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Abstract

This paper first gives an overview of standard PROLOG indexing and
then shows, in a step-by-step manner, how it can be improved by slightly
extending the WAM indexing instruction set to allow indexing on multiple
arguments. Heuristics are described that overcome the difficulty of com-
puting the indexing WAM code. In order to become independent from a
concrete WAM instruction set, an abstract graphical representation based
on DAGs (called DAXes) is introduced.

The paper includes a COMMON LISP listing of the main heuristics
implemented; the algorithms were developed for RELFUN, a relational-
plus-functional language, but can easily be used in arbitrary PROLOG
implementations.

The ideas described in this paper were first presented at the Workshop
“Sprachen fiir KI-Anwendungen, Konzepte — Methoden — Implementierun-
gen” 1992 in Bad Honnef [S592]. This paper is part of a collaborative work
together with Werner Stein [Ste92].
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Part 1
An Introduction to PROLOG

Indexing

1 PROLOG and its Compilation into the
WAM

This paper will not give a complete description of compiling PROLOG into the
WAM (Warren Abstract Machine); only those topics will be covered that are
relevant to indexing. For more details on the WAM, refer to [War83], [GLLO85],
[AK90], and [Nys85].

The WAM instruction set contains the following groups of instructions:

e instructions for register manipulations and unification

e control instructions (for “calling” subprocedures)

e choice instructions for combining clauses into a procedure (see section 3)
e indexing instructions

e instructions for extralogicals (such as the cut)

2 Compiling a Single Clause

The compilation of a single clause is not affected by the standard indexing method
and the enhanced indexing methods described in this paper. In case you are not
familiar with the WAM, the following small examples will give you an idea of
how clauses are compiled.

Consider the following clause:

less(0,N).
Here is the WAM assembler code for the procedure:

less/2
get_constant 0, X1
proceed

less/2 is the entry label for the procedure. The /2 is needed no distinguish the
binary relation less from, say, a unary procedure with the same name.
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get_constant is one of the instructions used for unification. In this case, the
register X1, which always contains the first argument passed to a procedure, is
unified with the constant 0: If X1 is a free variable, X1 is bound to the constant
0; if X1 is bound, this instruction “fails” iff X1 is not bound to 0, otherwise no

action is taken.

For the (really anonymous) variable in the second argument no instruction is

necessary.

The proceed instruction simply marks the end of a procedure. It acts quite
similarly to the return instruction in conventional machine languages.

Compiling a rule is almost as simple as compiling a fact; the assembler code
sequences for the head and the body are concatenated:

less(s(M), s(N)) :- less(M, N).

Here is the WAM assembler code for the rule:

less/2
allocate O

get_structure s/1, X1
unify_variable X3
get_structure s/1, X2
unify_variable X4

put_value X3, X1
put_value X4, X2
call less/2, 0

deallocate
proceed

/
/
/
/
/

/

/

allocate a new environment on the stack
head: less(s(
M,
s (
N)) :-
body:
less(M, N).
remove the environment frame

3 Combining Multiple Clauses Into a Proce-

dure

The two clauses in the previous section define the binary relation less:

less(0,N).

less(s(M), s(N)) :- less(M, N).

The WAM code sequences for these two clauses can be combined without any
changes to form the WAM code for the complete procedure:
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less/2
try_me_else 2
get_constant 0, X1
proceed

2 trust_me_else_fail
allocate O

get_structure s/1, X1 % less(s(

unify_variable X3 % M),

get_structure s/1, X2 s (

unify_variable X4 % N)) :-

put_value X3, X1 yA

put_value X4, X2

call less/2, O % less(M, N).
deallocate

proceed

Three WAM instructions are needed for combining clauses in this way:

tryme_else L: allocate a new choice point frame on the stack setting its next

clause field to L

retryme_else L: having backtracked to the current choice point, reset all the
necessary information from it and update its next clause field to L

trust me else fail [L: having backtracked to the current choice point, reset all
the necessary information from it, discard it, and reset the latest choice
point (the B register) to its predecessor

It is not necessary for the reader to understand the way these instructions
work internally. It is only important to realize that for all queries and calling
procedures always all clauses of a procedure are ultimately “tried”.

For instance, the query less(0,s(0)) compiles to

put_constant 0, X1
put_structure s/1, X2
unify_constant O
execute less/2

It first tries the fact (succeeding) and on backtracking tries the rule (failing).
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Preparing the use of indexing header code in the next section, let us note that
try L, retry L, trust L can be used instead of try me_else [, retry me else
L, and trust me_else fail L by the following equivalence:

try A try_me_else V1
retry Bl A c
. V1 retry_me_else V2
retry Bn B1
trust C
A
B1 ... Vn retry_me_else W
Bn
Bn ... W trust_me_else_fail
C C

4 Standard PROLOG Indexing

It all arguments in a query or a calling predicate are variables, then there is clearly
no better way to proceed other than in the above way. On the other hand, when
some of the arguments are at least partially instantiated, that information can be
used to skip all (or at least some of ) those clauses that do not fit these arguments.
In analogy to databases, techniques to achieve this are summarized as “indexing”
techniques.

The main difference between database and PROLOG indexing is that the
former handles a set of items while the latter deals with a (textually ordered)
sequence of items (since PROLOG clauses are tried from top to bottom).

The standard PROLOG indexing method described in [War83], [GLLOS85],
and [AK90] uses the first argument of each procedure for indexing.

In the less example, the first clause has to be tried only if the first argument
is the constant 0 or a free variable. Analogously, the second clause has only to be
tried if the first argument is a unary structure with functor s or is a free variable.

The WAM instruction set must therefore include an instruction to determine
the type of an argument. This instruction is called switch on term. It takes as
many arguments as there are types in PROLOG (e.g. constants, structures, lists,
and empty lists) plus one argument for free variables:

switch on_term Const, Struct, List, Nil, Var.

All these arguments are labels to jump at if the first procedure argument has
the corresponding type.

In case of constants and structures, the constants and the functors can
also be used for indexing, thus two more switching instructions are used:
switch_ on_constant N, T'and switch_on_structure N, T'where T'is a hash ta-
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ble of size N containing entries of the form constant:label or structure/arity:label.
Actual constants and structures not appearing in the hash table lead to failure.

Replacing the try instructions by these switching instructions in the less
example, the following WAM assembler code results:

less/2
switch_on_term const, struct, fail, fail, var
const % X1 must here be *some* constant
switch_on_constant 1, {0:1} % jump to clause 1 if X1 = 0
struct % X1 must here be *some* structure
switch_on_structure 1, {s/1:2} J jump to clause 2 if X1 =
% else fail
var % jump to both clauses if X1 is a free variable:
try 1 % first try clause with label 1,
trust 2 ¥ then the clause with label 2
1 get_constant 0, X1
proceed
2 allocate O

get_structure s/1, X1
unify_variable X3
get_structure s/1, X2
unify_variable X4
put_value X3, X1
put_value X4, X2

call less/2, 0
deallocate

proceed

% less(s(

h M),

h s (

h N)) :-

% less(M, N).

Hassan Ait-Kaci in [AK90] called this the three-level-indexing scheme:

s(...

‘level‘ ‘\Ny\hﬁinstructknls
I discrimination on type switch on term
(constant, structure, list,
empty list, and variable)
IT | discrimination on value switch on_constant
(only for constants and structures) | switch on_structure
I | enumeration of clauses try, retry, trust

It the first argument of a procedure contains variables, one has to divide
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1

the procedure into several “blocks” or “partitions”', i.e. maximal three-level-
indexable subportions of a procedure either having a variable as the first argument
(one-clause blocks) or not (general blocks). The following procedure has to be
split into four blocks:

f(1,a).
£(2,b).

£(X,X).
£(X,d).

£(3,e).
f(4,f).

% block 1

% block 2

% block 3

% block 4

Blocks 1 and 4 can be compiled using the above described indexing instruc-
tions, blocks 2 and 3 are compiled straight forward. The four blocks are then
glued together by the try, retry, and trust instructions:

£/2 try blockl
retry block2
retry block3
trust block4

Together with the discrimination on name and arity, which can also be viewed
as part of the indexing, we now have a five-level-indexing scheme:

‘level‘ ‘\Ny\hﬁinstructknls

N | discrimination on name and arity | call and execute

B | enumeration of blocks try, retry, trust

I discrimination on type switch on term
(constant, structure, list,
empty list, and variable)

IT | discrimination on value switch on_constant
(only for constants and structures) | switch on_structure

I | enumeration of clauses try, retry, trust

'both terms are used interchangeably in this paper
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5 Motivation for Extensions of the Standard
PROLOG Indexing

The standard indexing method is only useful for procedures with a database-like
structure, i.e. the first argument is a key (or at least a quasi-key: practically all
constants are different, there a hardly any variables):

p(cl, ...) = ...
p(c2, ...) = ...
plecn, ...) = ...

Thus the standard indexing method does not work in the following cases:
1. the quasi-key is not the first argument of the procedure

2. the procedure can be split into several blocks each having another argument
as a quasi-key

3. the quasi-key is spread over several arguments

4. there is more than one argument (group) that could serve as a quasi-key
(this is important if the argument that is best suited for indexing is rarely
instantiated in calls)

5. some combinations of cases 1-3 with case 4
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Part 11

DA Xes: Indexing Information
Represented in Specialized

DAGs

In order to avoid further elaboration on concrete WAM indexing instructions,
an abstract graphical representation of the indexing instructions will be used,
namely DAXes: directed acyclic digraphs for indexing. The following sections
describe the various DAX components.

6 Clauses and Fails

For all indexing methods proposed in this paper, the WAM code for a single
clause is not relevant. Therefore, a clause is represented by a box containing
only the number (label) of the clause. Similarly, a fail is represented by a box

containing fail.

