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Abstract 

T he pmpose of t.his pa per is not. t.o give an overview of t.h e s t. a t.e of art, in unifi cat.ion 

t.heory. It is int.ended t.o he a short. int.rodud,ion int.o t.he a rea of eq1l at.i on al unifi­
cat.ion which should give t.he reader a fee ling for wh a t. unifi cat.ion t.h eory might. h e 
ahout. . T he h asic not.ions such as complet.e a nd minimal complet. e se t. s of unifiers, 
a nd unifi cat.ion t.y p es o f equat.ional t.h eori es a re int.rod u c.ed a nd illust. r at.ed hy ex­

amples . Then we sh all describ e t.he origin al motivations for consid erin g unifi cat.ion 
(in t.he empt.y t.h eory) in resolut.ion t.heorem proving a nd t.erm rewrit.ing. St.art.ing 
wit.h Robinson 's fir st. 1lnificat. ion algorit.hm it. will h e ske t. ched how more effi cient. 
unifi cat.ion a lgorit.hms can he derived. 

We sh a ll t.hen explain t.he reasons which lead t.o the int.roduction of 1lnificat ion 

in non-empt.y t.heories int.o t.h e ahove ment ioned areas t.h eorem proving a nd t.erm 
rewrit.ing . For t.heory unifi cat.ion it. m akes a difference whet.her singl e eq1l a tions or 
syst.e ms of eq1l a t.ions are considered . In add it.ion , one h as t.o be careful wit.h regard 
t.o t.he sign at.nre over which t.h e t.erms of t.he unifi cat.i on prohlems can h e built. . T his 

leads t.o t.he dist.in ct.ion b et.ween element.ary unifi cation , 1lnification wit.h const. ant.s, 
and general 1lnificat.ion (where arhi t. rary free function symh ols m ay occnr ). Going 
fr om elementa ry unifi cat.ion t.o ge lleral unifi cation is a n instan ce of t.h e so-called 
comhin at. ion prohlem for equ at. iona l t.h eories which can be formula t.ed as follows: Let. 

E, F b e equational theories over disjoint. sign at.ures. How can 1lnificat.ion algorithms 
for E, F he comhined to a unifi cation algorithm for the t.h eory E U F . 
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1 What is E-unification? 

E-unification is concerned with solving term equations modulo an equat ion al theory E. 
The theory is called "unita ry" ("finitary") if the solutions of an equa tion can always be 

represented by one (fi nitely many) "most general" so lution s. Otherwise' the theory is of 
type "infinitary" or "zero." Equational theories which are of unificat ion typf' unitary or 
finitary play an important role in automated theorem provers with "built in " theories (see 

e.g., [PI72,Ne74,SI74,St85]), in generalizations of the Knuth-Bendix algorit.hm (see e.g., 

[Hu80, PS81,JI(86,Bc87]), and in logic programming with equality (sef' e.g., [JL84]). 

The first two app licat ions will be cons idered in subsequent sect ions. In t he present 
section Wf' shall introducf' tlw basic 1I0t ions of unifi cat ion theory sudl as completf' and 
minima l complf'te sets of unifiers and unifi cat ion typf'S of eq ua tiona l theories, and illus­
trate them by f'xaI1lpl f's . 

Let fl be a signature, i.e., a set of fun ct ion symbols wit h fixed a rity, and let V 1)(' a 
couIlta,ble set of va,ria,hl es. T Ilt" sd. of D-terms with variah les ill V is (knoted hy T(D, V). 
A Sf't of idellt.it.if's E ~ T(D, V) x T(D, V) defin f's a ll c(/,lJ,al £O'Iw,[ I.hr:o'I'Y =E, i. e ., t.he 

equality of terms indu cf'd by E. T IIf' quotient a lgebra T(D, V)/ =E is t.11P £-/1'('(: a!gdJT'a 

with generators V, i.f'. , thf' frf'f' a lgebra wit.h countably many gf'nerators over the class o f 
a ll J11odf'ls or E. 

Example 1.1 Let fl he t he signa.t,U)'f' consisting of one binary fun ct io ll symbol I . The 

set of identities A := {I( :c:, I(y ,::)) = fU(x,y),z)} defin es the theory of semigroups. 
Obviously, tlw =A-dasses may be considered as words over t.be a.\p ll abct. V, alld t.11P 

A-fref' a lgf'b ra T(fl, V)/=A is isomorphi c to t he free semigroup V+. 

III formally, we call now say that. E-uui./ica.tion is just so lving equ at ions ill the E-free 

algebra T(D, V)/ =E' To be more precise, we have to define what is meant by equat ion 

and by solution of tlw equat ion. 

For this reason Wf' cO ll sider substitlltions which are mappings 0: V -+ T(D, V) such 
t hat {:I' E V I ,7:0 f ,/:} is finite . Sin{(~ T(D, V) is the free fl -algebra with generators V, 
t his mapping can ulliquely be extended to a homomorphism 0: T(fl, V) -+ T(fl, V) . A 
'U,11.i:fi:cation ]J T'o blem (the equation ) is a pair of terms s, t., and an E-uui./ier of the problem 
(the solution of t he equat ion s = t in T( fl, V)/ =E) is a subst itution 0 such that sO =E 10. 
The set of all E-unifiers of s, twill bf' denoted by UE(s, t) . 

Example 1.2 Let D be the signature consisting of a binary function symbol f and a 

constant symbol (/, . We consider the terms 8 = f( x, a) and t = f(a,y). 

E = 0: In this case, the substi t ution () = {x ~ a, y ~ a} is the on ly 0-unifier of the 
terms 8, t. 

E = C := {f( :c,y) = f(y , :r;)} : Obviously, 0 is a lso a C-unifier of 8,t. But since f is now 

commutative, there exists another C-unifier , namely (J = {x ~ y}. These two 
solu tions of our equation s = t are however not independent of each other. In fact , 
() is an instance of (J because 0 = (J 0 {y ~ a}. 

3 



For most applications, one does not need the set of all E-unifiers. A complete set 
of E-unifiers, i.e., a set of E-unifiers from which all E-unifiers can be generated by E­
instantiation, is usually sufficient. More precisely, we extend the relation =E to UE(s, t), 
and define the quasi-ordering ~E on UE(S, t) by 

(J = E () iff X(J = E x() for all variables x occurring in s or t. 

