
Deutsches
Forschungszentrum
fUr Kunstliche
Intelligenz GmbH

Research
Report

RR-04-01

From UBGs to CFGs
A Practical Corpus-Driven Approach

Hans-Ulrich Krieger

August 2004

Deutsches Forschungszentrum fur Kunstliche Intelliaenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki .uni-kl.de

WWW: hup:llwww.dfki.de

Stuhlsatzenhausweg 3
66123 Saarbri.icken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341
E-Mail: info @dfki.de

Oeutsches Forschungszentrum fur Kunstliche Intelligenz

DFKI GmbH
German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (AI) methods. DFKI
is focusing on the complete cycle of innovation - from world-class basic research and tech
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization .

Based in Kaiserslautern and Saarbrucken, the German Research Center for Artificial Intelli
gence ranks among the important "Centers of Excellence" worldwide.

An important element of DFKl's mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO) .

DFKl's six research departments are directed by internationally recognized research scien
tists:

a Image Understanding and Pattern Recognition (Director: Prof. Thomas Breuel)
a Knowledge Management (Director: Prof. A. Dengel)

a Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
a Deduction and Multiagent Systems (Director: Prof. J. Siekmann)
a Language Technology (Director: Prof. H. Uszkoreit)

a Intelligent User Interfaces (Director: Prof. W. Wahlster)

Furthermore, since 2002 the Institute for Information Systems (IWi) (Director: Prof. August
Wilhelm Scheer) is part of the DFKI.

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wahlster
Director

Frj!m UPGs 10 CFGs..
A PractIcal Corpus-Driven Approach

Hans-Ulrich Krieger

DFKI-RR-04-01

First of all, my thanks go to Bernd Kiefer for providing me with the modified
parsers and for helping me adapting the grammars. His help during the mea
surements is gratefully acknowledged. I have also benefitted from many dis
cussions with him. Thanks to Uli Call meier for making flop and PET available
to the public. I am grateful to Feiyu Xu for making comments on a preliminary
version of this paper. Finally, I like to thank the three ICG I reviewers for their
detailed and encouraging comments.

This work was supported in a first phase by the Verb mobil project (grant no. 01
IV 701 VO), resulting in a LISP implementation of the approach in summer 1999,
realized on top of the Verbmobil deep core engine (Kiefer et al. 2000). This first
implementation of the extraction method was used by (Nederhof 2000) to pro
duce CFGs of different size and specificity during his experiments with regular
approximation of context-free languages. An extended first JAVA reimplemen
tation was finished in autumn 2002, was further extended in spring 2004, and
will be employed shortly in the QUETAL project. Parts of the implementation,
the writing of this report, and the measurements were funded by the German
BMBF under grant no. 01 IW C02 (QUETAL).

© Deutsches Forschungszentrum fur Kunstliche Intelligenz 2005

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following : a notice that such copying is by per
mission of the Deutsche Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

ISSN 0946-008X

From UBGs to CFGs
A Practical Corpus-Driven Approach

Hans-Ulrich Krieger
German Research Center for Artificial Intelligence (DFKI)

Language Technology Lab
Stuhlsatzenhausweg 3, D-66123 Saarbrucken, Germany

krieger@dfki.de

August 2004

Abstract

We present a simple and intuitive unsound corpus-driven approximation
method for turning unification-based grammars (UBGs), such as HPSG,
CLE, or PATR-II into context-free grammars (CFGs). The method is un
sound in that it does not generate a CFG whose language is a true superset
of the language accepted by the original unification-based grammar. It is
a corpus-driven method in that it relies on a corpus of parsed sentences
and generates broader CFGs when given more input samples. Our open
approach can be fine-tuned in different directions, allowing us to monoton
ically come close to the original parse trees by shifting more information
into the context-free symbols. The approach has been fully implemented in
JAVA. This report updates and extends the paper presented at the Inter
national Colloquium on Grammatical Inference (ICGI 2004) and presents
further measurements.

the domain and only these constructions (in the best case). And because it is
also not a true subset of the UBG, it can be robust against ungrammatical input
w.r. t. the domain we are interested in.

Context-Free Language Models. Given an UBG, it would be nice to have
an automated compilation method that yields a CFG which in turn serves as a
symbolic, word-based (instead of phoneme-based) context-free language model,
guiding a speech recognizer (Rayner et al. 200la). This strategy obviates the
sparse data problem in (commercial) recognizers, since we can directly operate
on the high-level grammar without collecting and constructing large amounts of
annotated spe ch training material (Wizard of Oz). The automatic compilation
of a CFG from an UBG also makes a tedious hand-coded formulation of a CFG
(or a regular grammar) superfluous (Dowding et al. 2001) . Findings in Rayner
et al. 2001b suggest that agreement constraints in context-free language models
improve the performance of a recognizer in terms of both word error rate and
semantic error rate. Keeping the agreement constraints of the UBG in t he CFG
is easy in our approximation method. Finally, CF-based models clearly benefit
from th ir greater expressive power when compared to regular models. It is worth
noting that within the last four years or so, the commercial speech community has
focused primarily on the grammar-based approach (VoiceXML, W3C, Nuance,
Speech Works, etc.); see also Rayner et al. 2001b.

Open Approach. The adjusting parameters of our approach make it easy to
approximate CFGs of different size and quality, e.g., by varying the annotations
of context-free symbols, by collecting the approximated CF rules either under rule
equivalence or under rule subsumption, or by taking a larger domain of locality
into account, by using the feature structures of the UBG, resulting in various
forms of context-free tree grammars. Even though these tree grammars are still
context-free, they clearly have a larger event horizon, establishing a restricted
form of look-ahead.

1.2 General Idea

Since unification-based parsers usually rely on a context-free backbone of uni
fication rules (or rule schemata, to borrow the broader HPSG term) , it should
not be that difficult to extract a context-free grammar. In fact, relatively spe
cific unification-based rules (e.g. , ANLT, Carroll et al. 1991 or LFG, Kaplan and
Bresnan 1982) , should result in approximated CFGs of good quality (cf. Carroll
1993; see section 4 for a discussion of other approaches). However , lexicalized
grammar theories such as HPSG, or even categorial grammar frameworks, like
CUG (Uszkoreit 1986) or UCG (Zeevat et al. 1987) , are of a different kind: rule
schemata in these frameworks are usually so general that the resulting CFGs
are worthless, meaning that they accept nearly everything (Briscoe and Carroll
1993, p. 36). Proper recognition of utterances in lexicalized theories is realized
by shifting the great amount of information into the lexicon and by applying a
specific descriptive means in rule schemata: coreferences or reentrancies.
Our attempt thus does not operate on the rules of a unification-based grammar
(as do, e.g. , Kiefer and Krieger 2002 in their sound HPSG approximation), but

3

instead on valid rule instantiations of a special kind, viz. , passive edges of the
unification chart, resulting from parsing a corpus. In order to access such passive
edges, we have defined an external exchange format for representing a chart (see
section 3.1). Since passive edges directly encode their immediate daughters, a
passive edge can be seen as a tree of depth 1. From such a tree and with the help
of the feature structure directly associated with each passive edge, it is possible to
create an annotated context-free rule of arbitrary specificity (section 3). Terminal
and nonterminal symbols in our framework are equipped with information from
the related feature structure of the passive edge, similar to annotated symbols in
the GPSG framework (Gazdar et al. 1985; see section 2.2). When taking deeper
nested daughters into account, we can even escape the fiat domain of context
free rules, resulting in CF tree grammars (see Neumann 2003 for a tree-based
approach resulting from a treebank).
In order to predict probabilities for CF parse trees, we equip each rule with a fre
quency counter which tells us how often a rule has been successfully applied when
parsing a training corpus. Given these counters, it is then easy to move from the
extracted CFG to a trained PCFG (Lari and Young 1990) which might be em
ployed during parsing in order to disambiguate context-free readings. Assuming
that the extracted CFG does not produce too many additional readings for the
relevant syntactic constructions in the corpus when compared to the UBG, the
PCFG can thus be seen as an indirect probability model for the UBG. The trick
goes as follows. Since every CFG rule is related by its rule name to a unification
rule, we first let the PCFG parse a given input, predicting probabilities for CF
parse trees. In a second phase, the ranked parsing trees can be deterministically
replayed one after another by the UBC (processing the most probable CFG trees
first) , establishing an order of best UBC parsing trees (see Kiefer et al. 2002 for
first promising results). Clearly, this idea only works for utterances lying in the
intersection of the languages accepted by the UBC and the approximated CFG.
Independently of establishing a stochastic parsing model, the two-step parsing
process alone can be used to speed up unification-based (all-path) parsing by
employing the same above idea (as has been proposed by many groups, most
notably, the LFG community): only the predicted context-free derivation trees
are deterministically reparsed by the UBC, helping the unification-ba.sed parser
to reduce its search space. Kiefer and Krieger 2002 have shown that two-stage
parsing is feasible, even with large approximated CF grammars of more than
600,000 to 1,500,000 rules, resulting in a speedup of 41 %- 62%.
Since the form and size of an approximated CFG is largely determined by the
training corpus (contrary to the pure grammar-driven approach in Kiefer and
Krieger 2002 and Kiefer and Krieger 2004) , our approach makes it easy to com
pute domain-specific subgrammars from general large-scale unification grammars.
Thus this approach might gain importance in information extraction and related
tasks. In other words, the syntax of a domain is addressed by the linguistic
constructions in the training corpus, whereas the reconstruction of the proper
domain-specific semantics is realized by manually (or semi-automatically) select
ing the 'right' UBC parse trees, before approximating the CFG. I.e., the approx
imation procedure will not see the 'wrong' UBG parse trees and so, 'wrong' CF
rules will not appear in the final CFC.

4

1.3 Structure of R eport

The structure of this report is as follows. In the next section, we first introduce
some basic inventory (types, type hierarchy, typed feature structures, unifica
tion) and discuss the objects which are constructed and manipulated during the
extraction of the CFG (symbols, rules, edges) . After that , section 3 presents
the interface to the chart of the HPSG parser and describes the basic extraction
algorithm, together with a variation which produces smaller, although more gen
eral CFGs. The section also has a few words on the quick-check paths of the
UBG which serve as the starting point for finding the proper annotations of the
context-free symbols. Section 4 then comes with a discussion of other approaches
which aim at extracting a CFG from an UBG, most of them unsound. In section
5, we elaborate on further aspects of the extraction methods, discussing several
orthogonal adjusting parameters which result in different CFGs, given a UBG.
We also discuss additional postprocessing steps and motivate that the extracted
CFGs can be tuned to deliver a meaningful semantic output as well. Finally, in
section 6, we apply our method to several small- to large-size UBGs and present
first measurements for the large English Resource Grammar developed at CSLI,
Stanford.

2 Objects of Interest

The goal of this section is a description of the implemented objects which are built
and manipulated by the extraction algorithm (section 3). The section furthermore
defines certain important relations between symbols and rules. It also has a few
introductory remarks concerning typed feature structures.

2.1 Typed Feature Structures

This subsection introduces some fundamental theoretical concepts which are used
throughout the paper. A more thorough investigation can be found in , e.g.,
Shieber 1986, Carpenter 1992, and Krieger 1995.

