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Abstract 

We consider different methods of optimizing the classification process 
of terminological representation systems, and evaluate their effect on 
three different types of test data. Though these techniques can prob
ably be found in many existing systems, until now there has been 
no coherent description of these techniques and their impact on the 
performance of a system. One goal of this paper is to make such a de
scription available for future implementors of terminological systems. 
Building the optimizations that came off best into the KRIS system 
greatly enhanced its efficiency. 

·This is a revised and extended version of a paper presented at the 3rd Int ernational 
Conference on Principles of Knowledge Representation and Reasoning, October 1992, 
Cambridge, MA . 
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1 Introduction 

Terminological representation systems can be used to represellt the t.axo
nomic and conceptual knowledge of a problem domain in a structured alld 
well-formed way. To describe this kind of knowledge, one starts with at.OIllic 
concepts (unary predicates) and roles (binary predicates), and defines more 
complex concepts and roles using the operations provided by the concept 
language of the particular formalism. In addition to this concept descrip
tion formalism, most terminological representation systems also have all as
sertional component, which can be used to express facts about a concrct.e 
world. 

Of course, it is not enough to have a system that just stores COIlCCpt. def
initions and assertional facts . The system must also be ablc t.o rcasoll about 
this knowledge. An important inference capabi lity of a tcrmillological rep
resentation system is classification. The classifier computcs a ll SUUs'/l,17/.JJlion 

relationships between concepts, i.e., the subconcept-supcrcollcept relat.ic>Il
ships induced by the concept definitions. In th is paper we consider Oldy 
optimizations for the classification process. We do not take int.o accoullt 
problems that are specific to assertional reasoning. This COllccllt.ra1.ioll 011 

the terminological component is partially just.ified by the fact, t.llat. t.llis is t.11C 

part that partakes in most reasoning activities of almost all systclfls--wllicll 
means that the efficiency of th is rcasoning componcnt is crucial for the oV(')'

all behavior of the system. In additioll, the only existing empirical allalysis 
comparing the efficiency of different terminological systcms is a lso rcstrict.cd 
to the terminological part of the systems [Heinsohn et at., 1992]. 

The first terminological representation system, KL-ONE [Brachmall alld 
Schmolze, 1985], was an implementation of Brachman's work on structurcd 
inheritance networks [Brachman, 1977]. In the last decade many kllowl
edge representation systems based on these ideas have been built, for cxalll
pIe BACK [Peltason , 1991], CLASSIC [Patel-Schneider et 0,1., 1991], KAN DOR 

[Patel-Schneider, 1984], KL-TWO [Vilain, 1985], K-Rep [Mays el at., 1991], 
KRYPTON [Brachman et 0,1.,1985], KRIS [Baader and Hollunder, 1991], LOOM 
[MacGregor, 1991], MESON [Edelmann and Owsnicki, 1986], NIKL [Schmolzc 
and Mark, 1991], SB-ONE [Kobsa, 1991], and YAK [Cattoni and Franconi, 
1990]. Moreover, formal aspects of terminological representation languages 
have been thoroughly investigated, with the highest emphasis having been 
placed on the decidability and complexity of the subsumption problem (see, 
e.g ., [Levesque and Brachman, 1987; Nebel, 1988; Schmidt-Schauf3, 1989; 
Patel-Schneider, 1989; Nebel, 1990b; Schmidt-Schauf3 and Smolka, 1991; 
Donini et al., 1991a; Donini et at., 1991 bl). As a result of these investi
gations, it is known that subsumption determination is at least NP-hard Or 
even undecidable for reasonably expressive languages. The developers of ter
minological representation systems usually have reacted to this problem in 
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one of the following two ways. On the one hand, there are systems such 
as CLASSIC which support only a very limited terminologi cal language, but 
employ almost complete reasoning methods . On the other hand , syst.ems 
such as LOOM provide for a very powerful language, but the reason illg is 
incomplete, which means that not all existing subsumption relationships are 
detected. 

The only system that does not make this compromise, i. e., that provides 
complete algorithms for a very express ive concept description language, is 
KRIS. Obviously, this means that KRIS will need exponential time for worst 
case examples which, on the one hand , are not expressible in the less ex pres
sive systems, and which are , on the other hand, treated more efficientl y, hut. 
less completely, by systems with fast and incomplete algorit.hms. IIowever, 
it is not a priori clear whether this also implies that Kill S has t.o be kss 

efficient for "typical" knowledge bases. In particular, it migld, at least be 
fast in cases where its full expressive power is not used , or where in complete 
algorithms are still complete. The empirical analysis of terminological rep re
sentation systems described in [Heinsohn et ai., 1992] seems to preclude tlli s 
possibility, though. KRIS turned out to be much slower than, for example, 
CLASSIC, even for knowledge bases that are in the scope of CLASSI C's CO II CCpt. 
language, and for which CLASSIC's subsumption algorithm is complete. 

One aim of the present paper is to demonstrate that this bad perforlllalice 
of KRIS is not mainly due to the use of complete subsumption algo rit.lllll s, but 
instead to the fact that the tested version was the first implement.at.ioll of clll 
experimental system where e ffi ciency considerations only played a millor role . 
For this purpose we shall consider possible optimizations of til e classi fi cat.io ll 
process on three different levels. The optimizations on the high est leud cl!'(~ 

independent of the fact that what we are comparing are concepts defilled 
by a terminological language. On this level, classificat ion is cons idered as 
the abstract order-theoretic problem of computing a complete representatioll 
of a partial ordering (in our case the subsumption hierarchy) by making as 
few as possible explicit comparisons (in our case calls of the subsumption 
algorithm) between elements of the underlying set (in our case the set of all 

concepts occurring in the terminology). Optimizations on the next level st ill 
leave the subsumption algorithm unchanged, but they do employ the fact 
that we are not comparing abstract objects but instead structured concepts. 
At this level subsumption relationships that are obvious consequences of this 
structure can be derived without invoking the subsumption algorithm. On 
the third level, the actual subsumption algorithm is changed so that it can 
benefit from the information provided by subsumption relationships which 
have previously been computed. The effects these optimizations have on t he 
classification process are evaluated on three different sets of test data, which 
are described in Section 2 below. 

