Deutsches

Forschungszentrum ResearCh
fur Kunstliche Repo rt
Intelligenz GmbH

RR-92-56

Integrating a Modal Logic of Knowledge
into Terminological Logics

Armin Laux

December 1992

Deutsches Forschungszentrum fir Kinstliche Intelligenz

GmbH
Postfach 20 80 Stuhlsatzenhausweg 3
D-6750 Kaiserslautern, FRG D-6600 Saarbriicken 11, FRG
Tel.: (+49 631) 205-3211/13 Tel.: (+49 681) 302-5252

Fax: (+49 631) 205-3210 Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
far
Kunstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fur Kinstliche
Intelligenz, DFKI) with sites in Kaiserslautern and Saarbriicken is a non-profit organization which was
founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer
Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, SEMA Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research
and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using Al methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

Intelligent Engineering Systems

Intelligent User Interfaces

Computer Linguistics

Programming Systems

Deduction and Multiagent Systems
Document Analysis and Office Automation.

cooooo

The DFKI strives at making its research results available to the scientific community. There exist many
contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts
technology transfer workshops for shareholders and other interested groups in order to inform about
the current state of research.

From its beginning, the DFKI has provided an attractive working environment for Al researchers from
Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end
of the building-up phase.

Friedrich J. Wendl
Director

Integrating a Modal Logic of Knowledge
into Terminological Logics

Armin Laux

DFKI-RR-92-56

This work has been supported by a grant from The Federal Ministry for
Research and Technology (FKZ ITW-8903 0 and IWT-9201).

© Deutsches Forschungszentrum fir Kinstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fur Kinstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fir Kinstliche Intelligenz.

Integrating a Modal Logic of Knowledge into
Terminological Logics

Armin Laux
Deutsches Forschungszentrum fur kunstliche Intelligenz

Stuhlsatzenhausweg 3
W-6600 Saarbriicken 11, Germany

e-mail: laux@dfki.uni-sh.de

Abstract

If we want of group of autonomous agents to act and to cooperate in a world,
each of them needs knowledge about this world, about the knowledge of other
agents, and about his own knowledge. To describe such knowledge we introduce
the language ALCx which extends the concept language ALC by a new operator
O,. Thereby, O,p is to be read as “agent 7 knows ¢”. This knowledge operator
is interpreted in terms of possible worlds. That means, besides the real world,
agents can imagine a number of other worlds to be possible. An agent is then
said to know a fact ¢ if ¢ is true in all worlds he considers possible.

In this paper we use an axiomatization of the knowledge operator which has
been proposed by Moore. Thereby, knowledge of agents is interpreted such that
(2) agents are able to reason on the basis of their knowledge, (7¢) anything that is
known by an agent is true, and (u:7) if an agent knows something then he knows
that he knows it. We will give tableaux-based algorithins for deciding whether a
set of ALCx sentences is satisfiable, and whether such a set entails a given ALCx
sentence.

Contents

1 Introduction 3
2 Syntax and Semantics of ALCx 5
2.1 The Concept Language ALCo... 5
2.2 'The Extended Langiage ALCr: 5 ¢ six v 5 o0 5 50 5 5 x5 o w5 5 5% 7
3 Testing Satisfiability of ALCyx-axioms 9
3.1 The Frame Algorithm 9
4 Testing Satisfiability of ALC Test Sets 18
4.1 Testing Top Consistency 19
4.2 Properties of the Top Consistency Algorithm00 .. 21
5 Computing ALCx Inferences 26
6 Conclusion 31

1 Introduction

Most artificial intelligence (AI) research investigates how a single system can exhibit
intelligent behaviour. However, the recognition that much human problem solving
involves groups of people and the development of concurrent computers provoked in-
terest in concurrency and distribution in Al ([BG88]). Thus, research on the field of
distributed Al deals with the question how a group of autonomous intelligent systems,
often called agents, can cooperate to solve complex problems (see, e.g., [Huh87, BG8S,
GHB89]). Thereby, the representation and use of knowledge is one of the most important
foundations. Hence, if we want a group of autonomous agents to act and to cooper-
ate in a world we have to equip them with a knowledge representation and reasoning
component. Within this component the agents’ knowledge about the world, about
knowledge of other agents, and about their own knowledge should be represented.

Since the work of Hintikka [Hin62], modal logics have been widely accepted to be an
adequate formalism for representing knowledge of an agent. The intuitive idea here is
that besides the real world, agents can imagine a number of other worlds to be possible.
An agent is then said to know a fact ¢ if ¢ is true in all worlds he thinks possible.
For example, an agent knows that there is a monster of Loch Ness if there is such a
monster in all worlds he considers possible. In order to express the knowledge of an
agent a, in this approach a binary operator KNOW («, ¢) is used, where ¢ is a formula
over some logical language £. Now, if we want to devise a formalism for representing
knowledge of agents we have to take two decisions. Firstly, we have to choose a certain
logical representation language £ to describe the knowledge of agents. Secondly, we
have to decide what the general properties of knowledge are we want this formalism to
capture. That means, we have to give an axiomatization of the KNOW operator.

When investigating multi-agent applications to model shipping departments and
loading docks, we had to equip agents with knowledge about, e.g., trucks and goods.
For the representation of such kind of knowledge about a world, terminological logics
provide a structured and adequate formalism. Thus, we will use them as representation
language L to describe our agents’ world knowledge. Terminological logics are based
on the work of Brachman and Schmolze [BS85] and can be used to define the relevant
concepts of a particular problem domain. Starting with atomic concepts (unary pred-
icates) and roles (binary predicates), one thereby defines complex concepts with the
help of operators provided by a so-called concept language. In addition, objects can be
associated with concepts while relationships between objects can be defined via roles.

Terminological logics provide a well-investigated and decidable subclass of first-
order logics and can, e.g., be used to represent facts like “each truck is a vehicle” or
“John owns a vehicle which is a truck”. However, they do not provide an adequate
formalism to represent what agents know about the knowledge of other agents and, es-
pecially, about their own knowledge. Additionally, terminological logics do not provide

a formalism for representing an axiomatization of the represented knowledge as, e.g.,
if an agent knows ¢, then he knows that he knows ¢ (“positive introspection™). In this
paper we will introduce a formalism which overcomes both problems while maintaining
the adequate representation of the agents’ world knowledge.

In the past, a lot of different axiomatizations of the KNOW operator have been
given (see, e.g., [Moo80, Moo85, Hal86, HM90, MvdHV9la, MvdHV91b, HM92]). But
none of these axiomatizations has been accepted to be the “ultimate” logical approach;
each of them is more adequate in some domains and less adequate in some others. So,
what are the relevant properties of knowledge for agents in applications like shipping
departments and loading docks? We feel, that the properties of knowledge Moore
described in his seminal work [Moo80, Moo85] are adequate in these applications, since
he argued these properties to be relevant to planning and acting. The first of these
properties is that anything that is known by an agent must be true. For example, if an
agent knows that a certain truck can transport gasoline this must be true. Otherwise,
he must not assign this truck for a gasoline transportation order. Secondly, we assume
that, if an agent knows something, then he knows that he knows it. This principle is
needed especially for agents to planning. Suppose an agent plans to achieve a goal and
therefore needs to know whether a certain truck can transport gasoline and whether
John owns this truck. If he already knows the first fact to be true and has to perform
some action act to find out whether the second fact is also true, then he needs to know
whether he still knows that the truck can transport gasoline after performing act.
Finally, the most important fact about knowledge we want to capture is, of course,
that agents can reason on the basis of their knowledge. For example, suppose agent
a knows that each gasoline truck can transport gasoline and he knows John to own
truck-1 which is a gasoline truck. In this case, agent « should he able to conclude that
John’s truck truck-1 can be used to transport gasoline, and thus may negotiate with
John for a gasoline transportation order.

Now we have decided which representation language to use for the knowledge of
agents, and what the relevant properties of knowledge are. But how can we bring both
things together, and how can we overcome the above mentioned problems which appear
when using terminological logics as representation language £7

In this paper we will present the language ALCx which extends the concept language
ALC by a new operator O; for each agent i. These new operators are interpreted in
terms of possible worlds and O, represents the fact “agent @ knows ¢”. The extended
language ALCx provides an adequate formalism for both, to represent the agents’ world
knowledge and to represent what agents know about the knowledge of other agents and
about their own knowledge. For example, the fact “agent a knows that agent b does
not know ¢” is represented by O,-0,p. [Furthermore, the knowledge operator can
be interpreted w.r.t. a given axiomatization as, e.g., positive introspection. * We will

show that the resulting modal logic is decidable when using Moore’s axiomatization of
knowledge.

In Section 2 we will formally introduce syntax and semantics of the concept lan-
guage ALC and of its extension ALCx. Of course, we are not only interested in the
representation.of knowledge by a set of ALCx-axioms, but we want to test the repre-
sented knowledge on satisfiability and are interested in computing logical consequences.
Thus, in Sections 3 and 4 we will present an algorithm for deciding whether a given
set of ALCx-axioms is satisfiable. Finally, in Section 5, we will show how to decide
whether an ALCk-axiom is a logical consequence of a set of given ALCx-axioms.

2 Syntax and Semantics of ALCy

In this section we will formally introduce the language ALCx which extends the concept
language ALC by a new operator O; for each agent 7. Thereby, O;¢ can be read as
“agent 1 knows ¢”. Syntax and semantics of ALC and ALCy are given in Subsections
2.1 and 2.2, respectively.

2.1 The Concept Language ALC

Terminological logics provide two formalisms to describe a problem domain: a termino-
logical formalism to represent taxonomical knowledge by defining concepts, which can
be seen as sets of objects, and an assertional formalism which can be used to describe
concrete objects. Therefore, one starts with a set of atomic concepts (unary predicates)
and a set of roles (binary predicates).

In the concept language ALC concepts are built up from atomic concepts, the top
concept T, the bottom concept L, and roles inductively by:

1. Each atomic concept, T, and L are concepts.

2. If C and D are concepts and R is a role, then

(a) C 1D (concept conjunction),
(b) C U D (concept disjunction),
(c) =C (concept negation),

(d) YR.C (value restriction), and
(e) IR.C (exists restriction)

are concepts.

An interpretation [is a function over some non-empty domain A’ which maps each
atomic concept C to a subset C'' of A, each role R to a subset RT of AT x AT, T to
Al and L to 0. Furthermore, M is interpreted as set intersection, U as set union, and
- as set complement w.r.t. A, The value and the exists restrictions are interpreted by

VR.C)! = {de A |Vd : (d,d") € R = d' € CT}
[BR.C) ={de AT |3d': (d,d') e R' Ad' € C'}

For example, if man and truck are atomic concepts and owns is a role we can define
the concept of men who own a truck by man M Jowns.truck.

The taxonomical knowledge of a problem domain can be defined by an ALC-TBox
(terminology), which consists of a finite set of terminological axioms. A terminological
axiom is of the form

e C = D (concept equivalence) or

o (' # D (negated concept equivalence)

where C', D are concepts. An interpretation [satisfies (! = D ifl ("1 = D! and it
satisfies C' # D iff CT # DI, An interpretation [satisfies an ALC-TBox 7T iff 1
satisfies each axiom in 7. For example, il carrier, person, and truck arve concepts and
owns is a role, we can define exactly the persons who own a truck to be a carrier by

carrier = person [3owns.truck.

