AppGuard — Real-time policy en-
forcement for third-party applications

Michael Backes, Sebastian Gerling,
Christian Hammer, Matteo Maffei,
and Philipp von Styp-Rekowsky

Technischer Bericht Nr. A/02/2012

AppGuard - Real-time policy enforcement
for third-party applications

Michael Backes!? Sebastian Gerling?

Christian Hammer! Matteo Maffeil

Philipp von Styp-Rekowsky!

L Saarland University
2 Max Planck Institute for Software Systems

Abstract

Android has become the most popular operating
system for mobile devices, which makes it a promi-
nent target for malicious software. The security
concept of Android is based on app isolation and
access control for critical system resources. How-
ever, users can only review and accept permission
requests at install time, or else they cannot install
an app at all. Android neither supports permis-
sion revocation after the installation of an app, nor
dynamic permission assignment. Additionally, the
current permission system is too coarse for many
tasks and cannot easily be refined. We present
an inline reference monitor system that overcomes
these deficiencies. It extends Android’s permission
system to impede overly curious behaviors; it sup-
ports complex policies, and mitigates vulnerabili-
ties of third-party apps and the OS. It is the first
solution that provides a practical extension of the
current Android permission system as it can be de-
ployed to all Android devices without modification
of the firmware or root access to the smartphone.
Our experimental analysis shows that we can re-
move permissions for overly curious apps as well as
defend against several recent real-world attacks on
Android phones with very little space and runtime
overhead. AppGuard is available from the Google
Play market!.

1 Introduction

Smartphones and tablet computers have become
our every day companions, providing assistance
and comfort both in business and in our private
lives. In 2008 the Open Handset Alliance, a group
of companies led by Google [1], joined the smart-

https://play.google.com/store/apps/details?id=com.
srt.appguard.mobile

phone market with the open source software stack
Android. By now, it has become the most popular
operating system for these devices [27]. More than
450,000 apps in the official market Google Play and
more than 850,000 activations of new devices per
day demonstrate the success of Android [42].
However, the rapidly increasing numbers of mo-
bile devices also creates a vast potential for misuse
as the development of new security concepts did
not keep pace with the development of new and
fancy features. Mobile devices store a plethora of
information about our personal lives, and their sen-
sors, GPS, camera, or microphone — just to name
a few — potentially track us at all times. Further,
the always-online nature of mobile devices makes
them both interesting and exposed targets for at-
tackers and overly curious or maliciously spying
apps and trojan horses that hide their true na-
ture in an unsuspicious app. For instance, social
network apps were recently criticized for silently
downloading and storing the user’s entire contacts
to the network’s servers [17, 43]. While this behav-
ior became publicly known, users are most often
not even aware of what an app actually does with
their data. Additional complications arise because
even fixes for recent security vulnerabilities in the
Android operating system often take months until
they are integrated into the vendor-specific OS by
all vendors (a process called late updates). Dur-
ing the time between Google’s fix (and the corre-
sponding, publicly available vulnerability descrip-
tion) and the vendor’s update, an unpatched sys-
tem becomes the obvious target for exploits.
Android’s security concept is based on isolation
of third-party apps and access control [2]. Access
to personal information has to be explicitly granted
at install time: During the installation of an app
the user is provided with a list of permissions the
app requests. The user can either accept all of
these permissions, or else the app will not be in-

https://play.google.com/store/apps/details?id=com.srt.appguard.mobile
https://play.google.com/store/apps/details?id=com.srt.appguard.mobile

stalled. Users can neither dynamically grant and
revoke permissions at runtime, nor add restrictions
according to their personal needs. Furthermore,
users are often not aware of a permission’s impact.
They usually do not have enough information to
judge whether a permission is indeed required to
fulfill a certain task. Research has shown that this
is the case even for Android app developers [24, 28].

In order to overcome the current limitations with
Android’s permission system, researchers have pro-
posed several approaches. Some work [40, 39, 38,
12] focuses on extending the current permission
system, e.g. to prevent critical permission com-
binations [20] (e.g. camera and Internet access
could be used to implement a bug), but most
work [9, 19, 28, 18, 29, 41] targets the detection
of privacy leaks and malicious third-party apps.
While most of these approaches solve one particular
problem in theory, the vast majority of these sys-
tems rely on modifications of the underlying soft-
ware stack, which prevents deployment to off-the-
shelf Android phones. So far, no solution simulta-
neously removes permissions for overly curious be-
havior, supports fine-grained security policies, pre-
vents malicious applications from exploiting secu-
rity vulnerabilities, and is easily deployed on all
existing Android devices.

1.1 Contributions

In this paper we present a novel policy-based se-
curity framework for Android that overcomes the
aforementioned limitations of Android’s security
system. Our approach proposes solutions for a va-
riety of situations, in particular for:

1. Revoking Android permissions dynamically.
Permissions can be granted and revoked at any
time after installation of an app. We support
graceful revocation by selectively suppressing
undesired operations without terminating the
program.

2. Enforcing complex stateful and fine-grained se-
curity policies. Policies can transform the se-
quence of program actions in case the program
deviates from the security policy. We support
all predicates over that sequence as security
policy, which enables enforcement of any secu-
rity property [37].

3. Policy-based quick-fires for wvulnerabilities in
third-party applications. When an app uses the
API in an insecure way, we can transform the
execution to leverage alternative, secure func-

tionality. While it would be cleaner to fix the
app directly, a rapid work-around provides a
temporary solution until the vendor provides
an update.

4. Policy-based mitigation for vulnerabilities in
the operating system itself [10]. Known OS
vulnerabilities pose a major threat to system
security. Our framework defends against ma-
licious apps that try to exploit a vulnerability,
which is paramount to relieve the late update
problem, where vendors integrate the fix at a
later time than Google, or do not provide se-
curity patches at all.

We have built a prototypical implementation called
AppGuard that supports all features listed. Our
system does not require any modification to the
core software stack of the Android device and thus
supports widespread deployment as a stand-alone
app. AppGuard is based on inline reference mon-
itoring [21]. It takes user-defined policies as input
and delivers a secured self-monitoring app. Our
evaluation on typical Android apps has shown very
little overhead in terms of space and runtime. The
case studies demonstrate the effectiveness of our
approach: we successfully limit the excessive cu-
riosity of apps, demonstrate complex policies and
prevent several recent real-world attacks on An-
droid phones. To the best of our knowledge, this
is the first defense against these attacks on phones
with standard firmware.