Definition 1 (TYPE HIERARCHY)

Let T be a finite set of type symbols. We refer to a type hierarchy by a pair
(T, ::5), such that ::5 ~ T x T is a decidable partial order (Krieger 2001). I.e., ::5
is

• reflexive: 'tit E T . t ::5 t

In the following , we assume that T contains three special symbols: T (the most
general type), 1- (the most specific type) , and U (expressing undefinedness), such
that 1- ::5 t and t ::5 T, for all t E T. Furthermore, U is a direct subtype of T and
is incompatible with every type in T\ {T, U} , i.e. , U does not have any subtype,

5

except ~. We will use the undef type U later to express the fact that R. certaiu
attribute is not appropriate for a given type.
We note here that the implementation of the corpus-driven a.pproximation of the
CFG from an UBG not only operates on a partial order of types , but even on a
b01lnded complde partial order (or equivalently, on a iclwcr selllilatticc). This is
due to the fact that our JAVA implementation of typed feature structures (Kricg(~r
2004b) takes as input a completion of the original type hierarchy, cow-;t.meted
from UBG by the flop preprocessor (Callmeier 2001) of the PET system (Callmeier
2000). Completing a type hierarchy means that for every Imir of two tyP(~S tt, t2 E
T, the greatest low(~r bound (GLB) is defined (and there is exactly one GLB for
tl and t,J. Ait-Kaci 1986 showed that every partial order can be emhedded into
a bounded complete partial order such that all GLBs are prcs(~rved.

Given sl1ch a completed type hierarchy, the type unification operation 1\ between
two types tt, t2 E T is defined to be the GLD of tJ and t2: t,l\t2 := GLD(tt, t2) = t ,
snch that t j tl,t j t2 and ~t' E T with t j t' j tl and t j t' j t2.
VI/e also need the notion of a typed feature structure (TFS) and will frequently
talk ahout the finite set offeatmes:F (often called attributes), the possibly infinite
set of atoms A (often called constants), ami tht: already mentioned finite sd of
types T (often called sortS).l However, we will not present a definition here and
ouly llote that there exist orthogoual, although precise definitious of what TFSs
an, (the ellumeration is, of course, not complete):

• a kiud uf deterministic finite state automaton (Carpenter 1992)

• an extension of Ait-Kaci's '1/; terms (Krieger 1995)

• syntactic sugar/expressions in a designer' logic2 which can h(~ transformed
into drfinitc equivalences (Krieger 20(1)

• dements of the least solution of a cert.ain recursive domaiu (~qlIatioIl (Kiefer
ane! Krieger 2002)

From an implemcntation point of view, TFSs are not that different from records
(structures) in imperative programming languages (e.g., PASCAL , C) or das:·ws
in object-oriented languages such as .JAVA or C++. They can also be seen as
a generalization of unna.med tuples and fixed-arity terms (as , C.g., in PROLO(;).

Given a TFS, a feature expresses a functionu,l property (i.e. , having exactly one
value) and its value might again be a highly-structured TFS. This allows tIte
construction of deep-nested, arbitrary-complex objects and ill fact, the TFSs
delivered by the HPSG parser are of that kind.
TFSs also possess another interesting descriptive means, viz. , corefercnccs or rccn
trancieo. They help to state the fact that the valueo under at least two features
within a TFS are identical (and not merely structural equal). Corei'ercllccs thus
enforce agreement and furthermore are a means for information tram;port during
the unificatiun of two TFSs. In this setting here, viz., UBG parsing, unification

I Many typed feature-based syst.ems do not distinguish between A and T and thus must
explicitly enumerate such atomic types .

2 A term coined by Mark Johnson.

6

is merely employed for checking satisfiability during rule instantiation and for
building up (output) structure.
We close this subsection by defining the notion of a path. Putting it simply, a path
is a sequence of features h , 12, ... , in E F which helps us to access information
from deeper levels of a TFS. We depict such a path as hlhl· .. lin. One specific
path stands out, viz., the empty path t, referring to the TFS itself.

2.2 Symbols

Terminal and nonterminal symbols of the context-free grammar are represented
as instances of the JAVA class Symbol.3 Symbols bear a name field of type String
and an annotation field of type int [] (an integer array). The name field of a
terminal refers to the full surface string of this terminal word and its annotation
field is empty (refers to the null value). A nonterminal also has a name and
encodes the HPSG rule name (e.g., hcomp or measure_np) . The annotation of a
nonterminal symbol groups several type identifiers which originate from (possibly
deep-nested) values under pre-specified paths (the so-called annotation paths)
within the instantiated rule TFS for this nonterminal symbol. Thus an annotation
is quite similar to a feature specification in GPSG (Gazdar et al. 1985) or a quick
check vector (Kiefer et al. 1999, Malouf et al. 2000).
During the more formal parts of this paper, we need two fundamental concepts:
symbol and annotation.

Definition 2 (SYMBOL)

We refer to a symbol 8 in the abstract syntax by a pair (n, a), consisting of name
n and an annotation a. We write N(8) to depict the first projection of 8 (the
name) and A(8) to access the annotation part of 8. When using concrete syntax,
we write a symbol in the more GPSGish notation n [a] .

Definition 3 (ANNOTATION)

An annotation a = (t l , ... , t n) is a n-tuple of type names or type IDs ti E T ,
i E {I, ... ,n}. We write 7ri (a) to denote value ti ofthe i-th projection of a. Using
the GPSG-like concrete syntax, we write [tl ' ... ,tnJ to depict annotation a.

Given two symbols, we define a subsumption relation ~ which turns out to be
useful in a moment.

Definition 4 (SYMBOL SUBSUMPTION)

Let 81 and 82 be two annotated context-free symbols. 81 is said to be subsumed
by 82 (written as 81 ~ 82) iff N(81) = N(82) and 7ri(A(81)) ~ 7ri(A(82)) , for
all i E {I , ... , n}. Alternatively, we say that 82 subsumes (or is more general
than) 81 . Assuming that 81 and 82 are terminal symbols, their annotation must
be empty (A(81) = A(82) = ()), thus the second condition above is trivially
satisfied. 4

3Note that during the more technical aspects of this paper, I will adopt the JAVA notation
and its specific language use, e.g., by referring to an instance variable as a field. See, e.g.,
Flanagan 2002 .

4Note that we have overloaded (and in the following will further overload) the :::S relation.

7

Let us give an example. Assume we have the four CF symbol::; (concrete syntax)
N [sg, fern], N [pl, fern], N [num, fern], D [num, fern] and assume that sg ~ num
and pl ~ num is the case. We can then infer that N [sg, f em] ~ N [num, f em] and
N [pl, fern] ~ N [num, fern] holds. However, N [sg, fern] and N [pl, fern] arc lIOt

related by the subsumption relation. Consequently, we say that these symbols arc

incompatible (or incomparable) and use the 1><1 sign to indicate t.his: N [sg, fern] 1><1

N [pl, fern]. Furt.hermore, D [num, fern] is incompatible with every other s.ymbol,
due to its name: D =I- N.

2.3 Rules

We represent context.-free grammar rules by t.he class Rule whose instances have a
left-hand side (lhs) and a right-hand side (rhs) field. The left.-haud side is (froll!
a CFO point of view) a nonterminal symbol, which we represent as all instanc:(~

of the class Symbol. The right hand-side is an array of Symbol objects (JAVA

notation: Symbol []). The length of rhs is encoded in an additional fidd length
of type into A Rule object also possesses a frequency field, telling Wi how often
that rule has been applied during parsing of a given corpus. It is worth noting
that the frequency connter will later gain importance when we we move frolll t.he
extmeted CFG to the associated PCFG which will predicts probabilities for CFG
t.rees.
Next, we need the formal notation of a grammar rule.

Definition 5 (CONTEXT-FREE GRAMMAR H.ULE)

Let l, '1"1, .. • • Tn be (arlllotated) context-free symbols and let furthermore I he F\,

nonterrninal symbol. VVe then caE the expression l -----+ 7"1 ... Tn a cOllt~~xt-fr('(~

grammar rule. I is usually referred to as the left-hand side (LHS) of the rule,
whereas the sequence Tl ... Tn is called the right-hand side (RHS). Given a CF
rule 0:, th(~ projection L yields the LHS of (1' , i.e., L(n) = l. R delivers the HIlS:
ll(ct) = '{"1· . . T n ·

Givell the above apparatus, defining a subsnmptioll relatioll --< OIl rnlcs is rela
tively straightforward.

Definition 6 (RULE SUBSUMPTION)

Let 0: = (la -----+ Tln: ... Tnet) and (J = (lf3 -----+ Tl ,l1 ... T n /1) be two cOlltext-free gralll
Illar rules. We say that cx is subsumed by (J and write 0: ~ ,3 iff I" ~ l[j, n Ct = 'ntl ,

alHl1'iet ~ Ti(3, for all 1 SiS net· Alternatively, we say that f3 subsumes (or is
more general than) CX.

We say that two CF rules cx a.nd ,B are equivalent iff they both subsume each
other: II: - (3 :<===? cx ~ f3 and f3 ~ CX.

Let II: i (J abbreviate -.(0: ~ B). Two rules are said to be incompatible (or
incomparable) iff they are not related by rule subsurnption: II: 1><1 /j :<===? n fc ()
and Ii i CX.

An example. Given the symbols from the example at the end of subsection 2.2,
we define a subsumption order over the following three rules (we use again the
concrete syntax in which the implemented algorithm delivers the rules). Let
0: = (NP[sg,fem] -> N[sg,fem]), (3 = (NP[pl,fern] -> N[pl,femJ), and ')' =

(NP [num, fern] - > N [num, fern]). TheIl 0 ' ~ ')' and U ~ I, however (1' CXl /3.

8

2.4 Edges

The edges which are transmitted by the HPSG parser in plain text (see figure
1) are reconstructed in main memory within the JAVA virtual machine. At the
moment, we are using a modification of the freely available PET parser (Callmeier
2000). The set of all passive edges for a single parsed sentence are grouped in a
text file (see next section).
Edges are represented as instances of the J AVA class Edge , consisting of the
instance fields id, ruleName , immDtrs , noOfDtrs , and annotation. The id of an
edge is a handle to the edge object and allows other edges to refer to this edge
in their immediate daughters array immDtrs. id is of type int , thus immDtrs
must be of type int [] . The string in the ruleName field of the edge leads to the
primary category symbol of the LHS of the context-free rule later. As already
described, annotations are represented as int vectors. The extraction algorithm
in the next section produces for each given edge exactly one context-free rule. Due
to the ruleName field, we know the name of the UBG rule from which the edge
has been derived. Exactly this information is utilized during the deterministic
second phase of two-stage parsing.

3 Extracting a Context-Free Grammar

This section centers around the offline extraction of a context-free grammar from
a given corpus, originally parsed by the deep HPSG parser of the PET system
(Callmeier 2000). We first describe the textual interface between our extrac
tion component and PET. After this, we motivate that the annotation values
of context-free symbols for a recognition grammar are related to the quick-check
paths, originally introduced within the context of deep HPSG parsing (Kiefer
et al. 1999). Given this background, we then describe the basic extraction algo
rithm in pseudo code. Finally, we argue for an extension of the original algorithm,
which helps to compute smaller grammars and describe how the frequencies for
the context-free rules are obtained.

3.1 Interface to HPSG

The interface to HPSG is established via the creation of text files: for every input
sentence of the corpus, a new file is created that contains exactly the passive edges
produced by PET. Although not every deep passive edge contributes to a deep
reading, we have decided to take all passive edges into account (one can think
of other options as well; see section 5). Since the passive edges of the deep
parser are objects in main memory and since our extraction runs in a separate
thread, we have defined an ASCII-based exchange format for chart edges that is
given by the EBNF in figure l. Figure 2 then displays the stripped-down chart
for the sentence Kim loves Sandy. Due to the fact that features and types are
represented as integers in PET, it is important that both PET and the extraction
process operate on the same TD.c (Krieger and Schafer 1994) grammar.
Because HPSG requires all relevant information to be contained in the synsem
feature of the mother structure, the unnecessary daughters (which are part of the

9

::= 'integer
:: = integer
:: = # integer

feat
type
wTef
fvpa'ir
tf';
start

:: = feat { {coref} tfc; I COTf;j' }

::= [type fupair-*]
: : = integeT'

end : : = integeT'
id :: = 'integer-
edgename :: = id I string
rulcname :: = string
imdt,f's :: = (cdgename+)
edge :: = id start end ndenarne imdtT8 tfc; <CR>
char-t ::= start end edgc+

Figure 1: The external exchange format of a chart as delivered by a modified
versioll of the PET Rystem. The meta characters { and } expreSR optionality, I
enforces the choice of exactly one alternative , and * and + refer t.u Klct~ne star
anel Kleenc plus, resp. integer- denotes the set of all integers , i.c., sequences of
numeric decimal characters. str-ing denotes the set of all st.rings, i.e., sequences of
plain t.ext characters, enclosed by double quot.es. Note t.hat each chart edge must
be separat.ed by the newline character <CR> at the end. At the llloment , w(' do Bot

benefit from the start and end position of an edge. rulename serves as the main
category symbol. imdtrs refers to the immediate daughters of an edge. Since t.he
odivered pa...';sive edges aw topulogically sorted , it is not ncc:essa,ry to n~enc()oc
an edg(~ t.hat has alreaoy been introduced earlier. Thus t.hp illlIllediat(~ d(-),llghters
imdtrs of an edge arc referred to by integer lllllnbcrs 'id. The only except.ion arc
terminal symbols (the surface form) which arc writ.ten as pure strings.

TFS) only increase the size of the overall feature structure wit.hout constraining
the search space. Due to t.he Locality Principle of HPSG (Pollaro and Sag 1987,
pp. 145) , they can therefore be legally removed in fully inst.antiatpd items , i.e. ,
passive edges which an~ delivered by the PET parser. To be independcnt from
a certain grammatical theory or implementation, we usc restrictO'l's similar to
Shieber 1985 as a flexible and easy-to-use specification to perform this ocletion.
In casc we are t.rying to work with a larger tree context and not limiting oursplvcs
to context-free rules (= trees of depth 1) , the restrictor is the right means to
accomplish this (see section 5).

3.2 Quick-Check Paths

Quick-check paths are used during unification-based parsing to quickly ano cor
rectly filter out failing unifications without applying the more costly unification
uperation (Kiefer et al. 1999, :~·dalouf et al. 2000). Such a filter is extremely im
portant since most of the unifications usually fail (95 -99% of all uuificatiolls).
The quick-check filter exploits the fact that unification fails more often at cer
tain points in feature structures than at others. In order to determine the most

10

o 3
1 0 1 Kim[] ("kim") [28398 76 ...]
11 2 3 Sandy [] ("sandy") [28398 76 . ..
12 0 1 sing_noun_infl_rule (1) [27973 77 ...]
13 2 3 sing_noun_infl_rule (11) [27973 77 . ..]
3 1 2 love _v2[plur_noun_infl_rule] ("loves") [27896 76
6 1 2 love_v2[third_sg_fin_verb_infLrule] ("loves") [27896 76 ...]
9 1 2 love_ v2 [possessed_word_lr] ("loves") [27896 76 ...]
15 1 2 third_sg_fin_verb_infl_rule (6) [27973 77]
2 1 2 love_vi [plur _noun_infl_rule] ("loves") [27838 76
4 1 2 love _v3 [plur_noun_infl_rule] ("loves") [27890 76
5 1 2 love_v1[third_sg_fin_verb_infl_rule] "loves") [27838 76
7 1 2 love_v3[third_sg_fin_verb_infl_rule] ("loves") [27890 76
8 1 2 love_v1[possessed_word_lr] ("loves") [27838 76 ...]
10 1 2 love_v3[possessed_word_lr] ("loves") [27890 76 . . .]
17 0 1 proper_np (12) [2265 76 ...]
18 2 3 proper_np (13) [2265 76 .. .]
19 1 2 third_sg_fin_verb_infl_rule (5) [27973 77
21 1 3 hcomp (19 18) [2238 78
22 1 2 third_sg_fin_verb_infl_rule 7) 27973 77
26 0 3 subjh (17 21) [2237 76]
28 1 3 extradj_t (21) [2261 78 . ..]
30 0 3 subjh (17 28) [2237 76 .. .]
31 1 3 extradj_Lsubj (21) [2260 78
33 0 3 subjh (17 31) [2237 76 ...]
34 0 3 extradj_t (26) [2261 78 . ..]
35 1 2 extracomp (19) [2244 74 ...]
37 0 2 subjh (17 35) [2237 76 ...]
38 1 3 extrasubj_f (21) [2245 74
40 0 3 fin _non_wh_rel (30) [2262 74]
41 0 2 fin_non_wh_rel (37) [2262 74]
42 0 3 fin_non_wh_rel (34) [2262 74]
44 0 1 nocop_id_vp (17) [2303 74
45 0 1 nocop _s (44) [2304 78]
47 2 3 nocop_id_vp (18) [2303 74]
49 2 3 nocop_s (47) [2304 78

Figure 2: Parts of the chart for the sentence Kim loves Sandy. Note that t he chart
is topologically sorted, i.e., it is guaranteed that edge ids are introduced before
they are referred to in the immediate daughters list. For instance, edge 13 refers
to dge 11 (i.e., originating from a unary rule), edge 30 to edges 17 and 28 (a
binary rule), etc. The edges 1- 11 can be thought of as realizing the lexicon lookup.
Notice that loves is assigned nine readings (different senses & morphosyntactic
variations). The unary rules 12, 13, 15, 19, and 22 are morpholexical rules. The
unary rule proper -Ilp (17, 18) raises a noun to an NP. Some passive edg s (40- 42)
result in useless CF rules for this sentence, since they represent dead branches in
the search space.

11

SYNSEMI LOCAL I CAT I HEAD
SYNSEMILoCALICATIMC
SYNSEM I NON-LOCAL I QUE
SYNSEMILoCALlcoNJ
SYNSEMILoCALICATIHEADIMOD
SYNSEM I LOCAL I KEYS IKEY
SYNSEM!LoCALICATIVALlcoMPSIFIRSTIOPT
SYNSEM I NON-LOCAL I SLASH I LIST
SYNSEMILoCALICATIHEADIMoDIFIRSTILoCALICATIHEAD
SYNSEM I LOCAL I CAT I HEAD IVFoRM

Figure :~: The ten mOot prominent failure points for the English HPSG grammar
(June 2(02) in decrea"..,ing ortier.

prominent failure points, we paroe a large test corpus in an offline stage (tf he
precise, we use the corpus from which we extract the CFG), using a specia.l uni
fication engine that records all failures inotead of exiting after tlw first failillg
unificat.iou. These failure point.s, more exactly, the types of the feature struc
tures at these points. constitute the quick-check (qC) v(~ctor. vVhen Cx()cuting
uuifica.tion during parsing, those points arc efficiently accessed and chcch~d using
type unification prior to the rest of the structure. QC filtering heavily relies on
type unification being very fast, which in fact is the case since it can be cached
or even precompiled (Kiefer et al. 1999, Kiefer et al. 2000). Figure 3 displays
the ten most prominent failure paths for a specific corpus we have used in our
experiments (cf. section 6).
As already said in subsection 2.2, the annotation of a context-free symbol bears a
close resemblance to a QC vector- an annotation is a subvector of a QC vectoL,
i.e., we might not take all vector positions into account. The reason for using
(parts of) the QC vector as an annotation is due to the fact that we are interested
in fast and modestly overgenerating context-free recognition grammars. Exactly
the failure points in a QC vector are of this property, viz., heavily contributing to
failures which rule out parts of the search space during unification-based parsing.
We note here that not every QC path has to be present in every feature structure,
since only certain features are appropriate for certain TFSs. Let us give an
example. Given the above set of QC paths, it turns out that the original head
complement rule hcomp is undefined for the ninth QC path. To account for
this problem, we use the type U introduced in subsection 2.1 to express such
undefinedness. In the concrete syntax, we write *undef* instead. Consequently,
we obtained instantiations of the binary head-complement rule schema hcomp
(schema 1 in Pollard and Sag 1994, pp. 38) such as

hcomp[verb*, na, O-dlist, ... , *undef*, bse] -->
bse_verb_infl_rule[...] bare_np[...]

In order to circumvent such undef values, it might be a good idea to work with
different annotation vectors for each primary category symbol. This means that

12

he-rule
PHON ("the", "man")
SYNILOClHEAD IT]

[
HEAD-DTR m 1

DTRS COMP-DTRS ([II)

/ \

[
det 1 [II PHON (" the")
SYNILOClHEADIMAJ D [

noun 1 m PHON ("man")
SYNILOClHEAD IT] [MAJ N]

Figure 4: Simplified derivation tree for the phrase the man in HPSG-I.

we have to partition the set of rule names R = Rl U . .. Rn, such that each ~
(1 :s: i :s: n) is associated with a set of defined quick-check paths.

3.3 An Example

We present a simplified example here to make the approach more clear. We will
use the feature geometry from HPSG-I (Pollard and Sag 1987) to make things
easier. Assume that the UBG parser has identified the phrase the man , so that
it has constructed the (partial) derivation tree in figure 4, which is represented
by several edges in the chart.
Assume further that we have chosen the annotation path SYNILOCIHEADIMAJ (to
gether with other paths). With this in mind, we can derive the following anno
tated CF rule

he-rule [N , ...] ---+ det [D, ...] noun [N, ...]

assuming that the rule name is identical to the top-level type of the TFS (which
must not always be the case).

3.4 Algorithm

The idea behind the context-free extraction is relatively straightforward and is
given in pseudo code in figure 5.
As we already said, the HPSG parser produces for each input sentence an out
put file that contains an external representation of the passive edges of the
chart for this sentence, encoded in the format given by figure 1. The extrac
tion HPSG2CFG then works as follows. Given a directory D and a vector of
quick check paths Q, we iterate over the files in D (line 3). For each file , we
then construct a vector edges of internal edges (i.e. , JAVA objects) for the set of
external passive edges stored in this file, using makeEdges (line 4) . This includes
the in-memory reconstruction of the TFSs for the mother structures (the LHSs).
For each vector position, i.e., for each edge e, we build up a LHS symbol (i .e., a
pair, see section 2.2), consisting of a name field (via getN ame) and an annotation

13

1 HPSG2CFG(D, Q) :{:::::::?

2 local result = 0;
3 for each file E D do
4 local edges = makeEdges(file);
5 for i = 1 to ledgesl do
6 local e = edges[i];
7 local Ihs = (getName(e),getAnnotation(e, Q));
8 local dtrs = getImmediateDaughter8 (e);
9 local rhs = rnakeArmy(ldtrsl);
10 for j = 1 to Idtrsl do
11 local d = dtrs IJ];
12 rhs[j] = (getName(d),getAnnotation(d, Q));
13 end for;
14 result = result u= {Ihs ---> rhs};
15 end for;
16 end for;
17 return result;

Figlln~ 5: The overall structure of the extraction algorithm.

vector (via getA nnotat'ion), given the quick-check paths Q (line 7). The same
is done for every RHS symbol, but since we usually have lllorc than one RHS
symbol , we collect t hem in an array dtrs of length equal to the nUlllher of the'
immediate daughters of t.he passive chart edge (lim~s 8-1:3). For (~wry passivr
edge, we finally generatp a context-free rule object (sec sect. ioIl 2.:3), given the
LHS and the RHS (line 14) . Thp new CF rules are adjoined to the re~:lllit S(~t (lilW
14). Aft.er we have processed all files in directory D, the r<~~mlt set is returned at
last (liw ~ 17) .
The subscript of the union oIwrator in line 14 of the algorithm should indi
cate t.ha.t new rules arc added to the result set using ruIc (~quivalcllcc. I. e., a
new rule only cont.ributes to the final CFG if no structural cquivakllt rule has
already been introduced earlier during the extraction proC(~ss. Even for a small
corpus, a la.rge Humber of structural equivalent. rules are generated, resulting ei
ther from reappearing words or from reappea.ring linguistic com;tructiollS. The
nOll-astonishing observa.tion is that the smaller the annotation gets, the larger t he
number of equivalent rules becomes. Clearly, by t aking more quick-check paths
into account, we obtain more specific CF grammars, consisting of more rules. In
the next subsection, we will slightly modify line 14, replacing the rule equivalence
test by rule subsumption.

