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Short Abstract

In this dissertation, methods for personal positioning in outdoor and indoor envi-
ronments are investigated. The Always Best Positioned paradigm, which has the
goal of providing a preferably consistent self-positioning, will be defined. Further-
more, the localization toolkit LOCATO will be presented, which allows to easily
realize positioning systems that follow the paradigm. New algorithms were devel-
oped, which particularly address the robustness of positioning systems with respect
to the Always Best Positioned paradigm. With the help of this toolkit, three exam-
ple positioning-systems were implemented, each designed for different applications
and requirements: a low-cost system, which can be used in conjunction with user-
adaptive public displays, a so-called opportunistic system, which enables positioning
with room-level accuracy in any building that provides a WiFi infrastructure, and a
high-accuracy system for instrumented environments, which works with active RFID
tags and infrared beacons. Furthermore, a new and unique evaluation-method for po-
sitioning systems is presented, which uses step-accurate natural walking-traces as
ground truth. Finally, six location based services will be presented, which were
realized either with the tools provided by LOCATO or with one of the example
positioning-systems.
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Kurzzusammenfassung

In dieser Doktorarbeit werden Methoden zur Personenpositionierung im Innen- und
Außenbereich von Gebäuden untersucht. Es wird das ,,Always Best Positioned”
Paradigma definiert, welches eine möglichst lückenlose Selbstpositionierung zum
Ziel hat. Weiterhin wird die Lokalisierungsplattform LOCATO vorgestellt, welche
eine einfache Umsetzung von Positionierungssystemen ermöglicht. Hierzu wurden
neue Algorithmen entwickelt, welche gezielt die Robustheit von Positionierungssys-
temen unter Berücksichtigung des ,,Always Best Positioned” Paradigmas angehen.
Mit Hilfe dieser Plattform wurden drei Beispiel-Positionierungssysteme entwick-
elt, welche unterschiedliche Einsatzgebiete berücksichtigen: Ein kostengünstiges
System, das im Zusammenhang mit benutzeradaptiven öffentlichen Bildschirmen
benutzt werden kann; ein sogenanntes opportunistisches Positionierungssystem,
welches eine raumgenaue Positionierung in allen Gebäuden mit WLAN-Infrastruktur
ermöglicht, sowie ein metergenaues Positionierungssystem, welches mit Hilfe einer
Instrumentierung aus aktiven RFID-Tags und Infrarot-Baken arbeitet. Weiterhin
wird erstmalig eine Positionierungsevaluation vorgestellt, welche schrittgenaue,
natürliche Bewegungspfade als Referenzsystem einsetzt. Im Abschluss werden 6
lokationsbasierte Dienste vorgestellt, welche entweder mit Hilfe von LOCATO oder
mit Hilfe einer der drei Beispiel-Positionierungssysteme entwickelt wurden.
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1 INTRODUCTION AND MOTIVATION

Prologue

‘Oh yes’, said Fred, smirking. ‘This little beauty’s taught us more than all the teach-
ers in this school.’
He took out his wand, touched the parchment lightly and said, ‘I solemnly swear that
I am up to no good.’
And at once, thin ink lines began to spread like a spider’s web from the point that
George’s wand had touched. They joined each other, they criss-crossed, they fanned
into every corner of the parchment; then words began to blossom across the top,
great, curly green words, that proclaimed:

Messrs Moony, Wormtail, Padfoot and Prongs
Purveyors of Aids to Magical Mischief-Makers

are proud to present
THE MARAUDER’S MAP

It was a map showing every detail of the Hogwarts castle and ground. But the truly
remarkable thing was the tiny ink dots moving around it, each labelled with a name
in minuscule writing. Astounded, Harry bent over it. A labelled dot in the top left
corner showed that Professor Dumbledore was pacing his study; the caretaker’s cat,
Mrs Norris, was prowling the second floor, and Peeves the poltergeist was currently
bouncing around the trophy room. And as Harry’s eyes travelled up and down the
familiar corridors, he noticed something else.

This map showed a set of passages he had never entered. And many of them seemed
to lead –
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‘Right into Hogsmeade,’ said Fred, tracing one of them with his finger.

As Harry stood there, flooded with excitement, something he had once heard Mr
Weasley say came floating out of his memory.

Never trust anything that can think for itself, if you can’t see where it keeps its brain.

This map was one of those dangerous magical objects Mr Weasley had been warn-
ing against . . . Aids to Magical Mischief-Makers . . . but then, Harry reasoned, he only
wanted to use it to get into Hogsmeade, it wasn’t as though he wanted to steal any-
thing or attack anyone . . . and Fred an George had been using it for years without
anything horrible happening . . .

Harry traced the secret passage to Honeydukes with his finger.

Then, quite suddenly, as though following orders, he rolled up the map, stuffed it
inside his robes, and hurried to the door of the classroom. He opened it a couple
of inches. There was no one outside. Very carefully, he edged out of the room and
slipped behind the statue of the one-eyed witch.

What did he have to do? He pulled out the map again and saw, to his astonishment,
that a new ink figure had appeared upon it, labelled ‘Harry Potter’. The figure was
standing exactly where the real Harry was standing, about halfway down the third-
floor corridor. Harry watched carefully. His little ink self appeared to be tapping the
witch with his minute wand. Harry quickly took out his real wand and tapped the
statue. Nothing happened. He looked back at the map. The tiniest speech bubble had
appeared next his figure. The word inside said ‘Dissendium’.

‘Dissendium!’ Harry whispered, tapping the stone witch again.

At once, the statue’s hump opened wide enough to admit a fairly thin person.

Taken and compiled from: HARRY POTTER AND THE PRISONER OF ASKABAN by
Joanne K. Rowling © J.K. Rowling 1999
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1.1 Introduction

Many of the magical artifacts that Joanne K. Rowling describes in her world-famous
Harry Potter novels can be achieved in the real world through the use of modern
information technology. In general, movies or novels can be great inspirations for IT
applications. As creative writers of screenplays or novels do not have to care much
about the technical feasibility of their ideas, they are free to envision any features that
are useful for their current plot. In [Schmitz et al., 2008] and [Endres et al., 2010],
movies were analyzed to find new human-computer interaction paradigms and ways
to personalize user-interfaces in automotive applications. The Marauder’s Map from
the excerpt above was, for example, the inspiration for a system called Marauder’s
Light ([Löchtefeld et al., 2009]).

The main topic of this thesis is positioning, and Harry Potter’s ‘Marauder’s Map’
from the excerpt above is an example for an application, which is based on position-
ing. In the novel, the Marauder’s Map is a piece of parchment, which shows a map of
Harry’s school as well as a part of the neighborhood. Furthermore, the positions of
all people wandering about in the school are shown, including the position of Harry
himself. With the map, Harry is able to find a secret passage to a nearby village and
in order to help him gain access to the passage the map assists him by showing the
needed actions.

1.1.1 Context-Aware Applications

In general, such an application that uses the current context of a user, is called a
Context-Sensitive application. [Schilit et al., 1994] identify three important aspects
of context as: ‘where you are, who you are with and what resources are nearby’. All
three aspects are considered in the Marauder’s Map, where the first two are covered
by showing the positions of Harry and others, and the last one by showing one or
more secret passages. It can also be seen that position or location is a very important
aspect of context. A more general definition of context is given by [Dey, 2001]:

Definition 1.1 (Context) ‘Context is any information that can be used to character-
ize the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves.’

Services that specifically use the position of a user are called Location-Based Ser-
vices, or LBS for short. A definition for LBS is given in [Virrantaus et al., 2001]:
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Definition 1.2 (Location-Based Service) ’LBSs are services accessible with mobile
devices through the mobile network and utilizing the ability to make use of the loca-
tion of the terminals.’

Location-based services are thus a subset of context-aware services or applications.
When seeing the Marauder’s map as a mobile device and abstracting away the mobile
network as being some sort of magic, it fulfills the definition of an LBS.

A further interesting concept can be identified in the excerpt above: the map deter-
mines that Harry is not able to open the entrance to the secret passage and automat-
ically presents useful information to assist him. Such behavior, i.e. giving further
information without the user specifically asking for it, is called proactive. The oppo-
site behavior, in which the user specifically requests information, is called reactive.

Prominent examples in the real world that come close to the Marauder’s Map are
navigation systems for cars. The route planning of such a navigation system is usu-
ally reactive, i.e. a user has to at least specify their destination. The navigation itself,
i.e. giving navigation instructions and potential recalculation of the route because of
deviations, is proactive. Based on map material and the current position of the vehi-
cle, the system can derive when a user has to take a turn and can give them further
assistance. If the current position veers away from the planned route, the system can
infer that the user has possibly lost their way or is following a deviation unknown
to the system and can thus calculate a new route from the current position to the
destination.

Harry’s magic map could use a similar approach to infer that he is having trouble
opening the entrance to the secret passage: if the map knows Harry’s destination –
the next village in the excerpt – and detects that Harry stays in front of the entrance
for a while, it could deduce that he needs further assistance. This example shows that
position information is viable not only for navigation instructions, but also to infer
further knowledge about the current context of a user.

1.1.2 Outdoor Positioning

Is the Marauder’s Map thus already realizable with little technical effort? No. To-
day’s navigation systems use satellite-based positioning systems, for example GPS
(Global Positioning System). As will be seen in Section 2.3.1, the needed reception
of satellite signals can already be disturbed by tall buildings, which form so-called
urban canyons. Inside of a building, even highly sensitive satellite-receivers can only
work satisfactorily near windows and exterior walls. Figure 1.1 shows the reported
positions of a GPS receiver, resting on a windowsill in the first level of building E11
on campus of Saarland University. The shown measurements were obtained over
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Figure 1.1: Positions determined over a course of 25 minutes by a GPS receiver
resting on a windowsill inside building E11 on campus of Saarland University.

a course of 25 minutes after the first position was derived by the GPS receiver (a
Holux1 GPSlim 236). The maximum deviation from the real position in this exam-
ple is 444 meters. A position determination with GPS deep inside a building – or
in a castle as in the case of Harry Potter – is thus highly unrealistic. GPS, or more
generally, Global Navigation Satellite Systems (GNSS), are thus so-called outdoor
positioning systems.

1.1.3 Indoor Positioning

In order to realize positioning inside of a building, different approaches have been
realized, which differ in several aspects: the technology that is used, the positioning
accuracy that they are able to deliver, as well as the deployment and maintenance
costs. These systems are called indoor positioning systems and a de facto standard
– like GPS for outdoor positioning – is not available. This is mainly due to the
investments a building owner or operator would have to make in order to realize
such a system. Although it is possible to derive positions by using already existing
infrastructure, these systems may not provide the needed position accuracy for a
specific application.

1http://www.holux.com/
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1.1.4 Privacy Protection

Personal position information is of course highly sensible. On the Marauder’s Map
Harry can not only see his own position, but also the positions of everybody else in
his vicinity. Moreover, these people are not aware that their positions are revealed
to somebody else. This is obviously a violation of privacy. Maybe this is why the
map is secured with the passphrase ‘I solemnly swear that I am up to no good.’. The
name Marauder’s Map, the term ‘Magical Mischief-Makers’ and the content of the
passphrase itself are of course already hints that the map is intended for misuse. Mr.
Weasley’s remark to ‘never trust anything that can think for itself, if you can’t see
where it keeps its brain’ can also be seen as an appeal for the responsible use of
intelligent systems.

The protection of privacy is thus an important issue when dealing with positioning
systems. Ideally, a positioning system should be designed in such a way that as little
information as possible is revealed to the outside world and thus making it hard for
an interceptor to gain access to positioning information. Furthermore, the sharing of
positioning information should be under full control of the user.

1.1.5 Design Criteria for Positioning Systems

With the considerations from above in mind, several criteria can be specified, which
should be kept in mind when designing a positioning system.

• Accuracy: The accuracy of a positioning system describes how close the de-
rived position is to the real position. In general, the needed accuracy of a
positioning system depends on the application, which makes use of the posi-
tion information. Ideally, a positioning system can be used for any application
and thus its accuracy should be as high as possible.

• Robustness: In principle, a positioning system should always deliver position
information. In practice however, this may not always be possible because the
position determination depends on the available information, e.g. the number
of receivable satellites or the signal quality. It may also depend on the relia-
bility of hardware components, for example the accuracy of the clocks used in
satellites, the sensibility of the used receiver, or even the mechanical or envi-
ronmental resilience of components. A robust positioning system should thus
be able to cope with technical failure as well as degraded signals.

• Cost of Ownership: The cost of ownership of a positioning system can be
divided into the costs for the operator of such a system and the costs for a user,
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who wants to make use of the system. In both cases, the cost should be as low
as possible.

– Infrastructure Cost: If a positioning system needs a dedicated infra-
structure, an operator has to compensate for the cost of installing and
maintaining the needed infrastructure. This includes the cost of the re-
quired hardware as well as expenses for the power consumption and for
potential replacements.

– Cost of Mobile Device: A user of a positioning system may need ad-
ditional hardware to make use of the system, e.g. a GPS receiver and
additional computational hardware to visualize the current position or to
give route instructions.

• Usability and Applicability: A positioning system should also be easy to use
and should be applicable in any situation. For example, carrying a satellite dish
with a diameter of several centimeters may increase signal quality but is hardly
practical during an exploratory tour through a foreign city. Similar considera-
tions come into play when deploying an infrastructure for a positioning system:
voluminous hardware may be profitable for the accuracy or robustness of a po-
sitioning system, but may as well be impracticable due to space constraints or
unsightliness (see also [Schwartz and Jung, 2006]). Several sub-criteria can be
specified for usability and applicability:

– Weight: At least on the user side, the needed hardware should be
lightweight

– Size: The needed hardware for the infrastructure and the user should be
small in size

– Power Consumption: Since the hardware for the user is in general mo-
bile and thus runs on batteries, the power consumption should be as low
as possible. In order to achieve low power consumption, the hardware
itself and the computational complexity of the used algorithms on the
mobile device have to be taken into account.

• Privacy Protection: As mentioned in Section 1.1.4, the privacy of a user of a
positioning system should be protected as well as possible.

Some of these criteria are conflicting with each other, e.g. higher accuracy and higher
robustness can often be achieved through a more expensive infrastructure or more
expensive user hardware. In practice, trade-offs have to be made, which often depend
on the main application or planned application of a positioning system.
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1.1.6 The Always Best Positioned Paradigm

In general, the above mentioned trade-offs are made by the operator of a positioning
system, who may either also provide the needed user hardware or may rely on al-
ready existent hardware on the user side. If a user wants to be able to find out about
their position in as many situations as possible, a solution has to be found, which
enables a preferably broad coverage of positioning in indoor as well as outdoor envi-
ronments. A similar situation is on hand in the area of mobile internet and cell-phone
connectivity. A large variety of technologies for data or speech connections is avail-
able to a mobile user, e.g. GSM (a second generation (2G) cell-phone technology),
GPRS (sometimes dubbed 2.5G), UMTS (3G) and LTE (3.9G). At home and in pub-
lic places and buildings like hotels, airports or libraries, so-called WiFi hotspots are
often available, which allow users to obtain a wireless connection to the internet.

In [Gustafsson and Jonsson, 2003], the concept of Always Best Connected (ABC)
was introduced: ‘The Always Best Connected (ABC) concept allows a person con-
nectivity to applications using the devices and access technologies that best suit his
or her needs, thereby combining the features of access technologies such as DSL,
Bluetooth, and WLAN with cellular systems to provide an enhanced user experience
for 2.5G, 3G, and beyond.’. [Passas et al., 2006] add that the term Best in Always
Best Connected ‘is usually defined separately for each user, as part of his/her pro-
file, and it can be a function of service quality, cost, terminal capabilities, personal
preferences etc. [. . . ] This should be performed with no or minimum intervention
of the user, leading to what is referred to as �invisible network�’. In other words,
the switch between different connectivity technologies should happen proactively, if
possible.

In analogy to the ABC concept, the Always Best Positioned paradigm (ABP
paradigm) can be defined. Similarly to ABC, an ABP system always tries to de-
termine the position of a user, using any means that are currently available to the
system. If an ABP system has access to several positioning technologies at the cur-
rent location, it will try to combine these technologies to achieve an even higher
accuracy. Which technologies are used in a given situation generally depends on two
factors:

• the technical resources directly available to the user, i.e. a mobile device such
as a cellphone and the available senders and sensors of that device

• the available technical resources in the current environment, i.e. the technical
infrastructure, which can also consist of senders and sensors

The potential to gain position information and the possible position-accuracy thus
depends on the technical resources of the user’s device and the environment. As it is
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the case with ABC, the switch between different positioning technologies should be
proactive. An ABP system can thus be defined as:

Definition 1.3 (Always Best Positioned System) An Always Best Positioned Sys-
tem tries to determine a position as accurately as possible in any situation and at
any time using the resources that are accessible at the current location. The ad-
dition and omission of positioning technologies or the switch between positioning
technologies should be proactive and seamless.

The Always Best Positioned Paradigm thus tackles some of the design criteria for
positioning systems from the user’s side of view. In particular the robustness and
accuracy, where the former is influenced by the ability of an ABP system to switch
between several technologies and the latter by the ability to combine several tech-
nologies.

1.2 Research Questions

The main research question answered in this thesis is:

• How can positioning systems be built according to the design criteria spec-
ified in Section 1.1.5? As already mentioned, designing a positioning system
requires trade-offs between single criteria. In Section 1.1.6, the Always Best
Positioned Paradigm was already identified as being essential to address the
user’s need for accuracy and robustness of a positioning system. Therefore,
methods will be investigated in this thesis, which help to realize the Always
Best Positioned paradigm. In addition, a comprehensive toolkit will be de-
signed and implemented, which allows to create positioning systems that can
be tailored to the specific needs of the operator and its users.

In order to answer this main question, the following subquestions must be answered:

• What are the basic methods for position determination in natural organ-
isms? In order to gain a basic understanding of how position determination can
be achieved, interdisciplinary insights on neuropsychology and biology will be
used to identify the basic needs and methods to obtain self-position awareness.

• How can natural self-position awareness be replicated through methods
of Artificial Intelligence? A link between the natural methods and technical
methods of position awareness and position determination will be established.
This link will help to identify basic building blocks of positioning systems.



12 INTRODUCTION AND MOTIVATION

• How can technical positioning methods be classified and what are the im-
plications of the classification? Based on the derived basic building-blocks
of positioning systems, possible design-variations will be analyzed.

• How should a positioning system be designed to protect the privacy of its
users? As the protection of the user’s privacy is one of the design criteria of
positioning systems, the design variations that give the best privacy protection
should be identified. This will be done by analyzing the data flow in possible
positioning-system architectures.

• What are possible methods to build positioning systems following the Al-
ways Best Positioned paradigm? In order to realize the Always Best Posi-
tioned paradigm, a preferably general solution to perform sensor fusion has to
be found. This question will be answered by analyzing known methods for
sensor fusion.

• How far do state-of-the-art positioning systems comply with the specified
design criteria and the Always Best Positioned paradigm? This question
will be answered by conducting a comprehensive analysis of state-of-the-art as
well as classical positioning systems.

• How can positioning systems be evaluated? Since the accuracy is one of the
main design criteria for positioning systems, preferably rigorous evaluation
methods should be found, which take interferences into account instead of
minimizing them. Using the designed toolkit, several positioning systems will
be realized and rigorously tested regarding their accuracy.

1.3 Thesis Outline

In Chapter 2, the basic building blocks of positioning systems are derived by giving
an overview on the neuropsychological view on perception. Based on these find-
ings, the basic building blocks for a position-aware artificial agent are identified and
possible variations are discussed. Furthermore, the chapter gives an introduction to
position representation, the mathematical principles of positioning and an introduc-
tion to Bayesian filtering and Bayesian networks.

Chapter 3 first gives an introduction into GPS and Global Navigation Satellite Sys-
tems in general. Furthermore, the most widespread sender and sensor technologies
will be discussed in detail and example positioning-systems for each technology will
be explained. State of the art single-sensor and multi-sensor positioning systems
will be analyzed and their compliance with the design criteria and the Always Best
Positioned paradigm will be discussed.
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Chapter 4 introduces the Localization Toolkit LOCATO. An overview on its capa-
bilities will be given and its components will be explained in detail. Section 4.2
to Section 4.4 describe three positioning systems that were developed using LO-
CATO. Each system addresses different design criteria. Section 4.2 introduces OUT

OF THE BLUE, a simple but cost-effective tracking system, with emphasis on usage
in conjunction with public displays. UBISPOT, an opportunistic positioning sys-
tem designed for Android devices that can provide position information in various
environments without additional instrumentation, is described and evaluated in Sec-
tion 4.3. Section 4.4 introduces LORIOT, a real-time capable positioning system with
high accuracy, which was designed for instrumented environments. The evaluation
of LORIOT will also be described in detail.

Chapter 5 presents six applications that were realized either with modules of LO-
CATO or by directly integrating one of the implemented positioning systems.

Chapter 6 summarizes the results of this thesis and gives an outlook on future work.
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2 BACKGROUND

2.1 The Advent of Position Awareness

This section describes a general concept, which enables a methodical analysis of
ways how to accomplish the task of positioning.

2.1.1 A Naturalistic Perspective

Positioning is not a purely technical task: Even animals have ways to keep track of
their own position. It can be argued that the problem of positioning, i.e. having some
sense about one’s own location, arises as soon as an organism gains the ability to
propel itself in a controlled fashion.

To elaborate further on this thought, consider a hypothetical low life-form in the Pan-
thalassic Ocean1, with no means of self-locomotion or other ways to influence its own
position. Furthermore, it has no sense of its surroundings, nor of its own position.
Whether or not this life form has access to life-supporting and species-preserving
resources would totally depend on external factors, e.g. ocean currents. Developing
a sense of its own position would therefore not be beneficial for preserving its own
life or for the survival of its own species (but it would be of no obvious disadvantage
either). In terms of genetic evolution, a mutation of this life-form into a ’self-position
aware’ being would not give a survival benefit over its ’non self-position aware’ con-
geners.

What if the life-form develops the ability to control its own movement and therefore
its own position? In order to gain evolutionary advantage from this new ability, the

1The Panthalassic Ocean or Panthalassa (Greek: all sea) is the global ocean that sur-
rounded the supercontinent Pangaea (Greek: entire earth) about 250 million years ago
[van Waterschoot van der Gracht et al., 1928]
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life-form would need a way to decide, in which direction it should move, i.e. it
needs to be aware of the locations of species- and life-preserving resources (and/or
the locations of endangering threats) and at least it has to have some indication if it
is getting nearer to, or further away from, these locations. In other words, the life-
form needs to be aware of its own position relative to locations of other life-forms
or objects that are important for it. This kind of position is called relative position
and such locations that are of particular interest are called points of interest (often
abbreviated as POIs).

Definition 2.1 (Relative Position) A point defined with reference to another posi-
tion, either fixed or moving.

Definition 2.2 (Point of Interest (POI)) A specific point location that is interesting
or valuable for an entity.

2.1.1.1 Senses and Stimuli

In order to gain a relative position, the life-form needs to be able to sense the presence
of other life-forms or objects. In biological terms, this is achieved with sensory re-
ceptors that are able to pick up signals that are emitted or reflected by other entities.
In his treatise ‘De Anima’, Aristotle identified five senses: sight (ophthalmocep-
tion), sound (audioception), smell (olfacoception), taste (gustaoception) and touch
(tactioception). He also argued that there are no other than these five senses. Mod-
ern science however recognizes more senses, like pain (nociception), temperature
(thermoception), balance (equilibrioception) and kinesthetic sense (proprioception).
Non-human senses also include magnetism (magnetoception), electrical fields (elec-
troception), and polarized light.

There is no consensus about a definition of sense and thus the number of senses
varies throughout the literature. Some researchers classify into exteroceptive and in-
teroceptive senses. Exteroceptive senses are senses that react to stimuli that originate
outside of the sensing entity. Interoceptive senses react to stimuli from inside the en-
tity and can be further divided into proprioception, which senses relative positions of
own body parts as well as their acceleration, and visceroception, which senses stim-
uli originating from internal organs, e.g. the perception of one’s own heartbeat (cf.
[Vaitl, 1996]). Obviously, exteroception provides the life-form with the necessary in-
formation to sense the presence of other entities. Proprioception, on the other hand,
provides information about the configuration and orientation of its own body. How-
ever, the strict distinction between exteroception and proprioception is also disputed
in literature. [Gibson, 1979] claims that ‘all perceptual systems are propriosensitive
as well as exterosensitive, for they all provide information in their various ways about
the observer’s activities’ (page 115). He further argues, that the term egoreception is
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Figure 2.1: A classification of senses.

more appropriate than proprioception. This view is supported by the reported case of
a 19 years old male who, due to injury, lost his proprioception. He never recovered
from this loss, but managed to relearn how to walk and even how to drive a car by
replacing his proprioception through vision. He reported that the mental effort in his
daily life feels like having to do a daily marathon (cf. [Kolb and Whishaw, 2003],
pp. 173–174 and [Cole, 1995]). From this episode it can be concluded that although
proprioception might be substituted by exteroception, the combination of both helps
to reduce the cognitive load.

Human senses can further be classified into near-senses and far-senses, depending
on whether the perception is directly associated with the sensing organ (near-sense)
or not (far sense). According to this definition, the only human far-senses are sight
and sound and all other senses are near-senses. Figure 2.1 shows a classification of
senses by combining the different existent classifications.

2.1.1.2 Combination of Senses

In general, the combination of different senses, may they be exteroceptive or intero-
ceptive, plays an important role in self-positioning. For example, if one is standing
in a bakery, the visual sense will provide cues like the shape and texture of different
breads and cakes, olfacoception provides the characteristic smell of freshly baked
bread and thermoception may provide a higher temperature due to the heated oven.
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The technical term for such a combination of senses is sensor fusion and will be
discussed in Section 2.6.

A more concrete example can be derived from fauna. As already mentioned above,
some animals have a sense for polarized light, or more specifically for the direc-
tion of polarized light. This sense helps them to keep direction, since sunlight gets
polarized through scattering and the polarization direction depends on the current
position of the sun. The sense for polarization direction thus can help animals to
keep their direction, although no direct view to the sun is available. This ability of
keeping direction is also called celestial compass ([Wehner and Lanfranconi, 1981]).
According to the classification above, the sense for polarization direction is an extero-
ceptive far-sense. This sense alone is not sufficient to determine a relative position. In
[Wagner et al., 2006] the authors hypothesize that ants combine their celestial com-
pass with some kind of step-counter, or odometer, to determine their current position
relative to the nest. They tested this hypothesis by artificially shortening or lengthen-
ing the legs of Cataglyphis fortis, a foraging desert ant species, after they had arrived
at a location outside of their nest. The results confirmed their theory in that ants with
lengthened legs overshot while trying to return to the nest and ants with shortened
legs stopped prematurely. The exact mechanism of the odometer is not known, but
could be based on proprioceptive senses.

Although humans do not have a direct sense for polarized light, most can learn to
identify the polarization direction by an entoptic phenomenon2, called Haidinger’s
brush. This phenomenon is named after its discoverer Wilhelm Karl Ritter von
Haidinger, an Austrian scientist, who realized that a sudden change of the po-
larization direction relative to the observer’s eye results in a visible, faint yel-
low and blue pattern, whose orientation correlates with the polarization direction
[Haidinger, 1844].

2.1.1.3 Dead Reckoning

In the context of animals, the above described method of self-positioning through the
use of direction and distance information is commonly referred to as path integration.
A more technical term for path integration is dead reckoning, which is claimed to be
derived from the phrase ‘deduced reckoning’ (cf. [Kolb and Whishaw, 2003], page
560). Humans usually perform dead reckoning with the help of tools, like a compass
and a means of measuring their speed to determine the traveled distance. Columbus
is believed to have used dead reckoning while traveling to Central America. Dead
reckoning still plays an important role in technical position determination and will
be further discussed in Section 2.6.

2a phenomenon that is created in the eye itself
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Although there is no evidence that humans use Haidinger’s brush to accomplish path
integration, it seems that the polarization effect was used by humans in maritime nav-
igation. [Ropars et al., 2011] claim that the Vikings sailed to North America using
a special crystal, the transparent common Iceland spar, as a depolarizer to detect the
hidden sun and thus being able to keep their direction even when no visible land-
marks were available. Ropars et al. conducted experiments showing that with the
help of such a ‘sunstone’, the direction of the sun can be determined up to +/- five
degrees, even under crepuscular conditions.

2.1.1.4 Landmarks

A further concept to gain more information about relative position is that of land-
marks, i.e. objects with known positions that are easy to identify and that can be
perceived over a large distance. Examples for landmarks are peculiar looking moun-
tains or tree formations, but also star-formations and single stars (especially the sun),
although the latter change their position over time. Besides natural objects, man
made objects can act as landmarks as well and can be classified into landmarks that
were built for the purpose of positioning or navigation, e.g. position fires, lighthouses
and foghorns, and landmarks that were built for other purposes, e.g. skyscrapers or
radio towers (see also Section 2.3.3). [Lynch, 1960] claimed that in order to navigate
through cities, the memory of landmarks plays an important role. However, the usage
of the term landmark varies in literature. [Sadalla et al., 1980] summarized that the
term has been used to denote

(a) discriminable features of a route, which signal navigational decisions

(b) discriminable features of a region, which allow a subject to maintain a general
geographical orientation

(c) salient information in a memory task.

In the context of positioning, (a) and (b) are the most appropriate interpretations. A
definition close to (b) is given in [Allen et al., 1978]:

Definition 2.3 (Landmark) Landmarks are environmental features that when rec-
ognized with a specific perceptual context, serve as reference points in large-scale
space.
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Landmarks that more closely resemble interpretation (a), for example an oddly
shaped tree leaning towards one path at a crossroad, are often called waymarks or
routemarks, as they are directly related to a route. [Kray, 2003] proposed to distin-
guish between landmarks and routemarks by taking their proximity and visibility in
relation to a position on a specific route into account.

In general, landmarks do not necessarily have to be visually perceptible, they can
also be auditive, e.g. the sound of a waterfall, or perceptible by any other sense. The
perception, identification and knowledge of the position of one landmark allows to
draw conclusions in which area the current position is located. This area can further
be diminished by estimating the distance to the landmark. If a landmark is perceived
by a near-sense, it can be derived that it is fairly close. For far-sensed landmarks, a
distance estimation is often possible because stimuli tend to degrade with increasing
distance, e.g. a faraway waterfall sounds softer than a nearer one. The distance to
visually perceived landmarks can be estimated by the perceived size or the perceived
level of detail. The famous proverb ‘Don’t shoot until you see the whites of their
eyes’ is an example for a distance estimation using the perceived level of detail.
If more landmarks and distance estimations are available, an even more accurate
position determination is possible through so-called trilateration. These methods for
position estimation will be discussed in detail in Section 2.5.1.

2.1.1.5 Non-Electronic Tools for Positioning

Humans began very early to develop various aids to enhance their capability of po-
sitioning and navigation. Especially on open sea, the lack of earthbound landmarks
forced seamen to search for different solutions. Celestial navigation, i.e. the use
of stars as landmarks, was and is typically aided by mechanical tools like a kamal,
sextant or octant, which help to more accurately determine direction, angles and dis-
tance.

Early examples for artificial landmarks especially designed for maritime positioning
were fires, which were lit at the coastlines especially near ports to allow naviga-
tion even at night. These fires eventually evolved into lighthouses, which have a
higher visibility and are protected against weather influences. However, these visu-
ally enhanced landmarks have the disadvantage of being barely perceivable in foggy
conditions. Foghorns were thus invented, to at least be able to warn ships of rocks
or shoals, but these devices only give coarse information about the direction of the
signal.

The topophone (see Figure 2.2a), was a purely acoustical appliance, which should
help to determine the direction to a sound-source, e.g. a foghorn. Through turning
the body, and thus turning two equidistant resonators attached to a shoulder rest, an
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(a) The topophone was an acous-
tic based tool for direction es-
timation in maritime applications
[Scientific American, 1880]

(b) Acoustic mirror near Kilnsea, UK (source:
http://www.geograph.org.uk/photo/315865)

Figure 2.2: Acoustical based positioning tools.

increasing or decreasing level of sound could be perceived by the operator. When the
operator was facing the direction of the foghorn, the highest volume was perceived3

[Scientific American, 1880].

Between the first and second World War, so-called acoustic mirrors were used to de-
tect and localize incoming military airplanes. An example of such a sound-mirror is
shown in Figure 2.2b. These concrete monumental buildings should reflect and focus
the sound of airplane engines and soldiers standing in front of the mirrors should try
to estimate the incoming direction by moving in front of the mirrors [Scarth, 1999].

2.2 Human and Artificial Agents

The considerations about senses and perceptions can be transfered into the field
of Artificial Intelligence through the use of the notion agent instead of life-form.
[Poole et al., 1998, page 1] define the field of Computational Intelligence4 as ’the
study of the design of intelligent agents’. [Russel and Norvig, 1995, page 31] define
the term agent in the following way:

3If the acoustical setup of tubes matches the wavelength of the sound signal, it can also happen
that the signals of both resonators cancel each other out

4Poole et. al. prefer to use the term Computational Intelligence over the term Artificial Intelli-
gence, and argue that the latter is a source of confusion
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Figure 2.3: An agent has sensors to perceive parts of its environment and actuators
to manipulate it.

Definition 2.4 (Agent) An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors (see
Figure 2.3).

According to that definition, the life-form from Section 2.1.1 can be seen as an agent,
with sensors emulating receptors to gain knowledge about landmarks in its vicinity
and effectors to change its own position. It is however important to keep in mind
that an agent does not necessarily have to have a robot-like appearance. It can also
be a pure software-agent, that gets encoded bit-strings as perceptions and produces
encoded bit-strings as actions. The idea of agents is becoming even more intriguing,
if one considers a human agent carrying a mobile computational-device as a kind of
symbiosis5 between the human agent and the artificial agent: Instead of the artificial
agent using effectors to change its position, it uses effectors – e.g. its screen or audio
output – to influence the ‘host’ (the human) to change the position (see Figure 2.4).

This symbiosis can even be seen as mutualistic, when assuming the device’s battery
charge as the artificial agent’s fitness criterion: providing useful location information
ensures that the host will keep the device charged. Moreover, human agents can
share their perceptions with the artificial agent, which in turn can take these into
account to gain position information. Such a situation is depicted in Figure 2.4: the
human agent provides its perception of a landmark via speech input. [Kray, 2003]
described such a system, called SISTO, which can derive a coarse position through
descriptions and tries to refine it by asking additional questions, e.g. showing pictures

5The term symbiosis is here used in the original sense of ‘the living together of unlike organisms’,
which includes mutualistic, commensal and parasitic relationships.
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Figure 2.4: A symbiosis between a human agent and an artificial agent: Instead
of using its effectors to directly change its environment, the artificial agent uses its
effectors as a means of communication with its host to reach the common goal.

of additional landmarks and asking if they are visible. Such a symbiosis of a human
agent and an artificial agent is the common scenario for personal positioning, i.e. the
determination of one’s own position by electronic means. In Figure 2.4, the human
agent – or user – carries an agent running on a mobile device, such as a smart phone.

2.2.1 Sensors and Senders

Although the term sensor is used very vaguely in Definition 2.4, it is clear that a
sensor acts as an input for some kind of signals.

A technical definition for sensors can be found in the Federal Standard 1037c
[National Communications System Technology & Standards Division, 1996]:
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Figure 2.5: Classification of sensors.

Definition 2.5 (Sensor) A device that responds to a physical stimulus, such as ther-
mal energy, electromagnetic energy, acoustic energy, pressure, magnetism, or mo-
tion, by producing a signal, usually electrical.

According to this definition, the analogy of sensors to sensory receptors becomes
obvious. Examples for sensors mimicking human receptors are cameras and micro-
phones, replacing ears and eyes. Although it is possible to use these sensors to pick
up natural signals from the environment, the signal processing necessary to derive
useful information for positioning can be quite complex and demands high compu-
tational power. Most practical attempts for positioning thus use specialized senders,
acting as artificial landmarks that broadcast designed signals, which are easier to
handle by a machine and can contain data that is tailored to the task of positioning.

Moreover, sensors can be classified in analogy to the classification of senses in Sec-
tion 2.1.1.1. The sensor classification, as shown in Figure 2.5, is from the perspective
of an agent to which the sensors are attached. In that sense, exteroceptive sensors are
sensors that pick up signals from external senders. The discrimination between far-
sensors and near-sensors depends on the reach of a sensor, i.e. the maximum distance
from a sensor to a sender. Examples for far-sensors are cameras and microphones,
but also radio technologies like WiFi (see Section 3.1.3). A touchscreen is an exam-
ple for a near-sensor. Technically, sensors can often reduce their range, which allows
them to switch between being far-sensing and near-sensing.
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Figure 2.6: Classification of outdoor and indoor situations with examples.

Interoceptive sensors are sensors that react to signals from ‘inside’ an agent. Pro-
prioceptive sensors are sensors that report about the agent’s own spatial configura-
tion, like orientation, acceleration. Many modern smart phones have proprioceptive
sensors that replicate human proprioception, for example accelerometers that report
acceleration on different axes, and gyroscopes that report the spatial attitude. Vis-
ceroceptive sensors report about internal processes or vital internal signals, e.g. the
remaining battery-power or the current CPU load.

2.3 Classification of Positioning Systems

2.3.1 Indoor versus Outdoor Positioning

In literature, the terms outdoor and indoor positioning are often found. The need for
this distinction arises from the advent of Global Navigation Satellite Systems (GNSS,
see also Section 3.1.1), such as GPS. Although these systems are designed to cover
the whole globe, a clear line of sight (LOS) to at least four satellites is needed in
order to determine a position. The availability of a sufficient number of satellites
can be achieved by a high density of satellites, but the prerequisite of a clear line
of sight can already be violated in a steep valley or canyon. In general, objects or
different transmission media, such as ionosphere and stratosphere, result in so-called
fading, i.e. attenuation, scattering, reflection and diffraction of the signals. This
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Figure 2.7: Exocentric and egocentric positioning.

fading leads to inaccuracies or even a complete inability to determine a position.
This is especially true inside of large buildings, where walls, floors and the roof
cause massive degradations of the satellite signals. In general, GNSS does not work
inside buildings. Nonetheless, having position information indoors is still desirable,
e.g. in shopping malls, airport terminals, museums or large fairs. To overcome
these problems of GNSS, special positioning systems are developed, which are called
Indoor Positioning Systems (IPS).

Although the terms indoor and outdoor suggest a strict distinction between inside
and outside of a building, the term indoor is often used more loosely in literature, de-
scribing any system that can be used when GNSS fails, e.g. inside of tunnels, caves,
underground or in urban environments where large buildings and structures inhibit
satellite signals. In analogy to natural canyons, the latter situation is often called
urban canyon. Figure 2.6 shows a classification of indoor and outdoor situations.
Perfect GNSS positioning is only achievable with clear LOS. With increasing ob-
structions, the GNSS signal quality decreases. In light indoor environments, GNSS
positioning can be possible with the use of high sensitivity GNSS receivers (see Sec-
tion 3.1.1.2).

2.3.2 Egocentric and Exocentric Positioning

Through the clear distinction between sensors and senders, positioning techniques
can be roughly classified into two categories: exocentric positioning (or tracking)
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and egocentric positioning (or self-positioning). Figure 2.7 shows an abstraction of
both categories.

2.3.2.1 Exocentric Positioning

In exocentric positioning, the mobile agent is equipped with some kind of sender (or
senders) that is broadcasting a specific identification signal. Sensors are installed in
the environment and send their readings to a centralized computing device (a server).
The sensors do not necessarily have to be connected directly to the server but can
also form a sensor network. The centralized computing device collects all sensor
readings, which can already be preprocessed, and calculates the resulting position.

With the exocentric approach, the main data flow is from the agent to the environ-
ment, meaning that the agent is constantly giving away information. In order to give
the agent access to his own positioning information some sort of back channel has to
be used. If a third party entity wants to spy on position information, it can gain access
to this information by intercepting this back channel or by attacking the server. The
exocentric approach is depicted in Figure 2.7 on the left side.

2.3.2.2 Egocentric Positioning

An egocentric positioning system uses the reversed approach: Senders are installed
in the environment and the mobile agent is equipped with one or more sensors. The
senders broadcast signals into the environment, which are collected by the mobile
agent’s sensors. The agent can then calculate its own position. The main difference
to the exocentric approach is that the main data flow is from the environment to the
agent, meaning that it is the environment, or parts of the environment, that is giving
information to the agent. The positioning calculation is thus literally in the hands of
the user.

In the case of egocentric localization a back channel, which is usually controlled
by the agent, can be used to voluntarily give a third person access to the position
information. A malicious third party would have to attack the mobile agent directly.
The egocentric approach is shown on the right side of Figure 2.7.

2.3.2.3 Hybrid Approaches

Besides the two basic cases, it is also possible to have both, senders and sensors, on
the same side, i.e. in the environment or at the agent. If such a combination of sender
and sensor share parts of their circuitry, it is called a transceiver. If both parts are
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Figure 2.8: Hybrid exocentric and egocentric positioning. Sender and sensor are
both installed either in the environment or at the agent.

completely separated, it is called a transmitter-receiver. When such a combination
is used, the senders usually broadcast a high entropy signal and the receivers pick up
the same signal or reflections of the signal. The received signal may have a lower
entropy and can thus contain data useful for identification or position determination.
A simple example for such a sender/sensor combination is a light barrier, which can
only detect if something breaks the light ray.

A more elaborated example is a laser range scanner, which can also measure the
distance to the reflecting object. An example for changing the entropy of a signal is
a camera with a flash light: the emitted white light is an evenly distributed mixture
of frequencies in the visible light range, and has thus a high entropy. Objects absorb
some of these frequencies and reflect others and thus reduce the entropy. The result,
as most should know from experience, is a picture containing a massive amount of
data.

If such a combination is installed in the environment, the system is classified as
exocentric, as it is still the agent who will reveal information to the environment, by
either reflecting or absorbing the signal.

A system where the agent is equipped with the sender/sensor combination is egocen-
tric, although a third party entity might try to use the broadcast signal to track the
agent. However, such a third party tracking system will then again be exocentric.
Both variants of hybrid methods are depicted in Figure 2.8.
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Figure 2.9: Onboard exocentric and offboard egocentric positioning. Sensory data
is sent from the environment to the agent or from the agent to a computing device in
the environment.

2.3.2.4 Onboard and Offboard Calculation

With an exocentric system, it is also possible that sensors send their collected data
back to the mobile agent, which then does the actual position determination. Al-
though this would in a way protect privacy, the user would have to trust the system
to not further distribute the collected sensory data.

The same approach is possible with an egocentric system, i.e. the mobile agent
collects sensor data and forwards it to a centralized server, for example to reduce its
own computational load. In this case, the privacy could be protected through the use
of an anonymized and encrypted protocol to the server, but this is again a matter of
trust on the user’s side.

With these considerations in mind, the terms onboard and offboard can be used to
further classify positioning systems. Onboard systems calculate the position on the
user’s personal device, i.e. the agent determines its own position, while offboard sys-
tems use a computation device outside of the user’s control. Exocentric onboard and
egocentric offboard are visualized in Figure 2.9. In the case of egocentric offboard,
two channels or a bidirectional channel have to be used to communicate sensor data
to the computing device and to receive position data from the computing device.
Exocentric offboard and egocentric onboard are the default cases of exocentric and
egocentric as shown in the previous Figure 2.7.
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Exocentric Egocentric
Offboard Low Privacy Reduced Privacy
Onboard Reduced Privacy High Privacy

Table 2.1: Privacy levels for different configurations of positioning systems.

2.3.2.5 Discussion

As described above, the main difference between both positioning techniques lies
in the direction of the main data flow. From agent to environment in the exocentric
case and from environment to agent in the egocentric case. Offboard exocentric
positioning is therefore the preferred approach for tracking people or objects, since in
that case neither the agent nor the object is interested in the position but a third person
wants to find out about the whereabouts of somebody or something else. For the
purpose of personal navigation, which requires the knowledge of the own position,
an exocentric system has to be extended with a back channel to either send back the
derived position or to enable onboard calculation, which can increase the cost of such
a system.

Onboard egocentric positioning is the choice for self-localization (e.g. for naviga-
tional purposes), since the agent itself is interested in its own position and passing
the positioning information on to third persons is often perceived as a violation of
privacy. An offboard egocentric positioning system or an onboard egocentric sys-
tem with a back channel can also be used for tracking purposes. As in the case of
an added back channel in exocentric positioning, this can lead to further costs but
has the advantage that users can either use the system for their private purposes (by
switching off the back channel) or to share their positioning information with other
users or systems.

The different privacy levels depending on ego/exocentric and on/offboard are sum-
marized in Table 2.1.

