
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

TM-99-03

A Process Model for the Design of Multi-Agent
Systems

Jürgen Lind

German Research Center for AI (DFKI)
Im Stadtwald, B36

66123 Saarbrücken, Germany
lind@dfki.de

April 1999

Deutsches Forschungszentrum für Künstliche Intelligenz

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341
E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz

DFKI GmbH
German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in the
field of innovative software technology based on Artificial Intelligence (AI) methods. DFKI is fo-
cusing on the complete cycle of innovation — from world-class basic research and technology
development through leading-edge demonstrators and prototypes to product functions and com-
mercialization.

Based in Kaiserslautern and Saarbrücken, the German Research Center for Artificial Intelligence
ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI’s mission is to move innovations as quickly as possible from the lab
into the marketplace. Only by maintaining research projects at the forefront of science can DFKI
have the strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with advanced degrees.
There are also around 120 part-time research assistants.

Revenues for DFKI were about 24 million DM in 1997, half from government contract work and half
from commercial clients. The annual increase in contracts from commercial clients was greater
than 37% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects with
planned deliverables, various milestones, and a duration from several months up to three years.

DFKI benefits from interaction with the faculty of the Universities of Saarbrücken and Kaiserslau-
tern and in turn provides opportunities for research and Ph.D. thesis supervision to students from
these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI’s six research departments are directed by internationally recognized research scientists:

Information Management and Document Analysis (Director: Prof. A. Dengel)
Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
Deduction and Multiagent Systems (Director: Prof. J. Siekmann)
Programming Systems (Director: Prof. G. Smolka)
Language Technology (Director: Prof. H. Uszkoreit)
Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wahlster
Director

A Process Model for the Design of Multi-Agent Systems

Jürgen Lind

German Research Center for AI (DFKI)
Im Stadtwald, B36
66123 Saarbrücken, Germany
lind@dfki.de

DFKI-TM-99-03

This work has been supported by a grant from The Federal Ministry of Education,
Science, Research, and Technology (FKZ ITW-).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1999

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-008X

A Process Model for the Design of Multi-Agent Systems

Jürgen Lind

German Research Center for AI (DFKI)
Im Stadtwald, B36

66123 Saarbrücken, Germany
lind@dfki.de

April 9, 1999

Abstract

In this paper, we propose a pragmatic process model for the development of
multi-agent system based on the combination of standard software engineering
techniques with a special focus on multi-agent systems. The resulting process model
is the attempt to make our experience in the design of multi-agent systems avail-
able to other system designers.

The approach presented in this paper has evolved over several years and it has
been successfully applied and refined in different types of multi-agent systems. A
short case study of our latest project is included in the paper.

1 Introduction

It is a widely agreed fact in the Software Engineering community that any software life
cycle or process model must be tailored towards the characteristic needs of the appli-
cation domain of the target system [3] [4]. There is no “silver bullet” [7], ie. none of the
numerous existing techniques can be used for all types of problems. Therefore, we re-
sisted the temptation to announce yet another “general purpose” method, but instead
we suggest a design methodology specialized for multi-agent systems.
Several characterizations for multi-agent systems (MAS) have been proposed eg. [18],
[15], [14], [40], summarizing to the following: multi-agent systems are systems with a
variable number of interacting, autonomous entities that communicate with each other
using flexible, complex protocols. The agents within a multi-agent system usually have
complex individual components and run concurrently in a distributed environment.
Multi-agent systems are usually continuous systems (as opposed to functional systems
according to [38]) with a loose coupling between the individual components of the sys-
tem.
Not every multi-agent system has all features mentioned above, but we can use this
characterization to derive a number of requirements that are specific for this kind of
systems. Some of the requirements are direct results of the features mentioned while
others represent non-functional aspects of the target systems.
The concurrent, distributed approach to problem solving requires a sophisticated sys-
tem design that first of all guarantees that the resulting system is dead-lock free and

