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Abstract 

C FT is a new constraint system providing records as logi cal dat.a 
st ru cture fo r constraint (logi c) programming. It can be seen as a gen­
era lizat ion of the rational tree system employed in Prolog If, where 
finer-g rained constra ints are used , and where subtrees are identifi ed by 
keywords rather than by position . 

C FT is defined by a first-ord er structure consisting of so-called 
feature trees. Feature trees generali ze the ordinary trees co rresponding 
to first-order terms by hav ing their edges labeled with fi eld names 
call ed feat ures. The mat hemat ical semanti cs given by the feature trer 
st ru cture is com plemented with a log ical sem ant ics given by five axiolll 
schemes, wh ich we conj ect ure to comprise a complete axiomatization 
of the feature tree structure. 

We present a decision met hod for CFT, wh ich dec ides entailment 
a nd disentailment between possibly existentially quant.ifi ed constraints. 
Since C FT satisfies the independence property, our dec ision m ethod 
can a lso be employed for checking the satisfiability of conjunctions of 
positive a nd negat ive constraints . This includes quantifi ed negative 
constraints such as VyVz(x 1: f(y , z)). 

The paper also presents an idealized abstract machine process ing 
negat ive a nd positive constra ints in crem entally. We argue that an op­
timized version of the m achine can decid e satisfiabi li ty and entailment 
in quasi-lillear time. 
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1 Introduction 

Records are an important data st ru ct ure in programmi ng languages. They 

appeared first with imperat ive languages such as ALGOL 68 and Pascal, but 

a re now a lso present in modern functional languages such as SML. A major 

reason for providing records is the fact that they serve as the canoni cal dat.a 

structure for express ing object-oriented programming t.echniques. 

In t.his paper we will show t hat record s can be in corp o rat.ed into log ic pro­

gramm ing in a st ra igh t forward a nd nat ural m a nn er. We will model records 

with a co nst. rain t system CFT, whi ch can serve as the bas is of fu tu re con­

straint ( log ic) programm in g la nguages. 1 Since CFT is a conservat.ive exten­

sion of Prolog II 's rational t ree system [11 , 12], the familiar term notat.ion 
can s(,ill be used. 2 

1.1 Records are Feature Trees 

We model records as featu re t rees [7,8]. A feature t.ree (examples a rc shown 
in Figure 1) is a tree whose edges are labeled with sym bols called feat.ures, 

a nd whose nodes are labeled with sym bols called sorts . The features labeling 

t.he edges cor respond to the fi eld names of records . As one wou ld ex pect, the 

labe lin g wit.h featu res must be deterministic, that is, every direct s ubt.ree 
of a feature tree is uniquely id entifi ed by the feature o f the edge lea.d ing 

to it.. Feature trees without subtrees model atomic valu es (e .g. , numbe rs) . 

Feat.ure trees may be finite or infinite. Infinite feature t rees provid e fo r 

the co nven ient representation of cycli c data struct ures. The last exampl e 

in Figure 1 gives a finite graph representat ion o f an infinit.e feat llT'e tree, 

wh ich may arise as the representat ion of the recursive t.ype eq ua t.ion nat = 
O + s(nat ). 

A ground term, say f(g(a, b) , h( c) ), can be seen as a feat ure tree whose nodes 

are labeled with function symbols a nd whose arcs arc labeled wit.h numbers: 

Thus the t rees correspon ding to first -order terms are In fact feat ure trees 

1 Such lang uages can , for instance, be obtained as instances of the fram eworks C LP 
[1.5}, ALPS [22] and CC [24]. 

2We haven chosen to admit infinite trees so that cyclic data s tructures can be repre­
se nted directly. However, a set-up adm itting on ly fillite trees as in the original Horn clause 
model is a lso possible. 
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Figure 1: Examples of Feature Trees. 

observing certain restrictions (e .g., the features departing from a node must 
be consecutive positive integers). 

1.2 Record Descriptions 

In eFT, records (i.e., feature trees) are described by first-order formulae. 
To this purpose, we set up a first-order structure T (eFT's standard model) 
whose universe is the set of all feature trees (over given alphabets of features 
and sorts), and whose descriptive primit ives are defined as follows: 

• Every sort symbol A is taken as a unary predica.te, where a sort con­
straint x: A holds if and only if the root of the tree x is labeled with A. 

• Every feature symbol f is taken as a binary predicate, where a feature 
constraint x[J]y holds if and only if the tree x has the direct subtree 
y at feature f. 

• Every finite set F of features is taken as a unary predicate, where an 
arity constraint xF holds if and only if the tree x has direct subtrees 
exactly at the features appearing in F. 

The descri ptions or constraints of eFT are now exactly the fi rst-order for­
mulae obtained from the primitive forms specified above, where we include 
equations "x = y" between variables. 

A feature constraint x [J] y corresponds to field selection for records. A more 
familiar notation for x[J]y might be y = x.f or y = x[J]. Note that the field 
selection function "x.f" is partial since not every record has a field f. 
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Next we note that the familiar term notat ion can still be used in eFT if a 
litt le syntactic sugar is provided . For instance, the equat ional constraint 

x = point(Y, Z) 

employing the binary constructor point t ranslates into t he conjunction 

X: point 1\ X{1 , 2} 1\ X[l]Y 1\ X[2]Z. 

Note that constructors and features are dual in the sense that features are 
argument selectors for constructors . 

eFT can also express constructors that identify t hei r arguments by keywords 
rather than by position. For instance, t he equation 

P point (xval : X, yval : Y, color : Z) 

can be taken as an abbreviation for 

P: point 1\ P{xval , yval , color} 1\ P[xval]X 1\ P[yval]Y 1\ P[color]Z. 

Using nesting, which can be expressed in eFT wit h existentially quant i­
fied auxiliary variables, we can give the following description of the infinite 
feature tree shown in Figure 1: 

X = type(name: nat , def : or (O, s(X))). 

Compared to the standard t ree constraint systems, the major exp ressive 
flexibility provided by e FT is the possibili ty to access a feature wit hout 
saying anything about the existence of other features. The constraint 

X[color]Y 

says that X must have a color field whose value is Y, but noth ing else. Hence 
we can express propert ies of the color of X without knowing whether X is 
a circle, triangle, car or something else. Using constructor constl'aints, we 
would have to write a disjunction 

X = ci rcle( ... , Y, . .. ) V X = triangle( ... , Y, . .. ) V . .. 

which means that we have to know stat ically wh ich alternat ives arc pos­
sible dynamically. Moreover, disjunctions are expensive computationally. 
In contrast, feature cons traints like X[colorJY allow for efficient constraint 
simplification, as we will see in this paper. 

Descriptions leaving the arity of a record open are also essential for knowl­
edge representation, where a description like 

X: person [father : Y, employer: Y] 

should not disallow other features. In eFT this description can be expressed 
by simply not imposing an arity constraint : 

X: person 1\ X[fatherJY 1\ X[employerJY. 
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1.3 Constraint Simplification 

The major technical contribution of this paper is the presentation and verifi­
cation of a constraint simplification method for CFT. This method provides 
for incremental entailment and disentailment checking as it is needed for 

advanced constraint programming frameworks [22, 24]. We show how the 
decision method can be realized as an abstract machine processing posit.ive 

and negative constraints incrementally. 

To state our technical results precisely, let a simple constraint be a formula 
in the fragment 

[x: A, x[J]y, xF, x = y, ..1, T] /\ ,3 

obtained by closing the atomic formulae under conjunction and existential 
quantificat.ion. Let I and ¢ be simple constraints. We give a Itlct.hod t.hat. 
decides simult.aneously entailment I FCFT ¢ and disentailment I F CFT . ¢ . 
This method can be implemented by an incremental algorithm having quasi ­

linear complexity, provided the features possibly occurring in I and ¢ are 
restricted a priori to some finite set. We also prove that CFT sat.isfies t.he 

independence property,3 that is, 

I FCFT ¢t V ... V ¢n ¢::::::> 3i: I FCFT ¢i. 

Hence, our decision method can decide the satisfiability of conjunctions of 
positive and negative simple constraints sin ce 

I 1\ · ¢ t 1\ ... 1\ '¢n FCFT ..1 

is equivalent to 

I FCFT ¢1 V ... V ¢n' 

All results are obtained under the assumption that the alphabets of sorts 

and features are infinite. 

1.4 Related Work 

CFT can be viewed as the minimal combination of Colmerauer's rat.ional 
tree system [11, 12] with the feature constraint system FT [7]. In fact, CFT 

is obtained from FT by simply adding arity constraints as new descriptive 
primitive. However, the addition of arity constraints requires a nontrivial 
extension of FT's relative simplification method [7], which can be seen from 
the fact that the entailment 

x = f(x,y) 1\ y = f(y,y) FCFT x = Y 

3Since we allow for existential quantification in simple constraints, our independence 
result is in fa.ct stronger than what is usually stated in the litera.ture [12 , 20, 21]. 
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hold s in CFT. (It of course also holds in Colmeraller's rational tree system.) 

