
Deutsches
Forschungszentrum
fOr KOnstliche
Intelligenz GmbH

Research
Report

RR-92-33

Unification Theory

Franz Baader

August 1992

Deutsches Forschungszentrum fur Kunstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautem, FRG
Tel. : (+49631) 205-3211113
Fax: (+49631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrucken II, FRG
Tel.: (+49681) 302-5252
Fax: (+49681) 302-5341

Deutsches Forschungszentrum
fur

KOnstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum fOr
KOnstliche Intelligenz, DFKI) with sites in Kaiserslautern and SaarbrOcken is a non-profit
organization which was founded in 1988. The shareholder companies are Atlas Elektronik,
Daimler Benz , Fraunhofer Gesellschaft, GMD, IBM , Insiders, Mannesmann-Kienzle , Philips,
SEMA Group Systems, Siemens and Siemens-Nixdorf . Research projects conducted at the
DFKI are funded by the German Ministry for Research and Technology, by the shareholder
companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science . The overall goal is to construct systems with
technical knowledge and common sense which - by using AI methods - implement a problem
solution for a selected application area. Currently, there are the following research areas at the
DFKI :

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in
order to inform about the current state of research .

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

Unification Theory

Franz Baader

DFKl-RR-92-33

This work has been supported by a grant from The Federal Ministry for Research and
Technology (FKZ ITW-8903 0) .

A preliminary version of this paper has appeared in the Proceedings of the 1 st
International Workshop on Word Equations and Related Topics, IWWERT90, Springer
LNCS 572.

© Deutsches Forschungszentrum fur Kunstliche Intelligenz 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum fur Kunstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum fur Kunstliche Intelligenz.

Unification Theory

Franz Baader
German Research Center for AI (OFKI)

Stuhl satzenh ausweg 3

6600 Saarbrucken 11, Germany

e-mai l: baader@dfki.uni-sb .de

Abstract

T he pmpose of t.his pa per is not. t.o give an overview of t.h e s t. a t.e of art, in unifi cat.ion

t.heory. It is int.ended t.o he a short. int.rodud,ion int.o t.he a rea of eq1l at.i on al unifi
cat.ion which should give t.he reader a fee ling for wh a t. unifi cat.ion t.h eory might. h e
ahout. . T he h asic not.ions such as complet.e a nd minimal complet. e se t. s of unifiers,
a nd unifi cat.ion t.y p es o f equat.ional t.h eori es a re int.rod u c.ed a nd illust. r at.ed hy ex

amples . Then we sh all describ e t.he origin al motivations for consid erin g unifi cat.ion
(in t.he empt.y t.h eory) in resolut.ion t.heorem proving a nd t.erm rewrit.ing. St.art.ing
wit.h Robinson 's fir st. 1lnificat. ion algorit.hm it. will h e ske t. ched how more effi cient.
unifi cat.ion a lgorit.hms can he derived.

We sh a ll t.hen explain t.he reasons which lead t.o the int.roduction of 1lnificat ion

in non-empt.y t.heories int.o t.h e ahove ment ioned areas t.h eorem proving a nd t.erm
rewrit.ing . For t.heory unifi cat.ion it. m akes a difference whet.her singl e eq1l a tions or
syst.e ms of eq1l a t.ions are considered . In add it.ion , one h as t.o be careful wit.h regard
t.o t.he sign at.nre over which t.h e t.erms of t.he unifi cat.i on prohlems can h e built. . T his

leads t.o t.he dist.in ct.ion b et.ween element.ary unifi cation , 1lnification wit.h const. ant.s,
and general 1lnificat.ion (where arhi t. rary free function symh ols m ay occnr). Going
fr om elementa ry unifi cat.ion t.o ge lleral unifi cation is a n instan ce of t.h e so-called
comhin at. ion prohlem for equ at. iona l t.h eories which can be formula t.ed as follows: Let.

E, F b e equational theories over disjoint. sign at.ures. How can 1lnificat.ion algorithms
for E, F he comhined to a unifi cation algorithm for the t.h eory E U F .

Contents

1 What is E -unification?

2 Unification in t he empty theory

2.1 An informal description of Robinson's algorithm

2.2 Motivations for using 0-unification

3 Efficient algorithms for 0-unification

3.1 A recursive version of Robinson's algorithm working on dags

3.2 A quadratic algorithm ...

3.3 An almost linear a.lgorithm ' .

4 Unification in non-empty theories

4.1 Motiva.tions for using E-unification

4.2 Single equations versus systems of equations

4.3 A closer look at the signature

4.4 The combination problem for unification algorithms

5 Some topics in unification theory

2

3

5

5

6

7

8

10

11

13

13

14

15

17

18

1 What is E-unification?

E-unification is concerned with solving term equations modulo an equat ion al theory E.
The theory is called "unita ry" ("finitary") if the solutions of an equa tion can always be

represented by one (fi nitely many) "most general" so lution s. Otherwise' the theory is of
type "infinitary" or "zero." Equational theories which are of unificat ion typf' unitary or
finitary play an important role in automated theorem provers with "built in " theories (see

e.g., [PI72,Ne74,SI74,St85]), in generalizations of the Knuth-Bendix algorit.hm (see e.g.,

[Hu80, PS81,JI(86,Bc87]), and in logic programming with equality (sef' e.g., [JL84]).

The first two app licat ions will be cons idered in subsequent sect ions. In t he present
section Wf' shall introducf' tlw basic 1I0t ions of unifi cat ion theory sudl as completf' and
minima l complf'te sets of unifiers and unifi cat ion typf'S of eq ua tiona l theories, and illus
trate them by f'xaI1lpl f's .

Let fl be a signature, i.e., a set of fun ct ion symbols wit h fixed a rity, and let V 1)(' a
couIlta,ble set of va,ria,hl es. T Ilt" sd. of D-terms with variah les ill V is (knoted hy T(D, V).
A Sf't of idellt.it.if's E ~ T(D, V) x T(D, V) defin f's a ll c(/,lJ,al £O'Iw,[I.hr:o'I'Y =E, i. e ., t.he

equality of terms indu cf'd by E. T IIf' quotient a lgebra T(D, V)/ =E is t.11P £-/1'('(: a!gdJT'a

with generators V, i.f'. , thf' frf'f' a lgebra wit.h countably many gf'nerators over the class o f
a ll J11odf'ls or E.

Example 1.1 Let fl he t he signa.t,U)'f' consisting of one binary fun ct io ll symbol I . The

set of identities A := {I(:c:, I(y ,::)) = fU(x,y),z)} defin es the theory of semigroups.
Obviously, tlw =A-dasses may be considered as words over t.be a.\p ll abct. V, alld t.11P

A-fref' a lgf'b ra T(fl, V)/=A is isomorphi c to t he free semigroup V+.

III formally, we call now say that. E-uui./ica.tion is just so lving equ at ions ill the E-free

algebra T(D, V)/ =E' To be more precise, we have to define what is meant by equat ion

and by solution of tlw equat ion.

For this reason Wf' cO ll sider substitlltions which are mappings 0: V -+ T(D, V) such
t hat {:I' E V I ,7:0 f ,/:} is finite . Sin{(~ T(D, V) is the free fl -algebra with generators V,
t his mapping can ulliquely be extended to a homomorphism 0: T(fl, V) -+ T(fl, V) . A
'U,11.i:fi:cation]J T'o blem (the equation) is a pair of terms s, t., and an E-uui./ier of the problem
(the solution of t he equat ion s = t in T(fl, V)/ =E) is a subst itution 0 such that sO =E 10.
The set of all E-unifiers of s, twill bf' denoted by UE(s, t) .

Example 1.2 Let D be the signature consisting of a binary function symbol f and a

constant symbol (/, . We consider the terms 8 = f(x, a) and t = f(a,y).

E = 0: In this case, the substi t ution () = {x ~ a, y ~ a} is the on ly 0-unifier of the
terms 8, t.

E = C := {f(:c,y) = f(y , :r;)} : Obviously, 0 is a lso a C-unifier of 8,t. But since f is now

commutative, there exists another C-unifier , namely (J = {x ~ y}. These two
solu tions of our equation s = t are however not independent of each other. In fact ,
() is an instance of (J because 0 = (J 0 {y ~ a}.

3

For most applications, one does not need the set of all E-unifiers. A complete set
of E-unifiers, i.e., a set of E-unifiers from which all E-unifiers can be generated by E
instantiation, is usually sufficient. More precisely, we extend the relation =E to UE(s, t),
and define the quasi-ordering ~E on UE(S, t) by

(J = E () iff X(J = E x() for all variables x occurring in s or t.

(J ~E e iff there exists a substitution). such that () = E (J 0)..

If (J ~E e then e is called an E-instance of (J, and (J is said to be more general than e.

A complete set cUE(s, t) of E-unifiers of s, t has to satisfy the conditions

• cUE(s, t) ~ UE(s, t), and

• for all e E UE(s, t) there exists (J E cUE(s, t) such that (J ~E e.

For reasons of efficiency, such a set, should be as small as possible. Thus one is interested
in minimal complete sets jlUE(S, t) of E-unifiers of s, t, that is, complete sets satisfying
the additional condition

• For all (J,e E J.LUE(s,t), (J ~E e implies (J = e.

Example 1.3 As in Example l.2 we consider the terms s = f(x, a) and t = f(a, y).