7 Choice Points

When combining multiple clauses into a procedure, they are connected via the
try me_else, retry me else, trust me or, equivalently, the try, retry, trust
instructions (see sections 3 and 4). Such a choice point is abstractly represented
by an oval with (left-to-right ordered) outgoing arrows:

It all sub-DAXes are just clauses, the following abbreviation is used:

[00 Jee
e

..... 7
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8 Index Instructions
The index instructions have the following graphical representations:

o switch on term Const, Struct, List, Nil, Var:

type n

Const |Struct|List|Nil |Var

R

The type n means switching on the type of the nth argument? (see section

11.1).

e switch on constant N, T:

const n

cl| e2] el .. .| cN|else
where the hash table T has the N entries ¢1, ¢2, ..., ¢N; the else label will
be explained in section 11.3

e switch on structure N, T:

struct n

sl| s2]|s3|...|sN|else
Vv vy

where the hash table T has the N entries s/, s2, ..., sN

9 Combining the DAX Components

In order to show how to combine the introduced DAX components, the two
examples of section 4, less and £, are used.

9.1 1less
less(0,N). % clause 1
less(s(M), s(N)) :- less(M, N). % clause 2

Zthus an extension of the standard WAM switching instructions is needed on the concrete
level: either (as in the KCM [BBB*89]) add an additional argument to all three switching in-
structions, or (as in our approach) add one new instruction (set_index number n; see appendix
B) to change the value of an index register (IX) which is looked up by the switch instructions
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9.2 f

f(1,a).
£(2,b).

£(X,X).
£(X,d).

£(3,e).
f(4,f).

a

type 1

const

struct|list

nil| var

const 1

0| else

/
/

/

/

/
/

clause

clause 2

clause

clause

clause
clause

type 1

const|struct|1ist|ni1|var

congt 1

1|2|else

fail

|

®)

struct 1&
s/1| else

type 1

const|struct|1ist|ni1|var

consgt 1

3|4|else

4t i



13

Part 111
Extensions of the Standard
PROLOG Indexing

10 Looking at Other Approaches

In this section we provide an overview of several indexing schemes which is a
slightly revised version of section 6 in [Ste92]. They can be distinguished into
hardware oriented and software oriented approaches.

The hardware oriented approaches are based on database techniques. A hash-
function returns, for a given query, a set of clauses as potential matches. This is
done separately from the compilation of the program, so clauses® (maybe a very
large number of clauses) can be stored separately (e.g. externally).

Most software oriented indexing schemes use a mixed storage of index and

clause code, so the whole program must be loaded at run time.

10.1 Hardware Oriented Approaches

Several indexing methods are based on bit-matrix representations of clauses in a
procedure. They are field encoding, superimposed coding with embedded position
and variables, and superimposed coding with external variables [HM39].

All these are based on the principle of n-in-m-coding which is described in the
next section.

10.1.1 m-in-n-Coding

In this method the value of an attribute is compressed into a binary word of width
n with a fixed number of m bits set to 1. This number is called the weight. The
problem is how to represent variables so that they can match with anything. In
COLOMB three possibilities to do this are proposed.

The main advantage of this method is that one can currently construct hard-
ware that handles up to 8.000 clauses and more in the presented manner. To-
gether with the linear searching hash-function one reaches a very high efficiency.
Another key property is that m-in-n-coding results in highly compressed code, so
that large clause code can be stored separately (externally) from the small index
code and only single rules are loaded.

3mainly facts
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10.2 Software Oriented Approaches

In contrast to the hardware oriented approaches, the software oriented approaches
do not use a hash-function returning a set of potentially matching clauses, but
the program flow sequentially enumerates all those clauses. For this reason the
index code and the clause code become scattered over the program code.

In section 4 standard WAM indexing was explained. A much more complex
indexing mechanism, complete indexing, is introduced in the next section.

10.2.1 Complete Indexing

In [HM89] Timothy Hickey and Shyam Mudambi present several indexing tech-
niques based on the WAM. The first one (complete indexing) uses global infor-
mation (like modes) to perform indexing.

First of all the program is transformed, creating new special code for each
mode that might occur for a procedure call.

As an example we look at the following program:

1. top :- p([1,2,3,4],%X), write(X).
2. p(1,0).
3. p(IXIYI,N) :- p(Y,M), N is M+1.

p is only called with a constant argument in the first position and a variable
in the second. The new code for the procedure p is specialized for this mode. It
is represented in the procedure p_cd?. If we assume that the program p is also
called with other modes, the compiler will produce other specialized procedures
for these modes.

The transformed source program is:

1. top :- p_cd([1,2,3,4],X), write_c(X).
2. p_cd([],0).
3. p_cd([XIY],N) := p_cd(Y,M), N is M+1.

Then the clauses are transformed into a normal form:
1. pec...cd...d(Ty,....Th, Z1,.... Zp) : —
2. P.,...,P
3. =51, s Ly =S, B1,...,Bs.

Where:

T; = arguments with mode constant
S; = arguments with mode don’t know

Z; = new variables not yet occurring in the clause

4¢ stands for constant and d for don’t know
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Primitives:
goals without side effects and

o
Il

whose parameters are known to
be ground after head unification

either a non-primitive goal or
causing side effect or with un-

B;

bound arguments after head uni-
fication

The generated indexing code is in some sense also a three level indexing (c.f.
section 4) of the following form:

‘ level ‘ ‘

I | indexing head code
IT | indexing primitive code
I | enumeration of clauses

The first one is a sequential indexing on the first n c-mode arguments. This
is done by unifying the known structure of these arguments and indexing inner
different possibilities with a new index-instruction called g_switch reg table. This
new instruction assumes that the argument register reg contains a ground term,
and switches to the appropriate location after a hash-table look up in table.

The indexing primitive code contains a set of new WAM branch instructions
(e.g. if gt, if_eq, if_le), so control jumps to a given label based e.g. on arith-
metical comparisons.

The indexing bodies are compiled with the standard WAM techniques.

‘ level ‘ instruction ‘ arguments ‘

I . 2: argument-number and
g-switch A .
list of tuples (atom link)
if gt
1f_eq 9.3
II lf_lé test-arguments (1-2) and
atomic .
true link
functor
try
II | retry 1: label
trust
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Example:

1. merge_ccd(L,[],L).
2. merge_ccd([], [BIBs],[BIBs]).
3. merge_ccd([AlAs],[BIBs],[AlCs]) :- A < B,
merge_ccd(As, [B|Bs],Cs) .
4. merge_ccd([AlAs],[BIBs],[BICs]) :- A >= B,
merge_ccd([A|As],Bs,Cs).

Normal form:

1. merge_ccd(L,[],X1) :- X1=L.

2. merge_ccd([], [BIBs],X1) :- X1=[B|Bs].

3. merge_ccd([AlAs],[BIBs],X1) :- A < B, X1=[AlCs],
merge_ccd(As, [B|Bs],Cs).

4. merge_ccd([AlAs], [BIBs],X1) :- A >= B, X1=[BICs],
merge_ccd([A|As],Bs,Cs).

Index tree:

g _switch Al

(1,2,3,4)
[1/0 else

g_switch A2 g_switch A2

first level
get list Al

unify var X1
unify var X2
get_list A2
unify var X3

rulel rule2 rulel rule3 rule4 third level

10.3 Index Assistant Functions

Indexing can also be performed by some functions not changing the program
flow but optimizing the time and memory consumption of indexing. We want
to separate these algorithms from the pure indexing scheme and call them index
assistant functions.
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10.3.1 Shallow Backtracking

This approach can only be applied to primitive deterministic® procedures.

While unification in the head and the primitive body code takes place, only a
link to the next alternative clause is needed as backtrack information because no
heap variables are bound, no non-primitive goal in the body will be called, and
no side effects will occur. On the other hand, after successtul unification in the
head and the primitives no backtracking in this procedure is possible because the
only possible matching clause is selected.

This reduces the code space requirements at run time, but good global ana-
lyzing methods are needed to detect primitive deterministic procedures.

10.3.2 Quadratic Indexing

Another approach for primitive deterministic procedures is the quadratic indexing
scheme. A tree-sharing method reduces the nodes in an index tree to have a size at
most O(n?). The index tree is transformed into a directed acyclic graph (DAG).

>primitive deterministic is an extended definition of kead deterministic which looks not only
at the clause heads but also at the primitive instructions at the beginning of the bodies
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11 Owur Approach

The next sections will describe our approach. Instead of directly presenting our
final indexing technique, its components are introduced in order of increasing
complexity.

The following part of a PROLOG program® (a normalizer producing DNFs
of propositional formulas) is used to demonstrate our heuristics for generating
index trees:

norm(X, X) :- literal(X).
norm{or(X, Y), or(X, Y)) :- literal(X), literal(Y).
norm(and(X, Y), and(X, Y)) :- literal(X), literal(Y).

norm(or(X, Y), or(X1, Y)) :-
literal(Y),
norm(X, X1).

norm{or(X, or(Y, Z)), W) :-
norm(or(or(X, Y), Z), W).

norm(or (X, and(Y1, Y2)), or(X1, Y12)) :-
norm(X, X1),
norm(and (Y1, Y2), Y12).

norm{and(X, Y), and(X1, Y)) :-
literal(Y),
norm(X, X1).

norm{and(X, and(Y, Z)), W) :-
norm(and(and(X, Y), Z), W).

norm{and(X, or(Y¥1l, Y2)), and(X1, Y12)) :-
norm(X, X1),
norm(or(Y1l, Y2), Y12).

Only the following information (entirely extracted from the clause heads”)
is used for the index tree generation; all algorithms in this paper can easily be

bsee also appendices B and C.2.2

if a variable in the head is directly bound to a constant or structure in the body before
any other subgoals, this information can also be used (e.g. in p(X) :- X = 5, q(6)); anyway,
RELFUN’s normalizer would move such body goals into the head (e.g. obtaining p(5) :-
q(6))



19 11.1 Using Arguments Other Than the First (1N)

extended to use additional information such as inner structure arguments and
“guards”® (see section 12.1):

‘ # ‘ Arg 1 Arg 2 ‘
L | norm( X \ X )
2 | norm( or/2 , or/2 )
3 | norm( and/2 , and/2 )
4 | norm(  or/2 , or/2 )
5 | norm(  or/2 , W )
6 | norm( or/2 , or/2 )
7 | norm( and/2 , and/2 )
8 | norm( and/2 , W )
9 | norm( and/2 , and/2 )

The following sections describe the heuristics for our indexing techniques:

e IN-Algorithm: One Argument / No Variables
e MN-Algorithm: Multiple Arguments / No Variables

— MBN-Algorithm: MN-Algorithm / Breadth Oriented
— MDN-Algorithm: MN-Algorithm / Depth Oriented

e 1V-Algorithm: One Argument / Variables
e MV-Algorithm: Multiple Arguments / Variables

11.1 Using Arguments Other Than the First (1N)

In this first generalization of the standard indexing technique (indexing on the
first argument) only one variable-free argument column in each indexing partition
is used (this argument column need not be the same in all partitions).

