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Abstract

The growing interest in an adequate modelling of time in Artificial Intelligence has given
rise to the research discipline of Temporal Reasoning (TR). Due to different views, different
approaches towards TR such as PL1, modal logics or Allen’s interval logic have been investi-
gated. It was realized at an early stage that each of these approaches has some strong points
whereas it suffers from certain drawbacks. Thus recently, a number of research activities
have emerged aiming at a combination of the classical paradigms for representing time.

I the first part of this paper, we present an overview of the most important approaches
to the integration of temporal knowledge into logic programming. In the second part, we
present the CHRONOLOG temporal logic programming language which has been developed
to cover the quintessence of the approaches presented before. The third part of the paper
deseribes TRAM, which is an extension of CHRONOLOG to a temporal knowledge represen-
tation system. Using TRAM it is possible to represent knowledge depending on time and
to reason about this knowledge. TRAM has been conceptually based on a combination of
modal logics with Allen’s interval logic. We present the Fztended Modal Logics (EML) which
establishes the theoretical framework for TRAM. We define an operational semantics and a
horizontal compilation scheme for TRAM.
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Part 1

Temporal Logic




Chapter 1

Introduction

Time plays an important role in many real-life problems, and reasoning about time often
seems indispensable. Thus, researchers in Artificial Intelligence are faced with the need
of finding acceptable representations of time and temporal knowledge. However, it is very
difficult to express what we actually mean when talking about time, and what the basic
characteristics of time are. Trying to formalize temporal aspects and fitting them into a
general framework appears to be even harder. Moreover, time can have many different faces
and aspects of topology, which may depend on the different points of view: time can be
regarded as continuous or discrete, as intervals or points, as linear, branching, or parallel.
Nevertheless, the problems related to time do not free us from having to cope with temporal
aspects in many fields covered by Al, such as expert systems for medical diagnosis, where
time is an important factor when it comes to diagnosing and healing a disease. Other fields
are planning and scheduling, where actions and goals have to be coordinated while keeping
a given set of temporal constraints satisfied. Our group' investigates time from the point of
view of multi-agent systems, where it plays a crucial role for coordination processes (amongst
others). Temporal Reasoning(TR) has turned out to be a separate area of research within
AT (ef. [KS86, Hry88, AM89, Tan89, Gab87]). TR deals with the representation of and the
mference on temporal propositions. A major goal is to explore the basic characteristics of
temporal structures and to find adequate general models of time?,

Amongst other approaches, the logic-based approach towards handling time has appeared
to be useful due to its sohd mathematical foundations, its clear and formal syntax and
semantics which allow well-founded statements about soundness, completeness, decidability,
computability, efficiency, or complexity etc. Our approach is closely oriented to this logical
hackground, although we do not deny that it suffers from a number of shortcomings which
are covered aptly by [SM87] using the well-known metaphore of the man searching his keys
under a lantern instead of searching them in the dark where he lost them, because search is
simplerin the light of the lantern. However, we think that the advantages of temporal logics
finally make up for their drawbacks.

"This work has been done in the AKA-Mod project at DFKI, Saarbriicken.
“Up to now, approaches dealing with time have been highly specific and depending on the respective
applications.



This paper is divided into two parts. In the first part we will give an overview of some recent
work in the field of temporal reasoning. In the second part, we will describe the systems
CHRONOLOG and TRAM which have been developed at our research center. CHRONOLOG
[Sch89] is a temporal logic programming language which extends PROLOG. TRAM [Pis91]
is a system for representing temporal knowledge, which combines both interval and point
aspects of time by integrating the ideas of two of the main paradigms for the representation
of time in Al: Allen’s interval logic [All84] and the modal logics approach[Pri67, AMS89).
The former approach employs intervals and relations between intervals as the basic entities,
whereas the latter one uses a set of modal operators which are interpreted by using a possible
worlds semantics in order to express temporal knowledge. In the following, we will outline
the most crucial aspects of time and their relevance for research in Computer Science.

1.1 Time - Reaching out for a Mystery

The question of the nature of time is a very difficult one, and no generally accepted answer
could be given to point out, what the interesting characteristics of time are and how they
could be represented. It depends strongly on the domain in which time constructs are to be
used. So the best way to see what aspects time can have is to examine in more detail the
various conceptions used in different domains. owever, there are a few general characteristic
arguments and criteria which are heard very often in discussions about temporal aspects.
They are summarized in the following:

Point or interval

Some people think of time as having interval character: properties hold during intervals of
time, but one does not know how two different intervals are related to each other (i.e. one
interval may surround, overlap, be before, or after another one). The aim of reasoning is to
get information about the relationships between the intervals.

Another way is to understand time in a modal logic way: the universe is a graph, whose
nodes represent different time points. Edges are drawn due to explicitely or implicitely stated
rules of the logic. Here, the aim is to find out if a property that holds in a certain node
(which represents the current time) will be true e. g. for one or all succeeding or preceeding
timepoints.

Discrete or continuous

Out of the point/interval discussion comes the way to see time more as a sequence of time
instants or as a continuous flow.

Time instants are used e. g. in program verification or in the blocks world, where time
can only change significantly between the execution of two directly succeeding program
statements or two actions of the roboter arm.
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To look upon time as a continuous flow makes more sense in an environment such as natural
language processing: here it is possible that each event that was told in a sentence can have
many subevents, told in future sentences. It may also be possible that there appears a third
intermediate event between two events which are supposed to be directly succeeding.

Branching or Linear

When reasoning about future and past, people regard time as having branching character,
and they try to find out what will be or what had been. Others base on one single time line.
They are more interested in when things happened and not if they will/had happen(ed) at
all.

1.2 Synopsis of the Paper

Section 2 shortly describes the state of the art in temporal logics. Some significant for-
malisms for modelling temporal knowledge are presented and their properties are discussed.
[n chapter 3, we present some of the most interesting approaches towards building tempo-
ral logic programming languages. The evaluation of the strong and weak points of existing
approaches will be the starting point to the systems CHRONOLOG and TRAM developed at
our institute, which we will present in the second part of this paper. In section 4 we provide
a brief outline of the CHRONOLOG temporal logic programming language, which basically
constitutes an extension of PROLOG by temporal constructs. In chapter 5 we motivate the
development of the TRAM system which shall be looked upon as a combination of differ-
ent conceptual approaches towards the representation of time, basically the combination of
modal lTogics with Allen’s interval logic model. In chapter 6, the theoretic framework of
TraAM, the extended modal logic EML, is described. Both the syntax and a model-theoretic
semantics for EML are given, and we show how interval logic according to Allen can be inte-
grated into a modal logic framework. Chapter 4 describes the basic features of the knowledge
representation system TRAM. We give an operational semantics for TRAM?, and we provide
a horizontal compilation scheme for TRAM programs into PROLOG programs. Chapter 8
summarizes the most important results and gives a short outlook.

30ur current TRAM version is based on PrRoLoG. Thus the operational semantics of TRAM should be
intuitive for a reader familiar with PRoLOG

|



Chapter 2

Representing Temporal Knowledge

This chapter will present the framework for a unified model-theoretic view of time. For this
purpose, three approaches towards representing temporal knowledge are shortly discussed.

2.1 FOPL and Time

The use of first order predicate logic (FOPL) is very popular for many purposes in Al
Its usefulness for knowledge representation already has been known for a long time (cf.
[Nil80, Llo84, BB87, RK91]). The main properties of FOPL are its semi-decidability and
completeness. Since powerful theorem provers for FOPL exist [0S89], an integration of
temporal reasoning into FOPL appears to be promising. [Pis91] provides a summary of
different approaches towards the representation of temporal knowledge in FOPL.

However, most researchers agree that FOPL does not provide optimal support to temporal
aspects. As a consequence of this, FOPL has been extended in many ways in order to gain
more expressive and more powerful formalisms to represent and to reason about temporal
knowledge. One of them is Allen’s interval logic, which we will discuss in section 2.2, another
one is the modal logics approach (cf. section 2.3).

2.2 Allen’s Interval Logic

Allen’s approach towards the representation of temporal knowledge is doubtlessly one of the
most prominent works in this area of research. The origin of Allen’s work is the processing of
natural language where time and its representation play an especially important role. In this
section we give a short summary of the topics of Allen’s interval logic. For a more detailed
view we refer to Allen’s original articles [AlI83, Al184].

In his model, Allen uses intervals as the basic entities. He characterizes time by a set of
events (intervals) together with several temporal relations such as before, overlaps, meets,
equal, during, starts, finishes between these intervals. Allen covers all possible constellations
between two intervals by introducing 13 relations which are shown in table 2.1. The resulting



structure is a graph which can be regarded as a constraint net, where the consistency of
different temporal interdependencies can be checked using constraint propagation.

y Symbol Pictoral
Relation | Symbol for :
Representation
Inverse
X —
X before Y < >
Y [
X —_——
X equal Y = =
Y —
X —
X meets Y m mi
Y f———
X —
X overlaps Y 0 ot
Y —
X —_
X during Y d da
Y+ —
X —
X starts Y S St
Y —
X [E——
X finishes Y f fu
Y ———

Table 2.1: Allen’s 13 relationships between intervals

Allen uses three meta-concepts occur, holds, and occuring each of which can be applied to
one of the following three classes of knowledge items: events, properties and processes. An
algebraic structure is defined on top of the relations using two operators, the intersection
hetween sets of possible relations between intervals, and the composition of sets of relations.
Allen has operationalized his concepts by providing both a local and a global constraint
propagation algorithm.

For many domains, Allen’s model is very intuitive and adequate. The constraint propagation
mechanism provides an elegant way to cope with incomplete knowledge. Knowledge can be
extended and modified incrementally by using incremental constraint solvers. Moreover, the
formal FOPL-like framework facilitates the proof of diverse properties. But there are some
serious drawbacks of the approach:

e Due to the special semantics of negation in the Allen logic [Gal87], a sound represen-
tation of continnons changes is not provided.



e The underlying model of time is restricted to a linear time axis. Especially, it is not
possible to model something like branching time.

e The granularity of classifying knowledge in events, properties, and processes is very
coarse. For some applications e.g. a finer semantics of parallelism than the one provided
by the Allen model would be necessary.

e Constraint propagation is an expensive method of computation.

2.3 The Modal Logics Approach

The theory of modal logics has its origin in the necessity of expressing both knowledge which
always (necessarily) holds and knowledge which sometimes (possibly) holds. This 1s achieved
by a possible worlds semantics where those worlds are considered possible which can be
reached from the current world using an accessibility relation. The possible worlds together
with the accessibility relation establish a graph of worlds, a so called Kripke structure. Two
modal operators O and < are introduced in order to express validity in all worlds or in
some worlds, respectively. For a more detailed introduction to modal logics we refer to

[Kri71, Ram88, Sho88].

Modal Logics and Time

By slightly varying standard Kripke semantics, modal logics can be used in order to model
temporal knowledge. Worlds are considered as time points, and the semantics of the modal
operators is enriched by the notions of future and past:

e F'p: p holds in some' future world.
e G/'p: p holds in any future world.
e Pp: p holds in some past world.

e Hp: p holds in any past world.

These operators are interpreted in a Kripke-like manner. Prior [Pri67] was the first to apply
the principles of modal logics to tense logics. He showed that the logic defined by the above
operators can be considered equivalent to an S4 modal logic®.

The strong points of the modal logics approach are obvious. Compared to FOPL, tempo-
ral knowledge can be formulated in a very elegant and compact manner, it is possible to
represent objects which exist only temporarily. Moreover, it offers powerful mechanisms of
representation, e.g. axioms like O0¢) — OO cannot be axiomatized in FOPL. However, this
approach has some shortcomings:

lie. at least in one

2The crucial property of the S4 axiomatization is that the accessibility relation is transitive and reflexive,
whereas 1t 1s not symmetric. Obviously, since most of us cannot simply travel back to the past, this seems
reasonable for the representation of time.

10



e Modal temporal logics just gives an indirect representation of time. This makes it hard
to refer to subjects involving explicit time.

e Reasoning over intervals of time is not supported by the model.

e Due to combinatorial explosion of the graph of worlds, existing systems using modal
logics suffer from efficiency problems.

e Some important properties of worlds (e.g. reflexivity of the accessibility relation) can
only be formulated as axioms. Thus, properties valid for individual worlds cannot be
expressed in an adequate manner.

Moszkowskis ITL

Moszkowskis interval temporal logic (ITL) is given as an example to clarify the concepts of
modal logic. His domain is the behaviour of electrical circuits. He calls his worlds intervals,
where an interval [ is represented as a nonempty sequence of immediately succeeding time
points, written as [ =< ty,ty,...,t, >. Two intervals are connected in the time graph, if
one is a terminal subinterval of the other; i.e. < s,t, u > has successors < s, t,u >, < t,u >
and < u >. Formulas in ITL are FOPL formulas with four additional operators: 0,0, ()
and ; (the chop operator). In the following I = w means that formula w holds during
interval /. The new operators are defined as follows:

Z Sger g O W <8....5,2F w
for all z with 0 <2 < n

< Sy ss o Sy 2 ': Sw M < 850008, > ': w
for at least one 2 with 0 < ¢ <n

C gyt dBEOw W <8148 > = W

& Mg ey = B wgw’ ff
S By = |: w and < Bigsw 5w 908y 2 }: w'
for at least one 2 with 0 < ¢ <n

Moszkowski uses these constructs to describe the behaviour of digital circuits: for example
il one wants to state that two bit signals X and Y are equal over time, one can do this by:

X=xY =4y O(X=Y)
The () operator can be used to represent unit delay for example: if one bit signal X is
continuously assigned to another bit signal Y over time but with unit delay one would define

it as:

XdelY =4y O((X =0) = (Y =0))

11



2.4 Evaluation and Conclusion

In this section we presented some important approaches towards representing temporal
knowledge: FOPL, Allen’s interval logic, and modal tense logic. It has been shown that
each of these approaches has some strong points whereas it suffers from some shortcomings.
For many applications it can be extremely useful to combine the features of different ap-
proaches in order to gain a more powerful and more expressive formalism for representing
time. In our work, we decided to integrate elements of Allen’s work into a modal logic.
Especially, it shall be possible to reason about intervals of worlds and their interdependence.
Thus, we enhance the modal time model, which per se reveals a time point character of time,
by intervals of time. However, we preserve the basic desirable properties of modal logics.

Thus, in the following, after giving a review on some current approaches towards temporal
logic programming, we will introduce the CHRONOLOG system which embodies the modal
logics approach towards tense logics (see chapter 4. In chapter 6 we will present an ex-
tended modal logics (EML) which embodies both modal logics and an interval concept.
The knowledge representation system TRAM described in chapter 7 basically constitutes the
operationalization of EML.

12



Chapter 3

Temporal Logic Programming
Languages

In this section we present some current proposals for temporal logic programming languages.
All issues discussed here are all closely related to PROLOG, because it seems the most
promising way for different reasons to take PROLOG and extend it by various temporal
constructs: First of all PROLOG 1s already programming in logic and therefore “only” the
temporal aspects must be added. Furthermore there has already been done world wide
much work both on the theoretical and on the practical side of PRoLoG. This results
in powerful PROLOG systems (available for all computer systems) that are comparable to
i.e. LISP environments both in program development tools (editors, debuggers, etc.) and
runtime performance and storage consumption. All this can be used to develop temporal
programming tools, that are not only of high academical interest, but also of great practical

usclulness.

3.1 Abadi and Manna’s TEMPLOG

Abadi and Manna present a programming language called TEMPLOG, which strongly bases on
PROLOG and adds 3 modal logic operators: () (“next”), O (“always”) and < (“eventually”);
their meaning is explained as follows:

e (OF means “P is true at the next time point”
e O/ means “P is always true (from now on)”
e OPF is defined as: OP = -0-P

In their view time is linear, discrete and extends infinitely towards future.

A TEMPLOG program is a collection of temporal (Horn) clauses, where a clause may have

once of the following forms:

H —« B

13



OH — B
O(H « B)

For the sake of readability, the last clause, which is also called permanent clause, is written
as:

H «= B:

the first two clauses are called initial.

The heads H of the clauses are nezt-atomic formulas of the form
o"pP
where ()" P means () applied n times to P and P is a conventional PROLOG atom of the

form p(tq,...,t,).

The body B is a formula that consists of next-atomic formulas, which are connected by ©
and A (conjunction, also written as ,). Thus,

pla) « QOq(f(x))
0O Oph) « SOgy) NSO r(e)))

are well-formed clauses. The use of O is prohibited in bodies and the use of < is prohibited in
clause heads in order to reduce computational complexity. But this is not a real restriction,
because clauses like OP « @ (say “P is eventually true if @) is true”) or P « 0OQ (“P is
true if Q) is always true”) are of no practical use.

Because of the additional modal operators there is a modified SLD-Resolution strategy called
temporal SLD-Resolution: It also starts with a list of goals (a goal has the same form as
a body), replaces a goal by the body of an applicable clause and repeats this step until
the goal list is empty or until backtracking must occur. But the specific resolution step is
different from standard SLD-Resolution. To clarify this, we firstly restrict the possible goals
and clauses, so that we have goals of the form

OilGla v ® 7Oi"Gn

We can try to apply initial or permanent clauses of the form

Q{H = Q{IBI,...,Q#B,C(*)
O'H <« O"By,..., Q0% Bi(**)

‘where the H,B; and G; are atoms.(How to apply clauses of the form OH « B will be
explained later).

If we want to apply one of these two clauses in both cases H and one of the G; (e. g. G)
must be unifiable (with most general unifier say #). Additionally, if we want to apply (*),
then it must hold that

ilzj

14



and the resolving goal list is:

O"Byb,...,0" B, O2G4b,...,0O"G.0
If we want to apply (**), we have to note that
P H & 0" By ..oy OB
implies
Oix H e OJ’1+(i1—j)B17 o ,Oj"+(i"‘j)Bn

but only if z; > .
Thus, we can perform the same resolution step as in the first case leading to the new goals

OM*-I B, ..., O D Bo, ORGyH, ..., OG0

If we want to lift this restricted version to the full version, we have to look next at how to
apply clauses that have O in their head:

OH «— B
which is equivalent to the following two clauses

H <« 'I'(.'lfl,...,ll"'rz)

'r(:l.‘], - .,:If,,,) = 81

where ay,..., 2, are the free variables occuring in B. So we can reduce this case to the

previous one.

Now, only the & operator occuring in goals (and bodies, which is the same problem) is still
missing. The solution to this employs similar tricks as in case of the O operator, but needs
more time to explain and is therefore omitted.

Note that in all cases applying a clause to a goal leads to a unique successing goal list and so
the branching factor in the search space is determined by the number of clauses. In this way
no additional branching is obtained by the resolution procedure. An additional advantage
is that it can be easily implemented in PROLOG. But it is difficult to embed it into existing
PROLOG systems, because one needs to modify the available PROLOG interpreters/compilers,
which is practically difficult and mostly impossible. Another point of criticism is that there
is no concept for branching future and past.

3.2 Dov Gabbay

(GGabbay extends PROLOG in a way which is closely related to the way Abadi and Manna do;
but Gabbay has not only modal operators for the future, but also for the past. He adds two
modal logic operators: F' (future) and P (past) which also allow to express O and < :

Fq means “¢ will be true” (including now)



~ Pq means “q has been true”

- O¢g=4qV FqV Pq
- Og = -1()-1(1

A program is a collection of clauses, where F' and P may occur either in the body or in the
head. Since FFF'q = Fq and PPq = Pq, we assume that there are no multiply applied F's
and P’s. Thus, clauses are of the form:

H—B
O(H « B)

where the first one is called ordinary clause (because it is only valid now) and the second
one is called always clause (because it may be applied in the past, now and in the future).
The head H may either be an atomic formula or it may have the form F'A or PA, where A
may not only be an atom, but it can also be a whole ordinary clause. A body is of the form
A,BAB',FB or PB, where A is an atomic formula and B, B" are bodies.

Program execution is driven — as in classical PROLOG - by a list of goals, where a goal
has the same form as a body. The first goal is choosen and replaced by the body of an
applicable clause. But what “applicable” nieans is different here, because a head of a clause
may contain a whole clause itself. To explain this, we firstly introduce a notation

PG = 1#)
where P is a set of clauses (or say a program). (G is a goal and 6 a substitution. The whole
expression means: “The goal (G is derivable from program P under the substitution 6.
If we have a goal list P?G,,...,P?G, and we want to replace the first one by applying a

clause of P, what the successive goals look like depends on the particular form of Gy:

1. If G; is an atom, then we look for an (ordinary or always) clause, whose head H is
unifiable with ; via . We derive the new subgoal Bf(where B is the body of the
clause) as in ordinary PROLOG.

2. If Gy = G A GY then use
P?G, = PG} AGY =1(0) iff P?G) =1(0) and P?GY = 1(0)
Note that in both subgoals there must be the same substitution 6.
3. G; = PA is symetrically to the next case.

4. GG; = F'A is the most complex case, which is rather technical to explain in detail, so
we will outline only the main idea.
F A says that if we want to know if A will be true in the future (using clauses, that
are valid now). We try to show this by applying an ordinary or an always clause. The
simplest case is, when we have a clause of the form

FH « B
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where A and H are unifiable, thus we only get the new subgoal P?B. To apply this
clause, we can try to show that H implies (and not only unifies) A in some future state
(written as {H}7A), if we afterwards succeed in proving B, we can argue: B implies
that { will be true in some future time and at that time A becomes true too (from
H); so A becomes true in the future, say F'A is true now.

An analogous way to show F'A is to show that A will be true not at the time when H
comes true, but after this it will be true (written as {H}?F A).

These were the possibilities in applying ordinary clauses. Using always clauses one
can try the above ways and additional ones. This stems from the fact that an always
clause is not only valid now but also in future states. Trying to apply O(H « B) or
O(FH « B) one need not only to show B, but can also try to show that B will be
true (F'B), resulting in F'H or F'F H respectively.

Using all this one can get different argumentation chains to show F A:

B0 — FHO — F A0
B=FH=FA
B=FH=FFA=FA
Fih=s FH =% Fi
FB= FH = FFA
FB=FFH = FFA
FB=FFH = FFFA

Iixcept the first one our successive goal list looks as follows:
{H}IX, PI1B, PGy ..., PG,

where X equals A or F'A. Note however that, if we want to show that in the future H
mmplies X| we may not use all clanses of our program P, because not all clauses in P are
valid forever. Rathermore, we may use more than simply {H}. We may use all always
clauses of P; ordinary clanses must be prefixed with the past operator P. So in the above
goal list we can replace {H}?7X by:

{H} U {all always clauses of P} U {Pc|c an ordinary clause of P}7X

(Giabbay’s horn logic allows to reason about the future and the past and allows more complex
clause heads. But this advantage is gained by a great loss of computational efficiency: in
every resolution step and for every applicable clause there are up to 7 paths to test. Especially
always clauses lead to the highest branching factor. Additionally the criticisms presented in
the previous section hold for Gabbay’s logic too: there seems to be no easy way to embed
his concepts into PROLOG. In addition it seems to be difficult to efficiently implement the
“switching database” mechanism (from P to P’ in two successive goals P?A and P’7?B).



3.3 Kowalski’s and Sergots’s Calculus of Events

Kowalski and Sergot present an interval based calculus, that is combined by three building
blocks: events, properties and time intervals. As the name “event calculus® already states,
it concentrates on events: an event is an action that changes the state of the world. For
the sake of simplicity we assume that events can be totally ordered on a single linear (not
branching) time line, because an event is assumed to take no time (or better say after the
start of an event, there may be no other events to start before the first one is finished). In
this way two events e and ¢’ are either equal or one happens before the other, written as
e < €¢'. Events are the central constructs because if an event has happened it initiates some
properties to be true later on. Furthermore, it states that some other properties are no longer
true. An interval of time is the interval that lies between two directly succeeding events.
Two functions be fore and after are defined that map events to time intervals; intervals are
always referenced by one of these two functions. It is important to note, that i.e. after(e)
does not mean the whole interval from e to infinity, but only the interval from e to the next
following interval. Thus:

be fore(e) = after(e’) iff

e < e’ and there exists no e” such that e < e” < ¢’

Kowalsi and Sergot give an axiom system which is formulated in horn clauses, and which thus
seems easy to be implemented in PROLOG. The most interesting axioms will be presented
in the following:

First there is a metapredicate Holds, that represents the database:

Holds(7), P) is true iff property P is true during time interval 7. Two axioms state that a
property P must have been true before an event F if F terminates P, and that P is true
after £ if F initiates P:

(Al) Holds(before(E), P)—Terminates(E, P)
(A2) Holds(after(F), P) «Initiates(E, P)

The two predicates Initiates and Terminates constitute the interface to the user: it is
supposed that they are implemented by the user to represent the user’s database. E. g. in
the blocks world domain a roboter arm can stack block X onto block Y if the arm is holding
X and no other block is on Y. As a result, the arm is no longer holding X. This can be
expressed as follows:

Terminates(£, holding(X)) <« NOT on(Z,Y), holding(X).
Initiates(£,on(X)) «— NOT on(Z,Y),holding(X).

Another two axioms for Start(7', F) state that event E is the start point for interval 7"

(A3) Start(after(E),F) «
(A4) Start(before(E), E') « Is-same(after(E"), before(E)).

where
(A5) Is-same(after(E),before(E")) — NOTE < E" < F'.
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There are two similar axioms for End(7', ) (event F is the end point of interval T'):

(A6) End(before(FE), E) —
(A7) End(after(E),E') « Is-same(after(E),before(E")).

The above axioms only present a restricted subset of the original ones. However, they should
be expressive enough to provide the main ideas of the event calculus. In the model, there is
no need for a single time line: events may only be partially ordered, thus it is possible that
two events cannot always be compared. The full version provides the possibility to state that
an event causes different properties to come true which hold for different times; so the world
is seen as a whole graph whose nodes are events. An edge is labelled by the properties that
hold during the interval established by the two time points of the events they connect. In
contrast to the previously discussed approaches this one has the main advantage that it can
be directly integrated into PROLOG: the above axioms can be easily formulated in PROLOG;
unfortunately the integration is not a total one: properties and events are not stored like
other PROLOG predicates, but in the special database predicate Holds.

3.4 Hrycej’s Temporal Prolog

Hrycej presents a temporal-logic extension of PROLOG that bases completely on Allen’s tem-
poral constraint model of time, using time intervals and the 13 relations between intervals as
central concepts. The main advantages of his implementation are efficiency and integratiblity
into available PROLOG systems. This i1s gained by restricting Allen’s original axioms to six
axioms for the predicate Holds; where Holds(P,T) means that P is true in time interval T
and Holds(P) that P holds without temporal restriction. The six axioms are:

axiom 1: Holds(P,S) & subinterval(T,S) = Holds(P,T)

If P holds in interval S, it also holds in any subinterval T' of S

axiom 2: Holds(P) = (YT')Holds(P,T)

If P holds without temporal limitation, it also holds in any time interval.

axiom 3: Holds(P,T) & Holds(Q,T) = Holds(P&Q,T)

If both 7 and @ hold in T', their conjunction also holds in 7.

axiom 4: Holds(P,T) vV Holds(Q,T) = Holds(PV Q,T)

If at least one of A and B holds in T, their disjunction also holds in 7'.

axiom 5: Holds(P,S) & Holds(=P,T) = disjoint(S,T)
If 77 holds in S and (not P) holds in T', then S and T" are disjoint intervals.

axiom 6: [Holds(P,U) & Holds(Q,V) & union(U, V. T) =
Holds(P Vv Q,T)
If 7 holds in {7 and ) holds in V, then their disjunction holds in the union of U and

V.
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The last axiom leads to difficulties in implementation, resulting in two different approaches:
the constraining and the non-constraining approach. This will be explained in more detail
later on.

