
Deutsches
Forschungszentrum
fUr KOnstliche
Intelligenz GmbH

Research
Report

RR-93-03

An Empirical Analysis of
Optimization Techniques for

Terminological Representation Systems
or: IMaking KRIS get a move on l

Franz Baader, Bernhard Hollunder, Bernhard Nebel,
Hans-Jurgen Profitlich, Enrico Franconi

January 1993

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel.: (+49631) 205-3211/l3
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr KOnstliche
Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Computer Linguistics
o Programming Systems
o Deduction and Multiagent Systems
o Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
or: 'Making KRIS get a move on'

Franz Baader, Bernhard Hollunder, Bernhard Nebel,
Hans-Jiirgen Profitlich, Enrico Franconi

DFKI-RR-93-03

A shorter version of this report has been published in the Proceedings of the
3rd International Conference on Principles of Knowledge Representation and
Reasoning (KR-92), Cambridge, MA, 1992.

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW -8901 8) .

© Deutsches Forschungszentrum fur Kunstliche Intelligenz 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fur Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fur Kunstliche Intelligenz.

An Empirical Analysis of
Optimization Techniques for

Terminological Representation Systems
or: Making KRIS get a move on*

Franz Baader, Bernhard Hollunder,
Bernhard Nebel, Hans-Jiirgen Profitlich

German Research Center for AI (DFKI)

Stuhlsatzenhausweg 3, 6600 Saarbrucken 11, Germany

e-mail: (lastname)@dfki.uni-sb.de

and

Enrico Franconi
Istituto per la Ricerca

Scientifica e Tecnologica (IRST)
38050 Povo TN, Italy

e-mail: franconi @irst.it

Abstract

We consider different methods of optimizing the classification process
of terminological representation systems, and evaluate their effect on
three different types of test data. Though these techniques can prob
ably be found in many existing systems, until now there has been
no coherent description of these techniques and their impact on the
performance of a system. One goal of this paper is to make such a de
scription available for future implementors of terminological systems.
Building the optimizations that came off best into the KRIS system
greatly enhanced its efficiency.

·This is a revised and extended version of a paper presented at the 3rd Int ernational
Conference on Principles of Knowledge Representation and Reasoning, October 1992,
Cambridge, MA .

Contents

1 Introduction

2 The Test Data

3 Computing the Subsumption Hierarchy
3.1 The Brute Force Method
3.2 The Simple Traversal Method ..
3.3 The Enhanced Traversal Method
3.4 The Chain Inserting Method . . .

4 Obvious Subsumption Relationships

5 The Subsumption Algorithm
5.1 The Optimizations
5.2 Empirical Results and Analysis

6 Conclusion

References

11

1

3

5
7
7
9

14

17

19
20
21

23

24

List of Figures

1 Top search phase of the simple traversal method 8
2 Top search phase of the enhanced traversal method 10
3 The new element c is a direct successor of y 11
4 The new element c is a direct successor of Yl, but not a suc-

cessor of Y2, Xl, ... , Xn ° 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 ° 11
5 Number of comparison operations relative to brute j01'ce method

for random KBs ° 0 • 0 0 ° 13
6 Number of comparison operations relative to brute joroce method

for realistic KBs ° 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ° 13
7 Number of necessary comparisons when exploitillg obvious

subsumption relations relative to pure enhanced lm,'UC1°saillleLhod
for random KBs ° 0 ° 18

8

9

Runtime and number of recursive calls of the secolld and third
version's satisfiability algorithm relative to the algoritlllll 1.a1-

ing completely expanded concept terms as input (first versioII)
for random KBs ° 0

Runtime performance for realistic and large random kIIowl-
edge bases ° . 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0

List of Tables

1
2

Real Knowledge Bases: Structural description ° 0 0 0 0 0 0 °
Number of comparison operations in top search of the chain-
inserting method relative to enhanced traversal ° 0 0 0 0 0 0 0

III

:n

16

1 Introduction

Terminological representation systems can be used to represellt the t.axo
nomic and conceptual knowledge of a problem domain in a structured alld
well-formed way. To describe this kind of knowledge, one starts with at.OIllic
concepts (unary predicates) and roles (binary predicates), and defines more
complex concepts and roles using the operations provided by the concept
language of the particular formalism. In addition to this concept descrip
tion formalism, most terminological representation systems also have all as
sertional component, which can be used to express facts about a concrct.e
world.

Of course, it is not enough to have a system that just stores COIlCCpt. def
initions and assertional facts . The system must also be ablc t.o rcasoll about
this knowledge. An important inference capabi lity of a tcrmillological rep
resentation system is classification. The classifier computcs a ll SUUs'/l,17/.JJlion

relationships between concepts, i.e., the subconcept-supcrcollcept relat.ic>Il
ships induced by the concept definitions. In th is paper we consider Oldy
optimizations for the classification process. We do not take int.o accoullt
problems that are specific to assertional reasoning. This COllccllt.ra1.ioll 011

the terminological component is partially just.ified by the fact, t.llat. t.llis is t.11C

part that partakes in most reasoning activities of almost all systclfls--wllicll
means that the efficiency of th is rcasoning componcnt is crucial for the oV(')'

all behavior of the system. In additioll, the only existing empirical allalysis
comparing the efficiency of different terminological systcms is a lso rcstrict.cd
to the terminological part of the systems [Heinsohn et at., 1992].

The first terminological representation system, KL-ONE [Brachmall alld
Schmolze, 1985], was an implementation of Brachman's work on structurcd
inheritance networks [Brachman, 1977]. In the last decade many kllowl
edge representation systems based on these ideas have been built, for cxalll
pIe BACK [Peltason , 1991], CLASSIC [Patel-Schneider et 0,1., 1991], KAN DOR

[Patel-Schneider, 1984], KL-TWO [Vilain, 1985], K-Rep [Mays el at., 1991],
KRYPTON [Brachman et 0,1.,1985], KRIS [Baader and Hollunder, 1991], LOOM
[MacGregor, 1991], MESON [Edelmann and Owsnicki, 1986], NIKL [Schmolzc
and Mark, 1991], SB-ONE [Kobsa, 1991], and YAK [Cattoni and Franconi,
1990]. Moreover, formal aspects of terminological representation languages
have been thoroughly investigated, with the highest emphasis having been
placed on the decidability and complexity of the subsumption problem (see,
e.g ., [Levesque and Brachman, 1987; Nebel, 1988; Schmidt-Schauf3, 1989;
Patel-Schneider, 1989; Nebel, 1990b; Schmidt-Schauf3 and Smolka, 1991;
Donini et al., 1991a; Donini et at., 1991 bl). As a result of these investi
gations, it is known that subsumption determination is at least NP-hard Or
even undecidable for reasonably expressive languages. The developers of ter
minological representation systems usually have reacted to this problem in

1

one of the following two ways. On the one hand, there are systems such
as CLASSIC which support only a very limited terminologi cal language, but
employ almost complete reasoning methods . On the other hand , syst.ems
such as LOOM provide for a very powerful language, but the reason illg is
incomplete, which means that not all existing subsumption relationships are
detected.

The only system that does not make this compromise, i. e., that provides
complete algorithms for a very express ive concept description language, is
KRIS. Obviously, this means that KRIS will need exponential time for worst
case examples which, on the one hand , are not expressible in the less ex pres
sive systems, and which are , on the other hand, treated more efficientl y, hut.
less completely, by systems with fast and incomplete algorit.hms. IIowever,
it is not a priori clear whether this also implies that Kill S has t.o be kss

efficient for "typical" knowledge bases. In particular, it migld, at least be
fast in cases where its full expressive power is not used , or where in complete
algorithms are still complete. The empirical analysis of terminological rep re
sentation systems described in [Heinsohn et ai., 1992] seems to preclude tlli s
possibility, though. KRIS turned out to be much slower than, for example,
CLASSIC, even for knowledge bases that are in the scope of CLASSI C's CO II CCpt.
language, and for which CLASSIC's subsumption algorithm is complete.

One aim of the present paper is to demonstrate that this bad perforlllalice
of KRIS is not mainly due to the use of complete subsumption algo rit.lllll s, but
instead to the fact that the tested version was the first implement.at.ioll of clll
experimental system where e ffi ciency considerations only played a millor role .
For this purpose we shall consider possible optimizations of til e classi fi cat.io ll
process on three different levels. The optimizations on the high est leud cl!'(~

independent of the fact that what we are comparing are concepts defilled
by a terminological language. On this level, classificat ion is cons idered as
the abstract order-theoretic problem of computing a complete representatioll
of a partial ordering (in our case the subsumption hierarchy) by making as
few as possible explicit comparisons (in our case calls of the subsumption
algorithm) between elements of the underlying set (in our case the set of all

concepts occurring in the terminology). Optimizations on the next level st ill
leave the subsumption algorithm unchanged, but they do employ the fact
that we are not comparing abstract objects but instead structured concepts.
At this level subsumption relationships that are obvious consequences of this
structure can be derived without invoking the subsumption algorithm. On
the third level, the actual subsumption algorithm is changed so that it can
benefit from the information provided by subsumption relationships which
have previously been computed. The effects these optimizations have on t he
classification process are evaluated on three different sets of test data, which
are described in Section 2 below.

It should be noted that we do not claim that all the presented optimiza-

2

tions are novel. Similar optimizations can probably be found in many of the
existing systems (see, e.g., [Lipkis, 1982; MacGregor, 1988; Peltason et ai.,
1989; ..,Woods, 1991]). Further, the optimizations on the first level described
below are very similar to methods that can be found in the conceptual graphs
literature (see, e.g., [Levinson, 1984; Ellis, 1991; Levinson, 1992]), and which
have been used in the implementation of the PEIRCE system [Ellis and Levin
son, 1992]. However, until now it was not possible to find an exhaustive and
coherent description of all the methods, and there were no empirical studies
on their exact effects. A second motivation for this work is to make such a
description available for future implementors of terminological representation
systems.

