
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Technical
Memo
TM-91-02

Bidirectional Reasoning of Horn Clause

Programs: Transformation and Compilation

Knut Hinkelmann

January 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Nixdorf, Philips
and Siemens. Research projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial contracts .

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Bidirectional Reasoning of Horn Clause Programs:
Transformation and Compilation

Knut Hinkelmann

DFKI-TM-91-02

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Bidirectional Reasoning of Horn Clause Programs:
Transformation and Compilation

Knut Hinkelmann
DFKI GmbH
Postfach 2080

6750 Kaiserslautern, F.R.Germany
hinkelma@dfki.uni-kl.de

Abstract

A compilative approach for forward reasoning of horn rules in Prolog is presented .
Pure horn rules - given as Prolog clauses - are to be used for forward and backward
reasoning. These rules are translated into Prolog clauses, denoting one forward reasoning
step . Forward chaining is t riggered by an initial fact, from which the consequences are
derived. Premises of forward rules are verified by Prolog's backward proof procedure
using the original clauses. Thus , without any changes to the Prolog interpreter integrated
bidirectional reasoning of the original horn rules is possible. Breadth-first and depth-first
reasoning strategies with enumeration and collection of conclusions are implemented.
In order to translate forward clauses into WAM operations several improvements are
introduced. To avoid inefficient changes of program code derived facts are recorded in a
special storage area called retain stack. Subsumption of a new conclusion by previously
derived facts is tested by a built-in procedure. As a reasonable application of this kind
of forward reasoning its use is demonstrated for integrity constraint checking.

1 Introd uction

Reasoning in rule-based systems can be done using two principal directions. While forward
inference begins with the facts in the knowledge base reasoning bottom-up to derive new
facts, backward inference applies the rules in a top-down fashion.

Conventional forward reasoning production systems [For81] have separate memories for facts
(working memory) and rules (production memory). The working memory is assumed to
contain all true assertions as ground facts. The rules in the production memory are only used
to modify the working memory. Consequently the conditions of the rules in the production
memory need only be tested against the facts.

Interpreting horn clauses of logic programs in the natural forward implication direction leads
to the view of a logic program as a declarative rule system. The conclusion is a fact which is
true if the premises are satisfied. Obviously, in the conclusion arbitrary evaluable expressions
are prohibited. A characteristics of logic programs is the common representation of facts and
rules in a single knowledge base. An uncontrolled application offorward reasoning computing
all consequences of a knowledge base - if possible at all in finite time - would make all
knowledge explicit as facts, leaving back the rules as redundant knowledge. This would be
contrary to the philosophy of logic systems. That is why in the approach presented here

1

forward resoning is used only to compute the implications of a single knowledge item. By
account of rule-implicit knowledge backward reasoning is still necessary to determine whether
the remaining premises hold, after a rule has been triggered by a fact unifying with one of
the premises.

Prolog, the most prominent logic programming language, has received much attention in
the AI community. In contrast to production systems the reasoning direction of Prolog is
backward (goal-directed). Because of the existence of rather efficient implementations it
seems appropriate to use it as the starting point for a logic-based integration of forward and
backward reasoning. Several attempts have been made to integrate forward chaining into
Prolog. Common to most of these approaches is that they use disjoint sets of rules for both
reasoning directions [Mor81]' [CDE87], [FFM89]. On the other hand the naive or semi-naive
bottom-up evaluation of horn clauses is used in deductive databases [BR86], [BR88]. There is
no integration with backward reasoning but they are used to support goal-directed bottom
up reasoning with magic-sets [BMSU86] or Alexander method [RLK86]. Kowalski describes
bidirectional reasoning over one rule set in pure horn logic [Kow79]. Bidirectional reasoning
can be achieved by

• explicit choice of the reasoning direction using call primitives (e. g. KEE [Int86])

• dynamic choice depending on cost estimates [TG87]

• predefined interfaces, e. g. verifying conditions in forward rules by backward reasoning,
or triggering forward rules by successful backward proofs.

We will introduce a compilative approach to perform, besides the usual backward chaining,
forward reasoning over Prolog clauses. Forward reasoning has to be explicitly activated while
premises in forward chaining are verified by Prolog's backward proof procedure.

While a (meta) rule interpreter would read and execute a rule at execution time, rule transla
tion generates code more adequate for execution. Two knowledge compilation techniques for
doing forward reasoning will be presented: horizontal compilation and vertical compilation.
The attributes 'horizontal' and 'vertical' refer to the abstraction levels of source and target
language. A compilation will be called 'horizontal', if source and target language are merely
at the same level. Vertical compilation is more close to conventional compilation of higher
level programming languages to machine code.

Our approach consists of two steps (Fig. 1). First, we will show a 'horizontal' transformation
of a Prolog clause C into a set of clauses {Ct. ... , Cn} (n ~ number of premises of C), which,
if executed by Prolog, are equivalent to the forward execution of the original clause C. This
transformation is called 'horizontal', because the target language is the same as the source
language: horn clauses. Based on these experiences of doing forward reasoning in a backward
reasoning system an improved 'vertical' compilation into a forward chaining Warren Abstract
Machine (WAM [War83]) code will be presented.

2

horn-clause

program P

horizontal

compilation

WAM code
for P and P'

forward-clause
program P'

Figure 1: Backward and Forward Compilation of Horn Clauses

2 Rule Characterization

2.1 Logical Implications

A rule in a conventional rule-based system has the following structure:

The preconditions PI, . .. , Pm on the left-hand side of the rule must be satisfied for the rule
to fire. Firing a rule means execution of the actions AI, ... , An of the right-hand side.

To get a reasoning system based on predicate calculus we restrict PI, ... , Pm and AI, ... , An to
logical propositions and interpret ,,~" as logical implication. Then AIO", . .. , AnO" are logical
consequences of the knowledge base, if PI 0", ••• , PmO" are satisfied (AiO", PjO" are instances
of Ai, Pj respectively). In the rest of the article, the term deduction rules refers to these
implications. PI' ... ' Pm are premises or antecedents and AI' ... ' An are conclusions of the
rule.

