Deutsches Research

Forschungszentrum
fiir Kiinstliche Report
Intelligenz GmbH RR-07-01

A Platform-Independent Model for Agents

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

August 2007

Deutsches Forschungszentrum flar Klnstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3 Robert-Hooke-Str. 6
D-67608 Kaiserslautern D-66123 Saarbriicken >-28359 Bremen, Germany
Tel.: +49 (631) 205 75-0 Tel.: + 49 (681) 302-5151 Tel.: +49 (421) 218-64 100
Fax: + 49 (631) 205 75-503 Fax: + 49 (681) 302-5341 Fax: +49 (421) 218-64 150

L:-Mail: info@ dfki.de WWW: hup: www.dfki.de

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

DFKI GmbH

German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (Al) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern, Saarbriicken and Bremen, the German Research Center for Artificial
Intelligence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI's mission is to move innovathons as quickly as possible from
the lab into the marketplace. Only by maintaining research projects at the forefront of science
can DFKI have the strength to meet its technology transfer goals.

The key directors of DFKI are Prof. Wolfgang Wahister (CEO) and Dr. Walter Olthoff (CFO).

DFKI’s research departments are directed by internationally recognized research scientists:

[Image Understanding and Pattern Recognition (Director: Prof. T. Breuel)
(1 Knowledge Management (Director: Prof. A. Dengel)

[Deduction and Multiagent Systems (Director: Prof. J. Siekmann)

[Language Technology (Director: Prof. H. Uszkoreit)

[Intelligent User Interfaces (Prof. Dr. Dr. h.c. mult. W. Wahlster)

[Institute for Information Systems at DFKI (Prof. Dr. P. Loos)

[Robotics (Prof. F. Kirchner)

[Safe and Secure Cognitive Systems (Prof. B. Krieg-Briickner)

and the associated Center for Human Machine Interaction (Prof. Dr.-Ing. Detlef Zuhlke)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wabhlster
Director

A Platform-Independent Model for Agents

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

DFKI-RR-07-01

This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research, and Technology (FKZ ITW-012006).

© Deutsches Forschungszentrum fur Kinstliche Intelligenz 2007

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum fur Kanstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fir Kinstliche Intelligenz.

ISSN 0946-008X

A Platform-Independent Model for Agents

Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

August 29, 2007

Abstract. Various agent-oriented methodologies and metamodels exist to describe mul-
tiagent systems (MAS) in an abstract manner. Frequently, these frameworks specialize on
particular parts of the MAS and only few works have been invested to derive a common
standardization. This limits the impact of agent-related systems in commercial appli-
cations. In this paper, we present a metamodel for agent systems that abstract from
existing agent-oriented methodologies and platforms and could thus be called platform-
independent. This metamodel provides the core language that is used in our agent-
oriented software development process that conforms to the principles of Model-Driven
Development (MDD). Beside the domain-specific modelling language, we further provide
two model transformations that allow to transform the generated models into textual
code that can be executed with JACK and JADE.

1 Introduction

Agent-oriented software engineering (AOSE) is rapidly emerging in response to urgent needs in
both software engineering and agent-based computing. While these two disciplines co-existed
without remarkable interaction until some years ago, today there is rich and fruitful interaction
among them and various approaches are available that bring together techniques, concepts and
ideas from both sides.

Model-Driven Development (MDD) and Model-Driven Architecture (MDA) as its the most
prominent initiative proposed by the Object Management Group (OMG) is a recent trend
in the area of software engineering [1]. Our aim is to translate the basic ideas of MDD into
methodologies for the design of agent-based systems and in doing so to contribute to bridge
the gap between traditional software engineering approach and agent-based system design. To
take this one step further, we not only need to integrate MDD into the methodologies of agent-
based system design but also demonstrate how such methodologies can be utilized in practical
development frameworks for agent-based system design. With respect to our objectives some
basic questions arise:

— Agent-oriented methodologies often do not rely on existing agent-based development tools,
i.e. they do not provide a straightforward interface for implementation.

— Even if existing methodologies have different advantages when applied to particular prob-
lems, usually a unique methodology cannot be applied to each problem without some (mi-
nor) level of customization.

— MAS implementation requires deep knowledge regarding technical details of agent architec-
tures, multiagent development tools, and agent concepts.

The question how to fill the gap between agent methodologies and agent-based development
tools leads to the development of a framework that (i) standardise the design, (ii) simplifies the
implementation of agent systems and (ii) allows to integrate already existing agent frameworks
into a single tool box in order to increase the degree of utilization in practice.

In this paper, we show (i) how to build a platform-independent model for agents (PIM4Agents)
that abstract from existing agent-based metamodels and platforms and (ii) how MDD can
be used to provide a straightforward interface for implementation and thus to simplify the
development with agent systems.

The structure of this paper is as follows: Section 2 discusses the very basics of model-driven
development. Followed by Section 3 that illustrates related work with respect to modeling

languages and agent-based metamodels. Section 4 then defines and illustrates the PIM4Agents
which is one of the core parts of our work as it clearly defines the syntax of our modeling language
that is defined within this paper. Section 5 and 6 discuss the meatmodels for JACK and JADE,
followed by Section 7 that addresses the vertical mappings between the PIM4Agents on the
one side and JACK and JADE on the other. In Section 8, a platform-independent model for
service-oriented architectures (PIM4SOA) is discussed that serves as base for defining mappings
between the PIM4SOA and the PIM4Agents in Section 9. Section 10 addresses the technical
realization with respect to model transformations. In Section 11 the main contributions of this
paper are discussed followed by Section 12 that concludes this paper.

2 Model-driven Development

MDD is getting more and more important for developing modern enterprise applications and
software systems. MDD frameworks define a model-driven approach to software development
in which visual modeling languages are used to integrate the huge diversity of technologies
used in the development of software systems. As such, the MDD paradigm provides us with a
better way of addressing and solving interoperability issues compared to earlier non-modeling
approaches [2].

The current state of the art in MDD is much influenced by OMG’s ongoing standardization
activities around the MDA [1]. The MDA approach and its supporting standards allow the
realization and integration of one model on multiple platform-specific target models.

Beside the level of abstraction, developing metamodels and model transformations describes
an important aspect in MDD. Metamodeling is a controversial topic which is currently critical
within OMG’s MDA initiative. A metamodel specifies the concepts and their relationships for
the purpose of building and interpreting models and thus could be considered as model of a set
of models. Metamodels can be developed for describing different domains and different software
technology platforms. In its broadest sense, a metamodel is a model of a modeling languages.
The term meta means transcending or above, emphasizing the fact that a metamodel describes
a modeling language at a higher level of abstraction compared to the metamodel itself. To
understand the meaning of a metamodel, it is useful to understand the difference between a
metamodel and a model. Whilst a metamodel is also a model, a metamodel has two main
distinguishing characteristics. Firstly, it must capture the essential features and properties of
the language that is being modelled. Thus, a metamodel should be capable of describing a lan-
guage’s concrete syntax. Secondly, a metamodel must be part of a metamodel architecture. All
metamodels can be described with a single metamodel, the so-called meta-metamodel, that de-
fines the key to metamodelling as it enables all modelling languages to be described in a unified
way. System development is fundamentally based on the use of languages to capture and relate
different aspects of the problem domain. The benefit of metamodelling is its ability to describe
these languages in a unified way. This means that the languages can uniformly be managed and
manipulated and thus tackle the problem of language diversity. Another benefit is the ability to
define semantically rich languages that abstract from implementation specific technologies and
instead focus on the problem domain at hand. Using metamodels, many different abstractions
can be defined and combined to create new languages that are specifically tailored for a particu-
lar application domain. As a result, productivity is improved. The Meta Object Facility (MOF)
[3] is the common foundation that provides the standard modeling and interchange constructs
for defining metamodels and could thus be considered as meta-metamodel.

An important aspect of MDD is the definition of model transformations, which allows auto-
matically transformations of models. A model transformation is a transformation of one or
more source models to one or more target models, based on the metamodels of each of these
models. In other words the instances of one metamodel are mapped into instances of another
metamodel. Such transformations are defined by mapping rules where each of them describes
how one, or more elements in the source model should be transformed to the target model.
When all mapping rules are applied, the mapping describes the complete transformation from
the source model to the target model. Thus, given (i) a source model and (ii) the metamodels
of both the source and the target models and applying the defined mappings, the target model
could automatically be generated.

MDA defines three main abstraction levels of a system that supports a business-driven approach
to software development. From a top-down perspective it starts with a computation independent
model (CIM) describing the context and requirements of the software system. The CIM is
refined to a platform-independent model (PIM) which specifies software services and interfaces
required by the independent software technology platforms. The PIM is further refined to a set
of platform-specific models (PSMs) which describes the realization of the software systems with
respect to the chosen software technology platforms.

The MOF Query/View/Transformation (QVT) [4] provides a standard specification of a lan-
guage suitable for querying and transforming models—matching and navigating source elements
to initialize target elements—that are represented according to a MOF(-based) metamodel. Bas-
ing on source and target metamodels, a model transformation language enables the software
developer to match and navigate source elements in order to initialize the target models’ ele-
ments.

The MDA initiative refers mainly to Object Oriented software development and proved to be
effective in relevant application domains. In our ongoing work, we offer a proposal on how
to exploit the MDD ideas and techniques in AOSE. Beside the general benefit to improve (i)
quality by allowing to reuse models and mappings between models and (ii) software maintain-
ability by favoring a better consistency between models and code, we are especially interested
in exploring a framework that (i) establishes interoperability among various agent systems
and other information technologies, and (ii) identifies a core metamodel that unifies the most
common agent-oriented concepts to increase the efficiency in developing agent-based software
applications.

']
=
o
A
ST e T | smbs |
;i: * : -I . [| Metamoder
2 I j m
m] i) __ Reiationship
_ .. Correspondence
JackMM JadeMM

Fig. 1. The overall picture: From a PIM metamodel describing service-oriented architectures (SOA) to
a platform-independent model for agents to miscellaneous agent-oriented metamodels.

To increase the interoperability among agent systems, we follow the approach illustrated in Fig.
1. The core part of this framework is a platform-independent metamodel for agents systems
(called PIM4Agents) that can be used to model agent system in a very abstract manner without
focusing on platform-specific requirements. Basing on the PIM4Agents, we have developed
model transformations to various agent specific metamodels on the PSM level that base on agent
platforms like for instance the Java Agent DEvelopment Framework [5] or JACK Intelligent
Agents [6]. These vertical model transformations allow to transform the abstract models that
conforms to the PIM4Agents to concrete code that conforms to the agent-oriented platforms.
Beside developing PIM to PSM transformations, we also specified horizontal transformations
between a platform-independent metamodel for SOA (called PIM4SOA) and the PIM4Agents to
illustrate how MDD can be utilized for the deployment of agents in domain-specific environments
like SOA, Peer-to-Peer (P2P) or Grid systems. Furthermore, analyzing the proposed horizontal

and vertical transformations allows us to develop a unified metamodel and to decide which
concepts should be considered as extensions to meet the domain-specific requirements.

3 Related Work

This section presents some related contributions with respect to agent oriented modelling and
MDA approaches in AOSE. We have separated this section into three parts discussing agent
modelling languages, agent metamodels, and MDD approaches in AOSE.

3.1 Modelling Languages

Unified Modelling Language (UML) is the de-facto standard industry language for speci-
fying and designing software systems. UML addresses the modelling of architecture and design
aspects of software systems by providing language constructs for describing, software compo-
nents, objects, data, interfaces, interactions, activities etc. UML now provides support for a
wide variety of modelling domains, including real-time system modelling and is used more and
more in embedded systems.

Agent Modelling Language (AML) is a semi-formal visual modeling language for specifying,
modeling and documenting systems that incorporate features drawn from MAS theory ([7]). It
is specified as an extension to UML 2.0 in accordance to the OMG’s major modeling frameworks
(e.g. UML). The ultimate objective of AML is to provide software engineers with a ready-to-use,
complete and highly expressive modeling language suitable for the development of commercial
software solutions based on multiagent technologies.

Agent UML (AUML) [8] extends UML sequence diagrams to specify agent interaction proto-
cols by providing mechanisms to define agent roles, agent lifelines (interaction threads, which
can split into several lifelines and merge at some subsequent points using connectors like AND,
OR or XOR), nested and interleaved protocols (patterns of interaction that can be reused with
guards and constraints), and extended semantics for UML messages (for instance, to indicate
the associated communicative act, and whether messages are synchronous or not). Furthermore,
Bauer [9] proposed to extend UML class diagrams to agent class diagrams.

3.2 MAS Metamodels

Aalaadin [10] specifies one of the first developed metamodels for MAS. Based on the three main
concepts Agents, Groups and Roles, it takes an organisational-driven (i.e. structural relationship
between a set of agents) approach to build MAS. Agents are defined by their role they take on
inside an organisation and the capabilities they offer.