(J ~E e iff there exists a substitution). such that () = E (J 0 ).. 

If (J ~E e then e is called an E-instance of (J, and (J is said to be more general than e. 

A complete set cUE(s, t) of E-unifiers of s, t has to satisfy the conditions 

• cUE(s, t) ~ UE(s, t), and 

• for all e E UE(s, t) there exists (J E cUE(s, t) such that (J ~E e. 

For reasons of efficiency, such a set, should be as small as possible. Thus one is interested 
in minimal complete sets jlUE(S, t) of E-unifiers of s, t, that is, complete sets satisfying 
the additional condition 

• For all (J,e E J.LUE(s,t), (J ~E e implies (J = e. 

Example 1.3 As in Example l.2 we consider the terms s = f(x, a) and t = f( a, y). 

E = A := {f(x, f(y, z)) = fU( :r:, y), z)}: The substitutions e = {x f-+ a, y f-+ a} and 
T = {:c f-+ f(a,z),y f-+ f( z, a)} are A-unifiers of s,t, and it is easy to see that the 
set {e, T} is complete. In addition, e and T are not comparable with respect to ~A, 
which shows that {e, T} is a minimal complete set of E-unifiers of s, t. 

A minimal complete set of E-unifiers may not always exist, but if it exists it is unique 
up to the equivalence defined by (J =E e iff (J ~E e and e ~E (J. For this reason, the 
un~fication type of an equational theory E can be defined with reference to the cardinality 
and existence of minimal complete sets. 

Type 1 (unitary): A set IlUE(S,t) exists for all s,t and has cardinality ~ l. 

Type w (finitary): A set IlUE(S, t) exists for all s, t and is of finite cardinality. 

Type 00 (infinitary): A set IlUE(S, t) exists for all s, t, but may be infinite. 

Type 0 (zero): There are terms s,t such that a set IlUE(S,t) does not exist. 

For example, the empty theory 0 is unitary (see [R065]), commutativity C = {f(x, y) = 

f(y,x)} is finitary (see e.g., [Si76]), associativity A = {f(x,f(y,z)) = fU(x,y),z)} is 
infinitary (see [PI72]) , and the theory B = AU {f(x,x) = x} of idempotent semigroups 
(bands) is of type zero (see [Ba86,Sc86]). 

If a theory E is unitary, then a minimal complete set J.LUE(s, t) is either empty, if s, t 
are not unifiable, or it consists of a single E-unifier of s, t. This unifier is called most 
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genrnd E-uuUie1' of ~, t. It. is unIque up to =E-equivalence. For the f'mpt.y theory, this 

means that most gf'neral unifiers arf' u niquf' up to variable rf'naming, but in gf'nf'ral the 

relation =E may be 1110rf' complex. 

As aln~ady mentioned above, most applications of E-unification presuppose that. thf' 

thf'ory E is unitary or finitary. Of course, for these applicatiolls it is not enough to just 

know that a givell theory is of ty pf' fi1litary. One also 1Ieeds an E-ul/.i fi('(/'! ·':on a.lg01·il.hm. 
Such an algorithm shou ld be ab le to decide whethe r a given pair s, I. of t.f'l'lllS is unifiable; 

and if the answer is "Yf'S" it should computf' a fillite completf' sd, o f E-unifif'rs of .'i, I. This 

notion of a "unification a lgorithm" should be distinguished frolll tlw not.ioll "ullificat.ioll 

procedure" which is only required to enumerate a (possibly i1lfi1litf') complete set of E­
ullifiers , wit.hout llecf'ssarily yie ldi llg a d ecision procedure for E-ullifiabi lit.y (s('(' e.g., [PI72] 

for all f'xamplf' of such a procf'd urf' for A-unificat.ion). 

III order to get. f'ffiriellt applicat.iolls, thf' COlllPIc:t.C set. comput.ed hy t.he ullifica.t.ioll 

a.lgorit.hm should be as small itS poss ihlf' ; but for some t.lwori('s , comput.illg a millima,1 

completf' Sf't. as opposed t.o j ust. comput.illg a fillite complf't.(' set. mity ('a.llS(, t.oo mucil 

oVf'rhf'ad co mpal'f'd t.o what. is gaillf'd by II a.vi1lg a smallf'r set.. As it1l ('XiUllple of a t.heory 

for which t.his plt e1l0mf' 1l011 occms onf' can t.akf' co1lJ1l1ut.at.ivit.y C = {I( :t:,y) = f(y, :r:)}. 
It. is very f'a.sy to df'visf' a.1l algorit.hm computi1lg finite complf't.(' sets of C -ullifi f'rs, but. it. 

is much llardf' r t.o get. mi1lima l complf'te set.s (sf'e ('.g., [Si7G ,II (-'87]). 

2 Unification in the enlpty theory 

Tllf' f'a rlif'st. rf'ff' rf'n cf's for ll 1l ifica.t.ioll of t.f'rms (w lli ch ill th(' fram ewo rk of t.Ilf' previous 

sf'ction is called 0-ullifica.tio ll) dat.e back t.o E. Post ill t.he lD~Os itlld .J. IIerbritlld ill l!):W 
(sf'e [Si89] for all account. of thf' early history of unifi cat ioll t heory) . But. it.s real import.all cc 

I)f'camf' clf'ar ollly wllf'lI 0-unificat ioll was independently redis covf'rd ill .l.A. R.obinsoll 's 

pa pf'r on tllf' rf'solutioll prin ciple [RoG5] alld ill D. KlIuth 's paper on completioll of tf'rm 

rewritillg systf'ms [KB70] . Both papf'rs were seminal for the ir res pective fi e lds, l1i:UTwly 

aut.omated theorem provillg and tel I II rewriting . 

Robillsoll a nd Kllllth show tllitt two unifiabl e terms always have it most general 0-
ullifi f' r , i.f'. , tJlat. tllf' f'lllpty thf'ory is ullitary, and they df'sc ribe a1l a lgorithm which 

computes t.his most. gellf'ral 0-llllifif'r. 

2.1 An inforll1al description of Robinson's algorithm 

We shall now explain R.obinson's algorithm with the help of two examples. A formal 

de:;cription of a very simila.r a.lgorithm can be found in the next section. 

