
Distributed Control in

Verbmobil

Marcus Kesseler

IMMD VIII�Universit�at Erlangen�N�urnberg

Report ��
August ����



August ����

Marcus Kesseler

IMMD VIII � K�unstliche Intelligenz
Universit�at Erlangen�N�urnberg

Am Weichselgarten �
D����	
 Erlangen

Tel�� ������ ��� ��
 � ��

e�mail� kesseler�immd��informatik�uni�erlangen�de

Geh�ort zum Antragsabschnitt� �	��� Architektur integrierter Parser f�ur
gesprochene Sprache

Das diesem Bericht zugrundeliegende Forschungsvorhaben wurde mit Mitteln des
Bundesministers f�ur Forschung und Technologie unter dem F�orderkennzeichen
�� IV ��� H� gef�ordert� Die Verantwortung f�ur den Inhalt dieser Arbeit liegt bei
dem Autor�



Contents

� Introduction �

� Architectures for NLSP Systems �

��� The TP�	 INTARC Architecture � � � � � � � � � � � � � � � � � � � �

� Distributed Control in Verbmobil� The Problems �

��� Centralized Control � Blackboards � � � � � � � � � � � � � � � � � � �

��� Distributed Blackboards � � � � � � � � � � � � � � � � � � � � � � � � 


��� The Structural Constraints of Verbmobil � � � � � � � � � � � � � � � �

��� Layers of Control � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Distributed Control in Verbmobil� A Solution	 �



 Towards Distributed Control ��

	�� A Protocol for System Control � � � � � � � � � � � � � � � � � � � � � ��

	�� Using Channels � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


	�� Quality�based Bu�ering and Time�based Garbage Collection of Hy�
potheses � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Incrementality� Interactivity� Synchronization� Control and Algo�
rithms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Conclusion ��

A A Formal Description of a Modular Architecture ��

�



� Introduction

Because of the complexity gap between the systems being
modeled formally and the applications that are being studied�

CDPS �Cooperative Distributed Problem Solving� research has
yet to adequately de�ne rigorous approaches that work in

real�world applications�

Durfee� Lesser and Corkill in ��� page 	�
�

Verbmobil di�ers in one crucial aspect from all previous projects� large and small�
in Natural Language � Speech Processing NLSP�� The degree of distributedness
in the Verbmobil implementation e�ort is unparalleled� The groups implementing
the di�erent VM�modules have almost no constraints on their intra�modular design
decisions� Interfaces are de�ned largely by bilateral agreements� which seldom
make any references to the control issues arising from their usage� No group in
VM is explicitly responsible for the de�nition of an overall control paradigm for
VM� This� as we will see below� raises some serious problems� Nevertheless� we
will argue that these constraints can also be perceived as an opportunity to break
new ground in the area of control of complex distributed systems�

� Architectures for NLSP Systems

The question of control in VM is tightly knit with the architecture of the VM
system� So that we �rst need to clarify what the architecture of the VM system
looks like�

The Verbmobil TP�	 Group �Architecture� is responsible for research and devel�
opment in the area of architectures for NLSP systems� To this end� in TP�	 we
have been working with a system that is a functional subset of Verbmobil� While
Verbmobil aims at understanding� translating and generating spoken language� in
TP�	 we are content with a smaller� exemplary system that produces semantic
representations from spoken language� input�

Note that the concept of architecture is often applicable to more than one layer
within any complex system� In ���� Marr introduced the following three description
levels for complex systems in computer science�

The computational theory is a reconstruction of the target domain in terms
of a speci�cation of what is to be computed and what constraints can be
assumed to be valid�

�With the usual� state�of�the�art� constraints� Restricted vocabulary� narrow scenario� etc�

�



Representations that re�ect the relevant properties of the objects in the domain
must be found together with algorithms to manipulate them�

On the implementation level� the representations and the algorithms are
mapped onto data structures and instruction sequences on a real machine�

Given this framework� an architecture for an NLSP system is a computational
theory that tries to re�ect human cognitive abilities in speech processing� Using
Briscoe �	� as a starting point� G�orz ���� gave the following characteristics of a
general computational theory for NLSP�

Modularity� There is a widespread consensus that NLSP systems should be lay�
ered into several more or less independent modules also referred to as knowl�
edge sources� processes� agents� etc�� Arguments in favor of modularity have
been derived from various research �elds� evolution� linguistics� cognitive
science� software engineering� etc see �	� page �����

Nowadays no one seriously questions the validity of the modularity assump�
tion� Indeed� a project like Verbmobil� a research e�ort distributed across
many universities and companies� would hardly be feasible without an in�
trinsically modular approach�

Incremental interpretation� As soon as a module �nds a partial solution that
spans parts of the received input hypotheses� it sends this solution to all
other potential consumers of such output hypotheses� Or in the words of
Briscoe �	� page ����

��� every component of the human speech comprehension system
will proceed with a minimum of delay and will convey the results
of its analysis to the next stage of the system as rapidly as possible�

Interactivity� Information also �ows top�down� that is� constraints coming from
higher cognitive levels may be passed to lower levels for disambiguation�

Graceful degradation� When the quality of the input signal degrades one would
not like to reach a sudden incompetence threshold under which the system
is unable to provide any interpretation whatsoever� Rather� one would like
to have a system that is able to degrade gracefully under worsening input
signal quality�

Note that some of the concepts above are orthogonal to one another� that is�
the use of one does not imply the presence of another� Especially modularity
is well applicable in a simple NLSP system without the use of incrementality or