2.2 Forward and Backward Reasoning over the Same Rule Set

One major idea of declarative programming is the separation oflogic from control shifting the
responsibility for control to the execution mechanism. The programmer should care as little
as possible about it. For a system integrating forward and backward reasoning this means, in
the ideal case, that the application direction of a rule need not be visible to the programmer.
As a consequence both reasoning directions should be applied to the same rule set. For the
sake of knowledge base consistency this seems desirable, too. Assuming two different rule
bases in which semantically equivalent rules occur, inconsistencies may arise when only one
rule set is updated. Thus our first step is to commit ourselves to a rule syntax suited equally
well for each reasoning method.

2.3 Horn Rules

As a common rule structure for combined forward and backward reasoning we decided for horn
rules. Logic formulas can be transformed to clauses - universally quantified disjunctions of

3

positive and negative atoms called literals. Horn clauses are clauses with at most one positive
literal:

is equivalent to

In the rest of the paper the term horn rule will be used synonymously for horn clauses if they
are to be interpreted as implications. Horn rules without any premise are facts.

It should be noted, that the restriction to horn rules does not depend on the forward reason
ing characteristics. Rather the use of a logic programming system for backward reasoning
demands the choice. But it will be shown that the expressiveness of our rule language is
increased - compared to that of production systems - by the use of logic variables.

Conventional production rule systems allow a conjunction of conclusions and disjunctions of
premises. The conclusions At, ... , An are pairwise independent, because new variables in the
conclusion part are prohibited and all variables must be bound during the matching process
of the preconditions. A transformation of this kind of rules to horn rules is trivial and could
be performed by a precompiler. Rules with conjunctive conclusions

are transformed into

Pt /\ P2 /\ ... /\ Pm -+ At

Pt /\ P2 /\ ... /\ Pm -+ A2

These horn rules could be executed without any loss of efficiency taking into account structure
sharing between equal premises in different rules. But implementation methods like TREAT
[Mir87] or Rete [For82] algorithm are not appropriate in a logic programming framework.
They match premises only against ground facts in the working memory, whlle in our approach
premises have to be verified by backward reasoning, which is not possible by doing propagation
like Rete algorithms.

If a rule's premise part contains disjunctions it is first transformed into disjunctive normal
form

D t V D2 V ... V Dp -+ A

with Di, i = 1, ... , p, being conjunctions of literals Pit, ... , Piq. This kind of rule is equivalent
to a sequence of horn rules

Compared to production systems, logic programs have the advantage of compactly represent
ing factual knowledge with variables. Conventional production rules do not allow variables

4

to occur only in the action part, because derived facts have to be ground. Also, because of
shared variables between more than one action undesired dependencies would be established
(cf. [FFM89]). However, this is considered harmless for horn rules, because each rule has just
one conclusion. After rule firing, variables in the conclusion need not be instantiated, lead
ing to nonground facts in the next chaining step. Therefore unification (instead of pattern
matching applied in conventional production systems) for premise satisfaction is important
in a logic programming framework.

2.4 Prolog

Since Prolog rules are executed in backward direction it suggests itself to start with Prolog
as the basis for an integrated forward and backward reasoning rule system. But some Prolog
specific extra-logic features, which depend on program execution and implementation, are
prohibited in rules which are to be applied in both directions:

• control of program execution: cut, fail

• side effects: input/output, retraction and assertion of clauses

• meta predicates: clause, functor, arg, ...

The remaining logic part of Prolog itself is used as backward reasoning subcomponent. Thus
our goal to integrate forward and backward reasoning over the same rule set is reduced to
the task of doing forward reasoning of logic programs.

3 Forward Reasoning Characteristics

Prolog's backward reasoning proof procedure starts with a goal? - q(.. .). It looks for a rule
which has a conclusion unifiable with this goal. If a rule q(...) : -PI(" .), ... ,Pm(" .). is
found, backward reasoning is applied recursively to the premises PI (...), ... , Pm(. ..) of the
rule. These premises are now considered as goals. Forward reasoning, on the other hand, is
initiated by a fact pj(' ..) which is unifiable (or matching) with one of a rule's premises. If
the remaining premises of the rule are also satisfied (either by facts or by a backward proof),
the conclusion q(. ..) of this rule is derived. We call the fact pj(' . .) the trigger of the forward
rule application.

A forward reasoning system repeatedly executes a match-select-act-cycle. In the match phase
the antecedents of rules are tested for satisfaction. All rule instantiations with satisfied
antecedents form the conflict set. In the select phase one rule instance is chosen from the
conflict set and executed in the act phase. In a logic programming framework control should
correspond to conventional logic programs. In our approach rules and predicates are executed
sequentially in a left-to-right manner. The conflict set is not built explicitly. As soon as an
applicable rule is found during the match phase it will be applied. Various' reasoning strategies
(depth-first vs. breadth-first) and answer presentations (all at once vs. enumerating one by
one) can be easily realized.

Knowledge in logic programs is represented implicitly by facts and rules rather than by an
explicit enumeration of all true facts. Forward reasoning of horn rules has to take considera
tion of this pecularity. In particular, forward chaining starts with an initial fact p(Xl, ••• , xn).

Only propositions derived from this fact are computed by the following procedure:

5

1. Set the actual fact F to p(xt, ... ,xn).

2. Find the next potentially applicable rule: Rules are processed sequentially. A rule
C: -PI, ... ,Pm. is triggered, if any Pj,l ~ i ~ m, is unifiable with the actual fact F
with substitution u.

If no rule is applicable, go to 5.

3. Test the rule's conditions: The conjunction of the remaining premises PI' ... ' Pj-l,
Pj+t, . .. , Pm is verified by conventional backward reasoning.

If it is not satisfiable, go to 2.

4. Apply the rule: If it is satisfiable with substitution r > u, record the instantiated
conclusion Cr as a derived fact.

5. Select an actual fact F for further reasoning. At least two reasoning strategies are
possible:

breadth first: The actual fact F is kept until there is no further rule for it. Then F
is set to the oldest not already expanded fact.

depth first: F is set to the most recently derived fact Cr for which there are any rules
to be applied.

Stop if there are no (more) facts with applicable rules. Else proceed with 2.

6. Display the recorded facts as the consequences of the initial fact p(xl, ... , Xn).

The procedure terminates, if the initial fact has finitely many consequences in the given
knowledge base.