E = A := {f(x, f(y, z)) = fU(:r:, y), z)}: The substitutions e = {x f-+ a, y f-+ a} and
T = {:c f-+ f(a,z),y f-+ f(z, a)} are A-unifiers of s,t, and it is easy to see that the
set {e, T} is complete. In addition, e and T are not comparable with respect to ~A,
which shows that {e, T} is a minimal complete set of E-unifiers of s, t.

A minimal complete set of E-unifiers may not always exist, but if it exists it is unique
up to the equivalence defined by (J =E e iff (J ~E e and e ~E (J. For this reason, the
un~fication type of an equational theory E can be defined with reference to the cardinality
and existence of minimal complete sets.

Type 1 (unitary): A set IlUE(S,t) exists for all s,t and has cardinality ~ l.

Type w (finitary): A set IlUE(S, t) exists for all s, t and is of finite cardinality.

Type 00 (infinitary): A set IlUE(S, t) exists for all s, t, but may be infinite.

Type 0 (zero): There are terms s,t such that a set IlUE(S,t) does not exist.

For example, the empty theory 0 is unitary (see [R065]), commutativity C = {f(x, y) =

f(y,x)} is finitary (see e.g., [Si76]), associativity A = {f(x,f(y,z)) = fU(x,y),z)} is
infinitary (see [PI72]) , and the theory B = AU {f(x,x) = x} of idempotent semigroups
(bands) is of type zero (see [Ba86,Sc86]).

If a theory E is unitary, then a minimal complete set J.LUE(s, t) is either empty, if s, t
are not unifiable, or it consists of a single E-unifier of s, t. This unifier is called most

4

genrnd E-uuUie1' of ~, t. It. is unIque up to =E-equivalence. For the f'mpt.y theory, this

means that most gf'neral unifiers arf' u niquf' up to variable rf'naming, but in gf'nf'ral the

relation =E may be 1110rf' complex.

As aln~ady mentioned above, most applications of E-unification presuppose that. thf'

thf'ory E is unitary or finitary. Of course, for these applicatiolls it is not enough to just

know that a givell theory is of ty pf' fi1litary. One also 1Ieeds an E-ul/.i fi('(/'! ·':on a.lg01·il.hm.
Such an algorithm shou ld be ab le to decide whethe r a given pair s, I. of t.f'l'lllS is unifiable;

and if the answer is "Yf'S" it should computf' a fillite completf' sd, o f E-unifif'rs of .'i, I. This

notion of a "unification a lgorithm" should be distinguished frolll tlw not.ioll "ullificat.ioll

procedure" which is only required to enumerate a (possibly i1lfi1litf') complete set of E
ullifiers , wit.hout llecf'ssarily yie ldi llg a d ecision procedure for E-ullifiabi lit.y (s('(' e.g., [PI72]

for all f'xamplf' of such a procf'd urf' for A-unificat.ion).

III order to get. f'ffiriellt applicat.iolls, thf' COlllPIc:t.C set. comput.ed hy t.he ullifica.t.ioll

a.lgorit.hm should be as small itS poss ihlf' ; but for some t.lwori('s , comput.illg a millima,1

completf' Sf't. as opposed t.o j ust. comput.illg a fillite complf't.(' set. mity ('a.llS(, t.oo mucil

oVf'rhf'ad co mpal'f'd t.o what. is gaillf'd by II a.vi1lg a smallf'r set.. As it1l ('XiUllple of a t.heory

for which t.his plt e1l0mf' 1l011 occms onf' can t.akf' co1lJ1l1ut.at.ivit.y C = {I(:t:,y) = f(y, :r:)}.
It. is very f'a.sy to df'visf' a.1l algorit.hm computi1lg finite complf't.(' sets of C -ullifi f'rs, but. it.

is much llardf' r t.o get. mi1lima l complf'te set.s (sf'e ('.g., [Si7G ,II (-'87]).

2 Unification in the enlpty theory

Tllf' f'a rlif'st. rf'ff' rf'n cf's for ll 1l ifica.t.ioll of t.f'rms (w lli ch ill th(' fram ewo rk of t.Ilf' previous

sf'ction is called 0-ullifica.tio ll) dat.e back t.o E. Post ill t.he lD~Os itlld .J. IIerbritlld ill l!):W
(sf'e [Si89] for all account. of thf' early history of unifi cat ioll t heory) . But. it.s real import.all cc

I)f'camf' clf'ar ollly wllf'lI 0-unificat ioll was independently redis covf'rd ill .l.A. R.obinsoll 's

pa pf'r on tllf' rf'solutioll prin ciple [RoG5] alld ill D. KlIuth 's paper on completioll of tf'rm

rewritillg systf'ms [KB70] . Both papf'rs were seminal for the ir res pective fi e lds, l1i:UTwly

aut.omated theorem provillg and tel I II rewriting .

Robillsoll a nd Kllllth show tllitt two unifiabl e terms always have it most general 0-
ullifi f' r , i.f'. , tJlat. tllf' f'lllpty thf'ory is ullitary, and they df'sc ribe a1l a lgorithm which

computes t.his most. gellf'ral 0-llllifif'r.

2.1 An inforll1al description of Robinson's algorithm

We shall now explain R.obinson's algorithm with the help of two examples. A formal

de:;cription of a very simila.r a.lgorithm can be found in the next section.

Example 2.1 A:;sume that we want to unify s = f(x,g(a, z)) and t = f(g(a,v) ,x),
where f , g are binary fUll ct ion symbols, a is a constant symbol, and x, y, z are variables.

In the first step, one reads the terms simultaneous ly from left to right until the first

di sag reem ent occurs. In our example, this disagreement occurs at the variable x in .s and

5

the function symbol 9 in t. These places of disagreement define the so-called disq,greement
terms, which are in our example x and g(a, y). To unify sand t one has to unify these
disagreement terms, and this can obviously be done with the help of the substitution
al:= {x f-t g(a,y)}.

Now one applies this substitution to sand t, and carries on with reading the obtained
terms- which are sal = f(g(a,v),g(a,z)) and tal = f(g(a,y),g(a,y)) in our example
from left to right until the first disagreement occurs. This process has to be iterated
until the terms are unified. In the example, we get the terms z and y as the next pair
of disagreement terms. After applying the substitution a2 := {y f-t z} to sal and tal,

we have obtained the unified term sala2 = f(g(a, z), g(a, z)) = tala2. The composition
a := al 0 a2 is a most general 0-unifier of s, t .

Obviously, we could also have used the substitution {z f-t y} instead of a2 = {y f-t z}.
This explains why most general 0-unifiers are unique only up to variable renaming.

Until now we have only treatec.\ the case where the two terms are unifiable. The next
example considers all the possible reasons for non-unifiability of terms.

Example 2.2 First, assume that we want to unify the terms s = f(g(a,v),z) and t =
f(f(x, V), z). In this case, the disagreement occurs at the function symbol 9 in sand
at the second symbol f in t. This means that the disagreement terms- namely g(a, V)
and f(x, y)- have different function symbols as top level symbol. Obviously, this means
that the disagreement terms, and thus also the terms s, t, are not unifiable. This kind of
reason for non-unifiability is called clash failure.

Second, assume that we want to unify the terms s = f(g(a,x),z) and t = J(x,z).
Here we obtain disagreement terms g(a, x) and x. These two terms cannot be unified
because the variable x occurs in the term g(o" x). In fact, for any substitution a the size
of the term xa is strictly smaller than the size of g(o"x)a = g(a,xa) . This kind of reason
for non-unifiability is called Occ1l1'-check failure.

2.2 Motivations for USIng 0-unification

In the remainder of this section we shall shortly sketch the reason why unification is
important for resolution-based theorem proving and completion of term rewriting systems.

The aim of resolution-based theorem proving is to refute a given set of clauses. In the
propositional case, the r·esolution principle can be described roughly as follows. Suppose
that one already has derived clauses A V P and B V -'p where A, B are clauses and p is a
propositional variable. Then one can also deduce A V B.

In the first order case, the role of propositional variables is played by atomic formulae.
For example, assume that we have clauses of the form Av P(x, a) and BV-,P(a, V). Before
the resolution rule can be applied one has to instantiate the variables x, y in a suitable
way. The appropriate instantiations can be found via unification (where the predicate
symbols are treated like function symbols). In the example, we can apply the 0-unifier

6

e := {.r I-t a, y I-t a} , which y ields the clauses AO V P(a , a) a lld BO V ,P(a, 0.) . Aft.e r

applying t.h ~ resolut.ion l'UI~ w~ thus get AU V BO .

In the present example, there was only one 0-unifie r of the givell pair of atomic formu
lae, but in general there may exist infinitely many unifie rs. However , it can be shown t.hat

onf' can restrict. onf'sf'lf t.o most gf'nf'ral unifiers wit.hout. losing rf'futation compl~t.enf'ss.

The aim of a compldion procedure Jor tenn rewriting systems is t.o traIl sform a given
syst em into an equiva lent complete (i.e., confluent and terminating) systelll, whi ch t.h en
can bf' uSf'd t.o decidf' t.he word problem for the corresponding f'quatiolla.l thf'ory.

