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Abstract 

Possibilistic logic, an extension of first-order logic, deals with uncer­
tainty that can be estimated in terms of possibility and necessity mea­
sures. Syntactically, this means that a first.,order formula is equipped 
with a possibility degree or a necessity degree that expresses to what 
extent the formula is possibly or necessarily true. Possibilistic reso­
lution, an extension of the well-known resolution principle, yields a 
calculus for possibilistic logic which respects the semantics developed 
for possibilistic logic. 

A drawback, which possibilistic resolution inherits from classical 
resolution, is that it may not terminate if applied to formulas belong­
ing to decidable fragments of first-order logic. Therefore we propose 
an alternative proof method for possibilistic logic. The main feature 
of this method is that it completely abstracts from a concrete calculus 
but uses as basic operation a test for classical entailment. If this test 
is decidable for some fragment of first-order logic then possibilistic 
reasoning is also decidable for this fragment. 

We then instantiate possibilistic logic with a terminological logic, 
which is a decidable subclass of first-order logic but nevertheless much 
more expressive than propositional logic. This yields an extension of 
terminological logics towards the representation of uncertain knowl­
edge which is satisfactory from a semantic as well as algorithmic point 
of view. 



Contents 

1 Introduction 

2 Possibilistic Logic 

3 An Alternative Proof Method for Possibilistic Logic 

4 A Possibilistic Extension of Terminological Logics 
4.1 Terminological knowledge representation 

4.2 The possibilistic extension 

5 Conclusion 

2 

3 

5 

11 

18 
19 

21 

22 



1 Introduction 

A wide range of approaches have been proposed for the treatment of uncer­
tainty in Artificial Intelligence applications such as expert systems or knowl­
edge representat ion systems (for an overview see, e.g., [12, 9]). To deal with 
uncertainty that can be estimated in terms of possibility and necessity mea­
sures (as used in the framework of possibility theory [17]) possibilistic logic is 
a promising candidate. In fact, a basic feature of possibilistic logic is its abil-

. ity to model states of knowledge ranging from complete information to total 
ignorance by expressing lower bounds for the possibility or necessity of some 
piece of knowledge. This allows one, for instance, to distinguish between the 
total lack of certainty in the truth of a proposition and the certainty that 
the proposition is false. 

From a syntactical point of view, possibilistic logic employs closed first­
order formulas which are equipped with a possibility degree or a necessity 
degree: A weight ITa (resp. N a) attached to a formula p models to what 
extent p is possibly (resp. necessarily) true, where a ranges between 0 and l. 
To express, for example, that p is likely to be true one may use the necessity­
valued formula (p, NO.7), whereas one may write (p, ITO.9) to model that p 
is rather possible but not certain at all. 

Recently, a semantics for possibilistic logic has been presented for the 
general case where possibility- as well as necessity-valued formulas are allowed 
(cf. [10]). The semantics is based on fuzzy sets of interpretations, i.e., to 
each classical interpretation W of the first-order formulas occurring in a set 
of possibilistic formulas a value 7r(w) between 0 and 1 is associated. This 
value indicates the quality of an interpretation: 7r(w) ~ 7r(w') means that 
interpretation w' is at least as acceptable as w to be the real world. The 
possibility and necessity of a formula p is then given by 

IT(p) = sup{7r(w) I W F p} and N(p) = 1 - IT(-.p). 

A fuzzy set of interpretations satisfies a possibilistic formula (p, ITa) (resp. 
(p, Na)) iff IT(p) 2: a (resp. N(p) 2: a). Entailment is then straightforwardly 
defined as follows: A possibilistic formula ¢ is a logical consequence of a 
possibilistic knowledge base <I> , i.e. a set of possibilistic formulas, iff every 
fuzzy set of interpretations satisfying each element in <I> also satisfies ¢. 

Possibilistic resolution (see, e.g., [10])- an extension of the well-known 
resolution principle to possibilistic logic- yields a calculus for possibilistic 
reasoning, i.e., to answer the question whether or not a possibilistic formula 
is entailed by a possibilistic knowledge base. In fact, if applications of the 
possibilistic resolution rule to <I> U {( -'p, N I)} yield a derivation of an empty 
possibilistic clause (D,v) then <I> entails (p,v), where v is either ITa or Na 
for some a E [0,1]. 
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A drawback, which possibilistic resolution inherits from classical resolu­
tion, is that it may not terminate if applied to formulas belonging to de­
cidable fragments of first-order logic. In fact, if the input formulas contain 
existential quantifiers in the scope of universal quantifiers, one in general 
gets (Skolem) function symbols when transforming these formulas into clause 
form. But this means that resolution (and thus possibilistic resolution) may 
not terminate. l Moreover, the transformation of possibilistic formulas into 
clause form yields another problem: A set of possibility-valued formulas can­
not always be transformed into an "equivalent" set of clauses- even not for 
the propositional case (cf. [10], Section 3.1). 

For these reasons we propose an alternative proof method for possibilistic 
logic. The main feature of this method is that it completely abstracts from a 
concrete calculus (such as resolution or tableaux methods), but uses as basic 
operation a test for classical entailment. If this test is decidable for some 
fragment of first-order logic, it turns out that possibilistic reasoning is also 
decidable for this fragment. Additionally, if one has an algorithm solving the 
entailment problem, our proof method automatically yields an algorithm re­
alizing possibilistic entailment. \Ve prove that the proposed method is sound 
and complete (for the general case where both possibility- and necessity­
valued formulas are allowed) with respect to the semantics for possibilistic 
logic. 

We then show how our method can be utilized to obtain decision proce­
dures for a possibilistic extension of terminological knowledge representation 
formalisms, also called terminological logics. These formalisms, which are 
employed in terminological representation systems such as BACK [13], CLAS­

SIC [4], KRIS [2], or LOOM [11] are in general decidable fragments of first-order 
logic, but are nevertheless expressive enough to define relevant concepts of 
a problem domain. This is done by building complex concepts from primi­
tive concepts (unary predicates) and roles (binary predicates) with the help 
of operations provided by the concept language of the particular formalism. 
For example, if we assume that person and car are concepts and that owns is 
a role, the concept person n :lawns. car describes the set of all persons having 
some car. Additionally, objects (or individuals) can be introduced by stat­
ing that an object is instance of a concept (e.g., Tom: person), or that two 
objects are related by a role (e.g., (Tom,caL7):owns). 

Several approaches have already been proposed to enhance the expres­
sivity of terminological formalisms with (some form of) uncertainty (e.g., 
probabilistic implications between concepts [7] or subsumption between fuzzy 

1 It should be noted, however, that the resolution calculus can be modified such that 
it yields decision procedures for various decidable fragments of first-order logic (see e.g. 
[14]) . 
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concepts [15]). The approach, which comes nearest to ours, is described in 
[16] and outlines an architecture for incorporating approximate reasoning in­
to terminological systems. The main problem of this approach, however, is 
that its behavior is only described by means of examples, which means that 
neither a complete semantics nor algorithms for the main inference problems 
are gIven. 