The integrated breadth-first forward and backward reasoning will be exemplified with a little
program about geometry and manufacturing in the domain of mechanical engineering (ap
pendix A). Given a fact cylinder(a2,4,2) the rspear-rule is triggered for forward reason
ing: cylinder(a2,4,2) is unifiable with the first premise cylinder(Cyl,Lengthl,Radius).
The remaining premises can be verified by conventional backward reasoning, as the reader
may check. The conclusion rspear(c(a2,al) ,5,2) is recorded. It is called a reached
node. Every reached node is also an open node until forward chaining proceeds with it.
Since no further rule is applicable for our initial fact cylinder(a2,4,2) forward reasoning
continues with the open node rspear(c(a2,a1) ,5,2) inferring rot_part(c(a2,al)) and
material(c(a2,a1) ,metal), from which manufactured(c(a2,al) ,lathe_tooling) is de
rived.

4 Horizontal Compilation to Prolog Clauses

The horizontal compilation presented in this section takes a set of horn rules P = {Ct, ... , Cn}
and produces a set of Prolog clauses P' = {CL ... , C:n}, which are the corresponding rules
of P for forward reasoning (see below). Executing PUP' by Prolog's backward reasoning
behaves like forward reasoning of P following the strategy described above (chapter 3). To
perform this kind of forward reasoning, a fact p(Xl, ... , xn) has to be compared with every

6

premise Pi(. ..), 1 ~ i ~ m, of a rule. That is, a rule q(. ..) : -PI (...), ... , Pm(. ..). is translated
into a sequence of forward rules following this pattern:

forward(PI(. ..), q(. ..)) P2(.. .), ... ,Pm(.. .), retain(q(.. .)).

f orward(p2(. ..), q(. ..)) PI (...), P3(. . .), ... , Pm(. ..), retain(q(. . .)).

forward(Pm(. ..), q(. ..)) PI(...), ... ,Pm-l(...), retain(q(.. .)).

The transformation process allows forward reasoning in Prolog without any changes to the
backward reasoning interpreter. Applying a forward clause corresponds to a one step forward
execution of the original horn rule, triggerd by Pi(.. .). A goal? - forward(Pi(. ..), q(. ..))
succeeds, if q(...) is a one-step derivation of Pi(.. .). The rules have the following intended
semantics:

"If the actual fact is unifiable with Pi(. ..) with most general unifier (7, then prove
the remaining premises PI (...)(7, ... , Pi-l (. ..)(7, Pi+l (...)(7, ... , Pm(. ..)(7. If they
are satisfied giving substitution r ~ (7, retain the conclusion q(...)r for further
reasoning."

In [YT86] a translation of production rules into Prolog is presented, too. In contrast to our
approach, for every rule exactly one Prolog clause is generated. The first premise appears
as part of the conclusion, because it is emphasized as a trigger for rule application. Thus, a
kind of goal-directed forward reasoning is used to derive the outstanding facts. Goal-directed
reasoning, however, could be performed by Prolog itself using the original clauses.

4.1 Rule Translation for Forward Reasoning

The order of rules is significant in logic programming a la Prolog and thus are also significant
in the transformed programm. The transformation process preserves this rule sequence: If
rule RI is before R2 in the original program its translation R~ is also before R~. Facts of the
original knowledge base are ignored during translation. The simplest rules to be translated
are those with exactly one premise. The translation process results here in a single forward
rule. Thus,

cylinder(lame,Length,Radius) truncone(lame,Length,Radius,Radius) .

is translated into the clause

forvard(truncone(lame,Length,Radius,Radius) , cylinder(lame,Length,Radius»
retain(cylinder(lame,Length,Radius».

Then a goal ?- forward(truncone(a2,3,2, 2) ,X) would derive the instantiated conclusion
X = cylinder(a2, 3,2), without invocation of backward verification.

The first argument term of forward/2 serves as a trigger if it is unifiable with the actual fact.
If a rule has more than one non-primitive premise, several forward clauses are generated, one
for each premise that is not a negated premise or a Prolog built-in. Therefore the translation
of the rule

7

rspear(c(Cyl,Cone),Length,Radius) '- cylinder(Cyl,Lengthl,Radius) ,
rcone(Cone ,Length2 ,Radius) ,
Length is Lengthl + Length2,
connected(Cyl,Cone).

has three instead of four clauses, since the third premise Length is Lengthl + Length2 will
not be unifiable with an assertion:

torward(cylinder(Cyl,Lengthl,Radius) ,rspear(c(Cyl,Cone) ,Le ngth,Radius»
rcone(Cone ,Length2 ,Radius) ,
Length is Lengthl + Length2,
connected(Cyl,Cone) ,
retain(rspear(c(Cyl,Cone),Length,Radius».

torward(rcone(Cone , Length2 ,Radius) ,rspear(c(Cyl,Cone) ,Len gth,Radius»
cylinder(Cyl,Lengthl,Radius) ,
Length is Lengthl + Length2,
connected(Cyl,Cone) ,
retain(rspear(c(Cyl,Cone),Length,Radius».

torward(connected(Cyl,Cone) ,rspear(c(Cyl,Cone) ,Length,Rad ius»
cylinder(Cyl,Lengthl,Radius) ,
rcone(Cone,Length2,Radius) ,
Length is Lengthl + Length2,
retain(rspear(c(Cyl,Cone),Length,Radius».

The translation of the entire sample knowledge base of appendix A is presented in appendix
B. It consists of one large procedure for forvard/2. Clauses generated from each source rule
are grou ped together.

4.2 Retaining of Conclusions

A forward reasoning system applies rules with satisfied premises by recording its conclusion.
These derived facts may again trigger other forward rules. The forward reasoning process
can be visualized as a deduction tree, with the initial fact as its root and derived facts as
nodes. The sons of a node N are the instantiated conclusions of applied rules triggered by N.
Therefore, all derived facts are also called reached nodes. The order in which the deduction
tree is built up depends on the search strategy. Presently, breadth-first and depth-first
strategies are realized (see below).

Reasoning depth first the most recently derived fact is selected for forward chaining cor
responding directly to Prolog's execution strategy. Proceeding breadth-first, however, the
managing overhead increases. For every reached node it has to be recorded whether it is
already expanded, i. e. whether it has been used to trigger a forward rule. The definition of
the predicate retain/l (Fig. 2) reflects this overhead.