The assertional formalism of ALC allows to introduce concrete objects by stating
that they are instances of concepts and roles: If @ is an object and (" a concept, then
a : Cis a concept instance. If a and b are objects and R is a role, then aRb is a
role instance. Concept instances and role instances ave called assertional axioms, and
a finite set of assertional axioms is called an ALC-ABor. An interpretation I maps
objects to elements of its domain Al and satisfies « @ Ciff «f € CT, and «Rb iff
(af,b") € RI. We assume that different objects in an ABox are mapped to different
elements in A! (unique name assumption). An interpretation [satisfies an ALC-ABox
A iff I satisfies each axiom in A. As an example, if John and truck-1 are objects, we
can express that John owns truck-1 which is a truck by the assertional axioms

John owns truck-1 and truck-1 : truck.

Thus, we can describe the relevant concepts of a problem domain by terminological
axioms, i.e., by an ALC-TBox, and properties of objects as well as relations between
them by assertional axioms, i.e., by an ALC-ABox. We say an interpretation [satisfies
a set Axp,..., Ax, of terminological and assertional axioms iff I satisfies each of these
axioms. We then write [|= Axy,..., Ax,.

6

For sake of simplicity we will sometimes use the expressions (' € D and C' (Z D
where C' and D are concepts. An interpretation I satisfies (" C D iff (' C D' and
it satisfies C Z D iff CT ¢ D'. The next lemma states that these expressions are
abbreviations for certain terminological axioms.

Lemma 2.1 Let C' and D be concepts, and let I be an interpretation. Then
1. I satisfies C T D iff I satisfies ~C'UD = T.

2. 1 satisfies C L D iff I satisfies ~C'UD # T.

Proof: For 1., firstly suppose I satisfies (! © D. Then for cach clement d in Al either
d € [=C)F or both d € CT and d € D' lolds. That means, [satisfics ~CU(C'MD) =T
what can be simplified to -’ U D = T. Conversely, suppose [satisfies ~C'U D = T.
Then for each element d € Al either d € (' or d € D' holds. Thus, from d € !
follows d € D, i.e., CT C D!, The proof of 2. is analogous. O

For example, if truck and velicle are concepts we can define each truck to be a
vehicle by truck C vehicle, what is an abbreviation for —truck U vehicle = T.

2.2 The Extended Language ALCy

Now we will introduce the language ALCx which extends ALC by a new operator O;
for each agent i.! We allow these operators in front of terminological and assertional
axioms. Thereby, the operator O,, read as “agent @ knows”, allows us to express the
knowledge agent ¢ has about the world, about knowledge of other agents, and about
his own knowledge. We extend the definition of terminological and assertional axioms
as follows.

o If TAis a terminological axiom, then O; TA and =0, TA are terminological axioms
as well.

o If Clis a concept instance, then O; Cl and —~0; CI are concept instances as well.

o If RIis a role instance, then O; RI is a role instance as well.

These extended assertional and terminological axioms are called ALCx-azioms and
can, e.g., be used to state that agent ¢« knows that cach truck is a vehicle by

O, (truck C vehicle).

In the following, we will abbreviate agents by numbers, and we suppose only a finite number of
agents to be given.

Analogously, the ALCx-axioms O;~0; (vehicle-1 : truck) and O;~0; (vehicle-1 : truck)
are to be read as “agent 7 knows that agent 7 doesn’t know that vehicle-1 is a truck”
and “agent ¢ knows that he doesn’t know truck-1 to be a truck”, respectively. It is not
reasonable to allow O; immediately in front of concepts, since the fact “agent ¢« knows
C” makes not much sense if C' is a concept.

We will interpret the operators O; in terms of possible worlds, i.e., besides the real
world there exist a number of worlds agents consider to be possible. If agent 2 considers
world w’ possible at world w, we say w' is accessible from w by agent 7. The accessibility
relation of agent ¢ is given by all pairs (w,w") such that w’ is accessible from w by agent
t. Since different worlds are possible in our approach, the interpretation of concepts
and roles in ALCx-axioms depends on the world we are currently speaking of. That
means, in different worlds concepts may contain different objects and roles may contain
different pairs of objects. This will be expressed by taking an additional parameter, the
world parameter, into consideration when interpreting concepts and roles. Formally,
we use the notion of a K -interpretation K which consists of a non-empty domain AR
and maps objects to elements in AX7| atomic concepts to subsets of AN x W, T to
AR x W, 1 to 0 x W, and roles to subsets of A% x AN x W. Furthermore, M is
interpreted as set intersection, L as set union, and — as set complement w.r.t. AKX x W,
and the value and exists restrictions are interpreted by

[VR.C)51 = {(d,w) | (d',w) € CT for each d' with (d,d',w) € R}
[AR.C)ET = {(d,w) | (d',w) € CFT for some d' with (d,d',w) € RN}

Definition 2.2 A Kripke structure K is a triple (W,I', K;). Thereby, W is a non-
empty set of worlds, I' is a finite set of accessibility relations, one accessibility lrlahon
vi for each agent i, and K is a K-interpretation.

The satisfiability of an ALCx-axiom F' in a Kripke structure K = (W,I', K1) and a
world w € W, written as K,w | F, is recursively defined by:

KwlkEC=D iff {d|(d,w)eC"}={d]|(d,w)e DN}
KwlEC+#D iff {d|(d,w)eCr}#{d]|(dw)e DN}
Kwka:C iff (¢,w)eCM

K,w |= aRb iff (a,b,w) € RN

K,wE0OG iff K,w' |= G for each world w' with (w,w’) € ¥;
K,w|=-0,G iff thereis a world w' with (w,w’') € 9; and K,w' [G

where G is an ALCx-axiom, C', D are concepts, a, b are objects, and R is a role.

A set Fy,...,F, of ALCx-axioms is satisfiable iff there exists a Kripke structure
K = (W,TI',K;) and a world wy € W such that K,w, |= F; for 2 = 1,...,n. We then
write K = F,..., F,.

Note, that we do not allow axioms of the form —0O;(«Rb). The reason for this
restriction is that such axioms would be equivalent to stating that there exists a world
in which the role instance aRb does not hold. And it is not yet clear how to treat
negation of roles in terminological logics.

In the foellowing we will use the notion modality to denote (negated) indexed O
operators, and ALCx-axioms without any modalities are called ALC-azioms. For ex-
ample, the ALCx-axiom O;-0;(vehicle-1 : truck) contains the modalities O; and —~0O;,
and the ALCx-axiom vehicle-1 : truck is an ALC-axiom.

3 Testing Satisfiability of ALCi-axioms

Using ALCx-axioms, a “real world” and knowledge of agents can be defined as follows.
The real world is given by a finite set of ALC-axioms, and the knowledge of agent ¢ is
given by a finite set of ALCx-axioms with the leading operator O;. Of course, we do
not only want to represent a world and knowledge of agents, but we are interested in
algorithms to test (¢) consistency of the represented facts, i.e., whether a given set of
ALCk-axioms is satisfiable, and (2¢) whether an ALCx-axiom is a logical consequence
of a given set of ALCx-axioms. In this section we will give an algorithm for testing
satisfiability of a set of ALC-axioms. Building upon this we will show how to decide
whether of not an ALCx-axiom is a logical consequence from a set of ALCx-axioms in
Section 5.

3.1 The Frame Algorithm

We will now present an algorithm for testing satisfiability of a set F,..., F, of ALCx-
axioms. To keep notation simple we use O;F as an abbreviation for —-0;-F', and
transform ALCx-axioms into negation normal form. An ALCy-axiom (concept) is in
negation normal form iff in the axiom (concept) negation signs occur immediately in
front of atomic concepts only. Concepts can be transformed into an equivalent negation
normal form by the rules

--C - C -(CnD) — =CU-D -~(VR.C) — 3JR-C
-T —= 1 ~(CuD) —- -~Cn=D -~(3R.C) —» VR.-C
mel - T

where C'is a concept and R is a role (see, e.g., [Hol90]). Building upon this it is easy to
verify that ALC-axioms can be transformed into an equivalent negation normal form

9

by the rules

-—F — F -0F —» O-F G = D) — C*£D*
o 'L mF | NG AD) G D
“(a:C) — a:[-C]*

where F' is an ALCx-axiom, C, D are concepts, a is an object, and C*, D*, and
[-C]* are the negation normal forms of the concepts C', D, and —~C', respectively. For
example, the negation normal form of the ALCx-axiom

~0(~(AUB) = ~(YR.C)) s O((-AN-B) # (3R-0)).

In the following we suppose each ALCx-axiom to be given in negation normal form.
It is easy to verify that the negation normal forms of the abbreviations (" T D and

C IZ D are given by C* [Z D* and C* C D*, respectively.

By definition, a set Fy, ..., F, of ALCx-axioms is satisfiable iff there exists a Kripke
structure K such that X' |= Fy,..., F,. Of course, we are not interested in arbitrary
Kripke structures to satisfy Fj,..., F,, but only in Kripke structures which interpret
the knowledge operators O; in the sense of Moore, i.e., which satisfiy the three proper-
ties of the knowledge operator which have been introduced in Section 1. We therefore
introduce the notion of 54 Kripke structures.

Definition 3.1 A set Fy,...,F, of ALCx-axioms is Sd-satisfiable iff there exists a
Kripke structure K = (W, ', N';) which satisfies Iy, ..., I, and has the following prop-
erties:

(P1) if K,w e OiF then K,w = F
(P2) if Kyw | OF then K w |= 0,0, F

for each ALCx-axiom F, for each agent i, and for each world w € W. A Kripke
structure which satisfies (P1) and (P2) is called S4 Kripke structure.

Property (P1) corresponds to “anything that is known by an agent must be true”
and (P2) to “if an agent knows something, then he knows that he knows it”. The
third property, “agents must be able to reason on the basis of their knowledge”, is
guaranteed by choosing Kripke structures for the representation of knowledge (for
details, see [M0080]).

It is a well-known fact that K" is an S4 Kripke structure if the accessibility relation
7; of each agent i is reflexive and transitive (see, e.g., [Che80, HCGS]).

To formulate a calculus for the frame algorithm we introduce the notions of labelled
ALCx-axioms and of a world constraint system. A labelled ALCx-axiom consists of an
ALCx-axiom F together with a label w, written as I
which represents a world in which F' holds. A world constraint is either a labelled

| w. Thereby, w is a constant

10

IL. W g {F||w} U W
if O;F||wisin W, and F

| w is not in W.
2. W oo {wX v, Fllv,Gy||v,0,Gy || vy .., G || 0, 0,G, || v} UW
if O;F||wisin W, there is no label w in W such that &, /7 ||w is covered
by w, O,Gy || w,...,0,G, || w are exactly the world constraints in W
of the form 0;G || w, and v is a new label.
3. W o, {wX,v}uW

if O;F || wisin W, O F || wis covered by label v in W, and for each

label w in W such that O, F is covered by w, w M; w is not in W.

