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Philipp Hanschke 

Abstract 

The paper settles a research branch in the realm of logic-oriented, hybrid knowl­
edge representation. Terminological knowledge representation and reasoning can 
now be utilized for more realistic applications as an integral component of a com­
putationally complete, declarative hybrid knowledge representation formalism with 
integrated special-purpose reasoners of concrete domains such as real-closed fields or 
finite-domain constraints. The paper presents technical results exploring the impact 
of "role interaction" on the decidability of the subsumption problem of terminolog­
ical logics. In particular, decision procedures are presented for common reasoning 
problems in an expressive terminological logic that is parametrized by a concrete 
domain. A refined minimal belief logic which avoids certain problems concerning 
the non-propositional case (which occurred surprisingly) is the basis of the model­
theoretic semantics of a very general generic rule formalism integrating goal-directed 
(i.e., top-down) and data-driven (i.e., bottom-up) reasoning in a declarative man­
ner. A mechanical engineering application (production planning of lathes) is used to 
demonstrate how the theoretical results can be employed in realistic applications. 
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Chapter 1 

Introd uction 

In his invited talk at the 8th National Conference on AI in 1990 [Brachman, 1990] Ron 
Brachman argued that the development of "unified reasoners" is one potential high­
light of the "future of knowledge representation" (p. 1089). Similarly, "incoinplete 
reasoners" and "expressiveness vs. tractability" are mentioned in a list of important 
open research problems (p. 1090). This thesis contributes to all of these issues. In 
particular, research on ""unified reasoners" in a subfield of symbolic, logic-oriented 
knowledge representation has been settled to a certain extent. Terminological knowl­
edge representation and reasoning can now be utilized for more realistic applications 
as an integral component of a computationally complete, declarative hybrid knowl­
edge representation formalism with integrated special-purpose reasoners of concrete 
domains such as real-closed fields or finite-domain constraints. 

Concept languages based on KL-ONE are mostly used to represent the termino­
logical knowledge of a particular problem domain on an abstract logical level. In this 
thesis some extensions of terminological formalisms serving demands from realistic 
applications are considered and analyzed with respect to decidabilityof inference ser­
vices, which is a contribution to the issue of "expressiveness vs. tractability" in the 
area of terminological knowledge representation. In particular, Chapter 3 provides 
an overview of concept forming operators dealing with role interaction, such as the 
well known role-value maps. 

Some important representation and reasoning demands can be satisfied by an 
enhanced, generic terminological formalism which is introduced in Chapter 3 and is 
parametrized by a concrete domain (such as real numbers). However, the trade-off 
between expressiveness and tractability imposes significant limitations on the ex­
pressiveness for terminological formalisms (which have decidable reasoning problems 
associated with their inference services). 

To overcome these limitations a generic, semi decidable rule scheme integrating 
data-driven (e.g., production rules) and goal-directed (it la Prolog) reasoning is de­
veloped. Even at this scheme level it is shown how inference algorithms can be 
constructed from the reasoning algorithms of the chosen underlying condition logic, 
which is a first-order language satisfying certain requirements. It is also shown at 
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this scheme level that the inferences are sound and complete with respect to a min­
imal belief logic. This logic had to be modified to become a 'really' minimal belief 
logic, also in the first-order case. This characterization of the operational seman­
tics (which is incomplete with respect to a reading of the rules in classical logic) by 
model-theoretic means is a contribution to the issue of "incomplete reasoners". 

If the generic terminological formalism is instantiated with an admissible con­
crete domain, and the resulting formalism is then inserted into the rule scheme, a 
declarative, hybrid knowledge representation formalism is obtained that integrates 
four essential reasoning paradigms: terminological, constraint-based (in the concrete 
domain), data-driven, and goal-directed. Thus, with these two schemes powedul 
"unified reasoners" for symbolic, logic-oriented knowledge representation can be con­
structed that are accompanied by a declarative semantics. 

Taking a knowledge engineering point of view, the generic hybrid formalism can 
be described in terms of three layers. 

Concrete Domains: This layer provides access to tuned, efficient reasoning algo­
rithms of well understood (concrete) domains. 

Terminological Formalism: On this layer a vocabulary tailored to the application 
domain and grounded in the concrete domains can be developed. The services 
of the terminological formalism aid the knowledge engineer in analyzing his 
definitions and minimizing the number of errors. 

Rules: On this layer the actual knowledge for problem solving can be represented 
on the basis of a "save" vocabulary and efficient special-purpose reasoning 
algorithms contained in the lower layers. 

This perspective reveals that terminological reasoning can be fully integrated in a 
knowledge representation formalism suitable for realistic applications. 

The ARC-TEC project [Bernardi et a/., 1991] at the DFKI has considered a 
production planning problem in the field of mechanical engineering as a testbed 
for AI methodologies. Although it would be possible to present the main results 
of this thesis without any reference to this application, it is used for illustration 
purposes, since the representation and reasoning demands of this application were 
an important driving force for the research. In particular, the experiences made 
during the development and use of the hybrid compilation laboratory COLAB [Boley 
et ai., 1993] in the ARC-TEe project were valuable for the progress of this thesis. 

COLAB comprises declarative components with pragmatic interfaces: a termino­
logical formalism, a constraint system, a forward chaining system and a backward­
chaining system. One challenge for the development of COLAB (and also for the 
thesis) was the requirement that the inference scheme underlying the production 
planning application can be realized. Chapter 2 gives a short introduction to the 
application domain. 
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abstract problem 
heuristic 
match principal solution 

problem solution 

Figure 1.1: The Heuristic Classification Inference Scheme 

1.1 Heuristic Classification 

To demonstrate the results attained in the thesis, the next step is to describe the 
inference scheme underlying the application on a more abstract level. 

It is well known that. experience and heuristics are essential for problem solving 
in realistic domains. Clancey's heuristic classification is a simple inference scheme on 
the knowledge level ([Clancey, 1985], Figure 1.1) reflecting this general observation. 
The scheme comprises three main phases: an abstraction phase, a heuristic match, 
and a refinement phase. Expert systems of various task categories, such as diagnosis, 
configuration, and planning have been based on heuristic classification. In the ARC­
TEC project a variation of Clancey's scheme has been identified as the model of 
expertise in the production planning application (Schmalhofer et ai., 1991]. 

The abstraction phase starts with concrete data (knowledge) of a problem and 
generates an abstract view of the data that contains triggers [Clancey, 1985], (also 
called 'application features' [Klauck et al., 1991]) which are relevant for problem 
solving. Contrarily, the refinement phase collects, combines and instantiates prin­
cipal (partial) solutions into a concrete solution. The heuristic match associates 
triggers in an abstract problem description (the output of abstraction) to principal 
(partial) solutions (the input of refinement). These heuristic associations between 
two different terminologies represent experimental experience and avoid reasoning 
from first principles, which often would cause severe performance problems. 

1.2 The Terminological Approach 

From a more general point of view the problem description produced by abstraction 
is mapped by a heuristic, non-deterministic match to descriptions of partial, principal 
solutions. Hence, description logics play an important role in this inference scheme. 

Terminological formalisms in the tradition of KL-ONE [Brachman and Schmolze, 
1985], also referred to as description logics, concept languages etc., can be used to 
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concepts, representing 
the most specific triggers 

terminological 
object classification 

objects, describing 
concrete problem data 

heuristic 
match 

concepts, representing 
partial solutions 

objects, representing 
the concrete solution 

Figure 1.2: The Inference Scheme with Terminological Formalisms 

represent the terminological knowledge of a particular problem domain on a formal 
basis. A terminological box (T-box) is used to represent concepts which can then be 
applied to objects in an assertional box (A-box). The formalisms provide reasoning 
services such as classification of objects and concepts with respect to a generalization 
hierarchy of concepts (Section 3). 

At first glance the scheme can be implemented in a terminological formalism as 
depicted in Figure 1.2. The initial problem could be represented by objects in the 
A-box. The classification of objects with respect to a terminology of triggers would 
reveal the most specific triggers which apply to this object. Then a heuristic match, 
which could be implemented by trigger rules (e.g., [Brachman et ai., 1991]), would 
associate concepts of a terminology of partial, abstract solutions to the triggers. 
Finally, a consistency test, which expands the concept definitions involved, could 
check the feasibility of the solution. 

Terminological reasoning does not have an intuitive operational semantics. Con­
sequently, it should not be the responsibility of the knowledge engineer to check 
whether all intended queries will terminate in finite time. But these formalisms do 
have an intuitive, precise model-theoretic semantics. Therefore, it has been a research 
goal in the field of terminological knowledge representation to find the -most expres­
sive formalisms with decidable reasoning problems, or even better, with tractable 
inference algorithms (see e.g. [Levesque and Brachman, 1987; Donini et ai., 1991]). 
However the required decidability (tractability) imposes significant limitations on the 
expressiveness of these formalisms. 

Section 2 exhibits some representation demands that occur in the above-mentioned 
mechanical engineering application and various other domains. 

• Role Interaction and Concrete Domains 
It is often the case that properties or roles of an object are not independent. For 
example, a mother is older than her children, or the color of the hair of a good 
model should harmonize with the color of the clothes she is going to present. 
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The relation of the properties and roles in the first example can be described 
in terms of a concrete domain: the predicate < over integers. In the second 
example the interaction is more abstract. Extensions of concept languages for 
both kinds of interaction are discussed in some detail in Chapter 3 . 

• Sequences 
A sequence is composed in a regular manner of a finite, bounded, but previously 
unknown number of smaller entities. 

In Section 4.2 some principal limitations of terminological formalisms are dis­
cussed. It is recalled from [Baader and Hanschke, 1992] that a concept language that 
is capable of representing sequences of finite but unbounded size and that provides 
concrete domains has an undecidable subsumption problem. Other problems are re­
lated to the "part-of" relation and derived attributes which turn out to be relevant 
for abstraction [Hanschke and Hinkelmann, 1992] as well as refinement. 

1.3 The Integrated Approach 

How to overcome the limitations of terminological formalisms? One possibility is to 
combine the advantages of a concept language with respect to terminological knowl­
edge representation and reasoning with the reasoning power of a more expressive but 
semi decidable formalism in a declarative manner. 

Constraint Logic Programming (CLP) systems [van Hentenryck, 1989] provide 
goal-directed, top-down inferences and enhance search performance by means of con­
straint solving and propagation. Hence, these systems can be relevant for refinement. 
But, in general, they do not support terminological reasoning. LOGIN [Ait-Kaci and 
Nasr, 1986], which can be seen as a CLP system, integrates a fixed taxonomy in 
its feature-unification algorithm, which may be considered as a weak form of termi­
nological reasoning. LIFE [Ait-Kaci and Podelski, 1991] is an extension of LOGIN 
that additionally provides functions. Since a function application is evaluated im­
mediately, this may be considered as a data-driven, bottom-up computation. But 
this is very different from data-driven reasoning with multiple-premise production 
rules. Similarly, Oz [Wurtz et ai., 1993], is a constraint programming language inte­
grating goal-directed reasoning with constraint propagation, but it does not directly 
include data-driven inferences with rules of multiple premises, although it may be 
possible to implement this feature using the communication primitives get and put. 
The operational semantics of Oz is sound but not complete with respect to classical 
logic. 

Production rule systems as well as bottom-up parsers and bottom-up logic pro­
gramming systems are suitable for data-driven abstraction. But, again, these systems 
are not essentially hybrid and integrate only weak forms of terminological reasoning, 
if any. 
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Thus, there exist formalisms supporting terminological knowledge which is rele­
vant for all phases, and expressive formalisms supporting abstraction and refinement, 
separately. There also exist (partial) pragmatic integrations of terminological or 
taxonomic knowledge representation with data-driven, goal-directed and constraint­
based reasoning. MacGregor's LOOM [MacGregor, 1988] and the above-mentioned 
COLAB system are examples of pragmatic extensions integrating a terminological 
component. See [Firebaugh, 1988] for an overview of (commercially available) hybrid 
expert system shells with taxonomic components. 

However, to combine a rule formalism (such as definite definitions in Horn logic) 
with an expressive condition logic (such as a terminological logic) in a declarative 
manner is a non-trivial research problem. For example, the operational semantics of 
a rule formalism usually does not capture the contra-position of rules. 

For top-down reasoning the generalized CLP scheme proposed by Hohfeld and 
Smolka [Hohfeld and Smolka, 1988] is an interesting approach. It shows in a generic 
manner how constraint formalisms, which have to satisfy some weak requirements, 
can be combined with definite relations such that the operational semantics is sound 
and complete with respect to classical logic. This has been achieved by restricting 
the head of a rule to positive relational atoms and by considering conditional answers 
instead of taking the theorem-proving point of view. I 

In fact in [A becker and Hanschke, 1993] this scheme was employed to integrate 
terminological reasoning, goal-directed reasoning, and constraint based reasoning. 
Data-driven inferences, however, which are of particular interest for the abstraction 
phase, are not supported by this CLP formalism. See [Friihwirth and Hanschke, 
1993] for an implementation approach of this formalism on top of Prolog and some 
examples from a simple configuration domain. 

In [Hanschke and Hinkelmann, 1992] we combined terminological with data-driven 
rule-based reasoning for abstraction processes. The semantics of this production rule­
like formalism is specified by a fixpoint operator based on 'constructive implication', 
i.e., a rule may only be applied to objects explicitly named in the current fact base. 

In Chapter 5 a scheme is introduced that combines eLP and production rule-like 
inferences. The scheme takes a condition logic and constructs a rule formalism with 
rules of the form 

<Po 'Vt <PI I ... I <Pn 

where the <Pi are formulas of the condition logic and 'Vt is a kind of procedural 
implication, which is explained in more detail in Chapter 5. Informally, such a rule 
says "if <Po is believed, then one of <PI, <P2, ... ,<Pn is believed." 

The operational semantics of the rule formalism generalizes the way production 
rules (and trigger rules) are applied to a fact base. If a rule is triggered, one of the 
<Pi in the head is non-deterministically selected and added to the fact base. If an 
inconsistency occurs, backtracking takes place and another alternative is selected. 

lSee [Biirckert, 1991] for a combination of a constraint formalism with a resolution theorem 
prover . 
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For n = 0 the rule is a denial saying that whenever 4>0 is believed, the current 
state is inconsistent. For n = 1 the rules are very close to production rules. If 4>0 is 
very simple and n > 1, the operational semantics of these rules has much in common 
with SLD resolution (cf. Section 5.5.1). 

For simple trigger rules A ""-+ B, A and B concepts, a semantics based on the 
epistemic operator K was proposed in [Donini et ai., 1992] that coincides with the 
common operational semantics: "If there is a 'known object' a in the fact base that 
is an A, then add B(a) to the fact base." Surprisingly, this semantics does not carry 
over to the rule formalism considered here. 

To get a reasonable model-theoretic semantics it is necessary to refine this epis­
temic logic (which, by the way, is similar to the logics considered in [Levesque, 1984; 
Reiter, 1990; Lifschitz, 1991]). The formalization of a "really" minimal belief logic in 
Section 5.2 resolves certain problems (Section 5.1.2) related to (i) the absence of a 
unique-name assumption, (ii) certain interactions of more than one existential quan­
tifications with an belief operator, and (iii) formalisms that are expressive enough 
to restrict in a formula 4> the cardinality of the domain of the models of 4>. The 
operational semantics is sound and complete with respect to this epistemic logic. 

Consequently, the rule scheme is a hybrid, generic declarative formalism integrat­
ing deterministic, data-driven, bottom-up reasoning (as required for abstraction) with 
non-deterministic, goal-directed, top-down search (as required by the association and 
the refinement phase). If the scheme is applied to a terminological formalism that is 
extended by concrete domains (Section 5.6), this results in a declarative integration 
of terminological, constraint-based, data-driven and goal-directed reasoning. Chap­
ter 5 concludes by showing how the representation and reasoning problems that could 
not be handled by the terminological formalisms (Section 4.2) can be handled in the 
integrated formalism (Section 5.6.2). 

The intended reader of this thesis should be familiar with the basics of formal 
logic, logic programming and symbolic knowledge representation. It is not required 
in any way that she or he has a background in mechanical engineering. 
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Chapter 2 

An Application Domain 

The application domain that has been investigated in the ARC-TEC project is pro­
duction planning for CNC lathes. More precisely, the work has been motivated by 
the following scenario: 

Given the geometry of a rotationally-symmetric workpiece, generate the 
process plans as abstract NC macros for turning the workpiece on a CNC 
lathe. 

Reasoning in this application follows a scheme (Figure 2.1) that is inspired by 
Clancey's heuristic classification [Schmalhofer et ai., 1991; Bernardi et al., 1992bl: 
The input is a CAD drawing describing the workpiece in terms of primitive surfaces 
and basic technological data. The abstraction phase generates a schematic description 
of the workpiece in terms of (CAD/CAM) features [Klauck et ai., 1991; Bernardi et 
ai., 1992al. Such features (which are the triggers in Clancey's scheme) are often 
associated with parts of the workpiece that are characteristic with respect to how 
these parts (or the whole lathe) may be manufactured. The second phase heuristically 

feature DAG 
heuristic 

match skeletal plan 

CAD drawing NCprogram 

Figure 2.1: Heuristic Classification Applied to Production Planning of CNC Lathes 
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Figure 2.2: A Truncated Cone 

matches skeletal {production} plans to the features. Finally, the third phase refines 
and merges the skeletal plans to a complete program for CNC machines. 

This problem domain requires, among other things, the representation of geomet­
ric primitives of the workpiece taken from the CAD drawing, as well as other relevant 
technological data. The features characterizing the workpiece and the skeletal plans 
are also important parts of the knowledge necessary for solving the application prob­
lem. If all this could be expressed in a concept language, the inference scheme could 
be mapped naturally into a terminological framework: 

• Arrange the features represented as concepts in a generalization hierarchy using 
the concept-classification service. 

• Represent a particular CAD drawing of the workpiece with its geometric and 
technological information as instances of appropriate concepts in the A-box. 

• Employ the object-classification service [Nebel, 1990] to compute the most 
specific concepts that apply to the particular lathe. 

• Associate the skeletal plans to the production features detected by means of 
trigger rules (cf. Chapter 5). 

• Check the feasibility of the solution with the consistency test for A-boxes. 