An extension of terminological formalisms towards the representation of 
uncertain knowledge which is satisfactory from a semantic as well as algo­
rithmic point of view can be obtained by instantiating possibilistic logic with 
a terminological logic. This means that we do not allow arbitrary first-order 
formulas in possibilistic formulas but only those which can be formed by a 
particular terminological formalism. To be more precise, in the possibilistic 
extension we present one can, on the one hand, state plausible rules between 
concepts. For example, the rule 

(person n rich -t 30wns.Porsche, ITO.7), 

expresses that "rich persons are likely to own a Porsche." Of course, uni­
versally valid rules , i.e., strict implications between concepts such as "every 
Porsche is car" can be formulated by using the maximal necessity value N l. 
On the other hand , one can express uncertain knowledge concerning partic­
ular objects by adding possibility or necessity values to formulas expressing 
concept and role instanceships. 

This approach has not only the advantage of being semantically sound. 
It also provides one with decision procedures for the basic inference prob­
lems (e.g., possibilistic entailment) which are sound and complete with re­
spect to the semantics for possibilistic logic. These decision procedures can 
immediately be obtained by instantiating our proof method with inference 
algorithms for terminological logics as, for example, described in [5, 1]. 

The paper is organized as follows. In Section 2 we introduce syntax and 
semantics of possibilistic logic. The alternative proof method and t he proof of 
its soundness and completeness are given in Section 3. Finally, in Section 4, 
we propose a possibilistic extension of terminological logics. 

2 Possibilistic Logic 

This section reviews possibilistic logic. We start with introducing the syntax 
for possibilistic formulas, and then we recapitulate the semantics for possi­
bilistic logic as defined in [10]. Finally, possibilistic resolution, a calculus for 
possibilistic logic, is shortly described. 

A possibilistic formula is either a pair (p, ITa) or (p, Na) where p is a closed 
first-order formula and a E [0,1]. Intuitively, a possibility-valued formula 
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(p, IIa) (resp. necessity-valued formula (p, Na)) expresses that p is possibly 
(resp. necessarily) true at least to degree a . A finite set of possibilistic 
formulas is called a possibilistic knowledge base. 

As already mentioned in the introduction, the meaning of possibilistic 
formulas is defined in terms of fuzzy sets of interpretations. This means that 
to each (classical) interpretation W of the first-order formulas occurring in a 
possibilistic knowledge base a value 7r(w) between 0 and 1 is associated. This 
value indicates the quality of an interpretation, i.e., 7r(w) < 7r(w') means that 
interpretation w' prevails over w to be the real world. 

To be more formal, let <I> be a possibilistic knowledge base and let n 
be the set of interpretations of ~ = {p I (p, N a) E <I> or (p, II a) E <I>}. 
A possibility distribution 7r on n is a mapping from n to [0, 1] such that 
7r(w) = 1 for some wEn. This normalization requirement guarantees that 
there is at least one world which could be considered as the real one. Every 
possibility distribution 7r on n induces two functions, denoted by II' and N', 
mapping elements of ~ to [0,1] . These functions, called possibility measure 
and necessity measure, are defined as follows. If p is a formula in ~ then 

• II'(p) = sup{7r(w) I wEn and W F p} and 

• N'(p) = inf{1 - 7r(w) I wEn and w ~ p}, 

where sup{} := 0 and inf{} := 1. 
Thus, if II'(p) = a there is an interpretation w such that w F p and 

7r(w) = a, or there is an infinite sequence WO,Wl,W2, ... of interpretations 
such that Wi F p, 7r(Wi) < 7r(wi+d, and a is the least upper bound of 
{7r(wo), 7r(wd, 7r(W2), .. . }. Conversely, if N'(p) = a then for all w such that 
w ~ p we have 7r(w) ~ 1 - a. 

An immediate consequence of this definition is 

II'(p V q) = max{II'(p), II'(q)} and II'(p 1\ q) ~ min{II'(p), II'(q)} , (1) 

which in fact shows that the possibility measure is in accordance with the 
basic axioms of possibility theory (cf. [17]). Moreover, by duality of the 
measures II' and N', i.e., II'(p) 1 - N'( -'p), we have for the necessity 
measure 

N'(p 1\ q) = min{N'(p), N'(q)} and N'(p V q) ~ max{N'(p), N'(q)}. (2) 

If a (first-order) formula p -+ q is valid, i.e. {p} F q, it is easy to verify that 

II'(p) ~ II'(q) and N'(p) ~ N'(q); (3) 

furthermore II'(T) = N'(T) = 1 for any tautology T, and II'(l.) = N'(l.) = 0 
for any contraction 1... 
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In possibilistic logic, the notions of satisfaction and entailment are defined 
with respect to possibility distributions. We say that a possibility distribu­
tion 7r on a set 0 of interpretations satisfies a possibilistic formula (p, Ila), 
written as 7r F= (p, Ila), iff Il'(p) ~ a, and it satisfies (p, N a), written as 
7r F= (p, N a), iff N'(p) ~ a. A possibility distribution 7r on 0 satisfies a 
possi bilistic know ledge base <I> iff 7r F= ¢ for aU ¢ E <I>. Finally, we say that a 
possibilistic formula ¢ is entailed by a possibilistic knowledge base <I>, denoted 
by <I> F= ¢, iff 7r F= ¢ for all 7r such that 7r F= <I> holds. 

Example 2.1 Assume that <I> is given by {(p, NO.8), (p ---t q, NO.4), (q---t 
r, IlO.7)}. Then <I> entails the formula (r, IlO.7). 

To see this, let 7r be a possibility distribution satisfying <I>. We first 
observe that 7r F= (q, NO.4) . In fact, since {p,p ---t q} F= q we conclude 

N'(q) ~ N'(p /\ (p ---t q)) = min{N'(p), N'(p ---t q)} ~ 0.4. 

Duality gives us Il'(.q) ~ 0.6, which means that 7r(w) ~ 0.6 for all W with 
W F= 'q. Since 7r F= (q ---t r, IlO.7), we have 

0.7 ~ sup{7r(w) I W F= q ---t r} = sup{7r(w) I W F= r} 

because 7r(w) ~ 0.6 for all w with w P 'q. This shows that 7r satisfies 
(r, IlO.7), and we can conclude that (r, IlO.7) is entailed by <I>. 

