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Abstract

In this paper we develop decision-theoretic transformational planning as
a novel computational theory for planning reactive behavior under hard time
constraints. The theory is based on three main paradigms: transformational
planning, decision theory, and time-dependent computations. Knowledge about
goals and the robot control language is accessed through transformation rules
that define semantic relationships between constructs in the plan representation
language and associations between goals and canned plans. The computational
theory deals with uncertainty by applying decision-theoretic methods to control
the planning process. The tradeoffs between planning and acting are weighed
by applying time-dependent algorithms for testing the applicability and utility
of transformation rules with respect to the current situation and the preferences
of the robot.
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1 Introduction

In order to compute useful plans for different problem-solving situations, a robot
planner has to take into account different optimization criteria, the available compu-
tation time, and the uncertainty of the available information. Suppose a robot gets
the task to deliver all the blue blocks in the kitchen to the livingroom. The simplest
solution for this problem is to go to the kitchen, pick up a blue block, deliver it to the
livingroom, and repeat this procedure until no blue block is left in the kitchen. This
plan, however, is inappropriate in many cases. Assume, for instance, other robots are
around which may steal blocks after their delivery. In this case the robot should lock
the livingroom whenever it leaves it. If faster solutions are required, the robot could
go to the kitchen first, determine all the locations of the blue blocks, and deliver them
in an optimal order. While this solution is faster than others, it is also much more
sensitive to changes in the locations of the blocks. This example demonstrates that
different plans are preferable under different circumstances. Some plans are consid-
ered to be good if robustness is preferred over efficiency, others if reactivity is the
most important feature, and still others if certain events in the environment are likely
to occur.

In this paper we are concerned with representational and algorithmic problems in
the design and implementation of planning systems for mobile robots that generate
plans in such a flexible way. For our class of applications we consider planning to be
the iterative improvement of a given plan based on expectations about the environ-
ment and given preference criteria. A planning system for robots acting in complex
and changing environments has to provide solutions for three problems. Firstly, it
has to deal explicitly with the uncertainty that arises due to the unpredictability
of, and the incomplete information regarding, the environment in which the robot is
operating [Han90]. Secondly, the robot planner has to treat planning time as a lim-
ited resource; 1.e. 1t has to return plans for any allocation of computation time and
has to reason about whether the expected gains from further planning will outweigh
the costs of spending more planning time [DB88, BD89]. Finally, the planner has to
be able to synthesize plans implementing any problem-solving behavior necessary to
solve complex tasks in its environment—not just sequences of primitive robot actions
[McD91b].

We develop decision-theoretic transformational planning as a novel computational
theory for robot planning under time constraints and in uncertain environments. The
theory is based on three main paradigms: transformational planning [Lin90], deci-
sion theory [HR90], and time-dependent computations [Dea91]. Knowledge about



the robot control language is accessed through transformation rules which define se-
mantic relationships between constructs in the plan representation language.! The
computational theory deals with uncertainty by applying decision-theoretic meth-
ods to control the planning process. The tradeoffs between planning and acting are
weighed by applying time-dependent algorithms for testing the applicability and util-
ity of transformation rules with respect to the current situation and the preferences
of the robot. '

The computational theory is implemented as the xFrM [McD90] planning system.
xFRM consists of a reactive plan interpreter [Fir89, Fir87] and a transformational
planner which, controlled by a cpu, simultaneously work on a sketchy plan. Sketchy
plans have to be adapted to the current environment in order to be executable and the
plan interpreter has to react to changes in the environment which are not handled
by the plan. The planner improves the plan while the plan interpreter executes
sketchy actions and monitors the execution [McD90, HF90]. The plan, whether it is a
descriptive, abstract task or an operational, low-level control statement is formulated
in the robot control language rpr [McD9la]. The plan interpreter interprets non-
primitive expressions by reducing them using default methods. In this architecture
the task of the planner is to replace default methods by more robust, reliable, or
efficient code which the planner finds through reasoning about the consequences of
actions. The planning system computes better plans when more planning time is
available.

The paper is organized in two main sections. Section 2 describes and discusses
the representation structures used in the xFrM system and section 3 describes the
basic algorithms that interpret the representation structures.