However, it is easy to see that conventional concept languages cannot be used 
for adequately representing this problem domain. Consider for example the concept 
of a truncated cone (see Figure 2.2). Since in this domain geometric objects are 
regarded as being fixed to an axis, a truncated cone can be characterized by four real 
numbers, two for its radii and two for the corresponding centers. But of course, not 
each quadruple of real numbers represents a truncated cone. Hence, the values have 
to be restricted such that the radii are positive and the surface of the truncated cone 
does not degenerate to a line, a circle, or even a point. It seems to be impossible to 
represent these restrictions using only "abstract" concept terms without reference to 
predicates over, for example, real numbers. This requirement reveals the need for an 
integration of concrete domains. 
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biconic right shoulder left shoulder groove 

Figure 2.3: Some Simple Features 
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Figure 2.4: The Varying-Size Aspect of a Lathe 

Features often correspond to some neighbored truncated cones. For example 
a 'biconic' just consists of two neighboring truncated cones (Figure 2.3). A 'left 
shoulder' (resp. 'right shoulder') is a 'biconic' with a surface line approximating the 
shape of a human shoulder. A 'groove' is a combination of a left and a right shoulder 
that share a common ground. 

Note that it is essential for a biconic that its truncated cones are neighbored. 
Similarly, the definition of a groove relys on a relation between its subcomponents, 
also. From an abstract point of view, the adequate representation of a truncated 
cone, a biconic, or a groove requires the formalization of interrelations of parameters 
or components. Since terminological formalisms relate parameters or components to 
an object via roles, this issue has been termed role interaction. The following chapter 
investigates extensions of concept languages for role interaction. 

Other features such as an 'ascending sequence of truncated cones' correspond to 
sequences of simpler features or geometric primitives with some common property 
and certain interrelations. These sequences have a finite, but varying and not a priori 
bounded length (Figure 2.4). 
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Chapter 3 

Terminological Knowledge 
Representation 

In the previous chapter role interaction has been identified as an important repre­
sentation and reasoning demand. This chapter investigates extensions of concept 
languages dealing with this issue and introduces a new reasoning service, called A­
box subsumption. In the context of the rule scheme (Chapter 5) this service will be 
used to check whether a 'fact base' (i.e., A-box) entails a premise of a rule. 

3.1 Introduction 

Concept languages based on KL-ONE [Brachman and Schmolze, 1985] are mostly 
used to represent the terminological knowledge of a particular problem domain on 
an abstract logical level. To describe this kind of knowledge, one starts with atomic 
concepts and roles, and defines new concepts using the operations provided by the 
language. Concepts can be considered as unary predicates which are interpreted as 
sets of individuals, and roles as binary predicates which are interpreted as binary 
relations between individuals. Examples for atomic concepts may be human and 
female, and for roles friend and enemy. Many terminological formalisms concentrate 
on the following three categories of operators to build a terminology: 

• Boolean connectives (n, U, and ...,) that allow concepts to be combined without 
any direct reference to their internal structure. For example, if the logical 
connective conjunction is present as a language construct, one may describe the 
concept woman as "humans who are female", and represent it by the expression 
human n female . 

• Role-forming operators that allow new roles to be defined. For example the 
composition (0) allows the role ''friend of enemy" to be represented by enemy 0 
friend. 
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• Operators on role fillers that allow the 'internal' structure of the concepts to 
be operated on. Many languages provide quantification over role fillers which 
allows, for example, the concept "human with a friend" (resp. "human with 
only female friends") to be described by the expression human n 3friend.human 
(resp. humannVfriend.female). An interesting subclass of operators on role fillers 
are the operators for role interaction. The frequently used number restrictions 
can be seen as a degenerated form to specify role interaction (on one role). For 
example, the concept lucky-human could be defined as 3>loofriend n 3<2enemy. 
As soon as an individual belonging to this concept has two role fillers for enemy, 
it can be deduced that they are equal. 

The kind of models that can be specified by the operators considered so far is 
quite restricted. If a concept C is satisfiable, then it is satisfiable by an interpretation 
that arranges its individuals in a tree structure (d. Figure 3.1). For example, it is 
possible to require that the members of a concept have role fillers for a role R, say 
an individual a, and a role S, say b. But it is not possible to specify that a equals 
b or that a and b have any common (transitive) role-filler, or that their respective 
role-fillers are in any relation to each other. 

e :Q 

S! \R , ,:Q' 
/I\F r 

R R' '\ • 

"-Q" II:Q • / \ 

/ S' \ 
, e:Q" e :Q,Q 

e :Q Indiviual, instanciating Q 

R 
e --e Pair of individuals, instanciating R 

Figure 3.1: A Typical Model Structure of a Conventional Concept Term 

So there is a need for additional means to specify role interaction. The classical 
prototypes of this kind of operators are the structural descriptions and role-value 
maps (RVMs; see Section 3.3 for a definition) that are discussed and motivated, for 
example, in [Brachman and Schmolze, 1985]. 

An RVM would allow one to specify that the set of all friends of an individual is 
equal to the set of all enemies (which may be true for some people if one looks at 
some never ending soap operas): enemy =RVM friend where enemy and friend are roles. 
A typical model structure is depicted in Figure 3.2. 

In [Schmidt-SchauB, 1989; Patel-Schneider, 1989] it has been shown that a con­
cept language with RVMs and a few other common operators has an undecidable sub­
sumption problem. As a reaction on this disappointing negative result, RVMs have 
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universal disagreement 

- - - - - - - best-friend 

Figure 3.2: Typical Model Structures with Role/Attribute Interaction 

been restricted in existing systems to attribute agreements, see for example [Borgida 
et al., 1989]. Attributes are functional roles and are sometimes also called features. 
I.e., they have at most one role filler per object. Let best-friend and main-enemy be 
attributes. Then an individual belongs to the concept main-enemy =RVM best-friend 
if it does not have a main enemy, or if it does not have a best friend, or if its best 
friend is at the same time its main enemy.! 

In this chapter several other operators for specifying interaction of role and at­
tribute fillers are investigated. The existential role/attribute agreement can be used 
to specify that there is at least one enemy that is also a friend: .3( enemy = friend) . 
If this operator is restricted to attribute chainings it is just the same-as operator in 
CLASSIC. 

The expression .3( enemy 0 best-friend = friend 0 best-friend) represents that there 
is at least one enemy and one friend who have the same best-friend. The universal 
agreement is used in the expression V( enemy 0 best-friend = friend 0 best-friend) to 
formalize that the best-friends of all friends and enemies are the same (d. Figure 
3.2). On attribute chainings this construct agrees with the RVMs. 

The existential role/attribute disagreement can express that there is at least one 
enemy and one friend that are not identical: .3( enemy # friend). The expression 
V( enemy # friend) says that each member has only true friends and true enemies-

lActually, in CLASSIC the same-as operator requires the existence of one main-enemy and on~ 
best-friend. 
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there is no filler that is both a friend and an enemy (d. Figure 3.2). 
Although it is at least not obvious how RVMs (on roles) can be simulated by this 

group of operators, it turns out that the existential and universal agreements lead to 
an undecidable subsumption problem (Section 3.3), also. 

Section 3.4 introduces a new concept language which is able to relate fillers of 
role/attribute chainings. The main idea is to replace the general "=" (resp. "#") 
above, by abstract, not further defined predicates or by predicates of a concrete 
domain. In [Baader and Hanschke, 1991a] we already proposed an extension scheme 
with concrete domains, but there, the predicates are only applied to chainings of 
attributes. Following [Hanschke, 1992] this chapter generalizes this extension scheme 
considerably. 

As an example, consider the classic (toy) domain of families. Let age, wife, and 
husband be attributes, child a role, and male, human not further defined concepts. 
Then the concept of a family could be represented by 

human n female 
human n ,female 

woman 
man 
family 3husband.man n 3wife.woman n Vchild.human 

The specification can be further refined by enforcing that there is a marriage certifi­
cate and that children are younger than their parents. 

normal-family = family n 
V(child 0 age < husband a age) n 
V(child 0 age < wife 0 age) n 
Vh usba nd, wife. marriage-certificate 

Here the concrete predicate "<" and an abstract binary predicate marriage-certificate 
are used to formulate the additional requirements. 

With concrete predicates concept definitions can be 'grounded'. This is, for ex­
ample, useful in technical domains where one is confronted with coordinates in space 
(predicates over rational numbers) or technical data sheets or tables (extensionally 
defined predicates). 

The formalism considered so far deals primarily with intensional concept defini­
tions and is referred to as the terminological box (T-box). The assertional box (A-box) 
is a formalism to make assertions about instances of the roles, attributes, concepts 
and predicates introduced in the T-box. The A-box formalism, usually provides 
services such as consistency test, membership test, and object classification. 

In the rule formalisms considered in Chapter 5 A-boxes 2 will occur in premises. In 
order to check whether a global A-box entails an instance of such a premise a service 
is needed that compares A-boxes with respect to generality. This new service is called 
A-box subsumption. It can also be used to compare rules with terminological premises 
[Hanschke and Meyer, 1992]. The corresponding reasoning problem is undecidable 

2By abuse of notation a collection of assertions is also called A-box. 
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for general A-boxes. The notion of rooted A-boxes defined in Section 3.5 leads to a 
restriction of the A-box subsumption problem that is decidable and still useful. 

Another way to understand A-box subsumption (and its name) is as follows: Let 
the objects in an A-box A be split into two disjoint sets {Xl"" ,Xn }, n > 0, and 
Y. If the objects y E Yare considered as being existentially quantified, A induces 
an n-ary predicate AXb' .. ,xn.A, which is regarded as an "n-ary concept". A-box 
subsumption is then the subsumption service in this extended concept language. 
Note that this "concept formalisms" uses objects in its concept definitions. 

3.2 The Basic Language 

This section introduces the language ALCF as a prototypIcal conventIOnal concept 
language. It will be the starting point for the extensions described in the following 
sections. 

Definition 3.2.1 (T-box syntax) Concept terms are built from concept, role, and 
attribute names using concept-forming operators. If C and D are syntactic variables 
for concept terms and R· is a role or attribute name, then 

CnD 
CuD 
-,C 
3R.C 
VR.C 

(conjunction) , 
( disjunction), 
(negation) 
(exists-in restriction), and 
(value restriction) 

are concept terms. 
Let A be a concept name and let D be a concept term. Then A = D is a termi­

nological axiom. A terminology (T-box) is a finite set T of terminological axioms 
with the additional restrictions that no concept name appears more than once as a 
left hand side of a definition, and T contains no cyclic definitions.3 

A concept name that does not occur on the left side of a concept definition zs 
called primitive. 0 

Please note that the exists-in and the value restrictions are not only defined for 
roles but also for attributes. The next definition gives a model-theoretic semantics 
for the language introduced in Definition 3.2.1. 

Definition 3.2.2 (T-box semantics) An interpretation T for ALCF consists of a 
set DOMI and an interpretation function. The interpretation function associates with 
each concept name A a subset AI of DOMI, with each role name R a binary relation 
RI on DOMI, i.e., a subset ofDOMI x DOMI, and with each attribute name f a partial 
function fI from DOMI into DOMI. For such a partial function fI the expression 
fI (x) = y is sometimes written as (x, y) E fI. 

3See [Nebel, 1990; Baader, 1990] for a treatment of cyclic definitions in concept languages. 
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The interpretation function-which gives an interpretation for atomic terms-can 
be extended to arbitrary concept terms as follows: Let G and D be concept terms and 
let R be a role or attribute name. Assume that GI and DI are already defined. Then 

1. a E (G U D l iff a E GI or a E D I
, 

a E (G n D)I iff a E GI and a E nI, 
a E (.G)I iff a E DOMI \ GI , 

2. a E (V R.Gl iff 
for all b with (a, b) E RI we have bE GI , and 

a E (3R.G)I iff 

there exists b with (a, b) E RI and b E GI . 

An interpretation T is a model of the T-box T iff it satisfies AI = DI for all termi­
nological axioms A = D in T. 0 

An important service terminological representation systems provide is computing 
the subsumption hierarchy, i.e., computing the subconcept-superconcept relation­
ships between the concepts of a T-box. This inferential service is usually called 
concept classification. The model-theoretic semantics introduced above allows the 
following formal definition of subsumption and satisfiability. 

Definition 3.2.3 (T-box services) Let T be a T-box and let G, D be concepts. 
Then D subsumes G with respect to T iff GI ~ DI holds for all models T of T. A 
concept C is satisfiable if there is a model T of T that satisfies G, i.e.} C I is not 
empty. 0 

Note that D subsumes C iff C n oD is satisfiable and that C is satisfiable if 
..1 subsumes C where ..1 stands for the empty concept that could be defined by 
..1 = D n oD, for some concept D. 

All extensions of ALCF in the present chapter involve attribute/role chainings, 
which are built from role and attribute names with the binary, associative infix 
operator 0 which is interpreted according to 

(a, b) E (RIO R2)I iff 
there is a c with (a, c) E .Rf and (c, b) E R{ 

The special attribute name f. is always interpreted as identity. 

3.3 Equality Based Operators 

In this section a concept language based on ALCF with additional concept forming 
operators, called existential and universal role/attribute (dis )agreements, is formally 
defined. These concept forming operators are based on equality and negated equality. 
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Let u =RVM V be the original RVM construct, where u and v are two, possibly 
empty, chainings of roles and attributes. An individual a belongs to the concept 
u =RVM v iff the two sets of (transitive) role-fillers of u and v are identical. Formally, 
an interpretation extends to the RVMs according to:4 

( )I'ff I I a E u =RVM V 1 au = av 

Note that each of the following constructs is different from the RVM construct. 

Definition 3.3.1 (equality-based operators) Let u and v be two role chainings. 
Then the syntax of the concept forming operators based on equality and negated equal­
ity is defined as follows: 

V( u = v) (universal agreement) 
V( u f. v) (universal disagreement) 
3( u = v) (existential agreement) 
3( u f. v ) (existential disagreement) 

To define the semantics of these new operators the interpretation function is extended 
as follows: 

aEV(u=v)Iiff 
for all b, c with (a,b) E vI and (a,c) E uI we have b = c 

a E V(u f. v)Z iff 
for all b, c with (a,b) E vI and (a, e) E uI we have bf. c 

a E 3(u = v)I itT 
there exists b with (a, b) E vI and ( a, b) E uI 

a E 3(u f v)I iff 
there exist b, e with (a, b) E vI and (a, e) E u I and b f e o 

If u and v are attribute agreements, u =RVM V and V( u = v) are equivalent 
concepts. This is not the case if u and/or v contains a role. Moreover, it is at least 
not obvious how RVMs with roles can be simulated by the equality-based operators. 
Unfortunately, ALCF together with the constructs of the previous definition does not 
have a decidable subsumption problem, either. 

This will be shown by a reduction of the word problem for semi-groups to the 
subsumption problem in the concept language. First, the definition of the word 
problem is recalled. Let B be a finite alphabet, let BOO be the set of finite, possibly 
empty words over E, and let c be the empty word. Then a set S = {Ii = ri I Ii, 
ri E EOO, i = 1, ... ,m} is called a finite presentation of a semi-group. This set induces 
a binary relation --+ s on EOO: 

4For a binary relation r and an object a the expression ar is defined as the set {bl r(a,b)}. 
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u ---+sv iff 
there are words WI, W2 E E*, and an I = rES such that u w I lw2 and 
v = WlrW2. 

By "'S the reflexive, transitive, and symmetric closure of ---+s is denoted. It is well 
known that a finite presentation S exists consisting of seven equations over a two­
element alphabet, E = {a, b} say, such that it is undecidable for two words u and v 
whether u "'S v holds or not (see, for instance [Boone, 1959]). 

Now let this system S be given. For the two elements a, bEE two attributes a, 
b are introduced, respectively. Let start, left, right be additional attributes, let back, 
forth be additional role names. Then for two words u, v E E* the following concept 
definition scheme is introduced: 

equ,tJ = 3(left = start 0 u) n 
3(right = start 0 v) n 
3(forth = start) 

Let u = it··· 1m and v = gl ... gn· Then for any model I (of the terminology 
up to this point) satisfying equ,tJ there are (not necessarily distinct) objects, c, ao, 
al,·· . ,am, bo, bI,· .. ,bn such that 

1. (ai-I, ai) E If, for 0 < i :S m, and (bi-I, bi) E gf, for 0 < i :S n 

2. ao = bo, (c, ao) E start, (c, ao) E forth, (c, am) E left, and (c, bn ) E right. 

This attribute/role structure is depicted in Figure 3.3. 

\n fl to go gl gn 
a~ -+--a-+----a-b---..b- -b m . . . 1 0- 0 1 . . . _ n 

1 
forth, 
start 

c 

Figure 3.3: Representing it ... 1m = gl ... gn 

A single equation I = rES can be modeled by a concept equationl:=r defined by 
the following scheme: 

equationl:=r = :3(1 = r) 

Assume that the model I satisfies equationl:=r and that ao E equationf:=r. Then 
for wE E* we have (lw)I(ao) = (rw)Z(ao). The presentation S = {el, ... ,e7} can 
now be easily represented as 

localS = equation
e1 

n ... n equation
e7

. 
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But how can this restriction be imposed on each element x for which there is awE E* 
such that wI (ao) = x? Since the concept language does not provide transitive closure 
or cyclic definitions, the element c in Figure 3.3 is used as a 'relay that refreshes' the 
restriction. Consider, the following concept definition scheme: 

loopu = Vforth.VO".3(back 0 forth = f) n 
V(forth 0 0" 0 back = f) 

c 

Figure 3.4: Repeating back and forth 

Any model of the concept equ,v n loop a n looPb leads to a role/attribute structure 
similar to the structure depicted in Figure 3.4. More precisely, c has those x as role 
fillers for forth that can be reached from ao by a word w E E*. Now it is easy to 
impose the requirements of S on each of these elements: globalS = Vforth.locaiS 

Proposition 3.3.2 Given two words u, v E E* 

3(left = right) subsumes equ,v n looPa n looPb n globalS 
iff u "'S v . 

Proof. 
1) Assume that u rvs v : 
Let I be a model of the above concept definitions, and let c be in (equ,v n looPa n 
looPb n globaIS)I. Relying on the above construction the following can be proved: 

If wI is defined on sta r~ ( c), and w --+ s Wi or Wi --+ S w then wI (sta rtI ( c)) = 
w'I ( sta rtI ( c) ) . 