There are possibilistic knowledge bases which are not satisfied by any 
possibilistic distribution. For example, if <I> contains both (p, NO.7) and 
('p, NO.4), one gets Il' (.p) = sup{7r(w) I w F= .p} ~ 0.3 and II'(p) = 
sup{7r(w) I w F= p} ~ 0.6 for every possibility distribution 7r. But this 
means that 7r(w) ~ 0.6 for every w, which shows that the normalization 
requirement, i.e., 7r(w) = 1 for some w, is not satisfied. Thus <I> cannot be 
satisfied by any possibilistic distribution. This, of course, means that every 
possibilistic formula is entailed by <I>. However, the fact that we have more 
confidence in the truth of p than in the truth of 'p is not sanctioned by the 
semantics just described. 

In order to achieve a better behavior, i.e., to avoid that any possibilistic 
formula is entailed by an "inconsistent" possibilistic knowledge base, the 
semantics given above is slightly extended. 

Let 0 be a set of interpretations and let w 1. ,be an absurd interpretation 
such that W1. F= p for all formulas p. A possibility distribution is now a 
mapping from 01. := 0 U {W1.} to [0,1] such that 7r(w) = 1 for some w E 01.. 
The possibility measure Il and necessity measure N induced by a possibility 
distribution 7r on 01. is defined by 

• Il(p) = sup{7r(w) I W E 01. and w F= p} and 
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• N(p) = inf{1 - 1T(W) I W E Dol and W ~ p}, 

where p is a first-order formula. 
Observe that II(p) = max{II'(p), 1T(Woln and N(p) = N'(p), which means 

that the duality between II and N can be expressed by 

Furthermore, it can easily be verified that the thus defined possibility and 
necessity measures satisfy the basic axioms (1), (2), and (3) previously in­
troduced. 

Satisfaction and entailment are defined as before except that we now 
consider possibility distributions on Dol (instead of D). 

In [10] it has already been mentioned that both semantics coincide for 
possibilistic knowledge bases that are "consistent." To be more precise, sup­
pose that there is a possibilistic distribution 1T on D satisfying 4> . Then </> is 
entailed by 4> according to the first semantics if and only if </> is entailed by 
4> according to the modified, inconsistency tolerant, semantics. Of course, 
both semantics differ in case 4> is inconsistent. On the one hand, recall that 
4> given by {(p, NO.7), (-,p, NO.4 n entails every possibilistic formula accord­
ing to the first semantics. On the other hand, according to the inconsistency 
tolerant semantics we have 4> F (p, NO.7) and 4> F (-,p, NO.4), but, which 
can easily be checked, <I> ~ (p, N a) for a > 0.7 and <I> ~ (-,p , N a') for 
a' > 0.4. This shows that one cannot longer derive any possibilistic formula 
from an inconsistent possibilistic knowledge base. 

A possibilistic knowledge base that is inconsistent according to the first 
semantics is more or less inconsistent according to the inconsistency tolerant 
semantics. For example, {(p, N a), (-,p, N an should be considered more 
inconsistent than {(p, N,8), (-'p, N,8n if a > ,8. To measure the strength of 
inconsistency the following definition has been introduced in [10]. 

Definition 2.2 The inconsistency degree of a possibilistic knowledge base 
4> , Incons( <I» , is defined as follows : 

• If there is a possibility distribution 1T on Dol such that 1T F <I> and 1T(W) = 
1 for some wED, then <I> is possibly inconsistent and Incons( <I» = IIa 
where a = inf{1T(wol) 11T F <I>}. If Incons(<I» = IIO we say that 4> is 
completely consistent. 

• If for all possibility distributions 1T on Dol , 1T F <I> implies 1T(W) < 1 for 
every wED, 4> is necessarily inconsistent and In cons ( 4» = N a where 
a = inf{I-1T(w) I wED and 1T F <I>}. 
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To illustrate this definition let us consider some examples. An example 
for a completely consistent knowledge base is given in Example 2.1, i.e., <P = 
{(p, NO.8), (p -t q, NO.4), (q -t r, HO.7)}. In fact, it is easy to verify that 
the possibilistic distribution 7r defined by 

7r(W) = { ~ . 2 
0.6 
1 

satisfies every formula in <P. 

if W = W.L 

if W ~ P 
if W ~ P -t q 
otherwise 

To determine the inconsistency degree of <PI = {(p, N a), ("'p, H,8)} we 
construct an appropriate possibility distribution 7r on O.L satisfying <Pl ' If 
7r F <PI then 7r(w) ~ 1 - a for every interpretation W with W ~ P (because 
N(p) = 1 - sup{7r(w) I W E O.L and W ~ p} ~ a). First assume that 
a + ,8 ~ 1. We observe that the possibility distribution defined by 

{

I if W ~ "'p 
7r(w) = ,8 if W ~p 

o if W = W.L 

satisfies cJ>1. In fact , N(p) = 1 - sup{7r(w) I W E O.L and W ~ p} = 1 - f3 ~ a 

and H(..,p) = sup{7r(w) I W E O.L and W F ..,p} ~ ,8, which shows that 
7r F <Pl. Thus <PI is completely consistent if a +,8 ~ 1. Now assume that 
a+,8 > 1. Recall that 7r(w) ~ I-a for every W with W ~ p, which shows that 
sup{ 7r(w) I W E O.L and W ~ p} < ,8 (since 1 - a < ,8). But this means that 
7r(W.L) ~ ,8 for all 7r satisfying <PI because ll(..,p) ~ ,8. Thus <P I is possibly 
inconsistent. Since the possibility distribution defined by 

satisfies <PI we have Incons(<Pt} = H,8. 

if W ~ "'p 
if W ~ P 
if W = W.L, 

An example for a necessarily inconsistent possibilistic knowledge base is 
given by <P2 = {(p, Na), (..,p, N,8)} where a > 0 and ,8 > O. It can easily be 
checked that Incons(<P2) = N min{a,,8}. 

The following proposition, which has been .proved in [10], shows that the 
entailment problem in possibilistic logic can be reduced to the problem of 
determining the inconsistency degree of a possibilistic knowledge base, and 
VIce versa. 

Proposition 2.3 (Lang, Dubois, and Prade) Let <P be a possibilistic 
knowledge base. Then: 
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• cI> F (p, ITa) iff Incons(cI> U {('p, N1)}) 2: ITa, 

• cI> F (p, Na) iff Incons(cI> U {('p, N1)}) 2: Na. 

In order to determine (lower bounds for) the inconsistency degree of a 
possibilistic knowledge base the resolution principle has been extended such 
that it can be applied to possibilistic formulas (see, e.g., [10]). Let (c,v), 
(c', v') be possibilistic formulas, where c, c' are first-order formulas in clause 
form and v, v' are possibility or necessity degrees. The possibilistic resolu­
tion rule allows one to derive a possibilistic formula (res( c, c'), v 0 v'), where 
res ( c, c') is a classical resolvent of c, c', and 0 is defined by 

Na 0 Na' N min{a, a'} 

{
ITa' 
ITO 

if a + a' > 1 
Na 0 ITa' 

else 

ITa 0 ITa' ITO. 