A new derivation Conclusion is asserted twice: in the form reached(Conclusion) and as
open...node (Conclusion). The predicate reached/l indicates that its argument is a fact
derived by forward reasoning. The status of a new fact as reached remains until the end of
the forward chaining process. The information about open nodes is necessary for breadth
first strategy. As soon as Conclusion has been selected for forward chaining, the clause
open...node(Conclusion) will be retracted (c.f. section 4.3).

To avoid redundancies, the conclusion of an applied rule is asserted only if it has not al
ready been derived: The premise not-.reached(Conclusion) succeeds, if the derived fact

8

retain(Conclusion) '- not~eached(Conclusion),

assertz(reached(Conclusion»,
assertz(open~ode(Conclusion».

Figure 2: Retaining of Conclusions

Conclusion is not subsumed by any formerly reached node. Since in a logic programming
framework facts and conclusion may contain unbound variables a simple unification with
previously reached nodes does not suffice, in particular if the new conclusion is more general.

Consider a new conclusion manufactured(X,lathe_tooling) and a formerly reached node
manufactured(al, lathe_tooling). Simple unification with previous nodes would regard
manufactured(X, lathe_tooling) as already reached although it is more general. A correct
solution must therefore test for subsumption with matching. A possible realization is given
in appendix C. First the recently derived fact is made ground using new terms, and then
it is unified with the previously reached nodes. If it is unifiable with any reached node it is
rejected. 1

4.3 Depth-first and Breadth-first Strategies

Appendix E shows the definitions of depth-first and breadth-first strategies of forward rea
soning. They derive consequences for all instantiations of the initial fact. For both strategies
the selection of applicable rules depends on the sequence of rules in the program.

4.3.1 Enumerating Derivations Depth First

Depth-first search (appendix E) always proceeds with the most recently derived fact. If no
further step is possible, another path is tried by backtracking. Depth-first forward chaining is
activated by a call of the top-level predicate df _enum/2. The procedure df _one/2 enumerates
the consequences for its first argument, Fact, one at a time. The one-step consequence of
Fact is bound to Conclusion. The next reasoning step is activated by backtracking. A
query to the knowledge base of appendix A - together with its horizontally compiled version
of appendix B - using depth-first strategy could look like:

1- dt_enum(truncone(a2,4.2.2).Result).

Result = cylinder(a2.4.2);
Result = rspear(c(a2.al).6.2);
Result = rot_part(c(a2.al));
Result = manutactured(c(a2,al).lathe_tooling);
Result = material(c(a2,al).metal);
Result = rot_part(a2);
Result = manutactured(a2.lathe_tooling);
no

1 In our current implementation an already reached node aanufactured(al.1athe_tooling) , which is more
special tha.n a new node, will not be retracted .

9

4.3.2 Enumerating Derivations Breadth First

Appendix E also presents two versions for breadth-first forward reasoning, enumerating the
conclusions one by one (bf_enum/2) and presenting them all at once (bLall/2). Both rea
soning strategies access open nodes, retained in forward/2. Open nodes are all those leaves
of the deduction tree that are not yet selected for breadth-first rule firing.

In an initialization step the temporary store is cleared. The first clause ofbf _enum/2 computes
the facts derivable from the initial fact in one step. The second clause computes derivations
of already derived open nodes.

The procedure for forward_oneIl stops, if a new node is reached. If an open node is found,
forward/2 is called. In forward-.ane/l the actual node is bound to the result variable
Inference. Via backtracking further solutions are derived by forward/2. If no further
inferences can be drawn, the next open node is tried. An enumerating breadth-first query
could proceed like:

1- bf_enum(truncone(a2,4,2,2).Result).

Result = cylinder(a2.4.2);
Result = rot_part(a2);
Result = rspear(c(a2.al).5,2);
Result = manufactured(a2.lathe_tooling);
Result = rot_part(c(a2.al»;
Result = material(c(a2,al) ,metal);
Result = manufactured(c(a2,al) ,lathe_tooling);
no

4.3.3 Presenting Derivations all at once

A goal ?- bLall (Fact, Inferences) succeeds, if Inferences is instantiated to a list with
all facts derivable from Fact. The procedures bLall/2 and forward_all/l are very similar
to bLenum/2 and forward_oneIl, respectively. Backtracking, however, is initiated by the
clause itself using fail and not by the calling predicate or the user. If no further forward
reasoning step is possible, the derived facts are collected in a list, which is unified with the
result variable Inferences:

1- bf_all(truncone(a2,4.2,2) ,Result).

Result = [cylinder(a2,4.2), rot_part(a2), rspear(c(a2,al),5,2).
manufactured(a2,lathe_tooling), rot_part(c(a2.al»,
material(c(a2,al),metal), manufactured(c(a2.al).lathe_tooling)];

no

4.4 Rule 'combinations

For reasons of efficiency the compiler could combine rules with equivalent premises into one
forward clause as exemplified with the two rules

pl(a,b) :- q(a).r(b).
p2(b) :- q(a),r(b).

Both rules have equivalent premises but different conclusion. They are transformed to two
forward clauses:

10

torward(q(a),[pl(a,b),p2(b)]) :- r(b), retain(pl(a,b)), retain(p2(b)).
torward(r(b),[pl(a,b),p2(b)]) :- q(a), retain(pl(a,b)), retain(p2(b)).

The conclusions of the rules are collected in a list and the call to retain has to be duplicated
for the various conclusions. For breadth-first strategy with derivation of all consequences no
changes to the implementation are necessary. For enumeration of consequences, however, the
reasoning strategy has to be adapted, because of the list of conclusions. This makes clear
how forward reasoning could also treat more general rules with a conjunction of conclusions.

5 Vertical Compilation into WAM Code

The Warren Abstract Machine [War83] is an often implemented architecture for backward
reasoning of horn clauses. After horizontal transformation of a horn clause program Pinto
a forward clause Prolog program P' (cf. chapter 4) the clauses of P and P' are compiled
vertically into WAM code (see fig. 1). But since the WAM was developed especially for
backward reasoning, several improvements for forward rules are possible. They extend the
WAM by a special stack area for derived facts, called retain stack, and a one-way unification
for subsumption tests. In the following subsections names of operations, stacks, and registers
are taken from [GLL085]. The tags REF(erence), STR(ucture), and LIS(t) are borrowed from
[AK90j.