By definition there is a finite derivation of u /'VS v in terms of the symmetric closure 
of --+s and thus, uI(star~(c)) = vI (start1(c)) and leftI(c) = rightI(c). This implies 
c E 3(left = right). 

2) Assume that not u /'VS v: 
The interpretation constructed below is a model of the above concept definitions and 
a counter example to the subsumption relation in question. 
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Let DOMI = Ej '" s U {c} where Ej "'sis the set of equivalence classes induced 

by the congruence relation "'s. The partial functions aI and bI are defined as left 
multiplications for all [x] E E*/ : 

"'s 

aI([x)) = [ax] and bI([x)) = [bx]. 

The other roles and attributes are defined as suggested by the construction: 

1. leftI(c) = [u], rightI(c) = [v], and startz(c) = [t], 

2. (c,x) E forthI , for every x E Ej",s' and 

3. (x,y) E backI if (y,x) E forthI. o 

Corollary 3.3.3 The subsumption problem in a concept language based on ALCF 
and extended by the equality-based operators universal and existential agreement is 
undecidable. 0 

This result shows that, as long as equality is involved, it is wise to restrict oneselfs 
to attributes. 

3.4 Operators with Predicates 

The subsumption problem remains decidable if the equality-based operators are re­
stricted to chainings of attributes. The reduction in the undecidability proof in the 
previous section relied heavily on the possibility to specify cyclic role structures (for 
instance, 3(back 0 forth = t)). 

In this section two ideas are developed that remove the capability to specify 
this kind of cyclic structure from the concept language. The first idea is to replace 
the equality in the equality-based operators by uninterpreted, possibly negated n­
ary predicate symbols. The second idea is to split the interpretation domain into 
two separate domains: the abstract and the concrete domain [Baader and Hanschke, 
1991a]. Role and attribute fillers can now be restricted by predicates of the concrete 
domain, also. But concepts are always subsets of the abstract domain. 

Together with attribute (dis ) agreements the abstract and the concrete predicate 
based operators are a powerful, still decidable, means to specify structural properties. 

3.4.1 Concrete Domains 

Before the concept forming operators are introduced the notion "concrete domain" 
has to be formalized. 

Definition 3.4.1 A concrete domain V consists of a set DOMv, the domain of V, 
and a set pred(V), the predicate names of V. Each predicate name p is associated 
with an arity n, and an n-ary predicate pV ~ DOMv. 0 
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An important example is the concrete domain n of real arithmetic. The domain 
of n is the set of all real numbers, and the predicates of n are given by formulae which 
are built by first order means (i.e., by using logical connectives and quantifiers) from 
equalities and inequalities between integer polynomials in several indeterminates.5 

For example, x + z2 = Y is an equality between the polynomials p(x, z) = x + z2 
and q(y) = y; and x > y is an inequality between very simple polynomials. From 
these equalities and inequalities one can e.g. build the formulae 3z( x + Z2 = y) and 
3z(x+z2 = y) V (x > y). The first formula yields a predicate name of arity 2 (since it 
has two free variables), and it is easy to see that the associated predicate is {(r, 8)1 r 
and s are real numbers and r ~ s}. Consequently, the predicate associated to the 
second formula is {( r, s); rand s are real numbers} = DOMn x DOMn. 

Extensionally defined predicates as in finite-domain constraint systems or rela­
tional databases induce another important concrete domain. See [Steinle, 1993] for 
details. 

To get inference algorithms for the extended concept language which will be 
introduced below, the concrete domain has to satisfy some additional properties. 

For technical reasons the set of predicate names of the concrete domain is required 
to be closed under negation, e.g., if p is an n-ary predicate name in pred(V) then a 
predicate name q in pred(V) has to exist such that qV = DOMv \ pV. In addition, a 
unary predicate name is needed which denotes the predicate DOMv. 

The property which will be formulated now clarifies what kind of reasoning mech­
anisms are required in the concrete domain. Let PI, ... , Pk be k (not necessarily 
different) predicate names in pred(V) of arities nI, ... , nk. Consider the conjunction 

k 

1\ pl~5i)). 
i=l 

Here ~(i) stands for an ni-tuple (xi", ... , x~!) of variables. It is important to note 
that neither all variables in one tuple nor those in different tuples are assumed to be 
distinct. Such a conjunction is said to be satisfiable iff there exists an assignment of 
elements of DOMv to the variables such that the conjunction becomes true in V. 

For example, let Pl(X,y) be the predicate 3z(x + Z2 = y) in pred(n) , and let 
P2(X,y) be the predicate x > y in pred(n). Obviously, neither the conjunction 
Pl(X, y) 1\ P2(X, y) nor P2(X, x) is satisfiable. 

Definition 3.4.2 A concrete domain V is called admissible iff (i) the set of its pred­
icate names is closed under negation and contains a name for DOMv, and (ii) the 
satisfiability problem for finite conjunctions of the above mentioned form is decidable. 
o 

The concrete domain n is admissible. This is a consequence of Tarski's decid­
ability result for real arithmetic [Tarski, 1951; Collins, 1975]. For the linear case 

5For the sake of simplicity it is assumed here that the formula itself is the predicate name. In 
applications, the user will probably take his own intuitive names for these predicates. 
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(where the polynomials in the equalities and inequalities have to be linear) there 
exist more efficient methods (see e.g. (Weispfenning, 1988; Loos and Weispfenning, 
1990]). Another important concrete domain is Rip rational numbers with inequalities 
between linear polynomials. For Rip efficient, incremental reasoning algorithms are 
available (see for example (Jaffar et al., 1990; Jaakola, 1990]). 

3.4.2 The Additional Operators 

With the above formalization of concrete domains the extension ALCFP(V) of ALCF, 
which is parametrized by an admissible concrete domain V, can be defined. The new 
concept forming operators can be seen as generalizations of the value restriction and 
the exists-in restriction. 

Definition 3.4.3 (syntax of ALCFP(V)) The concept formalism of ALCF is ex­
tended by the following operators. Let UI, ... ,Un be role/attribute chainings. Then 

VUt, ... , Un.p (generalized value restriction) 
:lUI,· .. ,Un.p (generalized exists-in restriction) 

are concept terms in each of the following cases: The term p, which is called restrictor, 

1. is a predicate of the concrete domain with arity n, 

2. is of the form p or ""p, where p is an abstract predicate of arity n, 

3. is a concept term and n = 1, or 

4. is "=" or "=1=", n is 2, and Ul, U2 are chainings of attributes. o 

Since the concrete domain extends the abstract domain DOMT, the interpretation 
of all constructs in ALCF has to be reconsidered. This somehow makes the definition 
of the semantics complicated at first glance. 

Definition 3.4.4 (semantics of ALCFP(V)) The differences of interpretations of 
ALCF and the extended language are as follows: 

The set DOMT, which is called abstract domain for this language, is required to 
be disjoint to DOM£). Because attributes and roles link the abstract with the concrete 
domain their interpretation is liberated: An attribute f is interpreted as a partial 
function 

fT : DOMT --t DOMT U DOM£) 

and a role r as a binary predicate 

rT ~ DOMT x (DOMT U DOM£)). 

An abstract predicate p of arity n is interpreted as pr ~ DOMr and (...,p)T as DOMr\pr, 
and a concrete predicate p is interpreted as pr := p£). It remains to define how the 
new operators are interpreted: 
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a E (VUI,' .. , un.p? iff 
for all bI,"', bn with (a, bI ) E uf, " ', (a, bn) E u~ we have (bI,"" bn) E pI 

a E (3UI," . ,un.p)I iff 
there exists bI,"', bn with (a, bI ) E uf, "', (a, bn) E u~ and (b I ,···, bn) E pI 

o 

Analogous to ALCF the satisfiability problem and the subsumption problem in 
ALCFP(V) are interreducible. The satisfiability of a concept C can be reduced to the 
consistency of an assertion a : C (cf. next section) and using Theorem 3.5.7 one gets: 

Theorem 3.4.5 (T-box reasoning in ALCFP(V)) There exist decision procedures 
for the satisfiability and the subsumption problem in ALCFP(V). 0 

Since the subsumption algorithm is the crucial subroutine of a concept classifica­
tion algorithm, the theorem implies that a concept classifier can be (and has been) 
implemented for this concept language. 

3.5 The Assertional Box 

The assertional box (A-box) is a formalism to make assertions about objects using the 
roles, attributes, concepts and predicates introduced in the terminology. Throughout 
this section it is assumed that a terminology T is given. For example, let father be a 
concept in T and let child be a role. Then the assertions John: father, (John, Boy) : 
child, (John, Bob): child say that John is a father who has a child Boy and a child Bob. 

Many systems adopt a unique name assumption (UNA) for the names of the 
objects. In the example this would imply that Boy and Bob denote two different 
objects. Since attributes and, in particular, attribute (dis)agreements belong to the 
concept language of ALCFP(V), the assertional formalism considered here, will NOT 
adopt the UNA. Instead, explicit equality and negated equality is introduced. In the 
example, without UNA, later reasoning based on more assertions could reveal that 
Boy and Bob are in fact the same person (perhaps his name is Bob but his mother 
always calls him Boy). 

When the rule scheme of Chapter 5 is applied to the terminological formalism 
discussed here, there will be a global collection of assertions (a fact base) and various 
other little' A-boxes' as premises or consequences of rules. Generic individuals in 
premises or consequences of rules will typically be universally quantified on rule 
level. Objects occurring in the fact base are existentially quantified on A-box level. 
In Section 5.2 this view of quantification will be refined. 

Definition 3.5.1 (A-box syntax) Let be Ob an alphabet of object names, a, b, pos­
sibly with indices names from Ob, C a concept, R a role or attribute, Pc a concrete 
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n-ary predicate, and Pa an abstract n-ary predicate. Then the following expressions 
are A-box assertions: 

a: C 
(a, b) : R 
( aI, ... , an) : Pc 
( at, . . . , an) : Pa 

(al ... a ) . oF. , , n' a 

a=b 
a=Jb 

(membership assertion) 
(role-/ attri bute-filler assertion) 
(concrete predicate assertion) 
(abstract predicate assertion) 
(negated abstract predicate assertion) 
(equality assertion) 
(negated-equality assertion) 

To avoid unnecessary case distinctions each of these assertions is often written as a 
generalized membership assertion x : P where x is a (possibly degenerated) tuple of 
objects and P is a restrictor (i.e., one ofC, R, Pc, Pa , ..,Pa , =, =I- with the appropriate 
arity). 
Assertional formulas are inductively defined: 

• Every A-box assertion is an (assertional) formula. 

• Let A and B be (assertional) formulas and let x be a variable. Then A /\ B, 
,,-,A,6 and 3x(A) are formulas . 

An A-box is an assertional formula of the form 

3YI '" 3Yn(XI : PI /\ ... /\ Xm : Pm) 

where Yi, i = 1" .. , n, are the variables occurring in the generalized assertions Xj : Pj, 

j = 1"" ,~. 0 

An A-box is identified with the set of its A-box assertions. Note that each A-box 
is an assertional formula but not vice versa. The semantics of an assertional formula 
is defined by extending the notion of an interpretation of a terminology. 

Definition 3.5.2 (A-box semantics) Let a terminology T and an assertional for­
mula A be given. Then an interpretation I of A (with respect to T) is a model 
of T. An (object) assignment a is a partial function from Db to DOMI U DOM!). 

As usual, a is identified with the induced natural homomorphism on the term and 
formula structure. 

An interpretation I and an assignment a satisfy an assertional formula according 
to the following inductive definition. If a formula A is satisfied by I, a, this is 
abbreviated as I, a F A. 

• I, a 1= x : p if xa E pI. 

• I,a FA /\ B ifI,a 1= A and I,a 1= B. 

6For negation the symbol rv is used instead of the usual OJ because the latter denotes already 
the complement operator with respect to the abstract domain DOMz in the concept language. 
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• T,o: 1= rvA if not I,o: 1= A . 

• T,o: 1= 3x(A) if there is a d E DOMI U DOMv and a fresh variable y such that 
T,o:[y t-+ d] 1= A[x t-+ y].7 

An interpretation T is a model of A (with respect to T) if for all assignments 0: 

the pair I, 0: satisfies A. An assertional formula is consistent if it has a model. An 
assertional formula is valid if each interpretation is a model. 0 

The logical connectives V and => as well as the quantifier V are used to abbreviate 
(assertional) formulas in the usual way. 

The services that are going to be defined are restricted to A-boxes. Without these 
restrictions the corresponding reasoning problems would be undecidable. 

Definition 3.5.3 (A-box services) For a terminology T and an A-box A the fol­
lowing services are defined: 

Consistency test: Checks whether the A-box is consistent. 

(Generalized) membership test: Let x: p be a generalized membership assertion 
such that the objects in x occur in A. Then the tuple x is a generalized member 
of p (with respect to A and T) ifVx(A' => x : p) is valid where A' is the as­
sertional formula that is obtained from A by omitting the existential quantifiers 
belonging to the variables in the tuple x. 

A-box subsumption: Let B be a second A-box and let z be an n-ary tuple of pair­
wise different variables occurring in B. 8 Then B subsumes A with respect to 
x ifVx(A' => 8') is valid. Here A' (resp. 8') is the assertional formula that is 
obtained from A (resp. B) by omitting the quantifiers belonging to the variables 
tn x. 

Object classification: Let a be an object occurring in A. Then the object classifi­
cation (service) computes a realization of a which is a set M of concept names 
satisfying the following requirements: 

• The object a is a member of C, for all C EM. 

• If there is a concept name C such that a is a member of C, then there 
exists C' E M such that C subsumes Ct. 

• If C E M and C' E M such that C =I C', then C does not subsume C' 
nor does C' subsume C 

{
d if z = y 

7The assignment a[y t-+ d) is defined by z 1---+ ' th' 
za, 0 erWlse, 

and A[x t-+ y] denotes the 

assertional formula A with all occurrences of x replaced by y . 
8These are not necessarily all variables occurring in 8. 
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Informally speaking, M is the set of most specific concept names a belongs to 
(where for equivalent concepts only one representative is selected). 0 

Setting 8 := 3x(x : p) we see that A-box subsumption is a generalization of the 
generalized membership test. It is known that for ALCF with attribute agreements 
and disagreements it is undecidable whether for a concept C there is an interpretation 
such that C is interpreted as the whole domain (Theorem 5.3 in [Baader et al., 1991]). 
Setting A := 0, n = 0, and 8 := 3x(x : rvC) this problem can be reduced to A-box 
subsumption 9 and, thus, one gets: 

Proposition 3.5.4 A-box subsumption for ALCF extended by attribute agreements 
and disagreements is undecidable. Since ALCFP(V) is an extension of ALCF, A-box 
subsumption is undecidable for ALCFP(V), too. 0 

It is also possible to give a reduction with n > O. The real problem is that 
3x(x : rvC) is not related to the assertions in A so that the implication can only hold 
if 3x(x : rvC) is valid. This provides a first idea for an appropriate restriction of the 
general problem. 

Definition 3.5.5 (rooted A-boxes) Let A be an A-box. Then an object a is di­
rectly linked (by attributes) to an object b if there is an assertion (a, b) : R in A, 
R a role or attribute (resp. R an attribute). Linked (by attributes) is the reflexive, 
transitive closure of directly linked (by attributes). The A-box A is rooted by objects 
Xl ... x zf , ,n 

1. for each object b in A there exists an a E {Xl,"', xn} such that a is linked to 
band 

2. for each assertion a =1= b in A there are x, y E {Xl,"', xn} which are not 
necessarily distinct such that X is linked by attributes to a and y is linked by 
attributes to b.lO 

o 

Let A and 8 be two A-boxes such that Yl, ... , Yn are objects in A, and 8 is rooted 
by YI,' .. ,Yn' Then the problem whether 8 subsumes A with respect to Y},' .. ,Yn is 
called the A -box subsumption problem for rooted A -boxes. 

T-box and A-box services can be reduced to a consistency test for (a restricted 
form of) assertional formulas. In particular, a concept C is satisfiable iff the A­
box c : C is consistent. The A-box 8 subsumes A with respect to Y},"', Yn if 
3YI, ... , Yn (A' /\ rv8') is not consistent. 

An A-box where some of the objects are not existentially quantified and occur free 
is called an A-box formula. A generalized A-box rCA-box) is an A-box 8 (considered 
as a set) with free objects Y},' " , Yn that root A' and occur in 8 \ {rvA/}. 

9Note, 0 :=} 3x(x : rvC) iff Vx(x : ""rvC) is inconsistent. 
l°It is not clear whether Theorem 3.5.7 would still hold if this condition would be dropped. 
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Observation 3.5.6 Satisfiability and subsumption of concepts as well as consis­
tency, membership, and A-box subsumption for A-boxes can be reduced to a con­
sistency tests for generalized A-Boxes. D 

In the next section a consistency test for generalized A-boxes is presented. Propo­
sition 3.7.1 implies that this algorithm is a decision procedure for this consistency 
problem. Together, with the observation this implies the following theorem. 

Theorem 3.5.7 (A-box reasoning in ALCFP(V)) 
dures for the consistency problem, the (generalized) 
A -box subsumption problem for rooted A -boxes. 

There exist decision proce­
membership problem, and the 

D 

Because the membership test is the crucial operation for implementing the object 
classification service, the theorem implies that there is also an algorithm that com­
putes in finite time for a given A-box, a terminology, and an object the realization 
of the object. 

For the next section the following technical remark is needed. Let Band rvA' be 
as above. Then rvA' is equivalent to an assertional formula 

't/z[(!\(ai, bi) : ~) :::} V Aj] 
• j 

satisfying the following requirements: 

1. The ~ are roles or attributes. 

2. All objects in Vj Aj occur in B \ {rvA/} or A(ai, bi) : ~. 

3. Each Aj is of the form rv(x : p) where x : p is a generalized membership asser­
tion. 

Such a formula is referred to as the implication normal form of ",AI (wt'th respect to 
B). 

3.6 The Basic Algorithm 

This section presents an algorithm that decides in finite time whether a given GA­
box A is consistent. The algorithm is a generalization of the technique that was 
introduced in [Schmidt-SchauB and Smolka, 1991] and further elaborated, e.g., in 
[Baader and Hanschke, 1991b; Baader, 1991; Hollunder et al., 1990] 

Roughly, the algorithm proceeds as follows. It starts with a given GA-box A, 
and applies transformation rules to A that make the knowledge represented by the 
assertions more explicit. Ultimately, one of the following two situations occurs: 

1. The GA-box becomes "obviously contradictory", or 
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2. all knowledge has been made explicit. 