3.5 A Variation

Rule subsumption, defined in section 2.3, now comes into play to scale down gen
erated grammars. We apply this operation online during the extraction process
in that we replace line 14 of the algorithm by

14 result = result U:: {Ihs ---> rhs};

14

The intention behind U_: is that a new rule is only added to the result set iff it
is more general t.han at least olle rule already in the set.. If so , the old rule and
]J(~rhaps further other rules are removed. If it is more specific, the Hew rule is
dearly not. added. The application of that operat.ion guarantees that tlw l'1lles
from t.lw result set result are pairwise incompatible, i.e.,

\::/0:, f3 E result. (): (Xl /1, for all a i- j3

U:, is somewhat related to the specialized union operation Ur in Kiefer awl
Krieger 2002. However, Us: operates over typed feature structures represent
ing context-free symbols, whereas our operation is directly applied to annotated
CF rul(~s.
Of course, U -< does change the cont.ext-free language .c -:, when compared to the
language .c, , resulting from the application of U ,~ :

Given the n1lmher of rules for the two grammars Q:-< and Qc' , we havc

I Q~ I s I Qo: I

A simple example clearly shows this. Assume that the temporary result set
contains the following three CF rules

result = {

and assume that the new rule

{3 =B-t ...

subsumes both {3l and {32. U=' would thus delete {3l and {32 from the result set
and will add {3 to it . Furthermore, since Bl and B2 are no longer valid ({3l and (32
have been deleted!) , we must replace every occurrence of Bl and B2 by the new
nonterminal B, introduced in production {3. This, however, has the effect that at
least the modified rule (a' = A -t ... B .. .), derived from a, overgenerates.
Our approach keeps track of such rule deletions by implementing a symbol sub
sumption maintenance graph. In the above example, we establish two associations
between Bl , B2 and B: (Bl ~ B), (B2 ~ B). Given the example, it is possible
that the new rule {3 might even be deleted by a newer, more general rule B' -t ...
later. In this case, we have to further specify a new association: (B ~ B').
In the end, such substitution chains will be dereferenced, so that we can immedi
ately substitute a dead RHS symbol by its correct and existing LHS counterpart.
In the example, for instance, we must then know that Bl should not be substi
tuted by B, but instead by B'.
We also have to make associations for the converse case-if a new special rule 1
is not added due to an existing more general rule 1', we must record this fact by

15

creating the association (L(,) ~ L(,')), since L(,) might occur on the RHS of
final CF rules.
We note here that the substitutions are of course not restricted to the LHS sym
bols only. Consider the following three toy CF rules which we might have acquired
so far

{

a = N[sg, fern] --+ "Mary" }

I
f3 = NP[sg, fern] --+ N[sg, fern]

resu t =
~. ~ s[...] --+ NP[sg, fern] VP[...]

and assume that the new, more general rule f3'

f3' = NP[num, fern] --+ N[num, fern]

now comes in, substituting f3. The result set then changes to

I
f3' = NP[num, fern] --+ N[num, fern]

{

a' = N[num, fern] --+ "Mary" }

resu t = I

~ . . = s[...] --+ NP[num, fern] VP[...]

Since we substitute the dead symbols at the very end of the approximation, the
resulting CFG is clearly not optimal, i.e., not minimal. A proper treatment
here would require that we have to update the symbol substitution graph (and
potentially perform substitutions) each time a new passive edge is checked against
the temporary CF rule set. Since we might process several millions of edges during
the approximation of a grammar, we do not apply this technique at the moment.
However, two alternative treatments circumvent symbol substitutions.

U nary Rules. The idea here is to couch symbol substitutions in terms of addi
tional unary rules. In the above example, we still delete f3 by f3' , do not change
a and" but add the following two unary rules:

N[num, fern] --+ N[sg, fern]

N[num, fern] --+ N[sg, fern]

Such rules simply express the fact that num and sg are related in the UBG by
type subsumption: sg:::s num. Goldstein 1988 proposed a similar solution, calling
the unary rules unification rules.

Online Symbol Subsumption. Since a context-free parser (usually) employs
symbol equality at runtime (and not symbol subsumption or unifiability), N[num,
f em] and N [sg, f em] are regarded to be incompatible, of course. To recover
from this behavior, we can clearly apply symbol subsumption (or unifiability)
at runtime. In order not to lose performance, this step heavily relies on type
unification being very fast, which is the fact, as it can be precompiled (Kiefer et
al. 2000) or cached (Kiefer et al. 1999).

At this point of our investigation, we already note here that favoring rule sub
sumption in terms of rule equivalence does not have any significant advantage

16

(kss l'1lles, hut Hot that many) , but mostly disadvantages (complex handling of
dead symbols and rule frequencies, worst running time of the approximation, over
gencratioll). ~evcrtheless, we have implemented rule subsumption , SiIlC(-~ lJBGs
lllight exist. which will take advantage of this operation. In this context , it. is worth
noting that: the closely related operation U~ made the grammar approximation
ill Kiefer <md Krieger 2002 finally tractable.

3.6 Computing Start Productions

One point in the algorithm is still missing, viz., the generation of start produc
tions. We haw decided to employ only a single synthetic start symbol 5 ill our
grammars. This symhol has to be fresh, i.c. , for all symbols (n, a) of the cx
tracted grammar, we demand that N(s) =F n. In the implementation, the llser
mllst specify a non-empty list of start (or root) types , types which subsume origi
nal rul<~ definitions, and thus subsumes potential rule instantiations. These types
specify wellformcdness conditions that a feature structure must satisfy to be a
legal utterance (P.g., empty sub categorization list). Now let T be the set of all
start types, R the set of {~xtra(:ted CF rules so far , and 5 the new top-level start
symbol.

CornputeStaTtProductions (T, R, 5) : ¢::::::}

localS = (/);
for each type E T do

for each n: E R do
if type ~ N(£(O'.))

S = SU{s-+ L(o:)};
end for;

end for;
return 5;

In the English ERG /LinGO HPSG grammar developed at CSLI, sentential phrases
are SUhSUlIWd by the type moL-strict, and thus a start symbol in the extracted
CFG can be dcknnined by checking whether the name of a LHS symbol is sub
sumed by this start type. Non-sentential saturated phrases in ERG (c.g., PPs
and NPs) arc characteri7.ed by TOO Lplrr, thus if we want find all saturated phrases
in the approximated CFG) we have to declare these two types to be start types.

3.7 Rule Frequency

As we said in section 2.3, rule ohjects possess a frequency field which will gain
importance if we move from the generated CFG to a trained PCFG which predicts
probability distributions over CFG derivations. Exactly the frequency counter is
set to 1 during the initialization of a rule object and is incremented by 1 in case
a structural equivalent rule has been detected.
Concerning the frequency field f of a new rule 0: that has replaced more specific
rules 0:1, ... ,On , we have

17

since the more general rule now acts as a representative for the deleted specialized
rules. Assuming the contrary, the frequency counter of truly general rules ai

(1 ~ i ~ n) are incremented by 1 when penalizing a:

Considering the unary start productions from section 3.6, the frequency counter
of a start production s ----+ l is set to the sum of the frequencies of those rules
a E R, whose LHS is exactly l, given the set of all CF rules R:

f(s ----+ l) := L f(a), where a = l ----+ rl .,. rn
QER

In order to obtain a proper probability distribution, we have to normalize the
rule frequency counter in the standard way. Let R be the set of all extracted CF
rules, f (r) be the value of the frequency counter for rule r E R, and n be the
total number of all passive edges for a given parsed corpus as delivered by the
unification-based parser. We then compute the probability p(r) for a context-free
rule r as

p(r) := f(r)
n

which gives us

p(R) := L p(r) = 1
FER

4 Other Approaches

In this section, we will present several other a.pproachf~s to compilation and ap
proxima.tion, some of them sound (Pereira and Wright 1991), that is, the language
genera.ted by the resulting grammar is a superset of the langua.gE~ of the original
grammar, others unsound .

Goldstein 1988 was the first who converted all HPSG to a CFG. Goldstein, how
ever, made several simplified assumptions: (i) English is context-free; (ii) the
number of categories/feature structures is finite; (iii) complex CF (non)tcrminals
are not allowed; (iv) in the early development stage of HPSG, no corefcrenc(~s and
types arc used. However, rules are undcrspecified and lexicalizat.ion i::; already
present. This version of HPSG is essentially a modified GPSG. Since Goklstcin
did not. address the (possible) accumulation of information (e.g., under SUB CAT ,
CONT, or DTRS), a restrictor is clearly not needed. Rule instantia.tion is rca.lillcd
through an active bottom-up parser, using the chart to represent the feature
structures.

Carroll 1993 reported in his PhD thesis on the extraction of CF gra.mma.rs
from unification-based grammars, written in the ANLT (Alvey Natural La.nguage
Tools) grammar formalism. Grammars in ANLT usually consist of several hUll
dred of relat.ively specific GPSGish rules with features ha.ving only finitely many
values. Categories (= sets of feature-value pairs) can be defined in ANLT, but

]8

are not explicitly arranged in a type hierarchy. A single ANLT unification rule
is mapped one-to-one onto a CF rule by introducing atomic symbols on the CF
side that abstract from categories in the ANLT grammar. In order to avoid
subsumption over CF symbols, subsuming categories are mapped onto a repre
sentative that encodes the least upper bound, similar to our operation U::;. A
related approach is described in Nakazawa 1995.

A compilation of HPSG, obeying certain restrictions, into lexicalized feature
based TAG is described in Kasper 1992 and Kasper et al. 1995. From an HPSG
perspective, this compilation in principle allows a faster parsing system, due to
the weaker generative capacity of TAGs (mildly context-sensitive). The idea is to
execute parts of HPSG derivations at compile time (viz., the reduction of selection
features in selection daughters) , producing lexically-anchored feature structures
that encode the application of several HPSG rule schemata.

Diagne et al. 1995 and Kasper and Krieger 1996 present a distributed parsing ap
proach that is distinguished by the use of a very restricted HPSG whose derivation
trees are reparsed deterministically (in fact , in parallel) by the original HPSG.
The two parsers mutually restrict their search space, using a specialized protocol.

Kasper et al. 1996 employ the same idea, but substitute the restricted HPSG
through the (relatively specific) context-free backbone of an HPSG-like grammar.
By using the pure backbone and a corpus, a PCFG is trained and used online in
order to obtain the n-best paths of a word lattice. The collection of these paths
constitutes the initial chart of the second parser that uses the HPSG essentially
for semantic construction.

Neumann and Flickinger 1999 and Neumann 2003 describe an approach that ob
tains a stochastic lexicalized tree grammar (SLTG) for a given corpus. The idea
here is that the training corpus is parsed using an HPSG grammar and an HPSG
parser, and derivation trees are iteratively decomposed top-down, resulting in
nonterminal nonheaded subtrees, where the cutting points are marked for later
substitution. SLTGs are processed by an LTAG-like parser in a two-step process,
consisting of an initial all-path parsing phase, followed by the application of the
relevant HPSG feature constraints. This idea is related to LFG parsing, but has
the clear advantage that a larger tree context is involved (although SLTGs are
of context-free power). Since the extraction process of the SLTG grammar works
on the derivation trees of a tree bank, viz., tsdb (Oepen and Flickinger 1998),
the node labels are relative coarse generalizations of the information embodied
in the feature structures used during HPSG parsing. The vagueness or under
specification of the node labels, however, is partly compensated by the larger
tree context. The approach furthermore applies two postprocessing techniques: a
linguistically-motivated decomposition of trees and a specialization of node labels.

