
Deutsches
Forschungszentrum
fOr KOnstliche
Intelllgenz GmbH

Technical
Memo
TM-91 -01

Approaches to the Reuse of
Plan Schemata

.
In

Planning Formalisms

Jana Kohler

January 1991

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/13
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fOr

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern und SaarbrOcken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Nixdorf, Philips
and Siemens. Research projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world . The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Approaches to the Reuse of Plan Schemata
in Planning Formalisms

Jana Kohler

DFK/-TM-9/-0/

© Deutsches Forschungszentrum fUr Kunstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fUr Kunstliche Intelligenz, Kaisersliwtern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fUr Kunstliche Intelligenz.

Approaches to the Reuse of Plan Schemata in
Planning Formalisms*

Jana Kohler
e-mail: koehler@dfki.uni-sb.de

Abstract

Planning in complex domains is normally a resource and time consuming pro­
cess when it is purely based on first principles. Once a plan is generated it rep­
resents problem solving knowledge. It implicitly describes knowledge used by the
planning system to achieve a given goal state from a particular initial state. In

classical planning systems, this knowledge is often lost after the plan has been
successfully executed. If such a p lanner has to solve the same problem again, it
will spend the same planning effort to solve it and is not capable of "learning" .
from its "experience."

Therefore it seems to be usefu l to save generated plans for a later reuse and
thus , extend ing the problem solving knowledge possessed by the planner. The
planning kn owl edge can now be app lied to find out whether a problem can be
solved by adapting an already ex isting plan.

The aim of this paper is to a nalyze the problem of plan reuse and to describ e
the state of the art based on a variety of approaches which might contribute to
a solution of the problem. It describes the main problems and results that could
be of some relevance for the integration of plan reuse into a deductive planning
formalism .

As a result , this description of the state of the a rt leads to a deeper insight into
the complex prob lem of plan reuse, but a lso shows that the problem itself is sti ll
far from being solved.

"This research was partially sponsored by "Bundesmin isterium flir Bildung und Wissenschaft" under
grant FO 401. I would like to thank Prof. Dr. Wolfgang Wahlster for his advice and support and the
members of the PHI research group, Mathias Bauer, Dr. Susanne Biundo, Dietmar Dengler, Matthias
llccking , and Gaby Merziger for their interest in my work and for many fruitful discussions. I am also
indebted to the German Research Center for Artificial Intelligence from which I received additional
support .

1

Contents

1 Introduction

1.1 Scenarios in Plan Reuse

1.2 Phases in Plan Reuse.

1.3 Overview

2 Representation of Plans

2.1 Representational Requirements

2.2 Relevant Approaches to the Representation Problem
2.2.1 Representation in Case-based Reasoning ...

2.2.2 Representation in Existing Plan Reuse Systems

2.2.3 Macro Operators and Proof Plans

4

4

6

7

8

8

9

9

10

10

2.3 Logical Representations 12

2.3.1 Situational Calculus 12

2.3.2 A Translation of a Case-based Reasoning System into Default Logic 13

3 Plan Determination 15

3.1 Analogy-driven Plan Determination 16

3.1.1 A Concept of Analogy 16

3.1.2 The Structure Mapping Model. 17

3.1.3 Logical Approaches to the Formalization of Analogical Reasoning 19

3.1.4 Implementations of Analogical Reasoning ...

3.2 Efficiency-driven Plan Determination

3.3 Search Procedures to Handle Large Knowledge Bases

4 Plan Modification

4.1 Plan Failures and Refitting Strategies

4.1.1 Failure Classification Based Approaches

4.1.2 A Theory of Plan Modification

4.2 Goal and Operator Ordering Strategies

5 Conclusion and Outlook

5.1 Summary of Results

5.2 Architecture of a Plan Reuse System

A KIP - Knowledge Intensive Planning

A.l Representation of Plans

A.2 Plan Determination ..

A.3 Plan Failure Detection

2

21

21

22

23

23

24

26

27

28

28

30

33

33

35

35

A.4 Evaluation of KIP

B CHEF - Case-based Planning

B.l Representation of Plans

B.2 Plan Determination ..

B.3 Plan Failure Detection

B.4 Evaluation of CHEF .

C PRIAR - Integration of Plan Generation and Plan Reuse

C.l Representation of Plans

C.2 Plan Determination . .

C.3 Plan Failure Detection

C.4 Evaluation of PRIAR .

3

36

37

37

37

38

39

40

40

42

43

45

1 Introduction

Planning is concerned with the generation of sequences of actions for an agent that can
change its environment. A sequence of actions constitutes a plan by which one or more
explicitly stated goals can be achieved (cf. [Sha90]).

Classical AI planning systems rely upon a state-based representation of the world.
These states are represented by sentences in a formal language. Actions that can be
performed in the world under consideration are represented by operators that map the
current state in which the action is performed into another so-called goal state.

Problems the planner has to solve are formulated by goals that are represented by
sentences. The description of the initial state, the actions which can be performed , and
the goals the planner has to solve together constitute the input. As output, the planning
system produces a sequence of actions that maps the initial state into the desired goal
state.

Deductive Planning uses formal logic as a basis to formalize the reasoning process.
States and operators are described using a logical axiomatization. The plan is derived
from the axiomatic problem description based on special kinds of theorem proving tech­
niques. Such a deductive environment provides a well-understood means for a formal
treatment of the problems which arise in planning, among them the frame problem, the
qualification problem, and the ramification problem (cf. [MH69], [McC77], [Fin87]).

Methods of Plan Reuse try to extend classical planners with elements of common­
sense reasoning. The main motivation is to integrate problem solving knowledge that
explicitly represents former solutions to problems into the plan generation mechanism.
This problem solving knowledge is encoded in plan schemata that summarize the ax­
iomatic representation of problem solutions under a particular situation. These former
problem solutions are applied when a similar problem situation occurs. They represent
experience that is now useable by the planning system.

1.1 Scenarios in Plan Reuse

A definition of plan reuse should mention the various scenarios under which it can be seen.
These scenarios describe different applications of plan reuse mechanisms. They vary in
the role plan reuse plays when the planning abilities of a planner are considered: In the
first group of scenarios, the planning abilities of the planning mechanism are extended,
since it reuses plans which were developed by different planners. In the second group,
the planning abilities of the system remain the same, but the performance of the planner
is changed since it reuses its own plans .

• Plan reuse can be applied to extend the planning mechanism in such a way that it
can deal with a larger class of planning problems. There are two scenarios in which
cooperative agents work together and a reuse of plans occurs from the perspective
of one planning system:

Distributed Parallel Planning: The planner belongs to a group of planners
that operate on the same level of planning abilities. If a goal has to be

4

achieved, it is split into various subgoals. Every planner solves one of the
subgoals and generates a partial plan that achieves this subgoal. To compose
the plan that meets the original goal the planners (or one supervising planner)
have to consider the interactions among the various subplans. This can be
viewed as a variant of plan reuse since the planners have to incorporate already
existing plans into their planning knowledge.

Distributed Specialized Planning: In this scenario, a group of planners is
considered in which every planner is specialized to treat problems in different
domains or on different levels of abstraction. If a planner cannot achieve
a goal, it communicates with the specialist planner in this field and then
integrates the solution provided by this planner into its plan. This can be
treated as a variant of plan reuse in which a planner has to reason about a
plan that it cannot generate by itself. The scenario is also investigated in the
field of blackboard architectures .

• Plan reuse can also be applied to improve the performance of a single planner and
to increase the efficiency of the planning process because it can enable a planner
to reflect its own reasoning process.

Self-reflection: The planner evaluates the result of its planning effort and
stores plans in a knowledge base, which were evaluated as worth "remember­
ing." If similar problems have to be solved by the system, this knowledge
base is searched for a plan that can provide a solution.

Hypothetical Planning: The planner generates a plan for a future situation
that is not completely described. To plan with such incomplete information
the planner could add some hypotheses that enable it to generate an exe­
cutable plan or it could plan on an abstract level. If at a later time the plan­
ner receives more detailed information about the problem, the hypothetical
plan is reused, including necessary modification or refinements of the abstract
plan.

These scenarios reflect different possible variants of the integration of plan generation
and plan reuse that pose different requirements on the plan reuse mechanism.

This paper mainly concentrates on the analysis of reuse mechanisms occuring under
the scenarios of self-reflection and hypothetical planning. Its aim is to describe ideas
that can inspire a deductive solution of the problem of plan reuse in the framework of
the PHI project at the German Research Center for Artificial Intelligence (cf. [WBH89]).

The overall objective of the PHI project is to investigate the integration of plan recog­
nition and plan generation within help systems. Plan generation and plan recognition
will be based on deductive methods. The plan generation component will contain a reuse
mechanism that is also based on deductive methods. Ideas developed under the second
group of scenarios are of special interest since a system consisting of one plan generation
component and one plan recognition component is considered.

Some general requirements such a reuse formalism should satisfy can be formulated
(d. [Kam89a]) :

5

• The formalism should provide a domain-independent solution to the problem of
plan reuse.

• It should be integrated into the planning mechanism in such a way that it makes
the planning process more efficient than planning from first principles only.

• It should work in a sound manner, i.e., if a plan is reused, the formalism guarantees
that it is indeed a solution to the current planning problem.

• It should be complete, i.e., the reuse formalism is able to reuse a plan from the
knowledge base of stored plans (here referred to as plan library) to find a solution
or it requests the planner to generate a plan based on the available operators.

1.2 Phases in Plan Reuse

If plan reuse is investigated under the view of the self-reflection or the hypothetical­
planning scenario, several subproblems have to be solved. These subproblems represent
the different tasks a planner, with the ability of reusing previously generated plans, has
to perform. These tasks are:

• Plan Determination
The first problem a planner with an integrated reuse mechanism is faced with, is
the efficient determination of a stored plan (the reuse candidate) from the plan
library that might be appropriate to be reused. To find such an appropriate plan
a formal criterion that evaluates the plans in the plan library according to the
current situation is necessary. One possible criterion is to state the similarity of
two planning situations and to retrieve the plan that is most similar. This variant
of plan determination requires the incorporation of analogical reasoning into the
planning formalism. Another option is to determine the plan that requires the
least modification effort. The plan determination phase works similarly to a best
first search: Based on the evaluation criteria, it determines the plan that best fits
the current goal.

• Plan Modification
If a plan is determined, the planner has to check whether it is a solution to the
problem under consideration. This requires the evaluation of whether the plan is
applicable in the current situation and whether it achieves the intended goal. This
evaluation has to be performed before the plan is applied to avoid expensive mod­
ification of plans that fail. If the reuse mechanism detects potential plan failures,
the plan has to be refitted. This refitting can be based on a classification of poten­
tial plan failures and corresponding refitting strategies. The current failures can
be analyzed based on this classification and the corresponding refitting strategies
are selected and applied to modify the plan. If plan modification fails, the plan
generation mechanism has to be activated to plan from first principles .

. • Plan Library Update
A sophisticated plan reuse mechanism requires that the plan library will change

6

during the system's life. An advanced plan reuse component should exploit mech­
anisms that allow an automatic update of the plan library grounded on formal
criteria that evaluate whether a plan will be added to or deleted from the plan
library. Furthermore it has to be decided how plans are stored in the plan library,
including the classification or generalization of plans or the creation of abstract
plan schemata. This subproblem relates plan reuse to the field of explanation­
based learning (d. [Ham88], [M+ 89J, [MB86J), to research considering the update
of knowledge bases (d. [GM88], [KM90], [Neb90J), and to the problems of plan ab­

straction and operator abstraction (d. [AF88], [Kn090], [RK89], [Ten86], [UR89]).
Most of the approaches to plan reuse briefly mention the problem, but do not
discuss ideas towards a solution. Therefore it is also not addressed in this paper.

1.3 Overview

The aim of this paper is to analyze the problem of plan reuse and to describe the state
of the art based on a variety of approaches that might contribute to a solution of the
problem. It describes the major problems and results that could be of some relevance
for the integration of plan reuse into a deductive planning formalism.
The approaches discussed here can be divided into two groups:

• A first group of approaches is directly devoted to the problem of plan reuse. These
works are discussed here to demonstrate the various perspectives under which plan
reuse can be seen. The theoretical foundations the approaches are based on are
analyzed and the implemented systems they lead to are described.

• A second group of approaches is devoted to special subtasks that arise in plan reuse.
Most of these works are unrelated or only loosely related to plan reuse itself. They
are discussed here because they might provide a solution to one of the subtasks.
We focused on approaches that addressed the problems in a logical framework. If
no theoretical solution to a particular problem could be found, heuristic approaches
were examined.

The paper is organized as follows:

• The second section addresses representation issues relevant to plan reuse . It briefly
summarizes the requirements a representation formalism has to meet and analyzes
which kinds of knowledge have to be incorporated into such a system. Then a
short overview about knowledge representation formalisms used in existing plan
reuse systems is given . Most of these systems use case-based reasoning to formalize
the planning and reusing process. Therefore the basic principles underlying case­
based reasoning are explained.
In a second part of this section, we describe logical representations since we focus
on a deductive treatment of plan reuse. We discuss the situational calculus that is
widely used in deductive planning systems and review a translation of case-based
reasoning into a logical formalism.

The following sections are devoted to the different subphases arising in plan reuse as
described above:

7

• The third section describes solutions to the problem of plan determination. It
summarizes methods that describe how a plan matching a given description of a
planning problem can be determined. One obvious solution is to determine a plan
that solves a problem most similar to the one under consideration. This similarity­
based plan determination can be formalized using formal approaches to analogical
reasoning. Therefore anaal reasoning is discussed in this section.
Another approach to plan determination can be based on minimizing the planning
effort. Therefore an approach to plan determination is discussed which tries to an­
ticipate the modification effort a plan will require. The goal of the determination
mechanism is to find the plan which minimizes this effort.
Plan determination includes a second problem, which is the efficient search in a
large knowledge base of stored plans. This problem is often solved based on index­
ing schemes . The example description of such an indexing mechanism concludes
this section.

• The fourth section discusses strategies of plan modification. The section concen­
trates on various approaches to the analysis and classification of plan failures and
discusses the heuristics that were developed to refit failed plans.
The application of a refitting strategy often leads to the introduction of new sub­
plans that have to be integrated into the existing plan. Therefore approaches to
subgoal ordering and operator ord~ring problems are also discussed.