In the latter case the GA-box is called complete and induces a model of the original 
A. In the other case A is inconsistent. 

Sometimes it is necessary to make a case distinction during the transformation 
process, since disjunctions occur (implicitly and explicitly) in the formalism. Hence, 
a transformation step may replace a single GA-box A by new GA-boxes B1 ,·· ., Bn , 

n > 1. In this case A is inconsistent if all Bj , 1 :::; i :::; n are inconsistent. For that 
reason, the algorithm operates with sets of GA-boxes rather than a single GA-box. If 
the consistency of an GA-box A has to be checked, the algorithm is initialized with 
the singleton set Mo = {Ao} where Ao is a normalized version of A. The following 
subsection (3.6.1) describes this normalization. 

3.6.1 Unfolding and Implication Normal Form 

Let a terminology T and an A-box Ao be given. To simplify the presentation of 
the algorithm, the GA-box is first normalized by the unfolding rule. It replaces a 
concept name C by its definition t if the concept definition C = t is in T. Because 
terminologies do not contain cycles this rule can only be applied finitely many times. 
After defined concepts have been replaced, the terminology is not needed any more for 
the consistency test. If a negated A-box occurs in Ao, it is replaced by its implication 
normal form. 

3.6.2 Transformation Rules 

This section presents the transformation rules that operate on the set Mo. They 
generate a finite sequence (see the next section for a proof of the finiteness) of sets 
Mb M 2 , M 3 , •.• Mk of finite GA-boxes. The letters sand t denote concept terms, 
p is a restrictor, and the Ri are attributes or roles. 

The rules operate on the level of assertions. For these rules an expression of the 
form 

premtses 

consequences 

has to be read as follows: if there is an A-box A in the current Mi that fulfills the 
premises, then the successor Mi+l is obtained by adding the appropriately instanti­
ated consequences to A. 

If vertical bars "I" occur in the consequence of a rule, this means that the A-box 
A E M j to which the rule is applied has to be replaced with new A-boxes for each 
of the alternatives that are separated by the bar(s). Hence, in these cases M i +1 

contains more A-boxes than its predecessor Mi. 
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3.6.2.1 Pushing Negation 

The negation rules propagate negation ("-,") towards the leaves of the concept terms. 
Recall that -, is a complement operator with respect to DOMI and that attributes 
and roles link the abstract domain with the concrete domain. It is convenient to 
use the negation operator rv also as a global complement operator for restrictors by 
extending its definition by "'pI = (DOMr U DOMv)n \ l where p is a restrictor with 
arity n (Definition 3.4.3). 

a:s 

a: -,(snt) 
a : -,s U -,t 

a:-,(sut) 

a : -,s n .t 
a : ''VVI, ... , Vn.p a: .:3VI, . .. , Vn.p 

a : :3VI ... vn.rvp a : 'VVI ... vn.rvp 

where the Vi are attribute/role chainings. 

3.6.2.2 The rv Rules 

The following rules deal with the global complement operator if it occurs at the top 
level in an assertion. 

a: rvrvp 

a:p 

(RrvV) (al,"', an) : "'"'P _ 
al : T I ... I an : T I (al," . ,an) : p 

if p is a concrete predicate and p is the complement of p with respect to DOMv 

(since V is admissible p is also a predicate of the concrete domain), and T is a 
specific concept name that is always interpreted as DOMI. 

(RrvP) (al,'" ,an): rvp 
al : V I ... I an : V I (all' .. ,an) : 'p 

if p is a concept term and n = 1 or if it is an abstract predicate. 

The case a : .rvp does not occur, because the algorithm is applied to GA-boxes only. 
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3.6.2.3 The Operator Rules 

These rules split concept terms into their immediate subterms and generate new 
assertions. 

(Rn) 
a: s n t 

a: s, a: t 

(RU) a: s U t 
a: s I a: t 

This rule replaces two A-boxes for each A-box the rule is applied to. 

(R3) a : 3VI ... Vn·p 

(a, bI ) : Vb···, (a, bn ) : vn , (b I ,"', bn ) : P 

Here the bi are fresh individual constants. 

(R\I) (a, bl ) : VI,···, (a, bn ) : vn , a: \lVI··· vn·p 

(bI , . . . , bn ) : P 

A premise (a,b): V is fulfilled by objects x, Y if 

1. x = y and V is c or 

2. there is (x, z) : R in the A-box, v is of the form R 0 v' where R is an 
attribute or role, and, recursively, z, y fulfill (c, b) : v'is fulfilled, for some 
c. 

(R=} ) (all bl ) : R ll · .. , (an, bn) : Rn, A 
Xl T : "'PI I··· IXkT : "'Pk 

where A is a negated A-box formula 

\lz[( /\ (Yli, Y2d : R) =} ("'Xl: PI V ... V "'Xk : Pk)] 
i=l,,'1l 

in implication normal form and T is a substitution such that (Yli, Y2i)T = (ai, bi), 
for all i, 1 :S i :S n. This rule replaces each affected GA-box by k GA-boxes. 

3.6.2.4 The Role and Attribute Rules 

The (R3) rule may generate new assertions of the form (a, b) : v where v is a chaining 
of attributes or roles. It may also cause forks. These are pairs of attribute-filler 
assertions (a, b) : f, (a, c) : f with b =I c. These expressions are treated by the 
following rules: 

(Ro) ( a, b) : R 0 v 
(a,c): R,(c,b): v 

Here c is a fresh individual. 
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(R€) (a, b) : € 
a=b 

(R ) (a,bl ): f,(a,b2 ): f ·ff· tt·b t 
1-+ I IS an a n u e. 

bl = b2 

3.6.2.5 The Identification Rule 

The attribute agreements and the functional character of the attributes may lead to 
equality assertions. These are treated by the following rule: 

(R=) (a,b): = 
replace a by b in the affected GA-box 

3.6.2.6 The Domain Rules 

The abstract and the concrete domain are disjoint. This may lead to obvious contra­
dictions. The domain rules try to make explicit the domain to which an individual 
belongs. 

(RPT) (al,··· ,an): P 
al : T, ... , an : T 

if p is a primitive concept or an abstract predicate or a negated abstract pred­
icate. 

(RR ) (aI, a2) : R ·f R . 1 ·b T I IS a ro e or attn ute. 
al: T 

( ) 
(al,···,an):p 

RVT 
al : V,···, an : V 

if p is a concrete predicate different from V. 

3.6.3 Obvious Contradictions 

A single GA-box A is obviously contradictory in each of the following cases: 

Primitive Clash: The GA-box contains a pair of assertions of the form x : p, x : -'p 
where p is an abstract predicate (resp. a concept term) and x is a tuple of objects 
(resp. a single object). 

Domain Clash: The GA-box contains a : T, a : V. 

Equality Clash: The GA-box contains ai-a. 

Concrete Domain Clash: The GA-box contains predicate assertions Xl : PI, ... , 
Xn : pn where the Pi are concrete predicates and the satisfiability test of the 
concrete domain says that the conjunction of these predicates is not satisfiable. 
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3.6.4 The Strategy 

In order to get a terminating algorithm the rule application has to be restricted. 
Identifications of objects have to take place as soon as possible. So the role and 
attribute rules (3.6.2.4) and the identification rules (3.6.2.5) are executed with the 
highest priority. A GA-box to which none of these rules is applicable is called RI­
reduced. 

A rule is applied at most once per set of instances. Some objects in assertions 
are replaced during applications of the (R=) rule. Transformation rules must not be 
applied again to these assertions (although the premises are not exactly the same). 
If the GA-box contains an obvious contradiction (see Section 3.6.3), rules must not 
be applied, either. 

If the Vi in an assertion a : VVI ... Vn.p are all attribute chainings, the (RV) rule 
is applied at most once to this assertion. Applications of the (RV) rule to assertions 
that are not of this form and applications of the (R=» rule are called foreign. Foreign 
applications take place only if the assertion that would be added is not present. 

3.6.5 Summary of Algorithm 

Figure 3.5 summarizes the consistency test of ALCFP(V) using a pseudo programming 
language. The procedure takes a GA-box A as an argument and checks whether it 
is consistent or not. 

define procedure check-consistency(A) 
An := unfolded-implication-normal-form(A) 
r:= 0 
Mo:= {An} 
while' a transformation rule is applicable to M r' do 

r:= r + 1 
Mr : = apply-a-transformation-rule( M r-l) 

endwhile 
if 'there is an A E Mr that is not obviously contradictory' then 

consistent 
else 

inconsistent 
endif 

Figure 3.5: Consistency Test of ALCFP(V) 
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3.7 The Proof 

In this section termination, soundness, and completeness of the consistency test (Fig­
ure 3.5) are proved. Together, these facts imply that the algorithm is a decision 
procedure for the consistency of an GA-box A. 

Proposition 3.7.1 Assume that the procedure 'check-consistency' (Figure 3.5) 1S 

applied to A. Then 

1. the algorithm always computes in finite time a set Mr of GA-boxes each of 
which is complete or obviously contradictory, and 

2. the initial GA-box is inconsistent iff all GA-boxes A E Mr are obviously con­
tradictory. 

Proof. The proposition is a consequence of three lemmata (3.7.2,3.7.4,3.7.5) stated 
and proved below. 0 

Unfolding and transformation into implication normal form terminate and do not 
change the consistency of an GA-box. Hence, these preparatory steps are neglected 
in the remainder of the proof. RI-reduction, which also terminates and does not 
change the satisfiability of an GA-box, is considered to be built into the underlying 
data structure. I.e., if any rule is applied, RI-reduction is performed immediately. 

The while loop of the algorithm reduces the semantic problem of consistency for 
the GA-box Ao to a simple almost syntacticll problem for a finite set Mr of GA­
boxes. This syntactic problem is to check whether there is an GA-box in Mr that 
is not obviously contradictory. In order to show the correctness of the reduction, 
termination is proved first. 

Assume that a computation using the algorithm is given and that in a single 
execution of the loop body the RI-reduced GA-boxes 81, ... ,8n , n > 0, have been 
derived by an application of one of the transformation rules to an RI-reduced GA-box 
B. Then the Bi are called descendants of B. 

Lemma 3.7.2 (termination) The algorithm always computes a complete set of 
GA-boxes Mr in finite time. 

Proof. Assume that a possibly infinite computation is given. In order to show termi­
nation it suffices to prove that there is an infinite chain of GA-boxes AI, A 2 , As, ... 
where Ai+! is a descendant of Ai. 

Assume to the contrary that there is such an infinite sequence. Each Ai will 
be mapped to an element W(A;) of a set Q which is equipped with a well-founded 
strict partial ordering ~. Since the ordering is well-founded, i.e., has no infinitely 
decreasing chains, a contradiction is obtained as soon as the following lemma has 
been established. 

llThe problem is syntactic as far as the concrete domain is not concerned. 
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Lemma 3.7.3 If A' is a descendant of A, then w(A) ~ w(A'). 

The elements of the set Q will have a rather complex structure. They are finite 
multisets of 3-tuplesj the first and second component of the 3-tuple being natural 
numbers, and the third being a multi set of natural numbers. 

Multisets are like sets, but allow multiple occurrences of identical elements. For 
example, {2, 2, 2} is a multiset which is distinct from the multiset {2}. A given 
ordering on a set T can be extended to form an ordering on the finite multisets over 
T. In this ordering, a finite multi set M is larger than a finite multiset M' iff M' can 
be obtained from M by replacing one or more elements in M by any finite number 
of elements taken from T, each of which is smaller than one of the replaced elements. 
For example, {2, 2, 2} is larger than {2} and {2, 2,1,1, o}. [Dershowitz and Manna, 
1979] show that the induced ordering on finite multisets over T is well-founded if the 
original ordering on T is so. 

The nonnegative integer components of the 3-tuples are compared with respect to 
the usual ordering on integers. Whole tuples are ordered lexicographically from left 
to right, for example, (ct, .. . , C3) is larger than (c~, ... ,~) iff there exists i, 1 ::; i ::; 3, 
such that CI = c~, ... , Ci-I = C~_I' and Ci is larger than S. If the orderings on 
the components are well-founded, the lexicographical ordering on the tuples is also 
well-founded. 

The finite multi sets of the 3-tuples are compared with respect to the multiset 
ordering induced by this lexicographical ordering. This multiset ordering is the well­
founded ordering ~ on Qmentioned above. 

Before we can define the mapping W from GA-boxes to elements of Q, we need a 
few more definitions and observations. 

The size of a term or assertion is inductively defined as follows: 

1. Ix: pi := Ipi 

2. The size Ivi of a role/attribute chain v = RIO . .. 0 Rn, n ~ 0, is its length n. 
I (concrete predicate) I : = 1, I (abstract predicate) I : = 1, 
I = I := 1, I =1= I := 1, 
I(concept name) I := 1 

3. It I n t21 := Itll + It21, It I u t21 := Itll + It21, I "'P I := 3 * Ipl, l-,pl:= 2 * Ipl 
I:3Vl'" vn·pl := Ipl + max{lvII, " ', Ivnl}, 
IVVI'" vn·pl := Ipl + max{lvII,"', Ivnl} 

4. The size of a negated A-box in implication normal form 

IV~[( 1\ (ai, bi) : R) =} ("'YI : PI V ... V"'Ym : Pm)]1 
i=1..n 

is n + max{I"'PII,"', I "'pm I} 

38 



The proof proceeds by establishing some upper bounds needed in the definition 
of the mapping w. 

1. If a transformation rule for pushing negation, a rv rule, or an operator rule is 
applied to a set of assertions S, then for each assertion x : p that is added by 
this rule application there is an x' : pi E S such that Ill> Ipl. 

2. There is an integer So such that for all terms t occurring in a computation 
so> Itl· 

3. An (attribute) cluster of a GA-box A is a maximal set of objects CI such that 
each pair of objects a, bE CI is linked by an undirected path of attribute filler 
assertions in A. For an object a in A CI(a) denotes the unique cluster of A 
satisfying a E CI(a). 

4. The initial GA-box contains already objects and clusters. These are called old 
objects and old clusters, respectively. Objects and clusters introduced during 
the computation are called new. If an old and a new object are identified the 
'remaining' object is still termed old. If a cluster contains at least one old 
object, it is old. 

A close look at the transformation rules reveals that each new cluster C I has 
exactly one incoming edge (a, b) : R where R is a role, bE CI, and a r/:. CI. 

5. The distance d(a, b) of two objects a and b (in a given A-box) is the length of 
the shortest undirected path of filler assertions linking a to b. 

6. The objects that occur free in the possibly existing negated A-box <p are all old. 
Let no be the number of filler assertions occurring in the premise of <p. Then, 
if a new object b is affected by the application of the (R::::}) rule, d( a, b) ~ no, 
for some object a in <p.12 

7. Let b be an object with d(a, b) > no, for every old object a. A close look at the 
transformation rules reveals that if there is a membership assertion b: t (resp. 
if such an assertion does not exist), then there exists an assertion a : t' such 
that 

(a) a is linked to b by a path of length ~ So and 

(b) WI > It I (resp. WI > 0). 

(c) a: tf has been introduced in the GA-box before b : t (resp. b). 

8. As a consequence of (6) and (7) there exists an integer v(so, no) depending on 
. So and no such that for each new object b there exists an old object a such that 

a is linked to b by a path of a length < v(so, no). 

12 An object is affected by a rule application, if it occurs in the instantiated rule . 
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9. Each new cluster Cl is linked by a chaining of role-filler assertions and clusters 
to an old cluster Cl' 

CI' = Cia, 
C1I, 
C12 , 

(a~,al) : RI, 
(a;, a2) : R2, 

(a~_llan) : Rn,Cln = Cl 

where Cli is a new cluster, ai, a~ E Cli, for i = 1"", n - 1, a~ E Cia, and 
an E C In. Since identifications take place only within a cluster or between 
objects from two old clusters (cf. Definition 3.5.5 (2)) the path is unique. The 
generation of the cluster Cl is the length n of the path. 

10. Following (8) the 'generations' that occur in a computation are bounded by an 
integer go. 

11. Let b be a new object. Then there is an a E Cl(b) such that 

(a) there a is linked to b by attributes and 

(b) a is old or, otherwise, the unique incoming edge is of the form (c, a) : R. 

12. The fact that in an RI-reduced GA-box there is at most one attribute filler per 
object and attribute together with (8,10) implies that the number of objects in 
a single cluster is bounded. 

13. According to the strategy (3.6.4) and (12) for a cluster Cl only finitely many, 
foreign member-ship assertions b : t can be asserted by the (RV) rule or the 
(R=» rule. Recall that an assertion is called foreign if it comes from the 
(R=» rule or from an application of the (RV) rule where a role occurs in a 
role/attribute chaining of the value restriction. Let fa be an upper bound of 
the number of foreign assertions that can occur for a single cluster. 

On the basis of the upper bounds just derived the mapping W : A ~ wA can be 
defined. Each cluster Cl is mapped to a 3-tuple 'I/J(Gl) with the following components: 

1. go - (generation of G I) 

2. fa - «foreign assertions made to G I 

3. The multiset of integers Ix : pi where all objects in x belong to GI, p is a value 
restriction not comprising a role, or it is not a value restriction and has not yet 
been processed by a rule pushing negation, an operator rule, nor a rv rule.13 

13Note that if x comprises objects from different clusters, then x : p is a predicate assertion or a 
negated abstract predicate assertion . These assertions do not cause any problems with respect to 
to termination. 
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Finally, wA is defined as the multiset of 3-tuples tP(Cl) where Cl is a cluster in A. 
It follows a case analysis of the rule applications verifying Lemma 3.7.3. Let A' 

be a RI-reduced immediate descendant of A and let tP.A(Cl) (resp. tP.A,(Cl)) be the 
image of a cluster with respect to A (resp. A'). 

Case analysis of rule application: 

a) Pushing Negation (3.6.2.1): Each application of one of these rules affects only 
one cluster Cl. The first and the second component of tP.A(Cl) and tP.A,(Cl) are 
the same. The third component gets smaller, because one integer is replaced 
by one smaller integer. As the tuples are compared lexicographically the new 
tuple is smaller and wA ~ wA'. 

b) The Operator Rules (3.6.2.3): An application of the (Rll) or (RU) rule affects 
only a single cluster, too, and similar as in (a) we deduce wA ~ wA'. 