Tropos [11] is founded on the idea of using the agent paradigm and related metalistic notions
during all phases of the development of software process. Tropos bases on the concepts of actor
and goal and strongly focuses on early requirements. It proposes the use of AgentUML for
detailed design and JACK Intelligent Agent as implementation platform. As already mentioned,
the main concept in Tropos is the concept of an Actor that is capable of Plans which fulfills a
Goal, i.e. a SoftGoal or HardGoal and uses Resources. The concept of an Agent inherits from
Actor and may play Roles. The Role again inherits from the Actor.

ADELFE [12] specifies a methodology to develop adaptive MAS by concentrating on cooper-
ative behaviour. The main concept of ADELFE is the Cooperative Agent which has Skills, Ap-
titudes, Characteristics, Communications. Furthermore, the agent observes Cooperation Rules.

Gaia [13,14] has been designed to explicitly model and represent the social aspects of open
agent systems, with particular attention to the social goals, social tasks or organizational rules.
The main concepts of Gaia are AgentType which is part of an Organisation, collaborates with
other AgentTypes, provides Services and plays several Roles. Additionally, a Role refers to Ac-
tivities. The roles 'Initiator’ and "Participant” act in a Communication that specifies a Protocol.

INGENIAS [15] provides both, a methodology and a set of tools to develop agent systems.
INGENIAS distinguishes between five viewpoints: organisation viewpoint, agent viewpoint,
interaction viewpoint, tasks and goal viewpoint and environment viewpoint. The main concept
of INGENIAS is the Organisation that contains a Workflow and Group. A Workflow contains
Task that affects and consumes MetalEntity and produces Interaction. A Group contains again
a Group and belongs to Application, Resource, Agent and Role.

PASSI (Process for Agent Societies Specification and Implementation) [16] is an agent-based
methodology to design MAS. The PASSI metamodel [3] is organized in three different domains:
Solution domain, agency domain and problem domain. The solution domain covers the concepts
FIPA-Platform Agent, Service Description and FIPA-Platform Task. The agency domain covers
aspect like Agent that has a set of Roles that provide a Service and solve Tasks that includes
a set of Actions. Furthermore, the Role is connected to Communication that works on Agent
Interaction Protocols with a set of Performatives. The problem domain contains concepts like
Resource, Non Functional Aspects and Requirements that are connected with the Agent.

RICA (Role/Interaction/Communicative Action) specifies a metamodel [17] that integrates
aspects of Agent Communication Languages (ACL) and organisational models on three different
layers: On the first layer, generic concepts of the system (e.g. agent, role and action types) are
specified, the second includes social aspects like norms and institutions. The last layer specifies
agent interactions via communication.

3.3 Unified MAS Metamodel Proposal

A first attempt towards the development of a unified metamodel was described in [18]. This
metamodel was developed by merging the metamodels of ADELFE, Gaia and PASSI and thus
combines the strengths of each metamodel. For instance, the unified metamodel covers aspects
like (i) cooperative behaviour as described by the ADELFE metamodel, (ii) organisational be-
haviour as specified by the Gaia metamodel and (iii) FIPA-compliant communication structures
as defined by the PASSI metamodel.

A more recent approach towards a unified metamodel was discussed during an AOSE Technical
Forum Group meeting in Ljubljana. The attendees agreed on a smaller core part compared to
the first draft. In this metamodel, the Agent participates in a Communication and plays a Role
that has the ability to solve particular Tasks. Organisations also refer to Roles. The Cognitive
Agent is a specialisation of Agent as it is represented in an Environment.

3.4 Agent Platforms

Several platforms already exist to implement agent systems. In the following, we concentrate

on JACK! and JADEZ

JACK Intelligent Agents provides programming constructs and concepts for developing com-
plex agent-oriented applications. It bases on the Beliefs, Desires and Intentions model [19]
and previous practical implementations of such systems (see [20]). The BDI agent model is an
event-driven execution model providing both reactive and proactive behaviour. In this model,
an agent has certain beliefs about the environment, desires to achieve, and plans describing

! http://www.agentsoftware. com.au/
% http://jade.tilab.com/

6

how to achieve certain activated goals. The BDI architecture is recognised as one of more suc-
cessfully implemented architecture for developing complex systems in dynamic and error-prone
environments (cf. [21]).

JADE (Java Agent DEvelopment Framework) [5] provides programming concepts that simplify
the development of MAS as it complies to the FIPA specification by providing the necessary
communication infrastructure. In contrast to JACK, it intentionally leaves open the internal
agent architecture and necessary concepts. Instead, JADE focuses on communication which is
performed through message passing where each agent is equipped with an incoming message
box. Standard interaction protocols specified by FIPA such as FIPA-request or FIPA-query can
be used as standard templates to build an agent conversation.

3.5 Model-driven Development of MAS

Here we present some of the efforts that have been done to bring Model-Driven Development
practices into MAS development.

The Malaca Agent Model [22] is an approach to agent- oriented design using MDA. The Malaca
UML Profile provides the stereotypes and constraints necessary to create Malaca models on
UML modelling tools. In this MDA approach, the transformation is realised from a TROPOS
design model—as PIM—to a Malaca Model—as PSM.

Guessoum [23] proposes a MDA-based approach for MAS to fill the gap between existing MAS
tools and agent-oriented methodologies and metamodels, respectively. This approach mainly
bases on separating the application logic (described in a PIM) from the underlying technology
(described in a PSM). Basing on Meta-DIMA, a MDA-based MAS development process defines
the PIMs and PSMs by analysing the multiagent applications, defines a library of metamodels by
identifying the concepts used and designing the transformation rules to implement a metamodel
from its description. A first step has been done by defining a PSM for the multiagent tool DIMA
and PIMs from PASSI and Aalaadin/PASSI [24] metamodels.

An update to INGENIAS presented in [25] introduces the INGENIAS Development Kit (IDK),
as a way to provide MDD tools for MAS development. It presents the IDK MAS Model Editor,
a graphical tool for MAS model creation, and a modular approach to adapt the editor and
tools to new metamodels or target platforms. It also proposes that the model generation and
metamodel development should be performed in parallel with periodic consistency checks to
allow feedback from one activity to the other during the development.

The Gaia2Jade Process [26] shows how systems designed following the GAIA methodology,
and it corresponding models, can be converted to JADE for deployment. It proposes that the
implementation phase should be performed in four stages: communication protocol definition,
activities refinement, JADE behavior creation, and agent classes construction. One relevant de-
tail in the behavior creation is that GAIA roles are transformed to ‘high level’ JADE behaviours,
which is a similar approach to the one presented here.

All the previously mentioned contributions in this section, make valuable points for the spec-
ification and modelling tasks in agent systems. However, interoperability among varied agent
systems and especially among other technologies and domain-specific architectures is not ad-
dressed in these works. However, works like [27] and [18] address interoperability within agent
systems with completely diverging approaches. On one hand, the Generic Metamodel presented
in [27] proposes to have a basic, but complete (w.r.t. the concepts that define MAS) metamodel,
allowing the generation of systems in different agent platforms. On the other hand, the Unified
Metamodel [18] presented in Section 3.3 presents some improvements over the original meta-
models, but also raises some issues like the complexity of the methodology process to develop
systems using it and the construction of tools for it. In the following sections, we address the
question of how MDD could contribute to the interoperability between domain-specific archi-
tectures and agent platforms with an approach similar to [27] in that we try to set a compact
generic metamodel, but within the MDD.

|

4 Platform Independent Model for Agents

One challenge in defining a platform independent model is to decide which concepts to include
and abstract from the target execution platforms (PSMs) that support the architectural style
of agent-based systems. Section 3.2 discusses several metamodels for MAS. The only concept
all metamodels have in common is the concept of an Agent. Some of them also focus on Role
and Communication / Interaction. From this discussion, it is obvious to mention that finding
platform-independent concepts for MAS is a complex task. From our point of view, a minimal
definition for an agent is that it is an entity that is capable of acting in the environment. It
acts in an autonomous manner, i.e. the agent has control over its own behavior and reacts
on internal and external stimuli. A further property is the ability to communicate with other
agents. Additionally, the agent is capable of perceiving its environment. In the following sec-
tion, platform-independent concepts and their attributes are discussed that are necessary for
designing agents in an adequate manner. In order to support an evolution of this metamodel,
it is structured into several aspect each focusing on a specific viewpoint of a MAS.

1. Agent aspect describes single autonomous entities, the capabilities they have to solve tasks
and their roles they play within the MAS.

2. Organization aspect describes how single autonomous entities cooperate within the MAS
and how complex organizational structures can be defined.

3. Interaction aspect describes how the interaction between autonomous entities or organiza-
tions takes place. Each interaction specification includes the actors involved and in which
order messages are exchanged between these actors in a protocol-like manner.

4. Behavioural aspect describes how plans are composed by complex control structures and
simple atomic tasks like sending a message and how information flows between those con-
structs.

Grouping modeling concepts in this manner allows the metamodel evolution by adding (i)
new modeling concepts in the defined aspects, (ii) extending existing modeling concepts in the
defined aspects, or (iii) defining new modeling concepts for describing additional aspects of agent
systems (e.g. security). In the following, we discuss the four different aspects in more detail and
relate each aspect to a small example. This example covers a conference management system
(CMS) that has already discussed by several authors (e.g. [28]). We assume that the readers are
familiar with the process of submitting a paper to an international conference (e.g. AAMAS).
This process starts with a call for papers (CFP) distributed by the program committee (PC).
When receiving the CFP, authors decide whether to submit a paper. In case, authors submit
their particular paper to the PC that assigns a submission number on it and informs the author
about this. After the deadline has passed. the PC distributes all received papers among the PC
members that are in charge of providing a review for their assigned papers that is sent back to
the PC. Considering all reviews, the PC decides on the accepted papers and sent a message to
the corresponding authors to inform them about acceptance or rejection. To keep this example
simple, we mainly concentrate on the submission phase in the following.

4.1 Agent Metamodel

Fig. 2 depicts the agent aspect of the PIM4Agents. The metamodel is centered on the concept
of Agent, the autonomous entity capable of acting in the environment. An Agent has access to a
set of Resources from its surrounding Environment. These Resources may include information or
ontologies the Agent has access to. Furthermore, the Agent can perform particular DomainRoles
and Behaviours. The DomainRoles are similar to the InteractionRoles specializations of the Role
concept that requires a set of Capabilities. Furthermore, the agent may have certain Capabilities
that represent the set of Behaviours the Agent can possess. It allows to group Behaviours that,
conceptually, have a correspondence with regard to what they allow the Agent to do. Like the
Agent, Roles could also refer to Capabilities in order to give it certain patterns of interaction
and behavior. Additionally, an Agent could be member in an Organisation that represents the
social structure agents can take part in.

Fig. 3 depicts the agent model with respect to our example. In this example we mainly concen-
trate on the authors’ side. We have modeled three agents (i.e. AuthorAgentl, AuthorAgent2

(3 Drganisation (® DomainRole
+ performs *
+ mernbership
+ rolefiller
+members * + has
(Agent (= Capability
*
1+ agent ! 1

* + resource
+ resource

(3 Environment () Resource
1 *

+ behaviour |~ + behaviour
1

l E
(3 Behaviour

Fig. 2. The metamodel reflecting the agent aspect of the PIM4Agents.

HandleCFP :
Behaviour

+ behaviour

AutharCapability :
Capahility

AAMASAuthor :
DomainRole

+ performs + performs + performs

+ roleFillers + roleFillers + roleFilers
AuthorAgentl : Authoragent3 : AuthorAgent2 :
Agent Agent Agent

Fig. 3. Agent model of the CMS.

and AuthorAgent3) that all perform the DomainRole AAMASAuthor. This Role has a Capa-
bility AuthorCapability that refers to a HandleCFP Behaviour. Details on this behavior are
addressed in Section 4.3.

4.2 Organization Metamodel

Fig. 4 depicts the organization aspect of the PIM4Agents. The Organisation is a special kind of
Cooperation that also has the same characteristics of an Agent. Therefore, the Organisation can
perform Roles and have Capabilities which can be performed by its members, be it Agents or
Organisations. The multiple inheritance of the Organisation, from the Agent and the Cooperation,
also allows it to have its own internal Protocol that specifies how the Organisation coordinates
its members. For the purpose of interaction, DomainRoles are bound to InteractionRoles, where
an InteractionRole can be performed by several DomainRoles. This might be important in the
case that Protocols are used for different domains.

Fig. 5 depicts an organizational model that conforms to the organizational metamodel. In this
example, we modelled the PC as an Organization that requires the InteractionRoles PCChair
and PCMember. Furthermore, the Organization PC includes several Agents like PCMemberA-
gent2 and PCMemberAgent1 that perform the DomainRole AAMASPCMember and PCChair
that performs the DomainRole AAMASPCChair. The AAMASPCChair has a Capability that
refers to a ReceiveSubmission Behaviour, the AAMASPCMember has a Capability that refers
to a Review Behaviour. The DomainRole AAMASPCMember is bound to the InteractionRole
PCMember, the DomainRole AAMASPCChair is bound to the InteractionRole PCChair.