Example 2.1 A:;sume that we want to unify s = f(x,g(a, z)) and t = f(g(a,v) ,x), 
where f , g are binary fUll ct ion symbols, a is a constant symbol, and x, y, z are variables. 

In the first step, one reads the terms simultaneous ly from left to right until the first 

di sag reem ent occurs. In our example, this disagreement occurs at the variable x in .s and 
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the function symbol 9 in t. These places of disagreement define the so-called disq,greement 
terms, which are in our example x and g( a, y). To unify sand t one has to unify these 
disagreement terms, and this can obviously be done with the help of the substitution 
al:= {x f-t g(a,y)}. 

Now one applies this substitution to sand t, and carries on with reading the obtained 
terms- which are sal = f(g(a,v),g(a,z)) and tal = f(g(a,y),g(a,y)) in our example­
from left to right until the first disagreement occurs. This process has to be iterated 
until the terms are unified. In the example, we get the terms z and y as the next pair 
of disagreement terms. After applying the substitution a2 := {y f-t z} to sal and tal, 

we have obtained the unified term sala2 = f(g(a, z), g(a, z)) = tala2. The composition 
a := al 0 a2 is a most general 0-unifier of s, t . 

Obviously, we could also have used the substitution {z f-t y} instead of a2 = {y f-t z}. 
This explains why most general 0-unifiers are unique only up to variable renaming. 

Until now we have only treatec.\ the case where the two terms are unifiable. The next 
example considers all the possible reasons for non-unifiability of terms. 

Example 2.2 First, assume that we want to unify the terms s = f(g(a,v),z) and t = 
f(f(x, V), z). In this case, the disagreement occurs at the function symbol 9 in sand 
at the second symbol f in t. This means that the disagreement terms- namely g( a, V) 
and f( x, y)- have different function symbols as top level symbol. Obviously, this means 
that the disagreement terms, and thus also the terms s, t, are not unifiable. This kind of 
reason for non-unifiability is called clash failure. 

Second, assume that we want to unify the terms s = f(g(a,x),z) and t = J(x,z). 
Here we obtain disagreement terms g(a, x) and x. These two terms cannot be unified 
because the variable x occurs in the term g(o" x). In fact, for any substitution a the size 
of the term xa is strictly smaller than the size of g(o"x)a = g(a,xa) . This kind of reason 
for non-unifiability is called Occ1l1'-check failure. 

2.2 Motivations for USIng 0-unification 

In the remainder of this section we shall shortly sketch the reason why unification is 
important for resolution-based theorem proving and completion of term rewriting systems. 

The aim of resolution-based theorem proving is to refute a given set of clauses. In the 
propositional case, the r·esolution principle can be described roughly as follows. Suppose 
that one already has derived clauses A V P and B V -'p where A, B are clauses and p is a 
propositional variable. Then one can also deduce A V B. 

In the first order case, the role of propositional variables is played by atomic formulae. 
For example, assume that we have clauses of the form Av P(x, a) and BV-,P(a, V). Before 
the resolution rule can be applied one has to instantiate the variables x, y in a suitable 
way. The appropriate instantiations can be found via unification (where the predicate 
symbols are treated like function symbols). In the example, we can apply the 0-unifier 
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e := {.r I-t a, y I-t a} , which y ields the clauses AO V P(a , a) a lld BO V ,P(a, 0.) . Aft.e r 

applying t.h ~ resolut.ion l'UI~ w~ thus get AU V BO . 

In the present example, there was only one 0-unifie r of the givell pair of atomic formu­
lae, but in general there may exist infinitely many unifie rs. However , it can be shown t.hat 

onf' can restrict. onf'sf'lf t.o most gf'nf'ral unifiers wit.hout. losing rf'futation compl~t.enf'ss. 

The aim of a compldion procedure Jor tenn rewriting systems is t.o traIl sform a given 
syst em into an equiva lent complete (i.e., confluent and terminating) systelll, whi ch t.h en 
can bf' uSf'd t.o decidf' t.he word problem for the corresponding f'quatiolla.l thf'ory. 

If a rewrite system is terminating, thell confluence is equivalent t.o local cOllfluf'nce, 

and this property can be decided by considering finitely many critical pairs (see ('.g., 

[KB70 ,Hu80]). For local confiuence., one has to consid f'r triples s, 1. 1, 1'1. of t.erms wller{' 11 

is obtained from s hy applying S0111f' rlll~ 9 --+ d of th~ Systf'111, and t'2 is ohtainf'd from .~ 

by applying sOllle rlile I --+ 1'. Tlw system is locally confluf'.nl ifF for all such tripl~s tller~ 

exists a common df' sc('> IHlant. t of 11 and 1.2 (see the pict.ure below) . The pid.lIre also shows 

.~ I (f (:1: , t' ), .:; ) 

f( :r' ,t'). / ~IU( : I: ' Y) '':;). 
~/ ~ }(, , /(y ,o)) 

f( ·7:, z) f( :T:, I( e, .:;)) 

Local co nflueIl c~ A criti c:al pair 

an example for slich a triple whe!'(~ the rule for a right neutral elenlf'llt e applied to the 

subtenll .1'( :1:, e) of .~ = f(f( :I:, e) , .:;) yields t1 = I(:r; , z), whereas the a.ssociativity rul e for 

f a ppli f' d to ~ y ields t1 = f (:r;, f( e, z )). The term s of this exaIllple was generated from 

the two rul es f( x', e) --+:c;' and J(f( :r;, y) ,z ) --+ J( x ,f(y ,z) ) as follows :1 We have applied 

the unifie r fi := {:T:' I-t :1:,y I-t e} of the left hand side f( :c' ,e) of the first rul e and the 

subt.erm f( :r;, y) of t.hf' other left halld side to this other left hand side. The cr'itical pair' 
t 1 , t2 was then obtained from s by applying the two rules at the appropriate positions. 

As for resolution it can be shown that. it suffices to use most general 0-unifi ers in the 

computation of criti ca.l pairs. 

3 Efficient algorithms for 0-unification 

The naive unification algorithm described in the previous section is of exponential time 

and space complexity. This is demonstrated by the following example. 