It should be noted that we do not claim that all the presented optimiza-
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tions are novel. Similar optimizations can probably be found in many of the 
existing systems (see, e.g., [Lipkis, 1982; MacGregor, 1988; Peltason et ai., 
1989; ..,Woods, 1991]). Further, the optimizations on the first level described 
below are very similar to methods that can be found in the conceptual graphs 
literature (see, e.g., [Levinson, 1984; Ellis, 1991; Levinson, 1992]), and which 
have been used in the implementation of the PEIRCE system [Ellis and Levin
son, 1992]. However, until now it was not possible to find an exhaustive and 
coherent description of all the methods, and there were no empirical studies 
on their exact effects. A second motivation for this work is to make such a 
description available for future implementors of terminological representation 
systems. 

2 The Test Data 

In order to evaluate the different optimization techniques empirically, we 
used three sets of test data. As in [Heinsohn et ai., 1992], we considered both 
existing knowledge bases used in other projects (six different KBs with the 
number of concepts ranging between 140 and 440), and randomly generated 
knowledge bases whose structure resembles those of the six real knowledge 
bases. 

First we give a brief description of the six realistic knowledge bases. Ta
ble 1 characterizes the structure of the original KBs by means of the number 
of defined and primitive concepts and roles, respectively. As mentioned in 
[Heinsohn et ai., 1992], in the process of automatically translating and adapt
ing the KBs, some artificial concepts are introduced. The number of these 
concepts is also shown in Table 1. A more structural characterization of the 
subsumption hierarchy induced by the KBs is given in Table 2 in Section 3.4. 

CKB (Conceptual Knowledge Base): Contains knowledge about tax reg
ulations and is used in the Natural Language project XTRA at the 
University of Saarbrucken. 

Companies: Contains knowledge about company structures and is used at 
the Technical University Berlin in the framework of the ESPRIT project 
ADKMS. 

FSS (Functional Semantic Structures): Contains knowledge about 
speech acts and is used in the Natural Language project XTRA at 
the University of Saarbrucken. 

Espresso: Contains knowledge about Espresso machines and their struc
ture. It is used in the WIP-Project of DFKI in the framework of mul
timoclal presentation of information. 
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Wisher: Contains knowledge about different forms of investments and was 
used in the natural language dialog project WISBER at the University 
of Hamburg. 

Wines simple kosher: Contains knowledge about wines, wineries, and Il1 cal
courses. It is used as sample KB of the CLASSIC system. 1 

Name defined primitive artificial L defin ed primitive 
concepts roles 

CKB 23 57 104 184 2 46 
Companies 70 45 126 241 1 39 
FSS 34 98 122 254 0 47 
Espresso 0 145 124 269 11 41 
Wisber 50 81 199 330 6 18 
Wines 50 148 282 480 0 10 

Table 1: Real Knowledge Bases: Structural descr iption 

In order to get an idea how the runtime performance varies with the nUlTl
ber of concepts, and to test the optimizations on larger knowledge ba!>cs, 
a number of terminological knowledge bases were randomly generatcd us
ing a minimal terminological languages containing only concept conjunction) 
value restrictions) and number restrictions. The structure of these gcncrat.ed 
knowledge bases resembles some of the aspects of the real knowledge bascs 
we used. We do not claim, however, that the generated knowledge bascs arc 
realistic in all aspects. 

The generated knowledge bases have the following properti es : 

• 80% of the concepts are "primitive", i.e., the definition of the concept 
gives only the necessary conditions. 

• There are exactly 10 different roles. 

• Each concept definition is a conjunction containing 

one or two concept symbols (explicit super-concepts), 

zero or one minimum restrictions, 

zero or one maximum restrictions, 

1 A lot of individuals have been transformed to general concepts because in our tests we 
only considered terminological knowledge but did not want to cut all the nice informat ion 
about different wineries and wines. 
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and zero, one, or two value restrictions, 

where the number of constructs from one category and the roles and 
concepts are randomly assigned with a uniform distribution. Further, 
the concepts are constructed in a way such that no concept is inconsis
tent (i .e., no minimum restriction is larger than any maximum restric
tion) . 

In order to avoid definitional cycles, the concepts are partitioned illt.o 
layers, where the ith layer has 3i concepts. When assigning explicit super
concepts or value-restriction concepts to the concept definition of a cOllcept 
from level i, only concepts from level 0 to i-I are considered. 

Comparing the randomly generated knowledge bases with real knowledge 
bases, one notes that the number of roles might not be realistic. Further, the 
randomly generated knowledge bases tend to have a concept hierarchy that 
is less tree-like than real knowledge bases . Nevertheless, in the empirical 
analysis of different terminological representation system [Heinsohn el af., 

1992], the runtime performance on the generated knowledge bases is similar 
to the runtime performance on real knowledge bases. 

Since the first level of optimizations can be done in an abstract ordcr
theoretic setting, these optimizations are also evaluated on randomly gen
erated partial orderings [Winkler, 1985]. The generation process goes as 
follows. In order to generate a partial order ({ 1, ... ,n}, <p): 

1. Choose a positive integer k. 

2. Randomly generate k permutations 'Tri = (PI,i, .. . ,Pn,;) on {1, .. . , 'It}. 
Such a permutation defines a linear ordering <i on {I, ... ,n} as follows: 
r <i s iff r comes before s in 'Tri. 

3. The strict partial ordering relation <p on {I, ... , n} is now defined as: 
r <p s iff r <i s for all i, 1 :S i :S k. 

Note that for k = 1, the resulting partial order is a total order. Further, for 
k approaching n, the generated partial orders tend to become flat, i.e., most 
elements will be pairwise incomparable. 

3 Comput ing the Subsumption Hierarchy 

In the first level of optimizations we are concerned with computing the con
cept hierarchy induced by the subsumption relation. More abstractly, this 
task can be viewed as computing the representation of a partial ordering. 
For a given partial ordering2 :S on some set P, -< shall denote the precedence 

2 A partial ordering is a transitive, reflexive, and antisymmetric relation. 
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relation of :::;, i.e., -< is the smallest relation such that its reflexive, transitive 
closure is identical with:::;. Obviously, x -< y iff x :::; y and there is no z 

different from x and y such that x :::; z :::; y. If x :::; y, we say that x is a 
su~cessor of y and y is a predecessor of x. Similarly, if x -< y, we say that x 
is an immediate successor of y and y is an immediate predecessor of x. 