The heuristics for finding the partitions is the following simple greedy (don’t-
care-choice) algorithm (/N-Algorithm):

1. For each argument column ¢, count the number of non-variable arguments
down to the first variable or the end of the procedure (NV[i])

2. max NV := max;(NV][i])

3. If maz NV = 0 then use the first clause as a separate partition (without
indexing) else

e maxCOLS := {i|NV[i] = maxz NV}

8side-effect free builtins (<,>,...)
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o if maxCOLS = {k} then COL := k else choose COL € maxCOLS

with the most selective® elements
o use the first max NV clauses as a partition and index them on the

COL" argument

4. It any clauses are left go to 1 to form further partitions else stop

Using this algorithm on the example, the following two partitions are formed:

I. e NV[1]=NV[2]=0
e maxNV =0
o use first clause without indexing

e go to 1 with clauses 2 — 9

2. e NV[1]=8, NV[2] =3
e maz NV =8
e maxCOLS = {1}

e use clauses 2 — 9 with indexing on 1°* argument

‘#‘ Arg 1 Arg 2 ‘Idx‘
L | norm( X \ X )| -
2 | norm( or/2 , or/2 )
3 | norm( and/2 , and/2 )
4 | norm(  or/2 , or/2 )
5 | norm( or/2 , W )| 1
6 | norm( or/2 , or/2 )
7 | norm( and/2 , and/2 )
8 | norm( and/2 , W )
9 | norm( and/2 , and/2 )

Resulting index tree (“/” in else field is used here as a shortcut for a pointer
to fail; arcs are directed in the natural top-to-down order):

Yselectivity is the number of different constants and functors
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type 1
consllstructlhstlnlllvar

/

struct 1
or/2|and/2| /

.Lk

11.2 Using More Than One Argument (MBN, MDN,
and MN)

Multiple arguments can be used in two different ways for indexing:

2,3,4,5,6,7,8,9

faiI

1. When the indexing argument is unbound, use the “best” of the remaining
ones (e.g., if in the above example norm is called with the first argument un-
bound, try indexing on the second) (= index tree breadth, MBN-Algorithm)

2. When the argument that can be used for indexing selects many clauses, view
these clauses as a new procedure and index it recursively (e.g., if norm is
called with and/2 as the first argument, form a procedure from clauses
3,7,8,9 and index it on argument column 2 (for the second partition)) (=

index tree depth, MDN-Algorithm)

The MBN-Algorithm together with the MDN-Algorithm form the MN-
Algorithm, which is explained in detail in section 11.2.3. The results of the
MBN-Algorithm and MDN-Algorithm applied to the norm example should be

intuitively clear and are presented in the next two sections.

11.2.1 Breadth Oriented (MBN)

For simplicity, we consider only the following part of the norm example:

‘#‘ Arg 1 Arg 2 ‘ Idx ‘
< X

2 ( or/2 , or/2 )

3 | norm( and/2 , and/2 )| 142

4 ( or/2 , or/2 )

1 norm
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\

type 1 type 2
Const‘struct‘Llst‘Nll‘Var Const‘struct‘Llst‘Nll‘Var
struct 1 fall fall struct 2 fa:Ll
and/2 ‘or/2‘ else and/2 or/2 else
[£aiy]

Note that the Var case of the type 1 node points (‘over’) to the type 2
node (‘breadth’) under the assumption that the second query argument may be
non-variable.

That the struct 1 and struct 2 nodes have the same outgoing arrows'® is a

consequence of the example’s structurally identical first and second arguments!?

11.2.2 Depth Oriented (MDN)

For simplicity, we consider only the following part of the norm example:

‘#‘ Arg 1 Arg 2 ‘Idx‘
L | norm( X \ X )| -
2 | norm( or/2 , or/2 )
3 | norm( and/2 , and/2 )| 1
4 | norm(  or/2 , or/2 )

or/2 occurs two times in the first argument column; viewing the selected
clauses as a new procedure:

‘ # ‘ Arg 2 ‘ Idx ‘
2 | norm( or/2 )| (2)
4 | norm( or/2 )

10and/2 and or/2 of the hash table are presented here in the opposite order of earlier exam-
ples, which if of course immaterial

in future DAXes layout will occasionally enforce copying; in our implementation, identical
sub-DAXes are always shared (see [Ste92])
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\

type 1

Const‘ Struct‘ LlSt‘Nll ‘Var

\

struct 1 fall

and/2‘or/2 else

type 2
Const‘Struct Llst‘Nll‘Var

A\

struct 2

or/2 ‘ else

Note that the or/2 case of the struct 1 node points (‘down’) to the type 2
node (‘depth’) under the assumption that the second query argument may further
index the or/2-sub-procedure.

That this assumption is false (clauses 2 and 4 cannot be discriminated) is again
due to the structurally identical first and second arguments of the example.

11.2.3 Breadth and Depth Oriented (MN)

The following algorithm (MN-Algorithm) combines the MNB- and MND-
Algorithms:

1. For each argument column ¢, create a list VL[i] where N L[] is the longest
prefix of column ¢ without variables

2. If V; NL[i] = () then use the first clause as a separate partition (without
indexing) else

e sort the N L[¢] in descending order (w.r.t. their length) into the list SL
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max N L := length of first element in S'L

lastCol := position of last column in SL with length > maa N L-c with
¢ ~ 0.7 (this means that in order to enlarge the index tree breadth the
partition size may be reduced, e.g. by at most 30% = ¢ = 0.7)'%;
maxN L' := length of this column;

SL' = first lastCol elements of SL;

reorder SL' w.r.t. selectivity'?

create a partition consisting of the first max NL' clauses; index the
argument columns in S’ (= index tree breadth)

for each constant/functor occurring multiply in one argument column
of this partition do

— form a procedure containing all selected clauses and the remaining
argument columns in SL’ (only columns to the right of the current
one)

— apply the MN-Algorithm recursively to this procedure (= index
tree depth)

3. If any clauses are left go to 1 else stop

MN-Algorithm applied to norm example:

NI[l] = NL[2] = ()

use clause 1 as first partition

NL[1] = (or/2,and/2,0r[2,... and/2)

NL[2] = (or/2,and/2,0r/2)

SL = (NL[1], NL[2])

maxNL =8

lastCol =1 (NL[2] is too short, thus index tree breadth = 1)
SL'=(NL[1))

second partition consists of clauses 2 — 9, indexing takes place on first
argument

and/2 occurs four times in indexing column:

— form procedure from selected clauses:

120f course this constant could be easily changed

13

see section 11.1
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| # | Arg2 |
3 | norm( and/2 )
7 | norm( and/2 )
8 | norm( W )
9 | norm( and/2 )

— applying MN-Algorithm to this procedure:

‘ # ‘ Arg 2 ‘ Idx ‘
3 | norm( and/2 )| (2)
7 | norm( and/2 )

8 | norm( W )| -
9 | norm( and/2 )| -

e or/2 occurs four times in indexing column; result analogously to and/2:

‘ # ‘ Arg 2 ‘ Idx ‘
2 | norm( or/2 )| (2)
4 | norm( or/2 )

5 | norm( W )| -
6 | norm( or/2 )| -

Resulting index tree:
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type 1
YP
const | structl list |nil |var

2,3,4,5,6,7,8,9

struct 1

or/2 | and/2| /

\

I H (analogously
5 for and/2)

type 2

const | structl list |nil |Var

B

- J

A

11.3 Allowing Variables in Index Blocks (1V and MV)

In order to obtain larger and thus more efficient partitions (w.r.t. time), indexed
argument columns should be allowed to contain some variables. If, for example,
an argument column contains the sequence (1,2,X,2,1), it makes sense to form a
single partition from all 5 clauses; if a 1 is presented to this partition, only the
clauses 1,3,5 have to be tried. If a constant other than 1 or 2 or any structure or
list is presented to this partition, the third clause has to be tried. The standard
switch on_constant and switch_ on_structure instructions cannot handle this
situation which made it necessary to add the else argument to these instructions.

The algorithms for generating index trees with variables allowed in partitions
(1V- and MV-Algorithms) can easily be obtained from the IN-Algorithm and
MN-Algorithm by simply replacing the restriction “no variables” by “at most a
number BV S and percentage BV P % of variables”.

BVS is called the block variable size and specifies the maximal number of
variables an argument column of a partition is allowed to contain; BV P is the
maximal portion (in %) of variables in a partition’s argument column.
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11.3.1 The 1V-Algorithm

The 1V-Algorithm is subsumed be the MV-Algorithm; only the result of using
it on our norm example is presented'® (this can be regarded as being obtained
from the ‘1N’ DAX in section 11.1 by propagating the branch for clause 1 down
to the leaves of the second partition, overwriting fail nodes):

( )

@

type 1
constlstructlhstlnl I|var

/

struct 1
or/2]and/2] /

4:\

1,2,3,4,5,6,7,8,9

4BV S and BV P unrestricted
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11.3.2 The Final Result: The MV-Algorithm

1. For each argument column ¢, create a list VL[i] where N L[] is the longest

prefix of column ¢ with at most a number BV S and percentage BV P % of
variables

2. If V; NL[i] = () then use the first clause as a separate partition (without

indexing) else

sort the N L[¢] in descending order (w.r.t. their length) into the list SL
max N L := length of first element in S'L

lastCol := position of last column in SL with length > maxNL - ¢
with ¢ ~ 0.7;

maxN L' := length of this column;

SL' = first lastCol elements of SL;

reorder SL' w.r.t. selectivity!'®

create a partition consisting of the first max NL' clauses; index the
argument columns in S’ (= index tree breadth)

for each constant/functor occurring multiply in one argument column
of this partition do

— form a procedure containing all selected clauses and the remaining
argument columns in SL’ (only columns to the right of the current
one)

— apply the MV-Algorithm recursively to this procedure (= index
tree depth)

3. If any clauses are left go to 1 else stop

Result of using the MV-Algorithm on our norm example:

15

see section 11.1
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( )

type 1 type 2. -
const|structflistfnilfvar] consfstruct]listfnit]var

struct 1

1,2,34,5,6,7,8,9

AN

type 2 type 2

const] struct|list|ni IIvar i i consil struct||ist|ni I|var ;

| @B GG A )

In the above DAX, some sub-DAXes were pruned in order to reduce memory
consumption. This pruning is performed by the pruning algorithm explained in
[Ste92]'e.