• In the fifth section, we conclude by giving an outlook on further investigations plan
reuse requires . The main results are summarized leading to a possible architecture
of a plan reuse system.

• In the appendix, approaches by Luria [Lur88], Hammond [Ham89] and Kambham­
pati [Kam89a] are described in detail since they strongly influenced the research in
the field of plan reuse. They describe different implementations of plan reuse and
demonstrate that plan reuse can be seen under a variety of perspectives.

2 Representation of Plans

2.1 Representational Requirements

In general, the representation of knowledge is determined by the reasoning processes
that have to be performed with the knowledge that is encoded in the representation (d.
[Bra90]). Therefore the representation formalism underlying a plan reuse system has to
address a number of requirements arising in plan reuse. It should cover information that
is necessary to perform the integration of plan generation and plan reuse. The planning
knowledge especially has to be represented so that the knowledge necessary for plan
reuse can be automatically extracted from it. To provide a domain-independent solution
to plan reuse inside a deductive planning formalism, it should enable the planner to
automatically perform all phases of the reuse process. This requires the representation
of different kinds of knowledge, i.e., of knowledge which

8

• informs the planner when a reuse of stored plans is useful,

• supports the computationally efficient retrieval of plans,

• helps to localize the applicability failures of a plan in a current situation,

• guides the modification of a plan if failures occur,

• supports the update of the plan library.

2.2 Relevant Approaches to the Representation Problem

2.2.1 Representation in Case-based Reasoning

Case- based reasoning is an approach to implementing dynamic memory. The basic prin­
ciples underlying these ideas were introduced by Schank [Sch82] and Kolodner [KoI84]:

• Cases are usually applied to represent domain objects or other kinds of related
knowledge items.

• They are organized on the basis of similarities and differences to facilitate the
identification of similar cases.

• The structure of the knowledge base is dynamically updated whenever a new knowl­
edge item is added.

• The structural changes depend on the abstraction level of the new item, how it
is related to the already stored cases, and how it contradicts or fits the current
structure.

• New cases are stored by relating them to the cases already stored.

• Reasoning in case bases is described as the search for a case which best fits a given
description of a current problem.

Cased-based reasoning systems are usually based on some kind of inheritance net­
works that allow a hierarchical representation of the knowledge. The nodes in the nets
represent the cases that are described by sets of attribute-value pairs. The links be­
tween nodes differ in the various approaches. In discrimination nets the links represent
the discriminating features between the linked concepts, while in inheritance systems
generalization or subsumption relations establish the links. The reasoning process in
case-based reasoning systems is similar to the reasoning process required for plan reuse,
since the basic reasoning cycle of a case-based reasoner can be described as "input a
problem, find a relevant old solution, adapt it" [RS89]. Therefore it seems useful to
apply some of the principles underlying case-based reasoning to plan reuse. On the
other hand, the intended application is different, since case-based reasoning is normally
applied in the fields of classification or diagnosis. To represent plans, the representation
mechanism has to be enriched in such a way that the entities relevant to planning such
as plans, actions, and goals can be represented.

9

2.2.2 Representation in Existing Plan Reuse Systems

• Luria [Lur88] stores plan schemata as unchangeable, closed units that are indexed
by the goals they solve. Plan reuse is considered as an instantiation mechanism of
the corresponding stored plan schemata. The modification of plans is limited to
the instantiation of stored plan schemata or the replacement of predefined su bplans
in a more complex plan. The plan library cannot be updated. The representation
is based on a KL-ONE like formalism.

• Hammond [Ham90] [Ham86a] develops a representation that is more detailed than
Luria's approach, because he additionally indexes the plans by the failures they
avoid. Causal information about potential plan failures and features of objects
causing failures is attached to the plans. This information does not influence
the retrieval of plans, but leads to an early anticipation of planning failures and
activates the modification strategy. Information about planning failures is also
used to improve the system's performance.

• Kambhampati [Kam89c] describes the most extensive representation of back­
ground know ledge for plan reuse. He develops a very rich representation formalism
that handles the general, domain-independent structure of plans and the underly­
ing causal relations that connect single plan steps. This representation provides
the planner with a flexible strategy for plan retrieval and plan modification. The
representation and organization of the plan library as a whole is not investigated in
his approach since the update of a plan library is beyond the scope of the approach.

If reusing is seen as some kind of re-instantiating an old plan as by Luria [Lur88],
it is sufficient to represent the applicability conditions of the plan. If the system has
to be able to autonomously and reliably modify plans, additional information has to be
stored. The internal structure of a plan and the decisions that occured in the planning
process are important information that can be utilized by the planner. Kambhampati
summarizes these requirements by stating that "one should try to reuse the planning
process rather than just the result of this process" [Kam89c]. This approach to plan
reuse is also denoted as "planning from second principles."

2.2.3 Macro Operators and Proof Plans

One of the earliest attempts to store and reuse generalized plans in a deductive plan
generation formalism is the use of macro operators in STRIPS (d. [FN71], [FHN71]).
A macro operator is constructed from a plan (consisting of a sequence of operators)
by replacing all constants by distinct parameters and constructing a unique list of pre­
and post conditions for that operator. Macro operators are stored in triangle tables that
provide a special triangular array structure. A macro operator can be reused if its add-list
(representing the postconditions) partially or completely solves the planning problem.
When new macro operators are added to the already stored ones, the system uses tests
of redundancy and subsumption to prevent the storage of an overwhelming number of
operators.

10

The application of macro operators in STRIPS covers the whole process of plan
reuse as we described it in section 1.2, but the approach lacks flexibility since the reuse
mechanism only allows the reuse of an entire macro operator or one of its components
and restricts the possible modifications of reused macro operators.

Since deductive planning can be viewed as a theorem proving task, a number of
similarities to recent research in the field of automated theorem proving are worth noting:
In the deductive plan generation formalism we consider, a plan is generated by performing
a constructive proof of an V3-formula that describes the specification of the planning
problem. To prove the formula, three kinds of knowledge are necessary:

• axioms that describe the planning domain, e.g., states and basic operators,

• transformation rules to perform the proof,

• heuristics that guide the application of the transformation rules to control the proof
process.

If we follow the proposal by Kambhampati to reuse the planning process rather than
just its result, we have to reuse a proof process. The transformation rules and heuristics
we apply to generate an applicable plan can be viewed as a proof method to solve the
current planning problem.

Similar ideas are discussed in the field of automated theorem proving. Bundy [Bun90]
introduces the concept of explicit proof plans to guide the search for a proof in automated
theorem proving by reasoning about the conjectures to be proved and the methods
available to prove them. Proof plans are specifications of the underlying proof strategies.
They have the following properties:

• Usefulness: The proof plan reduces the search effort.

• Generality: It succeeds in a large number of cases.

• Expectancy: A proof plan additionally contains some knowledge that can be used
to predict when it will succeed or fail.

• Uncertainty: Proof plans are used in undecidable domains and it is not possible
to always correctly predict if the proof plan will succeed or fail.

• Patchability: Failing proof plans can be repaired by providing alternative steps.

• Learnability: New proof plans can be automatically learned.

Research in the use of explicit proof plans was motivated by a project to develop
automatic search control for the NuPRL program synthesis system [C+86], which proves
theorems by mathematical induction. To achieve this, the Boyer-Moore theorem prover
[BM79] with its use of heuristics to guide inductive proofs is rationally reconstructed and
a formal account of the heuristics is developed. This formal account includes the ability
to predict the circumstances under which a heuristic will succeed or fail. Heuristics will
be applied in a flexible way. The intention is to learn new heuristics from example proofs.
Proof plans are recursive and contain subroutines.

11

To find an abstract proof plan Kerber [Ker88] proposes the following way to classify
theorems and then to look for an analogy:

1. find the corresponding category of the problem,

2. find an "analogous" theorem in this category with a known proof,

3. try to transform the proof so that it is applicable to prove the new theorem.

Analogies can be exploited on two levels. On the level of singular proof steps they are
helpful to reduce the search space for a proof by splitting up a theorem into lemmata
and reusing already proved lemmata regarding the proofs of lemmata as "macro" steps.
On the level of abstract proof plans analogies are used to transform machine generated
proofs from a logical level into a conceptual level to explicate the inherent structure of
the proof. Brocks et al. [BCP90] investigate how analogies can be applied on the level of
single proof steps rather than whole proof plans and discuss modification strategies for
mathematical proofs. Lingenfelder [Lin89] discusses the structuring of proofs to improve
the presentation of a computer generated proof to a human user.

Proof plans can be a priori encoded in a theorem prover (cf. [Bun90J) or they can be
learned by the system based on an analysis of proof processes (cf. [M+89], [MB86]).

2.3 Logical Representations

The integration of plan reuse into a deductive plan generation formalism requires the in­
vestigation of how plan reuse formalisms can be described using deductive representation
formalisms. The plan generation formalism in which we intend to integrate a plan reuse
facility will be based on a method of deductive program synthesis [Biu90]. As logical
representation formalism, situational calculus has been applied and therefore we briefly
describe this most widely used logical representation.

2.3.1 Situational Calculus

Situational calculus was developed by McCarthy and Hayes [MH69] to provide a language
that can be used to formalize reasoning about actions. It provides expressions in which
situations and actions can be described.

A situation s is defined as the complete state of the universe at an instant of time.
Because of their complexity, situations cannot be completely described but are repre­
sented by facts about situations. To allow a situation-dependent interpretation of terms,
the notion of a fluent is introduced.

A fluent f is defined as a function whose domain is the set of all situations. If the
range of the function is represented by the truth values {true, false}, it is referred to as
propositional fluent. If the range is the set of all situations, it is referred to as situational

fluent. Important situational fluents are nextC7r)' which denotes the next situation s' in
the future of a situation s in which 7r(s') holds, and result(p,0', s) (where p is an agent,
0' is an action, and s is a situation) is the situation that results when p carries out 0',

12

starting in the situation s. To express that a relation holds in a situation, an extra state
parameter is added to that relation.

A third important element of the representation (beside situations and actions) is
assertions about causality, which are represented by fluents of the form F(7r,s), where
7r is itself a propositional fluent and the expression asserts that the situation s will be
followed (after an unspecified amount of time) by a situation s' in which the fluent 7r

holds.

This formulation of the situational calculus by McCarthy and Hayes provides the basic
elements to formalize planning knowledge and allows a formal treatment of important
problems which arise in the area of planning, e.g., the problem of temporal projection

[HMS6]. Temporal projection can be described as the form of reasoning in which the
properties of the world in a resulting situation are predicted if some description of a
current situation, of the effects of possible actions, and of a sequence of performed actions
is given. It is an important problem in the field of planning, since verifying that a plan
achieves a given goal is a temporal projection problem. Two important problems arise
during temporal projection: the frame problem, which requires the determination of all
the properties of a situation which are not affected by an action, and the qualification
problem, which expresses that the successful performance of an action may depend on a
large number of qualifications that also have to be considered.

To generate a plan that is guaranteed to be executable, Manna and Waldinger (d.
[MWS6], [MWS7]) propose an approach to deductive planning were proofs have to be
constructive, in the sense that they only contain plan fluents referring to the initial state
and do not rely on arbitrary hypothetical states which might not be executable.

Further approaches provide a solution to the temporal projection problem based
on non-monotonic formalisms (d. [ShoS6], [KauS6], [LifS7], [LRS9], [BakS9]' [LukSS],
[GSSSa], [GSSSb], [BH90]) .

2.3.2 A Translation of a Case-based Reasoning System into Default Logic

The representation formalism to be developed for a plan reuse system should cover two
aspects. The plans to be used are represented in a logical framework the deductive plan
generation formalism provides. These plans have to be stored in the plan library for which
hierarchical knowledge representation formalisms such as, e.g., inheritance networks are
widely used. An interesting question is now, whether a uniform representation can be
developed in which plans and also the plan library can be represented. To find an
answer to this question, an analysis of how the various representation formalisms can
be translated into each other is helpful. The following approach is an example of such a
translation of case- based reasoning into a logical formalism.

Katon and Chase [KCS9] describe how case-based reasoning can be formalized using
default logic [ReiSO]. They develop a translation to transform a graph-oriented represen­
tation into default theories. To find a similar case, the system constructs extensions that
represent consistent sets of beliefs due to the current situation description and the infor­
mation in the case base. Etherington [EthSS] describes how inheritance systems can be
reformulated using semi-normal default theories. Koton and Chase demonstrate in their

13

approach that for a special kind of inheritance networks, the so-called discrimination
networks, normal default theories are sufficient to formalize the inference mechanism.

They use the representation proposed by Kolodner [KoI84]. The case base is rep­
resented using a discrimination network. Cases are described by so-called features that
represent attribute-value pairs. Similar cases are grouped into gens which are general­
ization structures created by the system. Gens contain the features that are common
to most (here interpreted as 2/3) of the cases, which are called the norms. The cases
belonging to the same gen are indexed by the features that distinguish them from each
other.

The nodes represent individual cases or gens and are related by features. A subnode
is linked to its parentnode by the features that differentiate the subnode from the parent
gen. The set of these links represent the diffs of the gen. The indexes are represented us­
ing two levels, the category and the value of the feature, for example covering=feathers
where covering is a category and feathers is a value. A set of features defines a path
in the discrimation net used to search for a similar case. These concepts described above
are now translated into defaults [KC89]:

1. Feature: A node N(x) has the feature f(x, a) and there are no diffs at this node
corresponding to this feature, i.e., the subnodes of this gen normally have the same
feature as the gen.

N(x) : f(x,a)
f(x,a)

2. Link: A node N(x) is linked to a gen G(x) by a diff f(x, b), i.e., the node N(x) is
a subnode of G(x) and possesses the different value b for f.

N(x) 1\ f(x, b) : N(x)
N(x)

3. Differentiated Norm: G(x) is a gen and has the norm f(x, a) and the diffs
f(x, b1), ... , f(x, bn), meaning that the subnodes belonging to the gen usually have
the value a for feature f, unless there are exceptions.

G(x) 1\ -,f(x, b1) 1\ ... 1\ -,f(x, bn) : f(x, a)
f(x,a)

4. Restricted Closed World: A node N(x) is linked to a gen G(x) with norm
f(x, a) by the diffs f(x, b), fl (x, b1), ... , fn(x, bn), i.e., if G(x) cannot be specialized
to N(x) by these diffs, then G(x) has not value b for feature f.