Hrycej’s implementation is fully embedded into PROLOG: he adds four (meta-)predicates
constrain_rel, in, dur and mkdur, which the user can utilize — besides all other user-
defined and PROLOG-builtin predicates.

constrain rel(I1,I2,S) can be invoked to declare two intervals I1 and I2 (if they are not
yet known). S is a list containing some of Allen’s 13 relations. The relations between I1
and I2 are constrained to S. Constraint propagation is employed, using S to constrain other
intervals to each other. For example if one wants to tell Hrycej’s system that the interval
morning has two subintervals 8to10 and 10to12, one can do this by:

:- constrainrel(morning, 8to10), [di]).
:- constrain_rel(morning, 10to12), [di]).
:- constrainrel(8to10, 10to12), [m]).

Remember that (I1 di I2) means I1 contains I2, and (I1 m I2) means I1 meets I2.

in is a predicate that is supposed to be provided by the user, where in(P,T) declares that
P only holds during interval T. Here P can Le a fact, but might also be a rule.
Example:

is_to_speak(X) :- at_home(X).
in(is_to_speak(X):- at_work(X), working time) .
in(at_home(tom), morning).

This declares that everyone is either always to speak, if he is at home or he is to speak at
work but only during working time. The last clause tells us, when tom is at home. Here
working time and morning are time intervals, that must be declared by constrain rel.
Depending on the context one may want to be less restrictive, only saying, that they should

not be disjoint:

:- constrain_rel(morning, working time,
[0,0i,d,di,s,si,f,fi,=]).

dur and mkdur implement the above axioms. There are two predicates because of the difficul-
ties already mentioned which arise because of axiom 6. The other axioms can be implemented
more easily; for example axiom 1 looks in PROLOG like:

dur(P,T) :- in(P,S), subinterval(S,T).

Axiom 2 is written as:

dur(P,T) :- call(P).
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Here, we present simplified versions, because the original clauses are rather technical and
of less interest than the axiom for disjunction: suppose we want to know whether P VvV @)
holds during interval I. To solve this one can search for an interval Ip in which P is true
and another interval I in which @ is true. Then one must look whether Ip and Ig overlap,
meet or contain each other, and test whether I is a subinterval of the union of /p and Ig.
This is exactly the way dur implements axiom 6. But this way will rarely lead to a solution,
because it needs much information about the relationship between known intervals.

mkdur goes another way by changing the constraint net. It also looks for /p and Iy above.
But then it does not test, if Ip and Iy do overlap. Rathermore, it tests whether they
can overlap: if there is no information in the net that I/p and Iy cannot overlap, then the
constraint net is modified so that Ip and I are supposed to overlap. Computation proceeds
until the final solution is found or until backtracking occurs. In the case of backtracking,
the net is restored to its previous state and the next choice point is tried.

Although the constraining approach is more powerful than the non-constraining one it also
comes with two main disadvantages: Firstly the cut operator (!) can no longer be used
in all places: if the cut is executed after changing the net and if backtracking occurs after
processing the cut, the net cannot be restored to its previous state, because the predicate
that originally changed the net is not backtracked. Secondly, in the net-changing step one
must exactly try four different relations between /p and I to insure that the constructed
interval 1s the maximal one:

1. Ip overlaps Ig

SN

. g overlaps Ip
3. Ip contains g

4. Ig contains [p

This leads to a rapid combinatorial explosion.

3.5 Tang’s TPL

Tang’s TPL is a modal logic extension to PROLOG that differs from PROLOG in two major
ways: First of all in TPL there is not only one single database, but there 1s a whole set of
databases DBS, where every database represents a single time point. Additionally, there
must exist a predefined relation R : DBS x DBS, to connect the different databases.
The second extension of TPL to PROLOG consists of several predefined modal logic meta-
predicates which can be used as goals in bodies of user defined clauses to switch between
the different databases. Here we only present two of them, EX and AX:

e AX(P) succeeds if P succeeds in all worlds (databases) that follow the current one.

e EX(P) succeeds if P succeeds in any world that follows the current one.
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A sample TPL program is given in figure 3.1

L}
——

o
N

g(b)
h(x)

.r EXr(x).

Figure 3.1: A sample TPL program

A TPL program is directly represented in PROLOG as follows: every TPL atom gets an
additional argument representing the TPL database it belongs to. The relation R is directly
represented by a PROLOG predicate called world. The TPL program of figure 3.1 will be

written as:

world(wO,wl).
world(w0,w2).
world(w2,wl).
world(w2,w3).
world(w1l,w3).
world(w3,w2).

p(X,w0) :- EX(g(X),w0).
g(X,w0) :- AX(h(X),w0).
f(X,w0) :- p(X,w0), g(X,w0).
g(c,wl).

g(b,wl).

g(X,w2) :- EX(h(X),wl).
hic,w2).

r(c,w2).

p(X,w2) :- EX(g(X),w2)).
ri(a,w3) .

g(b,w3).
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h(X,w3) :- EX(r(X),w3).

Now the implementation of EX and AX can be easily derived from the above. For example
EX:

EX(P,W) :- world(W,Wnext),
P=.. 1L,
append (L, Wnext, Lnew),
Pnew =.. Lnew,
call(Pnew).

Here the goals 2 to 4 in the body only serve to add Wnext as an additional argument to P.

[f we have the goal
7- f£(X,w0).
then we can infer X=c by the following resolution steps:

f(X,w0)

p(X,w0), g(X,w0)
EX(g(X),w0), g(X,w0)
g(X,w1), g(X,w0)
g(c,wl), g(c,w0)
g(c,w0)

h(c,wl), h(c,w2)
h(c,w2)

In the original paper, Tang defines also some additional modal logic operators, whose im-
plementation is a bit more tricky than EX or AX. Additionally he gives a detailed semantical
deseription of TPL using Buechi antomata.

Tang’s approach is (like Hrycej’s) easy to embed in any existing PROLOG system. The search
space strongly depends on the size of the world graph. Unfortunately, Tang does not provide
concrete examples on how he uses TPL in a practical domain; he only states that he uses
TPL to verify automatically some concurrent programs which process infinite states

3.6 Comparison and Conclusion

Up to now in this chapter we presented five approaches, that all extend PROLOG in their
own direction. Now the question arises: What is the best extension? Every issue has its own
advantages and disadvantages. The main criterion how to divide them is the time model
they nse. Both Hrycej and Kowalski & Sergot use a time model that concentrates on intervals
ol time, whereas the three others see time as having punctual or pointwise character.

Although Kowalsky and Hrycej both use intervals, they differ a little in their central con-
cepts: llrycej concentrates on the possible relations between the known intervals and uses
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mostly these relations for reasoning. On the other hand in the center of Kowalsky’s & Ser-
got’s approach there are events and properties. Events start and end the validity of certain
properties. One event can also start or end different properties, which leads to a branching
model of time with both branching future and past, in contrast to Hrycej whose model
only provides a single time line. The linear time model is also common to the modal logic
approach of Abadi & Manna: in TEMPLOG one can only reason about future states and not
about future and past as in Gabbay’s issue. Additionally Gabbay does not necessarily need
a linear model of time.

Tang allows a more complex view of the world: here one can directly express what is true
in different worlds and how those worlds are connected to each other. This leads to a model
of branching time. In the previous two approaches one can only state what is true now or
what is always true; other worlds can be referenced by the modal logic operators.

In the implementations of the various concepts two groups can be distinguished: Kowal-
sky & Sergot, Hrycej and Tang take PROLOG and add their own predicates, that can be
used besides other PROLOG predicates. Thus they combine the practical advantages of ex-
isting PROLOG systems with their own time concepts. The other two approaches define
their own languages that sytactically look more or less like PROLOG, but have a different
underlying resolution step, such that existing interpreters must be modified or completely
reimplemented. Especially Gabbay gives an operational semantics, where it is left unclear
how to implement a simple interpreter based on a proof search strategy.

The different modifications to PROLOG result in different computational complexities.
Gabbay pays for his ability to reason about future and past with a high branching factor dur-
ing each resolution step. In contrast, in Abadi & Manna the branching factor is determined
by the number of applicable clauses as in ordinary PROLOG. Hrycej has performance prob-
lems both with constraint propagation and (in the constraining approach) with the different
possibilities to constrain two intervals.

But now back to our question: What is the best approach? None of them seems to figure
out, what time really is, and it is hard to find strong reasons to prefer one over the others in
general. It strongly depends on the particular domain to be chosen. For natural language
processing e. g. Allen’s / Hrycej’s approach seems to be of great interest; for solving problems
using historical databases, Abadi & Manna’s TEMPLOG seems to be the better one.

In summary each particular approach has its own advantages that make it seem superior to
the others, but also has disadvantages w. r. t. its competitors. No general solution can be
given that combines all advantages and strips off the disadvantages, because time can have
so many facets, and it is likely that a general concept would be computationally intractable.
Thus, the best way is to study the different issues in detail and afterwards to choose the one
that seems to fit best for the particular problem. If none of the above models seems adequate,
one needs to develop one’s own new calculus. This observation leads to the second part of
the paper where we present the CHRONOLOG temporal logic programming language and the
TRAM knowledge representation system as integrating approaches towards the handling of
temporal knowledge.
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Aspect

Abadi &
Manna

Gabbay

Kowalsky &

Sergot Hryce)

Tang

time model

point

interval

point

central practicable mo- modal logic with | events and interval rela- Kripke struc-

concepts dal Horn logic future and past properties tions tures

time line linear branching future | branching future | linear branching time
and past and past graph

extensions to 0,0 and © F and P opera- predicates for EX, AX and predicates:

ProLoG operators tors event handling other modal constrainrel,
operators in, dur and
mkdur
initial and per- ordinary and
manent clauses always clauses
Integrability interpreter modification fully integrable fully integrated

into PROLOG

computational
complexity

number of
clauses

different paths
for every clause
to test

constraint
propagation,
constraining
intervals

size of the world
graph

applications

historical data-

hases

plan generation nat. language

processing

verifying con-
current
programs

Table 3.1: Comparison of the different approaches
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Part 11

Chronolog and Tram
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Chapter 4

An Introduction to Chronolog

The temporal logic programming language CHRONOLOG has been developed by Ralf Scheid-
hauer, and has been described in an unpublished internal report (cf. [Sch89]). In this section
we give a short description of the main ideas behind the CHRONOLOG system.

CHRONOLOG 1is closely related to Abadi & Manna’s approach, but extends TEMPLOG in
various directions. CHRONOLOG also includes the possibility of defining multiple databases
like Tang does and it has the ability to reason about future and past as in Gabbay’s approach.

TEMPLOG has a single built-in modal operator () (NEXT) that generates new unique worlds
from an existing initial world. So every world has its own uniquely determined successor.
But this might not be enough, because real world tells us that at a certain timepoint many
different events can happen leading to different directly succeeding future worlds. In the
blocks world e. g. a roboter arm can stack or unstack certain blocks, and different successor
states will arise according to the action previously performed. Therefore, CHRONOLOG allows
user definable modal operators each of which generates a unique new succeeding world from
the current one. These operators are not restricted to mere constant symbols, but they may
also be compound terms. Thus, it is possible to define a modal operator stack with two
variable arguments X and Y. In our example it is also necessary to state that stack is not
applicable in any state, but only when both blocks X and Y are free. This can be done by
adding corresponding goals to every clause in the database that deals with stacking. But
here CHRONOLOG has an additional feature, that allows conditional modal operators. The
following clause declares a 2-ary modal operator stack, that can only be applied to blocks
X and Y, if both are free:

stack(X,Y)w = clear(X)w, clear(Y)w

The index variable W tells CHRONOLOG, that operator stack can be applied to every world.
Instead of W we could also write a modality (= a nonempty sequence of terms; read from
right to left): thus we could use an initial world wy and the modality

stack(a,b) unstack(c,d) wqy

to denote the world, that results from wq by first unstacking block ¢ from d and afterwards
stacking a on b.
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Goals in CHRONOLOG must always be indexed by a modality:
on(a,d)w ., —

asks for an operation, that can be applied to world wy and results in a world in which a is
on b

The user can create a complex world graph using its own modal operators. CHRONOLOG
provides additional meta predicates that allow to reason about statements that are true in
several or all worlds in the future and the past:

e (OsP)w means: P will be true in all future worlds of W (including W)
o (OfP)w means: P will be true in some future worlds
e (AsP)w means: P will be true in some direct future worlds

o (VsP)w means: P will be true in all direct future worlds

0,, Cp, &, 7, are the corresponding equivalents for the past. While those modal operators
are built-in, e. g. a user defined modal operator unstack can be introduced using one of
those built-in operators. If we want to specify that unstack should be applied at most once
to the same blocks in a sequence of stack and unstack operations, this can be expressed by
defining a modal operator unstack with modality variable W:

unstack(X,Y)w := clear(X)w, clear(Y )w, (Op on(X,Y))w

In this way CHRONOLOG allows to define multiple databases like Tang does. Every clause
gets an index that marks the world in which the clause is to be true.

on(a,b),, «— block(a)w «—
on(b, ¢)y, — block(b)w «—
block(c)w «—

represents that block a is on block b,block b is on ¢ in an initial world wy, and that a block
is a block in every world.