If applications of the rule yield a derivation of an empty possibilistic 
clause (D, w) from a set cI> of possibilistic clauses, a lower bound for the 
inconsistency degree of cI> is given by w, i.e., Incons(cI» 2: w (cf. [10]). 

Example 2.4 Let us review cI> = {(p, NO.8), (.p V q, NO.4), (.q V r, ITO.7)} 
of Example 2.1. In order to show that cI> F (r, ITO.7) one starts with cI> U 

{( 'r, N I)}. Then possibilistic resolution yields the following derivation of 
the empty possibilistic clause: 

(p, NO.8) (.p V q, NO.4) 

~ 
(q, NO.4) (.q V r, ITO.7) 

~ 
(r, ITO.7) ('r, N1) 

~ 
(D, ITO.7) 

Since Incons(cI> U {(.r, N1)}) 2: ITO.7 we can in fact conclude that (r, IIO.7) 
is entailed by cI>. 

In [10] it has been shown that possibilistic resolution is sound and com­
plete in the following sense. Let cI> be a set of possibility- and necessity-valued 
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propositional clauses, or a set of necessity-valued first-order clauses. Then 
Incons( <I» ~ v iff there is a derivation of an empty possibilistic clause (0, v) 
from <I> by applications of the possibilistic resolution rule. 

Although possibilistic resolution has this nice property, the overall cal­
culus, i.e, transforming arbitrary possibilistic formulas into clause form and 
then applying the possibilistic resolution rule, has some drawbacks. On the 
one hand, in the presence of possibility-valued formulas it is in general not 
possible to transform a set of possibilistic formulas into a set of possibilistic 
clauses which have the same inconsistency degree (see [10], Section 3.1). On 
the other hand, the calculus applied to a decidable fragment of first-order 
logic (e.g., terminological logics) may not terminate. But this means that 
possibilistic resolution in general is neither complete nor terminating even for 
decidable fragments of first-order logic. Since one goal of the present paper 
is to instantiate possibilistic logic with some terminological logic this proof 
method does not yield a decision procedure for a possibilistic extension of 
terminological logics. 

3 An Alternative Proof Method for Possi­
bilistic Logic 

This section describes an alternative method for solving the entailment prob­
lem in possibilistic logic and for determining the inconsistency degree of a 
possibilistic knowledge base. The main feature of this method is that it 
completely abstracts from a concrete calculus, but uses as basic operation 
a test for classical entailment. If this test is decidable for some fragment 
of first-order logic, we will see that possibilistic reasoning is also decidable 
for this fragment. Moreover, if one has an algorithm that solves the entail­
ment problem, our proof method automatically yields an algorithm realizing 
possibilistic entailment. 

In the following we assume that the possibiiity and necessity degree of a 
possibilistic formula is not equal to zero. This assumption is justified by the 
fact that by definition II(p) ~ 0 and N(p) ~ 0 hold, which shows that every 
possibility distribution satisfies formulas of the form (p, II 0) and (p, NO), 
respectively. Hence such formulas do not carry any additional information 
and can therefore discarded from possibilistic knowledge bases. 

Let <I> be a possibilist ic knowledge base and let 0 E [0,1]. We denote 
by <I>o (resp. <I>O) the first-order formulas of necessity-valued formulas in <I> 
which have a value greater (resp. strictly greater) than 0, i.e., 

• <I>o := {p I (p , No') E <I> , 0' ~ o} and 

• <I>0 := {p I (p , No') E <I>, 0' > o}. 
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These abbreviations are quite useful to define an alternative characteri­
zation of possibilistic entailment. Let <I> be a possibilistic knowledge base, let 
P be a first-order formula, and let 0 < a ~ 1. In the following we will show 
that 

• <I> F (p, Na) iff <I>a F P 

• <I> F (p, IIa) iff 

- <1>0 F p or 

- there is some (q, II,B) E <I> such that,B 2: a and <I>1-.8 U {q} 1= p. 

This means that (p, N a) is entailed by <I> iff the first-order formulas of 
necessity-valued formulas in <I> whose value is not less than a classically en­
tail p. For possibility-valued formulas the situation is slightly more complex: 
(p, II a) is a possibilistic consequence of <I> iff (1) the first-order formulas of 
necessity-valued formulas in <I> classically entail p, or (2) there is a possibility­
valued formula (q, II,B),,B 2: a, in <I> such thatq together with the first-order 
formulas of necessity-valued formulas in <I> whose value is strictly greater than 
1 - ,B yield a classical proof for p. 

We begin with proving soundness of the alternative proof method, i.e. 
the "if" -part of the above claim. 

Lemma 3.1 (Soundness for necessity-valued formulas) 
Let <I> be a possibilistic knowledge base and let (p, N a) be a possibilistic for­
mula where a > o. If <I> a 1= p then <I> F (p, Na). 

Proof. If <I>a F p, there is a subset {(PI, N ad, ... , (Pn, N an)} of <I> 
such that {PI, ... ,Pn} F P and a ~ ai for all i, 1 ~ i ~ n. Hence a ~ 
min{ al, ... , an}. Let 7r be a possibility distribution on 0.1 such that 7r 1= <I>. 
We show that 7r satisfies (p, N a). Observe that N(Pi) 2: ai for i, 1 ~ i ~ n 
(because (pi, N ai) E <I». Since {PI, ... ,Pn} F P the formula PI 1\ ... 1\ pn ~ P 
is valid, which shows that 

Thus we have N(p) 2: a and 7r satisfies (p, N a). o 

Lemma 3.2 (Soundness for possibility-valued formulas) 
Let <I> be a possibilistic knowledge base and let (p, II a) be a possibilistic for­
mula where a> o. If <I>0 F P or there is some (q, II,B) E <I> such that ,B 2: a 
and <I>1-.8 U {q} F PI then <I> F (p, N a). 
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Proof Assume that <I>0 F p. There is a subset {(PI, Nad, · ·., (Pn, Nan)} 
of <I> such that {PI , ... ,Pn} F P and min{ aI, ... ,an} > O. This shows that 
N(p) > O. Hencewecanconcludethatforallw E OJ.,w ~pimpliesrr(w) < 1. 
Because of the normalization requirement there is an interpretation w' such 
that rr(w') = 1. Since w' F P it follows that II(p) = 1. Thus we can conclude 
that <I> F (p, II a). 

