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Abstract 

We present a simple and intuitive unsound corpus-driven approximation 
method for turning unification-based grammars (UBGs), such as HPSG, 
CLE, or PATR-II into context-free grammars (CFGs). The method is un
sound in that it does not generate a CFG whose language is a true superset 
of the language accepted by the original unification-based grammar. It is 
a corpus-driven method in that it relies on a corpus of parsed sentences 
and generates broader CFGs when given more input samples. Our open 
approach can be fine-tuned in different directions, allowing us to monoton
ically come close to the original parse trees by shifting more information 
into the context-free symbols. The approach has been fully implemented in 
JAVA. This report updates and extends the paper presented at the Inter
national Colloquium on Grammatical Inference (ICGI 2004) and presents 
further measurements. 





the domain and only these constructions (in the best case). And because it is 
also not a true subset of the UBG, it can be robust against ungrammatical input 
w.r. t. the domain we are interested in. 

Context-Free Language Models. Given an UBG, it would be nice to have 
an automated compilation method that yields a CFG which in turn serves as a 
symbolic, word-based (instead of phoneme-based) context-free language model, 
guiding a speech recognizer (Rayner et al. 200la). This strategy obviates the 
sparse data problem in (commercial) recognizers, since we can directly operate 
on the high-level grammar without collecting and constructing large amounts of 
annotated spe ch training material (Wizard of Oz). The automatic compilation 
of a CFG from an UBG also makes a tedious hand-coded formulation of a CFG 
(or a regular grammar) superfluous (Dowding et al. 2001) . Findings in Rayner 
et al. 2001b suggest that agreement constraints in context-free language models 
improve the performance of a recognizer in terms of both word error rate and 
semantic error rate. Keeping the agreement constraints of the UBG in t he CFG 
is easy in our approximation method. Finally, CF-based models clearly benefit 
from th ir greater expressive power when compared to regular models. It is worth 
noting that within the last four years or so, the commercial speech community has 
focused primarily on the grammar-based approach (VoiceXML, W3C, Nuance, 
Speech Works, etc. ); see also Rayner et al. 2001b. 

Open Approach. The adjusting parameters of our approach make it easy to 
approximate CFGs of different size and quality, e.g., by varying the annotations 
of context-free symbols, by collecting the approximated CF rules either under rule 
equivalence or under rule subsumption, or by taking a larger domain of locality 
into account, by using the feature structures of the UBG, resulting in various 
forms of context-free tree grammars. Even though these tree grammars are still 
context-free, they clearly have a larger event horizon, establishing a restricted 
form of look-ahead. 

1.2 General Idea 

Since unification-based parsers usually rely on a context-free backbone of uni
fication rules (or rule schemata, to borrow the broader HPSG term) , it should 
not be that difficult to extract a context-free grammar. In fact, relatively spe
cific unification-based rules (e.g. , ANLT, Carroll et al. 1991 or LFG, Kaplan and 
Bresnan 1982) , should result in approximated CFGs of good quality (cf. Carroll 
1993; see section 4 for a discussion of other approaches). However , lexicalized 
grammar theories such as HPSG, or even categorial grammar frameworks, like 
CUG (Uszkoreit 1986) or UCG (Zeevat et al. 1987) , are of a different kind: rule 
schemata in these frameworks are usually so general that the resulting CFGs 
are worthless, meaning that they accept nearly everything (Briscoe and Carroll 
1993, p. 36). Proper recognition of utterances in lexicalized theories is realized 
by shifting the great amount of information into the lexicon and by applying a 
specific descriptive means in rule schemata: coreferences or reentrancies. 
Our attempt thus does not operate on the rules of a unification-based grammar 
(as do, e.g. , Kiefer and Krieger 2002 in their sound HPSG approximation), but 
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instead on valid rule instantiations of a special kind, viz. , passive edges of the 
unification chart, resulting from parsing a corpus. In order to access such passive 
edges, we have defined an external exchange format for representing a chart (see 
section 3.1). Since passive edges directly encode their immediate daughters, a 
passive edge can be seen as a tree of depth 1. From such a tree and with the help 
of the feature structure directly associated with each passive edge, it is possible to 
create an annotated context-free rule of arbitrary specificity (section 3). Terminal 
and nonterminal symbols in our framework are equipped with information from 
the related feature structure of the passive edge, similar to annotated symbols in 
the GPSG framework (Gazdar et al. 1985; see section 2.2). When taking deeper 
nested daughters into account, we can even escape the fiat domain of context
free rules, resulting in CF tree grammars (see Neumann 2003 for a tree-based 
approach resulting from a treebank). 
In order to predict probabilities for CF parse trees, we equip each rule with a fre
quency counter which tells us how often a rule has been successfully applied when 
parsing a training corpus. Given these counters, it is then easy to move from the 
extracted CFG to a trained PCFG (Lari and Young 1990) which might be em
ployed during parsing in order to disambiguate context-free readings. Assuming 
that the extracted CFG does not produce too many additional readings for the 
relevant syntactic constructions in the corpus when compared to the UBG, the 
PCFG can thus be seen as an indirect probability model for the UBG. The trick 
goes as follows. Since every CFG rule is related by its rule name to a unification 
rule, we first let the PCFG parse a given input, predicting probabilities for CF 
parse trees. In a second phase, the ranked parsing trees can be deterministically 
replayed one after another by the UBC (processing the most probable CFG trees 
first) , establishing an order of best UBC parsing trees (see Kiefer et al. 2002 for 
first promising results). Clearly, this idea only works for utterances lying in the 
intersection of the languages accepted by the UBC and the approximated CFG. 
Independently of establishing a stochastic parsing model, the two-step parsing 
process alone can be used to speed up unification-based (all-path) parsing by 
employing the same above idea (as has been proposed by many groups, most 
notably, the LFG community): only the predicted context-free derivation trees 
are deterministically reparsed by the UBC, helping the unification-ba.sed parser 
to reduce its search space. Kiefer and Krieger 2002 have shown that two-stage 
parsing is feasible, even with large approximated CF grammars of more than 
600,000 to 1,500,000 rules, resulting in a speedup of 41 %- 62%. 
Since the form and size of an approximated CFG is largely determined by the 
training corpus (contrary to the pure grammar-driven approach in Kiefer and 
Krieger 2002 and Kiefer and Krieger 2004) , our approach makes it easy to com
pute domain-specific subgrammars from general large-scale unification grammars. 
Thus this approach might gain importance in information extraction and related 
tasks. In other words, the syntax of a domain is addressed by the linguistic 
constructions in the training corpus, whereas the reconstruction of the proper 
domain-specific semantics is realized by manually (or semi-automatically) select
ing the 'right' UBC parse trees, before approximating the CFG. I.e., the approx
imation procedure will not see the 'wrong' UBG parse trees and so, 'wrong' CF 
rules will not appear in the final CFC. 

4 



1.3 Structure of R eport 

The structure of this report is as follows. In the next section, we first introduce 
some basic inventory (types, type hierarchy, typed feature structures, unifica
tion) and discuss the objects which are constructed and manipulated during the 
extraction of the CFG (symbols, rules, edges) . After that , section 3 presents 
the interface to the chart of the HPSG parser and describes the basic extraction 
algorithm, together with a variation which produces smaller, although more gen
eral CFGs. The section also has a few words on the quick-check paths of the 
UBG which serve as the starting point for finding the proper annotations of the 
context-free symbols. Section 4 then comes with a discussion of other approaches 
which aim at extracting a CFG from an UBG, most of them unsound. In section 
5, we elaborate on further aspects of the extraction methods, discussing several 
orthogonal adjusting parameters which result in different CFGs, given a UBG. 
We also discuss additional postprocessing steps and motivate that the extracted 
CFGs can be tuned to deliver a meaningful semantic output as well. Finally, in 
section 6, we apply our method to several small- to large-size UBGs and present 
first measurements for the large English Resource Grammar developed at CSLI, 
Stanford. 

2 Objects of Interest 

The goal of this section is a description of the implemented objects which are built 
and manipulated by the extraction algorithm (section 3). The section furthermore 
defines certain important relations between symbols and rules. It also has a few 
introductory remarks concerning typed feature structures. 

2.1 Typed Feature Structures 

This subsection introduces some fundamental theoretical concepts which are used 
throughout the paper. A more thorough investigation can be found in , e.g., 
Shieber 1986, Carpenter 1992, and Krieger 1995. 

Definition 1 (TYPE HIERARCHY) 

Let T be a finite set of type symbols. We refer to a type hierarchy by a pair 
(T, ::5), such that ::5 ~ T x T is a decidable partial order (Krieger 2001). I.e., ::5 
is 

• reflexive: 'tit E T . t ::5 t 

In the following , we assume that T contains three special symbols: T (the most 
general type), 1- (the most specific type) , and U (expressing undefinedness), such 
that 1- ::5 t and t ::5 T, for all t E T. Furthermore, U is a direct subtype of T and 
is incompatible with every type in T\ {T, U} , i.e. , U does not have any subtype, 
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except ~. We will use the undef type U later to express the fact that R. certaiu 
attribute is not appropriate for a given type. 
We note here that the implementation of the corpus-driven a.pproximation of the 
CFG from an UBG not only operates on a partial order of types , but even on a 
b01lnded complde partial order (or equivalently, on a iclwcr selllilatticc). This is 
due to the fact that our JAVA implementation of typed feature structures (Kricg(~r 
2004b) takes as input a completion of the original type hierarchy, cow-;t.meted 
from UBG by the flop preprocessor (Callmeier 2001) of the PET system (Callmeier 
2000). Completing a type hierarchy means that for every Imir of two tyP(~S tt, t2 E 
T, the greatest low(~r bound (GLB) is defined (and there is exactly one GLB for 
tl and t,J. Ait-Kaci 1986 showed that every partial order can be emhedded into 
a bounded complete partial order such that all GLBs are prcs( ~rved. 