G(x) 1\ -,fl(X, b1) 1\ ... 1\ -,fn(x, bn) : -,f(x, b)
-,f(x, b)

14

The set of axioms contains the formula Vx : Go(x) stating that all cases belong to
the root gen that represents the generalization of all cases stored in the case base. For
every new case that is stored in the case base, the four default rules as described above
have to be added to the default theory to represent the relationship between a gen and
one of its specializations.

The inference mechanism uses the defaults in the following way: To the set of axioms
first order assertions are added that describe the features of the current case. These
assertions define the search path in the case base since the inference mechanism follows
the generalizations of the features matching the assertions . The norms that can be
collected when following the path represent the knowledge that can be inferred for the
case. This process corresponds to the construction of an extension in the default theory.

The application of normal default theories to reformulate case-based reasoning guar­
antees two properties:

1. Normal default theories have at least one extension that assures that for ev~ry case
a consistent set of features can be derived .

2. Normal default theories are semi-monotonic, guaranteeing that the addition of
new cases to the case base (in the form of new defaults) leads to an extension that
contains the former extension as a subset.

If multiple extensions can be constructed (by following different paths in the discrimi­
nation network)' extra-logical inference rules have to be applied that select one of the
extensions to be preferred. The order in which the defaults are applied influences the
order in which the extensions are constructed.

3 Plan Determination

In sect ion 1.2 we described plan determination as the first task a planner with an in­
tegrated reuse mechanism has to perform, when a planning task has to be solved by
reusing a stored plan. Carrying out this task involves a comparison of the current prob­
lem description presented to the system with stored problem descriptions the system has
already dealt with. This is done by what we call an analogy-driven approach to plan
determination because the plan that is most analogous to a given problem description
has to be selected as a reuse candidate. The comparison can be seen as an interpretation
of a candidate plan in a new situation in which a mapping between the new goal and
the retrieved plan is developed. Such a process of interpretation is similar to problems
studied in the field of analogical reasoning. Thus we provide a short introduction into
analogical reasoning and investigate whether results from this field could be helpful in
formalizing the process of comparison underlying plan determination. We briefly review
two approaches that try to formalize analogical reasoning in a deductive formalism and

. in which analogy is not reduced to partial or complete syntactical identity.

In a second subsection, another view of plan determination is investigated. It is
referred to as the efficiency-driven approach in which the effort that is necessary to

15

modify a plan is used to guide the search for a reuse candidate. From the knowledge
base the plan requiring the least modification effort is selected.

Besides the determination of a reuse candidate based on a current problem descrip­
tion, a second problem that has to be solved is the overall organization of a large base of
stored plans and the efficient search in it. A solution might incorporate existing retrieval
mechanisms from case-based reasoning systems that especially investigate the problem of
how to search in a very large memory of stored cases. The retrieval mechanisms perform
a straight-forward feature matching to find a similar case in the case base. While the
approaches to analogical reasoning as described here mainly concentrate on the develop­
ment of a sophisticated matching procedure based on heuristic knowledge, the retrieval
mechanisms which were developed for case-based reasoning systems often use a simpli­
fied matching procedure but concentrate on the development of a sophisticated indexing
scheme as a basis for an efficient search and retrieval mechanism. An elaborate plan
determination procedure should incorporate both.

3.1 Analogy-driven Plan Determination

The formalization of analogical reasoning is still an open problem. Most of the ap­
proaches try to formalize analogical reasoning based on other kinds of reasoning for­
malisms, as for instance, on inductive inference [Th088], on an extension of first order
logic [DR87], [Gre88], [Mun81]' and on statistical reasoning [Lou89]) or on the use of set
theoretic models, fuzzy set approaches or semantic and model-theoretic approaches (d.
[Thi86], [HA96]).

We will discuss approaches to analogical reasoning that are related to deductive
reasoning. At first we define a concept of analogy based on the approaches by Gentner
[Gen88], Indurkhya [Ind88] and Hall [HaI89]. Then the work by Greiner [Gre88] and
Munyer [Mun81] is discussed.

3.1.1 A Concept of Analogy

In all computational approaches considered in this paper, analogy is described as a
mapping between elements of a source domain and a target domain. In our application,
the plans of the plan library correspond to the source and the current goal description
is an element of the target. The analogy maps elements from the source into the target
domain. The mapped elements represent the analogical inferences the system draws.
They are justified by the initial elements of the mapping.

One concept of analogy that can be usefully applied in our context is characterized by
Indurkhya [Ind88] as predictive analogy, which refers to the process of justifiably inferring
further similarities among objects or situations based on some existing similarities. The
inferred similarities form the basis of a prediction about the target from the known
features of the source.

This kind of analogical reasoning can be further analyzed applying the four-component
process model of analogy developed by Hall [Hal89]' as the basis of a comparative anal­
ysis about computational approaches to analogy. In this model four separate phases
constituting the analogical reasoning process are distinguished (d. figure 1):

16

Mapping

{

a:: a
Justification 6:: b

c :: c

.. ~b-.... . a ~~ ~d

·····'c ~f

Analogical Inferences

Figure 1: An Illustration of Analogical Reasoning

Recognition describes the search process for an analogous candidate source given a target
description. The central problem is to restrict the retrieval process in the set of
possible sources.

Elaboration draws the analogical inferences after a source domain is selected and the
basic mappings between objects are established. These basic mappings are the
kernel of the justification or set of support for the analogy.

Evaluation examines the soundness of an analogical mapping. Furthermore it applies
the mapping and inferences in some context of use and leads to the solution of the
problem in the target domain including further justification of the analogy, repair
of the mapping when incorrect results occur, or extension of the mapping if the
analogy successfully solves problems in the target domain.

Consolidation stores the confirmed inferences, so that the results of the analogy can be
usefully reinstantiated in other contexts as well.

A computational model of analogical reasoning should cover all four phases.

3.1.2 The Structure Mapping Model

The structure-mapping model developed by Gentner [Gen88] is one of the basic ap­
proaches to the computational description of analogy. It describes some principle ideas

17

of how analogies can be discovered using a logical representation and exploiting syntac­
tical information.

Source and target domains are viewed as systems of objects. Objects are character­
ized by attributes and relations that hold between them. The knowledge is represented in
propositional networks. Syntactic distinctions among predicate types provide the infor­
mation to formalize the analogical reasoning process: Attributes are one-place predicates,
while relations are at least two-place predicates. Furthermore, first-order predicates (tak­
ing objects as arguments) and higher-order predicates (taking propositions as arguments)
are distinguished. For example:

• sun (x) is a one-place attribute

• collide(x,y) and strike(y,z) are first-order predicates which represent relations

• cause(collide(x,y),strike(y,z)) is a higher-order predicate

The ordering of predicates is based on the basic assumption that only those systems
of relations are mapped that are connected by causality in the source. This is formulated
as the so-called Systematicity Principle (d. [Gen88]):

"A predicate that belongs to a mappable system of mutually interconnecting
relationships is more likely to be. imported into the target than an isolated
predicate. "

Analogies are characterized as one out of four different kinds of possible comparisons
between source and target based on the proportion of attributes and relations that can
be successfully mapped. Gentner illustrates this classification by the following examples:

Literal Similarity: Most of the object-attributes and the relational predicates can be
mapped.

((The k5 solar system is like our solar system. "

Analogy: Most of the relational predicates, but few or no object attributes, can be
mapped as in the famous analogy of the atom model by N. Bohr.

((The atom is like our solar system. "

Abstraction: The source is an abstract relational structure (a theoretical concept); all
abstract predicates are mapped into the target domain.

((The atom is a central force system."

Anomaly: Only a few or no attributes and relations can be mapped.

((Coffee is like the solar system. "

The syntactic type of the shared versus non shared predicates determines whether a
given comparison is thought of as analogy, as literal similarity, as anomaly, or as an
abstraction. Analogies are constructed by mapping the objects of the target onto corre­
sponding objects in the source. Then the attributes of the source objects are discarded

18

because they are not mapped into the target domain. In a last step the existing rela­
tions between the objects of the source have to be mapped to infer relations that hold
in the target. In this step the information about the order of predicates is exploited:
Higher-order predicates enforce connections among lower-order predicates and support
the choice of the right number of relations that construct the analogical mapping.

Gentner mainly concentrates on the problem of which object attributes and relations
will be mapped in constructing an analogy. As a fundamental result, he proposes to
concentrate on systems of relations when a mapping has to be constructed. This result
is formulated in the systematicity principle. An open problem is the construction of
the correct object mapping that requires a solution of the above mentioned recognition
problem.

3.1.3 Logical Approaches to the Formalization of Analogical Reasoning

We describe two approaches that formalize analogical reasoning by extending deauctive
inference systems.

Introducing an Analogical Inference Operator
Greiner [Gre88] defines an analogical inference operator I"" to formalize analogical rea­
soning within a deductive framework. Analogies are constructed as instantiations of
stored abstractions. Abstractions represent solution methods to past problems in the
domain under consideration. They are stored as formula schemata and defined such that
problem solutions belonging to different domains are connected via the same abstraction.
To find the correct abstraction, the system is provided with an explicit hint towards the
underlying object correspondence between source and target it has to consider. If an
analogy has to be constructed, an abstraction is found by which it is connected to the
source object. It is then instantiated in the target domain leading to a new set offormu­
las that provide additional information about the target object. To solve the problem
the original theory is augmented with this formula set. To construct an analogy the
system has to be provided with:

1. axioms in a theory T h for target and source domains,

2. a problem statement PT in the target that has to be solved,

3. a hint that the target concept A is like source concept B, A "" B.

It searches for a conjecture about a target concept cp(A) as an instantiation of an
existing abstraction, i.e., , Th F AbstForm(cp(A)) and Th, A "" B I""PT cp(A) hold.

The derived formula has to satisfy a number of conditions to be accepted as analogical
hypothesis:

1. The target conjecture does not hold in Th.
Th ~ cp(A)

2. The target conjecture leads to a consistent extension of Th.
Th ~ -,cp(A)

19

3. A source instantiation of the considered abstraction holds in Th.
Th F <p(B)

4. When the theory THis extended consistently, PT follows.
Th U {<p(A)} F PT

The system uses an iterative generate-and-test control structure: The generator finds
an abstraction for source and target based on the information in the hint provided by
the user. To reduce the search effort, heuristics are applied, which help in choosing an
abstraction among the candidates. A test process determines whether an abstraction
can be used to solve the target problem proving the conditions defined above. These
proofs are only partially mechanized, e.g., to prove the correctness of <p, the user is asked
to approve the conjecture. An additional lack of automation is the necessity of providing
the system 'with an explicit hint about the object correspondence between source and
target. As in the theory developed by Gentner, no complete solution to the recognition
problem is obtained.

Extending the Underlying Unification Mechanism
Another way of formalizing analogical reasoning is to extend first-order-unification with
an analogical mapping algorithm as proposed by Munyer [Mun81]. He applies analogical
reasoning in performing equality proofs 'of mathematical expressions by doing equivalent
transformations. The proposed unification mechanism contains:

• many-to-one bindings,

• commutative or associative reorderings among arguments of predicates, and

• erasure of terms, e.g., functions of different arities can be unified by dropping some
of the arguments.

As an example the problem of unifiying two terms with different leading function
symbols, e.g., f(a,g(b)) and h(g(c),a) is considered. These terms can be unified if
the underlying theory, for example, provides the commutativity of f together with an
equation f(x, y) = h(x, y) for all x and y.

An analogy is found if the candidate source derivation contains an operator sequence
which terminates in a source formula that consistently maps (using the extended unifi­
cation) to a known goal formula in the target search space.

This extension of unification is similar to theory unification (T-unification), which
was originally developed by Plotkin (1972). T is an axiomatization of an equational
theory involving some of the function symbols. T-unification can be viewed as solving
equations in an underlying theory: Given an equational theory and a pair of terms,
substitutions are computed for the variables, such that both terms become equal under
the equational theory (cf. [Sie89] and [Biir86]).

An application of theory unification is first of all useful in formalizing the recognition
phase in the analogical reasoning process by exploiting knowledge about the equality of
objects and relations holding between them. Nevertheless theory unification incorporates

20

a number of theoretical and practical problems: A unique, most general unifier is no
longer guaranteed to exist (there might be infinitely many most general unifiers or none
at all) leading to the non-termination of the unification procedure. But even if finitely
many most general unifiers exist, the unification procedure becomes very expensive (cf.
[Sie89]) .

3.1.4 Implementations of Analogical Reasoning

Falkenheiner and Forbus [FF86] describe an implementation of Gentner's structure­
mapping theory [Gen88]. The structure-mapping engine SME is a cognitive simulation
program to study human analogical behavior and provides a tool-kit with which match­
ing algorithms based on Gentner's structure-mapping theory [Gen88] can be developed.
SME uses only the domain informat ion provided for the target in constructing all syntac­
tically consistent analogical mappings between source and target. To construct possible
matches between elements of source and target, so-called match hypotheses con§tructor
rules are used. These rules compare syntactical elements of the facts that represent
source and target and lead to a number of match hypotheses. The individual match
hypotheses are evaluated, applying match evidence rules to the hypotheses. These rules
add a probability factor to every match using the formalism developed by Dempster and
Shafer (cf. [Sha76], [Dem67]). From all possible syntactical matches, the maximal sets
of consistent match hypotheses are collected to construct possible analogical mappings.
To find the best analogical mapping, a number of heuristics are applied. They include
the evidence factors for the individual match hypotheses, the possible analogical infer­
ences that could be drawn, and the graph-theoretic structure of the potential analogical
mapping, representing the number and relative size of the connected components.

Leishman [Lei89] describes the implementation of an analogical reasoner using a
graph-oriented representation. The reasoner searches for minimal common generaliza­
tions of subgraphs to establish a correspondence between these subgraphs to construct
an analogical mapping of the elements in the subgraphs.

As an example of how analogies can be applied in plan reuse, Daube and Hayes­
Roth [DHR89] describe their practical experience with the implementation of analogical
reason ing applied to design problems. Design is treated like a planning task, where a
new design problem is solved retrieving a stored design plan.