Now assume that there is some (q, II,B) E <I> such that {3 ~ a and <I>1-/1 U 
{q} F p. Thus there is a subset {(PI , N aI), ... ,(Pn, Nan)} of <I> such that 
{PI,'" ,Pn, q} F P and ai > 1 - {3 for all i, 1 ~ i ~ n. Let rr be a possibility 
distribution on OJ. such that rr F <I>. We show that rr satisfies (p, IIa). Let 
us recall that 

II(q) = max{II'(q), rr(wJ.)} ~ (3 ~ a. 

Case 1: II(q) = rr(wJ.). Then II(p) = sup{rr(w) I w E OJ. and w F p} > 
rr(wJ.) ~ a, which shows that rr satisfies (p, IIa) . 

. Case 2: II(q) =J rr(wJ.). Hence we have II(q) = II'(q). We firs t show that 
II'(q /\ PI /\ ... /\ Pn) ~ {3. Observe that 

(3 < II'(q) 

II'((q /\ PI /\ ... /\ Pn) V (q /\ -'(PI /\ ... /\ Pn))) 

II' ( (q /\ PI /\ ... /\ Pn) V (q /\ -'PI) V ... V (q /\ -'Pn)) 

max {II'(q /\ PI /\ ... /\ Pn), II'(q /\ -'pd,···, II'(q /\ -'Pn)}, 

and thus it remains to be shown that II'( q /\ -,pd < (3 for i, 1 ~ i ~ n. In fact, 
since N(pi) = N'(pd ~ ai (which follows from the fact that rr satisfies every 
(pi, Nai)) we have II'(-'Pi) ~ l-ai. Recall that ai > 1-{3, which shows that 
II'(-'Pi) < (3, and therefore II'(q /\ -'Pi) < (3 for i, 1 ~ i ~ n . Thus we can 
conclude that II'(q) = II' (q /\ PI /\ ... /\ Pn) ~ (3. Since II(q /\ PI /\ ... /\ Pn) ~ 
II'(q /\ PI /\ ... /\ Pn) and {PI,'" ,Pn, q} F P we know that II(p) ~ {3 ~ a . 
Thus rr satisfies (p , II a) . 0 

Before we prove completeness of our method we need one more definition 
and a proposition. 

Let <I> be a possibilistic knowledge base containing only necessity-valued 
formulas. The canonical possibility distribution2 rr on OJ. for <I> is defined by 
rr(w) = 1 - max{a I (p, Na) E <I> and w ~ p} where max{} := O. 

Proposition 3.3 Let <I> be a finite set of necessity-valued formulas and let 
rr be the canonical possibility distribution for <I>. Then: 

1. rr{w) ~ 1- a if(p, Na) E <I> and w ~ p. 

2Such a distribution is also called least specific possibility distribution in [3]. 
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2. 11" satisfies ell. 

Proof. 1. Let (p, No) E ell and let w E n.l be an interpretation such that 
w ~p. Then 1I"(w) = 1- max{a I (p, No) E ell and w ~p} ~ 1- a. 

2. Again, assume that (p, No) E ell. Since 1I"(w) ~ 1 - a for every 
interpretation w such that w ~ p we have 

N(p) = 1 - sup{1I"(w) I wE n.l, w ~ p} 2: 1 - (1 - a) = a, 

which shows that the canonical possibility distribution satisfies every formula 
in ell. Furthermore we note that 11"( W.l) = 1 - max{ a I (p, No) E <P and W.l ~ 

p} = 1 (because W.l F p for all p), which means that the normalization 
constraint is satisfied. 0 

Let w be an interpretation and let .6. be a set of first-order formulas. We 
say that w F r iff w F , for each , E r. 
Lemma 3.4 (Completeness for necessity-valued formulas) 
Let ell be a possibilistic knowledge base and let (p, No) be a possibilistic for­
mula where a > O. If ell F (p, No) then ella F p. 

Proof. Assume that <I> F (p, No) holds for some a > O. To prove 
the claim we suppose to the contrary that ella ~ p holds. The idea is to 
construct a possibility distribution 11"' such that 11"' F ell U {( -'p, N I)} and 
1I"'(w') > 1-0 for some w' E n. But this means that In cons ( ellU{( -'p, Nl)}) ~ 
N(I- 1I"'(w')) < No, which shows that ell ~ (p, No) (Proposition 2.3), thus 
contradicting that ell F (p, No) holds. 

Let '11 := {( q, N,8) E <I> I ,8 2: a} and let 11" be the canonical possibility 
distribution for '11 U {( -'p, N I)}. The possibility distribution 11"' for <I> U 

{( -'p, N I)} is defined as follows: 

{ 

1I"(w) if w ~ '110 U {-,p} 
1I"'(w) = 1 if w = W.l 

1 - 1/2 ( 0+ ,) otherwise, 

where, = max{,B I (q, N,B) E ell and ,B < a}. Note that, < a, and therefore 
1 - 1/2(0 + ,) > 1 - a. 

Now we prove that 11"' satisfies ell U {( -'p, N I)}, i.e., we show that 11"' F <P 

for all <P E ell U {( -'p, N I)}. 

1. (p', No') E WU{(-,p, Nl)}: 
Then 

N(p') 1 - sup{1I"'(w) I W E n.l, w ~ p'} 

1 - sup{1I"(w) I W E n.l, w ~ p'} (definition of 11"') 

> a' (since 11" satisfies (p', No'), cf. Proposition 3.3), 

which shows that 11"' F (p', No'). 
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2. (p', Na') E 4> \ (\lI U {(-,p, Nl)}): 
Consider an interpretation w' such that w' ~ p'. If w' F= \lIo U {-,p} 
then 1T'(W') = 1 - 1/2(a + ,) < 1 -, where, , = max{,8 I (q, N,8) E 
4> and,8 < a}. N ow assume that w' ~ \lIo U {-,p}. There is some 
(p", Na") E \lIU{(-,p, Nln such that w ~ p". Since 1T'(W') = 1T(W') and 
1T(W') :::; 1- a" (Proposition 3.3), we can conclude that 1T'(W') :::; 1- a". 
Since a" 2: a > , we can conclude that 1T'(W') < 1 - " 

Thus we have shown that 1T'(W') < 1 -, for every w' such that w' ~ p'. 
Hence we know that N(p') = 1 - SUp{1T'(W) I w E fh, w ~ p'} 2: 
1-(1-,) = ,. Since, 2: a' (because (p', Na') E 4> \ (\lI U {( -'p, Nl n)) 
we can conclude that 1T' F= (p', N a'). 

3. (q, II,8) E 4>: 
Observe that II(q) = SUp{1T'(W) I w E n.L, w F= q} 2: 1T'(w.d = 1 2: ,8, 
which shows that 1T' F= (q, II,8). 