In general, onboard positioning systems have to deal with higher technical-resource
limitations of mobile device in comparison to stationary devices, e.g. restricted com-
putational power, restricted memory capacity and restricted power supply. Algo-
rithms for onboard positioning thus have to be optimized according to those restric-
tions. An onboard system can thus be easily converted into an offboard system, in
the simplest case by using the same computational hardware and installing it into the
environment. In addition, sensor data has to be communicated to the now stationary
device, if the system is egocentric.

On the other hand, converting an offboard system into an onboard system is usually
not an easy task (unless one is willing to carry a bulky stationary device with heavy
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batteries). Depending on the used algorithms, even a high optimization may not be
sufficient to cope with the resource restrictions of mobile devices.

2.3.3 Instrumented Environments and Opportunistic Positioning
Systems

As already indicated above, positioning is also possible using natural signals, i.e.
without special senders. Examples for such natural signals are heat radiation of a
human body, which can be picked up by infrared sensors, or the noise produced by
the engine of an airplane, which can be picked up by a microphone or by sound mir-
rors (see Section 2.1.1.5). Systems that use these kinds of signals are called passive
positioning systems.

Most positioning systems however need additional infrastructure installed in the en-
vironment. For example, the well-known GPS requires specialized satellites acting as
senders in the orbit around the earth (see also Section 3.1.1.1). The infrastructure, or
instrumentation, for a such a system is thus specially designed to enable positioning.
As already indicated in Section 2.1.1.5, humans very early began to build such in-
strumentations in form of lighthouses, fog-horns and buoys. Early electronic systems
for position determination in maritime and aviation applications were the Britsh GEE
system and the American Loran (LOng RAnge Navigation) system, which were both
developed during World War II ([Appleyard et al., 1988]). The GEE system was the
first hyperbolic positioning system and was mainly used for aircrafts. The instrumen-
tation consisted of stations that were installed on the ground and were organized in
chains. Each chain had a master station that was responsible for the synchronization
of three slave stations, dubbed B, C and D. Pilots could determine their position by
tuning in to these stations and using multilateration (see Section 2.5.1.4). Even today
similar systems are still in use for aviation purposes as Instrument Landing Systems
(ILS). Besides the use of terrestrial radio signals, bright light-arrays are often used in
addition.

Besides these especially for positioning designed instrumentations, it is also possi-
ble to use instrumentations that were originally set-up for a different purpose. In
general, technical services or applications often need a special infrastructure, e.g.
mobile phones need cell towers; wireless internet needs access points. If a position-
ing system uses the already existing infrastructure of a different service, it is called
an opportunistic positioning system. WiFi-based positioning systems are an example
for such opportunistic approaches (see also Section 2.5.3 and Section 3.1.3).

Positioning systems with designed instrumentation often achieve higher position ac-
curacy, but also increase the cost of deploying and maintaining the system. Oppor-
tunistic positioning systems on the other hand, help to keep the infrastructure-costs
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low because no additional instrumentation has to be provided, but often have the dis-
advantage of a lower position accuracy and need an initial training phase. However,
this initial training phase can sometimes also be combined with other activities, like
it was done with Google Streetview6, where cars used to actually take geo-referenced
pictures simultaneously collected geo-referenced WiFi data. This method of collect-
ing geo-referenced WiFi data with a car is called war-driving, as opposed to war-
walking, where the same is done by pedestrians.

2.4 Position Representation

In order to realize a positioning system, positions have to be represented by some
means. A straightforward mathematical way is to use a Cartesian coordinate system.
In Section 2.1.1 the definition for relative positions was given. As a matter of fact,
any position is a relative position and a position given in a Cartesian coordinate sys-
tem is a relative position with reference to the origin of the coordinate system. Such a
position is represented by a multidimensional vector, containing the distance on each
Cartesian axis to the origin. However, if a certain coordinate system is defined and
agreed upon, positions in reference to the origin of that coordinate system are often
called absolute positions (in respect to that coordinate system), and relative positions
are positions that are given in reference to such an absolute position.

Cartesian coordinate systems are easy to handle and sufficient to describe small areas,
such as a building or campus. However, when larger areas have to be covered, such
as a country or even a whole planet, the fact that the Earth is not flat can no longer
be ignored.

2.4.1 World Geodetic System WGS84

There are several coordinate systems that deal with covering large areas or the whole
Earth. The World Geodetic System (WGS) in its iteration WGS84 is widespread, as
it is the reference coordinate system of GPS (see also Section 3.1.1.1). WGS84 was
established, as the name implies, in 1984.

In order to represent a position on Earth, a geometrical model is needed that describes
its shape. In WGS84, the Earth’s shape is approximated by a biaxial ellipsoid, with a
major radius of 6, 378, 137 meters (equator) and a minor radius of 6, 356, 752.314245
meters (rotational axis) ([National Imagery and Mapping Agency, 2000]). The cen-
ter of that ellipsoid lies at the Earth’s center of mass. In order to describe a position

6http://maps.google.com/streetview/
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Figure 2.10: WGS84 coordinates are expressed in latitude, longitude and altitude.

on the surface of the ellipsoid, it is organized into meridians, which run from north
to south, and parallels, which run from east to west (see Figure 2.10a). One meridian
is chosen as the prime meridian, and the equator of the ellipsoid is chosen as the ref-
erence parallel. Coordinates are expressed with two angles: latitude and longitude,
where the prime meridian is assigned to 0° longitude and the equator is assigned to
0° latitude. An arbitrary meridian is identified by the angle between this meridian
and the prime meridian, where angles go from 0° to 180° East and from 0° to 180°
West. The longitude of a position on the ellipsoid is thus determined by finding the
meridian that passes through that position.

The latitude of a position is determined by the angle φ between the plane that is
described by the equator and the line that is perpendicular to the ellipsoid and passes
through the position (see Figure 2.10b). Similar to longitude, latitude angles are
divided into North and South and are thus expressed as values between 0° and 90°
North or South.

A position that lies directly on the ellipsoid can thus be described by latitude and
longitude. In order to express the height of a position, an appropriate reference has
to be found. If the ellipsoid itself is used as a reference, the third coordinate is named
ellipsoid height and denotes the distance from the ellipsoid surface to the position
along a line perpendicular to the ellipsoid surface. Although latitude, longitude and
ellipsoid height (λ, φ,H) uniquely define a position with respect to the ellipsoid, the
ellipsoid height does not really correspond with the actual height of a position, i.e. to
reach a position with the same ellipsoid height one may have to climb a hill.

A better measure of height can be derived by using a Geoid. The basic idea of a
Geoid is best explained by imagining that all of the Earth’s oceans were connected
through canals and that influences like weather and sea currents were not present.
The surface of the water would then describe the perfect Geoid of the Earth and
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would directly depend on the Earth’s gravitational field and the centrifugal force of
its rotation. The surface of the Geoid is thus highly irregular, as the gravitational
field is not regular. In practice, a Geoid is derived by measurements from a dense
net of reference points and modeled through a spherical harmonics representation,
which allows to approximate the gravitational potential at a particular position on the
ellipsoid. With the help of such a Geoid, the ellipsoid height can be transferred into
a Geoid height (sometimes also called orthometric height). Since an accurate Geoid
model is rather complex and thus needs additional memory, GPS receivers usually
report the ellipsoid height, which can then be transformed by additional hardware.
Currently WGS84 uses the 1996 Earth Gravitational Model (EGM96).

If a position expressed in geodetic coordinates latitude, longitude and ellipsoid height
is to be converted into a three-dimensional Cartesian system, the origin of the Carte-
sian coordinate system has to be defined, along with the orientation of the axes in
relation to the Earth’s surface, and the used ellipsoid has to be taken into account.
This set of information is called a geodetic datum or Terrestrial Reference System
(TRS). In order to show geodetic coordinates on a map, the coordinates have to be
projected onto a two-dimensional Cartesian coordinate system. This is done through
a map projection and the resulting coordinates are usually called eastings, for the
x-coordinate, and northings, for the y-coordinate (cf. [Ordnance Survey, 2010]).

2.4.2 Semantic Representation

Coordinates are a mathematical expression of a position, but are usually meaningless
to humans unless indicated on a map. In day-to-day conversations, semantic descrip-
tions are used to indicate a position, e.g. ‘I’m in the kitchen’ or ‘I’m currently in
Babylon’. Of course such descriptions can be underspecified or can only be disam-
biguated with further knowledge about the context or dialog discourse. For example
if somebody has received a phone call on their landline telephone and utters ‘I’m in
the kitchen’ it can be derived from the context that the person is in the kitchen of his
home. If somebody mentions on a mobile phone that they have just landed at JFK
and that they are now in Jamaica, it can be inferred from the discourse and world
knowledge that the person is most probably in Jamaica, in the borough of Queens in
New York City.

To represent such a semantic description of a position, a hierarchical spatial ontology
can be used, which describes the spatial relations between different locations. The
example position above could be expressed as Earth→ North America→ USA→
New York → New York City → Queens → Jamaica. In general, such an ontology
can be stored in a tree, where each node represents an area and the areas denoted by
child nodes are part of the areas denoted by their parent node.
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(a) Top nodes of UBISEARTH (b) Subnodes can be freely added, even
down to single drawers

Figure 2.11: UBISEARTH is a spatial ontology in UBISWORLD.

2.4.2.1 UBISWORLD

Such a spatial ontology is provided by UBISWORLD7, which was developed by
[Heckmann, 2006]. UBISWORLD is a cloud service for ubiquitous user modeling
that follows the Web 3.0 paradigm, i.e. the combination of Web 2.0 ideas with
methodologies of the Semantic Web, as described by [Wahlster et al., 2006]. The
basic idea of ubiquitous user modeling is to build and keep an up-to-date user pro-
file, which is accessible anytime and anywhere and contains viable information that
can be used for user adaptation. Of course such information is highly private and thus
appropriate filtering and security mechanisms have to be taken into consideration.

The current position of a user or a history of positions is of course viable information
for a user profile. UBISWORLD uses ontologies to build its knowledge base and the
ontology that is used to represent positions is called UBISEARTH. This ontology
contains over 28 million places all over the Earth. Figure 2.11a shows the first layers
of the hierarchy of UBISEARTH: Earth, which is divided into Oceans and Continents.
The hierarchy is then further divided into Countries, Regions, Cities, Buildings and
Rooms. Since the ontology is user editable, further subnodes can be defined, for
example cabinets and drawers of cabinets (see Figure 2.11b). Countries, Regions
etc. are roles, and Germany, Saarland etc. are instances of these roles.

7http://www.ubisworld.org/
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Every instance in UBISWORLD has a unique identifier, called UbisPointers. In-
stances can also have properties, which contain further information. In Figure 2.11b,
the properties of the instance Saarbrücken can be seen. Among other information
like zip-codes and dialing-codes, a WGS84 coordinate is given. With this informa-
tion it is possible to convert a semantic description or a UbisPointer into geodetic
coordinates and vice versa.

As a cloud-service, UBISWORLD provides sophisticated interfaces, which allow
to efficiently search, modify and refine the ontologies while keeping the data
traffic low. With these interfaces, it is possible for a mobile agent to down-
load a specific part of the UBISEARTH ontology that is currently relevant to the
user (cf. [Heckmann et al., 2005a, Heckmann et al., 2005b, Schwartz et al., 2006,
Loskyll et al., 2009]).

2.4.3 Positioning in a Moving Reference System

An interesting situation arises when a user is inside a larger, moving object, for exam-
ple a train, a plain or a cruise ship. A cruise ship is basically a swimming multistory-
building and passengers might be mainly interested in services that are related to
their position inside the ship, e.g on which deck they are, where the casino is located
or how to find back to their cabin. However, in some circumstances, for example to
pinpoint the exact moment when one is crossing the equator for the first time, they
might be interested in their exact WGS84 coordinates.

In ships or airplanes, the current position of the vehicle is determined for navigation
purposes. Thus, a solution this situation is to use a static coordinate system for the in-
terior of the vehicle itself, with a datum (see Section 2.4.1) that ideally coincides with
a reference point for the vehicle’s own position determination, e.g. a GPS antenna.

Mobile agents can use this static coordinate system to determine their position within
the vehicle. If a global position is needed, the mobile agent needs access to the ve-
hicle’s position and can then determine its own global position. If a system like
UBISWORLD is used, the vehicle would constantly update its own position in the
spatial ontology, and a passenger’s position would include the vehicle in the descrip-
tion hierarchy, e.g. MS Ejemplo→ Deck 2→ Dining Room→ Table 2→ Seat 4.
The properties of subtree of the vehicle, which contain the geodetic coordinates of
each position, would then be automatically updated by UBISWORLD.
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2.5 Basic Mathematical Principles of Positioning

With the considerations from Sections 2.3 and 2.4 in mind, the basic building blocks
for a positioning system can be derived. Regardless if a positioning system is ego-
centric, exocentric, onboard or offboard, position determination is always done on
the basis of sensor data. Using the raw sensor output, a positioning system has to
derive a position representation. In this section, standard mathematical position de-
termination methods are introduced, which mostly rely on a position representation
through numerical coordinates.

2.5.1 Trilateration and Multilateration

Trilateration is a method to determine the position of an object with the use of three
distance measurements to three known locations. In two-dimensional space, one
such distance measurement d0 to a known location l0 leads to the conclusion that
the searched position is somewhere on the circle around l0 with radius d0. Adding a
second distance measurement d1 to known location l1 reduces the possible positions
to two points, described by the intersection points of the two resulting circles. A third
measurement finally disambiguates between the two positions and thus determines
the correct position in the plane that is defined by the three known locations (see
Figure 2.12a).

Besides the location in the plane, also the height above the plane can be computed,
which generally has two solutions representing mirror images with respect to the

(a) Trilateration with accurate measurements (b) Trilateration with inaccurate measurements

Figure 2.12: Trilateration with accurate and inaccurate measurements.
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plane. The correct solution cannot be determined mathematically and must therefore
be solved by using additional information, e.g. testing if one solution would lead to a
position inside the earth ([Fang, 1986]) or by adding a fourth distance measurement.

In practice, measurements are noisy and thus introduce inaccuracies, which lead to
an area instead of one point in which the searched position can lie. Figure 2.12b
shows an example where the distance measurements d′0, d

′
1 and d′2 are erroneous.

The resulting area of possible solutions is shaded and marked with a black line.

In general, trilateration can be expressed as the problem of finding the solu-
tion to a system of quadratic equations, where each equation describes a sphere
around a known location with the measured distance to that location as radius
([Thomas and Ros, 2005]):

(x− x0)2 + (y − y0)2 + (z − z0)2 = d20 (2.1)
(x− x1)2 + (y − y1)2 + (z − z1)2 = d21 (2.2)
(x− x2)2 + (y − y2)2 + (z − z2)2 = d22 (2.3)

Here, x, y, z denote the coordinates of the searched position, xi, yi, zi, i = 1, 2, 3 are
the coordinates for the known locations li and di are the measured distances.

In [Murphy and Hereman, 1995], the authors tested different approximations for tri-
lateration and found out, that a nonlinear least squares method gave the most accurate
position calculation. This method results in the exact position if the exact distances
are known and in a reasonably accurate position if only approximate distances are
known.

In order to obtain the needed distance measurements, several standard methods can
be found throughout the literature, which will be described in the following.

2.5.1.1 Signal Strength

As already indicated in Section 2.1.1, signals or stimuli tend to degrade with increas-
ing traveling-distance. Sensors can often derive an indication for the received signal
strength, the so-called Received Signal Strength Indicator (RSSI). Technically this
property can be used to estimate the distance to a sending object, when a propagation
model for the signal-type is available. Generally, signal loss follows the inverse-
square law, which states that the strength of a signal is inversely proportional to the
square of the distance it has traveled.

p ∼ 1

d2
(2.4)
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Using more elaborated path-loss models, the distance to the sender can be approxi-
mated. RSSI based distance calculations are however highly influenced by various
environmental factors, like air humidity, temperature, refraction and reflection.

2.5.1.2 Time of Arrival (TOA)

Time of Arrival describes the determination of the distance between a sender and a
sensor by measuring the travel time t of the signal. When the travel velocity v is
known, the distance d can be easily calculated by

d = v ∗ t (2.5)

The travel time, sometimes also called Time of Flight (TOF), can be measured by
incorporating a time-stamp into the signal, which indicates when the sender started
to transmit the signal. In this case, the clocks of all receivers and senders need to be
tightly synchronized with each other. Another way to accomplish TOA is to send a
signal with embedded time-stamp and have the receiver immediately send the same
signal back (optionally with added delay information) and then measuring the so
called round-trip time of the signal, which results in twice the travel time (minus the
added delay).

TOA can be used for exo- and egocentric applications. In the case of exocentric
positioning, at least three sensors with known positions are needed, each one deter-
mining the distance to the sender and sharing this information with each other or an
additional instance that then performs the trilateration.

For egocentric positioning, at least three senders need to be detectable by the sensors
of the self-locating entity. Moreover, the location of the senders has to be known,
e.g. by sending this information along with the time-stamp or by a map stored on the
locating device.

Although simple in theory, the practical application of TOA has some drawbacks:
the distance error depends highly on the accuracy of the time measurement. In the
case of radio signals, which are traveling at the speed of light, a measurement error of
1µs results in about 300 meters distance error. Also, the velocity of a signal depends
on the materials it travels through. A signal passing through different or unknown
materials can therefore also have an effect on the accuracy of the distance calculation.

2.5.1.3 Pseudorange

In the context of satellite based positioning, the term pseudorange or pseudoranging
is used to describe the above mentioned problem of inaccuracies in TOA measure-
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Figure 2.13: Inaccuracies of a quartz timer in comparison to an atomic clock.

ments due to unsynchronized or loosely synchronized clocks. More specifically, the
receiver’s clock is usually based on a quartz oscillator, whereas the satellites use
atomic clocks. In comparison to an atomic clock, a quartz oscillator is either a bit too
fast or too slow, which results in a timer-offset between both clocks. For example, a
typical quartz watch has an accuracy of about ±10 seconds per year:

10s

1a
≈ 10s

365 ∗ 24 ∗ 60 ∗ 60s
≈ 0.317µs/s (2.6)

This means that if an atomic clock and a quartz clock are perfectly synchronized at
time t, then at time t + 1s the quartz based clock will be ≈ 0.317µs before or be-
hind the atomic clock. As radio signals travel with the speed of light c, the resulting
error in the distance calculation according to Equation 2.5 is 0.317µs ∗ c ≈ 95m.
The timer-offset will increase over time; after one hour, the error will be over
300 kilometers and after one year 3 million kilometers (see Figure 2.13). The
term pseudorange is used to describe an uncorrected distance measurement, i.e.
pseudorange = (signal traveltime + timer offset) ∗ c. Since the satellites are tightly
synchronized among themselves, the offset between a receiver and any satellite
is constant at a given point in time. To correct the resulting distance error, the
timer-offset can be computed through a fourth TOA measurement, as described in
[Teunissen and Kleusberg, 1996].

2.5.1.4 Time Difference of Arrival (TDOA)

In contrast to TOA, Time Difference of Arrival does not measure the absolute travel
time of signals from senders to receivers, but the time difference of either the arrival
of a signal on at least two different receivers with known locations (exocentric), or the
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Figure 2.14: A single TDOA measurement results in a hyperbola with two known
locations as focus points. Only one branch of the hyperbola has to be considered
(marked with a solid line).

arrival of signals sent simultaneously from at least two senders with known locations
(egocentric).

In the exocentric case, the needed time difference can be determined by a cross-
relation process, which means that the receivers need synchronized clocks and a
way to exchange the measured signals. Determining one such time difference leads
to a hyperbola with the known locations of the receivers at its two focal points
([Bucher and Misra, 2002]). Unless the sender has the exact same distance to the
receivers, the receiver nearest to the sender will detect the signal first. The position
of the sender is thus somewhere on the branch of the hyperbola that has the nearest
receiver as focal point. Figure 2.14 exemplifies such a hyperbola with two known
locations l0 and l1. The relevant branch is drawn as solid line. Every point on the
hyperbola results in the same TDOA measurement (2 ms in the example).

In two-dimensional space, a position can be fixed by intersecting at least two hy-
perbola obtained from two TDOA measurements. To pinpoint a location in three
dimensions, three TDOA measurements are required, resulting in three hyperboloids
(instead of hyperbola) intersecting in one point. As it was the case with TOA, mea-
surement errors lead to an area of possible locations instead of a single point. Po-
sitioning with the help of TDOA is also often called multilateration or hyperbolic
positioning.

For egocentric positioning, pairs of senders must be synchronized to ensure that their
signals are sent simultaneously. Furthermore, the receiver must be capable of identi-
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Figure 2.15: An iso-Doppler contour results from the measurement of one FDOA
measurement ([Vesely, 2010]).

fying the origin of each signal and the locations of the senders must be known. With
this setup, the receiving unit can determine TDOA measurements between pairs of
senders and calculate its own position with the same principles as described in the
exocentric case.

The main advantage of TDOA over TOA is that only the deployed infrastructure has
to maintain synchronization, i.e. either the installed senders or the installed receivers
(cf. [Appleyard et al., 1988], pp. 76–79). Due to this property, TDOA can also
be used to locate unknown signal origins, for example cosmic gamma-ray bursts as
described in [Klebesadel et al., 1982].

2.5.1.5 Frequency Difference of Arrival (FDOA)

If senders and receivers are in relative motion to each other, Frequency Difference of
Arrival can be applied. The relative movement causes a signal shift in the frequency
domain – the so-called Doppler shift – that can be observed on the receivers’ end.
The FDOA is derived by subtracting the Doppler shifts of different sensors or signals
([Mušicki and Koch, 2008]). In order to determine a position, the relative velocity
as well as the locations of the senders or receivers have to be known. One FDOA
measurement results in a so-called iso-Doppler contour, as shown if Figure 2.15.
Again, a position can be fixed by intersecting at least two iso-Doppler contours in
two dimensions or three contours for three dimensions.

2.5.2 Triangulation

In the context of positioning, triangulation is the process of calculating the coordi-
nates of an object by measurement of angles and at least one distance in a triangle.
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Figure 2.16: The principle of triangulation

The basic idea of triangulation is depicted in Figure 2.16. If A and B are known
points, then P can be calculated by measuring the angles α, β and by using the law
of sines ( a

sinα
= b

sinβ
= c

sin γ
) and the fact that the three angles in a triangle sum up to

180 degrees. In two-dimensional space the calculation is as follows:

γ = 180− α− β (2.7)

a =
c

sin γ
sinα (2.8)

b =
c

sin γ
sin β (2.9)

2.5.2.1 Angle of Arrival (AOA)

To accomplish triangulation, the angles of arriving signals have to be determined.
This can be accomplished by the use of a rotating antenna with a highly directed
field of view. By internally tracking the rotation angle of the antenna, the angle of
the incoming signal can be determined by observing at which angle the highest signal
strength is reached.

Alternatively, a static antenna array can be used, consisting of several spatially ar-
ranged antennae. These antennae can either be directed, with each antenna pointing
to different directions, or undirected antennae are used.

In the first case, the TOA can be determined by observing which antenna receives the
highest signal strength. The angle can be fine-tuned by interpolating between all an-
tennae that receive the signal and weighting according to the received signal strength.
In the latter case, the spatial arrangement often dependents on the frequency or fre-
quency range of the expected signals, such that phase-differences can be measured.
The AOA can then be derived by measuring these differences between the individual
antennae, which usually also correlates with the TDOA.
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2.5.3 RSS Fingerprinting

Fingerprinting differs from the above approaches in that it is not purely geometrically
based. The main idea here is to use previously made relative signal strength (RSS)
measurements as indicators for the current position. In general, a fingerprinting ap-
proach is divided into two phases: a so-called training-, calibration-, or offline-phase
and an actual positioning- or online-phase.

In the egocentric case, the calibration is done by taking repeated measurements at
a number n of reference points pn with known coordinates (xn, yn). These mea-
surements include IDs of the received senders as well as the measured RSS of each
sender. The IDs and their averaged RSS are stored in a database, together with the
coordinates of the reference point. These are the so-called reference fingerprints and
the resulting database is a fingerprinting map. More formally, a reference finger-
print rfi for a reference point pi is a vector of averaged RSS measurements for each
detected sender rfi = [ri0, ri1 . . . rim−1], with 0 ≤ i ≤ n and m detected senders.
In the exocentric case, a sender is placed at the reference points and the sensors in
the environment report the measured RSS of the sender to a centralized server, which
then creates the fingerprint map, again consisting of the coordinates of each reference
point, the averaged RSS and the IDs of the sensors that sensed the sender.

In the actual position phase, a fingerprint f = [cr0, . . . crm] is made at the current
location and the positioning algorithm tries to estimate which reference fingerprint
rfi most closely resembles the currently measured one. A simple approach to do
this, is the Nearest Neighbor algorithm: The Euclidean distance Di from the current
fingerprint f to each reference fingerprint rfi is calculated with

Di =

√√√√m−1∑
j=0

(crj − rij)2 (2.10)

The fingerprint with the smallest distance Di is assumed to indicate the correct po-
sition and thus the reference point associated to that fingerprint is returned. This
method has the disadvantage that no intermediate coordinates, i.e. coordinates that
lie between reference points, can be returned. The k-Nearest Neighbor (kNN) al-
gorithm overcomes this restriction by returning the mean of k reference points with
the lowest calculated distance ([Laoudias et al., 2011]). A further variation is the
k-Weighted Nearest Neighbor algorithm, which calculates the weighted mean of k
reference points, where the inversed Euclidean distance of each reference point can
be used as weight ([Chernoff and Nielsen, 2010]).
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2.6 Methods for Sensor Fusion

As indicated in Section 2.1.1.2, a combination of different senses is often used in
natural positioning. The technical term for such a combination is Sensor Fusion. For
positioning systems, sensor fusion is generally used to gain higher position accuracy,
when data from different types of sensors are available at the same time. This is one
of the key-features needed in order to realize the Always Best Positioned paradigm
(see Definition 1.3). Furthermore, an ABP system has to be able to work with any
subset of the used sensors, in particular if only data from one sensor is available.
In the following, three methods for probabilistic position determination will be de-
scribed. All of them are based on Bayesian inference.

In general, a positioning system, may it be egocentric or exocentric, can be regarded
as a system that represents the position of an agent as a state vector st ∈ Rn, where
t ∈ N denotes a so-called time-slice and n ∈ N denotes the dimension of the state
vector. The state can contain more information than just the agent’s position, i.e. its
current velocities. A concrete example is st = [x, y, z, ẋ, ẏ, ż]T , where x, y, z denote
position coordinates and ẋ, ẏ, ż denote velocities; T indicates a translation. More-
over, a state vector could also contain semantic descriptions instead of numerical
coordinates.

The task of a positioning system is to estimate the current (position) state given a se-
ries of observations or measurements z1:t = {z1, z2, . . . zt}, where each measurement
zi ∈ Rm describes a measurement vector with m dimensions at the ith time-slice.

The estimation of such a system will contain inaccuracies introduced through mea-
surement errors, noisy sensors et cetera. These inaccuracies can be expressed through
probabilities. In the following, the notation P (A) will be used to denote the proba-
bility of an event A, e.g. P (AtWork) = 1.0 means that the probability of the event

Figure 2.17: An example for a probability distribution function.
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AtWork is 100%. A probability density function (PDF) is a function that describes
the probability of a random variable, or of a vector of variables, at a given point.
A PDF of a random variable r will be denoted as p(r). Figure 2.17 shows an ex-
ample of a PDF. More specifically, it shows a Gaussian distribution N(µ, σ) with
mean µ = 1.0 and standard deviation σ = 1.0. If this were the PDF p(st) of a one-
dimensional state vector st, it would indicate that the probability of being at coordi-
nate 1.0 is P (st = [1.0]) = N(1.0, µ, σ) ≈ 0.4. The probability of being at coordi-
nate 0.0 would be P (st = [0.0]) = N(0.0, µ, σ) ≈ 0.24 and P (st = [8.0]) ≈ 910−12.
In other words, with the help of a PDF, probabilities for all locations can be derived.
The location with the highest probability can be considered as the current position.

One way to accomplish the task of estimating the current state given a series of mea-
surements is to derive the PDF p(st | z1:t), i.e. the PDF of the current state under the
condition of observed measurements z1, z2; . . . zt. Generally, the measurement z0 is
regarded as being an empty measurement as it is commonly used to derive an initial
state s0, i.e. p(s0 | z0) ≡ p(s0). The PDF p(st | z1:t) is called the posterior PDF,
as it includes all observed measurements up to time t. From this PDF, the position
with the highest probability can be derived and reported as the current position. This
method is used by Kalman filters and particle filters.

2.6.1 Kalman Filter

The Kalman filter was introduced in [Kálmán, 1960] and belongs to the family of
Bayesian estimators. It uses a prediction model, a measurement model and error
models for the measurement noise as well as for the error of the prediction to calcu-
late the current posterior PDF. The basic principle of the Kalman filter is depicted in
Figure 2.18a: an initial state ŝ0 will be derived from a first measurement z0. After
this initialization, the filter will enter a recursive loop consisting of a prediction phase
and an update or correction phase. In the prediction phase, the filter tries to estimate
the next state using the prediction model. In the update phase, a new measurement
will be used to correct the prediction from the previous phase. This corrected state
will then be used for the next prediction and so on (see Figure 2.18a).

The Kalman filter has some restrictions: the prediction model and the measurement
models must be linear and all PDFs can only be expressed as Gaussian densities. If
these restrictions are met, the Kalman filter is an optimal estimator, i.e. it minimizes
the mean square error of the estimated parameters.

Because of the required linearity of the prediction and measurement models, both
models can be expressed through matrices. The prediction model tries to estimate
the next state of the system ŝ−t+1, which is called the a-priori state as it does not
yet contain a measurement for time t + 1. The a-posteriori state ŝt+1 is computed
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(a) Kalman Filter Loop

Figure 2.18: The Kalman filter loop: after an initial measurement, prediction phase
and update phase will be repeatedly executed.

in the update phase by taking a new measurement zt+1 into account. Because the
Kalman filter is recursive, the prediction of the next a-priory state is based on the
previous a-posteriori state. The prediction is calculated by using a state prediction
model At ∈ Rn×n and a probability variable vt, which represents the inaccuracies
introduced by A, the so-called process noise:

ŝ−t+1 = Atŝt + vt (2.11)

vt is assumed to be white noise with a noise covariance Q and normal probability
distribution: p(vt) ∼ N(0, Q). In practical applications, the process noise is often
guessed or fine-tuned after a running system is implemented. In other words, the next
state follows from the previous one by a translation plus the inaccuracies introduced
by the translation itself. These inaccuracies are reflected in the so-called prior PDF
p(s−t+1 | z1:t−1). In a positioning system, At would include the speed and direction of
an agent at time t to compute the next state, i.e. the next position, by using Newtonian
physics.

From the calculated a-priori state, a prediction for the next measurement z′t+1 ∈ Rm

can be made:
z′t+1 = Htŝ

−
t+1 + nt (2.12)

Here, Ht ∈ Rm×n translates a state into a measurement and nt is a random variable
representing the measurement or sensor noise with noise covariance R. ŝ−t+1 can
be seen as a hypothesis and z′t+1 describes which measurement is needed in order
to confirm the hypothesis. Again, the added noise has an effect on the resulting
PDF p(z′t+1 | ŝ−t+1). In general, a probability that an observation occurs under the
condition that a defined state is given, is called likelihood. This in contrast to a
probability that a state occurs under the condition of a specific observation, which is
called belief.
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(a) Initial Measure-
ment

(b) Prediction (c) New Measure-
ment

(d) Update (e) Prediction

Figure 2.19: Example of a Kalman filter for positioning.

In the update phase an actual measurement zt+1 ∈ Rm is taken. The discrepancy
between the actual measurement and the predicted measurement, i.e. zt+1 − z′t+1,
is called the measurement innovation. The a-posteriori state is calculated as a linear
combination of the a-priori state and the measurement innovation:

ŝt+1 = ŝ−t+1 +Kt+1(zt+1 − z′t+1) (2.13)

Kt+1 ∈ Rn×m is called the Kalman gain and is computed from the prior and
likelihood PDFs. The Kalman gain also changes in every iteration of the filter
and thus the weight between the a-priori state and the measurement innovation is
shifted accordingly. With very noisy sensors and a good prediction model, the
weight will be gradually shifted towards the a-priori state (cf. ([Maybeck, 1979,
Welch and Bishop, 2006]).

The Kalman filter can be used to fuse the measurements of a position-giving system,
i.e. a system that derives a position out of measurements (like a GPS receiver), with
velocity- and direction-giving sensors, e.g accelerometers, by using the latter to pre-
dict the next position. Figure 2.19 exemplifies this approach: (a) a first GPS position
is measured and the sensor-noise model is used to construct an initial posterior PDF
(black). (b) the Kalman recursion is entered and a prediction for the next position
is made. The resulting prior PDF (red) is flattened out in comparison to the initial
posterior PDF (black) because of the process noise. (c) A new GPS measurement is
taken. The PDF of the measurement (green) has the same shape as the initial pos-
terior, since the same sensor-noise model is used. (d) The update phase provides a
new position, which lies between the first measured position and the predicted po-
sition according to the Kalman gain. The resulting posterior PDF (black) is slightly
sharper than the prior and the measurement PDF. (d) The Kalman filter enters the
next iteration and generates a new prediction (red).
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The method used in the example is called a loosely coupled Kalman filter. Here, the
derived position of a position-giving system is treated as measurement and the dis-
tance between the predicted position and the measured next position is used as mea-
surement innovation. A tightly coupled Kalman filter predicts the actual measure-
ments of the position-giving system, e.g. TOA measurements and uses the difference
between the predicted measurements and the next measurements as measurement
innovation.

As already mentioned above, the Kalman filter has some restrictions. The Extended
Kalman Filter (EKF) reduces some of these limitations by allowing non-linear mod-
els through the use of local linearization. However, the state PDF is still limited to
be Gaussian.

In [Wolpert and Ghahramani, 2000] the model of a Kalman filter is used to explain
how humans are capable to compensate for sensorimotor delays and noise inherent in
sensory and motor signals. For example, a visual perception can easily be delayed by
100 ms, from the moment stimuli hit the retina until the signal reaches the according
regions of the brain. According to the authors’ theory, the brain uses a copy of a
motor command, a so-called efference copy, and a model to predict the current state
from the previous state, from which then the expected sensory feedback is predicted.
The error between this prediction and the actual sensory feedback is then used to
correct the estimate.

2.6.2 Particle Filter

As indicated above, the use of the Kalman filter is restricted to applications, where the
system-state PDF can be described by a Gaussian density function. In practice how-
ever, this is often not the case, e.g. when different sensors report different positions.
Figure 2.20 shows a non-Gaussian pdf, indicating two different one-dimensional po-
sitions. In general, the problem with non-Gaussian distributions is that they cannot
be expressed through a uniform description and thus providing a general algorithm
proofs somewhat difficult.

Particle filters tackle this problem by using Independent and Identically Distributed
(IID) random samples of the system-state PDF. In the following, the same notation
as in Section 2.6.1 is used, i.e. st ∈ Rn represents a system state at time t, zt ∈ <m
represents a measurement taken at time t. s0:t and z1:t represent the set of all system
states and measurements until time t.

As it was the case with Kalman filters, a particle filter has a prediction model and a
measurement model. Since particle filters can also deal with non-linear state models,
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Figure 2.20: A non-Gaussian PDF and its approximation through weighted random
samples (particles).

both models can be expressed through the use of functions:

st+1 = ft(st, vt) (2.14)

is the prediction model, with ft : Rn × Rnv → Rn and vt being a noise vector with
dimension nv. With the help of Equation 2.14, the PDF p(st | st−1) can be computed.

zt+1 = ht(st, nt) (2.15)

is the measurement model, with ht : Rn × Rn
n → Rm and taking a state description

st and a noise vector nt with dimension nn as input to predict a measurement.

A particle consists of a so-called support point si0:t, which represents a partition of
the system state at time t, and an associated weight wit. A set of particles {si0:t, wit}

Np

i=1

is used to characterize the posterior probability function p(st | z1:t), where Np is the
number of used particles. The weights are normalized, i.e. all available weights sum
up to 1 and each weight wi is proportional to p(sit | z1:t). The posterior probability
can then be approximated as the weighted sum over the contributions of each support
point to the complete system state, which can be calculated using the Dirac delta
measure δ:

p(s0:t | z1:t) ≈
Np∑
i=1

witδ(s0:t − si0:t) (2.16)

A set of particles thus divides a state PDF into discrete partitions. In terms of posi-
tioning, each particle si0:t, w

i
t is a hypothesis stating that the current position is at the

particle’s support point si0:t. The particle’s weight wi0:t is proportional to the prob-
ability that this hypothesis is true. Through the use of the prediction model, the
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(a) Initial state (b) Prediction (c) New Measure-
ment

(d) Update (e) (optional) Re-
sampling

Figure 2.21: Example of a particle filter for positioning.

measurement model and a new measurement zt+1, the weight of each particle is up-
dated proportionally to the probability that the next position will be at the particles
support point. Particles that are far away from the newest measurement, i.e. hy-
potheses that do not have a high support from the taken measurement, will thus have
a lower weight than those that are closer.

There is however a problem: the state PDF is usually not directly accessible. In or-
der to solve that problem, a so-called importance density q(·) is used, which has to
be proportional to the state PDF. In practical applications, the last posterior PDF is
often used as importance density. As it was the case with the Kalman filter, particle
filters are executed recursively, thus an initial posterior PDF has to be created. Fig-
ure 2.21 shows an example in the positioning domain. The boxes represent a finite
two-dimensional state space. In (a) an initial state is created by randomly distribut-
ing particles, indicated as black dots, over the state space. Each particle has the same
weight and thus an evenly distributed PDF is represented. (b) Using the prediction
model and the measurement model, predictions for each particle are created (marked
in red). These ‘prediction particles’ are for illustration purposes only. (c) A new mea-
surement is taken by two different sensors, which results in two possible positions
(marked as green crosses). (d) The weights of each particle are adjusted according to
how well each particle fits the new measurement. The new weights are normalized,
so that they sum up to 1 again. Note that the particles do not change their position,
they still represent the probability that the current position is at each particles initial
support point. Step (e) will be explained further below.

It becomes clear from this example, that the number of particles – and thus the parti-
cle density – has a high impact on the accuracy of the position determination. More-
over, a central problem of this approach is visible: after a small number iterations,
a few particles will gain most of the weight, while the other particles’ weight will
quickly become insignificant. This effect is called the degeneracy problem. Since
computations have to be performed for every particle, most of the computations will
then not really contribute to the position determination and thus the effectiveness
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of the particle filter is impaired. A measure for the effectiveness of a particle filter
Neff(t) at time t can be derived from the summed squares of all weights:

Neff(t) =
1

Np∑
i=1

(wit)
2

(2.17)

The lower Neff(t), the less effective is the particle filter at time t. To overcome
the problem of degeneracy, resampling can be used when Neff(t) falls below a de-
fined threshold. In the resampling step, Np new particles are drawn out of the cur-
rent state PDF, which can be approximated by Equation 2.16. The basic idea is
to keep the particles with high weight and to shift those with low weight closer
to the high weight ones. This is sometimes also referred to as ‘survival of the
fittest’. The weight of all particles in the new particle set is reset to 1/Np, i.e. the
weight is equally distributed. The effect of such an additional resampling step is de-
picted in Figure 2.21e: The particles form a cloud around the high probability area
of the state space. Resampling thus not only helps to keep the efficiency up, but
also increases the accuracy as the distances between the hypotheses are reduced (cf.
[Arulampalam et al., 2002, Gordon et al., 1993, Gustafsson et al., 2002]).

Particle filters are often used because of their ability to cope with non-Gaussian state
PDFs and non-linear prediction- and measurement-models. The main disadvantages
are the high computational complexity and the determination of a sufficient number
of particles. Both parameters interact with each other: the higher the number of
particles, the higher the computational complexity.

2.6.3 Bayesian Networks

Since Bayesian Networks, and moreover, dynamic Bayesian Networks play an im-
portant part in Chapter III, they will be described in more detail in the following. As
a matter of act, Kalman filters and particle filters are subsets of dynamic Bayesian
Networks ([Diard et al., 2003]).

Bayesian Networks (BNs) and their extension – Dynamic Bayesian Networks (DBN)
– are a computational framework for the representation and the inference of uncer-
tain knowledge via probability theory. As a matter of act, Kalman filters and particle
filters are subsets or special applications of dynamic Bayesian Networks. The term
‘Bayesian Networks’ and their basic concept was introduced by [Pearl, 1985]. In
the aforementioned article, Pearl argues that the straightforward way of implement-
ing probability-based reasoning by using a joint probability distribution quickly runs
into complexity problems. The main reasons for this being the exponential memory
requirements to store the joint probability table for n propositions x1 . . . xn, and the
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Figure 2.22: An example for a Bayesian Network showing the directed acyclic graph
and the conditional probability tables.

exponential runtime to calculate the marginal (i.e. unconditional) probability for any
proposition xi (1 ≤ i ≤ n), which would be needed twice to compute conditional
probabilities such as P (xi | xj). Furthermore, Pearl elaborates that humans are in
general very good at judging the dependence or independence between propositions,
while being reluctant when asked about numerical estimates for conditional proba-
bilities of propositions. Therefore, his proposed approach consists of a qualitative
part, which describes the dependency between propositions, and a quantitative part,
which describes the (estimated) numerical probabilities.

To model the qualitative part, directed acyclic graphs (DAGs) are used, where the
nodes represent random variables and the directed edges represent direct dependen-
cies between these variables. An example of such a DAG is shown Figure 2.22. The
shown graph models the situation, where an agent tries to reach a certain destination,
which it can identify by two routemarks. As explained in Section 2.1.1.4, routemarks
differ from landmarks in that they are closer to a particular point on a route. The top
node, labeled ‘Destination’ represents the probability whether the agent has reached
its destination or not. The node thus contains two states: ‘true’ and ‘false’. The
bottom left node, labeled ‘Temple’ represents if the agent has visually perceived the
temple, which marks his destination. It contains two states ‘true’ and ‘false’. The last
node, ‘Waterfall’, represents the event of acoustically perceiving a waterfall, which
is also close to the destination but visually hidden in a dense forest. Like the other
two nodes, it contains the states ‘true’ and ‘false’.

Whether or not the agent sees the temple, directly depends on whether or not it has
reached its destination, thus a directed edge leads from the node ‘Destination’ to the
node ‘Temple’ (the direction is indicated by the arrow in the graph). The same is
true for the event of hearing the waterfall. Thus ‘Waterfall’ also directly depends on
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‘Destination’ and also has an edge starting from ‘Destination’.

More formally, a directed graph G is defined by set of nodes, or vertices, V and a set
of directed edges E (G = (V,E)). An edge can be represented by an ordered pair
(v, w) ∈ E, with v, w ∈ V . A graph is acyclic if no path exists that starts and ends
at the same node. A node vp that directly influences another node vc, i.e. there is an
edge (vp, vc) ∈ E, is called parent of vc.

In order to describe the quantitative part of the network, each node contains a con-
ditional probability table (CPT), which describes the effects of the parent nodes on
this node. The number of entries in each CPT is determined by the number of par-
ent nodes and the number of states of the parent nodes and the node itself. In the
case of the example network, the node ‘Destination’ does not have any parent nodes.
Its CPT therefore only contains two entries, describing the probabilities whether the
agent has reached its destination or not. Because of the lack of parent nodes, these
probabilities are unconditional, i.e. they are a-priori probabilities. In this example,
a very low a-priori probability of P (Destination = true) = 0.8% is assumed for
the event that the agent is at its destination. Terms like P (Destination = true)
or P (Destination = false) are often shortened to more readable notations like
P (D) and P (D). Since a CPT represents the exhaustive set of cases for a node, it
follows that the a-priory probability that the agent has not reached its destination is
P (D = 1− P (D) = 99.2%).

The CPT of the node ‘Temple’ contains four entries, since it is directly influenced
by the node ‘Destination’. Thus, its entries describe the probabilities of seeing the
temple under the condition that the agent did or did not reach its destination. Using
the abbreviations T for Temple = true and T for the Temple = false, the CPT
contains values for P (T | D), P (T | D), P (T | D) and P (T | D). The reliability
of tests or sensors is often expressed in terms of sensitivity and specificity, e.g. the
percentage of cases where the sensor correctly classifies the temple as temple and
the percentage of cases where the sensor correctly classifies other objects as not
being the temple. These values can be retrieved through evaluations under laboratory
conditions. For this example a sensitivity and specificity of 99% in each case is
assumed, i.e. a highly reliable sensor. The sensitivity equates to P (T | D) and the
specificity equates to P (T | D). The values for P (T | D) (false positives) and
P (T | D) (false negatives) can be calculated by 1 − P (T | D) and 1 − P (T | D),
respectively.