Moore 1999 describes a compilation method that turns unification grammars
with finitely-valued features into context-free grammars. The grammar, he re
ports on, is written in the core language engine formalism of SRI Cambridge,
and consists of about 900 relatively specific phrasal rules. Moore only consider
finitely-valued features. In order to avoid the combinatorial explosion of rules,
Moore only instantiates those features in daughter categories that are constrained
by the unification rule and considers only combinations of feature values by uni-

19

fying active and passive edges, as in a bottom-up active chart parser. He also
throws away useless rules. Moore's paper presents a new left recursion elimina
tion algorithm, specifically tuned for the grammar formalism GSL of the Nuance
speech recognizer (Nuance 2004), t aking advantage of the fact that GSL allows
regular expressions . Moore also consider various combinations of acoustic and
symbolic information in a language model and is a great overview paper. In a
certain sense, Moore's approach is the forerunner for Rayner et al. and Dowding
et al., laying the foundations for the more sophisticated enumerative compila
tion techniques below. Moore's expansion technique will probably not work for
lexicalized theories, such as HPSG.

Kiefer and Krieger 2000, Kiefer and Krieger 2002, and Kiefer and Krieger 2004
present a sound approximation method that turns unification-based grammars,
such as HPSG or PATR-II into context-free grammars. The method does not
rely on a corpus, but is purely grammar-driven. In an initial phase, the method
generalizes the set of all lexicon entries, by abstracting from word-specific infor
mation. The abstraction is specified by means of a restrict or. After that, the
grammar rules are instantiated by unification, using the abstracted lexicon en
tries and resulting in derivation trees of depth 1. A rule restrict or is applied to
each resulting feature structure, removing all information contained only in the
daughters of a rule. Additionally, the restriction gets rid of information that will
either lead to infinite growth of the feature structures or that does not constrain
the search space. The restricted feature structures (together with older ones)
then serve as the basis for the next instantiation step. Again, this results in
TFSs encoding a derivation, and again the TFSs are restricted . The iteration is
proceeded until a fixpoint is reached, meaning that further iteration steps will
not compute additional information. Given the TFSs from the fixpoint, it is
then easy to generate context-free productions , using the full feature structures
as symbols of the CFG. The speedup factor for the aged and eng2000 test suites
within a two-stage parsing architecture are between 1.7- 2.7.
In Kiefer et al. 2002 , an extension of the method is presented which easily allows
the disambiguation of UBG readings, by indirectly relying on a trained PCFG,
derived from the approximated CFG. Considering a random baseline of 72% for
the exact match task, the method shows an increase of 16% (= 88% precision).

In Cancedda and Samuelsson 2000, a corpus-based specialization method is intro
duced which directly operates on rules written in the LFG framework. Because
the LFG formalism allows RHSs of grammar rules to consist of regular expres
sions (REs), the idea ofthis framework is to expand RHSs into RE-free sequences
of symbols, guided by the training data. Since Kleene star and complementation
in REs as well as specialized operators like shuffie may introduce spurious ambi
guities , such simplified rule instantiations clearly speed up parsing (up to a factor
6). The downside of this method is that one might lose coverage (about 13%).
To compensate for the loss in coverage, a two-stage parsing architecture is pro
posed in which a second stage, consisting of the original grammar, is only invoked
in case the first specialized parser failed. Even with this backup mechanism, a
speedup between 1.8- 2.7 was obtained.

Dowding et al. 2001 compares the approach to grammar approximation in Moore

20

1999 to that in Kief(~r and Krieg~:r 2000. As a uasis for the comparison, they
choose a colllUland-and-control grammar written in the Gemini/CLE formalism
(we lise the sallle grammar in section 6.4) . The motivatioll for this enterprise
comes from the use of the resulting CFC as a context-free language Illodel for
the Nua.nce speech recognizer (Nuance 20(4). The measurements in Dowding et
a1. 2001 differ from those lat(~r conducted in Kiefer and Krieger 2002 and Kider
a.l\d Krieger 2004. Unfortunately, it is not clear why Dowding'::; implementation
of Kider & Krieger 's method comes off so badly. Dowding report on an aver
age ambiguity per sentcnce of 15.4, whereas Kiefer & Krieger comcs np with
only 1.49 (ambiguity rate for the original grammar was 1.41). The c:ompilation
t.imc to obt.ain t.he approximated grallllnars differs too: 11 minutes vs. 34 S(~c:

oneis. With a slightly different setting, Kiefer & Krieger even obtain a correct
approxilllat.ion, showing that the DEC is in fact of only context-free power. The
pap(~r hy Dowding ct a1. 2001 also explores techniques for transforming CFCs into
weakly equivalent grammars with less ambiguity. These investigationH arc impor
tant. Hince tlw nse of linguistically-motivated CFGs as language models often lead
t.o contidential paths in the language model labeled with the same recognition
hypothesis, so thH.t other good hypotheses arc forced 011t of the beam of the
recoglllZCr.

Rayner et a1. 2000 conduct a series of experiments that employ approximated
CFCs as language models in the Nuance speech recognizer. Instead of using
a domain-specific UBC, Rayner et a1. 2000 start with a general, linguistically
motivated grammar, but use a domain-specific lexicon, resulting in a domain
specific CFC. Compiling a UBC is done by enumerating all possible instantia
tions of features in rules. To make this approach tractable, a relatively complex
mechanism is implemented to arrive at features, having only finitely-many values,
similar to the approach in Moore 1999. A kind of rule folding is also applied here
(see also section 5.2). The compilation failed for a mid-to-large-size UBC, so they
started with a small grammars and incrementally add further rules and lexicon
entries. It turned out that a more complex clause structure was not responsible
for the poor recognition performance of the resulting CFCs, but instead a small
number of rules, basically centered around relative clause modification. The find
ings in this detailed paper might also be of interest to our method. In Rayner
et a1. 2001a, the explicit assumption is made that each UBC feature has a finite
range of possible values. How this can be guaranteed is not explained in the pa
per. Further technical aspects of the above compilation method are elaborated.
In the related paper Rayner et a1. 2001b, it is argued that agreement constraints
from the UBC should be kept in the CFC to obtain better language models.

Bos 2002 comes up with a compilation method that is very related to that of
Moore and Rayner et a1. above. Again, features only have finitely many values
and complex values are not allowed. What makes his approach unique, however,
is that he shows how to transfer compositional semantics from the UBC into the
CFC, using the grammar specification language CSL from the Nuance recognizer
package. CSL supports slot filling for constructing semantically-relevant output,
similar to W3C's VoiceXML or SRCS, and Sun's JSCF. The challenge for saving
the semantics on the CFC side is elimination of left recursion in the rules and

21

no support for features and unification. In the end, deriving a logical form for a
string is achieved by running the CF parser on that string, using the approximated
CFG, followed by several ,B-reduction steps. Recognition performance in terms
of speed and word error rate is not affected by his method. Bos' way to achieve
a compositional semantics is quite close to our proposed treatment of semantic
construction, using additional semantic rules (see section 5.5) .

5 Summary and Extensions

As already explained in the paper, the corpus-driven approximation method is
unsound, that is, given a corpus G of training sentences and a set of annotation
paths A (from which we determine the annotation of a context-free symbol), the
approximated CF language is usually not a superset (but also not a subset) of
the language accepted by the HPSG (see figure 6). This is due to the fact that
not all linguistic constructions licensed by the HPSG are covered by th training
corpus, but also because not every piece of information from the TFS is encoded
in the annotation of a CF symbol:

VG,A. £(HPSG) rt. £(CFG,G,A)

It is easy to see that more training samples G' result in a broader language:

V G', G ~ G'. £(CFG, G, A) ~ £(CFG, G', A)

The subset relation turns around with more annotations:

V A', A ~ A' . £(CFG, G, A) ;2 £(CFG, G, A')

In both cases, more training sentences and/or more annotation paths result in
larger rule set. Overall, we can say that the more information from the feature
structure is put into the annotations of the context-free symbols, the better the
CFG approaches the HPSG in terms of the number of readings and the less
it overgenerates w.r.t. linguistic constructions contained in the training corpus.
Remember, annotated CF rules approximate HPSG (passive) chart edges, and
the existence of more specific CF symbols and rules helps to better mimic the
behavior of the HPSG during CF parsing. Finding the right annotation paths,
of course, depends on the application domain in which the extracted CFG is
employed.
The correlation between UBGs and the family of approximated CFGs w.r.t. a
given corpus and a set of annotation paths is depicted in figure 6.
As motivated in section 3.5, when fixing a corpus G and a set of annotation paths
A, the language obtained under U .. is always a subset of the language resulting
from the application of U=" given the same HPSG source grammar:

However, the more general grammar has less rules due to the fact that u=' might
delete more than one specialized rule when favoring a more general rule.

22

rule instantiations in the unification parser can not be computed befor hand, due
to the infinite number of 'categories' in a unification-based grammar (the set of
all feature structures produced by a UBG is usually infinite) .

5.2 Rule Folding

Rule folding is a method that can drastically decrease the number of CF produc
tions. Let us refer to the example from section 2.3. Assume that the extraction
process has delivered

{
a = (NP[sg, fern] --+ N[sg, fern]) }
{3 = (NP[pl , fern] --+ N[pl , fern])

Rule folding will then replace a and {3 by

1= (NP[num, fern] --+ N[num, fern])

smce I covers exactly the two variations of the number feature, viz., singu
lar and plural. Because NP [sg, fern] , NP [pl, fern] , N [sg, fern] , and N [pl, fern]
are now dead symbols, we must again replace their occurrence in every rule by
NP[num,fern] and N[num,fern] , resp.
Rule folding F , of course, does change the language induced by the original
extracted CFG 9 and produces a more general grammar. The reason for this
goes along the argument presented at the end of section 3.5.

£(9) <;;; £(F(9))

5.3 Automatic Lexicon Extension

New utterances not covered by the corpus are only recognized by the extracted
CFG if they can be mapped to already parsed syntactic constructions and to
already seen words. One can imagine that the relevant domain-specific syntactic
constructions can be covered by a sufficiently large training corpus. Lexical gaps,
however , should not be attacked by taking more samples into account. One
way to enlarge the CF lexicon is by mapping lexicon entries from the HPSG
to related terminal symbols in the CFG, originating from parsing the training
corpus. Assume, the training corpus contains

Bill gives Marya book

but does not mention the word cookie. A sentence such as

Bill gives Mary a cookie

will then not be recognized.
The extraction process has represented book by the unary production

book-Ill [...] --+ " book"

24

where book_nl call be seen as a preterminal, speaking in terms of CFGs.
B.Y inspecting the HPSG lexicon, we will then find that book is of the same lexical
type as cookie, viz., book_nl. Thus we can enlarge the CF lexicon by

cookie_n1.[...] ~ "cookie"

By exploiting this procedllrf\ we can at least guarantee tha.t the CFG will have
the SaIIW lexical covera.ge tha.n the UBG.

5.4 Grammar Postprocessing

Lexicon extension is relateel to a postprocessing step which "massages" the ap
proximated CFGs, more precisely, the rules which have a preterminal symhol
such as in [prep*, ...] on tll(~ir RHS. For instance, Wf-~ might have

in[prep*, ... J --) "in"
hcomp[prep*, ... J --) in[prep*, ... J proper_np[noun_or_nomger, ... J

Now aSSllIlle that our training corpus does not conta.in the preposition on and
t hat automatic lexicon extension has added the following "lexicon lookup" (or
lexical) rule

on[prep*, ... J --) "on"

However, we are still missing the very likely CF rule

hcomp[prep*, ... J --) on[prep*, ... J proper_np[noun_or_nomger, ... J

Constructing such new rules should , however, not that difficult. Clearly, when
addressing these topics properly, the need for a larger training corpus is not that
demanding.