Our operational invest igations are based on congruences and normalizers 
of constra ints, two new notions providing for an elegant presentat.ion of 
the results. 4 We improve on Colmerauer's [12] result.s for rational trees 
sin ce our const ra ints are closed under existential quantifi cat ion . For in­
stance, our a lgo rithm is complete for negative quantifi ed constraints such as 
-dy3z(x = f (y, z)). 

Feature descriptions have a lo ng and winded hi story. One root are the 
unification grammar formali sms FUG [18] and LFG [17] developed for ap­
plications in com putat ional linguisti cs (see [10] for a more rece nt paper in 
this area). Another, independ ent root is A1t-Kaci's 'ljJ-term calculus [1, 2], 
which is t he basis of several constraint programming languages [4, 5, 6]. 
Smolka [26] gives a unified logical view of most carlier feat ure formali sms 
and st udies an exp ressive featu re constraint logi c. 

Feature t rees appeared only recently with the work on FT [8, 7]. To ollr 
knowledge t.he no t ion of an ar ity const ra in t is new. Carpenter 's [10] ext.e n­
sional types a rc so rn ew hat rel ated in that they fix an a rity for a ll e1ement.s 
of a type . 

A shor t version of this paper not containing th e proofs and the desc ription 
of t he a bst ract machine has a ppeared before [27] . 

1.5 Organization of the Paper 

Section 2 g ives a formal definition of the feature t ree st ruct ure, t.hus fixing 
syntax a nd semant ics of CFT. Section 3 defines a first -order theory by means 
of five axiom schemes, which we conjecture to be a complete axiomat.ization 
of the feature tree st ructure. Section 4 presents the decision method a nd 
states its properties. The proofs follow in Section 5. Section 6 shows how t.h e 
decision Ill ethod can be realized as an abstract machine processing posit.ive 
and negative const raints incrementally. 

2 The Feature Tree Structure 

This sect ion gives a formal defi nition of CFT's standard mod el T. T is a 
first-order st ru ct ure whose universe consists of all feature trees obtainable 
from given alph a bets of sorts a nd features. 

From now on we ass ume that an infinite alphabet SOR of sy mbol s called 

sorts and a n infinite a lphabet FEA of symbols called features a re given. 
For several resu lts of this paper (e.g., independence) it is essent ial t hat both 

4 II uet (14) uses the related notio n of "equivalence simplifiable" in his s tudy of rational 
tree unification. 
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alphabets are infinite. The letters A, B will always denote sorts, the letters 
f, 9 will always denote features, and the letters F, G will always denote 
finite sets of features. 

We also assume an infinite alphabet of variables, ranged over by the letters 
x, y, z. From the alphabets of sorts, features and variables we define the 
following first-order language with equality: 

1. Every sort symbol A is a unary predicate. 

2 . Every feature symbol f is a binary predicate. 

3. Every finite set F of features is a unary predicate, called an arity 
predicate. 

4. The equality symbol ~ is a binary predicate that is always interpreted 
as identity. 

5. There is no function symbol, and there is no predicate symbol other 
than the ones above. 

Every formula and every structure in this paper will be taken with respect 
to this signature. Note that under this signature every term is a variable. 

For convenience, we will write Ax, xfy and xF for A(x), f(x, y) and F(x), 
respectively. (In Section 1 we have used yet another, Prolog compatible 
syntax: X: a for sort and X[f]Y for feature constraints.) We assume the 
usual connectives and quantifiers. We write .1.. for "false" and T for "true". 
We use 3¢ [V¢] to denote the existential [universal] closure of a formula ¢. 
Moreover, V( ¢) is taken to denote the set of all variables occurring free in a 
formula ¢. 

A path is a word (i.e., a finite, possibly empty sequence) over the set of all 
features. The symbol € denotes the empty path, which satisfies €p = P = p€ 
for every path p. A path p is called a prefix of a path q, if there exists a 
path p' such that pp' = q. We use FEA * to denote the set of all paths. 

A tree domain is a nonempty set D ~ FEA * that is prefix-closed , that 
is, if pq E D, then p E D. Note that every tree domain contains the empty 
path. 

A feature tree is a partial function a: FEA* "-+ SOR whose domain is a 
tree domain. The paths in the domain of a feature tree represent the nodes 
of the tree; the empty path represents its root. We use Du to denote the 
domain of a feature tree a. A feature tree is called finite [infinite] if its 
domain is finite [infinite]. The letters a and T will always denote feature 
trees. 

The subtree pa of a feature tree a at a path p E Du is the feature tree 
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defined (in relational notation) by: 

P(1 : = {( q, A) I (pq, A) E (1} . 

We now define the feat ure tree struct ure T as follows: 

• The universe of T is the set of all feature trees; 

• (1 E AT iff (1(C:) = A ; 

• ((1,7) EfT iff f ED" a nd 7 = f(1; 

• (1 E FT iff D" n FEA = F. 

Note that T contains all infinite feature trees. Another option is to adTtlit. 
only those infini te feature trees that are rational (i.e., have only finit.el y 
many subtrees). For the results of this paper this would not make a dif­
ference . vVe also conjecture t hat the rat ion a l feat ure tree st ru ct ure a nd 
T are elementari ly eq ui valent, analogous to the sit uatio n with constr uct.or 
trees [23]. 

3 The Theory eFT 

We will now define a fi rst-order theory CFT having the feature tree st. ru ct ure 
T as one of its models. All results of this paper actually hold for eve ry 
model of CFT. We conjectu re t hat CFT is a complete axiomatizat ion of t.he 
feature tree struct ure T and expect that this can be show n with a quantifier 
elimination techn ique similar to the one used in [8]. 

We briefly review the notion of a theory. A theory is a set of closed formu lae. 
We say that a structure A is a model of a theory T (A F T) if A satisfies 
~ach formula of T. A formula ¢ is a consequence of a theory T (T F ¢) if 
V¢ is valid in every model of T. A formula ¢ is unsatisfiable in a t heory 
T if .¢ is a co nsequence of T. 

A formula ¢ entails a formula 'IjJ in a structure A (¢ FA 'IjJ) if A sat. is fi es 

V(¢ ~ 'IjJ). A formul a ¢ entails a formula 'IjJ in a theory T (¢ F1' 'IjJ) if ¢ 
entai ls 'IjJ in every model of T, that is, if ¢ ~ 'IjJ is a consequ ence of T. Two 
formulae ¢, 'IjJ are equivalent in a theory T (¢ Fl1' 'IjJ) if t hey are equivalent 
in every model A of T, that is, if ¢ +-t 'IjJ is a consequence of T. A formula ¢ 
disentails a formula 'IjJ in a theory T if ¢ entails .'IjJ in T. For convenience, 
we will omit the index 0 for the empty theory, that is, write F for F0. 
CFT is defined by five axiom schemes. The first four schemes a re straight­
forward: 
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(S) 
(F) 
(AI) 
(A2) 

\/(Ax /\ Bx ----. 1-) 
\/(xfy /\ xfz ----. Y ~ z) 
\/(xF /\ xfy ----.1-) 
\/ (xF ----. 3y(xfy)) 

if A::j: B 

if f ~ F 
if x ::j: y and f E F. 

The first two axiom schemes say that sorts are pairwise disjoint, and that 
features are functional. The last two schemes say that, if x has arity F, 
exactly the features f E F are defined on x. 

To formulate the remaining axiom scheme, we need the notion of a deter­
minant. A determinant for x is a formula 

Ax /\ x{!I, ... , fn} /\ x!IYI /\ ... /\ xfnYn 

which we will write more conveniently as 

x ~ A(!I: YI,···, fn: Yn). 

(It is understood that all t~e feature symbols fi are different.) As we have 
pointed out before, a determinant as the one above is similar to a constructor 
equation x == f(YI, ... , Yn). A determinant for pairwise distinct variables 
Xl, ... , Xn is a conjunction 

of determinants for Xl, ... ,xn . If b is a determinant, we use V( b) to denote 
the set of variables determined by b. 

The remaining axiom scheme will say that every determinant determines a 
unique solution for its determined variables. To this purpose we define the 
quantifier 3!x¢ ("there exists a unique x such that") as an abbreviation for 

3x¢ /\ "ix, y(¢ /\ ¢[x f- yj----. X ~ y). 

(¢[x f- yj denotes the formula obtained from ¢ by replacing every occurrence 
of x with y.) The more general form 3!X ¢, where X is a finite set of 
variables, is defined accordingly. The quantifier 3! satisfies 

for every structure A and all formulae ¢,1/;. 