1

terminating (wrt. to a given task, ie. this is no contradiction to the concept of a con-
tinuous system!). Furthermore, we would also like to have a deterministic system that
allows the reproduction of system runs. Though this requirement cannot always be be
realized (eg. in the case of randomized algorithms) it is nonetheless an important fac-
tor to increase the users trust into the system. Closely connected to this requirement
is the need to produce traceable systems [28]: the designer (and later the user) must
be enabled to follow the systems activities in order to decide whether the system shows
a reasonable behaviour or not. This is also of vital interest for the development phase
of the system with respect to debugging. For monolithical systems, debugging features
are supported by the programming language or a development environment; in the
case of multi-agent systems, however, only little or no support is given by existing lan-
guages and environments. Thus, either standard agent development frameworks must
be used or it is the task of the system designer to develop and integrate the facilities
to support tracing and debugging. Finally, the target system must be designed to scale
[22]. Designing a system that works well for 10 agents is often a straightforward task;
however, scaling the system up to, say, 5000 agents is often a completely different mat-
ter and may require a re-design of major parts if the operational size of the system was
neglected during the design and test phase.
In this paper, we propose a pragmatic process model for the development of multi-
agent systems. We have combined several standard SE techniques such as round-trip
engineering or multi-view modelling and focused them on the special context of multi-
agent systems. The resulting process model is not the attempt to invent the “silver
bullet” but the attempt to make our experience in the design of multi-agent systems
available to other system designers. We strongly recommend to use standard software
components or design patterns whenever they are available because the re-invention
of the wheel usually leads to sub-optimal solutions! The approach presented in this pa-
per has evolved over several years and it has been successfully applied and refined in
different types of multi-agent systems:

� The multi-agent solution for the Train Coupling- and Sharing (TCS) approach
[36], [25], [26] is a system for scheduling and cost optimization of a large num-
ber of railroad transportation tasks using novel railroad technologies.

� In the MOTIV/PTA [6], [33] project, a multi-agent system for distributed inter-
modal route planning was developed.

� The TEAMWORK LIBRARY [24], [10], [11] is a framework for distributed search that
was originally developed for equational theorem proving but it was also used in
other application fields [20], [23].

This paper is organized as follows: firstly, we define our view on the software devel-
opment process and on the products that are generated during that process. We then
introduce the basic elements of our process model before we present the model itself.
A short case study of a project that was executed using the process model and some of
the lessons learned during the project are presented next; a conclusion summarizes the
paper.

2

Validation

Environment Model SW System

Figure 1: SW Development Process

2 Models and Systems: What and How?

Before we can present our design approach, it is necessary to clarify our view on the
software design process and the product(s) involved in this process. The ideal software
development process is shown in figure 1:

1. The designer constructs an abstract model of the aspects of the real world that
should be modelled by the SW System.

2. The system is implemented according to the model.

3. The operational system is evaluated according to the real world.

The result of this development process is a software system that consists of a model and
the code that implements the model on a computer platform. The model represents the
designers view on the system and its environment as well as the designers intention of
what the system is supposed to to.
The model and the code are linked together in a way that the features of the model are
mapped to features of the code. This mapping is by no means a bijection: as shown
in Figure 2, a single feature of the model can be linked to several features of the code
and vice versa. Furthermore, the links shown in Figure 2 are to be interpreted as “rub-
ber strings” in the sense that pulling on a link has effects on all (directly or indirectly)
connected model or code features — the effects decrease with increasing distance or
increasing number of intermediate nodes.
In the sequential development process shown in Figure 1, the designer will in a first
step construct the model and implement the corresponding code in a second step. Un-
fortunately, this ideal process usually cannot be established eg. because the model is
incomplete or inconsistent, or the mapping of the model to a given computer platform
is faulty or impossible with a given hard- or software.
Therefore, we suggest an incremental system development approach: the designer con-
structs a minimal model of the system which is instantly implemented. Then the model
and the code are consistently updated using one of the two possible operations: the
enhance operation adds new features to the model or the code an specifies their re-
spective links while the adjust operation “pulls” on some of the existing links (eg. by
adjusting the code according to features of the underlying operating system) and then
updating the linked features (eg. the parts of the model affected by a specific require-
ment).

3

SW SystemModel

Figure 2: Connections between Model and SW System

An example for this iterative enhancement process is shown in Figure 3: in a first step,
the initial model is enhanced by a GUI component and a Input/Output component
which are also added to the initial code fragment. In the following steps, these compo-
nents would be extended until the final system is constructed.

3 Process Model

In this section, we present the building blocks and a semi-algorithmic process model
for the idea sketched in the previous section.

3.1 Views

The fundamental abstractions used in our process model are so-called views. Views
represent orthogonal aspects of the target system and thus allow for a rather natural
decomposition of the design task.
In our model, we differentiate between three views: The architectural (or static) view
is concerned with the entities within the system and their static interconnections, the
interaction (or dynamic) view handles more task oriented questions but still on a rather
abstract level and the functional view, finally, focuses on the local decision and plan-
ning algorithms of the agents.
Although these views are quite independent of each other – though not completely in-
dependent, eg. the features of the functional view (eg. what the agents are supposed to
do) surely depend on the architectural question what objects will be the agents –, they
can be ordered according to their application dependency as shown in Figure 4: a lot
of the questions handled in the architectural and interaction view are rather applica-
tion independent, this allows to build abstract multi-agent systems that share the same
architecture and interaction scheme but that can be instantiated for different problem

4

incremental

refinement

mutual dependencies

SW SystemModel

...

Figure 3: Example for Model Refinement

areas by adjusting the functional view. For example, the basic architecture and interac-
tion scheme that was used in the TELETRUCK system [8] was also successfully applied
for the TC S

MA S system [26].
In the next section, we describe how the different views can be developed and how they
are integrated in order to build an operational system.

3.2 Process Model

A process model in software engineering sense is a formalization of the software de-
sign and implementation activities and of the products that are connected with these
activities [19]. Sequential models such as the Waterfall [31], [19] or the V-Model [2] are
organized in several steps where each step has a number of actions together with as-
sociated pre- and postconditions. The activities in each step be can executed when
the preconditions are met and they are terminated when the postconditions become
true. Associated with each activity are one or more products. Typical products that oc-
cur within the waterfall model are the system design document, the component design
documents or the code.
The model proposed in this paper has a slightly different view on the products and
activities; in our model, only a single product (consisting of the model and the code)
exists. This single product is refined and extended during the software development
process until is has reached an acceptable state. The various activities of the software
development process are thus executed several times; models of this type are usually
called iterative enhancement [5] or round-trip engineering models [2].
In our model, we have three major activities that implement the model enhancement

5

architectural view

interaction view

functional view

increasing
application
dependency

Figure 4: View Hierarchie

or model adjustment discussed earlier. These activities are integrate, validate and feed-
back: the different views presented in the previous section are assembled in so-called
integration steps that join together fragments of the model or the code in order to gen-
erate larger units. These integration steps are then followed by validation steps that
determines whether the integration process led to satisfactory results or not. In the
latter case, a feedback loop is activated that distributes the results of the validation pro-
cess (and thus the reasons for failures of this process) via the feedback bus to the model
specifications. These specifications must are changed accordingly and new integration
and validation attempt is taken. This process iterates until the validation succeeds.
The complete model shown in Figure 5 is executed as follows:

1. A feasibility analysis [40] is executed in order to decide if the problem domain in
question is suitable for a multi-agent solution. Then a requirements specification
of the functional aspects of the target system is generated. This document is later
used for the validation steps.

2. During the initial design phase, the initial versions of then architectural, interac-
tion and functional view are developed. These components are the basis for all
further activities.

3. (a) i. The first integration phase leads to the first version of the abstract multi-
agent system. This fragment focuses on architectural and interaction as-
pects of the target system and neglects functional aspects as far as pos-
sible.

ii. The abstract system is validated against architecturaland interaction view.

(b) In parallel, the components developed out of the functional specification can
be validated.

4. The next integration step assembles the abstract system and the components and
leads to the so-called operational multi-agent system.

5. The operational system is validated against system requirements document. If
the state is accepted, this step results in the final multi-agent system, otherwise
the feedback loop is activated.

6

Requirements
Specification

System Design
(architectural view)

Interactin Design
(dynamic view)

Component Design
(Functional view)

Integration

abstract
MAS

Validation

Integration

Validation

operational
MAS

Validation

Optimization

Final
MAS

Information Flow

Feedback Loop

Product Flow

Feedback Bus

Figure 5: Process Model

7

6. In an optional step, the operational system can be optimized without(!) changing
the model. This step is reserved for non-functional optimization only!

3.3 Design Guidelines

In the following paragraphs, we provide some guidelines about which aspects of the
target system should be handled in which of the views discussed earlier. Note that
these guidelines represent our personal experiences in the design and implementation
of multi-agent applications — each application has unique characteristics that may re-
quire an adaption or an extension of the process model. The aspects discussed below
are by no means exhaustive; they are just excerpts from our experience base and we rec-
ommend that each organization develops their own local guidelines that match their
individual needs [9].
The architectural view is concerned with the fundamental structure of the application,
typical issues to be handled in this view include:

� the agent architecture [39] wrt. functional aspects of the application. For appli-
cations with fuzzy task specifications, for example, a BDI agent architecture [30],
[13] might be more suitable whereas for applications with rather strict task speci-
fications simpler architectures may suffice.

� the society model of a multi-agent application. An agent society can either be ho-
mogenous, ie. it is comprised of agents with the same architecture, or it can be
heterogenous. In the latter case, the data exchange between agents with different
architectures is usually the most difficult part and it has large impact on the entire
application — for example, in this case it is usually not possible to use native data
formats. Another aspect of the society model is the structure of the agent society.
We can have a flat structure where all agents interact on the same level or we can
have a hierarchical structure where some agents play a more important role than
others.

� the programming model to be used in the implementation. Programming models
can be classified according to their degree of concurrency: a sequential program-
ming model admits for no concurrency at all; functions are called strictly one after
the other. This kind of programming model does not require sophisticated syn-
chronization mechanisms and it is sufficient in the case where the multi-agent
paradigm is solely used for design purposes, ie. to structure the target system. A
pseudo-parallel model, on the other hand, typically uses light weight processes
(threads) within a single operating system process to achieve concurrent execu-
tion of program fragments. This kind of programming model is well suited for
multi-agent applications because it allows for a reasonable degree of parallelism
while still being easy to handle wrt. debugging and traceability (if the tools ned-
ded for these task are available — we will return to this point in the case study in
Section 4). A fully distributed programming model, finally, distributes the compu-
tation space over several computers connected via a network. This model is quite
hard to handle because it often requires complex synchronization and fault tol-
erance mechanisms. However, for real world applications, this might be the only
possible choice.

8

� the communication model that handles all aspects in conjuction with agent inter-
action. The agent identification scheme, for example, determines how the agents
find each other within the agent society; possible choices are a fully distributed
scheme where each agent knows any other agent or a centralized scheme that
uses an agent directory service to provide the necessary information to any client.
Another important aspect is the message model to be used within the system. Syn-
chronous message passing requires a more restricted design of agent interaction
but it is usually easier to use than asynchronous message passing. However, the
asynchronous message exchange usually allows for a more effective use of con-
currency.

The interaction view handles all matters in conjuction with agent interaction, eg.

� the negotiation protocols. For example, we can differentiate between competitive
or market based negotiation protocols where each agent tries to optimize its lo-
cal performance, and decompositional protocols that assume that the interacting
agents are willing to cooperate to achieve the system goal. Thus, these protocols
only seek to find the best decomposition of the original system task.

� Communication bottleneck analysis. In multi-agent systems, communication plays
the major role and therefore, traffic analysis is one of the most important ques-
tions wrt. to system performance and scalability. A thorough analysis of which
agents communicate using which messages can often help to eliminate traffic
overheads and thus reduce the communication ratio of the system in order to in-
crease the average system performance.

The functional view, finally, models

� The local (autonomous) decisions of the agents. The decisions that do not con-
sider the other agents within the agent society are local decisions — a prominent
example for this kind of functions are the plan execution facilities of an agent.

� The decisions during interaction processes. The decisions taken by an agent when
it is involved in a multi-agent negotiation protocol are the interaction decisons.
An example for this kind of functions are cost functions that are used by the agents
to evaluate the utility of particular (joint) actions.

In this section, we have presented a process model that features a multi-view approach
with multi-stage feedback. The model has explicit feedback loops that direct the infor-
mation gained in the validation steps to all relevant components and it supports incre-
mental system development using an iterative refinement loop. In the next section, we
present a brief overview over a software project that was executed using this process
model.

4 Case Study: TC S
MA S

4.1 Project Overview

The goal of the TC S
MA S project [25], [26] is to evaluate an alternative approach [21], [12],

[36] to classical freight transport process that uses small railroad transportation mod-

9

Figure 6: Train Coupling and Sharing

ules [37] instead of conventional trains. Whereas a normal train is made up of one lo-
comotive and several freight waggons, a transportation module consists of two power
units on either side of the module and three permanently coupled intermediate vehi-
cles with a fixed number of loading spaces. Thus, a transportation module is a single
unit of limited size. When a company wants to deliver some freight to a customer, it or-
ders a transportation module at a local freight center and loads its goods on this mod-
ule. The module itself is then responsible to find its way through the railroad network.
The problem is now, that a location route in a railroad network cannot be used by two
independent modules at the same time. Either a route is blocked by a single module or
two (or more) modules share a route by hooking together at the beginning of a location
route and splitting up afterwards. This process is shown in Figure 6; modules that share
location routes are referred to as unions. In order to use the underlying railroad infras-
tructure most efficiently, the railroad modules should share as many location routes as
possible while taking care of their local constraints.
A schedule for the modules is generated in the following way: an initial solution is ob-
tained by running the contract-net [34] protocol whenever a new module enters the
system. New modules are incrementally integrated in the existing schedule which guar-
antees, that always a solution for the problem (as far as it is known to the system) exists.
However, this solution may be – and usually is – not optimal. In order to improve the
quality of the existing solution, the simulated trading [1] protocol is run on the set of
unions currently known to the system.
The multi-agent system to solve this optmization task is fully implemented in Oz [35],
a high-level programming language that combines constraint inference with concur-
rency. Oz is a dynamically typed language and supports object-oriented system devel-
opment, finite domain and feature constraints. The implementation of the TC S

MA S system
consists of approximately 74 classes with 18000 lines of code. The decomposition of the
system according to our view scheme is the following:

Architectural view In the TC S
MA S system, we use the INTERRAP agent architecture [27]

as architecture for the agents that represent the transportation modules in the
scenario. The original model is extended to feature a holonic approach [16] that
makes it easier to model the union formation process during the problem solv-
ing. Furthermore, we have a homogenous, flat agent society, ie. all agents have
the same architecture and each agent can interact with any other agent. The pro-
gramming model is a pseudo-parallel model that is supported by the implemen-
tation language, agent identification is achieved by using a central agent directory

10

service and the message model is synchronous.

Interaction view We use two cooperative, market-based negotiation protocols — the
contract net protocol to generate an initial solution whenever a new task is an-
nounced to the system and the simulated trading protocol that is used to optimize
the current solution. The optimization process is not executed in every round, in-
stead it is only activated every k rounds or on an explicit user request.

Functional view The functional aspects include the local planning of optimal routes
for the individual modules and the planning of optimal locations for join opera-
tions with other modules. The system features a dynamic plan execution moni-
toring component that is also modelled in this view.

Due to the limited space we can only give a short summary of the TC S
MA S system, the inter-

ested reader should refer to [25] and [26] for details. In the next section, we will discuss
some of the experiences that we made during the course of the project.

4.2 Lessons learned

Every software project adds some new knowledge to the experience database of the
designer and to the organization knowledge. The vast majority of these new experi-
ences are only small pieces that “tune” the process model such that it matches the new,
special requirements of the project. Sometimes, however, very important gains in ex-
perience occur — “experience milestones” might be an adequate term for this kind of
experiences. In this paper, briefly discuss two experience milestones that we discovered
within the TC S

MA S project.
The first lesson we learned is concerned with monitoring and debugging a multi-agent
system with a pseudo-parallel computation model. Earlier projects (the TEAMWORK LI-
BRARY and the MOTIV/PTA project) featured distributed models that made use of real
parallelism; the TC S

MA S project on the other hand uses Oz threads to implement the agents
within a single user process. Although the Oz programming system has a debugger, it
is hard to follow the activities within a multi-agent system because the debugger does
not respect the “bounds” of the agents, ie. it does not support navigation within the
code being executed wrt. the question which agent is being inspected at the moment
etc. Thus, additional monitoring and debugging features are necessary and must be
provided by the system engineer. In the TC S

MA S project, we developed several tools that
enabled us to inspect the messages being sent by the agents, their respective plans or
ongoing computation activities of the agents. The relevant point now is not, that these
tools had to be designed and implemented. The important point is, that none of these
activities was foreseen and thus included in the original project schedule! We simply
did not see the necessity when the project plan was set up and so the plan had to be
modified in order to include the additional work packages that resulted from the need
for monitoring and debugging support. Thus, whenever possible, standard agent pro-
gramming frameworks such as presented in [32] or [29] should be used in order to relief
the system designer from this task. If the use of agent libraries or agent programming
frameworks is not possible, ie. because of a special programming language to be used
in the project, the effort to set up the necessary tools must be carefully evaluated and
included in the project plan.

11

The second important aspect during the project was the vulnerability of a multi-agent
systems wrt. to scalability. Much has been written about this subject [40], [22], [17],
but in a real world project the difficulty remains to adapt the academic results to the
possibilities and limitations of the system under consideration. It is usually not possi-
ble to build the application in a way that contemplates with the prerequisites of a re-
search model and then to apply the derived concepts. Instead, the designer must find a
pragmatic way to preserve the system structure and to make use of the research results
in order to get the system running for larger problems. In the TC S

MA S project for exam-
ple, the operational validation of the system was made with only small or medium size
problem descriptions. This was partly due to the fact that real problem descriptions
were not available at project start and thus the designers had to use their imagination
to generate test cases — as it turned out, these test cases were by far smaller than the
problem sizes to expect and consequently, the system did not scale. To overcome this
difficulty, we had to spent additional effort to reduce the agent interaction in a way that
the resulting system still yields good solutions but in a reasonable time. This goal was
eventually achieved by the use of clustering techniques. The problem demonstrates,
however, how important it is for the designer to keep the operational size of target sys-
tem in mind when the test cases are specified.

5 Conclusion

We have presented a pragmatic software engineering process model that is specialized
for the development of multi-agent systems. The process model is an iterative model
that features a multi-view approach towards the system design. The model presented
in this paper has evolved during several projects and it should be adapted by potential
users to fit their individual needs and experiences. A brief case study has demonstrated
how the method was used in an actual project.

References

[1] BACHEM, A., HOCHSTÄTTLER, W., AND MALICH, M. Simulated trading: A new ap-
proach for solving vehicle routing problems. Tech. Rep. 92.125, Mathematisches
Institut der Universität zu Köln, Dezember 1992.

[2] BALZERT, H. Lehrbuch der Software-Technik, vol. II. Spekrum Akademischer Ver-
lag, 1998.

[3] BASILI, V. R. The Experience Factory: packaging software experience. In Proceed-
ings of the 14th International Conference on Software Engineering (1989), NASA
Goddard Space Flight Center.

[4] BASILI, V. R., CALDIERA, G., AND ROMBACH, H. D. Experience Factory. In Encyclo-
pedia of Software Engineering, J. J. Marciniak, Ed., vol. 1. John Wiley & Sons, 1994,
pp. 469–476.

12

[5] BASILI, V. R., AND TURNER, A. J. Iterative enhacement: A practical technique for
software development. In Proceedings of the First National Conference on Software
Engineering (Sept. 1975), IEEE Computer Society Press, pp. 56–62.

[6] BAYRISCHE LANDESREGIERUNG. Bayerninfo, 1996. http://www.bayerninfo.de.

[7] BROOKS, JR., F. P. No silver bullet. In Proceedings of the IFIP Tenth World Comput-
ing Conference (Elsevier Science, 1986), H.-J. Kugler, Ed., pp. 1069–76.

[8] BÜRCKERT, H.-J., FISCHER, K., AND VIERKE, G. Transportation scheduling with
Holonic MAS, the TeleTruck approach. In Proc. PAAM98 (1998).

[9] CANTONE, G. Advanced software factory: Models and experiences for the improve-
ment. In Proceeedings of the CQS International Conference on Quality Software
(Milan, Italy, October 1991).

[10] DENZINGER, J. The teamwork approach to distributed search. Tech. rep., Univer-
sität Kaiserslautern, 1994.

[11] DENZINGER, J., AND LIND, J. Twlib - a library for distributed search applications.
In Proceddings of the ICS96-AI (Kaohsiung, 1996), pp. 101–108.

[12] FABEL, P. Increasing the flexibility of freight traffic - using modular train units as
an example. In Proceedings of the World Congress of Railway Research (WCRR)
(Colorado Springs; USA, 1996).

[13] FISCHER, K., MÜLLER, J. P., AND PISCHEL, M. A pragmatic BDI architecture. In
Intelligent Agents — Proceedings of the 1995 Workshop on Agent Theories, Architec-
tures, and Languages (ATAL-95) (1996), M. Wooldridge, J. P. Müller, and M. Tambe,
Eds., Lecture Notes in Artificial Intelligence, Springer-Verlag.

[14] FRANKLIN, S., AND GRAESSER, A. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages (1997).

[15] FULBRIGHT, R. D., AND STEPHENS, L. M. Classification of multiagent systems.
Tech. Rep. ECE-LMS-94-06, University of South Carolina, Columbia, SC 29208,
June 1994.

[16] GERBER, C., SIEKMANN, J., AND VIERKE, G. Holonic multi-agent systems. Tech.
Rep. TR-99-01, DFKI, 1999.

[17] GERBER, C., STEINER, D., AND BAUER, B. Resource adaptation for a scalable agent
society in the mecca domain. In Intelligent Software Agents for Communication
Networks. Springer, 199.

[18] GOODWIN, R. Formalizing properties of agents. Tech. Rep. CMU–CS–93–159,
School of Computer Science, Carnegie-Mellon Universit, Pittsburgh, PA, May 1993.

[19] JALOTE, P. An Integrated Approach to Software Engineering, 2nd ed. Spinger, 1997.

13

[20] KÖGL, C. Verteilte Berechnung von Gröbnerbasen unter Verwendung des
Teamwork-Paradigmas. Master’s thesis, Universität Kaiserslautern, 1995.

[21] KRACKE, R., SIEGMANN, J., VOGES, W., BOECKER, J., AND ZIRKLER, B. Sys-
temgestaltung des Schienengüterverkehrs unter Einsatz der Strategie des Train-
Coupling and -Sharing. Tech. rep., Universität Hannover, 1995. Studie im Auftrag
der DB AG.

[22] LEE, L., NWANA, H., NDUMU, D., AND DE WILDE, P. The stability, scalability and
performance of multi-agent systems. BT Technology Journal 16, 3 (1998).

[23] LEOPOLD, T. Verteilte Lösung des Travelling-Salesman-Problems durch TEAM-
WORK. Master’s thesis, Universität Kaiserslautern, 1995.

[24] LIND, J. TWLib – a generic library for TEAMWORK applications. Master’s thesis,
Universität Kaiserslautern, 1996.