Given sl1ch a completed type hierarchy, the type unification operation 1\ between 
two types tt, t2 E T is defined to be the GLD of tJ and t2: t,l\t2 := GLD(tt, t2) = t , 
snch that t j tl,t j t2 and ~t' E T with t j t' j tl and t j t' j t2. 
VI/e also need the notion of a typed feature structure (TFS) and will frequently 
talk ahout the finite set offeatmes:F (often called attributes), the possibly infinite 
set of atoms A (often called constants), ami tht: already mentioned finite sd of 
types T (often called sortS).l However, we will not present a definition here and 
ouly llote that there exist orthogoual, although precise definitious of what TFSs 
an, (the ellumeration is, of course, not complete): 

• a kiud uf deterministic finite state automaton (Carpenter 1992) 

• an extension of Ait-Kaci's '1/; terms (Krieger 1995) 

• syntactic sugar/expressions in a designer' logic2 which can h(~ transformed 
into drfinitc equivalences (Krieger 20(1) 

• dements of the least solution of a cert.ain recursive domaiu (~qlIatioIl (Kiefer 
ane! Krieger 2002) 

From an implemcntation point of view, TFSs are not that different from records 
(structures) in imperative programming languages (e.g., PASCAL , C) or das:·ws 
in object-oriented languages such as .JAVA or C++. They can also be seen as 
a generalization of unna.med tuples and fixed-arity terms (as , C.g., in PROLO(;). 

Given a TFS, a feature expresses a functionu,l property (i.e. , having exactly one 
value) and its value might again be a highly-structured TFS. This allows tIte 
construction of deep-nested, arbitrary-complex objects and ill fact, the TFSs 
delivered by the HPSG parser are of that kind. 
TFSs also possess another interesting descriptive means, viz. , corefercnccs or rccn
trancieo. They help to state the fact that the valueo under at least two features 
within a TFS are identical (and not merely structural equal). Corei'ercllccs thus 
enforce agreement and furthermore are a means for information tram;port during 
the unificatiun of two TFSs. In this setting here, viz., UBG parsing, unification 

I Many typed feature-based syst.ems do not distinguish between A and T and thus must 
explicitly enumerate such atomic types . 

2 A term coined by Mark Johnson. 
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is merely employed for checking satisfiability during rule instantiation and for 
building up (output) structure. 
We close this subsection by defining the notion of a path. Putting it simply, a path 
is a sequence of features h , 12, ... , in E F which helps us to access information 
from deeper levels of a TFS. We depict such a path as hlhl· .. lin. One specific 
path stands out, viz., the empty path t, referring to the TFS itself. 

2.2 Symbols 

Terminal and nonterminal symbols of the context-free grammar are represented 
as instances of the JAVA class Symbol.3 Symbols bear a name field of type String 
and an annotation field of type int [] (an integer array). The name field of a 
terminal refers to the full surface string of this terminal word and its annotation 
field is empty (refers to the null value). A nonterminal also has a name and 
encodes the HPSG rule name (e.g., hcomp or measure_np) . The annotation of a 
nonterminal symbol groups several type identifiers which originate from (possibly 
deep-nested) values under pre-specified paths (the so-called annotation paths) 
within the instantiated rule TFS for this nonterminal symbol. Thus an annotation 
is quite similar to a feature specification in GPSG (Gazdar et al. 1985) or a quick
check vector (Kiefer et al. 1999, Malouf et al. 2000). 
During the more formal parts of this paper, we need two fundamental concepts: 
symbol and annotation. 

Definition 2 (SYMBOL) 

We refer to a symbol 8 in the abstract syntax by a pair (n, a), consisting of name 
n and an annotation a. We write N(8) to depict the first projection of 8 (the 
name) and A(8) to access the annotation part of 8. When using concrete syntax, 
we write a symbol in the more GPSGish notation n [a] . 

Definition 3 (ANNOTATION) 

An annotation a = (t l , ... , t n ) is a n-tuple of type names or type IDs ti E T , 
i E {I, ... ,n}. We write 7ri (a) to denote value ti ofthe i-th projection of a. Using 
the GPSG-like concrete syntax, we write [tl ' ... ,tnJ to depict annotation a. 

Given two symbols, we define a subsumption relation ~ which turns out to be 
useful in a moment. 

Definition 4 (SYMBOL SUBSUMPTION) 

Let 81 and 82 be two annotated context-free symbols. 81 is said to be subsumed 
by 82 (written as 81 ~ 82) iff N(81) = N(82) and 7ri(A(81)) ~ 7ri(A(82)) , for 
all i E {I , ... , n}. Alternatively, we say that 82 subsumes (or is more general 
than) 81 . Assuming that 81 and 82 are terminal symbols, their annotation must 
be empty (A(81) = A(82) = ( )), thus the second condition above is trivially 
satisfied. 4 

3Note that during the more technical aspects of this paper, I will adopt the JAVA notation 
and its specific language use, e.g., by referring to an instance variable as a field. See, e.g., 
Flanagan 2002 . 

4Note that we have overloaded (and in the following will further overload) the :::S relation. 

7 



Let us give an example. Assume we have the four CF symbol::; (concrete syntax) 
N [sg, fern], N [pl, fern], N [num, fern], D [num, fern] and assume that sg ~ num 
and pl ~ num is the case. We can then infer that N [sg, f em] ~ N [num, f em] and 
N [pl, fern] ~ N [num, fern] holds. However, N [sg, fern] and N [pl, fern] arc lIOt 

related by the subsumption relation. Consequently, we say that these symbols arc 

incompatible ( or incomparable) and use the 1><1 sign to indicate t.his: N [sg, fern] 1><1 

N [pl, fern]. Furt.hermore, D [num, fern] is incompatible with every other s.ymbol, 
due to its name: D =I- N. 

2.3 Rules 

We represent context.-free grammar rules by t.he class Rule whose instances have a 
left-hand side (lhs) and a right-hand side (rhs) field. The left.-haud side is (froll! 
a CFO point of view) a nonterminal symbol, which we represent as all instanc:(~ 

of the class Symbol. The right hand-side is an array of Symbol objects (JAVA 

notation: Symbol []). The length of rhs is encoded in an additional fidd length 
of type into A Rule object also possesses a frequency field, telling Wi how often 
that rule has been applied during parsing of a given corpus. It is worth noting 
that the frequency connter will later gain importance when we we move frolll t.he 
extmeted CFG to the associated PCFG which will predicts probabilities for CFG 
t.rees. 
Next, we need the formal notation of a grammar rule. 

Definition 5 (CONTEXT-FREE GRAMMAR H.ULE) 

Let l, '1"1, .. • • Tn be (arlllotated) context-free symbols and let furthermore I he F\, 

nonterrninal symbol. VVe then caE the expression l -----+ 7"1 ... Tn a cOllt~~xt-fr('(~ 

grammar rule. I is usually referred to as the left-hand side (LHS) of the rule, 
whereas the sequence Tl ... Tn is called the right-hand side (RHS). Given a CF 
rule 0:, th(~ projection L yields the LHS of (1' , i.e., L(n) = l. R delivers the HIlS: 
ll(ct) = '{"1· . . T n · 

Givell the above apparatus, defining a subsnmptioll relatioll --< OIl rnlcs is rela
tively straightforward. 

Definition 6 (RULE SUBSUMPTION) 

Let 0: = (la -----+ Tln: ... Tnet ) and (J = (lf3 -----+ Tl ,l1 ... T n /1) be two cOlltext-free gralll
Illar rules. We say that cx is subsumed by (J and write 0: ~ ,3 iff I" ~ l[j, n Ct = 'ntl , 

alHl1'iet ~ Ti(3, for all 1 SiS net· Alternatively, we say that f3 subsumes (or is 
more general than) CX. 

We say that two CF rules cx a.nd ,B are equivalent iff they both subsume each 
other: II: - (3 :<===? cx ~ f3 and f3 ~ CX. 

Let II: i (J abbreviate -.( 0: ~ B). Two rules are said to be incompatible (or 
incomparable) iff they are not related by rule subsurnption: II: 1><1 /j :<===? n fc () 
and Ii i CX. 

An example. Given the symbols from the example at the end of subsection 2.2, 
we define a subsumption order over the following three rules (we use again the 
concrete syntax in which the implemented algorithm delivers the rules). Let 
0: = (NP[sg,fem] -> N[sg,fem]), (3 = (NP[pl,fern] -> N[pl,femJ), and ')' = 

(NP [num, fern] - > N [num, fern] ). TheIl 0 ' ~ ')' and U ~ I, however (1' CXl /3. 
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2.4 Edges 

The edges which are transmitted by the HPSG parser in plain text (see figure 
1) are reconstructed in main memory within the JAVA virtual machine. At the 
moment, we are using a modification of the freely available PET parser (Callmeier 
2000). The set of all passive edges for a single parsed sentence are grouped in a 
text file (see next section). 
Edges are represented as instances of the J AVA class Edge , consisting of the 
instance fields id, ruleName , immDtrs , noOfDtrs , and annotation. The id of an 
edge is a handle to the edge object and allows other edges to refer to this edge 
in their immediate daughters array immDtrs. id is of type int , thus immDtrs 
must be of type int [] . The string in the ruleName field of the edge leads to the 
primary category symbol of the LHS of the context-free rule later. As already 
described, annotations are represented as int vectors. The extraction algorithm 
in the next section produces for each given edge exactly one context-free rule. Due 
to the ruleName field, we know the name of the UBG rule from which the edge 
has been derived. Exactly this information is utilized during the deterministic 
second phase of two-stage parsing. 

3 Extracting a Context-Free Grammar 

This section centers around the offline extraction of a context-free grammar from 
a given corpus, originally parsed by the deep HPSG parser of the PET system 
(Callmeier 2000). We first describe the textual interface between our extrac
tion component and PET. After this, we motivate that the annotation values 
of context-free symbols for a recognition grammar are related to the quick-check 
paths, originally introduced within the context of deep HPSG parsing (Kiefer 
et al. 1999). Given this background, we then describe the basic extraction algo
rithm in pseudo code. Finally, we argue for an extension of the original algorithm, 
which helps to compute smaller grammars and describe how the frequencies for 
the context-free rules are obtained. 