2 The Android Monitor

Android’s current permission system fails to ad-
dress some challenges of mobile applications: apps
basically dictate the permissions deemed necessary
and users have to grant them as requested short of
not installing the application. Therefore, the in-
dividual security requirements of users are ignored
as they are not really given a choice. In particu-
lar, they are unable to grant each permission in-
dividually and to grant and revoke certain permis-
sions at a later time. This deficiency becomes par-
ticularly severe as not only users have problems
with Android’s permission system. Song et al. [24]
have shown that even application developers have
problems requesting the “correct” permissions for
the functionality of their applications, since the
Android documentation lacks completeness. If in
doubt, they will therefore request too many per-
missions in order to make their application work.
Our AppGuard puts the user back in charge of

application permissions. With our system users are
given the opportunity to decide both at installa-
tion time of an app, as well as at any later point in
time what an app is allowed to access. AppGuard
provides more fine-grained policies than Android
does itself, and, in contrast to other proposed solu-
tions [38, 12], it is oblivious of the installed Android
firmware. It can be installed on all existing Android
phones without modifying the core system, which
enables wide-spread deployment.

Runtime policy enforcement for third-party ap-
plications is not an easy feat on unmodified An-
droid systems. Android’s security concept strictly
isolates different applications installed on the same
device, preventing them from interfering with each
other at runtime. Furthermore, applications can-
not gain elevated privileges that would enable them
to observe the behavior of other applications. Com-
munication between apps is only possible via An-
droid’s inter-process communication (IPC) mech-
anism. So far, such communication requires both
parties to cooperate, rendering this channel unsuit-
able for a generic runtime monitor.

AppGuard tackles this open problem by fol-
lowing an approach pioneered by Erlingsson and
Schneier [22] called inline reference monitor (IRM).
The basic idea is to rewrite an untrusted applica-
tion such that the code that monitors the applica-
tion is directly embedded into its code. To this end,
IRM systems incorporate a rewriter or inliner com-
ponent, that injects additional security checks at
critical points into the application bytecode. This
enables the monitor to observe a trace of security-
relevant events, which typically correspond to invo-
cations of trusted system library methods from the
untrusted application. To actually enforce a secu-
rity policy, the monitor controls the execution of
the application by suppressing or altering calls to
security-relevant methods, or even by terminating
the program if necessary.

In the IRM context, a policy is typically speci-
fied by means of a security automaton that defines
which sequences of security-relevant events are ac-
ceptable. Such policies have been shown to express
exactly the policies enforceable by runtime moni-
toring [45]. Ligatti et al. differentiate security au-
tomata by their ability to enforce policies by ma-
nipulating the trace of the program [37]. Some IRM
systems [22, 15] implement simple truncation au-
tomata, which can only terminate the program if
it deviates from the policy. However, this is often
undesirable in practice. In their paper [37], Lig-

atti et al. formulate the notion of edit automata,
which can transform the program trace by insert-
ing or suppressing events. Monitors based on edit
automata are able to react gracefully to policy vi-
olations, e.g. by suppressing an undesired method
call and returning a dummy value, but allowing the
program to continue.

AppGuard is an IRM system for Android with
the transformation capabilities of an edit automa-
ton. Figure 1 provides a high-level overview of our
system. We distinguish three main components:

1. A set of security policies. AppGuard provides
various Android-specific security policies that
govern access to platform API methods that
are protected by coarse-grained Android per-
missions. These methods comprise e.g. meth-
ods for reading personal data, creating net-
work sockets, or accessing device hardware like
the GPS or the camera. As a starting point for
the security policies, we used the Android per-
mission map by Song et al. [24].

2. The program rewriter. Android applica-
tions run within a custom register-based Java
VM called Dalvik. Our rewriter manipulates
Dalvik executable (dex) bytecode of untrusted
Android applications and generates monitor-
ing code according to the policies to harness
the untrusted app.

3. A management component. It offers a graph-
ical user interface that allows the user to
set individual policy configurations on a per-
application basis. In particular, policies can
be turned on or off and be parameterized. In
addition, the management component keeps a
detailed log of all security-relevant events, en-
abling the user to monitor the behavior of an
application.

3 Implementation

AppGuard is a stand-alone Android application
written in pure Java and comprises about 6500 lines
of code. It builds upon the dexzlib library, which is
part of the smali disassembler for Android by Ben
Gruver [32], for manipulating dex files. The size of
the application package is roughly 750 Kb.

3.1 Policies

In our system, a policy is defined by a set
of security-relevant method signatures and corre-
sponding callback methods. In our system poli-

\

—_—

Policies

-

CLLLLLL LD O

Rewriter

Monitor

O

App

logging

Figure 1: Schematics of the AppGuard

cies are implemented as Java classes. The callback
methods are mapped to a set of method signatures
using a custom method annotation MapSignatures.
Consider Fig. 2 as a basic example. This policy
guards access to the openConnection() method in
the java.net.URL class and only allows connections
to the host “wetter.com”.

A policy callback method gains access to the
arguments of the original method call by declar-
ing an equivalent list of parameters. In our ex-
ample, the checkConnection(URL) callback method
uses the URL parameter to decide whether a con-
nection should be allowed. If allowed, the callback
method will simply return such that the original
method call can proceed. If the connection is not
allowed, an exception will be thrown that is either
caught by the surrounding application code or by
a synthetic handler introduced by the inliner. In
both cases the original method call will be pre-
vented by this scheme. Details will be discussed
in the next subsection.

Furthermore, policies can be stateful and store
security state information in member variables of
the policy class. The values of these variables
are preserved across callback method invocations.
Member variables could also be used to store the
complete history of intercepted methods.

In general, policy callbacks can perform arbi-
trary operations. As an example, consider a policy
that intercepts http connections and relays them to
encrypted https, if available (cf. Fig. 3.) After call-
ing the original method with the new arguments, it
throws an exception containing the returned value,
which will be substituted for the return value of the
original method as described in the next section.

3.2 Inliner

The task of the inliner component is to divert the
control flow of the target application to the moni-
toring code at invocation instructions to security-
relevant methods. There are two strategies for
passing control to the monitor: Either at the call-
site in the application code, right before the invo-
cation of the security-relevant method, or at the
callee-site, i.e. at the beginning of the security-
relevant method. The latter strategy is simpler
and more efficient, because callee sites are easier
to identify and less in number [5]. Unfortunately,
callee-site rewriting is not applicable in our sce-
nario, as security-relevant methods are declared in
the trusted Android platform libraries, which are
part of the non-modifiable firmware image. Thus,
our inliner implements a call-site control flow di-
version strategy. The inlining process consists of
three steps:

1. Merging the policy classes into the target ap-
plication’s classes .dex file, which contains all
Dalvik bytecode for the app.

2. Generating the MonitorInterface, which serves
as a bridge between application code and poli-
cies.

3. Injecting monitoring code around invocations
of security-relevant methods.

The policy classes are stored precompiled in a sep-
arate dex file. In the first step, the inliner copies all
class declarations from this file to the classes .dex
file of the untrusted application.