If a rewrite system is terminating, thell confluence is equivalent t.o local cOllfluf'nce,

and this property can be decided by considering finitely many critical pairs (see ('.g.,

[KB70 ,Hu80]). For local confiuence., one has to consid f'r triples s, 1. 1, 1'1. of t.erms wller{' 11

is obtained from s hy applying S0111f' rlll~ 9 --+ d of th~ Systf'111, and t'2 is ohtainf'd from .~

by applying sOllle rlile I --+ 1'. Tlw system is locally confluf'.nl ifF for all such tripl~s tller~

exists a common df' sc('> IHlant. t of 11 and 1.2 (see the pict.ure below) . The pid.lIre also shows

.~ I (f (:1: , t'), .:;)

f(:r' ,t'). / ~IU(: I: ' Y) '':;).
~/ ~ }(, , /(y ,o))

f(·7:, z) f(:T:, I(e, .:;))

Local co nflueIl c~ A criti c:al pair

an example for slich a triple whe!'(~ the rule for a right neutral elenlf'llt e applied to the

subtenll .1'(:1:, e) of .~ = f(f(:I:, e) , .:;) yields t1 = I(:r; , z), whereas the a.ssociativity rul e for

f a ppli f' d to ~ y ields t1 = f (:r;, f(e, z)). The term s of this exaIllple was generated from

the two rul es f(x', e) --+:c;' and J(f(:r;, y) ,z) --+ J(x ,f(y ,z)) as follows :1 We have applied

the unifie r fi := {:T:' I-t :1:,y I-t e} of the left hand side f(:c' ,e) of the first rul e and the

subt.erm f(:r;, y) of t.hf' other left halld side to this other left hand side. The cr'itical pair'
t 1 , t2 was then obtained from s by applying the two rules at the appropriate positions.

As for resolution it can be shown that. it suffices to use most general 0-unifi ers in the

computation of criti ca.l pairs.

3 Efficient algorithms for 0-unification

The naive unification algorithm described in the previous section is of exponential time

and space complexity. This is demonstrated by the following example.

Example 3.1 We consider the terms

1 Please not.e t.hat. t.h e variables in t.he t.wo rules have been made disjoint. .

7

where f is a binary function symbol and XO, ... , Xn are variables. The most general
0-unifier of Sn, tn computed by the naive algorithm is of the form

an = {Xl I-t f(xo, Xo),

X2 I-t f(f(xo, xo), f(xo, xo)),

X3 I-t f(f(f(xo, xo), f(xo, xo)), f(f(xo, xo), f(xo, xo))),

} .

This means that ;Cia1l contains the variable Xo 2i times, and hence ;co is contained in
the unified term L::~l 2i = 2"+1 - 1 times. Since the size of Sn, in is linear in n, this shows
that we need space- and thus also time- which is exponential in the size of the input
terms.

Until now we have represented terms as strings of symbols. The example shows that
more efficient unification algorithms depend on a better representation of tertns. Robinson
himself [R071] proposed a more succinct representation of terms by tables which improves
the space complexity, but his algorithm is still exponential with respect to time complexity.
Algorithms having almost linear time complexity were e.g. discovered by Huet [Hu76] and
by Baxter [Bx76]; and fillally Paterson and Wegman [PW78], and Martelli and Montanari
[MM77] developed algorithms which are of linear time complexity. Later on, an algorithm
which is of quadratic time complexity, but shows a better behaviour than the linear ones
for most applications, was proposed by Bidoit and Corbin [B C83] (for a more complete
survey of the history of efficient algorithms for 0-unification see e.g. [Kn89,Si89]).

3.1 A recurSIve verSIon of Robinson's algorithm working on
dags

The algorithms of Paterson and Wegman and of Bidoit and Corbin use directed acyclic

gr'ophs (dags) for the representation of terms. This representation differs from the usual
tree representation in that variables have to be shared and other sub terms may be shared.
The following picture shows the terms S3, t3 and the unified term S3a3 = i3a3 of Example
3.1 in dag-representation. This example shows that the unified term- which in string or
tree representation would have been exponential in the size of the input terms- can be
represented by a dag which is not larger than the input terms.

Now we shall give a recursive version of the naive algorithm which works on dags.
This algorithm will be linear with respect to space complexity, but still exponential with
respect to time complexity. Then it will be shown how this algorithm can be modified,
first to a quadratic algorithm, and then to an almost linear algorithm.

We assume that dags consist of nodes. Any node in a given dag defines a unique
(sub)dag (consisting of" the nodes which can be reached from this node), and thus a

8

I

~
f

I

I

/\
f I

U /
! ii !i!
·1:1 :['2

Thf' tf'l'll1S .s;) alld I :) The UII i n('c\ t.~rm

U1l1Cjue (sllb)t.e rm. Thel'f' ar(' t.wo C\if('erellt typ('s of nodes, lIallH'ly va.ria.hic IIOc\(,S and

function nodes. hl11ct.ion nodf's carry til(' following informat.ioll: t.h(' lIame of til(' fUllct.ioll

symhol, tlw a.rity I/. of t]lis symbol, and a list (of kngt.h n) of til(' Ilocks COIT(,SPOlldillg

t.o the argument.s of the hlnct.ioll, the so-called succ('ssor list.. 80t.11 fllllCt.ioll a.lld vCtria.hl('

Il odf's may bf' ('quipped wit.h Ollt-' addit.ioIlal poillt.('r t.o aIlot.ll('r 1I0de.

TIl(' inpul of t.11(-' IlIlifi cCttioIl procf'dul'f' (sef' Pigl\l'(' I) is a pair of IIc}(ics ill a dag. TIl('

()'(fl})'(f/. is "1. 1'11(''' or " false ," ckp(, lIdill g 011 wllet.!l('r t.he COIT('spoll<iillg t.e1'l1lS a.]'(' IllIifi a hlc

o r 110t . . As a si(/r ' (JT('c/ t.11(' proc(,d ure CI'('a.t.es .. til a.ddit.iona.1 p o int.('1' St.l'lldl1!,(' Wllicll a.llows

us t.o read off t.he unifi c~d t.erm alld t.he most. gClleral 0- ullifier.

Tll('se a.ddit.ional poillt.('rs a re llJ a llipulat.ed or used ill til<' followillg t.lm'(' auxiliary

I) ro c('d u rf's :

.find: Tbis procf'dur(' gf't.s a node of the dag as input. , and follows t.h(' addit.iollal poillt.('rs

unt.il it. reach ~s a. node withollt. SUell a poiut.e r. This node is til(' OIIt.PIJf, of find.

unio1/.: This 1)J'ocf'dl\l'(' gds a. pair II. , v of nodes (which do not. have addit.iollal point.('J's)

itS input. , a nd it. creat.es a,11 a.ddit.iomt.1 poillt.e r from'{/, t.o '{J.

{)('(" I/.F: Tllis procedure g~t.s a. variahle node'{/, a,lId allot.lwr nod e '() (boLlI of whicll do not

have additiona.l point.ers) as illPllt, and it. performs t.h~ OC(;,II.1' ch('c/,:, i.f' ., it, t.est.s

whetlH'r t.he variCtblf' is conta ined ill the term correspo llding to v. This t.est. is

p e rformed 011 tl1f' virt.ual term expressed by the additioual point.e r st.r ucture, i. e.,

olle first. applies find to a ll no(ks reached during this test.

The unifi cat ion algorithm described in Figure 1 requires oIlly linea.r space s in ce it does

not. create new nodes, and it creates at most one additional pointe r for each variable

node. However, t.he time complex ity is still ex poIle Iltial. To see this one ca,1I cO llside r til e

behavioUl' of the procedll1'e ulli(yl for the illput terms I(sn,f(t;.,xn)) allCl f(tn ,I«, Yn))
where $", t" are deh ned as in Exam pie :3.1 and .s~" t~, are obtai ned from .5 n , f. n by replacing

the :Ci'S by y,:'s. The procedure needs exponentially many calls of unify] to finally unify

the node corresponding to x", with the node corresponding to Yn' To be more precise,

these nodes are already unified a fter n calls of unify] (when Xl and YI are unified) , but

the procedure needs exponentially many additional calls of unify] to recognize this fact .

9

procedure unify1(kl,k2)

if kl = k2 then return true
else %kl and k2 are physically different nodes

fi

if fundion-node(k2) %if one of the nodes is a
then u:= kl ; v := k2 %variable node then u
else u := k2 ; v := kl %is now a variable node
fi

if variable-node(u)
then if occur(u,v)

then return false %occur-check failure
else union(u, v); %replace variable u by the

return true %term corresponding to v
fi

else % 1l and v are function nodes

fi

if function-symbol(u) =1= function-symbol(v)
then return false %clash failure

else n:= arity(function-symbol(u));

fi

(UI' ... , un) := successor-list(u);
(VI, ... , V n) := successor-li st(v);
i := 0; bool := true

while i < nand bool do
i := i + 1; bool:= unify1(find(ui),find(vi))
od

return bool

end procedure unify1

Figure 1: A recursive version of Robinson's algorithm working on dags

3.2 A quadratic algorithm

As a solution to this problem, Bidoit and Corbin propose to not only replace variable
nodes during the unification process, but also function nodes, provided that one unifies
the corresponding arguments. This can be achieved by a very simple modification of our
procedure unifyl. One simply has to insert the statement "union(u,v)" immediately in
front of the while-loop. Thereby, one obtains a procedure unify2 which is of quadratic
time complexity. Since each call of unify2 either returns "true" immediately (if the nodes

10

were physically idf'ntical) or makes onf' morf' node virt.ually ul\l'f'ac habl f' (i.f'., it call no

longer be thf' result of a filld o perat ion) , there can only be linearly mallY rf'cursive calls of

lIllify2. This also shows that there are only linearly many calls of find , IIllioll , and occllr.