Given a set X and a partial ordering :::; on X, computing the repre
sentation of this ordering on X amounts to identifying -< on X. If:::; is a 
total ordering, this task is usually called sorting. For a partial ordering it is 
called the identification problem (see, e.g., [Faigle and Turan , 1988]). The 
basic assumption here is that the partial ordering is given via a comparison 
procedure, and that the comparison operation is rather expensive. For this 
reason, the complexity of different methods to compute the precedence re
lation is measured by counting the number of comparisons. Of course, the 
number of other operations should not be too high as well. 

In our case, X is the set of concepts defined in a terminological knowl
edge base, and:::; is the subsumption relation between these concepts. The 
assumption that the subsumption test is the most expensive operation is jus
tified by the known complexity results for the subsumption problem [Donini 
et al., 1991al. To be more precise, the subsumption relation is only a quasi
ordering, i.e., it need not be antisymmetric. For the following discussion, 
this is mostly irrelevant, however. There is only one place in the algorithms 
where this fact has to be taken into account. 

The worst case complexity of computing the representation of a partial 
ordering on a set with n elements is obviously O(n2

) because it takes n x 
(n -1) comparisons to verify that a set of n incomparable elements is indeed 
a flat partial order. Since subsumption hierarchies typically do not have such 
a "pathological" structure, considerably less than n x (n - 1) comparisons 
will almost always suffice. 

Below, we describe and analyze four different methods to identify the rep
resentation of a partial ordering, namely, the brute force method, the simple 
traversal method, the enhanced traversal method, and the chain inserting 
method. Average case analyses of these methods seem to be out of reach 
since one does not know enough about the structure of "typical" termino
logical knowledge bases, and since it is not even known how many different 
partial orders exist for a given number of elements [Aigner , 1988]. For this 
reason, the different methods are compared empirically. 

All methods we describe are incremental, i.e., assuming that we have 
identified the precedence relation -<i for Xi ~ X, the methods compute for 
some element c E X - Xi the precedence relation -<i+1 on Xi+1 = Xi U {c}. 
The two most important parts of this task are the top search and the bottom 
search. The top search identifies the set of immediate predecessors in Xi for 
a given element c, i.e., the set Xilc := {x E Xi I c -< x}. Symmetrically, 
the bottom search identifies the set of immediate successors of c, denoted by 
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Xiic. 
To be more precise, the procedures for top search that we will describe 

below compute the set {x E Xi I c :S x and c 1:. y for all y ~i x}, whi ch 
in most cases is the set Xilc . Because the subsumption relation is only a 
quasi-ordering, there is one exception. The concept c can be equivalent to 
an element x of Xi, i.e., c :S x and x :S c. In this case, the top search 
procedures will yield {x} instead of X;lc. To take care of this case, we test 
x :S c whenever the top search procedure yields a singleton set {x}. If this 
test is positive, c is equivalent to x, and we know that Xilc = X;l x , alld 
Xiic = Xiix, which means that we don't need the bottom search phase. 
Otherwise, the result of the top search procedure is in fact X;l c. 

Given Xilc, Xiic, and ~ i , it is possible to compute the precedence re
lation ~i+l on Xi+l = Xi U {c} in linear time. In fact, one just has to add 
~-links between c and each element of Xilc, and between each element. of 
Xiic and c. In addition, all ~-links between elements of XiT c and Xil c have 
to be erased. 

3.1 The Brute Force Method 

The top se arch part of th e brute force m e thod can b e d esc ribe d as foll o ws : 

1. Test c:S x for all x E Xi. 

2. X;lc is the set of all x E Xi such that the test succeeded and for a ll 
y ~i x the test failed. 

The bottom search is done in the dual way. 
This method obviously uses 2 x IXil comparisons for the step of inserting 

c in Xi. Summing over all steps leads to n x (n - 1) comparison operations to 
compute the representation of a partial ordering for n elements. Further, thi s 
is not only the worst-case , but also the best-case complexity of this meth od. 

3.2 The Simple Traversal Method 

It is obvious that many of the comparison operations III the bru te force 

method can be avoided. Instead of testing the new element c blindly with 
all elements in Xi, in the top search phase the partial ordering can be tra
versed top-down and in the bottom search phase bottom-up, stopping when 
immediate predecessors or successors have been found. This leads us to the 
specification of the simple traversal method (see Figure 1) . 

The top search starts at the top3 of the already computed hierarchy. For 
each concept x E Xi under consideration it determines whether x has an 

3We assume that our concept hierarchies always contain a top element T and a bottom 
element 1.. 
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top-search( c,x) = 

mark(x, "visited") 
Pos-Succ +- 0 
for all y with y -<i x do 

if simple-top-subs?(y,c) 
then Pos-Succ +- Pos-Succ u {y} 

fi 

od 

if Pos-Succ is empty 
then return {x} 
else Result +- 0 

fi 

for all y E Pos-Succ do 

od 

if not marked?(y, "visited") 
then Result +- Result u top-search( c,y) 

fi 

return Result 

simple-top-subs?(y,c) = 

if marked? (y , "posi ti ve") 
then return true 

fi 

elsif marked?(y, "negative") 
then return false 

fi 

elsif subs?(y,c) 

fi 

then mark(y, "posi ti ve") 
return true 

else mark(y, "negative") 
return false 

Figure 1: Top search phase of the simple traversal method 

immediate successor y satisfying c :s; y . If there are such successors, they are 
considered as well. Otherwise, x is added to the result list of the top search. 

In order to avoid multiple visits of elements of Xi and multiple com
parisons of the same element with c, the top search algorithm described in 
Figure 1 employs one label to indicate whether a concept has been "visited" 
or not and another label to indicate whether the subsumption test was "pos-
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itive," "negative," or has not yet been made. The procedure top-search gets 
two concepts as input: the concept c, which has to be inserted, and an el
ement x of Xi, which is currently under consideration. For this concept x 
we already know that c ~ x, and top-search looks at its direct successors 
with respect to -< i. Initially, the procedure is called with x = T. For each 
direct successor y of x we have to check whether it subsumes c. This is done 
in the procedure simple-top-subs? Since our hierarchy need not be a tree, 
y may already have been checked before, in which case we have memorized 
the result of the test, and thus need not invoke the expensive subsumptioll 
procedure subs? The direct successors for which the test was positive are 
collected in a list Pos-Suee. If this list remains empty, x is added to tile 
result list; otherwise top-search is called for each positive successor, but. Oldy 
if this concept has not been visited before along another path. 

The bottom search can be done again in the dual way. It is interest illg 
to note that this top search is in principle the same as the one described by 
Lipkis [Lipkis, 1982], who implemented the first classification algorithm for 
KL-ONE. The bottom search described by Lipkis, however, is more efficicilt 
than the one given here. 

3.3 The Enhanced Traversal Method 

Although the simple traversal method is a big advantage compared with t.he 
brute force method (see Figure 5 (a)), it still does not exploit all possible 
information. First , during the top search phase, we can take advantage of 
tests that have already been performed. Second, in the bottom search phase, 
we can use the information gained during the top search as well. 

Of course, a dual strategy is also possible, i.e., performing the bottom 
search before the top search and exploiting the information gathered during 
the bottom search phase. Analyzing Figure 5, it becomes quickly obvious 
that this strategy would be less efficient, however. In fact, for the simple 
traversal method- where the top and bottom phase are done in a symmetric 
way- the top search phase turns out to be a lot faster. Thus it is better to 
start with this phase because the information gained thereby can then be 
used to speed up the slower bottom search phase. 

When trying to take advantage of tests that have already been performed 
during top search one can either concentrate on negative information (i.e ., 
that a subsumption test did not succeed) or on positive information (i.e., 
that a subsumption test was successful). 

To use negative information during the top search phase one has to check 
whether for some predecessor z of y the test c ~ z has failed. In this case, 
we can conclude that c 1:. y without performing the expensive subsumption 
test [MacGregor, 1988]. In order to gain maximum advantage, all direct 
predecessors of y should have been tested before the test is performed on 
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y [Levinson, 1984]. This can be achieved by using a modified breadth-first 
search where the already computed hierarchy is traversed in topological order, 
as described by Ellis [1991] and Levinson [1992]. Alternatively, one can make 
a recursive call whenever there is a direct predecessor that has not yet been 
tested. This is what the procedure enhanced-top-subs? described in Figure 2 
does. If y is not yet marked, the procedure enhanced-top-subs? is recursively 
called for all direct predecessors z of y. As soon as one of these calls returns 
false, one goes to the "else" branch, and marks y "negative." Only if all 
calls return true, the subsumption test subs?(y,c) is performed to decide 
whether y has to be marked "positive" or "negative." If we replace the call 
of simple-top-subs? in top-search by a call of enhanced-top-subs?, we get the 
top search part of the enhanced traversal method. 

enhanced-top-subs?(y, c) = 
if marked?(y, "positive") 

then return true 

fi 

elsif marked?(y, "negative") 
then return false 

fi 

elsif for all z with y -<i z 
enhanced-top-subs?( z ,c) 

and subs?(y,c) 

fi 

then mark(y,"positive") 
return true 

else mark(y,"negative") 
ret u rn false 

Figure 2: Top search phase of the enhanced traversal method. The proce
dure top-search is adopted from the simple traversal method , but instead of 
simple-top-subs? it calls enhanced-top-subs? 

The enhanced top search procedure just described makes maximum use 
of failed tests. Alternatively, it is possible to use positive information. Before 
checking c ::; y, one can look for successors z of y that have passed the test 
c ::; z [MacGregor, 1988]. If there exists such a successor, one can conclude 
that c ::; y without performing an actual subsumption test. Although we 
are only interested in minimizing the number of comparison operations , it 
should be noted that instead of searching for a successor that has passed 
the test it is more efficient to propagate positive information up through the 
subsumption hierarchy. This can be achieved by an easy modification of the 
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procedure simple-top-subs? When the call subs?(y,c) yields true, not only 
y is marked "positive," but so are all of y's predecessors. Obviously, this 
technique cannot be combined with the enhanced top search described in 
Figure 2 since it reduces the number of subsurnption tests only if there are 
predecessors which have not yet been tested, and enhanced top search tes ts 
all predecessors before making a subsumption test. 

Neither of these alternatives is uniformly better than the other one, which 
can be seen by considering the examples described in Figure 3 and 4. 

Figure 3: The new element c is a direct successor of y 

In the first example, the top-search using negative information makes n+ 1 

tests: it first tests Xt, then goes to y , but before testing it, it tests all its 
direct predecessors, i.e., X2, •. . ,Xn . The top search using positive information 
makes two tests: first Xl and then Yi the positive result of this second test is 
propagated to X2, ... ,Xn . 

T 

Figure 4: The new element c is a direct successor of YI, but not a successor 
of Y2, Xt, ... ,Xn 

In the second example, the top search using negative information needs 
only two tests: first it tests Yt, then goes to Xl, but before testing Xl its direct 
predecessor Y2 is tested. The negative result of this test prevents Xl , .. . , X n 

from being tested. The top search using positive information tests n + 2 
nodes: first Yl, then all its successors Xl, ... , X n , and finally Y2. 

However, we have observed significant performance differences for the two 
different top search strategies. For the random knowledge bases, the method 
using positive information was only slightly better than the simple traversal 
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method (less than 5%). For this reason, we have also considered a "hybrid 
method" which propagates positive information up, and negative information 
down the hierarchy (but does not test all predecessors before testing a node). 
Propagating negative information down is again achieved by an easy modifi
cation of simple-top-subs? When the call of subs?(y,c) yields fals e, not ollly 
y is marked "negative," but all of V's successors. The hybrid method turned 
out to be a lot better than just propagating positive information , but it still 
needed slightly more tests (approx. 5%- 10%) than the enhanced top search 
for all but one of the random knowledge bases. On five of the six realistic 
knowledge bases the hybrid method was insignificantly faster than tile Cll
hanced top search (less than 1 %) . On the remaining realisti c KB, t.he Ilylnid 
method needed 10% more comparisons. Although these results do not. seem 
to be conclusive in favor of the hybrid method or the enhanced top searcll , it 
is obvious that the use of negative information leads to a significantly greater 
reduction of comparisons than the use of positive informat ion. For concep
tual graphs, Levinson [1992] observes that using negative information is also 
better than using positive information. 