In order to connect invocations of security-
relevant methods to their policy callbacks, the in-
liner generates a utility class called MonitorInterface
as the second step of the process. For each
security-relevant method specified by the policies,
the inliner generates a static guard method in the
MonitorInterface class. The purpose of this guard

class InternetPolicy extends Policy {

@MapSignatures({"Ljava/net/URL;->openConnection()"})
public void checkConnection(URL url) throws Exception {

if (!"wetter.com".equals(url.getHost()))
throw new IOException();

+}

Figure 2: Example policy protecting calls to java.net.URL.openConnection().

The callback method

checkConnection(URL) allows connections to one host only.

class HttpsRedirectPolicy extends Policy {

@MapSignatures({"Ljava/net/URL;->openConnection()"})
public void checkConnection(URL url) throws Exception {

if (redirectToHttps(url)) {

URL httpsUrl = new URL("https", url.getHost(), url.getFile());
URLConnection returnValue = httpsUrl.openConnection();

throw new MonitorException(returnValue);

13}

Figure 3: Example policy that redirects http connections to https if available.

method is two-fold: First, callback methods of dif-
ferent policies may be defined for a single security-
relevant method. Thus, the guard method invokes
all policy callbacks defined for this method signa-
ture. Second, the guard method shares the signa-
ture of the security-relevant method, including the
receiver object for virtual calls, which is passed as
the first method argument, if available. Thus, calls
to the MonitorInterface require only minimal mod-
ifications to the application code.

In the final step, the inliner identifes all call sites
of security-relevant methods. If a matching in-
struction is found, the inliner adds monitoring code
around the method call as depicted in Fig. 4 in the
appendix. First, a method call to the correspond-
ing guard method in the MonitorInterface is inserted
right before the invocation of the security-relevant
method. Second, the inliner adds a new try/catch-
block around the inserted guard and the original
method call. This block enables policy callbacks
to pass a return value to the application code if
the original call is suppressed, which also allows
to protect security-relevant constructor methods.
To this end, policy callbacks can throw a special
MonitorException that carries the return value to
the application code. In the inserted catch block
this value is assigned to the intended variable (pos-
sibly after type conversion).

As pointed out earlier, another option for the
policy is to throw an exception that will be caught
by the original application code. Our example pol-
icy in Fig. 2 makes use of this technique: If a con-
nection is not allowed, the policy callback throws

an IOException, which resembles the behavior of
the original URL->openConnection() method if a
connection error occurs.

3.3 Management

The management component of AppGuard allows
for monitoring the behavior of inlined apps and for
configuring policies at runtime. The policy config-
uration is provided to the inlined app as a world-
readable file. Its location is hardcoded into the
monitor code during the inlining process. This is
motivated by the fact that invocations of security-
relevant methods can occur before the inlined ap-
plication is fully initialized and able to perform An-
droid ITPC.

The management component provides a log of all
security-relevant events, which enables the user to
make informed decisions about the current policy
configuration. The log is maintained based on the
security-relevant method invocations encountered
in the self-monitoring application, which sends its
events to the management application. For this di-
rection of the communication we are leveraging a
standard Android Service component. The asyn-
chronous nature of Android IPC is not an issue,
since security-relevant method invocations that oc-
cur before the service connection is established are
buffered locally.

3.4 Challenges

In our implementation we faced two main difficul-
ties: The handling of reflection and the handling
of virtual methods. In the following we will discuss
both in detail.

3.4.1 Reflection

The Java Reflection API enables the inspection and
manipulation of classes, fields, methods, and con-
structors at runtime without knowing their names
at compile time. It can also be used to instanti-
ate new objects and to invoke methods. The latter
two features are relevant to our IRM system as they
provide alternative ways to invoke security-relevant
methods without their signatures appearing in the
application bytecode.

We deal with reflection by monitoring critical
methods of the Reflection API. To this end, we
implement a ReflectionPolicy that guards invo-
cations of java.lang. reflect . Method->invoke(),
Constructor->newlInstance(), and java.lang.
Class->newlnstance(). Whenever one of these
methods is invoked, the policy identifies the target
method of the reflective call by inspecting the
method parameters. If the target matches a
security-relevant method, the policy reflectively
invokes the corresponding guard method in the
MonitorInterface with the arguments of the reflec-
tive call. This scheme ensures that the Reflection
API cannot be used to circumvent the inlined
monitor.

3.4.2 Virtual methods

Virtual methods are a core concept of object-
oriented programming. The target of a virtual
method invocation is not determined statically, but
dynamically based on the runtime type of the re-
ceiving object. More specifically, an invoke-virtual
instruction with static target A->m can be resolved
to any method B->m at runtime, where B is a sub-
class of A or A itself. Thus, virtual method invo-
cations require special treatment by our inliner.
We analyze the class hierarchy of application
code before the rewriting step and identify classes
that inherit security-relevant methods. If a class
does not override the security-relevant method, we
add the signature of the inherited method to the set
of security-relevant methods. The new signature
is associated with the same guard method as the
security-relevant method in the base class. If the

class does override a security-relevant method, we
can safely ignore invocations referencing the over-
ridden method because any calls to the base class
within the overridden method will be already pro-
tected by the inliner.

At the current state of the implementation, pol-
icy callbacks have to examine the runtime type of
the receiver if they want to parameterize according
to the target object. In our experiments, we have
not encountered any case where this was required.

3.5 Deployment

In comparison to existing approaches AppGuard’s
novel security framework can be used on existing
Android phones without requiring any changes to
the operating system. In particular, it does not
require root access to the smartphone at any time.

Third party applications installed on Android
are usually assigned distinct user ids. By default,
application A can neither access nor modify appli-
cation B.? Therefore, our rewriter cannot simply
modify already installed applications. Instead, we
leverage the fact that installation packages of third
party applications can be read from the file system
by any application. We read and unpack the ap-
plication packages of the application to be secured,
inline the security monitor, and finally repackage
and reinstall the application. In order to start this
installation process, the user is asked in a prepara-
tory step to uninstall the existing version of the
application. Afterwards, it is possible to install the
repackaged application without further problems.

As mentioned, all Android applications need to
be signed with a developer key. Since our rewriting
process breaks the original signature, we sign the
modified app with a new key. However, apps signed
with the same key can access each other’s data if
they declare so in their manifests. Thus, rewritten
apps are signed with keys based on their original
signatures in order to preserve the intended behav-
ior. In particular, two apps that were originally
signed with the same key, are signed with the same
new key after the rewriting process.

Moreover, we ask the user to enable the OS-
option to allow installation of apps that have not
been signed by the Google Android market. Due
to these two user interactions, no additional root
privileges are required for AppGuard.