The CPT of the ‘Waterfall’ node represents the probabilities of hearing or not hearing
the waterfall under the condition that the agent has reached its destination or not.
For the sake of an example, it is assumed here, that the auditive sensor is highly
unreliable, and more than that, the possible perception of the waterfall highly depends
on environmental factors, like the amount of water the river carries, which can make
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the sound of the waterfall louder or softer, and the current wind speed, which can
drown out the sound. In such cases, the probabilities are often estimated, which
also allows to incorporate influences that are not explicitly modeled in the DAG by
adjusting the probabilities accordingly. In this example, a 10% chance is assumed
that the agent’s audio-sensor mistakingly reports a waterfall although the agent is not
at its destination (P (W | D) = 10%). By analyzing the current and past weather
condition, the agent may adapt this value accordingly. Again, the value of P (W | D)
can be computed by 1− P (W | D). For this example, the probability of hearing the
waterfall when being at the destination, P (W | D), is estimated to be a low 40%,
and thus the probability of missing the sound of the waterfall is P (W | D) = 60%.

According to [Russel and Norvig, 1995], Bayesian Networks can be summarized as
‘a graph in which the following holds:

1. A set of random variables makes up the nodes of the network

2. A set of directed links or arrows connects pairs of nodes. The intuitive meaning
of an arrow from node X to node Y is that X has a direct influence on Y .

3. Each node has a conditional probability table that quantifies the effects that the
parents have on the node. The parents of a node are all those nodes that have
arrows pointing to it.

4. The graph has no directed cycles (hence is a directed, acyclic graph, or DAG).’

Inference in Bayesian Networks

Having such a graph and the associated CPTs, queries can be answered. For example
the question ‘How high is the probability that the agent sees the temple when being
at its destination?’ can be translated into P (T | D) and the answer (99%) can be
directly retrieved from the CPT of the ‘Temple‘ node. In this example query, the
value of the node ‘Destination’ was observed, i.e. its state was known. In general,
such a node, whose value can be observed, is called evidence node. Nodes whose
values are unknown are called hidden or latent nodes [Ben-Gal, 2008].

The question ‘How high is the probability that the agent will hear the waterfall, not
knowing if the agent is at its destination or not?’ translates into the marginal proba-
bility P (W ), which is not directly accessible through the CPTs. However, the query
can be answered by summing up the joint probabilities over all outcomes of the in-
fluencing node ‘Destination’. This method is also called marginalization:

P (W ) = P (W | D)P (D) + P (W | D)P (D) = 10.24%
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Note that all probabilities needed to perform that calculation can again be retrieved
from the CPTs of the network.

A more interesting question would be ‘If the agent sees the temple, how high is the
probability that it is at its destination?’, which translates into P (D | T ). In contrast
to the first example query, in which the evidence node was a parent to the queried
node, the evidence node is now a child to the queried node. This type of inference is
called bottom-up reasoning and can be performed by using Bayes rule, which is also
the reason for the term ‘Bayesian Network’. The general form of Bayes rule is:

P (A | B) =
P (B | A)P (A)

P (B)
(2.18)

Applied to the query above, this leads to

P (D | T ) =
P (T | D)P (D)

P (T )

Since P (T ) is not directly accessible from the CPTs, it has to be computed via
marginalization, leading to

P (D | T ) =
P (T | D)P (D)

P (T | D)P (D) + P (T | D)P (D)
= 44.39% (2.19)

The outcome is surprising given the high accuracy that is suggested by the assumed
99% sensitivity and specificity of the test. This is however the effect of the low a-
priory probability of P (D) = 0.8% (when assuming that the a-priory probability of
being at the destination is 20%, the probability P (D | T ) rises to 96.12%).

If the node ‘Waterfall’ is also observed, P (D | T ∧W ) = 76.15% or P (D | T ∧
W ) = 34.74% can be computed (here the original probability of P (D) = 0.8% was
used), again by applying Bayes rule and marginalization. Especially the bottom-up
reasoning makes Bayesian Networks a very powerful tool.

Of course the outcome of a Bayesian Network can only be as good or exact as
its modeling, including the quality of the CPT entries. As stated above, missing
or unknown influences in the graph can be compensated for in the CPT entries.
Nonetheless, such a network can only represent the view or the belief of its architect.
Thus, Bayesian Networks are also called Belief networks and computed evidences
are called beliefs, e.g. the computed probability of P (D | T ∧W ) is called the be-
lief that the agent is at its destination under the observation of seeing the temple and
hearing the waterfall. Other terms for Bayesian Networks are Influence network and
Causal network.

To summarize, Bayesian Networks approach the problem of storing a complete joint
probability table by decomposing it into CPTs, e.g. a complete joint probability ta-
ble for 30 two-valued variables would need 230 > 1 billion table entries, whereas
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Figure 2.23: An example for a dynamic Bayesian Network including two time-slices
and an inter-time-slice CPT.

a Bayesian Network consisting of 30 nodes, where each node has at most 5 par-
ents only needs at most 30 × 25 = 960 CPT entries ([Russell and Norvig, 2003]).
However, in general the exact inference in a Bayesian Network is still an NP-hard
problem ([Cooper, 1990]), but efficient algorithms exist for certain network topolo-
gies, e.g. networks that only have at most one undirected path between any two
nodes, so-called polytrees or singly-connected networks. [Pearl, 1986] describes
such an algorithm, which is based on message passing, a technique that was also used
by [Lauritzen and Spiegelhalter, 1988]. For large, multiply-connected networks, ap-
proximate inference can be used, e.g. Monte Carlo sampling ([Pearl, 1987]), logic
sampling ([Henrion, 1986]) or importance sampling ([Fung and Chang, 1989]).

2.6.3.1 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are an extension of Bayesian Networks. With
a DBN, it is possible to model dynamic processes: Each time the DBN receives
new evidence a new time slice is added to the existing DBN. Figure 2.23 shows an
example DBN with two time-slices and a single edge leading from time-slice t to
time-slice t + 1. In this example, the CPT of this inter-time-slice edge models the
probabilities for a change of states in the node ‘Destination’ from one time-slice to
another. Dt andDt denote the states of being at the destination in time-slice t and not
being at the destination in time-slice t. Likewise, Dt+1 and Dt+1 denote the states
of being or not being at the destination in time-slice t + 1. P (Dt+1 | Dt) thus is the
probability that the agent will still be at the destination in the next time-slice under
the condition that it is already at the destination in the current time-slice.
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In the example, this probability is set to 70%. The probability that the agent will not
be at the destination anymore in the next time-slice P (Dt+1 | Dt) is thus 30%. The
probability that the agent will reach the destination in the next time-slice although
it is not there at the current time-slice is set very low: P (Dt+1 | Dt) = 0.1%. The
probability that it will still not reach the destination in the next time-slice is thus
set to 99.9%. The CPT can be seen as an equivalent to the prediction model or
motion-model in the Kalman filter and particle filter as it predicts the future state
of the ‘Destination’ node based upon the current state. And as in the Kalman and
particle filter, this prediction will be updated or corrected by new measurements, i.e.
by setting new evidences in the nodes ‘Temple’ and ‘Waterfall’.

DBNs can have an arbitrary number of inter-time-slice edges and these edges are
not restricted to lead from one time-slice to the immediately following one. In prin-
ciple, DBNs can be evaluated with the same inference procedures as normal BNs,
but their dynamic nature places heavy demands on computation time and mem-
ory. This complexity can be greatly reduced, by applying roll-up procedures that
cut off old time slices without eliminating their influence on the newer time slices.
[Brandherm, 2006] describes sophisticated algorithms to apply these roll-ups and
introduces a tool that automatically generates Java code for graphically modeled
DBNs. In Chapter III a new positioning method based on DBNs is elaborated, which
combines the principles of particle filtering with the power of DBNs.
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3.1 Positioning with a Single Sensor Technology

3.1.1 Global Navigation Satellite Systems (GNSS)

The most prominent example for an outdoor positioning-system is the Global Po-
sitioning System (GPS), which is based on satellites orbiting the earth. In general,
positioning systems based on satellites and pseudolites are called Global Navigation
Satellite System (GNSS). The satellites of a GNSS usually act as senders, at least
broadcasting a time-stamp that encodes the exact point in time when the broadcast
began. A receiver on earth can then calculate its own position through TOA and
trilateration, as described in Section 2.5.1. In theory, three satellites with known po-
sitions are enough to determine the receiver’s position on the surface of the earth.
However, as indicated in Section 2.5.1.3, the inaccuracies of the quartz timer on the
receiver’s end only leads to pseudoranges. These inaccuracies can be resolved by us-
ing a fourth satellite. In general, more satellites lead to a more accurate positioning.
Because the data-flow in a GNSS is from the satellites to the receiver, GNSSs are
egocentric positioning systems.

3.1.1.1 NAVSTAR GPS

As already indicated, GPS is the most well known GNSS system, with various appli-
cations in military as well as civil domains. The full name of the system is Navigation
System with Timing and Ranging – Global Positioning System, or NAVSTAR GPS.
It was deployed by the US Department of Defense, and reached its initial operation
capability in 1993. Full operation capability was declared in 1995 ([Roth, 2005], p.
284).

61
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GPS satellites operate on two frequencies called L1 and L2, with L1 = 1575.42
MHz and L2 = 1227.6 MHz. The L2 frequency is reserved for the so-called Pre-
cise Positioning Service (PPS), which is encrypted and can only be used by military
applications. The L1 frequency is available for PPS as well as the Standard Position-
ing Service (SPS), which can also be used by consumers. Until 2000, the consumer
SPS signals were artificially degraded trough a method called Selective Availability
(SA) to ensure that only the US and NATO military could use high accuracy posi-
tioning. Since May 2000, SPS and PPS deliver the same basic accuracy, but since the
PPS signals are sent on L1 and L2 frequencies, military applications can perform an
ionospheric correction, which results in a higher accuracy.

Each satellite sends its own, unique Pseudo Random Noise (PRN) code, onto which
additional data is modulated. A GPS receiver can simulate the PRN code of each
satellite and thus knows how the signal looks like at the time the satellite sent it. The
actually received PRN code is thus delayed against the simulated signal and the TOF
(see Section 2.5.1.2) can be derived by shifting the simulated signal until it correlates
with the received one. The accuracy of the TOF determination depends on how fast
the bits of the PRN code are transmitted. In the case of SPS, a time resolution of 0.01
µs is possible, which leads to an accuracy of 3 meters for one distance measurement.

The bandwidth of the modulated information is only 50 bits per second and the pay-
load is divided into three parts: clock-correction data, which contains the current
number of the week and time; the ephemeris, which contains the orbit and health
status of the satellite; and the almanac, which contains the coarse orbit and health
status of other satellites. A GPS receiver typically has to build an internal database
from the received data before it can provide a first position. The time that passes
until the first position can be delivered is called Time To First Fix (TTFF). The TTFF
depends on how much the satellite constellation has changed since the receiver was
last turned on. In extreme cases, e.g. when the receiver has been brought to a differ-
ent continent while being switched off, the complete database has to be rebuilt. This
so-called cold-start takes 12.5 minutes when a clear view to one of the satellites is
given. A warm-start is possible, when large parts of the database are still up-to-date,
e.g. if the receiver has changed its position less than 300 kilometers since the last fix.
A warm-start can be as fast as 45 seconds. A hot-start only takes 15 to 20 seconds
and is possible when the database is up-to-date ([NavCen, 1996]).

Assisted GPS (AGPS)

A long TTFF is prohibitive for most mobile location-based services. To overcome
this problem, assisted GPS downloads almanac data via a cell phone network or
WiFi access from an assistance server. This server can also provide precise time
and information about local ionospheric conditions, which can be used to derive a
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higher position accuracy. Furthermore, complex calculations can be offloaded from
the receiver to the server, which allows to reduce the computational power of an
AGPS device. In the case of AGPS via cell phone network, the cell phone provider
can roughly estimate the current position of the device by the cell in which it is
logged in, which also helps to reduce the search area for satellite signals. An AGPS
system can bring the TTFF down to about one second.

In [Waters et al., 2011], a method is proposed in which several devices equipped with
GPS and WiFi (see also Section 3.1.3) can assist each other similarly to AGPS. The
idea here is that GPS devices that have already determined the correct GPS system-
time, can act as access points according to the upcoming IEEE 802.11v WiFi stan-
dard, and insert the correct system-time in their data-packages. As the provided
system-time has to be as accurate as possible, the timing of the transmission itself
is highly critical. The authors propose, that integrated chipsets, which contain WiFi
and GPS capabilities should be used, to minimize the transmission time.

Differential GPS (DGPS)

Differential GPS is a method to further increase the position accuracy through static
reference stations with precisely known positions. These reference stations deter-
mine their own GPS position and use the difference to their exact position to calcu-
late correction data. This correction data is usually broadcast via terrestrial radio and
a DGPS enabled device can use the delivered data to correct its own position. The
achieved accuracy depends on the distance from the receiver to the reference station
and in order to be able to use the correction data, the DGPS receiver must use the
same satellites as the reference station. According to [NavCen, 2001], the accuracy
at the reference station is below 1 meter and degrades about 1 meter for each 150
kilometer of increased distance between receiver and reference station.

Wide Area Augmentation System (WAAS)

A Wide Area Augmentation System is based on the same methods as DGPS, but
uses satellites instead of terrestrial radio to broadcast the correction data. Usually, a
WAAS has a master control station, which collects the data of several reference sta-
tions. The calculated correction data is then sent to a geostationary satellite, which
broadcasts the data on the L1 frequency using its own PRN identification. The ad-
vantage of WAAS over DGPS is, that no additional antenna has to be used to receive
the correction data.



64 RELATED WORK

Standard GPS 2.0 - 8.76 m
Differential GPS 1 - 5 m
Wide Area Augmentation System 1 - 3 m
RTK GPS ≈ 1 cm

Table 3.1: Accuracies of standard GPS, AGPS, DGPS, WAAS and RTK GPS.

Realtime Kinematic GPS (RTK GPS)

As mentioned earlier, the accuracy of the distance measurements from the receiver
to each satellite is restricted through the bit-rate with which the PRN codes are trans-
mitted. A way to further improve the positioning accuracy is to use the carrier-signal
itself, which has a higher bit-rate, instead of the PRN code to measure the TOF
and thus the distance to each satellite. However, since the carrier-signal is missing
direct information that is needed to align the measured delayed signal with a simu-
lated one, a statistical approach is needed to find this alignment. First approaches to
this problem needed hours of carrier-signal measurements from one static position,
which were then post-processed offline on a desktop computer. This method was
called Static Surveying. Rapid Static Surveying was an improvement of this method
and only needed a few minutes of measurements, but still had to be post-processed.
Kinematic Surveying relied on Rapid Static Surveying but allowed the receiver to be
moved after an initialization phase as long as it kept using the same satellites. With
increasing computing power, it was eventually possible to perform the needed calcu-
lations on site and in realtime, thus the name Realtime Kinematic GPS (RTK GPS)
([van Diggelen, 1997]).

RTK is a refinement of DGPS, in that it also needs a precisely positioned reference
station, but has higher restrictions. The reference station must be in a range of max.
50 kilometers of the moving receiver and at least 5 satellites must be available. With
a clear LOS to at least 6 satellites, an accuracy of 1 centimeter can be reached.

Table 3.1 shows a comparison of the accuracies achieved by the different GPS based
systems.

3.1.1.2 GPS Indoors

Like all known GNSS systems, GPS generally does not work inside buildings. This
is mainly due to high attenuation of the satellite signals caused by exterior and inte-
rior walls. Although highly sensitive GPS receivers can sometimes pick up enough
satellite signals next to windows or thin walls to be able attempt a position, the re-
ceived signals are often distorted by reflection and diffraction. This distortion can
cause a direct signal to be weaker than indirect ones and thus decreases the accuracy.
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Ghinamo et al. In [Ghinamo and Gangyi, 2011], the authors tested GPS position-
ing in a light indoor-environment (see Section 2.3.1) and propose to use a particle fil-
ter approach, based on an empirical error distribution. They compared their approach
with a weighted least squares method, and found out that the particle filter improves
the accuracy in those conditions, where the error distribution is non-Gaussian. Ac-
cording to their experiment, conducted with a Sirf Star III high sensitivity receiver,
they could achieve a position accuracy between 0.35 and 1.04 meters. The exact
evaluation process, i.e. if only one position was measured or a moving receiver, was
not disclosed.

3.1.1.3 GLONASS

GLONASS (Globalnaya Navigatsionnaya Sputnikovaya Sistema) is a Russian
GNSS, which was completed in 1995. With the Russian financial crisis in 1998, the
system could not be kept fully operational and in 2000 only 10 of the originally 24
satellites were still active. At the end of 2003, the restoration of GLONASS began,
and since November 2011, the system is fully operational again.

As it is the case with GPS, GLONASS provides two different positioning accuracies:
Standard Precision (SP) and High Precision (HP). In contrast to GPS, all satellites
use the same PRN, but send on different frequencies. The center frequencies are
L1 and L2, but different channels are used by adding offsets to them, i.e. L1ch =
L1 + ch ∗ 562.5 kHz and L2ch = L2 + ch ∗ 437.5 kHz, were ch = −07..06 denotes a
channel number. With 4.46 to 7.38 meters, the accuracy of an unassisted GLONASS
receiver is in general slightly less than that of unassisted GPS.

3.1.1.4 Galileo

Galileo is a planned European GNSS, which is inter-operable with GPS and
GLONASS. In contrast to the other two systems, Galileo will be completely un-
der civilian control. Furthermore, the satellites will be placed in orbits at a greater
inclination to the equatorial plane, which should increase the coverage in northern
Europe and other areas with high latitude. The first Galileo test satellite, GIOVE-A,
was launched in 2005, followed by GIOVE-B in 2008. With the launch of the first
two of four navigation satellites in 2011, Galileo reached the third phase. At the
end of the fourth phase, which is planned for 2014, 18 satellites will be in orbit and
first services will be available. The system will be fully deployed in 2020, with 30
satellites in three circular medium earth orbit planes.

Galileo shares the L1 frequency with GPS, but uses a different modulation scheme.
Additionally, the L5 frequency at 1176.45 MHz is used instead of L2. According
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to the official Galileo webportal1, Galileo will provide several different services: the
Open Service (OS), which is free of charge and provides ‘position and timing per-
formance competitive with other GNSS systems’; the Safety-of-Life Service (SoL),
which will provide a service guarantee and can warn users when the accuracy drops
below a threshold and a Commercial Service (CS), which will be encrypted and pro-
vides a higher accuracy. Officially, no accuracies are given, but Galileo is expected
to provide the same accuracy as GPS.

3.1.1.5 BeiDou

The Chinese GNSS BeiDou (chin. for the Big Dipper asterism, formed by the
seven brightest stars of Ursa Major) was declared operational for the region of China
and its surrounding areas on December 27th 2011. In contrast to GPS, GLONASS
and Galileo, BeiDou uses five geostationary satellites in addition to conventional
non-geostationary satellites, and uses the China Geodetic Coordinate System 2000
(CGCS2000) instead of WGS84. BeiDou satellites operate on a carrier frequency of
1561.098 MHz, which is called theB1 frequency. The current system is also referred
to as Compass or BeiDou-2 and is planned to reach completion in 2020, then com-
prising of 37 satellites and being operational world wide with a nominal accuracy of
10 meters ([China Satellite Navigation Office, 2011]).

The previous system, called BeiDou Satellite Navigation Experimental System or
BeiDou-1, consisted of three satellites and differed from BeiDou-2, GPS, GLONASS
and Galileo by being an offboard/exocentric positioning system: a user’s terminal
broadcasts a signal to the satellites, which in turn send the measured time of arrival
to a terrestrial ground-station. The ground station determines the position of the
terminal and sends this information back to the terminal via the satellites2.

3.1.1.6 Pseudolites

Although global navigation satellite systems work well in outdoor scenarios with a
free line of sight to four satellites, they have problems in urban canyons, and usually
do not work within buildings. A proposed solution consists of so-called pseudolites,
which can be received with the same hardware as the orbital satellites, but are in-
stalled terrestrial in said urban canyons or inside buildings. Although the idea sounds
effective, it has some disadvantages, most notably the near-far problem: depending
on the range between the receiver and the pseudolite, the signal can become more

1http://www.esa.int/esaNA/SEMTHVXEM4E galileo 0.html; visited November 29, 2011
2http://www.cnsa.gov.cn/n615708/n620172/n677078/n751578/62676.html; visited December 29,

2011; translated with Google Translate
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powerful than that of satellite and thus jam the receiver ([Ndili, 1994]). Solutions to
this problem either modify the used frequency, pulse the signal or change the data
protocol of the pseudolites, which also leads to hardware and software updates on
the receivers side. In [Borio et al., 2011], a theoretical framework is presented that
allows simulating and quantifying the signal loss of satellite signals, if pulsed pseu-
dolites are used in addition to satellite signals. With the help of such a simulation,
the deployment of pseudolites in buildings can be tested and optimized in terms of
interference with satellite signals.

Indoor Messaging System (IMES)

A more concrete attempt to pseudolites is the Indoor Messaging System (IMES).
IMES is a part of Japan’s Quasi-Zenith Satellite System (QZSS), which itself is an
extension of GPS through three additional satellites, which should improve posi-
tioning accuracy in Japan. The IMES specification states that in order to receive
IMES data, only a small customization of existing GPS receivers has to be made
([QZSS, 2009]). The pseudolites use the L1 frequency with an offset of 8.2 kHz
and use specially assigned PRN codes. Instead of the ephemeris data sent by GPS
satellites, IMES pseudolites can send different data, e.g. longitude/latitude and floor-
data or even a simple ID that refers to a database entry, which can then be accessed
via a network. An IMES capable receiver usually does not use triangulation, but
just adopts the received location of the pseudolite. According to [Dempster, 2009],
IMES has to face several potential problems: pseudolites have to be installed every
20-30 meters, which could result in high costs; the pseudolites are likely to jam the
reception of GPS satellites and could thus influence outdoor positioning; a seam-
less handover from pseudolite to pseudolite or to satellites could provide difficulties
because of the near-far problem.

Kohtake et al. [Kohtake et al., 2011] describe a seamless indoor and outdoor posi-
tioning system based on IMES and GPS. They installed IMES pseudolites at various
locations in a shopping mall, each one covering a distance of 10 to 20 meters and
sending out a unique database ID. The used GPS receivers can read position infor-
mation sent by the nearest pseudolite and measure the received signal strength of that
satellite. If a receiver is in the middle of two pseudolites, both signals can be read
and measured, which allows for a higher position-accuracy in those overlap zones.
For testing purposes, the authors constructed a cart containing a GPS chipset receiver
with modified software, a GPS antenna and a cell phone. The authors do not give an
evaluation of the achieved position accuracy.
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Sakamoto et al. [Sakamoto et al., 2011] use IMES pseudolites for robot localiza-
tion. Since an accuracy of tens of meters is not applicable for robots and trilateration
is impossible with IMES, they use Doppler shift effects to improve the positioning
accuracy. In order to produce the needed Doppler shifts, they use two receivers, one
with a stationary antenna and a second one with a movable antenna. Both receivers
share the same clock and are thus tightly synchronized. The position of the mov-
able antenna is always known by the robot in its own local coordinate system (LCS).
The robot tries to determine its coordinates in a world coordinate system (WCS) by
rotating the movable antenna around the fixed one, while the robot itself remains sta-
tionary. The authors conducted two experiments, in which either the rotation radius
or the rotation angle was varied. In both experiments only one IMES pseudolite was
used. The resulting measurements were stored and the positions were determined
in an off-line phase. The resulting accuracy was highest with the longest rotation
radius (300 millimeters) and biggest rotation angle (360 degrees) and resulted in ≈
17 centimeters. However, because of the rotating antenna the proposed approach is
not suitable for personal positioning.

3.1.2 Cellular Based

Modern mobile phones rely on a cellular network, consisting of radio towers. As
already indicated in Section 2.3.3, opportunistic positioning systems use already ex-
isting infrastructure that was originally set up for a different purpose. Since cellular
networks are widespread, they are often used for opportunistic positioning.

Cell phone standards are categorized in generations by the International Telecommu-
nication Union (ITU). For each generation, key-features and requirement are defined,
on which new standards are developed. The development of first generation (1G) mo-
bile phones and networks started in the 1950s and was based on analog technology.
In Germany, the first consumer-usable mobile phone network was available in 1958
and was called A-Netz (A network). The switch to digital technology, and thus to the
second generation (2G), took place in 1991, with the start of the Global System for
Mobile Communications (GSM) standard in Finland. Besides telephony, the second
generation also introduced the capability of transferring data packets. The third gen-
eration (3G) was launched in 2001 by NTT DoCoMo in Japan and implemented the
Universal Mobile Telecommunications System (UMTS). Candidates for the fourth
generation (4G) are Long Term Evolution Advanced (LTE Advanced) and World-
wide Interoperability for Microwave Access 2 (WiMAX 2). Both standards have
predecessors (LTE and WiMAX), which do not completely fulfill the 4G require-
ments, and are thus dubbed near-4G systems or 3.9G. Since 2G the main differences
between each generation are higher data bandwidth and new frequency bands. The
different generations are non-backwards compatible in transmission technology.
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As the name implies, a cellular network consists of individual cells, each one cover-
ing a limited area. One such cell is created by at least one base station, consisting of
a transceiver that operates on a certain radio frequency and that is able to maintain a
connection to a limited number of mobile phones. In this context, terminal devices,
such as a mobile phone, are called User Equipment (UE). Signals that are sent from
a base station to an UE are called down-link signals and signals from an UE to a
base station are called up-link signals. Adjacent cells, which can overlap, operate
on different frequencies or frequency-bands, to minimize interference. However, if
two cells are far enough apart, the same frequency-band can be reused. Through the
partition of the whole network into cells, several problems are addressed. Firstly,
the distance between an UE and a base station can be kept low, which is important
for battery operated mobile devices, since the power consumption of such a device
should be low. Secondly, if a sufficient number of cells is available, more UEs can
connect to the network at the same time. However, for both solutions to work, a
sufficient number of base stations has to be available, which can drive up the cost
of deploying and maintaining such a network. To address this problem, several cell
sizes can be used, e.g. large cells for rural areas and several small cells for urban en-
vironments (cf. [Roth, 2005], pp. 46). In the telecommunications domain, the names
for different sized cells are derived from International System of Units (SI) prefixes:

• Macrocells are cells with a coverage up to 35 kilometers and are usually de-
ployed in rural areas

• Microcells cover up to 2 kilometers and are ideal for urban and suburban areas

• Picocells have a range up to 200 meters and can be deployed in high-density
areas, such as shopping malls or large office buildings

• Femtocells have a range up to 10 meters and are usually deployed and main-
tained by consumers

As indicated in the list, femtocells are operated by consumers. Because picocells and
femtocells are especially designed for indoor usage and have a relative small range,
they are particularly interesting for indoor positioning (see also Section 3.1.2.7).

The need for positioning in cellular phone networks was largely motivated by gov-
ernmental regulations, such as E112 in Europe, E911 in North America and 110 in
China. These regulations demand that network operators must be capable to locate
any emergency caller within a given accuracy, i.e. 95% of all E911 callers within 150
meters. The following standard methods are often used to determine the position of
an UE.
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3.1.2.1 Cell ID (since 2G)

UEs connect to the base station that is nearest to them, i.e. the one that provides
the device with the highest signal strength. This cell is called the Cell of Origin
(COO) and can be used for positioning, either ego- or exocentric. In the exocentric
case, the network operator can check in which cell the UE is logged in, and can thus
determine the area in which it is located. A simple egocentric approach is based on
the information each cell broadcasts, i.e. the Cell ID. By having a table stored on
the device that contains the location for each cell ID, the device itself can determine
its current area. A network provider can also broadcast this location info for each
base station, which obsoletes the provision of such a table. The accuracy of these
simple approaches depends on the size of the current cell and ranges from 200 meters
(picocells) to 35 kilometers (macrocells) ([Singh and Ismail, 2005]).

3.1.2.2 Cell ID + Timing Advance (since 2G)

The accuracy of Cell ID based systems can be increased by taking additional mea-
surements into account. For example the received signal strength on either the UE or
the base station can be used to further narrow the radius of the circle around the base
station describing possible locations.

GSM uses a Time Division Multiplex Access (TDMA) method to share one fre-
quency with several UEs, i.e. each UE gets assigned to a specific time slot inside a
time frame. In order for a base station to receive a data-package in the correct time-
slot, the UE has to compensate for the signal delay due to the distance between itself
and the base station. In order to determine this delay, the base station measures the
Round-Trip Time (RTT) between itself and an UE, i.e. the time that is needed for a
signal to be received by the UE plus the time that is needed to receive an acknowl-
edgment signal from the UE.

A quantized value of this measurement, called the Timing Advance (TA) value, is
sent back to the UE. TA values range between 0 and 63 and each step represents a
time-step of 3.7 µs ([3GPP, 1999, 3GPP, 2010]). A TA value of 1 thus represents
the distance of 3.7µs

2
∗ c ≈ 550m and a value of 63 represents the maximum GSM

cell-size of 35 kilometers. The TA thus already provides an approximation of the
UE’s distance to the base station and since the value is known to both, the network
operator and the UE, it can be used for exo- and egocentric positioning.

This kind of enhanced Cell ID is called Cell ID+TA. However, since Cell ID+TA can
only provide a resolution in 550 meter-steps, this method only provides an advantage
over simple Cell ID in macro and micro cells, where the maximum cell range exceeds
a single step.
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3.1.2.3 Cell ID + Round Trip Time (since 3G)

3G systems, like UMTS, can determine the RTT with higher accuracy. This improve-
ment is achieved through the larger bandwidth and thus shorter time-slots of the pro-
tocol and can be further improved by applying optional Location Measurement Units
(LMU) to the base stations (called Node B since 3G). Moreover, 3G cells can be di-
vided into sectors by using directional antennae, which can be used to further narrow
down the possible area of an UE. According to [Borkowski and Lempiäinen, 2006],
distance measurements with an accuracy between 5 and 36 meters can theoretically
be achieved by using oversampling at Node B measurements. Practical measure-
ments however achieve an accuracy between 150 and 450 meters.

Third generation networks also provide features called softer handover and soft han-
dover. As the names imply, these features ensure a seamless handover of a moving
UE’s connection from one Node B to another. During softer handover, the UE gains
access to two Cell IDs and one RTT value. When the UE is in soft handover, it has
access to two or more Cell IDs and to two or more RTT values. In these cases, a
more precise positioning is possible, by using trilateration (see Section 2.5.1). In
[Borkowski et al., 2004] a comparison of Cell ID+RTT was performed, including
single Cell, softer handover and soft handover scenarios. According to the authors,
the accuracy heavily depends on the network topology and lies in the range of 16 to
440 meters. As reported above, single Cell ID provided a range estimation between
150 and 450 meters. Softer handover resulted in positions with an accuracy between
50 and 100 meters, and soft handover could achieve a rather constant accuracy of 16
meters.

3.1.2.4 Observed Time Difference of Arrival (OTDOA) (since 2G)

In the context of positioning in cellular networks, the term Observed Time Difference
of Arrival (OTDOA) is often used for a multilateration based on Time Difference of
Arrival (see also Section 2.5.1.4). OTDOA can be used for exocentric and egocentric
positioning. The latter is dubbed Down-Link Observed Time Difference of Arrival
(DL-OTDOA) and is only possible if the UE is capable of measuring signals from
different base stations.

OTDOA measurements are already performed in GSM networks to realize the
so-called pseudo-synchronous handover between two base stations, which re-
quires the determination of a new TA for the new base station. According to
[Silventoinen and Rantalainen, 1996], the rate with which OTDOA measurements
are performed in a GSM network is too low for positioning. They propose a soft-
ware change on the network and UE side to increase the measurement rate and tested
their approach with a simulation. A mean positioning accuracy between 100 and 200
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meters could be measured. However, the authors admit that the measurement error
might be much higher in some real-world environments. [Singh and Ismail, 2005]
report a medium accuracy between 100 and 500 meters in urban environments (due
to closer distances to several base stations) and a few kilometers in rural areas.

In 3G networks, OTDOA measurements for egocentric positioning face the near-
far problem (see also Section 3.1.1.6), where the serving Node B drowns signals
from other base stations. A solution to this problem is called Time Aligned Idle
Period Downlink (TA-IPDL), where each Node B suspends its transmissions for a
given amount of time, which enables the UE to receive signals from distant Node
Bs. According to [Borkowski and Lempiäinen, 2006], with TA-IPDL an accuracy
between 30 and 100 meters can be achieved.

3.1.2.5 Angle of Arrival (AOA, only with additional hardware)

To enable exocentric positioning through triangulation within a cellular phone net-
work, the base stations must be equipped with antenna arrays to be able to derive the
AOA (see also Section 2.5.2.1). Egocentric positioning through trilateration is un-
common in cellular networks, since standard UE hardware is not capable of deriving
AOA measurements. The accuracy through exocentric triangulation based on AOA
measurements ranges between 100 and 500 meters ([Singh and Ismail, 2005]).

3.1.2.6 Positioning in 4G

The 3rd Generation Partnership Project3 (3GPP) is an international consortium of
telecommunications associations, which produces technical specifications. Origi-
nally the consortium was founded to define standards for 3G cellular networks, but
is now also involved in 4G standardization.

3GPP specified three positioning methods for 4G:

• Network-assisted GNSS methods

• Cell ID + enhancements like RTT

• OTDOA

The network-assisted GNSS methods, e.g. AGPS, are specified as the main po-
sitioning method, while Cell ID methods and OTDOA are specified as fallback
solutions. The motivation for this specification of positioning methods is mainly

3http://www.3gpp.org
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motivated by the E911/E112 regulations (see Section 3.1.2), although the ex-
pected higher data-rates of 4G (up to 1GBit/s in LTE Advanced) are also envi-
sioned to provide new opportunities for location based services. However, an in-
crease in position accuracy of the proposed standard solutions is not expected (cf.
[Tam and Lee, 2009, Ranta-aho, 2010]).

Pereira F. et al. In [Pereira et al., 2011b], an approach is described how to use
GSM fingerprinting to derive position information in the Large Hadron Collider
(LHC) tunnel, located near Geneva, Switzerland. The LHC is a particle accelerator
ring with a perimeter of 27 kilometers, lying 100 meters below the surface. Inside the
tunnel, positioning information could be helpful for the radiation protection group,
who has to perform frequent radiation surveys involving radiation measurements at
thousands of points.

Due to the location deep under ground, no GPS signals can be received inside the
tunnel. However, GSM is provided inside the tunnel through several so-called leaky-
feeder cables. The tunnel is divided into eight sections and for each section two GSM
cells are created through the leaker-feeder cables, such that when following along the
tunnel in one direction, the signal strength of one GSM cell rises and the other gets
attenuated.

The authors used a modified Nokia 6150 mobile phone connected to a laptop to log
the signal strength of different GSM cells and to create a fingerprint map. To find cor-
responding locations, a weighted k-nearest neighbor approach was used. The system
was tested using test-locations inside the tunnel, and measurements were taken under
optimal conditions (nobody was near the measuring equipment), sub-optimal condi-
tions (at least one person was standing near the measuring equipment) and realistic
conditions (a person was holding the equipment during measurement).

As expected, the signal variations where minimal in the optimal condition (± 2.5
dBm) and were highest in the realistic condition (± 6 dBm). The authors further
noticed that significant differences arose between different measurement sessions,
which may be due to magnets being powered in the particle accelerator equipment.

The measured accuracy of the positioning algorithms was determined being between
20 and 280 meters, taking all three conditions into account. The authors conclude
that their system provides accuracy within an acceptable range (for their purposes)
and that they will be able to enhance the system through a higher resolution of the
fingerprinting map, a better signal measurement process and through the application
of filtering techniques.
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3.1.2.7 Indoor Positioning with Femtocells and Picocells

As already mentioned above, femtocells and picocells are especially interesting for
indoor positioning applications, due to their short sending range. In contrast to pic-
ocells, femtocells are operated by consumers and bridge the user’s cell phones to
their cellular network operator by using the consumer’s DSL or other broadband In-
ternet access. As an incentive, operator companies usually offer reduced call rates
or lower fees for their services. According to [Haddad and Porrat, 2009], cellular
network operators consider femtocells as a solution for two problems: low signal
reception of cell towers indoors, which usually degrades voice quality and leads to
low data throughput, and losing profit because users tend to use WiFi and Voice over
IP at home instead of the cellular network. The idea to use privately operated base
stations – also called Home Base Stations (HBS) in contrast to the network operated
base stations – has already been proposed in [Silventoinen et al., 1996] to connect
GSM based phones with a fixed telephone line. The current concept of femtocells is
promoted since 2007 by the Femto Forum, a “not-for-profit membership organization
which seeks to enable and promote femtocells and femto technology worldwide”4.
The first femtocell standard was published in 2009 and was the result of a three-way
cooperation between 3rd Generation Partnership Project (3GPP), Femto Forum and
Broadband Forum.

Dempsey et al. [Dempsey et al., 2011] describe a testbed, in which they imple-
mented a Customer Relation Management (CRM) system, which should help to in-
crease a company’s interaction with customers, clients and sales prospects. Among
other features, the CRM system provides location information for subscribers and a
way to share location information with third parties. The hardware consists of three
2.5G proprietary GSM picocells, although the authors argue that the same principles
can be used for 3G or 4G pico- and femtocells. The testbed also contains a central-
ized server to which the picocells are connected and which can gain information on
the Cell ID and signal strength of every subscriber’s mobile phone. Furthermore,
the current connection status of a subscriber can be extracted, e.g. whether they are
currently talking on the phone or not. The CRM system can poll this information in
intervals of 20 seconds and also has access to the calendars of every subscriber.

Coarse position information is derived through the Cell ID information. Motion is
inferred through changing signal strength between polling intervals and direction is
estimated through Cell ID changes. So-called presence agents try to infer a more
precise position or sub-status by combining the measured information with calendar
entries through the use of Bayesian Networks. For example, if a subscriber has a
scheduled meeting at 8:30 in room A on the ground floor and the measured cell at

4http://femtoforum.org/
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8:25 is the one on the ground floor, the agent refines the position information to
room A and changes the sub-status to ‘in a meeting’. If the subscriber’s cell is on
the first floor, with an inferred direction downstairs (e.g. the previous cell was on the
second floor), the sub-status can be changed to ‘on the way to a meeting in room A’.
The authors conclude that such a pico/femtocell based infrastructure provides ‘cheap
context’ as the cost of a femtocell is less than $100.

3.1.3 WiFi Based

The term WiFi (or Wi-Fi) is a trademark of the Wi-Fi Alliance5 and an abbrevia-
tion for Wireless Fidelity. It is used to describe the set of IEEE 802.11 standards
([IEEE, 1999]) for wireless data connections into Local Area Networks (LAN) and
the Internet ([Patton et al., 2005]). Often, the term WLAN, for Wireless Local Area
Network is used interchangeably. According to the IEEE 802.11 standard, wireless
data connections can be established via infrared or radio communication. However,
nowadays the terms WiFi and WLAN almost always describe the access via radio
communication. As indicated above, the IEEE 802.11 is a set of standards that has
evolved over time. The original 802.11 was proposed in 1997 and allowed data-rates
up to 2 MBits per second on the unlicensed 2.5 GHz frequency band. In 1999, the
extensions 802.11a, with data rates up to 54 MBits/s on the unlicensed 5 GHz band,
and 802.11b, with data rates up to 11 MBits/s on the unlicensed 2.4 GHz band, where
introduced ([Roth, 2005], page 81). Since then several extensions followed, where
the most important ones are 802.11g, 802.11h and 802.11n, which further increase
the data rates on the 2.4 GHz and 5 GHz bands. A special extension, named 802.11p,
was proposed for vehicular applications and is a very important key-element for Car-
to-Car (Car2Car) and Car-to-X (Car2X) applications.

All 802.11 standards support two basic connection modes: ad-hoc mode and in-
frastructure mode. In infrastructure mode, WiFi compliant Access Points (AP) are
deployed into the environment. Mobile or stationary devices that connect to such an
access point are called stations. An access point can handle connections to several
stations and can thus create a network between these stations. Usually, an AP can
also connect to a wire-based network or a broadband Internet access, and can thus
integrate wireless stations in an already existing LAN or provide wireless Internet
access. In the ad-hoc mode, a network is formed between wireless stations without
the use of any AP. All stations must therefore be in appropriate range to each other.

Since WiFi uses unlicensed frequency bands, an infrastructure can be easily deployed
by consumers and companies at relative low cost. WiFi access points in public places,
like airports, trains stations, shopping malls or even parks and other municipal areas,

5http://www.wi-fi.org
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are called hot spots and are often freely accessible. Nowadays, WiFi infrastructures
are an integral part of universities, companies and even in many private homes. Be-
cause of this, WiFi infrastructures are a good choice for opportunistic positioning
systems (see 2.3.3).

Each WiFi capable station and each AP has a unique 48 bit wide Media Access Con-
trol address (MAC address) that is used to identify each entity. APs also broadcast a
Service Set IDentifier (SSID), which consists of up to 32 characters and can be freely
chosen. The SSID is therefore not necessarily unique and is mainly used to name an
AP or a specific WiFi network. The SSID can be hidden, but this is merely a matter
of filtering out the information by the protocol on the receiving end. APs repeatedly
broadcast their MAC address, SSID and additional data in so-called beacon frames
to advertise their presence and services.

A scanning process on an AP reveals all available WiFi stations in reach and results
in a list of their MAC addresses and the measured Relative Signal Strength (RSS)
to each station (see also Section 2.5.1.1). A scanning process on a station results
in a list of MAC addresses of nearby APs and, depending on the hardware, also the
measured RSS values for each AP. With the use of this information, several position-
ing approaches are possible. Each of them can be used for egocentric or exocentric
positioning:

• Single AP: If the location of a single AP is known, a simple proximity posi-
tioning is possible.

• Single AP+RSS: If the RSS is known in addition, the area of possible positions
can be further reduced.

• Multiple APs+RSS: If the locations of several APs are known, trilateration is
possible by using the RSSs to estimate distances (see Section 2.5.1).

• RSS Fingerprinting: If enough APs are available, signal strength fingerprint-
ing can be used (see Section 2.5.3).

The first three methods require the knowledge about the positions of APs
and the fingerprinting approach requires fingerprint maps. Usually this
data is stored on a database, either on a server or directly on a device.
In [Gschwandtner and Schindhelm, 2011] the authors propose to include additional
data into the 802.11 beacon frames. This additional data includes the coordinate of
the broadcasting AP itself or data that enables a mobile station to construct a finger-
print map. With this extension, the authors hope to minimize the deployment effort
and needed storage capacities of WiFi-based positioning systems. The proposed pro-
tocol was implemented on a modified OpenWRT based WiFi access point, which
proved the feasibility of the approach.
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Bahl et al. [Bahl and Padmanabhan, 2000] describe a system called RADAR,
which was one of the first WiFi based positioning systems using a fingerprinting
approach, although they classified it as being based on triangulation. Besides the
construction of a fingerprint map trough empirical measurements, they also proposed
to use a radio propagation model as an alternative. The average positioning accuracy
of RADAR lies between 2 and 3 meters.

Ledlie et al.: Molé In [Ledlie et al., 2011] an onboard/egocentric positioning sys-
tem called Molé is presented, which relies on signal strength fingerprinting. Molé
uses semantic descriptions instead of coordinates, which are organized in a hierar-
chy. This hierarchy limited to five levels: country, region, city, area and unique
place. Trained fingerprints can be retrieved from a cloud-service and users can train
unknown places and upload their fingerprints to the cloud. Molé thus uses some of
the ideas already published in [Dimitrov, 2007] and [Schwartz et al., 2010b], which
will be discussed in detail in Section 4.3.

Signal-strength fingerprints in Molé are expressed as a list of triplets 〈wi, µi, σi〉 for
each detected WiFi access pointAPi at a particular position. Here, µi and σi describe
the observed signal strength over a time period as a single Gaussian with mean µi and
standard deviation σi. wi is a weighting factor, which is derived from the observation
how often an access point was measured during a time period. The weighting factors
are normalized, i.e. all wi in one fingerprint sum up to 1. The similarity of two
fingerprints is computed by comparing each access point in the list and computing
an overlap coefficient from both Gaussian distributions. For missing access points
a penalty value is subtracted. The weighted sum over all access points is used as
a confidence level. The authors call this method MAximum Overlap localization
(MAO).