�



interactivity� Such an architecture is precisely what is being implemented as the
�Verbmobil Mini�Demonstrator��

We wish to emphasize that modularization is but one dimension of the architecture
of an NLSP system� A further� and equally important dimension is the interaction
mode used in the architecture�

As yet� the concept of architecture in Verbmobil has been used mostly to describe
the overall modularization and the interfaces implied by the data �ow between
the modules� This architecture� called domain architecture�� is incomplete in the
sense that it does not specify any interaction strategies that go beyond the crude
sequential interactions of the Mini�Demonstrator�

��� The TP�� INTARC Architecture

The TP�	 �INTARC ���� architecture� as presented by Pyka in ���� ���� is a dis�
tributed software system that allows for the interconnection of NLSP modules
under the principles of incrementality and interactivity� Figure � shows the mod�
ularization used in the newest INTARC demonstrator� version ���� In INTARC
��� there is a main� broad channel connecting all modules in the bottom�up direc�
tion� that is� from signal to interpretation� Furthermore� one can see the smaller
channels connecting several modules� which are used for the top�down interactive
disambiguation data �ow� Incrementality� though not graphically represented in
Figure �� is required from all modules embedded in the INTARC ��� system�

INTARC ��� implemented the principle of limited working memory by introduc�
ing a time�based garbage collection TBGC� see section 	��� scheme for hypothe�
ses� This required local hypotheses management to be under control of the local
INTARC ��� demon attached to each module�

INTARC ��� has undergone a major revision on the implementation level in the
�rst half of ����� The revised architecture ICE � INTARC ��� Communication
Environment� is presented by Amtrup in ���� We will not dwell on the technical�
ities of ICE� su�ce to say that ICE also abides to the principles of modularity�
incrementality and interactivity� In this �rst reimplementation the support of
time�based garbage collection has been dropped� The feature turned out to be too
coarse grained for the rather heterogeneous� �ne�tuned hypotheses management
strategies used in the di�erent modules� For the same reasons the hypotheses
management under control of the local INTARC ��� demon has been abandoned
in ICE�

Given this transference of hypotheses management responsibilities back to the
module implementor� ICE turns out to be much simpler than INTARC ���� It

��Fachliche Architektur� in German Verbmobil parlance�

�



Heap

Silpa

Morpropa

Syntactic Parser

Semantic Parser

Semantic Evaluation

P
r
o
s
o
d
y

Disambiguation Data Flow (Top Down)
Main Data Flow (Bottom Up)

Gradient Box
Microphone

syntax rule
restrictions

word hypothesis
predictions

phrase boundary
predictions

LWM
event

hypotheses

lexical accent
predictions

syllable type
predictions

lexical accent
predictions

semantic
representation

Figure �� The interactive� incremental INTARC ��� architecture

	



is a communication architecture with an application programmer interface API�
tuned to the necessities of NLSP in general and Verbmobil in particular� ICE
assumes that each module has a local memory that is not directly accessible to
other modules� Modules communicate explicitly with one another via messages
sent over bidirectional channels�

This kind of communication architecture is hardly new and confronts us directly
with a large number of unresolved issues in distributed problem solving see Dur�
fee� Lesser and Corkill in ����� In the last �� years there have been numerous
architecture proposals for distributed problem solving among computing entities
that exchange information explicitly via message passing� Actors by Hewitt and
Agha ���� Communicating Sequential Processes by Hoare ����� which was used as
the base for the development of the OCCAM programming language and its hard�
ware companion� the INMOS Transputer ����� Linda by Gelernter ����� and more
recently Agents see Shoham ������

None of these models include explicit strategies or paradigms to tackle the problem
of distributed control� Nevertheless we opted for a model along these same lines for
two reasons� Firstly� such an architecture is a perfect one�to�one mapping of our
chosen NLSP system design principles� and second� as we will argue in section ����
given the principle of modularity� there really is no other alternative�

� Distributed Control in Verbmobil� The Prob�

lems

��� Centralized Control � Blackboards

Traditionally� NLSP systems have been centrally controlled� Since Hearsay�II ����
the use of blackboards� or variations thereof� has been the most popular control
paradigm for NLSP systems� For a good overview of blackboard architectures see
Engelmore � Morgan ��� and more recently Carver � Lesser ����

In ��� Carver � Lesser point out the following two main advantages of central�
ized blackboard�based approaches over distributed ones� like for example� Craig�s
Cassandra architecture ����

Integrated view of hypotheses� Simply by chasing pointers it is possible for a
control algorithm to inspect what lower level hypotheses led to the derivation
of a more abstract hypothesis� The controller has �the whole picture�� It is
therefore possible to analyze potentially con�icting goals on much �ner scale
without incurring huge communication costs�

�



Blackboard

Blackboard
Monitor

Focus-of-control
Database

.

.

.

Knowledge
Sources

.

.

.