+ cooperation + uses

(3 Agent (3 Cooperation (3 Protocol (& Role
1 i.%—
Tk ®

+ participants

+ members +requires 1
% e + child
(3 Organisation (3 InteractionRole
+ membership *
+ parent -~ SubRole

Fig. 4. The metamodel reflecting the organization aspect of the PIM4Agents.

Review : m%x 3 % Ra:alivas.l:mssim

+ behaviour + behaviour
binding
AAMASPCMember AAMASPC Chair bindng

Domarfole : DomainRole

+performs 4 performs + performs

+ rolefillers + roleFilers + rolefillers

Agent + Agent
+ mernbers + members

+ membership + membership

PCMember : PC: requires PCChar :
InteractionRole requires Organisation InteractionRole
performs
AAMAS PC :
DomainRole

Fig. 5. Organization model of the CMS.

4.3 Behaviour Metamodel

Fig. 6 depicts the behavioral aspect of the PIM4Agents. The Behaviour refers to a set of Flows
that could be either of the type InformationFlow or ControlFlow that are contained in the be-
haviour description. Furthermore, the Behaviour contains a set of Steps that are linked to each
other via a Flow. In general, the ControlFlow describes in which order Steps are executed. The
InformationFlow describes the order in which information flows between Steps. Each Flow con-
nects exactly two Steps. The concepts StructuredTask and Task are specializations of a Step, i.e.
they are again connected by a Flow. A Scope and Plan are further refinements of the Structured-
Task. Both are connected to a Condition that mainly defines a set of facts (e.g. boolean values)
that are connected by a logical operator. The Plan for instance may refer (i) to a precondition
that has to be satisfied in order to execute the Plan and (ii) to a postcondition that defines the
state (the fact the should be valid) after the Plan execution. Due to reason how elements in the
behavioural viewpoint are structured, Plans could either be composed by more complex control
structures (i.e. Scope) or by simple atomic activities (i.e. Task).

The concepts that could be considered as Scope are depicted in Fig. 7. In a first step, we
distinguish between the sequential, iterative, and split order of execution. This is reflected by
the concepts Sequence, Split and Loop in Fig. 7. The Split is again structured into (i) a Parallel
concept that is further partitioned into ANDParallel and XORParallel and (ii) a Decision concept
that is further partitioned into ORDecision, XORDecision, and ANDDecision. As a Scope can be
considered as specialization of StructuredTask and Step, each Scope can again include sub-scopes
to allow the definition of complex control structures.

10

(3 Controlflow (3 InformationFlow
+ flows * + flows 1
« O How + inFlow pu= o (3 Behaviour
+ outFlow {
1 14 sourca s Lot 1
1 © Step
1
J + steps *
O StructuredStep 1 ® Task
”
+ condition + postcondition
(& Scope (® Condition (3 Plan

1 * + precgnditicm

Fig. 6. The metamodel reflecting the behaviour aspect of the PIM4Agents.

® Scope

(5 Sequence O spiit & Loop

© Parallel & Decision

(3 XORParallel (ANDParallel (3 ORDedision (& XDRDecision (3 ANDDecision

Fig. 7. The specializations of a Scope.

The concepts that could be considered as atomic Tasks are depicted in Fig. 8. Specializations
are for instance SendMessage and ReceiveMessage that both refer to a particular Message, In-
ternalTask that could be used to define code or internal statements like the assignment of
variables, Wait to express that the Agent/Organization is waiting to meet certain conditions like
for instance a time out and InitiateProtocol to start the referred Protocol.

Fig. 9 depicts the HandleCFP Behaviour that was already mentioned in the context of the
agent model in Fig. 3. The HandleCFP Behaviour includes one Plan (i.e. HandleCFPPlan)
that could in principle be connected with other Plans on this level via the ControlFlowIn-
stancel. For the sake of simplicity, we have not illustrated all ControlFlows in Fig. 9. The
HandleCFPPlan includes a Sequence HandleCFPSequence that could again be linked to other
control structures on the same level via the ControlFlowInstance2. This Sequence includes two
Steps, the ReceiveCFP ReceiveMessage and the XORDecision WritePaper that are connected
via the ControlFlowInstanced. The XORDecision refers to a Condition Busy and includes two
Steps, an InternalTask Relax (this path is chosen if the author is busy with other work that has
to be finished) and a Sequence WritePaperSequence. This Sequence again contains two Steps,
an InternalTask WritePaper (stands for the process of writing the paper) and a SubmitPaper
SendMessage that refers to a Message SubmitPaper. The ControlFlow ControlFlowIntanced
connects both Steps.

11

Q Task |

O SendMessage | O RecelveMessage || @ InternalTask © Wait O InitiateProtocol
1 T -

14 # = =
deicks | +reactsTo
: | + timeout + initiateProtocol
+ messagsetype 1 | + messagetype
1 1 0.1 1
* 1 - 23 ¥

| Caufz | | ©Message © TimeDut @ Protocol
= MessageType | r——— -

Fig. 8. The specializations of a Task.

%LL HandleCFPPlan HancleCFP :
| toutFlow T iPan | +steps “Behaviow

+steps
+steps +5teps
- e .. TR . B e
+steps +steps
a +5teps +steps +sends
ririry e | ey

Fig. 9. Behavior model for the HandleCFP Behavior in the CMS.

4.4 Interaction Metamodel

Fig. 10 depicts the interaction aspect of the PIM4Agents. The ability to communicate is one
of the core characteristics of agents and group of agents in MAS. A Protocol refers (i) to a set
of InteractionRoles (e.g. Buyer and Seller) that interact within the Protocol and (i) to a set of
MessageFlows that specify how the exchange of messages is proceed. The InteractionRole can
again refer to a set of InteractionRoles as child, meaning that the set of agents that perform
the parent InteractionRole is split into the child InteractionRoles. In general, the child Interac-
tionRoles are determined at design time, but filled with the particular agents that perform this
role at run time.

A good example why to distinguish between parent and child InteractionRole is the Con-
tract Net Protocol [29] (CNP). In the CNP, the initiator sends in the proposal stage either
an accept-proposal or a reject-proposal to the participant. The decision which message is
sent depends on the fact if the participant is considered as best bidder. If this is the case, this
participant gets an accept-proposal, otherwise a reject-proposal. This implicit distinction
between best bidder and remaining bidders could be done in the PIM4Agents explicit. The
participant would have two children InteractionRoles, i.e. BestBidder and RemainingBidders
that are filled at run-time. The MessageFlows again refer to a set of InteractionRoles that are
active in the current state, i.e. those Roles that send the specified Messages. Furthermore, it
specifies a join and fork operator which are both of the type MessageScope. A MessageScope
defines the Messages and their order how these arrive. In particular this means that Messages
are connected via a Sequence, Loop, Parallel, OR, XOR, and AND operator. Furthermore, the
MessageFlow refers to a TimeOut that specifies the latest point in time a Message should be sent.
Beside Messages that can be sent, the MessageFlow may also refer to Protocols that are initiated
at some specific point in time in the parent Protocol in order to execute nested Protocols.

12

(O Message (3 TimeOut
+ joinTimeOut ‘ + forkTimeOut
*
+ massages
1
1 4 * + messagesplit
(3 MessageSphit 1 (3 MessageScope
1 0.1 L + protocol
+ operations 0.1

«aufzihlung»

= Operations + forkOperator Ve joinOperator

o Sequence 1 - 1 o
o Loop (9 MessageFlow (€] Protoc'd}

Parallel 1 + messageflows

o XOR

o OR *

o AND

1% + active e i
+ binding = + parent
(3 DomainRole (3 InteractionRole
1.* * * 1
+ child + participant-

-~ SubRole

Fig. 10. The metamodel reflecting the interaction aspect of the PIM4Agents.

AAMASAUthor @ bnding Author ¢ + active SubmitP. .
" DomanRole InteractionRoke 'ms_sag_“%
+ JoinOperator + forkOperator
4 requires + participants
CFP SubmitPaper :
Messagescope Messagescope
+ Cooperation + uses + messages + Messages
CalForPapers : CalForPapers : CalForPaper : SubmitPaper :
Cooper ation Protocol Messaga Message
+ messages
P
s P Messageiiope
e + forkOperator
AAMASPC : becding PCChar : P
Domarkole InteractionRole + actve MessageFiow

Fig. 11. Interaction model of the CMS.

Fig. 11 discusses the interaction model that covers the interaction between the authors and the
PC in the submission phase. The CallForPapers Cooperation uses a CallForPapers Protocol
and requires the InteractionRoles Author and PCChair. The PCChair is active in the CFP
MessageFlow that refers via a CFP MessageScope to the CallForPaper Message, whereas the
Author is active in the MessageFlow SubmitPaper that refers via a CFP MessageScope to a
CallForPaper Message and via a SubmitPaper MessageScope to a SubmitPaper Message.

5 Metamodel for JACK

A vast number of frameworks and methodologies have been developed to foster the software-
based development of BDI agent architectures [30] and MAS (31,11, 32-34]. As mentioned in
Section 3.4, JACK is a prominent example of a BDI implementation and is considered in
our approach as platform-specific execution environment. The partial metamodel of JACK
(JACKMM) is presented in the following section.

13
5.1 Team Metamodel

The team metamodel specifies and defines the structure of one or more entities that is formed
to achieve a set of desired objectives. A subset of the metamodel for this aspect is presented in
Fig. 17.

« + handies
» + posts
+ sends + handles
* -
. 1 " . T 1.*
(3 ReasoningMethod (3 Plan * (© Agent (G Event
- *
+ uses +handes +sends ¢ » +sends 1"
+ reasoningmethod + posts
+ uses 1 1 + handles
1332
* *
T
(TeamPlan © Team + capabiitys (3 Capability
+ Uses N "
1
. + performs
+ requires .
1
(© NamedRole G Role
£uses 1 1 1
+ type

Fig. 12. The team metamodel reflecting the team aspect in the JACK framework.

An Agent is a component that can exhibit reasoning behaviour under both proactive (goal
directed) and reactive (event-driven) stimuli. When an Agent is instantiated, it will wait until
it is given a goal to achieve or experiences an Event that it must respond to. When such a
goal or Event arises, it determines what course of action it will take. The Team concept is a
specialization of Agent. It is a distinct reasoning entity which is characterized by the Roles it
performs and the NamedRoles it requires others to perform. The formation of a given Team is
achieved by attaching sub-teams capable of performing the NamedRoles required by the Team.
A Plan models procedural descriptions of what an Agent does to handle a given Event. All the
action that an Agent takes is prescribed and described by the Agent's Plans. A TeamPlan specifies
the behaviour of a Team in reaction to a specific Event. As a specialization of Plan, a TeamPlan
also defines a set of steps specifying how a particular task is achieved by particular NamedRoles.
In order to coordinate the Team's behaviour, TeamPlan provides additional constructs like the
team_achieve statement (for more details we refer to Section 5.2).Role definitions are a very
important concept to define a Team as those specify which messages—which are rather Events
the role fillers are able to react to and which messages they are likely to send. An Event presets
the type of stimuli a Team, Role, or TeamPlan reacts to or posts. JACK distinguishes between
(i) nternal stimuli that are events the Agent/Team sends to itself, (ii) external stimuli that
are messages from other Agents, and (iii) motivations such as goals the Agent/Team may have.
The details on the discussed concepts and their attributes are given in Table 1.

5.2 Process Metamodel

The process metamodel for JACKMM is presented in Fig. 13. It describes the process structure
and the available language constructs for process definition. The concept Process illustrates the
main part of the process aspect. It includes various occurrences of the type NodeBase which is an
abstract class from which each particular node inherits. Furthermore, the Process comprehends
a set of Flows that define the control flow between nodes. Each Flow has exactly one source
node and one sink node. A complete list of all process-related concepts is given in Table 2.

14

JACK'’S Team elements

Concept |Attributes [[Ezplanation
sends Events are identified that the Agent sends externally
to other Agents
Agent handles Events that the agent will attempt to respond to if|
they arise by executing a Plan
uses Plan that the Agent can execute in reaction to an
Event
uses TeamPlan the Team executes when handling an
Event
Team performs Roles the Team performs itself to the outside
require NamedRoles the Team requires in order to solve the
requested task
Plan reasoningmethod defines methods that an Agent may execute when it

runs this Plan. Reasoning methods are different from
normal Java methods in that they execute as finite
state machines, and may succeed or fail, depending
on whether the Agent can complete each statement
that they contain. The top-level reasoning method is

called body
handles Events that trigger the execution of the Plan
posts Events that are posted within a Plan
TeamPlan uses Roles that are needed by the TeamPlan to solve the
assigned task
Role handles Events that are handled by a particular Role
posts Events that are posted by a particular Role
NamedRole type Role type that is referred by the NamedRole

Table 1. The Team viewpoint of JACK.

6 Metamodel for JADE

The JADE agent platform [5] is a very popular platform with the MAS community, therefore
it was chosen as a relevant target platform to our MDD approach. This section presents a
partial view of a metamodel for this platform. It is important to mention that, since JADE is
implemented in Java, the Java language constructs (classes, interfaces, etc.) are also available,
but not covered in detail in this paper.