2 Representational Formalism

xFRM has to estimate and compare the quality of alternative plans, optimize the
current plan, simulate its execution in order to predict problems, decide whether a
simulation corresponds to a successful task execution, and schedule the optimization
given some limited computation time. In order to optimize plans it must know how
rRPL expressions can be transformed and how good the resulting plans are. To eval-
uate simulations, xFrRM needs decision criteria for determining whether or not the
execution of a plan achieved the toplevel task. To perform simulations descriptions of

I'We will use the terms robot control language and plan representation language interchangably
depending on whether we want to emphasize the expressiveness or the transparency of the language.



the pre- and postconditions of subtasks are necessary. In order to schedule the plan-
ning process x FrRM needs methods for assigning resources to optimization problems.
In this section we discuss how these different kinds of informations are represented in
XFRM.

2.1 =rrL - A Reactive Plan Language

rPL (Reactive Plan Language) is the robot control and plan representation language
used in the xFrM system. This section is not intended to be a description of RPL, as
such a description can be found in [McD91a]. Here we want to discuss the interaction
between the design of the robot control language and the planning system; 1.e. we
discuss which requirements of the planning system are reflected by the language design
and how the type of language affects the choice of planning techniques and methods.

(achieve-for-all (A (x) (and (category x block)
(color x blue)
(in x kitchen)))

(X (x) (in x livingroom)))

Figure 1: RPL code for the task “get all the blue blocks in the kitchen to the livingroom.”

The requirements which have to be fulfilled by the language come from both
the plan interpreter and the planning system. From the point of view of the plan
interpreter, it is important that the language is expressive enough to describe all
sorts of complex problem-solving behaviors that the robot needs to perform. From the
planner’s point of view, it is important that the language describes plans transparently
enough to allow the planner to reason about it. Another planning requirement is
that the language should provide primitives for describing robot actions as well as
descriptive (predicate-calculus like) high-level tasks. This makes it possible for parts
of the plan to be detailed while other parts are left sketchy. In other words, a plan
representation language should provide constructs for task specification, high-level
algorithmic constructs (like recursion and conditionals), as well as constructs which
are closer to the machine and primitive robot actions (like variables, sequentialization,
or iteration).



rRPL is a Lisp-like programming language for the implementation of reactive robot
control programs, which satisfies the requirements stated above. Unlike classical plan
languages that only provide sequencing for the combination of robot actions, rpL,
as control language for robots that sense and react, provides a rich set of language
constructs for the description of problem-solving behavior. rpL allows the definition
of robot control programs at different levels of abstraction. Some of its expressions
such as, achieve, maintain, or prevent a property of the world are abstract and purely
descriptive. Others such as, wait five seconds or fail are operational and primitive.
rRPL also provides constructs with a similar semantics, like try-one-of, try-in-order, or
try-all; try-one-of randomly selects methods from a given set of methods until one of
them succeeds, try-in-order applies the methods in the specified order, and try-all tries
the different methods in parallel. Several high-level concepts (interrupts, monitors)
are provided that can be used to synchronize parallel actions, to make plans reactive,
etc. The language allows for the formulation of sketchy plans, i.e. plans which do not
deterministically describe how they should be performed but can be adapted to the
current situation at run time.

2.2 Representation of the Rob.ot Control Language

A planning system which optimizes plans must know the semantics of the plan repre-
sentation language it uses. In classical Al planning systems, which consider sequenc-
ing as the only way to construct complex plans from simpler ones, the semantics can
be implicitly encoded into the basic planning algorithms such as plan critics or goal
achievement procedures. However, it is not promising to implicitly encode the se-
mantics of an expressive language like RpL into the planning algorithms. A planning
system for expressive robot control languages needs representation structures that
describe the language in an explicit and declarative way.

In xrrRM semantical knowledge about the plan representation language is encoded
in the form of rpL construct descriptions and heuristic transformation rules. We
discuss these representational structures using the achieve-for-all construct as an ex-
ample. The syntactic structure of the achieve-for-all statement is (achieve-for-all (A
(x) (d x)) (A (x) (g x))). The first argument of the achieve-for-all statement specifies
the set of objects for which d holds. The second argument describes the goal g that
has to be achieved for each of them. The intention of the rpL construct achieve-for-all
is that all objects which satisfied the property d at a time instant between the begin
and end of the achieve-for-all task have to satisfy the property g at the end of the
task.



2.2.1 rpr Construct Descriptions

The rpL construct description for the achieve-for-all statement is shown in figure 2.
An rrL construct description specifies the postconditions that must be achieved for
the action to be successful. In addition, it contains a default method that is used by
the plan interpreter to reduce the expression, a set of heuristic transformation rules
which can be applied in order to optimize and debug the expression, and a scheduler
for the control of the rule interpretation.

H RPL construct description achieve-for-all ||

(achieve-for-all (A (?x) ?desc)
syntax (A (?y) 7goal))

Vx. 3ti. start < ti A ti < end
postcondition A holds(o(?x—x)(?desc) ti)

— holds(o(?y—x)(?goal) end)

execution achieve-for-all.default
generation {ach-for-all.1 ach-for-all.2 ach-for-all.3}
debugging {achieve-for-all.debug}
scheduler achieve-for-all.scheduler

Figure 2: Representation structure for the representation of the RPL command achieve-for-all in
XFRM. ?v denotes a pattern variable with name v. o(exp; —expz)exp is the expression that results
from the substitution of exp, for all occurrences of exp; in exp.

postconditions are formalized in a time logic. The postcondition of achieve-for-ali
states that any object satisfying the description ?desc at an arbitrary time instant
ti between the beginning and the end of the achieve-for-all task must satisfy ?goal
at the end of the task. A postcondition of an achieve-for-all expression is computed
by matching the expression against the pattern in the syntax slot and instantiating
the pattern in the postcondition slot using the bindings obtained by the match. The
generation slot lists heuristic transformation rules that can be used to make plan hy-
potheses by transforming the rpL construct. A default-transformation is stored in
the slot execution of each nonprimitive RPL construct and can be applied by the plan
interpreter if the RpL construct i1s to be executed reactively. A default transformation
is always applicable and should be, in general, the most reliable and robust method
for the performance of the rpL construct. The debugging slot contains transforma-
tion rules for debugging plans once failures have been detected during execution and



simulation. - The scheduler is a function that returns an ordered list of pairs for a
given amount of computation time, where the first element in each pair denotes a
transformation rule and the second element the maximal time resource for checking
the applicability of this rule. The task of the scheduler is to divide the available
time resources so that the biggest gains in terms of plan quality can be expected.
Scheduling is often necessary because the transformations that produce better plans
require more computation time.

2.2.2 Heuristic Transformation Rules

One high-level description of the semantics of RPL is a set of theorems that state the
conditions under which expressions in the language are semantically equivalent to, or
specializations from, other rrL expressions. Such theorems are good descriptions for
a planning system that is intended to transform plans into semantically equivalent
ones that are more efficient or robust [BP86]. In transformational systems, these
theorems are often represented in the form of transformation rules with an input
and output plan schema and an applicability condition. The operational semantics
of a transformation rule states that whenever an expression matches the input plan
schema and the applicability condition can be proven, then the instantiated output
plan schema can be substituted for the expression. A transformation rule is correct
if, for all cases for which the applicability eondition holds, the input plan schema is
semantically equivalent to the output plan schema. Unfortunately, correct transfor-
mation rules are of little practical use for robot planning. The information available
in robot planning problems is often uncertain and cannot be formalized as premises
or facts which are necessary for proving applicability conditions. However, even if
we could prove the applicability conditions in principle, those proofs would typically
be computationally intractable and could certainly not be derived under real time
constraints. _

X FRM uses heuristic transformation rules (HTRs) instead of correct transformation
rules. HTRs allow a planning system to generate plan hypotheses efficiently using
heuristic and associational reasoning. Plan hypotheses are flexibly generated based
on given preferences, like efficiency is more important than robustness, and based
on expectations about, and changes in, the environment. Since plan hypotheses are
generated based on heuristics they are to be tested before being passed to the plan
interpreter.

HTRs are approximations of their correct counterparts which terminate fast, or
at least propose plans at any time during their interpretation, and improve them over



time. HTRs may also have probabilistic application conditions in order to decide
whether or not a transformation should be performed. The problem caused by weak-
ening application conditions in the above ways is that HT'Rs no longer correspond to
semantic equivalences in the robot control language. The plan resulting from a trans-
formation might be related to the original plan in several ways. It might be more or
less likely to fail, likely to be slower or faster, or more or less likely to achieve certain
conditions of the toplevel task. HTRs transform expressions in order to increase the
overall quality of a plan. Different heuristic variants of a correct transformation rule
differ in their effects on the robustness, expected runtime efficiency, or degree of cor-
rectness of the resulting plan. Consequently, the planner has to decide which of the
variants to choose in order to transform a given piece of code. We propose methods
which allow for the estimation of the quality of a plan under uncertainty and apply
decision-theoretic techniques to choose the most promising transformation.

xFrM evaluates a plan in terms of three qualities, the robustness, efficiency, and
completeness of a plan. The ability of the plan to allow the plan interpreter to re-
cover from execution errors and to achieve the postconditions, despite the problems
occurred, is called the robustness of the plan. From a practical point of view, it is
useful to separate robustness into stability and correctness. Stability is the likeli-
hood that the execution of the rPL expression does not result in an error state from
which the system cannot automatically recover. Correctness is the likelihood that the
postcondition of an expression will hold once the expression is executed. Since the
achievement of the postcondition and the occurrence of an irrecoverable error state
are defined as independent events, we can define the robustness of a rplexp as the
product of stability(rplexp) and correctness(rplexp).