3.2 Efficiency-driven Plan Determination

Now we describe the approach of Kambhampati (cf. [Kam89c], [Kam89b], [Kam90b],
[Kam90a]), who uses the costs a plan modification requires as a criterion for the de­
termination of a reuse candidate. In the system PRIAR the integration of classical
hierarchical planning with plan reuse is investigated. A basic assumption is that the
planner exploits its reuse facilities only if they lead to an improved performance of the
planning process. To maximize the efficiency of the planning process three critical cost
factors have to be considered:

1. Retrieval costs to determine a plan from the plan library.

21

2. Mapping costs to interprete the retrieved plan in the new planning situation.

3. Modification costs to refit the retrieved plan so that it can be applied to the new
planning situation.

The minimization of these cost factors is necessary if plan reuse should usefully be
integrated into a planning system. Following this idea, Kambhampati proposes the de­
velopment of a retrieval mechanism that considers the costs of a necessary modification
and chooses the plan for reuse that demands the least modification costs [Kam90aj. He
proposes a domain-independent solution that does not depend on any prior knowledge
of the solution for the new problem, but instead makes an informed estimate of the mod­
ification costs a candidate plan would require being applied in a new planning situation.
The retrieval process is restricted to the selection of a plan from a set of potentially ap­
plicable plans. To select this set, a partial unification [KH89j of the new goal description
and the goals the stored plans solve is applied. The retrieval mechanism is described in
more detail in the appendix.

A similar approach to validated retrieval is described by Simoudis and Miller in
[SM90j. This work is strongly application oriented and does not introduce any new
theoretical ideas but supports the idea of validations used in retrieval with some exper­
imental results.

3.3 Search Procedures to Handle Large Knowledge Bases

As an example, we briefly describe the main ideas of the indexing scheme underlying
the graph search procedures developed by Stottler, Henke and King [SHK89j. They
developed an algorithm for retrieval in a case-based system that can handle very large
knowledge bases in which up to millions of cases are stored. In their approach, they
distinguish between quantitative and qualitative retrieval and a mixed form of both.

Quantitative retrieval is applied in domains where all attributes can be described
by numeric values and where all attributes are of the same importance when charac­
terizing the case. The similari ty of two cases is defined as the inverse of their distance
from each other in the case base. The distance is measured as the geometric distance
between two points in an n dimensional hypercube where n is the number of attributes.
The algorithm divides the hypercube into subcubes. It searches for the subcube that
contains the current case, represented by a point in the n dimensional space spanned
by the attributes. The algorithm halts when the subcube contains no more than a pre­
defined number of points. The points that are in the same subcube as the current case
represent the most similar cases that can be retrieved for that case. One disadvantage of
this algorithm is that it uses a static similarity metric that treats similarity identically
throughout the case base, while in real applications the similarity measure among cases
might change.

Qualitative retrieval handles domains in which attributes are described qualita­
tively, using predefined concepts of the domain. Similarity is defined here as the number
of syntactically equal attribute values that can be augmented by a weighting scheme
to represent the varying influence of different attributes. Every case is indexed by all

22

possible combinations of attributes that are used to describe the case. For example, if a
case has attributes al and a2, it is indexed by [ab a2, ala2). These indexes describe the
multiple pointers a tree-hash algorithm maintains to the cases. The performance of the
algorithm is independent of the number of cases but slows down when the number of
attributes increases.

Further experiences with case-based search algorithms are described by Bradtke and
Lehnert [BL88).

4 Plan Modification

After the plan determination phase, a candidate plan is found for reuse. We assume that
exactly one candidate plan will be considered. This plan will be investigated whether it
is applicable in the current planning situation or not. "To be applicable" is used here in
the sense that the preconditions the plan requires hold in the current state of the world
and, of course, the plan solves the current goal. The plan modification mechanism has
to perform two tasks:

1. In a first step, it has to determine the parts of the plan that might fail and the
subgoals that remain unsolved in the current planning situation.

2. In a second step, it has to determine appropriate modification strategies to refit
plan failures.

It should be mentioned that approaches exist that are able to avoid the modification
phase. In these approaches, the new plan is made up of several candidate plans from
which only the applicable parts are taken. An example of this approach is described

_ by Redmond [Red90). He uses case pieces, so-called snippets, to construct a new case
from multiple stored cases. Furthermore, plan modification should be seen in contrast
to plan debugging. In plan debugging, the candidate plan is immediately applied in the
current planning situation (or simulated in a world model) after it has been determined.
If it fails, a debugging strategy is activated based on information taken from the plan
application. Most of the plan debugging techniques (d. [Ham86b], [Chi89], [Sim88])
analyze the application failures and try to develop causal explanations for why these
failures occured. Based on these explanations the plan is refitted. The aim of plan
modification, as considered here, is to recognize and refit plan failures before the plan
is applied. The plan modification mechanism has to recognize potential plan failures
and refit them before the plan is reused. This process is more complicated than plan
debugging because no failure information is directly available.

4.1 Plan Failures and Refitting Strategies

An obvious solution to the plan modification problem is to classify potential plan failures
and to develop a domain-independent refitting strategy for each class of failures. There­
fore we review two approaches which describe the first steps towards this solution and
which mainly influenced the field, even though the problem is addressed in an informal

23

way. Then we describe the first formal treatment of plan modification that additionally
includes a mechanism for recognizing potential plan failures without any simulation or
debugging mechanism.

Another problem that has to be addressed in the plan modification phase is the
ordering of operators and subgoals, since the order in which the subgoals are solved
mainly influences whether a plan can be found. We review approaches which try to
recognize operator and goal interactions to control the plan generation process.

4.1.1 Failure Classification Based Approaches

Wilensky [WiI83] is one of the first to address the problem of plan failures. It is in­
vestigated in the context of language understanding, where reasoning about goals is
necessary for the recognition of intentions. People usually have a number of intentions
and thus the problem of interacting goals and plans has to be investigated. Wilensky
introduces a classification of so-called negative goal relationships which could form the
basis for a classification of plan failures. Three kinds of negative goal relationships are
distinguished:

1. Resource Limitations:

• Time conflicts occur when a deadline has to be met to successfully reach a
goal or when actions have to be synchronized.

• Consumable functional objects represent a limitation when an action requires
more of them than are available in the current world state.

• Nonconsumable functional objects are not reduced when an action is performed
(in contrast to consumable functional objects), but set a limitation because
of their limited capacity.

• Abilities refer to the limitations the person for whom a plan is generated sets
on the plan.

2. Mutually Exclusive States:

• The subgoals themselves lead to inherently contradicting world states.

• A consequence of an action excludes a subsequent action that is necessary to
achieve the goal.

• A precondition for an action excludes the achievement of one of the subgoals.

3. Causing a Preservation G~al:

• This refers to the problem where a plan solves the intended goal, but addi­
tionally has a side-effect that leads to an undesired state or destroys a state
which should persist.

This classification is inspired by the application Wilensky investigates and is not
immediately applicable to support plan reuse. But it might inspire a deeper analysis of
precondition failures. One failure that is not addressed is the possibility that operators

24

are combined such that their common effect prevents the execution of another operator
while the single operators do not affect it.

To solve the goal conflicts, Wilensky proposes a meta planning heuristic that in­
fluences the way in which the conflicts are treated, leading to three different conflict
resolution strategies:

1. Goal Conflict Resolution:
The conflict between the goals can be solved and a plan is generated that achieves
both.

2. Goal Abandonment:
The conflict cannot be solved and one of the goals has to be abandoned to find a
plan that achieves the remaining goal.

3. Spontaneous Goal Conflict Resolution:
The goal conflict is solved without any activities by the planner because of some
external event that leads to a change in the world state.

The last two strategies seem a bit strange when considering classical planning prob­
lems, but might be quite appropriate in real world planning or everyday planning, which
is investigated by Wilensky. The strategies themselves are described very informally,
e.g., if conflict resolution is selected as a meta-goal, the following ordered strategies are
applicable:

1. For every conflict a plan is stored in the library of plans that solves the conflict.
This subplan is included into the original plan before the conflict occurs.

2. The subplan that causes the conflict is exchanged by another applicable plan that
solves the same subgoal.

3. Before the plan is performed, the world state is changed to avoid the goal conflict,
i.e., a subplan is added in front of the generated plan.

Wilensky's work is of historical interest. The approach lacks a formalization and the
problem of how to recognize potential plan failures is not addressed.

. Another approach that inspired research in plan reuse was developed by Alterman
[Alt86] who introduced planning by situation matching. The planning system extensively
exploits different kinds of background knowledge like abstract plans, categorization and
causal knowledge to compare old and new planning situations. Plans are represented in
an abstraction hierarchy containing specific and general plans ordered by the purpose
(goal) they are used for. After the comparison of the two planning situations, four kinds
of situation differences can be distinguished:

• A failing precondition forces the planner to move the abstraction hierarchy up along
the purpose-relation for the plan and to look for a more abstract plan that does
not require the failing precondition. Another instance of this abstract plan is used
to try to resolve the conflict.

25

• The step-out-of-order conflict is solved by reordering the steps of the plan or by
removing an intermediate step. The reordering is determined by again searching
through the abstraction and specialization hierarchy until a plan is found that
contains the right order of planning steps.

• If differing goals occur, the plan that is to be reused solves more than the intended
goal. This is not treated as a conflict, since the plan additionally solves the goals
which had to be solved.

• A failing outcome shows that one of the expected goals does not hold after the plan
application. The conflict is resolved by determining the missing planning steps and
adding them to the plan.

Altermans idea of adaptive planning is limited to the selection of alternative plans or
subplans from a predefined plan hierarchy. This does not represent a modification in the
sense considered here.

Hammond [Ham90] describes a very detailed and comprehensive collection of conflict
strategies treating five categories of conflicts which are similar to the classifications de­
scribed above. Each conflict category is connected to a global refitting strategy, which
is again refined by various refitting methods. It is the recent work on this topic and
could, perhaps, be taken as a basis to develop a formal treatment of the modification
problem. It is not described in detail here, because the basic idea is the same as in the
two approaches described above.

4.1.2 A Theory of Plan Modification

T he first formal treatment of plan modification was described by Kambhampat i in
[K am90b], who tried to formalize methods showing how conflicts in reuse candidates
can be recognized, and strategies to resolve these conflicts. The application of these
st rategies and the modification of the plan is left to the planner, whereas the reuse com­
ponent detects the failures and recommends the strategies with which the planner can
overcome the failures. The plan modification mechanism is based on the representation
formalism as described in section C.l.

Applicability failures, redundancies and shortcomings are formally characterized as
inconsistencies of the validation structure. Therefore the validation structure of a plan
that is a potential candidate for plan reuse is checked for consistency in the new plan­
ning situation . Inconsistencies in the validation structure inform the planner that the
plan is not reuseable and has to be modified. This modification process changes the
plan in such a way, that the inconsistencies in the validation structure are removed.
A consistent validation structure is by construction. sufficient for a plan to be success­
fully executable, since it reflects the intermediate planning decisions and dependencies
between the planning steps.

Th~-modification process is divided into two steps:

l. The first step (annotation verification) is the consistency check of the validation
structure. The analysis of the validation information allows the determination of

26

potential plan failures if the plan were to be applied. These potential failures are
reflected by inconsistencies in the validation structure.

2. Every recognized inconsistency is classified according to the types of failures known
by the system. To remove the inconsistencies, the system uses so-called refit tasks.
The plan and the refit tasks are sent back to the planner, which performs the
necessary modification of the plan in the second step (refitting).

The modification algorithm guarantees the correctness of the modification process,
but not its optimality. It is described in more detail in the appendix.

4.2 Goal and Operator Ordering Strategies

Goal ordering problems arise when the overall goal for the planner is given as a con­
junction of subgoals. This conjunction has to be split up into the various subgoals that
are separately addressed by the planner. The order in which these subgoals are solved
mainly influences the complexity of the planning process.

Operator ordering problems occur when the same goal can be achieved by different
operators representing different actions. The planner has to decide which operator to
select.

The application of ordering strategies in planning is discussed under two views:

• Conflict solving among interacting subgoals is necessary in every planning m ech ­

anism that works beyond simple toy domains.

• The generation of optimal plans (where optimality can be defined, for example, as
the minimal number of planning steps to solve a problem) demands the considera­
tion of efficient planning st rategies that are able to detect commonalities among
operators.

Hertzberg and Horz [HH89] and Cheng and Irani [CI89] describe formal approaches
to the problem of subgoal ordering that are applicable for STRIPS-like planners. These
planning mechanisms are based on two assumptions:

1. The STRIPS-assumption requires that domain conditions only change if this is
explicitly stated by the postconditions of operators and that operators are defined
such that their application unambiguously maps situations onto situations.

2. The locality-assumption requires that every operator specifies all domain conditions
it changes regardless of the situation in which it is applied.

Both assumptions restrict the representation of plans and operators such that it is com­
pletely decideable if an operator can be applied. Hertzberg and Horz exploit the prede­
fined partial ordering about operators to detect conflicts in nonlinear plans, while Cheng
and Irani compute an ordering relation between sets of subgoals based on the operators
that can be applied to solve these subgoals.

27

Drummond [DC89] informally discusses a heuristic approach to the subgoal ordering
problem. He develops a so-called temporal coherence heuristic that reduces the search
space for the planner.

Hayes [Hay89] describes an approach to increase the efficiency of the planning process
using knowledge about overlapping subgoals and operators and informally discusses the
advantages of exploiting operator overlap using an example from the mechanics domain.
The task is to start with a rectangular block of metal and to generate a plan for a CNC
machine to cut a variety of shapes or holes into the block. She uses positive interac­
tions among operators to make plans more efficient by exploiting temporal dependencies
among the operators. The idea is to shorten the plan by grouping the subgoals that
overlap together and by choosing for each subgoal the operator which overlaps most of
the operators already contained by the plan.

5 Conclusion and Outlook

5.1 Summary of Results

With this paper two goals were pursued:

1. A comparison of existing approaches to the reuse of plan schemata to describe the
state of the art for this problem and to develop a model on which further research
can be based on.

2. The analysis of various subproblems that are connected with plan reuse and a
discussion of results from other research areas which might contribute to a solution.

The following results have been obtained:

• The investigated approaches to plan reuse demonstrate the different views of the
problem in general. Until now there exists no approach aimed at an integration
of plan reuse and plan generation on a deductive basis. The PRIAR system (ap­
pendix C) is the one which uses an approach comparable with the one we intend.
CHEF (appendix B) and KIP (appendix A) are pure reuse systems and do not
have a plan generation facility. None of the investigated systems provides a for­
malization of the reuse process based on logic.