Now we can state the fifth axiom scheme: 

(D) \/(3!V(b)b) if b is a determinant. 

An example of an instance of scheme (D) is: 

Yu,v,w3!x,y,z ( 

x ~ A(J:v,g:y)/\ 
Y ~ B(J: x, g: z, h: u) /\ 
z ~ A(J: w, g: y, h: z) 

10 
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The theory CFT is the set of all sentences that can be obtained as in stan ces 
of t he axiom schemes (S), (F), (AI), (A2) and (D). 

Proposition 3.1 The feature tree structure T is a model of CFT. More­

ove1', the substructure of T containing only the rational f eatur'e t1'CCS is also 

a model of CFT . 

Proof. That the first four axioms schemes are satisfied is obvious. To 
show that T satisfies the fifth axiom, one assumes arbitrary feature trees 
for the universally quantified variables and constructs feature trees for the 
existent ially quan t ified variables . 0 

Proposition 3.2 Let 8 be a dete1'minant and ¢ any f or·mula. Th('n: 

8 FCFT ¢ ¢=::> CFT F 3V( 8)( 8 1\ ¢). 

Proof. The direc t ion "=}" follows immediately from Axiom Scheme ( D ). 

The ot her direction follow s by Axiom Scheme (D) and (1). 0 

4 The Decision Method 

In th is section we deve lop in several steps a method for deciding simultane­
ously entailment and disentailment in CFT. The proofs of the res ul ts s t. ated 
here will follow in the next section. 

A basic constraint is a possibly empty conj un ct ion of atom ic const ra int.s 
(i.e., Ax, xfy, xF, :l: == y). T he empty conjun ct ion is the formul a T. We 
assume that the conjunction of formulae is associat. ive and commutat. ive, and 
that it satisfies ¢ 1\ T = ¢. We can thus see a basic const ra int equivalently 
as a finit e multiset of a tomic constraints, where 1\ corresponds to multiset 
union and T to t he empty multiset. For basic const raints ¢, 1/;, we will 

write 't/J ~ ¢ (or 't/J E ¢, if 't/J is an atom ic constra int ) if t.here ex ists a basic 

const raint '1// such that. 't/J 1\ 't/J ' = ¢. 

Let /, ¢ be basic constraints and X, Y be finite sets of variables. We will 
event uall y arrive at an incremental method for deciding 

FCFT 
FCFT 

3X¢ 
-,3X¢ 

simu ltaneously. We will also see that the equivalences 

3Y / FCFT 3X ¢ ¢=::> 3Y / FA 3X ¢ 

3Y / FCFT -.:JX ¢ ¢=::> 3Y / FA -,3X ¢ 

hold for every model A of the theory CFT . 
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We say that a basic constraint clashes if it simplifies to 1.. with one of the 
following rules: 

(SCI) Ax 1\ Bx 1\ ¢ 
Ai-B 

1.. 

(ACI) 
xF 1\ xG 1\ p.. 

Fi-G 
1.. 

(FCl) xF 1\ xlu 1\ p.. frfF 
1.. 

We call a basic constraint clash-free if it does not clash. 

Proposition 4.1 A clashing basic constraint is unsatisfiable in CFT . 

Proof. For rule (SCI) the claim follows from axiom scheme (S), for rule 
(FCI) from axiom scheme (AI), and for rule (ACI) the claim follows from 
schemes (AI) and (A2). . 0 

Consider the basic constraint 

x ~ Y 1\ x f x' 1\ Y f y' 1\ A x' 1\ B y' , (4) 

where A, B are distinct sorts. Clearly, this constraint is unsatisfiable in 
CFT: If there was a solution, it would have to identify x' and y' (since 
features are functional), which is impossible since A and B are disjoint. This 
suggests that a constraint simplification method must infer all equalities 
between variables that are induced by the functionality of fcatu res (axiom 
scheme (F)). This observation leads us to the central notions of congruences 
and normalizers of constraints. 

4.1 Congruences and Normalizers 

We call an equivalence relation ~ between variables a congruence of a 
basic constraint ¢ if: 

• if x ~ y E ¢, then x ~ y; 

• if xfy, x'fy' E ¢ and x ~ x' , then y ~ y'. 

It is easy to see that the set of congruences of a basic constraint is closed 
under intersection. Since the equivalence relation identifying all variables 
is a congruence of every basic constraint, every basic constraint has a least 
congruence. We use (¢) to denote the least congruence of a basic con­
straint ¢. Note that we have the equivalence x (¢) y ¢::::> ¢ 1= x == y in the 
special case where ¢ is a conjunction of equations. 
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T he least congru ence of t he bas ic con st ra int (4) has two nontri vial equiva­

le ll ce cl asses: {x, y} a nd {x' , V'}. 

Technically, it will be most convenient t o re present congrue nces as id empo­
tent subst it utions mapping variables to variables. We call a substitution B 
a normalizer of a n equivalence relation on th e set o f a ll va ri a bles if 

1. B m a ps va ri a bles t o va ri ables ; 

2. B is id empotent ( t hat is, BB = B) ; 

3. Bx = By if a nd only if x ~ y (for all vari a bles x, V). 

G iven ~ , we can obta in a no rmalize r of ~ by choosin g a canoni cal member 
fo r eve ry equiva lence cl ass a nd ma ppin g eve ry variabl e to th e call o ni cal 
me mb er of it. s class. 

Let () be a subs t. it. uti o n. We use Vom( () ) (t he domain of () ) t.o d(, ll o t.e t.h e 
set. o f a ll vari a bles :1: such t hat () :z: 1= x. A subs titut.io n is called finite if 

its do m a in is fini te. A fini te substitution B with th e dom a in Vom(()) = 
{:7: I , . .. , xn } can be represent.ed as a n equ a tion sys t. em 

For con ve nie nce, we will simply use B to denote thi s fo rmul a. Now , if () is a 
subst it u t io n a nd ¢ is a qu a nt ifi e r-free formul a, we ha ve 

wh ere the a ppli cation o f () to ¢ is defin ed as one would expec t.. 

We call a subst it ut io n () a normalizer of a bas ic cons tra int. ¢ if () is a 

no rm a li ze r of t he least congru ence of ¢. Eve ry bas ic cons tra int ¢ h rl's a finit. e 
no rmalize r sin ce its least congru ence ca n only id ent.ify vari a bl es occurrin g 

in ¢. 

T he least co ng ru ence o f th e bas ic co nstra int (-1) has two non single t.on equiva­
lence classes: {x, y} and {x' , y' }. Hence the con strain t (4) has 4 norm a li ze rs, 

each represe ntin g a difrerent choi ce for the normal for ms of id ent.ifi ('(l vari ­
a bl es . One poss ibl e no rmalize r is t he subst it u t io n {:r f-> y, ']" ' ~ V' }. 

Le t () be a no rmali ze r o f ¢. T hen (() )=(¢) a nd x (() ) y ~ () :l: = () y for a ll 
variab les :1.:, y (( () ) is t he least cong ru ence of the equ at ion a l represent.a t.i o n 
of () ) . 

Let ¢ a nd 'lj; be basic constra ints. We write ¢ - 'lj; for t.he const.ra int th a t. 

is o btain ed fro m ¢ by deletin g all constraints occurrin g in '1/; . We write ¢ 
fo r t he formul a o btain ed from ¢ by dele ting all equ a tions "x == y" . We 

ca ll a basic const ra in t ¢ equation-complete if (¢)= (¢ - ¢ ) ( th a t is , t he 
least congru ence o f ¢ coincid.es wi th t he least congruence of th e equations 
contained in ¢). 
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Theorem 4.2 Let A be a model of CFT, ¢ a basic constraint, and B a 
normalizer of ¢. Then: 

1. ¢ is unsatisfiable in A if and only if B¢ clashes; 

2. ¢ ~CFT B A B¢ and B A B¢ is equation-complete. 

The first statement of the theorem gives us a method for deciding the sat­
isfiability of basic constraints, provided we have a method for computing 
normalizers. The second statement gives us a solved form for satisfiable 
basic constraints. Since the first statement implies that a basic constraint is 
satisfiable in one model of CFT if and only if it is satisfiable in every model 
of CFT , we know that the theory CFT is satisfaction complete [15]. 

Let ¢ be the basic constraint (4) and B be the normalizer {x t-t y,x't-t y'}. 
Then B¢ is the clashing constraint 

y f y' A Y f y' A A y' A By'. 