Now we turn to the bottom search phase of the enhanced traversal method. 
Of course, optimizations dual to the ones described for the top search can 
be employed here. In addition, the set Xdc can be used to severely cut 
down the number of comparisons in the bottom search phase. As mCIl
tioned by Lipkis [1982], the search for immediate successors of c can be 
restricted to the set of successors of Xdc. In fact, the set of candidat.es 
for Xii c is even more constrained. Only elements that are successors of 
all x EXile can be immediate successors of c [Levinson, 1984; Ellis, 1991; 
Levinson, 1992]. This optimization is achieved by an easy modification of the 
procedure enhanced-bottom-search (which is dual to enhanced-top-search): 
the test "marked?(y,"negative")" is augmented to "marked?(y,"negativc") 
or y is not a successor of all x E Xdc." The remaining problem is how to 
implement the second part of this test. One possibility is to mark the suc
cessors of the elements of Xdc in an appropriate way, and then test these 
labels (see, e.g., [Levinson, 1992]). Another possibility, which we have used 
in our tests, is to equip each concept in Xi with a list of all its predecessors 
in Xi, and test whether Xdc is contained in the list of predecessors of y. 

As a result of this optimization, the number of necessary comparison op
erations can be cut down to a fraction compared with the simple bottom 
search strategy. Interestingly, we observed a further reduction of compari
son operations in case of the real knowledge bases when searching top-down 
starting at Xilc instead of searching bottom-up. For the random knowl
edge bases, no such difference was observed, however. The bottom search 
described by Ellis [1991] and Levinson [1992] is also done top-down. 

The effects of the simple and enhanced traversal method for the random 
knowledge bases and the realistic knowledge bases as test data are displayed 
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Figure 5: Number of comparison operations relative to br'ute force method 
for random KBs 
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Figure 6: Number of comparison operations relative to brute force method 
for realistic KBs 

in Figures 5 and 6. These graphs present the number of necessary compar
isons relative to the brute force method for the top search and the bottom 
search phase, as well as for the entire classification process. 
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3.4 The Chain Inserting Method 

Sorting a set of elements that is linearly ordered can be either done by incre
mentally searching the already ordered sequence linearly or by using binary 
search. In the former case, we inevitably end up with quadratic complexity, 
while in the latter case O( n X log n) is a possibility. Of course, it seems at
tractive to transfer the latter technique to our problem, an idea that leads to 
the chain inserting method. This method is similar to Algorithm A described 
by Faigle and Turan [1988]. However, the assumptions in [Faigle and Turan, 
1988] are somewhat different from ours. There it is assumed that a single 
test yields the answer "greater," "smaller," or "incomparable," whereas we 
would need two calls of the subsumption procedure to get this information. 

In order to specify the chain inserting method, we first define the notion 
of a chain covering of a partial ordering. A chain covering is a partition of a 
partial ordering into chains, i.e., totally ordered subsets. Provided we have 
a chain covering of the set Xi, it is possible to identify the sets Xdc and 
Xi i c by binary search in all chains. For a given chain ej of the covering 
Xi = e1 U ... u em, binary search is used to find the least predecessor and 
the greatest successor of c in ej • Since the underlying ordering S; is only 
a partial ordering on X, the new element c to be inserted into the chain 
ej need not be comparable with all elements of ej . For this reason one 
needs two binary search phases for each chain. The first one asks c S; x, 

and treats negative answers as if they would mean c > x. This phase yields 
the least predecessor of c in ej. The other phase is dual, and yields the 
greatest successor of c in ej. The set of these least predecessor (resp. greatest 
successors) for all chains of the covering yields a superset of Xilc (resp. XiTc). 
The set Xilc (resp. XiTc) is obtained by eliminating the elements which are 
not minimal (resp. maximal) with respect to S;i. As a further optimization, 
propagation of positive and negative information of successful and of fail ed 
tests in the existing subsumption hierarchy is used to make some of the 
explicit subsumption tests during binary search superfluous, after one or 
more chains have already been searched through. 

We have also considered a "hybrid" method that employs chain insertillg 
for long chains and enhanced traversal afterwards. The idea here is that by 
binary search in long chains one gets rather quickly into the "center" of the 
partial ordering, from which propagation of positive and negative information 
should have the greatest effect. 

It is, of course, advisable to use chain coverings with a minimal number 
of chains. Unfortunately, the computation of minimal chain coverings is non
trivial and takes more than quadratic time [Jungnickel, 1990]. Nevertheless, 
simple heuristics permit the incremental construction of chain coverings that 
are almost optimal. The heuristic we have used to update the chain covering 
when a new element c is inserted proceeds as follows. After the sets Xdc 
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and X;jc have been computed, c is inserted in the longest chain satisfying 
one of the following conditions: 

1. Binary search has yielded both a least predecessor and greatest succes
sor in the chain, and they are successive -elements of the chain. In this 
case, c is inserted between these two elements in the chain. 

2. Binary search has yielded a least predecessor (or greatest successor) in 
the chain, and it is the least (resp. greatest) element of the chain. In 
this case, c is inserted below (resp. above) this element in the chain. 

If there is no chain satisfying one of these conditions, a new chain consisting 
of c is created. In our experiments , the chain coverings obtained this way 
were less than 10% suboptimal. 

Some of our empirical results concerning the performance of the chain 
inserting method are given in Table 2. We have only displayed the results for 
top search, since the bot tom search is almost identical if the optimizations 
from the enhanced traversal are included. 

In addition to the size of the partial order (first column) and the rela
tive number of comparison operations with respect to the enhanced traversal 
method (last column), also some structural parameters of the partial orders 
are given. The second column gives the average number of immediate prede
cessors and successors (where the top and bottom elements are not counted) . 
The third column gives the average number of successors and predecessors, 
and the fourth and fifth column specify the breadth and depth (including 
top and bottom), respectively, of the partial order. To be more precise, the 
entries in the fourth and fifth column are only approximations of the actual 
breadth and depth. They are the number of chains and the length of the 
longest chain in the chain covering generated by our heuristic. Taking these 
numbers in place of the exact numbers is reasonable since our chain insertion 
method uses the chain coverings generated by the heuristic. 