Figure 1: Propagation rules of the frame algorithm.

ALCx-axiom or a term w M; w’. The constants w and w’ represent worlds and X
represents the accessibility relation of agent @. A world constraint system s a finite,
non-empty set of world constraints.

A Kripke structure I satisfies a world constraint system W ill for each label w in
W there is a world w* € W such that (i) I, w" |= IV for cach world constraint F' || w
in W and (i¢) (w™, o) € 5, for each world constraint w &, v in W. A world constraint
system W is (S4-)satisfiable iff there exists an (S4) Kripke structure which satisfies W.

For testing S4-satisfiability of a set [y, ..., I, of ALCy-axioms, we firstly translate
them into a world constraint system. The world constraint system W is induced by
Fi,...,F, iff W= {F||wy,...,F,||w}, where wy is a new constant (which represents
the real world). Obviously, Fy,..., [, arc Sd-satisliable ifl W is Sd-satisfiable.

For testing S4-satisfiability of a world constraint system W owe will use the three
propagation rules which are given in IYignre 1 and which successively add new world
constraints to W. The main idea behind these rules is as follows. Firstly, we add as
much information about wgy to W as possible. That means, il there is a world constraint
O,F || wo in W we extend the world constraint system W by [|| wy. Then, if there
is a labelled ALC-axiom O F || wy in W, we “jump” to a new label, say w, while
inheriting as much information as possible [rom wg to w. For example, if 0,G || wy is a
world constraint in W, we add (7 || w to W. Now, w becomes the current label and is
handled as described for wy above. This process is iterated until no more propagation
rule is applicable (cf., e.g., [Fit83, HCGS, Gor92]).

Let us now have a closer look at the three propagation rules. Firstly, if there is a
labelled ALCx-axiom O; F

0, F || w also satisfies F' || w (because of property (P1) of S4 Kripke structures). Thus,

| w in W, then each S4 Kripke structure K which satisfies

11

w to W whenever there is a world constraint

the —g rule adds the world constraint F'|
0;F ||win W and F || w is not in W.

Secondly, suppose the world constraint system W contains a labelled ALCx-axiom
O, F||w. If there exists an S4 Kripke structure XK' = (W, I', K';) which satisfies W, then
there is a world, say v, in W such that (w™,v") € ~; and K, o™ |= F. Furthermore,
for each labelled ALCk-axiom O;G || w in W holds '

1. K,v® = G since (w™,v") € ~;.

2. K,w® = 0,0,G because of Property (P2) of S4 Kripke structures, and thus
K,v® | 0,G since (w®,v") € 4;.

Let now O, F' ||w be a world constraint in W, and let 0G4 ||w,...,0;G, ||w be exactly
the world constraints of the form O;G || w in W. Then, the —¢ rule adds the world
constraints w X; v, F'||v, Gy [|v, 0;Gy || v, ..., G || v, 0,GL || v to W, where v is a new

label.

Unfortunately, if we use the —¢ rule as described above it may be applicable to
a world constraint system W an infinite number of times. Consider, for example, the
world constraint system W which is given by {F' || w, O F || w,0;01F || w}. Since
the ALCx-axioms O F || w and 0,0 F' || w are in W, an application of the —¢ rule
would introduce a new label v, and extend W by {w X, v, F' || v, Oy F || v, 0; 01 F || v}
In this case we would have “duplicated” our world constraint system, and the same
duplication step could be applied to <y F || v, and so on. That means, an infinite
number of world constraints would be introduced into W. To overcome this problem
we introduce the notion of a covering.

Definition 3.2 Given a world constraint system W and a label v in W, the ALCx-
aziom O;F || w is covered by label v (w.r.t. W) iff W contains the world constraints
F || v and for each world constraint O,G' || w in W it contains both G || v and O,;G || v.

| w, O F || w, 0,01 F || w}, the label

w 1s covered by itself. Therefore, instead of generating a new world in which F, O F,

In the above world constraint system W = {F

and 0,0, F holds, the world constraint w X; w is added to 1. This case is handled
by the —, rule.

Building upon these three propagation rules we define the frame algorithm which
is given in Figure 2. It has a world constraint system W as input which is induced by
a set of ALCk-axioms to be tested on S4-satisfiability. Starting with W it constructs
a chain W = W, -y Wy —, ... —, W, such that there is no more propagation rule
applicable to W,, and —;€ {—g, —¢,—.}. Thereby, the —g rule has to be applied
as often as possible before applying the —¢ or the —, rule. Output of the frame

1. Let ¢ := 0 and let Wy be the input world constraint system.
2. While there is a propagation rule in {—g, —¢, —,} applicable to W; do

(a) if —g is applicable to W; then apply —g to W,
else if —¢ is applicable to W; then apply —¢ to W,
else if —, is applicable to W; then apply —, to W,.

(b) i:=i+ 1.

3. return W,.

Figure 2: The frame algorithm.

algorithm is the (extended) world constraint system I1,. I'rom this we can construct
a frame, i.e., a pair (W, I') consisting of a set of worlds W and a set I' of accessibility
relations v; (one for each agent z). Therchy, W consists of all labels in W, and 5; is
given by the reflexive and transitive closure of the set {(w,v) | w M; v is in W},

Example 3.3 Suppose a to be an agent who knows that each gasoline truck can
transport gasoline, and that John owns truck-1 which is a gasoline truck. Furthermore,
suppose that neither agent a nor agent b knows that truck-1 can transport gasoline.
This can be expressed by the following five ALCy-axioms.

O, (gasoline-truck C can-transport-gasoline)
«(John owns truck-1)

0.
O, (truck-1 : gasoline-truck)

Oultruck-1: ~can-transport-gasoline)
(

Op(truck-1: —~can-transport-gasoline)

The world constraint system W, which is induced by these five ALCx-axioms is the set
which consists of the following world constraints

(1) 0O,(gasoline-truck C can-transport-gasoline) || w,

8]

) 0, (John owns truck-1) || wy

)
)
3 O, (truck-1 : gasoline-truck) || wo
)
)

o S e S e W
S

)
) Ou(truck-1: —can-transport-gasoline) || wg
)

5

Oy(truck-1: mcan-transport-gasoline) || w
b l =) 0

By applications of the —g rule to (1), (2), and (3), respectively we obtain the world
constraint system W, which extends 1V, by

(6) gasoline-truck C can-transport-gasoline || wq
(7) John owns truck-1|| wy
(8) truck-1 : gasoline-truck || wy

13

Then, by one application of the —¢ rule to (4), we obtain the world constraint system

W, which extends W; by

wo M, w,
. truck-1: —~can-transport-gasoline || w; from (4)
O, (gasoline-truck C can-transport-gasoline) || w; from (1)
gasoline-truck C can-transport-gasoline || w, from (1)
O.(John owns truck-1) || w, from (2)
John owns truck-1 || w; from (2)
O,(truck-1 : gasoline-truck) || w, from (3)
truck-1 : gasoline-truck || w, from (3)

Now, the labelled ALCx-axiom (5),
Op(truck-1: —~can-transport-gasoline) || wy,

is covered by w;, such that we obtain W5 = W, U {wg X, w,} by the —, rule. Now, no
more rules are applicable and the frame algorithm results the extended world constraint
system W3. From W3 we can construct the frame (W,I') with W = {wg,w;}, and T’
consists of v, = v = {(wo,wp), (wo,wy), (wy,w;)}. Each world w; consists of the
ALCx-axioms which are labelled with ;. 1

We will now show that the frame algorithm has the following two important proper-
ties. Firstly, it terminates with a world constraint system W as input which is induced
by a finite set Fi,..., F, of ALCx-axioms. Secondly, the result of the frame algorithm
with input W is S4-satisfiable iff the set F\,..., F, of ALC-axioms is S4-satisfiable.

Theorem 3.4 If W is a world constraint system which is induced by a finite set of
ALCx-azioms, the frame algorithm terminates with input W .

Proof: Let W be induced by the ALCx-axioms Fi, ..., F,. The main idea is that only
a finite number of new labels are introduced to W by the frame algorithm. Therefore,
let us firstly have a look at the labelled ALCy-axioms which are added to W by
applications of the propagation rules.

1. An application of the —g rule to O, F' || w adds the labelled ALCx-axiom F' || w
to W. Thereby, the left hand side I of F' || w is a subformula of the left hand
side O, F of O, F || w, to which the —g rule has been applied.

2. An application of the —¢ rule to O;F' || w adds the labelled ALCx-axioms

F||lv,Gy || v,0;Gy || vy.. ., G || v, 0G| 0

14

to W, if 0,G, || w,...,0;G,, || w are exactly the world constraints of the form
0,G||w in W and v is a new label. Again, each left hand side of the added labelled
ALCx-axioms is a (sub)formula of the left hand side of one of the labelled ALCy-
axioms <; F |

w, 0;Gy ||w,...,0,G,, || w to which the —¢ rule has been applied.

3. The —, rule does not add new labelled ALCy-axioms to 1V at all.

Thus, since the frame algorithm starts with a world constraint system W which is
given by {F} || wo, ..., Fy || wo}, it only adds labelled ALCx-axioms F'||w to W where
F is a (sub)formula of one of the ALCx-axioms Iy, ..., [,. Let now § be the set of
all possible sets consisting of (sub)formulas of I7,..., [,. Obviously, § is finite since

{Fy,..., F,} is finite.

This consideration in mind, it is easy to verily that the —4 rule can be applied to
W only a finite number of times: If the —¢ rule is applied to a labelled ALCy-axiom
OiF || w, and O,;GY || w,...,0G,, || w are exactly the world constraints of the form
0,G || w in W, then {OF,0,G,,...,0,(,,} is an element of §. The application of
—o then extends W by {F' || v, G || v, 0G| v, ..., G || v, 0,0, || v} where v is a
new label. Thus, given an arbitrary label w, the —¢ rule can no more be applied to
O F || wif O0;Gy || w,...,0,G,, || w are exactly the world constraints in W of the form

0,G || w since w is now covered by v. Summing up, to cach set in § the —¢ rule can

be applied at most once. Thus, this rule can be applied only a finite number of times,
i.e., the frame algorithm can only add a finite number of new labels to W.

Obviously, given a fixed label w in W, the —g rule can only be applied a finite
number of times. This is the case because the labelled ALC-axiom which is added to
W by this rule is syntactically shorter than the labelled ALCyx-axiom to which the rule
has been applied. Finally, the —, rule can be applied to cach pair (w,v) of labels n
W at most once, and therefore only a finite number of times. O

Thus, the application of the frame algorithm to a world constraint system W in-
duced by the ALCx-axioms Fy, ..., F, terminates and results a world constraint system,
say W'. To test S4-satisfiability of W' for each label w in W' we compute the set of
all those ALCx-axioms in W’ which are labelled by w and which do not contain any
indexed O or © operator. That means, such a set contains only ALC-axioms and is
therefore called the ALC test set of label w. More formally, if W is a world constraint

system, the ALC test set A(w) of label w in W is given by the set
{F| Fllwe W, and I' does not contain any modality}.