A special predicate edge is a built-in of CHRONOLOG: it ist used during reasoning to find
out which worlds are connected to each other in the world graph. But the user can also add
his own clauses for edge to define which worlds should be connected additionally. Suppose
you have worlds wy, w,,...,wy;. The following clauses connect them in various ways:

edge(wy, wg) «— edge(wy, wyg) «—
edge(wg, ws) «— edge(ws, wy) —
edge(wy,wyy) «— edge(wy, wg) —

Figure 4.1 shows a typical CHRONOLOG world graph which is generated by the user-defined
operators stack and unstack. Edges are drawn in this graph by a special user-defined
predicate edge.
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------ = application of edge L
---> application of unstack \\\
— application of stack @

Figure 4.1: A CHRONOLOG world graph

4.1 The Syntax

We define the set T'ermsy v as the set of all terms with variables taken out of set V and
function symbols out of X. Let ¥ contain the special function symbols true, edge and edge™.
true is used for simplicity to represent an empty body of a clause. edge and edge™ are used
by CHRONOLOGS built-in modal operators For convenience we write variables starting with
capital letters and all other symbols in lower case letters.

An atom is a term, that is not a variable. A modality is a nonempty sequence of terms.

CHRONOLOG clauses may be either an operator declaration (indicated by the neck symbol
:=) or a conditional clause:

H:=B
H«— B

lere H is a goal, that is of the form Gw and B is a body goal which may be one of:

e lrue

('r'w
e (B',B")
- B

o (@BYw

In all cases (¢ is an atom, W a modality and B’, B” are bodygoals itsself; © is an element of

{0,001,V 01,0,,0,,V O} For convenience we write clauses of the form H «— true
as Il «—



4.2 The Semantics

In [Sch89], an operational semantics for CHRONOLOG and a horizontal compilation scheme
for the transformation of CHRONOLOG programs into PROLOG programs is defined. Since
this scheme is very similar to the one used in [Pis91] and in chapter 7 for the knowledge
representation system TRAM, we refrain from dealing with it here, and refer to the respective
section for a more detailed description.

4.3 CHRONOLOG Examples

4.3.1 The Factory Example

Consider a factory where Mary, Joe and Tom work. They were hired long time ago and we
don’t know yet the exact time when they were hired. But we do remember that Mary and
Tom worked before Tom, but not if Mary was hired before Tom. In CHRONOLOG we will
write:

works(tom),,, edge(wy, wy) «—
works(mary ), «—— edge(wq, wy) —
works(joe),, «—

We have the possibilities to hire new people and fire others. But we can only fire one if he
already works, and we do not want to hire people that do already work and also not those
that were fired some time ago or that disagree with someone who already works:

fire(X)w := works(X)w
hire(X)w := ~(works(Y )w, hates(Y, X)w), ~ Op(works(X))w
hates(john,tom)w

hates(mary, paul)w
hates(joe, jane)w

We can now define, that someone works at our factory if he was hired now or if he already
worked the timepoint ago and was not fired now:

workS(X)hire(X)W —
works(X)w «— A,(works(X))w, ~eq(W, fire(X) e W)

eq(X, X)w «—

Now we can ask: if we have hired George and then Jane (after timepoint wy), is there a
future world in which Tom and Jane work in the factory, supposed that Paul has never
worked in the meantime:
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— eq(W, hire(susan) hire(george) wy),
works(tom)w w,
works(yjane)w w,
= O, (works(paul))ww

CHRONOLOG will compute the following modality

W' = hire(jane) fire(joe)

4,3.2 The blocks world

Let us now look a little bit closer at the blocks world example. We have several blocks,
some of which lie on the table, whereas others are located on top of other blocks. We use
six predicates to describe the specific states of our blocks world:

on_table(X) means that block X is on the table

on(X,Y) means that block X is on block Y

clear(X) means that there is no other block on block X
holding(X) means that the robot arm is holding block X
armemply  means that the robot arm is empty

Now in every state we can define four operators:

. stack(X,Y) can be applied in a certain world to two different blocks X and Y, if the
roboter arm is holding X and there is no other block on Y.

2. unstack(X,Y) is the inverse operation to stack: it can be applied, if X 1s on Y, the
arm is empty and X is clear.

3. pickup(X) can be applied, if the arm is empty and block X is free.

4. putdown(X) is the last operator, that can be applied, if the arm 1s already holding

block X.

The operator declarations will look in CHRONOLOG like:

stack(X,Y)w = holding(X)w, unstack(X,Y)w :=on(X,Y)w,
clear(Y)w, clear(X)w,
—eq(X,Y) armemptyw

prekup( X )w = armemptyw, putdown (X )w := holding( X )w

clear(Y)w
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Now we can define several initial worlds, that represent certain states of our blocks world.
First, in wy there are 3 blocks a,b and ¢ that all lie on the table. The robot arm in this
example world 1s empty:

armemptiy,,, ——

on_table(a),,, «—
on_table(b),,, —
on_table(c),, —

In another world w; we have nearly the same situation, as in wy except that block a is
already on block b:

arm c‘mpt Ywy,

OTL((L, b)wl —
on_table(b),, «—
on_table(c),, —

Now we can declare clauses that specify the effects of applying the different operators:

(I’rm’emptystack(X,Y) w

on(X,Y )sack(x,y)w —

on(U, V)stack(x,yyw «— on(U,V)w, —eq(U, X)
on_table(U)sack(x,yyw «— on_table(U)w, —eq(U, X)

First we say that applying stack(X,Y') leads to a world where the arm is empty. The second
clause tells us that block X is on block Y after stacking. The last two clauses are frame
axioms specifying that nothing else changes.

unstack(X,Y) is defined similar to stack:

holding(X )unstack(x,y) w —
07’1,((], V)unstuck(/\’,Y) W O'Il((], V)W’ _'C(I(IJ, ‘X)
on_table(U)unstack(x,y) w «— on_table(U)w

pickup and putdown are defined such that pickup can only be applied to blocks that lie on
the table, and that putdown places a block always onto the table. Therefore, if we want
to put the topmost block of a tower of blocks onto another tower of blocks, we first have
to apply unstack (from the first tower) then putdown (on the table) then pickup (from the
table) and lastly stack (onto the second tower). Therefore, the program looks like:

armempt:’/putdawn()() w
On—table(X)putdmun(X) W =
on_table(Y ) putdown(xy w —— on_table(Y)w
On(Ya Z)putdmun(X) w OTL(Y, Z)W

32



hOI(h:ng(‘\,)pickup(X) w
on_table(Y)pickup(xy w «— on_table(Y)w,—eq(X,Y)
on(Y, Z)pickupxy w +— on(Y, Z)w, -eq(X,Y)

Using this program we can use different goals. For example:

= (VPon—t(lble(/\,))stack(a,b) ;;ickup(a) wo

This goal asks (via backtracking) for all blocks that have always been on the table after
having put a on b from world w,. (Here the answer will be first X = b and after backtracking
X =€)

Another goal asks how to build a tower, were a is on b and b on ¢, starting with w;:
— edge™(wy, W), on(a,b)w, on(b, c)w

Here the correct answer should be:

W = unstack(a,b) putdown(a) pickup(b) stack(b, c) pickup(a) stack(a,b)

4.4 Conclusion

In this section, a new approach to incorporate time structures in PROLOG is described. The
resulting CHRONOLOG system provides a set of modal operators to reason within a world
graph that describes various states of a world in the future and the past. In addition the user
can define new (conditioned) predicates which transform the objects and relations between
the objects of the world to generate new possible worlds. Thus, CHRONOLOG combines and
generalizes features from other temporal logic programming approaches; as in Tang’s system
it is possible just to operate on a predefined world graph or as in Abadi & Manna’s system it
is possible to work with operators that change the world status. In the following sections we
will describe a temporal knowledge system based on the ideas of CHRONOLOG. The intended
application domain for this is the simulation of multiagent environments, where planning,
synchronization, and communication tasks have to be dealt with, strongly involving temporal

aspects.
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Chapter 5

The Basic Ideas of Tram

In the following sections, we describe the knowledge representation system TRAM which
combines both interval and point aspects of time by integrating the ideas of two of the main
paradigms for the representation of time in Al: Allen’s interval logic [All84] and the modal
logics approach[Pri67, AM89]. The former approach employs intervals and relations between
intervals as the basic entities, whereas the latter one uses a set of modal operators which are
interpreted by using a possible worlds semantics in order to express temporal knowledge. The
foundations of our approach have been established by the CHRONOLOG system described
im section 4. CHRONOLOG presents a temporal PROLOG based on standard modal logics.
TRAM extends this concept by providing time intervals.

Our view of time is strongly driven by the requirements resulting from our research on
multiagent-systems (MAS). In MAS, autonomous intelligent agents have to fulfil their own
local goals in coordination with their environment and with other agents. This requires a
great deal of synchronization, communication, and coordination work. Time is an essential
concept for handling these kinds of tasks, since agents make their plans and decision within
the flow of time. To provide a better idea of this, we will start by an example from a

multi-agent scenario.

An Example

In this section we motivate the role of time and the way we handle it in our approach by a
small example from a multi-agent domain. Figure 5.1 shows our exemplary scenario. There
arc two loading docks, d; and d;, two trucks t; and t,, and a railway line between loading
station [; and [,. The two trucks receive the order to transport goods ¢11, 912, 921, and g¢q
[rom the respective loading dock to loading station {y, to take the train to [, and to unload
there. Both trucks have to fetch goods both from [ and from [;. In this scenario time plays
a role in a twofold manner: first, the two trucks have to synchronize their loading dock
activities, since only one truck at a time can be served at each loading dock. Second, they
have to coordinate their travel by train, since both trucks should take the same train to l,.
An intelligent plan for #; and #; would be not to start at the same loading dock, but rather
c.g. ty could first go to dy while 1, could first go to d;, in order to avoid ’wait states’. Then
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Figure 5.1: A Loading Dock Scenario

they could meet at [; and take the train to [, together. We suggest the use of time interval
constraints in order to synchronize the actions of ; and #,. A formal solution to the example
using the TRAM system is described in chapter 7. The complete TRAM program modelling
the problem can be found in appendix A.
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Chapter 6

An Extended Modal Logic (EML)

In this chapter, we present the extended modal logics EML. In section 6.1, we define the
syntax of EML by extending the syntax of a standard modal logics by additional temporal
operators, and by generalizing the notion of modal logic worlds to time instances, which are
defined as the union of worlds and time intervals. In section 6.2 we provide a model-theoretic
semantics of EML. Finally, in section 6.3 we show how to draw inferences over time intervals.
For reasons of space, we assume that the reader be familiar with FOPL and modal logics. We
presuppose notions such as term, wif, interpretation, model, satisfiability, tautology etc. (cf.
[BB87] for an introduction into FOPL and [Ram88] for modal logics).

6.1 The Syntax of EML

The basic primitives of the time model underlying to EML are worlds. Intervals are defined
as closed sequences of worlds. Starting from this we can now define time instances.

Definition 6.1.1 Be W a non-empty set of worlds. The relation 1 defines a partial order
on clements of W (accessibility relation). We define the set T of intervals as:

T:={{wyy...,w,) |[Vi:0< 1 <n w; e WAVk:0< k<n wpwkr}

The set T of time instances is T := WUT.

Next, we define the accessibility relation 3% over arbitrary elements of 7 in the frame
system F = (7,3%).

Definition 6.1.2 Be T a non-empty set of time instances, and be 3% a binary relation on
clements of T. For arbitrary elements ty,t, € T, t; 3% ty holds iff:

[. ti,ty, €W and t; Ity

2.t €W, € T, with ty = (wy,...,w,) and t; T wy

36



3.t €Lty €W, with t; = (wy,...,w,) and w, I,

4. ti, t2 €I, with t; = (w,,...,wy,), ta = (wyy,...,wsy,) and wy, 3 we,

In order to be able to describe both worlds and intervals, we introduce new modal operators

suchas &, V, @, B, Q& and B .

Definition 6.1.3 (EML) The extended modal logic language EML is defined by adding to
a standard modal logic language ML the logical symbols 7, &, 4, B, QO und B. Be ® «
well-formed formula (wff) in ML, and i = (wo,...,w,) in T, then ®, &®, V&, O, O,
®0, D, OO and BY are wff’s in EML. They are to be read as follows:

o A® : There exists an immediately successing time instance, at which ® holds.
o OB : There exists a time instance at which ® holds.
o @O : There exists a time interval during which ® holds.

o OO : In the (current) time interval i there exists a time instance at which ® holds.

Analogously, we define the symbols 7, T, B und B for universal quantification of time
instances and intervals, respectively.

In the next section, we provide a semantics for EML terms and formulas.

6.2 A Model-Theoretic Semantics of EML

We define the semantics of EML in terms of Kripke structures and Kripke interpretations,
which is a quite familiar technique for modal logic approaches. In the following, we write
“<” for the accessibility relation 3% over T whenever it becomes clear from the context what
1s meant.

Definition 6.2.1 A Kripke interpretation is a tuple M = (T,<,D, 1), where the follow-
ing holds:

1. T is a non—empty set of time-instances. W be the set of worlds in T .
2. < is a (partial) binary relation on T .
3. D is a non-empty set of individuals.

4. I is a function which maps each n—ary function symbol f € F to an n—ary function
fM on D and each n-ary predicate symbol p € P in each world w € W to an n-ary
relation pM on D | so that the following holds:

(a) pM C D", if p € P! and
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(b) pM = pM for all w,w' € W, if p € P".

Note that I defines a standard interpretation function for modal logics. Since worlds are
the basic primitives of the language, I is only defined over worlds. Interval formulas are
interpreted by pulling them down to the worlds contained in the interval. As usual, function
symbols have a fired interpretation whereas predicate symbols are flezibly interpreted!. Next
we define how terms and formulas are interpreted. As the reader will see this is quite similar
to standard modal logics.