Figure 3.1: A test environment for Molé [Ledlie et al., 2011].
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Molé was tested in different setups. The most meaningful, because densely located
rooms were tested, was conducted in a lab of which the floor plan is shown in Fig-
ure 3.1. Fourteen Nokia N900 tablets with Molé running were placed in the 14 rooms
indicated. The system was trained 24 hours prior to the evaluation. As Molé pro-
vides semantic descriptions of positions, the evaluation tested how often the correct
room was guessed. Several variations of the algorithm were tested, including using
histograms instead of a Gaussian distribution to describe the signal strength. The
highest average hit-accuracy achieved was 93.16%, using MAO with signal strength
histograms, where the rooms 309, 310, 311 and 312 had the highest miss-rates. The
MAO with a Gaussian description resulted in an average hit-accuracy of 80.46%;
again rooms 309 to 312 were the most problematic. Obviously, those rooms provide
the highest challenge for such a system, as they are directly adjacent. When averag-
ing the hit-accuracies over those four rooms, the average hit-rate drops to 76.57% for
MAO with histograms and 41.98% for MAO with Gaussian distributions.

3.1.4 Bluetooth Based

Bluetooth is an open wireless data-transmission standard for short distances. The
standard was initially started by Swedish company Ericsson after conducting a feasi-
bility study on how to create a technology that is able to wirelessly connect different
electronic devices, e.g. desktop computers, printers, mobile phones and laptops.

The Bluetooth Special Interest Group (Bluetooth SIG) was founded in 1998 by Er-
icsson, Nokia, IBM, Toshiba and Intel as a privately held, not-for-profit trade asso-
ciation, with the goal of constituting an industry standard and binding specifications.
The first version of the Bluetooth specification was approved in 1999. As of 2011,
over 1 billion devices are Bluetooth enabled, the core specification has reached ver-
sion 4.0 and over 14,000 companies are members of the SIG ([Bluetooth SIG, 2008]).

The name Bluetooth stems from the Danish King Harald Blåtand, which translates
to Harald Bluetooth. Under the reign of King Blåtand, several warring parties in
parts of today’s Norway, Sweden and Denmark were unified in the 10th century.
Since the special interest group sought after a technology to unify different devices
of competitive industries, they chose the name Bluetooth.

Bluetooth devices are classified according to their transmitting power and the result-
ing range of coverage:

• Class 1: 100 mW; range of coverage up to 100 meters

• Class 2: 2.5 mW; range of coverage between 10 and 20 meters

• Class 3: 1 mW; range of coverage up to 10 meters
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Like WiFi, microwave ovens and cordless phones, Bluetooth operates in an unli-
censed frequency band. For Europe and USA the range between 2,400 and 2,483.5
MHz is used, and in Japan the range lies between 2,471 and 2,497 MHz. In compari-
son to WiFi, Bluetooth is optimized for ad-hoc networks between Bluetooth devices,
but provides a lower data rate of 3 MBits/s (Bluetooth Version 2.0). With Bluetooth
Version 3.0+HS (High Speed), higher data rates up to 24 MBits/s can be achieved,
but the actual data transmission is then realized via a WiFi link, while Bluetooth is
only used for the initial handshake.

Up to eight Bluetooth devices can form a so-called piconet, where each device can
again be part of several different piconets. Such a network, that contains Bluetooth
devices that belong to different piconets, is called a scatternet. In each piconet, one
device acts as the master device; all other devices act as slaves. As it was the case
with WiFi networks, each Bluetooth device has a unique 48 bit wide Bluetooth ad-
dress (sometimes called Bluetooth MAC or Bluetooth ID) and a so-called friendly
Bluetooth name that can be freely chosen by the user. If a Bluetooth device wants to
establish a connection, it performs an inquiry, which results in a list of all discover-
able6 Bluetooth devices in its vicinity as well as RSS indicators and a list of services
for each detected device. According to the Bluetooth specification, such an inquiry
requires around 20 seconds ([Bluetooth SIG, 2010]).

Positioning with Bluetooth can be accomplished by instrumenting an environment
with fixed Bluetooth beacons or by using stationary Bluetooth enabled devices that
are already in the environment, e.g. Desktop PCs, Bluetooth enabled input devices
or Bluetooth enabled printers. The latter attributes for an opportunistic positioning
system and a detailed example will be given in Section 4.3. For the former, the same
principles as for WiFi positioning can be applied, but due to the low range of common
Bluetooth devices, a proximity based approach is often used.

Eyeled: Indoor Navigation for the Visually Impaired The German company
Eyeled GmbH7 has developed an indoor navigation system for visually impaired
people based on Bluetooth beacons with integrated speakers. Users can download
the navigation system on their Bluetooth enabled Symbian OS mobile phone, either
at home or on location via Bluetooth and will then be guided to their destination, for
example inside a communal building. The Bluetooth beacons act as landmarks for
the navigation system and can also output audible signals via the integrated speakers.
According to a company spokesman, the Bluetooth beacons can also be integrated
into the already existing signage inside the building8.

6Whether or not a Bluetooth device is discoverable, depends on the user settings.
7http://www.eyeled.de
8Press release: http://www.eyeled.de/unternehmen/presse/index.php?File=005&news=IndoorNavigation
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Chawate [Chawathe, 2009] describes an egocentric, onboard indoor-positioning
system using Bluetooth beacons that addresses the important problem of long in-
quiry times. As already mentioned above, the inquiry process takes about 20 sec-
onds, which is generally too slow for a user walking at normal speed. On the other
hand, directly probing a Bluetooth device with known Bluetooth ID can be accom-
plished in at most 2.5 seconds. The author’s idea is therefore, to use a beacon map on
the user’s Bluetooth device that contains the locations as well as the Bluetooth IDs
of all available beacons in a building. With the use of this map and the knowledge
about the previous position, the positioning system then directly probes for known
Bluetooth beacons instead of starting a general inquiry. The needed beacon map is
represented through a 4-tuple, which contains the locations of the beacons, edges
between neighboring beacons, hyperedges that represent the range of a beacon as the
set of locations from which it is detectable, and weights that represent the distance
between two locations. The actual positioning is done through the hyperedges. Hav-
ing observed a set of Bluetooth beacons, the system tries to find the location that best
matches the observation. The author provides sophisticated algorithms on how to
determine the set of beacons that have to be probed for in the next measurement. An
evaluation of the system’s accuracy is not given.

3.1.5 RFID Based

Radio Frequency IDentification (RFID) is a radio based technology and is based on
modulated backscattered communication. First applications of the basic idea can be
traced back to the second World War, where British airplanes modulated identifica-
tion information onto incoming Radar signals. This modulated information could
then be used to distinguish between friendly or attacking planes. The first research
paper describing the basics of RFID was [Stockman, 1948], where the author pre-
dicted that ‘considerable research and development work has to be done before the
remaining basic problems in reflected-power communication are solved, and before
the field of useful applications is explored’. The first commercial application of RFID
started in the late 1960 with the introduction of Electronic Article Surveillance (EAP)
equipment. These systems augmented merchandise with electronic circuits whose
presence could be detected at a shop’s cashing point or exit (cf. [Landt, 2005]).

In general, an RFID system consists of at least one reader and at least one so-called
tag or responder. The tags contain at least some identification information (RFID
ID), which will be revealed if an interrogation signal from a reader is received. Com-
pared to the reader, a tag contains a very simple circuit, which means that they are
usually very cheap to produce. In [Takaragi et al., 2002], the authors report about
the so-called µ-chip manufactured by Hitachi, which is an RFID tag that is only 0.06
millimeters thick and 0.4 millimeters long on each side. In 2007, Hitachi announced
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(a) Two standard RFID tags by
UPM and Siemens in compar-
ison to a 1 Euro coin

(b) µ-chips by Hitachi on a fin-
gertip [Takaragi et al., 2002]

(c) Powder LSI chips by
Hitachi in compari-
son to a human hair
[Hornyak, 2008]

Figure 3.2: Comparison of passive RFID tag sizes, from standard tags (a) to µ-chips
(b) to ‘RFID Dust’ (c).

even smaller tags, called Powder LSI (Large Scale Integration) chips, with a thick-
ness of 0.005 millimeters and a side-length of 0.05 millimeters. However, standard
RFID tags usually cover a much larger area, more in the range of centimeters than
in sub-millimeters. Figure 3.2 shows a comparison of different RFID tag sizes: (a)
shows a self-adhesive tag manufactured by UPM on the top and a Siemens tag, which
is integrated into a wooded block; (b) shows two µ-chips on a fingertip and (c) shows
numerous Powder LSI chips in comparison to a human hair.

RFID systems can be classified into passive and active. In passive RFID systems, the
tags draw the needed operating power from the signal of the reader. Passive systems
therefore only have a short communication range, typically up to 3 meters, but some
reader/tag combinations can also reach up to 10 meters. In active RFID systems,
tags are powered by batteries or other external power-sources, which generally leads
to a higher reading range of up to 100 meters. The reading range in passive and
active RFID systems depends on various factors, e.g. antenna design, reader power,
tag power-consumption and the used frequency band. Like WiFi and Bluetooth,
RFID systems use unlicensed frequency bands. In the case of RFID the following
frequency bands are commonly used:

• LF (Low Frequency) 125 – 135 kHz

• HF (High Frequency) 13.56 MHz

• UHF (Ultra High Frequency) 868–928 MHz

• Microwave 2.45 GHz and 5.8 GHz
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For passive RFID systems, the highest communication ranges are achieved in the
UHF and Microwave bands. Active RFID systems usually operate only in the UHF
and Microwave range (cf. [Dressen, 2004]). One of the problems of RFID is that its
not truly standardized. As a matter of fact, there is a plethora of different standards
available, where the most important ones are ISO 18000, which specifies protocols
for different frequencies, ISO 14443 specifies so-called proximity RFID devices with
a communication range up to 10 centimeters and ISO 15693 is for so-called vicinity
RFID devices with a communication range up to 1 meter.

An important technology that is related to RFID, and in fact compatible to ISO
14443, is Near Field Communication (NFC). However, with NFC the strict distinc-
tion between reader and tag was repealed, i.e. each NFC-compliant device can act
as reader or as tag (cf. [Juels, 2006]). NFC is expected to play an important role in
making cashless payments, and thus NFC is already integrated in many smart phones.
Through the compatibility to ISO 14443, NFC devices are also able to read passive
RFID tags, which comply with the ISO norm.

Since RFID is a radio-based technology, the same principles for positioning can be
used as with WiFi and Bluetooth. However, the small communication distance of
passive RFID makes it especially suitable for proximity approaches. As a matter of
fact, the already mentioned EAP systems are exocentric positioning-systems, with
very coarse accuracy: Objects in a shop or warehouse are tagged with RFID chips
and readers are placed at important points. If a reader detects the presence of an RFID
tag, it can be derived that the tagged object is now changing from one area to another.
Obviously, the accuracy depends on the number of readers and the reliability of the
reading device. For person positioning, tags can be attached to, or integrated in, the
clothes of users. RFID chips can also be implanted in animals as well as humans,
however the latter is highly controversial ([Masters and Michael, 2005]).

A straightforward way to implement an egocentric positioning system is to deploy
RFID tags into the environment and equip the agent with an RFID reader. The ac-
curacy of such a system depends on the density of the RFID tags and the reliability
of the reader. Manufacturers like Vorwerk9 and Future-Shape10 have developed car-
pets with integrated RFID tag-grids. However, the small communication distance
of passive RFID means that the reader has to be close to the carpet, which limits
this approach to robots, wheelchairs or shopping trolleys (see also Section 5.6), i.e.
appliances where readers can be installed close to the floor.

Kiers et al.: ways4all In [Kiers et al., 2011] an indoor navigation system for visu-
ally impaired people, called ways4all, is described. The used positioning determina-

9http://corporate.vorwerk.com
10http://www.future-shape.com/
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tion is based on passive RFID and is an onboard/egocentric system. Ways4all uses
passive LF (134.2 kHz) RFID tags, which are placed at strategic spots in environ-
ments (entrances, intersections, barriers) that are already equipped with a so-called
Tactile Guidance System (TGS). In principle, a TGS consists of specially formed
tiles that include grooves or bumps, which can be felt through the use of a so-called
long cane or white cane.

The IDs of all deployed RFID tags are stored into a database together with their
coordinates. The RFID tags are organized into three different types: endpoint tags
(ET) that mark possible destinations, intermediate tags (IT) that mark points along a
route and virtual tags (VT) that mark possible destinations where no physical RFID
tag is available. The RFID reader is either integrated into a long cane or white cane
or attached via a clip to one shoe of the user. The reader is connected to the user’s
mobile device through Bluetooth. Since the TGS already provides ‘rails’ that help
the users to follow specific routes, the ways4all system uses these rails to plan a route
to a selected destination and uses read RFID tags as indicators if the user is correctly
following the route and gives audible instructions at decision points.

The authors did not evaluate the position accuracy of their system, but tested the de-
tection rate of the deployed RFID tags and the usability of the long-cane mounted
reader versus the shoe mounted one. Although initial tests with slow walking speeds
showed a detection rate of 80%, this rate dropped drastically to 33% when actual
blind users where testing the system with their normal walking speed. The authors
tried to improve the detection rate by forming tag arrays (TA) of up to four single
tags, where each single tag in a TA is reporting for the same position. The TAs im-
proved the detection rate to 40%. A user study was conducted at a public place in
Vienna, with four blind men between 35 and 60 years old. All test persons could suc-
cessfully install the system (including the RFID reader) and find their destinations.
The authors conclude that they could improve the detection rate in their system by
using or building passive RFID tags with a higher communication range.

Similar approaches, using passive RFID readers in long canes for visually impaired
people, were reported in [Faria et al., 2010] and [E. D’Atri and et al., 2007].

Ni et al.: LANDMARC In ([Ni et al., 2004]) one of the first positioning systems
using active RFID is described. The system, named LANDMARC, is offboard/ex-
ocentric and uses active readers and tags that operate at the uncommon frequency
of 308 MHz. The communication range is specified with 150 feet (approximately
45 meters). The readers can operate in eight different communication ranges, where
level 1 has the lowest range and 8 the highest. In a first test, the authors deployed nine
readers in a test environment, where one reader was set to level 8 and placed in the
middle. The other readers where placed on a circle around the middle reader, with
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lower levels. The idea was to locate an active RFID tag by checking which readers
report its presence and finding the correct area, which is defined by the communica-
tion ranges and positions of each detecting reader. The attempt failed, because too
many factors influenced the communication range of the RFID system. The actual
LANDMARC approach was then to put additional reference tags into the environ-
ment, which should help to calibrate the system.

The positioning algorithm was in fact a fingerprinting approach, where the reference
tags, whose coordinates are known, acted as reference points that could be calibrated
at runtime, i.e. for each reference tag, vectors containing the reported signal strengths
of all readers were continuously stored. The signal strengths were obtained by suc-
cessive readings with different communication-distance settings. The same kinds of
vectors were built for the tags with unknown positions and a k-nearest neighbor (see
Section 2.5.3) method was used to determine the position of these tags.

The authors tested their approach with 4 readers and 16 reference tags. 8 tags where
placed on known positions and measurements of this static setup were taken over a
course of 48 hours. The collected data was then analyzed to determine the position
accuracy of the system. It turned out that a 4-nearest neighbor provided the most
stable results and that the influence of changing environmental conditions was low.
With one reference tag per square meter, an average accuracy of 1-2 meters could be
achieved. The authors also report that different tags provide different measurements,
which they identify as the main problem of their approach.

3.1.6 Optical Positioning

Although light is also an electromagnetic radiation, it makes sense to distinguish
optical systems from the radio-based methods above. First of all, the frequencies
are much higher: infrared light (IR) is defined to be in the frequency range between
300 GHz and 400 Terra-Hertz (THz), visible light covers the range between 400
and 790 THz and ultra-violet (UV) from 790 THz to 30 Peta-Hertz (PHz). X-rays
and gamma-rays range from 30 PHz to 30 Exa-Hertz (EHz) and 30 EHz to 300
EHz, respectively. Secondly, besides the use as a data-transmission medium, picture
generating light sensitive sensors can be constructed, although UV light, X-ray and
gamma-rays are usually not used for positioning systems, as they are highly energetic
and are thus potentially dangerous.

3.1.6.1 Infrared Based

Infrared (IR) plays an intermediate role, as it can also be used for data transmission.
Besides the already mentioned use in the IEEE 802.11 protocols (see Section 3.1.3),
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the IrDA (Infrared Data Association) protocol is a widely adopted standard. IrDA
1.0, also called SIR (Serial Infrared) was proposed in 1994 and allowed a data-rate
up to 115.2 kBit/s. In its newest iteration, called VFIR (Very Fast Infrared), data-rates
up to 16 MBit/s are possible ([Roth, 2005], page 109). Because infrared transceivers,
sensors and senders are very cheap and where available in many mobile computing
devices, early indoor positioning systems were based on this technology. As infrared
light behaves like visible light, it is easily blocked by obstacles such as walls. This
characteristic can be advantageous for indoor position systems, since room accuracy
can be easily achieved. On the other hand, it can also be a disadvantage as an IR
signal can unintentionally be blocked.

Want et al.: Active Badge The Active Badge system as described in
[Want et al., 1992] was an early offboard/exocentric positioning system based on in-
frared light signals. A network of IR sensors is installed into a building. Users of
the system have to wear an IR sender, called an active badge. This badge sends out
an IR signal every 15 seconds with a 100-millisecond duration, which contains a
unique identification (ID) code. IR sensors report sensed IDs to a centralized server,
which in turn know the locations of each sensor and can thus position each badge. In
[Want and Hopper, 1992] an extension to the original badge was introduced, called
the Authenticated Badge. This badge can also receive information via infrared, which
was used to implement a challenge-response method to prevent users from simply
replaying recorded IR signals from other badges. Furthermore, the Authenticated
Badge contains to two buttons, two LED indicators and a tone generator, which can
be used for further user interaction. The Active and Authenticated Badge systems
reached room-level accuracy.

Wahlster et al.: IRREAL IRREAL (InfraRed REsource Adaptive Localiza-
tion) is an indoor positioning system, which was developed in the project REAL
as part of the Collaborative Research Center ’Resource-adaptive Cognitive Pro-
cesses’ (SFB 378) and was funded by the German Research Foundation (DFG)
([Wahlster and Tack, 1997]). The used positioning method can be classified as on-
board/egocentric, however the system is a clever combination between transmission
of navigation information and positioning.

Special IrDA compliant IR senders were developed that could transmit information
over a range of 20 meters. These senders are deployed in the environments, i.e. at
the ceiling or walls, and are connected to a presentation server. Each sender not only
transmits identification information about its own position, but also delivers presen-
tation content that is viable in the current area, i.e. arrows that indicate the walking
direction for a specific route or a time table for the nearest bus station. These presen-
tations consist of different nodes, which can contain textual information or graphical
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representations. A specially designed protocol repeats important presentation nodes,
i.e. nodes at the start of a presentation, more often than unimportant ones. In that
way, the probability that the mobile device of a moving user has received the start of
a presentation is increased. As the user stays longer in the instrumented environment,
additional presentation information will eventually be received by the mobile device
(cf. [Wahlster et al., 2001, Bartelmus, 2002, Baus, 2003]).

Thermal Based

Any object with a temperature above absolute zero emits electromagnetic waves. The
wavelength and thus the frequency of that radiation depends on the temperature of
the object. Objects within a temperature between 0°C to 70°C lie within the range
of infrared light and can thus be picked up by infrared sensors. As indicated in
Section 2.3.3, this effect can be used for passive positioning systems.

Hauschildt et al.: ThILo In [Hauschildt and Kirchhof, 2010, Kirchhof, 2011]
such a Thermal Infrared Localization (ThILo) method is described. The authors use
arrays of so-called thermopiles as sensors, which measure the difference between
ambient radiation and object radiation. Each array has a resolution of 8 pixels and
each pixel has a field of view of 6 degrees. A room is instrumented with two arrays at
each corner. In theory, a person can be localized by using the direction of the pixels
with the highest measured temperature difference in each corner and then perform-
ing a triangulation. In practice however, additional heat sources also influence the
measurements.

The authors developed a semi-automatic system calibration, during which a human
has to walk through the room and is advised by the system to stop at random points.
The system takes repeated measurements during those stops and constructs a system
of non-linear equations. The solution to the equation system is approximated with
the Newton-Raphson method and results in position estimations for each stop.

In order to track multiple targets, a Probability Hypothesis Density (PHD) filter was
implemented, which is basically an extension of particle filters (see Section 2.6.2).
The system was evaluated in a 4.9 meters by 6.2 meters room without disturbing
heat sources. One or two persons walked along predefined shapes (rectangles, diag-
onal) and the minimum and maximum distance to these tracks were measured. With
one person in the room, the accuracy was between 9 centimeters and 26 centime-
ters. With two people it was between 12 and 68 centimeters. The authors conclude
that background radiation and reflection are still issues to work on but the overall
results so far are promising. Being a passive system, ThILo is an offboard/exocentric
positioning system.
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(a) An example QR-code (b) A simple ARToolkit-
marker

(c) An unobtrusive AR-marker by
String Labs Ltd

(d) A 3D model of a shoe rendered over the detected
marker

(e) Optical markers as used
in motion capturing

Figure 3.3: Some examples of optical markers.

3.1.6.2 Camera Based

Cameras are used for surveillance purposes for decades. As they do not only pro-
vide positional information but also a plethora of other information, e.g. activity,
gender, body language, they are perceived as a high breach in privacy. Although the
automatic analysis of images is a very complex task, the sheer possibility to record
images or video-clips for later manual or human-assisted evaluation is seen as being
problematic. Nonetheless, surveillance cameras are often installed and accepted in
public places, shops and high security areas, with the premise that recorded imagery
is only analyzed with a reasonable ground for suspecting. However, the ability to
automatically extract person identification, movement patterns and activities refuels
the discussions about public surveillance cameras.

As indicated, this automatic data-extraction is a highly complex task and in position-
ing systems with cooperative users, this task can be simplified by the use of so-called
optical markers. These markers are easy to detect and to identify by computers and
can even store additional information. A common example is the QR code (Quick
Response code), which basically is a two-dimensional barcode (see Figure 3.3a for an
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example). Such a QR code can contain up to 2,953 bytes plus error correction codes
and can thus be used to store position information or URLs. Figure 3.3b shows a
marker, which is used by the ARToolkit ([Kato and Billinghurst, 1999]). The AR-
Toolkit can derive orientation and distance of such a marker in relation to a camera.
Users with one or more markers attached to their clothing can thus be positioned very
easily in an exocentric fashion.

If the size, position and orientation of such a marker in a room is known, the AR-
Toolkit can be used to derive the distance and orientation of the camera relative to
the marker. In [Piekarski et al., 2003] an egocentric positioning system is described,
where a user equipped with rear, front and head cameras is positioned by using AR-
Toolkit markers. They report a position accuracy between 10 and 20 centimeters, but
the approach is hardly practical.

Figure 3.3c is also an optical marker, although it looks like a regular picture. To con-
struct these types of markers, several methods exist. Machine-readable information
can be incorporated into regular pictures in such a way that they are not attracting the
attention of an observer (e.g. Mircosoft Tag11 and DataGlyphs [Hecht, 1994]). An-
other method is to analyze pictures in preprocessing step to identify unique features
that can be easily recognized (e.g. Bookmarkr [Henze and Boll, 2008] and Map-
Snapper [Hare et al., 2008]). The marker in Figure 3.3c is of the latter type and is
tied to a specific iPhone application12 that can identify the marker. By determining
the marker’s position and orientation relative to the phone-camera, the application
renders a 3D model of a shoe at the markers position (see Figure 3.3d; the URL to
the application is also stored in the QR code in Figure 3.3a).

For motion capturing, which is often applied to capture movements of an actor in
order to simulate these movements with computer-generated graphics, simple light
globes attached to a body-suit are often used as optical markers (see Figure 3.3e). In
general, optical markers, which can be used as reference points, are called fiducials,
fiducial points or fiducial markers.

Herranz et al. In [Herranz et al., 2011] an onboard/egocentric positioning sys-
tem is described, which uses LED based markers deployed into the environment
as senders and a camera worn by the user as sensor. The LED senders sequentially
flash in the visual spectrum. The synchronization of this flashing is done via wireless
connections and the positions of the LED senders are known to the positioning sys-
tem. The worn camera detects these flashes and takes the brightest detected pixel as
a starting point for a sub-pixel analysis process, which estimates pixel coordinates of
each detected LED sender. The system tries to determine the position of the camera

11http://www.microsoft.com/tag/
12available at http://poweredbystring.com/showcase
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through the use of a particle filter, where the system state represents the position,
orientation and their derivatives, the prediction model contains a pinhole model of
the camera and the pixel coordinates of detected flashes are used as measurements.

The authors evaluated their system using a circular motion, but instead of moving
the camera, they rotated eight LED senders around the fixed camera. Although this
is not the intended use of the system, the authors argue that this will provide them a
better ground-truth and will reduce the effect of changing lighting conditions. The
measurements were then evaluated in a simulation, to vary different parameters, like
number of used senders, different camera frame-rates and amount of simulated mea-
surement noise. The reported accuracy lies between 6 and 31 millimeters, where
the best result was obtained with 300 frames-per-second and 8 senders. In a sec-
ond experiment, the authors simulated movements in a room of 5×5 square-meters.
The simulated accuracy was between 173 millimeters (with 10 senders) and 62 mil-
limeters (with 30 senders). Although these results seem promising, real-life effects
like obstruction of the senders and changing lighting conditions are not taken into
account. Furthermore, the system was not tested on a mobile device.

Ruotsalainen et al. In [Ruotsalainen et al., 2011] an algorithm is described that
uses the camera of a smart phone to deduce the heading direction of a user. The
basic idea is to use standard algorithms for edge detection and to derive vanishing
points from extracted lines that follow the detected edges. These vanishing points
are used as features, whose camera coordinates can be determined. Through the use
of a camera model, rotation of the camera relative to the vanishing points can be
computed.

The authors tested the proposed algorithm by mounting a smart phone on a station-
ary platform that allowed orientation changes only on the x-axis. The phone was
turned in 5-degree steps and pictures were taken at each step while completing a
complete 360 degrees turn. The taken photographs were processed on a desktop PC
using Matlab. The experiment was conducted in two different corridors. The mea-
sured mean error in the first corridor was 1.3 degrees and 1.8 degrees in the second.
However, the authors admit that when the camera was turned into a scene with only
a plane, a wall and an elevator door, the algorithm failed. The authors conclude that
the proposed algorithm works well in corridors and outperforms the built-in com-
pass, which showed a mean error of 18.1 degrees in the same test environment. The
required computations could be performed with a 1 Hz rate on a desktop PC and still
have to be adapted for smart phones.

Dettori In his diploma thesis [Dettori, 2008] developed an offboard/exocentric po-
sitioning system using a stereo-camera approach. Two off-the-shelf web-cams are
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deployed at a wall with a distance of about one meter (the exact distance can be spec-
ified in the system). The two resulting images are analyzed for corresponding parts,
such that a correlation of both images can be computed. Through camera models,
the camera-based coordinates of each pixel can be translated into a world-coordinate
system and the distance from the camera to different object can be approximated
by triangulation. Movements can be detected by an analysis of the optical flow, i.e.
the observation of differences in successive images. The system assumes that only
one person is in the room and matches the observed optical flow with a coarse body
model, consisting of a torso and head. For the actual position determination, an ex-
tended Kalman filter is used, where the position state contains the world-coordinates
of the body model and its rotation as well as its rotation velocity and movement ve-
locity. The movement velocity can be derived from the optical flow. To approximate
the rotation and rotation velocity of a body, which are hard to extract from images,
the variance of the observed shoulder-length was used. Since this observation can
lead to two solutions (if the observed shoulder length changes, it could be a rotation
to the left or right), a second state vector was constructed, which acted as second
hypothesis. The state vector with the highest mean probability was assumed to be
the correct one. First tests showed an accuracy of 5 to 10 centimeters in a 5×6
square-meter room.

3.1.6.3 Laser-Range Positioning

A laser-range scanner is an example for a sender/sensor combination as described in
Section 2.3.2.3. Typically such a device sends out a short laser-pulse in a specific
direction and measures the time of flight until the reflection of the pulse returns.
A laser-range scanner thus can derive the distance to the next reflecting object in a
specific direction. By using several lasers aimed at different angles or by rotating the
laser, a laser-range scanner can determine a two- or even three-dimensional distance-
map of its surroundings. Systems that follow this approach are called LIDAR, for
LIght Detection And Ranging, or more specifically LADAR, for LAser Detection
and Ranging.

In robotic applications, laser-range scanners are often used to detect obstacles or
for determining the robot’s position. The latter can be achieved with the help of a
stored depth-map of a level in a building. A robot, which is equipped with a laser-
range scanner, takes distance measurements from its current position and tries to find
positions on the map that coincide with the measurements. With the help of a particle
filter (see Section 2.6.2), these hypothetical positions are constantly tested as the
robot moves along, eventually leading to one position. Figure 3.4 shows an example
of such a laser-range based robot-positioning: (a) shows the initial state, where the
particles are uniformly distributed over the depth map. (b) shows the state after a first
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(a) Initial situation (b) After first set of measurements

(c) After several sets of measure-
ments

Figure 3.4: Robot positioning with a laser-range scanner ([Fox et al., 2001]).

set of distance measurements has been taken. Several hypothetical positions are left
and two larger particle clouds indicate that the robot cannot yet decide which room
it currently enters. (c) after several sets of measurements (while moving), only one
particle cloud is left (cf. [Fox et al., 2001]).

The same principle is theoretically possible for personal positioning, however car-
rying a laser-range scanner is rather inconvenient and the non-steady height of the
scanner while walking adds to the inaccuracies of the approach. As it was the case
with passive RFID readers, laser-range scanners can be used to instrument appliances
like wheelchairs, shopping trolleys or walking aids.

Röfer et al.: iWalker & Rolland At the Bremen Ambient Assisted Living Lab
(BAALL), which is located at the German Research Center for Artificial Intelli-
gence (DFKI) in Bremen, two appliances were instrumented with laser-range scan-
ners: a walking aid, named iWalker, and an electric-powered wheelchair, named
Rolland. The iWalker is based on an off-the-shelf walking aid (depicted in Fig-
ure 3.5a), which was upgraded with a laser-range scanner, electric brakes and wheel
encoders ([Röfer et al., 2009a]). Rolland (shown in Figure 3.5b) is based on a com-
mercially available, electric-powered wheelchair and was additionally equipped with
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(a) iWalker (b) Rolland

Figure 3.5: Two appliances equipped with laser-range scanners where developed in
BAALL at DFKI in Bremen.

two laser-range scanners: one at the front and one at the back of the chair. For both
appliances, the laser-range scanners are mainly used to avoid obstacles on the way.
This is achieved by building so-called local obstacle maps or occupancy grids. Such
a map is quadratic array of cells, in which probabilities are stored that express the cer-
tainty of a possible obstacle. These maps are constantly updated by the laser-range
scanners.

In the case of iWalker, which is manually pushed by a user, the detection of a nearby
obstacle causes the walker to slightly brake one wheel. This braking automatically
leads to a change of direction and helps the user to avoid the obstacle while giving
them a tactile feedback at the same time. In the case of Rolland, the same principle
is used, although the wheelchair is not manually powered but moved via an electric
motor and can be steered by a joystick or, as described in [Röfer et al., 2009b], by
a proportional head-joystick. Rolland assists the user in controlling the wheelchair
by constantly monitoring for obstacles. If an obstacle is detected that lies on the
predicted trajectory, Rolland adjusts the user given controls to help avoiding the ob-
stacle. If the current control input indicates that the user is already trying to avoid the
obstacle in a specific direction, Rolland will reinforce the current steering command.

Nakashima et al.: CoBIT The CyberAssist project, which was conducted at the
Cyber Assist Research Center at the National Institute of Advanced Industrial Sci-
ence and Technology (AIST) in Japan, focused on human-centered information sys-
tems ([Nakashima and Hasida, 2010]). During the project several iterations of a
battery-less user device where developed, which should provide the user with lo-
cation based information.
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(a) Conceptual draft of MyButton. (b) CoBIT

(c) Aimulet

Figure 3.6: In the CyberAssist project several user devices were developed to enable
human-centered information systems ([Nakashima, 2007]).

Figure 3.6a shows a draft of such a device, called MyButton, which was equipped
with reflectors, a photo detector, a speaker and a microphone as well as with a com-
mand button and a fingerprint recognizer. This device, and the devices that followed,
should be worn as earpieces by the users. In order to provide information to the
users and to determine their position (in an offboard/exocentric fashion), base sta-
tions called i-lidar were deployed in the environment. A first prototype of these base
stations contained an infrared laser that could be steered by mirrors. When the laser
was aimed at the reflector of the MyButton, the direction and distance to the base
station and thus the position could be derived. The authors report, that they could de-
termine the position within an accuracy of millimeters, but four seconds of scanning
time were needed to find a MyButton.

In order to improve the time-resolution of the positioning, the i-lidar stations were
upgraded with infrared cameras, with which the direction of a MyButton could be
detected. The infrared laser could then directly aim at the reflector of a MyBut-
ton and determine the distance. With this approach a positioning accuracy within
1 centimeter was achieved ([Itoh et al., 2003]). Although the accuracy is extremely
high, the authors admit that the needed laser costs ten million Yen (about 100,000
Euro) and not even mass-production will bring the costs below one million Yen
([Nakashima and Hasida, 2010]). The infrared cameras were not only used for de-
termining the direction of a MyButton, they could also receive data from the device.
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One of the reflectors of MyButton could be electronically switched between translu-
cency and reflection. Through this mechanism, information could be transmitted by
manipulating the reflections of an incoming infrared light-beam. Information was
transmitted to a MyButton by sending out an infrared light-beam, onto which infor-
mation was modulated by changing the intensity of the beam.

Figure 3.6b shows the first integrated version of the MyButton concept, which
was called CoBIT, as abbreviation for Compact Battery-less Information Terminal.
CoBIT contained a solar cell, which simultaneously provided the needed energy
and was capable of decoding the intensity-modulations of an incoming light beam
([Nakamura et al., 2003]).

A low-cost and ecological version of CoBIT is shown in Figure 3.6c. It is called
Aimulet and its housing is made out of bamboo. Aimulets were given away for free at
the Expo 2005 in Japan, where the system was successfully demonstrated, although
positioning was abandoned because of privacy considerations ([Nakashima, 2007]).

3.1.6.4 Optical Positioning in Gaming Consoles

Although cameras at home are perceived as a privacy violation, they seem to be ac-
cepted in conjunction with gaming consoles. For Sony’s PlayStation 213 an accessory
was available, which was called EyeToy. EyeToy was basically an USB webcam and
games mostly used simple algorithms based on the difference of subsequential im-
age frames to detect motion and coarse user positions. With the start of Nintendo’s
Wii14 console in 2006, a change from the traditional gamepads to a motion-based
interface took place. Nintendo’s controller, called the WiiMote, includes an infrared
camera that tracks blobs created by infrared LEDs, which are attached to the user’s
TV screen. Since the original distance of the LEDs between each other and their ori-
entations is known, a coarse distance and orientation approximation of the user-held
infrared camera can be accomplished. In addition the WiiMote also contains ac-
celerometers and can be further equipped with a three-axis gyroscope, which allows
for a more fine-grained estimation of the user’s movements. Since the WiiMote does
most of the calculations itself, it can be classified as an onboard/egocentric system,
although its main purpose is not really positioning, but movement detection.

In 2009, Sony introduced its own motion control for the PlayStation 3, called
PlayStation Move. The Move controller is equipped with a glowing orb at the top,
which is illuminated by RGB LEDs. This globe acts as an optical marker, which is
tracked by a camera, the PlayStation Eye, which is directly connected to the gaming
console. With the help of the camera, the gaming console determines which colors

13http://us.playstation.com/ps2/
14http://wii.nintendo.com
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are prominent in the current view and chooses a specific color for the glowing orb,
which helps to detect and track the Move controller. Additionally, the Move con-
troller is equipped with accelerometers, angular rate sensors and a magnetometer.
The PlayStation Move can be classified as an offboard/exocentric system and as it is
the case with the WiiMote, its main purpose is to determine movement.

Microsoft’s solution for motion control for the XBox 36015 differs from the other
approaches in that it does not need any user-held devices. The system was released
in 2010 and consists of a device, called Kinect camera, which is placed above or
below the TV screen. The Kinect camera contains an RGB camera as well as an
infrared-laser projector and a matching infrared-camera. The infrared-laser projects a
regular pattern of dots into the environment, which are in turn detected by the infrared
camera. Since the system has a model of the pattern, it can infer depth information
by analyzing the pattern-distortions observed in the image of the infrared camera.
The acquired depth information can be combined with the image of the RGB camera
and further image processing can be used to derive body postures and positions. In
addition, the Kinect device also has a microphone array and can be automatically
tilted through electrical motors.

Because all three devices contain a broad array of sensors and are comparably cheap,
they are often used in hobbyist and scientific projects.

3.1.7 Terrestrial Radio & TV Broadcast Based

Terrestrial Radio Broadcast infrastructures, as used for radio and television, can also
be used for opportunistic positioning systems.

Rabinowitz et al. In [Rabinowitz and Spilker, 2005], a system is described that
uses the embedded synchronization signals of digital television (DTV) broadcasts.
The system was designed for DTV signals as specified by the American Television
Standard Committee (ATSC), but the authors claim that other DTV standards such as
Digital Video Broadcast (DVB) in Europe or Integrated Services Digital Broadcast
(ISDB) in Japan could be used for accurate positioning. The proposed positioning
system needs so-called Monitor Units at known positions, which monitor TV sta-
tion timing-offsets. These timing-offsets are needed for the position determination.
According to the authors, the positioning can either be onboard, where the Monitor
Units provide the offset data to the mobile device, much like in DGPS, or offboard
on the Monitor Units, where the mobile device has to send its measurements to the
Monitor Units. A third alternative would be to alter the TV transmission protocols

15http://www.xbox.com/
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Figure 3.7: The sensor equipment used for FM-radio-based positioning
([Moghtadaiee et al., 2011]).

in such a way, that they incorporate the needed clock offsets. The positioning algo-
rithm uses pseudo-range measurements to at least three TV transmitters with known
positions and applies a trilateration approach. The authors tested the accuracy of
their system in different environments: in an outdoor park a mean position-error of
3.2 meters was measured. In several indoor scenarios, the measured mean-error was
between 10.3 meters and 23.3 meters. In a parking garage, the measured mean error
was 12.3 meters.

Moghtadaiee et al. In [Moghtadaiee et al., 2011], a positioning approach is de-
scribed, which uses signal-strength fingerprinting on FM (Frequency Modulated)
radio-broadcast signals. In this system, fingerprints consist of a vector of signal
strengths for a number of different FM radio channels. An evaluation was performed
in the fourth floor of a multistory building, which consisted of seven rooms on 11×23
square-meters. A total of 150 reference points was taken during the offline phase,
where 120 measurements within 12 seconds were taken for each reference point.
The fingerprints consisted of 17 signal-strength values for 17 different FM radio
channels, covering a frequency range between 88 MHz und 108 MHz. Figure 3.7
shows the used sensor equipment, consisting of a Linux based radio receiver and
a ‘rabbit ear’ antenna. 28 fixed test-points where defined in the test bed, at which
the accuracy of the onboard/egocentric positioning system was tested, using three
different approaches: simple nearest neighbor (NN), k-nearest neighbor (kNN) and
k-weighted nearest neighbor (kWNN). With NN a mean distance error of 3.29 meters
was achieved. The kNN approach reduced the error to 3.09 meters and the kWNN
performed best with 2.96 meters.
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3.1.8 Magnetic Based

Magnetic compasses use the Earth’s magnetic field to determine magnetic north. Al-
though a compass does not directly determine its position, it can be seen as an oppor-
tunistic heading device. Modern smart phones are often equipped with magnetome-
ters, which are usually used as an electronic compass to determine the orientation of
the device or the current heading of its user. The magnetometer can also be used for
position determination, e.g. by using the Earth’s magnetic field or by instrumenting
the environment with artificial magnetic fields.

Storms et al. An example of the first method is given in [Storms et al., 2010],
which relies on the fact that the Earth’s magnetic field varies depending on the cur-
rent position. In essence, the same method is used as was described in Section 3.1.6.3
for robot positioning with laser-range scanners, but instead of a depth map, a map
containing magnetic-field measurements is used, and instead of laser-range scanner,
three-axis magnetic field sensors are used. A particle filter combines inertial mea-
surements (see Section 3.2) with magnetic-field measurements.

The authors tested their approach in two connected, narrow corridors in their lab.
For the creation of the magnetic-field map and the positioning experiment itself, the
magnetic-field sensors were installed onto a non-ferrous vehicle, which was pushed
trough the corridors. To determine the position accuracy, the vehicle was pushed
along a predefined trajectory along the right side of both corridors. The authors
report a maximum error distance of 60 centimeters and ’less than 0.2 meters for
the majority of the trajectory’. Since the generation of a magnetic-field map is a
complex task, the authors conducted a second, simulated experiment, in which a
first vehicle drives along a random path while collecting magnetic-field data, and a
second vehicle tries to follow the trajectory of the first one as closely as possible
using the collected magnetic-field data. The reported accuracy lie is 0.3 meters,
however the second vehicle seemed to have problems following the turn of the first
vehicle, when driving from one corridor into the other. The authors conclude that
positioning with magnetic-field sensors is promising, but admit that the sensors are
highly sensitive to changing conditions, for example the way the connector cable is
attached to the sensor, and that the stability of the magnetic field over time has to be
further investigated.

Blankenbach et al. In [Blankenbach et al., 2011], an outline for an instrumented
positioning system using artificial magnetic fields is given. The proposed system is
called MILPS, which stands for Magnetic Indoor Local Positioning System. The ba-
sic idea is to deploy electrical coils in a building, which are activated sequentially. A
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mobile device can then derive its own position by determining the distance to three
coils and performing trilateration. The authors conducted some initial tests with a
direct current (DC) powered magnetic coil, with a diameter of 50 centimeters and
140 turns of wire. The coil was powered with 15 Ampere and measurements were
taken with a three-axis magnetometer. To overcome interference problems, the coil’s
current-direction was reversed in defined time intervals, thus interferences with a
lower frequency than the field-changing frequency could be filtered out. Measure-
ments showed that the magnetic field of the coil could be detected at distances up
to 16 meters, with up to four walls between the coil and the sensor. The distance
between the coil and the sensor was approximated using the measured field strength.
At distances under 6 meters, the accuracy of the approximated distance was between
4 and 7 centimeters. The authors conclude, that artificial magnetic fields provide ex-
cellent characteristics for penetrating objects, but further experiments and improve-
ments have to be made to approximate distances greater than 10 meters away from a
coil.

3.1.9 Ultra-Wideband (UWB) Based

Electromagnetic based communications protocols, as discussed so far, use a narrow
frequency-bandwidth, usually in the range of a few Megahertz. In narrowband com-
munication systems, a carrier-frequency is chosen onto which information is modu-
lated. Ultra-WideBand (UWB) differs from this approach, in that communication is
accomplished by sending carrierless, short-duration signal pulses, which last in the
range of pico- or nanoseconds. The ratio of the time that a signal is present to the
total transmission time is very low, thus the overall transmission power is very low in
comparison to narrowband communication. By definition of the Federal Communi-
cations Commission (FCC), UWB signals must have a frequency-bandwidth of more
than 500 MHz (in comparison, WiFi has a frequency-bandwidth of 22 MHz). Be-
cause of the high frequency-bandwidth, a very high data-rate can be achieved. How-
ever, the FCC has limited the allowed transmission power and thus only ranges of up
to 10 meters can be achieved. The IEEE 802.15.3a working group tried to establish
an UWB standard for Wireless Personal Area Networks (WPAN), but the group was
dissolved in 2006, due to disagreements over two technology proposals. However,
another working group has specified IEEE 802.15.4a16, which specifies alternative
physical layers for 802.15.4, one of which is based on UWB (cf. [Nekoogar, 2011],
pp. 2–24).

For positioning applications, the high frequency-bandwidth is supposed to grant a
high signal-penetration through different materials, and thus tackles the problem of

16http://www.ieee802.org/15/pub/TG4a.html



3.1 POSITIONING WITH A SINGLE SENSOR TECHNOLOGY 99

signal fading. As a generic electromagnetic wave based communication, the same
positioning approaches can be used as with cell phones or WiFi, e.g. proximity,
AOA, TOA, TDOA, signal strength and RSS fingerprinting.

Ubisense Ubisense17 is a commercially available offboard/exocentric positioning
system, which is based on UWB. Objects or persons are equipped with a proprietary
tag, called the Ubitag, which contains a UWB sender. UWB sensors, called Ubisen-
sors, are installed in the environment at known positions and are connected to each
other via Ethernet. The Ubisensors are organized in cells of four to seven sensors,
where one cell acts as master. Both, Ubitags and Ubisensors, are also capable of ex-
changing data via conventional narrow-band radio. The master sensors synchronize
the measurements of several Ubitags, i.e. they provide a timing-schedule in which
each Ubitag is assigned a specific time-slot. In these time-slots, Ubitags send their ID
via narrow-band and emit UWB pulse sequence. The tags’ positions are determined
by a combination of TOA and TDOA measurements and thus only two Ubisensor
measurements are needed to obtain a position. The manufacturer claims an accuracy
of 15 centimeters for the system ([Steggles and Gschwind, 2005]).