The quadratic timf' complexity comes from the fact that til f' complex ity of both

find a nd occlIr is not constant , but may be linear. This should Iw obvious for OCCIlr.

As an example for the linearity of find , consider the unifi cat ion problf'1ll for the terms

S I:= f(x2,f(:r3,···, f(:c:,.,y) · · ·)) and S2:= f(x I,f(x I, ... , f(x I, :cd ...)). Let kl,k2 be
the nodes corresponding to 51,52 in a dag-representation of this problem . During the
execution of unify2(1.:1 ,1.: 2), find is called n times with the node corresponding to :1: 1 , and

for i = 1, ... n, tllf' it" call has to foll ow a pointer chain of length .i. - 1.

3.3 An ahnost linear algorithnl

Thus Wf' havf' dpt.ect.eci two SOUITf'S of nOIl -lillf'arity of IIni(y2, llalllf'ly OCCIII" a nd find.

The first source can pas ily be circumvented by just omitt.ing t.hf' occ ur c1l eck durillg

thf' execution of thf' unifi cation procf'durf'. Sin ce occur-c1wck failures are not det ectf'd
immediat.e ly, t.h e procf'ciu re may return "t.rue" even if the te rms are 1l0t. ullifiable. But

in t hi s case a cycl ic st ructurf' has been generated, and this can be recogni zed by a linear
spareh. TIlf' complexit.y of find call bp reducpd by employing a Illor(' dficiPllt unioll -find
a lgo rit.IJll1 a.s e.g. df'scr ilw d ill [Tr7!)]. III t.his way olle get.s all a lmost. lillear ullificat. io ll
a lgorit.hm (Sf'f' Figun-' 2) which is very similar to Huet's algoritllm. To be IlJo rf' precisf',

t.lw a lgo ritlllll is of t.im(' complex it.y 0("11 . o{n)) wllf'rf' t.lle fUll ct io ll 0' is all extrell]('l y

slow-growillg fun ct ioll , which for practical purposes (i.e., for a ll t.erms re prf'sent. a ble at all

on a computer) neve r exceeds thf' vahw 5.

The algorithm USf'S tl lree additiolla.l auxiliary procedures , na mely:

co llapsing-find: Like find, this procedure gets a node k of the dag as input, and follow s
t he additiona l pointers un t il the node find(k) is reached . In addition, collapsing-find

relocat.es the poi llt.f' r of a ll tile' lI odf's reached durillg this process 1.0 filld(k).

uuion-with-v)('ighl.: This proCf~dure gf'ts a. pair 11., v of nodes (whi ch do Ilot have additional

po int.prs) as illput. . If the set. {k I k is a node with fincl(k) = u} is larger than the

set {k I k is a 1I 0de with find(k) = v}, then it creates an additional pointer from v
to 1/., otherwise it creates an additional pointer from u, to v.

not-cyclic: This procedme gets a node k as input , and it tests the graph whi ch can be

reached from I.: for cycles. The test is performed on the virtual graph expressed by

the additional pointer structure, i.e., one first applies co llapsing- find to all nodes
rea.ched during t.his test.

11

procedure unify3(kl,k2)

if cyclic-unify(kl ,k2) and
not-cyclic(kl)

then return true
else return false
fi end procedure unify3

procedure cyclic-unify(kl ,k2)

if kl = k2 then return true
else %k) and k2 are pllysically different nodes

if function-node(k2)
then '/J.:= k); v := k2
else 'l/,:= k2 ; v := k{

%if one of the nodes is a

%varia,ble node tllen 'U.

%is now a variable node

fi

if variable-node(u)
then if variable-node(v)

then union-with-weight('U.,v)
else union(u,v) %no weighted union
fi
return tnif' %no occur-check

else % '/I. and v are function nodes

fi

if function-symbol(u) i= function- symbol(v)
then return false %clash failure

else n:= arity(function-symbol(u));

fi

(1l) , .. . , un) : = successor-lis t(1l);
(VI, ... , vn) := successor-list(v);
i := 0; bool := true;
union-with-weight(1l,v)

while i < nand bool do
'i:=i+1;
bool := cyclic-unify(collapsing-find (1li),collapsing-find(v;))
od

return bool

fi end procedure unify3

Figllre 2: An almost linear unification algorithm

12

Please note th a t. we cannot ap ply the weighted UlllOll procedure in th(' case whe re w('

have a vari able 110de and a fun ct ion no de. In tllis case tlt e pointe r has t o go from the

vari a ble to the fun ct io n node . Otherwise we should lose import. a nt. informa tion such as

t he na me of the fun ct ion symbol a nd the argument li st. However , it is ('asy to see th a t the

use of t his non-o p t ima l union can increase t he t ime complexity a t most. by a sUlllma nd

O(m) where 'In is the number of diffe rent var ia ble no des o ccurrin g in tI l(' d ag.

4 Unification in non-eulpty theories

In t hi s sect ion we sha ll fi rst sket ch by two examples why unifi catio n in ('qu a t.io na l tiwori f's

was in t. rodu ced illtO t he fie ld s a ll to llla,ted t.h eore m prov in g a nd t.(' n11 r('w rit.in g. T lwn w('

sha ll givf' SOli if' ('xa mpl f's fo r II CW prohlems -i.t'., probkms 11 0 1. occ llrrill g fo r t.I)(' (, Illp ty

ti wo ry--wlli ch a ri se in th eo ry ull ifi ca.t. io ll . TII (,s(' examplf's will show t. ha.t. o ll e hits t.o

he ve ry care ful wllell t ry ill g to ge ne ra li ze df'fi llitio ll s a.lId rcs lll ts fro m 0-llllifi cati o ll t.o

UII i fica 1. i0 11 in lI o n-em p1.y 1. heo ri es.

4.1 Motivations for USIng E-unification

Plot. kin [Pin] o hst"rved t.\l a t. resolu t. io n t.\ wore m provers lll ay was te a. lo t. o f t ime by a p

ply illg ax iom s like assoc iat iv it.y a lld commutat ivit.y. As a so lut.i on t.o t.his pro blem h('

pro posed 1.0 huild sucll eq ua t.i o ll a l ax io ms int.o t. he theorem prov in g ll wcll a lli sm . As a

conSf'quell ce 0 11 1" ha.s to use unifi cat. io n mo dul o tl wses ax io ms ill pl ace o f ullifi cat.io ll ill t he

emp t.y t heory. Plot. kin 's pa pe r was se min a l for ullifi cat.i on t.heory s in \(\ fo r example, t he

impo rtant no t.ion o f lllillima l compl ete se t. o f unifiers (w hi ch Plo t.kin called it maxima ll y

gene ra l se t. o f ullifi ers) was fo rma ll y in trodu ced for the first. t.im e.

Example 4.1 Ass ull w t hat. we ll ave t he ax ioms fU (:r:, y), z) = I (:r:,f(y, z)) fo r associa

t ivity a nd f (.r , .r) = .r fo r idelllpot.e ll ce, a lld t hat we should like to a pply idelllpot ency to

t. he term

f (:I'U , / (· 1'1 , " " f (:C'/I- I , /(.7:", / (:I:U,' .. , f (:C,,- I , :r;'/I) " .))) . . .))

T he re are exp one ll t ia ll y m a llY ways of rearra ll g ing t he pa re ntheses wit.h the help of as

soc iat ivity, a lld it. t. a kes a lot. of t ime if t.h e t heorem prove r has t.o searc1 1 fo r t he ri ght

Oll t".

To solve t. hi s problem o ue can co nsider wltat a humall mathem at icia ll would do in t hi s

case. (S) he wo uld o f course use wo rd s instead of terms, i .e. , (s) he wo uld work m odulo

associat ivity. In t lli s fr am ework one could at once a p ply idempotency :c:c = :c to t he word

:co T" Xo ... Xn .
'--v--" '--v--"

X X

If we wan t t o ado pt t.his proceeding in a reso lu t ion t heorem prover , then we have to

replace 0-unificat io ll in t he resolu t ion step by A- unification .

13

In term rewriting one comes very soon to the point where one would like to work
modulo an equational theory. This is a consequence of the fact that certain' identities
cannot be oriented into terminating rewrite rules. As a solution to this problem one
can leave some identities unoriented, and then pursue rewriting modulo these equational
axioms. But then one must also use unification modulo these axioms when computing
critical pairs (see e.g., [PS81,JK86] for details).

Example 4.2 In [KB70], the equational theory of groups was used as the motivating
example. If one tries to apply the completion method of [KB70] to the theory of abelian
groups, then one has to face the following problem: obviously, the commutativity axiom
f(x,y) = f(y,x) cannot be oriented into a terminating rule. A solution to this problem
is to use rewriting modulo

AC := {fU(x, V), z) = f(x, f(y, z)),f(x, y) = f(y, x)}.

Rewriting modulo C := {f(x, y) = f(y, x)} is not possible because modulo C asso
ciativity cannot be oriented into C\ C-terminating rule. Modulo AC one can for example
make the following rewrite step:

f(:c, f(y, i(x)))
modulo AC

--------+. f(e, y)
f(x,i(x)) -+ e

When computing critical pairs for the resulting system one has to use an AC-unification
algorithm.