We are now going to show that a set Iy, ..., F, of ALCx-axioms is S4-satisfiable iff the
ALC test set A(w) of each label w in W' is satisfiable. Thereby, W' is the result of the
frame algorithm with input {F} || wy,..., F, || we}. We will firstly prove the following
two lemmata.

Lemma 3.5 Let W be a world constraint system which is induced by ALCx-axioms
Fi,...,F,, and let W' be the result of the frame algorithm with input W. If K =
(W, T, Ky) is an S4 Kripke structure which satisfies W, then for each label w in W'
there is a world w™ € W such that K,w"™ |= F for each labelled ALCx-aziom F || w
in W'.

Proof: If W' is the result of the frame algorithm with input W there is a chain W =
Wo —1 Wh =1 ... = Wi = W with —,€ {—q, 20, —0} fori € {1,...,k}. We will
now show that K satisfies each labelled axiom in W’ by induction over the number of
rule applications. By assumption, X' = (W, T',) satisfies Wy = { F} ||wg, ..., F,||wo},
i.e., there is a world wf in W such that K,wX = F,...,K,w" = F,.

We thus can assume that, after j rule applications, for each label w in W; there is
a world w® in W such that K,w" |= F for each labelled ALCx-axiom F || w in W;. If
W; —; Wj41 there are three possibilities. Firstly, suppose W; —g W,;,. Then there
is a labelled ALCk-axiom O, F || w in W, and W;y; = W, U {F || w}. By induction
hypothesis, K,w" |= O;F for some world w® in W. Because of property (P1) of
S4 Kripke structures, therefore K,w™ = F'|| w holds. That means, K satisfies each
labelled ALCk-axiom in Wj,,.

Secondly, suppose W, —¢ W,y In this case, there are labelled ALCx-axioms
OiF || w, 0,Gy || wy. .., 0,G,, || w in W, and

1

Wip1 =W U{w X; v, F ||v,0,Gy || v,Gy || v, ..., 0,Gy || v, G || v}

where v is a new label. By induction hypothesis, there is a world w™ in W such that
(1) K,w® |= O;F and (ii) K,w® = 0,G; for j = 1,...,m. Because of (i) there is
a world v in W (not neccessarily different from w™) K oK) € 4; and
K,vK |= F. Furthermore, because of (iz) and property (P2) of S4 Kripke structures,
both K,w® |= 0;G; and K, wl = 0;0,G; holds for j = 1,...,m. And thus, since
(WK, v®) € 5, especially K,v" | G; and K,v" | 0,;G; holds for j = 1,...,m. That
means, K satisfies each labelled ALCx-axiom in W;4;.

such that (w

Finally, if W; —, Wj,, there is nothing to show since the —, rule does not
introduce new labelled ALCk-axioms to W;. O

The next lemma states that a world constraint W', which is the result of the frame
algorithm, is S4-satisfiable if the ALC test set of each label in W’ is satisfiable.

Lemma 3.6 Let W be a world constraint system which is induced by a finite set of
ALC-azioms, and let W' be the result of the frame algorithm with input W. If the
ALC test set A(w) of each label w in W' is satisfiable, then W is S4-satisfiable.

Proof: Let K be the Kripke structure (W, I', K'j) with

16

o W is given by the set of all labels in 117,

o I consists of one accessibility relation 5; for each agent 7. Thereby, 4; is given by
the reflexive and transitive closure of the set {(w,v) | w X; v in W}.

e K is given such that A, w |= F for each labelled ALC-axiom F'||w in W' where
F does not contain any indexed O or < operator.?

Obviously, K is an S4 Kripke structure, since each accessibility relation is reflexive and
transitive. We will now show that A" satisfies each world constraint ¢ in W', If ¢ is of
the form w M; v there is nothing to show because of the definition of A’

The fact K |= F' || w for each labelled ALCx-axiom [|| w in W’ can be shown by
induction over the number of modalities in /. If 7 does not contain any modalities,
then K, w |= F because of the construction of A". Thus we can assume that N, w | F

for each labelled ALCyx-axiom F

| w in W such that [coutains n modalities.

If F' contains n + | modalities, there are two possibilities: the leading operator is
either O; or O;. Firstly, suppose W' contains a world constraint O,/ || w, where F' has
n modalities. We then have to show that A,w |= O,/ i.c., that N,v |= I’ for each v
such that (w,v) € 9;. If w = v, then N,v = F because F' || w is in W'if O F || w is
in W' (by an application of the —g rule), and I contains ouly n modalities. If w # v
and (w,v) € v;, then, because of the definition of v,, there is a path

w = w;, X; wi,,w;, X; wi,,...,w;_, X w;, =v

1
in W', That means, during the frame algorithm world constraint systems W, ... W,
have been constructed such that the world constraint w; ™, w; ,, is introduced to W'

by Wi, =, W, with —.€ {—o, =} forl <j < k-—1.

It is easy to verify that after applying —;, to W;, no further labelled ALC-axioms
with label w;, (= w) are added to the world constraint system: The —g rule has already
been applied as often as possible, the —¢ rule only introduces labelled ALCx-axioms
with a new label, and the —, rule does not introduce new labelled ALC-axioms at
all. By assumption, we know O;F' || w is in W’ and therefore O, || w is in W;,. Thus,
by definition of the —¢ and the —, rule, both O, 1" || w;, and [I' || w;, are in W,,.
Analogously, W;, contains O, F || w;, and F'|| w;,_, such that [|| v € W' since w;, = v
and W;, C W’'. By induction hypothesis we know A, v |= [because [contains only
n modalities.

Suppose now W' contains O, F' || w. We then have to show that i |= F'||v for some
world v such that (w,v) € 7;. If O F

|w is in W’ then the world constraints F'||v and

2Note that such a K-interpretation I'; exists, since we assumed the ALC test set of each label in
W' to be satisfiable. Given interpetations I1,..., I, which satisfy the ALC test sets of each label in
W' respectively, the construction of I is straightforward.

E7

1. Let W be the world constraint system which is induced by Fi,..., F,.
2. Let W’ be the result of the frame algorithm with input W.

3. For each label w in W’ do: If the ALC test set of w is not satisfiable, then
STOP and return “S4-unsatisfiable”. ‘

4. Return “S4-satisfiable”.

Figure 3: The S4-satisfiability algorithm.

w X; v are in W’ because either the —¢ or the —, rule has been applied to F'||w. By
construction of 7; we then know (w,v) € 7;, and thus i\ |= I || v follows by induction
hypothesis. m]

The following theorem summarizes the previous results.

Theorem 3.7 Let Fi,..., F, be a finite set of ALCx-axioms, and let W be the world
constraint system which is induced by Fy,..., F,. If W' is the result of the frame
algorithm with input W, then the set I, ..., F, is S4-satisfiable «ff the ALC test set
A(w) of each label w in W' is satisfiable.

Proof: By definition, the set Fy,..., F, of ALCx-axioms is S4-satisfiable iff W is S4-
satisfiable. Firstly, suppose K is an S4 Kripke structure which satisfies W. Then,
because of Lemma 3.5, for each label w in W’ there is a world w® € W such that
K,w |= F for each ALCx-axiom F' || w in W’. Thus, especially the ALC test set of
each label w in W’ is satisfied by K. Conversely, suppose that the ALC test set A(w)
of each label w in W' is satisfiable. Then W is S4-satisfiable because of Lemma 3.6. O

Thus, we obtain the algorithm for testing S4-satisfiability of a set Fy,..., F, of
ALCx-axioms which is given in Figure 3. An algorithm for testing satisfiability of
ALC test sets will be given in the next section.

4 Testing Satisfiability of ALC Test Sets

In this section we will show how to test satisfiability of a given ALC test set A(w).
We procedd as follows. Firstly, we will show that satisfiability of A(w) is equivalent
to the problem whether there exists an interpretation I such that [satisfies a given

ALC-ABox A and such that D = A’ for a given concept Dy. This test will be called
top consistency test. In Subsection 4.1 we will prove this equivalence, show how to

construct A and Dy from A(w), and give an algorithm for deciding top consistency. In
Subsection 4.2 we will show that this algorithm terminates and that it is sound and
complete.

4.1 Testing Top Consistency

An ALC test set A(w) consists of a finite number of ALCx-axioms without any indexed
modalities, i.e., of terminological and assertional axioms of the form

Ce= D0 D (negated) concept equivalence
a:C concept instance
aRb role instance

only, where C, D are concepts, R is a role, and «, b are objects.

As a result of the previous section, S4-satisfiability of a set of ALCx-axioms can be
reduced to satisfiability tests of a number of ALC test sets (cf. Theorem 3.7). Observe
that the concept instances and the role instances in an ALC test set A(w) define an
ALC-ABox. That means, testing satisfiability of an ALC test set is equivalent to testing
satisfiability of an ALC-ABox together with a set of (negated) concept equivalences.
The next theorem states that this test can be performed by an algorithm which checks
top consistency of a single concept w.r.t. an ALC-ABox. We say a concept C is top
consistent w.r.t. an ALC-ABox A iff there exists an interpretation [such that I = A
and C is interpreted as the top concept, ie., C! = T/,

Theorem 4.1 Let A be an ALC-ABox and let C;, D;, E;, F; be concepts. There exists
an interpretation which satisfies A, Cy = Dy,...,Cp, = D,, and By # F,...,E, # F,
iff the concept ((Cl N D) U (=Cy M —‘Dl)) M...N (((]'.,, nD,)u-C,nN —|D.,L)) is top
consistent w.r.t. AU{a; : (ExN-F)U(=E1NF), ... 0y (E,N-F,)U(RE,NF,)}.

Proof: Firstly, let I be an interpretation which satisfies A, ('; = D;, and E; # F;

(i=1,...,n,j =1,...,m). Since [satisfies E; # F; there exists an element d; € A!
such that d €[E; N —1F] ord; € [~E; N F;])'. Let now I’ be the interpretation which
extends [as follows: for each of the elements d; (j = 1,...,m) a new element d;

added to the universe A’ of I. Then, each of these new elements d; is mtexpleted
by I’ exactly as d; is interpreted by I.> More formally, A := AI Ul .t}
where d; is a new element. Furthermore, each atomic concept A is interpreted by
Al = AIU {d; | d; € A"}, each role R is interpreted by R := R' U {(ds,d) | (d;,d) €

3Note that this can be done only in concept languages which are not expressive enough to state
that a given concept contains at most n elements (n > 0). It is easy to verify that ALC satisfies this
condition.

19

RYU{(d,d}) | (d,d;) € R'}, each object 0 in Ais interpreted by o!" := of, and, finally,
the new objects a,,...,a, are interpreted by (/,7’»' — (/’i' Note that /" is defined in such

a way that we can guarantee unique name interpretation of each object the ABox in

AU{a;: (ELN-F)U(mE N F),...,a0n : (Ex N =Fy)U(-E,, N E,)}.