5.1 The Retain Stack

Derived facts in horizontally compiled forward rules are retained by space consuming double
assertion with predicates reached/land open.,node/l (see 4.2). Such assertions are rather
inefficient because program code itself is altered dynamically. But the information whether a
node is reached or open is necessary. It is held more compactly at machine level in a special
data area which will be called the retain stack RETAIN (see fig. 3). The stack is organized
as a list: The first REF cell points to the current entry and the following LIS cell points
to the beginning of the next item. Every entry on the stack is an internal representation of
a proposition derived by forward rule application. It consists of variable, constant, list and
structure cells distinguished by tags. An example is given in fig. 3.

The pointer RTOP indicates the top of the retain stack. All entries of the retain stack are
reached nodes. For the breadth-first strategy of forward reasoning the expansion of open
nodes is performed in the order in which they are generated. This order is identical to the
order of the nodes on the retain stack. Open nodes are accessed by the register ON. Every
node with an address higher than ON is an open node. Whenever the node at address ON is
expanded, ON is increased.

5.2 Compiling Retain

The clause for the predicate retain/l (fig. 2) in a forward clause is compiled into a sequence
of WAM operations pushing its argument - the derived fact - onto the retain stack.

retain/l: not_r_subsumed Xl
push_tact_retain Xl

% Test tor subsumption
% Copying the tact to RETAIl

11

RTOP-
node n

8 STR 3

7 REF 7

6 p/2

5 STR 6

4 REF 4
node 3 3 ON- h/1

node 2 2 STR 3

1 LIS 9
node 1 0 REF 5

RETAIN p(X,h(Y))

Figure 3: Retain Stack

To accept the new fact it must be secured that it is not subsumed by any structure already
existing on the stack. A new operation not...r -.Subsumed Xi is introduced performing this
test. The new fact referenced by Xi is matched against every entry on the retain stack.
It calls the function subsumes(x,y) to test subsumption. The functions unify(x,y) and
subsumes (x, y) differ only in two cases: If x and yare unbound REF cells then a new
constant Ci is created and y is bound to Ci. If Y is an unbound REF cell and x is a non
REF celT, the test fails, because a REF cell is not subsumed by a value. The rest of the
procedure remains unchanged. Backtracking occurs, if subsumption of the derived fact with
any previously derived fact succeeds (see appendix D).

If subsumption fails no backtracking occurs and the new fact is pushed onto the retain stack by
the operation push...:fact...retain Xi. The values on the retain stack are "more persistent"
than values on the global stack or the local stack. While values on the local and global
stack may be destroyed by backtracking derived facts must survive for the whole forward
inference chain. Because of this no reference from the retain stack to any other memory cell
is permitted. This is why a derived fact is copied. Before pushing variables are dereferenced.
If the dereferenced value is not an unbound variable cell it is copied onto the retain stack
and dereferencing is performed recursively for every subvariable in the functor structure.
Otherwise, for an unbound variable, a new REF cell is pushed onto the retain stack referring
to itself. Finally, RTOP is increased, completing the retain operation.

5.3 Compiled Strategies

The clauses representing different reasoning strategies (appendix E) refer to structures re
siding on the retain stack. So their compiled version needs some modifications compared to
a straightforward compilation. These modifications are rather obvious, but since the retain
stack is an extension to the conventional WAM, novel operations are introduced.

12

• Performing forward chaining initialization resets the pointers ON and RTOP to the bottom
address ·of the retain stack: fc_ini tialize

• Accessing an open node is realized by getting the structure at stack position ON. A call
to open..node Xi meets the requirements setting Xi to the open node.

• Retracting an open..node fact is equivalent to increasing ON to point to the successive
stack content: next_open..node

• Breadth-first reasoning stops, if there exists no further open node. This is equivalent
to the state when ON = RTOP

• Collecting all derived facts in the second clause for forvard....all is very simple. Since
the retain stack is organized as a list just load the bottom address of the stack into
register Xi. Calling collect....all on source level corresponds to the execution of the
new WAM instruction fc_collect Xi.

The depth-first and breadth-first strategy clauses are invariant, independent from the knowl
edge base to be compiled. Thus after compilation of the original source program their code
will just be added to the forward program.

6 Application: Integrity Constraints

These kind of forward rules could be used to detect whether knowledge base updates would
lead to inconsistencies. Consider a logic program with integrity constraints denoting negative
or disjunctive knowledge. These integrity constraints are represented as clauses with the atom

inconsistent as conclusion (negation as inconsistency [GM86]). Thus, the following rule
demands that two connected parts must have the same radius at their contact point.

inconsistent:- connected(P1,P2),
truncone(P1,_,_,R1),
truncone(P2,_,R2,_),
R1 =\= R2.

A real knowledge base will have many of these integrity constraints. Now assume, that the
facts truncone(a3,5,2,2) and truncone(a4,4,3,O) are deducible from the knowledge base
and we want to connect these truncated cones. Using Prolog's proof strategy one has to assert
the fact connected(a3, a4) and then to ask the query ?- inconsistent. This procedure
would invoke all integrity constraints even if they are independent from the new fact. Instead,
it would be more efficient to invoke only those rules, that are directly influenced by this new
assertion. The following goal succeeds, if connected(a3, a4) is inconsistent with the integrity
constraints

?- bf_enum(connected(a3,a4),R), R == inconsistent.

7 Conclusions and Future Work

An approach for combined forward and backward reasoning of horn rules has been presented.
The whole system is embedded in a logic programming environment. The same horn rule set

13

is used for both reasoning directions. In a first step horn rules are horizontally transformed
into clauses corresponding to one step of forward reasoning. Conclusions of applied rules are
not asserted directly into the knowledge base. Instead, they are recorded as arguments of
special predicates. The intended use is to generate hypotheses following from a given fact
and perform tests by the backward reasoning logic program. Breadth-first and depth-first
strategies have been presented. The ideas have been implemented for the horn clause subpart
of RELFUN [BoI90], a relational/functional language with valued clauses.