Stephan et al.: Real World Evaluation [Stephan et al., 2009] tested the accuracy
of Ubisense at the SmartFactoryKL, which is a multi-vendor research, development
and demonstration center for industrial information and communication technology
located in Kaiserslautern, Germany. The SmartFactoryKL contains a complete pro-
duction facility, which includes many metal structures, piping and glass vessels be-
sides the heavy machinery. The authors tested the system in two different conditions:
an optimal condition, in which no obstacles and no radio interferences were present,
and a realistic scenario, which was conducted on the shop-floor of the factory. Ref-
erence points where determined with an accuracy of±2 millimeters in order to setup
the system and to have references to test the positions determined by Ubisense. Un-
der optimal conditions, Ubisense’s position accuracy was in the range between 12.8
and 24.4 centimeters, and thus approximately in the range that was specified by the
manufacturer. Under realistic conditions however, the position accuracy fluctuated
between 35.1 centimeters and 124.3 centimeters.

3.1.10 Capacitance Based

Capacity based systems use an effect that is best known from a musical instrument
called the Theremin (or aetherophone), which is played without touching the instru-

17http://www.ubisense.net
18http://kvraudio.com/
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(a) Léon Theremin playing his instru-
ment18

(b) SenseFloor can detect single footsteps19.

Figure 3.8: Capacitance based interfaces as used in the beginning of the 20th century
(a) and the beginning of the 21st century (b).

ment itself. The Theremin was invented by the Russian Professor Léon Theremin in
the first half of the 20th century and basically consists of a variable capacitor, where
an antenna is used as one plate of the capacitor while the other is provided by one
hand of the player. Figure 3.8a shows Léon Theremin playing his own instrument.
The proximity of the player’s hand (or whole body), changes the capacitor’s capaci-
tance, which is the case of the Theremin is used to change the frequency of an oscil-
lator circuit. The resulting frequency directly correlates to the distance of the user’s
nearest body part, i.e. the smaller the distance, the higher the frequency. However,
the user has to be in close proximity (in the range of 1 meter) to the antenna.

Endres et al. [Endres et al., 2011] describe an initial study on how a capacity-
based circuit can be used to detect and classify one-finger gestures in an automo-
tive context. In this study a modified Theremin, called the Geremin, was used and
the produced sounds where sampled with an analog-to-digital converter before fur-
ther signal processing was applied, i.e. the determination of the frequency and the
frequency-changes of subsequent measurements. Although only one antenna was
used in the experiment, simple gestures like finger up, down, left, right and drawing
rectangles into the air could be recognized with ≈70% accuracy.

SenseFloor The SenseFloor19, manufactured by Future-Shape10 (see also Sec-
tion 3.1.5), uses the same principle for position determination. To cope with the

19http://www.future-shape.com/en/technologies/23/sensfloor



3.1 POSITIONING WITH A SINGLE SENSOR TECHNOLOGY 101

problem of the needed proximity to the antenna, they designed a textile underlay that
contains 32 capacitance-based proximity sensors per square meter. Each sensor com-
municates its measurements to a control unit, which can then determine where people
are standing or lying. Information about walking direction and moving velocity can
be derived as well as how many people are currently present on the instrumented
floor. The underlay can be installed beneath PVC, laminate or carpets and is mainly
intended for the use in Ambient Assisted Living.

Touchscreens, such as used in most modern smart phones, can also be built using
capacitance measurements, although here the direct touch of the user is required
and usually also desired. The PointScreen, developed by Fraunhofer Institute for
Intelligent Analysis and Information Systems20 (IAIS), uses the Theremin principle
and allows users to interact with a screen without touching it.

3.1.11 Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) consist of a number of self-powered nodes, where
each node contains one or more sensors as well as data-processing and communi-
cation capabilities. The nodes can build ad-hoc networks over wireless commu-
nication and thus sensor information can be exchanged. Because of the ability of
building ad-hoc networks, WSNs can be deployed on demand by scattering sen-
sor nodes in an area of interest. This makes them valuable for military opera-
tions as well as for environmental and health applications ([Pottie and Kaiser, 2000],
[Akyildiz et al., 2002]). A number of different standards and commercial sensor
nodes are available. Among the most well known is the ZigBee21 standard, which
is based on IEEE 802.15.4 (see also Section 3.1.9). For wireless communication the
ZigBee standard uses narrow-band transmission on the 2.4 GHz as well as the 915
MHz (Americas) and 868 MHz (Europe) frequency bands. Compared to other wire-
less communication protocols, the data rate is considerably low and ranges from 20
Kbits/s to 250 Kbits/s. The transmission distance between two nodes ranges from 10
meters to 1,600 meters and depends on the power output of the nodes as well as on
environmental conditions.

Kuflik et al. In the PIL project (Personal experience with active cultural her-
itage IsraeL), an integrated framework for multimedia museum-guides was de-
veloped, which takes visitor positions as well as group interactions into account
([Kuflik et al., 2011b]). An offboard/egocentric positioning system was developed
and deployed in the Hecht museum in Haifa, Israel. A WSN based approach was

20http://www.iais.fraunhofer.de/
21http://www.zigbee.org/
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(a) A PIL blind (b) A PIL beacon (c) A PIL bridge node

Figure 3.9: The WSN in the Hecht museum consists of blinds (a), stationary beacons
(b) and bridge nodes (c) ([Dim et al., 2011])

chosen, where the nodes consist of stationary beacon nodes and mobile nodes, which
are called blinds and are worn by the visitors. A third kind of nodes is used to bridge
the wireless communication of the nodes into a TCP network. The nodes are shown
in Figure 3.9b. They were manufactured by the Italian company Tretec22 and operate
on the 2.4 GHz frequency band. The blinds can detect the presence of beacon nodes
as well as the presence of other blinds, which is important to derive group interac-
tions. Furthermore, the blinds contain accelerometers as well as a magnetometer,
to determine a visitor’s orientation, and can measure voice level and activity. Each
blind sends its measurements via the bridge nodes to a centralized server, where the
positioning estimation is accomplished by analyzing the sensed stationary beacons,
which are placed at the entrance and exits as well as on selected exhibits. The send-
ing range of each beacon was adjusted manually to minimize interference. The de-
termined position (and group information) is sent back to the visitor’s mobile device,
where a multimedia museum-guide is running, which adapts its presentation accord-
ing to the visitor’s position. In locations where two exhibits were too close to each
other to be discriminated by the system, visitors were presented with a choosing dia-
log on their mobile electronic museum guide. According to the authors, a positioning
accuracy of 1.5 to 2 meters could be achieved, which in this context means that a vis-
itor could be detected as being interested in an instrumented exhibit, if they are in the
range of 1.5 to 2 meters of that exhibit ([Kuflik et al., 2011a], [Dim et al., 2011]).

Rosa et al. In [Rosa et al., 2011] a positioning method is proposed, in which WiFi
enabled devices, such as mobile phones, laptops or desktop PCs, act as sensor nodes.
The derived position is relative to all other sensed devices, i.e. the position is rep-
resented as a coordinate system in which the user is assumed to be at the origin and
all other sensed devices are shown at their estimated position relative to the user. A
screenshot of the running application is depicted in Figure 3.10a, here three devices

22http://www.3tec.it/
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(a) A screenshot of the implementation on a
Nokia N900

(b) A realtive-position map showing the real posi-
tions as well ([Rosa et al., 2011])

Figure 3.10: Relative positioning using WiFi ad-hoc connections
([Rosa et al., 2011]).

were detected an positioned. Figure 3.10b shows an evaluation for 5 devices, where
also the real position for each device is depicted. The system works by taking signal
strength measurements for each detected WiFi device. As the signal strength only
gives an indication of the distance to the detected device, the application asks users
to perform three scans at three different positions: one to their left, one in front and
one to their right. In a calibration process, an empirical path-loss model was cre-
ated, which is used to approximate the distance to each sensed device based on the
received signal strength. The position of each device is then estimated by trilatera-
tion. The authors evaluated their system using 5 detectable devices in a classroom
scenario. The position accuracy highly depended on the maximum distance to the
measuring device. Results were best in a range up to 5 meters, where an accuracy
of a few meters could be achieved (no exact numbers are given in the paper). The
authors also report, that the orientation of the measuring device as well as the hand-
grip of the user have a high impact on the measured signal strength and thus on the
accuracy of their system.

3.1.12 Sound Based

Sound is a mechanical wave that is transmitted in a medium, like gas, liquid or a
solid. Human perceptible sound lies in the range of 20 Hz to 20 kHz. Sound with
frequencies higher than 20 kHz is called ultrasound, sound below 20 Hz is called
infrasound. In general, the same principles as for electromagnetic waves can be ap-
plied, i.e. signal strength can be measured as sound pressure level, angle of arrival
of sound waves can be determined and sound traversal times can be measured. The
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speed of sound through air is approximately 1,236 km/h, which is very low in com-
parison to the speed of light (exactly 299,792.458 km/h in vacuum). Due to this low
speed, TOA measurements, even on low distances, can be made with lower accu-
racy clocks than in the case of radio signals. An easy way to determine the distance
d between a sender and a receiver is by simultaneously sending a sound pulse and
an electromagnetic pulse, and measuring the time difference ∆t between receiving
the electromagnetic pulse and receiving the sound pulse. The distance to the signal
source can then be determined by

d =
∆t c vs
c− vs

(3.1)

where c is the speed of light and vs is the speed of sound. However, the speed of
sound highly depends on the current temperature of air, which has to be taken into
account for precise measurements. In practice, the calculation if often simplified by
assuming that the electromagnetic pulse is received instantaneously and thus the mea-
sured time difference is treated as the direct TOA of the sound pulse. This method
is also called the thunderstorm principle, as it can be applied to approximate the dis-
tance of an observer to a thunderstorm by counting the seconds between perceiving
lightning and perceiving thunder.

3.1.12.1 Ultrasound Based

Machine-readable information can be transmitted using sound waves by the same
methods that are used for electromagnetic waves, e.g. by modulating on a carrier
frequency or sending short pulses. Examples of such sound based, machine read-
able transmissions in the audible frequency range are fax machine transmissions over
phone lines or MOdulator/DEModulators (MoDem), which where commonly used
before the introduction of ISDN or DSL to connect to computer networks. Because
the sound of such a transmission is rather unpleasant, ultrasound frequencies are pre-
ferred when applicable.

Ward et al.: UltraBat One of the first ultrasound based positioning systems is de-
scribed in [Ward et al., 1997, Ward, 1998, Harter et al., 1999, Addlesee et al., 2001]
and ultimately led to an offboard/exocentric system called UltraBat. Users of the
system have to wear tags, the so-called Bats, which can send out ultrasound signals
and can receive radio signals. Ultrasound sensors are installed in a dense grid on the
ceiling of an indoor environment, which can detect signals sent by an ultrasound tag.
The sensors are wired to a server, which collects the sensor measurements and de-
termines the position of each Bat via multilateration. The measurements are taken in
rounds and each measurement process is started by the server, which synchronously
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sends a reset signal to the sensors and emits a radio signal. A Bat that receives the
radio signal immediately sends a short ultrasound pulse. The sensors measure the
time difference between the reset signal and the incoming of the ultrasound pulse.
The server then calculates the distance of the Bat to each sensor using the thunder-
storm principle, as the radio signal and the ultrasound pulse are not sent from the
same location. According to the authors, UltraBat achieves an accuracy in the range
of 10 centimeters, but a high number of wired sensors has to be installed to achieve
this precision and the position of each sensor has to be accurately determined (cf.
[Baus, 2003]).

Baunach et al.: SNOWBAT [Baunach et al., 2007] present a positioning system
called SNOW BAT, which overcomes some of the high deployment efforts of the Ul-
traBat system by using a WSN (see Section 3.1.11) instead of a wired node-network.
The WSN consists of mobile nodes containing ultrasound senders and static nodes
containing ultrasound sensors. Both kinds of nodes are also equipped with temper-
ature sensors, which are used to approximate the correct speed of sound given the
measured ambient temperature. The nodes communicate with each other through
radio transmissions using a protocol called SmartNet.

As it was the case with UltraBat, the static nodes are deployed into the environment,
knowing their own position. If a mobile node wants to find out about its own position,
it broadcasts a radio message containing an ID and a time period ∆t, which specifies
a time delay after which the node will send a series of ultrasonic pulses. Static nodes
that receive the radio message start a timer after the specified time delay ∆t and
wait for the incoming ultrasound pulses. If a node receives the ultrasonic pulses, it
averages its measured TOA values over all incoming pulses and sends the computed
value back to the mobile node. Static nodes that do not receive ultrasonic pulses stop
measuring after a specified timeout-period.

The mobile node collects the incoming TOA measurements and determines its own
position using multilateration. Since the position determination is calculated by the
mobile node itself with the help of sensors in the environment, SNOW BAT classifies
as an onboard/exocentric system. In order to calibrate the system, the static nodes are
installed in the environment and a mobile node is brought to a number of reference
points, which positions have to be exactly known. The static nodes then calculate
their own positions, using the reversed approach that is later used for the positioning
of mobile nodes. The authors claim a position accuracy of 15 millimeters, although
they do not specify how they evaluated their system nor how many static nodes were
used.

In [Runge et al., 2011], two calibration methods for SNOW BAT are presented. The
first method is called the Explorer algorithm, which starts with three already cal-
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ibrated static nodes, i.e. the exact position of each calibrated node is known and
stored in the nodes. A mobile node is then brought into a position in which it can
reach the three calibrated nodes and can thus determine its own position. The mobile
node broadcasts its determined position and each uncalibrated node stores this posi-
tion along with the distance measurement to that position. The mobile node is then
moved along a predefined path, while keeping determining and broadcasting its own
positions. Each uncalibrated node that has received at least three non-collinear posi-
tions can determine its own position, and once calibrated helps to determine the next
position of the mobile nodes. The authors remark that with this approach, calibration
errors sum up over time, as an initial error will lead to imprecise calibrations of new
nodes, which will in turn influence the position determination for the next nodes.
The explorer algorithm can thus only be used in small areas, in order to minimize the
error propagation.

The second calibration method, called Distribute & Erase, can be applied on any
number of nodes and in areas of any size. The area is roughly divided into large cells
and in each static node the area in which it is located is stored. Again, three static
nodes have to be exactly calibrated at the start of the algorithm. As in the Explorer
algorithm, a mobile node uses these three calibrated nodes to determine and broad-
cast its own position but with the Distribute& Erase approach, the mobile node can
be moved arbitrarily. Uncalibrated nodes use the received positions of the mobile
node and their own distance measurements to iteratively adjust their own position.
At the start, each uncalibrated node assumes to be in the center of its cell. With each
subsequent measurement it adjusts its own position in order to minimize the distance
error between the current measured distance and the reported position of the mobile
node. If the distance error falls below a threshold, the node is considered calibrated.
The moving node only takes calibrated nodes into consideration for its position de-
termination. The authors tested their calibration approach in an area with 11×11
deployed static nodes (the size of the area is not given in the paper). With 1800 mea-
surement steps, a calibration error less than one millimeter could be achieved, where
an additional filter was used to reject unreliable distance measurements. However,
taking these 1800 measurements takes 15 hours in which the moving node’s posi-
tion has to be changed every 10 seconds. The authors propose to use several moving
nodes simultaneously to reduce that time. An evaluation of the position accuracy of
the calibrated system is not given.

3.1.12.2 Speaker Positioning

Besides using ultrasound senders, audio based positioning can also be performed by
using natural, audible sound signals, e.g. sounds produced by working machines,
or spoken words. One way to accomplish this, is to use microphone arrays, which
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Figure 3.11: An example of a Global Coherence Field obtained by microphone ar-
rays ([Brunelli et al., 2007]).

are deployed in the environment. Such microphone arrays can be used to derive the
angle of arrival (AOA, see Section 2.5.2.1) of incoming sound signals, by analyzing
the delay with which a sound signal arrives at each microphone of the array.

The reversed approach, i.e. applying different delays on the measured signals of each
microphones before summing them, is called beamforming. Beamforming ampli-
fies sounds coming from a specific direction, while attenuating sounds arriving from
other directions. Using beamforming, a room can be ‘scanned’ for possible positions
of speakers by subdividing the room in possible speaker positions through a grid and
directing the beam at each grid-point. Note, that the directing of the beam is not
mechanical, but purely computational, i.e. during a time-slice t the measurements of
each microphone are stored and the result for each beam can then be computed from
these measurements. The computed power of each beam’s output signal for each
point gives an indication of where a speaker (or other sound source) is positioned.
The obtained power output measurements for each point of the grid can be repre-
sented trough a power field or through a Global Coherence Field (GCF). In order to
construct a GCF, a coherence measure for each pair of microphones is computed for
each point of the grid. The obtained coherence measures for each point are summed
up and normalized by the number of used microphones (cf. [Omologo et al., 1998]).
Figure 3.11 shows an example of such a CGF. The used microphone arrays are shown
at the edge of the image. Single beams can be seen as bright lines and the brightest
area in the picture represents the most plausible position of an active sound source.
The image is taken from [Brunelli et al., 2007], which is described in more detail in
Section 3.3.6.

Feld et al.: In-car positioning In [Feld et al., 2010], a method based on speech
audio signals is described to position passengers inside a car, i.e. to determine which
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person sits on which seat. This ‘in-car positioning’ provides viable information for
personalization services, e.g. to adjust the seat according to the occupant’s prefer-
ences or to enable speech commands like ‘open my window’. The proposed in-car
positioning method uses the fact that the number of possible positions of passengers
in a car is highly restricted. Since each possible position is equipped with a micro-
phone, which is useful for other in-car applications as well, positioning can be done
by directly monitoring the power of the output signal of each microphone, instead of
using beamforming. The system uses directional microphones, which are installed in
front of each seat. To protect the privacy of the user, an onboard/exocentric approach
is used, in which the microphone signals – together with an indication of the seat at
which it is installed – are sent to the mobile devices of the users. Each user’s mobile
device contains a user profile, which includes a voice-print of the user, i.e. a model
describing characteristic features of the user’s voice. The mobile device is thus able
to compare incoming microphone signals with the voice-print of its owner and can
determine the correct seat. The mobile device can use this information, for example
to adapt the ringtone in case the user is sitting in the drivers seat. Additionally, users
can specify whether they want to share their position information with the car. The
system was evaluated in a Mercedes R-Class with four installed microphones (driver,
front passenger, rear-passenger left and right). The system was trained with 10 adult
speakers, using 30 minutes of speech for each speaker. For the evaluation, 76 min-
utes of speech were recorded in varying conditions, e.g. doors open, doors closed,
overlapping dialog. The system tried to classify different lengths of speech. With
10 milliseconds of speech, the system already reached an accuracy of 62.7%. With
about one second of speech, the accuracy raised to almost 100%.

3.2 Inertial Positioning

Since inertial positioning relies on a number of proprioceptive sensors, it is in prin-
ciple a positioning approach that combines different sensor technologies. The basic
principle is dead reckoning, as already mentioned in Section 2.1.1.2: by measuring
the current speed and direction of an agent, a new position is calculated, e.g. by
applying Newton physics. In principle, inertial positioning does not need any instru-
mentation of the environment, however an exact start position is needed. Because
every sensor is inaccurate to some extend, a position derived by dead reckoning con-
tains errors. These errors add up with each subsequent position determination. In
practice, a new position fix has to be gained from time to time to correct the ac-
cumulated errors. These correction positions are usually obtained through another
positioning technology. Integrated devices containing sensors for inertial positioning
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are called Inertial Measurement Units (IMU) and are commercially available by sev-
eral companies. Often they also contain a GPS receiver, to gain the needed start- and
correction-positions. Most IMUs contain accelerometers to determine movements,
gyroscopes to measure angle changes and magnetometers (compass) to gain direc-
tion information according to magnetic north. In robotic positioning, wheel encoders
can additionally be used to count the number of wheel turns since the last position
determination. By using knowledge about the circumference of the wheels and the
number of rotations per wheel, the distance and direction of the movement can be
computed. This method is called odometry. For humans the term odometry is often
used to describe the counting of steps and sensors that deliver this kind of information
are called odometers.

Köppe et al. In [Köppe et al., 2011] an IMU is described, which was specifically
designed for safety and rescue applications. The device is called BodyGuard and
consists of a GPS receiver, a 3-axis accelerometer, a gyroscope and a digital compass
as well as an air-pressure sensor, to determine the altitude. Besides the IMU sensors,
BodyGuard is also capable to measure temperature, humidity and the heart-rate of
the user. The device can communicate through radio transmissions on the 868 MHz
band and can store all measurements on an SD-card. Moreover, BodyGuard was
designed for harsh environments and can operate in a temperature range between -
25°C and 70°C. Although the IMU contains a processing unit, the authors used an
external PC to do the position determination. The reported error accumulation of the
system is ‘less than ±2 at a traveled distance of 100 meters’.

Link et al. [Link et al., 2011] present a navigation application called FootPath that
relies solely on the built-in accelerometer and compass of a smart phone. The appli-
cation uses maps from OpenStreetMap23, which also contains rudimentary support
for indoor maps. After a user has selected their current position and their destination
on the map, a route is calculated. The application performs a step detection using
the accelerometer measurements. Basically, the step detection works by detecting
steep drops in the acceleration, which are produced by an up and down movement
while walking. Positioning is done by assuming that a user is following the proposed
route. When the user takes the first step, a normal stride length l is assumed and the
next position is assumed to be at distance l on the route. In subsequent steps, the
system compares the direction measured by the compass with the assumed direction
derived from the route. If discrepancy is too big for a number k of subsequent steps,
it is assumed that the position estimation is wrong and the system tries to find a new
matching position on the path, by searching for a route-segment that best matches
with the k misaligned steps. If such a segment is found, the algorithm tries to adjust

23http://www.openstreetmap.org/
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(a) Position acquisition process (b) Excerpt of fingerprinting positioning process

Figure 3.12: Flowcharts of LOCATEME’s position acquisition and fingerprinting
process ([Pereira et al., 2011a]).

the stride length l in such a way, that all steps taken so far lead to the found route-
segment. The new user position is assumed to be at the end of that path-segment.
The authors tested FootPath in an outdoor scenario on a predefined path using GPS
as ground-truth. The reported average accuracy is 8.9 meters.

3.3 Positioning with Several Sensor Technologies

3.3.1 Pereira et al.: LocateMe

[Pereira et al., 2011a] implemented an application named LOCATEME, which they
describe as a localization system to find friends wherever they are. The system runs
on Android mobile phones and also provides a website, where users can register to
manage their data and see current positions of their friends. The positioning for LO-
CATEME uses GPS outdoors and WiFi as well as cellular phone networks indoors.
For indoor positioning, three different methods were implemented: a WiFi finger-
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printing approach, a method based on geo-referenced WiFi access-points and one
based on geo-referenced cells. Figure 3.12a shows the flow-chart of the position ac-
quisition process: LOCATEME successively tries all implemented methods until one
is successful or all failed.

The training for the WiFi fingerprinting method is initiated by the user, who can
then indicate their position on a displayed map and provide an additional position
description and floor number. LOCATEME scans for all available access points and
sends the indicated position and the resulting scan data, including MAC address,
SSID and signal strength values, to a server. In the actual positioning mode, the user’s
device will perform the same scanning process and send the results to the server for
position calculation. The server recursively checks if the currently detected access
points are available in its database and searches for the database entry, which contains
most detected access points. Figure 3.12b shows an excerpt of this search process
for three detected access points.

For the second method, a database containing geo-referenced WiFi access points
is needed. If GPS is available, LOCATEME generates this database automatically
by constantly scanning for WiFi access points and sending this data along with the
current GPS position to a server. If GPS and the fingerprinting method fail while
trying to determine a position, the server tries to estimate a position by calculating a
weighted center mass, using the measured signal strength of detected access points
as weights.

The last method is practically the same as the previous one, only that detected cells
are used instead of WiFi access points.

Since LOCATEME provides its sensor measurements to a server for the actual po-
sition determination, it is an offboard egocentric system. Although several sensor-
types are used, no sensorfusion is performed. Semantic descriptions of indoor loca-
tions can be provided, but no ontology or hierarchical location model is used. The
authors do not provide an accuracy evaluation of their positioning system.

3.3.2 Gallagher et al.

[Gallagher et al., 2011] describe a system running on mobile phones that should help
students and staff at University of New South Wales to find their way through the
complex campus and gives them information about nearby POIs, like ATMs and bus
stops. The emphasis of their system lies on the automatic switching between GPS for
outdoor usage and a standard WiFi fingerprinting system for indoors. This switching
should help to reduce the power consumption, because either the GPS or the WiFi
scanning will be switched off if not needed. The system is server based, working
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with measurements sent by the mobile devices of the users. It is thus an offboard
egocentric system. Users can also provide feedback about their current position to
the system, which should help to increase the accuracy.

The switching between fingerprinting and GPS – or from indoor to outdoor – is
accomplished through so-called ‘indoor transition zones’, i.e. rooms that contain or
are nearby exits of a building. If the server detects a position inside such an indoor
transition zone for a given number of times (default value is three times), it will tell
the phone to switch on GPS and check if it is able to get a fix. If this is successful,
the WiFi scanning will be switched off and the system changes to its outdoor mode.
The change from outdoor to indoor is simply triggered by the loss of GPS signals.

The authors performed tests to evaluate the probabilities of correct switches and no-
ticed that the switch from indoors to outdoors is always delayed due to the time GPS
needs to provide a first fix. At low speeds (1 m/s), the correct switch was performed
in 97% of all tests. This number decreases with increasing speed. At the highest
tested speed (3 m/s) only ≈50% of changes were detected correctly.

3.3.3 Peng et al.

[Peng et al., 2011] developed a seamless outdoor/indoor positioning system for ve-
hicle and pedestrian positioning using GPS and an active RFID system. The RFID
system contains of a reader card and active RFID tags manufactured by Identec So-
lutions (see also Section 4.4.1.1). For pedestrians an additional inertial measure-
ment module called the MinimaxX24 was used. The MinimaxX contains a tri-axis
accelerometer, three gyroscopes, a tri-axis magnetometer and has a built-in GPS re-
ceiver. The authors developed a new approach to integrate the measurements of all
sensors, which is based on the Reduced Sigma Point Kalman Filter (RSPKF). The
authors claim, that this new variation, dubbed Iterated Reduced Sigma Point Kalman
Filter (IRSPKF) has less computational cost than the traditional RSPKF and leads to
a higher accuracy.

The accuracy of the system was evaluated using two different sites: a test track for
the vehicle, where an area with bad GPS reception was augmented with active RFID
tags, and a test track for the pedestrian application, which consisted of an outdoor
part and an indoor part. The indoor part lead through a house that was mainly con-
structed of timber; the outdoor part partially lead through canopy-covered areas as
well as through open areas. Since the derived position measurements were tested
against RTK GPS measurements (see Section 3.1.1.1), it can be assumed that the
indoor environment still provided good GPS reception. For the vehicle test track, the

24http://www.catapultsports.com/products/minimax
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Figure 3.13: Positioning errors of the pedestrian positioning experiment as reported
in [Peng et al., 2011]

.

accuracy could be improved from 2.923 meters with the RSPKF approach to 1.353
meters using the IRSPKF approach. For the indoor tests, the authors report a meter-
level accuracy, but no exact numbers are provided. A graphical representation of the
measured errors (see Figure 3.13) shows a derivation of ±8 meters.

3.3.4 Xiao et al.

[Xiao et al., 2011] propose an egocentric sensor-fusion approach based on WiFi tags,
worn by the user, and inertial measurements. Their WiFi positioning is based on RSS
fingerprinting, but to reduce the inaccuracies introduced by fluctuations of the RSS
measurements, they use a region-based approach instead of single reference points,
i.e. several single reference points are grouped into regions. The authors admit that
this method will increase the time-effort for the system calibration, but argue that a
simulated evaluation of the approach showed an accuracy improvement of 1.5 meters
compared to the standard approach with single reference points.

For inertial measurements, the RAZOR IMU25 by Sparkfun Electronics was used.
The RAZOR provides a single-axis gyroscope, a two-axis gyroscope, a tri-axis mag-
netometer and a tri-axis accelerometer. A WiFi tag manufactured by G2 Microsys-
tems was integrated with the IMU to provide a mobile platform and to send the
inertial measurements to a centralized server. This server also receives the RSS mea-
surements from all WiFi access points. The sensor fusion is accomplished on the
server with the help of a Kalman filter that uses the WiFi position-estimates as mea-
surements and the inertial sensing data as control inputs.

25http://www.sparkfun.com/products/9431
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Figure 3.14: Average positioning error as shown in [Xiao et al., 2011].

An evaluation was performed, using a trolley carrying the mobile measuring plat-
form. Four WiFi access points were set up and 24 single reference points where
taken during the calibration phase. Varying numbers were tried for the grouping of
these single reference points (3, 4 and 6 neighboring points). The authors report an
increase of accuracy of 1.2 meter in average through the use of the Kalman filter
with IMU provided control inputs. A provided diagram (see Figure 3.14) shows an
average positioning error of ≈1.25 meters with regions consisting of three reference
points and using a Kalman filter with IMU provided inputs. The accuracy gets worse
when regions with more reference points are used.

3.3.5 Ascher et al.

[Ascher et al., 2011] describe initial studies on how to use an UWB based indoor
positioning system to provide correction positions to an inertial positioning system.
The authors argue that the problem of UWB based positioning systems lies in the fact
that a high number of UWB senders or sensors have to be installed in the environment
to guarantee a position determination. Inertial position systems on the other hand
accumulate errors over time. With the combination of both systems, they want to
reduce number of UWB nodes that have to be installed while maintaining a high
position accuracy.

The authors did not test their approach in a real-world setting, but developed a sim-
ulation suite, which consists of a walk generator and a UWB simulation. With the
walk generator, an arbitrary walking-path can be specified including different ve-
locities, which will then be transformed into measurement data that a real inertial
measurement unit (IMU, see Section 3.2) would produce. The walk generator first
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Figure 3.15: Simulation results as reported by [Ascher et al., 2011]
.

produces ideal IMU data, which is then modified according to error statistics from
real IMUs.

For the simulation of the UWB positioning system, a 3D model of an indoor environ-
ment can be specified, including different wall materials and objects with different
electrical properties. With this model the radio propagation of UWB signals can be
simulated. The envisioned UWB positioning system is egocentric, i.e. UWB senders
are installed in the environment, which send out their own location. The respec-
tive sensor also contains the IMU. Whether the system is onboard or offboard is not
specified. Since the UWB senders and the receiver are not synchronized, the authors
propose to use TDOA measurements and multilateration for position estimation. The
complete UWB positioning system can be simulated using the 3D model and appro-
priate radio propagation models.

The fusion of the UWB positioning system and inertial positioning is accomplished
with a Kalman filter. The authors tested two different approaches: a loosely coupled
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Kalman filter and a tightly coupled Kalman filter (see Section 2.6.1). The loosely
coupled Kalman filter uses the calculated position of the UWB system as measure-
ments and predicts the next position using the IMU measurements. This approach
has the disadvantage, that it only works when the sensor can gain at least three TDOA
measurements. The tightly coupled Kalman filter also uses the IMU measurements
to predict the next position, but then calculates which TDOA measurements it would
have to receive, if the predicted position were true. The difference between the pre-
dicted TDOA measurements and the real TDOA measurements are then used as mea-
surement innovation. Thus, the tightly coupled Kalman filter works with any number
of received TDOA measurements. Additionally the authors developed a mechanism
to filter out faulty TDOA measurements, which basically monitors the measurement
innovation and marks senders that repeatedly deliver far off TDOA measurements.
These marked senders will then be omitted from position calculations. The authors
call their filter approach Innovation Based Integrity Monitoring (IBIM).

The proposed methods were tested using the simulation suite. The authors modeled
one floor of their office building and simulated 15 UWB senders as well as a walk
trough one of the rooms and through the corridor. The authors do not give an average
accuracy but provide a number of diagrams. Figure 3.15a shows the performance
if only the UWB positioning system is used. As can be seen, most of the positions
(black crosses) are far off the track (red line). This is due to the low number of
UWB senders in the environment. Figure 3.15b is a comparison between inertial
positioning alone (green line) and the combination of inertial and UWB positioning
(blue line). As can be seen, the pure inertial position drifts away towards the end
of the trace due to accumulated errors. The combined position seems to have some
large deviations, when UWB senders from adjacent rooms are detected. Figure 3.15c
shows the derived positions of the combined approach with and without enabled
IBIM filtering. The large deviations seem to be corrected through the IBIM approach.
The authors plan to deploy and test their system in a real-world scenario.

3.3.6 Brunelli et al.

[Brunelli et al., 2007] developed a system that can be used to position people in meet-
ings or seminars. The system is offboard/exocentric and uses microphone arrays as
well as cameras that are installed in meeting rooms. The audio based positioning
uses the principle of beamforming to derive a global coherence field (GCF) as de-
scribed in Section 3.1.12.2. The system scans the room with a spatial resolution
of 5 centimeters. To deal with disturbances from coherent noise sources, a filter
was implemented, which checks the distance of derived positions between succes-
sive measurements. Short noises that appear suddenly at a far distance from previous
positions are thus ignored.
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The camera based positioning is achieved by using a simplified model for a speaker
in a meeting scenario. The authors assume that a speaker has a human-like shape
and is standing upright most of the time. Furthermore, it is assumed that a possible
target has a consistent color throughout a sequence of images. A possible target is
identified in an image-sequence by analyzing the optical flow and trying to project
a coarse 3D model of a human onto parts of the image that indicate a high optical
flow (similar to the description in Section 3.1.6.2). A single camera obtains several
hypothesis of where a person is currently standing. The integration of hypotheses
from different cameras is done with a particle filter, where the position state contains
position and velocity of a target, and the measurements of each camera are used to
update the particles accordingly.

Since audio based positioning is only possible while a person is talking, the camera
based positioning is more likely to constantly determine a position. To combine the
camera based positions with the audio based ones, the particle filter for the camera
based positioning was adapted. The basic principle is to derive a hypothesis for
the audio based positioning from the current camera based position, i.e. if a person
is standing at a particular position, the hypothetical position of a sound source can
be calculated, by shifting the coordinates towards the head of the 3D model. The
hypothesis can be checked, by forming beams around the area of that position. If
a defined threshold is reached, which indicates that a person is really speaking, the
computed GCF values are used to update particles in that region accordingly.

The authors tested the combined system as well as each single positioning method.
For audio only, an average accuracy of 14.4 centimeters was reached, with 7 mi-
crophone arrays (as depicted in Figure 3.11). For multiple speaker positioning, the
average accuracy dropped to 21.8 centimeters. Positioning based only on camera
information reached an accuracy of 13.2 centimeters for single person tracking and
four cameras.

The combination of both methods for a single person was tested in two conditions:
only position a user when they are speaking and position a user for every possible
point in time (regardless whether they are speaking or not). In the first condition, an
average accuracy of 13.2 centimeters was reached. The second condition is reported
with a slightly lower accuracy of 13.4 centimeters. The fusion of both positioning
methods did thus not result in a higher average accuracy than using a single method.
However, the authors report that the fusion of both methods performed better in some
observed sequences.
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Figure 3.16: The architecture of the MapUme middleware ([Najib et al., 2011]).

3.3.7 Najib et al.: MapUme

In [Najib et al., 2011] a middleware called MapUme is presented, which is designed
for offboard positioning. The middleware was implemented using Windows Com-
munication Foundation (WCF), which is part of Microsoft .NET.

MapUme can run on a single server or in a distributed server-network, which should
help to balance the load of the position computations. The architecture of MapUme
is shown in Figure 3.16. The depicted sensor layer represents the actual sensor hard-
ware. In the measurement layer, data structures and interfaces for each sensor have to
be defined. The aggregation layer collects sensor data and is also responsible for the
communication in a distributed server-network. Furthermore, this layer is responsi-
ble for the configuration (via XML files) of the middleware, for measurement logging
and database access, through which maps, fingerprints, locations of base stations etc.
can be stored. As the name fusion layer implies, it is responsible for the fusion of
sensor data. The fusion engine uses an abstract factory pattern, which allows to im-
plement different fusion algorithms that can be ‘plugged’ into the fusion layer. In
the arrangement layer, tracked objects are represented with their current position and
relations to an environment description, e.g. a map, can be derived. The service
layer allows to implement location-based services, to which other applications can
subscribe.
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The authors tested MapUme, by implementing an offboard/exocentric WiFi posi-
tioning system, where the WiFi access points report their measured signal strengths
directly to a MapUme server. To test the fusion engine, they added an IMU. A
two-story building was equipped with eight WiFi access points on an area of 25×70
meters. The average position accuracy for WiFi based positioning is reported with
2.52 meters. The integration of the IMU was done with a particle filter and resulted
in an average positioning accuracy of 2.27 meters. The exact evaluation methods are
not disclosed.

The authors also tested how the middleware performs with a single server and in a
distributed server-network and found out, that the distributed mode introduces a low
network-latency of 3.436 milliseconds, which is negligible compared to the average
computation time of 366 to 392 milliseconds per measurement.

3.3.8 Martı́nez et al.

[Martı́nez et al., 2011] propose a high-level interface to combine several positioning
technologies and to provide location-based services. Although high-level descrip-
tions are given, a concrete implementation does not seem to exist. The authors envi-
sion an architecture that is divided in two main parts: Location Event Providers (LEP)
and Location Services (LS). The basic idea is to separate the technology dependent
parts from the technology independent parts, i.e. the Location Event Providers are
responsible for determining positions using specific hardware, while the Location
Services use the provided positions and are thus independent from the hardware.

According to the authors, there should be a Location Event Provider for every sup-
ported position technology. A service discovery protocol is responsible for detecting
available technologies, like WiFi, Bluetooth, UWB, and starts the according Location
Event Providers. These providers can broadcast position events using a standardized
protocol, which contains an event type description, a time-stamp and a description of
the area where a user is in.

Location Services can receive these position events. If position events for the same
person or object arrive, the authors propose to merge the reported areas through ge-
ometrical intersection. If no intersection is found, the Location Service chooses the
position that was reported from the Location Event Provider that is known to have
the highest accuracy. Using the obtained position, a Location Service can then im-
plement additional services or forward the determined position.
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Technology

Ghinamo et al., 2011 (Indoor GPS) 7 3 7 3 3 7 3 3 7 ∼ ∼ 0.34 m - 1.04 m GPS

Kohtake et al., 2011 (Pseudolites) 7 3 7 3 3 7 3 3 7 ∼ ∼ n.a. IMES Pseudolites

Sakamoto et al., 2011 (Pseudolites with robot) 7 3 7 3 3 7 3 3 7 7 3 ≈ 0.17m
IMES Pseudolites, rotating

antennae

Pereira F. et al., 2011b (GSM at LHC) 7 7 7 3 3 7 7 7 3 7 3 20-280 m GSM over a leaky feeder

Dempsey et al., 2011 (Femtocells) 3 ∼ 3 7 7 3 7 7 3 ∼ ∼ Room level Pico-, Femto-cells, Calendar

Bahl et al., 2000 (RADAR) 7 7 7 3 7 3 7 7 3 7 3 2-3 m WiFi

Ledlie et al., 2011 (Molé) 7 7 3 7 3 7 3 7 3 7 3 Room level WiFi

Chawathe, 2009 7 7 ∼ ∼ 3 7 3 3 7 7 7 n.a. Bluetooth

Kiers et al., 2011 (ways4all) 7 7 7 3 3 7 3 3 7 7 7 na passive RFID

Ni et al., 2004 (LANDMARC) 7 7 7 3 7 3 7 3 7 7 3 1-2 m active RFID

Want et al., 1992 (Active Badge) 7 7 7 3 7 3 7 3 7 7 3 Room level Infrared

Hauschildt et al., 2010 (ThILo) 7 7 7 3 7 3 7 3 7 3pg 7 9-26 cm Thermal Infrared

Herranz et al., 2011 7 7 7 3 3 7 ∼ 3 7 3sim 7 3.1-17.3 cm Visual LEDs, Camera

Ruotsalainen et al., 2011 (Heading direction) 7 ∼ 7 7 3 7 ∼ 7 3 7 3 1.3°- 1.8° Camera

Dettori, 2008 7 7 7 3 7 3 7 3 7 7 3 5-10 cm Stereo Camera

Nakashima et al., 2003 (CoBIT) 3 7 ∼ ∼ 7 3 7 3 7 ∼ ∼ ≈ 1 cm Laser-range, Camera

Rabinowitz et al., 2005 (DTV) 7 3 7 3 3 7 3 ∼ 3 7 3 3.2 -23.3 m TV receiver

Moghtadaiee et al., 2011 (FM Radio) 7 ∼ 7 3 3 7 3 7 3 7 3 2.96-3.29 m FM Radio receiver

Storms et al., 2010 7 ∼ 7 3 3 7 3 7 3 3pg 7 0.2-0.6 m Magnetometer

Blankenbach et al., 2011 (MILPS) 7 7 7 3 3 7 3 3 7 ∼ 3 4-7 cm Range only Magnetometer
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Ubisense, 2005

Stephan et al., 2009
7 7 7 3 7 3 7 3 7 7 3 12.8-124.3 cm UWB

Kuflik et al., 2011 (PIL) 7 7 7 3 3 7 7 3 7 7 3 1.5-2 m WSN

Rosa et al., 2011 (Relative Positioning) 7 7 7 3 3 7 3 7 3 7 3 meters WSN of mobile devices

Ward et al., 1997 (UltraBat) 7 7 7 3 7 3 7 3 7 7 3 ≈ 10 cm Ultrasound

Baunach et al., 2007 (SNOW BAT) 7 7 7 3 7 3 3 3 7 ∼ ∼ 15 mm Ultrasound WSN

Feld et al., 2010 (In-Car Positioning) 7 7 3 7 7 3 3 3 7 7 3 Seat level Microphone

Köppe et al., 2011 3 3 7 3 3 7 7 7 3 ∼ ∼ ±2m/100m IMU

Link et al., 2011 (Footpath) 3 3 7 3 3 7 3 7 3 3route 7 8.9 m Accelerometer, Compass

Pereira C. et al., 2011 (LocateMe) 7 3 3 3 3 7 7 7 3 7 7 n.a. GPS, WiFi

Ghallager et al., 2011 7 3 3 3 3 7 7 7 3 7 7 n.a. GPS, WiFi

Peng et al., 2011 3 3 7 3 3 7 ∼ 3 7 3rtk 7 meters GPS, active RFID, IMU

Xiao et al., 2011 3 7 7 3 7 3 7 3 ∼ 3pg 7 ≈ 2 m WiFi tag, IMU

Ascher et al., 2011 3 7 7 3 3 7 3 3 7 7 7 n.a. UWB, IMU

Brunelli et al., 2007 (audio & video) 3 7 7 3 7 3 7 3 7 3 7 ≈ 13 cm Cameras, Microphone arrays

Najib et al., 2011 (MapUme) 3 ∼ 3 3 7 3 7 3 3 7 7 2.27 meters Middleware, WiFi, IMU

Martı́nez et al., 2011 3 ∼ 3 3 ∼ ∼ ∼ 3 3 7 7 n.a.
High level interface, no con-

crete implementation

LOCATO 3 3 3 3 3 3 3 3 3 3nt 3
Room level,

≈ 1 m

Active RFID, IR, Bluetooth,

Cells, WiFi, GPS

Table 3.2: Comparison of multiple-sensor systems and single-sensor based positioning systems with LOCATO.

pg Predefined traces were used as groundtruth, derived from geometric primitives (straight lines, rectangles)
sim A simulation was used for the evaluation
route A calculated route was used as groundtruth
rtk The positioning system was tested against RTK GPS measurements
nt Natural traces were used as groundtruth, derived from observation and manually annotated
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3.4 Summary and Discussion

This chapter provided an overview on the state of the art of positioning systems
and techniques. For outdoor applications, GPS provides high position-accuracy if
enough satellites are in line of sight. With GPS RTK, a position accuracy in the
range of one centimeter is possible, but the applicability is limited due to higher
hardware complexity. As AGPS is supported by most modern cell-phones, this can
be seen as the standard for outdoor positioning. Galileo is not expected to surpass
the accuracy of GPS, but hybrid GNSS receivers, which will be able to use GPS,
Galileo and GLONASS satellites, will be able to benefit from the combined satellite-
coverage. 4G cellphones will at least be able to provide coarse position-information
in the range of 50 to 150 meters, even if no or not enough satellites are in the line of
sight.

Regarding indoor positioning, GNSS pseudolites are an interesting alternative as they
theoretically enable outdoor and indoor positioning by using only one receiver, but is-
sues like the near-far problem still have to be solved. [Sakamoto et al., 2011] showed
that an accuracy in the range of centimeters is possible, but the needed hardware can
not be integrated into small mobile devices and thus the approach does not comply
with the usability and applicability criteria for positioning systems.