It is easy to verify that I’ satisfies A. Furthermore, I’ satisfies a; : (£;=F;)U(—E;N
Fj)for j =1,...,msince d) is in [[2;N=F;])" or in [~E; N ;)" iff d; is in [E; 1= F;]" or
in [=E;NF;)1. Analogously, I’ satisfies the concept equivalences C; = D; since they are
satisfied by I. That means, for each element d € A!" either dis in C!" and in D', or d is
in [-C]" and in [-D]¥. Thus, I’ satisfies [(C;ND,)U(=C;N=-D)]! = Alfori=1,...,n.
And thus I interprets ((C; 1 D1) U (~C; M=Dy)) N...1 (€0 N Dy) U (=, N=D,,))
as Al

Conversely, suppose [satisfies AU {aq : (£, N L) U (LD EFY), a2 (Ey D
—Fp)U(—E,NF,)} and [interprets ((('71 ND)U(—~Cy =Dy)) n...n (((7,.. nD,)u
(=C, M ﬂDn)) as Al. Since I satisfies a; : (£; 1 =1%) U ([, 1 I7), obviously E; # F;
is satisfied by I for j = 1,...,m. Furthermore, since [(C; 11 D;) U (=C; N =D;))F = Al
each element d € Al is in CTif d is in DI. That means, [satisfies (', = D,. O

Thus, for testing satisfiability of an ALC test set A(w) we need an algorithm which
tests top consistency of a concept Dy w.r.t. an ALC-ABox A. We will now give such an
algorithm which is based on the notion of a (concept) constraint system. A constraint
system is a finite non-empty set of constraints a : (' or aRb, where (' is a concept, R
is role, and a, b are objects. A constraint system S contains a clash iff (z) S contains
two concept instances of the form « : A and « : = A where @ 1s an object and A 1s an
atomic concept or (22) S contains a constraint « : L for some object a. We say S is
clash-free iff S does not contain a clash. A constraint system S is satisfiable iff there
exists an interpretation [such that I | s for each constraint s in S,

Given an ALC-ABox A and a concept Dy, we say the constraint system S is induced
by A and Dy iff S = AU {ao: Dj,ay: D5, ... a,: D5} where q, is a new object, Dj

is the negation normal form of Dy, and aq,...,a, are exactly the objects in A.

The top consistency algorithm has an ALC-ABox A and a concept Dy as input. The
algorithm starts with a constraint system S which is induced by an ALC-ABox A and
a concept Dy, and successively adds new constraints to S by the five propagation rules
defined in Figure 4. Thereby, it works as follows. Let S; be the constraint system which
is induced by A and Dy. If there exists a chain S, —; S; <, ... <, S, such that
(1) each <, is the first rule is the sequence —n, —(, —v, —3,, —3, which is applicable
to S; and (22) S, is complete and clash-free, then return “top consistent” else return
“not top consistent”. A constraint system S is called complete iff no propagation rule
1s applicable to S.

1. S—»a{a:Ca:C} U S
if a:C;NCyisin S
and S does not contain both constraints « : Cy and a : Cj.
2
2. S—>y{a:D} U S
if a:CiUC,1sin S,
neither a : Cy nor @ : Cy is in S, and D is either Cy or (5.
3. S—v{b:C} U S

if a:VR.C and aRb are in S
and b: C is not in S.

4. S -3, {aRbb:C,b: D5} U S
it a:3 R0 s b,

Dy, ..., D, are exactly the concepts occuring in constraints of the form
a:V R.D; in S, there exists no ¢ such that ¢: C,c: Dy,...,c: D,,c:
Dg are all in S, and b is a new object.

5. 8 —3, {aRc} U S
if a:3R.Cisin S,

Dy, ..., D, are exactly the concepts occuring in constraints of the form
a : YR.D; in S, and for some ¢ the constraints ¢ : C,c : Dy,...,c:
D, ,c: Dj are all in S and aRc is not in S.

Figure 4: Propagation rules of the top consistency test.
4.2 Properties of the Top Consistency Algorithm

In this subsection we will show that the top consistency algorithm is sound, complete,
and terminates. That means, if we apply this algorithm to an ALC-ABox A and
a concept Dy, the algorithm terminates and returns “top consistent” iff Dy is top
consistent w.r.t. A.

Thus, if S is the constraint system which is induced by A and Dy we firstly show:
Each chain of rule applications starting with S which can be constructed by the top
consistency algorithm is finite. Note, that the top consistency algorithm may construct
more than one such chain if S contains concept disjunctions, e.g., a : C'U D.

Lemma 4.2 Let S be a constraint system which is induced by an ALC-ABox A and
a concept Dy. Then the top consistency algorithm cannot construct an infinite chain
S = 8p—1 51— ... with —;€ {—*n»ﬁu,—’v,—’am—*ag}-

Proof: Firstly, we show that the —3, rule can be applied to S only a finite number
of times. It is easy to verify that, if b : (" is added to S; by a propagation rule, the
concept C' is a (sub)concept of the concepts occurring in Sy. Let P be the set of all
possible sets of concepts which can be built up from (sub)concepts in Sy. Obviously,
P is finite.

Suppose now, in some S; the —3, rule is applied to a constraint « : 3R.C', where
Dy, ..., D, are exactly the concepts in the constraints of the form « : VR.Dj in S;.
Then S; is extended by aRb,b : C,b : D where b is a new object. Furthermore,
before we can apply the —3, rule again, the —y rule has to be applied to «Rb and
a:VYR.Dy,...,a:V R.Dy, respectively. Thereby, the constraints b: Dy,...,b: D, are
added. That means, we will obtain a constraint system, say S; (j > 2), which contains
at least the constraints b : C.b: D5, b: Dy,...,b: D,, where {C, D5, Dy,...,D,} is
an element in P. Suppose now, there is a constraint of the form ¢’ : IR.C' in some
constraint system Sy, & > j, where « is an arbitrary object and R’ is an arbitrary role.
Furthermore, let Dy,..., D, be the concepts in the constraints of the form o' : VR'.D
in Sk. In this case, the —3, rule is not applicable to S;. (because of its precondition).
The reason for this is due to the fact that there is alrcady an object, namely b, in Sy
such that the constraints b: C,b: Dy,....0: D,,b: D are all in Sy In this case only
the —3, can eventually be applied to «’ : IR'.C'| adding «' Rb to S;.. Thus, since P is
finite, the —3, is applicable only a finite number of times.

As an immediate consequence, only a finite number of new objects are added to
S because none of the other propagation rules introduces new objects to a constraint
system. Thus, each S; contains only a finite number of objects since the number of
objects in Sp is finite. With this, it is easy to verify that the remaining rules —n, —y,
—v, and —3, can be applied only a finite number of times: These rules are applied to
a:CiNCy a:CiUCy, a:YR.C,and a: 3 R.C, respectively, and add strictly shorter
constraints to S than the constraint they have been applied to. Thereby, a is an object
in S and Cy, Cy, VR.C, and 3 R.(' are (sub)formulas of concepts in Sy. Furthermore,
the —n (—y) rule can be applied to each constraint of the form a : C,11C, (a : CLUC,)
only once. The —y rule can be applied to the pair « : V R.C' and «Rb only once. And,
finally, the —3, rule can be applied to cach pair («, h) of objects in .S at most once. O

To prove soundness and completeness of the top consistency algorithm, we introduce
the following important lemma.

Lemma 4.3 Fach complete and clash-free constraint system is satisfiable.

Proof: Let S be a complete and clash-free constraint system, and let I be an interpre-
tation such that

o Al is the set of objects in S.

o
o

o Al:={a|a:Aisin S} for each atomic concept A in S
e R':={(a,b) | aRbisin S} for each role R in S

e a’ :=a € A for each object a in S

We will now show that I |= s for each constraint s in S: If s is of the form aRb

then I |= s by definition of 1.

If s is of the form @ : C, then [|= s can be shown by induction over the structure of
C: If C is an atomic concept, then I = a : C because of the definition of I. If C =T
then I |= a : C because of T! = A’ and C cannot be L since S is clash-free. For the
induction step we have to show that [Fa: C if a: C isin S, and C is of the form
ﬁC‘l, Cl M Cg, C] U Cg, VRC] or 3RC1

Firstly, let C be of the form —(';. Since we assumed the input of the top consis-
tency algorithm to be in negation normal form, and none of the five propagation rules
introduces concepts which are not in negation normal form, 'y is an atomic concept.
Furthermore, since S is clash-free, « : C is not in S. Therefore I = « : Cy and thus

I Ea:-Ch.

If C is of the form Cy N C, (€, U C,) we know « : 'y and (or) a : C'y to be in
S because S is complete. In this case, by induction hypothesis, I = « : C; and (or)
I = a : C3. Thus, the induction step is trivial.

Let now C be of the form FR.C;. Since S is complete neither the —3, nor the
—3, rule is applicable to S. Therefore, one of these rules has already been applied to
a : 3R.Cy, i.e., aRb and b : C; are in S for some object b. By construction of I we
know that I = aRb and, by induction hypothseis, I =b: ;. Thus, I =a:3R.Cy.

Finally, let C' be of the form V R.C;. If there does not exist an object b in S such
that aRb is in S, then (a’,u) & R for each element u € Al ie., I = a:VR.C]. Else,
for each object b such that aRb is in S, the —y rule has been applied to « : VR.C]
since S is complete. Thus, b: Cy is in S if b is an arbitrary object such that «Rb is in
S. By induction hypothesis we obtain [=« : VR.C]. a

We are now going to show that the top consistency algorithm with ALC-ABox A
and concept Dy as input results “top consistent” iff Dy is top consistent w.r.t. A, i.e.,
iff there exists an interpretation I such that / |= A and DI = T!(= AT). To prove
this, we introduce two lemmata which state: If we start with a constraint system Sy
which is induced by an ALC-ABox and a concept, the top consistency algorithm can
construct a chain S; —; S; —, ... —, S, such that S, is complete and clash-free iff
Dy is top consistent.

Lemma 4.4 Let A be an ALC-ABouz, let Dy be a concept, and let Sy be the constraint
system which is induced by A and Dy. If Dy is top consistent w.r.t. A then the top

consistency algorithm can construct a finite chain Sy —1 Sy —4 ... =, S, with —;€
{—n, —u, —v, —3,,—3,} such that S, is complete and clash-free.

Proof: We will show that there exists a chain Sy —; S| —4 ... —,, S,, where —; is the
first rule in the sequence —n, —(, —v, —3,, —3, which is applicable to 5;, such that

(z) each S; is satisfiable (z = 0,...,n) and

(22) there is no more propagation rule applicable to S,,.

This will be done by induction over the number 2 of rule applications. Since we
assumed Dj to be top consistent w.r.t. A, there exists an interpretation / such that
I & Aand DI = Al ie., there exists an interpretation I such that I | s for each
constraint s in Sy. Thus, we can assume that there exists an interpretation I; which
satisfies S;. There are five possibilities for S; —;4; Sipi: If the —q rule is applicable
to S;, let S; —n Sig1. Then Iy, := I; obviously satisfies Si4,.