Thus 1., 2., and 3. together show that 1T' F= 4> U {( -'p, N I)} . Further­
more, we observe that the normalization constraint is obviously satisfied since 
1T(W.L) = 1. To complete the proof it remains to be shown that 1T'(W') > 1- a 
for some w' E n. 

Recall that we assumed that ~o ~ p. Therefore ~o u {-,p} is consistent, 
which means that there is an interpretation w' such that w' F= 4>0 U {-,p}. 
According to the definition of 1T' we have 1T'( w') = 1 - 1/2 ( a + ,) > 1 - a and 
we are done. 0 

Lemma 3.5 (Completeness for .possibility-valued formulas) 
Let 4> be a possibilistic knowledge base and let (p, II a) be a possibilistic for­
mula where a > O. If4> F= (p, ITa) then 4>0 F= p or there is some (q, IT,8) E 4> 
such that,8 2: a and 4>1-.0 U {q} F= p. 

Proof Assume that 4> 1= (p, IIa) for some a > O. If 4>0 1= p we are done. 
Thus assume that 4>0 ~ p. We show that there is a formula (q, II,8) in 4> 
such that ,8 2: a and 4>1-.0 U {q} F= p. 

Suppose to the contrary that for all (q, II,8) in 4> such that ,8 2: a we 
have 4>1-.0 U {q} ~ p. In the following we construct a possibility distribution 
1T' such that 1T' F= 4> U {(-'p, Nl)} and 1T'(w.d < a. But this means that 
Incons( 4>U{( -'p, Nl n) < lli, which shows that 4> ~ (p, Ih) (Proposition 2.3), 
thus contradicting that 4> 1= (p, ITa) holds. 

Let 1T be the canonical possibility distribution for {(p', Na') I (p', Na') E 

4>} U {( -'p, N 1 n. The possibility distribution 1T' for 4> U {( -'p, N I)} is 
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constructed as follows: 

"'{W) = { 

if w ~ <po U { -,p} 
if w = Wol 
otherwise, 

where, = max{,B I (r, N,B) E <p and,B < a}. Observe that, < a, which 
means that 7I"'(Wol) < a. 

N ow we prove that 71"' satisfies <p U {( -'p, N I)}, i.e., we show that 71"' ~ </> 
for every <P E <I> u {( -'p, N I)}. 

1. (p', Na') E <p U {(-,p, NI)}: 
Then 

N(p') 1- sup{7I"'(w) I wE nol, w ~ p'} 

1 - sup{7I"(w) I wE nol, w ~ p'} (definition of 71"') 

> a' (since 71" satisfies (p', Nd), cf. Proposition 3.3), 

which shows that 71"' ~ (p', N a'). 

2. (p', ITa') E <p where a' ~ a. 
Note that IT(p') = sup{7I"'(w) I w Enol, w ~ p'}, and it thus suffices to 
show that there is some w' E nol such that w' ~ p' and 7I"'(w') ~ a' . 

Case 1: There is an interpretation w' different from Wol such that w' ~ 
<po U {p', -,p}. Then 7I"'(w') = 1 (definition of 71"'), which shows that 
IT(p') ~ 7I"'(w') = 1 ~ a'. Thus 71"' ~ (p', ITa'). 

Case 2: Now suppose that w ~ <po U {p', -,p} for all interpretations 
w different from Wol. Recall that we assumed that <pI-a' U {p'} ~ p. 
This means that <pI-a' U {p', -,p} is consistent, and hence there is some 
interpretation w' such that w' ~ <pI-a' U {p', -,p}. Since we assumed 
that w ~ <po U {p', -,p} for every interpretation w, we can conclude that 
there is some (p", Nail) E <p such that w' ~ p" and a" ::; 1 - d. 

Since 7I"'(w') = 71" (w') (definition of 71"'), it remains to be shown that 
7I"(w') ~ d. In fact, 

71" (w') = 1 - max{,B I (r, N,B) E <p U {(-,p, NI)}, w' ~ r} 

(definition of 71") 

1 - max{,B 1(1", N,B) E <p U {(-,p, NI)}, ,B::; 1- a', w' ~ r} 

(since w' 1= <pI-a' U {p', -,p}) 

> a' (since,B ::; 1 - a'). 

Thus we have shown that IT(p') ~ 7I"'(w') = 7I"(w') ~ a' and therefore 
we can conclude that 71"' ~ (p', ITa'). 
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3. (p', ITa') E cI> where a' < a. 
Since IT(p') ~ 7f'(W.l) it suffices to show that 7f'(W.l) ~ a'. In fact, 
7f'(W.l) = 1/2(a +,) .~ a' (because, ~ a' as well as a> a'). 

Thus we have proved that 7f' satisfies cI> U {( ""p, N I)}. To complete 
the proof we show that the normalization constraint is satisfied and that 
Incons( cI> U {( ""p, N I)}) < ITa. On the one hand, we assumed that ¢P ~ p, 
which means that there is some interpretation w' such that w' F </>0 u { ...,p}. 
Hence we have 7f'(w') = 1. On the other hand, we have already mentioned 
that 7f'(W.l) < a. This , of course, shows Incons(cI> U {(""p, N1)}) < ITa. · D 

The previous lemmas provide us with a proof for the main result of this 
section. 

Theorem 3.6 Let <1> be a possibilistic knowledge base) let p be a first-order 
formula) and let a > O. Then 

• cI> F (p, N a) iff cI>a F p and 

• <1> F (p, IT a) iff 

- <1>0 F p or 

- there is some (q, IT,B) E <1> such that f3 ~ a and <1>1-,6 U {q} F p. 

Corollary 3.7 Possibilistic entailment is decidable in those languages in 
which classical entailment is decidable. 

Let us consider some examples. Assume that <1> is given by {(p, NO.8), 
(p -+ q, NO.4), (q -+ r, ITO.7)} . Since {p, p -+ q, q -+ r} F r, and 
min{0.8,0.4}+0.7> 1 we can conclude that <1> entails the possibilistic formula 
(r, ITO.7) (cf. Example 2.1). 

Now consider <1>' := cI> U {((q V ...,p) -+ r, NO.5)}. Then <1>0.4 = {p, p -+ 
q, (q V ...,p) -+ r} F rand <1>0.5 = {p, (q V ...,p) -+ r} ~ r, which shows that 
<1>' F (r, NO.4) and <1>' ~ (r, NO.5). 