The first group of results was obtained by applying the chain-insert ing 
method to the realistic KBs, the second group gives the results for the random 
KBs, and the third group specifies the result for the randomly generated 
partial orders. 

To our surprise, the chain inserting method turned out to be not signif
icantly better than the enhanced traversal method. To the contrary, on the 
realistic KBs it is usually less efficient , except for one case, and the same 
holds for the random KBs. The "hybrid" version using chain inserting for 
long chains and enhanced traversal afterwards was also not much better than 
the pure chain-inserting method. On the other hand, for tests on randomly 
generated partial orders the chain inserting method in some cases showed 
a much better performance than the enhanced traversal method. A reason 
for this behavior could be that, compared to the realistic knowledge bases 
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No. of Average Average Breadth Depth Relative 
nodes degree no. of pred. no. of com-

& succ. pansons 

184 1. 71 5.67 105 6 103.7% 
241 1.91 6.38 124 6 100.3% 

254 1.99 13.02 135 6 91.8% 
269 1. 72 5.16 164 7 107.9% 
330 1.85 8.13 141 12 110.0% 

298 2.36 8.88 142 8 115.7% 
583 2.58 12.24 330 7 114.5% 
992 2.73 16.77 478 10 111.7% 

1263 3.18 16.61 661 11 108.9% 
1659 3.19 18.86 927 10 110.3% 
2389 3.50 25.49 1188 10 11l.3% 
3658 3.82 27.20 1703 8 105.3% 
3905 4.04 33.95 1858 11 99.9% 

301 7.67 42.11 88 8 73.2% 
301 8.01 20.69 136 5 100.5% 
301 6.40 10.43 168 6 102.7% 
301 4.22 5.68 205 4 10l.3% 
586 9.93 72.55 144 9 67.2% 
586 12.08 38.79 224 7 96.3% 

586 10.39 20.42 301 7 103.3% 
586 7.72 11.50 353 5 102.9% 
995 5.52 250.24 85 28 16.2% 
995 12.46 125.94 226 11 51.8% 
995 16.40 62.88 354 9 91.4% 
995 13.58 28.38 506 6 105.1 % 

1266 5.78 32l.19 100 30 12.9% 
1266 13.82 169.95 259 13 44.2% 
1266 18.22 76.87 438 9 89.8% 
1266 17.82 41.70 592 6 101.1 % 

Table 2: Number of comparison operations in top search of the 
chain-inserting method relative to enhanced traversal. The first group gives 

results for the realistic KBs, the second group for the random KBs, and the 
third group for the randomly generated partial orders. 

we used in our tests, the randomly generated partial orders have a much 
higher connectivity (which means that propagation of positive and negative 
information has more effect) and permit longer chains (which makes binary 
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search more important). In fact, the parameters average number of pT'ede

cessors q,nd successors and breadth seem to be relevant for the efficiency of 
the chain-inserting method. If the first parameter is high and the second is 
low relative to the size of the partial order, then the chain-inserting method 
performs much better than enhanced traversal. 

The chain inserting method may thus become more interesting for knowl
edge bases defining relatively deep hierarchies with high connectivity. Addi
tionally, it seems possible to exploit the chain covering in order to implemcllt 
storage compression techniques as described by Jagadish [1989]. Finally, it 
should be noted that the overhead of the chain-inserting method is not sig
nificantly higher than the overhead of the enhanced traversal method. III 
fact, in our implementation the chain-inserting method required sligld,ly Icss 
overhead than the enhanced traversal method. 

4 Obvious Subsumption Relationships 

In this section we describe some further techniques for avoiding subsumption 
tests by exploiting relations which arc obvious when looking at the syntactic 
structure of concept definitions. 4 These pre-tests require only little errort 
but can speed up the classification process significantly. We consider three 
different optimizations which apply to different stages of the classification 
process. 

The first technique can be used prior to the top search. It applies when 
the description of the concept c that we want to insert is conjunctive (which 
is the case for the majority of concepts, in particular if we consider Lllc 
existing real knowledge bases). If this description mentions x explicitly as a 
conjunct, then it is obviously the case that c ::; x. We call such concepts x 
told subsumers of c. Of course, if x is also a conjunctively der-ined COllcCpt, 
it may have told subsumers as well, and these (and their told subsulllcrs, 
etc.) can be included into the list of told subsumers of c. It is rather casy 
to compile this list while reading in the concept definitions. The information 
that c is subsumed by its told subsumers can be propagated through the 
existing hierarchy (Xi, --<i) prior to the top search, e.g., by pre-setting tlle 
markers used in the traversal method to "positive" for the told subsumers 
and all their predecessors. A prerequisite for this optimization technique 
to be effective is that the told subsumers of c are already contained in Xi. 
This can be achieved by inserting concepts following the so-called "definition
order." This order can be formally defined as follows: We say that a concept 
x directly uses a concept y iff y occurs in the definition of x. Let "uses" be 
the transitive closure of "directly uses." Then x comes in the definition-order 
after y if x uses y. 

4These techniques are probably used in all systems, see, e.g. [Peltason et al., 1989]. 
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Assuming that concepts are inserted in the subsumption hierarchy follow
ing the definition-order, another optimization can be applied. The bottom 
search phase can be completely avoided if a primitive concept (i.e., a concept 
that is described by giving only necessary conditions) has to be classified. In 
fact, such a concept c can only subsume the 'bottom concept and concepts 
whose definitions use c. Since the second type of possible subsumees is not 
yet present in the actual hierarchy when inserting along the definition-order, 
the result of the bottom search is just the bottom concept L Considering 
the fact that in realistic KBs the majority of concepts (60%-90%) are prim
itive, this optimization can save most of the subsumption calls during the 
bottom search phase. Combining the two optimization techniques led to a 
saving of 10% to 20% with respect to the pure enhanced traversal method 
for the realistic knowledge bases. In case of the random knowledge bases, 
the savings where even greater , as can be seen from Figure 7. 
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Figure 7: Number of necessary comparisons when exploiting obvious sub
sumption relations relative to pure enhanced traversal method for random 
KBs 