In the following subsections we shall consider some of the particular problems which
arise when one goes from unification in the empty theory to unification in non-empty
theories.

4.2 Single equations versus systems of equations

Until now we have considered E-unification problems for pairs s, t of terms, i.e., we
have considered a single equation s = t which has to be solved in the E-free algebra
T(n, V)/=E. For many applications, one has to solve systems f = {Sl = t l , ... ,Sn = tn}
of equations, i.e., one wants to find a substitution <J satisfying Sl<J =E t1<J, ... , Sn<J =E tn<J.
The substitution <J is then called E-unifier of the system f. Now the notions complete
and minimal complete set of unifiers and unification type of a theory can also be defined
with respect to solving systems of equations.

For the empty theory, solving systems of equations can trivially be reduced to solving
single equations. In fact, it is easy to see that <J is an 0-unifier of the system f =

{Sl = tl, ... ,sn = t T,} iff it is an 0-unifier of the pair f(Sbf(S2,···f(sn-l,Sn)···)),
f(t l ,/(t2 ,··· f(t n - l , tn)·· .)) of terms.

More general, for unitary and finitary theories E, a finite E-unification algorithm
for single equations can always be used to get a finite E-unification algorithm for finite

14

syst.ems of equations . This is an immediate consequence of the following fact.: Let f be
a finit.e unifi catioll problem , and let s, t 1)(' terms . If c{1E(f) is a fillite complete set. of

E-unifiers of f , and if for all substitutions fJ E cUE(f), the sets ('[!E(.~a, fa) are finite

complete sets of E-ullifiers of SfJ, tfJ then

U fJ 0 cf1dsa, tfJ) := {fJ 0 T I a E cUE(f) and T E cUdsa, fa)}
aEcUE(r)

is a finit e complete set of E-unifiers of f U {s = t} (see e.g., [HeS7]).

There are also non-finitary equational t heories where so lving finite systems of equations

can be redu ced to solvillg single equations; but the reduction may of tell be more complex.

As an example for this case one can take associativity (see e.g., [PeS l]). Howev(' r, a
reduction canllot be aclli('ved for all ('quatiollal theories. Tllis is df'mOllstrat.ed by the

followillg two results:

• Schmidt.-SchauB lIas showlI that. th (' re exist.s (Ill equat.ioll(l.1 t.h eo ry E (see [BI-I89])

such that.

E-ullifica.tioll for sillgk equatiolls is inrinitary, but

E-ullificatioll for systems of f'quations is of type 2NO .

• Narelldrall alld OUo hiWf' showlI that therf' ex ist.s all equat.iollal t.h f'o ry F (s~e

[NO!)O]) sti ch t.Ilat

tf'st.i Ilg for till i fiabi I i ty is decidable for si Ilgle equatiolls , bu t

it is ulldecidable for sys t. ems of equatioll s.

4.3 A closer look at the signature

It is important to note that the signature over which the terms of the IInifi cation problems

may be built. has cOllsiderable inflll(,llce 011 the unifi cat ioll type and 011 the existence of
unificat ion algorithms.

To make this re mark more precise, we defin e the s£gnaiure of an f:quational th eory E

(for short sig(E)) as tllf' Sf't of function symbols occurring in the identities of E. When

talking about unifi catioll ill the theory E, often one only thillks of E-unification problems

where the terms to I)f' unified are built over sig(E), i.e., are e lem ents of T(.c;ig(E), V).
However , the a pplicatiolls of E-unification in theorem proving and term rewriting usually

require that these t erms m ay contain additional constant symbols, or even function sym

bols of arbitrary arity. Because the interpretat ion of these symbols is not constrained by
the equatioll theory, th~y are called fTee s ymbols.

Example 4.3 Th~ tb~ory A = {f(f (x , y), z) = f(x, f(y , z))} has signature sig(A) =
{no When talking ahout A-unification, one first thinks of unifying modulo A terms

built by using just th~ symbol I and variables, or equivalently, of unifying words over the

alphabet V.

15

However, t>uppose that our resolution theorem prover- which has built in the theory
A- gets the formula

3;c: (Vy: f(x,y) = y 1\ Vy3z: f(z,y) = x)

as aXIOm. In a first step, this formula has to be Skolemized, i.e., the existential quantifiers
have to be replaced by new function symbols. In our example, we need a nullary symbol
e and a unary symbol i in the Skolemized form

\ly : f(e,y) = y 1\ \ly : f(i(y),y) = e

of the axiom. This shows that, even if we start with formulae containing only terms built
over f, our theorem prover has to handle terms containing additional free symbols.

The t>3me situation occurs in term rewriting modulo equation theories. In Example 4.2
we have proposed to use rewriting modulo AC for the theory of abelian groups. Obviously,
the remaining rules (for the neutral element and the inverse) also contain symbols not
contained in sig(AC) = {f}.

To sum up, one should distinguish between three types of E-unification, namely

Elementary E-unifi:crdion: the terms of the problem may contain only symbols of sig(E);

E-unificalion with (;ousf(Jll fs : the terms of the problem may contain additional free con
stant symbols;

Genernl E-uuificrdion: the terms of the problem may contain additional free function
symbols of arbitra.ry arity.

For the -empty theory, we have of course considered general 0-unifi cation because
elementary unification and unification with constants are trivial in this case. The following
facts show that there really is a difference between the three types of E-unification.

• There ex ist theories which are unitary with respect to elementary unification, but
finitary with respect to unification with constants. An example for such a theory is
the theory of abelian monoids, i.e., AC U {f(x,l) = x} (see e.g., [He87,Ba89]), or
the theory of idempotent abelian monoids, i.e., ACU{f(x,l) = :c,f(:r:,x) = x} (see
e.g., [BB86]) .

• There exists an equational theory for which elementary unification is decidable, but
unification wi th constants is undecidable (see [Bii86]).

• From the developement of the first algorithm for AC-unification with constants
[St75,LS75] it took almost a decade until the termination of an algorithm for general
AC-unification was shown by Fages [Fa84].

16

4 .4 The c0111bination proble111 for unificat ion algorith 111s

Motivated by the previ o us section , one can now ask: How can algo rit.hms fo r f'1 f' mc llt. a ry

unificatio n (or for ullifi cat io n with con stant.s) be used t.o ge t a lgorithms fo r gf' ll c ra l ullifi

cat ion ? This leads to t h f' mo re gene ra l qUf's ti o n o f how to co mbill r ullifi ca t.io ll a lgorithms

fo r equ a tion a l t heo ri f's wi t h disjo in t. s ig na tures.

Mo rf' fo rm a lly, this combinat ion 7i/ Dbln n. can be ckscribed a s fo ll ows. Assumr th a t two

finitary equ a t.ion a l tl lf'o ri f's E , F with sig(E) n sig (F) = 0 a rf' g ivf' lI. II ow , all ullifi catio n

a lgorit.hms fo r E alld F hf' cOlllbill f'd t.o a unifi catioll a lgorithm fo r 1'; u F'? Hrcall t.hat

by a ullifi cation a.l gorit.ll11l we m eaJl a n al go rithm whicll compuLf's a filliLf' complf'tr sd. of

un i fi ers .

Thi s comhill a ti o ll p ro blem wa.s firs t cO llsi ckrf'd ill [St.75,St8 1,Fa84, IIS87] fo r tit(' ,asr

wllf' re sf'vf' ra l A(:-sY lllho ls a lld frer sy mbo ls m ay OCC lir ill til(' trrtll s to ullified. Morr

gf' ll f' ra l co mhill a t.i o ll p ro h lcm s were fo r example t.rrat f' d ill [I"':i 85,TiS(i, lI r8(i, Yr8 7], but.

tl lf' t.ll eo ri f' s cOll s iderrd ill t.Jl es(' papers a.lways had to sa tisfy cert. a ill restrictiolls (such as

collapsr- fr f'e ll rss o r reg1l1 a r ity<) 0 11 t.Jw sY lltad ic forlll o f t.h e ir dcfillill g ide lltiti es.

TIl(-' pro ble lll was filiall y so lvf'd ill it.s most gf' lIf'ra l forlll by Sclllllidt - Scilaltl.~ [Sd~()].

His combill a ti o ll a lgo rithm imposes 11 0 rest.ri ct io ll OIl t.J te sY llta.c1.i c forlll o f the defillill g

i<i<' ld.i t i f' s. TIl f' o lll y rf'qll i r f' l1wll ts ar f':

• T Ilf' rr f'x ist ullificati o ll a lgori t ltms fo r unifi cat.i o ll with CO ll s t a llts fo r E a lld F .

• All CO lls ta ll t (' limill <l. t io ll pro hkllls mu s t 1)(' fillit ary so lvable ill I~ a.lld F .

A cons /.au/. dim.in(J rio /l. "rob/ f7 11 in a t.h eo ry E is a fi Il it.e se t. {(CI , /.1), ... , (cn , /. ,,) } wh e re

t.h e (/s arf' free COll s t. a lt1,s (i.('., CO ll s t.ant sy mbols Il Ot. oCCllrrill g ill sig(I~)) .wd the /' i'S a rc

t f' rms (built ove r sig(E), va ri a blf' s , a lld so m e frf'f' cO llst. a llts). A so lut.io ll 1. 0 sUell a problem

is ca.lIrd a cous /an/ d iUl,iuat07·. It is a su bsti t uti o ll IT such th a t fo r a ll 1:, I :::; i :::; '11" t. he re

exist.s a t e rm /; Il Ot. cO llta ining t. 1lf' fI"f'f' co nstall t Ci with /.: =E l ;lT . T hr 1I 0 tio ll C07Hpldp

sf'!. of cons /au/. d i lll:i7l(J/ 0'/'s is d d ined a,ll a logo us ly to t1w no tio ll complete set o f unifi e rs.