3.1 Interface to HPSG 

The interface to HPSG is established via the creation of text files: for every input 
sentence of the corpus, a new file is created that contains exactly the passive edges 
produced by PET. Although not every deep passive edge contributes to a deep 
reading, we have decided to take all passive edges into account (one can think 
of other options as well; see section 5). Since the passive edges of the deep 
parser are objects in main memory and since our extraction runs in a separate 
thread, we have defined an ASCII-based exchange format for chart edges that is 
given by the EBNF in figure l. Figure 2 then displays the stripped-down chart 
for the sentence Kim loves Sandy. Due to the fact that features and types are 
represented as integers in PET, it is important that both PET and the extraction 
process operate on the same TD.c (Krieger and Schafer 1994) grammar. 
Because HPSG requires all relevant information to be contained in the synsem 
feature of the mother structure, the unnecessary daughters (which are part of the 
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::= 'integer 
:: = integer 
:: = # integer 

feat 
type 
wTef 
fvpa'ir 
tf'; 
start 

:: = feat { {coref} tfc; I COTf;j' } 

::= [ type fupair-* ] 
: : = integeT' 

end : : = integeT' 
id :: = 'integer-
edgename :: = id I string 
rulcname :: = string 
imdt,f's :: = ( cdgename+ ) 
edge :: = id start end ndenarne imdtT8 tfc; <CR> 
char-t ::= start end edgc+ 

Figure 1: The external exchange format of a chart as delivered by a modified 
versioll of the PET Rystem. The meta characters { and } expreSR optionality, I 
enforces the choice of exactly one alternative , and * and + refer t.u Klct~ne star 
anel Kleenc plus, resp. integer- denotes the set of all integers , i.c., sequences of 
numeric decimal characters. str-ing denotes the set of all st.rings, i.e., sequences of 
plain t.ext characters, enclosed by double quot.es. Note t.hat each chart edge must 
be separat.ed by the newline character <CR> at the end. At the llloment , w(' do Bot 

benefit from the start and end position of an edge. rulename serves as the main 
category symbol. imdtrs refers to the immediate daughters of an edge. Since t.he 
odivered pa...';sive edges aw topulogically sorted , it is not ncc:essa,ry to n~enc()oc 
an edg(~ t.hat has alreaoy been introduced earlier. Thus t.hp illlIllediat(~ d(-),llghters 
imdtrs of an edge arc referred to by integer lllllnbcrs 'id. The only except.ion arc 
terminal symbols (the surface form) which arc writ.ten as pure strings. 

TFS) only increase the size of the overall feature structure wit.hout constraining 
the search space. Due to t.he Locality Principle of HPSG (Pollaro and Sag 1987, 
pp. 145) , they can therefore be legally removed in fully inst.antiatpd items , i.e. , 
passive edges which an~ delivered by the PET parser. To be independcnt from 
a certain grammatical theory or implementation, we usc restrictO'l's similar to 
Shieber 1985 as a flexible and easy-to-use specification to perform this ocletion. 
In casc we are t.rying to work with a larger tree context and not limiting oursplvcs 
to context-free rules (= trees of depth 1) , the restrictor is the right means to 
accomplish this (see section 5). 

3.2 Quick-Check Paths 

Quick-check paths are used during unification-based parsing to quickly ano cor
rectly filter out failing unifications without applying the more costly unification 
uperation (Kiefer et al. 1999, :~·dalouf et al. 2000). Such a filter is extremely im
portant since most of the unifications usually fail (95 -99% of all uuificatiolls). 
The quick-check filter exploits the fact that unification fails more often at cer
tain points in feature structures than at others. In order to determine the most 
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o 3 
1 0 1 Kim[] ( "kim") [28398 76 ... ] 
11 2 3 Sandy [] ( "sandy") [28398 76 . .. 
12 0 1 sing_noun_infl_rule ( 1) [27973 77 ... ] 
13 2 3 sing_noun_infl_rule ( 11) [27973 77 . .. ] 
3 1 2 love _v2[plur_noun_infl_rule] ( "loves") [27896 76 
6 1 2 love_v2[third_sg_fin_verb_infLrule] ( "loves") [27896 76 ... ] 
9 1 2 love_ v2 [possessed_word_lr] ( "loves") [27896 76 ... ] 
15 1 2 third_sg_fin_verb_infl_rule ( 6) [27973 77 ] 
2 1 2 love_vi [plur _noun_infl_rule] ( "loves") [27838 76 
4 1 2 love _v3 [plur_noun_infl_rule] ( "loves") [27890 76 
5 1 2 love_v1[third_sg_fin_verb_infl_rule] "loves") [27838 76 
7 1 2 love_v3[third_sg_fin_verb_infl_rule] ( "loves") [27890 76 
8 1 2 love_v1[possessed_word_lr] ( "loves") [27838 76 ... ] 
10 1 2 love_v3[possessed_word_lr] ( "loves") [27890 76 . . . ] 
17 0 1 proper_np ( 12) [2265 76 ... ] 
18 2 3 proper_np ( 13) [2265 76 .. . ] 
19 1 2 third_sg_fin_verb_infl_rule ( 5) [27973 77 
21 1 3 hcomp ( 19 18) [2238 78 
22 1 2 third_sg_fin_verb_infl_rule 7) 27973 77 
26 0 3 subjh ( 17 21) [2237 76 ] 
28 1 3 extradj_t ( 21) [2261 78 . .. ] 
30 0 3 subjh ( 17 28) [2237 76 .. . ] 
31 1 3 extradj_Lsubj ( 21) [2260 78 
33 0 3 subjh ( 17 31) [2237 76 ... ] 
34 0 3 extradj_t ( 26) [2261 78 . .. ] 
35 1 2 extracomp ( 19) [2244 74 ... ] 
37 0 2 subjh ( 17 35) [2237 76 ... ] 
38 1 3 extrasubj_f ( 21) [2245 74 
40 0 3 fin _non_wh_rel ( 30) [2262 74 ] 
41 0 2 fin_non_wh_rel ( 37) [2262 74 ] 
42 0 3 fin_non_wh_rel ( 34) [2262 74 ] 
44 0 1 nocop_id_vp ( 17) [2303 74 
45 0 1 nocop _s ( 44) [2304 78 ] 
47 2 3 nocop_id_vp ( 18) [2303 74 ] 
49 2 3 nocop_s ( 47) [2304 78 

Figure 2: Parts of the chart for the sentence Kim loves Sandy. Note that t he chart 
is topologically sorted, i.e., it is guaranteed that edge ids are introduced before 
they are referred to in the immediate daughters list. For instance, edge 13 refers 
to dge 11 (i.e., originating from a unary rule), edge 30 to edges 17 and 28 (a 
binary rule), etc. The edges 1- 11 can be thought of as realizing the lexicon lookup. 
Notice that loves is assigned nine readings (different senses & morphosyntactic 
variations). The unary rules 12, 13, 15, 19, and 22 are morpholexical rules. The 
unary rule proper -Ilp (17, 18) raises a noun to an NP. Some passive edg s (40- 42) 
result in useless CF rules for this sentence, since they represent dead branches in 
the search space. 
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SYNSEMI LOCAL I CAT I HEAD 
SYNSEMILoCALICATIMC 
SYNSEM I NON-LOCAL I QUE 
SYNSEMILoCALlcoNJ 
SYNSEMILoCALICATIHEADIMOD 
SYNSEM I LOCAL I KEYS IKEY 
SYNSEM!LoCALICATIVALlcoMPSIFIRSTIOPT 
SYNSEM I NON-LOCAL I SLASH I LIST 
SYNSEMILoCALICATIHEADIMoDIFIRSTILoCALICATIHEAD 
SYNSEM I LOCAL I CAT I HEAD IVFoRM 

Figure :~: The ten mOot prominent failure points for the English HPSG grammar 
(June 2(02) in decrea"..,ing ortier. 

prominent failure points, we paroe a large test corpus in an offline stage (tf he 
precise, we use the corpus from which we extract the CFG), using a specia.l uni
fication engine that records all failures inotead of exiting after tlw first failillg 
unificat.iou. These failure point.s, more exactly, the types of the feature struc
tures at these points. constitute the quick-check (qC) v(~ctor. vVhen Cx()cuting 
uuifica.tion during parsing, those points arc efficiently accessed and chcch~d using 
type unification prior to the rest of the structure. QC filtering heavily relies on 
type unification being very fast, which in fact is the case since it can be cached 
or even precompiled (Kiefer et al. 1999, Kiefer et al. 2000). Figure 3 displays 
the ten most prominent failure paths for a specific corpus we have used in our 
experiments (cf. section 6). 
As already said in subsection 2.2, the annotation of a context-free symbol bears a 
close resemblance to a QC vector- an annotation is a subvector of a QC vectoL, 
i.e., we might not take all vector positions into account. The reason for using 
(parts of) the QC vector as an annotation is due to the fact that we are interested 
in fast and modestly overgenerating context-free recognition grammars. Exactly 
the failure points in a QC vector are of this property, viz., heavily contributing to 
failures which rule out parts of the search space during unification-based parsing. 
We note here that not every QC path has to be present in every feature structure, 
since only certain features are appropriate for certain TFSs. Let us give an 
example. Given the above set of QC paths, it turns out that the original head
complement rule hcomp is undefined for the ninth QC path. To account for 
this problem, we use the type U introduced in subsection 2.1 to express such 
undefinedness. In the concrete syntax, we write *undef* instead. Consequently, 
we obtained instantiations of the binary head-complement rule schema hcomp 
(schema 1 in Pollard and Sag 1994, pp. 38) such as 

hcomp[verb*, na, O-dlist, ... , *undef*, bse] --> 
bse_verb_infl_rule[ ... ] bare_np[ ... ] 

In order to circumvent such undef values, it might be a good idea to work with 
different annotation vectors for each primary category symbol. This means that 
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he-rule 
PHON ("the", "man") 
SYNILOClHEAD IT] 

[ 
HEAD-DTR m 1 

DTRS COMP-DTRS ([II) 

/ \ 

[ 
det 1 [II PHON (" the" ) 
SYNILOClHEADIMAJ D [

noun 1 m PHON ("man") 
SYNILOClHEAD IT] [ MAJ N ] 

Figure 4: Simplified derivation tree for the phrase the man in HPSG-I. 

we have to partition the set of rule names R = Rl U . .. Rn, such that each ~ 
(1 :s: i :s: n) is associated with a set of defined quick-check paths. 