6.1 Core View of JADEMM

The JADE metamodel (JADEMM) presents the concepts and structures available in the JADE
API [35] and some minor extensions for mapping purposes. A reduced view of this core is shown
in Fig. 14.

The Agent represents the class jade.core.Agent from the JADE API. The software agent per-
forms various tasks, including message passing and the scheduling and execution of multiple
concurrent activities. The Behaviour represents the codebase to all the actions that the agent
can perform. Since it is the base of the Behavior model, it is abstract and its children are the
ones that can actually be instantiated and executed. The Agent’s knowledge is stored in an
Ontology, which contains application specific concepts that Agents can use in their messages.
It defines a vocabulary and relationships between the elements in this vocabulary. Correspond-
ingly, the ConceptSchema is an expression that describes an entity with a complex structure
that can be defined in terms of Slots. The ACLMessage is the base for Agent communication. It
implements an ACL message compliant to the FIPA ACL Message Structure Specification [36]
and is parameterized though key:value pairs. In order to support Agent Organizations two con-
cepts are introduced as an extension to the JADE API. The Organisation represents a generic
grouping of Agents, it enables a straightforward support of organizational structures from the
PIM4Agents. The Organisation also provides the codebase for further specialized Organisations,

JACK’s process elements

Concepts [Ezplanation [Attributes
NodeBase abstract class that provides
the common attributes for
node specializations
Process main process class that con-|subprocesses: collection of NodeBases under this
tains all NodeBases and Flows|Process
start: first NodeBase in the Process
flows: Flows that are needed to connect the spe-
cific NodeBases in the Process
Flow concept to link NodeBases |sink: refers to NodeBases that are the source of a
Flow
source: refers to NodeBases that are the sink of a
Flow
ForkNode abstract class that extends
NodeBase for the support of]
alternative outputs
ParallelNode ||represents the parallel state-|parallelTasks: collection of tasks or processes that
ment node must be executed in parallel
PostNode posts a message to the same|event: Event to be posted
Agent
SendNode sends a message to the an-|targetAgent: the name of the recipient agent for
other Agent the sent Event
ReplyNode replies to a message received|originalMessage: message to which the reply re-
by the Agent sponds
CodeNode executes Java code within the|code: Java code to be executed
Plan
DecisionNode ||represents an if-else decision [condition: the condition to be evaluated in the
decision
SubtaskNode [|lexecutes another Plan as sub-|eventToPost: the Event to be fired
task by posting an event
SubgraphNode ||executes a reasoning method|subgraphNameAndArgs: the name and arguments
as subpart of the process for invoking the reasoning method
TestNode test a given condition, if the|condition: the condition to be evaluated
value of the expression is un-
known to the Agent a subtask
is fired by posting an Event
goalEventToPost: the Event to be posted if the
value of the evaluation is unknown to the Agent
DetermineNodel|iterates through all possible[condition: the condition to be evaluated.
values that satisfy a logical
condition until a goal subtask
using these values succeeds
goalEventToPost: the goal Event that the Agent
executes for each set of values that satisfy the
binding condition.
AchieveNode |[asks the Agent to test a con-[condition: the condition to be evaluated
dition and if it is not true, to
handle a goal Event
goalEventToPost: Event describing the goal that
the Agent must try to achieve
InsistNode similar to achieve, but ensures
that the condition holds after
the execution of the goal sub-
task
MaintainNode [|similar to SubtaskNode, but|condition: the condition to be held

ensures that a condition is
held during the execution of|
the subtask

eventOrReasoningMethod: Event that fires the

subtask or reasoning method

Table 2. The process elements of JACK

16

(» SendNode

(3 ParallelNode (3 PostNode (3 CodeNode (3 ReplyNode

+ start
(O NodeBase
1 1 I (3 DetermineNode
+ subprocesses ¥
1 + sirk + source (3 DecisionNode
1 + flows 1 1
(Process (& Flow (3 ForkNode (3 TestNode
»
B 1
(ParallelTask
+ parallelTasks
© waitForNode (3 MaintainNode (3 SubgraphNode (3 AchieveNode

(© TeamAchieveNode (® SubtaskNode

(@ InsistNode

e} WaitForTimeou G WaitForSentin
tNode elNode

Fig. 13. The partial process metamodel reflecting the process aspect in the JACK framework.

such as holons for instance. The members of the Organisations are characterized by Roles, which
describe identify the part they play within the Organization. For more details on the concepts
please refer to Table 3 and [35].

JADEMM Core elements

Concept |Atiributes ” Ezxplanation

ontology representation of the Agent’s knowledge, necessary

for message processing using templates

Agent behaviours set of possible actions that the Agent can execute

implements set of Roles implemented by the Agent

members Agents that take part in the Organisation
Organisation requires Roles the Oraganisation needs to achieve its tasks
Role sends Messages that the Role may send

receives Messages that the Role may receive
Ontology schemas Schemas that the ontology contains
ACLMessage performative ACL performative that the message performs

Table 3. The core aspect of JADEMM

6.2 Behaviour View of JADEMM

The Behaviour, previously introduced in the core of JADEMM, represents any process or task
that can be executed by the Agent. It is an abstract class, but it is the base for various spe-
cialized behaviour types. We mainly concentrate on two types of them: SimpleBehaviour and
CompositeBehaviour. These two types are abstract and provide the base class for additional spe-
cializations, simple or composite behaviors correspondingly. A small extension was added to the
hierarchy to represent the sending and reception of messages by the MessageReceiverBehaviour
and MessageSenderBehaviour. A partial view of the Behaviour hierarchy is depicted in Fig. 15

17

+ slots
1 *
(3 ConceptSchema (© ObjectSchema (3 Slot
+ schernas + schema
1 B " 1
* 1 + members
(2 Ontology g (Agent (3 Organisation
1 1+ requires
+ behaviours 1 + implements
»* *
(& Behaviowr ™ (3 Role
+ receives ol e + sends
* *
(3 ACLMessage

Fig. 14. Partial view of the core of the JADE metamodel

and a summarized description of the most relevant specializations in the behaviour hierarchy
is presented in Table 4.

JADEMM Behaviour elements

Parent Behaviour

Eeham'our Type

| Ezplanation

SimpleBehaviour OneShotBehaviour |[represents an action that is performed once only.
CyclicBehaviour represents an action that is performed indefinitely
ParallelBehaviour executes its children in parallel fashion, and concludes

when a predetermined number, all or any of its chil-
dren are done.

is a serial behaviour that executes its children accord-
ing to a FSM defined by the user. More specifically
each child represents a state in the FSM.

is a serial behaviour that executes its children in se-
quential order, and terminates when its last child has
ended.

Table 4. The Behaviour Aspect of JADEMM

FSMBehaviour

CompositeBehaviour

SequentialBehaviour

7 Vertical Transformations

Model transformations are one of the key mechanism within MDD. Using code generation
templates, the model is transformed to executable code that may be optionally be merged with
manually written code. One or more model-to-model transformation steps may precede the
code generation. These model-to-model transformations can be distinguished between vertical
(between PIM and PSM) and horizontal (between PIM and PIM) mappings. This section deals
with vertical mappings, i.e., how to map PIM-related concepts (defined by the PIM4Agents
metamodel) to PSM-related concepts of JACKMM and JADEMM.

The mapping rules we are discussing in the following are defined on the basis of the source and
target metamodel, whereas the execution, i.e. the transformation of them is done on the source
and target models. The mapping rules consist of (i) a head that defines which concepts from
the source metamodel are mapped to which concepts of the target metamodel and (ii) a body
that defines how the attribute’s information of the target metamodel is derived.

18

(3 MessageReceiverBehaviour (3 MessageSenderBehaviour
o CydlicBe o WakerBe e} OneShotBe o SimpleAchieveREL lc) SimpleAchieveRERes e} TickerBe
haviour haviour haviour nitiator ponder haviour
O SimpleBehaviour
& CompaositeBehaviour © Behaviour © LoaderBehaviour
1 *

+ subbehaviours

() ParallelBehaviour (© SerialBehaviour

(3 FSMBehaviour (3 SequentialBehaviour

Fig. 15. Partial view of the behavior hierarchy of the JADE metamodel

7.1 From PIM4Agents to JACKMM

In this section we bring together the metamodels of the PIM4Agents (see Section 4) and JACK
(see Section 5). Therefore, several basic mapping rules were defined that are listed in the
remainder of this section. The first rule covers the mapping from the organization aspect (i.e.
the concept Organization and its attributes) of the PIM4Agents to the team aspect of JACKMM.
Therefore, we have defined the following mapping rule.

Model Mapping 1:
Head: PIM4Agents.Agent : Organisation — JACKMM.Team : Team

Body: The Behaviour that is used by the Organisation is mapped to a set of TeamPlans
the Team makes use of. The order in which Plans are executed is only mapped for these
Plans in the PIM4Agents that do not react on an incoming Message. As the execution
order in JACKMM is mainly predefined by the order in which Events are sent and
handled by the TeamPlans. Events a Team sends or handles are extracted from the
organizational Protocol. The Team performs and requires Roles that are specified by the
Organization’s provided DomainRoles and required InteractionRoles. The body function
of this mapping rule is discussed by Table 5 in more detail.

The source and target concepts of Mapping Rule 1 nicely corresponds to each other as both
(i) make use of a process that specifies how their members are coordinated and (ii) require
and perform Roles, even if we distinguish between DomainRoles and InteractionRoles in the
PIM4Agents. The only difference between both metamodels is the manner in which interactions
are defined. In general, the interaction in the PIM4Agents is defined by a Protocol whereas
JACKMM defines the interaction between entities in an event-driven manner without explicitly
specifying a protocol. The mapping between the interaction aspect and the event-driven manner
provided by JACKMM is one of the more difficult mappings that is discussed in more detail
in Mapping Rule 4. The second transformation rule deals with the mapping from the agent
aspects of the PIM4Agents to the team aspect in JACKMM.

19

PIMA4Agents.Agent : Organisation — JACKM M Team : Team

Target lSource JMR
Team.performs |[DomainRoles that are performed by the Organization 7
Team.requires [DomainRoles that are performed by the Organization’s members 6

Team.handles |collection of all Process’ Messages that are received by the Interaction-|4
Roles the Organization’s DomainRoles are bound to

Team.sends collection of all Process’ Messages that are sent by the InteractionRoles|4
the Organization’s DomainRoles are bound to

Team.uses collection of all Steps that are (i) contained in the Organization’s Be-|3
haviour and of the type Plan

Team.capability [Capabilities that are used by the Organizations 5

Table 5. Mapping Rule 1 in detail.

Model Mapping 2:
Head: PIM4Agents.Agent : Agent — JACKM M. Team : Team

Body: The Behaviour that is used by the Agent is mapped to a set of TeamPlans
the Team makes us of. The Protocol’s Messages the Agent participates are mapped to
Events that are either handled or sent by the Team. Furthermore, the Team performs
the Roles that are defined by the InteractionRoles the Agent’s DomainRole is bound to
in the PIM4Agents model. The details of the mapping body are discussed by Table 6.

PIMA4Agents.Agent : Agent — JACKMM.Team : Team

Target |Sou'rce |MR
Team.performs |DomainRoles that are performed by the Agent 6
Team.requires
Team.handles [collection of all Process’ Messages that are received by the Interaction-|4
Roles the Agent’s DomainRoles are bound to

Team.sends collection of all Process” Messages that are sent by InteractionRoles the|4
Agent’s DomainRoles are bound to
Team.uses collection of all Steps that are (i) contained in the Agent’s Behaviour|3

and (ii) of the type Plan
Team.capability [Capabilities that are used by the Agent
Table 6. Mapping Rule 2 and its details.

o

At first glance the concept Agent of JACKMM seems to be the best match, but since an Agent
in the PIM4Agents references Roles, it is recommended to assign PIM4Agents. Agent:Agent to a
Team in JACKMM as an Agent in the JACKMM does not refer to any Roles (see Fig. 17). The
main difference between Mapping Rule 2 and Mapping Rule 1 is the fact that when mapping an
Agent to a Team we instantiate an atomic Team which means that the Team does not require any
NamedRole to which tasks could be assigned in the TeamPlan. When mapping an Organization,
the Team requires a set of InteractionRoles that are performed by the organizational members,
where a member could also be of the type Organization.

The third mapping rule covers the mapping between the behavioural aspect of the PIM4Agents
and the process aspect of JACKMM.

Model Mapping 3:

Head: PIM4Agents.Behaviour : Plan — JACK M M.Team : TeamPlan

20

Body: A TeamPlan uses a set of NamedRoles that are extracted from the Interaction-
Roles an Organization/Agent in the PIM4Agents requires. In fact, only a Cooperation
(and Organization that inherits from the Cooperation) requires InteractionRoles. So
that the set of InteractionRoles an Agent requires would be empty. However, an atomic
Team should not require any NamedRole. The Conditions are mapped to the trig-
gering conditions in a TeamPlan. Additionally, the specializations of a Scope in the
PIM4Agents are nearly mapped in a one-to-one fashion to the corresponding concepts
of the JACKMM Process. The details of the body are specified in Table 10.