The benchmarks in appendix C give you an impression of the efficiency gains

of the MV-Algorithm.

15the pruning can be influenced by the indexing :max-args <n>and indexing :max-depth
<n> commands in RELFUN which are described in appendix A
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12 Future Extensions

12.1 Using Additional Information

In addition to constants, functors, and lists (as described in section 11), the
following indexing information can be used:

e inner structure arguments: the above heuristics do not have to be changed;
simply form pseudo-argument columns of inner structure positions

o guards: side-effect free builtins can be extracted from a clause and mixed
with the indexing code (c.f. section 10.2.1)

e modes (declared or inferred): can be used to exclude output argument
columns and to prefer input argument columns

12.2 Assert

Instead of recompiling a procedure when additional clauses are asserted at its
front or end, one can simply add the new clauses at the top of the index tree:

new new

asserta assertz

This method results in a loss of (time) efficiency when too many clauses are
asserted because these new clauses are not indexed. Still, in that case only the
header code for the index tree has to be reorganized; the old clauses themselves
need not to be recompiled.

12.3 Compiling Higher Order PROLOG Extensions
In [Bol90] Harold Boley described how to reduce higher-order RELFUN clauses

to constant-operator clauses.
The second-order characteristics of the constant-operator fact

transitive(ancestor).

is dependent on ancestor’s use as a first-order relation:
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Rel(A,C) :- transitive(Rel), Rel(A,B), Rel(B,C).

Higher-order procedures like this cannot be directly compiled into the WAM,
but a simple transformation of all clause heads and goals allows compilation:

ho(hl, .. ,hk) — ap(ho,hl, .. ,hk)

For the above example, this transformation results in'”
ap(transitive, ancestor).
ap(Rel,A,C) :- ap(transitive,Rel), ap(Rel,A,B), ap(Rel,B,C).

With the standard PROLOG indexing, a significant loss of efficiency results
because indexing on only the first argument selects the clauses just by their
procedure name but does not look at their (real) arguments. The MN- and
MV-Algorithms overcome this problem by looking at all arguments (see section

11.2).

173 more efficient alternative to this transformation is implemented as part of RELFUN’s

compilation laboratory
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Part IV
Indexing in RELFUN

13 The RELFUN Implementation Structure

Although RELFUN provides both relational and functional clauses [Bol90], for
the purpose of indexing it can be regarded as a kind of PROLOG since indexing
affects the clause head and perhaps some body premises (“guards”), but never
the (functional) foot.

The compilation task is divided into several horizontal!® and vertical'® com-
pilation steps. The reason for this is that we prefer to do most of the compilation
work at source level (rather than at code level) in order to be independent from
a special low-level language or machine structure as much as possible.

One of the most important features of the RELFUN compiler is a special
language between the RELFUN language and the low-level WAM code. This
language, called “classified clauses”, was developed by Harold Boley and Thomas
Krause [BEHK91, Kra90, Kra91l] and is based on a tagged PROLOG-in-LISP

syntax, extended with global and local information.

N
norizonal QELFUN progrant—= (
compllatlon

vertical compllatlon )
Classified Clauses
( vertical compilation )
wavicose = (GG
\ y,

The right place to collect all indexing information which is necessary for our
indexing scheme is this intermediate language. So one modification had to take
place in the first vertical compilation step between the RELFUN program and
the classified clauses.

18
19

source to source
source to code
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Another modification had to generate the indexing WAM code and thus had
to take place in the second vertical compilation step between the classified clauses
and the WAM code.

Finally, the emulator had to be changed a little bit to allow new (better)
indexing methods. Our emulator is based on the r~-WAM ([Nys85]), a LISP
implementation of the WAM ([War83]), good for rapid prototyping and experi-
mental extensions. It was changed for handling RELFUN’s functional extensions

by Hans-Giinther Hein (see [Hei89]).

14 Compilation Phases

14.1 A Classifier with Indexing Heuristics

The result of the MV-Algorithm that enriches the classified clauses by heuristic
indexing information is described by the following EBNF"

classified-procedure ::=
(proc <name>/<n> ; <n> is the arity
<number-of-clauses>
<indexing>
<classified-clause-1>

<classified-clause-n> )

indexing ::= (indexing [ <iblock> ] )

iblock ::= <pblock> | <sblock>

pblock ::= (pblock <rblock> { <sblock> | <1block> }+ )
rblock ::= (rblock <clauses> { arg-col }+ )

clauses ::= (clauses { <clause-number> }+ )

arg-col ::= (arg <arg-number> { <base-type> }+ )
base-type ::= <const> | <struct> | <var>

const ::= (const <symbol>)

struct ::= (struct <symbol> <arity>)
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var ::= (var <symbol>)

1block ::

(1block <clauses> { arg-col }+ )

sblock ::= (sblock <rblock> <seqind> [ <pblock> ] )
seqind ::= (seqind { <seqind-arg> }+ )
seqind-arg ::= (arg <arg-number>

(info <inhomogenity>)

<constants>

<structures>

<lists>

<empty-lists>

[ <others> ])
constants ::= (const { <element> }x* )
structures ::= (struct { <element> }x* )
element ::= ( <element-name> <clauses> [ <iblock> ] )
element-name ::= <symbol> | ( <symbol> <arity> )
lists ::= (1list <clauses> [ <iblock> ] )
empty-lists ::= (nil <clauses> [ <iblock> ] )
others ::= (other <clauses> [ <iblock> ] )

Explanations:

e iblock = indexed block

e pblock = partition block

e sblock = standard index block

e Iblock = block consisting of only one clause

e rblock = raw block containing the initial data

e seqind = sequential indexing
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e arg-col = argument column

e others = (possibly indexed) clauses for elements not occurring in any hash
table

For further details and an example, refer to appendices B and D.

14.2 A Code Generator with Indexing Heuristics

Code generation, the second part of our implementation, is working below the
level of the classified clauses and is described in detail in [Ste92]. Its main task
is the generation of indexing WAM code from the indexing information in the

classified clauses.
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15 Summary: Heuristic Classification

There is a more global sense (than that of section 14.1) in which this paper
combines heuristics and classification, providing a good scheme for this summary

section.
In [Cla85] heuristic classification has been identified as a widespread problem
solving method. Heuristic classification is comprised of three main phases:

1. abstraction from a concrete, particular problem description to a problem

class,
2. heuristic match of a principal solution (method) to the problem class, and

3. refinement of the principal solution to a concrete solution for the concrete

problem.

problem class W principal solution

abstraction refinement

concrete problem concrete solution

These phases can be correlated with the phases in our indexing scheme:

1. abstraction from a RELFUN procedure resulting in the relevant head
information, the argument columns (see section 11 and the function
icl.mk-it-head (“make index type head” in appendix D),

2. applying the MV-Algorithm (or one of the other heuristics) resulting in a
DAX, and

3. using the code generator to produce the concrete solution, the WAM code.

head information _ ClaSSIE)IZd)(Cl auses
MV-Algorithm

abstraction code generation

procedure WAM code
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Part V
Appendix

A User Commands

Since indexing should be automatic the index structure is hidden from the REL-
FUN user. The only command to control indexing is:
indexing { on | off

:min-clauses <no>
:max-vars <no>
:max-depth <no>
:max-args <no>
:debug on
:debug off }

The effect of calling indexing without any option is displaying the current
settings.

The switches have the following effects:

on (off) switches indexing on (off)

e :min-clauses <no> sets the minimal number of clauses for an indexable
operator definition to <no>

e :max-vars <no> sets the maximal number of variables allowed in a con-
stant /functor block to <no> (BVS?. block variable size, see section 11.3)

e :max-depth <no> sets the maximal depth of the index tree to <no> (index
tree depth, see section 11.2)

e :max-args <no> sets the maximal breadth of the index tree to <no>
(index tree breadth, see section 11.2)

e :debug on (off): for internal use only

Example:

rfe> indexing
indexing on :min-clauses 2 :max-vars 10 :max-depth 3 :max-args 2 :debug off

rfe> indexing :min-clauses 3
indexing on :min-clauses 3 :max-vars 10 :max-depth 3 :max-args 2 :debug off

20BV P cannot be changed by the user
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rfe> indexing :max-depth 4 :max-args 3 :max-depth 5
indexing on :min-clauses 2 :max-vars 10 :max-depth 5 :max-args 3 :debug off

B Sample Session

In order to show all index features of the compiler, we now want to introduce a
larger example and the solutions after each compilation step.

The example is the dnf-procedure?’ which produces the disjunctive normal
form of a logic formula with the operators 'and’, ’or” and 'not’ (here written as
a, o, and n).

We begin our example with the RELFUN program of dnf?* and its head
information:

dnf (X, X) :- literal(X).
dnf(o[X, YI, o[X, Y]) :- literal(X), literal(Y).
dnf(alX, Y], alX, Y]) :- literal(X), literal(Y).
dnf(n[n[X]], W) :- dnf(X, W).
dnf(nlo[X, Y]], W) :- dnf(alnl[X], nlY]], W).
dnf(nlalX, Y]], W) :- dnf(o[n[X], nlY]], W).
dnf(o[X, Y], W) :- dnf(X, X1), dnf(Y, Y1), norm(o[X1, Y11, W).
dnf(alX, Y], alalX1, X2], Y]) :- literal(Y), dnf(X, al[X1, X2]).
dnf(alX, Y], alalYl, Y21, X]) :- literal(X), dnf(Y, alY1l, Y2]).
dnf(alX, Y], W) :- dnf(X, al[X1, X21),
dnf (Y, alY1l, Y21),
norm(alal[X1, X21, alY1l, Y211, W).
dnf(alX, Y], W) :- dnf(X, o[X1, X21),
dnf (Y, Y1),
dnf(olal[X1, Y11, al[X2, Y111, W).
dnf(alX, Y], W) :- dnf(X, X1),
dnf (Y, ol[Y1l, Y21),
dnf(olal[X1, Y11, al[X1, Y211, W).