The robustness of a plan can be increased by constructing alternative courses of
actions such that the plan interpreter can choose between them at runtime, depend-
ing on the situations the actions should be executed in. Reasoning about disjunctive
plans, however, is often very expensive in terms of computational resources. There-
fore, the planner should focus on relatively few alternatives and explore others only
when necessary, i.e., when none of the alternative ways incorporated in its current
plan succeeds. The plan quality completeness characterizes this trade-off, represent-
ing the likelihood that the planner might find alternative plans which succeed and
achieve their postconditions, once the current plan failed. Ezecution time is the third
aspect of plan quality which estimates the execution time of a plan based on the ex-
ecution times of the subplans. Often plans which require less execution time should
be preferred by the planner.

Figure 3 shows the default transformation rule for the achieve-for-all statement.

9



|| heuristic transformation achieve-for-all.default ”
?task «— (achieve-for-all (A (?x) ?desc) r
(A (?y) ?goal))

l

(reduce ?task

(let* ((desigs nil))
.(!: desigs (perceive (A (x) o(7x—x)

(2desc)))) | ¢
(if (not (null desigs))
(seq (achieve o(?y—(car desigs))
(goal))
?task)
(no-op)))) I
declarations 7p — (perceive (A (x) o(?x—x)(?desc))

?a — (achieve o(?y—(car desigs))(?goal))

?iter — (r-how-many ?desc)

stability (0 x stability(?p) x stability(?a) x correctness(?p))’*¢"
(correctness(?p) x correctness(?a)) "

correctness x T174¢"~ ' Prob(~clipped(g(a;) [end(?a(iter i) end(t)]))
completeness completeness(?p) x completeness(?a)

exec-time ?iter X (exec-time(?p) + exec-time(?a))

to-be-optimized | {?p. 7a}

Figure 3: Default transformation rule for the RPL command achieve-for-all

A representation structure for a heuristic transformation rule consists of two ma-
jor components: a representation of the transformation performed and methods for
estimating the quality of the plan resulting from the plan transformation.

In the output plan schema, the perceive expression returns a set of effective desig-
nators d for which ((A (?x) ?desc) d) holds. A designator [McD90] is a data structure
which carries the information necessary to resense and manipulate a perceived object.
A correct designator is required to perform actions with an object. If the set of des-
ignators returned by the perception subtask is nonempty, the task for achieving the
goal for the object described by the first designator in desigs is initiated. In the case
of a successful achievement, achieve-for-all is recursively called until no object with
the property d can be found. Transforming achieve-for-all into a recursive solution
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delays the final decision of how to implement the expression and gives the planner
time to optimize the recursive call while the interpreter is achieving the goal for the
first object. For the subsequent discussion let ?p be the expression (perceive (A (x)
o(?x—x)(?desc)))) and ?a be the expression (achieve o(?y«(car desigs))(?goal)).

The planner controls the application of transformation rules based on their ex-
pected utility. To compute the utility of a plan using decision-theoretic methods we
have to consider all the different timelines that might result from the simulation of
the plan and assign utilities and probabilities to them. Clearly, this is not feasible.
Therefore we classify the timelines resulting from plan simulations based on whether
they contain an irrecoverable error state, whether the postcondition of the plan is
satisfied, and based on their average execution time and estimate the probability dis-
tribution of timelines over these categories. We can obtain such a prior: probability
distribution by running many sample projections of the plan. The utility of the plan
is then defined as the sum of the probability that it succeeds times the utility of
success and the average run time of the plan times the utility of efficiency.

This assessment of the plan utility, however, requires running many simulations
and is therefore quite expensive in terms of computational resources. For a more
efficient generation of plan hypotheses we need fast estimation methods that return
rough estimations of the plan quality based the syntactic structure of the plan and
prior statistical information about the environment. Our claim is that such estimation
methods can be obtained based on the semantics of the plan language, the use of
subexpressions, and statistical information. Since we know most of the reasons why
a plan might fail we can specify a mathematical model of stability of the plans that
are instances of an output plan schema. Such a model is typically a function from
subexpressions in the plan, expectations about the environment, and some unknown
parameters. The idea is that the unknown parameters can be estimated using the a
priort statistics of simulations of plan instances of the output plan schema. In the
following paragraph we show how such an estimation method can be derived using
the stability of the transformation rule achieve-for-all.default as an example.