Definition 6.2.2 Be V the set of all individual variables, and be D the set of all individual
constants. A variable assignment relating to a Kripke interpretation M = (T,<,D, 1) is
o mapping o: ¥V — D. The value a,,(z) of a term z in a world w € T is defined as follows:

1. ay(z) =a(x) forz € V.

2. (Yw(f(th R 7t‘n)) = I(f)(aw(tl)7 e ,aw(tn)): otherwise.

Here we consider only global variables?, i. e. the value of a term does not depend on the
actual world.

Definition 6.2.3 Be M = (7 ,<,D,I) an interpretation, o an assignment function. M, «
satisfy the formula ® in a time instance to € T if the following holds true:

[. ® is an atomar formula P(ty,...,t,), and I,,(P) (a,o(tl);..., oy, (t,)) holds (ab-
brev. (M, «) =y, Pty ... 10)).

(SS}

- D is 20y, and (M, «) =y, 1 does not hold.
3.0 s & — by and (M, o) =y, O, then also (M, «) =y, D,.

J. @ is A®y and ' € T exists with ty < t': (M, a) |y @y and there exists no t" € T with
to <t <t
5. @ s Oy and (M, «) =y 1 or at' € T exists with ty < t', such that (M, «) Eu ®4.

6. ¢ is €O, and (M, o) =y, ®y forty € I, or an 1@ € I exists with to < 1, such that
(M, o) E; 0.

7. @ is QO and ty, € I, with ty = (wo,...,w,) and a w € ty exists, such that
(M, o) =, ;.

=0

D s £y with € € {V, 0,8 B8}, and (M, «) =, €'~y where € is the corresponding
clement to € of {A,O,0,®}.
'If we want to allow both fixed and flexible function symbols, the definition of I must be extended (cf.

[Brz89)]).
2If we would like to consider local variables as well, the assignment function « has to be modified,

respectively.
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The notions of semantic consequence and tautology are defined exactly as in classical modal
logics. In the following, we will provide some examples in order to give an idea of the
expressiveness of a formalism for knowledge representation based on EML.

Example 6.2.4 Classical modal logics are typically restricted to inferences of the type 'Does
a world w exist in which a certain goal G holds?’. So we could ask if there exists a world in
which the loading order of truck truckl is empty. By using EML, more expressive inferences
are possible:

1. There exists a time interval in which truckl goes by train and in which its loading
order is always empty:

o =, ®(B(gobyTrain(truckl) A loadingOrder(truckl,[])))

2. There exists an interval ¢ during which truck truck! is dispatched at loading dock
rampl, and there exists no interval following directly to ¢ in which truckl stays at
ramp I:

o =; ®(O(atRamp(truckl, rampl)) A V—~(atRamp(truckl, rampl)))
L)

6.3 Integrating Interval Logic

In this section we describe how Allen’s interval relations can be embedded into EML. We
achieve this by means of a binary function Access which is globally defined. Its value at
an arbitrary time instance t is a special time value associated to t. For ¢t € T the time
value consists of the first and last point of the interval, for t € W it consists of two identical
values. Intuitively, the time value is an abstract measure, which can be modelled e. g. by
a real number or by an integer. Access allows to compare arbitrary worlds as regards the
temporal relationship between these worlds, even if the accessibility relation i1s only partial.
In the implementation of TRAM, a length value is assigned to each edge in the graph of
worlds, and the time value of a world computes as the sum of the edges starting from the
current world. Now, we formally extend the notion of interpretation by the Access function:

Definition 6.3.1 An interpretation is a tuple M' = ((7,<,D, I), Access) where (T ,<,D,I)
corresponds to the interpretation of definition 6.2.1, and the function Access: V* — N*?
defines the access to a time instance.

Now, we are able to define the thirteen Allen relations as binary predicates over the time
values. The transformation of the relation into a representation based on instants rather
than intervals, and the axiomatization for the set of natural numbers do not cause serious
problems. Therefore, we desist from a more detailed description of this issue and refer to
literature (e. g. [Ram88]). Rathermore, we provide some examples taken from our loading-
dock scenario to illustrate the usefulness of EML:

In the following examples we show how several patterns of synchronization of resources
between agents can be represented by using EML.
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1. The first example shows how the synchronization of shared resources can be represented
using EML. Assume that two trucks truck; and truck, have to meet at the loading-
station station; in order to take the train together. So we can ask whether there is a
time interval in the future (starting from time t) where the trucks truck! and truck2
are both at the station? (This is the precondition for them to use the shared resource

train.)

=@ (at_station(truckl, stationl)) A Access(X1,Y1)) A
@ (at_station(truck2, stationl) A Access(X2,Y2)) A
equals(X1,Y1,X2,Y2)

2. In many applications agents which independently pursue their own goals have access
to common resources which may only be used exclusively. This access has to be
synchronized. In our loading-dock example the loading ramps can be considered as
exclusive resources, since at most one agent (truck) is allowed to stay at a ramp rampI
at time t. So we could ask in EML, whether a world exists starting from time ¢ in
which both truckl and truck?2 have achieved their goals and the access to the ramp
ramp1 has been scheduled:

E: Of(goal_achieved(truckl) A @, (at_ramp(truckl, rampl) A Access(X1,Y1))) A
Of(goal_achieved(truck2) A 9,(at_ramp(truck2, rampl) A Access(X2,Y2))) A
(after(X1,Y1,X2,Y2) V before(X1,Y1,X2,Y2))
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Chapter 7

The Knowledge Representation
System Tram

In this section we develop a computational model of EML which is based on PROLOGWe
presume that the reader be familiar with this language and with standard logic programming
in general (cf. [CM81, SS86] for PROLOG [Llo84] for logic programming). After giving a more
informal idea of how TRAM works, we will specify an operational semantics for TRAM 7.1
and a compilation scheme for TRAM programs into PROLOG programs 7.2. Section 7.3
recalls our loading-dock scenario presented in chapter 5 and outlines a solution to it.

The implementation of modal logic propositions is coupled with the representation of differ-
ent worlds and of properties associated to these worlds. In TRAM we describe those worlds
by constant declarations w0, wl etc. together with a unary predicate world/1. The prop-
erties (valid propositions) of a world w; are represented by PROLOG clauses. Propositions
which are valid in any world are bound to a variable world name.

The modal logic accessibility relation defines a partial order on the graph of worlds, i. e. it
defines which worlds are reachable (in the future or past) from a given world. We express
this in TRAM by defining edges between worlds using a predicate edge/2. Apart from con-
sidering worlds that actually exist, TRAM allows us to compute possible worlds starting from
the current world. For this purpose, we define transition operators with preconditions and
postconditions, which allow transitions between worlds if their preconditions are satisfied. A
world which has been computed this way is identified by the list of operators applied succes-
sively beginning from the current world. In order to be able to decide which predicates hold
in computed worlds, the effects of the application of a transition operator must be defined
by its postcondition. We can define both primitive transition operators (POs) and macro
transition operators (MO). MOs can be constructed as sequences of POs, and they can be
arbitrarily nested. Since MOs define sequences of worlds, representing an interval by an MO
is a very natural idea.

Note, that expanding worlds by using operators does not cause new facts to be added to the
knowledge base. Rathermore, since the computation of a world w; is decoded into the world
name as the path of applied operators, the truth of formulas in w; can be computed by the
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name of w;!.

For formulating queries, TRAM provides predicates such as f_diamond_trans/2, whose first
argument 1s a goal clause, and whose second argument is bound to the name of a world for
which the query could be proved (if such a world exists).

At the end of this informal motivation, we should mention how propositions depending on
specific worlds are actually handled in TRAMEach clause of a TRAM program is translated
into a PROLOG clause by using a binary function reify, which adds to each clause an
argument representing the world the clause refers to. This will become more apparent in
section 7.2 where we define a compilation scheme for TRAM .

7.1 An Operational Semantics of TRAM

In this section we present a scheme of computation for our knowledge representation lan-
guage TRAM which is based on the extended modal logic EML we introduced in chapter
6. Since we intend a modal logic representation, world indices W are attached to goals
in order to express that the evaluation of a program depends on the current world W.

le-

In TRAM a distinction is made between two kinds of program clauses: the first one ¢
clares transition operators modifying the world and is represented by ‘H := B’, the second
one defines the usual program clauses which associate propositions to worlds. It is repre-
sented ‘H « B’ as we know it from PROLOG. H is a Goal GGy, B i1s a body goal which
can be either {true, Gw,(B', B"),~B',(®B')w}. G represents an atom, W a world name,
B'.B" are body goals, and © stands for an arbitrary element of {&;, <V, O, Of, @, Wy,
8,2,4,,V,,0,,$,, ¥, B,}. For the sake of simplicity we write H « as an abbreviation

of H « true.

Central notions for the operational semantics we provide in the following are substitution,
unifier, and most general unifier (mgu). They are defined exactly as it is the case in PRO-
LOG. Since world arguments are represented by PROLOG data structures (i. e. lists), it
makes sense to talk about the mgu of two worlds, and this mgu (if it exists) can be computed
by the standard PROLOG unification algorithm. Now, we define the operational semantics
of a TRAM program.

Definition 7.1.1 (Operational semantics of TRAM ) Be P a TRAM program, G a goal,
o a substitution. G is a logical consequence of P under o (P |=, G) if PUG is contradictory
under o. The following cases must be considered:

1. G = true , with  ois the empty substitution

2. G = Bw , with Hy, «— B'€ P
and o' = mgu(Bw, Hy)
and P = o'(B') under o

IThe implicit representation of applications of operators establishes our solution of the frame-problem
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3. G=1(B,B"} , with P E B’ under o’
and P =o' (B") under o

4 &G ={-8) , with  there ex. no o' : P = B under o'

and o is the empty substitution

5. G=(Of B)w , with P = ~(®; ~B)w under o
6. G =(OB)w , with P = Bw under o
or
MOpwn = B'eP
and W = a'(MOpW')
and o' = mgu(W", W')
and P | prove*(B,o'(W'),0'(B’")) under o
7. G = (L&;B)w , with P }:f(IJf (W, W') under o'
and P = o'(Bw:) under o
8. G = (OfB)w , with P }:r(ljr"‘(W W') under o'
and P | o'(Bw:) under o
9. G = (&;B)w , with P }:f(l_/f"(W W') under o'

and P | o'(Bw:) under o
10. G =edge*(W,W') | with o = mgu(W,W’)

11. G =edge* (W, W' | with P Eedge(W,W") under o'
and P Eedge* (o' (W"), o' (W')) under o

12. G =edge(W,W')  with Opwn:=B € P
and o' = mgu(W, W")
and P = o'(B) under o
and W' =o'(OpW)

13. (¢ = prove*(B,W,(B', B"))
, with P = prove(B, W, B") under o
or P = prove”(B,W, B") under o

14. GG = prove( B, W,0pwn)
, with — edge(W, W') under o'
and W'=o"(a'(OpW"))
and P = o"(o'(Bw')) under o

Q® stands for an arbitrary element of the set {Vy, Oy My, B}, @ stands for the element
corresponding to @ of {O;, O, @;,2}. P represents the current set of TRAM clauses,
W, W' W", and W" are world names (world arguments), G is a goal, B,B’, and B" are
body goals. OPw and MOPy are clause headers declaring primitive and macro operators,
respectively. OpW (- resp. MOpW) denotes concatenation. Intuitively, it means that the
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world named OpW (OpMW) is accessed starting from a world W using the operator Op.
The modal operators {/,,0,,W,, O, O, ®,}, which allow statements about the past can be
defined analogously.

Note that 1) ... 4) correspond to PROLOG SLD resolution. The index W in case 2) merely
expresses that the clause depends on an additional world argument. Case 5) treats the
modal-logic rules of double negation for bozx operators. Cases 6) ... 9) maintain the diamond
operators using the meta-predicates edge, edge*, prove, and prove*. In cases 10) ...14) the
semantics of the meta-predicates edge, edge*, prove, and prove* is defined. edge(W,W')
specifies an edge connecting two worlds W and W’ in the graph of worlds. The predicate
prove(G, W, W') succeeds if the goal G can be proved in a world W’ starting from the
current world W.

7.2 A Horizontal Compilation Scheme for TRAM Pro-
grams

In this section we provide a formal scheme for compiling TRAM clauses into PROLOG. The
basic idea is to transform each n—ary TRAM goal p(ty,...,t,)w into an (n+1)-ary PROLOG
goal p(ty,... 1, W), whose last argument W represents the modality, i. e. the world. The
compilation itself is performed by the procedure C. The function reify defines the way a
single TRAM-goal is transformed:

Definition 7.2.1 The function reify maps each TRAM goal p(ty,..., irt)Wl....,Wk to a PRO-
LOG goal p(ty, ..., t,, Wy e...e W) as follows:

reify(p(t, .. t)w, . w,) = plty, .. t, Wre. .. e W,).

Here, the function symbol @ symbolizes the concatenation of world arguments.

Example 7.2.2 Be Qw, the goal on(a,b),, and Ry, the goal O"‘t“blﬁ(X)p'u.tdown(X) W-

reify translates Qw, and Ry, as follows:

reify(on(a, b)) = on(a, b, wy).

recfy(on_table( X)) = on_table( X, ,putdouwn(X) e W).

putdown(x)w

In the current implementation the world argument is represented as a list containing the

start world and the sequence of operator application. i
In the following we explain how a TRAM program is translated into a PROLOG program.
The procedures (', (" and (""" actually define the horizontal compilation scheme for TRAM
programs. In (" a distinction is made between operator declarations and ‘normal’ program
clauses. (" and (" perform the translation of the different goals.
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Definition 7.2.3 The procedure C maps the set of TRAM clauses TCL to the set of horn
clauses HCL. C : TCL — HCL is defined as follows:

op(POp, W') « (C"[B] for ¢l= (POpy := B)
Clel) :== < op(reify(MOpy, ), W) «— C"[B,W,W'] for cl= (MOpy := B)
C'[H] « C'[B] for ¢l=(H « B)

W is a new variable, POp is a primitive operator declaration, and MOp s a macro operator
declaration.