5.5 Constructing Meaningful Output

In case we are not only interested in a context-free boolean recognizer, but would
like to see some useful output (e.g., MRS-like structures; see Copestake et al.
2001), we can either apply two-stage parsing here (see above), letting the UBG
deterministically replay the CF parse trees, or (automatically) equip the approx
imated CFGs by 'semantic rules', similar to attribute grammars, a framework
extensively used in syntax-directed translation, dating back to the early sixties
(Aho et al. 1986).5 The latter approach completely obviates UBG parsing and
has the further advantage that overgeneration within the extracted CFG will not
be prohibited by a subsequent, more restrictive UBG reparse.
Such semantic rules can not be obtained directly from the passive edges of a chart
(or even from the extracted CF rules), but instead must be reconstructed from
the CF rules with the help of the HPSG rule schemata, together with the total
surjective mapping from CF rules to HPSG rule schemata.
Let us give an example. Assume that the training corpus contains the sentence

5Such semantic rules nowadays gain importance in the speech grammar community, most
notably in the Semantic Interpretation for Speech Recognition (Van Tichelen 2003) framework
for the Speech Recognition Gmmmar Specification (Hunt and McGlashan 2004).

25

Tigger meows

for which we obtain, among other rules,

subjh[verb, ... J - properJlp[noun, ... J verb_infLrule[verb, .. . J

The unique (slightly simplified) HPSG rule schema associated with the LHS of
subjh [verb, ...] plus the inherited HPSG principles gives us a feature struc
ture which exactly specifies the 'transport ' of information from the daughters to
the mother (E9 denotes list append):

SYNSEM I LOCAL I CONT [~~~~~ ~e~}Ill
HEAD-DTRISYNSEMILOCALICONTILISZT ~
NON-HEAD-DTRISYNSEMILOCALICONTILISZT OJ

This transport is expressed through coreferences (IT] and [IJ) and has to be re
modeled in the semantic rules attached to the CF rule. We thus enrich the above
extracted CF production by the following two simplified semantic rules (we use
a kind of PATR-II notation, where 0 denotes the LHS, 1 the first RHS daughter ,
etc.):

O.SEM.LISZT := 1.SEM.LISZT E9 2.SEM.LISZT
O.SEM.INDEX := event

The process of semantic composition must be grounded in the lexicon, thus we
equip each lexicon entry of the CFG by the relevant semantic rules which can be
obtained from the corresponding lexicon entries of the HPSG (let (...) denotes
a list of elements):

Tigger [... J - "Tigger"
O.SEM.LISZT := (Tigger)

But perhaps the much simpler procedure of annotating CF symbols with addi
tional, semantically-relevant information from the feature structures might suffice.
In this case, successful CF derivation trees will be reinspected in a second phase,
where the according semantic information is reconstructed. This approach could
also be the starting point for approximating not only recognition grammars, but
even useful generation grammars.

6 Experiments

We have applied our method to five different grammars at this point of writing.
We took these grammars from Kiefer and Krieger 2002. The first three grammars
are small-size UBGs, used primarily for showing interesting properties of the
approximation method. The fourth grammar is an HPSG-like encoding of John
Dowding's mid-size unification grammar, written in the Gemini/CLE formalism.
The fifth grammar is the large English Resource Grammar, developed at CSLI,
Stanford.

26

Again, we obtained the same 12 rules as have been found by (Kiefer and Krieger
2000, Kiefer and Krieger 2002) during their grammar-driven approximation.

(1) S [*undef*] --> a[' a]
(2) S [*undef*] --> b['b]
(3) S[*undeh] --> rule [' a]
(4) S[*undef*] --> rule['b]
(5) rule [, a] --> a['a] a['a]
(6) rule [' a] --> a['a] rule['a]
(7) rule [' a] --> rule['a] a['a]
(8) rule [, a] --> rule['a] rule['a]
(9) rule ['b) --> b['b] b['b]
(10) rule ['b) --> b['b] rule['b]
(11) rule ['b) --> rule ['b) b['b)
(12) rule ['b) --> rule['b] rule['b]

Our training corpus consisted of only two sentences, viz., "a a a a" and "b b
b b". Again it is important to have test sentences of proper length (viz. , four
consecutive a 's and b's. Otherwise the important rules (8) and (12) are not
derivable.

6.3 Shieber's PATR-II Grammar

The third example is the feature structure encoding of Shieber's second sample
PATR-II grammar (Shieber 1986, pp. 71- 76). This grammar uses two underspec
ified rules for verb phrase construction as in Uther persuades knights to storm
Cornwall. It is clearly a test case much more in the direction of UBGs than th
first two examples. Overall, the grammar consists of three rules.

5 -t NP VP

S

HEAD 0 [FORM finite]

ARGS (0 NP, [:D 0 1)
SUBCAT (0)

VP -t V

VP

HEAD 0
SUBCAT 0

ARGS ([~AD 0 l)
SUBCAT 0

VP

HEAD 0
SUBCAT 0

VP -t VP X

ARGS ([:~D 0 l,0)
SUBCAT (0· 0)

28

II #rules I #ppedges I #readings I runtime[s] I overgeneration I speedup I
UBG 57 19,716 666 6.59 1.00 1.00
CFG-Oe 401 24,815 4,028 0.23 6.05 28.65
CFG-2e 401 24,662 1,376 0.20 2.07 32.95
CFG-3e 454 23,364 982 0.16 1.47 41.19
CFG-5e 455 23,379 982 0.15 1.47 43.93
CFG-10e 505 21,327 975 0.11 1.46 54.92
CFG-17e 525 21 , 007 819 0.10 1.23 65.90
CFG-21e 528 20 ,672 666 0.08 1.00 82.38

Figure 7: Measurements for the family of approximated grammars obtained under
rule equivalence. #ppedges abbreviates the number of packed passive edges.
Overgeneration was measured against the UBG .

general grammars was on par with the more specialized ones. The replacement
of specialized symbols in favor of more general ones started when we moved to at
least three symbol annotations. A maximum number of 71 final symbol substi
tutions (#substitutions) were made for these three annotations (CFG-3s). The
maximum number of 16 associations (#associations) between symbols and their
more general replacements (see section 3.5) were obtained for ten annotations
(CFG-10s).

II #rulef> I #a~f>ociati()m; I #f>ubf>titutiom I #m;e1e~:; I #ppf~dgf~S I #rcadings I
CFG-O~ 401 0 0 20 24,815 1, 028
CFG-2s 101 0 0 13 21,662 1,376
CFG-3s 429 11 71 43 2;~, 485 982
CFG-5s 4:12 9 51 1:3 2:3,480 982
CFC-lOs 472 16 52 71 21,4:.H 975
CFG-17s 495 14 43 86 20, 992 8Hl
CFG-21f> 498 14 43 86 20,695 666

Figure 8: Measurements for the family of approximated grammars obtained under
rule subsumption. #useless abbreviates the number of useless rules.

Compared to the results reported in Kiefer and Krieger 2002, it is not astounding
that our grammars are much smaller , since they are derived from a corpus, and
not merely by the UBG alone. Of course, the approximated CFGs in Kiefer and
Krieger 2002 do cover a greater variety of linguistic constructions.

We also measured the time of two-stage parsing (total time of CF parsing plus
UBG replay) against the UBG baseline (5.7 sec) for the grammars CFG-10e and
CFG-21e. We obtained a speedup factor between 9.2 (= 0.62 sec) and 10.2 (=
0.56 sec). The next section shows that the speedup is getting larger when taking
more complex structure as well as longer sentences into account.

30

6.5 CSLl's English Resource Grammar (LinGO)

w(~ also applied our method to the large English LinGO grammar (June 2002),
(kvd()p(~d at CSLI Stanford. The grammar consists of 61 rule schemata, 8,082
nUll-leaf types, and a lexicoIl of G,930 st(~ms.

6.5.1 aged

We lIsed the aged t(~st suite (Oepen and Callmeier 2000), consisting of DO syntacti
cally highly diverse sent.ences in order to measure t.he qualit.y of our approximation
(average sentence length: 8.4; maximal length: 19). aged consists of 202 stems
that cover a great deal of morphological and lexical variation. 719 full forms were
COlllPllt(!d from these stems. The PET parser which produced thE! illPut charts of
passive edges (section 3.1) ran under no restrictions and computed 267,G51 pas
siv(~ edges overall. One of the sentence from aged even contributed 139,028 (!dges.
Approximatioll was performed under rule equivalence and rule subsumption. The
length of the annotation vector was varied between 0 and 32.
Figure 9 shows the asymptotic behavior for the number of nonterminal and rules,
when compared to the length of the annotation (sec also figure 3). The explosion
of rules from five to six anIlotations is due to the path SYNSEM I LOCAL I KEYS I KEY
who potelltia.lly results in Illore than 4,000 possible values , representing relatively
word-specific information. It is a good idea not to use such path values as anno
tations in case the rule set gets too large. Furthermore, approximated CF rules
will get too specific when incorporating such information. An optional strategy
to cope with such a value overload is described in Kiefer and Krieger 2002 and
Kiefer and Krieger 2004, viz., type generalization.
The next two tables present runtime measurement and show that the useless rules
outweigh when moving to larger annotation vectors. The numbers also show (at
least for aged and csli, see next section) that the grammars obtained under rule
equivalence are nearly of the same size as those obtained under rule subsumption,
but are overall better when regarding the number of readings (#readings). This
will clearly gain importance in the second stage of an VBG-replay approach.
Considering the VBG parser, 1,589 readings for aged were found. PET failed for
17 of the 96 sentences when using the English HPSG.
A plot of the number of rules obtained under rule equivalence against the number
of samples is shown in figure 12.

We also conducted measurements for two grammars under rule equivalence. The
pure HPSG parser, fully equipped with quick-check filtering, resulted in an overall
parse time of 1,361.5 seconds. Total time of two-stage parsing (CF parsing plus
VBG replay using the full HPSG) for aged was

• 110 annotations: 59.4 sec = 22.9x speedup

• 226 annotations: 52.8 sec = 25.8 x speedup

Considering runtime, the grammar with 226 annotations was better, since HPSG
replay had needed less unifications.

31

I #annotations II #E-rules I #S-rules I #assoeiations I #substitutions I
0 3,475 3,475 0 0
1 3, 783 3,539 28 264
2 3,890 3,552 52 1,210
3 4,047 3,579 71 1,539
4 4,048 3,580 71 1,536
5 4,141 3,670 69 1,510
6 8,585 7,406 733 4,547
7 8,662 7, 574 605 3,895
8 9, 430 7,998 760 4,096
9 10,050 8, 459 891 3,969

10 11 ,364 9,335 1,189 4,032
11 11 , 469 9,341 1,200 4,199
12 11,532 9,641 1,079 3,624
13 11,591 9,667 1,087 3,670
14 11,771 9, 704 1,123 3,856
15 11,857 9,800 1,120 3,896
16 11 ,909 9,829 1, III 3,921
17 11,928 9,830 1,123 3,954
18 11 ,928 9,850 1,107 3,931
19 12 , 127 9,913 1,183 4,057
20 12,169 9,926 1,201 4,050
25 13,182 10,867 1,295 4,020
32 15,173 12,389 1,454 4,014

Figure 9: Total number of rules for the aged test suite, obtained under both
equivalence (E-rules) and subsumption (S-rules). The explosion in the number of
rules from 5 to 6 is due to the path SYNSEM I LOCAL I KEYS I KEY.

I #annotations II #useful I #useless I #ppedges I #readings I #errors I runtime[sJ]

0 3,153 22 122,311 4.294E + 29 2 3.09
2 3,737 153 73,010 6.527E + 18 3 0.72
5 3,943 198 64,364 1.408E + 17 4 0.54

10 7,160 4,204 23,607 617,068 9 0.13
18 7,291 4,637 21 , 970 307,483 9 0.12
32 8,236 6,937 22,858 174,533 9 0.10

110 10,237 15,455 19,440 11,614 15 0.09
226 13,682 32,025 18,855 11,195 15 0.09

Figure 10: Useful and useless rules for aged, obtained under rule equivalence
(without lexicon lookup rules).