T he rf'quire n lf'nt tll at a ll const a nt r lilllin a ti o n pro ble ms must b e fillit. ary solvable in E
ll lf'a llS th a t Oll f' call a lways compute a. filli te comple te set o f cO ll s t. a n t el imin a to rs fo r E.

A mo rf' d -nc ie llt. ve rsi o ll o f tllis combin a ti o ll me th od has b p.en dcs cr i\)(~d in [B090]. It
sho uld \)(" n ot ed tlla,t, 1.11 1" metlt od of Schmidt-Scha uB can a lso lt a ndl p. t1l eori es whi ch a re

1I0t filli t ary. III t llis cas(-', proced ures whi ch e llume ra te compl e t. e set. s o f ullifi ers fo r E
a lld F call b e combined to a procf'dure e numera ting a complete sc t o f unifie rs fo r E U F .
However , f'Vf' n if ullifi cat io ll in t he si ng le t heori es is d ecid a ble, tlli s docs not show h ow t o

gf't a decis io n a lgori t hm for unifia bility in t he combined theo ry.

The infinit a ry t heory A = {f(f (:r;, y) ,z) = f(x, f(y ,z))} is a n example for thi s case.

In 1 ~)7 2, Plo tkin [PI72] lI as describ ed a procedure which enume ra tes minimal comple te

~ A theo ry E is called colla pse-fret-' if it. does not conta in a n identity o f t.he fo rm :1: = t where x is
a vari ablt~ a nd t is a lI o ll -vari ab le t erm , a nd it is call ed regul ar if the left, a nd right ha nd s ides o f the
id ent.ities conta in the san lP va ri a hles.

17

sets of A-unifiers for general A-unification problems, and in 1977 Makanin [Ma77] has
shown that A-unification with constants is decidable. But in 1991, decidability of general
A-unification was still mentioned as an open problem by Kapur and Narendran [KN89]
in their table of known decidability and complexity results for unification.

Based on the ideas of Schmidt-SchauB and Boudet, and motivated by the question
of how to get a decision procedure for general A-unification, the problem of combining
decision algorithms for unifiability was considered in [BS92]. This paper presents a method
which allows one to decide unifiability in the union of arbitrary disjoint equational theories,
provided that solvability of so-called unification problems with constant restrictions is
decidable for the single theories. An E-unification problem with constant restriction is an
ordinary E-unification problem with constants, r = {Sl = t1"",sn = tn }, where each
free constant c occurring in the problem r is equipped with a set Vc of variables, namely,
the variables in whose image c must not occur. A solution of the problem is an E-unifier
(j of r sllch that for all c, ;c with ;c E Vc , the constant c does not occur in X(j.

5 S0111e topics in unification theory

The purpose of this paper was not to give an overview of the state of art in unification
theory, and for this reason there are many important topics we have not touched. Now
we shall give a (certai lily not complete) list of some of the research problems of current
interest in unification theory.

• Determine unification types of equational theories (see e.g., [Sc86,Ba87,Fr89]).

• Investigate the decidability of the unification problem, and the complexity of this
decision problem (see e.g., [SS86,KN89]; in [KN89] there is a table summarizing
many of the known results in this direction).

• Devise unification algorithms for specific unitary and finitary theories. For example,
a. lot. of work was- and still is- devoted to finding efficient algorithms for AC
unifica.tion (see e.g., [St81 ,Fa84,Ki85,Bt86,He87 ,HS87 ,F085, CF89,BD90]).

• Devise universal unification algorithms, i.e., algorithms where the equational theory
also belongs to the input of the algorithm. Examples are methods based on narrow
ing (see e.g., [Fy79,HI80,Fi84,NR89]), or on Martelli and Montanari's decomposition
technique (see e.g. , [GS87,KK90]).

For more information on these and other topics in unification theory one can consult
Siekmann's overview of the state of art in unification theory [Si89], or Jouannaud and
Kirchner's survey of unification [JK90]. In particular, these papers contain an almost
complete list of references on unification theory.

18

References

[Ba86] F . Baader , "Tlw Theory of Idempotent Semigroups is of Unificat ioll Type Zero,"
J. All tomated Rea,solling 2 , 1986.

[Ba87] F. Baader , "U nification in Varieti es of Idempotent Semigroups," SeIlligrollp Fo-
1'lllJl 3 6, 1987.

[Ba89] F. Baader, "U nificat ion in Commutative Theories," ill C . Kirchll er (ed.), Special
IsslI e OIl Unifica,tioll, J .. Sy mbolic ComplIta,t,ioll 8 , 1 ~)89.

[BB86] F . Baader, W. Biittner, "Un ification in CommutatiVf~ Idf' lllpotent Monoid s,"
Theoretical C'OI11j>lIt,er .Science 56 , 1986.

[BS~):2] F. Baadf'r , 1\ . Schul z, "U llifi catioll in th f' Unioll of Disjoillt. Equat.iollal T lwo
ri es : Combinillg Decisioll Procedures," Procef'Clings of t,he 11 t,ll CO/lfCrellCe on
Alltomated Dedu ct.ioll , LNGS 607 , 1992.

[Bc87] L . Baclllna.ir , Proof Mf'tJlOds for .Er}tlit/,iona.i Theories, Ph . D. TI.esis, Of' p . o f
Comp. Sci., lllliwrsity of IIIillois at lJrballa-Champa,igll , 1~) 87.

[Bx7G] L. Baxter, The Compiexity of (Jnifica,tion, Ph .0 . TII('sis, Ullivf'rsit.y of Watf' rloo,
Waterloo, Ollta rio, Canada, 197G.

[BC8:3] M. Bidoit , J. Corbin , "A Rehabilitation of Robinsoll 's Unificatioll Algorit.hm,"
III R.E.A . Pavon, editor , Informa,tion Process ing 83, Nort.h Hollalld , 1983.

[B090] A. Boudet, "U nificat ioll ill a Combinatioll of Equatiollal TheOl·ies : An Efficient
Algorithm," Pro ceedings of the 10th Con ference on AutoIl1ated De(illction , LNCS'
449 , 1 D!)O .

[BD~)Q] A. Boudet, E. COlltejeall , H. Dev ie, "A New AC-lIllificatioll Algorithm with a
New Algorithm for Sol viII)!, Diophantine Equations," PT'OCf:eri1:ngs of the 5th IEEE
Symposiu1I/. on Logic in COlll1)'lI.t er'Science, Philadelphia, 1990 .

[Bii86] H.- J . Biirckert , "Some Relationships Between Unification, Rest ricted Unification,
and Matchillg," Proceedings of the 8 tl] Conference on Automa,ted Deduction,
LNCS 230 , 1986 .

[BH89] H.- .J. Biirckert , A. Herold , M. Schmidt-Schaul3, "On Equatiollal Theories, Unifi
cat ion , anel Deciel ability," in C. Kirchner (eel.), Specia.J Issu e on Unification, J.
Symholic Compu t,ation 8 , 1989.

[Bt86] W. Biittnel' , "U nification in the Data Structure Multiset," .I. Automated Rea
soning 2 , 198G.

[CF89] M. Clausen, A. Fortenbacher , "Efficient Solution of Linear Diophantine Equa
tions ," in C. Kirchner (eel.), Special Issue on Unification, J. Symbolic Computa
tion 8 , 1989.

19

[Fa84] F. Fages, "Associative-Commutative Unification," Proceedings of tile 7th C011-

ference on Automa.t;ed Deduction, LNCS 170, 1984.

[Fy79] M. Fay, "First Order Unification in an Equational Theory," Proceedings of the
4th Workshop on Automated Deduction, Austin, Texas, 1979.

[F085] A. Fortenbacher, "An Algebraic Approach to Unification under Associativity and
Commutativity," Proceedings of the 1st Conference on Rewriting Techniques and
Applications, Dijon, France, LNCS 202 , 1985 .

[Fr89] M. Franzen, "Hi lbert's Tenth Problem Has Unification Type Zero," Preprint,
1989. To appear in J. Automated Reasoning.

[Fi84] L. Fri bourg, "A Narrowing Procedure with Constructors," Proceedings of the
7th Conference on Automa.ted Deduction, LNCS 170, 1984.

[GS87] J .H. Gallier, W. Snyder:, "A General Complete E-Unification Procedure," Pro
ceedings of the Second Conference on Rewriting Techniques a.nd Applications,
Bordeaux, France, LNCS 256 , 1987.

[He86] A. Herold, "Combination of Un~fication Algorithms," Proceedings of the 8th
Conference Oll Allt0111a.ted Deduction, LNCS 230 , 1986.

[He87] A. Herold, ('olllhination of Unification Algorithms in Equa.tiol1a.J Theories, Dis
sprtation, FCtcld,neich Informatik, Universitiit Kaiserslautern , 1987.

[HS87] A. Herold, .J .R . Siekmanll, "Unification in Abelian Semigroups," J. Automa.ted
Reasoning 3 , 1987.