Else, if the —, rule is applicable to « : C; U 'y in S;, let S;;; be S; U {a : Cy} if
L Ea:Cy, and S;U{a:Co}if I; [a: Ci. Again, ;4 = I; satisfies Siy;.

Else, if the —y rule is applicable to « : VR.C' and aRb in S;, let S; —y Sigr.

Then,. S; is extended by b: C'. By induction hypothesis we know that I; |= aRb and
I; Ea:VYR.C. As an immediate consequence, I, := I; satisfies S;y,.

Else, if the —3, rule is applicable to « : 3R.C' in S, let S; —3, Sipq. Then, Si4y
extends S; by the elements «Rb, b : C', and b : Dj. Thereby, b is a new object. By
induction hypothesis we know I; |= « : 3R.C, i.e., the exists an element u € U such
that Rf(a®,u) and u € CT. If 1,4, is identical with /; but b5+ ;= u, thus I,4, | aRb
and I;y; = b : C. Furthermore, b+t = v € Ul = Ul+i ie., Iy, | b : D} since
D& = U and Dy is equivalent to its negation normal form D,

Finally, if only the —3, rule is applicable to « : 3R.C" in S;, let S; —3, Sipq. It is
easy to verify that after applying the —3, rule once, no other propagation rule will be
applicable any more: The —3, rule extends S; by «fb where b is an object occuring
in S;. Obviously, the only precondition which could be satisfied as a consequence of
adding aRb to S; is the precondition of the —y rule which—theoretically—could extend
the constraint system by b : C' for some concept (. But since the —3, rule has been
applied to S;, the constraint b : ' must be in S; and thus the —y rule cannot be
applied. Thus, when applying —3, to « : 3 R.C'" all information about objects b with
aRb has been made explicit and is satisfied by I. Therefore, the interpretation Iy,
which is identical to I;, but where in adition R'+!(a® b/) holds, satisfies S;y.

Summing up, there exists a chain Sy —; S; —2 ... —, Sy, with S; —,41 Siy1 by
the first propagation rule in the sequence —n, —, —v, —3,, —3, which is applicable

to S;, such that each S; is satisfiable. Because of Lemma 4.2, the top consistency
algorithm cannot construct an infinite chain Sy —; S; —; ..., such that we obtain a
complete system S,, after n rule applications. Furtheremore, since S, is satisfiable, S,
cannot contain a clash. O

Lemma 4.5 Let A be an ALC-ABox, let Dy be a concept, and let Sy be the constraint
system which is induced by A and Dy. If the top consistency algorithm can construct
a chain So —, Sy —, ... =, S, with —;€ {—n, >y, —v, —3,,—3,} such that S, is
complete and clash-free, then Dy is top consistent.

Proof: Since S, is complete and clash-free, S, is satisfiable because of Lemma 4.3.
In the proof of this lemma we especially showed that the following interpretation /
satisfies S,:

Al is the set of objects in .S,,.

o Al:={a]a:Aisin S,} for each atomic concept A in S,.
o RI:={(a,b) | aRbisin S,} for each role R in S,,.
e al :=a € A for each object a in S,,.

We still have to show that D! = T!/(= Al), ie., u € D/ for each element u € A’. This
is equivalent to I |= a : D} for each object a in S, because of the definition of Af, and
because the negation normal form D of Dy is equivalent to Dy.

If @ occurs in Sy, then « : D is in Sy by construction of the start constraint system
So. In this case [| a : Dj since [satisfies S, and Sy C S,.. If, on the other hand, «
does not occur in Sy then « has been added to some constraint system S5; (0 <12 < n)
by the —3, rule. This rule then also has added @ : D to S;. Because of [|= S, and
S; € S, in this case I |= a : D; holds. a

Summing up the results in this subsection we obtain the following theorem.

Theorem 4.6 Let A be an ALC-ABox and let Dy be a concept. Then the top consis-
tency algorithm with input A and Dy terminates and results “top consistent” iff Dy is
top consistent w.r.t. A.

Proof: Because of Lemma 4.2, the top consistency algorithm only constructs finite
chains Sg —; S; — ... with —;€ {—n, >y, —v, —3,,—3,}. Except from the —
rule all propagation rules determine exactly one new constraint system. The — rule
determines exactly two possible constraint systems, i.e., there is only a finite number of

possible finite chains since Sy is finite. Thus, the top consistency algorithm terminates.
Because of Lemmata 4.4 and 4.5 we know Dg to be top consistent w.r.t. A iff there
exists a chain Sy —; ... —, S, such that S, is complete and clash-free. Exactly this
is tested by the top consistency algorithm. a

5 Computing ALCx Inferences

Now we are going to show how to decide whether or not a given formula is a logical
consequence from a set of ALCx-axioms. Therefore, we start with a set of ALC-axiom
which describe the actual world as well as the knowledge of agents. As implied by using
the word “axiom”, these formulas are assumed to be true under all circumstances.
In contrast to this we now introduce the notion of ALCyx-formulas which have the
same syntax and semantics as ALCx-axioms but differ in the intuitive meaning: While
ALCk-axioms will only be used to define an axiomatization of a world and of agents’
knowledge, some ALCx-formulas may be entailed by such an axiomatization while some
others may not be entailed. That means, we need a test whether an ALC-formula is
a logical consequence from a set of ALCx-axioms.

We will show how to use the S4-satisfiability algorithm to test whether or not a
given ALCx-formula is a logical consequence from a set Fy,..., F, of ALCy-axioms.
Again, we are only interested in S4 Kripke structures and thus define: F'is an 54
consequence of Fy, ..., F, iff for each 54 Kripke structure X' = (W, I, K'y) and for each
world w in W holds: if K,w = Fi,..., F,, then K,w = F.

Firstly, let F' be an ALCx-formula of the form O*(C' = D), O*(C # D), or O*(a :
C'), where O* is an abbreviation for a possibly empty sequence of modalities. Then,
F is an 54 consequence of Fy,..., F, iff the set Fy,..., F,,[-F]* of ALCx-formulas is
not S4-satisfiable, where [~F]* denotes the negation normal form of =F. Note, that
- F is an ALC-formula if F is of the above described form.

If, on the other hand, F' is of the form O*(aRb), where O* is an abbreviation for
a possibly empty sequence of non-negated indexed O operators, we cannot use this
test method since negation signs are not allowed in ALCx-formulas which contain a
role instance. To handle this case, we extend the notion of ALCx-formulas as follows:
if R is a role, a,b are objects, and 71,...,1, are agents, then O; ...<O; (aRb) is an
ALCx-formula.

Alternatively, these ALCx-formulas could be defined by o;, ...0; (aR'b) where (2)
each o; is either O; or =0, , (iz) R’ is either R or =R, and (z7¢) the number of negation
signs in o;, ...0; (aR'b) is even. Using this definition it is easy to see that the negation
,normal form of the new ALCx-formulas does not contain negation of roles. Therefore,
on a technical level we could allow such formulas as ALCy-axioms in Section 2. But a

restriction like “the number of negation signs is even” seems not to be adequate when
defining a language to describe knowledge of agents. However, for testing whether or
not an ALCx-formula is entailed by a set Fy,..., I, of ALCy-axioms, this definition
turns out to be reasonable.

Note, that S4-satisfiability of a set of ALCx-formulas can be handled by the S4-
satisfiability algorithm in Section 3 even if we use the above introduced extended
definition of ALCx-formulas: Firstly, the algorithm only treats the modalities of ALC -
formulas, i.e., it works independently from the syntactical structure of formulas without
modalities. Secondly, satisfiability of the resulting ALC test set still can be tested, since
they do not contain negation of roles. And, finally, it does not matter whether « Rb is in
an ALC test set because of O, ... 0; (aRb), or because of O, ... <O, («Rb). Summing

up, when using the extended definition of ALCx-formulas we need not to change the
S4-satisfiability algorithm at all.

The following lemma provides a nice property ol ALCx-formulas and will be used
g | Proj) X

-

in the proof theorem 5.2.

Lemma 5.1 Let Fy,..., F, be an S4-satisfiable sct of ALCx-axvioms and let R be a
role which does not occur in Fy,... F,. Then the set Fy ... [, ... 0 (aR'D) of
ALCx-formulas is S4-satisfiable for cach sequence O, ... O, of indexed O operators

and for each pair a,b of objects.

Proof: Let W' be the result of the frame algorithm with input Fy,..., F,. Since we
supposed these ALCx-axioms to be S4 satisfiable, the ALC test set A(w) is satisfiable
for each label w in W’. Thus, especially the ALC test set A(wy) of the real world wy
is satisfiable.

Let us reconsider the S4 Kripke structure K in the proof of Lemma 3.6, i.e.,

e W is given by the set of all labels in W',

o [consists of one accessibility relation 7; for each agent 2. Thereby, v; is given by
the reflexive and transitive closure of the set {(w,w’) | w X; w' € W}.

e K is given such that K ,w |= [I' for each labelled ALCx-formula F' || w in W’
where F' does not contain any modality.

In the proof of Lemma 3.6 we have already shown that K, wy = F,..., F,. Obviously,
we can modify K such that K wy |= aR'b and K,wy |= Fi,..., F,. This is due to the
fact that R’ does not occur in Fi,..., F, and thus does not occur in the ALC test set
A(wyp). Since (wg, wg) € 7; for each agent 7, in this case K,wy = Oy, ... <Oy, (aR'D). O

Note, that this lemma does not hold for arbitrary Kripke structures K. For example,
it may hold K,w |= O;(a : C),0;(a : =C) if K is a Kripke structure such that there
is no world accessible from w by agent . But, obviously, KX,w [& O;(a : C),0;(a :

=), Oi(aR'b).
2
For the following theorem we define syntactical operations on sequences of indexed
O operators. The S4 normal formof O, ... 0, is given by successively replacing each
occurrance of a subsequence O;...0; in 0;, ... 0; by O;. For example, the S4 normal
form of 0,0,0,0,0,0,0, is given by 0,0,0,0,. Conversely, an ezxpanded version of
a sequence O; ...0; 1is given by replacing one or more operators O; by a sequence
0;...0;. Using these definitions, we say O;, ... 0; matches a sequence <, ...<O;, iff
0;,...0;, is an expanded version of the S4 normal form of O,, ... 0, . For example,

Jn Jk
0,0;0; matches &<, and O10,<C,, but it neither matches 7203 nor OO0,

im

Theorem 5.2 provides a test whether or not an ALCx-formula O;, ... 0, (aRb) is
entailed by a set of ALCx-axioms.

Theorem 5.2 Let Fy,...,F, be an S4-satisfiable set of ALCx-axioms and let F' be
an ALCx-formula of the form O;, ...0; (aRb), where O, ...0O
sequence of indexed O operators. Then I' is an S4 consequence of Fy, ..., F, iff one of
the F; is of the form O.0M(aRb) where O, is a possibly empty sequence of indexed O
operators, and OM is a sequence of indexed O operators which matches Oy, ... <O

is a possibly empty

im

tm*

Proof: Firstly, let F' be of the form aRb. If one of the F; is of the form O.(aRb),
then K,w |= aRb holds for each S4 Kripke structure X' with K,w |= F;. This is an
immediate consequence of property (P1) of S4 Kripke structures.