• Existing plan reuse systems adapt principles from case-based reasoning in their
representation formalism [Lur88], [Ham90]' or develop their own representations
that are especially devoted to plan reuse [Kam89a). Pure case-based reasoning
systems are only able to plan by reusing plans which are stored in the plan library.
They fail if completely new goals have to be solved for which no applicable plan
can be found in the plan library.

• The representation problem has to be discussed on two levels: on the representation
level of a single plan or plan schemata entry and on the representation level of the
whole plan library.

28

• Two VIews on plan determination have been analyzed: the analogy-driven plan
determination and the efficiency-driven plan determination. Both views are dif­
ferent in the evaluation function they apply to determine a reuse candidate from
the plan library. In the analogy-driven approach, a similarity metric is used to
compare the various planning situations, while in the efficiency-driven approach,
an estimation of the modification effort is applied. To decide which approach is
more appropriate the underlying plan generation formalism and the properties of
the application domain have to be considered. A combination of both approaches
might be useful.

• The modification of plans has been studied by various authors (cf. [Alt86], [Ham90],
[Kam89a], [WiI83]) and leads to a large collection of heuristic failure recognition
procedures and corresponding refitting strategies. A logical formalization of this
process has not been achieved.

The analysis of the plan reuse process has shown that a logic-based plan reuse" system
has to cover:

• the representation of goals, plans and information from the plan generation process,
e.g., applied transformation rules or resulting verification conditions,

• the matching and instantiation of plan schemata in the determination of an appro­
priate reuse candidate,

• the proof, whether a reuse candidate is a solution to the current planning problem
or not,

• the modification of reuse candidates based on results provided by the planner, e.g.,
the linearization of subgoals and the integration of newly generated sub plans into
the reused plan,

• the verification of the modified plan by which the plan is proved to be a correct
solution,

• the generation of a new plan library entry as a process of abstraction and general­
ization, and

• the update of the plan library as a process of explanation-based learning or induc­
tive learning.

Other elements of the reuse process will require a heuristic, knowledge based component
coverlllg:

• the representation of the plan library reflecting types of planning problems in the
application domain,

• the heuristic search in the plan library based on an evaluation function,

• the determination of a reuse candidate as an activation of explicitly stored (com­
piled) problem solving knowledge,

29

• the control of the modification process by heuristic refitting strategies based on
plan failure classifications,

• the generation of a new plan library entry based on heuristics about the frequency
and importance of planning problems occuring in the application domain, and

• the update of the plan library as a process of heuristic classification.

5.2 Architecture of a Plan Reuse System

In the previous chapters we discussed the various subproblems concerning plan reuse. As
a result, we now propose a 4-phase model that reflects these subproblems and supports
a structured treatment of plan reuse. In figure 2 the architecture of a plan generation
mechanism with an integrated reuse facility based on the 4-phase model is shown.

Problem
description:
P=[So,SG1 •
So - initial state
SG - goal state

Figure 2: A 4-Phase Model of Plan Reuse

Problem
~solution:

R' [

The underlying planning system is based on a program synthesis procedure that was
originally developed for the automation of existential proofs [Biu91]. A plan is generated
by proving a specification formula in first order predicate logic:

1/J = 'ix" : I(x*, so) -+ :3z : G(x*, so!z)

I(x*,so) represents the formulas that hold in the initial state and G(x*,so!z) represents
the formulas that hold in the goal state SG, which is obtained by executing the plan z
starting in so. The sentence 1/J is the current problem description for the planner.

After skolemization of the existence formula, a number of transformation rules are
applied to construct a term representing the specified plan. As a result of the transfor­
mation process two sets of formulas arise: a set of conditional equations (representing

30

the plan) and a set of formulas that can be viewed as assertions of verification conditions
for the plan. They describe additional properties that have to hold in the domain theory
to make the plan successfully applicable.

We intend to develop a deductive plan reuse mechanism that mainly relies on the
verification conditions initially provided by the planner: if a verification condition can
be proved to hold in a particular situation, the plan that was obtained as a solution of
the corresponding specification formula is applicable in the particular situation and it
reaches the intended goal.

The reuse mechanism will proceed in the following 4 phases:

1. Determination:
The reuse system is provided with a problem specification [So, SG] represented by
the above described specification formula. To solve the planning problem, a stored
plan entry from the plan library is determined. We presuppose that the plan library
does not contain (user-) predefined plan entries, but is built up using infQrmation
provided by the deductive plan generation component. This information consists
of:

(a) Vo: the set of verification conditions for the plan,

(b) Go : the set of formulas representing the goal state,

(c) So: the set of formulas representing the initial state,

(d) Po: the set of formulas representing the plan,

(e) 00: the set of objects involved in the plan.

The determination of a plan entry R can be based on syntactic comparisons of
(1, So), (G, Go), and (x", 0 0),

2. Interpretation:
Closely related to the determination phase is the interpretation of R in the new
planning situation. The main problem here is to find the correct mapping a of
objects in x" and 00 and the correct instantiation of Po (if formula schemata are
considered). A possible, but not sufficient criterion can be that Po is instantiated
such that, as much as possible, formulas from G are true in the instantiated plan
schema.

3. Refitting:
The interpretation process provides a (partially) instantiated plan schema together
wi th (partially) instantiated verification conditions.

An analysis of G and the interpreted formulas in Go allows G to be split into 3
subgoal sets, if G is not an atomic formula:

• G p = I n G the set of phantom goals that already hold in the initial state,

• GR = Inta(Go) the set of subgoals solved by the reused plan,

• G N = G \ (G RUG p) the set of su bgoals for which the planner has to be
activated.

31

The applicability of the reused plan can be verified based on the verification condi­
tions from Vo. As a result of this phase, a solution to the planning problem based
on the reuse of a stored plan will be obtained.

4. Update:
If a problem solution z = R[is obtained, a new plan library entry can be built up
from it:

• Go, So, Po can be determined based on G, I, and z, respectively,

• Vo can be determined based on the verification conditions of the subplans for
Gp , GR , GN ,

• 0 0 is obtained on the basis of x·.

To d.ecide whether a plan is "worth" storing in the plan library, the same similarity
metrics or efficiency measures used in the determination phase will be applied.

32

Appendix

Examples of Plan Reuse in Implemented Systems

A KIP - Knowledge Intensive Planning

Luria [Lur88] describes the development of the Knowledge Intensive Planner KIP, which
is the planning component for UC (Unix Consultant), an intelligent Unix help system
that allows a natural language interaction with the user. KIP is based on Wilensky's
idea of knowledge intensive planning [WiI83]. It uses the identification of different goal
interactions to classify potential plan failures and implements some aspects of the meta­
planning theory as described in section 4.1.1.

KIP's process of generating a plan is called plan synthesis and consists of an iterative
process composed of three parts:

1. Goal establishment describes the phase in which the goals of the user with whom
UC interacts are determined. The goa.ls for which KIP searches are derived from
these user goals.

2. Plan determination aims at the specification and retrieval of a plan that meets the
intended goals of the user.

3. Plan failure detection tests whether the plan will work in the current problem
situation without causing unacceptable consequences, and modifies the plan if nec­
essary.

After a successful completion of all three parts the plan is used by the help system to
support the user.

The major problem that is addressed by KIP is how to focus on relevant knowledge,
i.e ., in particular how to exploit the represented knowledge to identify potential pla.n
failures. As a new idea, so-called concerns are introduced to identify which aspects of a
plan are most likely to fail.

A.I Representation of Plans

KIP's knowledge representation is based on the following assumptions:

• Plans are ordered according to the goals they fulfil and it is possible to determine
the best plan for a particular goal.

• The plan determination algorithm is knowledge efficient. That means the system is
able to exploit the knowledge base in such a way that it considers only those pieces
of knowledge that are relevant in the current planning situation. This assumption
helps to overcome problems of combinatorial explosion during search processes.

33

• Knowledge can be interpreted in a context-sensitive way, i.e., defaults exist that
can be adapted on various situations.

To implement these assumptions in KIP the KODIAK knowledge representation lan­
guage [Lur88} has been developed that supports the representation of taxonomic hierar­
chies in a KL-ONE like manner.

Goals and plans are represented as concepts and are related by the PLANFOR­
relation. The determination of the user's goals is performed by the PAGAN goal analyzer
[Lur88} with which KIP is interacting. PAGAN transforms the natural language input so
that it can be directly used for the search in the knowledge base. The following example
is taken from [Lur88}:

The user inputs "How do I rename the file named lewis to be called bernstein?".
PAGAN analyzes this utterance and transforms it into the goal for which KIP has to
search a plan:

(rename-file-effect-i
(New-Name-37 bernstein-i)
(Previous-Name-63 lewis-i)
(Destination-File-Of-Rename-File-Effect-48 file-2)}

The goal is matched to a goal concept in the hierarchy. If it is a complex goal, KIP
has to decompose it into elementary goals. For example, "Print-and-Delete-File" is a
complex goal that is decomposed into two goals "Print-File" and "Delete-File." For each
elementary goal an importance level is stored representing the importance of the goal in
relation to other goals that can simultaneously occur. This leads to a ranking of subgoals
that determines the order in which plans are searched for meeting these subgoals.

The goal concept Rename-File-Effect is an elementary goal and is therefore directly
linked with a list of plan schemata from which one plan schema is chosen and instantiated
to meet the current goal. In this example, this leads to the plan schema:

(mv-command-7i
(First-File-Arg-File-Name-i00

(file-name-state-92
(Value-of-File-Name-98Iewis-i)

(Object-of-File-Name-96 file-i)}}
(Second-File-Arg-File-Name-83

(file-name-state-75
(Value-of-File-Name-8i bernstein-i)

(Object-of-File-Name-79 file-2)}}}

To recognize plan failures, knowledge describing these failures is represented by concerns
that have been developed especially to perform plan failure detection. They refer to
those aspects of a plan that are sources of possible plan failures and that are associated
explicitly with every plan schema stored in the knowledge base.

Concerns introduce probabilistic reasoning into the planning mechanism. They rep­
resent a heuristic approach to reduce the complexity of the search space when the effects
of an action are computed since they restrict the computation on conditions and effects

34

which are considered as important in the current situation. It is this degree of importance
that is represented in the concerns.

Stored concerns are a means for the plan library designer to express which aspects of a
stored plan schema are most likely to fail independently of the current planning situation.
Applying stored concerns in the planning situation at hand is done by dynamic concerns.
They are instances of stored concerns and represent the inheritance of concerns among
plan schemata and their corresponding plan instances. Dynamic concerns are introduced
by the system as soon as it notices a potential condition or goal conflict failure.

The plan library designer has to estimate two factors: the probability that a particular
precondition will not be satisfied and the probability that an unsatisfied precondition
causes the plan failure. This is represented by assigning a number between 1 and 10 to
every precondition.

A.2 Plan Determination

Plans are generated by retrieving and instantiating fixed, unchangeable plan schemata
from the plan library. This process of plan determination consists of two phases:

• Plan selection: KIP exploits the hierarchy of goals to find a stored plan schema
associated with a goal. Every goal in the plan library has a PLANFOR-relation
that connects it to plan schemata that solve this goal. These plan schemata are
selected and the first is instantiated. If no plan schema can be found for the
goal considered, a similar goal is searched for using the Goal Similarity Matching
Algorithm (GSMA) [Lur88]. To find a goal in the hierarchy that is most similar to
the current goal , KIP considers the goal concepts that are represented at the same
level in the taxonomic hierarchy and selects the one which belongs to the smallest
subgraph containing both goals.

• Plan specification: After a plan schema is determined it has to be instantiated due
to the current planning situation. This instantiation process is guided by informa­
tion stored in so-called EQUATE-associations between the unspecified values in
the plan schema and the specific values in the goal.

After instantiating the plan, KIP decides if the plan will work in the current situation
using the plan failure detection mechanism. If a plan only partially solves a goal addi­
tional subplans are added. If the plan leads to undesired effects subplans that remove
these effects are retrieved from the plan library.

A.3 Plan Failure Detection

If KIP has to find a plan for a complex goal, it decomposes this goal and determines plans
for the particular subgoals based on the PLANFOR-relations. It has to be investigated
whether these subplans interact without causing failures. Two possible kinds of failures
are distinguished:

35

• Condition failures occur when a necessary precondition for an action is unsatisfied
in the world state. To solve a condition failure the satisfaction of the condition
becomes a new goal for KIP. If the planner cannot find a plan to meet the additional
goals, a new plan must be determined.

• Goal conflict failures occur when a goal is incompatible with goals the selected plan
meets. Three different strategies for solving goal conflicts are used in KIP that
modify the plan to avoid the goal conflict, determine a new plan, and abandon one
of the user's goal, respectively.

KIP requires that all the preconditions necessary for plans to be successfully exe­
cuted are explicitly represented because it evaluates these preconditions in the current
environment to discover potential plan failures. The detection of goal conflicts entails
the comparison of every effect of a plan with every goal owned by the user. To avoid
combinatorial explosion, concerns are applied that enable the planner to concentrate on
conditions and effects which are most likely to fail.

A.4 Evaluation of KIP

We ground the evaluation on the model of plan reuse as developed in section 5.2:

• Representation of plan entry and plan library:
Plan schemata are connected to the goals they achieve and are organized in an in­
heritance network. The KL-ONE like representation is augmented by probabilistic
elements to increase the efficiency of the failure detection and refitting process. A
theoretical basis for the probabilistic reasoning is not provided.

• Underlying plan generation mechanism:
Plan generation is reduced to the retrieval of plan schemata from the knowledge
base and the instantiation of variables depending on the current planning situa­
tion. It is always treated as the activation of stored plan schemata. There is no
mechanism to generate a new plan from available operators.

• Determination of plans from the plan library:
To determine a plan KIP uses a similarity based matching algorithm. This requires
the exhaustive description of the current goal and situation with attributes known
by the system. Exhaustive goal descriptions are necessary to find the best plan to
achieve the goal. Exhaustive situation descriptions are necessary to investigate the
most important concerns to prevent the plan from failing.

• Interpretation of a reused plan in the new planning situation:
The correct instantiation of plans is guided by knowledge about object classes,
equality and inheritance relations.

• Refitting of the reused plan:
Luria suggests a classification of potential plan failures based on the approach
by Wilensky (d. [WiI83]) and demonstrates general strategies for refitting these
failures.

36

• Update of the plan library:
KIP is explicitly provided with a fixed plan library from which it retrieves the
reused plans. An update mechanism is beyond the scope of the approach.