2 Applications signed with the same developer key and
those that have the “shared user id”-flag set constitute spe-
cial cases.

4 Experimental Evaluation

In this section, we present the results of our exper-
imental evaluation. It focuses on the performance
of our framework and the evaluation of its effec-
tiveness in different case studies. As testbed we
used the Google Galaxy Nexus smartphone with
Android 4.0.2. It has a dual-core 1.2 GHz ARM
CPU from Texas Instruments (OMAP 4460) and
features 1GB RAM. For our off-the-phone evalu-
ation we use a notebook with an Intel Core i5-
2520M CPU (2.5 Ghz, two cores, hyper-threading)
and 8GB RAM.

4.1 Performance Evaluation

AppGuard modifies apps installed on an Android
device by adding code at the bytecode level. We
analyze the time it takes to inline an app and its
impact on both size and execution time of the mod-
ified app.

Table 1 provides an overview of our performance
evaluation for the inlining process. We have tested
AppGuard with 13 apps and inlined each of the
apps with 9 policies (cf. section 4.2 for details on
the policies). In particular, we list the following
results for each of the apps: size of the original
application package (Apk), size of the classes .dex
file before and after the inlining process (Dex and
Inl, respectively) and the resulting file size differ-
ence (Diff), total number of instructions in the
application code (Total), number of instructions
that have been instrumented by the inliner (Chg),
and, finally, the duration of the whole inlining pro-
cess, both on the laptop and smartphone (PC and
Phone, respectively).

The size of the classes .dex file increases on av-
erage by approximately 45 Kb. The majority of
this increase results from merging the monitoring
framework and policy class definitions into the ap-
plication code, while the inserted security checks
only have a minor influence on the file size. The
applications in our benchmark exhibit significant
differences in the total number of instructions as
well as in the size of the application package. These
differences are reflected in the execution times of
the inliner. In most cases, the total instruction
count has the largest impact on the runtime, as
all instructions in the application code need to be
scanned in order to identify invocations of security-
relevant methods. For a few apps (e.g. Angry
Birds), however, the runtime is dominated by re-
building and compressing the application package

file (which is essentially a zip archive). The evalua-
tion also clearly reveals the difference in computing
power between the laptop and the phone. While
the inlining process takes considerably more time
on the phone than on the laptop, we argue that
this should not be a major concern as the inliner is
only run once per application.

The runtime overhead introduced by the in-
line reference monitor is measured through micro-
benchmarks (cf. Table 2.) We compare the exe-
cution time of single function calls in three differ-
ent settings: the original code with no inlining as
well as the inlined code with disabled and enabled
policies (i.e. policy enforcement turned on or off) .
Additionally, we present the overhead incurred for
the case where policies are disabled. We list the
average execution time for each function call. For
the case where we enforce policies we prevent the
execution of the respective function.

For all function calls the instrumentation adds
a small runtime overhead due to additional code.
However, when enabled policies prevent the partic-
ular function call, the control flow change leads to
a smaller overall execution time. Therefore, it is
incomparable to the other execution times, so that
we compute the overhead only for the disabled poli-
cies. In either case, the incurred runtime overhead
is negligible and does not adversely affect the ap-
plication’s performance.

4.2 Case Study Evaluation

The conceptual design of AppGuard focuses on
flexibility and introduces a variety of possibili-
ties to enhance Android’s security features. In
this section, we evaluate our framework in sev-
eral case studies by applying different policies to
real world apps from Google’s application market
Google Play [30]. As a disclaimer, we would like
to point out that we use apps from the market for
exemplary purposes only, without implications re-
garding their security unless we state this explicitly.

For our evaluation, we implemented 9 differ-
ent policies. Five of them are designed to revoke
critical Android platform permissions, in partic-
ular the Internet permission (InternetPolicy), ac-
cess to camera and audio hardware (CameraPolicy,
AudioPolicy), and permissions to read contacts and
calendar entries (ContactsPolicy, CalendarPolicy).
Furthermore, we introduce a complex policy that
tracks possible fees incurred by untrusted ap-
plications (CostPolicy). The HttpsRedirectPolicy

Table 1: Inliner Evaluation: sizes of apk file, classes.dex, inlined classes.dex, diff. of dex file, # of total
and changed instructions, inlining time on PC and phone.

App (Version) Size [Kb] Instructions | Time [sec]
Apk |Dex | Inl | Diff | Total | Chg |PC | Phone
Angry Birds (2.0.2) 15018 | 994 | 1038 | +44| 79311 | 100 6.5 43.4
Barcode Scanner (4.0) 508 | 352| 397 | +45| 46337 31 1.8 4.1
Chess Free (1.55) 2240| 517 +45 | 52615 71 3.2 7.9
Dropbox (2.1.1) 3252 | 869 | 913 | +44| 90334 8| 1.9 14.1
Endomondo (7.0.2) 3263 | 1635 | 1680 | +45 | 134452 88| 2.6 23.0
Facebook (1.8.3) 4013 | 2695 | 2744 | +48 224285 | 218 3.2 47.3
Instagram (1.0.3) 12901 | 3292 | 3337 | +46| 254032 | 137| 4.2 66,4
Post mobil (1.3.1) 858 | 1015 | 1056 | +41| 84407 58| 1.7 11.6
Shazam (3.9.0) 3904 | 2642 | 2690 | +48|259644 | 221 2.8 47.5
Tiny Flashlight (4.7) | 1287 | 485 +46 | 46878 | 109| 1.8 7.3
Twitter (3.0.1) 2218 | 764 | 813 | +48|105594| 107| 3.6 16.7
Wetter.com (1.3.1) 4296 | 958 | 1000 | +43| 89655 36 2.2 15.7
WhatsApp (2.7.3581) | 5155|3182 |3230 | +48|437874| 235 3.0 57.5

Table 2: Runtime comparison with micro-benchmarks for function calls in unmodified apps and inlined
apps with policies disabled and enabled. The runtime overhead is presented for the inlined app with

disabled policies.

Function Call Original

App

Pol. disabled|Pol. enabled

Inlined App Overhead

Socket-><init>() 0.2879 ms
ContentResolver->query()[10.484 ms
Camera->open() 150.8 ms

0.3022 ms 0.0248 ms 5.0%
11.138 ms 0.1 ms 6.2%
152.36 ms 0.6 ms 1.0%

and MediaStorePolicy address security issues in
third-party apps and the OS. Finally, the
ReflectionPolicy described in section 3.4.1 monitors
invocations of Java’s Reflection API. In the follow-
ing case studies, we highlight 6 of these policies and
evaluate them in detail on real-world apps.