Example 3.1 We consider the terms 

1 Please not.e t.hat. t.h e variables in t.he t.wo rules have been made disjoint. . 
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where f is a binary function symbol and XO, ... , Xn are variables. The most general 
0-unifier of Sn, tn computed by the naive algorithm is of the form 

an = {Xl I-t f(xo, Xo), 

X2 I-t f(f(xo, xo), f(xo, xo)), 

X3 I-t f(f(f(xo, xo), f(xo, xo)), f(f(xo, xo), f(xo, xo))), 

} . 

This means that ;Cia1l contains the variable Xo 2i times, and hence ;co is contained in 
the unified term L::~l 2i = 2"+1 - 1 times. Since the size of Sn, in is linear in n, this shows 
that we need space- and thus also time- which is exponential in the size of the input 
terms. 

Until now we have represented terms as strings of symbols. The example shows that 
more efficient unification algorithms depend on a better representation of tertns. Robinson 
himself [R071] proposed a more succinct representation of terms by tables which improves 
the space complexity, but his algorithm is still exponential with respect to time complexity. 
Algorithms having almost linear time complexity were e.g. discovered by Huet [Hu76] and 
by Baxter [Bx76]; and fillally Paterson and Wegman [PW78], and Martelli and Montanari 
[MM77] developed algorithms which are of linear time complexity. Later on, an algorithm 
which is of quadratic time complexity, but shows a better behaviour than the linear ones 
for most applications, was proposed by Bidoit and Corbin [B C83] (for a more complete 
survey of the history of efficient algorithms for 0-unification see e.g. [Kn89,Si89]). 

3.1 A recurSIve verSIon of Robinson's algorithm working on 
dags 

The algorithms of Paterson and Wegman and of Bidoit and Corbin use directed acyclic 

gr'ophs (dags) for the representation of terms. This representation differs from the usual 
tree representation in that variables have to be shared and other sub terms may be shared. 
The following picture shows the terms S3, t3 and the unified term S3a3 = i3a3 of Example 
3.1 in dag-representation. This example shows that the unified term- which in string or 
tree representation would have been exponential in the size of the input terms- can be 
represented by a dag which is not larger than the input terms. 

Now we shall give a recursive version of the naive algorithm which works on dags. 
This algorithm will be linear with respect to space complexity, but still exponential with 
respect to time complexity. Then it will be shown how this algorithm can be modified, 
first to a quadratic algorithm, and then to an almost linear algorithm. 

We assume that dags consist of nodes. Any node in a given dag defines a unique 
(sub)dag (consisting of" the nodes which can be reached from this node), and thus a 
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function nodes. hl11ct.ion nodf's carry til(' following informat.ioll: t.h(' lIame of til(' fUllct.ioll 

symhol, tlw a.rity I/. of t]lis symbol, and a list (of kngt.h n) of til(' Ilocks COIT(,SPOlldillg 

t.o the argument.s of the hlnct.ioll, the so-called succ('ssor list.. 80t.11 fllllCt.ioll a.lld vCtria.hl(' 

Il odf's may bf' ('quipped wit.h Ollt-' addit.ioIlal poillt.('r t.o aIlot.ll('r 1I0de. 

TIl(' inpul of t.11(-' IlIlifi cCttioIl procf'dul'f' (sef' Pigl\l'(' I) is a pair of IIc}(ics ill a dag. TIl(' 

()'(fl})'(f/. is "1. 1'11(''' or " false ," ckp(, lIdill g 011 wllet.!l('r t.he COIT('spoll<iillg t.e1'l1lS a.]'(' IllIifi a hlc 

o r 110t . . As a si(/r ' (JT('c/ t.11(' proc(,d ure CI'('a.t.es .. til a.ddit.iona.1 p o int.('1' St.l'lldl1!,(' Wllicll a.llows 

us t.o read off t.he unifi c~d t.erm alld t.he most. gClleral 0- ullifier. 

Tll('se a.ddit.ional poillt.('rs a re llJ a llipulat.ed or used ill til<' followillg t.lm'(' auxiliary 

I) ro c('d u rf's : 

.find: Tbis procf'dur(' gf't.s a node of the dag as input. , and follows t.h(' addit.iollal poillt.('rs 

unt.il it. reach ~s a. node withollt. SUell a poiut.e r. This node is til(' OIIt.PIJf, of find. 

unio1/.: This 1)J'ocf'dl\l'(' gds a. pair II. , v of nodes (which do not. have addit.iollal point.('J's) 

itS input. , a nd it. creat.es a,11 a.ddit.iomt.1 poillt.e r from'{/, t.o '{J. 

{)('(" I/.F: Tllis procedure g~t.s a. variahle node'{/, a,lId allot.lwr nod e '() (boLlI of whicll do not 

have additiona.l point.ers) as illPllt, and it. performs t.h~ OC(;,II.1' ch('c/,:, i.f' ., it, t.est.s 

whetlH'r t.he variCtblf' is conta ined ill the term correspo llding to v. This t.est. is 

p e rformed 011 tl1f' virt.ual term expressed by the additioual point.e r st.r ucture, i. e., 

olle first. applies find to a ll no(ks reached during this test. 

The unifi cat ion algorithm described in Figure 1 requires oIlly linea.r space s in ce it does 

not. create new nodes, and it creates at most one additional pointe r for each variable 

node. However, t.he time complex ity is still ex poIle Iltial. To see this one ca,1I cO llside r til e 

behavioUl' of the procedll1'e ulli(yl for the illput terms I(sn,f(t;.,xn)) allCl f(tn ,I«, Yn)) 
where $", t" are deh ned as in Exam pie :3.1 and .s~" t~, are obtai ned from .5 n , f. n by replacing 

the :Ci'S by y,:'s. The procedure needs exponentially many calls of unify ] to finally unify 

the node corresponding to x", with the node corresponding to Yn' To be more precise, 

these nodes are already unified a fter n calls of unify] (when Xl and YI are unified) , but 

the procedure needs exponentially many additional calls of unify] to recognize this fact . 
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procedure unify1(kl,k2) 

if kl = k2 then return true 
else %kl and k2 are physically different nodes 

fi 

if fundion-node( k2 ) %if one of the nodes is a 
then u:= kl ; v := k2 %variable node then u 
else u := k2 ; v := kl %is now a variable node 
fi 

if variable-node( u) 
then if occur( u,v) 

then return false %occur-check failure 
else union( u, v); %replace variable u by the 