If an application of the (RV) rule to a member-ship assertion a : Vv! ... Vn.p does 
not generate foreign assertions, la : Vv! ... vn.pl is removed and the smaller Ipl is 
added to the multiset in the third component. The first and second component 
as well as the other 3-tuples are not changed and thus wA ~ wA'. If the 
application of the (RV) rule is foreign or if the (R=?) rule is applied, the second 
component of another cluster decreases and the other 3-tuples are not changed. 
Hence wA ~ wA'. 

Consider the application of the (R::I) rule to an assertion a : ::Iv}··· Vn.p. If 
there is an i such that Vi contains one or more roles, new clusters {CliLo, 
J finite and non-empty, are introduced. But these clusters have a greater 
generation and, thus, the first component of the new 3-tuples of these clusters 
is smaller than the 3-tuple of Cl(a). The third component of the 3-tuple of 
Cl(a) decreases and, thus, wA' is obtained from wA by replacing tP,A(Cl(a)) 
by the smaller tP,A,(Cl(a)) and tP,A,(Cl j ), j E J. 

c) The rv rules are treated similarly to the (RU) rule. 

Finally, the domain rules generate only new assertions to which none of the trans­
formation or rewrite rules is applicable. This completes the proof of Lemma 3.7.2. 
o 

To prove the second part of Proposition 3.7.1, the notion of contradictory GA­
boxes is introduced. It is the syntactic equivalent to inconsistent GA-boxes. The 
definition is by induction on the relation "descendant" which has just been proved 
noetherian. An GA-box A occurring in the computation is contradictory with respect 
to a computation iff 

• A does not have descendants and is obviously contradictory, or 

• all descendants of A are contradictory. 
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Please note that according to this definition Ao is contradictory iff after the loop in 
the algorithm all GA-boxes in Mr are obviously contradictory. 

Lemma 3.7.4 (soundness) An GA-box that is contradictory with respect to a given 
computation is inconsistent. 

Proof. The proof is by induction on the definition of contradictory, with a case 
analysis according to the transformation rule applied. Assume that a contradictory 
GA-box A is given. It has to be shown that it does not have a model. 

1) If A does not have a descendant, it must be obviously contradictory and cannot 
have a model. 

2) For the induction step, assume to the contrary that A has a model I. It has 
to be shown that at leaSt one of the descendants of A has a model. This will be a 
contradiction to the induction hypothesis, because all descendants of contradictory 
GA-boxes are contradictory. 

This will only be demonstrated for the case of the (RV) rule. The other cases can 
be treated similarly. 

Assume that the rule has been applied to the assertions (a, bt ) : Vt, "', (a, bn ) : V n , 

a : VVt ... Vn.p generating the descendant 8. Please note that 8 is a superset of A 
and that the only assertion in 8 that is not in A is (bt, . .. ,bn ) : p. Hence, it suffices 
to show that I satisfies b : C-which is an immediate consequence of the definition 
of the generalized value restriction. 0 

Lemma 3.7.5 (completeness) If the initial GA-box Ao is not contradictory with 
respect to a given computation, it has a model. 

Proof. If Ao is not contradictory then there is an GA-box 8 2 Ao in Mr that is not 
obviously contradictory. Next an interpretation I of 8 is defined: 

1. Because the clash rule related to the concrete domain is not applicable, there is 
a variable assignment a that satisfies the conjunction of all occurring assertions 
of the form P(xt, . .. , xn ). The interpretation I interprets all x with x : 1) in 
8 as a(x). 

2. The abstract domain DOMI consists of all remaining objects in 8. 

3. Let p be a primitive concept or an abstract predicate. Then (at, ... , an) E pI 
iff (at, . .. , an) : p occurs in 8. The domain rules ensure that all ai belong to 
DOMI · 

4. Let R be a role or attribute. Then (a, b) E RI iff (a, b) : R is in 8. This is 
well defined even if R is an attribute, because of the transformation rule (RI-t) , 
which is not applicable to 8. The domain rules ensure that a belongs to DOMI. 
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It is straightforward, but tedious, to show by induction on the size of the assertions 
that I is not only an interpretation but also a model of B. 

Here only the cases of the generalized value restriction and the negated predicate 
assertions are demonstrated: 

Generalized value restriction: Assume a : VVI ••• vn.p is in B. Let any objects 
b}, . .. , bn be given. If (a, bd E vi, "', (a, bn ) E v~ the transformation rule 
(RV) ensures that (bI,"" bn ) : p is in B. By induction hypothesis, I satisfies 
this assertion. 

Since the bi were arbitrary, by definition, I satisfies the generalized value re­
striction. 

Negated abstract predicate assertion: Since B is not obviously contradictory, 
the interpretation I is also model of the negated abstract predicate assertion 
in B. A similar argument holds for assertions of the form a : -,A where A is a 
primitive concept. 

Finally, Ao ~ B implies that I is also a model for Ao. o 
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Chapter 4 

Exploring Terminological 
Knowledge Representation 

In this chapterl it is explored to which extend the terminological formalismALCFP(D) 
of the previous chapter may contribute solving the representation and reasoning de­
mands of the application domain introduced in Chapter 2. On the way from simple to 
more complex features some limitations of the representation and reasoning power of 
ALCFP(D) will be discovered. In the examples, the generic terminological formalism 
has been instantiated by the concrete domain of real numbers n to ALCFP(n). 

Some of the discovered limitations are of principal nature. So this chapter serves 
as a motivation for the development of the generic rule formalism of the next chap­
ter that takes a first-order logic like ALCFP(D) with restricted expressiveness and 
constructs a more expressive, semidecidable rule formalism. 

4.1 Geometric Primitives and Elementary Fea­
tures 

The geometry, as the main ingredient of a CAD drawing, is given as a collection of 
rotational-symmetric surfaces that are fixed to the symmetry axis of the lathe work. 
An important geometric element is the truncated cone. Since the surfaces are fixed 
to an axis, they can be characterized by four real numbers r}, r2, Cl, and C2 (Figure 
2.2). 

Because not all quadruples correspond to truncated cones, the values of their com­
ponents have to be restricted: The radii are non-negative and the associated surface 
should not be degenerated to a line, a circle, or even a point. If these restrictions are 
represented by the four place predicate truncone-condition over the concrete domain 

IThis chapter is a revised version of paragraphs in [Baader and Hanschke, 1992; Hanschke and 
Hinkelmann, 1992; Boley et a/. , 1993]. 
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of real numbers2 the concept of a truncated cone could be defined by 

truncone = 3( rt, r2, CI, c2).truncone-condition 

This definition can be specialized to a cylinder by further restricting the radii as 
being equal using equality on real numbers and the conjunction operator n. Sim­
ilarly, the definitions of ascending and descending truncated cones, rings, etc. can 
be obtained by specialization. Truncated cones that are not cylinders are defined 
as the most specific generalization of ascending and descending truncated cones us­
ing the disjunction operator U. An equivalent definition would be not-cylinder = 
truncone n V(rl =In r2)' 

cylinder truncone n V(rl =n r2) 
asc-tc - truncone n V(rl <n r2) 
desc-tc - truncone n V( rl >n r2) 
nng truncone n V( Cl =n C2) 
asc-nng ring n asc-tc 
desc-ring ring n desc-tc 
not-cylinder - asc-tc U desc-tc 

To improve readability, infix notation has been used for the comparison operators in 
the value restrictions. 

The application also needs concepts that describe more than a single surface. So 
it is necessary to aggregate the primitive surfaces. For instance, a biconic comprises 
two neighbored truncated cones (Figure 2.3). 

biconic = 3left.truncone n 
3right.truncone n 
V(left 0 C2 =n right 0 Cl) n 
V(left 0 r2 =n right 0 rl) 

Here the attributes left and right play the role of part-of attributes linking a biconic 
to its components. Informally speaking, an object is a member of 3left.truncone iff it 
has a truncated cone as a filler for left. The expression V(Ieft 0 C2 =n right 0 Cl) forces 
the right center of the left truncated cone to be equal to the left center of the right 
truncated cone. This role interaction of parameters has been represented using the 
equality predicate =n of the concrete domain. An alternative definition of biconic is 

3left.truncone n 3right.truncone n 
Vleft, right.neighbored 

2This predicated of the concrete domain n could be defined by 
truncone-condition(rl, r2, Cl,C2):{:> rl ~n 01\ r2 ~n 0 1\ 

(Cl =n C2 1\ rl in r2 V 
Cl in C2 1\ (rl >n 0 V r2 >n 0)). 
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asc-ring desc-ring 

Figure 4.1: The Subsumption Graph of the Sample Terminology 

where neighbored is a binary, abstract predicate representing the interaction of left 
and right. This approach can be more sensible if the CAD model provides an explicit 
topological model expressing neighborhood on an abstract level. 

However, specializations of biconic can be defined using the value restriction op­
erator V. Informally speaking, an object belongs to Vleft.cylinder if it does not have 
any attribute filler or it has a cylinder as attribute filler for left. 

ascasc biconic n Vleft.asc-tc n Vright.asc-tc 
hill biconic n Vleft.asc-tc n Vright.desc-tc 
rshoulder biconic n Vleft.cylinder n Vright.asc-ring 
Ishoulder = biconic n Vright.cylinder n Vleft.desc-ring 
shoulder Ishoulder U rshoulder 

The next concept shows how two shoulders can be combined to a groove. 

groove 3left.lshoulder n 3right.rshoulder II 
V(left 0 right = right 0 left) 

Here the relation between the components (i.e., shoulders) of the groove have been 
modeled by an universal (attribute) agreement.3 The concept classification service 
arranges the concepts as shown in Figure 4.l. 

To represent a particular lathe work in a terminological system, the assertional 
formalism, called A-box, is employed. It allows to instantiate the concepts with 
instances and to fill in their attributes. A single truncated cone could for example 
be represented by the following A-box: 

(tCl) : truncone, 
(tCl,O) : Cll 
(tCl, 5) : C2, 

(tCl' 10) : rl, 
(tCl, 10) : r2 

( 4.1) 

3Note that in V(left 0 right = right 0 left) the symbol = denotes 'global' equality defined as 
{(x, x)1 x E DOMz U DOMn}, which is not the equality =n of the concrete domain. 
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Strictly speaking, attribute-filler assertions with concrete objects (like 10) are not 
allowed. But, an assertion like (tCI, 10) : rl can be seen as an abbreviation of two 
assertions (tCI, a) : rl and PlO(a) where a is a fresh object and PIO is a unary predicate 
from the concrete domain with the extension {1O}. The object classification service 
of the A-box computes the realization {cylinder} of tCI' 

4.2 Some Limitations 

Terminological formalisms focus unary (concepts) and binary predicates (roles), and, 
furthermore, the structure of the formulas in which these predicates may occur is 
rather restricted. As an achievement of the careful design of ALCFP(V) the reasoning 
problems associated with the inference services are decidable (if 1) is an admissible 
concrete domain) and the formalism is still expressive enough to serve some needs of 
realistic applications. 

Note, that terminological knowledge is represented independent of its intended 
use, it is not necessary for a knowledge engineer to consider restrictions of the op­
erational semantics. In particular, there does not exist a notion of left-to-right, 
top-down, or bottom-up evaluation of a terminological knowledge base or query as 
it is common with rule formalisms. 

Complementary to these advantages there are some limitations with respect to 
expressive power. The particular limitations illustrated in the following subsections 
concern representation as well as reasoning. 

4.2.1 Aggregation 

Terminological reasoning systems directly support the abstraction mechanisms gener­
alization and classification. But they do not bother about aggregation. For instance, 
consider a truncated cone tC2 that neighbors the cylinder tCI introduced in (4.1): 

(tC2) : truncone, 
(tc2,5) : CI, 
( tC2, 5) : C2, 

(tc2,1O) : rl, 
(tC2' 15) : r2 

(4.2) 

The object classification service would derive that tC2 is an ascending ring. But 
it cannot detect that tCI and tC2 together form a 'biconic'-unless the objects are 
aggregated to a single instance. Once there is an object bi with assertions 

(bi, tCI) : left, (bi, tC2) : right (4.3) 

bi can be classified as a rshoulder. 
But this kind of introduction of new instances is not a standard operation in 

terminological reasoning systems. The selection of instances that are composed to a 
new object does not depend on terminological knowledge. On the contrary, knowledge 
about aggregation of instances is part of the assertional box. This can easily be seen 
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in the case that the aggregation is not unique. To illustrate this, let us consider a 
simple configuration example. 4 Let a terminal be defined as a keyboard connected 
to a screen. Suppose there are two keyboards kl and k2 and two screens SI and S2. If 
and how screens and keyboards are put together is not part of the terminological but 
of the assertional component. So there must be a rule which describes under which 
particular circumstances (for example because of customer requirements) kl and S2 
are connected to form a terminal tl. 

Hence, there is a representation deficit (i.e., it cannot be expressed when a ag­
gregation has to take place) and a reasoning deficit (i.e., none of the terminological 
inference services aggregates objects to new objects). . 

4.2.2 Derived Attribute and Role Fillers 

There is a further difficulty associated with assertional reasoning in terminological 
systems. Consider the following concept definitions for regular, tall, and flat shoul­
ders: 

rshoulder-with-hw 

regular-rshoulder 
tall-rshoulder 
flat-rshou Ider 

rshoulder n 
:3(height =n. right 0 r2 - right 0 rl) n 
:3( width =n. left 0 C2 - left 0 cd 
rshoulder-with-hw n V(height =n. width) 
rshoulder-with-hw n V(height >n. width) 
rshoulder-with-hw n V(height <n. width) 

The expression :3(height =n. right 0 r2 - right 0 rd is a mix-fix notation for the appli­
cation of a three-place predicate of n to the attribute chainings height, right 0 r2, and 
right 0 rl in a generalized exists-in restriction. 

The object classification cannot identify the aggregate bi of the above example 
as a regular shoulder. This is a representational problem, because it cannot be 
expressed that a height and a width is associated with each shoulder and depends 
functionally on its radii and centers, and analogue to aggregation, it is a reasoning 
problem, because there does not exist a service that would automatically introduce 
the additional attribute fillers. 

The problem may occur in the abstraction phase (for example, when the feature 
regular-rshoulder is not found in the A-box A comprised of (4.1), (4.2), (4.3)) as well 
as in the refinement phase (for example, when it does not lead to an inconsistent 
A-box if bi : flat-rshoulder is added to A). 

4.2.3 Sequences 

Probably the most sever restriction is that sequences cannot be represented in an 
adequate manner. For example, in the considered application domai~ it is important 
to describe classes of lathes which are sequences of geometric primitives. The problem 

4This telling example is due to Knut Hinkelmann. 
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is that these sequences have a finite, but varying and not a priori bounded length. 
It is quite simple to define concepts for features such as 

'1 truncated cone', '2 truncated cones', 

This can be done as in the following terminology: 

last 
connected 
one 
two 

= 
Vtail.l.. 
Vhead, tail 0 head.neighbored 
3head.truncone n last 
3head.truncone n 3tail.one n connected 

Here l.., as usual, stands for the empty concept. 
But it remains the problem to represent the most specific generalization (union) 

of these infinitely many features (concepts). The resulting concept could be termed 
a 'sequence of neighbored truncated cones'. It should be noted that its specialization 
'ascending sequence of truncated cones' (see below in 4.5) is essential for character­
izing the production classes of lathes. 

Adding Transitive Closure 

The formalism ALCF+ is an extension of ALCF that can satisfy the demands of the 
problem domain for representing sequences. 5 The basic idea of this extension is to 
allow role and attribute terms in value-restrictions and exists-in restrictions instead 
of just allowing role and attribute names as in ALCF. 

Definition 4.2.1 (syntax of ALCF+) The role/attribute terms are built from role 
and attribute names with 

umon 
composition 
transitive closure 

(R US), 
(R 0 S), and 
(trans(R)) 

of roles and attributes. Concept terms in ALCF+ are defined as in ALCF with the 
only difference that role/attribute terms can be used in value-restrictions and exists­
in restrictions. 

For example, a sequence of truncated cones can be defined as follows : 

3head.truncone n 
Vtra ns( tail).3head. tru ncone 

sequence 
( 4.4) 

Since ALCF+ does not provide concrete domains, truncone is a primitive (i.e., not 
further defined) concept in this terminology and it is not expressed that the truncated 
cones are neighbored. 

5This extension is due to Franz Baader, see for example [Baader, 1991], [Baader and Hanschke, 
1992]. 
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Definition 4.2.2 (semantics of ALCF+) The interpretation can be extended to at­
tribute/role terms in the obvious way: (R U S)I = RI U SI, (R 0 S)I = {(x, y); 3z : 
(x,z) E RI and (z,y) E SI}, and trans(R)I:= Un~l (RIt. 

In [Baader, 1991] it is shown that for ALC+ (i.e., ALCF+ without attributes) the 
subsumption problem is decidable. A close look at the algorithm for ALC+ (which is 
much too complex to be sketched here) reveals that the result also holds for ALCF+, 
that means, for concept terms C, D and a terminology T over ALCF+ (with attributes 
and roles) it is decidable whether C subsumes D. 

Combining the Extensions 

Up to now ALCFP(V) and ALCF+, which are both extensions of ALCF, have been 
considered separately. Now consider the language ALCFP+(V) which is obtained if 
both extensions are combined. 

To represent all relevant knowledge of the application domain, one would like 
to have the representational facilities of both formalisms available. With n as the 
concrete domain this language is expressive enough to define concepts that are of 
great importance for the ·application domain, such as a 'sequence of neighbored trun­
cated cones' (seq-tc) and its specialization 'ascending sequence of truncated cones' 
(aseq-tc): 

seq-tc = sequence n (last u connected) n 
Vtrans(tail).(last u connected) 

aseq-tc seq-tc n Vhead.asc-tc n 
Vtrans(tail) 0 head.asc-tc 

where the other concepts are as above. 

(4.5) 

The price that has to be paid for this expressiveness is that it cannot be decided 
in general whether a concept C subsumes a concept D in this language. 

