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Abstract

In this paper� we set up a unifying perspective of the individual con�
trol layers of the architecture InteRRaP for autonomous interacting agents�
InteRRaP is a pragmatic approach to designing complex dynamic agent
societies� e�g� for robotics M�uller � Pischel ��a� and cooperative scheduling
applications Fischer et al� ���� It is based on three general functions describ�
ing how the actions an agent commits to are derived from its perception and
from its mental model� belief revision and abstraction� situation recognition

and goal activation� and planning and scheduling�
It is argued that each InteRRaP control layer � the behaviour�based lay�

er� the local planning layer� and the cooperative planning layer � can be de�
scribed by a combination of di�erent instantiations of these control functions�
The basic structure of a control layer is de�ned� The individual functions and
their implementation in the di�erent layers are outlined�

We demonstrate various options for the design of interacting agents with�
in this framework by means of an interacting robots application� The per�
formance of di�erent agent types in a multiagent environment is empirically
evaluated by a series of experiments�
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� INTRODUCTION

The design of intelligent agents is an important research direction within multiagent
systems �MAS� �Bond � Gasser 		� Durfee � Rosenschein 
��� where the behaviour
of a society of agents is described by modelling the individuals and their interactions
from a local� agentbased perspective� Thus� �nding appropriate architectures for
these individuals is one of the fundamental research issues within agent design�

There are at least two major reasons for dealing with agent architectures� One is
to explain and to predict agent behaviour� this means to describe how the decisions
made by an agent are derived from its internal �mental� state and how this mental
state is a�ected by the agent�s perception� The second reason which goes beyond
the �rst one is to actually support the design of MAS� It deals with providing tools
and methodologies for designing computational agents and their interactions in an
implemented system�

A prominent example for architectures that are primarily driven by the former
reason are BDI�style architectures �Bratman et al� 	�� Rao � George� 
��� describ
ing the internal state of an agent by several mental attitudes� namely beliefs� goals�
and intentions� BDI theories provide a clear conceptual model representing the
knowledge� the goals� and the commitments of an agent� However� they o�er only
little guidance to determine how the agent actually makes decisions based on its
mental state� and have to be extended to actually support the design of resource
bounded and goaldirected agents for practical applications�

In �Rao � George� 
��� Rao and George� have provided an abstract agent in
terpreter operationalising the BDI theory by describing an agent by one processing
cycle� This cycle consists of the basic phases of option generation� deliberation�
state update� execution� and update of the event queue� The system�s reaction time
is bounded from below by the time taken to perform a cycle� Moreover� since the
individual processes within the cycle are monolithic� the architecture itself does not
optimally support reactivity in a sense that it does not provide mechanisms e�g� al
lowing to recognise emergency situations in time� Rather� mechanisms for doing
that �for example prioritybased situation checking� have to be de�ned within the
individual functions�

One way to overcome this problem is the use of layered agent architectures� that
have become an important direction in intelligent agent design over the past few
years �see e�g� �Brooks 	�� Kaelbling 
�� Ferguson 
�� Firby 
�� Lyons � Hendriks 
��
Dabija 
�� Steiner et al� 
�� M�uller � Pischel 
�a� M�uller � Pischel 
�c��� Layering
is a powerful concept for the design of resourcebounded agents� It combines a mod
ular structure with a clear control methodology� and supports a natural modelling
of di�erent levels of abstraction� responsiveness� and complexity of knowledge rep
resentation and reasoning� However� a recent criticism of layered architectures has
been that they are mainly motivated by intuition� and that they are too complex
to allow the formal investigation of properties of agents and multiagent systems

�BDI � Belief� Desire� Intention
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�Wooldridge � Jennings 
���
The agent architecture InteRRaP which is described in this paper aims at

combining the advantages of BDIstyle architectures with those of layered ones� By
this combination� our goal is to provide an architecture that serves both to explain
agent behaviour and to support system design� InteRRaP adopts the mental cat
egories used in BDI theory to describe an agent�s knowledge� its goals� and its state
of processing� It extends the work of �Rao � George� 
�� Rao � George� 
�� by
organising an agent�s state and control within a layered architecture� The problem
solving capabilities of an agent are described hierarchically by a behaviourbased
layer� a local planning layer� and a cooperative planning layer� InteRRaP adopts
the BDImodel rather in a conceptual than in a strictly theoretical sense� Thus� this
paper does not provide a new theory for beliefs� desires� and intentions� The need
to develop an architecture which is suitable to build real applications has enforced
a more pragmatic perspective��

Previous work �M�uller � Pischel 
�a� M�uller � Pischel 
�b� has described the
basic layered structure of the InteRRaP architecture and a �rst simple concept
and implementation of the individual control layers� In this paper� we present a
redesign of InteRRaP aimed to make the architecture easier to describe and to
make agents easier to analyse� the main part of the paper deals with the de�nition
of a uniform structure for the di�erent control layers� This uniformity is based
on certain similarities of the processes running at the di�erent layers� on the one
hand� local planning and cooperative planning certainly utilise di�erent levels of
knowledge� but require rather similar techniques and algorithms� on the other hand�
reactivity and deliberation are rather two extremes in a broad spectrum of agent
behaviours than two really di�erent paradigms�

Section � provides an overview of the architecture� the new uniform structure of
an InteRRaP control layer is presented� Issues of knowledge representation and
belief revision are discussed in Section �� Section � describes a model for situation
recognition and goal activation� The implementation of planning and scheduling
in InteRRaP is outlined in Section �� Section 	 provides an example for how
InteRRaP is used to design an application system� The performance of di�erent
agent types is analysed in Section 
�

� THE InteRRaP AGENT ARCHITECTURE

InteRRaP is an approach to modelling resourcebounded� interacting agents by
combining reactivity with goaldirected and cooperative behaviour� In this Section�
we present the basic concepts of the architecture�

�The abstract agent interpreter de�ned in Rao � George� ��� also uses BDI�theory in a con�
ceptual sense
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��� Overview