The following simplification rules for basic constraints provide a method for 
computing normalizers: 

(Triv) 

(Cong) 

(Elim) 

x~xAp 

¢ 

xfYAxfzAP 
y=zAxfzA¢ 

x ~ yA P 
x ~ Y A ¢[x ~ y] 

x=/=y, XEV(¢) 

(¢[x ~ y] denotes the formula obtained from ¢ by replacing every occur­
rence of x with y.) Each of these rules is an equivalence transformation for 
CFT (rule (Cong) corresponds to axiom scheme (F)). It is also easy to see 
that the rules preserve the congruences of a constraint, and hence its least 
congruence. Furthermore, the rules are terminating. Hence we can compute 
for every basic constraint ¢ a normal form that has exactly the same nor­
malizers as ¢. The next proposition says that normal constraints exhibit a 
normalizer (a constraint is normal with respect to a set of rules if none of 
the rules applies to it): 

Proposition 4.3 Let ¢ be a basic constraint that is normal with respect to 
the rules (Triv), (Gong) and (Elim). Then the unique substitution B such 
that ¢ = B A ¢ is a normalizer of ¢ satisfying ¢ = B¢. 

4.2 Entailment without ::J 

Next we will give a method for deciding entailment I PCFT ¢ between basic 
constraints. The constraint I will be required to have a special form called 
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saturated graph. 

A basic constraint, is called a graph if it is clash-free , contains no equation, 
and satisfies x fy E ,/\ xfz E , :::} Y = z . Hence a clash -free basic constraint 
, not containing equ ations is a graph if and only if the identity substitution 
is the only normalizer of ,. 

A basic constraint <p is called saturated if for every arity constraint x F E <P 

and every feature f E F there exists a feature constraint xfy E <p. 

We call a variable x determined in a basic constraint <P if <p cont.ains a 
determin ant for x (see Section 3). We use D(<p) to denot.e the se t of all 
variables determined in <p. We say that an equation x == y is determined 
in <p if x and yare both determined in <p. 

The next theorem says that in a satisfiable and equation-colllplete basic 
const ra int we can delet.e determined equations wit.hout loosing information . 

Theorem 4.4 (Determined Equations) Let TJ be a conjunction of rqua­

tions and <p be a basic constraint such that 1] /\ <p is equation-complete and 

satisfiable in CFT. Then TJ /\ <p !=l CFT <p, provided every equation in "(' is 
deter·mined in <p. 

Theorem 4.5 Let A be a model of CFT, , a saturated gmph, <p a basic 
constr·aint, and let () be a nonnalize7' of, /\ ¢. Then: 

J. , 1= A '¢ if and only if ()(, /\ 1» clashes; 

2. , 1= A <p if and only if 

(a) ()(! /\ 1» is clash-fr·ce and 

(b) 01> ~ 0, and 

(c) every equation in () is determined in , . 

The first statement follows immediately from Theorem 4.2 (since for every 
st ru ctu re A" I=A , <p iff, /\ <p is unsat.isfiable in A). Th e second statement 
is nontrivial. Note that deciding entailment and dise ntailment is st raight­
forwa rd once a normalizer is computed. 

To see an example, let. us verify 

x ~ AU: x, g: y) /\ Y ~ AU: y, g: y) I= CFT x = Y (5) 

with the method provided by Theorem 4.5. Without syntactic sugar we 
have 

Ax /\ x {f,g} /\ x f x /\ x gy /\ Ay /\ y{f, g} /\ yfy/\ygy I= cFT x=y. 
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The left-hand side, is in fact a saturated graph. If we apply the simplifi­
cation rule (Elim) to, 1\ ¢> (¢> is the right-hand side x ~ y), we obtain (up 
to duplicates) the normal and clash-free constraint 

x ~ Y 1\ Ay 1\ y{j,g} 1\ yfy 1\ ygy. 

Hence () : = {x f--+ y} is a normalizer of, 1\ ¢>. Since ¢ = T and x == y is 
determined in " we know by Theorem 4.5 that, entails ¢> in every model 
of CFT. 

4.3 Entailment with :l 

We now extend Theorem 4.5 to the general case 3Y, i=CFT 3X ¢>. 

First we note that, after possibly renaming quantified variables, we have 

3Y, i=CFT 3X ¢> ¢:::::} ,i=cFT 3X ¢>. 

Hence it suffices to consider the case where only the right-hand side has 
existential quantifiers. 

Next we will see that we can assume without loss of generality that, is a 
saturated graph. Given a basic constraint" we can first apply the simpli­
fication rules (Triv), (Cong) and (Elim) and obtain an equivalent normal 
form () 1\ ,', where () is a normalizer and " either clashes or is a graph. If 
" clashes, then, i=CFT 3X ¢> trivially holds. Otherwise, we can assume 
without loss of generality that () 1\ " and X have no variable in common. 
Thus we have 

,i=CFT 3X¢> ¢:::::} () 1\ " i=cFT 3X ¢> ¢:::::} ,'i=CFT 3X(0¢» 

since 0 is idempotent and 0,' = ,'. Now we know by axiom scheme (A2) 
that there exists a saturated graph 1" such that " HCFT 3Y," for some 
set Y of new variables. Thus we have 

, i=CFT 3X ¢> ¢:::::} 3Y," i=CFT 3X ((}¢» ¢:::::} ," i=cFT 3X ((}¢». 

Hence it suffices to exhibit a decision method for the case, i= CFT 3X ¢>, 
where, is a saturated graph and X is disjoint from Vb). 

We say that a variable x is constrained in a basic constraint ¢> if ¢> contains 
an atomic constraint of the form x == y, Ax, xF or xfy. We write C(¢» for 
the set of all variables that are constrained in a basic constraint ¢>. The 
basic constraint (4), for instance, constrains the variables x, y, x' and y'. 

In the following X will be a finite set of variables. We write -X for the com­
plement of X. We call a normalizer () X-oriented if (}(-X) ~ -X. Given 
an equivalence relation between variables, we can obtain an X -oriented nor­
malizer by choosing the canonical member of a class from -X whenever 
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the class contains an element that is not III X. To compute X -orient.ed 
normalizers, it su ffices to add the rule 

( Orient) 
y~xl\¢ 

x~yl\¢ 
if x E X and y rf. X 

to the simplification rules (Triv), (Cong) and (Elim). With this addit.ional 

rule normal forms will a lways exhibit an X -orient.ed normalizer. 

The restriction Blx of a normalizer B to a set X of variables is the Stl bs t.i ­
tutio n that agrees with () on X and is the identity on -X. 

Theorem 4.6 (Entailment) Let A be a model oj CFT, , a satumted 
graph, ¢ a basic constraint , X a finit e set oj variables not occurring in " 
and let B be an X -oriented normalizer' oJ, 1\ ¢. Then: 

J. ,1= A -dX ¢ iJ and only iJ B( , 1\ ¢) clashes; 

2. ,1= A :JX ¢ iJ and only iJ 

(a) B(, 1\ ¢) is clash-Jree and 

(b) C(B¢- fJ,) ~ X and 

( c) eVC7'y equation in BI -x is dete7'mined in ,. 

Theorem 4.5 is obtained from the Entailment Theorem as the special case 
where X = 0. Since t he criteria of Theorem 4.6 do not depend on t.he 

particular model A , we obtain t he claims (2) and (3) st.ated at t.h e beginning 
of this sect io n. 

4.4 Independence 

Theorem 4.7 (Independence) Let ¢, ¢ ], ... , ¢n be basic constraints and 
X] , ... , X n be finite se ts oj variables. Then: 

Jor evCT'V model A oj CFT . 

The Ind ependence Theorem does not hold for finite alphabets of sorts and 

features. For finitely many sorts A], . .. , An we have 

and for finit ely many feat ures It, ... , Jn we have 

T I=T x {} V 3y(xlty) V ... V 3y(xJnY) . 
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Since we allow for existential quantification, our Independence Theorem is 
stronger than what is usually stated in the literature [12, 20, 21]. In fact, 
independence for existentially quantified constraints over finite or rational 
constructor trees does not hold if the alphabet of constructors is finite. To 
see this, note that the disjunction 

is valid if there are no other constructors but iI,··· , fn. 

5 The Proofs 

We now give the proofs of the results stated in the preceding section . 

5.1 Congruences and Normalizers 

We first study the properties of the simplification system given by the rules 
(Triv), (Cong), (Elim), and (Orient). Since the rule (Orient) is not applica­
ble for X = 0, the subsystem (Triv), (Cong), (Elim) is in fact a special case 
of the full system. 

A basic constraint is called a graph constraint if it contains no equat.ion. 
Note that a graph constraint is a graph if and only if it is equation-complete 
and clash-free. 

We say that a congruence;::::: contains an equation x ~ y if x ;::::: y. 

Proposition 5.1 Let B 1\, be a normal form of a basic constT"CLint ¢ with 
respect to the rules (Tr·iv) , (Cong), (Elim) , (Orient), where B is a set of 
equations and where, is a gmph constmint. Then: 

1. ¢ ~CFT B 1\,; 

2. B is an X -oriented normalizer of ¢; 

3. , = B,. 