return true %term corresponding to v 
fi 

else % 1l and v are function nodes 

fi 

if function-symbol( u) =1= function-symbol( v) 
then return false %clash failure 

else n:= arity(function-symbol(u)); 

fi 

(UI' ... , un) := successor-list(u); 
(VI, ... , V n ) := successor-li st(v); 
i := 0; bool := true 

while i < nand bool do 
i := i + 1; bool:= unify1(find(ui),find(vi)) 
od 

return bool 

end procedure unify1 

Figure 1: A recursive version of Robinson's algorithm working on dags 

3.2 A quadratic algorithm 

As a solution to this problem, Bidoit and Corbin propose to not only replace variable 
nodes during the unification process, but also function nodes, provided that one unifies 
the corresponding arguments. This can be achieved by a very simple modification of our 
procedure unifyl. One simply has to insert the statement "union( u,v)" immediately in 
front of the while-loop. Thereby, one obtains a procedure unify2 which is of quadratic 
time complexity. Since each call of unify2 either returns "true" immediately (if the nodes 
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were physically idf'ntical) or makes onf' morf' node virt.ually ul\l'f'ac habl f' (i.f'., it call no 

longer be thf' result of a filld o perat ion) , there can only be linearly mallY rf'cursive calls of 

lIllify2. This also shows that there are only linearly many calls of find , IIllioll , and occllr. 

The quadratic timf' complexity comes from the fact that til f' complex ity of both 

find a nd occlIr is not constant , but may be linear. This should Iw obvious for OCCIlr. 

As an example for the linearity of find , consider the unifi cat ion problf'1ll for the terms 

S I:= f( x2,f(:r3,···, f( :c:,.,y) · · · )) and S2:= f( x I,f( x I, ... , f( x I, :cd ... )). Let kl,k2 be 
the nodes corresponding to 51,52 in a dag-representation of this problem . During the 
execution of unify2(1.:1 ,1.: 2 ), find is called n times with the node corresponding to :1: 1 , and 

for i = 1, ... n, tllf' it" call has to foll ow a pointer chain of length .i. - 1. 

3.3 An ahnost linear algorithnl 

Thus Wf' havf' dpt.ect.eci two SOUITf'S of nOIl -lillf'arity of IIni(y2, llalllf'ly OCCIII" a nd find. 

The first source can pas ily be circumvented by just omitt.ing t.hf' occ ur c1l eck durillg 

thf' execution of thf' unifi cation procf'durf'. Sin ce occur-c1wck failures are not det ectf'd 
immediat.e ly, t.h e procf'ciu re may return "t.rue" even if the te rms are 1l0t. ullifiable. But 

in t hi s case a cycl ic st ructurf' has been generated, and this can be recogni zed by a linear 
spareh. TIlf' complexit.y of find call bp reducpd by employing a Illor(' dficiPllt unioll -find 
a lgo rit.IJll1 a.s e.g. df'scr ilw d ill [Tr7!)]. III t.his way olle get.s all a lmost. lillear ullificat. io ll 
a lgorit.hm (Sf'f' Figun-' 2) which is very similar to Huet's algoritllm. To be IlJo rf' precisf', 

t.lw a lgo ritlllll is of t.im(' complex it.y 0("11 . o{n)) wllf'rf' t.lle fUll ct io ll 0' is all extrell]('l y 

slow-growillg fun ct ioll , which for practical purposes (i.e., for a ll t.erms re prf'sent. a ble at all 

on a computer) neve r exceeds thf' vahw 5. 

The algorithm USf'S tl lree additiolla.l auxiliary procedures , na mely: 

co llapsing-find: Like find, this procedure gets a node k of the dag as input, and follow s 
t he additiona l pointers un t il the node find(k) is reached . In addition, collapsing-find 

relocat.es the poi llt.f' r of a ll tile' lI odf's reached durillg this process 1.0 filld(k). 

uuion-with-v)('ighl.: This proCf~dure gf'ts a. pair 11., v of nodes (whi ch do Ilot have additional 

po int.prs) as illput. . If the set. {k I k is a node with fincl(k) = u} is larger than the 

set {k I k is a 1I 0de with find(k) = v}, then it creates an additional pointer from v 
to 1/., otherwise it creates an additional pointer from u, to v. 

not-cyclic: This procedme gets a node k as input , and it tests the graph whi ch can be 

reached from I.: for cycles. The test is performed on the virtual graph expressed by 

the additional pointer structure, i.e., one first applies co llapsing- find to all nodes 
rea.ched during t.his test. 
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procedure unify3(kl,k2) 

if cyclic-unify( kl ,k2) and 
not-cyclic( kl ) 

then return true 
else return false 
fi end procedure unify3 

procedure cyclic-unify( kl ,k2 ) 

if kl = k2 then return true 
else %k) and k2 are pllysically different nodes 

if function-node(k2) 
then '/J.:= k); v := k2 
else 'l/,:= k2 ; v := k{ 

%if one of the nodes is a 

%varia,ble node tllen 'U. 

%is now a variable node 

fi 

if variable-node( u) 
then if variable-node( v) 

then union-with-weight( 'U.,v) 
else union( u,v) %no weighted union 
fi 
return tnif' %no occur-check 

else % '/I. and v are function nodes 

fi 

if function-symbol( u) i= function- symbol( v) 
then return false %clash failure 

else n:= arity(function-symbol(u)); 

fi 

(1l) , .. . , un) : = successor-lis t( 1l); 
(VI, ... , vn) := successor-list(v); 
i := 0; bool := true; 
union-with-weight( 1l,v) 

while i < nand bool do 
'i:=i+1; 
bool := cyclic-unify( collapsing-find ( 1li ),collapsing-find( v;)) 
od 

return bool 

fi end procedure unify3 

Figllre 2: An almost linear unification algorithm 
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Please note th a t. we cannot ap ply the weighted UlllOll procedure in th(' case whe re w(' 

have a vari able 110de and a fun ct ion no de. In tllis case tlt e pointe r has t o go from the 

vari a ble to the fun ct io n node . Otherwise we should lose import. a nt. informa tion such as 

t he na me of the fun ct ion symbol a nd the argument li st. However , it is ('asy to see th a t the 

use of t his non-o p t ima l union can increase t he t ime complexity a t most. by a sUlllma nd 

O(m) where 'In is the number of diffe rent var ia ble no des o ccurrin g in tI l(' d ag. 