This can be shown by reducing the Post Correspondence Problem to the sub­
sumption problem for this language. The reduction uses only very simple predi­
cates from real arithmetic, namely equalities between linear polynomials in at most 
two variables. The interested reader is referred to [Baader and Hanschke, 1991b; 
Baader and Hanschke, 1992] where a similar result is proved. 6 The only difference 
is that ALCFP(V) is replaced by a less expressive language without abstract pred­
icates and general roles in generalized value and exists-in restrictions and without 
universal or existential attribute (dis)agreements. An analogue result is obtained if 
instead of adding transitive closure to ALCFP(V) cyclic definitions were introduced 
in terminologies of ALCFP(V). 

In [Hanschke and Wurtz, 1993] the undecidability of the satisfiability problem of 
a very (most simple?) class of logic programs (comprising one f~ct P(9I, .. . ,9n) one 
clause P(lt, ... , In) f- P(rI, .. . , rn) and one goal P(h, ... , in» is proved. Both this 

6The proof is due to Franz Baader. 
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result and the undecidablity for ALCFP+ (1)) suggest that as soon as a varying-size 
aspect can be represented in a formalism, further extensions have to be made very 
careful. Otherwise the associated reasoning problems get undecidable. 
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Chapter 5 

An Epistemic Formalism 

In the previous chapter it has been demonstrated that terminological formalisms, in 
general, and the formalism ALCFP(n), in particular, are both useful for representing 
terminological knowledge and limited with respect to their expressive power. The 
main issue of this chapter is the homogeneous integration of the special-purpose rea­
soning power of a terminological formalism with the general-purpose representation 
and reasoning power of a semidecidable (computationally complete) rule formalism. 
Therefore a declarative generic rule scheme is developed and applied to the termi­
nological formalism ALCFP(n). The chapter concludes by showing how the rep­
resentation and reasoning problems left open in the previous chapter can be dealt 
with. 

5.1 Introduction 

The proposed generic rule formalism is based on rules of the form 

</>0 "Vt </>1 I ... I </>n (5 .1 ) 

where n ~ 0 and </>i are formulas of a first-order logic satisfying certain requirements 
and the symbol ""Vt" stands for a weak form of implication explained later. The 
formalism is parametrized by the first-order logic which is referred to as the con­
dition formalism. For instance, it will be shown that the terminological formalism 
ALCFP(V) of Chapter 3 can be seen as a condition formalism. Term equations (and 
negated term equations) induce another relevant condition logic (cf. Section 5.5). 
The operational semantics of the generic rule formalism generalizes the way produc­
tions rules are applied to a fact base. If a rule is triggered one of the </>;, 1 ~ i ~ n in 
the head is (don't know) non-deterministically selected and added to the fact base. 

Informally, such a rule says "if 4>0 is believed, then one of 4>1, </>2, ... ,</>n is be­
lieved." For n = 0 the rule is a denial saying that whenever </>0 is believed, the current 
state is inconsistent. For n = 1 the rules are very close to production rules. If </>0 is 
very simple and n > 1, the operational semantics of these rules has much in common 
wi th SLD resolution (cf. Section 5.5.1). 
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Hence, this formalism combines deterministic, data-driven, bottom-up reasoning 
(as required for abstraction) with non-deterministic, goal-directed, top-down search 
(as required by the association and the refinment phase). 

5.1.1 Operational Semantics 

The operational semantics can be considered as production rule-like inferences com­
bined with backtracking search. First of all, there is a fact base Ao. Objects oc­
curring in the fact base are substituted for variables in the premise of a rule. Then 
it is checked whether the fact base entails (defined formally in Definition 5.2.4) the 
instantiated premise with respect to the condition logic. If not, other objects may 
be tried with another rule. Otherwise, one of the alternatives in the head of the 
instantiated rule is added to the fact base. If the fact base gets inconsistent (defined 
formally in Definition 5.2.4) with respect to the condition logic, backtracking takes 
place: The computation resumes at the most recent point where another alternative 
in the head of a rule can be selected. If all instantiations of rules with a premise that 
is entailed by the current fact base A have been applied, and if the current fact base 
A is consistent, A is an answer computed by the set of rules for Ao. 

Figure 5.1 shows a naive implementation of this operational semantics written in 
a pseudo programming language. 

For a fact base A and a set of rules Pgm the computation started with the call 
closure(A, Pgm, 0, 0) enumerates all consistent answers that can be computed for A 
by Pgm or the function runs for ever internally generating an infinite consistent 
fact-base. 

The third and the fourth argument are auxiliary parameters used to organize the 
search for an entailed premise. The pairs in the set entailed-triggers represent all 
successful rule applications which have led to the current fact base. The pairs in 
failed-triggers represents all failed attempts to entail an instantiated premise by the 
current fact base. 

The don't-know non-determinism of the selection of an alternative of the head of 
a rule is explicitly coded in the function do-not-know-apply. The non-deterministic 
selection of a trigger for a rule in (i) is don't-care and has to be fair, i.e., if a 
certain pair (r, ¢ou) could be selected in a certain stage of the computation, it is 
selected eventually or all subsequent selections of alternatives eventually lead to an 
inconsistent fact base. 

With this fairness property the algorithm cannot loop infinitely in an inconsistent 
branch of the don't know search space. In contrast, Prolog with its left-to-right goal 
selection may loop infinitely in a goal which could be detected as being not provable 
in finite time (with another goal selection strategy). 

Note that the function do-not-know-apply implements a depth-first search strat­
egy (as in Prolog). Hence the inference algorithm may run forever (generating in­
ternallyan infinite consistent fact base) although there may exist a finite consistent 
answer and (due to the fairness property) the algorithm does not loop infinitely in 
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define closure(fact-base, Pgm, entailed-triggers, failed-triggers) := 

if consistent(fact-base) then 
(i) Let </>0 "-+ </>11 ..• I</>n be a renaming with fresh variables of a rule 
r E Pgm and let <7 be a mapping from variables of </>0 to objects of 
fact-base such that (r, </>0(7) r/:. entailed-triggers U failed-triggers 
if this is not possible then 

show fact-base 
j returning false initiates search for next answer 
false 

elseif fact-base entails </>0<7 then 
do-not-know-apply( 

),fact.closure(fact-base U {fact}, Pgm, entailed-triggers U {(r, </>0(7)} , 0), 
{</>1<7,·· . ,</>n<7}) 

else 
closu re( fact-base, Pgm, entailed-triggers, failed-triggers U {( r, </>0(7)} ) 

endif 
else 

false 
endif 

define do-not-know-apply(f, set) := 

if set = 0 then 
false 

else 
(ii) Let </> E set and result := f( ¢) 
if result = false 

then 
do-not-know-apply(f, set \ </» 

else 
result 

endif 
end if 

Figure 5.1:. A Naive Implementation of the Rule Formalism 
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an inconsistent branch of the computation. Imposing a left-to-right strategy on the 
selection of an alternative in the head, would leave some control to the knowledge 
engineer who writes down the rules. This would be analogous to the rule-selection 
strategy in Prolog. It is also possible to implement a breadth-first search (for exam­
ple, by iterative deepening) to avoid this kind of incompleteness. 

Note that the generic inference algorithm of the rule scheme just requires the 
functions consistent and entails to be provided by the condition formalism. 

5.1.2 Logical Reading 

The rules should not be regarded as logical implications in the classical sense. For 
example, the operational semantics of the formalism does not take care of contra 
positions: If there is a rule </> ~ </>' and -.</>' is believed, it will not derive -.</>. The 
operator ~ also differs from classical implication in the following sense: If </> V </>' 
holds and there are rules </> ~ </>" and </>' ~ </>", then </>" is not derived by these rules. 
Finally, assume that there is a rule </>(x) ~ </>'(x) with a variable x, which is implicitly 
universally quantified. Then the rule is only triggered if there is an object a in the 
current fact base such that </>( a) is implied by the fact base. Thus, all variables in 
the premise of a rule have to be instantiated by objects which occur explicitly in the 
fact base. 

These restrictions enable efficient processing of the rules. The trigger rules in 
[Brachman et ai., 1991; Edelmann and Owsnicki, 1986; MacGregor, 1988] have similar 
restrictions in their operational semantics. A trigger rule A ~ B' can be regarded 
as a special case of (5.1) where </>0 and </>1 are concepts and n = 1. In [Donini et 
ai., 1992] a semantics based on the epistemic operator K, standing for 'knows', is 
proposed which coincides with the operational semantics. Levesque has introduced 
the K operator in his ask and tell framework [Levesque, 1984]. 

In [Lifschitz, 1991] Lifschitz relates minimal believe logics to the semantics of 
some logic programming formalisms including general, disjunctive logic programs. 
He replaced the letter K by the letter B reflecting his preference of 'believe' in place 
of 'knowledge' as the intuition behind his logic. 

This idea of a minimal believe iogic is also the key to the semantics of the rule 
formalism introduced here. However, non of the mentioned formalizations of an 
epistemic logic is appropriate as the basis for a model-theoretic semantics of the 
rules. Compared to [Donini et ai., 1992] the formalism considered here offers more 
complex premises, disjunctions in the conclusions, and variables occurring only in the 
head. It is also more general, because it tolerates the possible presence of equality 
"=" and the possible absence of a unique-name assumption. 

Premises with more then one variable together with the absence of the unique­
name assumption induce a major technical problem. Consider, for instance, a fact 
base just consisting of the fact p(x, y), which is associated with the epistemic formula 
3x,y(Bp(x,y)), and a program consisting of a rule p(x,x) ~ q, which is associated 
with Vx(Bp(x,x) =} q). Note, that the rule cannot be applied to the fact base. The 
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soundness result below (Proposition 5.4.1) implies that each epistemic model of (the 
computed answer) 3x,y(Bp(x,y)) satisfies the program and the fact base. 

What is an epistemic model? Roughly, the formalizations of epistemic logics in 
[Reiter, 1990; Lifschitz, 1991; Levesque, 1984; Donini et ai., 1992] all have the same 
structure. The following definitions can be seen as a simplification of the logic pre­
sented in [Lifschitz, 1991] where an additional modal operator not is considered. An 
epistemic interpretation (I, M), which is also referred to as a structure, consists of 
an interpretation I of an underlying first-order logic and a set M of such interpreta­
tions where all interpretations :I E M and I share the same domain, D say. For the 
parameters d E D names nI, n2," . are introduced. These names are in a one-to-one 
correspondence to the parameters in D. The notion of satisfiability for structures is 
inductively defined as follows . If a structure (I, M) satisfies an epistemic formula </>, 
this is written as M, IF</>' 

1. M, IF</> :iff IF</>, for a closed first-order formula </>. 

2. M,I F </> 1\ </>' :iff M,I F </> and M,I F </>'. 

3. M,I F 3x(</>(x)) :iff there exists a name n such that M,I F </>(n). 

4. M,I F -'</> :iff not M,I F </>. 

5. M,I F B</> :iff :I, M F </>, for all :I E M . 

Then an epistemic model (I, M) of </> is a structure with M, IF</> that is 
maximal with respect to ~ . Here ~ is defined by (I,M) ~ (I',M') :iff M ~ M'. 1 

In the example, let (I,M) be a model of 3x,y(Bp(x,y)). According to the 
definition there exist names nI, n2 such that:l F p(nI,n2), for all:l E M. Please 
observe that both sets of interpretations, defined below, induce epistemic models of 
:Ix, y(Bp(x, y)). 

1. M = : = {II I is an interpretation over D and (d, d) E ]I}, for some d ED. 

2. M;>!: := {II I is an interpretation over D and (d1 , d2 ) E rl for some d1 , d2 E D 
with d1 i= d2 • 

Obviously, neither M= ~ M;>!: nor M;>!: ~ M=, and (I, M=) is not an epistemic 
model of the rule Vx(Bp(x,x) =} q)-contrary to the desired soundness result. 

The example suggests that the problem is related to an interplay of the modal 
operator and the quantifiers. There happens something interesting if the scope of 
two existential quantifications interact with the scope of an occurrence of the modal 
operator. 

-Let (I, M) be a structure. For B(p V q) all ways to make p V q true may be 
covered by M . Similarly, M : = {II I is an interpretation over D and 3x, y (p( x, y)) 

lThe definitions of the other approaches vary in the treatment of I and I' . 
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is true in I} covers all possible ways to satisfy :3x, y(p(x, y)) with interpretations over 
a fixed domain D. But consider :3x,y(Bp(x,y)). It is impossible that M covers all 
possibilities how p(x,y) can be made true given that there are objects d1 and d2 for 
which it is just?- required that (db d2 ) is in the extension of p. The set M must be 
incomplete in this respect, because selecting names nl and n2 either with nl = n2 

or nl i= n2 to substitute for x and y is a commitment to either a set of type M= or 
M:j:, respectively. Note that this problem does not occur with trigger rules. 

In the following section epistemic logics are formalized using partitions with in­
finite equivalence classes as interpretation domains and the notion of pre variable 
assignments. This conception enables an epistemic model to vary also over all possi­
ble variable assignments by assigning the elements of the range of a pre assignment to 
different equivalence classes in different interpretations. The key result is Proposition 
5.2.7. 

5.2 Condition Formalisms and Minimal Belief 

The semantics of an expression H ¢( x) is usually defined by an intersection of the 
extensions of 4> in all possible interpretations, or, as above, by the use of names. 
Equivalently, an assignment for the variables in 4>(x) could be fixed, before the truth 
values of 4>( x) with respect to to this assignment in all possible interpretations are 
conjoined. 

An important requirement, stemming from the operational semantics is that pee) 
implies :3x(Bp(x)). An epistemic model satisfies the latter if their is an assignment a 
to x such that in all interpretations of the epistemic model p( xa) is true. In [Donini 
et al., 1992] this problem is solved by fixing the domain and the assignments of 
constants to elements of the domain for all interpretations. This was possible since 
they do have a unique-name assumption: without loosing generality all constants 
can be mapped to pairwise distinct parameters of the domain in the same manner 
in all interpretations. But if the logic does not have a unique-name assumption, it 
should be possible for two constants to be identified in one interpretation and to be 
different in another. 

Here a different approach is taken. The object e is considered as a variable 
that occurs in the scope of :3 and B and the formula :3y(Bp(y)) replaces pee). As 
a by-product, the names of objects introduced in a computation are irrelevant (as 
long as they are 'fresh'). If the objects were constants it would have been more 
complicated to formulate the completeness result (Proposition 5.4.2), because in a 
computation new constants may be generated. The names of these constants are 
irrelevant for epistemic models of the program but would restrict epistemic models 
of the computed answers. 

The following definition formally defines the notion of a 'condition formalism' 
which up to this point has only been used in an intuitive sense. 

2In particular, there is nothing said about x = y or x -=f:. y. 
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Definition 5.2.1 (condition formalism) A first-order language CF gets a condi­
tion formalism, if the following notational conventions are adopted and CF satisfies 
the requirements formulated below. 

The domain of an interpretation I of CF is denoted by DOMI. A variable assign­
ment is a partial mapping from variables to elements of the domain. An interpretation 
function .I assigns a set <pI of variable assignments to a formula <p such that a is 
defined on x iff the variable x occurs free in <p, for all a E <pI. An interpretation I 
and a variable assignment a satisfy a formula <p iff a restricted to the free variables 
in <p is in <pI. This is written as I, a F <p. 

The first-order logic also has to satisfy the following requirements: 

• Condition formalisms are closed under conjunction: Let <p and <P' be two formu­
las with sets of variables V and V', respectively. Then <p A <P' is also a formula 
of CF, with variables V U V', and 

(<p A <p')I = {x t-+ {xa, i! x E V 
xaI, if x E V' 

a E <pI, al E <pIT, } 
and xa = xal, 
for all x E V n v' 

for each interpretation I. By abuse of notation, sometimes a condition formula 
is considered as the set of its conjuncts and vice versa. 

• The interpretations are closed under renaming: Let I be an interpretation with 
domain DOMI and 7r : DOMI ---+ D be some bijection into another set. Then I7r 
is also an interpretation with DOMI?r = D and <pI?r := {a7r1 a E <pI}. 

o 

The operational semantics as well as the fixpoint semantics (see below) of the 
rule formalism may induce potentially infinite sets of formulas. Hence, 'conjunction' 
is extended to the countable, infinite case. If variable assignments are identified 
with their graphs, (<p A <pI)I could be written as {a U a'ia E <pI, a' E <pII, and aU 

a' is functional}. For a (possibly) infinite set <I> of formulas, conjunction is defined 
by 

(/\ cI»I := {.BI.B = u{~(<p)1 <p E cI>},~: <p t-+ a E <pI,.B is functional} 

The epistemic logic CF(B) defined next is parametrized by a condition formalism 
CF. 

Definition 5.2.2 (syntax of epistemic logic CF(B) The syntax of the epistemic 
logic CF(B) is inductively defined as follows: 

• Every formula of CF is an epistemic formula. 
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• If </> is an epistemic formula and <P is a set of epistemic formulas, -.</>, /\ <P, 
3x(</», and B</> are epistemic formulas. Here x is a finite or countable infinite 
tuple of pairwise different variables. 0 

The logical connectives V, :::}, and the quantifier V are used in the usual way to 
abbreviate formulas. An epistemic formula not containing the modal operator B is 
called objective. The mapping V : (epistemic-formulas) ~ V retrieves the set of 
free variables of </>. 

The semantics of the epistemic logic is defined via sets of interpretations of a spe­
cial structure. An admissible interpretation domain DOMI over D is a non-empty par­
tioning DII of a set D where each equivalence class of a partion comprises infinitely 

many elements of D. By reD) the set of all interpretations with an admissible in­
terpretation domain over D is denoted. A pre variable assignment a is an injective3 

partial mapping a : V --+ D from variables to elements of D. Note that for T E reD) 
a pre variable assignment a : V --+ D induces a variable assignment 

a I . {V --+ DIT 
. x I-t [xah 

Conversely, for each variable assignment a : V --+ DIT there exists a pre variable 

assignment f3 such that a = f3I. It follows from the Skolem-Lowenheim Theorem that 
it is not a restriction to consider interpretations with an admissible interpretation 
domain over D provided that D is large enough. The cardinality of D should be 
at least the maximum of wand the cardinality of the signature of the condition 
formalism. 

Definition 5.2.3 (semantics of epistemic logic (F(B)) Let M ~ reD) be a set 
of interpretations for some D, I E reD) an interpretation, and a : Va --+ D a 
pre variable assignment. Then M is an epistemic interpretation and the four place 
(meta-) predicate F= is inductively defined according to the structure of epistemic 
formulas as follows: 

• Let </> be an objective epistemic formula. Then M,T,a F= </> :iffI,aI F </>I . 