3.3 An Example 

We present a simplified example here to make the approach more clear. We will 
use the feature geometry from HPSG-I (Pollard and Sag 1987) to make things 
easier. Assume that the UBG parser has identified the phrase the man , so that 
it has constructed the (partial) derivation tree in figure 4, which is represented 
by several edges in the chart. 
Assume further that we have chosen the annotation path SYNILOCIHEADIMAJ (to
gether with other paths). With this in mind, we can derive the following anno
tated CF rule 

he-rule [N , ... ] ---+ det [D, ... ] noun [N, ... ] 

assuming that the rule name is identical to the top-level type of the TFS (which 
must not always be the case). 

3.4 Algorithm 

The idea behind the context-free extraction is relatively straightforward and is 
given in pseudo code in figure 5. 
As we already said, the HPSG parser produces for each input sentence an out
put file that contains an external representation of the passive edges of the 
chart for this sentence, encoded in the format given by figure 1. The extrac
tion HPSG2CFG then works as follows. Given a directory D and a vector of 
quick check paths Q, we iterate over the files in D (line 3). For each file , we 
then construct a vector edges of internal edges (i.e. , JAVA objects) for the set of 
external passive edges stored in this file, using makeEdges (line 4) . This includes 
the in-memory reconstruction of the TFSs for the mother structures (the LHSs). 
For each vector position, i.e., for each edge e, we build up a LHS symbol (i .e., a 
pair, see section 2.2), consisting of a name field (via getN ame) and an annotation 
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1 HPSG2CFG(D, Q) :{:::::::? 

2 local result = 0; 
3 for each file E D do 
4 local edges = makeEdges(file); 
5 for i = 1 to ledgesl do 
6 local e = edges[i]; 
7 local Ihs = (getName( e),getAnnotation(e, Q)); 
8 local dtrs = getImmediateDaughter8 (e); 
9 local rhs = rnakeArmy(ldtrsl); 
10 for j = 1 to Idtrsl do 
11 local d = dtrs IJ]; 
12 rhs[j] = (getName(d),getAnnotation(d, Q)); 
13 end for; 
14 result = result u= {Ihs ---> rhs}; 
15 end for; 
16 end for; 
17 return result; 

Figlln~ 5: The overall structure of the extraction algorithm. 

vector (via getA nnotat'ion), given the quick-check paths Q (line 7). The same 
is done for every RHS symbol, but since we usually have lllorc than one RHS 
symbol , we collect t hem in an array dtrs of length equal to the nUlllher of the' 
immediate daughters of t.he passive chart edge (lim~s 8-1:3). For (~wry passivr 
edge, we finally generatp a context-free rule object (sec sect. ioIl 2.:3), given the 
LHS and the RHS (line 14) . Thp new CF rules are adjoined to the re~:lllit S(~t (lilW 
14). Aft.er we have processed all files in directory D, the r<~~mlt set is returned at 
last (liw ~ 17) . 
The subscript of the union oIwrator in line 14 of the algorithm should indi
cate t.ha.t new rules arc added to the result set using ruIc (~quivalcllcc. I. e., a 
new rule only cont.ributes to the final CFG if no structural cquivakllt rule has 
already been introduced earlier during the extraction proC(~ss. Even for a small 
corpus, a la.rge Humber of structural equivalent. rules are generated, resulting ei
ther from reappearing words or from reappea.ring linguistic com;tructiollS. The 
nOll-astonishing observa.tion is that the smaller the annotation gets, the larger t he 
number of equivalent rules becomes. Clearly, by t aking more quick-check paths 
into account, we obtain more specific CF grammars, consisting of more rules. In 
the next subsection, we will slightly modify line 14, replacing the rule equivalence 
test by rule subsumption. 

3.5 A Variation 

Rule subsumption, defined in section 2.3, now comes into play to scale down gen
erated grammars. We apply this operation online during the extraction process 
in that we replace line 14 of the algorithm by 

14 result = result U:: {Ihs ---> rhs}; 
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The intention behind U_: is that a new rule is only added to the result set iff it 
is more general t.han at least olle rule already in the set.. If so , the old rule and 
]J( ~rhaps further other rules are removed. If it is more specific, the Hew rule is 
dearly not. added. The application of that operat.ion guarantees that tlw l'1lles 
from t.lw result set result are pairwise incompatible, i.e., 

\::/0:, f3 E result. (): (Xl /1, for all a i- j3 

U:, is somewhat related to the specialized union operation Ur in Kiefer awl 
Krieger 2002. However, Us: operates over typed feature structures represent
ing context-free symbols, whereas our operation is directly applied to annotated 
CF rul(~s. 
Of course, U -< does change the cont.ext-free language .c -:, when compared to the 
language .c, , resulting from the application of U ,~ : 

Given the n1lmher of rules for the two grammars Q:-< and Qc' , we havc 

I Q~ I s I Qo: I 

A simple example clearly shows this. Assume that the temporary result set 
contains the following three CF rules 

result = { 

and assume that the new rule 

{3 =B-t ... 

subsumes both {3l and {32. U=' would thus delete {3l and {32 from the result set 
and will add {3 to it . Furthermore, since Bl and B2 are no longer valid ({3l and (32 
have been deleted!) , we must replace every occurrence of Bl and B2 by the new 
nonterminal B, introduced in production {3. This, however, has the effect that at 
least the modified rule (a' = A -t ... B .. . ), derived from a, overgenerates. 
Our approach keeps track of such rule deletions by implementing a symbol sub
sumption maintenance graph. In the above example, we establish two associations 
between Bl , B2 and B: (Bl ~ B), (B2 ~ B). Given the example, it is possible 
that the new rule {3 might even be deleted by a newer, more general rule B' -t ... 
later. In this case, we have to further specify a new association: (B ~ B'). 
In the end, such substitution chains will be dereferenced, so that we can immedi
ately substitute a dead RHS symbol by its correct and existing LHS counterpart. 
In the example, for instance, we must then know that Bl should not be substi
tuted by B, but instead by B'. 
We also have to make associations for the converse case-if a new special rule 1 
is not added due to an existing more general rule 1', we must record this fact by 
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creating the association (L(,) ~ L( ,')), since L(,) might occur on the RHS of 
final CF rules. 
We note here that the substitutions are of course not restricted to the LHS sym
bols only. Consider the following three toy CF rules which we might have acquired 
so far 

{

a = N[sg, fern] --+ "Mary" } 

I 
f3 = NP[sg, fern] --+ N[sg, fern] 

resu t = 
~. ~ s[ ... ] --+ NP[sg, fern] VP[ ... ] 

and assume that the new, more general rule f3' 

f3' = NP[num, fern] --+ N[num, fern] 

now comes in, substituting f3. The result set then changes to 

I 
f3' = NP[num, fern] --+ N[num, fern] 

{ 

a' = N[num, fern] --+ "Mary" } 

resu t = I 

~ . . = s[ ... ] --+ NP[num, fern] VP[ ... ] 

Since we substitute the dead symbols at the very end of the approximation, the 
resulting CFG is clearly not optimal, i.e., not minimal. A proper treatment 
here would require that we have to update the symbol substitution graph (and 
potentially perform substitutions) each time a new passive edge is checked against 
the temporary CF rule set. Since we might process several millions of edges during 
the approximation of a grammar, we do not apply this technique at the moment. 
However, two alternative treatments circumvent symbol substitutions. 

U nary Rules. The idea here is to couch symbol substitutions in terms of addi
tional unary rules. In the above example, we still delete f3 by f3' , do not change 
a and" but add the following two unary rules: 

N[num, fern] --+ N[sg, fern] 

N[num, fern] --+ N[sg, fern] 

Such rules simply express the fact that num and sg are related in the UBG by 
type subsumption: sg:::s num. Goldstein 1988 proposed a similar solution, calling 
the unary rules unification rules. 

Online Symbol Subsumption. Since a context-free parser (usually) employs 
symbol equality at runtime (and not symbol subsumption or unifiability), N[num, 
f em] and N [sg, f em] are regarded to be incompatible, of course. To recover 
from this behavior, we can clearly apply symbol subsumption (or unifiability) 
at runtime. In order not to lose performance, this step heavily relies on type 
unification being very fast, which is the fact, as it can be precompiled (Kiefer et 
al. 2000) or cached (Kiefer et al. 1999). 

At this point of our investigation, we already note here that favoring rule sub
sumption in terms of rule equivalence does not have any significant advantage 
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(kss l'1lles, hut Hot that many) , but mostly disadvantages (complex handling of 
dead symbols and rule frequencies, worst running time of the approximation, over
gencratioll). ~evcrtheless, we have implemented rule subsumption , SiIlC(-~ lJBGs 
lllight exist. which will take advantage of this operation. In this context , it. is worth 
noting that: the closely related operation U~ made the grammar approximation 
ill Kiefer <md Krieger 2002 finally tractable. 

3.6 Computing Start Productions 

One point in the algorithm is still missing, viz., the generation of start produc
tions. We haw decided to employ only a single synthetic start symbol 5 ill our 
grammars. This symhol has to be fresh, i.c. , for all symbols (n, a) of the cx
tracted grammar, we demand that N(s) =F n. In the implementation, the llser 
mllst specify a non-empty list of start (or root) types , types which subsume origi
nal rul<~ definitions, and thus subsumes potential rule instantiations. These types 
specify wellformcdness conditions that a feature structure must satisfy to be a 
legal utterance (P.g., empty sub categorization list). Now let T be the set of all 
start types, R the set of {~xtra(:ted CF rules so far , and 5 the new top-level start 
symbol. 

CornputeStaTtProductions (T, R, 5) : ¢::::::} 

localS = (/); 
for each type E T do 

for each n: E R do 
if type ~ N(£(O'.)) 