PIM4Agents.Behaviour : Behaviour — JACKMM.Team : TeamPlan

Target

ISource

TeamPlan.uses

InteractionRoles that are required by the Organization/Agent 6

TeamPlan.sent

Messages that are sent within a Protocol, i.e. Messages that are referred |4
by the Plan’s SendMessage

TeamPlan.handles

Messages that are handled within a Protocol, i.e. Messages that are|4
referred by the Plan’s ReceiveMessage

Table 7. Mapping Rule 3 and its details.

Process mappings

Source ” Target |Ezplana.tions

Process Plan the first Step (start) inside a Behavior is not explicitly
represented in the PIM4Agents. Instead, we are mapping
the Step that has no ingoing Flow. The subprocesses and
flows are represented by the Plan’s flows and steps.

Flow Flow by connecting the NodeBases using Flows we can easily
represent a Sequence in the PIM4Agents

ParallelNode Parallel depending on the execution type (XOR, AND), we set
the condition of the ParalledNode to ANY or ALL

SendNode SendMessage the Event that is sent in the SendNode is used to instan-
tiate the corresponding Message in the PIM4Agents

CodeNode InternalTask statements inside an InternalTask are transformed to Co-
deNode

DecisionNode Decision the Condition in the PIM4Agents is mapped to the con-
dition in JACKMM

Table 8. Mapping between the PIM4Agents and JACKMM process parts.

A Behaviour in the PIM4Agents consists of several Steps that are linked via a Flow. A Plan

which is one frasible specialization of a Step—unions Scopes that define more complex control
structures and atomic Tasks like sending a Messages. As a specialization of Step, all three
concepts (i.e. Plan, Scope and Task) refer to a set of incoming and outgoing Flows. How to
map the particular concepts of PIM4Agents is illustrated in Table 8. In principle, a mapping
rule has to be defined for each of them. We have chosen a simplified form of presentation since

those rules are nearly mapped in an one-to-one manner.

The fourth mapping rule defines how to map the interaction aspect of the PIM4Agents that
describes how to specify the interaction in a protocol-driven manner to an event-driven manner

as it is supported by JACKMM.

Model Mapping 4:

Head: PIMA4Agents.Interaction : Message — JACK M M. Team : Event

Body: Each Message that is either part of a Protocol or is referred by an atomic Task
(i.e. SendMessage or ReceiveMessage) in a Plan is mapped to an Event in JACKMNM.
This is done independent of its type, i.e. whether the Message is sent/received in an
asynchronous or synchronous manner.

As mentioned in Section 4.4, JACK distinguishes between several different types of Events.
In the case of Mapping Rule 4 we mainly concentrate on MessageEvents. GoalEvents are not
covered as the PIM4Agents core does not yet present any goal-oriented concepts.

Model Mapping 5:

Head: PIMd4Agents.Interaction : Capability — JACK M M. Team : Capability

Body: The Behavior that is used by the Capability in the PIM4Agents is mapped to
the handled Capability’s Plans in JACKMM. The Messages that are sent and received
within the particular Behavior are mapped to Events that are sent and handled by the
Capability in JACKMM.

PIMA4Agents.Interaction : Capability — JACK MM .Team : Capability
Target Source MR
Capability.handles|Messages that are handled within the Plans that are grouped by the|4
Capability in the PIM4Agents
Capability.sends |Messages that are sent within the Plans that are grouped by the Ca-|4
pability in the PIM4Agents
Capability.posts | —
Capability.uses Behaviour that is referred by the Capability in the PIM4Agents 3

Table 9. Mapping Rule 5 and its details.

The concept Capability is used by the Agent and Role in the PIM4Agents to group a particular
type of Behaviour. The manner in which the Capability is used in JACK nicely corresponds
to this. However, only the concepts Agent and Team refer to Capabilities, Roles do not have
a pointer to Capabilities in JACKMM. To compensate this, we additionally have to introduce
Capabilities for those Agents and Teams that perform the particular Role in the PIM4Agents.

Model Mapping 6:
Head: PIM4Agents.Agent : InteractionRole — JACK MM .Team : Role

Body: The concept InteractionRole of the PIM4Agents is transformed to JACK-related
Roles a Team requires or performs.

Model Mapping 7:

Head: PIM4Agents.Agent : InteractionRole — JACK M M.Team : NamedRole

Body: For each InteractionRole that is specified within a Protocol a Role in JACKMM
is instantiated. The NamedRole refers to the particular Role that is introduced by
Mapping Rule 6.

22

PIMA4Agents.Agent : InteractionRole — JACKMM.Team : Role

Target ISource |MR

Role.handles Messages that are handled by the InterationRoles the corresponding|4
DomainRole is bound to

Role.posts Messages that are sent by the InterationRoles the corresponding Do-|4
mainRole is bound to

Table 10. Mapping Rule 6 and its details.

The PIM4Agents distinguishes between two different role types. The DomainRole focuses more
on the Role an Agent/Organization is able to play within a certain domain. The InteractionRole
focuses more on the Role an Agent/Organization is able to play within a Cooperation. Conse-
quently, a DomainRole could play more than one InteractionRoles and an InteractionRole could
be played by several Agents/Organizations at the same time. The DomainRoles that are bound
to the particular InteractionRoles are used as role fillers, i.e. they perform the Role to which
InteractionRole they are bound. In JACK, the Roles required by a Team are rather represented
by role container objects, which include the Role objects as fillers.

Model Mapping 8:
Head: PIM4Agents.Agent : Resource — JACKM M. Team : NamedData

Body: Resources an Agent has access to in the PIM4Agents are mapped to NamedData
an Agent or Team uses. The NamedData concepts refers to so-called external classes
that are specified in e.g. Java.

7.2 Generated JACKMM meodels

In the previous section, we illustrated the basic mapping rules used to transform PIM4Agents
models to JACK models. For the purpose of demonstration, we relate this model mapping to
the PIM4Agents models that were discussed in Section 4 and explain how the generated JACK
models look like.

Fig. 16 depicts the output model when applying the particular mapping rules on the PIM4Agents
model illustrated by Fig. 3. In particular, applying Mapping Rule 3 generates a TeamPlan Han-
dleCFP that is referred by the Capability AuthorCapability that is instantiated by applying
Mapping Rule 5. Furthermore, Mapping Rule 2 generates three Team instances (AuthorAgentl,
AuthorAgent2 and AuthorAgent3) that perform the same Role and make use of the same Ca-
pability AuthorCapability. Finally, Mapping Rule 6 generates the Role instance Author.

+ performs Team + capability
Author : AuthorAgent2 +capability AuthorCapability : HandleCFP :
Role + performs Team Capability uses TeamPlan

+performs AuthorAgent3 : +capability
Team

Fig. 16. The generated JACK model that bases on the agent model illustrated in Fig. 3.

Fig. 17 depicts the output model when applying the particular mapping rules on the PIM4Agents
model illustrated by Fig. 5. In particular, applying Mapping Rule 1 generates an instance of an

23

Organization called PC. The body of this mapping refers to a set of Capabilities that are gener-
ated by applying Mapping Rule 5. Furthermore, the PC Team requires a set of NamedRoles (i.e.
PCMember and PCChair) that are generated by applying Mapping Rule 7. These NamedRoles
refer to the Roles PCMember and PCChair (Mapping Rule 6). Using Mapping Rule 2, we gen-
erate the Teams PCMemberAgent2, PCMemberAgent]l and PCChair that base on the agent
types in the PIM4Agents CMS model. The Teams PCMemberAgentl and PCMemberAgent1
perform the Role PCMember, whereas the PCChair performs the PCChair Role. The Team
PCChair has a Capability PCChairCapability, the PCMemberAgentl and PCMemberAgent?2
have a Capability PCMemberCapability. Both Capabilities are instantiated by Mapping Rule 5.
The PCMemberCapability uses a Behaviour Review, the PCChairCapability uses a Bahaviour
ReceiveSubmission (Mapping Rule 3).

PC : Role
+ performs
) PC : Team)
+requires - ———— +requires
PCMember : PCChair :
NamedRole NamedRole
+type type
PCMember : PCChair :
Role Role
+performs o
+performs +pertorms
PCMemberAgent2 : PcMemberAgent1 : PCChar :
Team Team Team

Fig. 17. The generated JACK model that bases on the organization model illustrated in Fig. 5.

Fig. 18 depicts the output model when applying the particular mapping rules on the PIM4Agents
model illustrated in Fig. 9. In particular Mapping Rule 3 is mainly responsible for the newly in-
stantiated NodeBases in Fig. 18. The first Step that is neither a SendMessage (i.e. the TeamPlan
handles this Event) nor a Sequence (i.e. this Step is implicitly illustrated by the Flow concept in
JACKMM) is presented as start attribute (i.e. DecisionNode WritePaper), the others are sub-
processes. This DecisionNode is linked to the CodeNodes Relax and WritePaper via the Flow
FlowInstance. Like the Steps, the Flows are also included BodyReasoningMethod. Exemplarily,
this is shown by the 'flows’ associaitions between the HandleCFPPlanBodyReasoning and the
FlowInstance.

7.3 From PIM4Agents to JADEMM

This section introduce the mapping from the PIM4Agents concepts (Section 4) to the JADEMM
concepts presented in Section 6 through various mapping rules. The list presented does not com-
prehend all the necessary model mapping, but only the most relevant for a clear understanding
of how they are applied for the presented model mappings.

Model Mapping 9:
Head: PIM4Agents.Agent : Agent — JADEMM : Agent

Body: Every Agent in the PIM4Agents is mapped to a JADEMM:Agent. The details
of this mapping rule are summarized by Table 11.

The PIM4Agents.Agent : Agent — JADEMM : Agent Mapping is fairly straight forward,
given that the concepts correspond to one another in the use of behaviours, to carry actions;

24

HandleCFPPlan : HandleCFPPlanReasoningMethod
TeamPlan Reast thodBase
HandleCFPP 350! 4
Ri i t
+hows +start +subprocesses +subprocesses +subprocesses
WritePaper : Relax WiritePaper : SubmitPaper
DecisionNode CodeNode CodeNode ﬁﬁode
+source +sink +source +sink +source +sink
FlowlInstance : FlowInstance? : FlowlInstance3 :
Flow Flow Flaw

Fig. 18. The generated JACK model that bases on the behaviour model illustrated in Fig. 9.

PIMAAgents. Agent : Agent — JADEMM : Agent

Target [Source IMR

Agent.implements |collection of DomainRoles that are performed by the Agent 12

Agent.behaviours |collection of Behaviours that determine what the Agent can do, ob-[14,13

tained from the Behaviors the Agent has and the Capabilities the Agent

use

Agent.organization|collection of Organizations that the Agent is a member of 10
Table 11. Model Mapping 9 in detail.

Roles, to represent responsibilities or compromises; and Organizations, to collaborate with other
Agents.

Model Mapping 10:
Head: PIM4Agents.Agent : Organisation/Cooperation — JADEMM : Organisation
Body: JADEMM. Organisation, an extension to the JADE API, allows to transform

PIM/Agents. Agent: Organisation/Cooperation in the straightforward fashion that is pre-
sented in Table 12.

PIM4Agents.Agent : Organisation/Cooperation — JADEM M : Organisation

Target lSource [MR
Organisation/Cooperation.- |collection of Agents or Organizations that form this Organiza-|9
members tion, obtained from the members of this particular Cooperation
Organisation/Cooperation.- [collection of DomainRoles that the organization needs for its|12
requires operation, obtained from all DomainRoles that are bound to

the particular InteractionRole

Table 12. Model Mapping 10 in detail.

The concepts of an Organization or Cooperation in the PIM4Agents are mapped directly to
JADEMM:Organisation, since the concept in JADEMM is a custom made extension to the
JADE API, therefore its properties are mainly mapped in a one-to-one fashion. Although the
transformation itself is not complicated, ensuring that the ‘implementation/runtime version’ of

25

the Organisation performs the expected tasks requires some care at the technical programming
level. Currently, it is a quite simple implementation and will evolve as more scenarios impose
additional technical requirements on it.

Model Mapping 11:

Head: PIM4Agents.Interaction : Protocol - JADEMM : FSM Behaviours

Body: The PIM/Agents. Interaction: Protoeol is decomposed into n JADEMM. FSM Behaviour
types—one for each InteractionRole in the Protocol—whose execution order is deter-
mined by the PIMJ4Agents. Interaction: Message Flow for corresponding Role. The details

for this mapping are shown in Table 15.

PIM4Agents. Interaction : Protocol — JADEMM : FSM Behaviours

Target [Source [ﬂJR
FSMBehaviour.name the name of the FSMBehaviours is defined by the concatenation of the|—
Protocol’s name, the InteractionRole’s name and the string 'Behaviour’
FSMBehaviour.children [the children behaviours are set by grouping the Protocol’s Behaviours|12
according to Messages that are sent and reacted to with respect to the
Role's MessageFlow.

FSMBehaviour.transitions|the transitions from one child to the next are set by linking the forkOp-|—
erator and joinOperator of a MessageFlow for the corresponding Role.