[H1I76] G.P. Huet, Resolution d'equations dans des langages d'ordre 1,2, ... ,w, These
d'Etat, Universite de Paris VII, 1976.

[H1I80] G .P. HlIet, "Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems," J. ACM 27 , 1980.

[H180] F.M. Hullot, "Canonical Forms and Unification," Proceedings of ti]e 5th Confer
ence on AutolJ1a.ted Deduction, LNCS 8 7 , 1980.

[JL84] J. Jaffar, J.1. Lassez, M. Maher, "A Theory of Complete Logic Programs with
Equality," J. Logic Progra.mming 1, 1984.

[JK86] J.P. Jouannaud, H. Kirchner, "Completion of a Set of Rules Modulo a Set of
Equations," SIAM J. Computing 15 , 1986.

[JK90] J.P. Jouannaud, C. Kirchner, "Solving Equations in Abstract Algebras: A Rule
Based Survey of Unification," Preprint, 1990. To appear in the Festschrift to
Alan Robinson's birthday.

[KN89] D. Kapur, P. Narendran, "Complexity of Unification Problems with Associative
Commutative Operators," Preprint, 1989. To appear in J. Automated Reasoning.

20

[KiS5] C. Kirchner , Methodes e t. Ou/.i/s de Conception ,(:iys/.el1l{lti(/ll e c/'Algori/,hllles
d'[Jl1ifjc{l.t.ioll d{lllS /es Tht:~ories eqlla/,iollll eJ/es, Tltf'St' d 'Et.at., Ulliv. Nallcy,
France, 1985.

[KK90] C. Kirchner, F. Klay, "Syntactic Theories and Unificat.ion," P1'O('f.friings of the
5th IEEE Symposium on Logic in COmpll l e1' Srience, Phil(ulrljihia., 1990.

[KI189] K. Knight , "U llificat.ion: A Multidisciplinary Survey," ACM COlll/W/,illg Surv('ys
21 , 1989.

[I<B70] D.E. Knuth , P.B. Bendix , "S imple Word Problf'll1s in Universal Algebras," In
J. Leech, f'dit.or, Compllta/,ioll{l.i Problems ill Abstrart. A/ge/>ra, Pf'rgalllon Prf'ss ,
Oxford , 1 <)70.

[LS7.')] M. Livf'sf'Y, .J.H . Sif'kll1a.lln , "U nifi cat.ion of AC-Tf'rllls (bags) and ACI-Terll1s
(Sf'ts)," I IIt f' \'Il a I Report , Universit.y of Essex, U)75, a.nd Tt'cltnical Report J-7G,
Ullivf'rsita.t Karlsruhe , 1!)7G.

[Ma77] C.S. Ma.kallill, "Tlte Problelll of Solvahility of Equat.iolls ill a Fr(,t: Semigrollp ,"
Milt. [TS,(:iR. Shol'/Jik 32 , 1 !)77.

[MM77] A. Martf'lli, (J. MOlltanari, "Tlteorelll Proving Wit.il St.rllcturt' Sharing alld Ef
ficient. Ullification," Proceedings of ill/,(' l'/J{l./,iollilJ .Ioill/, C()llfC'J'('I1(,(' OIl Ar/,ifieii-l.J
In/,eJ/igell ce, 1977.

[NO<)O] P. Narf'lldran , F. Otto, "SOIl1f' Results on Equat.iona.l Ullificatioll," ProreeC/illgs
of /,he lO/,il C011[ere11ce 011 AlI/.ollJated Dedllct.ion , LNCS 449 , U)90.

[Ne74] A.,J. Nevills, "A Human Oriented Logi c for Aut.omat.ed Tlleorelll Proving,"
.J. ACM 21, 1974.

[NR.8<J] W. Nutt, P. r{i~ty, C. Smolka, "Bas ic Narrowing R.evisited," .J. ,'iY1lJho/ic Com
pu tatioll 7, 1 !)S!J.

[PW7S] M.S. Pa.tnsoll, M.N. Wegma.n, "Linear Unification," .J. COl11/JII/ .. Sys/,. Sci. 16 ,
1978.

[Pe81] J .P. peclIc\let.,Equation avec constantes et a.lgorithme de Makanin, These de
Doctorat , Laboratoire d 'informatique, Rouen, 1981.

[PS81] G. Petersoll, M. Stickel, "Complete Sets of Reductions for Some Equational
Theories," .J. ACM 28 , 1981.

[PI72] G. Plotkin, "B uildillg ill Equational Theories," Ma.ch ine Intelligence 7, 1972.

[RoG5] J.A. Robinson, "A Machine-Oriented Logic Based OIl the Resolution Principle,"
J. ACM 12 , L965.

[Ro71] J .A. Robinson, "The Unification Computation," Machine Intelligence 6, 1971.

21

[Sc86] M. Schmidt-SchauB, "Unification under Associativity and Idempotence is of Type
Nullary," J. Automa,ted Reasoning 2 , 1986.

[Sc89] M. Schmidt-SchauB, "Combination of Unification Algorithms," J. Symbolic Com
puta.tion 8 , 1989.

[Si76] J.H. Siekmann, "Unification of Commutative Terms," SEKI-Report, Universitiit
Karlsruhe 1976.

[Si89] J.H. Siekmann, "Unification Theory: A Survey," in C. Kirchner (ed .), Special
Issue on Unification, Journal of Symbolic Computation 7 , 1989.

[SS86] J.H. Siekmann , P. Szabo, "The Undecidability of the DA-Unification Problem,"
SEKI-Report SR-86-19, UniversiUit Kaiserslautern, 1986, and J. Symbolic Logic
54 , 1989.

[S174] .J.R. Slagle, "Automate(~ Theorem Proving for Theories with Simplifiers, Com
mutativity and Associativity," J. ACM 21 , 1974.

[St75] M. Stickel, "A Complete Unification Algorithm for Associative-Commutative
Functions," Proceedings of the Internationa.l Joint Conference on Artificial In
telligence, 1975.

[St81] M.E. Stickel, "A Unificat ion Algorithm for Associative-Commutative Functions,"
.7. ACM 28 , 19x1.

[St85] M.E. Stickel, "Automated Deduction by Theory Resolution," J. Automated Rea
soning 1, 1985.

[Ti86] E. Tiden, "Unification in Combinations of Collapse Free Theories with Disjoint
Sets of Function Symbols," Proceedings of the 8th Conference on Automated
Deduction, LNCS 230 , 1986.

[Tr75] E.T . Trajan, "Efficiency of a Good But Not Linear Set Union Algorithm,"
J. ACM 22 , 1975.

[Ye87] K. Yelick, "Unification III Combinations of Collapse Free Regular Theories ,"
J. Symbolic Computa,tion 3 , 1987.

22

Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

DFKI Publikationen

Die folgenden DFKI Veroffentlichungen sowie die
aktuelle Liste von allen bisher erschienenen
Publikationen konnen von der oben angegebenen
Adresse bezogen werden.
Die Berichte werden, wenn nicht anders
gekennzeichnet, kostenlos abgegeben.

DFKI Research Reports

RR-91-18
John Nerbonne. Klaus Neller. Abdel Kader Diagne.
Ludwig Dickmann. Judith Klein:
A Diagnostic Tool for German Syntax
20 pages

RR-91-19
Munindar P. Singh: On the Commitments and
Precommitments of Limited Agents
15 pages

RR-91-20
Christoph Klauck. Ansgar Bernardi. Ralf Legleitner
FEAT-Rep: Representing Features in CAD/CAM
48 pages

RR-91-21
Klaus Neller: Clause Union and Verb Raising
Phenomena in Gennan
38 pages

RR-91-22
Andreas Dengel: Self-Adapting Structuring and
Representation of Space
27 pages

RR-91-23
Michael Richter. Ansgar Bernardi. Christoph
Klauck. Ralf Legleitner: Akquisition und
Reprasentation von technischem Wissen fur
Planungsaufgaben im Bereich der Fertigungstechnik
24 Seiten

RR-91-24
Jochen Heinsohn : A Hybrid Approach for
Modeling Uncertainty in Terminological Logics
22 pages

OFKI
-Bibliothek
PF 2080
0-6750 Kaiserslautem
FRG

DFKI Publications

The following DFKI publications or the list of all
publisched papers so far can be ordered from the
above address.
The reports are distributed free of charge except if
otherwise indicated.