Scheduler

Agenda

Data
Control

Figure �� The classic blackboard model from ��� page ���

Opportunistic control decisions are easier to implement� The emergence of
a promising partial solution on any level can be used for a more or less
immediate reallocation of resources on all other levels�

Furthermore� a distributed control mechanism might need an arbitration
protocol in cases where the controlling instances disagree over what is the
best path to pursue� Centralized control obviously needs no such arbitration
of priorities with itself�

At this point an obvious idea pops up� Why not use the advantages of centralized
blackboard control and combine them with the high performance of modules run�
ning in parallel on a shared memory parallel processor UMA�Architecture��� We
see two problems�

�� On a lower level we have the problem of memory� or more precisely� bus
contention� The sustained memory bandwidth of modern busses is up to one
order of magnitude smaller than the data consumption�production rate of

�UMA � Uniform Memory Access

�



the respective processors� This is valid even for single processor systems�
which is why computer architectures use memory caches� The connection of
more processors onto the same bus of course only exacerbates the problem�
The n processors only work truly in parallel when n � � of them have all
the necessary code and data in the their local caches� All shared memory
architectures su�er from this fundamental drawback�

The use of languages like Lisp and Prolog in the higher levels of Verbmobil
aggravates the problem further� since they exhibit very low memory locality�
that is� the cache hit rate of Lisp and Prolog programs tends to be low�

�� Even disregarding bus contention� we might still have to struggle with black�
board contention� To maintain consistency a single�write�multiple�read syn�
chronization protocol has to be enforced for all blackboard accesses� Such
protocols can lead to the serialization of the modules� thereby loosing all
advantages of a parallel implementation�

The solution to the �rst problem is obviously to use a distributed architecture�
where each processor has its own bus and sustained memory bandwidth therefore
increases linearly with the number of processors used� To circumvent the second
problem� we would also have to distribute the blackboard�

��� Distributed Blackboards

In accordance with Marr�s layered view of complex systems� we might see a black�
board as an abstract model in the sense of a computational theory� It is therefore
more or less straightforward to implement it as a distributed blackboard� The prob�
lem with this approach is the strategy used to keep the distributed blackboard
consistent� There are two possibilities�

�� All local blackboards contain the same information and are kept consistent
by a corresponding update protocol which uses the communication network�

What has been said above about serialization due to synchronization of black�
board accesses of course is also valid here� Much more so� since communica�
tion networks tend to be about one order of magnitude slower than busses�
assuming a dedicated communication subsystem� and ��� orders of magni�
tude slower on LAN�based communication�

�� The local blackboards contain only hypotheses pertaining to their own needs�
This would obviously solve the problem of blackboard contention� yet we
would loose the main advantages of the blackboard approach integrated
view� opportunistic control decisions��






Furthermore� the modules can no longer simply dump all their �ndings into
the blackboard and rely on the monitor�scheduler to make the best of it�
Modules now have to decide what hypotheses to send to which module� In
other words� we have to deal with all the problems of distributed control�
We will analyze these problems in more detail in next section�

For a thorough discussion of these issues see the four papers in section II of Ja�
ganathan ��
� pp �����
�

��� The Structural Constraints of Verbmobil

As is perfectly obvious from the project de�nition of Wahlster et al ����� the prin�
ciple of modularity of NLSP systems is a fundamental assumption in Verbmobil�
Given the large number of organizations distributed all over Germany� the im�
plementation of a �nal Verbmobil system would be almost impossible without a
modular implementation paradigm�

But modularity does of course still leave us with two problems� First� modules
have to communicate with one another� and second� their local behaviors have to
be somehow coordinated into a coherent global� possibly optimal� behavior�

As a �rst tentative solution to both problems we might suggest the creation of
a special group that is explicitly responsible for these global integration issues�
which is more or less the declared task of the Verbmobil �� Group� Yet� we feel
that there are tight limits to the degree of integration that is achievable by such
a group� These limitations� which we call the structural constraints of Verbmobil�
are mostly pragmatic in nature�

� Some of the modules are very complex software systems in themselves�
Highly parameterizable and with control subtly spread over many inter�
acting submodules� understanding and then integrating such systems into
a Verbmobil control strategy can be a very daunting task� even disregard�
ing software integration issues like di�erent development platforms and�or
languages�

� Control issues are often very tightly knit with the domain the module is
aimed at� ie� it is very di�cult to understand the control strategies used
without sound knowledge of the underlying domain� For example� to �ne�
tune the performance of a parser a good deal of knowledge of parsing� syntax�
uni�cation� etc is highly recommended� The problem only gets worse if what
is to be �ne�tuned is the interaction between several complex modules�

�



These two arguments are similar in nature� but di�er in the levels� in Marr�s sense�
that they apply to� The former is implementation related� the latter algorithm
and theory related�

��� Layers of Control

If we accept the primacy of modularity and the unfeasability of centralized control�
we are left with highly distributed architecture much along the lines of the TP�	
INTARC ��� proposal� In such highly distributed systems we will generally �nd
the following levels of control�

System Control� The minimal set of operating system related actions that each
participating module has to be able to perform� This set will typically include the
means to start up� reset� monitor� trace and terminate individual modules or the
system as a whole See section 	�� for a minimal set of system control features��

This kind of control will be exercised by the user through some kind of central
monitoring tool� Typically a module of its own� with a graphical user interface
GUI� to the system control functions� Figure � shows the INTARC ��� architec�
ture augmented by such a master console�

Note that system control is on a very general and coarse level which does not
address the �ner issues of domain related control�

Isolated Local Control� The control strategies used within the module disre�
garding any interactions beyond initial input of data and �nal output of solutions�

Figure � gives a rough idea of such a module� On startup the module enters a
waiting loop i�� that may be implemented either as a busy wait polling� or by
some interrupt driven scheduler provided by the operating system eg sockets��

On data entry the module does any number of iterations over a� b and c until
some criterion is satis�ed in b� upon which the results are put out and the module
returns to the waiting loop i� There is only one thread of control active at any
time�

Note that even if local control is very complex this fact is irrelevant to the user of
such a module since it has only a single entry and a single exit� The use of isolated
local control only makes sense in a distributed system that has a purely sequential
architecture� like the Verbmobil Mini�Demonstrator�

Interactive Local Control� In a �rst approximation this form of control can
be seen as isolated local control extended with interaction capabilities� Figure 	

��



Heap

Silpa

Morpropa

Syntactic Parser

Semantic Parser

Semantic Evaluation

P
r
o
s
o
d
y

Disambiguation Data Flow (Top Down)
Main Data Flow (Bottom Up)

Gradient Box
Microphone

syntax rule
restrictions

word hypothesis
predictions

phrase boundary
predictions

LWM
event

hypotheses

lexical accent
predictions

syllable type
predictions

lexical accent
predictions

semantic
representation

INTARC
Master

Console

Figure �� The interactive� incremental architecture with a master console

shows the isolated local control of �gure � in gray� with extensions to deal with
incrementality and interactivity� Incrementality is given by the possibility of
control �owing back to b after an output operation� so that output can be �ner
grained� Higher interactivity is made possible by entering i more often from
various points within the module and by adding a new waiting loop j to check for
any top down requests� To process top down requests the module will usually have
to be extended with further control loops d�� To allow for fast response times i

��



Synchronization loop

Control loop

Synchronous control transfer
(procedure call or return)

Input

Output

i

a

b

c

Figure �� A module with isolated local control

Synchronization loop

Control loop

Synchronous control transfer
(procedure call or return)

Input

Output

Top-down request (in)

Top-down request (out)

i

a

b

c

d

j

Figure 	� The same module with interactive local control

��



and j are non�blocking in the interactive version� That is� they just check if there
are requests or data available and return immediately if nothing is available�

Despite the ad�hoc character of �gure 	 please don�t bother following every con�
nection in it�� in our experience the change of control �ow when going from isolated
local control to interactive control will tremendously increase the complexity of the
resulting code� which is essentially the idea �gure 	 is trying to convey�

Notwithstanding the increased complexity of �gure 	� we are still making several
simplifying assumptions�

�� That the algorithm represented by a� b and c can be used incrementally�
There are algorithms which are not usable in an incremental fashion� or at
least� not without incurring performance losses� As an example the fairly
popular A� search technique works backwards in time� which obviously
makes its use in an incremental way di�cult�

Incrementality can lead to a demand for complete redesign of a module� By
complete redesign we mean to question if the computational theory and�or
the algorithms employed are right for the task at hand�

�� That simply by exchanging data and doing simple extensions in the control
�ow everything will balance out nicely on the system scale�

The second assumption is� of course� enormously naive� Just to keep on par with
the sequential architecture implied by our starting module in �gure � we have to
solve a whole plethora of new problems that come along with interactivity�

� Modules can now deadlock one another by� for example� answering to a top�
down request with a request to the requesting module�

� Modules can now live�lock� one another� by sending so much requests that
little or no useful computation is done�

� There may be race conditions missing synchronization�� which in the worst
case lead to spurious� undeterministic errors� which tend to be extremely
di�cult to locate�

� There may be over�synchronization� which leads to serialization of the mod�
ules� so that we dot not gain anything from the higher parallelization that
our architecture seemed to imply�

�For a discussion of deadlock and live�lock in the context of Distributed Arti	cial Intelligence

DAI� see Craig �� page �����

��



In short� we have all the usual problems of distributed systems to deal with� Un�
fortunately there is no way to shield the module implementors from these pitfalls�
usually associated with operating systems theory� Even if the the lower levels of
the VM communication system are reliable and deadlock�free� this in itself con�
stitutes no guarantee whatsoever against deadlocks� Two or more� processes can
decide to wait for results of one another on their highest control levels� Deadlock
problems can potentially arise on every abstraction layer in a complex� multi�level
system�

Sophisticated Local Control� In spite of all the complexity implied by interac�
tive local control we did not yet present a way to handle the �ner issues of domain
related control� That is� �nd local control strategies that make the modules behave
cooperatively on a system�wide scale�

This is a classic problem in a great many sciences� Management gurus demand
their followers to �Think globally� act locally�� In DAI Durfee et al �
� page ����
ask �How to get agents to make intelligent communication decisions that in�uence
each other to their �mutual� advantage �� In Physics of Nonlinear Phenomena�
also called Synergetics� see Haken ����� one says that cooperation should be an
emergent property of the interactions between the local control strategies�

As yet� there is no proven methodology to deal with such problems in a generally
applicable manner See Whitehair � Lesser ��	� for an interesting� if fairly complex�
proposal�� Even if we had such a methodology� we would still run against the
structural constraints in Verbmobil� since its application would have to be decided
centrally and agreed to by all participating groups� which is unrealistic in the
current phase of the project� The description of our proposed way out of this
dilemma is deferred until section ��

Dialogue Control� In NLSP systems capable of dialogue� like Verbmobil� there
is a module that comes close to possessing the �integrated view� of a centralized
blackboard control� The dialogue module has a good abstract description of what
is happening in the system on a level that is quite close to a human�s idea of a
dialogue�� Therefore the dialogue module seems the right place to handle some of
the strategic global control issues� like�

Domain error handling� When a module is unable to cope with the input data
eg� user was not speaking loud enough�� it will typically send a failure
noti�cation� to the dialogue module� The dialogue will then trigger the gen�
eration module to issue a polite request to the user to repeat the last utter�

�Lately the transfer module has also been suggested as a potential high�level controller�
�We are supposing the module is able to recognize its limitations and act accordingly�

��



ance and then reset all a!icted modules into states from where computation
can restart or proceed�

Observe timeout constraints� If the system does not start the utterance of
a translation� say� � seconds� after the user stopped speaking� then enter
I�beg�your�pardon mode and trigger a restart�

Resolve external ambiguities�unknowns� By �external� we mean an ambi�
guity than is not resolvable within the system so that there is no alternative
than to ask the user� Again the dialogue module would trigger semantics
and generation to formulate a question to this end�

The tricky question with external ambiguities is� of course� how to identify
them� In its normal mode of operation the system will already be dealing
with lots of ambiguities that will simply be passed on to transfer and then
to generation�

The fact that the dialogue module exercises a kind of global control does not inval�
idate what has been said about the unfeasability of central control in Verbmobil�
The control exercised by the dialogue module is very coarse grained� To handle
�ner grained control issues in any module would take us back to memory and�or
communication system contention�

� Distributed Control in Verbmobil� A Solu�

tion�

The outlook on distributed control in Verbmobil presented so far is gloomy at
best� The enormous complexities already present in the many di�erent control
levels are further exacerbated by the �geopolitical� distributedness of Verbmobil
itself� As already mentioned above� currently there is no known method to tackle
such problems reliably�

Given all the presented constraints� the only feasible way out seems to be an
evolutionary approach�

�� Start from what is given� that is�

a� A heterogeneous set of highly specialized software development groups�

b� A set of complex modules� Each implemented as an autonomous soft�
ware system process��

�In non real�time research prototypes the timeout can be set to �k seconds� where k is a factor
that expresses how much slower than real�time the current implementation is�

�	



c� A message passing communication system that serves as the glue be�
tween the modules�

�� Bilaterally agree on a set interactions between the modules� For the Mini�
Demonstrator this set was trivially implied by the modules used in it and the
fact that information �ows only from lower to higher cognitive levels� Top�
down interactions for disambiguation are more complex� but can be added
one by one to the base system�

�� Specify the protocols for the interactions in bilateral agreement rounds�
There are two sides to this� First� there is the problem of what data to
exchange in which format represented by what data types� This is already
taking place in Verbmobil quite routinely�

Second� we need precise� step�by�step speci�cations for the exchanges of data
or control information between two or more modules� with regard to hand�
shake modalities after a reset�� synchronization� timeouts� etc� Please keep
in mind that the controllers needed to support highly interactive protocols
in a sophisticated architecture are bound to be quite complex�

Note that here we encounter an important structural barrier in Verbmobil�
Typically� implementors cannot simply chat about interface issues over co�ee
break twice a week� Unless two groups are in the same organization and
building"� any bilateral agreement of protocols will demand considerable
e�orts of the parties involved�

�� Distribute complete system implementations as widely as possible within
Verbmobil� Given good visualization tools� observations based on exper�
iments will likely lead to fruitful insights into the nature of bottlenecks�
new interaction opportunities and strategies� meta�information or constraints
worth transmitting to neighboring modules� etc�

Given this procedure� it is likely that control will evolve from the initial stage of
a rather simple sequential architecture to a partially� incremental architecture� on
to a globally unoptimized but interactive architecture� The �nal stage in Verbmo�
bil evolution would then be a system that is able to achieve optimized� globally
cooperative behavior based on local controllers with limited information�

�Some modules would have to be completely reimplemented to be usable in an incremental
fashion�

��



	 Towards Distributed Control

This section presents some building blocks needed on the way to distributed control
in Verbmobil�

��� A Protocol for System Control

The following list gives a minimal set of operations that each module has to im�
plement in order to conform to the requirements of global system control�

Trace or Monitor� Send information describing the internal state of the module
to some central monitoring module� Such actions might be implemented as
a switch that makes the module send status reports in regular intervals or
simply as one�time requests that are answered with a corresponding report�

Reset� Go into a well de�ned starting state from which operation can then pro�
ceed� Note that in a system as complex as Verbmobil there are di�erent
reset granularities� In a parser� for example� the following levels of reset
make sense with falling granularity��

Integral Reset� Essentially equivalent to killing the process and restarting
it all anew� Parameter �les� grammars� lexicons� etc are reloaded and
the communication system is restarted in an integral reset�

State Reset� Clear the chart but keeps all parameters� grammars� lexicons�
etc�

Communication Reset� Break o� and then re�establish communication
with the respective partners� Probably meaningful only in conjunction
with a state reset�

Utterance Reset� Clear the chart up to the last recognized utterance� Here
things start to get quite complicated� A reset on this granularity only
makes sense if all the other partners are reset in a consistent manner�

Other modules might have even �ner meaningful reset points� Notice that
�ner reset granularities will usually be more di�cult to implement� since
such resets will work only if the correct contexts are kept across modules�

Exit� Obvious�

��



��� Using Channels

The ICE communication system allows module implementors to set up an arbitrary
number of channels between the modules in the system� ICE channels are similar
to those presented by Hoare in CSP ���� and implemented in the OCCAM �
programming language �����

Channels are objects that implement point�to�point bidirectional communication
between two processes	� A channel transports messages between the processes it
connects and will basically support four operations�

Send� Dispatch a message to the receiving process� A Send operation returns im�
mediately� ie� it does not matter if the receiving process is explicitly waiting
for a message on this channel�
� This has two consequences� First� commu�
nication is asynchronous� second� communication is bu�ered� since the sent
messages have to be kept somewhere until the receiver is prepared to retrieve
them from the corresponding input bu�er�

Asynchronous� bu�ered communication generally has performance advan�
tages over synchronous� unbu�ered communication� since it decouples

processes� thereby allowing a greater degree of parallelism� We do� of course�
incur some costs� Bu�er space is not in�nite and precautions may have to
be taken not to exhaust available bu�er resources memory�� This means
switching to synchronous blocking� communication if bu�ers get scarce�

Recv� A blocking receive� that is the calling procedure waits until a message gets
available on the channel� Useful for modules operating in lock�step mode�

nRecv� A non�blocking receive� that is the call to this procedure returns immedi�
ately� either with the oldest message in the channel input queue or the void
message value�

tRecv� A blocking receive with timeout� ie� after expiration of a timeout value
given as parameter the call returns with a value denoting a void message in
C typically a NULL pointer� if none was available�

One of the main advantages of using channels is that they impose structure on the
information �ow� Typically a channel will be used for each type of data �owing
between any two modules� This allows for specialization of the channels according
to the processing needs of the data involved� Bu�ered� low�priority channels for

	The two processes may be running on the same or on di�erent computers connected by some
communication system�

�
In CSP and OCCAM communication only takes place if both partners are ready to commu�
nicate� Every communication in such a model is therefore also a synchronization�

�




bottom�up hypotheses� unbu�ered� medium�priority channels for top�down pre�
dictions� bu�ered� high�priority channels for system control trace� reset� exit��
etc�

��� Quality�based Bu	ering and Time�based Garbage

Collection of Hypotheses

In a system without global control modules are prone to live�locking one another�
Live�lock is a condition in parallel system where modules are so busy sending and
receiving data� that little or no time is left for useful work�

An obvious way to tackle such problems is the development of local control strate�
gies that try to strike a good balance between communication and computation� Of
course such an approach would confront us with the complexities of sophisticated
local control�

As an alternative� we propose a mechanism that tries to avoid the pitfalls of sophis�
ticated local control� and yet manages to balance communication and computation
based on limited local information�

The mechanismhas two requirements� First� that hypotheses traveling over a chan�
nel contain a quality score that re�ects the certainty of the respective hypothesis�
Second� that every hypothesis also includes a time frame for which it is considered
to be valid or applicable�

Using this information we extend channels by the following features�

�� A channel quality threshold against which all hypotheses waiting to be
dispatched over the channel are set� Hypotheses whose score is below the
channels current threshold are bu�ered in a local send queue instead of being
sent to the destination process immediately�

The threshold should ideally only be set�able by the receiver� so that it has
a means of damping or increasing� message transmission rates according to
its own processing needs or capabilities�

�� A time limit after which hypotheses with scores below threshold are re�
moved from the send queue� This avoids an over�ow of bu�er space with low
score hypotheses�

We call this time�based garbage collection TBGC�� Garbage collection�� is a
technique used in dynamic memorymanagement schemes to reclaim used but
provably inaccessible storage space and recycle it into the unused memory
pool� For an overview of such techniques see ����

��Ecologically speaking� the term �garbage collection� is a misnomer� since the garbage is not
only collected but also recycled with a ���� e�ciency�

��



This mechanism is an extension of the time�frame based �ltering proposed by
Pyka in ����� Adaptive behavior of channels can be implemented with ideas such as
automatic threshold decay to default values or auto�regulation based on hypotheses
throughput statistics� The quality threshold and the time limit can be seen as
parameters that de�ne the viscosity of the hypotheses �owing through the channel�
Experiments with INTARC ��� will show if the mechanism succeeds in avoiding
live�lock without damping the �ow of information so much as to hinder successful
operation of the system�

��� Incrementality
 Interactivity
 Synchronization
 Con�

trol and Algorithms

Using the ambiguity resolution mechanisms presented by Hauenstein � Weber in
��	� as an example� we would like to show in more detail the range of complications
arising from the use of interactivity�

We brie�y describe the two di�erent disambiguation strategies used by Hauenstein
� Weber between an HMM�based word recognizer and a chart�based parser�

Verify Mode� After sending all word hypotheses terminating at a time frame Ft�
the word recognizer WR� waits for feedback from the chart parser CP��
Based on the current state of the chart and the the applicable grammar
rules� the parser will accept some of the word hypotheses and reject the ones
that do not �t any of the current valid paths� The accepted ones are sorted
according to the scores derived from the paths that they belong to� and the
best of them are sent back to the WR� The WR in turn revises its scores
based on this veri�cation and then enters the next cycle by extending its
models to frame Ft��� The basic idea is to pick winning paths in the WR
much earlier than it would be possible without the veri�cations derived from
syntactic constraints coming from the CP� thereby restricting search space�

Predict Mode� Before extending word hypotheses from frame Ft to frame Ft��

the WR waits until it gets a prediction for what words seem plausible given
the current parse state from CP� All paths not compatible with the set of
received word hypothesis predictions are discontinued by the WR� again
restricting search space�

From the point of view of control it is interesting to note that Hauenstein and
Weber used a strict lock�step synchronization� The CP would wait to receive the
next bag of word hypotheses and then produce either a veri�cation or a pre�
diction� Meanwhile the WR would be blocked until the arrival of the veri�ca�
tions�predictions�

��



The gain in quality through top�down disambiguation was partially o�set by the
loss of parallelization in the WR�CP system� There were no more overlapping
computations�

Given this loss� what would be the price� in terms of increased controller complex�
ity� to get parallel processing back into the game Super�cially we would have
to decouple the two modules� That is� the CP would simply produce veri�cations
or predictions without bothering with the actual time�frame position of the WR�
Both modules would then run in parallel again�

A question that immediately comes to mind is� if �prediction� is an apt name for
data that arrives late and therefore concerns a time that is already in the past
from the point of view of the WR A simple strategy to deal with late arriving
predictions would be to ignore them� which seems a wasteful loss of potentially
useful syntactic restrictions� A better approach might be to downgrade the scores
of the predictions and use them as mere hints���

If such hints are taken into account by the WR� they may lead to a major revision
of the state of the WR from the time frame the prediction is about say Ft� to the
current time frame say Ft���� The new hypotheses for the time frame �t� t # ��
may even contradict the previously computed ones� which� to complicate matters
further� may already have been sent to the CP� At this point� the right thing to do
is to notify the CP that a revision of hypotheses has taken place and that a back�up
to frame Ft is necessary� This rather simple sounding requirement violates one of
the fundamental assumptions of chart parsing� that the chart grows monotonically�
In order to do backtracking in a chart parser� the local control algorithms have to
be completely redesigned�

Note also that chart backtracking can trigger a new cycle of pre�
dict�revise�backtrack� Interactive control has to make provisions against in�nite
feedback loops occuring in the system�

The purpose of this section is not to argue against interactivity in Verbmobil�
Rather� we want to point out the complexities involved� so that algorithms �t for
interactive architectures are chosen early enough in the respective development
phases�

See Weber ���� for a control algorithm for a loosely coupled and therefore parallel
WR�CP system�

��The reason to downgrade the value of the information is that the parser� having received
further word hypotheses in the meantime� might also have changed directions�

��




 Conclusion

The aim of this paper was to call attention to the enormous complexities associated
with the problem of controlling a distributed software system as large as Verbmobil�
To this end� we introduced two insights that are of crucial importance for the
discussion of control in Verbmobil�

�� The concept of architecture is applicable to many layers within Verbmobil�

�� Likewise� control has many layers that interact with one another and is
tightly intertwined with the architectural choices�

Developers in Verbmobil need to be aware that any system architecture that
goes beyond the simple sequential model� implies forms of control that may
force them into complete revisions of their implementations or even algo�
rithms�

Unfortunately there is no simple� ready�made solution to these problems� Com�
puter science is still a long way from o�ering a sound theory of distributed control���
Furthermore� the sheer distributedness of Verbmobil� in terms of geography and its
status as a joint research project� exacerbate the problems of reaching consensus
on any issues spanning more than one architectural level in the overall system�

The Verbmobil TP�	 Group is currently assembling the version ��� of INTARC� As
depicted in �gure � page ���� INTARC ��� is highly interactive and consequently
has very complex data �ow paths� We expect the control problem to be very
challenging indeed� All the involvedmodules are by now ready and stable� ICE� our
communication environment� is in �nal beta testing� INTARC ��� is scheduled to
be operational by April �	� We will produce a follow�up report on our experiences
with distributed control in INTARC ��� shortly thereafter�

��Witness the enormous technical 
and 	nancial� problems the new airport in Denver is having
with the distributed control of its luggage distribution system 
see Gibbs ������

��



A A Formal Description of a Modular Archi�

tecture

In this section we present a formal description of a distributed system� The ter�
minology is adapted Durfee et al� �
� page �	��

Let the distributed system be built of set of modules M $ fM�� � � � �Mmg� Each
module is a ��tuple Mi $ S� I�D�N�O�P� where�

S $ fS�� � � � � Ssg is a set of states that the module can be in�

I $ fI�� � � � � Iig is a set of data inputs that have been sent from other modules
to this module� The Ii may have arbitrary content� eg� control information�
signal data� constraints from higher modules� etc�

D $ fD�� � � � �Ddg is a set of data that reside in the module�s local memory�

N $ fN�� � � � � Nng is a set of ternary input operators that map elements of the set
S� I�D onto itself� Application of an operator Nk will typically transport
elements of I to D�

O $ fO�� � � � � Oog is a set of binary operators that map elements of the set S�D
onto itself� The Oo represent the algorithms that the module implements�

P $ fP�� � � � � Ppg is a set of binary projection operators that map elements of the
set S�D in a moduleMi onto itself thereby copying or moving one or more
elements of D into the set I of one or more other modules� That is� the Pp

transport hypotheses from D�Space into other modules� I�Spaces�

Hypotheses A piece of data received from another module describing part of
the signal� or higher abstractions thereof� is called an input hypothesis� Note that
input hypotheses are located in I�Space upon receipt but may be transfered to
D�Space by a Nn operator application� A piece of data representing a partial�
solution produced by the algorithms implemented in the module is accordingly
called an output hypothesis�

A hypothesis H can be represented by a triple T� d��v� where T $ �t�� t�� is a time
interval over which the statement d applies� �v is a vector of con�dence values for d�
Time intervals are likely to be more useful in the lower levels of an NLSP system�
where there still is a strong correlation between signal and interpretation�

��



Time Let time be a local discrete quantity� ie� the time reference used in module
Ma is not necessarily the same as in Mb and time proceeds in ticks� Furthermore�
let St� be a mapping from time t onto S and It�� Dt�� Ot�� and P t� the
corresponding mappings for I� D� N� O and P�

Local Control The local control problem can now be formulated as� Choose
Nn�t� Oo�t and Pp�t such that

do
Nn�t�St
�� It
��Dt
�� � St��� It���Dt���
Oo�t�St���Dt��� � St���Dt���
Pp�t�St���Dt��� � St���Dt���

until XSt��� It���Dt��� $ true

are optimal with respect to the aims of the module� Keep doing this until a
termination criterion� represented by X����� is true�

Note that the choices of Nn�t� Oo�t and Pp�t are not functions of S� I and D� The
values of the indices nt�� ot� and pt� will usually be constrained by St�� It�
and Dt�� but not determined by them� Therefore we have an explicit operator
choice mechanism present in each module�

The VM Mini�Demonstrator uses an architecture that Briscoe �	� page 	�� has
dubbed the autonomous� serial model � which has a purely sequential architecture
that uses neither incrementality nor interactivity� can be described as follows within
this framework�

N and P consist of single element sets� N $ fN�g and P $ fP�g� N� and P�

are each used exactly once� N� to import the solutions found by the lower level
module and P� to export any solutions found to the next higher module� In this
framework the local control is reduced to� Choose Oo�t such that

N�St
�� It
��Dt
�� � St��� It���Dt���
do
Oo�t�St���Dt��� � St���Dt���

until Y St���Dt��� $ true

P�St���Dt��� � St���Dt���

is optimal with respect to the aims of the module� Keep doing this until a termi�
nation criterion� represented by Y ����� is true�

��



References

��� Gul Agha� Actors� A Model of Concurrent Computation in Distributed Sys�

tems� The MIT Press� ��
��

��� Jan Amtrup� ICE � INTARC Communication Environment� Design und Spez�
i�kation� VerbmobilMemo �
� Universit�at Hamburg� FBI�UHH�August �����

��� Andrew W� Appel� Garbage Collection� pages 
������ MIT Press� Cambridge�
Massachusetts� �����

��� Avron Barr� Paul R� Cohen� and Edward A� Feigenbaum� The Handbook

of Arti�cial Intelligence� volume �� Addison�Wesley Publishing Company�
Massachusetts� ��
��

�	� E� J� Briscoe� Modelling human speech comprehension� Ellis Horwood Ltd��
Chichester� ��
��

��� Norman Carver and Victor Lesser� The evolution of blackboard control ar�
chitectures� Technical Report ������ CMPSCI� October �����

��� Iain D� Craig� The CASSANDRA Architecture� Distributed Control in a

Blackboard System� Ellis Horwood Limited� Chichester� ��
��

�
� Edmund H� Durfee� Victor R� Lesser� and Daniel D� Corkill� Cooperative

Distributed Problem Solving� pages 
������ Volume � of Barr et al� ���� ��
��

��� Robert Engelmore and Tony Morgan� Blackboard Systems� Addison�Wesley
Publishing Company� Massachusetts� ��

�

���� L�D� Erman� F� Hayes�Roth� V� R� Lesser� and D� R� Reddy� The HEARSAY�
II speech understanding system� Integrating knowledge to resolve uncertainty�
ACM Computing Surveys� ��������	�� February ��
��

���� David Gelernter� Getting the job done� Byte� ������������
� December ��

�

���� W Wayt Gibbs� Software�s chronic crisis� Scienti�c American� ���������
��
September �����

���� G�unther G�orz� Kognitiv orientierte Architekturen f�ur die Sprachverar�
beitung� Technical Report ASL�TR�������UER� Universit�at Erlangen�
N�urnberg� �����

���� Hermann Haken� Synergetics� An Introduction� Springer Series in Synergetics�
Springer Verlag� �rd edition� ��
��

�	



��	� Andreas Hauenstein and Hans Weber� An investigation of tightly coupled
time synchronous speech language interfaces using a uni�cation grammar�
Verbmobil Report �� Universit�at Hamburg� NATS und Universit�at Erlangen�
N�urnberg� IMMD VIII� February �����

���� C� A� R� Hoare� Communicating sequential processes� Communications of the
ACM� ��
���������� August ���
�

���� INMOS Limited� OCCAM � Reference Manual� Prentice Hall� ��

�

��
� V� Jaganathan� Rajendra Dodhiawala� and Lawrence S� Baum� editors� Black�
board Architectures and Applications� Academic Press� Inc�� ��
��

���� D� Marr� Vision� A Computationl Investigation into the Human Representa�

tion and Processing of Visual Information� Freeman� ��
��

���� Claudius Pyka� Deterministische� inkrementelle und zeitsynchrone Verar�
beitung und die Architektur von ASL�Nord� Technical Report ASL�TR����
���UHH� Universit�at Hamburg� �����

���� Claudius Pyka� Management of hypotheses in an integrated speech�language
architecture� In Proc� ECAI� pages 		
�	��� �����

���� Yoav Shoham� Agent�oriented programming� Arti�cial Intelligence� ���	�����
�����

���� Wolfgang Wahlster and Judith Engelkamp� editors� Wissenschatliche Ziele

und Netzpl	ane f	ur das VERBMOBIL�Projekt� DFKI� Saarbr�ucken� �����

���� Hans H� Weber� LR�inkrementelles probabilistisches Chartparsing von Wor�

thypothesenmengen mit Uni�kationsgrammatiken� Eine enge Kopplung von

Suche und Analyse� PhD thesis� Submitted to Universit�at Hamburg� �����

��	� Robert C� Whitehair and Victor R� Lesser� A framework for the analysis
of sophisticated control in interpretation systems� Technical Report ���	��
University of Massachusetts at Amherst� Amherst� MA� �����

��


