
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

TM-98-09

The EMS Model

Jürgen Lind

January 1999

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341
E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz

DFKI GmbH
German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research insti-
tutes in the field of innovative software technology based on Artificial Intelligence (AI)
methods. DFKI is focusing on the complete cycle of innovation — from world-class
basic research and technology development through leading-edge demonstrators and
prototypes to product functions and commercialization.

Based in Kaiserslautern and Saarbrücken, the German Research Center for Artificial
Intelligence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI’s mission is to move innovations as quickly as possi-
ble from the lab into the marketplace. Only by maintaining research projects at the
forefront of science can DFKI have the strength to meet its technology transfer goals.

DFKI has about 115 full-time employees, including 95 research scientists with ad-
vanced degrees. There are also around 120 part-time research assistants.

Revenues for DFKI were about 24 million DM in 1997, half from government contract
work and half from commercial clients. The annual increase in contracts from com-
mercial clients was greater than 37% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development
projects with planned deliverables, various milestones, and a duration from several
months up to three years.

DFKI benefits from interaction with the faculty of the Universities of Saarbrücken and
Kaiserslautern and in turn provides opportunities for research and Ph.D. thesis su-
pervision to students from these universities, which have an outstanding reputation in
Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff
(CFO).

DFKI’s six research departments are directed by internationally recognized research
scientists:

Information Management and Document Analysis (Director: Prof. A. Dengel)
Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
Deduction and Multiagent Systems (Director: Prof. J. Siekmann)
Programming Systems (Director: Prof. G. Smolka)
Language Technology (Director: Prof. H. Uszkoreit)
Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg.
workshop proceedings), and final project reports. The aim is to make new results,
ideas, and software available as quickly as possible.

Prof. Wolfgang Wahlster
Director

The EMS Model

Jürgen Lind

DFKI-TM-98-09

This work has been supported by a grant from The Federal Ministry of
Education, Science, Research, and Technology (FKZ ITW-).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1999

This work may not be copied or reproduced in whole or part for any commercial purpose. Per-
mission to copy in whole or part without payment of fee is granted for nonprofit educational
and research purposes provided that all such whole or partial copies include the following: a
notice that such copying is by permission of the Deutsche Forschungszentrum für Künstliche
Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors
and individual contributors to the work; all applicable portions of this copyright notice. Copying,
reproducing, or republishing for any other purpose shall require a licence with payment of fee to
Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-008X

The EMS Model

Jürgen Lind

January 28, 1999

Abstract. The interface which connects the agent to its environment is usu-
ally based on the particular architecture of the agent. This makes it difficult for
agents of different architectures to interact with each other within the same vir-
tual environment.
In this paper, we present a model to describe the agent/world interface in a
generic, architecture independent way. The usefulness of the model is demon-
strated in a generic testbed library which facilitates rapid prototyping for exper-
imental multi-agent systems. Also, a network protocol derived from the basic
model which allows for the development of distributed testbeds is presented.

1 Introduction

Agent testbeds are needed to evaluate the strengths and limitations of agent
architectures; examples of generic testbeds are (Durfee and Montgomery,
1989), (Pollack and Ringuette, 1990) or (Wooldridge and Vandekerckhove, 1994).
However, a difficult problem in the field of multi-agent systems research is to
have agents of different architectures interact within a single testbed because
often, testbeds are build around a specific architecture and are thus not open
for agents with another architecture.
In the multi-agent systems group at the DFKI, we are experimenting with
three different architectures: InteRRaP agents (Müller, 1996) which integrate
reactive behavior and deliberation, MECCA agents (Lux and Steiner, 1995)
which concentrate on agent negotiation processes and SIFAgents (Funk et al.,
1997) focusing on social interaction between agents. In order to compare
these architectures or to combine their respective special abilities in a single
(virtual) environment, we have to build a testbed which allows these different
architectures (and therewith their different interfaces to their environment)
to interact with each other. Furthermore, building such a testbed should be
easy and straightforward, neglecting special (implementation) issues of the
architectures.
Multi-agent systems can be distinguished into two classes: systems which are
built from agents of the same class and with all agents working together on
a common task are called closed systems. Usually, systems of this class are
build by a single designer. Examples of closed systems include fleet schedul-
ing for transportation agencies (Bürckert et al., 1998), distributed theorem
proving (Denzinger, 1995) or engineering design (Shen and Barthes, 1995).
On the other hand, we have open systems (Hewitt, 1985). The characteristic

1

feature of systems of this class is that they have agents with different archi-
tectures (or even with humans (van de Velde, 1997)) and that these agents
usually pursue individual goals which can be (and usually are) contradictory.
An example for this kind of system is Internet trading. There, an agent is told
by its user e. g. to look for cheap flight tickets. To find the best offer, the agent
must find a trading place where it can negotiate with ticket selling agents
about about a possible deal. A more complex domain where agents from dif-
ferent designers meet with each other is robot soccer (Noda, 1995). In that
scenario, the agents do not only communicate with another, but they can
also act upon their virtual environment (the soccer field) and the changes of
the environment have to be distributed among the playing agents.

Existing multi-agent architectures often neglect the agent/agent or the
agent/world interface because they are designed for closed systems. How-
ever, when it comes to integrating agents in a heterogeneous system (even a
closed system with a common task), the agent architectures which settle on a
private interaction scheme will fail because they are not able to interact with
agents designed for another interaction model.

Another important point with respect to agent interaction and interaction
testbeds is how to reduce the design overhead introduced by re-inventing
the wheel when setting up a new application. A lot of work can be saved by
implementing reusable interaction patterns which can be refined to fit a par-
ticular application area.

In this paper, we present a general model for agent interaction in heteroge-
neous multi-agent systems. This model will be the basis for the implementa-
tion of reusable software components for agent simulation testbeds. A major
advantage over existing approaches is the fact, that the implementation of
the basic interaction model can vary from single process implementations
using method invocation to realize the model primitives to distributed im-
plementations using network protocols. However, the basic model and there-
with the agent using it, remain unchanged regardless of which type of imple-
mentation is chosen. Furthermore, we provide a modular approach to vari-
ous forms of agent interaction which helps the agent designer to rapidly build
prototypical multi-agent systems by combining generic modules. The basic
idea is, that there exist only a limited number of possible interaction schemes
which can be described on a very general level and the resulting modules can
be easily instantiated for particular domains.

This paper is organized as follows: firstly, we present the basic ideas of our
framework and highlight the analogies which where used to derive the model.
Then, we present the implementation of a library which is built upon the Ef-
fector/Medium/Sensor (EMS) paradigm and demonstrate how the library is
used to build agent testbeds. A network protocol which allows for the de-
velopment of distributed testbeds using the EMS model is presented in the
following section. Finally, a conclusion and some outlook is given.

2 Basic Model

Our approach to find a uniform framework for agent interaction is loosely
based on the concept common in Internet chatrooms. To enter such a vir-
tual room, the user connects to a chatroom server with a (real or fake) name.
Then, he or she is informed which other persons are currently in the room
and he or she can send messages to either all people in the room or to in-
dividual persons. The basic idea of our approach is quite similar: an agent
is equipped with a number of so-called effectors through which it can act
upon its virtual environment and with a number of sensors through which
it can perceive the state of the environment. When an effector or a sensor is
created, it registers itself with a server (which will be called the medium for
reasons explained below). Whenever the agent wants to perform the action
associated with a particular effector, the effector sends a notification to the
server to inform it about the effector activation. It is the the task of the server
to calculate the effects of the activation on the sensors registered with it and
to inform them about the change in the environment.
Now, why is the medium called ”medium”? The reason for this naming scheme
comes from the second analogy on which our model is based. In a physi-
cal world (e. g. verbal communication) an effector (the speech apparatus)
changes the state of a medium (the air) which distributes its state changes
to the sensors (the ear) connected to the medium. Thus, the medium imple-
ments a transition function which maps effector activations to sensor data.
The signal flow of this example is depicted in figure 1.

effector medium sensor

Fig. 1. EMS Model

Several effectors, media and sensors which belong together logically can be
combined in a group in order to express their logic connection. We will call
such a group an Effector/Medium/Sensor (EMS) system in the subsequent text;
examples for EMS systems are communication or movement/vision.
In a EMS system for (verbal) communication (see figure 2) the agent has
an effector which can be used to send a message to medium. It is then the
task of the medium to route this message to the receiver(s) audio sensors.

It depends on the implementation of the medium which forms of commu-
nication are possible. In a one-to-one medium, agents can send messages
to other agents without third parties perceiving the message exchange. In
a broadcast medium on the other hand, each message is sent to all audio
sensors registered with the medium which makes it impossible to send se-
cret messages to another agent. Note that the medium in this example does
not maintain any state information. It simply routes the message sent by the
speaker to the respective audio sensors.

speaker medium audio sensor

Fig. 2. EMS system for (verbal) communication

An EMS system for movement/vision is more complex then one for commu-
nication because it requires a topological structure of the underlying virtual
environment. A major difference to the simple EMS system shown in figure 2
is the fact that the medium in figure 3 keeps state information, e. g. where the
agents are currently located. In the Social Interaction Framework (SIF)(Funk
et al., 1997) presented in the next section, we have implemented an EMS sys-
tem which handles moving and visual sensing in a tile world.

turnLeft

turnRight

move vision sensor
medium

Fig. 3. EMS system for movement and vision

The underlying virtual environment is a rectangular area made up of tiles
of the same size. These tiles induce a topology on the virtual world because
each object has unique position in the world. Each agent is represented by
its shape (e. g. triangle) and its color (e. g red). Furthermore, each agent has
an actual direction and a current position. On the left hand side of figure 4,
we have a red, triangular agent located at position (2,3) (with the upper left
corner as the origin). The agents current direction (NORTH) is indicated by a
small triangle at the top of the agent symbol. Please note in this respect, that

the visualisation engine for a specific virtual world is more or less indepen-
dent from the implementation of the medium. In the SIF library, we have de-
cided to use the Java Interface to the underlying window system because it is
straightforward to visualise the data model of the medium. However, we are
currently implementing a visualisation engine based on VRML (The VRML
consortium, 1997) in order to support more realistic 3D visualisations in fu-
ture versions of our library.

Fig. 4. Agent turning in SIF

The effectors to support the navigation in this world are a ”turn” effector
which changes the current direction (see figure 4) of an agent and a ”move”
effector effector which moves the agent one tile in its actual direction (if pos-
sible, e. g. if there is no obstacle in front of the agent, see figure 5).

Fig. 5. Agent moving in SIF

Sensing in this EMS system is accomplished by a ”view” sensor. This kind of
sensor has a perception range which limits the part of the environment which
can be observed. Figure 6 shows the perception range of the agent. The agent
can ”see” any object in its ”view” sensor range. However, the objects in our
scenario are not labeled (e. g. as being an agents), rather, object are described
by their external features (color, shape, etc.) and it is the task of the agent to
find out which is which.

Fig. 6. Agent sensor range in SIF

3 The SIF Library

SIF is a library to build simulation testbeds for multi-agent applications with
a focus on interaction among agents of different architectures. The library
provides a number of generic objects and object connecting mechanisms in
order to support rapid prototyping of experimental systems. It is based on
the EMS paradigm presented in the previous section. The EMS paradigm fa-
cilitates the smooth integration of different agent architectures in a single
application. The entire library is build in Java.
Before we go into the technical details of the library, the general idea of how
to build an own application is given:

1. The system designer decides which forms of interaction are needed in his
or her simulation. For example, in an application to evaluate negotiation
protocols, verbal communication facilities are sufficient for the agents. In
an application where the agents are situated in a virtual environment, on
the other hand, mechanisms to describe the environment and the agents
acting in the environment are needed.
The result of this design step are the EMS systems needed for the partic-
ular application.

2. Since the SIF library is a generic basis for experimental applications, the
selected EMS systems must be refined in order to fit the particular needs
of the new application. This is done by inheriting from the respective base
classes and adding the scenario specific parts. The result of this step are
sets of refined effectors, sensors and media.

3. The media generated in the previous step are integrated in a single pro-
gram which operates as the simulation engine of the new application.
In our terminology, this engine is referred to as the “World Sever” of the
new application because it implements the simulation specific “physical
rules” of the agents environment.

4. The refined effectors and sensors are integrated in the agent architec-
ture. Currently, only agent architectures implemented in Java can be con-
nected to a world server, because the SIF library is written in Java. How-
ever, in section 4, we present a network protocol for the EMS paradigm

which overcomes this limitation and which allows us to have architec-
tures implemented in arbitrary languages in the same simulation.

Each application built with the SIF library has the same basic control cycle:
When an agent is started, it will at first create a number of effectors and sen-
sors which register themselves with a medium of the world sever. Then, the
SIF control loop depicted in figure 7 starts. Whenever an effector is activated
(�1), it posts an activation message (�2) to the event queue (�3) of the medium
it is connected to. This queue is organized in FIFO manner in order to main-
tain the temporal ordering of the effector activations. To process a particular
event, the dispatcher (�4) of the medium calculates the effects of the effec-
tor activation. This part is usually application specific except for few general
purpose EMS systems. If a sensor registered with the medium is affected by
a particular action, it is sent a notification message which contains the new
perception (�5). The sensor itself posts (�6) the new percept into the percep-
tion queue of the agent (�7) which decides (�8) about effector activations in
the next cycle.

1

effector

sensor

sensor

sensor

sensor

Event Queue

dispatcher

agent

agent

medium

event queue

dispatcher

event queue

dispatcher

postEvent(Event)

activate()

......
... ...

Event(this)

effector

effector

effector

sensed(Perception)

6

5

7

8

4

2

3

Fig. 7. EMS Model

3.1 Library structure

The overall structure of the SIF library is organized in three layers as depicted
in figure 8. The lowest layer is the SIF kernel, which contains library spe-
cific data structures such as SIFDataInputFile, which supports data input
in a SIF specific format or SIFCoordinatesneeded in simulations that have a
topological structure.
The next level of abstraction is the Abstract Model Engine (AME) which im-
plements the basic EMS model (figure 1). On this layer, we have a generic
effector, a generic mediumand and a generic sensor. This layer also contains
the abstract base classes for percepts (percept) or for SIF agents (SIFAgent).
The top level layer of the library, the Generic Object Layer, contains classes
that can be used directly by an application designer. The layer is subdivided
into classes for effectors (e. g. mover, turnLeft, etc.), sensors (e. g. viewer,
audioSensor, etc.) or percepts (e. g. visionPercept, audioPercept, etc.). The
objects of these classes are then combined to form EMS systems as described
earlier.
A special effector/sensor combination is controlPadEffector and
controlPadSensor. To interactively control an agent in the tile world, it can
be equipped with a controlPadSensor. If the graphical user interface (which
is also modeled as agent in our framework) has a controlPadEffectorwhich
is linked to the agents Sensor, the user can interactively activate the effectors
of the controlled agent and observe its perceptions. This form of user inter-
face enable efficient debugging of the multi-agent application.

GOL Generic Object Layer

AME Abstract Model Engine

Kernel SIF specific data structures

Fig. 8. The Layers of the SIF Library

3.2 Example

In this section, we present a simple example to demonstrate, how an agent
acting in a virtual environment built with the SIF library is implemented.
Assume a tile world as described earlier in this paper. The agent can move
around in this world by turning and moving one step ahead and it perceive
the state of its environment by a vision sensor as described before. The task
of the new agent will be to search for an object (ideally another agent) in its
environment and to follow that object. To achieve this task, the agent takes
a random walk in its environment until it perceives another object. When it

has found one, it tries to keep this object in its visual range by moving into
the direction of the object.
In the constructor for the new agent, the effectors and sensors the agent has
are defined (line �� � ��). The newly created objects automatically register
with their respective media in order to connect the agent to the simulation.
In each cycle of the simulation engine, the act�� method of the agent is
called. This method is the link between an agent architecture and the simula-
tion engine as it implements the decision procedure of the agent. Any agent
architecture implemented in Java can be used as decision procedure in the
act�� method and thus interact with agents of different architectures.
We have implemented a round-robin scheduling scheme for the agent acti-
vation because the Java Virtual Machine for the Solaris operating system does
not support preemptive thread scheduling. Currently, the simulation engine
chooses a random permutation of the existing agents and requests their re-
spective effector activations by calling the act�� method. In later version,
however, the agents are supposed to act asynchronously on their environ-
ment.
In its act��method, the simple visual reactive agent checks for new percepts
in its perception queue (lines �	 � �
, see figure 7) and uses the most re-
cent percept to decide about its next action. If it is a percept from the vision
sensor, the agent checks if the visible area of its environment and counts the
number of items in this area. If the number of objects is greater then 1, the
agent moves one step in the direction of the objects (line ��). If the visual
area is empty, the agents moves one tile further with a probability of 25% or
it turns with a probability of 37.5% to the left or right, respectively.

� package src�GOL�agents�
�
� import SIF�kernel�frameAtPosition�
�
� import SIF�AOE�SIFObject�
� import SIF�AOE�SIFAgent�
	 import SIF�AOE�percept�

 import SIF�AOE�sensor�
�
�� import SIF�GOL�effectors�mover�
�� import SIF�GOL�effectors�turnerLeft�
�� import SIF�GOL�effectors�turnerRight�
�� import SIF�GOL�sensors�visionSensor�
�� import SIF�GOL�percepts�visionPercept�
�� import SIF�GOL�frames�emptyFrame�
�� import SIF�GOL�frames�agentFrame�
�	
�

��
�� This agent is supposed to follow other agents by means of the percepts it receives
�� from the vision sensor�
�� �

�� public class visualReactiveAgent extends example�src�myScenarioAgent�
��
�� private visionSensor vSensor�
�� private mover moveForward�
�� private turnerLeft turnleft�
�	 private turnerRight turnright�
�

�� private frameAtPosition���� visionField�
��
�� public visualReactiveAgent� String name� String form� String color ��
��
�� super� name� form� color ��
�� visionField � new frameAtPosition�������
�� moveForward � new mover� this ��

�� turnleft � new turnerLeft� this ��
�	 turnright � new turnerRight� this ��
�
 vSensor � new visionSensor��SIFAgent�this���� ��� �� ���
�� �
��
�� public void act���

��
�� percept p�
�� int counter � ��
��
�� super�act���
�	 if� not�queue�isEmpty��� ��
�
 do�
�� p � queue�next���
�� �while� not�queue�isEmpty��� ��
��
�� if� p �� null ��

�� if� p instanceof visionPercept ��
�� Point size � ��visionPercept� p��getSize���
�� frameAtPosition ���� field � ��visionPercept� p��getContents���
��
�	 for� int i��� i�� size�x�i�� �
�
 for� int j��� j�� size�y�j�� �
�� if� field�i��j� �� null �
�� if� not�field�i��j��getFrame�� instanceof emptyFrame ��
�� counter���
�� �
�� �
�� �
�� if �counter ����
�� moveForward�activate���
�	 else
�
 if �Math�random�� ������
�� moveForward�activate���
	� else
	� if �Math�random�� �����
	� turnleft�activate���
	� else
	� turnright�activate���
	� �
	�
		
�� The method that will be run� when the worldserver starts the experiment��

	
 public void initialize���
	� vSensor�initialize���

 send signal to sensors to download information

� �

� �

4 EMS/NP

Currently, the class of agent architectures that can be used in a SIF simulation
is limited to architectures implemented in Java. This is due to the fact, that
the actual implementation of the basic interaction model uses method in-
vocations to accomplish the communication between the effectors, sensors
and media. To overcome this limitation, we are developing a TCP/IP network
protocol which implements the basic model and which enables us to inte-
grate non-Java architectures in a SIF simulation by simply implementing the
protocol in the respective goal language. The basic protocol primitives are
shown in figures 9 through 11.

request param response
REGISTER �TYPE� �ID� � NULL

QUERY

SUPPORTED EFFECTORS �EFFECTOR TYPE LIST�

WORLD DIMENSION �������������n�

WORLD SIZE �SIZE ���SIZE ������SIZE n�

WORLD TYPE �WORLD SPECIFICATION�

ACTIVATE �ID�

�DATA LANGUAGE�

�CONTENT�

Fig. 9. The EMS network protocol: Effector/Medium

request param response
REGISTER �TYPE� �OK� � �NOTOK�

QUERY

SUPPORTED SENSORS �SENSOR TYPE LIST�

WORLD DIMENSION �������������n�

WORLD SIZE �SIZE ���SIZE ������SIZE n�

WORLD TYPE �WORLD SPECIFICATION�

POLL

�DATA LANGUAGE�

�CONTENT�

Fig. 10. The EMS network protocol: Sensor/Medium

request param response
SENSOR DATA �DATA LANGUAGE�

�CONTENT�

Fig. 11. The EMS network protocol: Medium/Sensor

In our implementation, each medium is a single process which waits for in-
coming requests on a TCP/IP port. The host addresses and the port num-
bers for different media can either be given to the agent by the designer or
they can be requested from the Medium Directory Service which has the same
fixed port number on all host computers.

In figure 9, the protocol primitives for the effector/medium communication
are shown: To register with a medium, the effector sends a REGISTER mes-
sage together with its type. If the medium accepts the effector, it returns a
unique id with is later used by the effector to activate its respective action.
If the medium decides to reject the registration of the effector (e. g. because
it does not support the effector specific actions), it returns NULL. Prior to the
registration process, the effector can request a list of effectors supported by
the medium. This feature is useful if an effector is capable to simulate various
effector types.

In some cases, an effector or a sensor needs to know about characteristic
features of the virtual world. For example, to navigate in virtual world, the
effector needs to dimension of the world and the sizes of the respective di-
mensions. Additionally, some information about the type of topology can be
given.

The dimension of the world in which the medium exists is needed whenever
an action or a perception requires to specify the location of some object. In a
0-dimensional world, all objects are located at the same position, i. e. the po-
sition of the objects is not important. An example of a 0-dimensional world
is the EMS system for communication. In an n-dimensional world, the loca-
tion of an object is given by a vector with n elements; for example in the grid

world described earlier, the location of each object is described by a vector
with two elements.
The type of a topology describes how the dimensions of the position vector
are linked with each other. In a finite world, for example, the agent cannot
move any further on an axis as the maximum coordinate whereas in a torial
world, the agent reenters the world on the opposite end of an axis whenever
it exceeds the maximum coordinate.
The protocol between a sensor and a medium is essentially the same as the
effector/medium protocol except for the exchange of sensory data: if the sen-
sor is an active sensor (which is indicated as part of its TYPE information
passed during the registration process), it needs to execute a POLL request
whenever it wants an update of its current perception. If, on the other hand,
the sensor is passive, it waits for incoming percepts sent by the medium us-
ing the SENSOR DATA request. In either case, the perception of the sensor is
described by its DATA LANGUAGEwhich indicates the data format (e. g. Java Se-
rialized Objects, First Order Formulae or simply ASCII Strings) and the actual
content of the message. The separation of the goal language and the proto-
col language is a common practice which is, for example, also used in KQML
(Finin and Fritzson, 1994).

5 Conclusion

In this paper, we have presented a general model for agent interaction based
on effectors, media and sensors that can be used to describe various forms
of interaction in a generic manner. Furthermore, we have shown how this
separation of entities involved in an interaction leads to a modular design of
simulation testbeds based on EMS systems and demonstrated that the ap-
proach facilitates the integration of agents with different architectures (In�
teRRaP, MECCA and SIFAgents) in the same virtual environment. Finally, we
have also shown how the basic model can be implemented in different ways
(e. g. method invocation or network communication using TCP/IP) yielding
to the most appropriate implementation for a specific scenario.
In our ongoing work, we are currently evaluating the network protocol pre-
sented in section 4. Especially, we are looking for a minimal set of features
(e. g. size, topology, etc.) which can be used to characterize a maximum num-
ber of virtual worlds. We are also working on a scenario which models re-
source allocation and resource usage processes in multi-agent systems. The
goal of this project is to investigate the usefulness of explicitly modeling so-
cial relations among the interacting agents.

6 Acknowledgments

The model presented in this paper developed during the fruitful discussions
at the DFKI, especially with Petra Funk, Christian Gerber, Michael Schillo and
Christoph Jung.

Bibliography

[Bürckert et al., 1998]Bürckert, H.-J., Fischer, K., and Vierke, G. (1998). Trans-
portation scheduling with Holonic MAS, the TeleTruck approach. In
Proc. PAAM98.

[Denzinger, 1995]Denzinger, J. (1995). Knowledge-based distributed search us-
ing teamwork. In Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95), pages 81–88, San Francisco, CA.

[Durfee and Montgomery, 1989]Durfee, E. H. and Montgomery, T. (1989).
MICE: A flexible testbed for intelligent coordination experiments. In Pro-
ceedings of the 1989 International Workshop on Distributed Artificial In-
telligence (IWDAI-89).

[Finin and Fritzson, 1994]Finin, T. and Fritzson, R. (1994). KQML — a language
and protocol for knowledge and information exchange. In Proceedings
of the Thirteenth International Workshop on Distributed Artificial Intelli-
gence, pages 126–136, Lake Quinalt, WA.

[Funk et al., 1997]Funk, P., Gerber, C., Lind, J., and Schillo, M. (1997). Social in-
teraction framework—a generic testbed for social agents. Technical re-
port, DFK. To Appear.

[Hewitt, 1985]Hewitt, C. E. (1985). The challenge of open systems. Byte, 4(10).
[Lux and Steiner, 1995]Lux, A. and Steiner, D. (1995). Understanding cooper-

ation: an agent’s perspective. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS’95).

[Müller, 1996]Müller, J. P. (1996). The Design of Intelligent Agents: A Layered Ap-
proach, volume 1177 of Lecture Notes in Artificial Intelligence. Springer-
Verlag.

[Noda, 1995]Noda, I. (1995). Soccer server: a simulator of robocup. In Proceed-
ings of AI symposium 1995. Japanese Society for Artificial Intelligence.

[Pollack and Ringuette, 1990]Pollack, M. E. and Ringuette, M. (1990). Intro-
ducing the Tileworld: Experimentally evaluating agent architectures. In
Proceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90), pages 183–189, Boston, MA.

[Shen and Barthes, 1995]Shen, W. and Barthes, J.-P. (1995). Dide: A multi-agent
environment for engineering design. In Proceedings of the ICMAS95,
pages 344–351.

[The VRML consortium, 1997]The VRML consortium (1997). The Virtual Real-
ity Modeling Language, ISO/IEC DIS 14772-1. unknown.

[van de Velde, 1997]van de Velde, W. (1997). Co-habited mixed realities. In Hat-
tori, F., editor, Proceedings of the IJCAI’97 workshop on Social Interaction
and Communityware, Nagoya, Japan.

[Wooldridge and Vandekerckhove, 1994]Wooldridge, M. and Vandekerckhove,
D. (1994). MYWORLD: An agent-oriented testbed for distributed artificial
intelligence. In Deen, S. M., editor, Proceedings of the 1993 Workshop on
Cooperating Knowledge Based Systems (CKBS-93), pages 263–274. DAKE
Centre, University of Keele, UK.

T
h

e
E

M
S

M
o

d
el

Jü
rg

en
L

in
d

T
M

-9
8-

09
R

es
ea

rc
h

R
ep

or
t