Figure � illustrates the overall structure of the architecture� InteRRaP describes
an agent as consisting of a world interface� a control unit� and a knowledge base
�KB�� The control unit consists of three layers� the behaviourbased layer �BBL��
the local planning layer �LPL�� and the cooperative planning layer �CPL�� The
agent knowledge base is structured correspondingly in a world model� a mental
model� and a social model� The di�erent layers correspond to di�erent functional
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Figure �� The InteRRaP Agent Architecture

levels of the agent� The purpose of the BBL is to allow the agent to react to certain
critical situations �by socalled reactor patterns of behaviour �PoB��� and to deal with
routine situations �using procedure PoB�� Reactors are triggered by events recognised
from the world model that incorporates the agent�s objectlevel knowledge about its
environment� The LPL gives the agent the ability of longerterm deliberation� It
builds on world model information� but additionally uses the agent�s current goals
and local intentions maintained in the mental model part of the knowledge base� as
well as domaindependent planning mechanisms available� The CPL �nally extends
the planning functionality of an agent to joint plans� i�e� plans by and�or for multiple
agents that allow to resolve con�icts and to cooperate� Apart from world model and
mental model knowledge� the CPL uses information about other agents� goals� skills�
and commitments stored in the social model of the knowledge base� The internal
structure of the control components will be explained in more detail in the following
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sections of this paper�
In the following� let B� G� I denote the set of beliefs� goals� and intentions�

respectively� and let P denote a set of perceived propositions� The InteRRaP
agent architecture implements three basic functions�

� BR � P � B �� B is a belief revision and knowledge abstraction function�
mapping an agent�s current perception and its old beliefs into a set of new
beliefs�

� SG � B�G �� G is a situation recognition and goal activation function� deriving
new goals from the agent�s new beliefs and its current goals�

� PS � B � G � I �� I is a planning and scheduling function� deriving a set of
new intentions �commitments to courses of action� based on the goals selected
by the function SG and the current intentional structure of the agent�

Table � illustrates how the functions de�ned above are distributed over the individual
modules� In the following sections� the implementation of the functions is presented

Layer BBL LPL CPL

Function

BR generation and abstraction of maintaining models
revision of beliefs local beliefs of other agents
�world model� �mental model� �social model�

SG activation recognition of recognition of
of situations requiring situations requiring

reactor patterns local planning cooperative planning
PS reactor PoB� direct modifying local modifying joint

link from situations intentions� intentions�
to action sequences local planning cooperative planning

Table �� The Basic Functions in the InteRRaP Control Hierarchy

in more detail�

��� The Control Layers

Viewed from a certain level of abstraction� the processes implemented at the di�erent
layers of the InteRRaP architecture have many similarities in that they describe
di�erent instantiations of the basic functions SG and PS� Based on this observation�
we present a uniform structure shared by each layer� Figure � shows the internal
structure of an InteRRaP control layer� Each layer i � fB�L� Cg� consists of two
processes implementing the functions SG and PS� these interact with each other
and with processes from neighbour layers�

�Throughout this paper� we use the subscripts B for BBL� L for LPL� and C for CPL
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� The situation recognition and goal activation process SGi recognises
situations that are of interest for the respective layer� it results in the activation
of a goal�

� The planning and scheduling process PSi implements the mapping from
goals to intentions and thus� to actions� It receives as input goal�situation pairs
created by the SG component of the layer� and selects goals to be pursued as
new intentions� taking into account the current intention structure� Moreover�
it does the actual planning� i�e� the computation necessary to achieve these
goals�

SGi

PSi-1

PSi+1

PSi

SGi+1

SIT

(SIT,  GOAL)

(SIT, GOAL)

COMMIT

COMMIT(SIT,  GOAL)

KB

Figure �� Structure of an InteRRaP Control Layer

The implementation of the two functions in InteRRaP is explained in more detail
in Sections � and ��

��� The Flow of Control

The control �ow and thus the behaviour of an InteRRaP agent emerges from
the interaction among the individual modules as illustrated in �gure �� The model
provides two basic protocols specifying the global �ow of control��

�Further more specialised protocols cannot be discussed here due to space restrictions
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Upward Activation Requests� If PSi is not competent for a situation S� it
sends an activation request containing the corresponding situationgoal pair
to SGi	�� there� the situation description is enhanced by additional knowledge
available to this component in order to produce a suitable goal description�
The result of processing S is reported back to PSi� This mechanism imple
ments a competence�based control mechanism� It has been extended to allow
more �exible interaction between the local and cooperative planning layers�

Downward Commitment Posting� Planning and scheduling processes at di�er
ent layers coordinate their activities by communicating commitments� For
example� this allows the local planning component both to integrate partial
plans devised by the CPL layer in the course of a joint plan negotiation and
to take into account certain commitments made by the upper layer �integri
ty constraints�� Also the interface between the LPL and BBL component is
designed by the higher layer posting activation requests for patterns of be
haviours� These requests are regarded as commitments made by the PSL
component as a consequence of the intentions derived in this process�

Based on these protocols� the possible problemsolving behaviour of an InteR�
RaP agent can be classi�ed by three generic control paths� the reactive path� the
local planning path� and the cooperative planning path� Following the reactive path�
a class of emergency situations is recognised in SGB and directly dealt with using
reactor patterns �example� stop to avoid a collision�� In the local planning path�
the LPL is activated to deal with more complex situations �example� planning a
transportation order�� a plan is devised and executed by activating procedure pat
terns� Finally� the cooperative planning path is triggered by the CPL� it involves
communication and coordination among agents �example� negotiate a joint plan for
resolving a blocking con�ict��

� THE LOADING DOCK APPLICATION

In this Section� we present the FORKS application� a MAS developed according
to the InteRRaP architecture� The FORKS system describes a MAS for an in
teracting robots application� i�e� automated forklifts that have to carry out trans
portation tasks in a loading dock� The implementation of FORKS as a computer
simulation running on UNIX workstations is based on the multiagent development
platform AgendA �Fischer et al� 
��� in order to evaluate the concepts in a re
al robot scenario� the FORKS� system has been designed and implemented� it
constitutes an implementation of FORKS using real KHEPERA miniature robots
�Mondada et al� 
���

Figure � illustrates the structure of the loading dock� It is represented as a grid
of size m � n� each square ��i� j�� t� r� can be of type t � fground� truck� shelfg and
can be within region r � fparking zone� hallway� truck region� shelf regiong� Squares
of type truck and shelf can additionally contain at most one box�
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Figure �� �a� The Loading Dock �b� Quadrants

Forklift agents occupy one square at a time� they have a range of perception �e�g��
one square in front�� can communicate with other forklifts and perform actions

a � A � fmoveto�Dir�� turnto�Dir�� grasp box� put boxg�Dir � fn� e� s� wg�

Performing actions changes the state of the world�

� moveto�Dir� moves the agent to the next square in the direction denoted by
Dir� The action fails if the square in front of the agent is occupied� In the
FORKS� system� the implementation of moveto is rather complex� an agent
may recognise that another agent is approaching only after it has already
started to perform the action� For this purpose� in FORKS� moveto provides
means allowing the robot to move back by turning around to the previous
location and reporting failure of the action in order to guarantee its logical
atomicity�

In order to simplify the problem of computing the current position while
driving� the robot orients itself by following induction lines using infrared
�oor sensors and a simple control algorithm� For a more detailed discussion
of aspects of behaviourbased control in the FORKS� system� we refer to
�M�uller et al� 
���

� turnto�Dir� has the agent turn around to a direction speci�ed by Dir� this
action is needed e�g� to turn to a shelf in order to search through it� when the
agent is located at a square neighbouring the shelf� Turnto always succeeds�
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however� even this action is nontrivial in the real robot application� since it is
prone to the accumulation of deviations in direction� thus� from time to time�
the robot has to calibrate itself in order to avoid losing orientation�

� grasp box is an action which succeeds if the agent is not holding a box� and
stands in front of a �eld of type t � ftruck� shelfg which is occupied by a box�
In this case� result of the action is that the box is no longer on the shelf�box�
but is held by the agent� In all other cases� the action fails� In FORKS�� the
robot is able to additionally check whether it is really holding the box after
having performed the grasp box command by means of a light barrier that is
integrated into the gripper�

� put box is the inverse action to grasp box�

Agents receive orders to load or unload trucks� while performing their tasks� they
may run into con�icts with other agents� E�g�� agents may block each other� i�e� one
agent may have the goal to move to a square occupied by another one� or two agents
may try to move to one square by the same time�

� KNOWLEDGE REPRESENTATION

In this section� we will outline the basic knowledge representation �KR� mechanism
for InteRRaP agents which is provided by the AgendA development environment
for multiagent system applications �Fischer et al� 
��� the system development layer
of AgendA de�nes a set of basic reasoning mechanisms and the knowledge repre
sentation model AKB
� Most parts of this Section are adopted from �Weiser 
���

��� AKB Representation Schema

The basic elements of the knowledge representation schema are the following�

� Concepts C� C�� C�� � � �

� Types T� T�� T�� � � �

� Attributes A � C �� T

� Features F � C �� T

� Relations R � C� � C� � � �� Cn

Attributes A may have default values default�A� � k� features are attributes of a
concept that cannot be changed� init�F � � k denotes the initial value of a feature�
Apart from standard types such as integer� string� real� � � �� new types can be de�ned
by Oz �Henz et al� 
�� procedures�

An AKBschema declaration thus looks as follows�
�Assertional Knowledge Base

	



� � � �

concept� name� ConceptName �

relation� name� RelationName

domain� ConceptName� � � � � � Conceptnamen �

attribute� name� AttributeName

concept� ConceptName

type� Type �

default� name� AttributeName

value� DefaultValue �

feature� name� FeatureName

concept� ConceptName

type� Type

init� Init �

� � �

�

��� AKB Interface Speci�cation

The �rst class of functions which are o�ered by AKB are assertional functions which
are needed to modify the agent�s knowledge base �KB�� In the following�X� Y denote
input variables� �X� �Y denote output variables� i�e� values returned by the function
call�

Asserting Beliefs

� createObject��Id�� returns a unique identi�cation of a newly created object�
AKB is objectoriented in a sense that concept instances are represented as
Oz objects�

� enterConcept�Id Concept�� creates an instance of a concept denoted by Concept
and binds it to the object identi�ed by Id�

� enterRelation�IdList Rel�� De�nes an instance of a new relation denoted by
relation Rel among the concept instances denoted by the object identi�ers in
IdList� The ordering of the members of IdList is meaningful� it corresponds to
their ordering in the relation�

� setValue�Id Attr NewVal�� setValue�Id Attr NewVal �OldValue�� assigns the
value denoted by NewVal to the attribute Attr of the concept instance denoted
by Id� SetValue with four arguments additionally returns the old attribute
value�






Retracting Beliefs

� deleteObject�Id�� delete an object that has been created before� Deleting an
object that is bound to a concept instance deletes the concept instance and
all instances of relations where this concept instance is a member�

� deleteConcept�Id Concept�� deletes the instance of Concept denoted by Id�

� deleteRelation�IdList Rel�� deletes the instance of relation Rel denoted by
IdList�

� retractValue�Id Attr�� removes the value for the attribute Attr of the concept
instance denoted by Id�

Information Retrieval

The second important class of interface functions are retrieval functions� They
are provide an access to the knowledge actually stored in the knowledge base� AKB

o�ers the following retrieval functions�

� getConceptMembers�Concept �IdList�� Returns a list of all instances of Concept�

� isConceptMemberP�Id Concept �Bool�� Returns true if the concept instance
denoted by Id is a member of Concept�

� getRelationMembers�Rel �ListOfIdLists�� Returns a list of list of concept in
stances denoting all tuples that de�ne relation Rel�

� isRelationMemberP�IdList Rel �Bool�� �Bool returns true if the tuple denoted
by IdList is a member of the relation Rel�

� getRelationFiller�Rel k IdList�� �IdList��� for an nary relation Rel� for � 	
k 	 n� and for a list IdList� � fo�� � � � � on��� of concept instances with
jIdList�j � n
 �� getRelationFiller instantiates IdList� to

IdList� � foj�o�� � � � � ok��� o� ok� � � � � on��� � Relg�

� getValue�Id AttrOrFeat �Val�� returns the value of an attribute or of a feature
of the concept instance denoted by Id�

��� Planned Extensions

AKB as presented in this Section provides a general and simple knowledge repre
sentation formalism� future work will extend AKB in di�erent directions�

� Adding a deduction rule mechanism which allows e�g� to express background
theories and integrity constraints
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� Extending the KB speci�cation to a full objectoriented knowledge base pro
viding inheritance� specialisation and generalisation �is a relation��

� De�ning a transaction concept for AKB which allows the atomic execution
of a sequence of operations� This is especially important to synchronise the
knowledge base access by di�erent control layers of the InteRRaP architec
ture�

� BELIEF REVISION AND KNOWLEDGE ABSTRAC�

TION

This section describes a simple mechanism how perception can be transformed into
belief� due to space limitations� we will not discuss belief abstraction� i�e� the deriva
tion of more abstract or complex beliefs from simpler ones� for the belief revision
process� we will focus on the world model part of the agent knowledge base� since
this is most closely related to perception� mechanisms for revising the agent�s mental
and social model are beyond the scope of this paper�

In this paper� we assume that an agent perceives symbolic information� i�e� its
perception is speci�ed in the same language as its beliefs� At this point� the process
ing needed to obtain this level of representation is not considered� Furthermore� note
that the agent�s world model and its perception are represented as ground atomic
�rstorder formulae� Thus� the problem is reduced to maintaining consistency of the
world model� i�e� of the objectlevel beliefs an agent has about its environment� We
assume that perception is timestamped and that time�p� denotes the time stamp
of a proposition p�

In general� we distinguish between two kinds of consistency� namely logical con�
sistency and semantic consistency�

Logical Consistency� We adopt an incomplete notion of logical consistency for
ground atomic formulae� for a proposition p and a set of atomic propositions  we
de�ne WLC�p� � i� not��p �  � �WLC � weakly logical consistent��

Semantic Consistency� A simple notion of semantic consistency is de�ned by
describing a �nite set of domainspeci�c axioms specifying that in a certain domain
two facts in the world model are semantically inconsistent� A consistency axiom is
of the form

SI�p�� p��� cond�  cond�  � � �  condk

where p� and p� are atomic �rstorder formulae� The conditions condi� � 	 i 	 k

are inductively de�ned by �rstorder atomic formulae connected by the junctors �
and �� However� we require the variables V used in condi to be a subset of the
variables used in p� and p�� V � Vp� � Vp� � We do not allow recursion within
condi� Furthermore� we require that SI is only instantiated with ground atomic
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formulae� i�e� with formulae q�� q� with ���� �����p� � q�  ��p� � q� for ground
matchings ��� ��� These restrictions allow us to interpret the conditions condi over
the Herbrand Universe�

The intuitive semantics of SI is that SI�p�� p�� is true if believing p� is not
semantically consistent with believing p�� For example� a consistency axiom denoting
that it is not consistent to believe another robot to have two di�erent locations at
the same time is�

SI�location�A� �X�� Y��� O��� location�B� �X�� Y��� O����
A � B � �X� �� X� � Y� �� Y� �O� �� O���
time�location�A� �X�� Y��� O��� � time�location�B� �X�� Y��� O��

Based on the set of consistency axioms with the above properties� a decision
method for the predicate SI can be de�ned� SI terminates since we do not allow
recursion and instantiation of the axiom with formulae containing variables� This is
important for the proof of proposition � �see below��

A Belief Revision Algorithm� Let agent a�s world model at time t be WMt �
fq�� � � � � qng� Let Pt	� � fp�� � � � � pkg be the set of formulae perceived by a at time
t��� LetWLC and SI be metapredicates for checking weak logical and semantical
consistency as de�ned above� Then� a�s new beliefs WMt	� are computed by the
following function�

func BR�Pt���WMt�

WMt�� �WMt �� initialise ��

foreach p � Pt�� �� process each new perceived fact ��

f
if �WLC�p�WMt��� then �� logically inconsistent ��

WMt�� �WMt�� � fpg � f�pg
else

if �q �WMt���SI�p� q� then �� semantically inconsistent ��

WMt�� �WMt�� � fpg � fqg
else �� no inconsistency detected ��

WMt�� �WMt�� � fpg
g
return WMt��

The following properties of BR hold�

Proposition � Let SI be a terminating decision predicate for semantic consistency
as de�ned above� Then� function BR terminates for each �nite input sets P and
WM �
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Proof� Since P is �nite� the foreach loop is performed only �nitely often� To
show the termination of the body of the loop� we have to show that the predicates
WLC�pi�WMnew� and SI�pi� qj� evaluate to true or false after a �nite time� The
termination of WLC is trivial since it only involves checking membership in set
WMnew which is �nite by our assumption� The termination of SI is true by our
assumption� �

Proposition � BR is correct in a sense that it returns a set WM � of new beliefs
that are weakly logically consistent and semantically consistent provided that the
input set WM of beliefs is weakly logically and semantically consistent�

Proof� To show weak logical consistency� we have to prove that there is no propo
sition p such that fp��pg � WMnew� By our assumption� the input set WM does
not contain such formulae� Assume that p � WM and �p � P � In this case� due
to line �� WMnew will contain �p� Analogously� for �p � WM and p � P � WMnew

will contain p� This allows us to conclude that WMnew is weakly logical consistent
in the case that P is weakly logical consistent�

Assume now that there is a proposition q with fq��qg � P � In this case� either
q will be selected by the foreach branch before �q� or vice versa� In the former case�
�q will overwrite q� whereas q will overwrite �q� in the latter� Therefore� WMnew is
weakly logical consistent even if P is not�

Semantic consistency is ensured by the application of the predicate SI in line 

of the function� If a proposition p � P is semantically inconsistent with a formula
q � WM with respect to the set of axioms C� q will be replaced by p� Since WM

is assumed to be semantically consistent� so is WMnew� Semantic inconsistencies
within P are resolved as described in the case of logical inconsistencies� namely by
simple overwriting within the foreach loop� �

Note that BR is incomplete because the de�nition of WLC does not include full
logical deduction� For instance� if fp� qg � Pt	�� q �� �p but fpg j� �q� this type of
logical inconsistency cannot be recognised by BR� Inconsistencies in Pt	� itself are
resolved by BR depending on the order in which the p � Pt	� are processed�

The reason for the simple knowledge representation and belief revision formalism
de�ned at the world model layer is e!ciency� The world model represents the
dynamic environment of the agent� based on its world model� the agent has to
recognise critical situations such as threatening collisions very quickly and has to
react to it� Inconsistencies are resolved by the simple strategy of preferring beliefs
based on more recent information to older ones�

� SITUATION RECOGNITION

Situations are described from the perspective of an individual agent� A situation S
is a set of formulae S � SB � SL � SC with SB � WM � SL �MM � and SC � SM �
Thus� it describes a portion of the agent KB containing parts from its world model�
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its mental model� and its social model� The world model part �external context� of a
situation is a set of ground atomic formulae� the mental model part �mental context�
describes parts of the local intention structure of the agent� i�e� a set of goals and
intentions� the social model part �social context� describes belief about other agents
characterising a speci�c situation and parts of the agent�s joint intention structure�

Classes of situations are denoted by formulae in a �rstorder language L� so
called situation descriptions� Situation descriptions provide patterns that can be
instantiated to situations� For each layer i within the InteRRaP hierarchy� a set
Di � �L of situation descriptions is de�ned that are recognised by this layer� Let
T denote a set of time points� The semantics of the function SGi is de�ned by a
function OCCi � �

L � L � T �� �L� OCCi� 
t
i� Di� t� � S � returns the subset S � of

instantiations of a situation description D � Di which occur at time t� i�e� which
can be derived from the set of beliefs  ti at time t� At layer i� situations are mapped
to goals G � Gi� �i � Si �� Gi� SGi � �

L � T � �L � �L �� ��
L��L is de�ned as

SGi��
t
i� t�Di�Gi�

def
� f�S�G�j�D � Di�G � Gi�S � OCCi��

t
i�D� t� �G � �i�S�g�

Di�erences between the control layers result from restrictions on the admissible
form of the set  ti and from the implementation of OCCi� For the BBL� we have
 tB � WM � For the LPL� we have  tL � WM �MM � Situation recognition in the
CPL may access the whole knowledge base�  tC � WM �MM � SM �

OCCB is de�ned by OCCB� 
t
B�DB� t� � S i� �d � DB � S � d� for a ground

substitution �� This manypattern� manyobjects matching problem can be solved
e�g� by the RETE algorithm� allowing fast recognition of situations that have to dealt
with quickly at the behaviourbased layer� On the other hand� OCCL and OCCC

include checking whether the agent itself has a speci�c goal or an intention� or even
if other agents have certain goals or intentions� For OCCL we assume that local
goals are also represented as ground formulae� moreover� we require that an agent
explicitly knows all its goals and intentions� In the case of OCCC� however� more
complex� timeconsuming deduction may be necessary e�g� in order to recognise other
agents� goals� either through communication or through explicit goal recognition
techniques�

Situation recognition is an incremental process� i�e� partial situations may be
recognised at lower layers and complemented at higher layers� The SGi process
outputs pairs �S�G�� A goal G is associated to each situation S recognised by SGi�
This pair characterises a new option to be pursued by the agent� It serves as an
input to the planning and scheduling process described in the sequel�

For a detailed example of the situation recognition process� we refer to Section
	�� and to �M�uller 
�a��

	 PLANNING AND SCHEDULING

According to �gure �� at any point in time� the planning and scheduling process
PSi of layer i may receive input from two possible sources� situationgoal pairs
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from the SGi process and commitment messages from the planning and scheduling
process PSi	� at the next higher layer� The output of PSi are situationgoal pairs
which are sent to SGi	� and commitments to PSi��� PSi maintains an intention
structure which informally can be looked upon as the agent�s runtime stack� holding
the agent�s current goals Gi and its intentions Ii� denoting its state of planning
and plan execution� Each situation�goal pair �S�G� received from SGi at time t is
processed according to the following steps�

�� If layer i is competent for �S�G�� continue with step �� otherwise send an
upward activation request request�do�S� G�� to SGi	�� RETURN

�� Add G to the set Gi�

�� Select an element G� � Gi for being pursued next and devise a partial plan P �

for achieving G� given the current intention structure Ii�

�� Compute the modi�ed intention structure I �i and thus� the next commitment�

This procedure is basically the same for the planning and scheduling modules at
any layer� however� as is outlined in the sequel� the individual steps are implemented
in a di�erent manner�

��� Competence

The competencebased control �ow is a central feature of InteRRaP� Each layer can
deal with a set of situations� and is able to achieve a set of goals� The competence of
layer i for a situation�goal pair �S�G� is decided by a predicate �B � S�G �� f�� �g�
The competence predicates for the individual layers are de�ned as follows�

�B�S�G� � � i� ex� a reactor PoB whose activation condition matches G�
�L�S�G� � � i� ex� a singleagent plan ps that achieves G given start situation S�
�C�S� fG�� � � � � Gng� � � i� ex� a joint plan pj that achieves

Sn
i��Gi given S�

If �i�S�G� � � for a situation S and goal G� the layer is not competent for
this situation�goal� then� an upward activation request containing �S�G� is sent to
SGi	�� notifying this layer of the new situation� �B can be computed by a table
lookup with matching� thus� it is possible to make decisions quickly at the reactive
layer� However� trying to build a plan may be necessary in order to determine �L
and �C � These functions can be augmented by not only requiring the existence of
a plan� but also requiring a minimal quality of the plan based on a utility function
u � PLANS �� IR �see �Haddawy � Hanks 
�� M�uller 
�b��� This is useful for an
agent in order to decide whether to start a cooperation in a certain situation because
there is only a poor local solution�
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��� Deciding What to Do