2 The Test Data

In order to evaluate the different optimization techniques empirically, we
used three sets of test data. As in [Heinsohn et ai., 1992], we considered both
existing knowledge bases used in other projects (six different KBs with the
number of concepts ranging between 140 and 440), and randomly generated
knowledge bases whose structure resembles those of the six real knowledge
bases.

First we give a brief description of the six realistic knowledge bases. Ta
ble 1 characterizes the structure of the original KBs by means of the number
of defined and primitive concepts and roles, respectively. As mentioned in
[Heinsohn et ai., 1992], in the process of automatically translating and adapt
ing the KBs, some artificial concepts are introduced. The number of these
concepts is also shown in Table 1. A more structural characterization of the
subsumption hierarchy induced by the KBs is given in Table 2 in Section 3.4.

CKB (Conceptual Knowledge Base): Contains knowledge about tax reg
ulations and is used in the Natural Language project XTRA at the
University of Saarbrucken.

Companies: Contains knowledge about company structures and is used at
the Technical University Berlin in the framework of the ESPRIT project
ADKMS.

FSS (Functional Semantic Structures): Contains knowledge about
speech acts and is used in the Natural Language project XTRA at
the University of Saarbrucken.

Espresso: Contains knowledge about Espresso machines and their struc
ture. It is used in the WIP-Project of DFKI in the framework of mul
timoclal presentation of information.

3

Wisher: Contains knowledge about different forms of investments and was
used in the natural language dialog project WISBER at the University
of Hamburg.

Wines simple kosher: Contains knowledge about wines, wineries, and Il1 cal
courses. It is used as sample KB of the CLASSIC system. 1

Name defined primitive artificial L defin ed primitive
concepts roles

CKB 23 57 104 184 2 46
Companies 70 45 126 241 1 39
FSS 34 98 122 254 0 47
Espresso 0 145 124 269 11 41
Wisber 50 81 199 330 6 18
Wines 50 148 282 480 0 10

Table 1: Real Knowledge Bases: Structural descr iption

In order to get an idea how the runtime performance varies with the nUlTl
ber of concepts, and to test the optimizations on larger knowledge ba!>cs,
a number of terminological knowledge bases were randomly generatcd us
ing a minimal terminological languages containing only concept conjunction)
value restrictions) and number restrictions. The structure of these gcncrat.ed
knowledge bases resembles some of the aspects of the real knowledge bascs
we used. We do not claim, however, that the generated knowledge bascs arc
realistic in all aspects.

The generated knowledge bases have the following properti es :

• 80% of the concepts are "primitive", i.e., the definition of the concept
gives only the necessary conditions.

• There are exactly 10 different roles.

• Each concept definition is a conjunction containing

one or two concept symbols (explicit super-concepts),

zero or one minimum restrictions,

zero or one maximum restrictions,

1 A lot of individuals have been transformed to general concepts because in our tests we
only considered terminological knowledge but did not want to cut all the nice informat ion
about different wineries and wines.

4

and zero, one, or two value restrictions,

where the number of constructs from one category and the roles and
concepts are randomly assigned with a uniform distribution. Further,
the concepts are constructed in a way such that no concept is inconsis
tent (i .e., no minimum restriction is larger than any maximum restric
tion) .

In order to avoid definitional cycles, the concepts are partitioned illt.o
layers, where the ith layer has 3i concepts. When assigning explicit super
concepts or value-restriction concepts to the concept definition of a cOllcept
from level i, only concepts from level 0 to i-I are considered.

Comparing the randomly generated knowledge bases with real knowledge
bases, one notes that the number of roles might not be realistic. Further, the
randomly generated knowledge bases tend to have a concept hierarchy that
is less tree-like than real knowledge bases . Nevertheless, in the empirical
analysis of different terminological representation system [Heinsohn el af.,

1992], the runtime performance on the generated knowledge bases is similar
to the runtime performance on real knowledge bases.

Since the first level of optimizations can be done in an abstract ordcr
theoretic setting, these optimizations are also evaluated on randomly gen
erated partial orderings [Winkler, 1985]. The generation process goes as
follows. In order to generate a partial order ({ 1, ... ,n}, <p):

1. Choose a positive integer k.

2. Randomly generate k permutations 'Tri = (PI,i, .. . ,Pn,;) on {1, .. . , 'It}.
Such a permutation defines a linear ordering <i on {I, ... ,n} as follows:
r <i s iff r comes before s in 'Tri.

3. The strict partial ordering relation <p on {I, ... , n} is now defined as:
r <p s iff r <i s for all i, 1 :S i :S k.

Note that for k = 1, the resulting partial order is a total order. Further, for
k approaching n, the generated partial orders tend to become flat, i.e., most
elements will be pairwise incomparable.

3 Comput ing the Subsumption Hierarchy

In the first level of optimizations we are concerned with computing the con
cept hierarchy induced by the subsumption relation. More abstractly, this
task can be viewed as computing the representation of a partial ordering.
For a given partial ordering2 :S on some set P, -< shall denote the precedence

2 A partial ordering is a transitive, reflexive, and antisymmetric relation.

5

relation of :::;, i.e., -< is the smallest relation such that its reflexive, transitive
closure is identical with:::;. Obviously, x -< y iff x :::; y and there is no z

different from x and y such that x :::; z :::; y. If x :::; y, we say that x is a
su~cessor of y and y is a predecessor of x. Similarly, if x -< y, we say that x
is an immediate successor of y and y is an immediate predecessor of x.

Given a set X and a partial ordering :::; on X, computing the repre
sentation of this ordering on X amounts to identifying -< on X. If:::; is a
total ordering, this task is usually called sorting. For a partial ordering it is
called the identification problem (see, e.g., [Faigle and Turan , 1988]). The
basic assumption here is that the partial ordering is given via a comparison
procedure, and that the comparison operation is rather expensive. For this
reason, the complexity of different methods to compute the precedence re
lation is measured by counting the number of comparisons. Of course, the
number of other operations should not be too high as well.

In our case, X is the set of concepts defined in a terminological knowl
edge base, and:::; is the subsumption relation between these concepts. The
assumption that the subsumption test is the most expensive operation is jus
tified by the known complexity results for the subsumption problem [Donini
et al., 1991al. To be more precise, the subsumption relation is only a quasi
ordering, i.e., it need not be antisymmetric. For the following discussion,
this is mostly irrelevant, however. There is only one place in the algorithms
where this fact has to be taken into account.

The worst case complexity of computing the representation of a partial
ordering on a set with n elements is obviously O(n2

) because it takes n x
(n -1) comparisons to verify that a set of n incomparable elements is indeed
a flat partial order. Since subsumption hierarchies typically do not have such
a "pathological" structure, considerably less than n x (n - 1) comparisons
will almost always suffice.

Below, we describe and analyze four different methods to identify the rep
resentation of a partial ordering, namely, the brute force method, the simple
traversal method, the enhanced traversal method, and the chain inserting
method. Average case analyses of these methods seem to be out of reach
since one does not know enough about the structure of "typical" termino
logical knowledge bases, and since it is not even known how many different
partial orders exist for a given number of elements [Aigner , 1988]. For this
reason, the different methods are compared empirically.

All methods we describe are incremental, i.e., assuming that we have
identified the precedence relation -<i for Xi ~ X, the methods compute for
some element c E X - Xi the precedence relation -<i+1 on Xi+1 = Xi U {c}.
The two most important parts of this task are the top search and the bottom
search. The top search identifies the set of immediate predecessors in Xi for
a given element c, i.e., the set Xilc := {x E Xi I c -< x}. Symmetrically,
the bottom search identifies the set of immediate successors of c, denoted by

6

Xiic.
To be more precise, the procedures for top search that we will describe

below compute the set {x E Xi I c :S x and c 1:. y for all y ~i x}, whi ch
in most cases is the set Xilc . Because the subsumption relation is only a
quasi-ordering, there is one exception. The concept c can be equivalent to
an element x of Xi, i.e., c :S x and x :S c. In this case, the top search
procedures will yield {x} instead of X;lc. To take care of this case, we test
x :S c whenever the top search procedure yields a singleton set {x}. If this
test is positive, c is equivalent to x, and we know that Xilc = X;l x , alld
Xiic = Xiix, which means that we don't need the bottom search phase.
Otherwise, the result of the top search procedure is in fact X;l c.

Given Xilc, Xiic, and ~ i , it is possible to compute the precedence re
lation ~i+l on Xi+l = Xi U {c} in linear time. In fact, one just has to add
~-links between c and each element of Xilc, and between each element. of
Xiic and c. In addition, all ~-links between elements of XiT c and Xil c have
to be erased.

3.1 The Brute Force Method

The top se arch part of th e brute force m e thod can b e d esc ribe d as foll o ws :

1. Test c:S x for all x E Xi.

2. X;lc is the set of all x E Xi such that the test succeeded and for a ll
y ~i x the test failed.

The bottom search is done in the dual way.
This method obviously uses 2 x IXil comparisons for the step of inserting

c in Xi. Summing over all steps leads to n x (n - 1) comparison operations to
compute the representation of a partial ordering for n elements. Further, thi s
is not only the worst-case , but also the best-case complexity of this meth od.

3.2 The Simple Traversal Method

It is obvious that many of the comparison operations III the bru te force

method can be avoided. Instead of testing the new element c blindly with
all elements in Xi, in the top search phase the partial ordering can be tra
versed top-down and in the bottom search phase bottom-up, stopping when
immediate predecessors or successors have been found. This leads us to the
specification of the simple traversal method (see Figure 1) .