Our case studies focus on (a) the possibility to
revoke standard Android permissions - which is ar-
guably the feature Android users desire most. Ad-
ditionally, it is possible to (b) enforce fine-grained
permissions that are not supported by Android’s
existing permission system, and, (c) to enforce
complex and stateful policies based on the current
execution trace. Finally, our framework provides
quick-fixes and mitigation for vulnerabilities both
in (d) third-party apps and (e) the operating sys-
tem.

(a) Revoking Android permissions

Many Android applications request more permis-
sions than necessary for achieving the intended
functionality. A prominent example is the Internet
permission android.permission. INTERNFET, which

allows sending and receiving arbitrary data to and
from the Internet. Although the majority of appli-
cations requests this permission, it is not required
for the core functionality of an app in many cases.
It is often used just for providing in-app advertise-
ments. However, overly curious apps that, e.g., up-
load the user’s entire contact list to their servers,
and even trojan horses are recently reported on a
regular basis. Unfortunately, users cannot simply
add, revoke, or configure permissions dynamically
at a fine-grained level. Instead, users have to de-
cide at installation time whether they accept the
installation of the app with the listed permissions
or they reject them with the consequence that the
app cannot be installed at all.

AppGuard overcomes this unsatisfactory all-or-
nothing situation by giving users the chance to
safely revoke permissions at any time at a fine-
grained level. We aim at a “safe” revocation of
permissions, so that applications with revoked per-
missions will not be terminated by a runtime ex-
ception. To this end, we carefully provide proper

dummy return values instead of just blocking un-
safe function calls [35]. We tested the revocation of
permissions on several apps, of which we highlight
two in the following.

Case study: Twitter

As an example for the revocation of permissions, we
chose the official app of the popular micro-blogging
service Twitter. It recently attracted attention in
the media [43] for secretly uploading phone num-
bers and email addresses stored in the user’s ad-
dress book to the Twitter servers. While the app
“officially” requests the permissions to access both
Internet and the user’s contact data, it did not indi-
cate that this data would be copied off the phone.
As a result of the public disclosure, the current
version of the app now explicitly informs the user
before uploading any personal information.

We can stop the Twitter app from leaking any
private information by completely blocking access
to the user’s contact list. The contact data is used
as part of Twitter’s “Find friends” feature that
makes friend suggestions to new users based on in-
formation from their address book. Since friends
can also be added manually, AppGuard leverages
the ContactsPolicy to protect the user’s privacy at
the cost of losing only minor convenience function-
ality. Actual policy enforcement is done by moni-
toring queries to the ContentResolver, which serves
as a centralized access point to Android’s various
databases. Data is identified by a URI, which we
examine to selectively block queries to the contact
list by returning a mock result object. Our tests
were carried out on an older version of the Twitter
app, which was released prior to their fix.

Case study: Tiny Flashlight

The core functionality of the Tiny Flashlight app
is to provide a flaghlight, either using the camera’s
LED flash, or by turning the whole screen white.
At installation time, the app requests the permis-
sions to access the Internet and the camera. Man-
ual analysis indicates that the Internet permission
is only required to display online advertisements.
However, in combination with the camera permis-
sion this could in principle be abused for spying
purposes, which would be hard to detect without
further detailed code or traffic analysis. AppGuard
can block the Internet access of the app with the
InternetPolicy (cf. section 3.1 and Fig. 2), which, in
this particular case, has the effect of an ad-blocker.
We monitor constructor calls of the various Socket
classes, the java.net.url.openConnection() method
as well as several other network I/O functions, and

10

throw an IOException if access to the Internet is
forbidden.

Apart from the Internet permission, users might
not easily see why the camera permission is re-
quired for this app. Here, our analysis indicates
that — depending on the actual smartphone hard-
ware — the flashlight can in some cases be ac-
cessed directly, while in others only via the cam-
era interface. Although requesting this permis-
sion seems to be benign for this app, our ap-
proach offers the possibility to revoke camera ac-
cess. We enforce the CameraPolicy by monitoring
the android.hardware.Camera.open() method. The
policy simulates hardware without a camera by
returning a null value. The Tiny Flashlight app
gracefully handles the revocation of the camera
permission by falling back to the screen-based flash-
light solution.

(b) Enforcing fine-grained permissions
Besides the revocation of existing permissions, it
is also possible to design fine-grained permissions
that restrict the access of third-party apps. These
permissions can add new restrictions to a function-
ality that is not yet limited by the current permis-
sion system and to a functionality that is already
protected, but not in the desired way. Here, again,
the Internet permission is a good example. From
the user’s point of view, most apps should only
communicate with a limited set of servers.

The wetter.com app provides weather informa-
tion and should only communicate with its servers
to query weather information. The InternetPolicy
of AppGuard provides fine grained Internet access
enabling a consequent white-listing of web servers
on a per-app basis. For this particular app we re-
strict the Internet access as illustrated in the first
case study and extend it with regular-expression-
based white-listing: ~(.4\.)?wetter\.com$. Similar
to the Tiny Flashlight app, no more advertisements
are shown while the application’s core functionality
is preserved. The refined Internet policy can also
be applied in a general setting as the white-listing
can be configured in the management interface by
choosing from a list of hosts the app has tried to
connect to in the past.

(c) Enforcing complex and stateful policies

Stateless permissions, as discussed in the previous
case studies, cannot be used to enforce policies that
depend on the trace of the current execution. Using
AppGuard it is also possible to implement complex
stateful policies, e.g. to limit the number of text
messages or phone calls to costly numbers, or to

block the Internet access after sensitive information
like contacts or calendar entries has been accessed.
The Post mobil app provided by the Ger-
man postal service Deutsche Post offers, besides
informative services, the possibility to buy
stamps online via premium service calls or
text messages. To limit the cost incurred by
this application, it is necessary to track the
number of previous calls. AppGuard tracks
these numbers and provides the CostPolicy that
limits the number of possible charges. We
monitor the relevant function calls for sending
text messages and for making phone calls, e.g.
android.telephony.SmsManager.send TextMessage().
In order to monitor the start of phone calls, it
is necessary to track so-called Intents, Android’s
message format for inter- and intra-app commu-
nication. Intents contain two parts, an action
to be performed and parameter data encoded
as URI. For example, intents that start phone
calls have the action ACTION_CALL. We track
intents by monitoring intent dispatch methods like
android.app.Activity . startActivity (Intent).

(d) Quick-fixes for vulnerabilities in third-
party apps

Our system can also fix vulnerabilities in third-
party applications. As an example, some appli-
cations still transmit sensitive information over the
Internet via the http protocol. Although most apps
use encrypted https for the login procedures to
web servers, there are still some applications that
return to unencrypted http after successful login,
thereby transmitting their authentication tokens in
plain text over the Internet. Attackers could eaves-
drop on the connection to impersonate the current
user [36].