S = SU{s-+ L(o:)}; 
end for; 

end for; 
return 5; 

In the English ERG /LinGO HPSG grammar developed at CSLI, sentential phrases 
are SUhSUlIWd by the type moL-strict, and thus a start symbol in the extracted 
CFG can be dcknnined by checking whether the name of a LHS symbol is sub
sumed by this start type. Non-sentential saturated phrases in ERG (c.g., PPs 
and NPs) arc characteri7.ed by TOO Lplrr, thus if we want find all saturated phrases 
in the approximated CFG) we have to declare these two types to be start types. 

3.7 Rule Frequency 

As we said in section 2.3, rule ohjects possess a frequency field which will gain 
importance if we move from the generated CFG to a trained PCFG which predicts 
probability distributions over CFG derivations. Exactly the frequency counter is 
set to 1 during the initialization of a rule object and is incremented by 1 in case 
a structural equivalent rule has been detected. 
Concerning the frequency field f of a new rule 0: that has replaced more specific 
rules 0:1, ... ,On , we have 
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since the more general rule now acts as a representative for the deleted specialized 
rules. Assuming the contrary, the frequency counter of truly general rules ai 

(1 ~ i ~ n) are incremented by 1 when penalizing a: 

Considering the unary start productions from section 3.6, the frequency counter 
of a start production s ----+ l is set to the sum of the frequencies of those rules 
a E R, whose LHS is exactly l, given the set of all CF rules R: 

f(s ----+ l) := L f(a), where a = l ----+ rl .,. rn 
QER 

In order to obtain a proper probability distribution, we have to normalize the 
rule frequency counter in the standard way. Let R be the set of all extracted CF 
rules, f (r) be the value of the frequency counter for rule r E R, and n be the 
total number of all passive edges for a given parsed corpus as delivered by the 
unification-based parser. We then compute the probability p(r) for a context-free 
rule r as 

p(r) := f(r) 
n 

which gives us 

p(R) := L p(r) = 1 
FER 

4 Other Approaches 

In this section, we will present several other a.pproachf~s to compilation and ap
proxima.tion, some of them sound (Pereira and Wright 1991), that is, the language 
genera.ted by the resulting grammar is a superset of the langua.gE~ of the original 
grammar, others unsound . 

Goldstein 1988 was the first who converted all HPSG to a CFG. Goldstein, how
ever, made several simplified assumptions: (i) English is context-free; (ii) the 
number of categories/feature structures is finite; (iii) complex CF (non)tcrminals 
are not allowed; (iv) in the early development stage of HPSG, no corefcrenc(~s and 
types arc used. However, rules are undcrspecified and lexicalizat.ion i::; already 
present. This version of HPSG is essentially a modified GPSG. Since Goklstcin 
did not. address the (possible) accumulation of information (e.g., under SUB CAT , 
CONT, or DTRS), a restrictor is clearly not needed. Rule instantia.tion is rca.lillcd 
through an active bottom-up parser, using the chart to represent the feature 
structures. 

Carroll 1993 reported in his PhD thesis on the extraction of CF gra.mma.rs 
from unification-based grammars, written in the ANLT (Alvey Natural La.nguage 
Tools) grammar formalism. Grammars in ANLT usually consist of several hUll
dred of relat.ively specific GPSGish rules with features ha.ving only finitely many 
values. Categories (= sets of feature-value pairs) can be defined in ANLT, but 
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are not explicitly arranged in a type hierarchy. A single ANLT unification rule 
is mapped one-to-one onto a CF rule by introducing atomic symbols on the CF 
side that abstract from categories in the ANLT grammar. In order to avoid 
subsumption over CF symbols, subsuming categories are mapped onto a repre
sentative that encodes the least upper bound, similar to our operation U::;. A 
related approach is described in Nakazawa 1995. 

A compilation of HPSG, obeying certain restrictions, into lexicalized feature
based TAG is described in Kasper 1992 and Kasper et al. 1995. From an HPSG 
perspective, this compilation in principle allows a faster parsing system, due to 
the weaker generative capacity of TAGs (mildly context-sensitive). The idea is to 
execute parts of HPSG derivations at compile time (viz., the reduction of selection 
features in selection daughters) , producing lexically-anchored feature structures 
that encode the application of several HPSG rule schemata. 

Diagne et al. 1995 and Kasper and Krieger 1996 present a distributed parsing ap
proach that is distinguished by the use of a very restricted HPSG whose derivation 
trees are reparsed deterministically (in fact , in parallel) by the original HPSG. 
The two parsers mutually restrict their search space, using a specialized protocol. 

Kasper et al. 1996 employ the same idea, but substitute the restricted HPSG 
through the (relatively specific) context-free backbone of an HPSG-like grammar. 
By using the pure backbone and a corpus, a PCFG is trained and used online in 
order to obtain the n-best paths of a word lattice. The collection of these paths 
constitutes the initial chart of the second parser that uses the HPSG essentially 
for semantic construction. 

Neumann and Flickinger 1999 and Neumann 2003 describe an approach that ob
tains a stochastic lexicalized tree grammar (SLTG) for a given corpus. The idea 
here is that the training corpus is parsed using an HPSG grammar and an HPSG 
parser, and derivation trees are iteratively decomposed top-down, resulting in 
nonterminal nonheaded subtrees, where the cutting points are marked for later 
substitution. SLTGs are processed by an LTAG-like parser in a two-step process, 
consisting of an initial all-path parsing phase, followed by the application of the 
relevant HPSG feature constraints. This idea is related to LFG parsing, but has 
the clear advantage that a larger tree context is involved (although SLTGs are 
of context-free power). Since the extraction process of the SLTG grammar works 
on the derivation trees of a tree bank, viz., tsdb (Oepen and Flickinger 1998), 
the node labels are relative coarse generalizations of the information embodied 
in the feature structures used during HPSG parsing. The vagueness or under
specification of the node labels, however, is partly compensated by the larger 
tree context. The approach furthermore applies two postprocessing techniques: a 
linguistically-motivated decomposition of trees and a specialization of node labels. 

Moore 1999 describes a compilation method that turns unification grammars 
with finitely-valued features into context-free grammars. The grammar, he re
ports on, is written in the core language engine formalism of SRI Cambridge, 
and consists of about 900 relatively specific phrasal rules. Moore only consider 
finitely-valued features. In order to avoid the combinatorial explosion of rules, 
Moore only instantiates those features in daughter categories that are constrained 
by the unification rule and considers only combinations of feature values by uni-
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fying active and passive edges, as in a bottom-up active chart parser. He also 
throws away useless rules. Moore's paper presents a new left recursion elimina
tion algorithm, specifically tuned for the grammar formalism GSL of the Nuance 
speech recognizer (Nuance 2004), t aking advantage of the fact that GSL allows 
regular expressions . Moore also consider various combinations of acoustic and 
symbolic information in a language model and is a great overview paper. In a 
certain sense, Moore's approach is the forerunner for Rayner et al. and Dowding 
et al., laying the foundations for the more sophisticated enumerative compila
tion techniques below. Moore's expansion technique will probably not work for 
lexicalized theories, such as HPSG. 

Kiefer and Krieger 2000, Kiefer and Krieger 2002, and Kiefer and Krieger 2004 
present a sound approximation method that turns unification-based grammars, 
such as HPSG or PATR-II into context-free grammars. The method does not 
rely on a corpus, but is purely grammar-driven. In an initial phase, the method 
generalizes the set of all lexicon entries, by abstracting from word-specific infor
mation. The abstraction is specified by means of a restrict or. After that, the 
grammar rules are instantiated by unification, using the abstracted lexicon en
tries and resulting in derivation trees of depth 1. A rule restrict or is applied to 
each resulting feature structure, removing all information contained only in the 
daughters of a rule. Additionally, the restriction gets rid of information that will 
either lead to infinite growth of the feature structures or that does not constrain 
the search space. The restricted feature structures (together with older ones) 
then serve as the basis for the next instantiation step. Again, this results in 
TFSs encoding a derivation, and again the TFSs are restricted . The iteration is 
proceeded until a fixpoint is reached, meaning that further iteration steps will 
not compute additional information. Given the TFSs from the fixpoint, it is 
then easy to generate context-free productions , using the full feature structures 
as symbols of the CFG. The speedup factor for the aged and eng2000 test suites 
within a two-stage parsing architecture are between 1.7- 2.7. 
In Kiefer et al. 2002 , an extension of the method is presented which easily allows 
the disambiguation of UBG readings, by indirectly relying on a trained PCFG, 
derived from the approximated CFG. Considering a random baseline of 72% for 
the exact match task, the method shows an increase of 16% (= 88% precision). 

In Cancedda and Samuelsson 2000, a corpus-based specialization method is intro
duced which directly operates on rules written in the LFG framework. Because 
the LFG formalism allows RHSs of grammar rules to consist of regular expres
sions (REs), the idea ofthis framework is to expand RHSs into RE-free sequences 
of symbols, guided by the training data. Since Kleene star and complementation 
in REs as well as specialized operators like shuffie may introduce spurious ambi
guities , such simplified rule instantiations clearly speed up parsing (up to a factor 
6). The downside of this method is that one might lose coverage (about 13%). 
To compensate for the loss in coverage, a two-stage parsing architecture is pro
posed in which a second stage, consisting of the original grammar, is only invoked 
in case the first specialized parser failed. Even with this backup mechanism, a 
speedup between 1.8- 2.7 was obtained. 

Dowding et al. 2001 compares the approach to grammar approximation in Moore 
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1999 to that in Kief(~r and Krieg~:r 2000. As a uasis for the comparison, they 
choose a colllUland-and-control grammar written in the Gemini/CLE formalism 
(we lise the sallle grammar in section 6.4) . The motivatioll for this enterprise 
comes from the use of the resulting CFC as a context-free language Illodel for 
the Nua.nce speech recognizer (Nuance 20(4). The measurements in Dowding et 
a1. 2001 differ from those lat(~r conducted in Kiefer and Krieger 2002 and Kider 
a.l\d Krieger 2004. Unfortunately, it is not clear why Dowding'::; implementation 
of Kider & Krieger 's method comes off so badly. Dowding report on an aver
age ambiguity per sentcnce of 15.4, whereas Kiefer & Krieger comcs np with 
only 1.49 (ambiguity rate for the original grammar was 1.41). The c:ompilation 
t.imc to obt.ain t.he approximated grallllnars differs too: 11 minutes vs. 34 S(~c:

oneis. With a slightly different setting, Kiefer & Krieger even obtain a correct 
approxilllat.ion, showing that the DEC is in fact of only context-free power. The 
pap(~r hy Dowding ct a1. 2001 also explores techniques for transforming CFCs into 
weakly equivalent grammars with less ambiguity. These investigationH arc impor
tant. Hince tlw nse of linguistically-motivated CFGs as language models often lead 
t.o contidential paths in the language model labeled with the same recognition 
hypothesis, so thH.t other good hypotheses arc forced 011t of the beam of the 
recoglllZCr. 

Rayner et a1. 2000 conduct a series of experiments that employ approximated 
CFCs as language models in the Nuance speech recognizer. Instead of using 
a domain-specific UBC, Rayner et a1. 2000 start with a general, linguistically
motivated grammar, but use a domain-specific lexicon, resulting in a domain
specific CFC. Compiling a UBC is done by enumerating all possible instantia
tions of features in rules. To make this approach tractable, a relatively complex 
mechanism is implemented to arrive at features, having only finitely-many values, 
similar to the approach in Moore 1999. A kind of rule folding is also applied here 
(see also section 5.2). The compilation failed for a mid-to-large-size UBC, so they 
started with a small grammars and incrementally add further rules and lexicon 
entries. It turned out that a more complex clause structure was not responsible 
for the poor recognition performance of the resulting CFCs, but instead a small 
number of rules, basically centered around relative clause modification. The find
ings in this detailed paper might also be of interest to our method. In Rayner 
et a1. 2001a, the explicit assumption is made that each UBC feature has a finite 
range of possible values. How this can be guaranteed is not explained in the pa
per. Further technical aspects of the above compilation method are elaborated. 
In the related paper Rayner et a1. 2001b, it is argued that agreement constraints 
from the UBC should be kept in the CFC to obtain better language models. 

Bos 2002 comes up with a compilation method that is very related to that of 
Moore and Rayner et a1. above. Again, features only have finitely many values 
and complex values are not allowed. What makes his approach unique, however, 
is that he shows how to transfer compositional semantics from the UBC into the 
CFC, using the grammar specification language CSL from the Nuance recognizer 
package. CSL supports slot filling for constructing semantically-relevant output, 
similar to W3C's VoiceXML or SRCS, and Sun's JSCF. The challenge for saving 
the semantics on the CFC side is elimination of left recursion in the rules and 
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no support for features and unification. In the end, deriving a logical form for a 
string is achieved by running the CF parser on that string, using the approximated 
CFG, followed by several ,B-reduction steps. Recognition performance in terms 
of speed and word error rate is not affected by his method. Bos' way to achieve 
a compositional semantics is quite close to our proposed treatment of semantic 
construction, using additional semantic rules (see section 5.5) . 

5 Summary and Extensions 

As already explained in the paper, the corpus-driven approximation method is 
unsound, that is, given a corpus G of training sentences and a set of annotation 
paths A (from which we determine the annotation of a context-free symbol), the 
approximated CF language is usually not a superset (but also not a subset) of 
the language accepted by the HPSG (see figure 6). This is due to the fact that 
not all linguistic constructions licensed by the HPSG are covered by th training 
corpus, but also because not every piece of information from the TFS is encoded 
in the annotation of a CF symbol: 

VG,A. £(HPSG) rt. £(CFG,G,A) 

It is easy to see that more training samples G' result in a broader language: 

V G', G ~ G'. £(CFG, G, A) ~ £(CFG, G', A) 

The subset relation turns around with more annotations: 

V A', A ~ A' . £(CFG, G, A) ;2 £(CFG, G, A') 

In both cases, more training sentences and/or more annotation paths result in 
larger rule set. Overall, we can say that the more information from the feature 
structure is put into the annotations of the context-free symbols, the better the 
CFG approaches the HPSG in terms of the number of readings and the less 
it overgenerates w.r.t. linguistic constructions contained in the training corpus. 
Remember, annotated CF rules approximate HPSG (passive) chart edges, and 
the existence of more specific CF symbols and rules helps to better mimic the 
behavior of the HPSG during CF parsing. Finding the right annotation paths, 
of course, depends on the application domain in which the extracted CFG is 
employed. 
The correlation between UBGs and the family of approximated CFGs w.r.t. a 
given corpus and a set of annotation paths is depicted in figure 6. 
As motivated in section 3.5, when fixing a corpus G and a set of annotation paths 
A, the language obtained under U .. is always a subset of the language resulting 
from the application of U=" given the same HPSG source grammar: 

However, the more general grammar has less rules due to the fact that u=' might 
delete more than one specialized rule when favoring a more general rule. 
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rule instantiations in the unification parser can not be computed befor hand, due 
to the infinite number of 'categories' in a unification-based grammar (the set of 
all feature structures produced by a UBG is usually infinite) . 

5.2 Rule Folding 

Rule folding is a method that can drastically decrease the number of CF produc
tions. Let us refer to the example from section 2.3. Assume that the extraction 
process has delivered 

{
a = (NP[sg, fern] --+ N[sg, fern]) } 
{3 = (NP[pl , fern] --+ N[pl , fern]) 

Rule folding will then replace a and {3 by 

1= (NP[num, fern] --+ N[num, fern]) 

smce I covers exactly the two variations of the number feature, viz., singu
lar and plural. Because NP [sg, fern] , NP [pl, fern] , N [sg, fern] , and N [pl, fern] 
are now dead symbols, we must again replace their occurrence in every rule by 
NP[num,fern] and N[num,fern] , resp. 
Rule folding F , of course, does change the language induced by the original 
extracted CFG 9 and produces a more general grammar. The reason for this 
goes along the argument presented at the end of section 3.5. 

£(9) <;;; £(F(9)) 

5.3 Automatic Lexicon Extension 

New utterances not covered by the corpus are only recognized by the extracted 
CFG if they can be mapped to already parsed syntactic constructions and to 
already seen words. One can imagine that the relevant domain-specific syntactic 
constructions can be covered by a sufficiently large training corpus. Lexical gaps, 
however , should not be attacked by taking more samples into account. One 
way to enlarge the CF lexicon is by mapping lexicon entries from the HPSG 
to related terminal symbols in the CFG, originating from parsing the training 
corpus. Assume, the training corpus contains 

Bill gives Marya book 

but does not mention the word cookie. A sentence such as 

Bill gives Mary a cookie 

will then not be recognized. 
The extraction process has represented book by the unary production 

book-Ill [ ... ] --+ " book" 
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where book_nl call be seen as a preterminal, speaking in terms of CFGs. 
B.Y inspecting the HPSG lexicon, we will then find that book is of the same lexical 
type as cookie, viz., book_nl. Thus we can enlarge the CF lexicon by 

cookie_n1.[ ... ] ~ "cookie" 

By exploiting this procedllrf\ we can at least guarantee tha.t the CFG will have 
the SaIIW lexical covera.ge tha.n the UBG. 

5.4 Grammar Postprocessing 

Lexicon extension is relateel to a postprocessing step which "massages" the ap
proximated CFGs, more precisely, the rules which have a preterminal symhol 
such as in [prep*, ... ] on tll(~ir RHS. For instance, Wf-~ might have 

in[prep*, ... J --) "in" 
hcomp[prep*, ... J --) in[prep*, ... J proper_np[noun_or_nomger, ... J 

Now aSSllIlle that our training corpus does not conta.in the preposition on and 
t hat automatic lexicon extension has added the following "lexicon lookup" (or 
lexical) rule 

on[prep*, ... J --) "on" 

However, we are still missing the very likely CF rule 

hcomp[prep*, ... J --) on[prep*, ... J proper_np[noun_or_nomger, ... J 

Constructing such new rules should , however, not that difficult. Clearly, when 
addressing these topics properly, the need for a larger training corpus is not that 
demanding. 

5.5 Constructing Meaningful Output 

In case we are not only interested in a context-free boolean recognizer, but would 
like to see some useful output (e.g., MRS-like structures; see Copestake et al. 
2001), we can either apply two-stage parsing here (see above), letting the UBG 
deterministically replay the CF parse trees, or (automatically) equip the approx
imated CFGs by 'semantic rules', similar to attribute grammars, a framework 
extensively used in syntax-directed translation, dating back to the early sixties 
(Aho et al. 1986).5 The latter approach completely obviates UBG parsing and 
has the further advantage that overgeneration within the extracted CFG will not 
be prohibited by a subsequent, more restrictive UBG reparse. 
Such semantic rules can not be obtained directly from the passive edges of a chart 
(or even from the extracted CF rules), but instead must be reconstructed from 
the CF rules with the help of the HPSG rule schemata, together with the total 
surjective mapping from CF rules to HPSG rule schemata. 
Let us give an example. Assume that the training corpus contains the sentence 

5Such semantic rules nowadays gain importance in the speech grammar community, most 
notably in the Semantic Interpretation for Speech Recognition (Van Tichelen 2003) framework 
for the Speech Recognition Gmmmar Specification (Hunt and McGlashan 2004). 
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Tigger meows 

for which we obtain, among other rules, 

subjh[verb, ... J - properJlp[noun, ... J verb_infLrule[verb, .. . J 

The unique (slightly simplified) HPSG rule schema associated with the LHS of 
subjh [verb, ... ] plus the inherited HPSG principles gives us a feature struc
ture which exactly specifies the 'transport ' of information from the daughters to 
the mother (E9 denotes list append): 

SYNSEM I LOCAL I CONT [~~~~~ ~e~}Ill 
HEAD-DTRISYNSEMILOCALICONTILISZT ~ 
NON-HEAD-DTRISYNSEMILOCALICONTILISZT OJ 

This transport is expressed through coreferences (IT] and [IJ) and has to be re
modeled in the semantic rules attached to the CF rule. We thus enrich the above 
extracted CF production by the following two simplified semantic rules (we use 
a kind of PATR-II notation, where 0 denotes the LHS, 1 the first RHS daughter , 
etc.): 

O.SEM.LISZT := 1.SEM.LISZT E9 2.SEM.LISZT 
O.SEM.INDEX := event 

The process of semantic composition must be grounded in the lexicon, thus we 
equip each lexicon entry of the CFG by the relevant semantic rules which can be 
obtained from the corresponding lexicon entries of the HPSG (let ( ... ) denotes 
a list of elements): 

Tigger [ ... J - "Tigger" 
O.SEM.LISZT := (Tigger) 

But perhaps the much simpler procedure of annotating CF symbols with addi
tional, semantically-relevant information from the feature structures might suffice. 
In this case, successful CF derivation trees will be reinspected in a second phase, 
where the according semantic information is reconstructed. This approach could 
also be the starting point for approximating not only recognition grammars, but 
even useful generation grammars. 