Proof. It is obvious that the rules perform equivalence transformations in 
CFT, so ¢ and B 1\ , are equivalent in CFT. 

The rule (Elim) forces all variables occurring at the left side of an equation to 
occur only once. Hence, B is an idempotent substitution, and B( -X) ~ -X 
by (Orient). Since Vom(O) is disjoint from Vb), the third claim follows. 

To prove that 0 is a normalizer of ¢, it remains to show that (0) is the least 
congruence of ¢. To this end, we first show that the simplification rules 
preserve congruences. So assume ¢ simplifies to 'ljJ with one of the rules. We 
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have to show that an eq uivalen ce relation between variables is a congruence 
of ¢ iff it is a congruence of 'lj; . For the rules (Triv) and (Orient) this is 
trivial. 

If ;::::; is a congruence of xfy 1\ xfz 1\ ¢, then it is as well a congruence of 
xfz 1\ ¢, and;::::; contains y ~ z since 0 is a congruence of xfy 1\ xfz. If;::::; 
is a congruence of y ~ z 1\ xfz 1\ ¢, then y ;::::; z, hence;::::; is a congruence of 
x f y 1\ x f z 1\ ¢. This proves that application of (Cong) preserves congruences. 

For the case of (Elim), every congruence of x ~ y 1\ ¢ is a congruence of 
x ~ y 1\ </> [x ~ y], and vice versa, since in either case every congruence must 
contain x ~ y. 

Now we show by contradiction that (0) is a congruence of 01\,. By definition, 
(0) contains all eq uations of O. Hence, if (0) is not a congruence of 0 1\ " 
then there must be xfy, x' fy' E , with x (0) x', y =I y' and not y (0) y'. 

If x = x', then (Cong) applies, which contradicts the normal form assump­
tion. If x and x ' are different variables, t.hen at least one of them is contained 
in Dom(O) since Ox = Ox' : Hence (Elim) applies, which again contradicts 
the normal form assumption. 

Since every congruence of 01\, must contain 0, we conclude that (B) is in 
fact the least congruence of 0 1\,. Since the simplification rules preserve 
congruences, (0) is the least congruence of ¢ . 0 

Proof of Proposition 4.3. Follows from Proposition 5.1. o 

We say that a variable x is eliminated in a basic constraint ¢ if ¢ contains 
an eq uation x ~ y and x occurs in ¢ only once. 

Proposition 5.2 The simplification system consisting of (Tr'iv), (Gong), 
(Elim) and (07'ient) is terminating. 

Proof. Obviou sly, th ere can not be a derivation using (Triv) or (Cong) 
infinitely often. Hence, it suffices to show that the rules (Elim) and (Orient.) 
terminate. 

(Elim) and (Orient) do not int rod uce new variables. For a given basi c con­
st raint ¢, consider the lexicographically ordered cross-product (s('e. e.g., 
[13]) of the following measures: 

1. the number of variables in X n V( </» that are not eliminated in ¢, 

2 . the number of eq uations x ~ y such that x rt. X, 

3. the number of variables in -X n V(¢) that are not eliminated Jl1 ¢. 
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Application of the rule (Elim) with x E X decreases the first component in 
this lexicographic ordering, while application of (Orient) does not increase 
the first component but decreases the second. Application of (Elim) with 
x tf. X does not increase the first or second component and decreases the 
third. 0 

Proposition 5.3 For every normalizer () of a basic constraint cP: 

cP ~CFT () /\ ()¢. 

Proof. It is easy to show that two normalizers of a basic constraint, when 
considered as formulas, are equivalent in every structure. By Proposit.ion 5.2 
and Proposition 5.1 there is a normalizer p of cP satisfying cP I=CFT (I, hence 

cP I=CFT (). 

Let 'T] be the equational part of cP. Then 

() I=CFT 'T] 

sin ce the least congruence of cP, that is (B), contains all equations of cP. Hence 

cP ~CFT B /\ cP ~CFT B /\ ''7/\ ¢ ~CFT () /\ ¢ ~CFT B /\ B¢. 0 

Proposition 5.4 If B is a normalizer of a congr'uence of (], basic con­
straint cP, then B¢ either clashes or is a graph. 

Proof. Obvious. o 

We say that the feature f is realized for a variable x in a basic constraint 
cP if cP contains a feature constraint x fy for some variable y. 

Proposition 5.5 Let cP be a graph and let C(cP) <;::; X. Then eFT 1= 93XcP. 

Proof. Since cP is a graph, the following implications hold: 

1. Ax, Bx E cP ~ A = B; 

2. x F, x f y E cP ~ f E F; 

3. xF, xG E cP ~ F = G; 

4. xfy,:l.;fz E cP ~ Y ~ z. 
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Furthermore we may assume without loss of generality that <P does not 
contain any multiple occurrence of an atomic constraint. We will construct 
a determinant 8 ;2 <P with V( 8) = X. Then 

eFT F V3X8 

by axiom (D), which proves the claim since 8 F <p . 

For each x EX, let Fx denote the set of feature symbols that are realized 
for x in <p. We define t he determinant 8 by adding to <p for each variable 
x E X the following atomic constraints: 

• Ax, provided there is no sort constraint for x in <Pi 

• xFx, provided there is no arity constraint for x in <Pi 

• xfx, provided there is an arity constraint xF E <p and f E F is not 
realized for x in <p. 0 

Lemma 5.6 Let A be a model of eFT and e a normalizer of the basic con­
stmint <p. Then the following statements are equivalent: 

1. e(f) is clash-Fee; 

2. <p is satisfiable in every model of eFT; 

3. <p is satisfiable in A. 

Proof. By Proposition 5.3, <p ~CFT e 1\ e(f). Since e is an idempotent 
substitution, e 1\ e(f) is satisfiable in a structure iff e(f) is satisfiable in this 
structure. 

Hence for any model B of eFT, <p is satisfiable in B iff e(f) is. By Propo­
sition 5.4, e(f) is either a graph or clashes. Hence, if e(f) is clash-free, then 
(2) and (3) follow by Proposition 5.5. Otherwise (2) and (3) do not hold by 
Proposition 4.1. 0 

Proof of Theorem 4.2. The first statement of Theorem 4.2 follows imme­
diately from Lemma 5.6. The second statement is a consequence of Propo­
sition 5.3. 0 

Proposition 5.7 Let 1/;, <p be basic constmints, X a finite set of variables 
not occur7'ing in 1/;, and e a normalizer of 1/; 1\ <p. Then 

1/; FCFT 3X <p ~ 3X(e 1\ e(f)). 
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Proof. The claim follows from the following equivalence: 

'ljJ /\ 3X ¢ I=kFT 
~CFT 

~CFT' 

'ljJ /\ 3X( 'ljJ /\ ¢) since X disjoint frortl V('ljJ) 

'ljJ /\ 3X(0 /\ 01jj /\ O¢) by Proposition 5.3 

'ljJ /\ 3X(0 /\ O¢) since () /\ 'ljJ 1= ()1jj. o 

Proposition 5.8 Let A be a model of eFT, 'ljJ, ¢ basic constraints, () a 
normalizer of ¢ /\ 'IjJ and X a finite set of variables disjoint from V( v,) . Then 
the following statements are equivalent: 

1. 'ljJ 1= A -,3X ¢ ; 

2. 'ljJ I=A -,3X( () /\ ()¢) ; 

3. 'tP I=A -,3X(tI/\ ¢); 

4. 0(1jj /\ ¢) clashes, 

Proof. (1) and (2) are equivalent by Proposition 5.7, and t.he equivalence 

of (2) and (3) is a basi c property of substitutions. The equ ivalence of (1) 
and (4) can be seen as follows: 

'ljJI=A-,3X¢ ¢} AI=9('IjJ-+-,3X¢) 

¢} A 1= 9-,3X('IjJ /\ ¢) 

¢} A 1= -,3('ljJ /\ ¢) 

¢:} tI(1jj /\ ¢) clashes 

5.2 Determined Equations 

by Lemma 5.6. o 

We use V(O) to denote the set of all variables occurrinl?; in the equat.ional 
representation of a substitution O. 

Lemma 5.9 Let, be a graph constraint and let 0 bc a n07'malizCl' of some 
cong1'uence of,. If 0, is clash-free and if V( 0) ~ V(,), then 

, I=cFT O. 

Proof. Suppose 0, is clash-free andf V(O) ~ V(,). Then, contain s a 
determinant 0 such that V(O) = V(fJ). Hen ce it suffices to prove that 

o I=CFT O. (6) 

Since 00 is clash-free, we know by Proposition 5.4 that 00 is a graph. Since 

C(OO) ~ V(o) u V(O) = V(o), we know by Proposit.ion 5.5 that eFT 1= 
93V(0) 00. Hence, since 0 is idempotent 

eFT 1= 93V(0) (0 /\ 0). 