Zlef. section 11 and appendix C.2.2
2Zthe only difference to standard PROLOG here being the use of square brackets instead of
round parentheses for structures
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Head information:

‘ # ‘ Arg 1 Arg 2 ‘
L | dnfl X \ X )
2 |dnfl o/2 , o/2 )
3 |dnfl a/2 , a/2 )
4 |dnft o/l , W )
5 | dnfi n/1 , W )
6 |dnfli o/l , W )
T ldnfl o2 , W )
8 |dnfl a/2 , a/2 )
9 |dnfl a/2 , a/2 )
10 [dnfl a/2 , W )
I {dnfl a/2 , W )
12 [dnfl a/2 , W )

Classified clauses (indexing part):

(proc
dnf/2
12
(indexing
(sblock
(rblock
(clauses 1 234567
89 10 11 12)

(arg

1

(var x)
(struct o 2)
(struct a 2)
(struct n 1)
(struct n 1)
(struct n 1)
(struct o 2)
(struct a 2)
(struct a 2)
(struct a 2)
(struct a 2)
(struct a 2) )

(arg

2
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(var x)
(struct o 2)
(struct a 2)
(var w)
(var w)
(var w)
(var w)
(struct a 2)
(struct a 2)
(var w)
(var w)
(var w) ) )
(seqind
(arg
1
(info 3)
(const)
(struct
((o 2)
(clauses 1 2 7)
(sblock
(rblock (clauses 1 2 7)
(arg
2
(var x)
(struct o 2)
(var w)))
(seqind
(arg
2
(info 1)
(const)
(struct ((o 2)
(clauses 1 2 7)))
(list)
(nil)
(other (clauses 1 7))))))
((a 2)
(clauses 1 38 9 10 11 12)
(sblock
(rblock
(clauses 1 3 8 9 10 11 12)
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(arg
2
(var x)
(struct a 2)
(struct a 2)
(struct a 2)
(var w)
(var w)
(var w) ) )
(seqind
(arg
2
(info 1)
(const)
(struct ((a 2) (clauses 1 3 8 9 10 11 12)))
(list)
(nil)
(other (clauses 1 10 11 12))))))
((n 1)
(clauses 1 4 5 6)
(pblock
(rblock (clauses 1 4 5 6)
(arg

(var x)
(var w)
(var w)
(var w)))
(1block (clauses 1) (arg 2 (var x)))
(1block (clauses 4) (arg 2 (var w)))
(1block (clauses 5) (arg 2 (var w)))
(1block (clauses 6) (arg 2 (var w))))))
(list)
(nil)
(other (clauses 1)) )
(arg
2
(info 2)
(const)
(struct
((o 2) (clauses 1 2456 7 10 11 12))
((a 2) (clauses 1 3456789 10 11 12)) )
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(list)

(nil)

(other (clauses 1 45 6 7 10 11 12)) ) ) ) )
(fun*den ; clauses part omitted

The indexing switches had the following values:

indexing on
:min-clauses 2
:max-vars 10
:max-depth 1
:max-args 2
:debug off

In the following we abbreviate the constraints of the type-box in the index
tree: ¢ is the constant constraint, str is the structure constraint, [ is the list
constraint, n is the nil constraint, and the else constraint is the link on the right
side of the box (without name).

The index tree corresponding to the index header of the classified dnf/2 clauses
is of the following form:

~1,2,3,4,5,6.7
type 1 type 2

cstrln cstrin

LN

@D type 2 type2

cstrin cstrln
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The resulting index code?® is:

((set_index_number 1)
(switch_on_term 1 "label58" 1 1 "label50")
"labelb8"
(switch_on_structure
3
(((o 2) "label3s") ((a 2) "labeld2") ((n 1) "labeld49"))
1)
"label3b"
(set_index_number 2)
(switch_on_term "label36" "label59" "label36" "label36'" "label38")
"labelb9"
(switch_on_structure 1 (((o 2) "label38")) '"label38'")
"label36"
(try 1 2)
(trust 7 2)
"label38"
(try 1 2)
(retry 2 2)
(trust 7 2)
"label42"
(set_index_number 2)
(switch_on_term "label43" "label60" "label43" "label43'" "label45")
"label60"
(switch_on_structure 1 (((a 2) "label45")) '"label4d3")
"label43"
(try 1 2)
(retry 10 2)
(retry 11 2)
(trust 12 2)
"label4b"
(try 1 2)
(retry 3 2)
(retry 8 2)
(retry 9 2)
(retry 10 2)
(retry 11 2)
(trust 12 2)
"label49"
(try 1 2)
(retry 4 2)
(retry 5 2)
(trust 6 2)
"label50"
(set_index_number 2)
(switch_on_term "label51" "label61' "label51" "labelb1" '"label57'")
"label61"

Zan instruction inst(argl, ..., argN) is internally written as (inst argl ...argh),i.e.

in LISP syntax
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(switch_on_structure 2 (((o 2) "labelb3")

"labelb7"

(try 1
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(trust

2)
2

© 0 ~N O 0k w

10
11
12

"labelb3"

(try 1
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(trust

2)
2
4
5
6
7
10
11
12

"labelb4"

(try 1
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(retry
(trust

2)
3

© 0 N O 0

10
11
12

"labelb1"

(try 1
(retry
(retry
(retry
(retry
(retry
(retry
(trust
1

2)
4
5
6
7
10
11

12 2))

2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)

2)
2)
2)
2)
2)
2)
2)
2)

2)
2)
2)
2)
2)
2)
2)
2)
2)
2)

2)
2)
2)
2)
2)
2)

((a 2) "labelb4")) "labelb1i")

; WAM code for clauses omitted
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C Benchmarks

C.1 Benchmark Results

The next table gives an overview of three benchmarks?:

1. the first benchmark is the well known naive reverse benchmark

2. the second benchmark (dnf) is the complete program from section 11 and
appendix B

3. the third test is the NET DATALOG benchmark; NET is an automatically
generated (from a constraint net) tool-selection program for an NC-program
generator [BHHT91]; its task is to select a cutting tool for turning a given
workpiece on a CNC-lathe machine

Since the v-WAM was conceived as a didactic prototype written in higher-level
LISP, not as a PROLOG product, the absolute values are not yet competitive with
well known production PROLOGs. The average speed-up gained by indexing in
our database-like applications, however, is a factor between 20 and 30. But even
rather deterministic procedures like append and reverse produce a speed-up of
at least a factor of 2.

24these benchmark results are not very exact, since run-time was taken by hand (our emulator
has no run-time measure predicate).
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benchmark name

target hardware

time

nrev .

well known naive reverse benchmark
6 lines

arity of procedures: 2-3

SUN 4
125 MB RAM (Lucid)

no indexing

13 sec

SUN 4
125 MB RAM (Lucid)

indexing

7 sec

dnf :

tool from Hans-Giinther Hein (see
[Hei93])

105 lines

arity of procedures: 2-3

IVORY
LISP-BOARD (Symbolics)

no indexing

84 sec

IVORY
LISP-BOARD (Symbolics)

indexing

24 sec

SUN 4
125 MB RAM (Lucid)

no indexing

425 sec

SUN 4
125 MB RAM (Lucid)

indexing

120 sec

NET :

(author: Frank Steinle)
312 lines
arity of procedures 2-3

IVORY
LISP-BOARD (Symbolics)

no indexing

288 sec

IVORY
LISP-BOARD (Symbolics)

indexing

15 sec

SUN 4
125 MB RAM (Lucid))

no indexing

1460 sec

SUN 4
125 MB RAM (Lucid)

indexing

72 sec
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C.2 Benchmark Sources literal(Y),
norm(X, X1).
These are the listings of the benchmarks rerm(alx, al¥, z11, W) :-
K K norm(alalX, Y], Z], W).
used in section C.1. norm(al[X, o[Y¥1, Y211, alXt, Y121) :-
norm(X, X1),
norm(o[Y1, Y21, Y12).

C.2.1 nrev Benchmark

. . . dnf(X, X) :- literal(X).
The nrev procedure is tested with a list dif(o[x’ V1, o}x?r;l]) -

of fifty elements. literal(X),
literal(Y).
dnf(al[X, Y], alX, Y1) :-
literal(X),
nrev([],[D. literal(Y).
dnf(n[n[X1], W) :- dnf(X, W).
nrev([X|Y],Z) :- nrev(Y,z1), dnf(nl[o[X, Y]], W) :- dnf(al[n[X], n[YI], W).
append (Z1, [X],2) . dnf(nl[al[X, Y]], W) :- dnf(o[n[X], n[YI], W).
dnf(o[X, Y], W) :- dnf(X, X1),
append ([],L,L). dnf(Y, Y1),
norm(o[X1, Y1], W).
append ([XIY],L, [XIZ]) :- append(Y,L,Z). dnf(alX, Y1, alalXt, X21, Y1) :-
literal(Y),

dnf (X, a[X1, X21).
dnf(alX, Y], alalYl, Y21, XI) :-
C.2.2 dnf Benchmark literal(X),
dnf(Y, a[¥Yi, Y21).
. . dnf(alX, Y], W) :-
This benchmark was CELH.ed with the dnt (X, alxi, x21),
procedure go4. Only the time for find- dnf (Y, al¥1, Y21),
. . norm(ala[X1, X21, a[Y¥Y1, Y211, W).
ing the first solution was measured. dnfCalx, Y1, W) -
dnf (X, o[X1, X21),

dnf (Y, Y1),
literal(z0). dnf(o[a[X1, Y1], a[X2, Y111, W).
literal(zl). dnf(alX, Y], W) :-
literal(z2). dnf(X, X1),
literal(z3). dnf (Y, o[Y1, Y21),
literal(z4). dnf(olal[X1, Y11, alx1, Y211, W).
literal(z5).
literal(z6).
literal(z7). gol(X) :- dnf(a[z1,
literal(z8). al[z2,
literal(z9). o[z3,
literal(n[X]) :- literal(X). alz4,
alz5, z611111,
X).
norm(X, X) :- literal(X). go2(X) :- dnf(o[o[a[z1l, 2z2], 23],
norm(o[X, Y], o[X, Y]) :- ol[al[z4,
literal(X), alalz5, z6],
literal(Y). z711,
norm(al[X, Y1, alX, YI) :- o[z8, 29111,
literal(X), X.
literal(Y). go3(X) :- dnf(ala[z1l, alo[z2, 23], z4]1],
norm(o[X, Y], o[X1, Y]) :- alz5, ol[z6, z711],
literal(Y), X.
norm(X, X1). go4(X) :- dnf(n[o[a[n[o[z1, 2217,
norm(o[X, o[Y, 211, W) :- nlalz3, z4111,
norm(o[o[X, Y], Z]1, W). a[n[z5],
norm(o[X, a[Y1, Y211, o[X1, Y12]) :- ol[al[z6, alz7, z8]1],
norm(X, X1), z91111,
norm(al[Y1l, Y2], Y12). X,

norm(al[X, Y], a[X1, Y1) :- dnf(nlo[alnlo[z1, z2]1],
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nlal[z3, 24111,
a[n[z5],
ol[alz6, alz7, 2811,
z91111,

X).