Conversely, suppose that none of the F} is of the form O,(aRb). Let W be the world
constraint system {F || wo,..., Fy || wo} which is induced by Fi,..., F, and let W' be
the result of the frame algorithm with input W. Since the set Fy,..., F, of ALCk-
axioms is S4-satisfiable, the ALC test set A(w) of each label w in W’ is satisfiable.
Furthermore, since none of the F} is of the form O.(aRD), the ALC test set A(wg) does
not contain the formula aRb. It is easy to verify that in this case A(wy) is satisfiable
by an interpretation I such that I & aRb (e.g., by considering the propagation rules
in [Hol90]). Let now K be the S4 Kripke structure which is constructed from W’
as in the proof of Lemma 3.6, but K is modified such that K,wy [E aRb. Then,
K,wo |= Fy, ..., F, but K,wy [~ aRb, i.e., aRb is not an S4 consequence of Fy,..., F,.

Suppose now, we want to test whether or not O, ... 0, (aRb)is an S4 consequence
of Fy,..., F,. This is equivalent to testing whether or not Fi, ..., F,,, Oy ... O, (a—Rb)
is S4-satisfiable. Since Oy, ... O; (e~ Rb) is not an ALCx-axiom, this case cannot be
handled by the S4-satisfiability algorithm of Section 3. Alternatively, let us have a
look at the application of the frame algorithm to the world constraint system W which
is induced by {Fy,..., F,, Oy ... 04, (aR'b)} where R’ is a role which does not occur

18]
(02]

in Fy,...,F,. Because of Lemma 5.1, Fy,...,F,, O, ... 04, (aR'b) is S4-satisfiable.
Thus, this application of the frame algorithm results a world constraint system W’
such that the ALC test set A(w) is satsifiable for each label w in W'. Furthermore, it
1s easy to verify that there is exactly one label, say w, in W’ such that A(w) contains
the formula aR’'b.

im

Let us now consider R" as an abbreviation for = R. Obviously, this does not influence
the construction of W’ but it may influence satisfiability of the ALC test set A(w). As
mentioned above, this test set A(w) is unsatisfiable iff it contains aRb as well, i.e., iff
aRb||wis in W’. It is easy to check that aRb||w is in W' iff Oy, ... O, (aRb)|| wp is in
W', whereby Oy, ... Ok matches O;, ... O; ¢ Since Oy ... Oy, (aR'D)||wp is in W', there
Wiy oo oy Woey X wp(=w)in W IEO; ...0; (aRD)||wo

tm

are world constraints wy X,
is in W', then aRb || w,, is in W' because of the definition of the —¢ and the —g rule.
Replacing some operator O; in 0; ...0; by 0; O, does not influence the existence of
aRb|| @ in W' since O; F' ||wis in W'if O; O; F'||w is in W'. This holds for arbitrary
formulas F' and labels w because of the —g rule. Replacing a sequence O; ...0O;
in 0;,...0;, by 0; doesn’t influence the existence of aRb || w in W' as well, since,
by definition of the —¢ and the —, rule, if O; F' || w is in W' then O; F' || w' is in
W' for each world w’ such that the world constraints w M wy, ..., w, X w' are all
in W', In other words, if the world constraints ©; ... O G || w and O F

w M wy, .., w, M w! are all in WY then F || w' is in W' Tt is easy to verify that

| w, and

there are no other possibilities such that « R0 || @ is in W',

Finally, Oy, ... O (aRb) || wy is in W iff one of the ALC-formulas F; is of the form
0,0k, ... Ok (aRb), where O, is a possibly empty sequence of indexed O operators. This

follows immediately by the above argumentation and the definition of the —g rule. O

Now we have given algorithms for deciding S4-satisfiability of a given set of ALC-
axioms, and, building upon this, for deciding whether or not a given ALCx-formula F
1s an 54 consequence of a given set Iy, ..., I, of ALCx-axioms. Let us finally present
a possible application and a technical example.

Example 5.3 a) Suppose there are two shippings, s; and s;, which are considered as
agents in the following. Both agents are competitors and want to earn as much money
as possible. We assume that there exist two transportation orders, o, and o0,. Thus,
we need at least the following two ALCx-axioms to describe the world.

(

1) oy : transportation-order
(2) 0, : transportation-order.

Both shippings know that transportation orders are orders they can carry out, called
possible orders, and each agent knows that the other agent has this knowledge. This

is represented by

(3) Oy, (transportation-order C possible-order)
(4) O, (transportation-order C possible-order)
(5) 0O, 0O, (transportation-order C possible-order)
(6) 0O,,0 (transportation-order C possible-order).

While both agents know that there is a transportation order oy, only s; knows that
there is still a second transportation order, namely o,:

(7) O, (o1 : transportation-order)
(8) Oy, (o1 : transportation-order)
(9) -0, (0, : transportation-order)
(10) O, (o0, : transportation-order).

Finally, we suppose that s; knows that s, knows o; to be a possible order, while s,
knows that s; does not know that o, is a possible order. This is represented by

(11) 0404, (0; : possible-order)
(12) 04,04, (02 : possible-order).

It is easy to verify that the set {(1),...,(12)} of ALCk-axioms is S4-satisfiable.

Provided that the agents can plan and reason on the basis of their knowledge, how
do they act in the world? Let us firstly have a look at agent s;. Obviously, he can
conclude that o; is an order he can carry out because of (3) and (7) or, alternatively,
because of (11). Analogously, he can conclude that also agent s, knows o; to be a
possible order because of (11). Since he cannot derive the existence of another possible
order he will offer a low price for order oy.

In the same way, agent s, will conclude that both agents know o, to be a possible
order. But additionally, he knows that there is still a second possible order, namely o,,
what can be derived from (4) and (10). Furthermore, he knows that agent s; does not
know o0, to be a possible order (because of (12)). Thus, he may act as follows: He will
offer a high price for order o, since he cannot derive the existence of another shipping
which knows 0, to be a possible order. (Note that this can be risky, e.g., if there is
another agent s3 and s, does not know anything about the knowledge of agent s3). For
order o; he may offer a low or a medium price.

Summing up, the behaviour of agents in the world is not only influenced by their
knowledge about the world, but may be influenced by their knowledge about the knowl-
edge of other agents as well.

b) Suppose the following two ALCx-axioms to be given:

(F1) Ou(John :Yowns.~gasoline-truck)
(F;) O,(truck-1 : gasoline-truck)

30

Applying the frame algorithm to the world constraint system W which is induced by
Fy, F, and the ALCx-formula

(F) Ou(John owns truck-1)
we obtain the world constraint system W’ which is given by

O,(John : ¥ owns.~gasoline-truck) || wy
John : V owns.~gasoline-truck || wq
O,(truck-1 : gasoline-truck) || wy
truck-1 : gasoline-truck || wy

O, (John owns truck-1) || w,

wo M, w,

John owns truck-1 || w,

0,(John : V owns.~gasoline-truck) || w,
John : Y owns.~gasoline-truck || w,

O, (truck-1 : gasoline-truck) || w,
truck-1 : gasoline-truck || w,

Obviously, the ALC test set A(wy) is unsatisfiable. That means, the ALCx-formula
O,(John —owns truck-1), is an S4 consequence of I} and F;.

Note, that we have concluded agent a to know that John does not own truck-1,
though we cannot explicitely express an agents’ knowledge about negated roles when
using the definition of ALCx-axioms in Section 2. This conclusion became possible
because of the above extended definition of ALCyx-formulas for computing ALCx-
inferences. []

6 Conclusion

We have presented an extension of the concept language ALC by a knowledge operator
O which is indexed by agents. This language can be used to describe a real world
by an ALC-TBox and an ALC-ABox, i.e., by ALC-axioms without modalities. But
additionally, it can be used to describe the knowledge agent ¢ has about the world,
about the knowledge of other agents, and about his own knowledge by ALCy-axioms
with the leading operator O;.

In this paper we used an axiomatization of the knowledge operator which has been
proposed by Moore [Mo080, Moo85]. We have given an algorithm for deciding whether
a set Fy,..., F, of ACCx-axioms is S4-satisfiable. And, building upon this, we have
shown how to test whether an ALCk-formula F' is an S4 consequence of Fy,..., F,.
Both tests are of practical interest: The first one can be used to test consistency of the

31

represented knowledge, and the second one to find out whether a given ALCx-formula
is implied by an agents’ knowledge. An extension of our terminological representation
system KRZS [BH91] with the knowledge operator O is under work. Note, that the
presented algorithms cannot directly be used for an implementation. -Of course, appro-
priate data structures and optimization techniques have to be developed for concrete
applications.

Future work will mainly concern with two questions. Firstly, how to extend the
present approach, e.g., by operators E¢ (everyone knows ¢) and C¢ (it is common
knowledge that ¢). Secondly, an interesting task will be to catalogue multi agent
applications by deciding what the general properties of knowledge in these applications
are, and to devise algorithms to handle the resulting axiomatizations of the knowledge
operator.

Acknowledgements. I am grateful to Hans-Jiirgen Biirckert, Bernhard Hollunder,
and Andreas Nonnengart for many discussions on the topic of this paper and for reading
earlier drafts.

References

[BGSS)

[BHO1]

[BS85]

[Che80)

[Fit83)]

[GH8Y)

[Gor92]

[Hal86)

(HO68]

[Hin62]

[HM90]

[HM92]

[Hol90]

A. Bond and L. Gasser. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, Los Angeles, CA, 1938.

F. Baader and B. Hollunder. AX'RZS: Anowledge Representation and
Inference System. SIGART Bulletin, 2(3):3-14, 1991.

R. J. Brachman and J. . Schimolze. An overwiev of the KL-ONIE knowl-
edge representation system. Cognilive Science, 9(2):171-216, 1985.

B. F. Chellas. Modal Logic: An Introduction. Cambridge University
Press, 1980.

N Fitting. Proof Mcthods for Modal and Intuiionistic Logics, volume
169 of Synthese Library. D. Reidel Publishing Company, 1983.

L. Gasser and NLN. Huhnos. Distributed Avtificial Intelligence, Volume I1.
Rescarch Notes in Artificial Intelligence. Morgan Kaufmann, San Mateo,
CA, 19389.

R. Goré. Analytic tableaux for propositional modal logics of nonmono-
tonicity. Technical report, Department of Computer Science at the Uni-

versity ol NManchester, Fugland, 1992,

J. Y. Halpern. Reasoning about knowledge: an overview. In Proceedings

of TARK 86, pages 115, 1986.

G. E. Hughes and N. J. Cresswell. An Introduction to Modal Logic.
J. W. Arrowsmith Ltd, Bristol, 1968.

J. Hintikka, editor. KNunowledge and Belicf. Cornell University Press,
1962.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549-587, 1990.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319-379,
1992.

B. Hollunder. Hybrid inferences in KL-ONIS-based knowledge represen-
tation systems. In 1/th German Workshop on Artificial Intelligence, vol-
ume 251 of Informatih-Fachberichte, pages 33-47; Ebingerfeld, Germany,
1990. Springer.