The Endomondo Sports Tracker uses the https
protocol for the login procedure only, and returns
to the http protocol afterwards, which transmits
the unencrypted authentication token. As the Web
server supports https for the whole session, the
HttpsRedirectPolicy of AppGuard enforces the us-
age of https connections throughout the session
(cf. Fig. 3), which protects the user’s account and
data from identity theft. Instead of opening an http
connection, we open an https connection (cf. the
monitored method invocations in the first case
study). Depending on the monitored function, we
either return the redirected https connection, or the
content from the redirected connection.

(e) Mitigation for operating system vulner-
abilities

11

We also found our tool useful to mitigate operat-
ing system vulnerabilities. As we cannot change
the operating system itself, we instrument all ap-
plications with a global security policy to prevent
exploits.

Case study: Access to photos without a permission
A recent example for an operating system vulnera-
bility is the lack of protection of the user’s photos
on Android phones. Any application can access
these photos on the phone without any permission
check [10]. Together with the Internet permission,
an app could copy all photos to arbitrary servers on
the Internet. This was demonstrated by a proof-of-
concept exploit that — disguised as an inconspicu-
ous timer app — uploads the user’s personal photos
to a public photo sharing site.

Android stores photos in a central media store,
that can be accessed via the ContentResolver ob-
ject, similar to contact data in the first case study.
Leveraging the MediaStorePolicy, we block access
to the stored photos, successfully preventing the
exploit.

Case study: Local cross-site scripting attack
Similar to the mitigation of the photo access bug,
it is also possible to fix security vulnerabilities in
core applications that cannot be inlined directly.
The Android browser that comes with all devices
is vulnerable to a local cross-site scripting attack [3]
up to Android version 2.3.4.

If the Android browser receives VIEW intents
from another app with an http/https URI, it opens
a new browser window and loads the requested web
site. Similarly, it also handles VIEW intents with
a javascript : URI, however, up to Android version
2.3.4, the browser reuses the currently active win-
dow. Consequently, the JavaScript code given in
the intent will be executed in the context of the
current web site, which leads to a local cross-site
scripting vulnerability.

This attack can be mitigated by disallowing this
combination of intents. The InternetPolicy moni-
tors startActivity (Intent) calls and throws an ex-
ception if the particular intent is not allowed. The
same approach can be leveraged to preclude third-
party apps with no Internet permission from using
intents with an http/https URI to send data to ar-
bitrary servers on the Internet.

4.3 Discussion

The presented framework solves a pressing secu-
rity problem of the Android platform. Coarse-

grained and static policies like the access control
mechanism of Android open the door for silent
privacy violations and trojan horses, as the user
never sees what an application actually does with
the requested permissions. Our fine-grained dy-
namic policies can, e.g., be used to distrust the app
and only grant a permission once the user finds
that the app does not perform as expected. The
logging-based approach in our tool allows a user to
see which API calls were denied, possibly with the
value of significant parameters. Granting access to
those calls that are deemed necessary with restric-
tions on parameters (like accessible host names)
will eventually lead to a minimal set of permissions
that fulfills the privacy and security needs of a user.

We demonstrated that our solution is practical,
as the runtime overhead and the increase in pack-
age sizes are negligible. The actual runtime over-
head obviously depends on the complexity of the
policy. However, when a policy denies access, the
program will in general take a different execution
path that usually leads to shorter times. The user
experience does not suffer from rewriting the appli-
cation. In particular, we did not notice any delays
using the rewritten app. The rewriting process pro-
ceeds fast even on the limited hardware of a mobile
phone. The inlining time is already reasonable, but
we still see a large potential for reducing this time
with some optimizations.

We outline some challenges and future work in
the following: We currently do not monitor any
code outside of the classes .dex file, in particular
we might miss code in native libraries accessed via
Java’s Native Interface (JNI), dynamically loaded
classes (from external sources), and external pro-
grams accessed via inter-procedure calls.

Android programs are multi-threaded by default.
Issues of thread safety could therefore arise in the
monitor. While we do not yet offer policies that
take the relative timing of method calls in different
threads into account, we plan to extend our system
to support race-free policies [13] in the future.

5 Related Work

Since the release of Android in 2008, researchers
have worked on various security aspects of this
operating system and proposed many security en-
hancements.

One line of work analyzed Android’s permission
based access control system. Barrera et al. [4] have
conducted an empirical analysis of Android’s per-

12

mission system on 1,100 Android applications and
suggested improvements to its granularity. In 2011,
Felt et al. [25] analyzed the effectiveness of ap-
plication permissions using case studies on Google
Chrome extensions and Android apps.

The inflexible and coarse-grained permission sys-
tem of Android inspired many researchers to pro-
pose extensions. In 2009, Ongtang et al. [40] ex-
tended the current permission system for inter-app
communication in a system called Saint. Enck et
al. [20] introduce a policy based system called Kirin
to detect malware candidates at install time based
on an app’s permissions. In 2010, Ongtang et al.
introduce a policy-based system called Porscha [39]
for digital rights management on smartphones.
Nauman et al. [38] present a modification of the
Android software stack called Apex that enables
dynamic permission revocations. Conti et al. [12]
go one step further and integrate with CRePE a
context-related policy enforcement mechanism to
the Android software stack. Grace et al. [31] detect
capability leaks on Android by analyzing phone
images of different vendors. In contrast to our
approach, none of these approaches combines a
fine-grained stateful policy enforcement mechanism
with the ability to deploy the system to unmodified
stock Android phones.

Another open problem of the Android system is
the lack of completeness of its documentation. Us-
ing automated testing techniques Felt et al. show
that the mapping of permissions to API-calls is
only insufficiently documented [24]. Even for hon-
est developers it is quite difficult to implement
apps according to the principle of least privilege.
Their analysis showed that roughly one-third of the
tested applications were over-privileged. Vidas et
al. [46] assist Eclipse developers to follow the prin-
ciple of least privilege when programming Android
apps.

Further, some papers focus on problems arising
from inter-app communication. Davi et al. [14]
demonstrate privilege escalation attacks on An-
droid. These attacks are possible when an app ex-
poses permission protected functionality via an in-
terface (intentionally or unintentionally) to an app
without the permission. Felt et al. modify the
Android framework to inspect inter-process com-
munication and to mitigate this problem [26]. Di-
etz et al. [16] and Bugiel et al. [7] address privi-
lege escalation attacks as well. In the latter paper,
the authors show how their approach even detects
Soundcomber, a Android trojan based on covert

channels [44]. Bugiel et al. have recently extended
their framework to additionally detect colluding
apps that aim at an intentional privilege escala-
tion [8].