4 Unification in non-eulpty theories 

In t hi s sect ion we sha ll fi rst sket ch by two examples why unifi catio n in ('qu a t.io na l tiwori f's 

was in t. rodu ced illtO t he fie ld s a ll to llla,ted t.h eore m prov in g a nd t.(' n11 r('w rit.in g. T lwn w(' 

sha ll givf' SOli if' ('xa mpl f's fo r II CW prohlems -i.t'., probkms 11 0 1. occ llrrill g fo r t.I )(' (, Illp ty 

ti wo ry--wlli ch a ri se in th eo ry ull ifi ca.t. io ll . TII (,s(' examplf's will show t. ha.t. o ll e hits t.o 

he ve ry care ful wllell t ry ill g to ge ne ra li ze df'fi llitio ll s a.lId rcs lll ts fro m 0-llllifi cati o ll t.o 

UII i fica 1. i0 11 in lI o n-em p1.y 1. heo ri es. 

4.1 Motivations for USIng E-unification 

Plot. kin [Pin] o hst"rved t.\l a t. resolu t. io n t.\ wore m provers lll ay was te a. lo t. o f t ime by a p­

ply illg ax iom s like assoc iat iv it.y a lld commutat ivit.y. As a so lut.i on t.o t.his pro blem h(' 

pro posed 1.0 huild sucll eq ua t.i o ll a l ax io ms int.o t. he theorem prov in g ll wcll a lli sm . As a 

conSf'quell ce 0 11 1" ha.s to use unifi cat. io n mo dul o tl wses ax io ms ill pl ace o f ullifi cat.io ll ill t he 

emp t.y t heory. Plot. kin 's pa pe r was se min a l for ullifi cat.i on t.heory s in \(\ fo r example, t he 

impo rtant no t.ion o f lllillima l compl ete se t. o f unifiers (w hi ch Plo t.kin called it maxima ll y 

gene ra l se t. o f ullifi ers) was fo rma ll y in trodu ced for the first. t.im e. 

Example 4.1 Ass ull w t hat. we ll ave t he ax ioms fU (:r:, y ), z ) = I (:r:,f(y, z )) fo r associa­

t ivity a nd f (.r , .r) = .r fo r idelllpot.e ll ce, a lld t hat we should like to a pply idelllpot ency to 

t. he term 

f (:I'U , / (· 1'1 , " " f (:C'/I- I , /(.7:", / (:I:U,' .. , f (:C,,- I , :r;'/I) " .))) . . . )) 

T he re are exp one ll t ia ll y m a llY ways of rearra ll g ing t he pa re ntheses wit.h the help of as­

soc iat ivity, a lld it. t. a kes a lot. of t ime if t.h e t heorem prove r has t.o searc1 1 fo r t he ri ght 

Oll t". 

To solve t. hi s problem o ue can co nsider wltat a humall mathem at icia ll would do in t hi s 

case. (S) he wo uld o f course use wo rd s instead of terms, i .e. , (s) he wo uld work m odulo 

associat ivity. In t lli s fr am ework one could at once a p ply idempotency :c:c = :c to t he word 

:co .... T" Xo ... Xn . 
'--v--" '--v--" 

X X 

If we wan t t o ado pt t.his proceeding in a reso lu t ion t heorem prover , then we have to 

replace 0-unificat io ll in t he resolu t ion step by A- unification . 
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In term rewriting one comes very soon to the point where one would like to work 
modulo an equational theory. This is a consequence of the fact that certain' identities 
cannot be oriented into terminating rewrite rules. As a solution to this problem one 
can leave some identities unoriented, and then pursue rewriting modulo these equational 
axioms. But then one must also use unification modulo these axioms when computing 
critical pairs (see e.g., [PS81,JK86] for details). 

Example 4.2 In [KB70], the equational theory of groups was used as the motivating 
example. If one tries to apply the completion method of [KB70] to the theory of abelian 
groups, then one has to face the following problem: obviously, the commutativity axiom 
f(x,y) = f(y,x) cannot be oriented into a terminating rule. A solution to this problem 
is to use rewriting modulo 

AC := {fU(x, V), z) = f(x, f(y, z)),f(x, y) = f(y, x)}. 

Rewriting modulo C := {f(x, y) = f(y, x)} is not possible because modulo C asso­
ciativity cannot be oriented into C\ C-terminating rule. Modulo AC one can for example 
make the following rewrite step: 

f( :c, f(y, i(x))) 
modulo AC 

--------+. f( e, y) 
f(x,i(x)) -+ e 

When computing critical pairs for the resulting system one has to use an AC-unification 
algorithm. 

In the following subsections we shall consider some of the particular problems which 
arise when one goes from unification in the empty theory to unification in non-empty 
theories. 

4.2 Single equations versus systems of equations 

Until now we have considered E-unification problems for pairs s, t of terms, i.e., we 
have considered a single equation s = t which has to be solved in the E-free algebra 
T(n, V)/=E. For many applications, one has to solve systems f = {Sl = t l , ... ,Sn = tn} 
of equations, i.e., one wants to find a substitution <J satisfying Sl<J =E t1<J, ... , Sn<J =E tn<J. 
The substitution <J is then called E-unifier of the system f. Now the notions complete 
and minimal complete set of unifiers and unification type of a theory can also be defined 
with respect to solving systems of equations. 

For the empty theory, solving systems of equations can trivially be reduced to solving 
single equations. In fact, it is easy to see that <J is an 0-unifier of the system f = 

{Sl = tl, ... ,sn = t T,} iff it is an 0-unifier of the pair f(Sbf(S2,···f(sn-l,Sn)···)), 
f(t l ,/(t2 ,··· f(t n - l , tn )·· .)) of terms. 

More general, for unitary and finitary theories E, a finite E-unification algorithm 
for single equations can always be used to get a finite E-unification algorithm for finite 
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syst.ems of equations . This is an immediate consequence of the following fact.: Let f be 
a finit.e unifi catioll problem , and let s, t 1)(' terms . If c{1E(f) is a fillite complete set. of 

E-unifiers of f , and if for all substitutions fJ E cUE( f), the sets ('[!E(.~a, fa) are finite 

complete sets of E-ullifiers of SfJ, tfJ then 

U fJ 0 cf1dsa, tfJ) := {fJ 0 T I a E cUE( f) and T E cUdsa, fa)} 
aEcUE(r) 

is a finit e complete set of E-unifiers of f U {s = t} (see e.g., [HeS7]). 