The top search starts at the top3 of the already computed hierarchy. For
each concept x E Xi under consideration it determines whether x has an

3We assume that our concept hierarchies always contain a top element T and a bottom
element 1..

7

top-search(c,x) =

mark(x, "visited")
Pos-Succ +- 0
for all y with y -<i x do

if simple-top-subs?(y,c)
then Pos-Succ +- Pos-Succ u {y}

fi

od

if Pos-Succ is empty
then return {x}
else Result +- 0

fi

for all y E Pos-Succ do

od

if not marked?(y, "visited")
then Result +- Result u top-search(c,y)

fi

return Result

simple-top-subs?(y,c) =

if marked? (y , "posi ti ve")
then return true

fi

elsif marked?(y, "negative")
then return false

fi

elsif subs?(y,c)

fi

then mark(y, "posi ti ve")
return true

else mark(y, "negative")
return false

Figure 1: Top search phase of the simple traversal method

immediate successor y satisfying c :s; y . If there are such successors, they are
considered as well. Otherwise, x is added to the result list of the top search.

In order to avoid multiple visits of elements of Xi and multiple com
parisons of the same element with c, the top search algorithm described in
Figure 1 employs one label to indicate whether a concept has been "visited"
or not and another label to indicate whether the subsumption test was "pos-

8

itive," "negative," or has not yet been made. The procedure top-search gets
two concepts as input: the concept c, which has to be inserted, and an el
ement x of Xi, which is currently under consideration. For this concept x
we already know that c ~ x, and top-search looks at its direct successors
with respect to -< i. Initially, the procedure is called with x = T. For each
direct successor y of x we have to check whether it subsumes c. This is done
in the procedure simple-top-subs? Since our hierarchy need not be a tree,
y may already have been checked before, in which case we have memorized
the result of the test, and thus need not invoke the expensive subsumptioll
procedure subs? The direct successors for which the test was positive are
collected in a list Pos-Suee. If this list remains empty, x is added to tile
result list; otherwise top-search is called for each positive successor, but. Oldy
if this concept has not been visited before along another path.

The bottom search can be done again in the dual way. It is interest illg
to note that this top search is in principle the same as the one described by
Lipkis [Lipkis, 1982], who implemented the first classification algorithm for
KL-ONE. The bottom search described by Lipkis, however, is more efficicilt
than the one given here.

3.3 The Enhanced Traversal Method

Although the simple traversal method is a big advantage compared with t.he
brute force method (see Figure 5 (a)), it still does not exploit all possible
information. First , during the top search phase, we can take advantage of
tests that have already been performed. Second, in the bottom search phase,
we can use the information gained during the top search as well.

Of course, a dual strategy is also possible, i.e., performing the bottom
search before the top search and exploiting the information gathered during
the bottom search phase. Analyzing Figure 5, it becomes quickly obvious
that this strategy would be less efficient, however. In fact, for the simple
traversal method- where the top and bottom phase are done in a symmetric
way- the top search phase turns out to be a lot faster. Thus it is better to
start with this phase because the information gained thereby can then be
used to speed up the slower bottom search phase.

When trying to take advantage of tests that have already been performed
during top search one can either concentrate on negative information (i.e .,
that a subsumption test did not succeed) or on positive information (i.e.,
that a subsumption test was successful).

To use negative information during the top search phase one has to check
whether for some predecessor z of y the test c ~ z has failed. In this case,
we can conclude that c 1:. y without performing the expensive subsumption
test [MacGregor, 1988]. In order to gain maximum advantage, all direct
predecessors of y should have been tested before the test is performed on

9

y [Levinson, 1984]. This can be achieved by using a modified breadth-first
search where the already computed hierarchy is traversed in topological order,
as described by Ellis [1991] and Levinson [1992]. Alternatively, one can make
a recursive call whenever there is a direct predecessor that has not yet been
tested. This is what the procedure enhanced-top-subs? described in Figure 2
does. If y is not yet marked, the procedure enhanced-top-subs? is recursively
called for all direct predecessors z of y. As soon as one of these calls returns
false, one goes to the "else" branch, and marks y "negative." Only if all
calls return true, the subsumption test subs?(y,c) is performed to decide
whether y has to be marked "positive" or "negative." If we replace the call
of simple-top-subs? in top-search by a call of enhanced-top-subs?, we get the
top search part of the enhanced traversal method.

enhanced-top-subs?(y, c) =
if marked?(y, "positive")

then return true

fi

elsif marked?(y, "negative")
then return false

fi

elsif for all z with y -<i z
enhanced-top-subs?(z ,c)

and subs?(y,c)

fi

then mark(y,"positive")
return true

else mark(y,"negative")
ret u rn false

Figure 2: Top search phase of the enhanced traversal method. The proce
dure top-search is adopted from the simple traversal method , but instead of
simple-top-subs? it calls enhanced-top-subs?

The enhanced top search procedure just described makes maximum use
of failed tests. Alternatively, it is possible to use positive information. Before
checking c ::; y, one can look for successors z of y that have passed the test
c ::; z [MacGregor, 1988]. If there exists such a successor, one can conclude
that c ::; y without performing an actual subsumption test. Although we
are only interested in minimizing the number of comparison operations , it
should be noted that instead of searching for a successor that has passed
the test it is more efficient to propagate positive information up through the
subsumption hierarchy. This can be achieved by an easy modification of the

10

procedure simple-top-subs? When the call subs?(y,c) yields true, not only
y is marked "positive," but so are all of y's predecessors. Obviously, this
technique cannot be combined with the enhanced top search described in
Figure 2 since it reduces the number of subsurnption tests only if there are
predecessors which have not yet been tested, and enhanced top search tes ts
all predecessors before making a subsumption test.

Neither of these alternatives is uniformly better than the other one, which
can be seen by considering the examples described in Figure 3 and 4.

Figure 3: The new element c is a direct successor of y

In the first example, the top-search using negative information makes n+ 1

tests: it first tests Xt, then goes to y , but before testing it, it tests all its
direct predecessors, i.e., X2, •. . ,Xn . The top search using positive information
makes two tests: first Xl and then Yi the positive result of this second test is
propagated to X2, ... ,Xn .

T

Figure 4: The new element c is a direct successor of YI, but not a successor
of Y2, Xt, ... ,Xn

In the second example, the top search using negative information needs
only two tests: first it tests Yt, then goes to Xl, but before testing Xl its direct
predecessor Y2 is tested. The negative result of this test prevents Xl , .. . , X n

from being tested. The top search using positive information tests n + 2
nodes: first Yl, then all its successors Xl, ... , X n , and finally Y2.

However, we have observed significant performance differences for the two
different top search strategies. For the random knowledge bases, the method
using positive information was only slightly better than the simple traversal

11

method (less than 5%). For this reason, we have also considered a "hybrid
method" which propagates positive information up, and negative information
down the hierarchy (but does not test all predecessors before testing a node).
Propagating negative information down is again achieved by an easy modifi
cation of simple-top-subs? When the call of subs?(y,c) yields fals e, not ollly
y is marked "negative," but all of V's successors. The hybrid method turned
out to be a lot better than just propagating positive information , but it still
needed slightly more tests (approx. 5%- 10%) than the enhanced top search
for all but one of the random knowledge bases. On five of the six realistic
knowledge bases the hybrid method was insignificantly faster than tile Cll
hanced top search (less than 1 %) . On the remaining realisti c KB, t.he Ilylnid
method needed 10% more comparisons. Although these results do not. seem
to be conclusive in favor of the hybrid method or the enhanced top searcll , it
is obvious that the use of negative information leads to a significantly greater
reduction of comparisons than the use of positive informat ion. For concep
tual graphs, Levinson [1992] observes that using negative information is also
better than using positive information.

Now we turn to the bottom search phase of the enhanced traversal method.
Of course, optimizations dual to the ones described for the top search can
be employed here. In addition, the set Xdc can be used to severely cut
down the number of comparisons in the bottom search phase. As mCIl
tioned by Lipkis [1982], the search for immediate successors of c can be
restricted to the set of successors of Xdc. In fact, the set of candidat.es
for Xii c is even more constrained. Only elements that are successors of
all x EXile can be immediate successors of c [Levinson, 1984; Ellis, 1991;
Levinson, 1992]. This optimization is achieved by an easy modification of the
procedure enhanced-bottom-search (which is dual to enhanced-top-search):
the test "marked?(y,"negative")" is augmented to "marked?(y,"negativc")
or y is not a successor of all x E Xdc." The remaining problem is how to
implement the second part of this test. One possibility is to mark the suc
cessors of the elements of Xdc in an appropriate way, and then test these
labels (see, e.g., [Levinson, 1992]). Another possibility, which we have used
in our tests, is to equip each concept in Xi with a list of all its predecessors
in Xi, and test whether Xdc is contained in the list of predecessors of y.

As a result of this optimization, the number of necessary comparison op
erations can be cut down to a fraction compared with the simple bottom
search strategy. Interestingly, we observed a further reduction of compari
son operations in case of the real knowledge bases when searching top-down
starting at Xilc instead of searching bottom-up. For the random knowl
edge bases, no such difference was observed, however. The bottom search
described by Ellis [1991] and Levinson [1992] is also done top-down.

The effects of the simple and enhanced traversal method for the random
knowledge bases and the realistic knowledge bases as test data are displayed

12

100% r---------~
stop .ea.rch

80%

60%

40%

20%

o bottom lea.reh

EBtop k bottom

Q •• Q •• •

.~. ·· ~"· ··"" Q . O

~--~ ___ ~__ co.
~ ---e- ---e-<J

800 1600 2400 3200 4000
No. of concepts

(a) Simple traversal method

10%

8%

6%

4%

2%

~ e top sea.rch

\ <> bollom , • ..,ch

Q

~\\fIJ lOp &< bollom

.~

\
s""!'il

\
\
'&--.--~.,

'''~''~'''''-'-''''&.-e

•• Q.Q •• Q ••••• Q ••••••..• Q .()

800 1600 2400 3200 4000
No . of concepts

(b) Enhanced traversal method

Figure 5: Number of comparison operations relative to br'ute force method
for random KBs

100% r-----------, e lOp .earch

80%

60%

o bouom search

ED top &c boltom

Q
(> ••

~ 40%

'9-------8
20%

100 200 300 400
No. of concepts

500

(a) Simple traversal method

50% r----------, e top sea.rch

40%

30%

20%

10%

o bottom search

ED lOp k. bOllom

8'---~

100

\

~~~ 
, ,~ 
<>. " "0 • • 

200 300 400 
No. of concepts 

500 

(b) Enhanced traversal method 

Figure 6: Number of comparison operations relative to brute force method 
for realistic KBs 

in Figures 5 and 6. These graphs present the number of necessary compar
isons relative to the brute force method for the top search and the bottom 
search phase, as well as for the entire classification process. 

13 



3.4 The Chain Inserting Method 

Sorting a set of elements that is linearly ordered can be either done by incre
mentally searching the already ordered sequence linearly or by using binary 
search. In the former case, we inevitably end up with quadratic complexity, 
while in the latter case O( n X log n) is a possibility. Of course, it seems at
tractive to transfer the latter technique to our problem, an idea that leads to 
the chain inserting method. This method is similar to Algorithm A described 
by Faigle and Turan [1988]. However, the assumptions in [Faigle and Turan, 
1988] are somewhat different from ours. There it is assumed that a single 
test yields the answer "greater," "smaller," or "incomparable," whereas we 
would need two calls of the subsumption procedure to get this information. 

In order to specify the chain inserting method, we first define the notion 
of a chain covering of a partial ordering. A chain covering is a partition of a 
partial ordering into chains, i.e., totally ordered subsets. Provided we have 
a chain covering of the set Xi, it is possible to identify the sets Xdc and 
Xi i c by binary search in all chains. For a given chain ej of the covering 
Xi = e1 U ... u em, binary search is used to find the least predecessor and 
the greatest successor of c in ej • Since the underlying ordering S; is only 
a partial ordering on X, the new element c to be inserted into the chain 
ej need not be comparable with all elements of ej . For this reason one 
needs two binary search phases for each chain. The first one asks c S; x, 

and treats negative answers as if they would mean c > x. This phase yields 
the least predecessor of c in ej. The other phase is dual, and yields the 
greatest successor of c in ej. The set of these least predecessor (resp. greatest 
successors) for all chains of the covering yields a superset of Xilc (resp. XiTc). 
The set Xilc (resp. XiTc) is obtained by eliminating the elements which are 
not minimal (resp. maximal) with respect to S;i. As a further optimization, 
propagation of positive and negative information of successful and of fail ed 
tests in the existing subsumption hierarchy is used to make some of the 
explicit subsumption tests during binary search superfluous, after one or 
more chains have already been searched through. 

We have also considered a "hybrid" method that employs chain insertillg 
for long chains and enhanced traversal afterwards. The idea here is that by 
binary search in long chains one gets rather quickly into the "center" of the 
partial ordering, from which propagation of positive and negative information 
should have the greatest effect. 

It is, of course, advisable to use chain coverings with a minimal number 
of chains. Unfortunately, the computation of minimal chain coverings is non
trivial and takes more than quadratic time [Jungnickel, 1990]. Nevertheless, 
simple heuristics permit the incremental construction of chain coverings that 
are almost optimal. The heuristic we have used to update the chain covering 
when a new element c is inserted proceeds as follows. After the sets Xdc 

14 



and X;jc have been computed, c is inserted in the longest chain satisfying 
one of the following conditions: 

1. Binary search has yielded both a least predecessor and greatest succes
sor in the chain, and they are successive -elements of the chain. In this 
case, c is inserted between these two elements in the chain. 

2. Binary search has yielded a least predecessor (or greatest successor) in 
the chain, and it is the least (resp. greatest) element of the chain. In 
this case, c is inserted below (resp. above) this element in the chain. 

If there is no chain satisfying one of these conditions, a new chain consisting 
of c is created. In our experiments , the chain coverings obtained this way 
were less than 10% suboptimal. 

Some of our empirical results concerning the performance of the chain 
inserting method are given in Table 2. We have only displayed the results for 
top search, since the bot tom search is almost identical if the optimizations 
from the enhanced traversal are included. 

In addition to the size of the partial order (first column) and the rela
tive number of comparison operations with respect to the enhanced traversal 
method (last column), also some structural parameters of the partial orders 
are given. The second column gives the average number of immediate prede
cessors and successors (where the top and bottom elements are not counted) . 
The third column gives the average number of successors and predecessors, 
and the fourth and fifth column specify the breadth and depth (including 
top and bottom), respectively, of the partial order. To be more precise, the 
entries in the fourth and fifth column are only approximations of the actual 
breadth and depth. They are the number of chains and the length of the 
longest chain in the chain covering generated by our heuristic. Taking these 
numbers in place of the exact numbers is reasonable since our chain insertion 
method uses the chain coverings generated by the heuristic. 

The first group of results was obtained by applying the chain-insert ing 
method to the realistic KBs, the second group gives the results for the random 
KBs, and the third group specifies the result for the randomly generated 
partial orders. 

To our surprise, the chain inserting method turned out to be not signif
icantly better than the enhanced traversal method. To the contrary, on the 
realistic KBs it is usually less efficient , except for one case, and the same 
holds for the random KBs. The "hybrid" version using chain inserting for 
long chains and enhanced traversal afterwards was also not much better than 
the pure chain-inserting method. On the other hand, for tests on randomly 
generated partial orders the chain inserting method in some cases showed 
a much better performance than the enhanced traversal method. A reason 
for this behavior could be that, compared to the realistic knowledge bases 

15 



No. of Average Average Breadth Depth Relative 
nodes degree no. of pred. no. of com-

& succ. pansons 

184 1. 71 5.67 105 6 103.7% 
241 1.91 6.38 124 6 100.3% 

254 1.99 13.02 135 6 91.8% 
269 1. 72 5.16 164 7 107.9% 
330 1.85 8.13 141 12 110.0% 

298 2.36 8.88 142 8 115.7% 
583 2.58 12.24 330 7 114.5% 
992 2.73 16.77 478 10 111.7% 

1263 3.18 16.61 661 11 108.9% 
1659 3.19 18.86 927 10 110.3% 
2389 3.50 25.49 1188 10 11l.3% 
3658 3.82 27.20 1703 8 105.3% 
3905 4.04 33.95 1858 11 99.9% 

301 7.67 42.11 88 8 73.2% 
301 8.01 20.69 136 5 100.5% 
301 6.40 10.43 168 6 102.7% 
301 4.22 5.68 205 4 10l.3% 
586 9.93 72.55 144 9 67.2% 
586 12.08 38.79 224 7 96.3% 

586 10.39 20.42 301 7 103.3% 
586 7.72 11.50 353 5 102.9% 
995 5.52 250.24 85 28 16.2% 
995 12.46 125.94 226 11 51.8% 
995 16.40 62.88 354 9 91.4% 
995 13.58 28.38 506 6 105.1 % 

1266 5.78 32l.19 100 30 12.9% 
1266 13.82 169.95 259 13 44.2% 
1266 18.22 76.87 438 9 89.8% 
1266 17.82 41.70 592 6 101.1 % 

Table 2: Number of comparison operations in top search of the 
chain-inserting method relative to enhanced traversal. The first group gives 

results for the realistic KBs, the second group for the random KBs, and the 
third group for the randomly generated partial orders. 

we used in our tests, the randomly generated partial orders have a much 
higher connectivity (which means that propagation of positive and negative 
information has more effect) and permit longer chains (which makes binary 

16 



search more important). In fact, the parameters average number of pT'ede

cessors q,nd successors and breadth seem to be relevant for the efficiency of 
the chain-inserting method. If the first parameter is high and the second is 
low relative to the size of the partial order, then the chain-inserting method 
performs much better than enhanced traversal. 

The chain inserting method may thus become more interesting for knowl
edge bases defining relatively deep hierarchies with high connectivity. Addi
tionally, it seems possible to exploit the chain covering in order to implemcllt 
storage compression techniques as described by Jagadish [1989]. Finally, it 
should be noted that the overhead of the chain-inserting method is not sig
nificantly higher than the overhead of the enhanced traversal method. III 