Thus we have (6) by Lemma 3.2. o 
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Lemma 5.10 Let 7],7]' be sets of equations, and let I be a graph constraint 
such that T/ /\ T/ /\ I is equation-complete and satisfiable in eFT. If Vel]') ~ 
Dh), then 

7] /\ I FeFT 7]'. 

Proof. Let B be a normalizer of 7]. First note that, since B is an idempotent 

substitution, 

(7) 

for any structure A and basic constraints ¢, '1/;. Since 7] Fi B, we know by 
our assumptions that 0/\ 7]' /\ I is equation-complete and sat.isfiable in eFT. 
We fi rst show that 

0'1]' /\ 0, is eq u ation-com plete. (8) 

Assume that EhfO:J.:',OyfBy' E 0, and ()x WI!') By. fly (7) we have fJ /\1)' F 
:J.: = y. Since xfx',yfy' E I and 7]' 1\ () 1\ I is equation complete, we have 
x' (B 1\ '1]') y' and t.hus fJx' (B'I]') By' by (7), which complet.es t he proof of (8). 

Now let fJ' be a no rmalizer of fJ 'I]'. As a consequence of (8), B' is norrnalizer 

of some congruence of fJ,. Since B /\ 'I]' /\ I is satisfiable in eFT, fJ' 1\ fJ , 
is satisfiable in eFT and we know by Lemma 5.6 that ()'fJ , is clash -free. 

Furthermore, V(B') = V(B'/7') ~ D(B,), since by assumption VCI]') ~ Vh). 
lIenee 

B, FeFT B' 

by Lemma 5.9. Since we have 'I] Fi Band B' Fi () '!]', we obt.ain 

'I] /\ I FeFT 7]' 

using (7). 0 

Proof of Theorem 4.4. Follows immediately from Lemma 5.10. 0 

5 .3 Entailment and Independence 

The next lemma is the key to t he proofs of the Entailment and t.h(' Inde­

pendence Theorems of Section 4. 

Lemma 5.11 (Spiting Lemma) Let I be a saturated graph, and for ev­
ery i, 1 ~ i ~ n, ¢i a basic constraint, Xi a finite set of variables disjoint 

fT'Om Vh), and Bi an Xi-oriented normalizer of 11\ ¢i. If for each i 

then 

23 



Proof. We may assume without loss of generality that ()ib /\1>i) is clash-free 
for all i, since otherwise by Proposition 5.8 

,/\ -.:3Xi(()i /\ 1>i) ~CFT ,. 

We will construct a graph ( 2 , such that ( disentails each 3Xi( Bi /\ 1>;) 
in eFT. This proves the claim since ( is a graph and hence is satisfiable 
in eFT (Proposition 5.5). 

Let Z be the set of all variables x such that there exists an i such that 
x f/. Xi and 

1. Ax E Bi1>i - ()n for some A or 

2. xF E ()i1>i - ()n for some F or 

3. xfy E Bi1>i - ()n for some f, y or 

4. x E V(()i!-X.) - V('Y)' 

By the assumptions, to each i at least one of these cases applies. Now we 
fix for every variable x E Z 

• a sort Ax not occurring in , or in any of the <Pi, and 

• a feature fx not occurring in , or in any of the <Pi (neither as a feature 
constraint nor as element of an arity constraint). 

It is understood that Ax ::f Ay and fx ::f fy if x ::f y. This is possible, since 
we have assumed that the alphabets of sorts and features are infinite. 

For every x E Z let Fx be the set of features that are realized for x in ,. 
Now we are ready to define the graph (: 

( .- , 
U {Axx! x E Z, , contains no sort constraint for x} 

U {x fxx ! x E Z, , contains no arity constraint for x} 

U {x( Fx U {Ix}) ! x E Z, , contains no arity constraint for x}. 

It remains to show that ( disentails 3Xi( £Ii /\ 1>i) in eFT for every i. By 
Proposition 5.8, it suffices to show that each ()i(( /\ 1>i) contains a clash. To 
this end we take a closer look at the four cases in the definition of Z. Recall 
that for every i at least one case applies. 

1. Ax E ()i 1>i - Bn and x rt Xi. 

Since Bib /\ 1>i) is clash-free, Bn does not contain a sort constraint 
for x. Since x E V(Bi1>;) and Bi is idempotent, x = BiX, thus, also 
does not contain a sort constraint for x. Hence by the definition of (, 
Axx E ( with Ax ::f A, which causes a clash in Bi (( /\ 1>;). 
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2. xF E Bi(jyi - (In and x rt. Xi. 

Since BiCr /\ (jyJ is clash-free, (In does not contain an arity constraint 
for x. Since x E V(Bi(jyJ and Bi is idempotent, we have x = Bix and 
thus, does not contain an arity constraint for x. Hence xfxx E ( and 

f x tf. F, which causes a clash in (Ji(( /\ 4>i)' 

3. xfy E (Ji4>i - (In and x rt. Xi. 

Since Bi is a normalizer of ,/\ <Pi, there is no z such that T f z E (In, that 

is, <pn does not realize f for x. Since x E V(Bi(jyi) and Bi is idempot.ent, 
x = (JiX, thus, also does not realize f for x. By assumption, is 

saturated, hence, does not contain an arity constraint for x, since 
any arity constraint fo r x would exclude f for x and therefore would 

lead to a clash in (JiCr /\ 4>i)' Hence :r( Fx U {Ix}) E ( and f rt. fr U {IT} ' 
which implies that (Ji(( /\ (jy;) contains a clash. 

4. x E V(Hil-xJ - D(,). 

There Inust be an equation ;r y or y = x in Hi. Since Hi is Xi ­
oriented, we know that y rt. Xi. IIence either y E DCr) or y E Z, 
which means that both x and yare determined in (. 

If either x or y has no sort const.raint in " thC'n Bi ( contains a sort. 
clash. Otherwise , either x or y has no arit.y const.raint in , since x 
and yare not both determined in , and, is saturated by assumpt.ion. 
Hence Bi ( contains an arity clash. 0 

Proposition 5.12 Let A be a moriel of eFT, , a satl1mterl gmph, <P a 
basic constraint, X a finite set of variables disjoint fmm VCr), anri H an 
X -oriented nonnalizcr of, /\ <p. Then, 1= A 3X <P iJJ 

1. B(, /\ 4» is clash-fr'ee and 

2. C(H4> - H,) ~ X and 

3. V(B/-x)~DCr). 

Proof. Suppose that, I=A 3X <p. Then (1) follows from Proposit.ion 5.8 
since the graph, is satisfiable in A (Proposit.ion 5.5). The claims (2) and 
(3) follow with Lemma .5.1l. 

For the other direction, first observe that 

, I=A (J/-x 

follows with Lemma 5.9 from the assumptions (1) and (3). Since VCr) is 

disjoint from X, B, = (B/-x h, hence, 

, 1= A (J /- X /\ , 1= (J /- X /\ (J,. 
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Since 0(,1\ ¢) is clash-free, we know by Proposition 5.4 that O¢ - 0, is a 
graph. Thus 

V3X(O¢ - 0,) 

by Proposition 5.5 and assumption (2). Hence, 

, PA 0l-x 1\ 0,1\ 3X (O¢ - 0,) 

PA 3X(OI_x 1\ (O¢ - 0,) 1\ 0,) since X is disjoint from 

V(OI-x) and Vb) 

PA 3X(OI_x 1\ O¢) 

PA 3X(OI_x 1\ Olx 1\ O¢) since 0 is idempotent 

and X -oriented 

PA 3X(O 1\ O¢). 0 

Proof of Theorem 4.6: The first part of Theorem 4.6 is Proposit.ion 5.8, 
the second part is Proposition 5.12. 0 

Proof of Theorem 4.7. The implication from right to left is trivial. It re­
mains to show that for every model A of eFT, basic constraints ¢, ¢1, ... , ¢n 
and finite sets Xl, . .. , Xn of variables, 

Without loss of generality we can assume that ¢ is a saturated graph, and 
that no Xi has a variable in common with ¢. By Proposition 5.7, we may 
decompose each ¢i into Oi 1\ Oi¢i for some Xi-oriented normalizer Oi of ¢i 1\ ¢. 
We may assume without loss of generality that Oi( ¢ 1\ ¢i) is clash-free for 
any i, since otherwise by Proposition 5.8 

Moreover, it follows by Lemma 5.11 that C(Oi¢i - Oi¢) ~ X and V(Oil-x') ~ 
D(¢) for some i. Hence, the claim follows with Proposition 5.12. 0 

6 The Abstract Machine 

The decision method developed in Section 4 is abstract and does not provide 
directly for a discussion of important algorithmic aspects such as worst-case 
complexity and incrementality. We will now present an algorithmic formula­
tion of the method showing how constraints can be processed incrementally, 
an aspect that is of crucial importance for a constraint system to be used 
in a "real" constraint programming system. The algorithmic formulation 
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will also provide for an upper bound on the computational complexity of 
entailment checking. 