There are also non-finitary equational t heories where so lving finite systems of equations 

can be redu ced to solvillg single equations; but the reduction may of tell be more complex. 

As an example for this case one can take associativity (see e.g., [PeS l]). Howev(' r, a 
reduction canllot be aclli('ved for all ('quatiollal theories. Tllis is df'mOllstrat.ed by the 

followillg two results: 

• Schmidt.-SchauB lIas showlI that. th (' re exist.s (Ill equat.ioll(l.1 t.h eo ry E (see [BI-I89]) 

such that. 

E-ullifica.tioll for sillgk equatiolls is inrinitary, but 

E-ullificatioll for systems of f'quations is of type 2NO . 

• Narelldrall alld OUo hiWf' showlI that therf' ex ist.s all equat.iollal t.h f'o ry F (s~e 

[NO!)O]) sti ch t.Ilat 

tf'st.i Ilg for till i fiabi I i ty is decidable for si Ilgle equatiolls , bu t 

it is ulldecidable for sys t. ems of equatioll s. 

4.3 A closer look at the signature 

It is important to note that the signature over which the terms of the IInifi cation problems 

may be built. has cOllsiderable inflll(,llce 011 the unifi cat ioll type and 011 the existence of 
unificat ion algorithms. 

To make this re mark more precise, we defin e the s£gnaiure of an f:quational th eory E 

(for short sig(E)) as tllf' Sf't of function symbols occurring in the identities of E. When 

talking about unifi catioll ill the theory E, often one only thillks of E-unification problems 

where the terms to I)f' unified are built over sig(E), i.e., are e lem ents of T(.c;ig(E), V). 
However , the a pplicatiolls of E-unification in theorem proving and term rewriting usually 

require that these t erms m ay contain additional constant symbols, or even function sym­

bols of arbitrary arity. Because the interpretat ion of these symbols is not constrained by 
the equatioll theory, th~y are called fTee s ymbols. 

Example 4.3 Th~ tb~ory A = {f(f (x , y), z) = f( x, f(y , z) )} has signature sig(A) = 
{no When talking ahout A-unification, one first thinks of unifying modulo A terms 

built by using just th~ symbol I and variables, or equivalently, of unifying words over the 

alphabet V. 

15 



However, t>uppose that our resolution theorem prover- which has built in the theory 
A- gets the formula 

3;c: (Vy: f(x,y) = y 1\ Vy3z: f(z,y) = x) 

as aXIOm. In a first step, this formula has to be Skolemized, i.e., the existential quantifiers 
have to be replaced by new function symbols. In our example, we need a nullary symbol 
e and a unary symbol i in the Skolemized form 

\ly : f(e,y) = y 1\ \ly : f(i(y),y) = e 

of the axiom. This shows that, even if we start with formulae containing only terms built 
over f, our theorem prover has to handle terms containing additional free symbols. 

The t>3me situation occurs in term rewriting modulo equation theories. In Example 4.2 
we have proposed to use rewriting modulo AC for the theory of abelian groups. Obviously, 
the remaining rules (for the neutral element and the inverse) also contain symbols not 
contained in sig(AC) = {f}. 

To sum up, one should distinguish between three types of E-unification, namely 

Elementary E-unifi:crdion: the terms of the problem may contain only symbols of sig(E); 

E-unificalion with (;ousf(Jll fs : the terms of the problem may contain additional free con­
stant symbols; 

Genernl E-uuificrdion: the terms of the problem may contain additional free function 
symbols of arbitra.ry arity. 

For the -empty theory, we have of course considered general 0-unifi cation because 
elementary unification and unification with constants are trivial in this case. The following 
facts show that there really is a difference between the three types of E-unification. 

• There ex ist theories which are unitary with respect to elementary unification, but 
finitary with respect to unification with constants. An example for such a theory is 
the theory of abelian monoids, i.e., AC U {f(x,l) = x} (see e.g., [He87,Ba89]), or 
the theory of idempotent abelian monoids, i.e., ACU{f(x,l) = :c,f(:r:,x) = x} (see 
e.g., [BB86]) . 

• There exists an equational theory for which elementary unification is decidable, but 
unification wi th constants is undecidable (see [Bii86]). 

• From the developement of the first algorithm for AC-unification with constants 
[St75,LS75] it took almost a decade until the termination of an algorithm for general 
AC-unification was shown by Fages [Fa84]. 
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4 .4 The c0111bination proble111 for unificat ion algorith 111s 

Motivated by the previ o us section , one can now ask: How can algo rit.hms fo r f'1 f' mc llt. a ry 

unificatio n (or for ullifi cat io n with con stant.s ) be used t.o ge t a lgorithms fo r gf' ll c ra l ullifi ­

cat ion ? This leads to t h f' mo re gene ra l qUf's ti o n o f how to co mbill r ullifi ca t.io ll a lgorithms 

fo r equ a tion a l t heo ri f's wi t h disjo in t. s ig na tures. 

Mo rf' fo rm a lly, this combinat ion 7i/ Dbln n. can be ckscribed a s fo ll ows. Assumr th a t two 

finitary equ a t.ion a l tl lf'o ri f's E , F with sig( E ) n sig (F) = 0 a rf' g ivf' lI. II ow , all ullifi catio n 

a lgorit.hms fo r E alld F hf' cOlllbill f'd t.o a unifi catioll a lgorithm fo r 1'; u F'? Hrcall t.hat 

by a ullifi cation a.l gorit.ll11l we m eaJl a n al go rithm whicll compuLf's a filliLf' complf'tr sd. of 

un i fi ers . 

Thi s comhill a ti o ll p ro blem wa.s firs t cO llsi ckrf'd ill [St.75,St8 1,Fa84, IIS87] fo r tit(' ,asr 

wllf' re sf'vf' ra l A(:-sY lllho ls a lld frer sy mbo ls m ay OCC lir ill til(' trrtll s to ullified. Morr 

gf' ll f' ra l co mhill a t.i o ll p ro h lcm s were fo r example t.rrat f' d ill [I"':i 85,TiS(i, lI r8(i, Yr8 7], but. 

tl lf' t.ll eo ri f' s cOll s iderrd ill t.Jl es(' papers a.lways had to sa tisfy cert. a ill restrictiolls (such as 

collapsr- fr f'e ll rss o r reg1l1 a r ity<) 0 11 t.Jw sY lltad ic forlll o f t.h e ir dcfillill g ide lltiti es. 