The second example in concerned with a possibilistic knowledge base 
which reveals incompleteness of possibilistic resolution (cf. [10]). Let <1> := 

{('Ix p(x), ITa)} for some a > 0 and let p(a) /\ p(b) be a first-order formula. 
It can easily be verified that possibilistic resolution applied to <1> U {( ...,p( a) V 
""p(b) , N1)} allows one to derive the following three formulas: (...,p(a) , ITa), 
(...,p(b) , ITa), and (0, ITO). But this means that possibilistic resolution does 
not recognize that the formula (p(a) /\ p(b), ITa) is entailed by <1>. In fact , 
since cI>1-a U {'Ix p(x)} = {'Ix p(x)} F p(a) /\ p(b), we can conclude that 
(p(a) /\ p(b), ITa) is a possibilistic consequence of <1>. 
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In the rest of this section we consider the problem of how to determine 
(with the help of Theorem 3.6) the inconsistency degree of a possibilis­
tic knowledge base <I>. By Proposition 2.3 we know that <I> 1= (-1, w) iff 
Incons(<I>U{(--,-1, Nl)}) ~ w, and hence <I> 1= (-1,w) iff Incons(<I» ~ w , 
where -1 is a contradiction and w is a necessity or possibility measure. Thus 
the problem is to find the maximal value w such that <I> 1= (-1, w), where the 
total ordering on possibility and necessity measures is defined by ITa ~ ITa' 
iff a ~ a', N a ~ N a' iff a ~ a' > 0, and N a ~ IT a' iff a > 0 and 
a' ~ 1. This definition is justified by the fact that Incons(<I» ~ TIa (resp. 
Incons(<I» ~ Na) implies Incons(<I» ~ ITa' (resp. Incons(<I» ~ Na') if a ~ 0', 
and that Incons(<I» ~ Na implies Incons(<I» ~ ITa' if a> 0 and a' ~ 1. 

Let,:= min{a I (p, Na) E <I>}. First assume that <I>"( 1= L This means 
that <I> is necessarily inconsistent at least to degree,. Observe that <I>c:r ;2 <I>c:r' 
iff a ~ a'. Hence, in order to determine the number a E {a I (p, N a) E <I>} 
such that <I>c:r 1= -1 but <I>c:r ~ -1 one can for instance apply a binary search 
algorithm (rather than testing for each element a E {a I (p, N a) E <I>} 
whether or not <I>c:r is inconsistent). The inconsistency degree of <I> is then 
given by N a. 

Now assume that <I>"( ~ L If <I>1-.6 U {q} is consistent for every (q, IT,8) 
in <I> , we can conclude that <I> is completely consistent (which means that 
Incons(<I» = ITO) . Otherwise, the maximal number ,8 such that (q, IT,8) E <I> 
and <I>1-.6 U {q} is inconsistent yields the inconsistency degree of <I> , i.e., 
Incons(<I» = IT,8. It should be noted that if (q, IT,8) and (q', IT,8') are in 
<I> where ,8 ~ ,8', in general neither Th( {q} U <I>1-.6) ~ Th( {q'} U <I>l-.6') nor 
Th({q} U <I>1-.6) ;2 Th({q'} U <I>l-.6') hold.3 This, however, means that one 
cannot employ binary search to determine the required value ,8. 

These observations show that one can determine with O(log n) classical 
entailment tests the maximal number a such that <I> 1= (p, N a), where <I> 
is a possibilistic knowledge base containing n formulas and p is a first-order 
formula. In contrast to this, one can determine with O( n) entailment tests 
the maximal number a such that <I> 1= (p, ITa). 

4 A Possibilistic Extension of Terminologi­
cal Logics 

This section describes an extension of terminological knowledge representa­
tion formalisms that handles uncertain knowledge and allows for approximate 
reasoning. Such an extension- as already argued in [16]- may enhance the 
expressivity of terminological logics and may thus enlarge their applicability. 

3Here Th(r) stands for the deductive closure of a set of first-order formulas r . 
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The idea is to instantiate possibilistic logic with a concrete terminological 
formalism. This approach is not only satisfactory from a semantical point 
of view; it also provides us with sound and complete decision procedures for 
the basic inference problems. 

4.1 Terminological knowledge representation 

In the following we briefly introduce a particular terminological formalism, 
called A£CJV (cf. [8]). Such a formalism can be used to define the relevant 
concepts of a problem domain. Relationships between concepts, for instance 
inclusion or disjointness axioms, can be expressed in the terminological part. 
The assertional part allows one to describe objects of the problem domain 
with respect to their relation to concepts and their interrelation with each 
other. 

Definition 4.1 We assume two disjoint alphabets of symbols, called primi­
tive concepts and roles. The set of concepts is inductively defined as follows. 
Every primitive concept is a concept. Now let C, D be concepts already de­
fined and let R be a role. Then CnD (conjunction), CUD (disjunction), -,C 
(negation), VR.C (value-restriction), ~R.C (exists-restriction), and (~n R) 
and (~ n R) {number-restrictions} are concepts of the language A£CJV. 

Concepts are usually interpreted as subsets of a domain and roles as 
binary relations over a domain. This means that primitive concepts (resp. 
roles) are considered as symbols for unary (resp. binary) predicates, and 
that concepts correspond to formulas with one free variable. Thus primitive 
concepts A and roles R are translated into atomic formulas A( x) and R( x, y) 
where x, yare free variables. The semantics of the concept-forming constructs 
is given by 

(CnD)(x) 

(C U D)(x) 

(-,C)(x) 

(VR.C)(x) 

(~R.C)(x) 

(~nR)(x) 

(~n R)(x) .-

C(x) 1\ D(x) 

C(x) V D(x) 

-,C(x) 

Vy (R(x, y) -+ C(y)) 

~y (R(x, y) 1\ C(y)) 

~Yl' ... ,Yn Yl i= Y2 1\ Yl i= Y3 1\ ... 1\ Yn-l i= Yn 
1\ R(x, yd 1\ .. . 1\ R(x, Yn) 

VYl , " " Yn+l R(x, yt) 1\ ... 1\ R(x, Yn+d 

-+ Yl = Y2 V Yl = Y3 V ... V Yn-l = Yn 

It should be noted that the formulas thus obtained belong to a restricted 
subclass of all first-order formulas with one free variable. 
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A terminological knowledge base is described by a set of inclusion axioms 
and-to introduce objects with respect to their relation to concepts and their 
interrelation with each others-a set of membership assertions. 

To be more formally, let C, D be concepts, R be a role, and let a, b be 
names for individuals, so-called objects. A terminological axiom is of the form 

C -+ D, 

and expresses that every instance of C is also an instance of D. To state that 
an object a belongs to a concept C, or that two objects a, b are related by a 
role R one can use assertions having the form 

C(a) or R(a, b). 