The subtasks of the output plan schema are ?p, ?g, and ?task. The semantics of
the let expression implies that the let expression fails if a subtask for binding local
variables or its body fails. Since the output plan schema does not contain code for
error recovery, if one of its subtasks runs into an irrecoverable error, then it will do so
as well. However, we cannot simply multiply the stabilities of the subtasks because
the subtasks interact in various ways and those interactions have to be reflected in
the estimation method. These interactions include that ?g almost certainly fails if
?p returns an invalid designator or if the exact location of the object which is part

11



of the designator changes between the computation of the designator and the use of
the designator in a manipulation action. Other interactions might occur due to the
effects of ?p and ?g. Often it is a reasonable assumption that execution errors are
equally distributed over the iterations. We choose (8 x stability(?p) x correctness(?p)
x stability(?a))"*" as an estimation method for plan resulting from the default trans-
formation. In this estimation method, 8 is an a priori estimation of the impact of these
interactions on the plan stability and the number of iterations has to be estimated
given prior information about the number of objects satisfying d.

2.3 Representation of Domain Knowledge

The task of the planning system i1s to compute plans that achieve, perceive, maintain,
or prevent given aspects of the environment. For uncertain environments, it also
includes the simulation of a plan execution in typical states of the environment and
reasoning about interactions of environmental events with the plan execution. In
order to perform these tasks, the planning system needs canned plans for specific
tasks, information about the relevant aspects of the environment, and information
about how control programs and aspects of the environment interact and relate with
each other. An example of a canned plan is the robot control program (deliver <obj>
<rm>) that achieves that the object described by the <obj> will be in the room
<rm> after the delivery task.

xFRM uses statistical knowledge about the distributions of events in, and aspects
of, environment for the computation of expectations such as “there might be five blue
blocks in the kitchen”. Such knowledge might read: There are typically between four
and twenty blocks in the environment. About half of them are usually blue, the
rest are red and yellow (equally distributed). Normally, half of the blocks are in the
kitchen; the rest are in the bathroom and the livingroom. If another transportation
robot is around, blocks stay in a room, on average, about 40 minutes. In addition to
statistical information, knowledge about the domain physics is necessary or at least
useful. Two examples are that every object is, at any instant of time, in exactly one
room and that the robot can only perceive objects which are in the same room. As
a result, 1t 1s sufficient to run a filter on sensor data in order to decide whether an
object is blue, while it is necessary to go into the kitchen in order to find a block that
is in the kitchen.

The internal representations of aspects of the environment are predicates. Pred-
icate descriptions are representational structures that provide the planning system
with the necessary information about the relevant aspects in the world. Predicate

12



( Predicate Description IN [

syntax (in ?0ob 7rm)
(category 7ob block)
— (((?rm = kitchen) 0.5)
((?rm = livingroom) 0.3)
((?7rm = bathroom) 0.2))
(category 7ob robot)
— (
(avg-lifetime (in 7ob ?rm) 7time) —
((category ?ob block)
avg-lifetime A Ttime=40min) V
' ((category 7ob robot)
A Ttime=2min)
predicate-features [ {functional, perception-constraining}

prob-density-fct

achieve achieve.in
perceive perceive.in
prevent prevent.in
maintain maintain.in

heuristic transformation in-achieve.default ||

[ RPL construct description achieve.in || (achieve (in 7b 7rm)) T
syntax {achieve (in 7ob 7rm)) true
postcondition | holds((in ?ob 7rm) end)
execution in-achieve.default (deliver ?cb rm L
generation {ach-in.1 ach-in.2} stability 0.98
debugging {ach-in-dbg.1 ach-in-dbg.2} correctness 0.99
scheduler achieve-in.scheduler completeness | 0.8

exec-time 5muin

Figure 4: Representation structure for the predicate “in” in XFRM.

descriptions associate methods for achieving, perceiving, maintaining, and preventing
a certain aspect of the world with the predicate formalizing that aspect. Besides this
indexing information, predicate descriptions also contain the statistical information
we have discussed in the last paragraph. In the case that the situation in which a
plan is to be executed is uncertain, this prior information allows the planning system
to construct typical situations in the environment through sampling. Also, if the do-
main physics is uncertain or only partially known, the planner can generate random
events during the simulation given the distribution of environmental events.