The first case in the above definition handles the declaration of a primitive operator. The
corresponding body B is processed by the procedure C’. B consists of conditions that have
to be satisfied in a world where the operator shall be applied. In the case of declarations of
macro operators (case 2) also primitive operators can be applied. Therefore, such a body is
translated by a special procedure C'".

Definition 7.2.4 The auziliary functions C" and C" map each body goal B to a new body
goal HB. C" is defined as follows:

true for B = true
reify( B) for B = Gw, G term
C'[B'],C”[B"] for B=(B',B")
-C'[B’] for B=-B'
ﬁC’[(@f ~B")w] for B=(O; B")w
edge(W, W"), C'[ By for B=(&;B")w
edge(W, W), C'[Bly]  for B= (8,
C'[B] = edge” (W, W'), C'[Biy] for B = (OfBw
' edge* (W', W), C'[ By for B = (O,B))w
edge” (W, W'), C'[Byy] for B = (®;B")w
edge” (W', W), C'[ By for B = (®,B)w
(C'Biy); for B = (OB
(W =MOpe W', and there ex. (MOp — Mbody)
C'Bly).
edge* (W', W),
(. edge™ (Wi, Mbody e W'))).

In the above definition, O stands for an arbitrary element of the set {V;,O;, M, B}, &
stands for the element corresponding to © of {D, O, @, D).

If B is an atomar body goal B = G'w, the corresponding world argument is simply appended
by means of the function reify. If the body goal has the form B = (4 ;B')w, the existence of
exactly one edge (edge(W, W')) in the graph of worlds directed to the future is required, and
the corresponding goal By, is processed in the new world. For B = (OfB')w, the existence
of at least one edge pointing to the future is required. If B = (@B')w, W is expected to be



an interval. There are two possibilities to prove Byy,. Firstly, By, may ensue directly from
applying a macro as a normal transformation operator, and thus follow from the current
world. Secondly, it can follow from one of the worlds contained in the interval.

The function C" provides the translation of macro operators and their corresponding body
goals. In the body of a macro declaration we make a distinction between calls to primi-
tive operators, which have to be translated separately, and other conditions which can be
processed by C’ itself:

C”[B],W, Wl],C”[BQ,Wl,Wb] fOT' B = (B],Bz)
C"[B,W, W] := op(POp, W), W, = POpe W for B = POp
C'|Bw|,Wy =W otherwise

Finally, we will spend a few words on the actual TRAM run-time system. It solely consists
of two predicates edge and edge*:

° edge* (W, W) «
edge* (W, W') — edge(W, W"), edge*(W" W')

o edge(W,0peW) — op(Op, W)

Intuitively, edge(W, W') finds an edge from one world W to a next possible world W', if such
an edge exists. This depends on whether there is an operator declaration whose operator
Op can be applied. Then the operator and the world argument are concatenated to the new
world argument OpeW. The first case of the specification of edge* is necessary because of
the reflexivity of the accessibility relation, i. e. since the current world is always a possible
world.

7.3 Recalling the Loading Dock Scenario

This section contains excerpts of a TRAM program representing the loading-dock scenario
basically defined in section 5. Figure 7.1 contains some parts of the corresponding TRAM
database. Some definitions of primitive and macro operators with pre- and postconditions
are shown. The primitive operator move ToRamp(Agent, Ramp) can be applied if the Agent
has to load or to unload something at the ramp, if it has not just moved back from the ramp
in the previous world (this is to avoid trivial circularities), and if it has already entered the
loading-dock area, but is not yet at the ramp. After prefroming move to ramp, in the new
world, it is true that the Agent is at the ramp and can now perform its loading or unloading

job.

" A crucial concept is that of macro operators, which can be defined as compositions of simple
operators. Thus, macro operator getGoods is defined by first moving to the ramp, then
loading, and finally moving back from the ramp. Thus, the macro operator defines an interval
consisting of a starting world, two intermediate worlds defined by applying moveToRamp
to the starting world and by applying load to this world, respectively, and of a final world
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% Loading Dock Scenario: Source Code
A P P e T

U***xsxxx%4%% Primitive Operators movetoRamp, load, moveBack *##ssssssssssssss

= e —— -

% Preconditions for a truck moving to a loading dock

prim_op( moveToRamp( Agent, LoadingDock)):-
isAgent( Agent ), isRamp( LoadingDock),
not done( moveBack( Agent, LoadingDock)),
entered( Agent, LoadingDock ), not atRamp( _, LoadingDock),
hasToLoadAtRamp( Agent, LoadingDock ).

'/. ____________________ o . ——

% Preconditions for a truck being loaded

prim_op( load( Agent, LoadingDock )) :-
isAgent( Agent), isRamp( LoadingDock ),
atRamp( Agent, LoadingDock ), hasToLoadAtRamp( Agent, LoadingDock ).

% Preconditions for a truck moving away from a loading-dock

prim_op(moveBack( Agent, LoadingDock)):-
isAgent( Agent ), isRamp( LoadingDock),
not done(moveToRamp( Agent, LoadingDock)), atRamp( Agent, LoadingDock ).

Yrerkrrsrsrnrsrkrhehrarsnsssxs Macro OPErators *¥ ¥ kXA AKX EXEXFRRRRERRRRRES

macro_op( getGoods( Agent, LoadingDock )) :-
moveToRamp( Agent, LoadingDock),
load( Agent, LoadingDock),
moveBack( Agent, LoadingDock ).

%*** Postconditions of the operators movetoRamp, load, moveBack, getGoods #*#

moveToRamp( Agent, LoadingDock) .done(moveToRamp( Agent, LoadingDock)).
moveToRamp( Agent, LoadingDock) .atRamp( Agent, LoadingDock ).
moveToRamp( Agent, LoadingDock).loadingOrder( A, 0 ):-

loadingOrder( A, 0 ).

load( Agent, LoadingDock ).atRamp( Agent, LoadingDock ).
load( Agent, LoadingDock ).loadingOrder( Agent, NewOrder ):-
loadingOrder( Agent, 0ldOrder),
{delete( 01dOrder, (LoadingDock,Good), NewOrder)}.

moveBack( Agent, LoadingDock) .isDriving( Agent ).

moveBack( Agent, LoadingDock).done( moveBack( Agent, LoadingDock)).

moveBack( Agent, LoadingDock).loadingOrder( A, 0 ) :-
loadingOrder( A, 0 ).

getGoods( Agent, LoadingDock).isDriving( Agent ).

getGoods( Agent, LoadingDock).loadingOrder( Agent, NewOrder ):-
loadingOrder( Agent, 0ldOrder),
{delete( 01dOrder, (LoadingDock,Good), NewOrder)}. %%%

:= prolog.
thisWorld (W, KW).

Figure 7.1: A TRAM database for the Loading Dock Scenario



after applying the macro. By mapping time values (durations) to the single actions, we can
formulate how much time has passed by going from the start world to the end world of the
interval.

In figure 7.2, a possible start world for the loading dock scenario is described. In this start
world, both trucks truck! and truck?2 are driving and have orders to accomplish. Moreover,
there are some propositions true in any world (expressed by the variable world name Every-
World. E. g. both trucks are agents, for both trucks station2 is the target station, and the
only way to reach station2 from stationl is by taking the train. By the way, it seems the
only way to reach station?2 at all.

Yrerrhrsnrnnshnrnbrrrrrhrsss WORLD PREDICATES ... #**sdssssnkrsshsssrnabibss

:= world( startWorld ).

isDriving( truckl ).
loadingOrder( truckl,[( loadingdockl, gil ),( loadingdock2, g21 ) ]).
isDriving( truck2 ).

loadingOrder( truck2,[( loadingdockl, g12 ),( loadingdock2, g22) ]1).

:= world( EveryWorld ).

isAgent( truckl ).

hasToGoByTrain( truckl, stationl, station2 ).
isTargetStation( truckl, station2).

isAgent( truck2 ).
hasToGoByTrain( truck2, stationl, station2 ).
isTargetStation( truck2, station2).

isRamp( loadingdocki ).
isRamp( loadingdock2 ).
isTrainRamp( stationl ).
isTrainRamp( station2 ).

hasToLoadatRamp( Agent, LoadingDock ) :-
isAgent( Agent), isRamp( LoadingDock ), loadingOrder( Agent, List ),
{member( (LoadingDock,Good), List )}. %%% This goal invokes original PROLOG

Figure 7.2: A TRAM Starting World

Finally, in figure 7.3, we provide a query to the TRAM system delivering a world in which a
task schedule has been achieved where 'wait states’ of trucks at ramps are avoided and the
two trucks finally meet at the station to board the train. Note that the variables Res! and
Res?2 incorporate the 'plans’ for truck! and truck2, respectively, i. e. the sequence of actions
which transmit them into a world in which their goals are fulfilled. A listing of the complete
solution to the problem can be found in Appendix A.
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% TRAM query ensuring a scheduling of the two trucks. The predicates
% f_diamond_trans and p_full_diamond_trans correspond to the EML operators
% defined previously.

?- f_diamond_trans( orderDelete(truckl), Resl , startWorld),
f_diamond_trans( orderDelete(truck2), Res2 , startWorld),
not( p_full_diamond_trans(

(thisWorld( C1 ), { C1 =[getGoods(truckl,RampI,_)|_],
p-full_diamond_trans( (thisWorld( C2 ),
{ c2=[getGoods(truck2,RampI,_)|_] } ),_,Res2),
C1 equal C2} ),_,Resl)

).

Yrrrsexxrsxrxkxxk**x% Answer Variable Bindings EE e e R s

Resl =

unload(truckl) .goByTrain(truckl,rampT2, [useTrain(truckl,rampTi,rampT2),changeToTrain(truckl,rampT1)])
.getGoods(truckl,rampl, [moveBack(truckl,rampl),load(truckl,rampl),moveToRamp(truckl,rampi)]).
driveTo(truckl,rampl)

.getGoods(truckl,ramp2, [moveBack(truckl,ramp2),load(truckl,ramp2),moveToRamp(truckl,ramp2)]).
driveTo(truckl,ramp2) .startWorld,

Res2 =

unload(truck2) .goByTrain(truck2,rampT2, [useTrain(truck2,rampTi,rampT2),changeToTrain(truck2,rampT1)])
.getGoods(truck2,ramp2, [moveBack(truck2,ramp2),load(truck2,ramp2),moveToRamp(truck2,ramp2)]).
driveTo(truck2,ramp2)

.getGoods(truck2,rampl, [moveBack(truck2,rampl),load(truck2,rampl),moveToRamp(truck2,ramp1)]).
driveTo(truck2,rampl) .startWorld,

Ci = _161, Rampl = _205, C2 = _258

Figure 7.3: A Query to the TRAM System
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Chapter 8

Conclusion and Outlook

Conclusion

In this paper we have tried to provide an overview on some current existing approaches on the
representation of temporal knowledge. After presenting some important work on this subject,
we described the CHRONOLOG temporal programming language and the TRAM system for
the representation of temporal knowledge based on CHRONOLOG. TRAM integrates two
different concepts of time: one based on modal logics and another one related to intervals
of time. We have shown how intervals can be represented as connected sequences of worlds
in the graph of possible worlds. We have provided a formal treatment of this approach by
integrating a semantics of intervals into a standard modal temporal logics, and we have given
an operational semantics for our system. Moreover, we have shown how the system can be
implemented on top of a PROLOG system by defining a horizontal compilation scheme.
We have demonstrated the usefulness of our system by giving an example which involves
synchronization and coordination in a multi-agent scenario.

Outlook

I'rom our current work quite a few new directives have arisen which will determine our future
work in temporal logics. First, the combinatorial explosion caused by the operators which
can be used to expand new worlds is a serious problem which appears in many areas in
AL Tt will force us to find and to apply intelligent methods of restricting the search space.
The detection of cycles, the use of goal-driven search techniques, and the declaration of
constraints by the user are possible steps in this direction. Second, due to our work in the
ficld of multi-agent systems (cf. [BG88, GH8Y, DM90, DM91] for an overview), we will have
to conduct further examinations on the role time plays with respect to multi-agent knowledge
representation, distributed control and planning, as well as the coordination of the actions
of different agents. The small example we presented in section 5 gives an idea of some of the
possibilities contained in this field. After all, understanding the mystery of time continues
to be one of the very fascinating challenges for human research.

I
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Appendix A

The TRAM Solution for the Loading
Dock Example

h

Y e s ke o ok sk ok ke ok ok ok ok ok 3k sk ok sk ok ok s ok K ok ok 3 ok K ok o ok ok 3k ok Kk K
Jokkdckakkkkkkk PEAM_OpS ... ¥dkkkkkkokkokkkok ok
Y 8 3 s ko ok ks ok 3 o ok 3 3 ok 3 3 oK oK 3 ok oK 3k o ok 3 o ok koK 3 o ok K 3 ok ok K

% An agent can DRIVE TO a LoadingPlatform, if
% it has to load something there
% it is driving
/A and it did not come from this LoadingPlatform in the world before

prim_op( driveTo( Agent, LoadingPlatform ) ):-
isAgent( Agent),
isRamp( LoadingPlatform ),
isDriving( Agent ),
not done( driveTo( Agent, LoadingPlatform)),
hasToLoadAtRamp( Agent, LoadingPlatform ).

% An agent can only be UNLOADED, if

% it stays at this LoadingPlatform

% this LoadingPlatform is its target LoadingPlatform
% it has nothing to load anywhere else.

prim_op( unload(Agent)) :-



isAgent( Agent),
isTargetRamp( Agent, LoadingPlatform ),
atRamp( Agent, LoadingPlatform ).