• Let </> be an epistemic formula, <P a finite or countable infinite set of epistemic 
formulas, x a finite or countable tuple of pairwise different variables, and V( x) 
the set of variables in x. Then F is defined by 

1. M,T,a F -.</> :iff not M,T,a F= </> 

2. M,T, a F /\ <P :iff M,T, a F </>, for all </> E <I> 

3. M,T, a 1= B</> :iff M,.1, a F= </>, for all .1 E M 

3 A mapping e is injective :iff x "# y implies xe "# ye, for all elements x, y of the domain of e. 
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4.. M, X, a F= 3x( 4» :iff there is a pre assignment f3 : V J3 -t D and a bijection 
7r: Vex) -t Vj3 such that M,X,aU f31= </>7r and Vc> n VA = 0 

Similar to condition formulas, a set of epistemic formulas cI> is identified with 
a conjunction 1\ cI>. The triple M, X, a satisfies 4> :iff M, X, a F= 4>. An epistemic 
interpretation M satisfies an epistemic formula 4> :iff M,I,a F 4>, for all X E M 
and all variable assignments a. An epistemic model M of an epistemic formula 4> 
is a maximal epistemic interpretation M ~ reD) satisfying 4>. I.e., if there is an 
epistemic interpretation M' ~ reD) satisfying 4> and M' ;2 M, then M' = M. A 
closed epistemic formula is epistemically consistent :iff it has an epistemic model. 0 

A fact base Ao is a set of condition formulas, which may also be considered as a 
possibly countable infinite conjunction. By abuse of notation, a fact base may also be 
considered as an epistemic formula: An epistemic model (resp, interpretation) M of 
a fact base A (infinite or not) is an epistemic model (resp, interpretation) of 3x(BA} 
where x is a (possible infinite) tuple comprising exactly the variables that occur free 
in A. 

Definition 5.2.4 (entailment and consistency of CF formulas) Let 4> and 4>' 
be two formulas of CF. Then 4> entails ¢/ :iff X, a F= </> implies X a F= ¢/, for all 
interpretations X and all variable assignments a. A formula </> is consistent :iff there 
exists X and a such that X, a F= </>. 0 

Please, recall that the algorithm in Figure 5.1 takes an entailment test and a 
consistency test of CF to implement the operational semantics of the rule formalism. 

Since fact bases are identified with possibly infinite conjunctions, Definition 5.2.4 
carries over to fact bases. Another property of CF, which is always satisfied by a 
first-order logic, is compactness. 

Definition 5.2.5 (compactness) A condition formalism is compact :iff for each 
set of formulas cI> that entails a finite formula 4> there is a finite set cI>' ~ cI> such that 
cI>' entails </> and all elements of cI>' are finite. 0 

The premises of the rule formalism shall filter the objects present in the fact base. 
In particular, they should not be over general (accept any object) and they should not 
invent new objects not present in the fact base. The following definition, introduces 
the notion of filtering condition formulas which makes the above idea precise. 

Definition 5.2.6 (filtering) An objective formula 4> is filtering with respect to a 
variable x E V( 4» and a fact base A :iff there exists an X and a such that X, a F= A 
and DOMI =1= x</>I := {xf31 f3 E </>I}. The objective formula 4> is filtering :iff it is 
filtering with respect to all variables in V( </» and all fact bases. 
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For example, the premise of T (x) ~ p( x) is not filtering for any consistent fact 
base if T(x) is a unary predicate always interpretated as the whole domain. If such 
a rule would be allowed, it would be necessary to represent universally quantified 
formulas in the fact base to get complete inferences. In the example, this would 
be Vx(Bp(x)). But, then a more general entailment and consistency test would be 
needed.4 

The following proposition establishes an important interrelation of the epistemic 
logic CF(B) and the underlying condition formalism CF: Roughly, an epistemic model 
of a fact base comprises all 'characteristic' interpretations. 

Proposition 5.2.7 Let a fact base A, an epistemic model M ~ r(D) of A, a fil­
tering objective formula </J, and a pre assignment f3 : V( </J) -. D be given such that 
I,(3I F </J, for all I E M, and V(A) and V(</J) are disjoint. Then there exists 
(7 : V ( </J) -. V (A) such that A entails </J(7. 

Furthermore, there exists a pre assignment 0: : V(A) -. D such that I, aI F A, 
for all IE M, and (7 can be chosen such that xu = xf3o:-I, for all x E V(</J). 

Proof. For a mapping edenote by ran( 0 the set {xe I e is defined on x}. According 
to the assumptions there exists a pre variable assignment 0: : V(A) -. D such that 
I,a! F A, for all I EM. 

Claim 1: ran( 0:) ;2 ran(f3) 

Proof. 1) If ran( 0:) = D the claim trivialy holds. 

2) Otherwise, assume that the claim does not hold. Then there exists 
y E V(</J) such that yf3 ¢:. ran(o:). Since </J is filtering, there exists an 
interpretation II and a variable assignment 0:1 such that II, 0:1 F A and 
y( </JI1 ) =1= DOMI1 • 

According to the remarks on admissible interpretation domains and the 
size of D before Definition 5.2.3 there exists also an interpretation I2 
with an admissible interpretation domain DOMI2 such that I 2,0:2 F A 
and y( </JI2) =1= DOMI2. Consequently, there exists an e E D such that 
[elr2 E DOMI2 \y( </JI2). Since the elements of D are not important for I2 as 
a first-order logic, these element can be assigned freely to the equivalence 
classes in DOMI2 = DjI2 as long as the domain of I2 remains admissible. 

Thus, it can be assumed without loosing generality that yf3 ¢:. ran(0:2) 
and yf3 = e. 

Because, 0: and 0:2 are injective, there exists a bijection 1r : D -. D such 
that xo: = X0:21r, for all x E V(A), and e1r = e. Let.:J := I21r be the 
interpretation in r(D) that is induced by . 

4For equations over terms of uninterpreted function symbols this would not be a problem. For 
example, in order to search for a generic representation of all substitutions u such that the universal 
closure of p(t) entails p(su) one would compute the most general (rational) unifier of t = s. 
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• DOM.1 := {p1l"1 P E DOMI2P and 

• 'l/J.1 := 'l/JI211" := h'1I"1 , E t/JI2}. 

By construction .:J, a.1 F A and [e1l" 1.r ~ y ( <//'). Hence.:J E M (be­
cause M is an epistemic model of A) and .:J, f3.1 IF <P (because y f3 = e). 
Contradiction. This completes the proof of Claim 1. 

Next a is defined by xa = xf3a- l . This is well defined since pre assignments are 
injective. It remains to show that A entails <pa. 

Assume not. Then there exists I E feD) and a pre assignment, such that 
I"I F A and I"I IF </>a. Analogue to a, a2, the pair a, , induces a bijection 11" and 
an interpretation I1I" E feD). Again, it turns out that I1I" E M and, according to the 
assumption, I1I", f3I1r F <p. Using the definition of a the latter implies I1I", ar1r F </>a. 
With a = ,11", one gets I1I",,1I"I1r F <pa, and, finally, I"I F <pa. Contradiction. 0 

Last but not least, in this section it is observed that epistemically consistent fact 
bases always have an epistemic model. 

Observation 5.2.8 Let A be a fact base, and let M ~ feD) be an epistemic inter­
pretation satisfying A. Then by definition there exists a pre assignment a such that 
I,ar F A, for all IE M. Then M' = {I E f(D)1 I,ar 1= At is an epistemic 
model of A and M ~ M' ~ feD) . 0 

5.3 The Epistemic Rule Formalism 

This section formally defines the rule scheme which takes a condition formalism CF 
and constructs an epistemic rule formalism ER(CF). This rule formalism has an 
epistemic, model-theoretic semantics which is based on the epistemic logic CF(B) of 
the previous section. It also has a straight forward fixpoint semantics which is sound 
nd complete with respect to the epistemic semantics. Given an entailment and an 
consistency test for CF the fixpoint semantics can be implemented on a computer to 
obtain an inference engine for the rule formalism. Section 5.1.1 has sketched such an 
implementation. 

The next definition formally defines the syntax of the rules and defines a mapping 
into CF(B) . 

Definition 5.3.1 (ER(CF)) Let a condition formalism CF with an entailment test 
and a consistency test be given, and let <Po, ' .. ,<Pn, n > 0, be n + 1 finite condition 
formulas. Then by definition 

<Po"-t <PI I· . 'l<Pn 

5 Here p7r is defined as {d7r1 d E p}. 
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is a (program) rule in ER(CF) if <Po is filtering. It is identified with the closed epis­
temic formula 

'Vxo(B<po ~ V 3Xi(B<pi)) 
i=l···n 

where Xo is the tuple of the variables in V( <Po) and Xi, 1 ~ i ~ n, are the tuples of 
variables in V(<Pi) \ V(<Po). For n = 0 the formula Vi=l ... n 3Xi(B<pi) is identified with 
..i. The symbol ..1 denotes a formula of CF that is inconsistent. 

A program Pgm is a finite set of rules. 0 

The operational semantics (described in Section 5.1.1) searches for a consis­
tent answer using backtracking. In the fixpoint semantics described her this non­
determinism is handled with a selection function that acts as an oracle. The selec­
tion function says which alternative to select in an instantiated rule. The fixpoint 
operator defined below is parametrized by such a selection function. 

Definition 5.3.2 (fixpoint semantics of ER(CF)) Let a program Pgm be given. 
A selection function 

sel : (r, <Poa) f---+ k 

assigns to a pair (r, <poa) consisting of 

• a rule r : <Po'Vt <PI I· .. l<Pn and 

• a formula <Poa where a is a substitution a : V( <Po) -+ V 

an index k, 1 ~ k ~ n. 
To each selection function sel a fixpoint operator Tsel,Pgm on fact bases is associ­

ated. If Pgm or sel is clear from the context the corresponding index may be dropped. 
The operator is defined as follows:6 If A is inconsistent, Tsel(A) = A, otherwise 

there is a renaming <Po 'Vt <PI I ... I <Pn with 
fresh variables of a rule r E Pgm, 

Tsel : A f--t Au <P a: V( <Po) -+ V(A), A entails ¢Joa, 

{ 
<Pka, if k -; 0 

sel(r, <Poa ) = k, <P =..1 th . 
, 0 erwzse 

The iterated applications of the operator to a fact base Ao are abbreviated as 
follows: 

Tsel,Pgm,Ao jO Ao, 
Tsel,Pgm,Ao j'+1 .- Tsel,Pgm(Tsel,Pgm!Ao ji), for i > 0, and 
Tsel,Pgm,Ao jW '- U>o Tsel,Pgm,Ao j' . 

The indices may be dropped, if they are clear from the context. Trw is the answer to 
Ao computed by Pgm with sel. 0 

6The phrase 'a renaming rl with fresh variables of a rule r' means that the variables of the rule 
r-as usual-have been substituted by pairwise different new variables which do not occur in A. 
More precisely, there exists a bijection 11" : V(r) -+ V(rt} such that r1l" = rl and V(rt} n V(A) = 0. 
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Neglecting the incompleteness of the operational semantics which is due to the 
depth-first search strategy, it should be clear that the operational semantics of Section 
5.1.1 can be understood as an implementation of the fixpoint semantics described 
here. For a given fact base ~ and a program Pgm, the incompleteness caused by 
the depth-first search strategy may only be problematic if there exists a selection 
function sel such that Tsel,Pgm,.Ao jW is infinite and consistent. 

5.4 Soundness and Completeness Results 

This section states and proves soundness and completeness of the fixpoint semantics 
with respect to the epistemic semantics of the program. 

Proposition 5.4.1 (soundness) Let a fact base ~, a program Pgm, and a se­
lection function sel be given. Then each epistemic model of Tsel,.Ao,Pgm jW satisfies 
Ao U Pgm. 

Proof. If TjW is inconsistent, the proposition holds trivially. If not, let M be an 
epistemic model of the consistent fact base Tjw. Since T is extending, 7 ~ ~ TjW 
and, thus, M satisfies ~. 

It remains to show that M satisfies Pgm. Assume not. Then there is a rule 
r : VXo(B<po) =} Vi=l oo on ~xi(B<pi) in Pgm such that M does not satisfy r. I.e., there 
exists /3 such that I, /3 F <Po, for all I E M and for all i E {I"", n} there exists 
some I' E M such that M, I', /3 V= ~xi(B<p;). 

By Proposition 5.2.7, there exists a pre assignment a such that M,I,O' F TjW 
and, with a := /30'-1, the set of condition formulas TjW entails <Poa. 

Since CF is compact, there exists a finite subset A ~ TjW such that A entails 
<Poa. Consequently, there exists a j > 0 such that A ~ Tji and, thus, Tji entails 
<Poa. Using the definition of T it follows that <Pk(j E Tji+l~ TjW, for some k, and, 
thus, M,I, a 1= ~xk(B<pka), for all I E M. Finally, since (j = /30'-1 and I' E M, 
M,I/,/31= ~xk(B<pk)' Contradiction. 0 

Proposition 5.4.2 (completeness) Let a fact base Ao, a program Pgm, and an 
epistemic model M ~ f(D) of Ao U Pgm be given. Then there exists a selection 
function sel, such that M is an epistemic model of Tsel,.Ao,PgmiW 

• 

Proof. The proof of Proposition 3.7.5 is based on the following lemma which is a 
weak form of the proposition. 

Lemma 5.4.3 (weak completeness) Let a fact base ~, a program Pgm, and an 
epistemic model M ~ r(D) of Ao U Pgm be giveon. Then there exists a selection 
function sel, such that M satisfies Tsel,.Ao,Pgm jW. 

7I.eo, A ~ T(A) for all fact bases A 
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Proof. In the proof a selection function sel is defined step by step as it is 
needed in the iterated application of the operator Tsel • 

According to the assumption there exists a pre assignment ao : V(..4o) ~ 
D such that I, d5 F ..40, for each I E M. 

Induction hypothesis: I,a[ F Tji, for each I E M. Consider the 
(i + 1 )th iteration of the T operator and let 0', a rule rEP gm, and its 
renaming with fresh variables <Po '"'-+ <PII·· ·1<Pn be given as in the definition 
of T, that is, Tji entails <pO'. It is also assumed that sel has not been 
defined at (r, <PoO') so far. 

The induction hypothesis implies I, a[ F <pO', for all I E M. Then 
I,O'a7 F <p, for all IE M. Since M F r, this implies, M,I,O'ai F 
Vi=l ... n 3Xi(B<pi). If n = 0, M would be empty and the lemma would 
hold trivially. 

Otherwise, the proof proceeds as follows: Using the definition of dis­
junction it can be derived that there is a k, 1 ~ k ~ n, such that 
M, I, O'ai F 3Xk(B<pk) and, as an immediate consequence, M, I, ai F 
3Xk(B<pkO'). By the definition of F it follows that there is a pre as­
signment (3r,u : V( <PkO') \ V( <poO') ~ D such that I, (ai(3r,ul F <PkO', for 
all I EM. Note, that (3r,u is defined on fresh variables. The value of 
sel(r, <Po 0' ) is set to k. 

This construction can be made for all r,O' that trigger a rule in this 
iteration. The pre assignments (3r,u can be chosen such that they have 
pairwise disjoint domains. Hence, by identifying the pre assignments with 
their graph, ai+l can be defined as ai U Ur,u (3r,o-' Finally, I, a[+I F Tji+I , 
for each I EM, because I, a[ F Tji and, I, (3;'0- F <pO', for <Psel(r,t/>oo-)O' E 
Tji+I \Tji. 0 

With this lemma the proposition can be proved as follows: Let Ao, Pgm, and an 
epistemic model M of ..40 U Pgm be given. Then Lemma 5.4.3 implies that there 
exists a selection function sel such that M satisfies Tjw. By Observation 5.2.8 there 
exists an epistemic model M' ~ r(D) of TjW with M ~ M' . Proposition 5.4.1 
implies that M' satisfies ..40 U Pgm. The maximality of M as an epistemic model of 
Ao U Pgm implies M = M'. Hence, M is an epistemic model of TjW, too. 0 

The soundness result (Proposition 5.4.1) cannot be strengthened such that each 
epistemic model of T jW is also an epistemic model of Ao U Pgm as the following 
example shows. 

Example 5.4.4 Let p '"'-+ alb and q '"'-+ bla be a program and Ao = {p, q}. Then 
Tjw= {p, q, a, b} , for some selection function. But, the epistemic models of TjW do not 
correspond to maximal epistemic interpretations satisfying Al, because already the 
smaller fact bases {p, q, a} and {p, q, b} are sound answers that have larger epistemic 
models. 0 
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In the general ca.se, it is computationally very expensive (in an informal sense) 
to check whether a selection function leads to a computed answer that is redundant 
in a way analogue to the example. For each formula that may be added to the fact 
ba.se it would be necessary to check, whether one of the alternatives of this formula 
is already entailed by the fact ba.se and, even worse, it would have to be checked 
whether the newly introduced formula makes previous selections obsolete because 
the new fact ba.se would entail another alternative. 

Example 5.4.5 Consider, Ao := {p, q} with the rules p ~ alb and q ~ b. Now 
a.ssume that the first rule is considered first and that a ha.s been selected. In a later 
stage of the computation when the second rule is considered the first choice gets 
obsolete since at this moment it gets obvious that b is necessarily contained in the 
computed answer. 0 

5.5 Relation to Horn Logic and CLP Formalisms 

In this section, it will first be shown how Horn logic programs can be translated to 
the epistemic rule formalism. The section concludes by discussing the relation to 
Q.LP languages a.s described in [Hohfeld and Smolka, 1988; Jaffar and La.ssez, 1986J. 
Note that the primary intention for the translations developed in this section, is to 
provide the reader with a better intuition of the capabilities of the rule formalism 
and to demonstrate how goal-directed and data-driven inferences can be represented, 
in principle. 

5.5.1 Some Relations to Horn Logic 

If either bottom-up, or top-down rea.soning is a.ssociated with the rules this oper­
ational a.spect can be represented in the epistemic formalism. First note that a 
Herbrand term f(tl, t2) can be represented by f(Xl, X2), Xl = t I , X2 = t2. So, in 
order to represent Horn logic programs, it suffices to consider a condition formalism 
with the following kind of formula.s: 

1. Atoms of the form P(Xl'· .. ,xn ) where the Xi are pairwise different variables 
and p is a predicate name. 

2. Equations Xl = X2 and Xo = f(Xl,· .. ,xn ) where the Xi are pairwise different 
variables and f is. an n-ary function symbol. 