[25] LIND, J., AND BÖCKER, J. Optimising the Train Coupling and -Sharing system with
a multi-agent approach. In Proceedings of the 11th Mini-EURO Conference on AI
in Transportation Systems and Science (Helsinki, 1999). To appear.

[26] LIND, J., FISCHER, K., BÖCKER, J., AND ZIRKLER, B. Transportation scheduling and
simulation in a railroad scenario: A multi-agent approach. In Proceedings of the
Fourth International Conference on the Practical Application of Intelligent Agents
and Multi-Agents (London, 1999). To appear.

[27] MÜLLER, J. P. The Design of Intelligent Agents: A Layered Approach, vol. 1177 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, Dec 1996.

[28] NDUMU, D. T., NWANA, H. S., LEE, L. C., AND COLLINS, J. C. Visualising and
debugging distributed multi-agent systems. In Proceedings of the 3rd International
Conference on Autonomous Agents (1999). To appear.

[29] NWANA, H. S., NDUMU, D. T., LEE, L. C., AND COLLINS, J. C. ZEUS: A tool-kit for
building distributed multi-agent systems. Applied Artifical Intelligence Journal 13,
1 (1999), 129–186.

[30] RAO, A. S., AND GEORGEFF, M. BDI Agents: from theory to practice. In Proceed-
ings of the First International Conference on Multi-Agent Systems (ICMAS-95) (San
Francisco, CA, June 1995), pp. 312–319.

[31] ROYCE, W. W. Managing the development of large software systems: Concepts and
techniques. In WESCON Technical Papers, v. 14 (Los Angeles, Aug. 1970), WESCON.
Reprinted in Proceedings of the Ninth International Conference on Software Engi-
neering, 1987, pp. 328–338.

[32] SCHILLO, M., LIND, J., FUNK, P., GERBER, C., AND JUNG, C. SIF - the social in-
teraction framework system description and user’s guide to a multi-agent system
testbed. Tech. Rep. TR-99-02, DFKI GmbH, 1999.

14

[33] SIEMENS AG. Verfahren und Anordnung zur Ermittlung einer Route von einem
Startpunkt zu einem Zielpunkt. Deutsche Patentanmeldung 197 46 417.3, 1997.
Donald Steiner, Jürgen Lind, Alastair Burt and Hartmut Dieterich.

[34] SMITH, R. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers (1980).

[35] SMOLKA, G. The Oz programming model. In Computer Science Today, J. van
Leeuwen, Ed., Lecture Notes in Computer Science, vol. 1000. Springer-Verlag,
Berlin, 1995, pp. 324–343.

[36] VOGES, W., AND MIERAU, U. Train Coupling & -Sharing. In Proceedings of the
World Congress of Railway Research (WCRR) (Florence; Italy, 1997).

[37] WINDHOFF AG. CargoSprinter, 1996. http://www.windhoff.de.

[38] WOOLDRIDGE, M. Agents and software engineering. AI*IA Notizie XI(3) (1998),
31–37.

[39] WOOLDRIDGE, M., AND JENNINGS, N. R. Intelligent agents: Theory and practice.
The Knowledge Engineering Review 10, 2 (1995), 115–152.

[40] WOOLDRIDGE, M. J., AND JENNINGS, N. R. Pitfalls of agent-oriented development.
In Proceedings 2nd International Conference on Autonomous Agents (Agents-98)
(Minneapolis, 1998), pp. 385–391.

15

A
P

ro
ce

ss
M

o
d

el
fo

r
th

e
D

es
ig

n
o

f
M

u
lt

i-
A

g
en

t
S

ys
te

m
s

Jü
rg

en
L

in
d

G
er

m
an

R
es

ea
rc

h
C

en
te

r
fo

r
A

I(
D

F
K

I)
Im

S
ta

d
tw

al
d

,B
36

66
12

3
S

aa
rb

rü
ck

en
,G

er
m

an
y

lin
d

@
d

fk
i.d

e

T
M

-9
9-

03
R

es
ea

rc
h

R
ep

or
t