Figure 4 shows the predicate description of the predicate in. Information about
typical situations in the environment can be inferred from the probability density
functions (slot prob-density-fct) which specify the likelihood of aspects of the environ-
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ment. Information about the occurrence of events in the environment are stored in
the form of average lifetimes of predicates. The slot predicate-features specifies that
the predicate in is a functional predicate, i.e. at any time an object is in exactly one
room. It also specifies that the predicate is perception constraining. The slots achieve,
perceive, prevent, and maintain are references to RPL construct descriptions. The rpL
construct description for achieving that an object will be in a certain room is shown
in figure 4b and the corresponding default rule in figure 4c.

3 Planning Algorithm

The planning system is designed according to the GENERATE-TEsT-DEBUG (GTD)
control strategy [SD87] and consists of a PLAN HYPOTHESIZER, a PLAN TESTER, and
a PLAN DEBUGGER. The PLAN HYPOTHESIZER proposes plans that are promising
under heuristic evaluation. The quality of promising plan hypotheses is evaluated
globally by the pLan TEsTER in order to check whether the hypotheses are still
promising when the context of the plan and task interactions are considered. Finally,
the pLaN DEBUGGER transforms plans in order to avoid possible problems detected
by the PLAN TESTER.

3.1 Generation of Plan Hypotheses

The pLaN HyroTHEsIZER transforms plans heuristically based on their syntactic
structure. The plans or subplans which would result from the application of these
transformations are then rated according to a heuristic evaluation function which es-
timates their quality. The purpose of the pLaN HYPOTHESIZER is the efficient genera-
tion of hypothetical plans which are—with respect to the rough heuristic estimations—
significantly better than the plan we started with. In order to achieve the required
efficiency, the estimation methods used by the pLan HypPoTHESIZER are based on
numerical estimations of the context sensitivity of tasks. It is obvious that statistical
estimation makes hypothesis generation very efficient but also may yield unreliable
results.

The basic algorithm for generating plan hypotheses is straightforward. The pLan
HYPOTHESIZER keeps a list of subexpressions that are to be optimized. The list is
ordered according to the expected gain in plan quality resulting from the transfor-
mation of these subexpressions. The gain in plan quality is approximated by the
difference between the quality of the current plan with the fully optimized and the
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achieve-for-all (A (7x) 7desc r
B YR

(reduce 7task (terminates
('fftl* ((desigs nil)) task)

o(c:g desigs (Spercelve (A (x) o(Pxe=x) (7desc))))

until (null

(achieve a(7y«§sewr desigs) X ?geal)))) L

Figure 5: GENERATOR transformation ach-for-all.1

unoptimized subexpression. Ordering planning tasks according to their expected gain
in plan quality prevents spending too much computation time on the optimization of
unimportant subexpressions.

(terrrinates (achieve-for-all (\ (7x
(%) 7g°a|1)
« (and (contains ?desc "‘fwture XN
contains ?goal (feature %y N2
thnot (= A1 A2))
is-functional ?eature))

Figure 6: Procedure for proving the termination of an achieve-for-all expression

While there are expressions to be optimized, the pLan HyPoTHESIZER takes the
first one and retrieves the corresponding rpL construct description. Now the default
transformation of the construct description is applied, the quality of the default plan
estimated, and the result set to be the best transformation computed so far. The
next step is to run the scheduler in order to determine the set of transformation rules
which should be checked for applicability, their order, and the computational resources
for each of them. The transformation rules are checked according to the computed
schedule. Checking a transformation rule consists of matching its input plan schema
against the expression, checking its applicability condition, and computing the quality
of the resulting expression. If the estimated quality is higher than the quality of the
best transformation, it is set to be the best transformation so far. The generation
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of plan hypotheses is an algorithm that can be interrupted anytime and returns
the best transformation computed. Better transformations can be expected if more
computation time is given.

(let ((desigs
(perceive (A (?x) (and (caosag)gx
G dsagxh d in ?x kitchen)})))))
o gl ) ing o)
(no-op))
(let (desigs)
(lcﬁi desi
. (pchinve (» (*) (and (categor?y 7;)(' blick)
while (not (null desigs i Bckitcher)))
(achieve '(in (car d&lgs) living-room)))

(let ((desigs
(perceive (3 ((?e);(rzd category ?x block)
oolor ?x blue
(ocp gm 7x kitchen))))))
while (not (null desigs))

achieve ‘(in (car desigs) living-room))
E = desigs (cdr deﬂgs)?%

Figure 7: Diflerent implementations for the task “gel all the blue blocks in the kilchen to the
lwingroom.”