6 Experiments 

We have applied our method to five different grammars at this point of writing. 
We took these grammars from Kiefer and Krieger 2002. The first three grammars 
are small-size UBGs, used primarily for showing interesting properties of the 
approximation method. The fourth grammar is an HPSG-like encoding of John 
Dowding's mid-size unification grammar, written in the Gemini/CLE formalism. 
The fifth grammar is the large English Resource Grammar, developed at CSLI, 
Stanford. 
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Again, we obtained the same 12 rules as have been found by (Kiefer and Krieger 
2000, Kiefer and Krieger 2002) during their grammar-driven approximation. 

(1) S [*undef*] --> a[ ' a] 
(2) S [*undef*] --> b['b] 
(3) S[*undeh] --> rule [' a] 
(4) S[*undef*] --> rule['b] 
(5) rule [, a] --> a['a] a['a] 
(6) rule [' a] --> a['a] rule['a] 
(7) rule [' a] --> rule['a] a['a] 
(8) rule [, a] --> rule['a] rule['a] 
(9) rule ['b) --> b['b] b['b] 
(10) rule ['b) --> b['b] rule['b] 
(11) rule ['b) --> rule ['b) b[ 'b) 
(12) rule ['b) --> rule['b] rule['b] 

Our training corpus consisted of only two sentences, viz., "a a a a" and "b b 
b b". Again it is important to have test sentences of proper length (viz. , four 
consecutive a 's and b's. Otherwise the important rules (8) and (12) are not 
derivable. 

6.3 Shieber's PATR-II Grammar 

The third example is the feature structure encoding of Shieber's second sample 
PATR-II grammar (Shieber 1986, pp. 71- 76). This grammar uses two underspec
ified rules for verb phrase construction as in Uther persuades knights to storm 
Cornwall. It is clearly a test case much more in the direction of UBGs than th 
first two examples. Overall, the grammar consists of three rules. 

5 -t NP VP 

S 

HEAD 0 [FORM finite] 

ARGS (0 NP, [:D 0 1 ) 
SUBCAT (0) 

VP -t V 

VP 

HEAD 0 
SUBCAT 0 

ARGS ( [~AD 0 l) 
SUBCAT 0 

VP 

HEAD 0 
SUBCAT 0 

VP -t VP X 

ARGS ([:~D 0 l,0) 
SUBCAT (0· 0 ) 
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II #rules I #ppedges I #readings I runtime[s] I overgeneration I speedup I 
UBG 57 19,716 666 6.59 1.00 1.00 
CFG-Oe 401 24,815 4,028 0.23 6.05 28.65 
CFG-2e 401 24,662 1,376 0.20 2.07 32.95 
CFG-3e 454 23,364 982 0.16 1.47 41.19 
CFG-5e 455 23,379 982 0.15 1.47 43.93 
CFG-10e 505 21,327 975 0.11 1.46 54.92 
CFG-17e 525 21 , 007 819 0.10 1.23 65.90 
CFG-21e 528 20 ,672 666 0.08 1.00 82.38 

Figure 7: Measurements for the family of approximated grammars obtained under 
rule equivalence. #ppedges abbreviates the number of packed passive edges. 
Overgeneration was measured against the UBG . 

general grammars was on par with the more specialized ones. The replacement 
of specialized symbols in favor of more general ones started when we moved to at 
least three symbol annotations. A maximum number of 71 final symbol substi
tutions (#substitutions) were made for these three annotations (CFG-3s). The 
maximum number of 16 associations (#associations) between symbols and their 
more general replacements (see section 3.5) were obtained for ten annotations 
(CFG-10s). 

II #rulef> I #a~f>ociati()m; I #f>ubf>titutiom I #m;e1e~:; I #ppf~dgf~S I #rcadings I 
CFG-O~ 401 0 0 20 24,815 1, 028 
CFG-2s 101 0 0 13 21,662 1,376 
CFG-3s 429 11 71 43 2;~, 485 982 
CFG-5s 4:12 9 51 1:3 2:3,480 982 
CFC-lOs 472 16 52 71 21,4:.H 975 
CFG-17s 495 14 43 86 20, 992 8Hl 
CFG-21f> 498 14 43 86 20,695 666 

Figure 8: Measurements for the family of approximated grammars obtained under 
rule subsumption. #useless abbreviates the number of useless rules. 

Compared to the results reported in Kiefer and Krieger 2002, it is not astounding 
that our grammars are much smaller , since they are derived from a corpus, and 
not merely by the UBG alone. Of course, the approximated CFGs in Kiefer and 
Krieger 2002 do cover a greater variety of linguistic constructions. 

We also measured the time of two-stage parsing (total time of CF parsing plus 
UBG replay) against the UBG baseline (5.7 sec) for the grammars CFG-10e and 
CFG-21e. We obtained a speedup factor between 9.2 (= 0.62 sec) and 10.2 (= 
0.56 sec). The next section shows that the speedup is getting larger when taking 
more complex structure as well as longer sentences into account. 
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6.5 CSLl's English Resource Grammar (LinGO) 

w(~ also applied our method to the large English LinGO grammar (June 2002), 
(kvd()p(~d at CSLI Stanford. The grammar consists of 61 rule schemata, 8,082 
nUll-leaf types, and a lexicoIl of G,930 st(~ms. 

6.5.1 aged 

We lIsed the aged t(~st suite (Oepen and Callmeier 2000), consisting of DO syntacti
cally highly diverse sent.ences in order to measure t.he qualit.y of our approximation 
(average sentence length: 8.4; maximal length: 19). aged consists of 202 stems 
that cover a great deal of morphological and lexical variation. 719 full forms were 
COlllPllt(!d from these stems. The PET parser which produced thE! illPut charts of 
passive edges (section 3.1) ran under no restrictions and computed 267,G51 pas
siv(~ edges overall. One of the sentence from aged even contributed 139,028 (!dges. 
Approximatioll was performed under rule equivalence and rule subsumption. The 
length of the annotation vector was varied between 0 and 32. 
Figure 9 shows the asymptotic behavior for the number of nonterminal and rules, 
when compared to the length of the annotation (sec also figure 3). The explosion 
of rules from five to six anIlotations is due to the path SYNSEM I LOCAL I KEYS I KEY 
who potelltia.lly results in Illore than 4,000 possible values , representing relatively 
word-specific information. It is a good idea not to use such path values as anno
tations in case the rule set gets too large. Furthermore, approximated CF rules 
will get too specific when incorporating such information. An optional strategy 
to cope with such a value overload is described in Kiefer and Krieger 2002 and 
Kiefer and Krieger 2004, viz., type generalization. 
The next two tables present runtime measurement and show that the useless rules 
outweigh when moving to larger annotation vectors. The numbers also show (at 
least for aged and csli, see next section) that the grammars obtained under rule 
equivalence are nearly of the same size as those obtained under rule subsumption, 
but are overall better when regarding the number of readings (#readings). This 
will clearly gain importance in the second stage of an VBG-replay approach. 
Considering the VBG parser, 1,589 readings for aged were found. PET failed for 
17 of the 96 sentences when using the English HPSG. 
A plot of the number of rules obtained under rule equivalence against the number 
of samples is shown in figure 12. 

We also conducted measurements for two grammars under rule equivalence. The 
pure HPSG parser, fully equipped with quick-check filtering, resulted in an overall 
parse time of 1,361.5 seconds. Total time of two-stage parsing (CF parsing plus 
VBG replay using the full HPSG) for aged was 

• 110 annotations: 59.4 sec = 22.9x speedup 

• 226 annotations: 52.8 sec = 25.8 x speedup 

Considering runtime, the grammar with 226 annotations was better, since HPSG 
replay had needed less unifications. 
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I #annotations II #E-rules I #S-rules I #assoeiations I #substitutions I 
0 3,475 3,475 0 0 
1 3, 783 3,539 28 264 
2 3,890 3,552 52 1,210 
3 4,047 3,579 71 1,539 
4 4,048 3,580 71 1,536 
5 4,141 3,670 69 1,510 
6 8,585 7,406 733 4,547 
7 8,662 7, 574 605 3,895 
8 9, 430 7,998 760 4,096 
9 10,050 8, 459 891 3,969 

10 11 ,364 9,335 1,189 4,032 
11 11 , 469 9,341 1,200 4,199 
12 11,532 9,641 1,079 3,624 
13 11,591 9,667 1,087 3,670 
14 11,771 9, 704 1,123 3,856 
15 11,857 9,800 1,120 3,896 
16 11 ,909 9,829 1, III 3,921 
17 11,928 9,830 1,123 3,954 
18 11 ,928 9,850 1,107 3,931 
19 12 , 127 9,913 1,183 4,057 
20 12,169 9,926 1,201 4,050 
25 13,182 10,867 1,295 4,020 
32 15,173 12,389 1,454 4,014 

Figure 9: Total number of rules for the aged test suite, obtained under both 
equivalence (E-rules) and subsumption (S-rules). The explosion in the number of 
rules from 5 to 6 is due to the path SYNSEM I LOCAL I KEYS I KEY. 