The semantics of a terminological axiom C -+ D is given by the formula 
Vx C(x) -+ D(x) where C(x), D(x) are the first-order formulas corresponding 
to the concepts C, D. To define the semantics of assertions we consider indi­
vidual names as symbols for constants. In terminological systems one usually 
has a unique name assumption, which can be expressed by the formulas a =I b 
for all distinct individual names a, b. The formula corresponding to the as­
sertion C(a) (resp. R(a, b)) is obtained by replacing the free variable(s) in 
the formula corresponding to C (resp. R) by a (resp. a, b). 

A terminological knowledge base is a pair (T, A) where T is a finite set of 
terminological axioms (the so-called TBox) and A is a finite set of assertions 
(the so-called ABox). Observe that a terminological knowledge base (T, A) 
can be viewed as a finite set of first-order formulas that can be obtained 
by taking the translations of the TBox and ABox facts, and the formulas 
expressing unique name assumption. 

The basic inference services for terminological knowledge bases are defined 
as follows: 

Consistency checking: Does there exist a model for a given terminological 
knowledge base (T, A) ? 

Subsumption problem: Is a terminological axiom C -+ D entailed by (T, A), 
i.e., (T,A) F Vx C(x) -+ D(x) ? 

Instantiation problem: Is an assertion C(a) (resp. R(a, b)) entailed by (T, A), 
i.e., (T, A) F C(a) (resp. (T, A) F R(a, b)) ? 

It should be noted that these inference problems are decidable for most 
terminological logics. 
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4.2 The possibilistic extension 

The possibilistic extension of the terminological formalism introduced in the 
previous subsection is obtained as follows: Each terminological axiom (resp. 
assertion) is equipped with a possibility or a necessity value and will be called 
possibilistic terminological axiom (resp. possibilistic assertion). A possibilistic 
knowledge base is now a set of possibilistic terminological axioms together 
with a set of possibilistic assertions. 

In order to give some impression on the expressivity of the extended 
terminological language let us consider two examples. The first example, 
which is taken from [16], is concerned with strict terminological axioms but 
uncertain assertions. Assume that the axioms of 7 are given by 

(Father H Man n (~ 1 child), N1) 

(SuccessfulJather H Father n Vchild.College..graduate, N1), 

where (C H D, N1) is an abbreviation for (C ~ D, N1) and (D ~ C, N1) . 
The first axiom expresses that someone is a father iff he is a man and has 
some child; the latter one states that someone is a successful father iff he is 
a father and all his children are college graduates. 

First consider the (certain) assertions 

A = { (Man n (:::; 2 child)(John), N1), 
(child( John, Philip), N 1), 
(child( John, Angela), N 1), 
(College..graduate(Philip) , N1), 
(College..graduate(Angela), N 1) }, 

which state that John is a man having at most two children, that Philip 
and Angela are children of John, and that both are college graduates. Since 
Philip and Angela are the only children of John (because he has at most 
two children) and both children are college graduates, we can conclude that 
John is a successful father, i.e., (SuccessfulJather(John), N1) is entailed by 
(7, A). Now assume that it is only likely (but not sure) that Philip is a college 
graduate, which can be expressed by (College..graduate(Philip), NO.8). Then 
possibilistic entailment allows one to conclude that John is a successful father 
but, of course, only with a necessity degree of 0.8. 

In the second example possibility and necessity degrees are utilized to ex­
press plausible rules. Assume that the terminology 7 consists of the following 
possibilistic axioms: 

(:lowns.Porsche ~ Rich_person U Car .fanatic, NO.8) 

(Rich_person ~ Golfer, IIO.7). 

21 



The first rule expresses that it is rather certain that someone is either rich or 
a car fanatic if (s )he owns a Porsche. The second rule says that rich persons 
are possibly golfers. The assertional knowledge is given by the facts that 
Tom owns a Porsche 911 and that he is probably not a car fanatic, i.e., A 
has the form 

((Owns(Tom,911), Nl), (Porsche(911), Nl) , (-oCarJanatic(Tom), NO.7)} . 

We are interested in the question of whether or not that Tom is a golfer. To 
answer the question observe that 

{Owns( Tom, 911), Porsche( 911)} F (30wns.Porsche)( Tom), 

which shows that (7, A) entails ((30wns.Porsche)(Tom), Nl). Hence, it can 
easily be verified that (7, A)1-O.7 U {Rich_person(Tom)} F Golfer(Tom). 
This shows that (Golfer(Tom), nO.7) is a possibilistic consequence of (7, A), 
which means that we have some reasons to believe that Tom is a golfer. 

The following proposition shows that possibilistic reasoning restricted to 
the introduced terminological formalism is decidable. This result is an imme­
diate consequence of Theorem 3.6 and the fact that the instantiation problem 
in A.cCN-knowledge bases is decidable (cf. [5]) . 

Proposition 4.2 Let 7 be a finite set of possibilistic axioms and let A be 
a finite set of possibilistic assertions. If ¢ is a possibilistic axiom or a pos­
sibilistic assertion the question of whether or not ¢ is entailed by (7, A) zs 
decidable. 

5 Conclusion 

We have developed an alternative proof method for possibilistic logic which 
exploits the fact that possibilistic reasoning can be reduced to reasoning 
in classical, i.e. first-order, logic. Consequently, possibilistic reasoning is 
decidable for a fragment of first-order logic iff classical entailment is decidable 
for it. Moreover, if one has an algorithm solving the entailment problem, our 
method automatically yields an algorithm realizing possibilistic entailment 
which is sound and complete with respect to the semantics for possibilistic 
logic. 

Furthermore, we have instantiated possibilistic logic with a terminological 
logic, which is a decidable fragment of first-order logic but nevertheless much 
more expressive than propositional logic. This leads to an extension of ter­
minologicallogics towards the representation of uncertain knowledge which 
is- in contrast to other approaches- satisfactory from a semantic point of 
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view. Moreover, a sound and complete algorithm for possibilistic entailment 
in such an extension can be obtained by using inference procedures which 
have already been developed for terminological logics. 

An interesting point for further research is to employ possibilistic logic in 
order to represent and reason with defaults in terminological formalisms. In 
fact, in [6, 3] it has been argued that possibilistic logic yields a good basis 
for nonmonotonic reasoning. Roughly speaking, the idea is as follows: If the 
necessity of a formula p is greater than the necessity of 'p with respect to a set 
~ of necessity-valued formulas, then infer nonmonotonically p from ~. That 
this intuitive definition in fact characterizes an appropriate nonmonotonic 
consequence relation is partially justified by the facts that (1) the operator 
can be described in terms of preferential models, and that (2) most of the 
axioms which a nonmonotonic operator should satisfy are met. (see [6] on 
these points). The approach presented in [3], however, uses propositional 
logic and cannot directly be applied to the terminological case. One reason 
for this is that terminological default rules usually allow one to state that 
"C's are normally D's" where C, D are concepts, i.e., first-order formulas 
with one free variable. 
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