Applicability conditions are checked by a collection of fast special-purpose decision
procedures for termination proofs, probabilistic decision rules, and other categories
of proofs useful for, and common in, plan transformation. An example for such
a decision procedure is the proLoG-like procedure terminates (see figure 6), which
checks whether a given achieve-for-all expression terminates. The toplevel task in
figure 1 terminates because any block that has been delivered to the livingroom
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cannot be in the kitchen anymore and thus, the number of blue blocks in the kitchen
is decreasing. This common type of termination proofs is implemented by the proLo G
procedure terminates, which checks whether there is a feature ?feature common to all
objects matching ?desc which is functional and provably changed by achieving ?goal.
The information about whether a feature is functional, i.e. whether it can only have
one value at a time, is contained in the slot predicate-features of predicate descriptions.

Running the default transformation and the generator transformation rules of the
rpL construct description of achieve-for-all the pLAN HYPOTHESIZER proposes three
different hypotheses for the implementation of the toplevel task (see figure 7). The
first implementation, proposed by the transformation rule ach-for-all.default is a re-
cursive solution; the robot senses the kitchen and perceives the blue blocks in the
kitchen. If the set of perceived blue blocks is not empty, the robot gets a blue block
into the livingroom and calls the achieve-for-all task recursively. The second imple-
mentation performs a loop consisting of the perception and achievement steps instead
of calling (achieve-for-all — —) recursively. In the third solution, descriptors for all
the blue blocks in the kitchen are computed in advance and then for each of these
descriptors the achievement task is executed.

The achieve task fails if the robot cannot grasp the block it has to get into the
livingroom. This happens if designators have been computed incorrectly or if the
location of the block has changed between the computation of the designator and
the grasp step. Based on these considerations the planner compares the quality of
the different implementations; in the first and second, the robot grasps a blue block
immediately after the corresponding designator has been computed and, therefore, the
location of the block cannot change in the meantime. In the third implementation, all
the designators are computed in advance. Knowing the location of each blue block in
the kitchen gives the robot more information for scheduling the delivery. For instance,
the robot can deliver the blocks arranged in stacks in a topdown order so to avoid
restacking. The difference between the first and the second implementation is that
the first implementation delays the decision how to perform the achieve-for-all task.
[t gives the planner time to generate a better plan for (achieve-for-all — —) while
the robot is already delivering the first blue block. On the other hand, the second
implementation does not have to be further planned which frees planning resources
for the optimization of other subtasks.

The quality of the plan is the weighted sum of the different aspects of plan qual-
ity: stability, correctness, execution time, and completeness. The robot can specify
preferences between aspects of plan quality by changing the weights of the aspects.
IMP 3, which is proposed by transformation rule ach-for-all.1, is preferred over imp3 if

17



the average lifetime of the location of a block is comparatively low and/or the weight
assigned to the robustness of a plan is higher than the weight assigned to the runtime
efficiency. imp, the plan hypothesis generated by the default transformation, can be
returned by the pLan HypPoTHESIZER if the generation of plan hypotheses has been
interrupted before a better hypothesis was generated.

3.2 Test of Plan Hypotheses

The plan proposed by the PLAN HYPOTHESIZER 1s passed to the pLaN TEsTER. The
PLAN TESTER Is a query component on top of a temporal projection module. It gets
a plan hypothesis as its input and generates a set of simulations. Based on these
simulations it estimates the stability, the correctness, and the average execution time
of the plan hypothesis. In addition, it computes the postconditions that have not
been achieved and the tasks that caused irrecoverable errors.

The pLaN TEsTER samples projections (simulations) of the current plan hypoth-
esis until it is interrupted or it runs out of ‘time. It performs the following loop:
(1) generate a random initial situation according to the probability density functions
in the relevant predicate descriptions; (2) project the plan hypothesis for the initial
situation. (During the projection, events in the environment are generated randomly
according to the average lifetime defined for predicate descriptions.) (3) analyze the
projection by checking whether an irrecoverable error occurred, whether the postcon-
dition has been achieved, and how long the simulated execution took.