The concept of inlined reference monitors has re-
ceived considerable attention in the literature. It
was first formalized by Erlingsson and Schneider in
the development of the SASI/PoET/PSLang sys-
tems [23, 22], which implement IRM’s for x86 as-
sembly code and Java bytecode. Several other IRM
implementations for Java followed. Polymer [6] is
a IRM system based on edit automata, which sup-
ports composition of complex security policies from
simple building blocks. The Java-MOP [11] system
offers policy-writers a rich set of formal policy spec-
ification languages. SPoX [33] enforces declarative
aspect-oriented security policies by rewriting Java
bytecode. IRM systems have also been developed
for other platforms. Mobile [34] is an extension to
Microsoft’s .NET Common Intermediate Language
(CIL) that supports certified inlined reference mon-
itoring. Finally, the SSMS.NET Run Time Mon-
itor [15] enforces security policies expressed in a
variety of policy languages for .NET desktop and
mobile applications on Windows phones.

6 Conclusions

We have presented a practical approach to over-
come Android’s limitations regarding secure, user-
driven permission management. The system is
based on an inline reference monitor and can be
deployed to all Android devices as it does not rely
on modifying the firmware. Most prominently, the
system can curb the pervasive overly curious behav-
ior of Android apps. Apart from that, we are able
to enforce complex stateful security policies and
mitigate vulnerabilities of both third-party apps as
well as the OS. Our experimental analysis demon-
strates that the overhead of both space and runtime
are negligible. Further, the case studies illustrate
the prevention of several real-world attacks on An-
droid vulnerabilities.

7 Acknowledgements

This work was supported by the German Ministry
for Education and Research (BMBF) through fund-
ing for the Center for IT-Security, Privacy and Ac-
countability (CISPA) and both the initiative for
excellence and the Emmy Noether program of the

13

German federal government. Further, we would
like to thank Bastian Ko6nings for pointing us to
interesting Android apps.

References

[1] Android.com: Philosophy and Goals | Android
Open Source (2010), http://source.android.
com/about/philosophy.html

Android.com: Security and Permissions
(2012), http://developer.android.com/
guide/topics/security/security.html

Backes, M., Gerling, S., von Styp-Rekowsky,
P.: A Local Cross-Site Scripting At-
tack against Android Phones (2011),
http://www.infsec.cs.uni-saarland.de/
projects/android-vuln/android__xss.pdf

Barrera, D., Kayacik, H.G., van Oorschot,
P.C., Somayaji, A.: A Methodology for Em-
pirical Analysis of Permission-Based Security
Models and its Application to Android. In:
Proc. 17th ACM Conference on Computer and
Communication Security (CCS 2010). pp. 73—
84 (2010)

Bauer, L., Ligatti, J., Walker, D.: A Language
and System for Composing Security Policies.
Tech. Rep. TR-699-04, Princeton University
(January 2004)

Bauer, L., Ligatti, J., Walker, D.: Composing
security policies with polymer. In: Proc. ACM
SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI
2005). pp. 305-314 (2005)

Bugiel, S., Davi, L., Dmitrienko, A., Fischer,
T., Sadeghi, A.R.: XManDroid: A New An-
droid Evolution to Mitigate Privilege Escala-
tion Attacks. Tech. Rep. TR-2011-04, Technis-
che Universitdt Darmstadt - Cased (2011)

Bugiel, S., Davi, L., Dmitrienko, A., Fis-
cher, T., Sadeghi, A.R., Shastry, B.: Towards
Taming Privilege-Escalation Attacks on An-
droid. In: Proc. 19th Annual Network and Dis-
tributed System Security Symposium (NDSS
2011) (2012)

Chaudhuri, A., Fuchs, A., Foster, J.:
SCanDroid: Automated Security Certifica-
tion of Android Applications. Tech. Rep.

http://source.android.com/about/philosophy.html
http://source.android.com/about/philosophy.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf

[11]

[12]

[13]

[15]

[16]

CS-TR-4991, University of Maryland, Col-
lege Park (2009), http://www.cs.umd.edu/
~avik/papers/scandroidascaa.pdf

Chen, B.X., Bilton, N.: Et Tu, Google? An-
droid Apps Can Also Secretly Copy Pho-
tos (2012), http://bits.blogs.nytimes.com/
2012/03/01/android-photos/

Chen, F., Rosu, G.: Java-MOP: A Monitor-
ing Oriented Programming Environment for
Java. In: Proc. 11th International Conference
on Tools and Algorithms for the construction
and analysis of systems (TACAS 2005). vol.
3440, pp. 546-550. Springer-Verlag (2005)

Conti, M., Nguyen, V.T.N., Crispo, B.:
CRePE: Context-Related Policy Enforcement
for Android. In: Proc. 13th International Con-
ference on Information Security (ISC 2010).
pp. 331-345 (2010)

Dam, M., Jacobs, B., Lundblad, A., Piessens,
F.: Security Monitor Inlining and Certifi-
cation for Multithreaded Java. Mathematical
Structures in Computer Science (2011)

Davi, L., Dmitrienko, A., Sadeghi, A.R.,
Winandy, M.: Privilege Escalation Attacks on
Android. In: Proc. 13th International Confer-

ence on Information Security (ISC 2010). pp.
346360 (2010)

Desmet, L., Joosen, W., Massacci, F., Nal-
iuka, K., Philippaerts, P., Piessens, F.,
Vanoverberghe, D.: The S3MS.NET Run
Time Monitor. Electron. Notes Theor. Com-
put. Sci. 253(5), 153-159 (Dec 2009)

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A.
Wallach, D.S.: QUIRE: Lightweight Prove-
nance for Smart Phone Operating Systems. In:
Proc. 20th Usenix Security Symposium (2011)

von Eitzen, C.: Apple: Future iOS release will
require user permission for apps to access ad-
dress book (February 2012), http://h-online.
com/-1435404

Enck, W., Gilbert, P., Chun, B.G., Cox, L.P.,
Jung, J., McDaniel, P., Sheth, A.N.: Taint-
Droid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smart-
phones. In: Proc. 9th Usenix Symposium on

Operating Systems Design and Implementa-
tion (OSDI 2010). pp. 393-407 (2010)

14

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

Enck, W., Octeau, D., McDaniel, P., Chaud-
huri, S.: A Study of Android Application Se-
curity. In: Proc. 20th Usenix Security Sympo-
sium (2011)

Enck, W., Ongtang, M., McDaniel, P.: On
lightweight mobile phone application certifi-
cation. In: Proc. 16th ACM Conference on
Computer and Communication Security (CCS
2009). pp. 235-245 (2009)

Erlingsson, U.: The Inlined Reference Mon-
itor Approach to Security Policy Enforce-
ment. Ph.D. thesis, Cornell University (Jan-
uary 2004)