C.2.3 NET Benchmark

The run-time for finding the first so-
lution of the predicate call tool-
selection(X,Y) is given in the bench-

mark results.

t-isa(X, X).
t-isa(X, Y) :- tt-isa(X, Y).

tt-isa(X, Y) :- isa(X, Y).

tt-isa(X, Y) :- isa(X, Z), tt-isa(Z, Y).

isa(90, rechter).
is-leaf(90).

isa(0, spitz).
is-leaf(0).

isa(10, spitz).
is-leaf(10).

isa(20, spitz).
is-leaf(20).

isa(30, spitz).
is-leaf(30).

isa(60, spitz).
is-leaf(60).

isa(80, spitz).
is-leaf(80).

isa(180, stumpf).
is-leaf(180).

isa(1560, stumpf).
is-leaf(150).

isa(140, stumpf).
is-leaf(140).

isa(130, stumpf).
is-leaf(130).

isa(100, stumpf).
is-leaf(100) .
isa(stumpf, winkel).
isa(spitz, winkel).
isa(rechter, winkel).
isa(rund, nicht-eckig).
is-leaf(rund).
isa(quader, viereck).
is-leaf(quader).
isa(quadrat, viereck).
is-leaf(quadrat).
isa(viereck, eckig).
isa(dreieck, eckig).
is-leaf(dreieck).
isa(rhomb, eckig).
is-leaf (rhomb) .
isa(eckig, geometrie).
isa(nicht-eckig, geometrie).

isa(sl, stahl).
is-leaf(sl).
isa(s2, stahl).
is-leaf(s2).
isa(s3, stahl).
is-leaf(s3).
isa(s4, stahl).
is-leaf(s4).
isa(s5, stahl).
is-leaf(s5).
isa(s6, stahl).
is-leaf(s6).
isa(k741, k74).
is-leaf(k741).
isa(k742, k74).
is-leaf(k742).
isa(k743, k74).
is-leaf(k743).
isa(k71, k7).
is-leaf(k71).
isa(k72, k7).
is-leaf(k72).
isa(k73, k7).
is-leaf(k73).
isa(k74, k7).
isa(k75, k7).
is-leaf(k75).
isa(k76, k7).
is-leaf(k76).
isa(k77, k7).
is-leaf(k77).
isa(k78, k7).
is-leaf(k78).
isa(k79, k7).
is-leaf(k79).
isa(k710, k7).
is-leaf(k710).
isa(k21, k2).
is-leaf(k21).
isa(k22, k2).
is-leaf(k22).
isa(k23, k2).
is-leaf(k23).
isa(k24, k2).
is-leaf(k24).
isa(k1l, k1).
is-leaf(k1l).
isa(k12, k1).
is-leaf(k12).
isa(k13, ki1).
is-leaf(k13).

isa(kl, keramik).
isa(k2, keramik).
isa(k3, keramik).

is-leaf(k3).

isa(k4, keramik).

is-leaf(k4).

isa(k5, keramik).

is-leaf(k5).

isa(k6, keramik).

is-leaf(k6).

isa(k7, keramik).
isa(k8, keramik).

is-leaf(k8).
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isa(k9, keramik).
is-leaf(k9).

isa(k10, keramik).
is-leaf(k10).
isa(stahl, material).
isa(keramik, material).
isa(hss, material).
is-leaf(hss).

tool-num(Wkl, Mat) :-
s-tool(Mat, Down-geo-1),
s—angle(Down-geo-1, Wkl),
s-position(Wkl, Mat),
numeric-test (Wkl, Mat).

mixed-selection(Wkl, Mat) :-
s-tool(Mat, Down-down-geo-1-1),
s—angle(Down-down-geo-1-1, Wkl),
s-position(Wkl, Mat),
s-wrk(Mat, Down-down-geo-2-1),
s—angle(Down-down-geo-2-1, Wkl),
s-position(Wkl, Mat),
s-lager(Mat, Geo).

h-selection(Wkl, Mat) :-
s-tool(Mat, Down-geo-1),
s—angle(Down-geo-1, Wkl),
s-position(Wkl, Mat),
s-wrk(Mat, Down-geo-2),
s—angle(Down-geo-2, Wkl),
s-position(Wkl, Mat).

tool-selection2(Wkl, Mat) :-
s-wrk(Mat, Geo),
s-angle(Geo, Wkl),
s-position(Wkl, Mat).

s-wrk(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, s1),
t-isa(B, rund).

s-wrk(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(4, s2),

t-isa(B, nicht-eckig).

s-wrk(A, B) :- is-leaf(A),
is-leaf(B),
t-isa(A, k12),
t-isa(B, rund).

10-tool-selection(Wkll, Wk1l2) :-

s-tool(Matl, Down-geol-1),
s—angle(Down-geol-1, Wkl1l),
s-position(Wkll, Matl),

s-tool(Mat2, Down-geo2-1),
s—angle(Down-geo2-1, Wk1l2),
s-position(Wkl2, Mat2),

s-tool(Mat3, Down-geo3-1),

s—angle(Down-geo3-1, Wk13),
s-position(Wkl3, Mat3),
s-tool(Mat4, Down-geod-1),
s—angle(Down-geo4-1, Wk1l4),
s-position(Wkl4, Mat4),
s-tool(Mat5, Down-geo5-1),
s—angle(Down-geo5-1, Wk15),
s-position(Wkl5, Mat5),
s-tool(Matl, Down-geol-2),
s—angle(Down-geol-2, Wkl1l),
s-position(Wkl1l, Matl),
s-tool(Mat2, Down-geo2-2),
s—angle(Down-geo2-2, Wkl2),
s-position(Wkl2, Mat2),
s-tool(Mat3, Down-geo3-2),
s—angle(Down-geo3-2, Wk13),
s-position(Wkl3, Mat3),
s-tool(Mat4, Down-geo4-2),
s—angle(Down-geo4-2, Wk1l4),
s-position(Wkl4, Mat4),
s-tool(Mat5, Down-geo5-2),
s—angle(Down-geo5-2, Wk1l5),
s-position(Wkl5, Mat5).

5-tool-selection(Wkll, Wk1l2) :-

s-tool(Matl, Geol),
s-angle(Geol, Wkl1),
s-position(Wkl1l, Matl),
s-tool(Mat2, Geo2),
s-angle(Geo2, Wkl1l2),
s-position(Wkl2, Mat2),
s-tool(Mat3, Geo3),
s-angle(Geo3, Wkl3),
s-position(Wkl3, Mat3),
s-tool(Mat4, Geo4d),
s-angle(Geo4, Wkl4),
s-position(Wkl4, Mat4),
s-tool(Mat5, Geo5),
s-angle(Geo5, Wkl5),
s-position(Wkl5, Mat5).

tool-selection(Wkl, Mat) :-
s-tool(Mat, Geo),
s-angle(Geo, Wkl),
s-position(Wkl, Mat).

s-lager(A, B) :- is-leaf(d),
is-leaf(B),
t-isa(A, stahl),
t-isa(B, 100).
s-lager(A, B) :- is-leaf(d),
is-leaf(B),
t-isa(A, keramik),
t-isa(B, 150).
s-lager(A, B) :- is-leaf(d),
is-leaf(B),
t-isa(A, hss),
t-isa(B, 90).
s-position(A, B) :- is-leaf(A),
is-leaf(B),

t-isa(A, stumpf),



C.2 Benchmark Sources

50

s-position(4, B)

s-position(4, B)

s-angle(A, B) :-

s-angle(A, B) :-

s-angle(A, B) :-

s-angle(A, B) :-

s-tool(A, B) :-

s-tool(A, B) :-

s-tool(A, B) :-

s-tool(A, B) :-

t-isa(B, stahl).
:- is-leaf(4),
is-leaf(B),
t-isa(A, rechter),
t-isa(B, keramik) .
:- is-leaf(4),
is-leaf(B),
t-isa(A, 10),
t-isa(B, k1).
is-leaf(A),
is-leaf(B),
t-isa(A, viereck),
t-isa(B, 150).
is-leaf(A),
is-leaf(B),
t-isa(A, viereck),
t-isa(B, 100).
is-leaf(A),
is-leaf(B),
t-isa(A, dreieck),
t-isa(B, 180).
is-leaf(A),
is-leaf(B),
t-isa(4, rund),
t-isa(B, spitz).
is-leaf(A),
is-leaf(B),
t-isa(A, s2),
t-isa(B, eckig).
is-leaf(A),
is-leaf(B),
t-isa(A, s5),
t-isa(B, eckig).
is-leaf(A),
is-leaf(B),
t-isa(A, k1),
t-isa(B, nicht-eckig).
is-leaf(A),
is-leaf(B),
t-isa(A, k12),
t-isa(B, rund).
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D Implementation of the Heuristics