B CHEF - Case-based Planning

We review the work of Hammond [Ham86b], [Ham86a] and [Ham9D] describing CHEF, a
system working in the domain of cooking. Plans are recipes that meet goals representing
user demands on the dishes to be cooked. Reusing plans presupposes the understanding
and explanation of why plans failed or succeeded in a particular situation. Therefore,
case-based reasoning systems need a strong model of causality of the domain in which
they operate. While KIP is supplied with a large library of plan schemata for nearly
every goal and only instantiates theses schemata, CHEF uses plan failures to modify
even its model of the world that led to the creation of a faulty plan.

B.1 Representation of Plans

The memory of CHEF consists of three main parts:

• a description of past successes, i.e., plans that have been succesfully applied,

• a taxonomy of past failure descriptions that warn the planner to avoid these failures
if a similar situation occurs again,

• a taxonomy of repair strategies ordered by plan failures that is used to deal with
these failures.

As in KIP, plans are first of all indexed by the goals they meet. But a second index
orders them by the failures they avoid. Failures are indexed by the features of the
current planning situation that predict them. The aim of this representation principle
is to anticipate and avoid future plan failures.

On the implementational level plans are organized in discrimination networks. Ele­
ments of object-oriented representation like demons are added to the net nodes that
represent goals. Demons are used to implement repair strategies and to provide an
implicit representation of repair knowledge. Each goal node is connected to plans that
meet this goal and has links to typical failures that might occur when the goal is achieved
with one of the plans.

B.2 Plan Determination

CHEF analyzes the features of the planning situation and deduces which potential fail­
ures these features predict. Then it uses this information to find a plan that solves the
intended goals and also avoids the predicted failures. A predicted failure is transformed
into a new goal. The achievement of this new goal avoids the failure. This new goal is
added to the goal list containing all the goals that have to be met in the current planning
situation.

37

CHEF now looks for a plan that achieves all goals originating from potential failures
and as many as possible goals stated by the user. It is worth noting that goals coming
from the need to avoid failures are more important for the determination of a plan than
the original goals for which a plan is searched for.

Plan retrieval uses a best match strategy. Best match is defined in CHEF as finding
a plan that satisfies or partially satisfies as many goals as possible.

The plan retrieval component also uses a similarity metric to recognize partial matches
between goals and a value hierarchy to judge the importance of the goals it plans for.
The most important goals are the ones describing the kind of dish that has to be cooked,
followed by the goals arising from failures that have to be avoided, again followed by the
goals describing the incredients that have to be included in the dish. If a plan is found,
but not all goals stated by the user can be achieved performing the plan, it has to be
modified.

B.3 Plan Failure Detection

Two situations where plan modification is necessary are considered. The first occurs
when the plan does not meet all the user's goals. The second occurs when the plan fails
during its simulation.

If a plan fails, a repair strategy is used to create a causal explanation for that failure.
This causal explanation directs the repair process of the plan and helps to recognize the
features of the planning situation that caused the failure.

Generating an explanation for a failure means backchaining from the failure to the
initial steps or states in the world based on rules representing possible consequences of
actions under various circumstances.

Explanations are connected to so-called Thematic Organization Packets (TOPs) that
are indexed by the description of a planning problem type. TOPs were developed by
Schank [Sch82] . Each packet contains a set of strategies to deal with a particular type
of problem. These strategies are general repair rules based on information about the
interaction of plans and goals and the interaction among planning steps.

Hammond develops a very detailed taxonomy of plan failures that are characterized
by operators and states in the domain. Five categories of different planning problems are
described on the top level of the taxonomy. They represent general problems concerning
side effects of planning steps interacting with other planning steps, unwanted features of
objects, or blocked preconditions. These general failure categories are further analyzed
and refined leading to a detailed conflict description on the bottom level where these
conflicts are linked with subsets of instances of 17 general repair strategies that can be
applied to resolve the conflicts. The TOPs are organized such that different conflicts can
be resolved by the same general repair strategy but require different instantiations.

The repair strategies in general lead to a reordering of steps, an alteration of the
objects involved, and a change of actions, respectively, to resolve the conflicts.

TOPs are also used to modify the domain model by marking the features that caused
the failures. The explanation is combined with the most generalized description of the
object that was involved in the failure situation. The explanation is used to derive tests

38

for potential plan failures connected to the object if it occurs again in a goal.

A detailed description of failures and repair strategies can be found in [Ham90].

Once a plan is repaired, it can be described as a plan that avoids the problem at
hand and achieves the original goal. Modification rules have to be applied if a plan does
not already meet all original goals. The library of modification rules is indexed by the
changes that have to be made and by the type of plans in which the changes have to
be made. Modification rules are descriptions of steps that have to be added and deleted
from plans to satisfy the new goals. They are represented in an abstraction hierarchy. If
no modification rule for a goal can be found, a rule to achieve the more general goal is
searched for.

Object critics descri be failures related to the ingredients of the dishes (the objects of
the domain). Object critics are used to guide the modification process when new objects
are introduced instead of the ones for which the plan was created. When one ingredient
is replaced by another, the object critics remove all planning steps corresponding to the
old object critic and add steps from the new object critic instead.

Each plan is carried out by a simulator that runs the plan. It uses a set of rules
describing the effects of each action in the domain and thus evaluates whether an action
achieves the intended goal. Every plan that is executed successfully is added to the
knowledge base. Plans are stored in their original form. There is no generalization or
abstraction.

B.4 Evaluation of CHEF

• Representation of plan entry and plan library:
The underlying knowledge representation formalism combines discrimination net­
works and frames by which the nodes of the network are represented.

• Underlying plan generation mechanism:
CHEF is an application of case-based reasoning to planning. New plans are gen­
erated by retrieving and modifying stored plans . A generation of plans based on
operators is not intended in the field of case-based planning .

• Determination of plans from the plan library:
The explicit representation of failures a plan might cause and the use of these
failures as an indexing mechanism when a plan is searched in the knowledge base is
an interesting idea. CHEF analyzes the user's goal and tries to anticipate potential
failures this goal might include. Then it searches for a plan that avoids these failures
and meets the original goal. It is worth noting that the metagoal of avoiding
failures is more important for the selection of a plan than the original user's goal.
The anticipation of failures requires their explicit representation that is described
by Hammond as the" deep model of causality" on which CHEF is based.

• Interpretation of a reused plan in the new planning situation:
The reused plan is simulated in the world model, which can be considered as a
variant of interpretation. During this simulation the information is collected that
guides the refitting of the plan .

39

• Refitting of the reused plan:
CHEF follows the Generate, Test and Debug paradigm in which plan failures are
discovered during plan execution when interactions among planning steps become
obvious. The complexity that arises when projecting the effects of an action is
avoided by CHEF using a heuristically driven process of failure anticipation. The
refitting process is an example of plan debugging, rather than plan modification
as discussed in section 4. The very detailed classification of plan failures and
corresponding repair strategies provides a good basis for further research.

• Update of the plan library:
If CHEF has solved a planning problem, it stores the modified plan resulting from
the reuse candidate in the case base. Plans are stored in their original form. There
is no generalization or abstraction. The system is also able to reorganize the plan
library so that it stores information about plan failures together with the plans .
This leads to a changed indexing of the plans and can be viewed as a change in
the world model CHEF exploits.

C PRIAR - Integration of Plan Generation and Plan Reuse

Kamphampati [Kam89a] tries to develop a formal treatment of plan reuse using a hier­
archical planning formalism. The main problem that is addressed with PRIAR is how
plans have to be modified for reuse in a new planning situation.

C.I Representation of Plans

The distinguishing feature of the representation formalism is the augmentation of the
plan representation with additional information that represents a hierarchical explana­
tion of correctness for a generated plan. This information is the so-called validation
structure and is annotated with every plan the planner generates. Since the information
that constitutes the validation structure is automatically extracted from the planning
knowledge, the approach is flexible and domain independent.

Basic representational concepts that stem from the underlying hierarchical planner are:

• The hierarchical task network represents the development process of each plan . A
hierarchical planner is one that starts with an abstract specification of a plan and
then refines it until the plan is reduced to a sequence of applicable actions .

• Task reduction schemata represent the rules the planner uses to reduce the abstract
plan to a sequence of applicable actions.

• Task-kernels represent the set of conditions that have to be preserved by any schema
instance that is chosen by the planner to reduce the refit-task. Three different types
of conditions are distinguished:

- effect conditions describe the effects of the refit-task used in other parts of the
plan,

40

persistence conditions describe conditions that have to hold over the whole
plan,

external preconditions describe conditions that were introduced by other plan­
ning steps and that have to be met by the schema instance.

The following representational concepts are added to augment the hierarchical planning
formalism with the ability to reuse plans:

• The validation structure represents why a plan is correct, storing causal depen­
dencies between the planning steps and the underlying planning decisions . It is a
4-tuple (E,ns,C,nd), stating that the effect E of a source action ns supports the
condition C that destination action nd requires . The validation structure is stored
in the form of plan kernels.

• Plan kernels contain those features of the initial situation and the goal s~tuation
of a plan that provide validations for parts of the plan. Three types of validations
are distinguished ordered by their importance:

features that validate the goals of the plan,

features that validate filter conditions or top level phantom goals (cf. sec­
tion C.2),

- features that validate preconditions .

If validations are violated that are necessary to achieve the goal, a number of extra
subgoals have to be added to reestablish the validations. If validations for filter
conditions or preconditions are violated, it will be easier to establish the failing
validations.

• The justification structure represents the underlying preference rules for planning
choices if the same state can be achieved by different actions.

• A nnotations are connected to the hierarchical task network and describe the inter­
nal causal and decision dependency structure of the plan. Two types of annotations
are used:

- Node annotations are linked with the nodes in the hierarchical task network
and represent dependencies between the sub-reductions rooted at the node
and the remaining plan. They contain the information that is necessary to
guide the modification process and predict the utility of reusing the plan in
dependence of features in the input and output situation of that plan.

Annotation states connect two successive plan steps and represent the condi­
tions that have to hold after the first plan step is performed to ensure that
the following plan step is applicable. They are used to detect applicability
failures of the retrieved plan in the current planning situation.

• Refit tasks represent domain-independent modification strategies.

41

C.2 Plan Determination

The retrieval mechanism searches for a plan that requires the least modification effort
when applied in the current planning situation. To measure the modification effort, the
validation structure of the plan (as described in section C.l) is considered under the
current planning conditions. The plan with the smallest number of validations that fail
in this situation is preferred for reuse. The plan determination process proceeds in the
following way:

The system is provided with a new problem description pn = [In, en] (where In
describes the inital state, and en describes the goal state) and a set of reuse candidates
{(RO, a)} where ~ is the candidate plan and a is a mapping of the corresponding objects
in pn and .f?!J.

The plan kernel of ~ written as P J«RO) that represents the validation structure of
the candidate plan is interpreted in the new planning situation. It contains three sets of
features:

P J«RO) = (g-features, f-features, pc-features)

The g-features (Goal Features) correspond to validations of ~ that support its goal,
i.e., if they hold in the current planning situation the plan will achieve its goal. The
system only considers candidate plans that solve the current goal, since the candidate
set of potential applicable plans is determined by an unification of goal states. To verify
the goal validations, the retrieval mechanism tests whether the set of g-features is equal
to the set of validations for the goal node AP(ng):

The candidate plans that fulfill this condition are considered in a second test. The other
plans are dropped because they would require the addition of an extra goal to solve the
new planning problem. Now the set of f-features (Filter Features) of the remaining
candidate plans is considered. These features correspond to the validations for the input
specification of RO and describe those preconditions the candidate plan requires to be
applicable and for which no actions exists in the planning domain. They are a-priori
conditions that must hold in the planning situation. Filter conditions usually describe
features of objects that are relevant for the planner and which are invariant domain
constraints the planner has to meet.

After this test, the set of candidate plans is further reduced. If it still contains more
than one plan, a third test has to be performed to produce a final ranking of the candi­
dates. This last test considers the pc-features (Precondition Features) that correspond
to the validations that support the preconditions of the actions in the candidate plan.
The candidate plans are ranked according to the number of preconditions that might fail
in the new interpretation, with the plan having the least number of failing preconditions
on the top of the ranking.

The verification tests for the three types of validations are implemented usmg a
syntactic match of features.

This idea of validated retrieval reflects the following heuristics:

42

• A plan can be reused efficiently by minimizing the number of necessary modifica­
tions.

• The modifications can be recognized considering three different types of validations
reflecting three types of plan failures:

1. The plan only partially meets the new goal.

2. The plan uses the wrong types of objects that are determined by the mapping
a in the new planning situation.

3. The plan requires preconditions that do not hold in the new planning situa­
tion.

• The different types of plan failures lead to differing amounts of necessary effort to
overcome these failures:

1. The first kind of plan failures can only be corrected by adding a new goal to
the list of goals. This requires the generation and integration of an additional
subplan.

2. The second kind of plan failures can be solved if some of the objects are
exchanged by other objects that meet the filter conditions. This requires the
automated construction of a new mapping a.

3. The third group of plan faiiures requires the least modification effort, since
it can be assumed that failing preconditions often can be easily established
performing some of the elementary actions the planner uses.

In every step the retrieval mechanism drops the plans that require the highest mod­
ification effort. If it terminates with a solution, this represents the plan from the plan
library that fits best to the new planning situation. As a side-effect, the retrieval mech­
anism additionally collects the information that will guide the modification process.

C.3 Plan Failure Detection

In a first step, the candidate plan is interpreted using the mapping a from the plan
determination phase. Then the differences between the specifications of the old and the
new planning situations are marked to focus the annotation verification procedure on
the inconsistencies in the validation structure of the candidate plan.

Old and new planning situations are specified by their initial and goal states. The dif­
ferences between the initial states and the goal states of the two situations are represented
in two sets of facts Ii and Gi. The differences in Ii and G i may lead to inconsistencies
in the validation structure of the interpreted candidate plan Ri .

If Ii and G i are empty the plan does not have to be modified. Otherwise, Ii may
contain facts marked as out representing those facts which no longer hold true in the
current situation, and facts marked as new that now come into existence, but did not
hold in the old situation. G i may contain extra goals representing the goal state facts
that were introduced by the new planning goal and unnecessary goals which remain from
the old goal description but are not required by the new goal.