Erlingsson, U., Schneider, F.B.: IRM Enforce-
ment of Java Stack Inspection. In: Proc. 2002
IEEE Symposium on Security and Privacy
(Oakland 2002). pp. 246-255 (2000)

Erlingsson, U., Schneider, F.B.: SASI enforce-
ment of security policies: a retrospective. In:

Proc. of the 1999 workshop on New security
paradigms (NSPW 1999). pp. 87-95 (2000)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wag-
ner, D.: Android Permissions Demystified. In:
Proc. 18th ACM Conference on Computer and
Communication Security (CCS 2011) (2011)

Felt, A.P., Greenwood, K., Wagner, D.: The
Effectiveness of Application Permissions. In:
Proc. 2nd Usenix Conference on Web Appli-
cation Development (WebApps 2011) (2011)

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna,
S., Chin, E.: Permission Re-Delegation: At-
tacks and Defenses. In: Proc. 20th Usenix Se-
curity Symposium. pp. Want to prevent per-
mission re-delegation attacks. (2011)

Gartner: Gartner Says Worldwide Smart-
phone Sales Soared in Fourth Quarter of
2011 With 47 Percent Growth, http://www.
gartner.com/it/page.jsp?id=1924314

Gibler, C., Crussel, J., Erickson, J., Chen,
H.: AndroidLeaks: Detecting Privacy Leaks in
Android Applications. Tech. Rep. CSE-2011-
10, University of California Davis (2011)

Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.:
Vision: Automated Security Validation of Mo-
bile Apps at App Markets. In: Proc. 2nd In-
ternational Workshop on Mobile Cloud Com-
puting and Services (MCS 2011 (2011)

http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://bits.blogs.nytimes.com/2012/03/01/android-photos/
http://bits.blogs.nytimes.com/2012/03/01/android-photos/
http://h-online.com/-1435404
http://h-online.com/-1435404
http://www.gartner.com/it/page.jsp?id=1924314
http://www.gartner.com/it/page.jsp?id=1924314

[30]

[31]

[32]

[33]

[35]

[37]

Google Play (2012),

com/store

https://play.google.

Grace, M., Zhou, Y., Wang, Z., Jiang, X.:
Systematic Detection of Capability Leaks in
Stock Android Smartphones. In: Proc. 19th
Annual Network and Distributed System Se-
curity Symposium (NDSS 2011) (2012)

Gruver, B.: Smali: A assembler/disassembler
for Android’s dex format, http://code.google.
com/p/smali/

Hamlen, K.W., Jones, M.: Aspect-oriented in-
lined reference monitors. In: Proc. 3rd ACM
SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security (PLAS 2008).
pp. 11-20 (2008)

Hamlen, K.W., Morrisett, G., Schneider, F.B.:
Certified In-lined Reference Monitoring on
NET. In: Proc. 1st ACM SIGPLAN Work-
shop on Programming Languages and Analy-
sis for Security (PLAS 2006). pp. 7-16 (2006)

Hornyack, P., Han, S., Jung, J., Schechter,
S., Wetherall, D.: ”"These Aren’t the Droids
You're Looking For”: Retrofitting Android to
Protect Data from Imperious Applications. In:
Proc. 18th ACM Conference on Computer and
Communication Security (CCS 2011) (2011)

Konings, B., Nickels, J., Schaub, F.: Catching
AuthTokens in the Wild - The Insecu-
rity of Google’s ClientLogin Protocol.

Tech. rep., Ulm University (2011), http:
//www.uni-ulm.de/in/mi/mi-mitarbeiter/
koenings/catching-authtokens.html

Ligatti, J., Bauer, L., Walker, D.: Edit Au-
tomata: Enforcement Mechanisms for Run-
time Security Policies. International Journal
of Information Security 4(1-2), 2-16 (2005)

Nauman, M., Khan, S., Zhang, X.: Apex: Ex-
tending Android Permission Model and En-
forcement with User-defined Runtime Con-
straints. In: Proc. 5th ACM Symposium on
Information, Computer and Communication

Security (ASTACCS 2010). pp. 328-332 (2010)
Ongtang, M., Butler, K.R.B., McDaniel, P.D.:

Porscha: policy oriented secure content han-
dling in Android. In: Proc. 26th Annual Com-
puter Security Applications Conference (AC-
SAC 2010). pp. 221-230 (2010)

15

[40]

[41]

[42]

[44]

Ongtang, M., McLaughlin, S.E., Enck, W.,
McDaniel, P.: Semantically Rich Application-
Centric Security in Android. In: Proc. 25th

Annual Computer Security Applications Con-
ference (ACSAC 2009). pp. 340-349 (2009)

Portokalidis, G., Homburg, P., Anagnostakis,
K., Bos, H.: Paranoid Andoird: Versatile Pro-
tection For Smartphones. In: Proc. 26th An-
nual Computer Security Applications Confer-
ence (ACSAC 2010). pp. 347-356 (2010)

Rubin, A.: Google+ post on the Android
ecosystem (2012), https://plus.google.
com/u/0/112599748506977857728/posts/
Btey7rJBaLF

Sarno, D.: Twitter stores full iPhone contact
list for 18 months, after scan (February 2012),
http://articles.latimes.com/2012/feb/14/

business/la-fi-tn-twitter-contacts-20120214

Schlegel, R., Zhang, K., Zhou, X., Intwala,
M., Kapadia, A., Wang, X.: Soundcomber: A
Stealthy and Context-Aware Sound Trojan for
Smartphones. In: Proc. 18th Annual Network

and Distributed System Security Symposium
(NDSS 2011). pp. 17-33 (2011)

Schneider, F.B.: Enforceable Security Policies.
ACM Transactions on Information and Sys-
tem Security 3(1), 30-50 (2000)

Vidas, T., Christin, N., Cranor, L.F.: Curbing
Android Permission Creep. In: Proc. Work-
shop on Web 2.0 Security and Privacy 2011
(W2SP 2011) (2011)

https://play.google.com/store
https://play.google.com/store
http://code.google.com/p/smali/
http://code.google.com/p/smali/
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214

Original snippet After inlining

URL url = new URL(oc); URL url = new URL(oc);
URLConnnection conn = URLConnection conn;
url.openConnection(); try {

MonitorInterface.checkConnection(url);
conn = url.openConnection();

} catch (MonitorException e) {
conn = (URLConnection) e.value();

}

Figure 4: Iustration of the call-site monitoring code for the security-relevant
method java.net.URL.openConnection().

16

	Introduction
	Contributions

	The Android Monitor
	Implementation
	Policies
	Inliner
	Management
	Challenges
	Reflection
	Virtual methods

	Deployment

	Experimental Evaluation
	Performance Evaluation
	Case Study Evaluation
	Discussion

	Related Work
	Conclusions
	Acknowledgements