To keep the presentation of the algorithm manageable, we will assume that 
the features that can actually occur in constraints are restricted to some 
a priori known finite set. This assumption can certainly not be made in 
practise, but our idealized algorithm nevertheless illustrates important tech­
niques that do carryover to the general case. We will see that our algorithm 
decides entailment and disentailment in at most quasi-linear time. The de­
velopment of truly efficient implementation techniques for the general case 
is not straightforward and will require further research. 

The algorithm is presented as an abstract machine consuming a conjunction 
of possibly negated basic constraints 

,I A ,3XI <PI A ,2 A ,3X2 <P2 A ,3 A ... 

from left to right and detecting unsatisfiability as early as possible. The 
abstract machine is incremental in the sense that it avoids redoing work when 
further constraints arrive . . This means that already processed information 
must be stored in a simplified form allowing for maximal reuse of work 
already done. 

Let, = ,I A ,2 A ... be the conjunction of the positive constraints seen 
so far. By the Independence Theorem we know that the conjunction of 
the positive and negated constraints seen so far is satisfiable if and only if 
(1) , is satisfiable and (2) no negated constraint 3Xi<Pi is entailed by,. 
Moreover, a negated constraint 3Xi<Pi can be discarded if it is disentailed 
by ,. But what do we do with negated constraints that are neither entailed 
nor disentailed by,? These undetermined negated constraints pose two 
questions concerning incrementality: Given a further positive constraint ,k, 
which of the undetermined negated constraints 3i<Pi need to be reconsidered? 
And, if a negated constraint must be reconsidered, how can previous work 
be reused? Both questions will be answered in the following. 

Our abstract machine for CFT has been inspired by Warren's abstract ma­
chine for Prolog [3] and the actual implementations of SICStus Prolog [9] 
and AKL [16]. 

6.1 The Heap 

The algorithm employs a variable-centered representation of basic con­
straints. The represented constraint is kept in a form exhibiting a suitably 
oriented normalizer. The representation is built stepwise by including one 
atomic constraint at a time. Inclusion of an atomic constraint corresponds 
to application of the simplification rules (Triv), (Cong), (Elim) and (Orient). 
Whenever the represented constraint is extended, satisfiability is checked by 
means of the clash rules. 
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arity = set of feature 
variable = record 

isglobal : bool 
ref : j variable 

sort : sort W {none} 
arity : arityW {none} 
subtree: array [feature] of jvariable 

end 

function newvar( is_global: bool): 1 variable 
val' x: T variable 
new(x) 

with xl do 
isglobal ~ is_global 
ref +- nil sort ~ none arity ~ none 
for every f E fea/,ure do suhtree[f] ~ nil 

return x 
end newvar 

procedure r/eref( var x: 1 variahle) 

while xl .ref # nil do x +- xl·ref 
end Jeref 

Figure 2: Representation, creation and dereferencing of variables. 

The representation is variable-centered in that an atomic const.raint is al­
ways stored with the variable it is constraining (sec Subsection tI.3). We 
assume that some finite enumeration type feature is given having as ele­
ments the features that can be used in constraints. The definit.ion of the 
type variable appears in Figure 2. An equation x == y is repr('s('nt('d by 
having the field ref of x point to y. The field isglobal is false if t.he variable 

is existentially quantified in a negated constraint, and true otherwise. Sort 
and arity constraints are represented as one would expect. A feat.ure con­
straint xJy is represented by having the field subtree[f] of the variable x 
point to the variable y. If no feature constraint is known for T and J, then 

subtree[f] = nil. A new, completely unconstrained variable is created by 
the function newvar, also shown in Figure 2. 

The collection of all variable records in the store is called the heap. From 
what we have said it is clear that the heap represent.s a hasic constraint. 
The heap always satisfies three invariants: 

1. the graph defined by the ref-pointers is acyclic (which means that it 
is a forest, where the ref-pointers are directed towards the roots) 

2. the mapping obtained by dereferencing a variable to the root of the 
ref-pointer tree it appears in is an X -oriented normalizer of the repre-
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sen ted constraint (where X is the set of all local variables) 

3. the represented constraint is saturated. 

The first invariant ensures that the procedure deref defined In Figure 2 
always terminates. 

6.2 Imposing Positive Constraints 

For every atomic constraint there is a procedure imposing it on the heap: 

Ax 
xfy 
xF 
x == y 

putsort(x, A) 
putfeature(x, f,y) 
putarity(x, F) 
unify(x,y). 

The procedures are given in Figure 3 and 4. They are justified by t.he simpli­
fication and clash rules of Section 4. If a clash is discovered, control jumps 
to the label failure (see Figure 5). It is easy to verify that the const.raint. 
imposition procedures preserve the heap invariants. Irno clash is discovered, 
the constraint represented by the heap is satisfiable. 

Every change to a global variable is remarked on a stack called tra.il. Not.e 
that the procedure setref records new equations between global variables 
differently depending on whether they are determined (ref( x,y)) or not 
(unify(x,y)). The reason for this distinction will be given later. 

If control jumps to the label failure (see Figure 5), the trailed is popped and 
previous changes to global variables are undone. In case there are no local 
variables, ulltrailing upon failure will in fact delete all constraints from the 
heap. 

So far we have a machinery that can be fed piece by piece with atomic 
constraints. A new constraint is imposed by applying the appropriate pro­
cedure. Control jumps to the label faill1re if and only if t.he resulting heap 
is unsatisfiable. After a constraint is imposed without failure, the result­

ing heap is equivalent to t he conjunction of the imposed constraint and 
the previous heap (provided auxiliary variables introduced by the procedure 
setarity to maintain saturation are quantified existentially). Clearly, the ab­
stract machine presented so far is sound, incremental, and discovers failure 
as early as possible. 
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procedure putsort(x: Tvariable; A: sort) 
deref(x) 
if xT .sort = none 
then setsort(x, A) 
else if xT .sort # A then goto failure 

end putsort 

procedure setsort(x: Tvariable; A: sort) 
xT.sort ~ A 
if xT .isglobal then push (trail, "putsort (x,A) ") 

end setsort 

procedure putfeature( x:T variable; f:feature; y:T variable) 
deref( x) deref(y) 

if xT .arity # none ~ f rf- xT .arity 
then goto failure 
else if xT.subtree[f] # nil 

then uni(y( xT .subtree[f]'y) 
else setfeature( x,f,y) 

end putfeature 

procedure setfeature( x:T variable; f:feature; y:T variable) 
xT .subtree[f] ~ y 

if xT .isglobal then push (trail, "putfeature( x,f,y) ") 
end setfeature 

procedure putarity(x: Tvariable; F: arity) 
deref(x) 
if xT .arity = none 
then setarity( x, F) 

for every f E feature do 
if f rf- F 1\ xT .subtree[f] # nil then goto failure 

else if xl-arity # F then goto failure 
end putarity 

procedure setarity(x: Tvariable; F: arity) 
xT.arity ~ F 
for every f E F do % maintain saturation 

if xT .subtree[f] = nil then setfeature( x,f,newvar( xT .isglobal) ) 
if xT .isglobal then push (trail, "putarity( x,F) ") 

end setarit.y 

Figure 3: Imposing sort, feature and arity constraints. 
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procedure unify(x,y: Tvariable) 
deref( x) deref(y ) 
if x :j; y 
then if xT .isglobal 

then hind(y,x) 
else bind(x,y) 

end unify 

procedure bind(x,y: Tvariahle) 
setref( x ,y) 
if xl-sort :j; none t hen putsort (y,xl.sort) 
for every f E fcat ure do 

if xl.sllhtree[f] :j; nil then piltfeat ure(y,f,x[ .s llh/,rcc[f]) 
if xT.arity:j; none then [lll/,arity(y,xl-arity) 

end /lind 

procedure setrcf( x ,y: T variahle) 
xl .ref +- y 
if xl.isglohal 
then if xl .sort :j; non e 1\ xl .arity:j; none 1\ 

yl .sort :j; none 1\ YT. ari t.y :j; none 
then [lllsil (trail , "setref( x,.Y) " ) 
else push ( trail , "unify( x,.Y) ") 

end set ref 

Figure 4: Imposing equality constraints. 

failure: while --, empty( trail) do undo(pop( trail)) 

procedure undo( e: stacken tr.y) 
case e of 

"puisort(x,A) " : xl.sort +- none 
"putarity(x,F) " : xl-arity +- none 
"putfcat ure(x,f,y) " : xl-subtree[f] +- nil 
"unify(x,y)" : xl-ref +- nil 
"set ref( x,y)" : xl.ref +- nil 

end undo 

Figure 5: Restoring t.he heap aft.er failure, 
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procedure residuate(var script: stack) 
val' e: stackentry 
clear ( script) 
while --, empty( trail) do 

e +- pop(trail) 
undo( e) 
if e i "setref( ... )" then push (script,e) 

end residuate 

procedure resume(script: stack) 
clear ( trail) 
while --, empty(script) do execute(pop(script)) 

end resume 

Figure 6: Residuating and resuming negated constraints. 