RR-91-25
Karin lIarbusch. Wolfgang Finkler. Anne Schauder:
Incremental Syntax Generation with Tree Adjoining
Grammars
16 pages

RR-91-26
M. Bauer. S. Biundo . D. Dengler. M. lIecking.
1. Koehler. C. Merziger:
Integrated Plan Generation and Recognition

- A Logic-Based Approach -
17 pages

RR-91-27
A. Bernardi . II. Boley. Ph. Ilanschke.
K. llinkelmann . Ch. Klauck . O. Kuhn.
R. Legleitner. M. Meyer. M. M. Richter.
F. Schmalhofer. C. Schmidt. W. Sommer:
ARC-TEC: Acquisition, Representation and
Compilation of Technical Knowledge
18 pages

RR-91-28
Rolf Backofen. lIarald Trost . lIans Uszkoreit:
Linking Typed Feature Formalisms and
Tenninological Knowledge Representation
Languages in Natural Language Front-Ends
11 pages

RR-91-29
Hans Uszkoreit: Strategies for Adding Control
Information to Declarative Grammars
17 pages

RR-91-30
Dan Flickinger. John Nerbonne:
Inheritance and Complementation: A Case Study of
Easy Adjectives and Related Nouns
39 pages

RR-91-31
H.-v. Krieger, 1. Nerbonne:
Feature-Based Inheritance Networks for
Computational Lexicons
11 pages

RR-91-32
Rolf BackoJen, Lutz Euler, Gunther Gorz:
Towards the Integration of Functions, Relations and
Types in an AI Programming Language
14 pages

RR-91-33
Franz Baader, Klaus Schulz:
Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures
33 pages

RR-91-34
Bernhard Nebel, Christer Backstrom:
On the Computational Complexity of Temporal
Projection and some related Problems
35 pages

RR-91-35
WinJried Graf, Wolfgang MaajJ: Constraint-basierte
Verarbeitung graphischen Wissens
14 Seiten

RR-92-01
Werner Nutt: Unification in Monoidal Theories is
Solving Linear Equations over Scmirings
57 pages

RR-92-02
Andreas Dengel, Rainer Bieisinger, Rainer Hoch,
Frank Hones, Frank Fein, Michael Malburg :
fIODA: The Paper Interface to ODA
53 pages

RR-92-03
Harold Boley:
Extended Logic-plus-Functional Programming
28 pages

RR-92-04
John Nerbonne: Feature-Based Lexicons:
An Example and a Comparison to DA TR
15 pages

RR-92-05
Ansgar Bernardi, Christoph Klauck,
Ralf Legleitner, Michael Schulte, Rainer Stark :
Feature based Integration of CAD and CAPP
19 pages

RR-92-06
Achim Schupetea: Main Topics of DAI: A Review
38 pages

RR-92-07
Michael Beetz:
Decision-theoretic Transformational Planning
22 pages

RR-92-08
Gabriele Merziger: Approaches to Abductive
Reasoning - An Overview -
46 pages

RR-92-09
Winfried GraJ, Markus A. Thies:
Perspektiven zur Kombination von automatischem
Animationsdesign und planbasierter Hilfe
15 Seiten

RR-92-10
M. Bauer: An Interval-based Temporal Logic in a
Multivalued Setting
17 pages

RR-92-11
Susane Biundo, Dietmar Dengler, lana Koehler :
Deductive Planning and Plan Reuse in a Command
Language Environment
13 pages

RR-92-13
Markus A. Thies, Frank Berger:
Planbasierte graphische Hilfe in objektorientierten
Benutzungsoberflachen
13 Seiten

RR-92-14
Intelligent User Support in Graphical User
Interfaces:

1. InCome: A System to Navigate through
Interactions and Plans
Thomas Fehrle, Markus A. Thies

2. Plan-Based Graphical Help in Object
Oriented User Interfaces
Markus A. Thies, Frank Berger

22 pages

RR-92-15
WinJried Graf: Constraint-Based Graphical Layout
of Multimodal Presentations
23 pages

RR-92-16
lochen Heinsohn, Daniel Kudenko, Berhard Nebel,
Hans-lurgen ProJitlich: An Empirical Analysis of
Terminological Representation Systems
38 pages

RR-92-17
Hassan Mt-Kaci, Andreas Podelski, Gert Smolka:
A Feature-based Constraint System for Logic
Programming with Entailment
23 pages

RR-92-18
John Nerbonne: Constraint-Based Semantics
21 pages

RR-92-19
Ralf Legleitner, Ansgar Bernardi , Christoph Klauck
PIM: Planning In Manufacturing using Skeletal
Plans and Features
17 pages

RR-92-20
John Nerbonne : Representing Grammar, Meaning
and Knowledge
18 pages

RR-92-21
Jorg-Peter Mohren, Jurgen Muller
Representing Spatial Relations (Part II) -The
Geometrical Approach
25 pages

RR-92-22
Jorg Wurtz : Unifying Cycles
24 pages

RR-92-24
Gabriele Schmidt: Knowledge Acquisition from
Text in a Complex Domain
20 pages

RR-92-25
Franz Schmalhofer, Ralf Bergmann, Otto Kuhn,
Gabriele Schmidt : Using integrated knowledge
acquisition to prepare sophisticated expert plans for
their re-use in novel situations
12 pages

RR-92-26
Franz Schmalhofer, Thomas Reinartz,
Bidjan Tschaitschian: Intelligent documentation as a
catalyst for developing cooperative knowledge-based
systems
16 pages

RR-92-27
Franz Schmalhofer, Jorg Thoben : The model-based
construction of a case-oriented expert system
18 pages

RR-92-29
Zhaohur Wu, Ansgar Bernardi, Christoph Klauck:
Skeletel Plans Reuse: A Restricted Conceptual
Graph Classification Approach
13 pages

RR-92-33
Franz Baader
Unification Theory
22 pages

DFKI Technical Memos

TM-91-11
Peter Wazinski : Generating Spatial Descriptions for
Cross-modal References
21 pages

TM-91-12
Klaus Becker, Christoph Klau ck, Johannes
Schwagereit: FEAT-PATR: Eine Erweiterung des
D-PATR zur Feature-Erkennung in CAD/CAM
33 Seiten

TM-91-13
Knut flinkelmann:
Forward Logic Evaluation: Developing a Compiler
from a Partially Evaluated Meta Interpreter
16 pages

TM-91-14
Rainer Bleisinger, Rainer floch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Bussmann: Prototypical Concept Formation
An Alternative Approach to Knowledge
Representation
28 pages

TM-92-0 1
Lijuan Zhang :
Entwurf und Implementierung eines Compilers zur
Transformation von WerksUickreprasentationen
34 Seiten

TM-92-02
Achim Schupeta : Organizing Communication and
Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jurgen Muller, Jorg Muller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jorg Thoben
The refilling of plans by a human expert
10 pages

TM-92-06
Otto Kuhn , Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

DFKI Documents

D-91-17
Andreas Becker:
Analyse der Planungsverfahren der KI im Hinblick
auf ihre Eignung fUr die Abeitsplanung
86 Seiten

D-91-18
Thomas Reinartz: Definition von Prohlemklassen
im Maschinenbau als eine Begriffsbildungsaufgabe
107 Seiten

D-91-19
Peter Wazinsld: Objektlokalisation in graphischen
Darstell ungen
110 Seiten

D-92-0 1
Stefan Bussmann: Simulation Environment for
Multi-Agent Worlds - Benutzeranleitung
50 Seiten

D-92-02
Wolfgang MaajJ: Constraint-basierte Plazierung in
multimodalen Dokumenten am Beispiel des Layout
Managers in WIP
111 Seiten

D-92-03
Wolfgan MaajJ. Thomas Schiffmann. Dudung
Soetopo. Winfried Graf: LA YLAB: Ein System zur
automatischen Plazierung von Text-Bild
Kombinationen in multimodalen Dokumenten
41 Seiten

D-92-06
Hans Werner Hoper: Systematik zur Beschreibung
von Werkstticken in der Terminologie der
Featuresprache
392 Seiten

D-92-07
Susanne Biundo . Franz Schmalhofer (Eds.):
Proceedings of the DFKI Workshop on Planning
65 pages

D-92-08
Jochen Heinsohn. Bernhard Hol/under (Eds.): DFKI
Workshop on Taxonomic Reasoning Proceedings
56 pages

D-92-09
Gernod P. Laufkotter: Implementierungsm6glich
keiten der integrativen Wissensakquisitionsmethode
des ARC-TEC-Projektes
86 Seiten

D-92-10
Jakob Mauss: Ein heuristisch gesteuerter
Chart-Parser ftir attributierte Graph-Grammatiken
87 Seiten

D-92-11
Kerstin Becker: M6glichkeiten der Wissensmodel
lierung flir technische Diagnose-Expertensysteme
92 Seiten

D-92-12
Otto Kuhn . Franz Schmalhofer. Gabriele Schmidt:
Integrated Knowledge Acquisition for Lathe
Production Planning: a Picture Gallery (Integrierte
Wissensakquisition zur Fertigungsplanung ftir
Drehteile: eine Bildergalerie)
27 pages

D-92-13
Holger Peine: An Investigation of the Applicability
of Terminological Reasoning to Application
Independent Software-Analysis
55 pages

D-92-15
DFKI Wissenschaftlich-Technischer lahresbericht
1991
130 Seiten

D-92-16
Judith Engelkamp (Hrsg.J : Verzeichnis von Soft
warekomponenten fUr nattirlichsprachliche Systeme
189 Seiten

D-92-17
Elisabeth Andre. Robin Cohen. Winfried Graf. Bob
Kass. Cecile Paris. Wolfgang Wahlster (Eds,) :
UM92: Third International Workshop on User
Modeling, Proceedings
254 pages
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$) .

D-92-18
Klaus Becker: Verfahren der automatisicrten
Diagnose technischer Systeme
109 Seiten

D-92-19
Stefan Dittrich. Rainer Hoch : Automatische,
Deskriptor-basierte Untcrsliitzung der Dokument
analyse zur Fokussierung und Klassifizierung von
Geschrutsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic Generation of
Natural Language with Tree Adjoining Grammars
57 pages

"T1 C ..
lit :l
:::J

_.
N -n'
m C»
lit -lit

_.
Q. 0
G» :l ..

-4 =r
CD
0 ..
'<