6.5.2 csli

The ('sli test suite which originated from the old HP test suite developed at
Hewlett Packard Labs (Oepen and Flickinger 1998), consists of 5,720 grammatical
and ungrammatical samples. It is intended to cover a great deal of the syntactical
constructions of English. Average sentence length is 5.0, maximal length 20. 585
full forms (= #CF terminal symbols), e.g., "little", and 3269 lexicon lookup

32

I #annotations II #useful I #useless I #ppedges I #readings I #errors I runtimels] I
0 3,453 22 122,311 4.294E + 29 2 3.09
2 3,418 134 68,027 3.644e + 19 3 0.69
5 3,475 195 64,878 2.303E + 18 4 0.65

10 7,022 2,313 31,509 3,202,651 9 0.14
18 7,080 2,770 25 , 369 1,617, 231 9 0.13
32 7, 391 4,998 23,569 326, 119 9 0.13

110 8,919 12,694 19,347 17,004 15 0.09
226 12,824 30, 205 18,262 13,253 15 0.09

Figure 11: Useful and useless rules for aged, obtained under rule subsumption
(without lexicon lookup rules) .

45000 .---,---.-------,--,--------r----.------,--,------.--------,

40000

35000

30000

25000

20000

15000

10000

o annotations --
2 annotations -------
5annotations ---- --- -

10 annotations --
18 annotations ------
32 annotations -- - -- .-

110 annotations -
226 annotations

,,_.-" .

. --

," ._ .-

100

Figure 12: Plot of the number of rules obtained under rule equivalence against
the number of samples from aged. Note that we depict the sum of useful and
useless rules without start productions here. The table clearly shows that, at
least for 226 symbol annotations, the training corpus is too small.

rules (= #preterminal symbols or lexical categories) , e.g.,

little_det[det, na, O-dlist, ... J --> "little"

can be found in every approximated grammar (i.e., average ambiguity rate per
stem ~ 5.6). The maximal number of passive chart edges in the PET parser was
set to 100,000. 7,981 readings were found by PET.

For csli, we obtained the following numbers for the approximated CFGs (see
figure 13 and 14).
Some of the numbers from figure 14 were astounding on first sight. Firstly, the
decrease of useful rnles from 10 to 18 annotations seems to contradict to what has

33

I #annotations II #E-rules I #E-nonterms I #S-rules I #S-nonterms I
0 11,432 3,372 11,432 3,372
2 12, 845 3,561 11,736 3,473
5 14,007 3,796 12,252 3,637

10 52,848 16,508 41 ,530 11,056
18 54,376 17, 212 4:3,203 11 ,623
32 65 ,808 24 , 373 54,875 17,940

Figure 13: Number ofrules (including start productions and lexicon lookup rules)
and nonterminals for the csli test suite, obtained both under equivalence (E-rules,
E-nonterms) and sub::mmption (S-rules, S-nonterms). The rule set both contains
useful and useless rules.

I #annota tions II #useful I #useless I #ppedges I #readings I #errors I runtime[s] I
0 8,161 2 2,981,080 6.492E + 41 356 86.12
2 9,138 438 2, 116,619 3.026E + 32 510 40.22
5 10,059 679 1,752,303 2.464E + 25 627 26.02

10 32,366 17,383 589,711 241,665,239 1,741 4.66
18 31,575 19,702 545,788 56,629,513 1,898 4.63
32 32, 354 30,489 534,236 38,030,870 1,920 4.20

110 40,742 79,520 436,342 18, 266 2,926 4.08
226 58,394 187,755 377,187 22,497 3, 065 4.12

Figure 14: Useful and useless rules for csli , obtained under rule equivalence
(without lexicon "lookup" rules). Less than a fomth of all rules are useful under
the most specific CFG. Note the derrease of useful rules when moving from 10 to
18 annotations, even the total number ofrules increases. Note also the increase of
readings from 110 to 226 annotations, even though the recognized language gets
smaller (d. number of errors). Overgeneration against the UBG w.r.t. training
corpus was between 2.29 and 2.82 for the two largest grammars.

already been said before. However, we have always argued that the total numher
of all rules increases when moving to a larger annotation. This decrease is due to
the fact that "older" useful ruleo have been outdated, i.e., have become useless
through the specialization of some of their CF symbols (more annotations).
Secondly, the number of readings might increase when we equip the CF symbols
with more information. Again, this does not stand in contrast to what has already
been saio. Clearly, a more specialized CF grammar (226 annotations) recognizes
a smaller language than a more general CFG (110 annotations). This fact is
supported by the number of errors in figure 14 (more errors). "Older" CF rules,
here, are split up into new specialized instances when adding more annotations.
In a certain sense, new information might add spurious ambiguities. Thus, the
CFG with 110 annotations can be seen to better approximate the UBG than the
bigger CFG. This behavior should be taken into consideration in the context of
two-stage UBG replay parsing.

34

250000 ,-----,-----,..-----,-------,--------,--------,

200000

150000

100000

50000

o annotations --
2 annotations ----- - -
5 annotations

10 annotations --
18 annotations -------
32 annotations -. - -- --

110 annotations
226 annotations

~- .' .
..... ,

............

.-.... . -"

_

----, --- -
... __ -=" - :r.'~:.~

Figure 15: Plot of the number of rules obtained under rule equivalence against
the number of samples for csli. Note that we depict the sum of useful and useless
rules without start productions here. Again, the table clearly shows that , at least
for 226 symbol annotations, the training corpus is too small.

However, the measurements for two-stage parsing (110 and 226 annotations) ar0 of
a different kind and show that the restrictedness of the CFG (= number of errors)
shoulrl be takE'm into account when judging the practical usefulness of a grammar.
The grammar with 226 annotations per symbol leads to fewer unification in the
UBG replay stage. HPSG baseline for the 5,720 sentences was 2,777.3 seconds
(again, quick-check filtering was switched on) .

• 110 annotations: 30.7 sec = 90 .5x speedup

• 226 annotations: 28.5 sec = 97.4x speedup

This speerlup of nearly two magnitudes shows the enormous potential of our
method. We finish this s~ction with a plot of the number of rules obtained under
rule equivalence against the number of samples (figure 15).

7 Conclusion and Outlook

In this report, we have described a corpus-driven method for extracting domain
specific context-free grammars. We have presented a variation of this method
that will usually yield smaller grammars while having the drawback of being more
general. We have also indicated that the approximated CFGs can be turned into
PCFGs for disambiguating UBGs in a two-step parsing approach. Furthermore,
the approximated CFGs are of interest to domain-specific NLP applications which

35

are eagerly waiting for cheap and easily-to-produce recognition grammars, e.g.,
information extraction or language modeling.

The approach neither generates a true superset nor a true subset of the language
accepted by the UBG, but clearly better fits the UBG when given a larger training
sample and more annotation values. As we have already indicated, this seeming
misbehavior is a desired property, when looking for robust domain-specific gram
mars. The measurements presented here are very encouraging, but needs to be
scrutinized in a domain-specific NLP system and perhaps checked against a pure
UBG approach.

Several points still need to be worked out in more details. Automatic lexicon
extension and grammar postprocessing are important topics in order to let this
approach gracefully react to small training samples (see sections 5.3 and 5.4),
so that the need for larger training corpora are not that demanding. In case
we are not interested in a domain-specific context-free subgrammar of the UBG,
even the World Wide Web can be seen as a huge training corpus, due to the
following argument. Given a large-scale UBG and a UBG parser (e.g., PET),

it is clear that even ungrammatical utterances or utterances not covered by the
UBG are worth to be partially parsed, since the UBG parser always comes up
with a chart from which we can compute further CF rules which approximate,
at least , legal phrases, although the UBG parser has failed overall. This idea
clearly rises or falls with the quality of the UBG. Unknown word not covered by
the UBG (mostly named entities) are also an important topic that needs to be
addressed. A viable solution here is to have some kind of named entity grammars,
processed in a weaker formalism. Such a shallow formalism will then be invoked
in a preprocessing phase when unknown words are detected, producing lexicon
entries for the UBG, which ultimately will show up in the CFG later. 8

As indicated in section 5.5, it is worth to extract not only recognition rules , but
also to have semantic rules as in attribute grammars, so that our CFGs will come
along with some meaningful output. This idea would obviate the need for a
second unification-based grammar that replays the CF derivations for the mere
purpose of semantic construction. However, a third line can be taken here by
employing ideas from Diagne et al. 1995, Kasper and Krieger 1996, and Kasper
et al. 1996. Instead of using the full feature structures of a UBG G during
replay, we only employ the related grammar G' derived from G: rules and lexicon
entries in G' are exactly the feature structures from G that have been evaporated
under an appropriate restrict or R (Shieber 1985): G' = G \ R. Since we are
interested in successful UBG derivations and since we like to keep the CF language
generalizations in the second replay stage, we delete those constraints on the
UBG side which potentially lead to a unification failure (mostly the syntactic
constraints) . In HPSG-I (Pollard and Sag 1987) , specifying the restrict or is easy
mostly the information under SYN must be deleted. And in case we are interested
in a more shallow semantics, some semantic information from SEM has to be
deleted too.

8The shallow processor SProUT (Becker et al. 2002, Krieger et al. 2004) is obviously a good
candidate to implement this task, since it is a unification-based formalism and has the ability
to read in PET grammars.

36

References

Aho, A. v., R. Sethi, and J. D. Ullman. 1986. Compilers: Principles, Techniques, and
Tools. R8ading, MA: Addison-Wesley.

Ait-Kaci, H. 1986. An Algebraic Semantics Approach to the Effective Resolution of
Type Equations. Theoretical Computer Science 45:293351.

Alshawi, H. (ed.). 1992. The Core Language Engine. ACL-MIT Press Series in Natural
Language Processing. MIT Press.

Becker, M., W. Drozdzyriski, H.-U. Krieger, J. Piskorski, U. Schafer, and F. Xu. 2002.
SProUT- Shallow Processing with Unification and Typed Feature Structures. In Pro
ceedings of the International Conference on Natural Language Processing, ICON-2002.

Bos, J. 2002. Compilation of Unification Grammars with Compositional Semantics to
Speech Recognition Packages. In Proceedings of the 19th International Conference on
Computational Linguistics, COLING 2002, 106112.

Briscoe, T., and J. Carroll. 1993. Generalized Probabilistic LR Parsing of Natural
Language (Corpora) with Unification-Based Grammars. Computational Linguistics
19(1):25- 59.

Callmeier, U. 2000. PET- A Platform for Experimentation with Efficient HPSG
Processing. Natuml Language Engineering 6(1):99- 107.

Callmeier, U. 2001. Efficient Parsing with Large-Scale Unification Grammars. Master's
thesis, U nivcrsitat des Saarlandes.

Cancedda, N., and C. Samuelsson. 2000. Experiments with Corpus-based LFG Special
ization. In Proceedings of the 6th Conference on Applied Natural Language Processing,
204- 209.

Carpenter, B. 1992. The Logic of Typed Feature Structures. Tracts in Theoretical
Computer Science. Cambridge: Cambridge University Press.

Carroll, J., T. Briscoe, and C. Grover. 1991. A Development Environment for Large
Natural Language Grammars. Technical Report 233, Computer Laboratory, Cambridge
University, UK

Carroll, J. A. 1993. Practical Unification-based Parsing of Natural Language. PhD the
sis, University of Cambridge, Computer Laboratory, Cambridge, England, September.

Copestake, A., A. Lascarides, and D. Flickinger. 2001. An Algebra for Semantic Con
struction in Constraint-Based Grammars. In Proceedings of the 39th Annual Meeting
of the Association for Computational Linguistics, A CL-2001, 132-139.

Diagne, A. K , W. Kasper, and H.-U. Krieger. 1995. Distributed Parsing With HPSG
Grammars . In Proreedings uf the 4th International Workshop on Parsing Technologies,
IWPT'95, 79-86. Also available as DFKI Research Report RR-95-19.

Dowding, J., J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore, and D. Moran.
1993. GEMINI: A Natural Language System for Spoken-Language Understanding. In
Proceedings of the 31st Annual Meeting of the Association for Computational Linguis
tics, A CL-93, 54- 61.