6.3 Imposing Negated Constraints 

We will now see how a negated constraint --,3X ¢> is processed. First, the 
trail is cleared (i.e., set to the empty stack). Then ¢> is fed like a positive 
constraint, where the existentially quantified variables X are created as local 
variables. If failure occurs, the resulting untrailing undoes all changes to 
global variables and the negated constraint is discarded (which is sound 
since in this case --,3X ¢> is entailed by the positive constraints Ii seen so 
far). If ¢> has been fed completely without causing a failure, the negated 
constraint is "residuated" by calling the procedure rcsidua.te of Figure 6, 
which returns a stack of constraints called a script. Residuation untrails 
and moves constraints from the heap to the script, such that the global part 
of the heap is restored to what it had been before processing the negated 
constraint, and such that the equivalence 

restored hea.p A script ~CFT hea.p before residua.tion (9) 

holds. This equivalence would be obvious if the setref-entries in the trail 
(recording determined equations between global variables) were p1Jshed as 
unif-entries on the script. Discarding them is however justified by Theo­
rem 4.4 since the heap is equat.ion-complete before residuation. 

Next we will see that 3X ¢> is entailed by the positive constraints if and only 
if the script obtained by residuation is empty. This means that a negat.ive 
constraint --,3Xi¢>i causes unsatisfiability of the conju nction 

if and only if 3Xi¢>i is processed without failure and residuat.es with an 
empty script. 
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To see the claim a bo ut res iduat ion , suppose :JX cp is imposed without failure 
on a. heap whose globa l variables represent a constraint, a nd res iduates 

with a script rep resent ing t he const raint a. Moreover , suppose that 1jJ is 
t he const raint represented by the local variables X in the heap just after 

residuation. By Equivalence (9) we have I /\ cp H eFT I /\ 1jJ /\ a. (This 
equivalence is slightly simplified since it ignores existentially quant.ifi ed aux­

iliary variables in t roduced to maintain saturation of the heap .) Morc'ove r , 
C(1jJ) ~ X, a nd 1jJ is satisfiable and equation-complete. Hence we know 

eFT 1= :JX1jJ by t he E nt ailment Theorem. 

1. Suppose the script is em pty. Then I /\ cp H eFT , /\ '0 and hence 
,/\ :JX cp H eFT ,/\ 3X 1jJ. Since eFT 1= :JX '0, we have, HeFT 3)( cp . 

2. Suppose the scri pt is non em pty. Then we know by t.he ElltailIlIcnt. 
Theorem that, does not ent. a il :JX cp since the heap bcfore rcs idu at. io n 

violates e ither cond it.ion (2.c) (i.e., there is a unify-entry on thc t.rail) 
or condition (2.b) (i.e., there is a put-entry on th e trail)). 

We now know that a negative constraint res iduating wit.h a nonempt.y script. 

is neithe r e ntailed nor disentailed by the posit.ive const raint.s seen so far . 
Moreover, the script together with the record s of the local variables X in t.he 

heap represent a simp lifi ed form of the negated const raint.. This sirnplifi cd 
1'01'111 depellds both on the negat.ed cO ll st.raint and the a lready sce n posit.ive 
const.raints. If more posit.ive informat.ion becomes availa,ble, the nega.t.ed 
const raint mu st poss ibly be reconsi dered. Rat.h er t.han imposing t.he original 
negated constrain t anew, its residuated script is res umcd with the pro('cdure 

reSlIme in Figure 6. It suffices to res um e a res idu ated script if one of the 
followin g events occurs: 

• the script contain s an entry plltsort(x,_) and variable x IS made a 
refe rence or a(,quires a sort ; 

• t he sc ript contai ns an ent ry putfeature(x,f,_) an d variable x is made a 
re ference or acquires feature f or an arity; 

• the sc ript contains an entry puta,rity(x,_) and variable x IS rnade a 
reference or acquires an arity or a feature; 

• the script contains an entry unify(x,y) and variable x or y is rnade a 
re ference or acquires a sor t , an arity, or a feat ure. 

Resumption of a script is handled in the same way a negated ('onstraint is 

imposed initi ally. In particular, a resumed script rnay res idu ate again wit.h 
a new script. 
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6.4 Worst-Case Complexity 

We will now see that an optimized version of our abstract machine can 
decide f i=CFT 3X </> in time at most quasi-linear in the size of f and </>. The 
necessary optimization concerns the implementation of the forest consisting 
of the ref-pointers by means of an efficient union-find method [19J. 

For our worst-case analysis we assume that f and </> are fed to the empty 
machine as a sequence of newvar, put and unify procedure calls. The con­
straint f is fed first, then the trail is cleared, then </> is fed, and finally the 
procedure residuate is called. If failure occurs while f is being processed, 
then f is unsatisfiable and trivially entails 3X </>. If failure occurs while </> is 
being processed, then (and only then) f disentails 3X </>. If no failure occurs, 
f entails 3X </> if and only if the script obtained by residuation is empty. 

It suffices to show that the machine does not require more than quasi-linear 
time in the case where failure does not occur. Clearly, the size of the heap 
built after processing f and </> is linear in the size of f and </>. Since the 
procedure bind, through which all recursion is channelled, always sets a ref­
pointer whose value was nil before, the total number of calls to putsort, 
putarity, putfeature and unify is linear. If we do not count recursive calls, 
these procedures require constant time plus the time for one or two calls 
of deref Thus, the entire time needed is linear plus the time for a linear 
number of calls of deref Hence, if we implement the congruence represented 
by the ref-pointers with an efficient union-find method employing path com­
pression, the abstract machine will run in at most quasi-linear time [19J. 

Our abstract machine and hence our worst-case analysis assume that the 
features that can occur in f and </> are restricted to some a priori known 
finite set. Without this assumption, the time for obtaining y given :r and f 
such that x fy is in the heap is no longer constant. In this case entailment 
checking can certainly be implemented with a complexity not worse than 
quadratic in the size of f and </>. 

7 Summary and Conclusion 

We have shown that records can be incorporated into constraint (logic) pro­
gramming in a straightforward and natural manner. Semantically, records 
are modeled as feature trees generalizing the trees corresponding to first­
order terms. The first-order language we have set up for describing feature 
trees is richer than the equational language employed with classical trees in 
that it allows for finer-grained descriptions. The resulting constraint system 
CFT is a conservative extension of both Prolog II's rational tree system [11, 
12J and the feature tree system FT [8, 7J. Thus CFT brings together the 
work on classical tree constraints (e.g., [14, 11, 12,20,23]) and the work on 
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feature descriptions (e.g. , [18, 17, 1,2,4,5,6,26,8,7, 10D- two lines of 
research that seemed to be rather far apart in the past. 

The declarative semantics of CFT was specified both algebraicly (the feature 
tree structure T) and logically (the first-order theory CFT given by five 
axiom schemes). For the constraint problems considered in the paper the 
coincidence of the algebraic and logical semantics was shown. We conjecture 
that CFT is in fact a complete recursive axiomatization of the feature tree 
structure. 

We have established abstract decision methods for satisfiability and entail­
ment of constraints. Moreover, we have shown that CFT satisfies the Inde­
pendence Property, which means that our methods can decide the satisfia­
bility of conjunctions of positive and negative constraints. 

We have presented an idealized abstract machine processing positive and 
negative constraints incrementally. The correctness of the machine was ver­
ified using the abstract decision method established before. Under the as­
sumption that the features ,that can appear in constraints are restricted to 
some a priori known finite set, an optimized version of the machine can 
decide satisfiability and entailment in quasi-linear time. 

Our abstract machine shows that an implementation of CFT will be more 
complex than an implementation of the classical rational tree system us­
ing established Prolog technology [3] . Really efficient implementations of 

CFT will require further research. However, since the classical rational 
tree system is a subsystem of CFT, a gracefully degrading implementation 
of CFT seems feasible, which pays for CFT's extra-expressivity only when 
non-classical constraints are used. 
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