43

The inconsistencies in the validation structure represent different classes of applica­
bility failures. The annotation verification procedure determines these classes of failures
based on the type of inconsistency and proposes a refitting strategy for every class. The
following classes of inconsistencies are distinguished:

1. Unnecessary validations: All validations that support conditions which are no
longer required can be removed, including all parts of the plan of which the sole
purpose is supplying these validations.

2. Missing validations: All facts G that represent extra goals in Gi are transformed
into corresponding refit tasks of the form Achieve(G), for which the planner has to
be activated. If a new valid~tion is added, the planner has to check the valida tion

structure for harmful interactions. The extra goal is added to the plan at a place
where it causes the fewest interactions.

3. Failing validations: The "out" -facts in Ii are further classified and treat~d sepa­
rately:

• Failing precondition validations: Failing preconditions are achieved by intro­
ducing an extra goal that achieves the supporting effect for this precondition.
The extra goal is inserted before the destination node.

• Failing phantom validations: If a validation for a phantom goal is failing, the
marking of the goal is undone, telling the planner that this goal has to be
achieved . The failing validation for this goal is removed.

• Failing filter condition validations: Failing filter conditions cannot be achieved
by the planner by establishing additional goals. Therefore the planning con­
ditions··that introduced these failing filter conditions have to be undone, i.e.,
the whole subreduction of a goal has to be exchanged for an alternate schema
instance. If more than one schema instance is available, the one which least
affects the already established validations is chosen.

4. P-phantom validations: All validations whose source node is not the initial node of
the hierarchical task network are checked whether they could have been exchanged
for validations that were added to the plan during the annotation verification.
These new validations arise from the extra goals the planner has to achieve and
are necessary for a consistent validation structure. If they contain validation in­
formation that was already established by old validations these old validations
together with their corresponding planning steps can be removed.

In the refitting phase the planner takes the verified plan net consisting of the appli­
cable parts of the old plan and the refit tasks that were added during the verification
phase. The refit tasks are reduced applying a conservative control strategy, i.e., the
planner selects those schema instances to reduce the refit tasks that minimally disturb
the validation structure of the remaining plan.

44

C.4 Evaluation of PRIAR

• Representation of plan entry and plan library:
PRIAR uses a knowledge representation that is especially developed for the purpose
of plan reuse. An analysis of the reuse process leads to a graph-based representation
reflecting the internal dependencies among the planning steps in a plan. The
representation and organization of the whole plan library is beyond the scope of
the approach.

• Underlying plan generation mechanism:
PRIAR is based on a hierarchical, nonlinear planning mechanism. It is the first
approach towards an integration of plan generation and plan reuse and is closely
related to our model of plan reuse.

• Determination of plans from the plan library:
The approach concentrates on the investigation of the modification phase in the
reuse process. Therefore the reuse candidates are explicitly provided to the reuse
mechanism. The approach lacks a search procedure that is able to select the initial
candidate set of potential applicable plans from a large plan library.

• Interpretation of a reused plan in the new planning situation:
The basis for the interpretation is a mapping a of corresponding objects that has
to be provided. The system is not able to discover exisiting relations or similarities
between plans by itself.

• Refitting of the reused plan:
This sub phase is extensively studied in PRIAR. The system is able to detect neces­
sary modifications based on occuring inconsistencies in the validation structure. An
analysis of these inconsistencies leads to a classification of potential plan failures.
Refit tasks that represent goals for the planner are used to remove the inconsisten­
cies. The reuse component guides the modification process, but the modification of
the plan itself is performed by the planner in solving the refit tasks. The analysis
of this interaction in plan generation and plan reuse is the main contribution of
PRIAR to the problem of plan reuse from our perspective.

• Update of the plan library:
The approach does not address the organization of plans in the plan library and
other problems related to the update of the plan library as, e.g., the generalization
of stored plans. In principle, an update mechanism seems to be possible, since all
the information that is necessary to store a plan entry can be extracted from the
plan generation process but is not provided in the implementation.

References

[AF88] J .S. Anderson and A.M. Farley. Plan abstraction based on operator gener­
alization. In Proceedings of the 7th National Conference on Artificial Intelli-

45

gence, Saint Paul, Minnesota, USA, pages 100-104. Morgan Kaufman, San
Mateo, 1988.

[Alt86] R. Alterman. An adaptive planner. In Proceedings of the 5th National Con­
ference on Artificial Intelligence, Philadelphia, USA, pages 65- 69. Morgan
Kaufman, Los Altos, 1986.

[Bak89] A.B. Baker. A simple solution to the Yale shooting problem. In Proceedings of
the 1st International Conference on Principles of Knowledge Representation
and Reasoning, Toronto, Ontario, Canada, pages 11- 20. Morgan Kaufman,
Los Altos, 1989.

[B CP90j B. Brock, S. Cooper, and W. Pierce. Analogical reasoning and proof discov­
ery. In Proceedings of the 9th Conference on Automated Deduction, Kaisers­
lautern, Germany, pages 454- 468. Lecture Notes in Computer Science 310,
Springer, Berlin, 1990.

[BH90] G. Brewka and J. Hertzberg. How to do things with worlds: On formalizing
actions and plans. Preliminary Draft, 1990.

[Biu90] S. Biundo. Plan generation using a method of deductive program synthe­
sis. Research Report RR-90-09, Deutsches Forschungszentrum fiir Kiinstliche
Intelligenz GmbH, 1990.

[Biu91j S. Biundo. Automatische Synthese rekursiver Algorithmen als Beweisver­
fahren. Informatik Fachberichte. Springer, Berlin, 1991. forthcoming.

[BL88] S. Bradtke and W .G. Lehnert. Some experiments with case-based search. In
Proceedings of the 7th National Conference on Artificial Intelligence, Saint
Paul, Minnesota, USA, pages 133-138. Morgan Kaufman, San Mateo, 1988.

[BM79] R.S. Boyer and J S. Moore. A Computational Logic. ACM Monograph Series.
Academic Press, London, 1979.

[Bra90] R.J. Brachman. The future of knowledge representation. In Proceedings of
the 8th National Conference on Artificial Intelligence, Boston, USA, pages
1082- 1092. The MIT Press Menlo Park, Cambridge, London, 1990.

[Bun90] A. Bundy. The use of explicit plans to guide inductive proofs. In Proceedings
of the 9th Conference on Automated Deduction, Kaiserslautern, Germany,
pages 111- 120. Lecture Notes in Computer Science 310, Springer, Berlin,
1990.

[Biir86] H.J . Biirckert. Lazy theory unification in prolog: An extension of the warren
abstract machine. In Pro~eedings of the 10th German Workshop on Artificial
Intelligence and the 2nd Osterreichische Artificial Intelligence Tagung, Otten­
stein, Austria, pages 277- 288. Informatik-Fachberichte 124, Springer, Berlin,
1986.

46

[C+86] R.L. Constable et a1. Implementing Mathematics with the NuPRL Proof De­
velopment System. Prentice Hall, 1986.

[Chi89] S.A. Chien. Using and refining simplifications: Explanation-based learning of
plans in intractable domains. In Proceedings of the 11th International Joint
Conference on Artificial Intelligence, Detroit, Michigan, USA, pages 590-595.
Morgan Kaufman, San Mateo, 1989.

[CI89] J. Cheng and K.B. Irani. Ordering problem subgoals. In Proceedings of
the 11th International Joint Conference on Artificial Intelligence, Detroit,
Michigan, USA, pC;1ges 931-937. Morgan Kaufman, San Mateo, 1989.

[D C89] M. Drummond and K. Currie. Goal ordering in partially ordered plans. In
Proceedings of the 11th International Joint Conference on Artificial Intelli­
gence, Detroit, Michigan , USA, pages 960-965. Morgan Kaufman, San Mateo,
1989.

[Dem67] A.P. Dempster. Upper and lower probabilities induced by a multivalued map­
ping. Annals of Mathematical Statistics, 38:325-339, 1967.

[DHR89] F. Daube and B. Hayes-Roth. A case-based mechanical redesign system.
In Proceedings of the 11th International Joint Conference on Artificial In­
telligence, Detroit, Michigan, USA, pages 1402-1407. Morgan Kaufman, San
Mateo, 1989.

[I) R87] T.R. Davis and S.J. Russell. A logical approach to reasoning by analogy. In
Proceedings of the 10th International Joint Conference on Artificial Intelli­
gence, Milan, Italy, pages 264- 270. Morgan Kaufman, Los Altos, 1987.

[Eth88] D.W. Etherington. Reasoning with Incomplete Information. Morgan Kauf­
man, Los Altos, 1988.

[FF86] B. Falkenhainer and K.D. Forbus. The structure-mapping engine. In Proceed­
ings of the 5th National Conference on Artificial Intelligence, Philadelphia,
USA, pages 272- 277. Morgan Kaufman, Los Altos, 1986.

[FHN71] R.E. Fikes, P. Hart, and N.J. Nilsson. Learning and executing generalized
ro bot plans. A rtificial Intelligence, 3:251- 288, 1971.

[Fin87] J.J. Finger. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford
University, Stanford, CA, 1987.

[FN71] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189 - 208, 1971.

[G en88] D. Gentner. Structure-mapping: A theoretical framework for analogy. In
Readings in Cognitive Science: A Perspective from Cognitive Science and
Artificial Intelligence, pages 303-310. Morgan Kaufman, San Mateo, 1988.

47

[GM88] P. Gardenfors and D. Makinson. Revisons of knowledge systems using epis­
temic entrenchment. In Proceedings of the 2nd Conference on Theoretical As­
pects of Reasoning about Knowledge, Pacific Grove, California, USA, pages
83-95. Morgan Kaufman, Los Altos, 1988.

[Gre88] R. Greiner. Learning by understanding analogies. Artificial Intelligence,
35:81-125, 1988.

[GS88a] M.L. Ginsberg and D.E. Smith. Reasoning about action I: A possible worlds
approach. Artificial Intelligence, 35:165 - 195, 1988.

[GS88b] M.L. Ginsberg and D.E. Smith. Reasoning about action II: The qualification
problem. Artificial Intelligence, 35:311 - 342, 1988.

[HA96] . M. Haraguchi and S. Arikawa. Reasoning by analogy as a partial identity
between models. In Proceedings of the International Workshop on Analogical
and Inductive Inference, Wendisch-Rietz, GDR, pages 61-87. Lecture Notes
in Computer Science 265, Springer, Berlin, 1896.

[Ha189] R.P. Hall. Computational approaches to analogical reasoning: A comparative
analysis. Artificial Intelligence, 39:39-120, 1989.

[Ham86a] K.J. Hammond. CHEF: A model of case-based planning. In Proceedings
of the 5th National Conference on Artificial Intelligence, Philadelphia, USA,
pages 267-271. Morgan Kaufman, Los Altos, 1986.

[Ham86b] K.J. Hammond. Learning to anticipate and avoid planning problems through
the explanation of failures. In Proceedings of the 5th National Conference on
Artificial Intelligence, Philadelphia, USA, pages 556-560. Morgan Kaufman,
Los Altos, 1986.

[Ham88] K.J . Hammond. Learning from opportunities: Storing and re-using execution­
time optimizations. In Proceedings of the 7th National Conference on Artifi­
cial Intelligence, Saint Paul, Minnesota, USA, pages 536-540. Morgan Kauf­
man, San Mateo, 1988.

[Ham89] K.J. Hammond. CHEF. In C.K. Riesbeck and R.C. Schank, editors, Inside
Case-based Reasoning, chapter 6. Lawrence Erlbaum, Hillsdale, New Jersey,
1989.

[Ham90] K.J. Hammond. Explaining and repairing plans that fail. Artificial Intelli­
gence, 45:173-228, 1990.

[Hay89] C.C. Hayes. A model of planning for plan efficiency: Taking advantage of
operator overlap. In Proceedings of the 11th International Joint Conference
on Artificial Intelligence, Detroit, Michigan, USA, pages 949-953. Morgan
Kaufman, San Mateo, 1989.

48

[HH89] J. Hertzberg and A. Horz. Towards a theory of conflict detection and re­
solution in nonlinear plans. In Proceedings of the 11th International Joint
Conference on Artificial Intelligence, Detroit, Michigan, USA, pages 937-943.
Morgan Kaufman, San Mateo, 1989.

[HM86] S. Hanks and D.V. McDermott. Default reasoning, non-monotonic logic, and
the frame problem. In Proceedings of the 5th National Conference on Artificial
Intelligence, Philadelphia, USA, pages 328-333. Morgan Kaufman, Los Altos,
1986.

[Ind88] B. Indurkhya. Modes of analogy. In Proceedings of the International Work­
shop on Analogical and Inductive Inference, Reinhardsbrunn Castle, GDR,
pages 217- 229. Lecture Notes in Computer Science 397, Springer, Berlin,
1988.

[Kam89a] S. Kambhampati. Flexible reuse and modification in hierarchical planning: A
validation structure based approach. PhD Thesis MD 20742-3411, University
of Maryland, Center for Automation Research, Computer Vision Laboratory,
1989.

[Kam89b] S. Kambhampati. Integrating planning and reuse: A framework for flexible
plan reuse. In Proceedings of the Workshop on Case-Based Reasoning, Pen­
sacola Beach, Florida, pages 280-284. Morgan Kaufman, San Mateo, 1989.

[Kam89c] S. Kambhampati. Representational requirements for plan reuse. In Proceed­
ings of the Workshop on Case-Based Reasoning, Pensacola Beach, Florida,
pages 20-23. Morgan Kaufman, San Mateo, 1989.

[Kam90a] S. Kambhampati. Mapping and retrieval during plan reuse: A validation
structure based approach. In Proceedings of the 8th National Conference on
Artificial Intelligence, Boston, USA, pages 170- 175. MIT Press Menlo Park,
Cambridge, London, 1990.

[Kam90b] S. Kambhampati. A theory of plan modification. In Proceedings of the 8th
National Conference on Artificial Intelligence, Boston, USA, pages 176- 182.
MIT Press Menlo Park, Cambridge, London, 1990.

[Kau86] H.A. Kautz. The logic of persistence. In Proceedings of the 5th National Con­
ference on Artificial Intelligence, Philadelphia, USA, pages 401-405. Morgan
Kaufman, Los Altos, 1986.

[KC89] P. Koton and M. Chase. Knowledge representation in a case-based reasoning
system: Defaults and exceptions. In Proceedings of the 1st International Con­
ference on Principles of Knowledge Representation and Reasoning, Toronto,
Ontario, Canada, pages 203- 211. Morgan Kaufman, Los Altos, 1989.