For vertical compilation a special retain stack to record derived facts extends the WAM. This
stack saves memory space and makes access more efficient compared to a direct compilation
of the code, obtained by horizontal transformation. A source of inefficiency is the sequential
subsumption test for reached clauses. It could be improved by a kind of hashing taking
the functor as a key. The subsumption test of a new fact with previously derived ones
can also be made more efficient by variations of the WAM's unification operations. As a
further improvement [Olt91] presents a tree-like organization of these operations. Further
deliberations concern the permanent assertion of derived facts. After forward chaining has
terminated the user can be given the opportunity to select them for assertion if she or he
considers them relevant for further processing.

In the current status forward rules are represented with a single predicate forvard. Access
to applicable rules is just supported by indexing on the first argument's functor. Introducing
a special code area for forward clauses, those clauses with the same predicate for the trigger
premise could be grouped together. Then, unification of the actual fact with the rule's
trigger could be supported by WAM operations. The special code area takes precautions to
distinguish the original backward rules and facts from the compiled forward clauses.

The plain control strategy is induced by the SLD-resolution procedure of logic programming.
Forward rules are selected for execution in a strictly sequential manner. But implementation
methods like TREAT [Mir87] or Rete [For82] algorithm are not appropriate since premises
are proved by backward reasoning in our approach. Besides breadth-first and depth-first
strategies, more sophisticated control strategies are conceivable, e. g. best-first, requiring
some kind of estimation. Especially in larger applications, where rules reflect an expert's
heuristics, more flexible control strategies are desirable. [PH88] promotes control of rule
firing at instance level taking into account variable instantiations. Their strategies for rule
selection are decribed by the programmer using a kind of meta rules.

References

[AK90] Hassan Ait-Kaci. The WAM: A (Real) Tutorial. Report 5, Digital , Paris Research Labo
ratory, January 1990.

[BMSU86] F . Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman . Magic sets and other strange ways
to implement logic programs. In Proceedings 5th ACM SIGMOD-SIGACT Symposium on
Principles of Database Systems, pages 1- 15. ACM, 1986.

[Bo190]

[BR86]

Harold Boley. A relational/functional Language and its Compilation into the WAM. SEKI
Report SR-90-05, Universitiit Kaiserslautern, 1990.

Francois Bancilhon and Raghu Ramakrishnan . An amateur's introduction to recursive
query processing strategies. In Proceedings of the ACM SIGMOD Conference, pages 16-
52. ACM, 1986.

14

[BR88] Francois Bancilhon and Raghu Ramakrishnan. Performance evaluation of data intensive
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 441-517. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1988.

[CDE87] D. Chan, P. Dufresne, and R. Enders. Report on phocus. Technical Report TR-LP-21-02,
ECRC, ArabellastraBe 17 D8 Miinchen 81, April 1987.

[FFM89] Tim Finin, Rich Fritzson, and Dave Matuszek. Adding Forward Chaining and Truth
Maintenance to Prolog. In Artificial Intelligence Applications Conference, pages 123- 130,
Miami, March 1989. IEEE.

[For81] Charles 1. Forgy. OPS5 User's Manual. Carnegie-Mellon University, Department of Com
puter Science, Pittsburgh, Pennsylvania 15213, 1981.

[For82] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern
Match Problem. Artificial Intelligence, 19:17-37, 1982.

[GLL085] John Gabriel , Tim Lindholm, E. L. Lusk, and R.A. Overbeek. A Tutorial on the War
ren Abstract Machine for Computational Logic. Report ANL-84-84 , Argonne National
Laboratory, Argonne, Illinois 60439, June 1985.

[GM86]

[Int86]

[Kow79]

[Mir87]

[MorBI]

[Olt91]

[PH88]

[RLK86]

[TG87]

[War83]

[YT86]

D.M. Gabbay and Sergot M.J . Negation as Inconsistency I. Journal of Logic Programming,
1(1) , 1986.

IntelliCorp . KEE Software Development System User 's Manual; KEE Version 3.0. Intel
licorp Corp ., Mountain View, CA, 1986.

Robert Kowalski . Logic for Problem Solving. Artificial Intelligence Series. Elsevier North
Holland, 1979.

Daniel P. Miranker. TREAT: A Better Match Algorithm for AI Production Systems. In
Proc. of AAAI-87, pages 42- 47, Philadelphia, PA, 1987.

Paul Morris . A Forwa rd Chaining Problem Solve r . Logic Programming N ewsletter, 2 :6- 7,
Autumn 1981.

Thomas Oltzen. Term subsumption in the warn . Projektarbeit (in German) , 1991.

Charles J. Petrie and Michael N. Huhns. Controlling Forward Rule Instances. MCC Tech
nical Report ACA-AI-012-88, Microelectronics and Computer Technology Corporation,
3500 West Balcones Center Drive, Austin , TX, January 1988.

J . Rohmer, R. Lescoeur, and J. M. Kerisit . The alexander method - a technique for the
processing of recursive axioms in deductive databases. New Generation Computing, pages
273- 285, 1986.

Richard Treitel and Michael R. Genesereth . Choosing Directions for Rules. Journal of
Automated Reasoning, 3:395-431, 1987.

David . H. D. Warren. An Abstract Prolog Instruction Set . Technical Note 309, SRI
International , Menlo Park, CA, October 1983.

Akira Yamamoto and Hozumi Tanaka. Translating Production Rules into a Forward
Reasoning Prolog Program. New Generation Computing, 4:97- 105, 1986.

15

A Geometrical and Manufacturing Knowledge

An example knowledge base with geometrical and manufacturing knowledge.

00
truncated cone cylinder

% Rules:

cylinder(lame,Length,Radius) .
truncone(laae,Length,Radius,Radius).

lcone(lame,Length,Radius) :
truncone(laae,Length,O,Radius).

rcone(lame,Length,Radius) :
truncone(lame,Length,Radius,O).

rspear(c(Cyl,Cone) ,Length ,Radius)
cylinder(Cyl,Lengthl,Radius) ,
rcone(Cone ,Length2 ,Radius) ,
Length is Lengthl + Length2,
connected(Cyl,Cone).

rot_part (I)
rot_part (I)

truncone(I,_,_,_).
rapear(I,_,_).

manufactured(Part,lathe_tooling)
rot_part (Part) ,
material (Part , metal).

material(c(Cyl,Cone),Mat) :
cspear(c(Cyl,Cone),_,_),
material (Cyl ,Mat) ,
material(Cone,Mat).