Table 13. Model Mapping 11 in detail.

As presented, Model Mapping 11 is a much more complex mapping than the ones presented
so far. It basically does a collapse of the ‘MessageFlow graph’ and links the Scopes that corre-
spond to each MessageFlow in the PIM4Agents into a set of FSMBehaviours in the JadeMM,
whose transitions depends on the graph’s links. Which Scopes should go into the each of the
[FSMBehaviours depends on the InteractionRole in the PIM4Agents to which they belong,.

Model Mapping 12:

Head: PIM4Agents.Agent : DomainRole — JADEMM : Role

Body: Every Role performed by an Agent is represented by an extension to the Jade
API which contains the Role associated information, in particular the Messages that
the Role sends and receives. A short explanation on the extraction of these message list
is shown in Table 14.

The Role transformation (Model Mapping 12) also performs a collapse of the ‘MessageFlow
graph’, but in this case, it groups the incoming and outgoing Messages found in the graph with
respect to the InteractionRole. Additionally, the InteractionRoles are unified with the Domain-
Roles through the DomainRole.binding property, therefore there is only one Role concept in
JADEMM which models the Interaction and DomainRole concepts.

Model Mapping 13:
Head: PIM4Agents.Behaviour : Behaviour — JADEM M : Sequential Behaviour

Body: JADEMM.Behaviour is an abstract class, so the target for the transformation
of the Behaviour is actually the SequentialBehaviour in JADEMM.

26

PIMA4Agents. Agent : DomainRole — JADEMM : Role

Target |S ource |M R

Role.sends in order to obtain the messages to be sent by the JADEMM:Role, we
navigate the MessageFlows of the Protocol of the associated Inter-
actionRole (PIMd4Agents.Agent:DomainRole.binding). Messagel'lows
that possess a forkOperator value other than null, define a message
to be sent by the Role.

Role.receives in a similar fashion, in order to obtain the messages to be received by the|—
Role in JADEMM, we navigate the MessageFlows of the Protocol of the
associated InteractionRole (PIM4Agents.Agent:DomainRole.binding).
MessageFlows that possess a joinOperator value other than null, define
a message to be sent by the Role.

Table 14. Model Mapping 12 in detail.

PIMA4Agents. Behaviour : Behaviour — JADEMM : Sequential Behaviour

Target Source]MR
SequentialBehaviour.- [the children behaviours are obtained from the Plans in the|l5
children PIM4Agents, and the order of the children is determined by

the ControlFlow defined in the particular Plan

Table 15. Model Mapping 13 in detail.

Model Mapping 13 represents the general rule for mapping behaviours. In practice there are sev-
eral mapping rules for each particular specialization of Behaviour presented in the PIM4Agents.

Model Mapping 14:
Head: PIM4Agents.Agent : Capability — JADEMM : Behaviour

Body: For every PIMjAgents. Behaviour: Behaviour contained in the PIM4{Agents. Agent-
:Capability referenced, a JADEMM. Behaviour will be added to the available behaviours
of the Agent.

Model Mapping 15:
Head: PIM4Agents.Behaviour : Scope — JADEMM : Composite Behaviour

Body: PIMjAgents. Behaviour:Scope is not transformed directly, for it is an abstract
concept, nevertheless its subclasses are mapped to different CompositeBehaviours in the
JADEMM in a somewhat straightforward manner. The general details of this mapping
are shown in Table 16.

In similar fashion to Mapping Rule 13, Mapping Rule 16 represents a series of specific rules for
transforming particular specialized types of Scopes. For example a Sequence in the PIM4Agents
is transformed in SequentialBehaviour or ParallelBehaviour in JADEMM.

Model Mapping 16:
Head: PIM4Agents.Behaviour : Task — JADEM M : OneShot Behaviour

Body: The subclasses of the Task concept are mapped into OneShotBehaviours in
JADEMM with different Java calls in their body corresponding to the task required. In
the concrete cases of the tasks ReceiveMessage and SendMessage, they will be mapped
to a MessageReceiverBehaviour and a MessageSenderBehaviour correspondingly.

PIMA4Agents. Behaviour : Scope — JADEMM : Composite Behaviour

Target |Sou-rce H[}?

CompositeBehaviour.- |if a Scope in the behavioural aspect of the PIM4Agents has|15, 16
children sub-scopes, the children behaviours are generated according to
these sub-scopes. The order of the children is determined by
the outgoing and ingoing Flow of this Scope. If there are no
sub-scopes are available, the children behaviours are generated
based on the Scope’s Steps

Table 16. Model Mapping 13 in detail.

Model Mapping 17:
Head: PIMA4Agents.Agent : Message — JADEMM : ACLMessage
Body: PIM4Agents. Agent:Message is transformed to a ACLMessage in JADEMM with

an INFORM performative as default. Depending on specific message types, other per-
formatives may be used.

Model Mapping 18:
Head: PIM4Agents. Agent : Resource — JadeM M : ConceptSchema

Body: PIMdAgents.Agent:Resources are transformed into ConceptSchema with the
corresponding slots depending on the resource.

7.4 Generated JADEMM models

AAMAS Author
: Role

+ implements + implements + implements

AuthorAgentl AuthorAgent2 AuthorAgent
: Agent . Agent 3 Agent

+behaviours +behaviours +behaviours

HandleCFP : SequentialBehaviour

Fig. 19. The Agent View of the Example in JADEMM

Fig. 19 presents the result of transforming Fig. 3. We can see how Model Mapping 9 was
applied to the PIM4Agents. Agent: Agents to obtain a JADEMM:Agents. We see the Capabilities

28

AAMAS PC : Role

+implements

PC : Organisation

+ members + members + members
PCMemberAgentl PCMemberAgent2 PCChair :
. Agent L Agent Agent

+behaviourstbehaviours + implernents + implements

+behaviours
Review : AAMAS PCMember ReceiveSubmission :
SeguentialBehaviour : Role SeguentialBehaviour

Fig. 20. The Organization View of the Example in JADEMM

disappear, but their behaviours are added to the corresponding Agents (Model Mapping 14).
Additionally, we can see how Model Mapping 12 was applied to the AAMAS_Author Role.
The transformed organization view from the example is presented in Fig. 20. Again, we see
the DomainRoles—AAMASPCMember, AAMASPCChair, and AAMASPC—transformed in
JADEMM:Roles through Model Mapping 12. Model Mapping 10 is then applied to PC to obtain
a JADEMM:Organisation. Once again the behaviours linked to the Capability in PIM4Agents
are linked directly to the corresponding Agents through Model Mapping 14. Additionally, Re-
view and ReceiveSubmission are converted to JADEMM: SequentialBehaviours by Model Map-
ping 13.

CalForPapers
+ Organisation
+ requires + requires
] AuthorAgent : Agent
AAMAS PC AAMAS Author + implements
: Role : Role
" + implernents
+mplements FFALEES o AuthorAgent2 : Agent
+ implements
PC : Organisation + sends +sends | rocaives
SubmitPaper CallForPaper +behaviours
: ACLMessage . ACLMessage Authoragent3 : Agent
+behaviours +hakiaviours
+behaviours
CallForPapersAuthorBehaviour CallForPapersPCChairBehaviour :
1 FSMBehaviour FSMBehaviour

Fig. 21. The Interaction View of the Example in JADEMM

The interaction for the ‘Call For Papers’ process in JADEMM is depicted in Fig. 21. Once more,
Agents are transformed by Model Mapping 9, DomainRoles by Model Mapping 12, and the Or-
ganisation by Model Mapping 10. The most relevant transformation in this view is the one of
the Protocol CallForPapers. By the application of Model Mapping 11, the InteractionRoles are
collapsed to their corresponding DomainRoles and the MessageFlow structure determines the

29

contents of the output behaviours: CallForPapersinitiatorBehaviour and CallForPapersRespon-
derBehaviour. These behaviours are liked to the corresponding role filler Agents/Organisations.

HandleCFP :
SeguentialBehaviour

+children

HandleCFPPlan :
SeguentialBehaviour

+children

HandleCFPSquence :
SeguentialBehaviour

+children
+children
ReceivePaper : EnoughTimeXORDecision
MessageReceiverBehaviour : FSMBehaviour
+ receives
; +children
CallForPaper : ACLMessage +children
Relax : WritePaperSeguence !
OneShotBehaviour SeqguentialBehaviour
+children +children
WritePaper : SubmitPaper :
OneShotBehaviour MessageSenderBehaviour

+ sends
SubmitPaper : ACLMessage

Fig. 22. The HandleCFP Behaviour in JadeMNM

The HandleCFP Behaviour is presented in is JADEMM form by Fig. 22. By the application
of Model Mappings 13, 15, 16, the PIM4Agents model presented in Fig. 9 is transformed to
a JADEMM model. HandleCFP, HandleCFPPlan, HandleCFPSequence and WritePaperSe-
quence are converted to SequentialBehaviours (Model Mappings 13 and 15). The XORDecision
is converted to a FSMBehaviour also by Model Mapping 15. Finally, all Tasks— Receive CEFP,
Relax, WritePaper and SubmitPaper— are converted by Model Mapping 16.

8 Platform-Independent Model for Service-Oriented Architectures

Our proposed MDD approach allows to model agent systems using an abstract language that
is defined by the PIM4Agents metamodel that can finally be executed by JACK or JADE
using the model mappings we have defined in Section 7. This is one important step toward
a domain specific language for agent systems. However, to integrate more application-oriented
models into our approach is one further issue to make agent system more attractive for industry
to adapt. With respect to this issue, we explored the possibility of integrating service-oriented
architectures (SOA) into our MDD framework. Peer-to-Peer systems or grid systems are further
attractive possibilities how to model modern information systems. In this paper, we base our
approach on a metamodel for SOA [37] (called PIM4SOA) which has been developed by IBM,
the European Software Institute (ESI) and SINTEF. The PIM4SOA covers four important
aspects: service, process, information and quality of service.

30

Information: In the context of virtual enterprises information represents one of the most
important elements that need to be described. In fact the other aspects manage or are
based on information elements.

Service: Services are an abstraction and an encapsulation of the functionality provided by an
autonomous entity. In general, SOAs are formed by components provided by a system or a
set of systems to achieve a shared goal.

Process: Processes describe a set of interactions among services in terms of messages exchange.

QoS: A suitable feature is the description and the modelling of non-functional aspects related
with the services described.

8.1 Service Metamodel

(9 ServiceProvider >

1 0..1 + behaviour
© Behaviour

+ constraints *
+ collaboration

” + participates

« (3 CollaborationUse

© Collaboration 1

1
0.1 + subcollaborations :
+ roles
e * % froles y Y * + bindings

«aly Ljng))

i~ RoleType (Role (3 RoleBinding
© Requester +role *

Provider + boundRole
o Other

Fig. 23. The service metamodel of the PIM4SOA.

This section describes the elements in the service-oriented metamodel that has the objective of
describing service architectures. These architectures represent the functionalities provided by a
system or a set of systems to achieve a shared goal. These functionalities could be represented
as a service or as a set of services. In this work we emphasize the concept of collaborations to
address the different levels of service description. In this section we sketch out the main compo-
nents of the service oriented metamodel. The service aspect of the PIM4SOA presents services
modelled as collaborations that specify a pattern of interaction between the participating roles.
A subset of the metamodel for this aspect is presented in Fig. 23.

A Collaboration represents a pattern of interaction between participating Roles. A binary Collab-
oration specifies a service. A Collaboration definition contains a set of Roles (provider, requester)
and a set of CollaborationUses. Eventually it could be related with non-functional aspects. A
Collaboration is related with a registry where endpoints are specified.

A CollaborationUse represents the usage of Collaboration. In other words, a CollaborationUse is
the model element to represent a usage of a service. The CollaborationUse contains a reference
to the endpoint pointing out the address. The concept RoleBinding relates a role with a usage of
a service. When we specify a CollaborationUse we need to identify which are the Roles involved
This relationship is made between two Roles: one inside the CollaborationUse and other inside
a Collaboration definition.

A Behaviour is an abstract class for the specification of messages sequence within a service.
This element represents a super class connecting a service aspect with process aspect. A Servi-
ceProvider specify an entity describing and specifying in its turn services, roles and constraints.
ServiceProvider represents a service specification containing the specification of other services.
Non functional aspects could also be added to specify quality aspects. A Message defines @

31

chunk of information sent from one Role to other Role in a Collaboration. A Message is owned
by a specific Role.

8.2 Process Metamodel

+ steps
& Scope © Step & JoinSpecification
1 .
1 1 1
+ joinCondition 0,1
Looe voumt
. + Inpu
g g oWy . 0.1
(3 GuardSpecification {3 Flow T R 3 Interaction (2 Message
+ guardCondition +n ek g i T
- .
+ 4+ pins "
o1 + fiom on + PISTEL g 4 contars
temFlow 5 Pin
. 1 . . 0.1 O Item
. 1
+1to
+ type
0.1 0.1
(3 ItemType
+ type

Fig. 24. The process flow of the PIM4SOA.