37

Dowding, J., B. A. Hockey, J. M. Gawron, and C. Culy. 2001. Practical Issues in
Compiling Typed Unification Grammars for Speech Recognition. In Proceedings of
the 39th Annual Meeting of the Association for Computational Linguistics, ACL-2001,
164- 171.

Flanagan, D. 2002. Java in a Nutshell. Beijing: O'Reilly. 4th edition.

Gazdar, G., E. Klein, G. Pullum, and 1. Sag. 1985. Generalized Phrase Structure
Grammar. Cambridge, MA: Harvard University Press.

Goldstein, S. D. 1988. Using an Active Chart Parser to Convert Any Context Free
Grammar to Backus-Naur Form. Master's thesis, Massachusetts Institute of Technol
ogy, January.

Hopcroft, J. E., and J. D. Ullman. 1979. Introduction to Automata Theory, Languages,
and Computation. Reading, MA: Addison-Wesley.

Hunt, A., and S. McGlashan. 2004. Speech Recognition GrammarSpecifica
tion Version 1.0. Technical report, W3C Recommendation 16 March 2004,
http://www. w3.org/TR/2004/REC-speech-grammar-20040316 /.

Kaplan, R., and J. Bresnan. 1982. Lexical-Functional Grammar: A Formal System for
Grammatical Representation. In The Mental Representation of Grammatical Relations,
ed. J. Bresnan, 173- 281. Cambridge, Mass: MIT Press.

Kasper, R. 1992. Compiling Head-Driven Phrase Structure Grammar into Lexicalized
Tree Adjoining Grammar. In Proceedings of the TAG+ Workshop.

Kasper, R., B. Kiefer, K. Netter, and K. Vijay-Shanker. 1995. Compilation of HPSG to
TAG. In Proceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics, ACL-95, 92- 99.

Kasper, W., and H.-U. Krieger. 1996. Modularizing Codescriptive Grammars for Effi
cient Parsing. In Proceedings of the 16th International Conference on Computational
Linguistics, COLING-96, 628-633.

Kasper, W., H.-U. Krieger, J. Spilker, and H. Weber. 1996. From Word Hypotheses to
Logical Form: An Efficient Interleaved Approach. In Natural Language Processing and
Speech Technology. Results of the 3rd KONVENS Conference, ed. D. Gibbon, 77- 88.
Berlin: Mouton de Gruyter.

Kiefer, B., and H.-U. Krieger. 2000. A Context-Free Approximation of Head-Driven
Phrase Structure Grammar. In Proceedings of the 6th International Workshop on Pars
ing Technologies, IWPT2000, 135- 146.

Kiefer, B., and H.-U. Krieger. 2002. A Context-Free Approximation of Head-Driven
Phrase Structure Grammar. In Collaborative Language Engineering. A Case Study
in Efficient Grammar-based Processing, ed. S. Oepen, D. Flickinger, J . Tsuji, and
H. Uszkoreit, 49- 76. CSLI Publications.

Kiefer , B. , and H.-U. Krieger. 2004. A Context-Free Superset Approximation of
Unification-Based Grammars. In New Developments in Parsing Technology, ed.
H. Bunt , J. Carroll, and G. Satta, 229- 250. Kluwer Academic Publishers.

38

Kiefer, B., H.-U. Krieger, J. Carroll, and R Malouf. 1999. A Bag of Useful Techniques
for Efficient and Robust Parsing. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, ACL-99, 473-480.

Kiefer, B., H.-U. Krieg0r, and M.-J. Nederhof. 2000. Efficient and Robust Parsing of
Word Hypotheses Graphs. In Verbmobil: Foundations of Speech-to-Speech Translation,
ed. W. Wahlster, 280 -295. Berlin: Springer.

Kiefer, B., H.-U. Krieger, and D. Prescher. 2002. A Novel Disambiguation Method
For Unification-Based Grammars Using Probabilistic Context-Free Approximations. In
Proceedings of the 19th International Conference on Computational Linguistics, COL
ING2002.

Krieger, H.-U. 1995. TDL - A Type Description Language for Constraint-Based Gram
mars. Foundations, Implementation, and Applications. PhD th0sis, Universitat des
Saarlandes, Department of Computer Science, September.

Krieger, H.-U. 2001. Greatest Model Semantics for Typed Feature Structures. Gram
mars 4(2):139- 165. Kluwer.

Krieger, H.-U. 2004a. A Corpus-Driven Context-Free Approximation of H0ad-Driven
Phrase Structure Grammar. In Proceedings of the International Colloquium on Gram
matical Inference, ICGI-2004 .

Krieger, H.-U. 2004b. JTFS- A Java Implementation of Typed Feature Structures.
Technical memo, DFKI.

Krieg<'r, H.-U., W. Drozdiynski, J. Piskorski, U. Schafer, and F. Xu. 2004. A Bag of
Useful Techniques for Unification-Based Finite-State Transducers. In Proceedings of
KONVENS 2004, 105 ·112.

Krieger, H.-U., and U. Schafer. 1994. TV£- A Type Description Language for
Constraint-Based Grammars. In Proceedings of the 15th International Conference on
Computational Linguistics, COLING-94, 893· 899. An enlarged version of this paper is
available as DFKI Research Report RR-94-37 .

Lari, K, and S. J. Young. 1990. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech and Language 4:35 ·56.

Malouf, R, J. Carroll, and A. Copestake. 2000. Efficient feature structure operations
without compilation. Natural Language Engineering 6(1):29- 46.

Moore, R C. 1999. Using Natural-Language Knowledge Sources in Speech Recognition.
In Computational Models of Speech Pattern Processing, ed. K Ponting. Springer.

Nakazawa, T. 199G. Construction of LR Parsing Tables for Grammars Using Feature
Based Syntactic Categories. In Linguistics and Computation, ed. J. Cole, G. Green,
and J. Morgan, 199-219. CSLI Lecture Notes.

Nederhof, M.-J. 2000. Practical Experiments with Regular Approximation of Context
Free Languages. Computational Linguistics 26(1):17 ·44.

Neumann, G. 2003. Data-driven Approaches to Head-driven Phra.qe Structure Gram
mar. In Data-Oriented Parsing, ed. R Bod, R Scha, and K Sima'an. CSLI Publica
tions, Univ<'rsity of Chicago Press.

39

Neulllann, G., and D. Flickinger. 1999. Learning Stochastic Lexicalized Tree Gram
mars from HPSG. Technical report, German Research Center for Artifical Intelligence
(DFKI), Saarbriicken.

Nuance. 2004. Nuance Home http://www.nuance.com.

Oepen, S., and U. Callmeier. 2000. Measure For Measure: Parser Cross-Fertilization. In
Proceedings of the 6th International Work8hop on Parsing Technologies, IWPT 2000,
183 194.

Oepen, S., and D. P. Flickinger. 1998. Towards Systematic Grammar Profiling.
Test Suite Technology Ten Years After. Journal of Computer Speech and Languagp
12(4):411·436. Special Issue on Evaluation .

Pereira, F . C., and R. N. Wright. 1991. Finite-State Approximation of Phrase Structure
Grammars. In Proceedings of the 29th Annual Meeting of the Association for Compu
tational Linguistics, ACL-91, 246 ·255. An enlarged version is available in: Finit('.-State
Devices for Natural Language Processing, E. Roche & Y. Schabes (eds.), MIT Press,
Cambridge, MA, 1996.

Pollard, C., and I. A. Sag. 1987. Information-Based Syntax and Semantics. Vol. I:
Fundamentals. CSLI Lecture Notes, Number 13. Stanford : Center for the Study of
Language and Information.

Pollard, C., and I. A. Sag. 1994. Head-Driven Phras('. Structure Grammar. Studies in
Contemporary Linguistics. Chicago: University of Chicago Press.

Rayner, M., J. Dowding, and B. A. Hockey. 2001a. A B&:>eline Method for Compiling
Typed Unification Grammars into Context Free Language Models. In Proceedings of
EUROSPEECH.

Rayner, M., G. Gorrell, B. A. Hockey, J. Dowding, and J. Boye. 2001b. Do CFG-Based
Language Models Need Agreement Constraints. In Proceedings of the 2nd Conference
of the North American Chapter of the ACL, NAACL2001.

Rayner, M., B. A. Hockey, F. James, E. O. Bratt, S. Goldwater, and J. M. Gawron.
2000. Compiling Language Models from a Linguistically Motivated Unification Gram
mar. In Proceedings of the 18th International Conference on Computational Linguistics,
COLING 2000, 67(} 676.

Shieber, S., H. Uszkoreit, F. Pereira, J . Robinson, and M. Tyson. 1983. The Formalism
and Implementation of PATR-II. In Research on Interactiv C'; Acquisition and Use of
Knowledge, ed. B. J. Grosz and M. E. Stickel, 39-79. Menlo Park, Cal.: AI Center,
SRI International, November .

Shieber, S. M. 1985. Using Restriction to Extend Parsing Algorithms for Complex
Feature-Based Formalisms. In Proceedings of the 23rd Annual Mepting of the Associa
tion for Computational Linguistics, A CL-85, 145- 152.

Shieber, S. M. 1986. An Introduction to Unification-Based Approaches to Grammar.
CSLI Lecture Notes, Number 4. Stanford: Center for the Study of Language and
Information.

40

Uszkoreit, H. 1986. Categorial Unification Grammars. In Proceedings of the 11th
International Conference on Computational Linguistics, 187 194.

Uszkoreit, H., R. Backofen, S. Busemann, A. K. Diagne, E . A. Hinkelman, W. Kasper,
B. Kiefer, H.-U. Krieger, K. Netter, G. Neumann, S. Oepen, and S. P. Spackman.
1994. DISCO- An HPSG-based NLP System and its Application for Appointment
Scheduling. In Proceedings of COLING-94, 436 -440. A version of this paper is available
as DFKI Research Report RR-94-38.

Van Tichelen, L. 2003. Semantic Interpretation for Speech Recognition. Technical
report, W3C Working Draft 1 April 2003, http://www.w3.org/TR/2003/WD-semantic
interpretation-20030401/ .

Zeevat, H., E. Klein, and J. Calder. 1987. Unification Categorial Grammar. In Ed
inburgh Working Papers in Cognitive Science, 1: Categorial Grammar, Unification
Grammar, and Parsing, ed. N. Haddock, E. Klein, and G. Morrill, 195- 222. Centre for
Cognitive Science, Edinburgh University, UK.

41

	RR-04-01-000.1-0033
	RR-04-01-000.2-0035
	RR-04-01-000.3-0036
	RR-04-01-000.4-0037
	RR-04-01-01-0038
	RR-04-01-02-0040
	RR-04-01-03-0042
	RR-04-01-04-0043
	RR-04-01-05-0044
	RR-04-01-06-0045
	RR-04-01-07-0046
	RR-04-01-08-0047
	RR-04-01-09-0048
	RR-04-01-10-0049
	RR-04-01-11-0050
	RR-04-01-12-0051
	RR-04-01-13-0052
	RR-04-01-14-0053
	RR-04-01-15-0054
	RR-04-01-16-0055
	RR-04-01-17-0056
	RR-04-01-18-0057
	RR-04-01-19-0058
	RR-04-01-20-0059
	RR-04-01-21-0060
	RR-04-01-22-0061
	RR-04-01-23-0062
	RR-04-01-24-0063
	RR-04-01-25-0064
	RR-04-01-26-0065
	RR-04-01-27-0066
	RR-04-01-28-0067
	RR-04-01-29-0068
	RR-04-01-30-0069
	RR-04-01-31-0070
	RR-04-01-32-0071
	RR-04-01-33-0072
	RR-04-01-34-0073
	RR-04-01-35-0074
	RR-04-01-36-0075
	RR-04-01-37-0076
	RR-04-01-38-0077
	RR-04-01-39-0078
	RR-04-01-40-0079
	RR-04-01-41-0080