33

[Huh87]

[Moo80]

[Moo85]

[MvdHV91a)

[MvdHV91b]

M.N. Huhns. Distributed Artificial Intelligence. Pitman/Morgan Kauf-
mann, San Mateo, CA, 1987.

R. C. Moore. Reasoning about knowledge and action. Technical Report
Technical Note 191, SRI International, 1980.

R. C. Moore. A formal theory of knowledge and action. In J. R. Hobbs
and R. C. Moore, editors, Formal Theories of the Commonsense World,

pages 319-358. Ablex Publishing Corporation, 1985.

J.-J. C. Meyer, W. van der Hoek, and G. A. W. Vreeswijk. Epistemic
logic for computer science: A tutorial (part one). In Bulletin of the
EATCS, volume 44, pages 242-270. European Association for Theoretical
Computer Science, 1991.

J.-J. C. Meyer, W. van der Hoek, and G. A. W. Vreeswijk. Epistemic
logic for computer science: A tutorial (part two). In Bulletin of the
FEATCS, volume 45, pages 256-287. European Association for Theoretical
Computer Science, 1991.

34

Deutsches
Forschungszentrum
far Kdnstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen kénnen von der oben angegebenen
Adresse bezogen werden.

Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI

-Bibliothek-

PF 2080

D-6750 Kaiserslautern
FRG

DFKI Publications

The following DFKI publications or the list of all
published papers so far can be ordered from the
above address.

The reports are distributed free of charge except
if otherwise indicated.

DFKI Research Reports

RR-92-11

Susane Biundo, Dietmar Dengler, Jana Koehler:
Deductive Planning and Plan Reuse in a
Command Language Environment

13 pages

RR-92-13

Markus A. Thies, Frank Berger:
Planbasierte graphische Hilfe in
objektorientierten Benutzungsoberflichen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:
1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle, Markus A. Thies
2. Plan-Based Graphical Help in Object-
Oriented User Interfaces
Markus A. Thies, Frank Berger
22 pages

RR-92-15

Winfried Graf: Constraint-Based Graphical
Layout of Multimodal Presentations

23 pages

RR-92-16
Jochen Heinsohn, Daniel Kudenko, Berhard Nebel,
Hans-Jiirgen Profitlich: An Empirical Analysis of

Terminological Representation Systems
38 pages

RR-92-17

Hassan Ait-Kaci, Andreas Podelski, Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment

23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19

Ralf Legleitner, Ansgar Bernardi, Christoph
Klauck: PIM: Planning In Manufacturing using
Skeletal Plans and Features

17 pages

RR-92-20

John Nerbonne: Representing Grammar, Meaning
and Knowledge

18 pages

RR-92-21

Jorg-Peter Mohren, Jiirgen Miiller
Representing Spatial Relations (Part II) -The
Geometrical Approach

25 pages

RR-92-22
Jorg Wiirtz: Unifying Cycles
24 pages

RR-92-23

Gert Smolka, Ralf Treinen:
Records for Logic Programming
38 pages

RR-92-24

Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain

20 pages

RR-92-25

Franz Schmalhofer, Ralf Bergmann, Otto Kiihn,
Gabriele Schmidt: Using integrated knowledge
acquisition to prepare sophisticated expert plans
for their re-use in novel situations

12 pages

RR-92-26

Franz Schmalhofer, Thomas Reinartz,

Bidjan Tschaitschian: Intelligent documentation
as a catalyst for developing cooperative
knowledge-based systems

16 pages

RR-92-27

Franz Schmalhofer, Jorg Thoben: The model-based
construction of a case-oriented expert system

18 pages

RR-92-29
Zhaohui Wu, Ansgar Bernardi, Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual

Graph Classification Approach
13 pages

RR-92-30

Rolf Backofen, Gert Smolka

A Complete and Recursive Feature Theory
32 pages

RR-92-31
Wolfgang Wahlister

Automatic Design of Multimodal Presentations
17 pages

RR-92-33
Franz Baader: Unification Theory
22 pages

RR-92-34

Philipp Hanschke: Terminological Reasoning and
Partial Inductive Definitions

23 pages

RR-92-35

Manfred Meyer:

Using Hierarchical Constraint Satisfaction for
Lathe-Tool Selection in a CIM Environment
18 pages

RR-92-36

Franz Baader, Philipp Hanschke:
Extensions of Concept Languages for a
Mechanical Engineering Application
15 pages

RR-92-37
Philipp Hanschke: Specifying Role Interaction in

Concept Languages
26 pages

RR-92-38

Philipp Hanschke, Manfred Meyer:

An Alternative to ©-Subsumption Based on
Terminological Reasoning

9 pages

RR-92-40

Philipp Hanschke, Knut Hinkelmann: Combining
Terminological and Rule-based Reasoning for
Abstraction Processes

17 pages

RR-92-41

Andreas Lux: A Multi-Agent Approach towards
Group Scheduling

32 pages

RR-92-42

John Nerbonne:

A Feature-Based Syntax/Semantics Interface
19 pages

RR-92-43

Christoph Klauck, Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled Graph
Grammars and its Application to Feature
Recognition in CIM

17 pages

RR-92-44

Thomas Rist, Elisabeth André: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP

15 pages

RR-92-45

Elisabeth André, Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46

Elisabeth André, Wolfgang Finkler, Winfried
Graf, Thomas Rist, Anne Schauder, Wolfgang
Wahlster: WIP: The Automatic Synthesis of

Multimodal Presentations
19 pages

RR-92-47

Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48

Bernhard Nebel, Jana Koehler:

Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective

15 pages

RR-92-49

Christoph Klauck, Ralf Legleitner, Ansgar Bernardi:

Heuristic Classification for Automated CAPP
15 pages

RR-92-50

Stephan Busemann:

Generierung natiirlicher Sprache
61 Seiten

RR-92-51

Hans-Jiirgen Biirckert, Werner Nutt:

On Abduction and Answer Generation through
Constrained Resolution

20 pages

RR-92-52

Mathias Bauer, Susanne Biundo, Dietmar
Dengler, Jana Koehler, Gabriele Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages '

RR-92-54
Harold Boley: A Direkt Semantic

Characterization of RELFUN
30 pages

RR-92-55

John Nerbonne, Joachim Laubsch, Abdel Kader
Diagne, Stephan Oepen: Natural Language
Semantics and Compiler Technology

17 pages

RR-92-56

Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58

Franz Baader, Bernhard Hollunder:

How to Prefer More Specific Defaults in
Terminological Default Logic

31 pages

RR-92-59

Karl Schlechta and David Makinson: On Principles
and Problems of Defeasible Inheritance

14 pages

RR-93-02

Wolfgang Wabhlster, Elisabeth André, Wolfgang
Finkler, Hans-Jiirgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation

50 pages

RR-93-03

Franz Baader, Berhard Hollunder, Bernhard

Nebel, Hans-Jiirgen Profitlich, Enrico Franconi:

An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems

28 pages

RR-93-05

Franz Baader, Klaus Schulz: Combination Tech-
niques and Decision Problems for Disunification
29 pages

RR-92-60

Karl Schlechta: Defaults, Preorder Semantics and
Circumscription

18 pages

DFKI Technical Memos

TM-91-12

Klaus Becker, Christoph Klauck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13

Knut Hinkelmann: Forward Logic Evaluation:
Developing a Compiler from a Partially
Evaluated Meta Interpreter

16 pages

T™M-91-14

Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis

14 pages

TM-91-15

Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von

Werkstiickreprisentationen
34 Seiten

TM-92-02

Achim Schupeta: Organizing Communication and
Introspection in a Multi-Agent Blocksworld

32 pages

TM-92-03

Mona Singh:

A Cognitiv Analysis of Event Structure
21 pages

TM-92-04

Jiirgen Miiller, Jorg Miiller, Markus Pischel,
Ralf Scheidhauer:

On the Representation of Temporal Knowledge
61 pages

TM-92-05

Franz Schmalhofer, Christoph Globig, Jorg Thoben:
The refitting of plans by a human expert

10 pages

TM-92-06

Otto Kiihn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures

14 pages

TM-92-08

Anne Kilger: Realization of Tree Adjoining
Grammars with Unification

27 pages

DFKI Documents

D-92-06
Hans Werner Hoper: Systematik zur
Beschreibung von Werkstiicken in der

Terminologie der Featuresprache
392 Seiten

D-92-07

Susanne Biundo, Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08

Jochen Heinsohn, Bernhard Hollunder (Eds.):
DFKI Workshop on Taxonomic Reasoning
Proceedings

56 pages

D-92-09

Gernod P. Laufkétter: Implementierungsméglich-
keiten der integrativen Wissensakquisitions-
methode des ARC-TEC-Projektes

86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter

Chart-Parser fiir attributierte Graph-Grammatiken
87 Seiten

D-92-11

Kerstin Becker: Moglichkeiten der Wissensmodel-
lierung fiir technische Diagnose-Expertensysteme
92 Seiten

D-92-12

Otto Kiihn, Franz Schmalhofer, Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery
(Integrierte Wissensakquisition zur
Fertigungsplanung fiir Drehteile: eine
Bildergalerie)

27 pages

D-92-13
Holger Peine: An Investigation of the
Applicability of Terminological Reasoning to

Application-Independent Software-Analysis
55 pages

D-92-14
Johannes Schwagereit: Integration von Graph-
Grammatiken und Taxonomien zur

Reprisentation von Features in CIM
98 Seiten

D-92-15

DFKI Wissenschaftlich-Technischer
Jahresbericht 1991

130 Seiten

D-92-16
Judith Engelkamp (Hrsg.): Verzeichnis von Soft-
warekomponenten fiir natiirlichsprachliche

Systeme
189 Seiten

D-92-17

Elisabeth André, Robin Cohen, Winfried Graf, Bob
Kass, Cécile Paris, Wolfgang Wabhlster (Eds.):
UM92: Third International Workshop on User
Modeling, Proceedings

254 pages

Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-92-18

Klaus Becker: Verfahren der automatisierten
Diagnose technischer Systeme

109 Seiten

D-92-19

Stefan Dittrich, Rainer Hoch: Automatische,
Deskriptor-basierte Unterstiitzung der Dokument-
analyse zur Fokussierung und Klassifizierung von

Geschiftsbriefen
107 Seiten

D-92-21

Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars

57 pages

D-92-23

Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN

51 Seiten

D-92-24

Jiirgen Miiller, Donald Steiner (Hrsg.):
Kooperierende Agenten

78 Seiten

D-92-25

Martin Buchheit: Klassische Kommunikations-
und Koordinationsmodelle

31 Seiten

D-92-26

Enno Tolzmann:

Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX

28 Seiten

D-92-27

Martin Harm, Knut Hinkelmann, Thomas Labisch:
Integrating Top-down and Bottom-up Reasoning
in COLAB

40 pages

D-92-28

Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Reprisentation von Nachrichtentypen

56 Seiten

Integrating a Modal Logic of Knowledge into Terminological Logics RR-92-56
Armin Laux Research Report