A plethora of alternative solutions is available, where the large part of them is
using electromagnetic signaling. The highest position accuracy can be reached
by instrumenting the environment. Millimeter accuracy seems to be pos-
sible by using ultrasound ([Baunach et al., 2007]) and by using laser-scanners
([Nakashima and Hasida, 2010]). However, the former needs a dense network of
ultrasound nodes and a high calibration effort, and the latter is rather expensive.
Thermal infrared as proposed by [Hauschildt and Kirchhof, 2010] is an interesting
idea with the potential of providing centimeter accuracies, but is still far from being
a robust solution.

Opportunistic systems provide an accuracy in the range of meters or room-level and
are an interesting alternative, as no additional infrastructure has to be deployed.
[Storms et al., 2010] could show that the natural differences in the Earth’s mag-
netic field could possibly be used for positioning, but the proposed approach is
still highly sensitive to external influences. WiFi infrastructures are in widespread
use and are thus good candidates for opportunistic positioning systems. The
approach to enrich WiFi access points with positioning data, as proposed by
[Gschwandtner and Schindhelm, 2011], could help to ease the process but would still
need administration by the network operator and thus increases the cost of ownership.

The fingerprinting approach is the most promising for opportunistic systems, as it can
also work with a small number of access points, as opposed to trilateration, multilat-
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eration or triangulation, which all need a minimum number of measurements. How-
ever, signal-strength fingerprints are subject to changing environmental-conditions,
like air-humidity and the number of people in the environment. When a crowd-
sourcing approach is used to gain the needed fingerprints for reference points, an-
other problem comes into play: different mobile devices can have different reception
or sending characteristics, leading to an incompatibility of fingerprints. The Local-
ization Toolkit LOCATO, which is described in detail in Chapter III, tackles both
problems.

Still, WiFi infrastructures are not available everywhere and depending on the applica-
tion, a higher position accuracy might be needed. As indicated in Section 2.6, sensor
fusion can be a solution to this problem. However, as the systems in Section 3.3 show,
sensor fusion is mainly used to integrate IMU measurements into a position-giving
system. Most systems use Kalman or particle filtering, where the filters are especially
tailored to fit the respective system. [Najib et al., 2011] and [Martı́nez et al., 2011]
proposed more general approaches, but the former is designed for offboard posi-
tioning and the latter uses the very simple approach of geometrical combination of
reported positions. LOCATO tackles the problem of a more generic sensor-fusion as
well.

The paper of [Stephan et al., 2009] showed that positioning systems can perform dif-
ferent than advertised in realistic scenarios. Most positioning systems are tested
under optimal conditions, i.e. interfering factors are suppressed. Often the exact
method of evaluation is not given, especially the origin of the ground truth. A static
evaluation is often performed, i.e. reference points are used with which the derived
position is compared. This method is well suited for positioning systems that want to
derive a room-level or large-area accuracy. Positioning systems with higher accuracy
should be tested with moving targets. Here, the ground truth is hard to obtain, and
thus predefined paths are often used, which may not coincide with natural paths that
are taken by users. This problem will be thoroughly discussed in Section 4.4.4.1.

Table 3.2 shows a comparison of all systems described in this chapter with LOCATO.
The rows are ordered according to the sequence in which the systems appear in this
chapter. 3 indicates that a feature is present, 7 that it is not present and ∼ indicates
that the feature cannot be derived from the description of a system.

The column ‘System Description’ contains a reference to the paper where the ac-
cording system is described as well as the system name, if one exists. A system is
marked as being able to perform ‘Sensor Fusion’, if it fuses at least two different sen-
sor technologies. Seamless Outdoor/Indoor describes if a system is capable of work-
ing outdoors and indoors without having the user to switch systems. A system that
simply switches between a sensor technology for outdoor positioning and a sensor
technology for indoor positioning does not classify as performing ‘Sensor Fusion’.
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The column ‘Semantic Descriptions’ denotes systems that internally use semantic
descriptions to represent positions. Likewise, ‘Coordinates’ denotes systems that use
numerical coordinates for internal position representation. The columns ‘Egocen-
tric’ and ‘Exocentric’ denote egocentric and exocentric systems. As described in
Section 2.3.2.5, any onboard positioning system can be converted into an offboard
positioning system. Thus only the column ‘Onboard’ is represented in the table.
Offboard systems are marked as not being onboard. The column ‘Designed Instru-
mentation’ denotes whether a system needs a dedicated infrastructure, whereas the
column ‘Opportunistic’ denotes systems that use an already existent infrastructure.
Systems that were evaluated with moving position-targets are marked in the column
‘Dynamic Evaluation’. The column ‘Static Evaluation’ denotes systems that were
evaluated by determining positions at known reference points, without moving the
position targets. The accuracy of a system, if available, is given in the column ‘Ac-
curacy’. In the column ‘Technology’, the used sensor technologies are listed.
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4 LOCATO: LOCALIZATION TOOLKIT

With respect to the design criteria, which were specified in Section 1.1.5, it could
be seen in the last chapter that there is no single positioning-system that provides a
global optimum over all criteria. A building-owner or tenant, who wants to provide
a positioning system, would thus choose a system that is tailored to their capabilities
and needs. The main criteria will usually be the cost of infrastructure and the position
accuracy, where the latter will depend on the applications that an operator wants to
support. Regarding robustness of positioning systems, it could also be seen that tri-
lateration, multilateration or triangulation tend to be less robust, due to their need of
a line of sight to a specific number of sensors or senders. Furthermore, any position-
ing method that relies on signal-strength measurements is sensitive to environmental
changes, like air-humidity or the number of people in the room.

The Localization Toolkit LOCATO was designed to facilitate the creation of posi-
tioning systems that are tailored to the needs of an operator while taking the Always
Best Positioned paradigm into account, which addresses the needs of the users of
positioning systems. In order to provide a high robustness, LOCATO provides newly
developed positioning methods, which work without signal-strength measurements
and can derive a position even if only one sender or sensor is within reach. Fur-
thermore, the algorithms provide easy ways to perform sensor fusion and are easy
to extend with more sensors. In addition, the toolkit provides methods to access a
ubiquitous user-modeling cloud-service and a local blackboard-service.
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4.1 Overview on the Localization Toolkit

LOCATO provides basic building blocks and additional tools to easily design and de-
ploy positioning systems. It contains three core algorithms, each addressing different
needs:

• Proximity Detection: This core algorithm can be used for low cost offboard-
exocentric positioning. As the name already implies, it relies on simple prox-
imity sensing and thus provides only coarse position accuracy.

• Frequency Of Appearance (FOA): This core algorithm is designed for on-
board/egocentric opportunistic positioning. The FOA algorithm provides a
novel, specially designed fingerprinting method that omits signal strength mea-
surements and thus enables a more stable position determination and eases the
process of sharing user-collected reference-fingerprints.

• Geo Referenced Dynamic Bayesian Networks (geoDBN): This core algo-
rithm is designed for onboard/egocentric positioning systems with designed
instrumentations. The geoDBN algorithm is another novelty and is designed
to built high accuracy positioning systems that are easy to extend with new
sensors.

The FOA and geoDBN algorithms follow the Always Best Positioned paradigm in
that they are easily expandable with further sensors and that they work with any sub-
set of provided sensors. Each core algorithm is available in Java, FOA and geoDBN
are additionally available in C++. For each of the three core algorithms, example sys-
tems have been built, which are described in more detail in Section 4.2, Section 4.3
and Section 4.4.

Additionally, LOCATO provides support to the cloud service UBISWORLD (see Sec-
tion 2.4.2.1), which allows to update user-profiles with position information and
also provides access to the spatial ontology UBISEARTH. The connection to UBIS-
WORLD is complemented with access methods to a local blackboard service, which
allows users to connect to a local infrastructure, e.g. in a shop or airport, which in
turn can provide additional context- or location-aware services, like automatic door
opening, or navigation services. As FOA and geoDBN support the creation of on-
board/egocentric positioning systems, it is up to the user to decide whether they want
to connect to UBISWORLD or the blackboard service and how much information
they are willing to share.

Figure 4.1 shows the components of LOCATO in a block-diagram. In the follow-
ing, the three core algorithms as well as the external connections and tools will be
described in more detail.
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Figure 4.1: Overview on LOCATO – Localization Toolkit
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4.1.1 Proximity Detection

The proximity detection algorithm is very simplistic and is tailored to the use of
Bluetooth, although it can be easily extended to other sensor technologies. However,
as it is a proximity detection, it should mainly be used with near-sensors, like NFC
or passive RFID. As it is designed for offboard/exocentric positioning, sensors have
to be installed in the environment, which must have a Java compliant computation
device attached. The basic idea of the proximity detection algorithm is to periodi-
cally inquire the attached sensor and either use the data locally or to forward it to the
blackboard service. When used locally, it can only be inferred that the sensed sender
is in the proximity of the device. When the data is forwarded to the blackboard,
sensor devices can exchange data, which allows a higher accuracy for positioning or
the inference of a moving direction. Furthermore, algorithms running on other com-
puting devices in the environment can subscribe to the data and can in turn provide
location based services. Of course it is possible, to use different kinds of sensors,
which all report their data to the blackboard. However, the core algorithm only pro-
vides the basic structure to periodically scan the sensor and to forward the data on
the blackboard. All other inference has to be done by additional services.

A Bluetooth based example system called OUT OF THE BLUE is described in more
detail in Section 4.2.

4.1.2 Frequency-Of-Appearance Fingerprinting (FOA)

The basic method of fingerprinting was described in Section 2.5.3. In Section 3 it
could be seen that all fingerprinting systems incorporate the measured signal strength
into their fingerprints. However, the signal strength is also very sensitive to environ-
mental conditions, e.g. air humidity and people present in a room. Furthermore,
reference fingerprints have to be collected, either by the operators of the building or
by users themselves. With the latter method, a crowd-sourcing approach seems very
reasonable, since this distributes the work onto many shoulders, and in the case of an
onboard/egocentric opportunistic positioning system, no cooperation of the building
owner is necessary to enable a working positioning system. In order to enable such
a crowd-sourcing approach, the collected fingerprints have to be compatible to dif-
ferent devices. In this case, the incorporated signal strength poses another problem,
since the measured signal strength also depends on the device itself, i.e. the antenna
design, the case design including the used materials, the remaining battery strength
and the used chipsets influence the signal strength measurements.

The developed Frequency-Of-Appearance (FOA) fingerprinting overcomes these
problems, by replacing the signal strength measurements through observations on
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Figure 4.2: Example calculation of a Frequency-of-Appearance fingerprint with
m = 3: The appearance of each ID in all three snapshots is counted out and the
relative appearance is stored in the fingerprint along with a semantic description of
the current position.

how often a particular sender was sensed over a period of time. Furthermore, FOA
fingerprinting can be used to fuse an arbitrary number of sensors in the sense of the
Always Best Positioned paradigm.

In order to acquire these FOA fingerprints, repeated measurements – so called snap-
shots – are taken. The duration of such a measurement (SnTime, short for Snapshot
Time) depends on how fast the device can complete the scans for each sensor. De-
pending on the sensor type, increasing the SnTime can result in detecting more
senders.

Each snapshot contains a list of all sensed senders from any of the used sensors.
Depending on the sensor type, or more specifically, on the data that each sensor
delivers, an identifier has to be identified that uniquely describes a sensed sender.
For example, the ID of a cell, the MAC of a WiFi enabled device or the MAC of
Bluetooth enabled device. Each ID (since MAC addresses are just another form of
identification, the term ID is from now on used to denominate MAC addresses as
well as any other form of ID) can appear only once in one snapshot.

An FOA fingerprint is generated by taking a specified number m of snapshots and
then counting how often each ID was seen in those m consecutive measurements.
Since an ID has to be seen at least once to be part of the fingerprint, and because it
can at most be seen in every snapshot, it follows that 1 ≤ counterID ≤ m, where
counterID is the counter for a specific sender ID. An example calculation withm = 3
is given in Figure 4.2. This example is taken from UBISPOT, which is described in
more detail in Section 4.3. The resulting reference-fingerprint is stored along with a
representation of the position in which the measurements were taken.
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Figure 4.3: Calculation of Frequency-of-Appearance fingerprints with a FIFO queue
of length m and resulting duration TimeWindowSize.

Efficient Calculation of FOA Fingerprints

In order to efficiently calculate FOA fingerprints, incoming snapshots are organized
into a FIFO queue with an adjustable length. Figure 4.3 shows the general struc-
ture of such a queue with length m. Since the length of the FIFO largely con-
tributes to the time that is needed to collect the data for one fingerprint, it is called
TimeWindowSize.

When starting the FOA fingerprinting, each snapshot entering the FIFO is analyzed
and for each detected ID new counters are initialized or existent counters are in-
creased, depending on whether the ID has been seen before. The time that is needed
to fill a queue with length m can be calculated by multiplying the queue length with
the time needed to obtain one snapshot, i.e. m ∗ SnTime. To obtain the first finger-
print, the counters are normalized by the length m of the FIFO, to get a value that is
independent of the queue length. After this initial calculation, a new fingerprint can
be generated every SnTime seconds.

It follows that a subsequent fingerprint can only differ slightly from the direct pre-
decessor, which on one hand is a desired effect, since the FIFO should prevent the
system from toggling too fast between different locations. On the other hand, a high
value for m will also prevent a fast recognition of an actual room change. Hence,
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the value m is subject to a trade-off between stability and response of the positioning
system. This trade-off will be further analyzed and discussed in conjunction with
UBISPOT in Section 4.3.4.

4.1.2.1 Matching Fingerprints to Locations

For position determination, a positioning system has to compare its currently
measured fingerprint with the fingerprints stored in a database. This can be
done by calculating the strength of a linear relationship between two sets of
fingerprints, also known as the correlation coefficient of two random variables
([Clauss and Ebner, 1975], pp. 115–128). Consider two different fingerprints A =
{a0, ..., an}, B = {b0, ..., bn}. Each element in the set indicates different measured
IDs of the same type of sender (e.g. WiFi access-points) with relative frequency of
appearance ai and bi where i ∈ {1, ..., n}. The product-moment correlation coeffi-
cient rA/B is used to estimate the correlation of A and B:

rA/B =

∑n
i=1 (ai − ā)(bi − b̄)

(n− 1)sasb
(4.1)

Here, ā and b̄ are the means of A and B, and sa and sb are their standard deviations.
According to [Cohen, 1988, pp. 109–139], the correlation coefficient between A and
B has a significant impact, if the absolute value of rab lies in the range of [0.50, 1.0].

Example Calculation

Given are two fingerprints in the database, one for location L1 and one for location
L2, which are close together and thus contain the same access points. Let L1 be
{3, 2, 2, 4} and L2 = {1, 4, 0, 2}, meaning that the first access point was measured 3
times in locationL1 and once in locationL2. The second access point was measured 2
times inL1, 4 times inL2 and so on. Assumed that the current measured fingerprint F
is {4, 2, 3, 4}, the computed correlation coefficients are rF/L1 ≈ 0.8181 and rFL2 ≈
−0.5606, meaning that location L1 has a higher correlation to the current fingerprint
than L2 and thus L1 is more likely to be the current position.

4.1.2.2 Efficient Calculation of the Correlation Coefficient

By closely examining Equation 4.1, it can be seen that n + 2 multiplications,
2n + n − 1 + 1 = 3n additions and one division have to be performed in order
to obtain the correlation coefficient for two fingerprints, each containing n values,
leading to O(4n) when ignoring the possible speed differences between additions,
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multiplications and divisions. This number of operations can be fairly reduced by
further examining the numerator in the fraction of Equation 4.1:

n∑
i=1

(ai − ā)(bi − b̄) (4.2)

The dividend alone contributes n multiplications and 3n− 1 additions to the overall
count of operations. By expanding, the sum above can be rewritten as:

n∑
i=1

(aibi − aib̄− ābi + ab) (4.3)

Since every summand contains the constant term āb̄, it can be taken out of the sum
and quickly computed by nāb̄ and the remaining sum can be split into 3 sums. Thus
the term can be rewritten as:

nāb̄+
n∑
i=1

(aibi)−
n∑
i=1

(aib̄)−
n∑
i=1

(ābi) (4.4)

The two last sums contain the constants b̄ and ā respectively, meaning that these
constants can be taken out of their sums:

nāb̄+
n∑
i=1

(aibi)− b̄
n∑
i=1

(ai)− ā
n∑
i=1

(bi) (4.5)

Taking into account that the arithmetic mean x̄ of a set of values xi is defined as

x̄ =
1

n

n∑
i=1

xi (4.6)

the values of
∑n

i=1(ai) and
∑n

i=1(bi) can be efficiently calculated by nā and nb̄,
eliminating the need of the last two sums and leading to:

nāb̄− b̄nā− ānb̄+
n∑
i=1

(aibi) = −nāb̄+
n∑
i=1

(aibi) (4.7)

Equation 4.1 can thus be rewritten as:

rab =
(
∑n

i=1 (aibi))− nāb̄
(n− 1)sasb

(4.8)

reducing the computation to n+ 4 multiplications, n− 1 + 2 = n+ 1 additions and
one division, or O(2n). Compared to the original runtime of O(4n), this is twice as
fast for large values of n.
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4.1.2.3 Ranking System

As already indicated above, correlation coefficients should at best be applied to mea-
surements of the same class, i.e. only WiFi access points, only cells or only Bluetooth
device IDs. In theory, it would be possible to calculate the correlation coefficient
over a mixed set of measurements, but taking the different characteristics of different
senders and sensors into account, e.g. different ranges and stability of the signals, this
seems not a good idea. Instead, the fingerprints are separated into sub-fingerprints,
i.e. one sub-fingerprint for each sensor type. This also opens up the possibility to
assign different weights to each sensor type.

The correlation coefficient for each sub-fingerprint is calculated separately. To com-
bine these results, a ranking system is used, i.e. score points (abbreviated as Sc) are
assigned to indicate a level of matching-accuracy. The computed correlation coeffi-
cients are used as a basis for these score points. As already mentioned above, a good
correlation is given if |rA/B| ∈ [0.5, 1.0]. For example, in UBISPOT only those lo-
cations are considered as matching candidates, whose coefficient lies in the interval
of [0.6, 1.0]. To reduce the computational effort, it is good practice to choose one
sensor type as a filter to be able to reduce the candidates for the current position. For
example, in UBISPOT, the sensed cell ID is used to preselect only those reference-
fingerprints that contain the sensed cell ID. The computation of the score-points is
shown in Algorithm 1.

Algorithm 1 FOA Ranking Computation
Let F denote the current fingerprint consisting of m sub-fingerprints for m sensors:
F = {SF0, . . . , SFm}
Let L = {L0, . . . , Ln} be the set of n candidate-fingerprints, where each Li consists
of m sub-fingerprints SLij (0 < i < n and 0 < j < m).

1. For each candidate-fingerprint Li of L:

(a) initialize the score-point counter for candidate Li: Sc(Li) = 0

(b) For each sub-fingerprint Lij of Li:

i. update the score-point counter using the correlation coefficient and a
weighting factor wj
Sc(Li) = Sc(Li) + wjrSFj/Lij

2. Select the candidate Lk with the highest achieved score-point value Sc(Lk) as
the current position

3. Done.
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4.1.2.4 Summary

FOA fingerprinting is especially designed for opportunistic systems. By eliminat-
ing signal strength information from the content of the fingerprints and replacing it
through the frequency of appearance, a more stable positioning determination is en-
abled. Furthermore, created reference-fingerprints can be easily exchanged between
different devices, which eases the process of sharing collected fingerprints in a Web
2.0 fashion (crowd-sourcing). UBISPOT is a practical example of an opportunis-
tic onboard/egocentric positioning system using FOA fingerprinting and enabling
crowd-sourcing of reference fingerprints. UBISPOT is thoroughly described in Sec-
tion 4.3, where also an evaluation is given.

Although originally designed for semantic position representation, FOA fingerprints
can also contain numerical coordinates. In that case, Algorithm 1 can be extended
in the penultimate step, by calculating the center of mass of all position candidates,
using the normalized score-points as weights.

The FOA method can be easily extended with more sensors, by simply adding iden-
tification information for sensed entities to the fingerprint vector and specifying an
according weight. As a matter of fact, LOCATO allows to specify a JAVA-method
for each sensor-type, in which more elaborated score functions can be implemented.
Furthermore, the algorithms are designed such that they follow the Always Best Po-
sitioned paradigm, i.e. they work with any subset of supported sensors.

4.1.3 Geo-Referenced Dynamic Bayesian Networks (geoDBN)

Geo-referenced dynamic Bayesian Networks (geoDBNs) are based on dynamic
Bayesian networks, as described in Section 2.6.3. As a matter of fact, the exam-
ples given in Sections 2.6.3 and 2.6.3.1 were simplified versions of geoDBNs.

The basic idea of geoDBNs is to use the concept of Bayesian Networks to create a
more general model for the behavior of Kalman filters and particle filters. This is
accomplished by creating several instances of a generic geoDBN, which describes
the characteristics of the used sensors and the according senders, at each possi-
ble location and collecting evidences in subsequent time-slices. Instead of creating
one huge network that contains all senders installed in the environment, geoDBNs
assume that all senders of the same type have the same reliability. This greatly
reduces the demand on computational power and memory requirements, which is
an important aspect for any system that runs on resource-limited hardware, like
a mobile device. Figure 4.4 shows an example of such a generic geo-referenced
Bayesian network (the dynamic part will be discussed further below) and its condi-
tional probability tables. This example network uses two different sensors: Sen-
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Figure 4.4: Example of a geo-referenced Bayesian network and corresponding con-
ditional probability tables.

sor1 and Sensor2. The network consists of three nodes: the top node, labeled
UserPos=GeoPos, contains two states – yes and no – indicating whether a user is
at position UserPos or not. The two lower nodes are sensor nodes, each contain-
ing two states as well: detected and not detected. As stated above, several in-
stances of this network are created at runtime, where each instance represents a
possible location of the user. The term geo-referenced stems from the fact, that
the top node of the network represents the belief that a user is standing at a spe-
cific position, and thus the whole network is geo-referenced to that position (see also
[Schwartz et al., 2010a, Schwartz et al., 2005, Brandherm and Schwartz, 2005]).

The basic interpretation of the geoDBN in Figure 4.4 is as follows: if the current
user position UserPos is the same as the position GeoPos of the currently considered
geoDBN, then there are certain probabilities that the user’s device will sense senders
that signal this position. These probabilities, which can be estimated based on tests,
are coded in the CPTs of the sensor nodes. The example values in Figure 4.4 are
taken from LORIOT. The two states of each sensor node – detected and not detected
– represent the probability whether a sender for Sensor1 or Sensor2 is detected or
not. Thus, four basic cases have to be considered:

case P The user is standing at GeoPos

case P̄ The user is not standing at GeoPos

case S1/2 The device is detecting the signaling sender for GeoPos

case S̄1/2 The device is not detecting the signaling sender for GeoPos

The CPTs contain probability values for each combination of a1/2 and b1/2:

Sensor1. A probability of 90% (P , S1) is assumed that a present sender will be
detected by Sensor1, and a 10% (P , S̄1) chance is assumed that a present sender is
not detected if the user is at GeoPos. The probability that a user who is not at position
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Figure 4.5: Time-slices of a geoDBN and the corresponding conditional probability
tables for the transition edge between two time-slices.

GeoPos will nonetheless detect the sender is considered 5% (P̄ , S1). A 95% (P̄ , S̄1)
probability is given to the event that the user is not at GeoPos and will not detect the
sender.

Sensor2. The CPT of the Sensor2 node is interpreted in the same way. For Sen-
sor2 a larger sensing range and higher probability for overreach is assumed. Thus,
the probability distribution is more even: 60% (P , S2) probability to detect an appro-
priate sender if the user is at GeoPos and 40% (P , S̄2) to not detect it. 30% (P̄ , S2)
probability to detect the sender even if not at GeoPos and 70% (P̄ , S̄2) to not detect
it.

The static part of geoDBNs, which was discussed so far, only covers one measure-
ment. If geoDBNs were only static Bayesian networks, previously measured sensor
data would have no effect on the calculation of the current position. Through the use
of dynamic Bayesian networks, the previous position can be taken into account by
introducing an edge leading from one time-slice to the subsequent one. Figure 4.5
shows several time-slices of a geoDBN and the CPT assigned to the inter-time-slice
edge. This edge is taken into account when the roll-up of the current time-slice is
calculated (see Section 2.6.3) and thus influences the calculations of the next time-
slice. This CPT models the movement of the user, and thus mimics the prediction
stage in a Kalman or particle filter.

According to [Weidmann, 1993] normal walking speed lies in the interval of 0.5
to 2.2 m/s with an average of 1.34 m/s, meaning that a user covers a maximum
distance of 2.2 meters in one second. Depending on the sending range of the used
senders, not much difference is expected between two subsequent time-slices. These
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considerations should be taken into account when modeling the probabilities of the
CPT. Again four cases have to be considered, taking the current time-slice t and the
next time-slice t+ 1 into account:

case Pt The user is currently standing at GeoPos (UserPos = GeoPos in time-
slice t)

case P̄t The user is currently not standing at GeoPos (UserPos 6= GeoPos in
time-slice t)

case Pt+1 The user will stand at GeoPos in the next time-slice (UserPos =
GeoPos in time-slice t+ 1)

case P̄t+1 The user will not stand at GeoPos in the next time-slice (UserPos 6=
GeoPos in time-slice t+ 1)

As in the case of the sensor nodes, the CPT contains all combinations of Pt/P̄t and
Pt+1/P̄t+1. If a user is at GeoPos in the current time-slice, a probability of 70% (Pt,
Pt+1) is assumed that they will be at the same position in the next time-slice. The
probability that they will not be at the same position in the next time-slice is set to
30% (Pt, P̄t+1). If a user is not at GeoPos in the current time slice, the probability that
they will be at GeoPos in the next time-slice is set to 0.1% (P̄t, Pt+1). The probability
that they still will not be at GeoPos in the next time-slice is set to 99.9% (P̄t, P̄t+1).

Example Calculation

In order to estimate the current user position, the evidences for the sensor nodes of
the geoDBN are set according to sensor measurements. The belief of the top-node
(UserPos = GeoPos) is then calculated using standard Bayes inference algorithms.

As an example, assume that a system with two sensors (Sensor1 and Sensor2) that
can detect senders of type Sender1 with Sensor1 and of type Sender2 with Sensor2.
If the system just detected a previously unseen Sender2 with a specific coordinate,
it will instantiate a new geoDBN and the state detected will be set to 100% and the
state not detected will be set to 0% in the Sensor2 node.

If no senders of type Sender1 signaling for the same coordinate were detected in the
current and previous time-slides, both states in the Sensor1 node will be left at their
a-priori probability since the system cannot decide whether there is a Sender1 present
that was just not detected or whether such a Sender1 does not exist . Using the given
CPTs, the inference algorithm will result with a belief of 9.52% for the event that
UserPos = GeoPos.
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Figure 4.6: A cloud of geoDBNs arises around the user. Each geoDBN has a weight
(indicated by the size of each geoDBN in this picture), determined by its belief that
the user is standing at its position. The user’s position is estimated by calculating the
center of mass of the cloud.

If the same Sender2 is measured again in the next time-slice, the states of the Sen-
sor2 nodes will again be set accordingly and the inferred probability for UserPos =
GeoPos rises to 12.66%. If the Sender2 will not be measured again in the third mea-
surement, the state not detected will be set to 100% and detected to 0%, since the
Sender2 has been seen before and thus the system can infer that such a tag exists but
was not detected. With the states set accordingly, the belief will drop to 5.32%. On
the other hand, if the Sender2 and a Sender1 for the same coordinate is detected, the
belief will rise to 77.96%.

In short, if senders are measured repeatedly in subsequent time-slices, the computed
probability of the UserPos=GeoPos node will rise depending on the reliability of
the detected senders. It will fall if a sender is not measured again. This resembles
the Frequency Of Appearance method of LOCATO, since repeated detections of a
sender are indirectly taken as a measure for the distance to the user. Furthermore,
the geoDBNs help to smooth out false positives, e.g. overreach of senders, as well as
false negatives, e.g. receiving-errors by a sensor.

4.1.3.1 Position Estimation

As already indicated, new geoDBNs are instantiated for each newly detected sender
and existing geoDBNs are updated for previously detected ones. Repeated measure-
ments lead to a number of geoDBNs, each giving a probability – or rather a belief
– that the user is at the position of the geoDBN. Graphically speaking, a cloud of
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geoDBNs arises around the user where each geoDBN is a particle of that cloud (as
illustrated in Figure 4.6). The weight of each particle is determined by the belief of
the respective geoDBN. The estimation of the current user position is calculated as
the weighted sum of the coordinates of these particles:

UserPos(t) = α
n∑
i=1

w(GeoDBN[i]) GeoPos(GeoDBN[i]) (4.9)

Here, n is the number of existing geoDBNs at time t (n ≥ the number of received
senders at time t), GeoPos(GeoDBN[i]) is the coordinate and w(GeoDBN[i]) the
weight of the ith geoDBN. α is a normalization factor that ensures that the sum of all
weights multiplied with α is one.

α =
1∑n

i=1w(GeoDBN[i])
(4.10)

A new estimation of the current position can be calculated after each new measure-
ment. The schematic approach looks like this:

Algorithm 2 Basic Algorithm for the Position Calculation with geoDBNs

1. Perform a new measurement by inquiring all sensors.

2. Obtain the coordinates of each detected sender.

3. Extend every existing geoDBN with a new time slice and cut off the old time
slice.

4. Insert the new evidences of the sensors:

(a) If there is not already a geoDBN at a received coordinate, create a new
geoDBN and insert the evidence.

(b) If there is a geoDBN at a received coordinate, insert the evidence in the
current time slice.

5. Go through all geoDBNs and calculate the estimation that the user is at the
associated coordinate.

6. Sort the geoDBNs in descending order of their belief.

7. Mark geoDBNs as unused that provide an estimation that is lower than
thresholduse.

8. Calculate the user position by considering only those geoDBNs that provide
an estimation above thresholdconsider.



142 LOCATO: LOCALIZATION TOOLKIT

4.1.3.2 Efficient Calculation

Since geoDBNs were designed to run on mobile devices, calculation cost and mem-
ory usage are crucial. To reduce both, the number of instantiated geoDBNs must
be as low as possible. To achieve this goal, geoDBNs with a weight lower than
thresholduse are marked as unused (see step 7 in Algorithm 2).

To keep the overhead for memory management low, these unused geoDBNs can be
‘recycled’ by resetting them to initial values and new coordinates. Furthermore, a
maximum number of possible geoDBNs can be specified. If this number is exceeded,
those geoDBNs that provide the least estimation will be deleted.

The dynamic Bayesian networks themselves were implemented using a tool called
JAVADBN (see [Brandherm, 2006]). This tool provides a graphical user interface
to model dynamic Bayesian networks of nth order and automatically generates Java
or C++ code for the modeled networks. The resulting code is already optimized
regarding computational complexity as well as memory usage and contains inference
as well as roll-up algorithms.

4.1.3.3 Summary

GeoDBNs are designed for high accuracy onboard/egocentric positioning systems in
instrumented environments following the Always Best Positioned paradigm. As it is
the case with FOA fingerprinting, signal strength values can be omitted to provide a
higher stability. However, they can also easily be integrated, e.g. by using evidence
values for the sensor nodes that are proportional to the measured signal strength.

GeoDBNs resemble particle filters in that they provide hypotheses at different po-
sitions, collecting evidence over time. Other than particle filters, the number of
hypotheses (particles) is not fixed, but rather depends on the number of sensed
senders. Thus, the number of hypotheses automatically adjusts to the environment
and through the thresholding in Algorithm 2, hypotheses that are too far away, or left
behind, are automatically removed over time.

Besides using numerical coordinates, also semantic descriptions can be used to ref-
erence the geoDBNs. In that case, each geoDBN can be seen as a vote for a spe-
cific location, where each vote has a weight proportional to the calculated belief. A
straightforward way to determine a position is to choose the geoDBN with the high-
est vote. If a hierarchical location model is used, votes on lower layers can be added
on higher layers of the hierarchy. By using a defined threshold, the layer exceeding
the threshold can be chosen as the current location.
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Figure 4.7: FOA systems can be integrated into geoDBN systems by adding a node
representing the FOA system.

New sensors can be easily added by inserting a new sensor node and specifying the
CPT of that new node. IMU sensors (see Section 3.2) can be easily integrated, by
using them to adapt the CPT entries of the inter-time-slice edge between succeeding
time-slices.

Any other positioning system can be integrated as a subsystem, also by adding a new
sensor node, which represents the subsystem, and specifying the reliability of the
subsystem in the CPT of that node. With this method GPS can be easily integrated,
but also any other system that is able to derive a compatible position representation.
However, systems using trilateration, multilateration or triangulation rely on having
a line of sight to enough senders. In situations in which not enough senders can
be sensed, such a subsystem will not contribute to the position determination. To
overcome this restriction, the sensors of the subsystem themselves can be included
in addition, again as sensor nodes. Using this method, even in the case that not
enough senders are present, a coarse position-estimation is possible.

With the same approach it is possible to integrate an FOA based positioning system
into a geoDBN system. The prerequisite for this is that both systems use the same po-
sition representation, i.e. numerical coordinates or semantic descriptions, or that the
position representation of the FOA system can be translated into that of the geoDBN
system. Figure 4.7 shows an example with n sensor nodes and one FOA node.

LORIOT, which is described in Section 4.4, is an example of an onboard/egocentric
positioning system that is built with geoDBNs. LORIOT uses active RFID tags and
infrared beacons as senders in indoor environments and GPS for outdoor positioning.
The system was also rigorously evaluated, using step-accurate traces as ground-truth
(see Section 4.4.4).
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4.1.4 External Connections and Tools

4.1.4.1 Blackboard: iROS Event Heap

The name Blackboard-Service is very descriptive. As a matter of fact, such a ser-
vice works like a blackboard at a public place: people write messages onto it and
other people can read them. In conjunction with LOCATO, the iROS Event Heap
was used, which was developed at Stanford University by [Johanson et al., 2002,
Johanson and Fox, 2002]. The Event Heap is a client-server architecture imple-
mented in Java. The Event Heap server stores and organizes messages as tuples,
called events. Clients can connect to the server in order to send and receive events.
Single events contain several named standard fields, where some are mandatory and
others are optional. The mandatory fields are EventType, which is a freely chosen but
unique String that describes the type of the event, SourceID, which uniquely identi-
fies the sender of the event, and TimeToLive, which states a number of milliseconds,
after which the event will be deleted. Furthermore, fields can be defined, which
contain the actual content of the message. For example, the OUT OF THE BLUE sys-
tem sends events of the EventType ”RAWBLUETOOTH”, which contains detected
Bluetooth addresses in a field called ”BTADDRx”, and a semantic description of the
location of the client in a field called ”LOCATION”.

Clients can subscribe to events, where filters can be specified to subscribe for specific
events, e.g. all events of specific EventType, or only events that were sent by a
specific sender. Events are stored on the server and distributed as long as the specified
TimeToLive value was not reached. With this mechanism, clients that connect to the
server can still receive events that were sent before the connection. The iROS Event
Heap was chosen because of its open architecture, which allows to send arbitrary
messages.

4.1.4.2 UBISWORLD

UBISWORLD and its subsystem UBISEARTH were already described in Sec-
tion 2.4.2.1. LOCATO provides access methods to both services, where the connec-
tion to UBISEARTH is used to gain access to the spatial ontology in order to query
the ontology, to download parts of it or to modify and extend it. The connection to
UBISWORLD is mainly used to update user profiles with the current position of the
user. As UBISWORLD also stores old values for each user profile to some extend, a
special view was implemented in UBISWORLD, which allows a user to visualize a
history of their positions in a so-called film metaphor. Figure 4.8 shows an example
of such a position history in the film metaphor.
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Figure 4.8: UBISWORLD provides a film-metaphor view of the history of positions
of a user.

4.1.4.3 YAMAMOTO

In order to use the geoDBN core algorithm of LOCATO, the environment has to be
instrumented with senders. The coordinates of these senders have to be determined
and stored somewhere. For example, in the case of LORIOT, the coordinates are
stored directly onto active RFID tags. However, the deployment of senders has to
be planned according to the environment a positioning system should be used in.
Having a detailed model of the environment provides great help to plan the needed
infrastructure.

In [Stahl and Haupert, 2006], YAMAMOTO (Yet Another MAp MOdeling TOolkit)
was introduced as a toolkit to quickly and efficiently create such detailed models
of multi-story buildings. To model a building, an architectural floor plan is used as
backdrop image and the outlines of rooms and corridors are manually traced, leading
to a 2D representation of each story represented by vertices and edges.

By marking edges as being doors, windows or walls the 2D model can be extended
to a so-called 2.5D model, which allows vertical arranging of multiple stories. As-
sociating semantic attributes, like not passable, passable for pedestrians or passable
for wheelchairs to edges, allows for user-adapted route finding and planning. Fig-
ure 4.9a shows a screen shot of YAMAMOTO during the modeling process of building
E11 at Saarland University.
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(a) Screenshot of YAMAMOTO (b) IR beacons and active RFID tags modeled with
YAMAMOTO

Figure 4.9: YAMAMOTO can be used to model a building and plan the positioning
infrastructure. Shown are IR beacons (red), active RFID tags (green) and Bluetooth
beacons (blue).

YAMAMOTO was extended to represent different senders, like infrared beacons,
RFID tags, WiFi access points or Bluetooth beacons ([Stahl and Schwartz, 2010]).

Three basic primitives are used to model various senders: Point (x, y) for senders that
should be modeled without taking their range into account, like WiFi access points
with unknown sending range, Circle(x, y, radius) for senders with radial sending
characteristics, like active RFID tags, and Section(x, y, radius, beam angle, orienta-
tion) for directional senders, like IR beacons.

Each primitive can also be associated with a symbolic name and their sending ID.
Figure 4.9b shows the model of the lab of Prof. Wahlster at Saarland University,
including the LORIOT instrumentation.

A model derived with YAMAMOTO can also be geo-referenced to known points or
areal photographs. In the latter case, the outline of the YAMAMOTO model can be
manually scaled and aligned to fit into the respective area of the building on an areal
photograph with known geo-references (as outlined in Figure 4.10).

YAMAMOTO automatically derives the needed scaling and rotation matrices to con-
vert its internal coordinates into the coordinate system of the areal photograph.
WGS84 compliant coordinates can thus be derived for every point inside the mod-
eled building. If an instrumentation was planned with YAMAMOTO, the resulting list
of senders can be exported to an XML format, called YML for Yamamoto Modeling
Language, which includes the coordinates of each sender as well as their ID.
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Figure 4.10: YAMAMOTO allows to geo-reference a model by rescaling, resizing and
placing it into an already geo-referenced areal photography.

Simulation and Visualization with Yamamoto

As YAMAMOTO also has an interface to the blackboard service, it can also be used
to simulate the proximity detection core algorithm. An avatar can be freely moved
inside the modeled building, either in a birds-eye’s view or in an egocentric perspec-
tive, as known from 3D computer games. If the avatar’s coordinates are inside of
the range of a modeled sensor with radial characteristics, the same events are sent to
the blackboard that would be sent in a real world deployment by the actual sensor.
With this simulation, services can be tested prior to deploying the sensors in the real
environment.

Furthermore, a TCP/IP socket connection is provided, which realizes the so-called
Yamamoto Control Interface (YCI). The YCI is bidirectional, i.e. positions can be
received and sent out. A positioning system can connect to the socket and provide
determined coordinates of a user. The avatar will then automatically be placed at
the determined coordinates. This communication direction can be used to visualize
determined positions. The other direction, i.e. sending out the current coordinates of
the user controlled avatar, can again be used to pretest location based services, prior
to the deployment of the infrastructure. More features and practical applications of
YAMAMOTO, like activity modeling or route finding, are thoroughly described in
[Stahl, 2009].

4.1.5 Summary

LOCATO provides three core algorithms. One that can be used to design offboard-
/exocentric positioning systems, and two newly developed core algorithms to de-
sign onboard/egocentric positioning systems that follow the Always Best Positioned
paradigm. Of these two core algorithms, FOA is designed for opportunistic posi-
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tioning systems, while geoDBN is designed for positioning systems in designed in-
strumentations. The algorithms are optimized for low computational complexity and
can thus be executed on mobile devices with restricted resources. As explained in
Section 2.3.2.5, onboard positioning systems can be easily converted into offboard
positioning systems. Thus, these two core algorithms can also be used to design
offboard/egocentric systems.

Furthermore, LOCATO provides access methods to the cloud service UBISWORLD,
including its subsystem UBISEARTH, and access methods to a local infrastructure
blackboard service, the iROS Event Heap. Both services can be used provide addi-
tional services.

The external modeling toolkit YAMAMOTO can be used to design instrumentations
as well as to test the instrumentations prior to deployment, and to visualize the output
of a deployed positioning system.

The next three sections present example positioning-systems that were implemented
using LOCATO.

4.2 OUT OF THE BLUE: A Bluetooth-based Off-
board/Exocentric Positioning System

OUT OF THE BLUE was designed as a very simplistic but also very coarse-grained
exocentric positioning system. It uses Bluetooth technology and its main advantage
lies in the fact that users do not have to purchase any new device as long as they
already own a Bluetooth enabled nomadic device. On the environment side, any
stationary Bluetooth-enabled device that is capable of running Java and provides
access to the Bluetooth stack via Java can be used to detect the presence of users.
OUT OF THE BLUE is the only offboard/exocentric positioning system developed in
this thesis.

4.2.1 Hardware

4.2.1.1 Nomadic Device

OUT OF THE BLUE was designed to work with any Bluetooth enabled mobile device.
The sheer Bluetooth capability is enough, since no additional software has to be

1http://www.bluenio.com
2http://www.gearfuse.com/bluebird-keeps-an-eye-on-your-luggage/
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(a) Wireless headset (b) nio™ Bluetooth
tag1

(c) Bluebird
luggage
tag2

(d) Sony Eric-
sson T660

Figure 4.11: OUT OF THE BLUE is not limited to smartphones on the user’s
side. Any Bluetooth enabled device is usable as positioning tag, including so-called
‘dumbphones’.

installed on the user’s device. In that sense, a minimalistic Bluetooth circuit that is
only capable of receiving standard scanning requests and sending out an appropriate
answer could be used as positioning tag. Thus, the range of devices is not limited
to smartphones and the like, but also includes low-cost wireless headsets or special
Bluetooth tags as shown in Figure 4.11.

4.2.1.2 Senders and Sensors

OUT OF THE BLUE uses Bluetooth for the instrumentation of the environment as well
as on the user-device side. Since Bluetooth relies on bidirectional communication,
the basic technology is the same on both sides. There is however a difference in the
needed computing power.

As stated above, a minimalistic Bluetooth circuit is sufficient on the user side. On
the instrumentation side, at least the ability to process the information gained from
periodically scans is needed. To take full advantage of the system, there should also
be a means to exchange this information with other devices on the instrumentation
side.

In an office setting, the office workers’ desktop computers can be used to host the
OUT OF THE BLUE software client. Usually, public displays also provide data con-
nectivity as well as computational power and thus are perfect devices on the instru-
mentation side. In both cases – desktop computers or public displays – the needed
Bluetooth capability can be retrofitted using USB dongles.



150 LOCATO: LOCALIZATION TOOLKIT

Figure 4.12: OUT OF THE BLUE consists of stationary devices, like desktop PCs,
public displays or kiosk systems that scan their environment for mobile Bluetooth
devices, like cell phones, wireless headsets or Bluetooth tags. Information can be
shared via a blackboard service and registered users can store their Bluetooth IDs in
UBISWORLD.

4.2.2 Methods

4.2.2.1 Proximity Detection

As described in Section 3.1.4, every Bluetooth enabled device has a unique numeric
address. Two Bluetooth devices that want to exchange data need to know each other’s
addresses. Since Bluetooth was also designed for ad-hoc communication, a Blue-
tooth device can scan its surroundings for other Bluetooth devices or services. As a
result it gets a list of addresses of all Bluetooth devices that are willing to share that
information and that are in a close enough range.

The main idea behind OUT OF THE BLUE is that this mechanism provides a simple
means to implement proximity detection: Stationary Bluetooth enabled devices, such
as desktop PCs or panel PCs used as public displays, can periodically scan their
environment for other Bluetooth devices. If such a stationary device has knowledge
about the range of its own Bluetooth transceiver, it can derive which other Bluetooth
devices are in that range. Given additional information, i.e. the Bluetooth address of
the mobile device of a certain user, it can infer whether that user is currently in its
vicinity.