+ steps
) Behaviour (3 Scope (3 Step
1 .
(Process (3 StructuredTask © Task (© Decision () Merge G Timer
* ;|
0..1+ collaborationUsePath 0.1 4 specification
(3 CollaborationUse (3 TimerSpecification

Fig. 25. The process elements of the PIM4SOA.

The process elements of the PIM4ASOA metamodel are shown in Fig. 25. The process aspect
is closely linked to the Service aspect, the primary link being the abstract class Scope above,
which can be instantiated as a Process belonging to a ServiceProvider from that aspect.

The Process contains a set of Steps (generally Tasks), representing actions carried out by the
Process. A Process consists of StructuredTasks (sub-processes), Steps (atomic tasks and actions,
at the PIM level), and Interactions/Flows linking the Tasks together. These essentially fall into
two categories, interactions with other ServiceProviders, or specialized actions requiring im-
plementation beyond the scope of this model. For example, manual tasks to be processed by
humans, or extensive computation requiring platform specific code.

The Process also contains a set of Flows between these actions, which may be specialized (Item-
Flow) to indicate the transfer of specific data. This allows flexibility in that a business modeler
may choose to start by showing only control flow, and later refine the model to include infor-
mation. This links in to the Item/ItemType parts of the information aspect. Flows may diverge
or reconverge using Guard and Join specifications.

The concept of a Scope is an abstract container for individual behavioural steps. This is sub-
classed only by Process and StructuredTask (Process is the top level behavioural object, Struc-
turedTask may be used to group related Steps in a subroutine like manner.) A Step is a single

32
node in a Process, such as making a decision or calling an external service. The specialization
of Step is Task. A Process implements a behaviour for a ServiceProvider, as a set of Tasks and
Decisions (Steps) linked by control flows (Flows), optionally including detail on the exchanged
messages / items.

A Task represents the low level building blocks of a process-these might be for example calls to
another service (which can be transformed largely automatically to an implementation platform,
with reference to the relevant Collaborations) or might require manual intervention-either in the
form of hand coded functions, or human interaction with the process. An Interaction defines an
interface for input or output flows on a Step. An Interaction can be considered as a set of Pins,
though it is not compulsory to refine the model to this level (depending on aims of the model).
If the Step is viewed as a service, this is similar to the declaration of a method/function in the

interface (specifying a set of parameters or a return value).

Service aspect
Concept [Attributes [Ezplanation
Subcollaborations represent the usage of other Collaborations
Constraints constrain a Collaboration by the specification of a Pro-
cess
Roles involved within the Collaboration
Collaboration Nfa this element sets up a link to quality of service model
definition
Endpoint is specified at design time
Registryltem specify the registry item associated with the Collabora-
tion
Provides specify the provided item
Messages specify the Messages related with this Role
CollaborationUse |RoleType specifies the type of the Role. Basically a Role can be a
requester or a provider. If it is not none of them we can
specify it as "other’ and in the property Other we specify
the name
Other used for the special case where the role is neither a re-
quester nor a provider
RoleBinding Role represents a link to specific role within the collaboration
definition of the current collaboration use
BoundRole represents a link to specific role within the current col-
laboration
Behaviour represents the process
Participates contains a set of the collaboration uses
ServiceProvider Roles defines the roles involved at this level
Nfa establishes the link to the quality of service model
QosCategory defines the category in terms of quality of service
Type refers to the type of provider: Abstract or Executable
Contains defines a set of items related with the Message
Message Type defines the type of the items related with the Message
Mode differentiates Messages between regular (normal) or fault
(exceptions)

Table 17. The service aspects of the PIM4SOA.

9 Horizontal Transformations - From PIM4SOA to PIM4Agents

We already showed how to map the PIM4Agents metamodel to the JACK and JADE metamod-
els. We called these vertical transformations as the particular metamodels are situated on differ-
ent abstraction levels. In this section, we discuss horizontal mappings between the PIM4SOA to
the PIM4Agents—that are both considered as platform-indepedent—to allow that SOA can be

33

deployed by agent systems. SOA and its corresponding metamodel (the PIM4SOA) describes
IT system in a very abstract manner and thus provide a nice opportunity to illustrate how
agent systems can be used in these kinds of environments in a model-driven development. By
comparing the PIM4SOA and PIM4Agents metamodels, we derive the following basic mapping
rules:

Model Mapping 19:

Head: PIMASOA.Service : Collaboration — PIMA4Agents.Agent : Organisation

Body: For each Collaboration’s Behaviour we generate an organisational Behaviour.
Additionally, each ServiceProvider that participates in one of the CollaborationUses de-
fines the organisational members. The Collaboration’s Roles build the InteractionRoles.
The Organisation requires a set of Protocols that are derived by extracting the message
exchange in the Collaboration’s or ServiceProviders's Behaviour.

PIMASOA.Service : Collaboration — PIM4Agents. Agent : Organisation

Target [Source lM R
Organisation.requires |Roles that are referred by the Collaboration 24
Organisation.perfoms |—

Organisation.behaviour|Behaviour that constraints the Collaboration in the PIM4SOA 21

Organisation.members |ServiceProviders that participates in a CollaborationUse that refers to|20
this Collaboration
Table 18. The body of Mapping Rule 19 in details.

As Mapping Rule 19 nicely illustrates the concept of a Collaboration in the PIM4SOA corre-
sponds to the concept of an Organization in the PIM4Agents as both refer to roles, processes
that define their Behaviour and entities (i.e. ServiceProvider or Agents) that interact within
those. However, the Collaboration does not perform any Role, so we do not instantiated any
DomainRole that is performed by the Organization. However, the concept Organization seems
to be the best match. Alternatively, we could use the concept of a Collaboration as it does
not perform any DomainRole. However, Collaborations in the PIM4Agents do not refer to any
Behaviour which might be necessary to map the Collaboration’s Behaviour.

Model Mapping 20:

Head: PIMA4SOA.Service : ServiceProvider — PIMA4Agents.Agent : Agent

Body: For each of the ServiceProvider's Roles we generate an Agent’s performed Do-
mainRole. The Behaviour is derived by extracting the ServiceProvider's Behaviour. The
Agent’s memberships are derived by extracting all Cooperations the particular Service-
Provider participates in.

Again, the concepts of the ServiceProvider can nicely be mapped to the corresponding concept
of Agent in the PIM4Agents as the ServiceProvider performs a set of Roles, acts in accordance
to some Behaviours and interacts with other ServiceProviders within a Collaboration.

Model Mapping 21:

Head: PIMASOA : Process — PIM4Agents : Behaviour

34

PIMASOA.Service : Service Provider — PIM4Agents.Agent : Agent

Target [Source [MR
Agent.perfoms collection of Roles a ServiceProvider performs 23
Agent.behaviour |collection of the Behaviour that constraints the ServiceProvider 21

Agent.membership|collection of the CollaborationUses in which the ServiceProvider par-[19
ticipates and the Collaborations they refer
Agent.has —

Table 19. The body of Mapping Rule 20 in details.

Body: The Process of the PIM4SOA is split into several Behaviours of the PIM4Agents.
For each Task in the PIM4SOA that refers to a Message in an outgoing Interaction a
new Behaviour is instantiated in the PIM4Agents. All Tasks that are connected via the
outgoing Flow—directly of indirectly (i.e. via a Task that does not send a Message) are
transformed to Plans in the PIM4Agents.

PIMASOA : Process — PIMA4Agents : Behaviour
Target [Source [MR
Behaviour.steps |Steps that are contained in the PIM4SOA .Process

Behaviour.flows |Flows that are contained in the PIM4SOA Process
Table 20. The body of Mapping Rule 21 in details.

The mappings between both process aspects is mainly straightforward as the PIM4Agents
behaviour metamodels is more expressive.

Model Mapping 22:
Head: PIM4SOA.Service : Message — PIMA4Agents : Interaction : Message

Body: The Messages specified inside the CollaborationUses and sent by the correspond-
ing ServiceProvider’s Roles are mapped to the Messages defining the Protocol.

Mapping Rule 22 is a straightforward mapping as the Message concepts of the PIM4Agents is
kept in its core rather simple without referring to communicative acts (e.g. accept-proposal,
refuse, ete.) or message parameters (e.g. content, language, etc.). These specializations could
either be verbalized in further extensions that cover the compliance with FIPA or within the
vertical mappings for those agent-oriented platforms that deals with FIPA-compliant concepts

(for instance JADE).
Model Mapping 23:

Head: PIMASOA.Service : Role — PIM4Agents. Agent : DomainRole

Body: Roles that are performed by ServiceProviders are mapped to DomainRoles. In
each Collaboration the ServiceProvider participates, its Roles are bound to Collabo-
ration’s Roles. In Mapping Rule 24 these Collboration’s Roles are mapped to Interac-
tionRoles. The DomainRoles that are created by this Mapping Rule are bound to the
particular InteractionRoles.

Model Mapping 24:

Head: PIMASOA.Service : Role — PIMA4Agents. Agent : InteractionRole

Body: Roles to which ServiceProviders are bound to within a Collaboration are mapped
to InteractionRoles.

A Collaboration refers to a set of CollaborationUses where each of them again refers to a
Collaboration. In fact, the CollaborationUse links both Collaborations by binding the parent
Collaboration’s Role to the children Collaboration’s Roles. Due to this recursion in modelling
Collaborations, we do not translate each Role in a Collaboration to an InteractionRole in the
PIM4Agents. In fact, for Roles that are bound to each other we introduce one InteractionRole.

Model Mapping 25:
Head: PIMASOA.Service : Collaboration — PIMA4Agents. Interaction : Protocol

Body: A Protocol describes the message sequencing that is built by combining messages
that are sent in the collaboration’s collaboration uses. More precisely, the collaboration’s
Role types—requester and provider—are mapped to the Protocol’s InteractionRoles,
the Messages defined in the CollaborationUses are transformed to Protocol’s Messages.
Table 21 provides more details with respect to Mapping Rule 25.

PIMASOA.Service : Collaboration — PIMA4Agents : Interaction : Protocol
Target [Source | MR
Protocol.messageflows|Messages and how these are sent between the Roles within a Collabora-|22
tion are extracted from the Collaboration’s Behaviour and mapped to
the Messages that are referred by the MessageScope and the Operations
that defines in which manner those are sent.
Protocol.participants |Roles that are used by the Collaboration are selected to define the|24

InteractionRoles that participates in the Protocol
Table 21. The body of Mapping Rule 25 in details.

Mapping Rule 25 is one of the more complex transformations, as the PIM4Agents does not
provide any protocol-like viewpoint to define the ServiceProvider’s interaction. However, this
does not mean that an interaction cannot be described from a centralized viewpoint. A Collabo-
ration’s Behaviour could for instance be used to define the choreography’s viewpoint. However,
the information needed to initiate the PIM4Agent’s Protocol needs to be extracted from various
concepts.

Model Mapping 26:
Head: PIMASOA.Information : Document — PIM4Agents. Agent : Resource

Body: The information that is sent in Messages is defined by so-called Entities in
the information metamodel. These Entities are part of Documents that are mapped to
Resources in the PIM4Agents an Agent could have access to.

Documents mainly define how a service might look like in the PIM4SOA. At least they specify
the service structure by defining Objects and their Attributes that then serve as input parame-
ters to invoke particular services. This information is used to generate Resources an Agent has
access to in the PIM4Agents. The set of accessible Resources are part of the Environment.

This section illustrated how to integrate domain-specific applications into the PIM4Agents
using a MDD approach. We have discussed that a model mapping between the PIM4SOA

36

and PIM4Agents is realizable as the PIM4Agents is more expressive with respect to defining
interactions and behaviour. Thus, PIM4SOA models can be transformed to PIN4Agents models
that can be executed by JACK or JADE by applying the vertical mappings discussed in Section
i

10 Technical Realization

Now that the transformations have been described, the details of how all these components
work together in or MDD approach to achieve interoperability within agent platforms and other
technologies. First, there are some technical details that need to be addressed, such as the tools
and languages used to define and execute the metamodels and mappings. The metamodels
presented in Sections 4 and 4.4 were modeled originally in IBM’s Rational Software Modeler
and the exported to Ecore, the metamodel part of the Eclipse Modeling Framework (EMF)
[38]. Ecore represents the meta-metamodel on which our approach is based. Furthermore, the
PIM4SOA metamodel is also available in Ecore. For defining and executing the model-to-model
transformations, the Atlas Transformation Language (ATL) [39,40] was chosen, since it offers
a series of plugins and tools for the Eclipse Framework and supports EMF as source and target
language, among many others. Once the model-to-model transformations have been performed,
the produced PSMs must be serialized to the particular programming language, i.e. JACKMM
models are transformed to JACK Gceode whereas JADEMM models are directly transformed to
Java. In both cases the serialization is implemented using the MOFSeript language [41], which
is currently a candidate in the OMG RFP process on MOF Model-to-Text transformation.

In MOFScript a set of serialization rules (i.e. templates) is created following the structure of the
source MOF-based metamodel, i.e. JACKMM or JADEMM. This means that the information
regarding the concept itself as well as the references to other concepts are extracted and assigned
to the template’s attributes.