fact, in our implementation the chain-inserting method required sligld,ly Icss 
overhead than the enhanced traversal method. 

4 Obvious Subsumption Relationships 

In this section we describe some further techniques for avoiding subsumption 
tests by exploiting relations which arc obvious when looking at the syntactic 
structure of concept definitions. 4 These pre-tests require only little errort 
but can speed up the classification process significantly. We consider three 
different optimizations which apply to different stages of the classification 
process. 

The first technique can be used prior to the top search. It applies when 
the description of the concept c that we want to insert is conjunctive (which 
is the case for the majority of concepts, in particular if we consider Lllc 
existing real knowledge bases). If this description mentions x explicitly as a 
conjunct, then it is obviously the case that c ::; x. We call such concepts x 
told subsumers of c. Of course, if x is also a conjunctively der-ined COllcCpt, 
it may have told subsumers as well, and these (and their told subsulllcrs, 
etc.) can be included into the list of told subsumers of c. It is rather casy 
to compile this list while reading in the concept definitions. The information 
that c is subsumed by its told subsumers can be propagated through the 
existing hierarchy (Xi, --<i) prior to the top search, e.g., by pre-setting tlle 
markers used in the traversal method to "positive" for the told subsumers 
and all their predecessors. A prerequisite for this optimization technique 
to be effective is that the told subsumers of c are already contained in Xi. 
This can be achieved by inserting concepts following the so-called "definition
order." This order can be formally defined as follows: We say that a concept 
x directly uses a concept y iff y occurs in the definition of x. Let "uses" be 
the transitive closure of "directly uses." Then x comes in the definition-order 
after y if x uses y. 

4These techniques are probably used in all systems, see, e.g. [Peltason et al., 1989]. 

17 



Assuming that concepts are inserted in the subsumption hierarchy follow
ing the definition-order, another optimization can be applied. The bottom 
search phase can be completely avoided if a primitive concept (i.e., a concept 
that is described by giving only necessary conditions) has to be classified. In 
fact, such a concept c can only subsume the 'bottom concept and concepts 
whose definitions use c. Since the second type of possible subsumees is not 
yet present in the actual hierarchy when inserting along the definition-order, 
the result of the bottom search is just the bottom concept L Considering 
the fact that in realistic KBs the majority of concepts (60%-90%) are prim
itive, this optimization can save most of the subsumption calls during the 
bottom search phase. Combining the two optimization techniques led to a 
saving of 10% to 20% with respect to the pure enhanced traversal method 
for the realistic knowledge bases. In case of the random knowledge bases, 
the savings where even greater , as can be seen from Figure 7. 

60% 

50% 

~ .• o . ... · . ... o.Q 
.. ~ ... ~. e _ .... 
: ..•... 

40% 

30% Q. 0" ~ 

20% 

8 top iea.rch 

10% <> bollom .. ~rch 
Ell lop+ bollom 

800 1600 2400 3200 4000 
No. of concepts 

Figure 7: Number of necessary comparisons when exploiting obvious sub
sumption relations relative to pure enhanced traversal method for random 
KBs 

A final optimization technique can be used as a pre-test before calling 
the subsumption algorithm. It makes use of the fact that a concept c is 
subsumed by a primitive concept x if, and only if, the completely expanded 
form of c contains the "primitive component of x" (see [Nebel, 1990a, p. 54-
56]) as a conjunct. By extracting and caching the "primitive components" 
of all concepts, it becomes possible to check whether a subsumption relation 
is possible by comparing the sets of primitive components. If this test gives 
a negative result, the subsumption algorithm need not be called. Although 
such a test overlaps with computations the subsumption algorithm does, it is 
much faster than the subsumption test. For this reason, this pre-test pays off 
if most of the subsumption calls can be avoided, which was indeed the case 
for our test data. Our experiments indicate that the number of calls of the 

18 



subsumption algorithm can be again reduced by 50%-60%, if this techllique 
is applied. 

5 The Subsumption Algorithm 

In this section we consider two possible optimizations of the subsumption 
algorithm, and describe the effects they have on the performance of classifl
cation for our test knowledge bases. Let us first reconsider the two types of 
subsumption algorithms usually implemented in terminological systems. 

In almost all terminological representation systems other than KRIS struc

tural subsumption algorithms are employed (e.g. CLASSIC, LOOM, I3i\CI{). 

Such algorithms basically proceed as follows. First, the concepts are normal
ized, i.e., they are transformed into equivalent normal forms. Subsumpt.ioll 
between normalized concepts is a kind of structural comparison where each 
subexpression of the first concept must have a counterpart in the other COII

cept. This algorithmic technique allows one to develop efficient subsumptioll 
algorithms which are easily shown to be sound. However, for expressive t.er

minological languages these algorithms are usually not complete, alld it. is 
not clear how the techn ique could be extended in order t.o build complete 
structural subsumption algorithms. 

Using a different paradigm, in thc past years sound and complete sul>
sumption algorithms for a large class of terminological languages have beell 
developed (e.g. [Schmidt-Schaul3 and Smolka, 1991; Hollunder et al., 1990]). 
Most of these algorithms are designed as satisfiability checking algorithms. 
These algorithms are model generation procedures, and are similar to first
order tableaux calculus, with the main difference that the speciflc structure 
of concept descriptions allows one to impose an appropriate control that en
sures termination. Since a concept A subsumes a concept B if, and only if, 
-.A n B is not sat isfiable, i.e., there does not exist an interpretation wllich 
interprets -.A n B as a non-empty set, a satisfiability algorithm in fact can 
be used to solve the subsumption problem. In order to check wllcther a 
given concept C is satisfiable, the tableaux-based algorithm tries to gellerat.e 
a finite interpretation in which C is interpreted as a non-empty set. Tllis 
generation process is complete in the sense that if it fails, i.e., an obvious 

contradiction occurs, we can conclude that C is not sat isfiab le; otherwise 
C is satisfiable. An obvious contradiction in the model generating proccss 
occurs, for example, if some element is constrained to be both instance of a 
"primitive component" and its complement- which is impossible. 

It is well-known that subsumption of concepts defined in a cycle-free 
terminology can be reduced easi ly to subsumption of concept terms which 
do not refer to other concept definitions of the terminology (so-called ex
panded concept terms) [Nebel, 1990a]. For conceptual simplicity both types 

19 



of subsumption algorithms are usually described in the literature as taking 
expanded concept terms as arguments, which precludes the exploitation of 
previously computed subsumption relationships. 

5.1 The Optimizations 

However, almost all terminological representation systems take advalltage 
of previously computed subsumption relationships. To illustrate how this 
can be done for a structural subsumption algorithm, suppose that C alld D 
are normalized concept descriptions. As mentioned above, structural sub
sumption between C and D means to find for each subexpression C' of C a 
corresponding subexpression D' of D. Often, in turn, these subexpressiclIls 
have to be tested for subsumption. In case C' and D' are concept names of 
possibly defined concepts, and we already know a subsumption relatiollship 
between C' and D', it is not necessary to call the subsumption algor itllln 
recursively for (the expanded form of) C ' and D'. Thus, it is rather nat.ural 
and straightforward to incorporate the use of already computed subsurnp
tion relations into a structural subsumption algorithm. It shou ld be noted 
that it is an essential requirement not to completely expand the concept. def
initions before checking subsumption since otherwise the concept names for 
which subsumption relationships are already known would be lost. Further, 
it is necessary to classify the concepts according to the "definition-order" 
mentioned in the previous section . 

In contrast to other terminological systems, KRIS employs a satisfiability 
algorithm to determine subsumption relationships between cOllcepts. Sill ce a. 

satisfiability algorithm does not recursively call subsumption algorit.hllls but 
satisfiability algorithms, it is not obvious how to exploit previously cOIllput.ed 
subsumption relationships. A closer look, however, reveals that a satisriabil 
ity algorithm may detect a contradiction earli er during model generatioll if 
previously computed subsumption relationships are taken into account. To 
see this, suppose that we already know that a defined concept A subsumes a 
defined concept B. If during the model generation an element is constrailled 
to be both instance of -,A and B, a contradiction can be detected without 

expanding the definitions of A and B. Again, this approach only works if the 
concept definitions are not expanded before starting to check satisfiabi lity. 