Figure 4.12 shows an example setup of OUT OF THE BLUE. In such a setting, a public
kiosk system at the entrance of a building could provide users the option to register
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with the system. For ease of use, users can place their Bluetooth enabled device in
a shielded box at the kiosk system, so that the Bluetooth ID of that particular device
can be determined. If the user already has an UBISWORLD account, they can give
permission to certain parts of their user profile or they can register for a specific
service, e.g. route guidance to their destination. Along the way of the user, public
displays detect their Bluetooth ID and can then adapt their presentation to the user’s
profile or their requested service.

OUT OF THE BLUE runs on the aforementioned stationary devices and uses the prox-
imity detection core-algorithm of LOCATO. It runs in the background and continu-
ally scans the environment in a freely adjustable time interval. Such an OUT OF THE

BLUE sensor-node can operate in two modes: isolated or sharing. In isolated mode,
a node keeps all information gained through the scanning process by itself, which is
usually suitable for a public display to adapt its presentation to the number of users
in its vicinity or to show user specific information. In sharing mode, the resulting list
of mobile devices is sent to the blackboard system (see Section 4.1.4.1), via the inter-
faces provided by LOCATO. Each stationary device can therefore sense the presence
of registered users in their direct vicinity, but in the sharing mode they can also gain
knowledge about users further away and can try to reason over this, e.g. to estimate
the walking direction.

The accuracy of the position depends on the range of the stationary Bluetooth devices
and on the range of the user’s mobile device. Most Bluetooth dongles available for
PCs are Class 1 or Class 2, resulting in a range between 10 and 100 meters if no
obstacles attenuate the signals. This range is usually decreased through walls, doors
and furniture indoors.

Since most modern mobile phones are Bluetooth enabled, this system is readily avail-
able to a broad public. The missing feedback to the user about their own position
however limits its application to adequate services, like public displays adapting their
content to the nearby users or user sensitive self-opening doors. An example service
that was realized with OUT OF THE BLUE is given in Section 5.5.

4.2.3 Summary

OUT OF THE BLUE is an offboard/exocentric positioning system using a single sen-
sor technology. With regard to the design criteria for positioning systems, it was
designed to minimize the cost of ownership for the users. As most mobile phones
are Bluetooth capable and simple Bluetooth devices – like wireless headsets – are
available at low cost, Bluetooth was chosen as sensor technology. As the system was
designed for use with public displays, the cost of ownership for the positioning sys-
tem is low compared to the costs of the public displays themselves. The low costs of
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ownership is accompanied by a low accuracy, which is in the range of tens of meters,
a low robustness, which is due to long inquiry times of the Bluetooth sensors, and a
low privacy protection, due to the offboard/exocentric approach. In terms of usabil-
ity and applicability, OUT OF THE BLUE is lightweight and small in size as it can
be used with any Bluetooth capable mobile phone. Due to the repeated Bluetooth
inquiries, which have to be answered by the user’s mobile device, the battery con-
sumption is increased. However, users who do not want to use the system can either
switch off Bluetooth or set their device into non-discovery mode to prevent higher
battery consumption.

4.3 UBISPOT: An Opportunistic Onboard/Egocen-
tric Positioning System

UBISPOT is an onboard/egocentric opportunistic positioning system, as described in
Section 2.3.3. The system uses standard, built-in sensors of modern mobile phones
to detect cells, WiFi access points and Bluetooth devices. For outdoor positioning,
GPS is also taken into account.

UBISPOT can reach room level accuracy inside buildings and uses semantic descrip-
tions based on the spatial ontology of UBISEARTH rather than numerical coordinates.
Furthermore, UBISPOT does not only tackle the problem of determining the current
location of a mobile device, but also how a database containing locations and mea-
surements can be established. This database can be privately created by each user
to contain only their locations of interests or by sharing these entries in a Web 2.0
fashion via UBISWORLD, of which UBISEARTH is a part ((see Section 2.4.2.1)).

UBISPOT was designed for context aware applications and services that do not rely
on a meter or sub-meter level accuracy, but rather on the current area. One such
application is directly integrated into the system: automatic ring tone switching when
entering or leaving specified locations. Through the use of the spatial ontology, also
the category of rooms in which the phone should be muted can be given instead, e.g.
conference rooms or lecture halls.

The position determination is accomplished using the FOA fingerprinting algorithms
of LOCATO. UBISPOT was rigorously evaluated in an environment with small rooms
but high-density infrastructure of WiFi access points and Bluetooth devices, to de-
termine the highest possible accuracy. The infrastructure was used as is, i.e. no
additional WiFi access points or Bluetooth devices were introduced into the environ-
ment.
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Figure 4.13: Sensors and senders of UBISPOT: GSM/UMTS cells, WiFi access
points and Bluetooth devices act as senders. For outdoor positioning, GPS is used in
addition.

4.3.1 Hardware

4.3.1.1 Senders and Sensors

UBISPOT uses the most common built-in data transmission transceivers of modern
cell phones:

• GSM/UMTS commonly used for telephony and data transmission

• WiFi commonly used for Internet access

• Bluetooth commonly used for short-range voice/data transmission, e.g. wire-
less headset or exchange of contact information

Although these technologies are able to communicate in both directions, for the use
in positioning UBISPOT merely uses them as sensors. Figure 4.13 shows the respec-
tive senders:
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• Cell Towers broadcast a unique ID

• WiFi Access Points broadcast a unique MAC address

• Bluetooth Devices identify themselves with a unique Bluetooth ID

As described in Section 2.3.3, these senders are not installed into the environment
with the purpose of positioning – they are already there, for either communication
(cell towers, WiFi Access Points, Bluetooth) or to replace wires between devices and
additional hardware (Bluetooth).

4.3.1.2 Mobile Devices

UBISPOT was implemented for two mobile operating systems: Symbian OS v9.x
Platform S60 and Google Android. As testing platforms three mobile phones were
used: a Nokia E60, a Google/HTC Nexus One and a Google/Samsung Nexus S.
The Nokia E60 provides GSM Tri-Band and UMTS Single-Band capabilities and
has integrated WiFi and Bluetooth transceivers. The mobile phone does not have
a built-in GPS device, so a wireless Bluetooth GPS-receiver (Holux GPSlim 236)
was attached for outdoor positioning. The E60’s ARM processor runs with only 220
MHz, so it is the optimal platform to test the computational efficiency of the FOA
algorithm.

In addition to the built-in WiFi and Bluetooth transceivers, the Nexus One and Nexus
S phones have integrated GPS receivers and both provide GSM Tri-Band and UMTS
Tri-Band capabilities. The larger displays and the touch-screen functionality of both
devices allow a better user-interface and usability. Furthermore, both Android de-
vices run with a clock speed of 1 GHz. Figure 4.13 shows the Nexus One with
running UBISPOT client as well as the senders that are used for positioning. UBIS-
POT was tested on Android Version 2.3 (Gingerbread) and Version 4.0 (Ice Cream
Sandwich).

4.3.2 Methods

4.3.2.1 Frequency-Of-Appearance Fingerprinting

UBISPOT is based on the Frequency-Of-Appearance fingerprinting algorithm of LO-
CATO, as described in Section 4.1.2. UBISPOT fingerprints contain a list of all sensed
cell data, WiFi access point MAC (Media Access Control) addresses, Bluetooth de-
vice IDs and the measured latitude and longitude of the GPS receiver, if available.
Table 4.1 shows which data are captured for each sensor. Cells provide the most data,
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besides a unique cell ID, they also provide IDs for the local area, the country and the
network. As mentioned in Section 4.1.2.3, UBISPOT uses the cell data to provide
a pre-filtered list of candidates for the position determination through ranking. As
cells are available mostly everywhere and cover a large range, they are the optimal
selection for this task.

Fingerprints are stored along with the semantic description of the position in which
the measurements were taken in an XML format.

GPS GSM WiFi Access Point Bluetooth Device

Longitude

Latitude

Cell ID MAC Address Bluetooth ID

Local Area ID

Country ID

Network ID

Table 4.1: The collected data for each sensor in UbiSpot. Each Snapshot can contain
several instances of GSM, WiFi Access Point and Bluetooth Device.

4.3.2.2 Building and Sharing the Database

UBISPOT constantly calculates FOA fingerprints with the optimized FOA method
described in Section 4.1.2. In order for users to train their system on a specific loca-
tion, they indicate this by choosing the appropriate menu entry. UBISPOT uses the
hierarchical location model of UBISEARTH to denominate the determined position
(see also Section 2.4.2.1). The topmost hierarchy consists of Continent→ Country
→ Region → City → Building. Moreover, users can share fingerprints via UBIS-
WORLD. If a user enters a new area for which UBISPOT does not already provide
fingerprints, it tries to download them via UBISWORLD. In order to choose the cor-
rect subtree of the spatial ontology in UBISEARTH, the currently sensed cell data
is used. If no fingerprint data is available, users can train the system themselves.
Moreover, users can add new nodes to represent different floors and specific areas or
rooms of a building.

In order to do so, users can browse to their current location and refine the model to
their needs. Figure 4.14 shows how a user browses to the ’Chair of Prof. Wahlster’
and adds a new location named ‘Office 118’. This new entry is then stored on the mo-
bile phone together with the current FOA fingerprint. As can be seen in Figure 4.14e,
each entry is also marked with a symbol: the orange dot denotes that an entry is ei-
ther a parent node or an untrained child node. A green star shows that a child node’s
fingerprints are up to date (at most seven days old), a yellow star shows that it is
between seven and fourteen days old and a red star denotes that the fingerprint is
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Training of a new location in UBISPOT: A user browses through the
imported UBISEARTH location model and refines it by a new location. This location
is stored with the current fingerprint.
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(a) (b) (c) (d)

Figure 4.15: Output of the UI of UBISPOT: The confidence level of the system is
color-coded: green for highest confidence, yellow for middle and gray for lowest
confidence.

older than fourteen days. If UBISPOT finds a data-connection, it automatically tries
to update old fingerprints for the current area via UBISEARTH. In case that no new
fingerprints are available, a user can choose to update them while being at location
and upload them to UBISEARTH. Figure 4.14e shows the details of a fingerprint that
was taken in Office 118. The type of each sensed sender is shown (Cell, WiFi, Blue-
tooth) as well as the obtained ID. The number after the ID shows the percentage of
how often the according sender was observed.

4.3.3 Output to the User

After UBISPOT has determined the score points for the current measurement, it
presents the user its current position estimation. To depict the level of confidence
– based on the derived score-points – a color coding is used:

1. Green, if the derived score-points for the location are above 85. This indicates
that the system is certain that its estimation is correct.

2. Yellow, if the derived score-points for the location are between 75 and 84.

3. Gray, if the derived score-points for the location are between 45 and 74.

Examples for this color-coded output can be seen in Figure 4.15. Besides the name
of the current room, the overlying parts of the location hierarchy are also shown.
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The direct parent and its predecessor node are shown directly above the room name
(in these examples the Chair of Prof. Wahlster and the floor number). The other
ancestor nodes are shown as a scrolling text (Germany>> Saarland>> Saarbrücken
>> Saarland University >> Building E1 1). A statistical overview on the current
fingerprint is shown at the bottom of the screen. It contains the county ID (Country),
network ID (Net), land area ID (LA) and number (Cell) of the strongest available cell
as well as the number of currently sensed WiFi access points (IAP’s) and the number
of detected Bluetooth devices (BT’s). If a good GPS reception is given, the reported
latitude and longitude will also be shown.

4.3.4 Evaluation

From the design of UBISPOT, a list of extrinsic and intrinsic factors that obviously
influence the accuracy of the position estimation can be derived:

• available instrumentation (extrinsic)

– number of cell towers

– number of WiFi hotspots

– number of Bluetooth devices

• size of rooms or density of trained landmarks (extrinsic)

• number of trained landmarks in the system (intrinsic)

• TimeWindowSize used for the FOA fingerprinting (intrinsic)

The influence of single senders on UBISPOT can also be derived from the system’s
design: if only a single cell tower is available, then UBISPOT will only be able to
derive a rough location, e.g. Saarland University Campus. With only a single WiFi
hotspot, the derived area will be smaller, e.g. Building E11. The same holds for a
single detected Bluetooth device, only that the detection range will usually be much
smaller. Regarding the extrinsic factors, the most interesting question is therefore if
UBISPOT can achieve room level accuracy in a highly instrumented environment but
with a high density of trained landmarks, i.e. small rooms. Since the lab of Prof.
Wahlster in the computer science building of Saarland University provides such an
environment, it was chosen as a test field for the evaluation.

The most interesting intrinsic factor is the used TimeWindowSize, since this pa-
rameter can easily be modified. Since a larger TimeWindowSize contains more
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information, it is expected that the accuracy rises with larger values for this param-
eter. On the other hand, a large TimeWindowSize also delays the detection of a
position change.

With respect to these considerations the evaluation should answer the following ques-
tions:

1. How does TimeWindowSize influence the accuracy of UBISPOT?

2. Which TimeWindowSize gives a good trade-off between accuracy of posi-
tion estimation and delay of a position change?

3. How close are false recognitions to the true location?

4. Do detected Bluetooth devices decrease or increase the accuracy?

5. How does the accuracy change according to the number of trained landmarks?

Since UBISPOT gives out location names rather than coordinates, accuracy here
means how often the determined location name is equal to the real location name.

4.3.4.1 Evaluation Design

As indicated above, the lab of Prof. Wahlster provides an ideal testbed for evaluating
UBISPOT, since university campus is well equipped with WiFi hotspots and Blue-
tooth devices are scattered over the offices in form of Bluetooth mice and Bluetooth
enabled cell-phones. The floor plan of the lab is shown in Figure 4.16, the dots in-
dicate learned landmarks. 19 landmarks were learned in this environment, including
two corridors and stairways. Four additional landmarks were learned in the attached
building E13, so that a total of 23 landmarks were stored in the system. The number
of trained landmarks has a direct influence on the a-priori probability of guessing
the right room, i.e. the probability that a randomly chosen room is the right one.
In the used test environment with 23 learned landmarks, this a-priori probability is
1
23
≈ 4.35%.

No instrumentation was added to the already existing WiFi hotspots and Bluetooth
devices. The evaluation was conducted using three Nokia E60 cell phones.

Regarding the variation of the TimeWindowSize parameter, the naı̈ve approach
would be to bring the mobile phone in different locations and have it logging
its determined positions with varied TimeWindowSize. However, this method
would consume a high amount of time: polling all required sensory data of the
Nokia E60 to calculate one snapshot takes 8 seconds. To create a fingerprint with
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Figure 4.16: Floor plan of the evaluation environment, located in the first floor of
computer science building E11 of Saarland University, Germany. Red dots indicate
rooms that were trained as landmarks, green stars indicate the tested rooms.

TimeWindowSize = tws, a number of tws snapshots has to be taken. Since one
determined location would not be enough to deduce a meaningful accuracy statistic,
this fingerprinting has to be repeated for the desired number of samples, e.g. 100
times. Because each fingerprint is derived by using a FIFO, a total of n − 1 + tws
snapshots is needed to calculate n fingerprints (see Figure 4.17). It follows that vary-
ing the TimeWindowSize from 1 to 50 at a single location and taking 100 samples
for each value of TimeWindowSize would need

50∑
tws=1

(99 + tws) ∗ 8s = 49800s = 13 hours 50 minutes (4.11)

Besides the timely effort to collect the data, this approach could also compromise the
evaluation. It is important to keep in mind that for the evaluation the question ’What
would the system’s output be, if it would use a different TimeWindowSize in the
otherwise exact same situation?’ has to be answered. If the infrastructure changes
throughout these approximately 14 hours, e.g. some WiFi hotspots or Bluetooth de-
vices get switched off during the measurement of some higher TimeWindowSize,
it would give the impression that a lower TimeWindowSize performs better.

Fortunately, it is sufficient to collect 149 snapshots at one location – which takes
149 ∗ 8s = 19 minutes 52 seconds – and then recalculate the FIFO outputs for all
varying TimeWindowSizes as depicted in Figure 4.17. This method minimizes the
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Figure 4.17: The calculation of 100 FOA fingerprints with different
TimeWindowSize. Since the fingerprints are calculated by using a FIFO, 99 +
TimeWindowSize snapshots are needed.

probability of getting different base measurements for the evaluation and thus allows
to reproduce as exactly as possible which position would be derived by UBISPOT

with a specific TimeWindowSize. A similar argumentation holds for collecting
the measurements in different locations: The question to be answered here is ’What
would the system’s output be, if the measurements were taken at a different loca-
tion?’. If data for different locations are collected in succession, there is a high risk
that the infrastructure has changed in the meantime. Therefore, the measurements
were taken simultaneously in three adjacent rooms (marked with stars in Figure 4.16)
using three Nokia E60 devices.

Of course in a real world setting the infrastructure will change over time, especially
the availability of Bluetooth devices. This effect is still taken care of in the evaluation,
because the training of the system was done two weeks prior to taking the evaluation
measurements. Moreover, the system’s training data were collected with only one
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mobile phone and thus during different times of the day and over the course of two
days.

To perform the actual analysis, the core positioning-algorithm of UBISPOT was re-
implemented in Java and complemented with an algorithm to calculate fingerprints
with different TimeWindowSize using exact real life measurements collected with
the Nokia E60 devices. This software – named UBISPOT SIM [Ji, 2011] – runs on a
standard desktop PC and automatically calculates hit and miss statistics.

To summarize, the evaluation was done in three phases:

Phase 1: Train UBISPOT for 23 landmarks. This phase started two weeks
before phase two on different times of day and over the course of two days.

Phase 2: Collect ≈ 150 real life measurements in three adjacent rooms using
three Nokia E60 devices. For training and measuring, the devices were placed
in the geometrical middle of each room. This step took ≈ 20 minutes.

Phase 3: Perform the evaluation off-line using the real life measurements col-
lected in phase two and the trained landmark database from phase one.

4.3.4.2 Results

Figure 4.18 shows the measured accuracy plotted against the TimeWindowSize. A
position estimation was count as hit, iff the derived room coincided with the room
where the measurements were taken in and as miss otherwise. Therefore, the plotted
accuracy represents the number of correct estimations out of the total number of
estimations for the given TimeWindowSize according to the formula

number of hits
total number of estimations

.

Dashed lines in the graph represent position estimations without taking Bluetooth
into account, solid lines depict estimations including Bluetooth.

How does the TimeWindowSize influence the accuracy of UBISPOT? In re-
spect of the first question the graph shows that the accuracy rises with increasing
TimeWindowSize for most of the tested rooms and conditions (Bluetooth on or
off), except for the estimations derived for room 119-1 without Bluetooth. Room
119-1 without Bluetooth is obviously an under-performer in comparison to the rest
and has to be examined closer.
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Figure 4.18: Recognition accuracy versus TimeWindowSize for three adjacent
rooms. Solid lines indicate results including all available sensor data, dashed lines
indicate the results when Bluetooth is not considered for the position calculation.

Do detected Bluetooth devices decrease or increase the accuracy? The graph
shows that those position estimations that are considering Bluetooth devices are in
all cases better than those without Bluetooth. This result is surprising, since most of
the detected Bluetooth devices were mobile phones and as such can easily change
their position. The fact that they still contribute in a positive way to the position
estimation maybe due to the owners of the phones being in their respective offices
most of the time. Most obviously, including Bluetooth helps to detect room 119-1,
bringing the accuracy from 7.5% in the worst case (TimeWindowSize of 45) up to
94% in the best case (TimeWindowSize of 40).

Which TimeWindowSize gives a good trade-off between accuracy of position
estimation and delay of a position change? A higher TimeWindowSize means
a longer time delay until a new position estimation has stabilized. Considering
the graph in Figure 4.18, a TimeWindowSize of 25 seems to provide a good
trade-off since three of the six locations do not gain in accuracy when rising the
TimeWindowSize further. A value of 25 means a 200 second delay until a new
position has stabilized after changing the location.
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Figure 4.19: Hits and misses for office 119-1 not considering Bluetooth devices.
Most of the time UBISPOT mistakes the office 119-1 for the corridor.

How close are incorrectly classified positions to their true position? Figure 4.19
shows how room 119-1 was classified for each TimeWindowSize without taking
Bluetooth devices into account. The vertical axis shows the percentage of guesses
for each classified room, e.g. at TimeWindowSize 20, room 119-1 was classified as
corridor in 37% of all measurements, and as room 123 in 16%. The bars are ordered
in distance to the actual location. Locations that do not appear in the graph were never
classified as being the current location. It can be seen that most of the time room 119-
1 was mistaken for the lab’s corridor, which is still close to the actual location. Far
away locations, like the restroom, only appear with low TimeWindowSize. None
of the additional four landmarks of Building E1 3 ever appeared as classification
for room 119-1. From this graph, it is also apparent that the number of confusions
drastically reduces with higher TimeWindowSize, e.g. only three locations are
considered by the system with a TimeWindowSize of 50.

Figure 4.20 shows the same type of graph, this time with Bluetooth devices included
in the position estimation. Apparently, the room is correctly classified most of the
time and the number of confused locations is reduced from 12 without Bluetooth
to 8 including Bluetooth. As in the previous case, this number gets smaller with
rising TimeWindowSize. The misclassification with the highest distance to room
119-1 is the kitchen, which is only present in TimeWindowSize 5 and 10. With
TimeWindowSize 50, only one misclassification is left, which is the corridor.
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Figure 4.20: Hits and misses for office 119-1 including Bluetooth devices. Office
119-1 is correctly classified most of the time, the number of incorrect classifications
is drastically reduced.

Figure 4.21: Accuracy plotted against TimeWindowSize when only three land-
marks are stored in the trained database.
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How does the accuracy change according to the number of trained landmarks?
To answer this question all but the tested three rooms were deleted from the trained
landmarks database. The reason behind this question is that UBISPOT was designed
to spot the user’s personal landmarks and so it is reasonable that a user will not train
each and every room in a building, but only important ones, like the own office, the
kitchen, a meeting room. Figure 4.21 shows the accuracy statistics for the reduced set
of landmarks. As expected, the accuracy is higher for all measured rooms. Even at
TimeWindowSize = 5 each room gained a higher accuracy than in the first test and
the accuracy ranges from 43% to 74% as compared to 11% – 66%. Moreover, with
a TimeWindowSize ≥ 45, each room could be identified with 100% probability.

4.3.5 Summary

UBISPOT is an opportunistic onboard/egocentric positioning system following the
Always Best Positioned paradigm by combining cell info, WiFi access point MACs
and Bluetooth addresses. It was implemented using the FOA core algorithm of LO-
CATO and was rigorously evaluated in a dense environment with small rooms close to
each other. According to this evaluation, UBISPOT is capable to achieve room-level
with a 68% accuracy (worst case) when all sensors are used.

The system is robust against environmental influences, like air humidity or the num-
ber of people in the room, due to omitting the signal strength in the fingerprints. It is
however sensible to changes in the infrastructure, e.g. changing WiFi access points.
This sensibility can be overcome by updating the reference fingerprints, either per
user or through sharing fingerprints via UBISWORLD.

Regarding the cost of ownership, UBISPOT is a low-cost system for the operator,
due to the opportunistic nature of the system, as well as for the user, as it runs on
Android or Symbian smart phones with no additional hardware, which is also bene-
ficial for the usability and applicability of the system. The algorithms are optimized
for low computational resources, however the repeated inquiries of WiFi and Blue-
tooth sensors have an impact on the battery consumption of the mobile device. The
power consumption can be improved by choosing longer delays between successive
measurements, which delays the position determination. As the system is onboard-
/egocentric, it provides a high privacy protection.

Although UBISPOT is designed as an opportunistic positioning system, an operator
can choose to increase the accuracy of the system in their building by deploying ad-
ditional Bluetooth beacons. This will increase the cost of ownership for the operator
while maintaining the cost for the users.
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4.4 LORIOT: A High Accuracy Onboard/Egocentric
Positioning System
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Figure 4.22: LORIOT uses active RFID tags and infrared beacons, which are dis-
tributed into the environment, to estimate the current position of a Windows Mobile
PDA.

LORIOT is the acronym for Location and Orientation in Indoor and Outdoor Environ-
ments. The system aims at high precision positioning using a dedicated instrumen-
tation of the environment, which consists of active RFID tags and infrared beacons.
LORIOT follows the Always Best Positioned paradigm, by being able to work with
either RFID or infrared alone, or by combining both if available. In outdoor scenar-
ios, the system switches to a GPS receiver for obtaining positioning data. LORIOT

can also deliver WGS84 coordinates indoors and is thus compatible with GPS based
applications.

In comparison to UBISPOT, which has a delay of about 200 seconds until a new
location can be derived, LORIOT’s positioning is instantaneous and the system is thus
capable of providing real-time positioning information of a moving user. Since all
positioning calculations are performed on the mobile device of the user, their privacy
is protected. Nonetheless, users can decide to share their position information with
trusted services or persons.

The positioning accuracy of LORIOT was rigorously evaluated and in contrast to
most positioning systems found in the literature, it was tested with moving users and
compared to highly accurate natural ground truth traces.
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4.4.1 Hardware

4.4.1.1 Senders and Sensors

Figure 4.22 shows the senders as well as the mobile device that LORIOT uses to
estimate its own position. The required sensors are either built-in or attached to the
device. In detail, the technologies for indoor positioning by LORIOT are:

Infrared LORIOT uses infrared beacons (IR beacons), manufactured by eyeled
GmbH3. These beacons are powered by three AA batteries and send out a 16-bit
wide identification code that can individually be adjusted for each beacon through
DIP (dual in-line package) switches (blue boxes to the left and right of the infrared
LEDs in Figure 4.23b).

The emitted infrared beam has a range of about 2 meters and has, due to the physical
attributes of light, conical sending characteristics. The price for such a beacon is
about 80 Euro. The required infrared sensor is often already integrated in mobile
devices for data exchanging purposes. Due to restrictions of the infrared protocol,
only one IR beacon can be detected at a time.

IR beacons are usually attached to walls or ceilings, pointing downwards to ‘illu-
minate’ a small spot on the floor, as depicted in Figure 4.23d. The position and
dimensions of the infrared light cone can be adjusted by the mounting angles of the
beacon itself as well as by bending the LEDs inside the beacon to widen or narrow
the gauge of the light beam in the horizontal direction.

If the user’s mobile device detects such a light beam, it can infer that the user is
standing somewhere inside the illuminated spot. If the device knows the direction of
the light beam, it can also derive direction information about the user.

On the downside, a free line of sight to the beacon is needed to detect it, meaning that
the signal can be easily blocked by other persons or by users themselves, e.g when
walking in the same direction as the light beam, as shown in Figure 4.23e.

To overcome this problem, several IR beacons pointing in opposing directions are
often installed at one location. Because of these properties – short sending range and
included directional information – IR beacons are mainly used for signaling points
of interests, like exhibits in a museum or particular shelves in a shop, or for signaling
decision points, like crossing corridors or doors on opposing walls.

3http://www.eyeled.de
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(a) IR beacon (b) IR beacon circuit (c) Built-in IR sensor

(d) Installation of an IR beacon (e) Blocking an IR beacon

Figure 4.23: IR beacon as manufactured by Eyeled (a). Each beacon sends out a
16-bit wide ID, which can be configured by DIP switches. The circuit is powered
by 3 AA batteries (b). The beacons can be detected and identified by standard IR
sensors, which are often already integrated into mobile devices (c). IR beacons are
perfect to signal points of interests (d).

Active RFID The active RFID tags used by LORIOT are manufactured by Identec
Solutions AG4. These tags have a reading range of up to 6 meters and are powered
by coin cell batteries, as can be seen in Figure 4.24c. According to the manufacturer,
the batteries last 6 years when accessed up to 600 times each day.

Each tag has a memory of 64 bytes, out of which 56 bytes can be used to store
application specific data. 6 bytes (48 bits) are used to store a unique ID for each tag,
leading to over 281 trillion possible IDs. The IDs are hard-coded by the manufacturer
and cannot be changed. The tags operate in the UHF band, or more specifically,
at a frequency of 868 MHz for the European market and 915 MHz for the North
American market. The tags also provide an LED, which can be triggered by the
reading device.

4http://www.identecsolutions.com



170 LOCATO: LOCALIZATION TOOLKIT

(a) Active RFID tag
front

(b) Active RFID tag
back

(c) Active RFID tag
circuit

(d) Active RFID reader card

Figure 4.24: Active RFID tag by Identec Solutions as used in the LORIOT system.
Each tag has a unique ID number that is also printed on the back of the housing (b).
The tags are powered by coin cell batteries and the circuit contains an LED that can
be used to indicate activity of each tag (c).

Due to the physical attributes of radio waves, the RFID’s sending characteristics is
radial. One active RFID tag costs about 20 Euro. Reading devices for these active
RFID tags are also available from Identec Solutions. In conjunction with the mobile
device, the i-CARD III PCMCIA reader card (shown in Figure 4.24d) is used, which
costs about 1500 Euro. (The high costs mainly arise from the fact that these readers
are manufactured in very low quantities.) The i-CARD III can detect 100 tags per
second and through the use of a randomized anti-collision algorithm it can reliably
identify up to 2000 tags in its reading range.

Active RFID tags overcome the restrictions of IR beacons by their high sending range
and radial sending characteristics at the cost of lower precision and no immediate
direction information. For the use with LORIOT, the RFID tags can be installed at
the ceiling or the floor of a building and are usually ordered in a grid, so that multiple
tags can be detected in one measurement. Although the reader card provides signal
strength information for each detected tag, LORIOT does not directly rely on these
measurements, but uses a similar approach as UBISPOT by taking the frequency of
appearance into account.

4.4.1.2 Mobile Device

LORIOT was implemented in C++ for Windows Mobile devices. It was tested and
evaluated on a Dell Axim X51v PDA. The Dell Axim uses Windows Mobile 5.0 but
is unofficially upgradeable to Windows Mobile 6.0. A port of Android called Ax-
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Figure 4.25: Geo referenced dynamic Bayesian network and the corresponding con-
ditional probability tables as used by LORIOT.

Droid is also available5. The Axim has an Intel PXA270 processor running at 624
MHz and comes with 64 MB on-board RAM and 128 MB flash ROM. It features a
CompactFlash (CF) Type II as well as a Secure Digital (SD) expansion slot and a
long-range Infrared Data Association (IrDA) interface. Drivers to read the IR bea-
cons through the IrDA interface were provided by eyled GmbH. The active RFID tag
reader card was attached via a PCMCIA-to-CF slot adapter. An API to the RFID
reader card is part of the development package of Identec Solutions. Since the PDA
itself does not have an internal GPS, a Bluetooth GPS receiver was used for outdoor
purposes.

4.4.2 Methods

LORIOT overcomes the disadvantages of IR beacons and active RFID tags by com-
bining both their advantages. In order to fuse the sensory data of these two sender
types, LORIOT uses the geoDBN core-algorithm of LOCATO. Figure 4.25 shows the
used Bayesian network and its conditional probability tables. The CPT entries for
the IR sensor are chosen to represent the high reliability of the IR technology: when
standing in the range of an IR beacon, the probability to sense it is very high. For the
RFID sensor, the values are chosen lower, because of the higher range of the active
RFID tags and the high probability of overreach.

4.4.2.1 Obtaining Tag and Beacon Positions

Since LORIOT needs the coordinates of detected beacons or tags, a way had to be
found how to communicate this information to the system. In an early version the
tag and beacon IDs and their coordinates were simply stored as an XML-File on the
mobile device, which was parsed when starting LORIOT. This approach is however
impractical in real world situations where hundreds or thousands of buildings could
be equipped with theses senders. Either the list would have to contain all tags and

5http://axdroid.blogspot.com
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beacons of all buildings or the system would have to download this information ac-
cordingly when detecting an unknown ID. Current installations of LORIOT use the
internal memory of the active RFID tags to store the coordinates they are signaling
for. These coordinates can be of any kind, but in order to keep compatibility with
existing location-based applications, it is best to use WGS84 coordinates. Addition-
ally, IDs and coordinates of nearby IR beacons can also be stored in the tags. Thus,
if a user is walking into a new building LORIOT can obtain all necessary information
out of the current environment without the need of an additional data connection like
WiFi or UMTS.

4.4.2.2 Data Caching

The measurement step of the geoDBN algorithm (Step 1 in Algorithm 2) results in a
list of active RFID and IR beacon IDs. To read the memory content of the detected
RFID tags, a special read-memory task has to be issued for each of the detected RFID
IDs. In a real world setting however, it often happens that the ID of an RFID tag can
be obtained, but the attempt to read the memory content fails. To overcome this
problem and to reduce the amount of extra time that is needed to read the memory of
each tag, a caching strategy is used, so that the memory-reading step only needs to
be performed once for each previously unseen RFID ID.

It is however noteworthy that the effect of not being able to read the memory contents
of an RFID tag could have a beneficial effect on the overall accuracy of the system,
since it could act as a natural filter on tags that are too far away. The effect of the
caching algorithm on the accuracy will thus be further discussed in the evaluation
(see Section 4.4.4). The caching algorithm is straight forward and is executed in
step 2 of the main geoDBN algorithm:

Algorithm 3 Caching Algorithm for tag and beacon coordinates in LORIOT

1. Iterate through the list of received RFID IDs from the newest measurement

(a) If the current ID is already present in the database, retrieve the coordi-
nates and proceed with the next ID.

(b) If the current ID is not present in the database:

i. Issue a read-memory command.
ii. If not successful, proceed with the next ID.

iii. If successful, parse the memory to extract the RFID coordinates and
optional IR beacon IDs and their coordinates.

iv. Store the new gained information in the database.
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4.4.3 Output to the User

LORIOT is implemented as a background process and is not meant to provide direct
output to the user. Once it is started, it checks for available sensors and immediately
starts collecting measurements and performing position calculations. The estimated
position coordinates are sent to an internal socket, to which other applications run-
ning on the mobile device can connect. There is however a simple user interface, that
allows the user to configure certain aspects, like enabling/disabling caching or giving
permission to send positioning data to a web service, e.g. UBISWORLD. Various
applications that make use of LORIOT are described in Section 5.

4.4.4 Evaluation

First informal tests of LORIOT were conducted at the lab of Prof. Wahlster, where
an accuracy of approximately 1 to 1.5 meters could be observed. Although the lab
provided an ideal test field for UBISPOT (Section 4.3.4), this does not apply for
LORIOT, which is supposed to deliver more accurate, sub-room level positions: the
small size of the rooms in the lab does not allow for a large field of RFID tags
and thus one of the main error sources – overreach of far-away RFID tags – could
not be thoroughly tested. Moreover, since LORIOT is designed to position moving
persons, appropriate movement traces are needed as ground truth for the evaluation.
A rigorous evaluation was planned with the following requirements:

• The instrumented area should be large and include obstacles but should be
without attenuating walls to maximize the probability of overreach.

• As ground truth, moving traces should be used, which should be as natural
as possible to avert that users consciously or unconsciously adapt their move-
ments to possible restrictions of the positioning system.

The evaluation should answer the following questions:

1. How accurate is LORIOT on average?

2. How is the accuracy influenced if

(a) only IR beacons are considered in the position estimation?

(b) only RFID tags are considered in the position estimation?

(c) RFID tags and IR beacons, are considered in the position estimation?

(d) the caching algorithm is enabled or disabled?

3. What is the influence of walking speed on the position accuracy?
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Since LORIOT outputs numerical coordinates, the error of an estimated position can
be expressed as the distance to the position of the user in the ground truth trace. The
overall accuracy can be expressed via statistical analysis of the measured distances.

4.4.4.1 Evaluation Design

In order to address the questions above, the evaluation was done in three phases:

Phase 1: Natural walking traces were recorded with a video camera and man-
ually transcribed into coordinates for each observed footstep.

Phase 2: Ground truth traces were marked on the floor and then followed
again while carrying a mobile device with activated LORIOT. Each trace was
followed twice: once with the original walking speed and once with a very slow
walking speed. The calculated positions as well as all raw sensor data were logged
for each trace.

Phase 3: Using the raw sensor data, all positions were recalculated using LO-
RIOT’s positioning engine to obtain four different conditions:

1. using only IR data

2. using only RFID data, without caching

3. using only RFID data, with caching

4. using RFID and IR data, without caching

5. using RFID and IR data, with caching

Each step will be explained in detail in the next sections.

4.4.4.2 Ground Truth Acquisition

The main foyer of DFKI building in Saarbrücken was chosen as testfield for the
evaluation because it provides a large area without attenuating walls (as can be seen
in Figure 4.26a) and because it was built with an open architecture (Figure 4.26c),
allowing to observe a large part of the area from the top level of the building (see Fig-
ure 4.26b). Moreover, the tile seams on the floor provide a visual coordinate system
that can be used to acquire the needed ground truth traces. An accurate 3D model of
the foyer was created that also represents each tile, as can be seen in Figure 4.26d.
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(a) DFKI foyer (b) DFKI foyer top view

(c) DFKI foyer open architecture (d) 3D model of the DFKI foyer

Figure 4.26: The foyer of DFKI Saarbrücken was used a testfield, since it provides
a large area and a visual coordinate system through the tiles.

To obtain the required natural walking traces, an HD camera was installed at the
top level such that a large part of the foyer could be observed (see Figure 4.27a).
With permission of DFKI’s workers’ council, videos of walking people in the foyer
were recorded over the course of three days. On each day, about 0.5 hours of video
was recorded around lunchtime, which ensured that many people were crossing the
foyer. To enhance the visibility of the tile seams, white adhesive tape was applied
at selected spots (see Figure 4.27a). The tile seams and marked spots were used to
overlay a grid on the videos, to further enhance the visibility of each tile. The grid
also contained a unique ID for each tile.

To derive numerical coordinates for each single footstep of the recorded persons,
the enhanced videos were manually analyzed. The quality of the videos was high
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36 CHAPTER 4. THE PROPOSED EVALUATION METHOD

the system under natural environmental conditions but also under a natural traces
of different people walking. So we expect to get better realistic results that show
how the system will perform under real conditions.

Figure 4.1: DFKI Front Foyer

Figure 4.2: Real size 3D model of the front foyer - DFKI

After choosing the place where to conduct our experiment for evaluating the
system, we took measurements of the foyer using a laser measuring device and later
we designed a real size 3D model (see figure 4.2) of the foyer using Google SketchUp

(a) Adhesive tape was
used to enhance the
visibility of the tile
seams.

(b) Video-overlay representing the coordinate system.

Figure 4.27: A grid overlay was used to annotate each step of a person with accord-
ing coordinates.

(a) Foot rests on one
tile

(b) Foot rests on two
tiles

(c) Foot rests on three
tiles

(d) Foot rests on four
tiles

Figure 4.28: Four basic cases were considered for obtaining coordinates of each step
of a person.

enough to discriminate four basic cases for each step, depending on how many tiles
a person’s foot is resting on. Figure 4.28 shows these four different cases. The actual
coordinates were then derived by using the coordinates of the middle point of each
covered tile and calculating the geometric middle according to the formula:

x =
1

n

n∑
i=1

xidi
, y =

1

n

n∑
i=1

yidi
(4.12)

where n is the number of tiles covered and xidi
and yidi

are the x and y coordinates
of the middle point of a tile with identification idi. The white dots in Figure 4.28
indicate the resulting coordinates for each case.
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(a) Visualization of a single trace. Each square represents a single step.

(b) Visualization of all traces obtained in one day.

Figure 4.29: Example visualizations of extracted ground truth traces.

Using this method, [Saliba, 2011] extracted the coordinates and time-stamps for ev-
ery single footstep of a recorded person. This lead to 119 highly accurate ground
truth traces. A tool was implemented to visualize the recorded traces and to perform
evaluation calculations. Figure 4.29 shows the visualization of a single trace as well
as all traces obtained in one day.

4.4.4.3 Obtaining System Traces

To keep the ground truth traces as natural as possible, none of the recorded persons
wore a mobile device. Thus, the acquisition of the system traces, i.e. LORIOT’s esti-
mated positions, had to be done in a separated step. In this step 58 active RFID tags
were placed on the floor of DFKI foyer, with a distance of 105 centimeters between
two adjacent tags. Figure 4.30 shows the distribution of the tags. Coordinates of each
tag were stored on their internal memories using the same coordinate system as in
the ground truth acquisition process. In addition, 10 IR beacons were placed in the
environment using microphone stands.

From the 119 available traces, 16 were randomly chosen. These traces were laid
out one after the other, according to the coordinates obtained in the ground truth
acquisition process.
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Figure 4.30: 58 active RFID tags were distributed in the DFKI foyer.

Figure 4.31 shows one such laid out trace. Each trace was then followed step by step
while carrying a PDA with LORIOT running. Each trace was followed two times with
two different speeds:

1. Original speed of the recorded trace. This was accomplished by playing back
beeps according to the original time-stamps of the trace.

2. In a very slow speed, where after each step a pause of approximately one sec-
ond was made.

The LORIOT system was modified to log all calculated positions, their time-stamps
and raw sensor data into text files. This process led to 32 log files including derived
positions and all measured raw sensor data.

From each log file, five system traces were derived by using LORIOT’s position-
ing algorithm in varying conditions: considering only IR beacons, considering only
RFID tags without caching, considering RFID tags & IR beacons without caching,
considering only RFID tags including caching and considering RFID tags & IR bea-
cons including caching. This led to 160 system traces that were compared to their
respective ground truth.
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Figure 4.31: Traces were laid out on the floor and followed while carrying a mobile
device running LORIOT.

4.4.4.4 Calculation of the Error Distance

As indicated above, the extracted traces from the ground truth acquisition contain
highly accurate data for each single footstep. LORIOT on the other hand, does not
measure footprints. It was designed to estimate the position of the user. The question
arises what the position of a user is, if the positions of his feet are known. For the
evaluation, it was assumed that the user’s position is somewhere on the line between
two successive foot positions.

This consideration is important, since LORIOT computes a new position every time
a new measurement is taken, meaning that time-stamps of derived positions do not
necessarily coincide with time-stamps of ground truth traces. Thus, a way had to be
found to find the user’s ground truth position at an arbitrary time-stamp.

Figure 4.32 exemplifies the situation. The two footprints indicate two subsequent
footsteps of a ground truth, TSR and TSL are the time-stamps for the right and left
foot. The blue dot shows the position derived by LORIOT, derived at time-stamp
TSLORIOT. According to the exemplary given time-stamps, LORIOT’s position was
derived 0.325 seconds after the right foot reached the ground and 0.375 seconds
before the left foot will reach the ground in the ground truth. The user’s position in
the ground truth is thus somewhere in between.
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Figure 4.32: Ground truth time-stamps of single footsteps and LORIOT time-stamps
of user positions do not necessarily coincide.

To interpolate where the user’s position was in the ground truth at time TLORIOT, the
current velocity v is calculated by dividing the distance between the two footsteps
with the time difference between the two footsteps:

v =

√
(xL − xR)2 + (yL − yR)2

TSL − TSR
(4.13)

where (xL, yL) and (xR, yR) are the coordinates of the left and right foot. By multi-
plying this velocity with the time difference between TSLORIOT and TSR, the distance
d that the user has covered since putting their right foot down can be derived:

d = v × (TSLORIOT − TSR) (4.14)

The user’s position Pgroundtruth at time TSLORIOT in the ground truth is estimated to
be at distance d from the right footstep on the line between the two footsteps. The
positioning error is thus the distance from LORIOT’s derived position to Pgroundtruth.
Pgroundtruth is indicated as a black dot in Figure 4.32.

4.4.4.5 Results

Figure 4.33 shows two comparisons of system traces with their respective ground
truth: Trace 2 in the only RFID, with cache condition and Trace 3 in the RFID &
IR, with cache condition. The red squares represent the footsteps of the ground truth.
The blue boxes depict the user position as derived by LORIOT. The black crosses
show the interpolated user position on the ground truth. Each interpolated user po-
sition is connected via a black dotted line with the corresponding system position.
The red and blue arrows show the general walking direction of the ground truth and
system trace respectively. The average positioning error as well as the minimum
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(a) Trace 2 in the only RFID, with cache condi-
tion.

(b) Trace 3 in the RFID & IR, with cache condi-
tion.

Figure 4.33: Two example results from the evaluation. The red boxes depict the
ground-truth steps. The blue boxes represent the positions derived by LORIOT. The
black crosses show the interpolated user steps, which are connected by black dotted
lines with their respective user position.
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Figure 4.34: The average positioning error of all traces with original velocities and
with respect to the five tested conditions.

and maximum positioning error of the trace is printed in the bottom left corner. All
graphical representations of each trace in each of the five conditions can be found in
Appendix A.1.1 and Appendix A.1.2.

The average positioning error in centimeters for each trace and each condition is
summarized in Figure 4.34. The last column, labeled TOTAL, shows the average
error over all traces for each condition. Table 4.2 summarizes the key values for
each condition. The entries are ordered top to bottom by their average positioning
error over all traces (from lowest to highest). The standard error as well as the 95%
confidence interval is given for each condition. A repeated measures ANOVA was
performed over the differences of each trace and for each condition, and showed an
overall significance with F (4, 180) = 47.3, p < .001.