% It can only become LOADED, if
% it stays at this LoadingPlatform
% it still has to load something there

prim_op( load( Agent, LoadingPlatform )) :-
isAgent( Agent),
isRamp( LoadingPlatform ),
atRamp( Agent, LoadingPlatform ),
hasToLoadAtRamp( Agent, LoadingPlatform ).

% It can only MOVE TO THE LoadingPlatform, if

% it has entered the loading dock,

4 there is no other agent staying at the LoadingPlatform,

4 it has the order to load some goods at this LoadingPlatform
% it did not move back from the Platform the world before

prim_op( moveToRamp( Agent, LoadingPlatform)):-
isAgent( Agent ),
isRamp( LoadingPlatform),
not done( moveBack( Agent, LoadingPlatform)),
entered( Agent, LoadingPlatform ),
not atRamp( _, LoadingPlatform),
hasToLoadAtRamp( Agent, LoadingPlatform ).

% It can only MOVE AWAY FROM THE LoadingPlatform, if
% it stays there now

prim_op(moveBack( Agent, LoadingPlatform)):-
isAgent( Agent ),
isRamp( LoadingPlatform),
not done(moveToRamp( Agent, LoadingPlatform)),
atRamp( Agent, LoadingPlatform ).

% An agent has to CHANGE to TRamp, if
% it is already driving
% its order is to go by train from this TRamp

H2



% its loadingOrder is empty

prim_op( changeToTrain( Agent, TRamp) ):-
isAgent( Agent),
isTrainRamp( TRamp ),
isDriving( Agent ),
loadingOrder( Agent, []),
hasToGoByTrain( Agent, Tramp, ToTRamp).

% An agent can only USE THE TRAIN, if
% it has to use it
% it sits in a train

prim_op( useTrain( Agent, FromTRamp, ToTRamp )):-
isAgent( Agent),
isTrainRamp( FromTRamp ),
isTrainRamp( ToTRamp ),
sitInTrain( Agent, FromTRamp ),
hasToGoByTrain( Agent, FromTRamp, ToTRamp).

% It can only wait, if it stays in the loading dock; not at the ramp!'!'!

prim_op( wait( Agent )):-
isAgent( Agent ), not atRamp( Agent,Goods), not done(wait(Agent)).

Yk sk ok ok ok sk sk ok ok ok K ok ok o ok ok ok ok ok sk ok ok ok K K ok ok ok ok ok ok oK ok ok ok ok ok ok K ok ok
Skkkrkkkkkkkk MacTo_ops ... kkkkkkkiokiokkkkk
Y ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ok

macro_op( getGoods( Agent, LoadingPlatform )) :-
moveToRamp( Agent, LoadingPlatform),
load( Agent, LoadingPlatform),
moveBack( Agent, LoadingPlatform ).

macro_op( goByTrain( Agent, ToTRamp )) :-
changeToTrain( Agent, FromTRamp),
useTrain( Agent, FromTRamp, ToTRamp ).

'/.******************************************

Yokxkkkkkx* WORLD PREDICATES ... skkkkkkkkkk
Yo sk ok ko ok ok ok K o ok oK K o oK ok K K K oK oK oK K K K 3 ok ok K K KK K K oK KK KK K



:- world( startWorld ).
isDriving( truckl ).
loadingOrder( trucki, [( LoadingPlatforml, giil ),( LoadingPlatform2, g21 ) ]).

:- world( startWorldTruck2 ).
isDriving( truck2 ).
loadingOrder( truck2, [( LoadingPlatformi, gi2 ),( LoadingPlatform2, g22) ]).

:- world( EveryWorld ).

isAgent( truckl ).

hasToGoByTrain( truckl, rampTi, rampT2 ).
isTargetRamp( truckl, rampT2).

isAgent( truck2 ).
hasToGoByTrain( truck2, rampT1, rampT2 ).
isTargetRamp( truck2, rampT2).

isRamp( LoadingPlatformi ).
isRamp( LoadingPlatform2 ).
isTrainRamp( rampT1 ).
isTrainRamp( rampT2 ).

hasToLoadAtRamp( Agent, LoadingPlatform ) :-
isAgent( Agent),
isRamp( LoadingPlatform ),
loadingOrder( Agent, List ),
{member( (LoadingPlatform,Good), List )}. %%4% This goal invokes original PROLOG

driveTo( Agent, LoadingPlatform ).entered( Agent, LoadingPlatform ).
driveTo( Agent, LoadingPlatform ).done( driveTo( Agent, LoadingPlatform )).
driveTo( Agent, LoadingPlatform ).loadingOrder( A, 0 ):-

loadingOrder( A, 0 ).

moveToRamp( Agent, LoadingPlatform).done(moveToRamp( Agent, LoadingPlatform)).
moveToRamp( Agent, LoadingPlatform).atRamp( Agent, LoadingPlatform ).
moveToRamp( Agent, LoadingPlatform).loadingOrder( A, 0 ):-

loadingOrder( A, 0 ).

load( Agent, LoadingPlatform ).atRamp( Agent, LoadingPlatform ).
load( Agent, LoadingPlatform ).loadingOrder( Agent, NewOrder ):-
loadingOrder( Agent, 0ldOrder),
{delete( 01dOrder, (LoadingPlatform,Good), NewOrder)}. %%/



moveBack( Agent, LoadingPlatform).isDriving( Agent ).

moveBack( Agent, LoadingPlatform).done( moveBack( Agent, LoadingPlatform)).

moveBack( Agent, LoadingPlatform).loadingOrder( A, 0 ) :-
loadingOrder( A, 0 ).

unload(Agent) .orderDelete( Agent ).

changeToTrain( Agent, TRamp).sitInTrain( Agent, TRamp).
changeToTrain( Agent, TRamp).loadingOrder( A, 0 ):-
loadingOrder( A, 0 ).

useTrain( Agent, FromTRamp, ToTRamp ).atRamp( Agent, ToTRamp).
useTrain( Agent, FromTRamp, ToTRamp ).loadingOrder( A, 0 ):-
loadingOrder( A, 0 ).

goByTrain( Agent, ToTRamp ).atRamp( Agent, ToTRamp).
goByTrain( Agent, ToTRamp ).loadingOrder( A, 0 ):-
loadingOrder( A, 0 ).

getGoods( Agent, LoadingPlatform).isDriving( Agent ).

getGoods( Agent, LoadingPlatform).loadingOrder( Agent, NewOrder ):-
loadingOrder( Agent, 0ldOrder),
{delete( 0l1dOrder, (LoadingPlatform,Good), NewOrder)}. %A% ...

:- prolog.

thisWorld(W,W).
cconsult(loadingDock) .
ccompile(loadingDock) .

switch_to_world( startWorld ).
switch_to_world( startWorldTruck2 ).

apply( moveToRamp( Agent,X)).

apply( load( Agent, Ramp ) ).

apply( unload( Agent, Ramp ) ).

apply( moveBack( Agent,Y) ).

apply( driveTo( Agent, rampl )).

apply( driveTo( Agent, ramp2 )).

apply( changeToTrain( Agent, TRamp)).
apply( useTrain( Agent, FromRamp,ToRamp)).
apply( getGoods( Agent, Ramp,_ )).

apply( goByTrain( Agent, ToTRamp,_ )).

now( entered( Agent, Ramp ) ).
now( atRamp( Agent, Ramp ) ).
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now( isDriving(Agent)).

now( loadingOrder( Agent, Order) ).

now( hasToGoByTrain( Agent, Start, Goal) ).
now( isTargetRamp( Agent, Ramp )).

now( hasToLoadAtRamp( Agent, Ramp )).

now( orderDelete(Agent) ).

f_diamond_trans( orderDelete(Agent), W , startWorld).

WIBIBIBININANG, - Compound goals  MAMAMAIAIAIAIAIIIIIIIAIAIAIIII AL A A

Is there a World (Res1) in the future of (startWorld) in which
"orderDelete( truckl )" holds true and

is there a world (Res2) in the future of (startWorldTruck2) in which
"orderDelete( truck2 )" holds true

and is there an interval (W1) in the past of the world (Resl), which has been

created using "goByTrain(..)",

and is there an interval (W2) in the past of world (Res2), which has been

created using "goByTrain(..)"

such that the intervals W1 and W2 are equal.

f_diamond_trans( orderDelete(truckl), Resl , startWorld),
f_diamond_trans( orderDelete(truck2), Res2 , startWorldTruck2),

p-full_diamond_trans( thisWorld( Wi ) ,_, Resl),
Wi = [goByTrain( truckl, rampT2, _ ) | _],
p-full_diamond_trans( thisWorld( W2 ) ,_, Res2),
W2 = [goByTrain( truck2, rampT2, _ ) | _],
W1 equal W2.
./.========================================================================

% For no ramp (Ramp) there exist intervals (World_21) and (World_22) in the past

% of (Res1) and (Res2), which have been created by '"getGoods" and between which

% the relations "" and "" hold. The predicates f_diamond_trans and p_full_diamond_tran:
% correspond to the EML operators defined previously.

f_diamond_trans( orderDelete(truckl), Resl , startWorld),



f_diamond_trans( orderDelete(truck2), Res2 , startWorldTruck2),
not( p_full_diamond_trans(
(thisWorld( C1 ),
{ C1 =[getGoods(truckl,RampI,_)|_],
p-full_diamond_trans( (thisWorld( C2 ),
{ C2=[getGoods(truck2,RampI,_)|_] } ),_,Res2),
C1 equal C2
}),_,Resl)

Result of the second query:

*x (2764) 0 Call:
getGoods (truckl,rampl,
[moveBack(truckl,ramp1l),load(truckl,rampl) ,moveToRamp (truckl,rampi)])
.driveTo(truckl,ramp1)
.getGoods (truckl,ramp2,
[moveBack(truckl,ramp2),load(truckl,ramp2) ,moveToRamp(truckl,ramp2)])
.driveTo(truckl,ramp2)
.startWorld
equal
getGoods (truck2,rampl,
[moveBack(truck2,ramp1),load(truck?,rampl) ,moveToRamp (truck2,rampi1)])
.driveTo(truck2,ramp1) A
.getGoods (truck2,ramp2,
[moveBack(truck2,ramp2),load(truck2,ramp2) ,moveToRamp (truck2,ramp2)])
.driveTo(truck2,ramp2)
.startWorldTruck2 7 1
** (2940) 2 Call: relation(6,6,8,8,equal) 7 1
** (2940) 2 Exit: relation(6,6,8,8,equal) ?

======= First successful search, after which the world (Res2) is rejected.

** (3063) 0 Call:
getGoods(truckl,rampi,

[moveBack(truckl,ramp1),load(truckl,rampl) ,moveToRamp(truckl,ramp1)])
.driveTo(truckl,ramp1)
.getGoods (truckl,ramp2,

[moveBack(truckl,ramp2),load(truckl,ramp2) ,moveToRamp(truckl,ramp2)])
.driveTo(truckl,ramp2)
.startWorld

equal

getGoods (truck2,rampil,

[moveBack(truck2,ramp1),load(truck2,rampl) ,moveToRamp(truck2,ramp1)])
.driveTo(truck2,ramp1)
.startWorldTruck2 7 1

by |
b |



** (3193) 2 Call: relation(6,2,8,4,equal) 7 1
** (3193) 2 Fail: relation(6,2,8,4,equal) 7 1

**x (3285) 0 Call:
getGoods (truckl,ramp2,
[moveBack(truckl,ramp2),load(truckl,ramp2) ,moveToRamp(truckl,ramp2)])
.driveTo(truckl,ramp2)
.startWorld
equal
getGoods (truck2,ramp2,
[moveBack(truck2,ramp2),load(truck2,ramp2) ,moveToRamp (truck2,ramp2)])
.driveTo(truck2,ramp2)
.getGoods (truck2,rampi,
[moveBack(truck2,ramp1),load(truck2,rampl) ,moveToRamp (truck2,rampi)])
.driveTo(truck2,rampl)
.startWorldTruck2 7 1
** (3415) 2 Call: relation(2,6,4,8,equal) 7 1
** (3415) 2 Fail: relation(2,6,4,8,equal) 7 1

======== No contradiction could be found, so the resulting worlds
======== are printed out

Resl =
unload(trucki)
.goByTrain(truckl,rampT2,
[useTrain(truckl,rampT1,rampT2),changeToTrain(truckl,rampT1)])
.getGoods (truckl,rampl,
[moveBack(truckl,rampl),load(truckl,rampl) ,moveToRamp(truckl,ramp1)])
.driveTo(truckl,rampl)
.getGoods (truckl,ramp2,
[moveBack(truckl,ramp2),load(truckl,ramp2) ,moveToRamp (truckl,ramp2)])
.driveTo(truckl,ramp2) .
.startWorld,

Res2 =
unload(truck?2)
.goByTrain(truck2,rampT2,
[useTrain(truck2,rampT1,rampT2) ,changeToTrain(truck2,rampT1)])
.getGoods (truck2,ramp2,
[moveBack(truck2,ramp2),load(truck2,ramp2) ,moveToRamp (truck2,ramp2)])
.driveTo(truck2,ramp2)
.getGoods (truck2,rampl,
[moveBack(truck2,rampl),load(truck2,rampil) ,moveToRamp (truck2,ramp1)])
.driveTo(truck2,rampi)
.startWorldTruck?2,



c1 = _161,
RampI = _205,
c2 = _258

Y Yy Y Y A Y Y A YA YA Y YA YA Y YA A Y YA Y A A YA VAN

59




Bibliography

[A1183]

[Al184]

[AMS9]

[BB87]
[BGSS|

[Brz89]

[CM81]

[DMY0]
[DMO1]
[Gab87]
[Gal87]
[GHBY]

[Hry88]

[Kri7l1]

[KS86]

J. F. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11),
1983.

J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23(2), 1984.