If expansion is done "by need" during the satisfiability test, one has to 
decide in which order to expand the concept names. It is easy to see that this 
order may have considerable impact on the runtime behavior. For example, 
assume that we are testing An B for satisfiability where in the TBox A is 
defined by a very large concept description and B is defined to be -,A n C. 
If B is expanded first, the contradiction between A and -,A is detected at 
once. On the other hand, if A is expanded first, detecting the contradiction 

between the large descriptions associated with A and its negation may be 

20 



rather time-consuming, depending on the structure of the description. 
One way of avoiding this problem is to expand concept names according 

to the inverse of their definition-order, which in the above example would 
mean that we expand B before A, because the definition of B refers to A. Of 
course, this means that for each expansion operation one has to go through 
the list of all expandable names, and look for a maximal one with respect 
to the definition-order. For our tests we have used another solution, which 
avoids searching for a maximal name, but may use more space. Here one 
expands in arbitrary order, but when a name is expanded it is not removed, 
but just marked as expanded. If, in our example, A is expanded before B, 
we then still have the name A, and as soon as B is expanded it yields the 
contradiction with -,A . 

In order to gain experience in how to optimize the satisfiability algorithm 
to be employed in KRIS, we implemented the following three versions. 

1. The first one takes completely expanded concept descriptions as input. 
Since these descriptions do not contain names of defined concepts, ob
vious contradictions can only be detected between "primitive compo
nents," i.e., concept names which are not defined in the TBox. 

2. The second one successively expands the concept descriptions during 
model generation, but keeps the names, as described above. This al
lows the algorithm to detect obvious contradictions not only between 
primitive components but also between names of defined concepts. 

3. The third version is a refinement of the second one in that already com
puted subsumption relationships are taken into account when looking 
for obvious contradictions. 

5.2 Empirical Results and Analysis 

It turns out that the first version is significantly slower than the secolld 
one, a result we did expect. The main reason for this behavior is that tile 
number of recursive calls of the satisfiability algorithm is reduced due to 
obvious contradictions detected between names of defined concepts. As a 
consequence, the runtime of the second version is reduced by 40-60% relative 
to the first version (see Figure 8, which displays the results for the random 
knowledge bases). 

A result we did not expect is that the behavior of the third version is 
no better than of the second, which means that trying to exploit already 
computed subsumption relationships does not payoff. The reason for this 
behavior seems to be that-at least for the test data- only a few contra
dictions are detected by using already computed subsumption relationships. 

21 



100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

e Recunive c&lll for second a.nd third veuion 

o Runtime lecond version 
ED Runtime third version 

30 60 90 120 150 
No. of concepts 

100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

'. e Recufiive ca.lli for lecond a.nd third version 
o Runtime .econd version 

EB Runtime third veuion 

400 800 1200 1600 
No . of concepts 

Figure 8: Runtime and number of recursive calls of the second and third 
version's satisfiability algorithm relative to the algorithm taking completely 
expanded concept terms as input (first version) for random KBs 

This is indicated by the fact that the number of recursive calls of the satisfi
ability algorithm does not significantly decrease when going from the second 
to the third version. However, the test of whether a set of negated and un
negated concept names is contradictory w.r.t. already computed subsumption 
relationships is more complex than just searching for complementary names, 
which explains that the third version's runtime behavior is even slightly worse 
than the second one's (see Figure 8). 

This result is all the more surprising since using computed subsumption 
relationships during classification is an optimization technique employed by 
most terminological systems. The reason why it may payoff for other systems 
could be that these systems first normalize, and during this normalization 
phase auxiliary concepts may be introduced. For example, assume that C is 
defined by the description VR.AnVR.B, and D by VR.A. The normalization 
procedure may introduce a new concept name E, define it as AnB, and mod
ify the definition of C to VR.E . Now the subsumption relationship between 
A and the auxiliary concept E - which is found first if the terminology is 
classified according to the defiuition-order-immediately entails that D sub
sumes C. Thus classificati6n of the terminology with the auxiliary concepts 
allows one to exploit previously computed subsumption relationships more 
often. On the other hand, it has the disadvantage that in general a lot more 
concepts have to be classified. 

Another interesting behavior we observed is due to the interaction be
tween different optimization techniques. The optimizations described in the 
previous two sections try to avoid subsumption tests, whereas the present 

22 



section is concerned with speeding up the subsumption test. Ideally, one 
could expect that these optimizations are independent. This means that the 
overall speedup factor is the product of the speedup factors of the individual 
optimizations. This can only be true if the optimizations apply uniformly to 
all situations, however . 

If the optimizations apply to special cases only, subsumption avoidance 
optimizations and subsumption test optimization may aim at similar special 
cases and lead to t he situation that subsumption tests are avoided which 
have neglect able computational costs in any case. 

If we take the second or third version's satisfiability algorithm, the ex
ploitation of obvious subsumption relationships caused by conjunctive def
initions, i.e., the first optimization technique mentioned in Section 4, does 
no longer speed up the classification process significantly. This is due to the 
fact that such subsumption relationships can now be easily detected by the 
satisfiability algorithms. For example, let C be a concept that is defined to 
be the conjunction of C}, ... ,Cm , where the C i are defined concepts as well. 
The obvious subsumption relationship between C i and C is immediately de
tected by the second and third version of the satisfiability algori t hm, due to 
an obvious contradiction between Ci and -,Ci . 

6 Conclusion 

We have described and analyzed different optimization techniques for the 
classification process in terminological representation systems. Interestingly, 
two of the most promising techniques, namely, the chain inserting method 
for computing the representation of a partial order and the exploitation of 
already computed subsumption relations in the subsumption algorithm, did 
not lead to the expected performance increase in case of realistic knowledge 
bases. 

A further interesting result is that the optimization technique on the 
first level, which we called enhanced traversal method and which turned 
out to be the most promising method in our case, also gives good results 
for managing hierarchies of conceptual graphs [Levinson, 1984; Ellis, 1991; 
Ellis and Levinson, 1992], indicating that these hierarchies are probably 
structurally similar to those induced by terminological knowledge bases. 

As a result of our empirical analysis, the optimization techniques that 
came off best were incorporated in the KRIS system. These, together with 
more conventional optimizations on the implementation level, led to a signif
icant speed up. Whereas the unoptimized version was orders of magnitude 
slower than the fastest system tested in [Heinsohn et al., 1992], the new ver
sion has now a runtime behavior similar to that of the other systems on the 
test data used there. 

23 



R 
u 
n 
t 

m 
e 

e 
c 

500 
eBACK 
Q CLASSIC 

® KRIS (old )( x20) 

400 x KRIS ( now ) 

0 LOOM 

300 

200 

2000 

R 
u 
n 1500 
t 

m 
e 

s 1000 
e 
c 

500 

...
...... 

100 ,., .... .J~ 
..... . ...... ~................ .~ 

0~:·:~~ ... ,.: . . 9 .. 

100 200 300 400 

ff e BA C K I 0 I Q C LA SS IC 

I O LOO M 

~ x K R IS ( now ) 
0 

I 
I 
I 0 

I 
I 

~ 9 
. 9 · 

I 
9 · 

I 9 · 

9 . . 9 · . 9· 

400 800 1200 IGOO 20UU 
No. o f co ncept s No. of concepts 

(a) Realistic Knowledge Bases (b) Large random knowledge bases 

Figure 9: Runtime perform ance for realis t ic and large random kllow ledge 
bases 

Figure 9(a) displays the run t ime of the new KRIS version for the reali st ic 
knowledge bases and contrasts them with the runtime fi gures given in [Heill 
sohn et al., 1992]. Figure 9(b) gives the results for large random knowledge 
bases.5 

It should be noted , however, th at all the knowledge bases used in the test 
are formulated using quite limited terminologi cal languages . An in tercs tillg 
open problem is the development of further optimization techniques for more 
powerful terminological languages containing also disjun ct ion and negatioll 
and of specific optimization techniques for assertion al reasoning. 

Acknowledgements 

We would like to thank Uwe Utsch for implementing the different subsulll P