(defmacro s-var-name (term-classification)
‘(cadar ,term-classification))

; ICL:

; classified procedure:

(defun icl.s-iblock-from-class-proc (classified-procedure)
(cadr (cadddr classified-procedure)))

; iblock:

(defun icl.s-iblock-type (iblock)
; nil, pblock, sblock, 1block
(car iblock))

; pblock:

(defun icl.s-rblock-from-pblock (pblock)
(cadr pblock))

(defun icl.s-iblock-list-from-pblock (pblock)
(cddr pblock)) ; cannot be another pblock or rblock!
; sblock:

(defun icl.s-rblock-from-sblock (sblock)
(cadr sblock))

(defun icl.s-seqind-arg-list-from-sblock (sblock)
(cdaddr sblock))

(defun icl.s-iblock-from-sblock (sblock)
(cadddr sblock))
; 1block:

(defun icl.s-clause-from-1block (1block)
(cadadr 1block))

(defun icl.s-arg-col-list-from-iblock (1block)
(cddr 1block))
; rblock:

(defun icl.s-clauses-from-rblock (rblock)
(cdadr rblock))
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(defun icl.s-arg-col-list-from-rblock (rblock)
(cddr rblock))
; arg-col:

(defun icl.s-arg-no-from-arg-col (arg-col)
(cadr arg-col))

(defun icl.s-it-list-from-arg-col (arg-col)
(cddr arg-col))
; seqind-arg:

(defun icl.s-arg-no-from-seqind-arg (seqind-arg)
(cadr seqind-arg))

(defun icl.s-info-from-seqind-arg (seqind-arg)
(caddr seqind-arg))

(defun icl.s-constant-list-from-seqind-arg (seqind-arg) ; -> element list
(cdr (cadddr seqind-arg)))

(defun icl.s-structure-list-from-seqind-arg (seqind-arg) ; -> element list
(cdar (cddddr seqind-arg)))

(defun icl.s-list-from-seqind-arg (seqind-arg) ; -> 1 element
(cadr (cddddr seqind-arg)))

(defun icl.s-nil-from-seqind-arg (seqind-arg) ; -> 1 element
(caddr (cddddr seqind-arg)))

(defun icl.s-other-from-seqind-arg (seqind-arg) ; -> 1 element
(cadddr (cddddr seqind-arg)))

(defun icl.s-var-from-raw-seqind-arg (seqind-arg) ; -> 1 element
(cadr (cddddr seqind-arg)))

; element (in constant list, structure list, or list, nil):

(defun icl.s-element-name-from-element (element) ; doesn’t make sense
(car element)) ; on list, nil, other

(defun icl.s-clauses-from-element (element)
(cdadr element))

(defun icl.s-iblock-from-element (element)
(caddr element))

(defun mk-index-struct (procedure-name clause-count list-of-clauses)
(cons ’indexing
(when (>= clause-count idx.*min-no-of-proc-clauses*)
(let ((it-heads (mapcar #’icl.mk-it-head list-of-clauses)))
(when (car it-heads) ; args exist
(let* ((rblock (icl.gen-rblock it-heads))
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(iblock (icl.gen-iblock rblock)))
(icl.nil-or-list iblock)))))))

)

(defun icl.mk-it-head (clause)
(let ((head-chunk (car (s-cg-chunks clause))))
(icl.mk-it-head?2
(s-cg-arglist_classification
(s-cg-fac_list (s-cg-chunk_head_literal head-chunk)))
(icl.get-it-bindings (s-cg-chunk_hd_cgfpl head-chunk)))))

(defun icl.mk-it-head2 (old-head it-bindings)
(unless (null old-head)
(cons
(let ((index-type (icl.g-index-type (car old-head))))
(cond ((eq (car index-type) ’var)
(cond ((cdr (assoc (cadr index-type) it-bindings)))
(T index-type)))
(T index-type)))
(icl.mk-it-head2 (cdr old-head) it-bindings))))

; get index type bindings

(defun icl.get-it-bindings (guards*fpl) ; fpl = first premise literal
(mapcan #’icl.get-it-binding guards*fpl))

(defun icl.get-it-binding (guard)
; returns (<it>) or nil
(when (consp guard) ; ignore constant "first_premise_literals"
(when (eq (s-cg-functor guard) ’is)
(let ((arglist (s-cg-arglist_classification guard)))
(when (arg-var-p (car arglist))
(cons (cons (s-var-name (car arglist))
(icl.g-index-type (cadr arglist)))
nil))))))

; generate index types (only basic types: var, const, struct)

(defun icl.g-it-const (term)
(when (atom term)
(list ’const term)))

(defun icl.g-it-var (term)
(when (arg-var-p term)
(list ’var (s-var-name term))))

(defun icl.g-it-struct (term)
(when (cg-inst-p term)
(list ’struct
(cg-s-inst-functor term)
(length (cg-s-inst-funargs term)))))

(defun icl.g-index-type (term)
(cond ((icl.g-it-const term))
((icl.g-it-var term))
((icl.g-it-struct term))
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(T (error "icl.g-index-type: unknown type “A" term))))

; index types type tests

(defun icl.it-const-p (it)
(eq (car it) ’const))

(defun icl.it-var-p (it)
(eq (car it) ’var))

(defun icl.it-struct-p (it)
(eq (car it) ’struct))

(defun icl.it-p (it) T) ; needed in ’icl.arg-col-statistics’

(defun icl.it-not-index-p (it) ; change this if additional var-like
(icl.it-var-p it)) ; types are added !

(defun icl.it-index-p (it)
(not (icl.it-not-index-p it)))

(defun icl.it-element (it)
(if (null (cddr it))
(cadr it) ; element is an atom
(cdr it))) ; element is a list

; type transformations

(defun icl.id (it)
it)

(defun icl.var-anonym (it) ; anonymize variables: (var x) -> (var _)
(if (icl.it-var-p it)
‘(var _)
it))

)

(defun icl.gen-rblock (it-heads)
(cons ’rblock (cons (cons ’clauses (icl.numbers 1 (length it-heads)))
(icl.gen-arg-col-tags
(icl.swap-rows-and-cols it-heads)))))

(defun icl.gen-arg-col-tags (arg-cols &optional (no 1))
(unless (null arg-cols)
(cons (cons ’arg (cons no (car arg-cols)))
(icl.gen-arg-col-tags (cdr arg-cols) (1+ no)))))

(defun icl.gen-rblock*rblock (rblock len)
(let* ((clauses (icl.s-clauses-from-rblock rblock))
(clauses*clauses (get-first-n-elements-and-rest len clauses))
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(arg-cols (icl.s-arg-col-list-from-rblock rblock))
(arg-nos (mapcar #’icl.s-arg-no-from-arg-col arg-cols))
(splitted-arg-cols (multiple-splitting
len
(mapcar #’icl.s-it-list-from-arg-col arg-cols)))
(arg-colsl (mapcar #’car splitted-arg-cols))
(arg-cols2 (mapcar #’cdr splitted-arg-cols))
(rblockl (cons ’rblock
(cons (cons ’clauses (car clauses*clauses))
(icl.add-arg-tags arg-nos arg-colsil))))
(rblock2 (cons ’rblock
(cons (cons ’clauses (cdr clauses*clauses))
(icl.add-arg-tags arg-nos arg-cols2)))))
(cons rblockl rblock2)))

(defun icl.add-arg-tags (arg-nos arg-cols)
(mapcar #’(lambda (arg-no arg-col)
(cons ’arg (cons arg-no arg-col)))
arg-nos arg-cols))

(defun icl.analyze-arg-col (it-list len max-no-of-vars max-portion-of-vars)
(let ((pos 1)
(itl it-list)
(1 nil)
(max-pos 0)
(max-list nil)
(no-of-vars 0))
(loop
(when (null itl) (return (cons max-pos max-list)))
(when (icl.it-not-index-p (car itl))
(set-inc no-of-vars)
(when (or (> no-of-vars max-no-of-vars)
(> (/ (float no-of-vars) len)
max-portion-of-vars))
(return (cons max-pos max-list))))
(let ((var-portion (/ (float no-of-vars) pos)))
(set-cons var-portion 1)
(when (<= var-portion max-portion-of-vars)
(setq max-pos pos
max-list 1)))
(set-inc pos)
(set-cdr+ itl))))

(defun icl.analyze-all-arg-cols (arg-col-list
no-of-clauses
max-no-of-vars
max-portion-of-vars
min-block-portion)

; returns: - (1) for 1blocks
; - (len . nil/t-1list) for sblocks
H where a t in the nil/t-list stands for a useful argument

(let ((analyzed-arg-cols
(mapcar #’(lambda (arg-col)
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(icl.analyze-arg-col (cddr arg-col)
no-of-clauses
max-no-of-vars

max-portion-of-vars))
arg-col-list)))
(let ((max-len (apply #’max (mapcar #’car analyzed-arg-cols))))
(cond
((< max-len 2) ’(1))
(T (let ((min-len (truncate (* max-len min-block-portion))))
(icl.find-last-optimum
analyzed-arg-cols
(length analyzed-arg-cols)
(if (< min-len 2) 2 min-len)
max-len
max-portion-of-vars)))))))

(defun icl.find-last-optimum (analyzed-arg-cols no-of-arg-cols min-len max-len
max-portion-of-vars)
(do ((pos max-len (1- pos))
(arg-cols analyzed-arg-cols)
(opt-pos max-len)
(opt-useful-arg-cols nil)
(optimum 0))

((or (< pos min-len)
= optimum no-of-arg-cols))
(cons opt-pos opt-useful-arg-cols))

(let* ((cars*cdrs (mapcar #’(lambda (arg-col)
(icl.pl-car*cdr arg-col pos 1))
arg-cols))
(useful-arg-cols (mapcar #’(lambda (p)
(<= p max-portion-of-vars))
(mapcar #’car cars*cdrs)))
(no-of-useful-arg-cols (count-if #’(lambda (x) x)
useful-arg-cols)))
(setq arg-cols (mapcar #’cdr cars*cdrs))
(when (> no-of-useful-arg-cols optimum)
(setq optimum no-of-useful-arg-cols
opt-useful-arg-cols useful-arg-cols
opt-pos pos)))))