3.3 Debugging Plan Hypotheses

The pLaN DEBUGGER gets a set of projections of the current plan hypothesis as
its input and produces a debugged plan by running the transformation rules in the
debug slots of the relevant rpL construct descriptions (see [Sim88] for a theory of
plan debugging). The debugged version of the plan is passed to the plan tester for
further testing. The TEsT-DEBUG cycle terminates when the pLaN TESTER mod-
ule cannot find any more bugs in the hypothesis. Figure 8 shows a debug rule for
the achieve-for-all construct. The applicability conditions of debug rules are formal-
ized in xFrRM-ML (xFrRM Meta Language). xFrRM-ML is a ProLOG-like interface to,
and an explicit and declarative query language for, plans, execution protocols, and
simulations. For efficiency reasons, xFrRM-ML operates on basic datastructures like
projections, tasknets, and timelines instead of on a proLoc-like database. Using
xFRM-ML, debug transformation rules can retrieve and reason about task failures,
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?task — (reduce [ (and (projection ?proj)

(achieve-for-all (unachieved-postcondition
(A (?x) 7desc) ?proj ?cond))
(A (%y) 7goal)) (tasknet ?proj ?tasknet)
?*

(in-tasknet (achieve ?cond)
?tasknet 7task)
(with-policy (maintain ?pred) (end 7task 7taskend)
?task) (holds ?cond ?taskend)
(maintains ?pred ?goal-exp)
(thnot (contains ?pred ?y})))

Figure 8: Debug transformation rule for the RPL command achieve-for-all

unachieved postconditions, perceptual confusions, properties of the environment at
different stages of plan execution, etc.
xFRM-ML provides a set of predefined predicates on tasknets, timelines and pro-

prolog '(and (projection ?prg .
( ( (E)unachieved-pos)toonditim %proj 7eond))) | Succeeds if

one of the projections in the current planning cycle did not achieve its postcondition.
In this case the query returns a list of bindings, where ?proj is bound to the projec-
tion in which the plan could not achieve its postcondition and ?condis bound to the
condition which could not be achieved.

jections. For instance, the query

Expressions in xFrRM-ML are used to specify application conditions of debug rules.
The applicability condition of the debug transformation in figure 8 checks first whether
there is an unachieved postcondition ?cond, then tests whether the robot has tried to
achieve the postcondition, i.e. whether (achieve ?cond) is in the tasknet. If the task is
not in the task network the robot has not recognized that 1SK318 satisfies (A (x) (and
(category x block) (color x blue) (in x kitchen))) and the perception task needs to be
debugged. Next terminates checks whether ?cond holds at the end of (achieve ?cond).
If not, (achieve ?cond) needs to be debugged. Otherwise after the goal is achieved it
is invalidated by another event after it has been achieved. In this case we compute
a predicate that maintains the goal and which is itself easy to maintain. Let us
assume that the database contains the fact (maintains (locked ?rm) (in ?x ?rm)). This
fact formalizes that no object can appear in, and disappear from, a locked room. The
query (maintains ?pred (in !SK318 livingroom)) would succeed and bind ?pred to (locked
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livingroom). The debug transformation would return (M-_t,th;ﬂ?)“cy (mreintain ‘(locked livingroom))

where ?task i1s bound to the current plan. Note, that in order to debug the plan we
apply the debug rules of the original abstract task. This is possible because rpL plans
contain explicit representations of the transformations performed (reduce statement).

4 Conclusion

In this paper we have described a representation scheme and the basic planning al-
gorithms for a robot planner. The planner is implemented as described this paper.
Several features of the planner make it attractive for robot planning. The planning
algorithm is time-dependent and proposes executable plans for any allocation of com-
putation time. The approach is extendible for expressive robot control languages
since planning knowledge is encoded explicitly in the form of transformation rules.
And, finally, uncertainty is handled explicitly by associating utility functions with the
heuristic transformation rules. These utility functions allow the planner to choose
among alternative plans rather than refining an abstrct and provably successful plan.

The paper describes what knowledge is necessary for this category of planners and
how to represent and index it. This research, however, is still in an early stage and a
lot remains to be done before we have a powerful theory of planning reactive behav-
jor. The most critical issue in this framework are the utility functions for heuristic
transformation rules. The basic approach is to learn these estimation methods from
running a large number of sample simulations. How to verify learn or at least ver-
ify these estimation methods is the next step towards a theory of decision-theoretic
transformational plan generation. The ultimate goal is to view these estimations as
probably approximate estimations for the quality of a plan computed by sampling
simulations. Another important issue is that plan qualities like resource consumption
and partial goal fulfillment are not yet taken into consideration.
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