tion strategies, Hans-Jiirgen Biirckert , Jochen Heinsohn, Armin Laux, and 
Werner Nutt for helpful discussions concerning the topi cs described in t hi s 
paper, and Alex Borgida and Peter Patel-Schneider for helpful comments 0 11 

an earlier version of this paper. 
This work has been supported by the German Ministry for Research and 

Technology (BMFT) under research contracts ITW 8901 8 and ITW 8903 0 
and by the Italian National Research Council (CNR), project "Sistemi Infor
matici e Calcolo Parallelo. " 

5The description of the runtime behavior of the systems in [Heinsohn et at., 1992) 
refers to system versions as of 1990 and does not necessarily refl ect the perform ance of 
more recent versions . 

24 



References 

[Aigner, 1988] Martin Aigner. Combinatorical Search. Teubner, Stuttgart, 
Germany, 1988. 

[Baader and Hollunder, 1991] Franz Baader and Bernhard Hollunder. KRIS: 
Knowledge representation and inference system. SIGART Bulletin, 2(3):8-
14, June 1991. 

[Brachman and Schmolze, 1985] Ronald J. Brachman and James G. 
Schmolze. An overview of the KL-ONE knowledge representation system. 
Cognitive Science, 9(2):171 - 216, April 1985. 

[Brachman et al., 1985] Ronald J. Brachman, Victoria Pigman Gilbert, alld 
Hector J. Levesque. An essential hybrid reasoning system: Knowledge alld 
symbol level accounts in KRYPTON. In IJCAI-85 [1985], pages 532- 539. 

[Brachman, 1977] Ronald J. Brachman. A Structural Paradigm for /{ cjJ'/'c
senting Knowledge. PhD thesis, Havard University, 1977. 

[Cattoni and Franconi, 1990] Roldano Cattoni and Enrico FrancoTii. Walk
ing through the semantics of frame-based description languages: A case 
study. In Proceedings of the Fifth international Symposium on M ethodolo
gies for Intelligent systems, Knoxville, TN, October 1990. North-Hollalld. 

[Donini et al., 1991a] Francesco M. Donini, Maurizio Lenzerini, Daniele 
Nardi, and Werner Nutt. The complexity of concept languages. In J. 1\. 
Allen, R. Fikes, and E . Sandewall, editors, Principles of Knowledge R epr·e
sentation and Reasoning: Proceedings of the 2nd International Conference, 
pages 151-162, Cambridge, MA, April 1991. Morgan Kaufmann. 

[Donini et al., 1991b] Francesco M. Donini, Maurizio Lenzerini, Daniele 
Nardi, and Werner Nutt. Tractable concept languages. In Proceedings 
of the 12th International Joint Conference on Artificial Intelligence, pages 
458-465, Sydney, Australia, August 1991. Morgan Kaufmann. 

[Edelmann and Owsnicki, 1986] Jiirgen Edelmann and Bernd Owsnicki. 
Data models in knowledge representation systems: A case study. In 
C.-R. Rollinger and W. Horn, editors, G WAI-86 und 2. Osterr·eichische 
Artificial-Intelligence- Tagung, pages 69-74, Ottenstein, Austria, Septem
ber 1986. Springer-Verlag. 

[Ellis, 1991] Gerard Ellis . Compiled hierarchical retrieval. In Proceedings of 
the 6th Annual Conceptual Graphs Workshop, 1992. 

25 



[Ellis and Levinson, 1992] Gerard Ellis and Robert Levinson. The birth of 
PEIRCE: A conceptual graphs workbench. In H. Pfeiffer, editor, Pro
ceedings of the Seventh Annual Conceptual Graphs Workshop, Las Cruces, 
New Mexico, July 8-10, 1992. 

[Faigle and Turan, 1988] U. Faigle and Gy. Turan. Sorting and recognition 
problems for ordered sets. SIAM J. Computing, 17(1):100- 113, 1988. 

[Heinsohn et ai., 1992] Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, 
and Hans-Jiirgen Profitlich. An empirical analysis of terminological repre
sentation systems. In Proceedings of the 10th National Conference of the 
American Association for Artificial Intelligence, pages 767- 773, San Jose, 
CA, July 1992. MIT Press. 

[Hollunder et al., 1990] Bernhard Hollunder, Werner Nutt, and Manfred 
Schmidt-SchauB. Subsumption algorithms for concept description lan
guages. In L. C. Aiello, editor, Proceedings of the 9th European Conference 
on Artificial Intelligence, pages 348- 353, Stockholm, Sweden, August 1990. 
Pitman. 

[IJCAI-85, 1985] Proceedings of the 9th International Joint Conference on 
Artificial Intelligence, Los Angeles, CA, August 1985. 

[Jagadish, 1989] H. V. Jagadish. A compressed transitive closure technique 
for efficient fixed-point query processing. In L. Kerschberg, editor, Expert 
Database Systems- Proceedings From the 2nd International Conference, 
pages 423-446, Menlo Park, CA, 1989. Benjamin/Cummings. 

[Jungnickel, 1990] Dieter Jungnickel. Graphen, Netzwerke und Algorithmen. 
BI Wissenschaftsverlag, Mannheim, Germany, 2nd edition, 1990. 

[Kobsa, 1991] Alfred Kobsa. First experiences with the SB-ONE knowledge 
representation workbench in natural-language applications. SIGART Bul
letin, 2(3):70-76, June 1991. 

[Levesque and Brachman, 1987] Hector J. Levesque and Ronald J. Brach
man. Expressiveness and tractability in knowledge representation and 
reasoning. Computational Intelligence, 3:78-93, 1987. 

[Levinson, 1984] Robert Levinson. A self-organizing retrieval system for 
graphs. In Proceedings of the 3rd National Conference of the American 
Association for Artificial Intelligence, pages 203-206, Austin, Texas, 1984. 

[Levinson, 1992] Robert Levinson. Pattern associativity and the retrieval of 
semantic networks. Journal of Computers & Mathematics with Applica
tions, 23(6- 9):573-600, 1992. 

26 



[Lipkis, 1982] Thomas Lipkis. A KL-ONE classifier. In J. G. Schmolze 
and R. J. Brachman, editors, Proceedings of the 1981 I<L-ONE Work
shop, pages 128- 145, Cambridge, MA, 1982. The proceedings have been 
published as BBN Report No. 4842 and Fairchild Technical Report No. 
618. 

[MacGregor, 1988] Robert MacGregor. A deductive pattern matcher. In 
Proceedings of the 7th National Conference of the American Association 

for Artificial Intelligence, pages 403- 408, Saint Paul, MI , August 1988. 

[MacGregor, 1991] Robert MacGregor. Inside the LOOM description class i
fier. SIGART Bulletin, 2(3):88- 92, June 1991. 

[Mays et al., 1991] Eric Mays , Robert Dionne, and Robert Weida. r< -H.cp 
system overview. SIGART Bulletin, 2(3):93- 97, June 1991. 

[Nebel, 1988] Bernhard Nebel. Computational complexity of terminological 
reasoning in BACK. Artificial Int elligence, 34(3):371- 383, April 1988. 

[Nebel, 1990a] Bernhard Nebel. R easoning and Revision in Hybrid Re]J1'c
sentation Systems, volume 422 of Lecture Notes in A r·tificial Int elligence. 
Springer-Verlag, Berlin, Heidelberg, New York, 1990. 

[Nebel, 1990b] Bernhard Nebel. Terminological reasoning is inherently in
tractable. A rtificial Int elligence, 43:235- 249, 1990. 

[Patel-Schneider et al., 1991] Peter F. Patel-Schneider, Deborah L. McGuin
ness, Ronald J. Brachman, Lori Alperin Resnick, and Alex Borgida. The 
CLASSIC knowledge representation system: Guiding principles and lITl 

plementation rational. SIGART Bulletin, 2(3):108- 113, June 1991. 

[Patel-Schneider, 1984] Peter F. Patel-Schneider. Small can be beautiful ill 
knowledge representation. In Proceedings of the IEEE Workshop on Prin
ciples of I<nowledge-Based Systems, pages 11- 16, Denver, Colo., 1984. An 
extended version including a KANDOR system description is available as 
AI Technical Report No. 37, Palo Alto, CA, Schlumberger Palo Alto Re
search, October 1984. 

[Patel-Schneider, 1989] Peter F. Patel-Schneider. Undecidability of sub
sumption in NIKL. Artificial Int elligence, 39(2):263- 272, June 1989. 

[Peltason et al., 1989] Christof Peltason, Albrecht Schmiedel, Carsten Kin
dermann, and Joachim Quantz. The BACK system revisited. KIT Re
port 75, Department of Computer Science, Technische Universitat Berlin, 
Berlin, Germany, September 1989. 

27 



[Peltason, 1991] Christof Peltason. The BACK system - an overvIew. 
SICART Bulletin, 2(3):114-119, June 1991. 

[Schmidt-SchauB and Smolka, 1991] Manfred Schmidt-SchauB and Gert 
Smolka. Attributive concept descriptions with complements. Artificial 
Intelligence, 48: 1-26, 1991. 

[Schmidt-SchauB, 1989] Manfred Schmidt-SchauB. Subsumption in KL-ONE 
is undecidable. In R. Brachman, H. J. Levesque, and R. Reiter, ed itors, 

Principles of Knowledge Representation and Reasoning: Proceedings of 
the 1st International Conference, pages 421-431, Toronto, ON, May 1989. 
Morgan Kaufmann. 

[Schmolze and Mark, 1991] James G. Schmolze and William S. Mark. The 
NIKL experience. Computational Intelligence, 6:48-69, 1991. 

[Vilain, 1985] Marc B. Vilain. The restricted language architecture of a hy
brid representation system. In IJCAI-85 [1985], pages 547- 551. 

[Winkler, 1985] P. Winkler. Random orders. Order, 1:317- 331, 1985. 

[Woods, 1991] William A. Woods. Understanding subsumption and taxon
omy: A framework for progress. In John F. Sowa, editor, Principles of 
Semantic Networks, pages 45- 94. Morgan Kaufmann, San Mateo, CA, 
1991. 

28 



Deutsches 
Forschungszentrum 
far KOnstllche 
Intelllgenz GmbH 

DFKI Publikationen 

Die folgenden DFKI Ver~ffentlichungen sowie 
die aktuelle Liste von allen bisher erschienenen 
Publikationen k~nnen von der oben angegebenen 
Adresse bezogen werden. 
Die Berichte werden, wenn nicht anders 
gekennzeichnet, kostenlos abgegeben. 

DFKI Research Reports 

RR-92-10 
M. Bauer: An Interval-based Temporal Logic in a 
Multivalued Setting 
17 pages 

RR-92-11 
Susane Biundo, Dietmar Dengler, Jana Koehler: 
Deductive Planning and Plan Reuse in a 
Command Language Environment 
13 pages 

RR-92-13 
Markus A. Thies, Frank Berger: 
Planbasierte graphische Hilfe in 
objektorientierten BenutzungsoberfHichen 
13 Seiten 

RR-92-14 
Intelligent User Support in Graphical User 
Interfaces: 

1. InCome: A System to Navigate through 
Interactions and Plans 
Thomas Fehrle, Markus A. Thies 

2. Plan-Based Graphical Help in Object
Oriented User Interfaces 
Markus A. Thies, Frank Berger 

22 pages 

RR-92-1S 