I #annotations II #useful I #useless I #ppedges I #readings I #errors I runtime[sJ] 

0 3,153 22 122,311 4.294E + 29 2 3.09 
2 3,737 153 73,010 6.527E + 18 3 0.72 
5 3,943 198 64,364 1.408E + 17 4 0.54 

10 7,160 4,204 23,607 617,068 9 0.13 
18 7,291 4,637 21 , 970 307,483 9 0.12 
32 8,236 6,937 22,858 174,533 9 0.10 

110 10,237 15,455 19,440 11,614 15 0.09 
226 13,682 32,025 18,855 11,195 15 0.09 

Figure 10: Useful and useless rules for aged, obtained under rule equivalence 
(without lexicon lookup rules). 

6.5.2 csli 

The ('sli test suite which originated from the old HP test suite developed at 
Hewlett Packard Labs (Oepen and Flickinger 1998), consists of 5,720 grammatical 
and ungrammatical samples. It is intended to cover a great deal of the syntactical 
constructions of English. Average sentence length is 5.0, maximal length 20. 585 
full forms (= #CF terminal symbols), e.g., "little", and 3269 lexicon lookup 

32 



I #annotations II #useful I #useless I #ppedges I #readings I #errors I runtimels] I 
0 3,453 22 122,311 4.294E + 29 2 3.09 
2 3,418 134 68,027 3.644e + 19 3 0.69 
5 3,475 195 64,878 2.303E + 18 4 0.65 

10 7,022 2,313 31,509 3,202,651 9 0.14 
18 7,080 2,770 25 , 369 1,617, 231 9 0.13 
32 7, 391 4,998 23,569 326, 119 9 0.13 

110 8,919 12,694 19,347 17,004 15 0.09 
226 12,824 30, 205 18,262 13,253 15 0.09 

Figure 11: Useful and useless rules for aged, obtained under rule subsumption 
(without lexicon lookup rules) . 

45000 .---,---.-------,--,--------r----.------,--,------.--------, 

40000 

35000 

30000 

25000 

20000 

15000 

10000 

o annotations --
2 annotations -------
5annotations ---- --- -

10 annotations --
18 annotations ------
32 annotations -- - -- .-
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Figure 12: Plot of the number of rules obtained under rule equivalence against 
the number of samples from aged. Note that we depict the sum of useful and 
useless rules without start productions here. The table clearly shows that, at 
least for 226 symbol annotations, the training corpus is too small. 

rules (= #preterminal symbols or lexical categories) , e.g., 

little_det[det, na, O-dlist, ... J --> "little" 

can be found in every approximated grammar (i.e., average ambiguity rate per 
stem ~ 5.6). The maximal number of passive chart edges in the PET parser was 
set to 100,000. 7,981 readings were found by PET. 

For csli, we obtained the following numbers for the approximated CFGs (see 
figure 13 and 14). 
Some of the numbers from figure 14 were astounding on first sight. Firstly, the 
decrease of useful rnles from 10 to 18 annotations seems to contradict to what has 
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I #annotations II #E-rules I #E-nonterms I #S-rules I #S-nonterms I 
0 11,432 3,372 11,432 3,372 
2 12, 845 3,561 11,736 3,473 
5 14,007 3,796 12,252 3,637 

10 52,848 16,508 41 ,530 11,056 
18 54,376 17, 212 4:3,203 11 ,623 
32 65 ,808 24 , 373 54,875 17,940 

Figure 13: Number ofrules (including start productions and lexicon lookup rules) 
and nonterminals for the csli test suite, obtained both under equivalence (E-rules, 
E-nonterms) and sub::mmption (S-rules, S-nonterms). The rule set both contains 
useful and useless rules. 

I #annota tions II #useful I #useless I #ppedges I #readings I #errors I runtime[s] I 
0 8,161 2 2,981,080 6.492E + 41 356 86.12 
2 9,138 438 2, 116,619 3.026E + 32 510 40.22 
5 10,059 679 1,752,303 2.464E + 25 627 26.02 

10 32,366 17,383 589,711 241,665,239 1,741 4.66 
18 31,575 19,702 545,788 56,629,513 1,898 4.63 
32 32, 354 30,489 534,236 38,030,870 1,920 4.20 

110 40,742 79,520 436,342 18, 266 2,926 4.08 
226 58,394 187,755 377,187 22,497 3, 065 4.12 

Figure 14: Useful and useless rules for csli , obtained under rule equivalence 
(without lexicon "lookup" rules). Less than a fomth of all rules are useful under 
the most specific CFG. Note the derrease of useful rules when moving from 10 to 
18 annotations, even the total number ofrules increases. Note also the increase of 
readings from 110 to 226 annotations, even though the recognized language gets 
smaller (d. number of errors). Overgeneration against the UBG w.r.t. training 
corpus was between 2.29 and 2.82 for the two largest grammars. 

already been said before. However, we have always argued that the total numher 
of all rules increases when moving to a larger annotation. This decrease is due to 
the fact that "older" useful ruleo have been outdated, i.e., have become useless 
through the specialization of some of their CF symbols (more annotations). 
Secondly, the number of readings might increase when we equip the CF symbols 
with more information. Again, this does not stand in contrast to what has already 
been saio. Clearly, a more specialized CF grammar (226 annotations) recognizes 
a smaller language than a more general CFG (110 annotations). This fact is 
supported by the number of errors in figure 14 (more errors). "Older" CF rules, 
here, are split up into new specialized instances when adding more annotations. 
In a certain sense, new information might add spurious ambiguities. Thus, the 
CFG with 110 annotations can be seen to better approximate the UBG than the 
bigger CFG. This behavior should be taken into consideration in the context of 
two-stage UBG replay parsing. 
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Figure 15: Plot of the number of rules obtained under rule equivalence against 
the number of samples for csli. Note that we depict the sum of useful and useless 
rules without start productions here. Again, the table clearly shows that , at least 
for 226 symbol annotations, the training corpus is too small. 

However, the measurements for two-stage parsing (110 and 226 annotations) ar0 of 
a different kind and show that the restrictedness of the CFG (= number of errors) 
shoulrl be takE'm into account when judging the practical usefulness of a grammar. 
The grammar with 226 annotations per symbol leads to fewer unification in the 
UBG replay stage. HPSG baseline for the 5,720 sentences was 2,777.3 seconds 
(again, quick-check filtering was switched on) . 

• 110 annotations: 30.7 sec = 90 .5x speedup 

• 226 annotations: 28.5 sec = 97.4x speedup 

This speerlup of nearly two magnitudes shows the enormous potential of our 
method. We finish this s~ction with a plot of the number of rules obtained under 
rule equivalence against the number of samples (figure 15). 

7 Conclusion and Outlook 

In this report, we have described a corpus-driven method for extracting domain
specific context-free grammars. We have presented a variation of this method 
that will usually yield smaller grammars while having the drawback of being more 
general. We have also indicated that the approximated CFGs can be turned into 
PCFGs for disambiguating UBGs in a two-step parsing approach. Furthermore, 
the approximated CFGs are of interest to domain-specific NLP applications which 
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are eagerly waiting for cheap and easily-to-produce recognition grammars, e.g., 
information extraction or language modeling. 

The approach neither generates a true superset nor a true subset of the language 
accepted by the UBG, but clearly better fits the UBG when given a larger training 
sample and more annotation values. As we have already indicated, this seeming 
misbehavior is a desired property, when looking for robust domain-specific gram
mars. The measurements presented here are very encouraging, but needs to be 
scrutinized in a domain-specific NLP system and perhaps checked against a pure 
UBG approach. 

Several points still need to be worked out in more details. Automatic lexicon 
extension and grammar postprocessing are important topics in order to let this 
approach gracefully react to small training samples (see sections 5.3 and 5.4), 
so that the need for larger training corpora are not that demanding. In case 
we are not interested in a domain-specific context-free subgrammar of the UBG, 
even the World Wide Web can be seen as a huge training corpus, due to the 
following argument. Given a large-scale UBG and a UBG parser (e.g., PET), 

it is clear that even ungrammatical utterances or utterances not covered by the 
UBG are worth to be partially parsed, since the UBG parser always comes up 
with a chart from which we can compute further CF rules which approximate, 
at least , legal phrases, although the UBG parser has failed overall. This idea 
clearly rises or falls with the quality of the UBG. Unknown word not covered by 
the UBG (mostly named entities) are also an important topic that needs to be 
addressed. A viable solution here is to have some kind of named entity grammars, 
processed in a weaker formalism. Such a shallow formalism will then be invoked 
in a preprocessing phase when unknown words are detected, producing lexicon 
entries for the UBG, which ultimately will show up in the CFG later. 8 

As indicated in section 5.5, it is worth to extract not only recognition rules , but 
also to have semantic rules as in attribute grammars, so that our CFGs will come 
along with some meaningful output. This idea would obviate the need for a 
second unification-based grammar that replays the CF derivations for the mere 
purpose of semantic construction. However, a third line can be taken here by 
employing ideas from Diagne et al. 1995, Kasper and Krieger 1996, and Kasper 
et al. 1996. Instead of using the full feature structures of a UBG G during 
replay, we only employ the related grammar G' derived from G: rules and lexicon 
entries in G' are exactly the feature structures from G that have been evaporated 
under an appropriate restrict or R (Shieber 1985): G' = G \ R. Since we are 
interested in successful UBG derivations and since we like to keep the CF language 
generalizations in the second replay stage, we delete those constraints on the 
UBG side which potentially lead to a unification failure (mostly the syntactic 
constraints) . In HPSG-I (Pollard and Sag 1987) , specifying the restrict or is easy
mostly the information under SYN must be deleted. And in case we are interested 
in a more shallow semantics, some semantic information from SEM has to be 
deleted too. 

8The shallow processor SProUT (Becker et al. 2002, Krieger et al. 2004) is obviously a good 
candidate to implement this task, since it is a unification-based formalism and has the ability 
to read in PET grammars. 
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