(defun icl.pl-car*cdr (plist pos &optional default)
; car/cdr of partial list (len . list)
(cond ((> pos (car plist)) (cons default plist))
((<= pos 0) (cons nil plist))
(T (cons (cadr plist)
(cons (1- (car plist)) (cddr plist))))))

(defun icl.gen-iblock (rblock)
(let ((no-of-clauses (length (icl.s-clauses-from-rblock rblock))))
(when (> no-of-clauses 1)
(let ((pblock (icl.gen-pblock rblock no-of-clauses)))
(if (null (cdddr pblock))
(caddr pblock) ; simplify pblocks with only 1 partition
pblock)))))
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(defun icl.max-no-of-vars (no-of-clauses)
(if (<= no-of-clauses idx.*max-no-of-vars*)
(1- no-of-clauses)
idx.*max-no-of-vars*))

(defun icl.max-portion-of-vars (no-of-clauses)
(if (<= no-of-clauses idx.*max-no-of-vars*)
0.99
0.75))

(defun icl.min-block-portion (no-of-clauses)
0.7)

)

(defun icl.gen-pblock (rblock no-of-clauses) ; -> pblock
(cons ’pblock (cons rblock

(icl.gen-pblock-partitions rblock no-of-clauses))))

(defun icl.gen-pblock-partitions (rblock no-of-clauses)
(when (> no-of-clauses 0)
(let ((len*nil/t-list (icl.analyze-all-arg-cols

(icl.s-arg-col-list-from-rblock rblock)
no-of-clauses

(icl.max-no-of-vars no-of-clauses)
(icl.max-portion-of-vars no-of-clauses)
(icl.min-block-portion no-of-clauses))))

(let ((rblock#rblock (icl.gen-rblock*rblock

rblock (car len*nil/t-1list))))
(cons (icl.gen-sblock (car rblock*rblock)
(car len*nil/t-1list)
(cdr len*nil/t-list))

(icl.gen-pblock-partitions
(cdr rblock*rblock)

(- no-of-clauses (car len*nil/t-1ist))))))))

(defun icl.gen-sblock (rblock len nil/t-list) ; -> sblock
; la. return 1block
(cond
((= len 1)
(cons ’1block
(cdr rblock)))

; 1b. create and return normal sblock

(T (let* ((clauses (icl.s-clauses-from-rblock rblock))
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(arg-col-list (icl.s-arg-col-list-from-rblock rblock)))
; 2. select ’constant’/’variable’ argument columns

(let ((constant-arg-cols
(mapcan #’(lambda (useful arg-col)
(when useful (list arg-col)))
nil/t-1list arg-col-list)))

(let ((variable-arg-cols
(mapcan #’(lambda (useful arg-col)
(unless useful (list arg-col)))
nil/t-list arg-col-list)))

; 3. create seqind structure

(let ((seqind-structure
(icl.gen-seqind constant-arg-cols
variable-arg-cols
clauses)))

; 4. create indexed rest block (from variable-arg-cols)

(let ((indexed-rest-block
(when (and variable-arg-cols
(> (length clauses) 1))
(cons (icl.gen-iblock
(cons ’rblock
(cons
(cons ’clauses clauses)
variable-arg-cols)))
nil))))
; 5. build sblock

(cons ’sblock
(cons rblock
(cons
seqind-structure
indexed-rest-block)))))))))))

(defun icl.arg-col-statistics (arg-col
clauses
%optional (predicate #’icl.it-p)
(it-transform #’icl.id))

; create an assoc list for an argument column of the form
; ((Kit> . <clauses>) ...) where <it> is of the form

; (const <c>)

; predicate should be #’icl.it-[not-]index-p ...

; it-transform should be #’icl.id or #’icl.var-anonym

(cond ((null arg-col) nil)
((not (funcall predicate (car arg-col)))
(icl.arg-col-statistics (cdr arg-col) (cdr clauses)
predicate it-transform))
(T (let* ((rest-args
(icl.arg-col-statistics (cdr arg-col) (cdr clauses)
predicate it-transform))
(clause (car clauses))
(index-arg (funcall it-transform (car arg-col)))
(index-arg*clauses (assoc index-arg rest-args
itest #’equal)))
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(acons index-arg (cons clause (cdr index-arg*clauses))
(delete index-arg*clauses
rest-args))))))

(defun icl.gen-seqind (tagged-arg-cols additional-arg-cols clauses)
; sequential indexing

(let* ((seqind-args
(sort (mapcar #’(lambda (t-a-c)
(icl.gen-seqind-arg t-a-c clauses))
tagged-arg-cols)
#’(lambda (a b)
; change this for better heuristics!!
(> (car (cdaddr a)) (car (cdaddr b))))))

(sorted-tagged-arg-cols

(icl.sort-tagged-arg-cols

tagged-arg-cols

(mapcar #’cadr seqind-args))))
(cons ’seqind
(maplist #’(lambda (rest-seqinds rest-t-a-c)
(icl.extend-seqind clauses
(car rest-seqinds)
(append
(cdr rest-t-a-c)
additional-arg-cols)))

seqind-args
sorted-tagged-arg-cols))))

(defun icl.sort-tagged-arg-cols (tagged-arg-cols numbers)
; sort tagged-arg-cols the same way the numbers are sorted
(mapcar #’(lambda (n)
(find-if #’ (lambda (t-a-c)
(= (cadr t-a-c) n))
tagged-arg-cols))
numbers))

(defun icl.gen-seqind-arg (tagged-arg-col clauses)
(let ((type-table (icl.type-collect
(icl.arg-col-statistics
(cddr tagged-arg-col)
clauses
#’icl.it-p
#’icl.var-anonym))))
(cons ’arg
(cons (cadr tagged-arg-col)
(cons (list ’info (icl.compute-weight-of-const-arg-col
type-table))
type-table)))))

(defun icl.compute-weight-of-const-arg-col (type-table)
; simply count number of different constants/structures
(+ (length (cdar type-table))
(length (cdadr type-table))))

(defun icl.type-collect (stat-table)
; only for constants, structures and vars;
; returns const*struct*var
; subtypes handled by icl.extend-seqind
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(let ((constants nil)
(structures nil)
(vars nil))
(dolist (it*clauses stat-table)
(let* ((it (car it*clauses))
(element (icl.it-element it))
(clauses (cdr it*clauses))
(tagged-clauses (cons ’clauses clauses))
(element**tagged-clauses (list element tagged-clauses)))
(cond ((icl.it-const-p it)
(set-cons element**tagged-clauses constants))
((icl.it-struct-p it)
(set-cons element**tagged-clauses structures))
((icl.it-var-p it)
(setq vars (cons tagged-clauses nil)))
(T (error "icl.type-collect: unknown type: "A"
it)))))
(list (cons ’const (nreverse constants))
(cons ’struct (nreverse structures))
(cons ’var vars))))

(defun icl.gen-constants*nil (constants)
(let ((empty-list
(find-if #’(lambda (constant)
(null (icl.s-element-name-from-element constant)))
constants)))
(cons (delete empty-list constants :test #’equal)
(cdr empty-list))))

(defun icl.gen-structures*list (structures)
(let ((list
(find-if #’(lambda (structure)
(equal (icl.s-element-name-from-element structure)
’(cns 2)))
structures)))
(cons (delete list structures :test #’equal)
(cdr list))))

(defun icl.extend-seqind (org-clauses seqind rest-tagged-arg-cols)
; add new iblocks for multiply orruring elements
; and split constants and structures for subtypes (nil, list)
(let* ((arg-no (icl.s-arg-no-from-seqind-arg seqind))
(info (icl.s-info-from-seqind-arg seqind))
(constants (icl.s-constant-list-from-seqind-arg seqind))
(structures (icl.s-structure-list-from-seqind-arg seqind))
(vars (icl.s-var-from-raw-seqind-arg seqind))
(var-clauses (icl.s-clauses-from-element vars))
(ext-constants (icl.extend-seqind-elements
constants
rest-tagged-arg-cols
org-clauses
var-clauses))
(ext-structures (icl.extend-seqind-elements
structures
rest-tagged-arg-cols
org-clauses
var-clauses))
(constants*nil (icl.gen-constants*nil ext-constants))
(structures*list (icl.gen-structures*list ext-structures)))
(cons
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’arg
(cons
arg-no
(cons
info
(cons
(cons ’const (car constants#*nil))
(cons
(cons ’struct (car structures*list))
(cons (cons ’list (cdr structures*list))
(cons (cons ’nil (cdr constants*nil))
(when var-clauses
(cons
(cons ’other
(cdr (icl.extend-seqind-element
vars
rest-tagged-arg-cols
org-clauses
nil)))
nil))))))))))

(defun icl.extend-seqind-elements (elements rest-t-a-c org-clauses var-clauses)
(mapcar #’(lambda (element)
(icl.extend-seqind-element
element rest-t-a-c org-clauses var-clauses))
elements))

(defun icl.extend-seqind-element (element rest-t-a-c org-clauses var-clauses)
(let ((clauses (sort (append (icl.s-clauses-from-element element)
(copy-list var-clauses)) ; sort is destructive!
#<)))
(cons (icl.s-element-name-from-element element)
(cons (cons ’clauses clauses)
(when rest-t-a-c
(icl.nil-or-list
(icl.gen-iblock
(icl.gen-rblock-for-seqind
org-clauses clauses rest-t-a-c))))))))

(defun icl.gen-rblock-for-seqind (org-clauses clauses tagged-arg-cols)
(cons ’rblock
(cons
(cons ’clauses clauses)
(mapcar #’(lambda (tagged-arg-col)
(cons
’arg
(cons
(cadr tagged-arg-col)
(mapcan #’(lambda (it clause)
(when (member clause clauses)
(cons it nil)))
(cddr tagged-arg-col)
org-clauses))))
tagged-arg-cols))))
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(defun icl.swap-rows-and-cols (lists)
(apply #’mapcar (cons #’list lists)))

(defun icl.numbers (start end)
(unless (> start end)
(cons start (icl.numbers (1+ start) end))))

(defun icl.nil-or-list (1)
(when 1 (cons 1 nil)))
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