M. Abadi and Z. Manna. Temporal logic programming. Symbolic Computation,
(8):277-295, 1989.

H.J. Buerckert and K.H. Blaesius. Deduktionssysteme. Oldenbourg-Verlag, 1987.

A. Bond and L. Gasser. Readiﬁgs in Distributed Artificial Intelligence. Morgan
Kaufmann, Los Angeles, CA, 1988.

C. Brzoska. Temporal logic programming A survey. Institut fuer Logik, Kom-
plexitaet und Deduktionssysteme, Universitaet Karlsruhe, 1989.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, 1981.

Y. Demazeau and J.-P. Miiller. Decentralized A.I. North Holland, 1990.
Y. Demazeau and J.-P. Miller. Decentralized A.I. 2. North Holland, 1991.
D. Gabbay. Modal and temporal logic programming. Academic Press, 1987.

A. Galton. Temporal logics and their applications. Academic Press, 1987.

L. Gasser and M.N. Huhns. Distributed Artificial Intelligence, Volume II. Re-
search Notes in Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, 1989.

T. Hrycej. Temporal PROLOG. In Proc. of the 7th european conference on
Artificial Intelligence, pages 296-301, St. Paul, MN, 1988.

S. Kripke. Semantical considerations on modal logics. Oxford University Press,
1971.

R.A. Kowalski and M.J. Sergot. A logic based calculus of events. New generation

computing, (4):67-95, 1986.

60



[Llo84]
[MMPS92]

[Nil80]
[0S89]

[Pis91]

[Pri67]
[Ram88]

[RK91]
[Sch89]
[Sho88]

[SM87]
[$S86]

[Tan89]

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

H.J. Miiller, J.P. Miiller, M. Pischel, and R. Scheidhauer. On the Representation
of Temporal Knowledge. Technical Report TR-92-77 DFKI Saarbriicken, 1992.

N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

H.J. Ohlbach and J.H. Siekmann. The Markgraf Karl Refutation Procedure.
SEKI-report SR-89-19, Universitat Kaiserslautern, 1989.

M. Pischel. TRAM: Integration verschiedener Ansatze zur Zeitreprasentation.
Master’s thesis, Universitat Kaiserslautern, 1991.

A.N. Prior. Past, presence and future. Clarendon Press, Oxford, 1967.

A. Ramsay. Formal methods in Artificial Intelligence. Cambridge University
Press, 1988.

E. Rich and K. Knight. Artificial Intelligence. McGraw Hill, 2nd edition, 1991.
R. Scheidhauer. Chronolog, 1989.

Y. Shoham. Reasoning about change: Time and causation from the standpoint

of AI. MIT Press, 1988.
Y. Shoham and D.V. McDermott. Temporal reasoning, 1987.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mas-
sachusetts, 1986.

T.G. Tang. Temporal logic CTL + PROLOG. Journal of Automated Reasoning,
(5):49-65, 1989.

61



Deutsches
Forschungszentrum
far Kanstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Vero6ffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen kénnen von der oben angegebenen
Adresse bezogen werden.

Die Berichte werden, wenn nicht
gekennzeichnet, kostenlos abgegeben.

anders

DFKI

-Bibliothek-

PF 2080

D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.

The reports are distributed free of charge except if
otherwise indicated.

DFKI Research Reports

RR-91-10

Franz Baader, Philipp Hanschke: A Scheme for
Integrating Concrete Domains into Concept
Languages

31 pages

RR-91-11

Bernhard Nebel: Belief Revision and Default
Reasoning: Syntax-Based Approaches

37 pages

RR-91-12

J.Mark Gawron, John Nerbonne, Stanley Peters:
The Absorption Principle and E-Type Anaphora
33 pages

RR-91-13

Gert Smolka: Residuation and Guarded Rules for
Constraint Logic Programming

17 pages

RR-91-14

Peter Breuer, Jiirgen Miiller: A Two Level
Representation for Spatial Relations, Part I
27 pages

RR-91-15

Bernhard Nebel, Gert Smolka:

Attributive Description Formalisms ... and the Rest
of the World

20 pages

RR-91-16

Stephan Busemann: Using Pattern-Action Rules for
the Generation of GPSG Structures from Separate
Semantic Representations

18 pages

RR-91-17

Andreas Dengel, Nelson M. Mattos:

The Use of Abstraction Concepts for Representing
and Structuring Documents

17 pages

RR-91-18
John Nerbonne, Klaus Netter, Abdel Kader Diagne,
Ludwig Dickmann, Judith Klein:

A Diagnostic Tool for German Syntax
20 pages

RR-91-19

Munindar P. Singh: On thc Commitments and
Precommitments of Limited Agents

15 pages

RR-91-20

Christoph Klauck, Ansgar Bernardi, Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21

Klaus Netter: Clausc Union and Verb Raising
Phenomena in German

38 pages

RR-91-22

Andreas Dengel: Sclf-Adapting Structuring and
Representation of Space

27 pages

RR-91-23

Michael Richter, Ansgar Bernardi, Christoph
Klauck, Ralf Legleitner: Akquisition und
Reprisentation von technischem Wissen fiir
Planungsaufgaben im Bereich der Fertigungstechnik
24 Sciten

RR-91-24

Jochen Ileinsohn: A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages



RR-91-25

Karin Harbusch, Wolfgang Finkler, Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars

16 pages

RR-91-26
M. Bauer, S. Biundo, D. Dengler, M. Iecking,
J. Koehler, G. Merziger:
Integrated Plan Generation and Recognition
- A Logic-Based Approach -
17 pages

RR-91-27

A. Bernardi, I1. Boley, Ph. Hanschke,

K. Ilinkelmann, Ch. Klauck, O. Kiihn,

R. Legleitner, M. Meyer, M. M. Richter,
F. Schmalhofer, G. Schmidt, W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge

18 pages

RR-91-28

Rolf Backofen, llarald Trost, I1ans Uszkoreit:
Linking Typed Feature Formalisms and
Terminological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29

lans Uszkoreit: Strategices for Adding Control
Information to Declarative Grammars

17 pages

RR-91-30

Dan Flickinger, John Nerbonne:

Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns

39 pages

RR-91-31

I1.-U. Krieger, J. Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons

Il pages

RR-91-32

Rolf Backofen, Lutz Euler, Giinther Gorz:

Towards the Integration of Functions, Relations and
Types in an Al Programming Language

14 pages

RR-91-33

Franz Baader, Klaus Schulz:

Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures

33 pages

RR-91-34

Bernhard Nebel, Christer Bdackstrom:

On the Computational Complexity ol Temporal
Projection and some related Problems

35 pages

RR-91-35

Winfried Graf, Wolfgang Maaf3: Constraint-basierte
Verarbeitung graphischen Wissens

14 Seiten

RR-92-01

Werner Nutt: Unification in Monoidal Theories is
Solving Linear Equations over Semirings

57 pages

RR-92-02

Andreas Dengel, Rainer Bleisinger, Rainer Hoch,
Frank lones, Frank Fein, Michael Malburg:
MopAa: The Paper Interface to ODA

53 pages

RR-92-03

Iarold Boley:

Extended Logic-plus-Functional Programming
28 pages

RR-92-04

John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DATR
15 pages

RR-92-05

Ansgar Bernardi, Christoph Klauck,

Ralf Legleitner, Michael Schulte, Rainer Stark:
Feature bascd Integration of CAD and CAPP
19 pages )

RR-92-06
Achim Schupetea: Main Topics od DAI: A Review
38 pages

RR-92-07

Michael Beetz:

Decision-theoretic Transformational Planning
22 pages

RR-92-08

Gabriele Merziger: Approaches to Abductive
Recasoning - An Overview -

46 pages

RR-92-09

Winfried Graf, Markus A. Thies:

Perspektiven zur Kombination von automatischem
Animationsdesign und planbasicrier Hilfe

15 Seciten

RR-92-11

Susane Biundo, Dietmar Dengler, Jana Koehler:
Deductive Planning and Plan Reuse in a Command
Language Environment

13 pages

RR-92-13

Markus A. Thies, FFrank Berger:

Planbasicrte graphische Hilfe in objcktorientierten
Benutzungsoberfliichen

13 Seciten



RR-92-14
Intelligent User Support in Graphical User
Interfaces:
1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle, Markus A. Thies
2. Plan-Based Graphical Help in Object-
Oriented User Interfaces
Markus A. Thies, Frank Berger
22 pages

RR-92-15

Winfried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations

23 pages

RR-92-16

Jochen Heinsohn, Daniel Kudenko, Berhard Nebel,
Hans-Jiirgen Profitlich. An Empirical Analysis of
Terminological Representation Systems

38 pages

RR-92-17

Hassan Ait-Kaci, Andreas Podelski, Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment

23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19

Ralf Legleitner, Ansgar Bernardi, Christoph Klauck
PIM: Planning In Manufacturing using Skeletal
Plans and Features

17 pages

RR-92-20

John Nerbonne: Representing Grammar, Meaning
and Knowledge

18 pages

RR-92-21

Jorg-Peter Mohren, Jiirgen Miiller
Representing Spatial Relations (Part IT) -The
Geometrical Approach

25 pages

RR-92-22
Jorg Wiirtz: Unifying Cycles
24 pages

RR-92-24

Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain

20 pages

DFKI Technical Memos

TM-91-09

Munindar P. Singh: On the Semantics of Protocols
Among Distributed Intelligent Agents

18 pages

TM-91-10

Béla Buschauer, Peter Poller, Anne Schauder, Karin
Harbusch: Tree Adjoining Grammars mit
Unifikation

149 pages

T™™-91-11

Peter Wazinski: Generating Spatial Descriptions for
Cross-modal References

21 pages

TM-91-12

Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erwciterung des
D-PATR zur Feature-Erkennung in CAD/CAM

33 Sciten

TM-91-13

Knut Hinkelmann:

Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter

16 pages

TM-91-14

Rainer Bleisinger, Rainer IHoch, Andreas Dengel:
ODA-bascd modcling for document analysis

14 pages

T™™-91-15

Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge
Representation

28 pages

TM-92-01

Lijuan Zhang:

Entwurf und Implementicrung cincs Compilers zur
Transformation von Werkstiickrepriisentationen

34 Sciten

TM-92-02

Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld

32 pages

TM-92-03

Mona Singh

A Cognitiv Analysis of Event Structure
21 pages

TM-92-04

Jiirgen Miiller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages



DFKI Documents

D-91-10

Donald R. Steiner, Jiirgen Miiller (Eds.):
MAAMAW 91: Pre-Proceedings of the 3rd
European Workshop on ,,Modeling Autonomous
Agents and Multi-Agent Worlds*

246 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-91-11
Thilo C. Horstmann:Distributed Truth Maintenance
61 pages

D-91-12

Bernd Bachmann:

HicmCOn - a Knowledge Representation System
with Typed Hicrarchics and Constraints

75 pages

D-91-13

International Workshop on Terminological Logics

Organizers: Bernhard Nebel, Christof Peltason,
Kai von Luck

131 pages

D-91-14

Erich Achilles, Bernhard lHollunder, Armin Laux,
Jorg-Peter Mohren: KRIS : Knowledge
RKepresentation and /nference System

- Benutzerhandbuch -

28 Sciten

D-91-15

Iarold Boley, Philipp [lanschke, Martin Ilarm,
Knut Iinkelmann, Thomas Labisch, Manfred
Meyer, Jorg Miiller, Thomas Olizen, Michael
Sintek, Werner Stein, Frank Steinle:
HCAD2NC: A Declarative Lathe-Worplanning
Model Transforming CAD-like Geometries into
Abstract NC Programs

100 pages

D-91-16

Jérg Thoben, Franz Schmalhofer, Thomas Reinartz:
Wicderholungs-, Varianten- und Neuplanung bei der
Fertigung rotationssymmetrischer Drehteile

134 Sciten

D-91-17

Andreas Becker:

Analysc der Planungsverfahren der KI im Hinblick
auf thre Eignung fir dic Abceitsplanung

86 Seiten

D-91-18
Thomas Reinartz: Definition von Problemklassen
im Maschinenbau als cine Begriffsbildungsaufgabe
107 Seiten

D-91-19

Peter Wazinski: Objcktlokalisation in graphischen
Darstellungen

110 Serrer

D-92-01

Stefan Bussmann: Simulation Environment for
Multi-Agent Worlds - Benutzeranleitung

50 Seciten

D-92-02

Wolfgang Maaf3: Constraint-basierte Plazierung in
multimodalen Dokumenten am Beispiel des Layout-
Managers in WIP

111 Seciten

D-92-03

Wolfgan Maaf3, Thomas Schiffmann, Dudung
Soetopo, Winfried Graf: LAYLAB: Ein System zur
automatischen Plazierung von Text-Bild-
Kombinationen in multimodalen Dokumenten

41 Sciten

D-92-06

Ilans Werner Iloper: Systcmatik zur Beschreibung
von Woerksticken in der Terminologie der
Featuresprache

392 Seciten

D-92-08

Jochen lleinsohn, Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proccedings

56 pages

D-92-09

Gernod P. Laufkétter: Implementicrungsmoglich-
kciten der integrativen Wisscensakquisitionsmethode
des ARC-TEC-Projckles

86 Scilen

D-92-10

Jakob Mauss: Ein hcuristisch gesteuerter Chrat-
Parser fiir attributicrtc Graph-Grammatiken

87 Sciten

D-92-15

DFKI Wissenschaftlich-Technischer Jahresbericht
1991

130 Sciten

D-92-21

Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages















Jiirgen Miiller, J6rg Miiller, Markus Pischel, Ralf Scheidhauer : Technical Memo