These formula.s are interpreted a.s usual in first-order logic with equality. Note 
that a fact ba.se A entails p( Xl, ... ,xn ) if p( Xl, ... ,Xn ) E A. 

66 



Top-down Rules 

Let be given a Horn logic program and an n-ary predicate p where 

p(x) +- G1 V ... V Gn 

is the homogeneous formS of the rules defining the predicate p. These rules are then 
translated to a single rule p(x) "-+ G~I" 'IG~ where each Gi is obtained from G t by 
translating terms into sets of equations. 

Let a goal G and substitution (J' be given. Then (J' is a correct answer substitution 
for G [Lloyd, 1987] iff there exists a selection function sel such that Tsel jW is finite 
and (J' restricted to the variables in G can be extended to a unifier of Tseljw. 

Example 5.5.1 The append program 

append(X, Y, Z) +- X = nil, Y = Z. 
append(X, Y, Z) +- X = cons( Car, Cdr), 

Z = cons( Car, Z'), 
append( Cdr, Y, Z'). 

is translated into 

append(X, Y, Z) "-+ X = nil, Y = Z 
I X = cons( Car, Cdr), 

Z = cons( Car, Z'), 
append( Cdr, Y, Z') . 

For the fact base (i.e., query) append(X, Y, Z), X = cons(A, nil), Y = cons(C, D) the 
applications of the T operator add the following sets (for an appropriate selection 
function): 

1. Selecting the second (alternative of the) head, the formulas 

X = cons( Car, Cdr), Z = cons( Car, Z')' append( Cdr, Y, Z') 

are added. Together, with the initial query this would imply Car = A, Cdr = 
nil, Z = cons(A, Z'). 

2. Selecting the second head again would lead to an inconsistency whereas select­
ing the first head adds Cdr = nil, Y = Z'. 

At this point T gets stable and a most general unifier for the equations in the fact 
base would assign cons( A, cons( C, D)) to Z. 0 

If all predicates are translated in this manner, all queries are answered just as if 
SLD resolution would have been used-with one difference: All atoms and conditions 
on variables occurring in the SLD-derivations are kept and the intermediate goals are 
considered as sets. 

8For example, the homogeneous form of p(a) +- G, p(b) +- G' is p(X) +-- ((X = a 1\ G) V (X = 
b 1\ G')) where X is a fresh variable, not occurring in G or G'. 
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Bottom-up Rules 

In this case the rules have to be range restricted (i.e., each variable in the head is 
bound in the body). 9 Each rule H ~ G is just translated to G ~ H. Obviously, 
then the operational semantics of the epistemic rule formalism directly implements 
naive bottom-up computation. 

See [Hinkelmann, 1993] for a more evolved discussion of consequence finding 
strategies [Slagle et al., 1969; Minicozzi and Reiter, 1972; Inoue, 1991] with mixed 
top-down/bottom-up computation in the context of logical programming. 

5.5.2 Relation to CLP 

In the CLP schema proposed in [Hohfeld and Smolka, 1988] and refined in [Smolka, 
1989] a CLP clause is of the form 

po(Xo) ~ Pl(xd,'" ,Pn(xn)&¢ (5.2) 

where Pi are "relational predicates", Xi are tuples of pairwise different variables, and 
¢ is a constraint (i.e., a formula of a first-order logic satisfying certain requirements). 
Atoms over relational predicates and constraints are disjoint classes of formulas. 
A query to a set of such clauses is a conjunction of atoms and constraints. The 
operational semantics (see, for example, [Smolka, 1989]) then tries to enumerate 
constraints such that if a variable assignment of a model of the program satisfies an 
answer constraint, the query is satisfied, too. If for a query, the operational semantics 
detects in finite time that there is only the trivial answer ..i that entails the query, 
the query belongs to the finite failure set of the program. 

Relational versus Constraint Predicates 

In this formalization of CLP the knowledge engineer is forced to decide which portion 
of knowledge to represented by which kind of predicates. More recent CLP formalisms 
(see for example [Wurtz et ai., 1993]) tend to blur the distinction between these 
two kinds of predicates-the formalisms only deals with constraints. The semantics 
may then be defined in terms of a closure of certain constraint propagation and 
simplification operations. These formalisms can also be given a semantics based on 
classical logic. In general, the operational semantics is sound, but not complete with 
respect to these semantics. 

The rule formalism introduced here, is also uniform in the sense that there is 
only one class of formulas: condition formulas. But here, this is also reflected by the 
model-theoretic semantics. 

9To relax this requirement, explicit universal quantification of the variables in a fact base would 
be necessary. See also the note on (filtering' after Definition 5.2.6. 
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Translation 

The CLP clauses defining a predicate of a CLP program P, can be translated analogue 
to the case of top-down rules in Section 5.5.1 into an epistemic program P'. I.e., the 
homogeneous form of a predictate definition10 

(5.3) 

is translated into 

(5.4) 

The entailment test is defined as follows: A fact base A entails p( x) :iff p( x) E A. 
The consistency test is just the consistency test of the CLP formalism. ll 

Observation 5.5.2 Let P be a eLP program and G a eLP goal. If pi and G' are 
the respective translations then G belongs to the finite failure set of P iff G' U pi does 
not have an epistemic model. 0 

Note that a condition formalism is always compact. Hence, the above observa­
tion can only be made for CLP formalisms with a compact constraint formalisms. 
Equations of Herbrand terms which are only interpreted over Herbrand terms (as in 
Prolog) do not induce a compact constraint formalisms: The set of equations 

(5.5) 

is inconsistent although each finite subset is consistent. 

5.6 Integrating Terminological Reasoning, Con­
crete Domains and the Rule Formalism 

In this section it is shown how the generic rule scheme can be combined with the 
generic terminological formalism ALCFP(V). After some preliminary discussion how 
ALCFP(V) can be considered as a condition formalism (cf. Section 5.6.1) the rule 
scheme is applied to ALCFP(R). On the basis of this three layered formalism (rules 
on top of a terminological formalism on top of concrete domains) the representation 
and reasoning demands left open in Section 4.2 are reconsidered in Section 5.6.2. In 
particular, it is demonstrated how aggregation, derived attributes, and sequences can 
be dealt with. 

IOThe Gi are conjunctions of relational predicates with pairwise different variables, and the <Pi 

are constraint formulas . 
11 More precisely, the relational predicates have to be dropped before the consistency test can be 

applied to the constraints . 

69 



5.6.1 Application of the Scheme to ALCFP(V) 

The formulas of the condition formalism are finite A-boxes. More precisely, a fact 
base is a set of generalized membership assertions where the occurring objects are 
considered as variables. An alternative in a head is also a collection of generalized 
membership assertions. Premises are filtering12 A-boxes (i.e., also collections of gen­
eralized membership assertions) which are rooted by some objects Yb··· , Yn. These 
objects are the free variables in the premise. 13 

According to Chapter 3 the domain of a terminological interpretation is divided 
into disjoint sets: an abstract domain DOMI and a concrete domain DOMv. To avoid 
a name clash with the domain of an interpretation of a condition formalism the 
abstract domain is denoted by DOMI,a from here on. In the original definition the 
set DOMv remains the same for a given concrete domain V and does not depend 
on T. This conflicts with the definition of an admissible interpretation domain of a 
condition formalism. 

Hence, in the context of the rule formalism an interpretation domain is of the 
form DOMI,a U DOMI,V and is denoted by DOMI. Note that the concrete domain is 
denoted by DOMI,V to express that it depends on T. It is also required that the 
'abstract domain' DOMIo,a and the 'concrete domain' DOMI,V are disjoint, which is 
not problematic with respect to the definition of a condition formalism. The relation 
of DOMv to DOMI,V is established by requiring that for each interpretation there 
is a bijection 7rI : DOMv --+ DOMI,V and the interpretation of a concrete predicate 
P(Xl,···,Xn ) is defined by pr := {(el7r,···,en 7r)1 (el,···,en ) E pV}. With these 
modifications, the domain of DOMI can still be a partition with infinite equivalence 
classes, as it is required by the definition of an epistemic interpretation. 

The definition of a rule requires that the premise should be filtering. An example 
of a premise that is not filtering is x : T, if DOMv = 0. The more complex premise 
x : (T U't:I€.V) is not filtering also if DOMv #- 0. A premise </J is not filtering with 
respect to a fact base A and a variable x E V if there exists a substitution u such 
that A entails </Ju and xu is a fresh variable. But a premise </J is filtering with respect 
to a variable and all fact bases, for example, 

• if x is a member of a concept C that is not equivalent to x : (T U VE.V), 

• if x occurs in a concrete or abstract predicate assertion, 

• if x occurs in a role/attribute filler assertion. 

Theorem 3.5.7 implies that the A-box consistency test may check effectively 
whether a fact base is consistent and that the A-box subsumption test may check 
effectively whether a fact base A entails an instantiated premise </Ju. Hence, the rule 

12 Discussed belowo 
13To avoid writing quantifiers, objects in the premise that are not intended to participate in 

rooting the A-box may be marked by a leading "_". 
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formalism instantiated with ALCFP(1)) where 1) is an admissible concrete domain 
can be implemented, for example, as sketched in Section 5.1.1. 

5.6.2 Limitations Revisited 

To reconsider the limitations of Section 4.2 the rule scheme is applied to ALCFP(n) 
where n is the concrete domain of real numbers. With the additional expressiveness 
the representation and reasoning requirements left open can be satisfied. It should 
be noted that the rule formalism is a semidecidable formalism. Hence the knowledge 
engineer is responsible of the termination of the inference algorithms for the intended 
queries. This task is facilitated by the easy to understand, intuitive operational 
semantics of the rule formalism and the fact that the terminological reasoning steps 
initiated by the rule level always terminate and have a declarative semantics. 

Aggregation 

The problem is to formulate when objects are aggregated and to introduce an object 
that corresponds to an aggregate when the condition of an aggregation are satisfied. 
In the example of Section 4.2.1 two truncated cones have to be aggregated if they 
are neighbored. This can be expressed by the following rule: 

X : truncone /\ 
Y : truncone /\ 
(X, Y) : neighbored "-+ (N, X) : left /\ 

(N, Y) : right 
(5.6) 

If this rule is applied to the A-box comprising (4.1) and (4.2), a new object N would 
be introduced that can be classified as a rshoulder. 

Sometimes one would like to represent that an aggregate is completely determined 
by its components. In the example this can be done by the following rule, which would 
be problematic if the terminological formalism have had a unique-name assumption. 

(Bb Lt) : left /\ (BI' Rd : right /\ 
(B2' L 2) : left /\ (B2, R2) : right /\ 
LI = L2 /\ RI = R2 "-+ BI = B2 (5.7) 

Derived Attributes 

Similar to aggregation, it can be formulated in the premise of a rule when a new 
attribute or role filler has to be introduced. In the example of Section 4.2.2 the 
problem is to introduce height and width of a biconic once it is known that it is a 
shoulder. All that has to be done is to add the following simple rule. 

B : shoulder ~ B : rshoulder-with-hw (5.8) 

Note that it is not necessary to know the values of the radii and the centers of the 
involved truncated cone. 
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Sequences 

It has already been shown in Section 4.2.3 how it can be represented that consecutive 
truncated cones in the sequence are connected. Since rules may be recursive, the 
varying length aspect of a sequence can easily be represented, here. The following 
rule is a definition of the concept 'sequence of truncated cones' from a goal directed 
point of view a la Prolog. 

S : seq-of-tc 'Vt (S, H) : head 1\ 

H : truncone 1\ 

S: last 
S : connected 1\ 

(S, H) : head 1\ 

(S, S') : tail 1\ 

H : truncone 1\ 

S' : seq-of-tc 

(5.9) 

According to the operational semantics a given fact B : seq-of-tc is recursively ex­
panded. Using terminological constructs a much more compact definition can be 
obtained: 

S : seq-of-tc 'Vt S: connected 1\ 

S : :3head.truncone 1\ 

S : Vtail.seq-of-tc 

(5.10) 

The definition of an 'ascending sequences of truncated cones' aseq-of-tc is analogue: 

S: aseq-of-tc 'Vt S: connected 1\ 

S : :3head.asc-tc 1\ 

S : Vtail.aseq-of-tc 

(5.11) 

If one is interested in finding sequences in a given fact base from elementary data, 
this can be represented by the following two (production rule-like) rules. 

H : truncone 'Vt (S, H) : head 1\ 

S : seq-of-tc 1\ 

S: last 

H : truncone 1\ 

S' : seq-of-tc 1\ 

(S', H') : head 1\ 

(H, H') : neighbored 'Vt S: seq-of-tc 1\ 

(S, H) : head 1\ 

(S, S') : tail 

(5.12) 

Note that these rules contain more knowledge then the 'goal-directed versions' (5.9 
,5.10). They explicitly represent (in the premise of the second rule) when a truncated 
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cone and an already existing sequence of truncated cones have to be aggregated to a 
longer sequence and they describe in the head what has to be added to the fact base 
for aggregation. 

It should be noted that the reversed rules (5.13) of (5.12) can also be used to 
traverse an existing sequence of truncated cones similar to (5.9). The difference is 
that the reversed rules (5.13) terminate in more cases. 

(S, H) : head /\ 
S : seq-of-tc /\ 
S : last ~ H : truncone 

S : seq-of-tc /\ 
(S, H) : head /\ 
(S, S') : tail ~ H : truncone /\ 

S' : seq-of-tc /\ 
(S', H') : head /\ 
(H, H') : neighbored 

(5.13) 

However, the specialization of the goal-directed version of the definition of' a sequence 
of truncated cones' to 'an ascending sequence of truncated cones' is very simple. If 
the rules (5.12), which encode the aggregation knowledge, are in the program, it is 
sufficient to add the following rule: 

S : Vtail.aseq-of-tc /\ 
S : Vhead.asc-tc ~ S : aseq-of-tc (5.14) 
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Chapter 6 

Summary 

In his invited talk at the 8th National Conference on AI in 1990 [Brachman, 1990] Ron 
Brachman argued that the development of "unified reasoners" is one potential high­
light of the "future of knowledge representation" (p. 1089). Similarly, "incomplete 
reasoners" and "expressiveness vs. tractability" are mentioned in a list of important 
open research problems (p. 1090). This thesis has settled research on "unified rea­
soners" in a subfield of symbolic, logic-oriented knowledge representation to a certain 
extent. Terminological knowledge representation and reasoning can now be utilized 
for more realistic applications as an integral component of a hybrid knowledge rep­
resentation formalism. 

The structure of the thesis can be understood on the basis of the following simple 
observation: the expressiveness of a decidable knowledge representation formalism is 
limited. 

Hence it has first been explored how the expressiveness of terminological for­
malisms could be maximized with respect to relevant representation demands of 
applications under the global requirement of decidable inferences. After a certain 
optimum has been found (for instance, the terminological formalism ALCFP(V)), the 
idea was to delegate the remaining representation demands that could not be satisfied 
so far to an embedding formalism that is computationally complete. 

For this purpose a scheme has been developed that constructs for a given de­
cidable logic formalism CF satisfying certain requirements (such as ALCFP(V)) a 
computationally complete rule formalism that contains CF as an integral component. 
In this generic rule formalism data-driven (bottom-up) and goal-directed (top-down) 
rule inferences have been integrated, because 

• rule-based knowledge representation is a centerpiece of symbolic, logic-oriented 
knowledge representation, 

• both data-driven and goal-directed inferences occur in realistic applications, 
and 

• rules are suitable to represent varying-size aspects, which were problematic for 
terminological systems. 
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In the generic rule formalism the reasoning direction of each portion (so to say) of 
knowledge is explicit. This knowledge about reasoning direction constrains the search 
space and enables more efficient reasoning than in approaches where the embedding 
system is a general purpose theorem prover as for example in [Biirckert, 1991] or 
[Brachman et al., 1983]. 

The price for the enhanced efficiency is the incompleteness of the operational 
semantics with respect to a reading of the rules in classical first-order logic. To com­
pensate this deficit a model-theoretic semantics based on a minimal belief logic has 
been developed that characterizes this "incomplete reasoner". Existing formaliza­
tions of minimal belief logics for the first-order case had surprising deficits, which 
had to be resolved to obtain soundness and completeness results. 

It should be noted that the mechanical engineering application considered in the 
ARC-TEC Project [Bernardi et al., 1991] at the DFKI has been a rich, valuable source 
of representation and reasoning problems. The need for a simultaneous treatment of 
these problems in one application has led to this more integrated view of knowledge 
representation. 

The following list provides pointers to the technical results of the thesis. 

• The subsumption problem is undecidable for the conventional concept language 
ALCF extended by certain concept-forming operators for role interaction that 
are based on = and =J. and generalize attribute (dis)agreements in a manner 
different than role-value maps (Theorem 3.3.3). 

• Generic decision procedures for the reasoning services of a concept language 
that is parametrized by a concrete domain and supports role interaction by at­
tribute (dis)agreements, abstract predicates and concrete predicates (Theorems 
3.4.5, 3.5.7, and algorithm in Figure 3.5). 

• A new reasoning service, called A-box subsumption comparing A-boxes with 
respect to generality (Definition 3.5.3). A-box subsumption is undecidable in 
general (Proposition 3.5.4). It is decidable for rooted A-boxes (Definition 3.5.5). 
A-box subsumption is needed in the context of the generic rule formalism. 

• A rule schema (Section 5.3) that is parametrized by a condition logic (i.e., 
a first-order logic satisfying certain requirements) and that integrates data­
driven and goal-directed reasoning on the basis of the inference algorithms of 
the condition formalism. 

• A "really" (Section 5.1.2) minimal belief logic (Section 5.2) for the first-order 
case wi th modal operator B. 

• Soundness and completeness (Section 5.4) of the operational semantics of the 
rule schema with respect to a model-theoretic semantics based on the "really" 
minimal belief logic. 
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• A declarative integration of terminological, constraint-based, data-driven and 
goal-directed reasoning (Section 5.6) obtained by an application of the rule 
scheme to the assertional formalism of a terminological formalism parametrized 
by a concrete domain. 
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