% Facts:

truncone(al,l,2,O).
connected(a2,al).
material(al,metal).
material(a2,metal).

16

right cone right spear

Yo 1 cylinder is a truncated
% cone with left radius
% equal to right radius

Yo 1 left cone is a truncated
% cone with left radius 0

% a right cone is a truncated
% cone with right radius 0

% 1 right spear is composed of
Yo a cylinder connected to
Yo a cone with tip on the right.

Yo truncated cones and right
Yo spears are rotation
Yo syametric parts

Yo Metallic rotation symmetric
% parts are manufactured by
Yo lathe_tooling.

Yo The material of a right spear
Yo is the saae as that of each
Yo component.

B Horizontally Compiled Rules

Horizontal compilation of the geometrical and manufacturing knowledge base (appendix A):

forward(truncone(lame,Length,RadiuB,RadiuB),cylinder(lame,Length,Radius»
retain(cylinder(lame,Length,RadiuB».

forward(truncone(lame,Length,O,RadiuB),lcone(lame,Length,Radius»
retain(lcone(lame ,Length,RadiuB».

forward(truncone(lame,Length,RadiUB,O),rcone(lame,Length,Radius»
retain(rcone(lame ,Length,Radius».

forward(cylinder(Cyl,Lengthl,Radius),rspear(c(Cyl,Cone), Length,Radius»
rcone(Cone,Length2,Radius) ,
Length is Lengthl + Length2,
connected(Cyl,Cone) ,
retain(rspear(c(Cyl,Cone),Length.Radius».

forward(rcone(Cone.Length2.Radius).rspear(c(Cyl,Cone).Length.Radius» .
cylinder(Cyl,Lengt hl.Radius).
Length is Lengthl + Length2.
connected(Cyl.Cone).
retain(rspear(c(Cyl,Cone).Length.Radius».

forward(connected(Cyl.Cone).rspear(c(Cyl,Cone),Length,Radius»
cylinder(Cyl,Lengt hl.Radius).
rcone(Cone ,Length2 ,Radius) ,
Length is Length1 + Length2.
retain(rspear(c(Cyl.Cone),Length,Radius».

forward(truncone(X,_,_,_),rot_part(X» :- retain(rot_part(X».

forward(rspear(X,_,_),rot _part(X» :- retain(rot_part(X».

forward (rot_part (Part) ,manufactured (Part ,lathe_tooling»
material (Part ,metal) ,
retain(manufactured(Part,lathe_tooling».

forward(material(Part,metal),manufactured(Part,lathe_tooling»
rot_part (Part) ,
retain(manufactured(Part,lathe_tooling»

forward(rspear(c(Cyl,Cone) ,_,_),material(c(Cyl,Cone) ,Mat))
material(Cyl,Mat),
material(Cone,Mat) ,
retainO.

forward(material(Cyl,Mat),material(c(Cyl,Cone).Mat» .
rspear(c(Cyl,Cone),_,_),
material (Cone ,Mat) ,
retain(material(c(Cyl,Cone),Mat».

forward(material(Cone ,Mat) .mater,ial(c(Cyl, Cone) ,Mat»
rspear(c(Cyl,Cone),_,_),
material (Cyl,Mat) ,
retain(material(c(Cyl,Cone),Mat».

17

C Subsumption on Source Level

A derived fact is retained, if it has not been reached by a former inference step:

retain(Concluaion) '- not_reached(Concluaion) ,
aaserta(reached(Conclusion»,
aaaertz(open_node(Concluaion».

A call to ?- not...reached(Conclusion) succeeds, if Conclusion is not subsumed by any
previously reached fact. First Conclusion is instantiated with new terms, then a proof must
fail:

not_reached(Conclusion) :
instantiate(Conclusion,Conclnst,O,_),!,
not(reached(Conclnst».

A goal?- instantiate (X ,Xinst ,Cl,C2) succeeds, if the instantiation of X with new terms
equals Xinst. Cl and C2 are counters identifying the terms. The terms look like const (Cl).
The functor const/l must be used nowhere else in the program:

instantiate(X,const(Cl),C,Cl)
var(X) ,
I . ,
Cl is C+l.

instantiate ([], [] ,C,C) :- !.

instantiate([HIT] ,[HinstITinst] ,C,C2)
I . ,
instantiate(H,Hinst,C,Cl),
instantiate(T,Tinst,Cl,C2).

instantiate(X,X,C,C)
atomic(X),
! .

instantiate(X,Xinst,C,Cl)
X = .. [PredI Args],
instantiate(Args,Argsinst,C,Cl),
Xinst = .. [PredIArgsinst].

18

% variable instantiation:
% unbound variables are
% are instantiated to
% const(Cl)

% instantiating head
% and tail of lists

% constants are
% instantiations
% of themselves

% instantiating
% arguments of terms

D Subsumption on WAM Level

A call to retain/l in a forward clause is compiled into a sequence of WAM operations
pushing its argument - the derived fact - onto the retain stack.

retain/l: not_r_subsumed 11
push_fact_retain 11

Yo Test for subsumption
Yo Copying the fact to RETAIl

The WAM operation not..rJlubsumed Xi tests, whether the value referenced by Xi is not
subsumed by any structure on the retain stack:

success <- false; RS <- 0; % Initialization: Start address of RETAIl
while (RS < RTOP) and not success

subsumes(Xi,RS);
<tag,value> <- RETAI I[RS + 1];
RS <- value;

Yo second cell contains address of
% successor structure: <LIS,addr>

endwhile;
if success

then begin % Backtracking if
P <- STACK[B + STACK[B] + 4];
end

% subsumption succeeds

else begin % Accept: subsumption failed
Yo next instruction P <- P + instruction_size(P);

end

Procedure subsumes (al, a2) sets variable success to true, if the structure at a2 is subsumed
by or equal to the structure at a1:

procedure subsumes (al, a2: address);
push(al,PDL); push(a2,PDL);
success <- true;
while (not(empty(PDL» and success) do

begin
d2 <- deref(pop(PDL»; dl <- deref(pop(PDL»;
if dl <> d2

then begin

end
end subsumes;

<tl, vl> <- STORE[dl]; <t2, v2> <- STORE[d2];
it (tl = REF)

end

then begin
STORE[d2] <- new_constant; bind(dl,d2)
end

else if (t2 = REF)
then success <- false
else begin

fl/nl <- STORE[vl]; f2/n2 <- STORE[v2];
if «fl = f2) and (nl = n2»

then for i <- 1 to nl do
begin
push(vl + i, POL); push(v2 + i, POL)
end

else success <- false
end

19

E Depth-first and Breadth-first Forward Reasoning

% Depth-first enumeration:
df_enum(Faet,Inferenee) .- fe_initialize,

call (Fact) ,
df_one(Faet,Inferenee).

df_one(Faet,Inferenee) forvard(Faet,Conelusion) ,
df_one_more(Conelusion,Inferenee).

df_one_more(Conelusion,Conelusion).
df_one_more(Conelusion,lext) .- df_one(Conelusion,lext).