Win/ried Gra/: Constraint-Based Graphical 
Layout of Multimodal Presentations 
23 pages 

RR-92-16 
Jochen Heinsohn, Daniel Kudenko, Berhard Nebel, 
Hans-Jurgen Profitlich: An Empirical Analysis of 
Terminological Representation Systems 
38 pages 

DFKI 
-Bibliothek
PF 2080 
D-6750 Kaiserslautem 
FRG 

DFKI Publications 

The following DFKI publications or the list of all 
published papers so far can be ordered from the 
above address. 
The reports are distributed free of charge except 
if otherwise indicated. 

RR-92-17 
Hassan Art-Kaci, Andreas Podelski, Gert Srrwlka: 
A Feature-based Constraint System for Logic 
Programming with Entailment 
23 pages 

RR-92-18 
John Nerbonne: Constraint-Based Semantics 
21 pages 

RR-92-19 
Ralf Legleitner, Ansgar Bernardi, Christoph 
Klauck: PIM: Planning In Manufacturing using 
Skeletal Plans and Features 
17 pages 

RR-92-20 
John Nerbonne: Representing Grammar, Meaning 
and Knowledge 
18 pages 

RR-92-21 
Jorg-Peter Mohren, Jurgen Muller 
Representing Spatial Relations (part II) -The 
Geometrical Approach 
25 pages 

RR-92-22 
Jorg Wurtz: Unifying Cycles 
24 pages 

RR-92-23 
Gert Smolka, Ralf Treinen: 
Records for Logic Programming 
38 pages 

RR-92-24 
Gabriele Schmidt: Knowledge Acquisition from 
Text in a Complex Domain 
20 pages 



RR-92-25 
Franz Schmalhofer. Ralf Bergmann. Otto Kuhn. 
Gabriele Schmidt: Using integrated knowledge 
acquisition to prepare sophisticated expert plans 
for their re-use in novel situations 
12 pages 

RR-92-26 
Franz Schmalhofer. Thomas Reinartz. 
Bidjan Tschaitschian: Intelligent documentation 
as a catalyst for developing cooperative 
knowledge-based systems 
16 pages 

RR-92-27 
Franz Schmalhofer. J6rg Thoben: The model-based 
construction of a case-oriented expert system 
18 pages 

RR-92-29 
Zhaohui Wu. Ansgar Bernardi. Christoph Klauck: 
Skeletel Plans Reuse: A Restricted Conceptual 
Graph Classification Approach 
13 pages 

RR-92-30 
Rolf Backofen. Gert Smolka 
A Complete and Recursive Feature Theory 
32 pages 

RR-92-31 
Wolfgang Wahlster 
Automatic Design of Multimodal Presentations 
17 pages 

RR-92-33 
Franz Baader: Unification Theory 
22 pages 

RR-92-34 
Philipp Hanschke: Terminological Reasoning and 
Partial Inductive Definitions 
23 pages 

RR-92-35 
Manfred Meyer: 
Using Hierarchical Constraint Satisfaction for 
Lathe-Tool Selection in a CIM Environment 
18 pages 

RR-92-36 
Franz Baader. Philipp Hanschke : 
Extensions of Concept Languages for a 
Mechanical Engineering Application 
15 pages 

RR-92-37 
Philipp Hanschke: Specifying Role Interaction in 
Concept Languages 
26 pages 

RR-92-38 
Philipp Hanschke. Manfred Meyer: 
An Alternative to 0-Subsumption Based on 
Terminological Reasoning 
9 pages 

RR-92-40 
Philipp Hanschke. Knut Rinkelmann: Combining 
Terminological and Rule-based Reasoning for 
Abstraction Processes 
17 pages 

RR-92-41 
Andreas Lux: A Multi-Agent Approach towards 
Group Scheduling 
32 pages 

RR-92-42 
John Nerbonne: 
A Feature-Based Syntax/Semantics Interface 
19 pages 

RR-92-43 
Christoph Klauck. Jakob Mauss: A Heuristic 
driven Parser for Attributed Node Labeled Graph 
Grammars and its Application to Feature 
Recognition in CIM 
17 pages 

RR-92-44 
Thomas Rist. Elisabeth Andre: Incorporating 
Graphics Design and Realization into the 
Multimodal Presentation System WIP 
15 pages 

RR-92-45 
Elisabeth Andre. Thomas Rist: The Design of 
Illustrated Documents as a Planning Task 
21 pages 

RR-92-46 
Elisabeth Andre. Wolfgang Finkler. Winfried 
Graf, Thomas Rist. Anne Schauder. Wolfgang 
Wahlster: WIP: The Automatic Synthesis of 
Multimodal Presentations 
19 pages 

RR-92-47 
Frank Bomarius: A Multi-Agent Approach 
towards Modeling Urban Traffic Scenarios 
24 pages 

RR-92-48 
Bernhard Nebel. Jana Koehler: 
Plan Modifications versus Plan Generation: 
A Complexity-Theoretic Perspective 
15 pages 

RR-92-49 
Christoph Klauck. Ralf Legleitner. Ansgar Bernardi: 
Heuristic Classification for Automated CAPP 
15 pages 



RR-92-50 
Stephan Busemann: 
Generierung natilrlicher Sprache 
61 Seiten 

RR-92-51 
Hans-Jurgen Burckert. Werner Nutt: 
On Abduction and Answer Generation through 
Constrained Resolution 
20 pages 

RR-92-52 
Mathias Bauer. Susanne Biundo. Dietmar 
Dengler. Jana Koehler. Gabriele Paul: PHI - A 
Logic-Based Tool for Intelligent Help Systems 
14 pages 

RR-92-54 
Harold Boley: A Direkt Semantic 
Characterization of RELFUN 
30 pages 

RR-92-55 
John Nerbonne. Joachim Laubsch. Abdel Kader 
Diagne. Stephan Oepen : Natural Language 
Semantics and Compiler Technology 
17 pages 

RR-92-58 
Franz Baader . Bernhard Hollunder: 
How to Prefer More Specific Defaults in 
Terminological Default Logic 
31 pages 

RR-92-59 
Karl Schlechta and David Makinson: On Principles 
and Problems of Defeasible Inheritance 
14 pages 

RR-93-02 
Wolfgang Wahlster. Elisabeth Andre. Wolfgang 
Finkler. Hans-Jurgen Profitlich. Thomas Rist: 
Plan-based Integration of Natural Language and 
Graphics Generation 
50 pages 

RR-93-03 
Franz Baader. Berhard Hollunder. Bernhard 
Nebel. Hans-Jurgen Profitlich. Enrico Franconi: 
An Empirical Analysis of Optimization Techniques 
for Terminological Representation Systems 
28 pages 

RR-93-05 
Franz Baader. Klaus Schulz: Combination Tech
niques and Decision Problems for Disunification 
29 pages 

RR-92-60 
Karl Schlechta: Defaults, Preorder Semantics and 
Circumscription 
18 pages 

DFKI Technical Memos 

TM-91-12 
Klaus Becker. Christoph Klauck. Johannes 
Schwagereit: FEAT-PATR: Eine Erweiterung des 
D-PATR zur Feature-Erkennung in CAD/CAM 
33 Seiten 

TM-91-13 
Knut Hinkelmann : Forward Logic Evaluation: 
Developing a Compiler from a Partially 
Evaluated Meta Interpreter 
16 pages 

TM-91-14 
Rainer Bleisinger. Rainer Hoch. Andreas Dengel: 
ODA-based modeling for document analysis 
14 pages 

TM-91-15 
Stefan Bussmann: Prototypical Concept Formation 
An Alternative Approach to Knowledge Representation 
28 pages 

TM-92-01 
Lijuan Zhang: Entwurf und Implementierung 
eines Compilers zur Transformation von 
Werkstiickreprasentationen 
34 Seiten 

TM-92-02 
Achim Schupeta: Organizing Communication and 
Introspection in a Multi-Agent Blocksworld 
32 pages 

TM-92-03 
Mona Singh: 
A Cognitiv Analysis of Event Structure 
21 pages 

TM-92-04 
Jurgen Muller. Jorg Muller. Markus Pischel. 
Ralf Scheidhauer: 
On the Representation of Temporal Knowledge 
61 pages 

TM-92-05 
Franz Schmalhofer. Christoph Globig. Jorg Thoben: 
The refitting of plans by a human expert 
10 pages 

TM-92-06 
Otto Kuhn . Franz Schmalhofer: Hierarchical 
skeletal plan refinement: Task- and inference 
structures 
14 pages 

TM-92-08 
Anne Kilger: Realization of Tree Adjoining 
Grammars with Unification 
27 pages 



DFKI Documents 

D-92-06 
Hans Werner Hoper: Systematik zur 
Beschreibung von Werkstucken in der 
Terrninologie der Featuresprache 
392 Seiten 

D-92-07 
Susanne Biundo. Franz Schmalhofer (Eds.): 
Proceedings of the DFKI Workshop on Planning 
65 pages 

D-92-08 
Jochen Heinsohn. Bernhard Hol/under (Eds.): 
DFKI Workshop on Taxonomic Reasoning 
Proceedings 
56 pages 

D-92-09 
Gernod P. Lau/kotter: Implementierungsmoglich
keiten der integrativen Wissensakquisitions
methode des ARC-TEC-Projektes 
86 Seiten 

D-92-10 
Jakob Mauss: Ein heuristisch gesteuerter 
Chart-Parser fiir attributierte Graph-Grammatiken 
87 Seiten 

D-92-11 
Kerstin Becker: Moglichkeiten der Wissensmodel
lierung fUr technische Diagnose-Expertensysteme 
92 Seiten 

D-92-12 
Otto Kuhn. Franz Schmalhofer. Gabriele Schmidt: 
Integrated Knowledge Acquisition for Lathe 
Production Planning: a Picture Gallery 
(Integrierte Wissensakquisition zur 
Fertigungsplanung fiir Drehteile: eine 
Bildergalerie) 
27 pages 

D-92-13 
Holger Peine: An Investigation of the 
Applicability of Terminological Reasoning to 
Application-Independent Software-Analysis 
55 pages 

D-92-14 
Johannes Schwagereit: Integration yon Graph
Grammatiken und Taxonomien zur 
Reprasentation von Features in CIM 
98 Seiten 

D-92-15 
DFKI Wissenschaftlich-Technischer 
lahresbericht 1991 
130 Seiten 

D-92-16 
Judith Engelkamp (Hrsg.): Verzeichnis von Soft
warekomponenten fur natiirlichsprachliche 
Systeme 
189 Seiten 

D-92-17 
Elisabeth Andre. Robin Cohen. Winfried Grat. Bob 
Kass. Cecile Paris. Wolfgang Wahlster (Eds.): 
UM92: Third International Workshop on User 
Modeling, Proceedings 
254 pages 
Note: This document is available only for a 
nominal charge of 25 DM (or 15 US-$). 

D-92-18 
Klaus Becker: Verfahren der automatisierten 
Diagnose technischer Systeme 
109 Seiten 

D-92-19 
Stefan Dittrich. Rainer Hoch: Automatische, 
Deskriptor-basierte Unterstutzung der Dokument
analyse zur Fokussierung und Klassifizierung von 
Geschaftsbriefen 
107 Seiten 

D-92-21 
Anne Schauder: Incremental Syntactic 
Generation of Natural Language with Tree 
Adjoining Grammars 
57 pages 

D-92-23 
Michael Herfert: Parsen und Generieren der 
Prolog-artigen Syntax von RELFUN 
51 Seiten 

D-92-24 
Jurgen Muller. Donald Steiner (Hrsg.): 
Kooperierende Agenten 
78 Seiten 

D-92-25 
Martin Buchheit: Klassische Kommunikations
und Koordinationsmodelle 
31 Seiten 

D-92-26 
Enno Tolzmann: 
Realisierung eines Werkzeugauswahlmoduls mit 
Hilfe des Constraint-Systems CONT AX 
28 Seiten 

D-92-27 
Martin Harm. Knut Hinkelmann . Thomas Labisch: 
Integrating Top-down and Bottom-up Reasoning 
inCOLAB 
40 pages 

D-92-28 
Klaus-Peter Gores. Rainer Bleisinger: Ein Modell 
zur Reprasentation von Nachrichtentypen 
56 Seiten 









An Empirical Analysis of Optimization Techniques for Terminological Representation Systems 
or: 'Making KRIS get a move on' 

Franz Baader, Bernhard Hollun5ier, Bernhard Nebel, Hans-Jurgen Profltllch, Enrico Franconl 

RR-93-03 
Research Report 