TIl(-' pro ble lll was filiall y so lvf'd ill it.s most gf' lIf'ra l forlll by Sclllllidt - Scilaltl.~ [Sd~() ]. 

His combill a ti o ll a lgo rithm imposes 11 0 rest.ri ct io ll OIl t.J te sY llta.c1.i c forlll o f the defillill g 

i<i<' ld.i t i f' s. TIl f' o lll y rf'qll i r f' l1wll ts ar f': 

• T Ilf' rr f'x ist ullificati o ll a lgori t ltms fo r unifi cat.i o ll with CO ll s t a llts fo r E a lld F . 

• All CO lls ta ll t (' limill <l. t io ll pro hkllls mu s t 1)(' fillit ary so lvable ill I~ a.lld F . 

A cons /.au/. dim.in(J rio /l. "rob/ f7 11 in a t.h eo ry E is a fi Il it.e se t. {( CI , /.1 ), ... , (cn , /. ,,) } wh e re 

t.h e (/s arf' free COll s t. a lt1,s ( i.( '., CO ll s t.ant sy mbols Il Ot. oCCllrrill g ill sig( I~)) .wd the /' i'S a rc 

t f' rms (built ove r sig(E), va ri a blf' s , a lld so m e frf'f' cO llst. a llts ). A so lut.io ll 1. 0 sUell a problem 

is ca.lIrd a cous /an/ d iUl,iuat07·. It is a su bsti t uti o ll IT such th a t fo r a ll 1:, I :::; i :::; '11" t. he re 

exist.s a t e rm /; Il Ot. cO llta ining t. 1lf' fI"f'f' co nstall t Ci with /.: =E l ;lT . T hr 1I 0 tio ll C07Hpldp 

sf'!. of cons /au/. d i lll:i7l(J/ 0'/'s is d d ined a,ll a logo us ly to t1w no tio ll complete set o f unifi e rs. 

T he rf'quire n lf'nt tll at a ll const a nt r lilllin a ti o n pro ble ms must b e fillit. ary solvable in E 
ll lf'a llS th a t Oll f' call a lways compute a. filli te comple te set o f cO ll s t. a n t el imin a to rs fo r E. 

A mo rf' d -nc ie llt. ve rsi o ll o f tllis combin a ti o ll me th od has b p.en dcs cr i\)(~d in [B090]. It 
sho uld \)(" n ot ed tlla,t, 1.11 1" metlt od of Schmidt-Scha uB can a lso lt a ndl p. t1l eori es whi ch a re 

1I0t filli t ary. III t llis cas(-', proced ures whi ch e llume ra te compl e t. e set. s o f ullifi ers fo r E 
a lld F call b e combined to a procf'dure e numera ting a complete sc t o f unifie rs fo r E U F . 
However , f'Vf' n if ullifi cat io ll in t he si ng le t heori es is d ecid a ble, tlli s docs not show h ow t o 

gf't a decis io n a lgori t hm for unifia bility in t he combined theo ry. 

The infinit a ry t heory A = {f(f (:r;, y) ,z) = f( x, f(y ,z ))} is a n example for thi s case. 

In 1 ~)7 2, Plo tkin [PI72] lI as describ ed a procedure which enume ra tes minimal comple te 

~ A theo ry E is called colla pse-fret-' if it. does not conta in a n identity o f t.he fo rm :1: = t where x is 
a vari ablt~ a nd t is a lI o ll -vari ab le t erm , a nd it is call ed regul ar if the left, a nd right ha nd s ides o f the 
id ent.ities conta in the san lP va ri a hles. 
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sets of A-unifiers for general A-unification problems, and in 1977 Makanin [Ma77] has 
shown that A-unification with constants is decidable. But in 1991, decidability of general 
A-unification was still mentioned as an open problem by Kapur and Narendran [KN89] 
in their table of known decidability and complexity results for unification. 

Based on the ideas of Schmidt-SchauB and Boudet, and motivated by the question 
of how to get a decision procedure for general A-unification, the problem of combining 
decision algorithms for unifiability was considered in [BS92]. This paper presents a method 
which allows one to decide unifiability in the union of arbitrary disjoint equational theories, 
provided that solvability of so-called unification problems with constant restrictions is 
decidable for the single theories. An E-unification problem with constant restriction is an 
ordinary E-unification problem with constants, r = {Sl = t1"",sn = tn }, where each 
free constant c occurring in the problem r is equipped with a set Vc of variables, namely, 
the variables in whose image c must not occur. A solution of the problem is an E-unifier 
(j of r sllch that for all c, ;c with ;c E Vc , the constant c does not occur in X(j. 

5 S0111e topics in unification theory 

The purpose of this paper was not to give an overview of the state of art in unification 
theory, and for this reason there are many important topics we have not touched. Now 
we shall give a (certai lily not complete) list of some of the research problems of current 
interest in unification theory. 

• Determine unification types of equational theories (see e.g., [Sc86,Ba87,Fr89]). 

• Investigate the decidability of the unification problem, and the complexity of this 
decision problem (see e.g., [SS86,KN89]; in [KN89] there is a table summarizing 
many of the known results in this direction). 

• Devise unification algorithms for specific unitary and finitary theories. For example, 
a. lot. of work was- and still is- devoted to finding efficient algorithms for AC­
unifica.tion (see e.g., [St81 ,Fa84,Ki85,Bt86,He87 ,HS87 ,F085, CF89,BD90]). 

• Devise universal unification algorithms, i.e., algorithms where the equational theory 
also belongs to the input of the algorithm. Examples are methods based on narrow­
ing (see e.g., [Fy79,HI80,Fi84,NR89]), or on Martelli and Montanari's decomposition 
technique (see e.g. , [GS87,KK90]). 

For more information on these and other topics in unification theory one can consult 
Siekmann's overview of the state of art in unification theory [Si89], or Jouannaud and 
Kirchner's survey of unification [JK90]. In particular, these papers contain an almost 
complete list of references on unification theory. 
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