A final optimization technique can be used as a pre-test before calling 
the subsumption algorithm. It makes use of the fact that a concept c is 
subsumed by a primitive concept x if, and only if, the completely expanded 
form of c contains the "primitive component of x" (see [Nebel, 1990a, p. 54-
56]) as a conjunct. By extracting and caching the "primitive components" 
of all concepts, it becomes possible to check whether a subsumption relation 
is possible by comparing the sets of primitive components. If this test gives 
a negative result, the subsumption algorithm need not be called. Although 
such a test overlaps with computations the subsumption algorithm does, it is 
much faster than the subsumption test. For this reason, this pre-test pays off 
if most of the subsumption calls can be avoided, which was indeed the case 
for our test data. Our experiments indicate that the number of calls of the 
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subsumption algorithm can be again reduced by 50%-60%, if this techllique 
is applied. 

5 The Subsumption Algorithm 

In this section we consider two possible optimizations of the subsumption 
algorithm, and describe the effects they have on the performance of classifl
cation for our test knowledge bases. Let us first reconsider the two types of 
subsumption algorithms usually implemented in terminological systems. 

In almost all terminological representation systems other than KRIS struc

tural subsumption algorithms are employed (e.g. CLASSIC, LOOM, I3i\CI{). 

Such algorithms basically proceed as follows. First, the concepts are normal
ized, i.e., they are transformed into equivalent normal forms. Subsumpt.ioll 
between normalized concepts is a kind of structural comparison where each 
subexpression of the first concept must have a counterpart in the other COII

cept. This algorithmic technique allows one to develop efficient subsumptioll 
algorithms which are easily shown to be sound. However, for expressive t.er

minological languages these algorithms are usually not complete, alld it. is 
not clear how the techn ique could be extended in order t.o build complete 
structural subsumption algorithms. 

Using a different paradigm, in thc past years sound and complete sul>
sumption algorithms for a large class of terminological languages have beell 
developed (e.g. [Schmidt-Schaul3 and Smolka, 1991; Hollunder et al., 1990]). 
Most of these algorithms are designed as satisfiability checking algorithms. 
These algorithms are model generation procedures, and are similar to first
order tableaux calculus, with the main difference that the speciflc structure 
of concept descriptions allows one to impose an appropriate control that en
sures termination. Since a concept A subsumes a concept B if, and only if, 
-.A n B is not sat isfiable, i.e., there does not exist an interpretation wllich 
interprets -.A n B as a non-empty set, a satisfiability algorithm in fact can 
be used to solve the subsumption problem. In order to check wllcther a 
given concept C is satisfiable, the tableaux-based algorithm tries to gellerat.e 
a finite interpretation in which C is interpreted as a non-empty set. Tllis 
generation process is complete in the sense that if it fails, i.e., an obvious 

contradiction occurs, we can conclude that C is not sat isfiab le; otherwise 
C is satisfiable. An obvious contradiction in the model generating proccss 
occurs, for example, if some element is constrained to be both instance of a 
"primitive component" and its complement- which is impossible. 

It is well-known that subsumption of concepts defined in a cycle-free 
terminology can be reduced easi ly to subsumption of concept terms which 
do not refer to other concept definitions of the terminology (so-called ex
panded concept terms) [Nebel, 1990a]. For conceptual simplicity both types 

19 



of subsumption algorithms are usually described in the literature as taking 
expanded concept terms as arguments, which precludes the exploitation of 
previously computed subsumption relationships. 

5.1 The Optimizations 

However, almost all terminological representation systems take advalltage 
of previously computed subsumption relationships. To illustrate how this 
can be done for a structural subsumption algorithm, suppose that C alld D 
are normalized concept descriptions. As mentioned above, structural sub
sumption between C and D means to find for each subexpression C' of C a 
corresponding subexpression D' of D. Often, in turn, these subexpressiclIls 
have to be tested for subsumption. In case C' and D' are concept names of 
possibly defined concepts, and we already know a subsumption relatiollship 
between C' and D', it is not necessary to call the subsumption algor itllln 
recursively for (the expanded form of) C ' and D'. Thus, it is rather nat.ural 
and straightforward to incorporate the use of already computed subsurnp
tion relations into a structural subsumption algorithm. It shou ld be noted 
that it is an essential requirement not to completely expand the concept. def
initions before checking subsumption since otherwise the concept names for 
which subsumption relationships are already known would be lost. Further, 
it is necessary to classify the concepts according to the "definition-order" 
mentioned in the previous section . 

In contrast to other terminological systems, KRIS employs a satisfiability 
algorithm to determine subsumption relationships between cOllcepts. Sill ce a. 

satisfiability algorithm does not recursively call subsumption algorit.hllls but 
satisfiability algorithms, it is not obvious how to exploit previously cOIllput.ed 
subsumption relationships. A closer look, however, reveals that a satisriabil 
ity algorithm may detect a contradiction earli er during model generatioll if 
previously computed subsumption relationships are taken into account. To 
see this, suppose that we already know that a defined concept A subsumes a 
defined concept B. If during the model generation an element is constrailled 
to be both instance of -,A and B, a contradiction can be detected without 

expanding the definitions of A and B. Again, this approach only works if the 
concept definitions are not expanded before starting to check satisfiabi lity. 

If expansion is done "by need" during the satisfiability test, one has to 
decide in which order to expand the concept names. It is easy to see that this 
order may have considerable impact on the runtime behavior. For example, 
assume that we are testing An B for satisfiability where in the TBox A is 
defined by a very large concept description and B is defined to be -,A n C. 
If B is expanded first, the contradiction between A and -,A is detected at 
once. On the other hand, if A is expanded first, detecting the contradiction 

between the large descriptions associated with A and its negation may be 
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rather time-consuming, depending on the structure of the description. 
One way of avoiding this problem is to expand concept names according 

to the inverse of their definition-order, which in the above example would 
mean that we expand B before A, because the definition of B refers to A. Of 
course, this means that for each expansion operation one has to go through 
the list of all expandable names, and look for a maximal one with respect 
to the definition-order. For our tests we have used another solution, which 
avoids searching for a maximal name, but may use more space. Here one 
expands in arbitrary order, but when a name is expanded it is not removed, 
but just marked as expanded. If, in our example, A is expanded before B, 
we then still have the name A, and as soon as B is expanded it yields the 
contradiction with -,A . 

