprlisentationsfonnalismus
97 Seiten

0-93-21
Dennis Drollinger:
Intelligentes Backtracking in Inferenzsystemen am
Beispiel Terminologischer Logiken
53 Seiten

	RR-93-46-0001
	RR-93-46-0002
	RR-93-46-0003
	RR-93-46-0004
	RR-93-46-0005
	RR-93-46-0006
	RR-93-46-0007
	RR-93-46-0008
	RR-93-46-0009
	RR-93-46-0010
	RR-93-46-0011
	RR-93-46-0012
	RR-93-46-0013
	RR-93-46-0014
	RR-93-46-0015
	RR-93-46-0016
	RR-93-46-0017
	RR-93-46-0018
	RR-93-46-0019
	RR-93-46-0020
	RR-93-46-0021
	RR-93-46-0022
	RR-93-46-0023
	RR-93-46-0024
	RR-93-46-0025
	RR-93-46-0026
	RR-93-46-0027
	RR-93-46-0028
	RR-93-46-0029
	RR-93-46-0030
	RR-93-46-0031
	RR-93-46-0032
	RR-93-46-0033
	RR-93-46-0034
	RR-93-46-0035
	RR-93-46-0036
	RR-93-46-0037
	RR-93-46-0038
	RR-93-46-0039
	RR-93-46-0040
	RR-93-46-0041
	RR-93-46-0042
	RR-93-46-0043
	RR-93-46-0044
	RR-93-46-0045
	RR-93-46-0046
	RR-93-46-0047
	RR-93-46-0048
	RR-93-46-0049
	RR-93-46-0050
	RR-93-46-0051
	RR-93-46-0052
	RR-93-46-0053
	RR-93-46-0054
	RR-93-46-0055
	RR-93-46-0056
	RR-93-46-0057
	RR-93-46-0059
	RR-93-46-0060
	RR-93-46-0061
	RR-93-46-0062
	RR-93-46-0063
	RR-93-46-0064
	RR-93-46-0065
	RR-93-46-0066
	RR-93-46-0067
	RR-93-46-0068
	RR-93-46-0069
	RR-93-46-0070
	RR-93-46-0071
	RR-93-46-0072
	RR-93-46-0073
	RR-93-46-0074
	RR-93-46-0075
	RR-93-46-0076
	RR-93-46-0077
	RR-93-46-0078
	RR-93-46-0079
	RR-93-46-0080
	RR-93-46-0081
	RR-93-46-0082
	RR-93-46-0083
	RR-93-46-0084
	RR-93-46-0085
	RR-93-46-0086
	RR-93-46-0087
	RR-93-46-0088
	RR-93-46-0089
	RR-93-46-0090
	RR-93-46-0091
	RR-93-46-0092
	RR-93-46-0093
	RR-93-46-0094
	RR-93-46-0095