Yo Breadth-first enumeration:
bf_enum(Faet,Inferenee) .- fe_initialize,

eall(Faet) ,
forvard(Faet,Inferenee).
forvard_one(Inferenee). bf_enum(Faet , Inference)

forvard_one(Inferenee)

% Breadth-first: all at once
bf_all(Faet,Inferenees) .-

bf_all(Faet,Inferenees)

forvard_all(Inferenees)

forvard_all(Inferenees)

open_node (Fact) ,
retraet(open_node(Faet»,
forvard(Faet,Inferenee).

fe_initialize,
call (Fact) ,
forvard(Faet,_),
fail.
forvard_all(Inferenees).

open_node (Fact) ,
retraet(open_node(Faet»,
forvard(Faet,_),
fail.
eolleet_faets(Inferenees).

% Auxiliary clauses:
eolleet_faets([FirstIRest]) reaehed(First) , ! .,

retraet(reaehed(First»,
eolleet_faets(Rest).

eolleet_faets([]).

abolish(open_node, 1) ,
abolish(reaehed,1).

20

Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

DFKI Publika:1ionen

Die folgenden DFKI Veroffentlichungen
oder die aktuelle Liste von erhaltlichen
Publikationen konnen bezogen werden von
der oben angegebenen Adresse.

DFKI Research Reports

RR·90·01
Franz Baader: Tenninological Cycles in KL-ONE
based Knowledge Representation Languages
33 pages

RR·90·02
Hans-lurgen Burckert: A Resolution Principle for
Clauses with Constraints
25 pages

RR·90·03
Andreas Dengel. Nelson M. Mal/Os: Integration of
Document Representation, Processing and
Management
18 pages

RR·90·04
Bernhard Hollunder. Werner NUll: Subsumption
Algorithms for Concept Languages
34 pages

RR·90·05
Franz Baader: A Fonnal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

RR·90·06
Bernhard Hollunder: Hybrid Inferences in KL-ONE
based Knowledge Representation Systems
21 pages

RR·90·07
Elisabeth Andre. Thomas Rist: Wissensbasierte
In format ionsprasen tation:
Zwci Bcitrage zum Fachgesprach Graphik und KI:

I. Ein planbasiertcr Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fUr die
automatische Erzeugung von 3D
Objektdarstellungen

24 pages

DFKI
-Bibliothek
Stuhlsatzenhausweg 3
6600 Saarbrucken 11
FRG

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

RR·90·08
Andreas Dengel: A Step Towards Understanding
Paper Documents
25 pages

RR·90·09
Susanne Biundo: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR·90·10
Franz Baader. Hans-Jurgen Burckert. Bernhard
Hollunder. Werner NUll. lorg If. Siekmann:
Concept Logics
26 pages

RR·90·11
Elisabeth Andre. Thomas Rist: Towards a Plan
Based Synthesis of Illustrated Documents
14 pages

RR·90·12
Harold Boley: Declarative Operations on Nets
43 pages

RR·90·13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR·90·14
Franz Schmalho/er. 0110 Kuhn. Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR·90·15
Harald Trost : The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR-90-16
Franz Baader. Werner Nutt : Adding
Homomorphisms to CommutativelMonoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR-91-01
Franz Baader. Hans-Jiirgen Biirckert. Bernhard
Nebel. Werner Nutt. and Gert Smolka :
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR-91-02
Francesco Donini. Bernhard Hol/under. Maurizio
Lenzerini. Alberto Marchelli Spaccamela. Daniele
Nardi. Werner Nutt:
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
BHollunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
20 pages

RR-91-05
Wolfgang Wahlster. Elisabeth Andre. Winjried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation.
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
Illustrated Documents
A Plan-Based Approach
11 pages

RR-91-07
Gunter Neumann, Wolfgang Finkler: A Head
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster. Elisabeth Andre. Som
Bandyopadhyay. Winfried Gra/. Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

OFKI Technical Memos

TM-89-01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse
18 pages

TM-90-02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM-90-03
Franz Baader. Bernhard Hol/under: KRIS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-Jii.rgen Bii.rckert. Jochen
Heinsohn. Bernhard Hollunder. Jurgen Muller.
Bernhard Nebel. Werner Nutt. Hans-Jiirgen
Profitlich: Terminological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM-91-01
JanaKt5hler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmann
Bidirectional Reasoning of Hom Clause Programs:
Transformation and Compilation
20 pages

OFKI Documents

0-89-01
Michael H. Malburg . Rainer B/eisinger:
HYPERBIS: ein betriebliches Hypermedia
Informationssystem
43 Seiten

0-90-01
DFKI Wissenschaftlich-Technischer lahresbericht
1989
45 pages

0-90-02
Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

0-90-03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD .
36 Seiten

D-90-04
Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: STEP: Oberblick uber eine zukunftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D-90-05
Ansgar Bernardi, Christoph Klauck, Ralf
Legleitner: Formalismus zur Reprasentation von
Geo-metrie- und Technologieinformationen als Teil
eines Wissensbasierten Produktmodells
66 Seiten

D-90-06
Andreas Becker: The Window Tool Kit
66 Seitcn

~ -4 OJ
g m c:
- :s::;
:: f/) CD
;. 0' 2
~ ... -.
3 3 0
~ I»:S
= - I» = -.-

OlJ
:SCD
1»1»
:sf/)
0. 0

:s
(') 5-
oee
3 0 "C_ --Q;":I:
~_O o """I

:s :s
(')

I»
c: f/)
CD

""C
"""II o
ee

"""I
I»
3 f/)