In order to gain experience in how to optimize the satisfiability algorithm 
to be employed in KRIS, we implemented the following three versions. 

1. The first one takes completely expanded concept descriptions as input. 
Since these descriptions do not contain names of defined concepts, ob
vious contradictions can only be detected between "primitive compo
nents," i.e., concept names which are not defined in the TBox. 

2. The second one successively expands the concept descriptions during 
model generation, but keeps the names, as described above. This al
lows the algorithm to detect obvious contradictions not only between 
primitive components but also between names of defined concepts. 

3. The third version is a refinement of the second one in that already com
puted subsumption relationships are taken into account when looking 
for obvious contradictions. 

5.2 Empirical Results and Analysis 

It turns out that the first version is significantly slower than the secolld 
one, a result we did expect. The main reason for this behavior is that tile 
number of recursive calls of the satisfiability algorithm is reduced due to 
obvious contradictions detected between names of defined concepts. As a 
consequence, the runtime of the second version is reduced by 40-60% relative 
to the first version (see Figure 8, which displays the results for the random 
knowledge bases). 

A result we did not expect is that the behavior of the third version is 
no better than of the second, which means that trying to exploit already 
computed subsumption relationships does not payoff. The reason for this 
behavior seems to be that-at least for the test data- only a few contra
dictions are detected by using already computed subsumption relationships. 

21 



100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

e Recunive c&lll for second a.nd third veuion 

o Runtime lecond version 
ED Runtime third version 

30 60 90 120 150 
No. of concepts 

100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

'. e Recufiive ca.lli for lecond a.nd third version 
o Runtime .econd version 

EB Runtime third veuion 

400 800 1200 1600 
No . of concepts 

Figure 8: Runtime and number of recursive calls of the second and third 
version's satisfiability algorithm relative to the algorithm taking completely 
expanded concept terms as input (first version) for random KBs 

This is indicated by the fact that the number of recursive calls of the satisfi
ability algorithm does not significantly decrease when going from the second 
to the third version. However, the test of whether a set of negated and un
negated concept names is contradictory w.r.t. already computed subsumption 
relationships is more complex than just searching for complementary names, 
which explains that the third version's runtime behavior is even slightly worse 
than the second one's (see Figure 8). 

This result is all the more surprising since using computed subsumption 
relationships during classification is an optimization technique employed by 
most terminological systems. The reason why it may payoff for other systems 
could be that these systems first normalize, and during this normalization 
phase auxiliary concepts may be introduced. For example, assume that C is 
defined by the description VR.AnVR.B, and D by VR.A. The normalization 
procedure may introduce a new concept name E, define it as AnB, and mod
ify the definition of C to VR.E . Now the subsumption relationship between 
A and the auxiliary concept E - which is found first if the terminology is 
classified according to the defiuition-order-immediately entails that D sub
sumes C. Thus classificati6n of the terminology with the auxiliary concepts 
allows one to exploit previously computed subsumption relationships more 
often. On the other hand, it has the disadvantage that in general a lot more 
concepts have to be classified. 

Another interesting behavior we observed is due to the interaction be
tween different optimization techniques. The optimizations described in the 
previous two sections try to avoid subsumption tests, whereas the present 
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section is concerned with speeding up the subsumption test. Ideally, one 
could expect that these optimizations are independent. This means that the 
overall speedup factor is the product of the speedup factors of the individual 
optimizations. This can only be true if the optimizations apply uniformly to 
all situations, however . 

If the optimizations apply to special cases only, subsumption avoidance 
optimizations and subsumption test optimization may aim at similar special 
cases and lead to t he situation that subsumption tests are avoided which 
have neglect able computational costs in any case. 

If we take the second or third version's satisfiability algorithm, the ex
ploitation of obvious subsumption relationships caused by conjunctive def
initions, i.e., the first optimization technique mentioned in Section 4, does 
no longer speed up the classification process significantly. This is due to the 
fact that such subsumption relationships can now be easily detected by the 
satisfiability algorithms. For example, let C be a concept that is defined to 
be the conjunction of C}, ... ,Cm , where the C i are defined concepts as well. 
The obvious subsumption relationship between C i and C is immediately de
tected by the second and third version of the satisfiability algori t hm, due to 
an obvious contradiction between Ci and -,Ci . 

6 Conclusion 

We have described and analyzed different optimization techniques for the 
classification process in terminological representation systems. Interestingly, 
two of the most promising techniques, namely, the chain inserting method 
for computing the representation of a partial order and the exploitation of 
already computed subsumption relations in the subsumption algorithm, did 
not lead to the expected performance increase in case of realistic knowledge 
bases. 

A further interesting result is that the optimization technique on the 
first level, which we called enhanced traversal method and which turned 
out to be the most promising method in our case, also gives good results 
for managing hierarchies of conceptual graphs [Levinson, 1984; Ellis, 1991; 
Ellis and Levinson, 1992], indicating that these hierarchies are probably 
structurally similar to those induced by terminological knowledge bases. 

As a result of our empirical analysis, the optimization techniques that 
came off best were incorporated in the KRIS system. These, together with 
more conventional optimizations on the implementation level, led to a signif
icant speed up. Whereas the unoptimized version was orders of magnitude 
slower than the fastest system tested in [Heinsohn et al., 1992], the new ver
sion has now a runtime behavior similar to that of the other systems on the 
test data used there. 
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Figure 9: Runtime perform ance for realis t ic and large random kllow ledge 
bases 

Figure 9(a) displays the run t ime of the new KRIS version for the reali st ic 
knowledge bases and contrasts them with the runtime fi gures given in [Heill 
sohn et al., 1992]. Figure 9(b) gives the results for large random knowledge 
bases.5 

It should be noted , however, th at all the knowledge bases used in the test 
are formulated using quite limited terminologi cal languages . An in tercs tillg 
open problem is the development of further optimization techniques for more 
powerful terminological languages containing also disjun ct ion and negatioll 
and of specific optimization techniques for assertion al reasoning. 
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