[Ker88] M. Kerber. Some aspects of analogy in mathematical reasoning. In Proceed­
ings of the International Workshop on Analogical and Inductive Inference,
Reinhardsbrunn Castle, GDR, pages 231-242. Lecture Notes in Computer
Science, 397, Springer, Berlin, 1988.

49

[KH89] S. Kambhampati and J.A. Hendler. Control of refitting during plan reuse.
In Proceedings of the 11th International Joint Conference on Artificial In­
telligence, Detroit, Michigan, USA, pages 943-949. Morgan Kaufman, San
Mateo, 1989.

[KM90] H. Katsuno and A.O. Mendelzon. On the difference between updating a
knowledge base and revising it. Technical Report KRR-TR-90-6, University
of Toronto, 1990.

[Kn090] C.A. Knoblock. Learning abstraction hierarchies for problem solving. In
Proceedings of the 8th National Conference on Artificial Intelligence, Boston,
USA, pages 923-928. MIT Press Menlo Park, Cambridge, London, 1990.

[Ko184] J.L. Kolodner. Retrieval and Organizational Strategies in Conceptual Memory
- A Computer Model. Lawrence Erlbaum, Hillsdale, New Jersey, 1984.

[Lei89] D. Leishman. Analogy as a constrained partial correspondence over concep­
tual graphs. In Proceedings of the 1st International Conference on P1'inci­
pIes of Knowledge Representation and Reasoning, Toronto, Ontario, Canada,
pages 223- 234. Morgan Kaufman, Los Altos, 1989.

[Lif87] V. Lifschitz. Formal theories of action. In Readings in Nonmonotonic Rea­
soning, pages 410-432. Morgan Kaufman, Palo Alto, 1987.

[Lin89] C. Lingenfelder. Structuring computer generated proofs. In Proceedings of
the 11th International Joint Conference on Artificial Intelligence, Detroit,
Michigan, USA, pages 379-383. Morgan Kaufman, San Mateo, 1989.

[Lou89] R.P. Loui. Analogical reasoning, defeasible reasoning, and the reference class .
In Proceedings of the 1st International Conference on Principles of Knowledge
Representation and Reasoning, Toronto, Ontario, Canada, pages 256- 265.
Morgan Kaufman, Los Altos, 1989.

[LR89] V. Lifschitz and A. Rabinov. Miracles in formal theories of action. Artificial
Intelligence, 38:225-237, 1989.

[Luk88] W. Lukaszewicz. Chronological minimization of abnormality: Simple theo­
ries of action. In Proceedings of the 7th Europeen Conference on Artificial
Intelligence, Munich, Germany, pages 574-576. Pitman, London, 1988.

[Lur88] M. Luria. Knowledge intensive planning. Technical Report UCB/CSD
88/433, Computer Science Division, University of California, Berkeley, 1988.

[M+89] S. Minton et al. Explanation-based learning: A problem solving perspective.
Artificial Intelligence, 40:63-118, 1989.

[MB86] R.J. Mooney and S.W. Bennett. A domain independent explanation-based
generalizer. In Proceedings of the 5th National Conference on Artificial In­
telligence, Philadelphia, USA, pages 551-555. Morgan Kaufman, Los Altos,
1986.

50

[McC77] J. McCarthy. Epistemological problems of artificial intelligence. In Proceed­
ings of the 5th International Joint Conference on Artificial Intelligence, Cam­
bridge, Massachusetts, USA, pages 1038-1044. Morgan Kaufman, Los Altos,
California, 1977.

[MH69] J. McCarthy and P.J. Hayes. Some philosophical problems from the stand­
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine

Intelligence 4, pages 463-502. American Elsevier, New York, 1969.

[Mun81] J.C. Munyer. Analogy as a Means of Discovery in Problem Solving and Learn­
ing. PhD thesis, University of California at Santa Cruz, 1981.

[MW86] Z. Manna and R. Waldinger. How to Clear a Block: Plan Formation in
Situational Logic. Lecture Notes in Computer Science 230, Springer, Berlin,
1986.

[MW87] Z. Manna and R. Waldinger. A theory of plans. In Reasoning about 4ctions
€3 Plans, Proceedings of the 1986 Workshop, pages 11-45. Morgan Kaufman,
Palo Alto, 1987.

[Ncb90] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture
Notes in Computer Science 422, Springer Verlag, Berlin, 1990.

[Rcd90] M. Redmond. Distributed cases for case-based reasoning; facilitating use of
multiple cases. In Proceedings of the 8th National Conference on Artificial In­
telligence, Boston, USA, pages 304-309. MIT Press Menlo Park, Cambridge,
London, 1990.

[Rci80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132,
1980.

[RK89] D. Ruby and D. Kibler. Learning subgoal sequences for planning. In Pro­
ceedings of the 11th International Joint Conference on A1·tificial Intelligence,
Detroit, Michigan, USA, pages 609- 615. Morgan Kaufman, San Mateo, 1989.

[RS89] C.K. Riesbeck and R.C. Schank. Inside Case-based Reasoning. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1989.

[Sch82] R. Schank. Dynamic memory: A Theory of Learning in Computers and Peo­
ple. Cambridge University Press, 1982.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, New Jersey, 1976.

[Sha90] S.C. Shapiro, editor. Enzyclopedia of Artificial Intelligence, volume I and II.
John Wiley and Sons, 1990.

[SHK89] R. H. Stottler, A.L. Henke, and J.A. King. Rapid retrieval algorithms for case­
based reasoning. In Proceedings of the 11th International Joint Conference
on Artificial Intelligence, Detroit, Michigan, USA, pages 233-237. Morgan
Kaufman, San Mateo, 1989.

51

[Sh086] Y. Shoham. Chronological ignorance: Time, nonmonotonicity, necessity and
causal theories. In Proceedings of the 5th National Conference on Artificial
Intelligence, Philadelphia, USA, pages 389-393. Morgan Kaufman, Los Altos,
1986.

[Sie89] J. Siekmann. Universal unification. Journal of Symbolic Computation, 7:207-
274, 1989.

[Sim88] R.G. Simmons. A theory of debugging plans and interpretations. In Pro­
ceedings of the 7th National Conference on Artificial Intelligence, Saint Paul,
Minnesota, USA, pages 94-99. Morgan Kaufman, San Mateo, 1988.

[SM90j E. Simoudis and J. Miller. Validated retrieval in case-based reasoning. In
Proceedings of the 8th National Conference on Artificial Intelligence, Boston,
USA, pages 310- 315. MIT Press Menlo Park, Cambridge, London, 1990.

[Ten86] J. Tenenberg. Planning with abstraction. In Proceedings of the 5th National
Conference on Artificial Intelligence, Philadelphia, USA, pages 76-80. Morgan
Kaufman, Los Altos, 1986.

[Thi86] H. Thiele. A model theoretic oriented approach to analogy. In Proceedings of
the International Workshop on Analogical and Inductive Inference, W endisch­
Rietz, CDR, pages 196-208. Lecture Notes in Computer Science 265, Springer,
Berlin, 1986.

[Th088] C.J. Thornton. Analogical inference as generalised inductive inference. In
Proceedings of the International Workshop on Analogical and Inductive Infer­
ence, Reinhardsbrunn Castle, CDR, pages 254- 263. Lecture Notes in Com­
puter Science 397, Springer, Berlin, 1988.

[UR89] A. Unruh and P.S. Rosenbloom. Abstraction in problem solving and learn­
ing. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence, Detroit, Michigan, USA, pages 681- 687. Morgan Kaufman, San
Mateo, 1989.

[WBH89] W. Wahlster, S. Biundo, and M. Hecking. PHI - Plan Based Help systems.

[Wi183]

Project description, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
GmbH, 1989.

R. Wilensky. Planning and Understanding. Advanced Book Program.
Addison-Wesley, Reading, Massachusetts, 1983.

52

Deutsches
Forschungszentrum
fOr KOnstilche
Intelilgenz GmbH

DFKI Publikationen

Die fo\genden DFKI VerOffentlichungen
oder die aktuelle Liste von erhaltlichen
Publikationen konnen bezogen werden von
der oben angegebenen Adresse.

DFKI Research Reports

R R-90-0 I
Fmll:: Baader: Tenninological Cycles in KL-ONE­
based Knowledge Representation Languages
33 pages

RR-90-02
lIalls-Jiirgell Biirckert: A Resolution Principle for
Clauses with Constraints
25 pages

R R-90-03
Andreas Dengel, Nelson M. Mal/Os: Integration of
Document Representation , Processing and
Management
1 R pages

RR-90-04
Bernhard Ilvllullder, Werner NUll: Subsumption
Algorithms for Concept Languages
34 pages

RR-90-05
Frallz Baader: A Fonnal Definition for the
Expressive Power of Knowledge Representation
Languages
22 pages

R R-90-0(i
Bernhard Ilollunder: Hybrid Inferences in KL-ONE­
based Knowledge Represcntation Systcms
21 pages

R R-90-07
Elisabeth Alldre, Thomas Rist: Wissensbasierte
Informationsprasentation:
Zwei Beitrage zum Fachgesprach Graphik und KI:

I. Ein planbasierter Ansatz zur Synthese
illustrierter Dokumente

2. Wissensbasierte Perspektivenwahl fijr die
automatische Erzeugung von 3D­
Objektdarstellungen

24 pages

DFKI
-Bibliothek­
Stuhlsatzenhausweg 3
6600 Saarbrticken 11
FRO

DFKI Publications

The following DFKI publications or the list
of currently available publications can be
ordered from the above address.

RR-90-08
Andreas Dengel: A Step Towards Understanding
Paper Documents •
25 pages

RR-90-09
Susanne Biulldv: Plan Generation Using a Method
of Deductive Program Synthesis
17 pages

RR-90-10
Franz Baader, Hans-Jiirgen Biirekert, Bernhard
Hal/under, Werner NUll, Jorg H. Siekmann:
Concept Logics
26 pages

RR-90-11
Elisabeth Andre, Thomas Risl: Towards a Plan­
Based Synthesis of Illustrated Documents
14 pages

RR-90-12
Harold Boley: Declarative Operations on Nets
43 pages

RR-90-13
Franz Baader: Augmenting Concept Languages by
Transitive Closure of Roles: An Alternative to
Terminological Cycles
40 pages

RR-90-14
Frallz Sehmalhv/er, OtlO Kiihll, Gabriele Schmidt:
Integrated Knowledge Acquisition from Text,
Previously Solved Cases, and Expert Memories
20 pages

RR-90-15
Harald Trost : The Application of Two-level
Morphology to Non-concatenative German
Morphology
13 pages

RR-90-16
Franz Baader. Werner Nutt: Adding
Homomorphisms to Commutative/Monoidal
Theories, or: How Algebra Can Help in Equational
Unification
25 pages

RR-91-01
Franz Baader. Hans-Jiirgen Burckert. Bernhard
Nebel. Werner Nutt. and Gert Smolka:
On the Expressivity of Feature Logics with
Negation, Functional Uncertainty, and Sort
Equations
20 pages

RR -91 -02
Francesco Donini. Bernhard Hollunder. Maurizio
Lenzerilli. Alberto Marchetti Spaccamela. Daniele
Nardi. Werner NUll :
The Complexity of Existential Quantification in
Concept Languages
22 pages

RR-91-03
B.Hollunder. Franz Baader: Qualifying Number
Restrictions in Concept Languages
20 pages

RR-91-05
Wolfgang Wahlster. Elisabeth Andre. Winfried
Graf. Thomas Rist: Designing Illustrated Texts:
How Language Production is Influenced by Graphics
Generation .
17 pages

RR-91-06
Elisabeth Andre. Thomas Rist: Synthesizing
Illustrated Documents
A Plan-Based Approach
11 pages

RR-91-07
Gunter Neumann, Wolfgang Finkler: A Head­
Driven Approach to Incremental and Parallel
Generation of Syntactic Structures
13 pages

RR-91-08
Wolfgang Wahlster. Elisabeth Andre . Som
Bandyopadhyay. Win/ried Graf. Thomas Rist
WIP: The Coordinated Generation of Multimodal
Presentations from a Common Representation
23 pages

DFKI Technical Memos

TM-89-01
Susan Holbach-Weber: Connectionist Models and
Figurative Speech
27 pages

TM-90-01
Som Bandyopadhyay: Towards an Understanding of
Coherence in Multimodal Discourse
18 pages

TM-90-02
Jay C. Weber: The Myth of Domain-Independent
Persistence
18 pages

TM-90-03
Franz Baader. Bernhard Hollunder: KRlS:
Knowledge Representation and Inference System
-System Description-
15 pages

TM-90-04
Franz Baader. Hans-Jiirgen Biirckert. Jochen
Heinsohn . Bernhard HoI/under. Jiirgen Muller.
Bernhard Nebel. Werner NUll. Hans-Jurgen
Projitlich: Tenninological Knowledge
Representation: A Proposal for a Terminological
Logic
7 pages

TM-91-01
JanaKohler
Approaches to the Reuse of Plan Schemata in
Planning Formalisms
52 pages

TM-91-02
Knut Hinkelmann
Bidirectional Reasoning of Hom Clause Programs:
Transformation and Compilation
20 pages

DFKI Documents

D-89-01
Michael H. Malburg. Rainer Bleisillger:
HYPERBIS: ein betriebliches Hypermedia­
Informationssystem
43 Seiten

0-90-01
DFKI WissenschaftIich-Technischer Jahresbericht
1989
45 pages

D-90-02
Georg Seul: Logisches Programmieren mit Feature
-Typen
107 Seiten

D-90-03
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: AbschluBbericht des Arbeitspaketes
PROD
36 Seiten

D-90-04
Ansgar Bernardi. Christoph Klauck . Ralf
Legleitner: STEP: Uberb)ick tiber eine zuktinftige
Schnittstelle zum Produktdatenaustausch
69 Seiten

D-90-0S
Ansgar Bernardi. Christoph Klauck. Ralf
Legleitner: Formalismus zur Reprlisentation von
Geo-metrie- und Techno)ogicinformationen als Tei)
eines Wissensbasierten Produktmodells
66 Sciten

D-90-06
Andreas Becker: The Window Tool Kit
66 Seitcn

Approaches to the Reuse of Plan Schemata
in Planning Formalisms
Jana KOhler

TM-91-01
Technical Memo