After a layer has decided to be competent for a situation� the actual planning pro
cess starts resulting in a commitment� e�g� a decision to perform a certain action�
Again� this planning process di�ers throughout the InteRRaP layers� At the BBL�
patterns of behaviour provide direct hardwired links from situations to compiled
plans that are executed� thus� they ensure high responsiveness of the system to
emergency situations� At the LPL� a singleagent planner is used to determine a
sequence of actions in order to achieve the goal� For example� the implementation
of the forklift robots in the loading dock application �see Section 	� is based on a
library with domain plans� Multiagent planning situations at the CPL are described
by an initial situation and by the goals of the agents involved in the planning pro
cess� Cooperative planning therefore involves agreeing on a joint plan that satis�es
the goals of the agents ��M�uller � Pischel 
�b� describe such a mechanism for the
loadingdock��

��� Execution

The execution of an action a by the PSi process of a layer i is done by posting
a commitment request�commit�a�� down to the planning and scheduling process
PSi��� Commitments made by PSC to PSL are partial singleagent plans which are
local projections of the joint plan negotiated among the agents� This partial plan
is scheduled into the current local intention structure �plan� of the agent� Com
mitments made at the LPL� i�e� from PSL to PSB� are activations of procedure
PoB determined to be executed� Finally� at the BBL� commitments result from the
actual execution of procedures� Procedures basically describe sequences of activa
tions of primitive actions �or the sending of messages� which are available in the
agent�s world interface� Procedures are processed by a stepwise execution mecha
nism �M�uller et al� 
��� Each execution step is a commitment to the execution of a
primitive action in the world interface�


 EXAMPLE� DESIGNING MULTIAGENT SYSTEMS

USING InteRRaP

In this Section� we describe how the FORKS application presented in Section � has
been modelled using the theoretical framework presented so far� The models for
situation recognition and planning and scheduling de�ned above are instantiated by
the example of recognising and handling con�ict situations�

	�� Situation Recognition and Goal Activation

The situation recognition capability of an agent is distributed over the three lay
ers BBL� LPL� and CPL� allowing fast recognition of emergency situations� and a
thorough classi�cation of other situations� when more time is available�
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An example for an emergency situation to be recognised in the SGB module is
a threatening collision� It can be modelled by a situation description sd��

sd� � f location�self� �XS � YS�� OS�� status�self�moving��
perception�self� OS � ��X�Y �� T�R���free��X�Y ��g

Note that sd� is de�ned merely by the external context� i�e� without taking
into consideration knowledge about the agent�s goals� A second type of con�ict
are blocking con�icts� which are de�ned by the fact that the agent is not moving�
but intends to move to a square that is occupied by another agent� A situation
description sd� for a mutual blocking con�ict is�

sd� �
flocation�self� �Xs� Ys�� Os�� location�A� ��Xa� Ya�� Oa�� �� external context ��

opposed��Xs� Ys� Os�� �Xa� Ya� Oa��g�
fINTEND�self� goto landmark�Xa� Ya��g� �� mental context ��

fBEL�a� INTEND�A� goto landmark�Xs� Ys��g �� social context ��

	�� Planning and Scheduling

Once recognised� there are several di�erent possibilities to deal with a con�ict sit
uation� These possible reactions are implemented in the agents� PS processes� We
draw a distinction between three basic classes of mechanisms which can be directly
associated to the di�erent InteRRaP control layers� behaviourbased� local plan
ning� and cooperative planning mechanisms�

Behaviour
based mechanisms� This class of mechanisms has the Markov prop
erty� the decision of an agent at an instant ti only depends on the state of the world
at time ti��� Let A be a set of alternatives� G be a set of goals� g � G� Let WMi

denote the agents world model at time i� A behaviourbased decision algorithm is
de�ned as follows�

proc PSB
i � ��

init��WMi� Gi	
�

repeat

i � i � ��

Gi � update�Gi��� WMi
� �� determine new goals ��

g � select unsatisfied goal�Gi
� �� select one goal ��

A � compute alternatives�A� g� WMi
� �� compute alternatives ��

for the goal ��

next action � F�A� g
� �� commit to next action ��

using decision function F ��

try execute�next action
�

forever

In the sequel� we de�ne two classes of possible decision functions F �
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De�nition � �Probabilistic Decision Function �PDF�� Let A be a non�empty
set of alternatives� G a set of goals	 let f � A�G �� ��� �� be a probability distribution
on A� Then a PDF is Ff

p �A� g� � ai with probability f�ai� g� for each ai � A� We
omit the superscript f for F in cases it is irrelevant�

An important special case of PDF are random decision functions�

De�nition � �Random Decision Function �RDF�� A PDF Fr � Ff
r is an

RDF i
 f�a� g� � �
jAj

for all a � A and for all g in de�nition ��

The following proposition holds for the use of random decision functions in the
loading dock domain de�ned in Section ��

Proposition � Let Fr be an RDF� let A � fmoveto�Dir�� turnto�Dir�� grasp box�
put boxg be the set of alternatives as de�ned in Section � �non�deterministic case��
Let L be a �nite grid of size n � m� let �Xi� Yi� denote an arbitrary square in L�
Then

�� An agent using Fr as a decision function will reach each square �X� Y � that is
reachable from �Xi� Yi� in�nitely often�

�� For each �X� Y � �� �Xi� Yi�� there is no �nite upper bound on the maximal
number of steps required to reach �X� Y � for the �rst time�

Proof� ad �� The �rst part of proposition � follows directly from the random
walk theorem stated in �Chung ����

ad �� Let �Xi� Yi�� � 	 Xi 	 n� � 	 Yi 	 m be the initial position of the agent�
Let �X� Y � �� �Xi� Yi�� � 	 X 	 n� � 	 Y 	 m be an arbitrary square within grid L�
Let location�s� denote the access function to the agent�s physical location �Xs� Ys�
in state s�

Assume that there ex� n � N which is an upper bound of steps required to reach
�Xi� Yi� from �X� Y �� This means� for the length j�j of the biggest possible sequence
of actions � � �a�� a�� � � ��� ai � A denoting a sequence of state transitions

s�
a�� s� � � �

an� sn

with location�s�� � �Xi� Yi�� location�sn� � �X� Y �� and location�si� �� �X� Y � for all
� 	 i � n� we have j�j 	 n�

Now� we de�ne a sequence � of actions fb�� b�� � � � � bmg�m 	 n and location�s�� �
�Xi� Yi�� location�sm� � �X� Y �� and location�si� �� �X� Y � for all � 	 i � m� We
will show that � exists for the set N � f�Xi� Yi
 ��� �Xi� Yi � ��� �Xi
 �� Yi�� �Xi �
�� Yi�g of neighbour squares to �Xi� Yi�� This su!ces to show that no �nite lower
bound exists for any other square �X �� Y ��� since m� 	 m actions will be required to
reach �X �� Y ��� We de�ne � � �turnto�n�� turnto�south�� � � � � moveto�D��� where the
turning sequence is repeated dn

�
e times� and D denotes the direction corresponding

to each � "X� "Y � � N � Obviously� j�j � n � � 	 n�

�	



It remains to show that � is selected with a probability p��� 	 �� This holds
true because p��� � � �

jAj
�j�j 	 �� From this� proposition � follows immediately� �

Note that proposition ��� does not hold for probabilistic decision functions in
general since we do not require f�a� � �� � for all a � A�

In the loading dock� the probability function f can be de�ned e�g� as�

f�a� grasp box�B�� �

�
� � a � grasp box�B�
� � otherwise

f�moveto�Dir�� goto landmark�L�� �

���
��
��� � same quadrant�Dir� L�
��� � neighbor quadrant�Dir� L�
��� � otherwise�

Same quadrant and neighbor quadrant are predicates relating di�erent squares
with respect to their relative location from the perspective of an agent �see �gure
��b�� Function f de�nes a slight variation of a potential �eld method where the
agent is attracted by its goal region �in the example box B and landmark L�� and
prefers options that let it proceed towards its goal� In Section 	�� we show how
behaviourbased agents can be modelled using PDF and RDF�

Local planning mechanisms� This class of mechanisms uses a planning formal
ism in order to determine the next action to be performed� taking into consideration
the agent�s current goals� For task planning� a hierarchical skeletal planner has
been implemented in the FORKS system �see �M�uller � Pischel 
�a��� It decom
poses goals into subgoals� until an executable procedure PoB is reached� in this case
a commitment is posted to the BBL� In FORKS� a path planner P is used on a
graph representation of the loading dock to determine the shortest paths between a
given square and the goal square� If e�g� a blocking con�ict is detected� P is run
again to determine a new path to the agent�s goal�

Cooperative mechanisms� Local planning mechanisms run into trouble in two
cases� Firstly� if the number of agents increases� blocking con�icts occur very of
ten �see Section 
�� thus� the e�ort of replanning becomes too big� Secondly� given
incomplete information� certain goal con�icts cannot be resolved by mere local re
planning� Therefore� the PSC process contains cooperative planning facilities� Joint
plans for con�ict resolution are generated and negotiated among the agents �see
Section � and �M�uller 
�b� M�uller � Pischel 
�b���

	�� Agent Design

The di�erent mechanisms described in the above subsections can be combined by
the system designer to build a variety of agents having di�erent types and di�erent
properties� Thus� controlled experimentation is supported aimed at investigating

�We use Dijkstra�s algorithm with quadratic complexity
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how the design of individual agents determines the behaviour of the MAS� In the
sequel� �ve exemplary agent types for the loading dock application are de�ned� they
are analysed empirically in Section 
�

The random walker �RWK�� RWK is an agent that chooses its actions ran
domly� i�e� it always uses the random decision function Fr� In the case of RWK�
con�ict resolution is done implicitly� if the agent selects an alternative that cannot
be carried out� execution will fail and the agent will continue selecting alternatives
randomly until it has found a solution �if one exists��

Behaviour
based agent with random conict resolution �BCR�� BCR per
forms task planning using a PDF Fp as de�ned above� To resolve blocking con�icts�
it shifts to random mode �using function Fr� for n steps� after this� it uses function
Fp� again� The advantage of randomness is that it allows to get out of local optima�
in practice� this has turned out useful to avoid livelocks�

Behaviour
based agent with heuristic conict resolution �BCH�� Similar
to BCR� BCH uses decision function Fp for task planning� however� to resolve block
ing con�icts� it employs a di�erent strategy� if possible� it tries to dodge the other
agent instead of just moving randomly� Especially con�icts in the hallway region
can be resolved e!ciently by this strategy�

Local planner with heuristic conict resolution �LCH�� LCH uses the hier
archical skeletal planner described in �M�uller � Pischel 
�a� for local task planning�
it employs the same heuristic con�ict resolution strategy as BCH�

Local planner with cooperative conict resolution �LCC�� This agent type
has the same local planning behaviour as LCH� however� for resolving con�icts� it
combines local heuristics �for con�icts in hallway and truck regions� with coordina
tion via joint plans �for con�icts in shelf regions��

� EXPERIMENTAL RESULTS

In this section� the results of a series of experiments carried through for the loading
dock application are reported� The goal of these experiments was to evaluate the
behaviour of di�erent types of InteRRaP agents and how they depend on di�erent
internal and environmental parameters�

��� Description of the Experiments

The test series reported in this paper contains tests with homogeneous agent soci
eties� We ran experiments with four� eight� and twelve forklift agents� These agents
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had to carry out randomly generated tasks in a loading dock of size ����� squares�
with six shelves and one truck� The topology of the loading dock �see �gure ��a�
ensures that any square of type ground is reachable from any other� The number of
tasks were �� for four agents� ��� for eight agents� and ��� in the twelveagent case�
Each experiment was repeated �ve times �for twelve agents� and ten times �for eight
and four agents�� respectively� with the �ve agent types RWK� BCR� BCH� LCH�
and LCC� The focus of the experiment was to evaluate the system behaviour with
respect to the following questions�

� Is one of the described agent types or con�ict resolution strategies dominant
for the FORKS application�

� How gracefully degrade the di�erent types and strategies when the number of
agents is increased� How robust are they�

� How well do communicationbased strategies compared to local ones�

��� Results

The main results of the experiments are illustrated by the diagrams ��a  ��d�

Absolute performance� Diagram ��a shows the absolute performance for each
agent type as the average number of actions needed per task� There are two entries
for LCC� LCC� only accounts for the number of physical actions �moves� turns�
gripper actions�� whereas LCC� adds the number of messages sent �one message
�� one action�� RWK performs worst in all experiments� The planbased types
do somewhat better than the behaviourbased ones� especially LCC yields the best
results in terms of actions� however� the value of explicit coordination depends on
the cost of communication�

Conict E�ciency� Diagram ��b displays the the ratio of actions needed for
con�ict resolution to the total number of actions� Since RWK does not explicitly
recognise con�icts� it is not included in this statistics� The main result to be noted
here is that LCC performs well for small agent societies� whereas it actually does not
increase con�ict resolution e!ciency for large agent societies� in comparison with
local methods�

Degradation� The factor of performance degradation 
 shown in �gure ��c for x

agents� x � f�� 	� ��g is computed as 
�x�
def
� �a�x���t���

�a�����t�x�
� �
�
� where � is the success

ratio �see below�� #a�x� denotes the total number of actions� and #t�x� denotes the
total number of tasks in the xagent experiment�

The performance of agent type RWK happens to be very insensitive to the size
of the agent society� whereas the performance of all other agent types degrades
considerably with a growing number of agents� A second interesting observation is
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c) Performance degradation  with increased # of agents d) Avg. success ratio (percentage of  successfully performed tasks)

a) Avg. #actions per task b) Percentage of Actions Spent for Conflict Resolution
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Figure �� Experimental Results for the FORKS Application

that the behaviourbased agent types �except BCR�� tend to degrade more gracefully
than the more complex ones �LCH and LCC��

Robustness� Robustness is measured by the success ratio �� which is the ratio
of successfully �nished tasks to the total number of tasks given to the agent� In
our experiments� there are three sources of failures� Failures due to local maxima�
deadlock situations caused by con�icts� and failures due to multiple con�icts that
could not be adequately recognised and handled by the agents� The main result
concerning robustness is that behaviourbased strategies tend to be more robust than

�The poor performance of BCR in the twelve agent case is due to a cascade e�ect resulting from
the fact that if there are many other agents around� while trying to resolve a con�ict by performing
n steps random walk� the agent is very likely to run into a new con�ict aso
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planbased� cooperative strategies� Randomness has been shown to be a powerful
tool for avoiding and resolving deadlocks� Note that the robustness results are a little
too optimistic� especially for LCC types� since the joint plan negotiation protocol
used in the experiment cannot handle deadlocks caused by multiple con�icts� thus�
if an agent runs into such a situation very early� it will is kept there for the rest of
the experiment� Since tasks are allocated dynamically� other agents will perform its
tasks� thus� the agent will report only one failed task� Currently� we are developing
a negotiation protocol that can cope with multiple con�icts�

� DISCUSSION

In this paper� we identi�ed three basic functions explaining the transformation from
what an agent perceives �its input� to what it does �its output�� belief revision and
abstraction� situation recognition and goal activation� and planning and scheduling�
The individual control layers of the InteRRaP agent architecture were rede�ned
according to a new uniform structure based upon these functions� The main contri
bution of the paper has been to provide a uniform control model allowing to express
reactivity� deliberation� and cooperation by de�ning di�erent instantiations of three
general functions� The abstract architecture has provided a basis for the reimple
mentation of InteRRaP using the Oz programming language �Henz et al� 
��� The
concepts have been evaluated by an interacting robots application� an automated
loading dock �M�uller � Pischel 
�b� using KHEPERA miniature robots� empirical
results were presented showing how di�erent options to design agents according to
the InteRRaP model a�ect the behaviour of the system these agents are in�

The focus of this paper has been on describing the structure of the individual
layers rather than on describing how they interact� The problem of coherence in
layered architectures� i�e� how the interaction between the di�erent layers should be
designed in order to achieve coherent behaviour of the agent� is beyond the scope of
this paper� Some of its aspects have already been discussed in �M�uller et al� 
��� it
remains a subject for our future research�
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Table �� Results for Homogeneous Agent Societies of Types RWK� BCR� BCH�
LCH� and LCC with �� 	� and �� Agents

A Table of Experimental Results

Table � displays the numerical results of the experiments with the �ve agent types
in the loading dock reported above� The legend for table � is as follows�

RWK� random walker
BCR behaviourbased agent with random con�ict resolution strategy
BCH� behaviourbased agent with heuristic con�ict resolution strategy
LCH� local planner agent with heuristic con�ict resolution strategy
LCC� local planner� cooperative con�ict resolution strategy
NT� # of tasks
SR� success ratio
NA� # of performed actions
APT� # of actions per task
APC� # of actions per con�ict resolution
CRE� % of actions spend for con�ict resolution
QDF� quality degradation factor

��



NM� # of messages sent
MPT� # of messages per task
NMA� Total # of actions � # of messages
MAPT�Actions plus messages per task

APT and MPT have been computed by NA
NO�SR

and NM
NO�SR

� respectively� That
means that only successfully �nished tasks have been taken into account for com
puting these values�

The quality degradation factor QDF �x� for an xagent experiment has been

computed by QDF �x�
def
� NA�x��NO���

NA����NO�x�
� ���
SR
�

�	