For the serialization of JACKMM models, we create a template for the concepts Event, Role,
Capability, NamedData, NamedRole, Agent, Plan, Team, NamedData and TeamPlan. For each
instance of the mentioned concepts in the JACKMM model, a new file is generated. For ex-
ample, for each Team instance in the JACKMM Model the template creates a new file with
the extension gfeam. Beside the templates for the main concepts, we create a template that
generates a project file that contains a reference to all newly created JACK files. By importing
the project file into the JACK development IDE, we imported all the other JACK files that
could now be compiled to generate Java code that could execute the JACKMM model.

For the serialization of JADEMM models, there was a possibility of using the EMF generated
Java interfaces and implementation classes as serialization. However, some issues were found.
Since Java does not support multiple inheritance and JADE requires that the instance extends
from their own model—for example Agents should extend from jade.core.Agent, concepts that
inherit from other concepts in the metamodels are not able to extend both an EMF class
and a JADE class at the same time. Additionally, the EMF property instanceClassName that
would allow an EMF class to be linked to a Java class, is actually taken as a superinterface to
the interface that represents the desired concept. Given these issues, as previously mentioned, a
template-based MOF Script serialization was chosen to generate the Java code. Once this classes
are generated, they only need to be compiled and executed with the JADE libraries loaded in
the classpath.

11 Discussion

This paper presented a platform-independent model for agents together with a MDD approach
to develop MAS. MDD can be considered as new paradigm to develop software systems as the
different stages with the software development process can be connected by defining mappings.
In the context of agent-oriented software engineering, we have identified the following advantages
that our approach offers:

— The PIM4Agents defines an abstract language specifying a concrete syntax to design and
model agent systems. Furthermore, by defining model transformations from PIM to PSM we

37

could provide a straightforward interface to implement the generated PIM4Agents models
and thus we decreased the knowledge that is required to implement MAS with respect to
technical details of agent architectures and MAS development tools.

— MDD addresses interoperability issues between agent-oriented systems and other fields of
applications (e.g. Peer-to-Peer systems, Web services and service-oriented architectures
(SOA)). In particular, when having an application-oriented metamodel in accordance to
Ecore as meta-metamodel, we can easily define mappings to the PIM4Agents metamodel
and use the already existing vertical transformations to execute the application with JADE
or JACK. In this paper, we have discussed the realization basing on a metamodel for SOAs.

— The presented vertical and horizontal mappings show that it is possible to have interoper-
ability within different agent systems and technologies that are compliant/generated with
a model definition.

12 Conclusion

This paper presents a platform-independent model for agents (called PIM4Agents) that specifies
a clear syntax and semantic that defines how to develop agent systems. We described the core
concepts of the PIM4Agents in detail and discussed how this metamodel could be used in a
MDD scenario to simply the generation of executable agent systems.

The PIM4Agents is divided into four viewpoints, i.e. agent viewpoint, organization viewpoint,
interaction viewpoint and behavioural viewpoint that allow to model the core characteristics of
agent systems.

Furthermore, the metamodels for JACK and JADE—which could be considered as platform-
specific frameworks to develop agent systems—were discussed. On their base vertical transfor-
mations from the PIM4Agents to JACK and JADE were defined that allow to provide a straight-
forward interface for implementation as the abstract descriptions basing on the PIM4Agents
language could be easily used to generate executable code.

Additionally, we described how to transfer service-oriented architectures—as one feasible ap-
plication area—to the PIM4Agents. Therefore, we illustrated (i) a platform-independent model
for SOA (PIM4SOA) and (ii) how the concepts of the PIM4SOA can be transformed to agent-
oriented concepts described by the PIM4Agents (horizontal mappings). This model description
in accordance to the PIM4Agents then again be transformed to executable code by applying
the vertical mappings.

References

1. Object Management Group (OMG): MDA Guide Version 1.0.1, Document omg/03-06-01, June
2003, http://www.omg.org/docs/omg/03-06-01.pdf (June 2003)

2. D’Souza, D.: Model-Driven Architecture and Integration - Opportunities and Challenges, Version
1.1, Kineticum. (2001)

3. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Core Specification, Document
pte/04-10-15, October 2004, http://www.omg.org/docs/pte/04-10-15.pdf (October 2004)

4. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, Document ptc/05-11-01, November 2005, http://www.omg.org/docs/ptc/05-11-

01.pdf (November 2005)

Bellifemine, F., Poggi, A., Rimassa, G.: JADE - a FIPA-compliant agent framework. In: Proceedings

of the Practical Applications of Intelligent Agents. (1999)

6. AOS: JACK Intelligent Agents, The Agent Oriented Software Group (AOS), http://www.agent-

software.com/shared /home/ (2006)

Trencansky, I., Cervenka, R.: Agent modeling language (AML): A comprehensive approach to

modeling mas. Informatica 29(4) (2005) 391-400

8. Bauer, B., Miiller, J., Odell, J.: Agent UML: A formalism for specifying multiagent interaction. In:
Agent-Oriented Software Engineering: First International Workshop, AOSE 2000. Lecture Notes
in Computer Science 1957, Springer-Verlag (2001) 91103

9. Bauer, B.: UML Class Diagrams revisited in the context of agent-based systems. In: Agent-
Oriented Software Engineering II: Second International Workshop, AOSE 2001. Lecture Notesin
Computer Science 2222, Springer-Verlag (2002) 101118

w

=1

38

10.

12,

19.
20.

21.

22.

24.

25.

26.

27.

28.

29.

30.

31.

Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agent systems. In: Proceedings of the Third International Conference on Multi-Agent Systems
(ICMAS’98). (1998) 128-135

. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS: An Agent-Oriented

Software Development Methodology. Journal of Autonomous Agents and Multiagent Systems 8(3)
(2004)

Picard, G., Gleizes, M.P.: 8, The ADELFE Methodology. In: Methodologies and Software Engi-
neering for Agent Systems, The Agent-Oriented Software Engineering Handbook. Kluwer Academic
Publishers (2004)

. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia method-

ology. ACM Transactions on Software Engineering and Methodology 12(3) (2003) 417-470

4. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented analysis and

design. Autonomous Agents and Multi-Agent Systems 3(3) (2000) 285 312

Pavn, J., Gmez-Sanz, J.: Agent oriented software engineering with INGENTAS. In: Multi-Agent
Systems and Applications III, 3rd International Central and Eastern European Conference on
Multi-Agent Systems, CEEMAS 2003. Lecture Notes in Computer Science 2691, Springer-Verlag
(2003) 394-403

j. Cossentino, M.: From requirements to code with the PASSI methodology. In Henderson-Sellers,

B., Giorgini, P., eds.: Agent-Oriented Methodologies, Hershey, PA, USA, Idea Group Inc. (2005)

. Serrano, J.M., Ossowski, S.: On the impact of agent communication languages on the imple-

mentation of agent systems. In: Proceedings of the Eight International Workshop CIA 2004 on
Cooperative Information Agents. Volume 3191 of Lecture Notes in Computer Science., Berlin et
al., Springer (2004) 92-106

. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of some multi-agent

meta-models. In Odell, J., Giorgini, P., Miiller, J., eds.: Agent-Oriented Software Engineering V:
5th International Workshop, AOSE 2004. Revised Selected Papers. Lecture Notes in Computer
Science 3382, Springer-Verlag (2005) 62-77

Bratman, M.E.: Intentions, Plans, and Practical Reason, Cambridge, MA (1987)

Huber, M.J.: JAM: a BDI-theoretic mobile agent architecture. In: Proceedings of the Third
International Conference on Autonomous Agents (Agents’99), Seattle, USA (1999) 236 243
Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-intention model
of agency. In: Proceedings of Agents, Theories, Architectures and Languages. (1999)

Amor, M., Fuentes, L., Vallecillo, A.: Bridging the Gap Between Agent-Oriented Design and
Implementation Using MDA. In: Agent-Oriented Software Engineering (AOSE-2004). Number
3382 in Lecture Notes in Computer Science (2004) 93-108

. Guessoum, Z.: MAS Meta-Models and MDA, AgentLink III AOSE TFG2. Online at:

http://www.pa.icar.cnr.it /¢ossentino/al3tf2 /docs/

zahia_slovenia.pdf (2005)

Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of some multi-agent
meta-models. In: Proceedings of the 5th International Workshop on Agent-Oriented Software
Engineering (AOSE 2004). Number 3382 in Lecture Notes in Computer Science, Berlin et al.,
Springer (2005) 62-77

Pavén, J., Gémez-Sanz, J.J., Fuentes, R.: Model Driven Development of Multi-Agent Systems. In
Rensink, A., Warmer, J., eds.: ECMDA-FA. Volume 4066 of Lecture Notes in Computer Science.,
Springer (2006) 284-298

Moraitis, P., Spanoudakis, N.I.: The Gaia2Jade Process for Multi-Agent Systems Development.
Applied Artificial Intelligence 20(2-4) (2006) 251-273

Beydoun, G., Gonzalez-Perez, C., Low, G., Henderson-Sellers, B.: Synthesis of a generic MAS meta-
model. In: SELMAS '05: Proceedings of the fourth international workshop on Software engineering
for large-scale multi-agent systems, New York, NY, USA, ACM Press (2005) 1-5

Zambonelli, F., Jennings, N., Wooldridge, M.: Organizational rules as an abstraction for the analysis
and design of multi-agent systems. International Journal of Software Engineering and Knowledge
Engineering 11 (2001) 303-328

Davis, R., Smith, R.: Negotiation as a metaphor for distributed problem solving. Artificial Intelli-
gence 20 (1983) 63 109

Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In Lesser, V., ed.: Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco, AAAI Press/The MIT Press
(1995) 312-319

Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents. In
Giunchiglia, F., Odell, J., WeiB, G., eds.: Agent-Oriented Software Engineering (AOSE-2002). Vol-
ume 2585 of Lecture Notes in Computer Science., Berlin et al., Springer (2002) 174-185

32.

33.

34.

35.
36.
37.
38.
39.
40.

41.

39

Cervenka, R., Trencansky, I., Calisti, M., Greenwood, D.A.P.: AML: Agent Modeling Language
Toward Industry-Grade Agent-Based Modeling. In: Agent-Oriented Software Engineering (AOSE-
2004). Number 3382 in Lecture Notes in Computer Science 3382, Berlin et al., Springer (2004)
31-46

Bauer, B., Miiller, J.P.; Odell, J.: Agent UML: A Formalism for Specifying Multiagent Software
Systems. In: Agent-Oriented Software Engineering (AOSE-2000), Berlin et al., Springer (2001)
91-103

Cheong, C., Winikoff, M.: Hermes: A methodology for goal oriented agent interactions. In Dignum,
F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M., eds.: International Conference
on Autonomous Agents and Mulitagent Systems (AAMAS-05), ACM (2005) 1121-1122

JADE project: JADE Application Programmer Interface 3.4.1 (November 2006)

FIPA: FIPA ACL Message Structure Specification (fipa00061). FIPA. (2001)

Benguria, G., Larrucea, X., Elvesater, B., Neple, T., Beardsmore, A., Friess, M.: A platform
independent model for service oriented architectures. In: Proceedings of I-ESA Conference. (2006)
Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Framework.
Addison Wesley Professional (2003)

ATLAS Group, INRIA & LINA, University of Nantes: INRIA, ATL - The Atlas Transformation
Language Home Page, http://www.sciences.univ-nantes.fr/lina/atl/ (2006)

Jouault, F., Kurtev, I.: Transforming Models with ATL. In: MoDELS 2005, Montego Bay, Jamaica.
(2005)

SINTEF ICT: MOFScript, http://www.eclipse.org/gmt/mofscript (2006)

A Platform-Independent Model for Agents RR-07-01

Research Report
Christian Hahn, Cristian Madrigal-Mora and Klaus Fischer

	rr-07-01-0001
	rr-07-01-0002
	rr-07-01-0003
	rr-07-01-0006
	rr-07-01-0007
	rr-07-01-0008
	rr-07-01-0009
	rr-07-01-0012
	rr-07-01-0013
	rr-07-01-0014
	rr-07-01-0015
	rr-07-01-0016
	rr-07-01-0017
	rr-07-01-0018
	rr-07-01-0019
	rr-07-01-0020
	rr-07-01-0021
	rr-07-01-0022
	rr-07-01-0023
	rr-07-01-0024
	rr-07-01-0025
	rr-07-01-0026
	rr-07-01-0027
	rr-07-01-0028
	rr-07-01-0029
	rr-07-01-0030
	rr-07-01-0031
	rr-07-01-0032
	rr-07-01-0033
	rr-07-01-0034
	rr-07-01-0035
	rr-07-01-0036
	rr-07-01-0037
	rr-07-01-0038
	rr-07-01-0039
	rr-07-01-0040
	rr-07-01-0041
	rr-07-01-0042
	rr-07-01-0043
	rr-07-01-0044
	rr-07-01-0045
	rr-07-01-0046
	rr-07-01-0047
	rr-07-01-0048