How is the accuracy influenced if the caching algorithm is enabled or disabled?
Table 4.2 shows that both cached conditions (‘only RFID with cache’ and ‘RFID &
IR with cache’) outperform all other conditions. With 99.79 centimeters, the average
positioning error in the ‘only RFID with cache’ condition is 20.57 centimeters lower
than in the ‘only RFID no cache’ condition. A Bonferroni adjusted pairwise compar-
ison shows that this difference is significant with p < .001. The difference between
the average positioning error of the two RFID & IR conditions amounts to 23.82 cen-
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95% Confidence Interval

Condition Average Std. Error Lower Bound Upper Bound
in cm in cm in cm in cm

RFID & IR 96.31 (1) 4.00 88.42 104.20
with cache
only RFID 99.79 (2) 4.13 91.64 107.94
with cache
RFID & IR 120.13 (3) 5.80 108.68 131.57
no cache
only RFID 120.36 (4) 4.97 110.55 130.17
no cache
only IR 276.67 (5) 14.03 248.99 304.36

Table 4.2: Comparison of positioning error when following the ground truth in orig-
inal velocity. The numbers in parenthesis show the ranking of each value.

timeters in favor of the with cache condition and is also significant with p < .001. It
can thus be concluded that the caching algorithm improves the positioning accuracy
by approximately 20 centimeters in average.

How is the accuracy influenced if only IR beacons are considered in the position-
ing evaluation? When only considering IR beacons, LORIOT could only achieve
an average accuracy of 2.77 meters, which is the highest measured average posi-
tioning error measured in this evaluation. The difference to all other conditions is
significant with p < .001 for all pairwise comparisons.

The minimal positioning error was 14 centimeters and the maximum was 7.32 me-
ters. Both values were achieved in Trace 8, which is shown in Figure 4.35a. Only
one IR beacon was received in this test and thus only one position was fixed by LO-
RIOT. Analyzing all IR only traces shows that in 11 out of the 16 traces only one IR
beacon was detected during the test walks. Two IR beacons were detected in three
traces. Three and four beacons where detected in only one trace each. In Trace 6,
four beacons were detected and, with 1.48 meter, this trace also shows the lowest
average positioning error for all traces in the ‘only IR’ condition.

The low accuracy in the ‘only IR’ condition was to be expected and is due to the com-
parably sparse instrumentation of the testfield with IR beacons. IR beacons are ad-
vantageous at precise points of interest, like exhibits in a museum, particular shelves
in a retail environment or decision points in a narrow corridor. Furthermore, the ‘only
IR’ condition provides a special case since without active RFID tags no coordinate
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(a) Result for Trace 8 in the ‘only IR’ condition. (b) Results for Trace 6 in the ‘only IR’
condition.

Figure 4.35: The worst (a) and best (b) result for the ‘only IR’ condition. In Trace 8
only one IR beacon was detected. Trace 6 contains 4 detected IR beacons.

information can be stored in the environment (as described in Section 4.4.2.1). Thus,
a list containing the beacon IDs and their coordinates has to be stored on the mobile
device. Installing only IR beacons in a large area with nearly no walking restrictions
is therefore only recommended for special applications, like museums or shops.

How is the accuracy influenced if only RFID tags are considered in the position
estimation? The ‘only RFID with cache’ condition shows the second best accu-
racy, with an average positioning error of 99.79 centimeters. The minimum position-
ing error in this condition was 3.88 centimeters (Trace 15) and the maximum was
276.88 centimeters (Trace 5). The ‘only RFID no cache’ condition ranked second
to last, with an average positioning error of 120.36 centimeters and minimum and
maximum error of 65.91 (Trace 13) centimeters and 185.67 (Trace 9) centimeters re-
spectively. The average is still 156.32 centimeters better than the ‘only IR’ condition
and this difference is significant with p < .001. Since caching already proved to be
advantageous, it can be concluded that LORIOT can achieve a positioning accuracy
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Condition Average Minimum Maximum
in cm in cm in cm

RFID & IR, with cache 24.81 (1) 13.21 (2) 44.26 (3)
only RFID, with cache 25.00 (2) 12.60 (1) 39.10 (1)
only RFID, no cache 30.33 (3) 16.05 (3) 43.80 (2)
RFID & IR, no cache 31.39 (4) 19.34 (4) 48.77 (4)

Table 4.3: Comparison of positioning errors when following the traces in slow ve-
locity.

of approximately 1 meter in an environment that is densely instrumented with only
active RFID tags.

How is the accuracy influenced if RFID tags and IR beacons are considered
in the position estimation? Table 4.2 shows the lowest average positioning error
in the case of combined RFID and IR instrumentation and with enabled caching.
With 96.31 centimeters, the average positioning error is approximately 3 centimeters
lower than RFID alone (with enabled caching). However, a pairwise Bonferroni
adjusted comparison shows that this difference is not significant. The difference of
0.23 centimeter when comparing only RFID and RFID & IR, both with caching, is
negligible and also not significant. These low, not significant differences can also be
contributed to the sparse IR beacon instrumentation as well as to the high walking
speed of the ground truth, which makes it less probable that an IR beacon will be
properly detected.

What is the influence of walking speed on the position accuracy? To answer this
question, the raw sensor data log-files of the slowly walked traces where analyzed.
Because of the different velocities of the ground traces and the re-walked traces, there
is no direct relation between their time-stamps, and thus the calculation of the error
distance had to be adapted accordingly.

For the slow velocity traces, for every calculated user position the nearest footstep
in the ground truth was found and the distance to that footstep was taken as the
positioning error. If a footstep in the ground truth had already been used as reference
point, it was not used again and only footsteps with a higher time-stamp than the last
footstep were allowed. This method is thus analogous to a comparison of graphical
similarity.

Table 4.3 summarizes the average, minimum and maximum positioning error for
each of the four conditions. The results when walking slowly are greatly improved.
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Condition Average Minimum Maximum
cm cm cm

RFID & IR, with cache 57.48 (1) 27.24 (1) 135.76 (2)
only RFID, with cache 61.69 (2) 28.77 (3) 159.63 (3)
only RFID, no cache 73.11 (3) 33.44 (4) 127.73 (1)
RFID & IR, no cache 83.73 (4) 27.30 (2) 219.23 (4)

Table 4.4: Comparison of positioning error when comparing the graphical similarity
of the system to the ground truth.

The best result was achieved with RFID & IR and enabled caching. This condition
led to an average positioning error of only 24.81 centimeters. The highest average
positioning error was measured in the condition where RFID and IR was used without
caching and amounts to 31.39 centimeters.

A part of this improvement is due to relaxed measurement of the positioning error.
To test if the improvement can be attributed to the different measurement method
alone, the traces that were followed based on the time-stamps of the ground truth
were re-analyzed using the same method.

Table 4.4 shows the results of the analysis. The results are indeed an improvement
over the time-stamp based analysis, but not as good as the measurements that were
based on the slow velocity traces. In the worst case (‘RFID & IR, no caching’), the
average positioning error is 83.73 centimeters. Compared to the 31.39 centimeters
when walking slowly, this average is approximately two times higher.

The lowest achieved average positioning-error was 57.48 centimeters and was mea-
sured with RFID & IR and enabled caching. This positioning error is also approxi-
mately two times higher than the best average when walking slowly.

It can thus be concluded that the accuracy of LORIOT is higher at slow walking
speeds.

How accurate is LORIOT on average? Considering the above results, LORIOT

achieves its highest accuracy with enabled caching and with either RFID alone or
with combined RFID and IR instrumentation. The average positioning error over
all traces of ‘only RFID with cache’ and ‘RFID & IR with cache’ results in 98.05
centimeters at normal walking speed. The accuracy is higher at slow walking speeds.
As a slower walking speed can be expected if a person is walking through unknown
territory, while exploring their surroundings or when trying to find their way, this
higher accuracy will most likely be available, when a person is using a location-
based service.



4.4 LORIOT: HIGH ACCURACY ONBOARD/EGOCENTRIC POSITIONING 187

4.4.5 Summary

LORIOT is an onboard/egocentric positioning system designed for instrumented en-
vironments. It follows the Always Best Positioned paradigm by sensor fusion of
an active RFID reader and an infrared sensor. LORIOT was rigorously evaluated by
using natural walking traces with step-accuracy as ground-truth. In a densely instru-
mented environment, an accuracy of ≈ 1 meter can be achieved.

As the geoDBN core-algorithm of LOCATO does not incorporate signal-strength in-
formation, LORIOT is robust against environmental factors, like air-humidity and the
number of people in the environment. Furthermore, as no trilateration or triangula-
tion is performed, a single RFID tag or IR beacon in the receiving range is sufficient
to determine a position. The high accuracy of the system is traded against high cost
of ownership for the operator as well as for the user.

In low quantities, a single active RFID tag costs ≈ 20 Euro, a single IR beacon ≈ 80
Euro. The needed active RFID reader on the user’s side costs ≈ 1, 500 Euro, which
is mainly due to the low manufacturing quantities of this type of RFID reader. As
active RFID readers do not contain any costly parts, there is no obvious reason for
the high price, except the development costs. In large quantities, it should be possible
to manufacture such a reader in the range of tens of Euro.

Another cost factor for the operator are the batteries of the infrared beacons and
the active RFID tags, which includes the costs for the batteries themselves as well
as the costs for the manual labor to replace them. A possible to solution to reduce
the maintenance costs is to either use solar cells or energy harvesting. The latter
technology is available from the company Powercast6 and enables devices to draw
their power from special RF-based power transmitters. However, further research
is needed to test the possible interference of the power transmitters with the active
RFID signals.

With respect to usability and applicability, LORIOT runs on any standard Windows
Mobile device with infrared capabilities and the additional active RFID reader. In
order to make use of the infrared beacons, the device has to have a line of sight
to a beacon, i.e. it has to rest in the hand of the user. This is compensated by the
active RFID tags, which can also be read while carrying the device in a pocket or bag.
Although the algorithms of LORIOT are optimized for low computational complexity,
the repeated scanning of the active RFID reader has an impact on the device’s battery.
This impact can be lowered, by decreasing the scanning frequency, which will delay
the position determination.

6http://www.powercastco.com
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5
LOCATION-BASED SERVICES

REALIZED WITH THE LOCATO

PLATFORM

Several applications and systems were realized using LOCATO and the example
positioning-systems. In the following, first a scenario will be described that ties
selected realized applications together. In the second part, each application will be
described in more detail.

5.1 Example Scenario

5.1.1 Hermione’s Lazy Saturday

Preparations and a Nap

Imagine a sunny Saturday. Hermione, the example user in this scenario, is invited
to a friend’s party and she has promised to bring a good whiskey and the ingredients
of her favorite cocktail: White Russian. Since a new shopping mall has opened
not far from her friend’s place, she has planned to spend a few hours there, before
heading for her friend’s home. In preparation of her day, she sets an appointment in
her location-aware task planner, pointing to the address of her friend and setting the
time she has promised to arrive. Because she still has to buy the whiskey and the
ingredients for the White Russian, she also enters a task, specifying the items she has
to buy. She doesn’t add a specific time or place to the task, but rather specifies that
any shop that carries the ingredients will do and that the task has to be completed
before she arrives at the party. Hermione decides to take a short nap, before starting
her trip. After she has lain down for a while in her bedroom, her mobile phone
determines her position using UBISPOT and automatically sets itself to silent-mode.

189
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An hour later, she wakes up refreshed and as she prepares for her trip to the mall, her
mobile phone switches back into its normal mode.

Finding a Parking Spot

As Hermione enters her car, her mobile phone automatically connects to the car’s
entertainment system via a Bluetooth connection. Because of the car’s Bluetooth
ID, UBISPOT can infer that she is now in the car and asks the car to forward its
GPS coordinates. The phone navigates her to the shopping mall, using the car’s
GPS, which has a better reception than the phone’s GPS receiver. When entering the
parking deck, the car loses its GPS reception, but detects the presence of active RFID
tags. Using LORIOT to determine its position, the car navigates Hermione to a free
parking space. As she turns off the car’s engine, the Bluetooth connection gets lost
and the mobile phone automatically stores the current position as the car’s parking
position. With the help of active RFID tags and infrared beacons, the mobile phone
is able to guide Hermione to the next exit and the few hundred meters outdoors into
the shopping mall.

Finding a Malt in the Mall

As she enters the mall, her mobile phone informs her that she can use the public
infrastructure by registering the phone’s Bluetooth address with the malls applica-
tion server and allowing restricted access to her user profile. As Hermione likes
exploratory shopping tours, she agrees because she knows that this will cause the
public displays in her vicinity to display selected information to her, for example,
special offers or things that she has stored in her ‘things I would buy if I would
accidentally stumble over them’-list.

After mindlessly poking around in the mall for quite a while, she passes by a grocery
store. Her mobile phone automatically checks if a good whiskey and the ingredients
for White Russians are available and triggers an alarm, notifying Hermione that this
is a good opportunity to buy the items in her task list. The phone also periodically
checks the distance of Hermione’s current position to her friend’s home, approxi-
mates the driving time and automatically sets a reminder when she has to leave the
mall. Because of this, Hermione realizes that she has to hurry. She enters the grocery
store, which is an affiliate of her favorite department-store chain and grabs a shop-
ping trolley. The trolley is equipped with a touch-screen and Hermione can identify
herself to the trolley as a loyal customer by quickly dragging her wallet, which con-
tains her NFC enabled customer card, over the touch-screen. The shop’s floor is
instrumented with a grid of passive RFID tags and the trolley, which is equipped
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with a passive RFID reader, can thus determine its exact location inside the store.
Through the shop’s infrastructure, the trolley has access to Hermione’s shopping list
and calculates an optimal route to buy the whiskey and needed ingredients. With the
help of the trolley’s navigation instructions, Hermione is able to complete her shop-
ping task in record-breaking time and leaves for the parking deck. ‘Good thing my
phone remembers where I parked my car, because I bloody didn’t’, she mumbles as
her phone guides her back.

I Can’t Hear You but I Can Hear my Phone

She arrives at the party right on schedule. Her friend – Ron – is an avid technology
fan and is burning to show Hermione his newest acquisition: a location-adaptive
audio-notification service. As most of Ron’s friends are addicted to emails, SMS and
traditional phone calls, they are usually afraid to miss any message notifications and,
very much to Ron’s dismay, tend to ask him to turn the music down so they can hear
their phones.

‘The location-adaptive audio-notification service’, Ron shouts at Hermione over the
loud music, ‘changes that. If you connect your phone to this service, you can choose a
personal audio notification pattern. If you receive a message or phone call, this audio
pattern will be seamlessly integrated into the music on the speaker that is nearest
to you.’ After registering her phone with the notification service, Hermione heads
straight into the kitchen to mix her first White Russian of the evening. ‘A speaking
cocktail shaker? Ron, you’re kidding me!’ (although the speaking cocktail shaker
is not directly related to this thesis, interested readers can find more about this fine
piece of gadgetry in [Schmitz, 2010]).

5.2 UBIDOO: Location-Aware Task Planner

The calendar, in which Hermione enters her appointment and the ingredients she
needed to buy, was implemented by [Fickert, 2007] in his master’s thesis. The sys-
tem is called UBIDOO, which stands for UBIquitous to-DO Organizer. It realizes a
ubiquitous task planner, which integrates a calendar and a to-do list. In contrast to
conventional calendars and to-do lists, UBIDOO does not only allow to set reminders
for appointments and tasks to a specific date and time, but also to places. Moreover,
since UBIDOO uses the spatial ontology of UBISWORLD (see Section 2.4.2.1), be-
sides specific places also more general concepts, like ‘Store’ or ‘Grocery Store’ can
be specified. As indicated in the scenario, this enables UBIDOO to trigger a reminder
if a user passes by a location that fulfills the specified role. Additionally, general ac-
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(a) To-do list view in Saarbrücken (b) To-do list view in Munich

Figure 5.1: The here-and-now view of the same to-do list at different locations
[Stahl et al., 2007].

tivities, e.g. ’Swimming’, can be specified in the same way, using an appropriate
ontology from UBISWORLD. In such a case, the system will automatically search
for suitable locations for the activity, e.g. a nearby lake or swimming pool.

UBIDOO was implemented as a web-service and has direct access to UBISWORLD,
where it can also retrieve the current position of the user from the user model.
UBIDOO is therefore fully compatible to all positioning systems that report their
position determination to UBISWORLD. With this position information, the to-do
manager can constantly check for nearby places that could be used to fulfill any of
the user’s tasks. Moreover, the service calculates a so-called ‘here-and-now’ view,
which sorts the to-do list according to the current time and the current position of the
user.

Examples of the here-and-now view of the same to-do list at two different positions
are shown in Figure 5.1. The list contains three main tasks, Swim and relax, Refill
the fridge and Flight to Corfu. The Refill the fridge task has two specified sub-
tasks: buying olives and buying milk. Buying olives was assigned to a specific shop
in Saarbrücken by the user, whereas buying milk was just specified as a general
shopping task. Swim and relax was associated to any place that allows swimming
and the Flight to Corfu was of course assigned to a specific airport.

Figure 5.1a shows the to-do list when the user is in their office in Saarbrücken. The
list is ordered according to the time that is needed to reach the associated location
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(the time is shown in parenthesis next to the distance). As can be seen, the swimming
task is on the top of the list, although the distance to the appropriate location is higher
than the distance to the shop, where the user intends to buy olives. This is due to the
better (faster) reachability of the swimming-location. Figure 5.1b shows the same
to-do list, when the user is in Munich. The task to buy olives is omitted, since the
specified shop is too far away from the current location. The shop in which to buy
milk has been replaced by a shop near to the user, and so was the location to ‘swim
and relax’. It can also be seen, that the time to reach the flight to Corfu has been
adjusted from 31 minutes to 4 hours and 6 minutes.

UBIDOO derives these traveling times through a web-service called eRoute, which
is provided by the company PTV AG1. This service calculates routes between two
given locations and estimates the driving time. Traveling times through buildings,
e.g. from the current position to the exit, are estimated using YAMAMOTO. Besides
the traveling time, UBIDOO also takes opening and closing times of places like shops
into account and either choses places that are currently open or will add the time until
a place is opening again to the traveling time.

Besides organizing tasks and appointments for single users, UBIDOO also allows to
manage group tasks. For example if a group of people is planning a party, they can
set up several tasks and assign them to different people or subgroups of people. If
somebody in a subgroup marks a task as completed, this task will automatically be
removed from their task list (cf. [Stahl et al., 2007, Fickert, 2005]).

5.3 Parking-Deck Navigation
In his master thesis, [Gholamsaghaee, 2007] developed a parking-deck navigation
called PARKNAVI, which uses LORIOT as positioning engine. PARKNAVI was de-
signed to provide arriving cars with a route to an empty parking space in a car park
and to guide passengers from their parked car to the exit as well as to guide them
from the entrance back to their parked car.

The application was tested in P20, a multistory car-park at Munich Airport Center
(MAC), Germany. P20 has approximately 6400 indoor parking-spaces on 11 levels
and is the second biggest multistory car-park in Germany. This car park was already
equipped with optical sensors that are used by the operating company to detect empty
parking spaces. This information can be used by PARKNAVI to choose the nearest
empty parking space to the passenger’s next destination, e.g. Terminal 2, to minimize
their walking distance. To ensure position information while navigating the user from
their car to their destination, or back to their car, LORIOT is used in conjunction with
active RFID tags.

1http://www.ptv.de
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Figure 5.2: Components of PARKNAVI. The current user position is read from LO-
RIOT to update route instructions accordingly [Gholamsaghaee, 2007].

To test PARKNAVI, parts of the third and fourth story of the car park were modeled
with YAMAMOTO and equipped with 70 active RFID tags. These tags were installed
at the ceiling using styrofoam blocks to insulate them from the ferroconcrete structure
of the car park, which tends to attenuate the radio signal of the tags.

Figure 5.2 shows the components of the PARKNAVI system. The Central Control
Unit (CCU) retrieves the current user position via a socket connection to LORIOT,
as described in Section 4.4.3. The CCU also reads and parses a YAMAMOTO model
(YML, Yamamoto Modeling Language) of the car park and forwards this data to
a VRML renderer. PARKNAVI uses the Pocket Cortona VRML-Viewer by Parallel
Graphics2 to accomplish the rendering. A route planner calculates the shortest path
from the user’s current position to their destination. The route planner module was
originally developed by [Waßmuth, 2006] to plan pedestrian routes in YAMAMOTO

models. Car parks however represent a special case – unlike normal buildings they
are used by pedestrians as well as by vehicles. Since PARKNAVI should be able to
navigate both, YAMAMOTO and the route planner had to be extended accordingly:
the first to represent one-way routes and the latter to take into account these routes
when planning for a vehicle. Furthermore, the planner was extended to allow for the
use of elevators, which are also present in P20.
Using the planned route and the model, PARKNAVI is then able to create graphical
and verbal route instructions. IBM’s Embedded ViaVoice©3 was used to provide
spoken instructions.

2http://www.parallelgraphics.com
3http://www-01.ibm.com/software/pervasive/embedded viavoice/
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(a) Plan view (b) Tethered view (c) Immersed view (d) Monitoring view

Figure 5.3: PARKNAVI screenshots [Gholamsaghaee, 2007]

For graphical route instructions, the user can choose between four options (shown in
Figure 5.3): plan view, tethered view, immersed view or monitoring view. According
to [Baus, 2003], each of these visualizations meets different demands of user. The
plan view shows a part of the map from a bird’s eyes perspective. This view is best
in situations in which a user needs to gain knowledge about the structure and layout
of the current environment. The tethered view provides a visualization as if a camera
would be placed above and behind a user. The immersed view shows a representation
of the environment from the perspective of the user itself. The latter two views are
best for efficient navigation presentations, as they show the environment in a fashion
that is close to the perception of a user. The monitoring view is a 3D representation
of the map, shown from the perspective of a camera that is mounted at an arbitrary
point. This view combines the advantages of a 3D representation, i.e. a view that is
close to the perception, with the advantage of the plan view, i.e. a good overview on
the structure and layout of the environment.

5.4 Hybrid Navigation-Visualization on Nomadic De-
vices

HYBNAVI was developed by [Mutafchiev, 2008] and is an extension of PARKNAVI,
and thus shares the basic software design (see Figure 5.4). HYBNAVI is an abbrevia-
tion for HYBrid NAvigation VIsualization and it enables route finding and guiding not
only within one building, but also from rooms in one building to other rooms in dif-
ferent buildings, e.g. on a university campus or large factory premises. This involves
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Figure 5.4: HYBNAVI is an extension of PARKNAVI [Mutafchiev, 2008].

indoor as well as outdoor positioning and navigation. Hybrid positioning is already
integrated in LORIOT, but to accomplish hybrid route-finding, several components
of PARKNAVI had to be extended: to enable the user to choose destinations that are
outside of the currently loaded building model, HYBNAVI provides a connection to
UBISWORLD which also allows to load missing models via a web connection. Fur-
thermore, the route planner was extended by [Waßmuth, 2008] to dynamically load
and parse new models while searching the shortest route between points in different
buildings.

Like PARKNAVI, HYBNAVI provides spoken route instructions and different cam-
era perspectives for the visual route description: immersed, tethered and plan view
(see Figures 5.5a to c). Moreover, the system is capable of rendering eye-catching
objects that can act as landmarks, e.g. soda machines or lockers (as depicted in Fig-
ures 5.5d and e). According to [Aginsky et al., 1997], the visual recognition of the
connection of landmarks and directions seems to be the dominant strategy for spatial
orientation of humans. Experimental studies described in [Krüger et al., 2004] and
[Aslan et al., 2006] support this hypothesis, thus the ability of showing landmarks
– especially those that are close to decision points – provides additional help while
navigating. Furthermore, these landmarks are used in the spoken route instructions,
e.g. ‘turn left at the soda dispenser’.

To also allow for navigation in buildings that do not provide a positioning instru-
mentation, planned routes can be played back as videos showing an egocentric 3D
animation of the movement through the building. Users can start, stop and rewind
the video at will and can thus use the system to memorize short parts of the route
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(a) Immersed View (b) Tethered View (c) Plan View

(d) Soda dispenser machine (e) Yellow lockers

Figure 5.5: HYBNAVI supports three different navigation perspectives and is capa-
ble of rendering eye-catching objects that can act as landmarks [Mutafchiev, 2008].

or try to walk the path in the same speed the video is showing it. The latter can be
seen as ‘reversed positioning’: instead of the system recognizing where the user is,
users try to position themselves where the system is showing them. Especially in this
mode, HYBNAVI’s capability of showing landmarks plays an important role, since it
helps users to find the depicted positions.

The idea of using videos as indoor navigation aid was tested against traditional maps
and printed picture sequences of decision points by [Münzer and Stahl, 2008]. An
experiment with 48 participants (24 male and 24 female) was conducted, where each
condition was tested with 16 participants. The result showed that the number of
wayfinding errors made while using videos was significantly lower than in the two
other conditions (only two out of 16 participants made critical errors in the video
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condition, in contrast to nine out of 16 in the picture sequence condition and seven
out of 16 in the map condition).

In the scenario above, it is HYBNAVI with the included PARKNAVI component that
helps Hermione to find a free parking space and that navigates her to the mall as well
as back to her parked car again.

5.5 IPLAY BLUE: User-Adaptive Public Displays

The technology that provides Hermione with personalized information while pok-
ing around the shopping mall was realized by [Schöttle, 2006] during an advanced
practical course. The implemented system is called IPLAY BLUE and is based on the
OUT OF THE BLUE component of LOCATO.

The basic idea is to provide users with adapted content of public displays, as they
are now common in public buildings. As the system should be accessible to as many
people as possible, the Bluetooth based exocentric positioning method was chosen,
because even cheap cellphones provide Bluetooth functionality. In order for IPLAY

BLUE to work, each public display is itself Bluetooth enabled and runs the OUT

OF THE BLUE core algorithm, which scans its environment for nearby Bluetooth
devices and provides this information to the local infrastructure in form of events via
the blackboard architecture (see Section 4.2).

IPLAY BLUE runs on a server and subscribes to the OUT OF THE BLUE events.
Without further knowledge about the received Bluetooth IDs, IPLAY BLUE can at
least approximate how many people are in its vicinity. In order to adapt the content
of single displays however, it needs further information about who the Bluetooth ID
belongs to and about special interests of the owner of the Bluetooth device. Users
can therefore register with IPLAYBLUE and provide restricted access to their user
profiles. For example, one might only reveal their gender in order to get informed
about gender-(stereo)typical items, e.g. electronic gadgets for males and more cloth-
ing specific things for females.

In order to protect the privacy of users, their names will not appear on the public
displays. Instead users can freely choose icons or pictures, for example a picture of
their favorite cartoon character, which will be displayed next to relevant information.
In order to make it difficult for observers to assign pictures or icons to bypassing
people, pseudo information can be shown of imaginative users, such that situations
are avoided in which only one picture or icon is shown.

IPLAY BLUE closely interacts with UBIDOO and can thus adapt the view of a public
display in a shop to the tasks of a user or of a group of users. An example view is
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Figure 5.6: Example view of IPLAY BLUE on a public display [Schöttle, 2006].

shown in Figure 5.6. Here a collaborative shopping list is depicted, which is adapted
to the group members that are currently in front of a public display. The tasks are
grouped according to the assignment of each task to individuals or subgroups. The
icon for each assigned group-member is shown besides a general task description.

The design of the presentation is such that more general information is shown in large
fonts, so that users can grasp this information quickly while passing by a screen.
More detailed information is shown in smaller fonts and are intended for users who
want to focus on a specific task.

Because of these collaborative features, IPLAY BLUE is also valuable at home, to
organize various household tasks. At work it can be used to organize and to inform
about group meetings or about the availability of individual employees.

A special view, called Iplay Ad, was implemented for stores to show personalized
advertisements. This view shows items that are on the shopping lists of users nearby
the public display, without assigning them to a specific user. If only one user is
detected, the list will be filled other items that are currently on sale.
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(a) The IRL SmartCart (b) Screenshot of the IRL navigation service

Figure 5.7: The IRL SmartCart enables product-related navigation in shopping en-
vironments [Kahl et al., 2011].

5.6 Navigation in Retail Environments

The Innovation Retail Lab (IRL) is a collaboration of between DFKI Saarbrücken
and the German retailer GLOBUS SB-Warenhaus Holding. IRL is located at St.
Wendel, Germany, and focuses on application-oriented research, mostly related to
intelligent shopping assistance. Developed systems get thoroughly tested not only in
the lab itself, but also in a real retail store ([Spassova et al., 2009]).

Amongst various other innovations, a smart shopping cart was developed, dubbed
the IRL SmartCart. Figure 5.7a shows the SmartCart and its instrumentation. To
enable user interaction, a touchscreen with speakers, an NFC reader and a fingerprint
scanner are mounted at the cart’s handle. A laptop is currently attached to the cart as
the main computing device, which also enables communication with the environment
via WiFi.

Two passive RFID readers are mounted at the base of the cart to which two antennae
are attached: one that enables reading RFID tags of products that are placed inside
the cart, and one close to the floor, which is used for positioning via passive RFID
tags. Accordingly, the lab’s floor is instrumented with several hundred passive RFID
tags, which were laid out in a dense grid beneath the floor cover. The IDs of all RFID
tags and their position were modeled using YAMAMOTO. Unfortunately, some of the
RFID tag got damaged during the installation of the floor cover, so that additional
tags had been attached directly to the shelves. As the SmartCart is intended to be
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used in a specific shop, the complete list of RFID IDs and their coordinates can be
stored directly on the cart.

The position determination of the SmartCart was realized using the geoDBN pack-
age of LOCATO, where the CPTs were adjusted to the higher confidence values of
passive RFID technology, i.e. sensing a passive RFID tag results in a very high belief
that the SmartCart is currently at the position of the tag. In Figure 5.7a two optical
mice are shown in addition to the lower RFID antenna. These mice are intended to
be used as inertial sensors, i.e. they provide information about the moving direction
and velocity of the cart. The derived position information can then be fused with
the RFID information through the geoDBNs. The position calculation is done on the
SmartCart itself and with the allowance of the user, this position can be communi-
cated to the shops service-infrastructure via WiFi connection.

The positioning is used to provide customers with navigation support, similar to what
is described in the scenario above. Users can identify themselves by several means,
e.g. with their fingerprint or with an NFC enabled customer card. This identification
enables a user adaption of the cart’s user interface, e.g. using bigger fonts for elderly
people, as well as an adaption of the provided services, e.g. automatic warnings if
a user intends to buy a product they are allergic to. A further adaption is the syn-
chronization with the user’s current shopping list. If such a shopping list is present,
a user can either click on a specific item and is presented with a calculated route to
the appropriate shelf, or they can chose to be navigated to all items on their shopping
list. For the latter situation, the items on the list are ordered according to a predefined
basic route through the shop, and the complete route is calculated by subsequently
navigating to each item on this ordered list. A screenshot of the IRL navigation ser-
vice can be seen in Figure 5.7b. This view is presented to a user on the touchscreen
of the SmartCart.

If a customer comes close to an item on their list, the shopping cart can trigger various
forms of public displays to show further navigation clues, e.g. by highlighting the
product in question with a steerable projector ([Spassova, 2011]). The latter is called
Micro Navigation, in contrast to Macro Navigation, which is the former described
approach of guiding a user to the correct shelf.

Both, the macro and the micro navigation are intended for users who are not familiar
with the shop’s layout, as it is the case with Hermione in the example scenario. Cus-
tomers who are familiar with the shop, can switch to a so-called Passive Navigation
mode. In this mode, the cart’s display shows an overview of their proximate envi-
ronment and issues a reminder a soon as they come into the vicinity of an item on
their shopping list. Customers can thus enjoy an exploratory shopping experience,
while getting helpful assistance to do their weekly shopping (cf. [Kahl et al., 2011,
Schwartz, 2010, Kahl et al., 2008, Kahl, 2007, Stahl et al., 2005]).
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5.7 Location-Adaptive Human-Centered Audio
Email Notification Service

The location-adaptive audio-notification service that Ron uses to keep his
party music at high volume without alienating his friends is described in
[Jung and Schwartz, 2007a] and [Jung and Schwartz, 2007b], although its intended
use is much broader. Audio notification sounds, like telephone ring-tones, stand out
because they differ significantly from other sounds in the environment. This is of
course usually intended as such a sound should attract attention, however it should
ideally attract the attention of the addressee of the notification and not the attention of
everybody in the vicinity. In some situations, like business meetings or conferences,
notification sounds are highly inappropriate. The common solution is to use vibra-
tion alerts, but since sound is pressure oscillation transmitted through air (or any
other medium), even vibration alerts are audible, especially in quiet surroundings.
Awkward moments usually occur in these situations because the source of the sound
is clearly locatable and even if not, the following actions, like desperately trying to
cancel a call or leaving the room, give away the culprit of the diversion.

The basic idea of the audio notification system is to mask audio-signals by integrat-
ing them into artificial ambient soundscapes, i.e. soundscapes that are played through
an audio system, such as functional music or so-called Muzak. Functional music is
low in complexity, only slightly above the environmental noise level and in a tempo
that is close to the resting pulse rate. It is especially composed to not distract peo-
ple and to have a calm and smoothing effect. For the implemented Ambient Email
Notification service (AEMN) three such compositions were recorded and the service
has full control over single tracks of these recordings, i.e. the service can switch on
or off specific instruments, like piano, guitar, strings or even the hi-hat of the drum
section. Users can choose their personal notification instrument and can choose their
preferred ambient music. The AEMN service is web-based and is connected to the
local blackboard architecture as well as to a multi-speaker sound-system, over which
the ambient soundscapes can be played back. The current location of each user is de-
termined through LORIOT, which runs on the mobile device of the user and forwards
the positioning information to the blackboard (if allowed by the user).

If a user enters an empty room, their preferred ambient soundscape will be started. If
other people are already present, the current soundscape will be kept, but the notifi-
cation instrument of the user will from now on be omitted from the currently playing
soundscape. AEMN constantly checks the inbox of user-specified email accounts
and checks via configurable filters if an email arrives that requires notification of the
user. If this happens, AEMN will insert the user’s notification instrument into the
soundscape at the speaker that is nearest to the user and in a musical fashion, such
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that other people in the room will perceive the audio signal as a part of the composi-
tion. The nearest speaker to the user is chosen in order to ease the perception of the
signal.

The perception of these embedded audio signals was tested in a user study with 25
persons. Each participant learned two notification instruments (piano and drums) and
a conventional alarm sound (a knocking sound) in a preparatory phase. During the
experiment, the participants had to perform mental arithmetic under time-pressure,
while soundscapes where played, which contained the learned notification instru-
ments as well as the conventional alarm sound. The participants were instructed to
click on a specific button as soon as they perceived either one of the notification
instruments or the conventional alarm sound. The conventional alarm sound was
recognized in 79% of all cases. The drum-sound notification was even recognized
in 86% of all cases, while the piano notification reached 78% and was thus slightly
lower than the conventional alarm sound. The reaction times, i.e. the time it took par-
ticipants to click on the button after the notification sound was first played, were also
measured. As it was the case with the perception of the sounds, the drum notification
provided the best result: 2.1 seconds in average. With 2.54 seconds, the conven-
tional sound provided a slightly higher average reaction time. The piano notification
led to an average reaction time of 6.59 seconds. All in all, the performance of this
type of notification is comparable or even better than conventional audio notification,
without the risk of embarrassing moments (cf. [Jung, 2009]).
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6 CONCLUSION

In this thesis, the Always Best Positioned paradigm was defined (see Section 1.1.6)
and the Localization Toolkit LOCATO was developed, which enables the efficient
development of egocentric and exocentric positioning systems that can be executed
either onboard or offboard. LOCATO provides two novel core algorithms, which are
designed according to the Always Best Positioned paradigm:

• Frequency-Of-Appearance Fingerprinting omits the usage of signal-
strength information in fingerprints. It thus provides higher robustness against
environmental influences and allows to create and share device-independent
fingerprints.

• Geo-Referenced Dynamic Bayesian Networks enable the easy fusion of dif-
ferent sensor technologies. They mimic the behavior of particle filters by cre-
ating hypotheses for possible positions, but in contrast to regular particle filters
they automatically adapt the number of hypotheses according to the sensors in
the environment and are easy to extend with additional sensor technologies.

Both algorithms are optimized for resource-limited devices, such as mobile phones.
Three positioning systems were implemented using LOCATO:

• Out of the Blue is a cost effective offboard/exocentric indoor-positioning sys-
tem, designed for user-adaptive public displays.

• UbiSpot is an opportunistic onboard/egocentric outdoor/indoor positioning
system following the Always Best Positioning paradigm. It uses mobile-phone
network-cells, WiFi access points and Bluetooth devices to determine its own
position and reaches room-level accuracy.

• Loriot is a high accuracy onboard/egocentric outdoor/indoor positioning sys-
tem for instrumented environments, which uses infrared beacons and active
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RFID tags. The system’s accuracy is highly configurable through variation
of the density and mixture of the deployed senders. LORIOT can achieve an
average position-accuracy of 1 meter.

Both onboard/egocentric positioning systems were rigorously evaluated, according to
their specifications. As UBISPOT was designed to reach room-level accuracy, it was
evaluated in a dense environment with small rooms. LORIOT was designed for high
accuracy, real-time positioning and was thus evaluated using natural, step-accurate
traces as ground-truth. Since the used senders tend to overreach, the evaluation took
place in a wide-spaced environment, which encouraged overreach.

Furthermore, six applications were presented that either base on one of the developed
positioning systems or were designed using LOCATO. The parking-deck navigation
was developed in cooperation with BMW and was deployed and tested in the P20
multistory car park at Munich Airport Center. The shopping-cart positioning was
developed in cooperation with the IRL in St. Wendel.

6.1 Scientific Contributions

In order to develop the toolkit LOCATO, the following research questions were an-
swered:

• What are the basic methods for position determination in natural organ-
isms? In Section 2.1.1, concepts of neuropsychology were examined to derive
a classification of senses, which were identified as a basic component for self-
positioning. Furthermore, proximity sensing was identified as a fundamental
positioning method, and the occurrence and importance of sensor fusion in
animals was explored on the example of ants.

• How can natural self-position awareness be replicated through methods
of Artificial Intelligence? In Section 2.2, the findings from natural position
determination were transferred into the field of Artificial Intelligence through
the use of agent theory. Based on the classification of senses, a classification
of sensors was derived.

• How can technical positioning methods be classified and what are the im-
plications of the classification? In Section 2.3, positioning systems were clas-
sified by analyzing the possible spatial distributions of sensors, senders and
computational devices. Four basic designs for positioning systems could be
derived:
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– egocentric (or onboard/egocentric)

– exocentric (or offboard/exocentric)

– offboard/egocentric

– onboard/exocentric

• How should a positioning system be designed to protect the privacy of its
users? In Section 2.3.2.5, the data-flow of the four basic designs was analyzed
with respect to the implications on the privacy protection of users. The on-
board/egocentric approach was identified as being the most privacy-protecting
design.

• What are possible methods to build positioning systems following the Al-
ways Best Positioned paradigm ? In Section 2.6, Kalman filters, particle
filters and dynamic Bayesian networks were analyzed with respect to their suit-
ability for the Always Best Positioned Paradigm. Dynamic Bayesian networks
were identified as being the most general concept and thus being the preferred
candidate.

• How far do state-of-the-art positioning systems comply with the derived
design criteria and the Always Best Positioned paradigm? In Chapter 3, the
state of the art of positioning systems was analyzed, and the discussed systems
were classified regarding the four basic designs and their ability for sensor
fusion.

• How can positioning systems be evaluated? Based on the analysis in Chap-
ter 3, two new systematic evaluation-methods for positioning systems were
developed. Each method was designed to emphasize the possible weak spots:

– Section 4.3.4 describes an evaluation method for positioning systems
based on fingerprinting. As fingerprinting provides an accuracy of sev-
eral meters, such systems should be evaluated according to their abil-
ity to determine if a user is in a specific meaningful area, e.g. a room.
In contrast to other evaluation methods in literature, which measure the
distance of the derived position to known reference points, this evalua-
tion tested the success rate of determining the correct room in subsequent
measurements. The evaluation was conducted in an environment with
small rooms, which were close to each other and thus maximizing the
probability of failure.

– Section 4.4.4 describes an evaluation method for real-time high accu-
racy positioning systems. For the first time in literature, natural footstep-
accurate traces were used as ground truth for the evaluation. The footstep
accuracy ensures that the ground truth has a higher accuracy than what
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can be derived by the positioning system and the natural traces ensure
that test users do not consciously or unconsciously adapt their positions
to the capabilities of the positioning system.

6.2 Impact on Industry, Press and Research Commu-
nity

A first prototype of LORIOT was presented at the industrial congress Advanced
Navigation at the Kempinski Hotel, Berlin (invited speaker together with Norbert
Reithinger). LORIOT was also presented on the CeBit’07 exhibition in Hanover
with follow-up press coverage in radio (WDR Computer Club), television (RTL
Nachtjournal), and newspapers (FAZ). LOCATO is also one of the building-blocks
of the startup company Schwartz&Stahl indoor navigation solutions1, which was
founded in December 2008.

Furthermore, the Always Best Positioned paradigm as well as UBISPOT and LORIOT

were presented on the seventh info-forum of the SmartFactoryKL in Kaiserslautern,
Germany.

Together with researchers from DFKI Saarbrücken, the Helsinki Institute for Infor-
mation Technology and the University of Haifa, the international workshop on Lo-
cation Awareness for Mixed and Dual Reality (LAMDa) was founded in conjunction
with IUI’11, in which the impact of positioning systems on mixed and dual reality
was discussed. The workshop will be repeated in conjunction with IUI’12. An invita-
tion to present the findings of this thesis at the Ubiquitous User Modeling Workshop
at the University of Haifa followed the fruitful collaboration at LAMDa’11.

6.3 Outlook

• UBISPOT is currently extended through NFC readers, which are becoming
more common in smart phones. The basic idea is to provide NFC tags at door
sills, which a user can read in by swiping their phone over them. The reading
of such an NFC tag will be incorporated into the current fingerprint with a very
high weight, causing UBISPOT to choose that fingerprint as the current loca-
tion and automatically updating the fingerprint with the most current readings
of all other sensors. As a user will not always read NFC tags when chang-
ing their location, the weight will be gradually reduced over time. The rate of

1http://schwartz-stahl.de/
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this weight decline will be a function of accelerometer measurements, i.e. the
weight will be kept up so long as a user does not move. The incorporation of
the NFC sensor will ease the process of crowd-sourcing up-to-date reference
fingerprints.

• The upcoming 4G cells will provide higher data-rates, opening up new pos-
sibilities for Always Best Positioning systems. LOCATO will be extended to
automatically download new sensor extensions on the fly, i.e. new geoDBN
templates incorporating new sensors when they become available. This could
also be done in a Web2.0 fashion, or in the sense of application stores, where
developers can upload their designed geoDBNs for the community.

• The geoDBN core algorithm will more over be refined to further ease the pro-
cess of adding new sensors. This can possibly be done by adding new sensor
nodes as time-slices rather than as evidence nodes. The inter-time-slice CPTs
would then have to be adapted accordingly, which needs further research. This
approach would also ease the process of sharing new sensor nodes.

• IMU sensors can already be integrated using the geoDBN core algorithm.
Modern smart phones already provide some of the sensors that can usually
be found in IMUs, but the accuracy of the sensors is not as high as a commer-
cial grade IMU. Further research is needed on how to refine inertial positioning
using smart phone sensors and what would be a good complementary sensor
to gain the required position fixes.

• In analogy to Car2Car, where highly equipped cars can share their sensor
data with less capable cars, the Always Best Positioned paradigm can be ex-
tended to incorporate other users’ position information. [Rosa et al., 2011]
(see Section 3.1.11) proposed a relative positioning system using the WiFi
capabilities of mobile devices. If one or more of these devices know and
share their own position, this approach can be extended such that other de-
vices can calculate their position in the same coordinate system as these al-
ready positioned devices. When using a standardized protocol to exchange
such data, such as proposed by [Gschwandtner and Schindhelm, 2011] (see
Section 3.1.3), geoDBNs can be used to realize such a positioning.
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A APPENDIX - LORIOT

A.1 Evaluation Traces

The following figures show the results of the evaluation of LORIOT. For each of the
16 traces the four conditions (only RFID with cache, RFID & IR with cache, only
RFID no cache, RFID & IR no cache) are shown in separate figures. Each figure
shows the ground-truth as red squares connected by a red line. The interpolated
positions are marked as black crosses. The blue squares show the user positions as
derived by LORIOT (system positions). The dotted black lines lead from each system
position to their corresponding interpolated user position on the ground-truth. In
the top left corner of each figure, the general direction of the system trace and the
ground-truth trace is shown. In the bottom left corner, the maximum, minimum and
average error distance are shown.
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A.1.1 Traces for only RFID and RFID & IR Conditions
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A.1.2 Traces for only IR Conditions
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