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Abstract

The Oz Programming Model �OPM� is a concurrent programming model sub�
suming higher�order functional and object�oriented programming as facets of
a general model� This is particularly interesting for concurrent object�oriented
programming� for which no comprehensive formal model existed until now�
The model can be extended so that it can express encapsulated problem solvers
generalizing the problem solving capabilities of constraint logic programming�
OPM has been developed together with a concomitant programming language
Oz� which is designed for applications that require complex symbolic computa�
tions� organization into multiple agents� and soft real�time control� An e�cient�
robust� and interactive implementation of Oz is freely available�

This paper will appear in� Computer Science Today� Jan van Leeuwen� edi�

tor� Lecture Notes in Computer Science� Volume ����� Springer�Verlag� Berlin�
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� Introduction

Computer systems are undergoing a revolution� Twenty years ago� they were centralized�
isolated� and expensive� Today� they are parallel� distributed� networked� and inexpensive�
However� advances in software construction have failed to keep pace with advances in
hardware� To a large extent� this is a consequence of the fact that current programming
languages were conceived for sequential and centralized programming�

A basic problem with existing programming languages is that they delegate the creation
and coordination of concurrent computational activities to the underlying operating system
and network protocols� This has the severe disadvantage that the data abstractions of the
programming language cannot be shared between communicating computational agents�
Thus the bene	ts of existing programming languages do not extend to the central concerns
of concurrent and distributed software systems�

Given this state of a
airs� the development of concurrent programming models is an impor�
tant research issue in Computer Science� A concurrent programming model must support
the creation and coordination of multiple computational activities� Simple concurrent pro�
gramming models can be obtained by accommodating concurrency in the basic control
structure of the model� This way concurrency appears as a generalization rather than an
additional feature�

The development of simple� practical� high�level� and well�founded concurrent programming
models turned out to be di�cult� The main problem was the lack of a methodology
and formal machinery for designing and de	ning such models� In the ����s� signi	cant
progress has been made on this issue� This includes the development of abstract syntax and
structural operational semantics ���� ���� functional and logic programming� two declarative
programming models building on the work of logicians �lambda calculus and predicate
logic�� CCS ���� and the ��calculus ����� two well�founded concurrent programming models
developed by Milner and others� and the concurrent constraint model ���� ��� a concurrent
programming model that originated from application�driven research in concurrent logic
programming ���� and constraint logic programming ����

This paper reports on the Oz Programming Model� OPM for short� which has been de�
veloped together with the concurrent high�level programming language Oz� OPM is an
extension of the basic concurrent constraint model� adding 	rst�class procedures and state�
ful data structures� OPM is a concurrent programming model that subsumes higher�order
functional and object�oriented programming as facets of a general model� This is particu�
larly interesting for concurrent object�oriented programming� for which no comprehensive
formal model existed until now� There is a conservative extension of OPM providing the
problem�solving capabilities of constraint logic programming� The resulting problem solv�
ers appear as concurrent agents encapsulating search and speculative computation with
constraints�

Oz and OPM have been developed at the DFKI since ����� Oz ���� ��� ��� is designed
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as a concurrent high�level language that can replace sequential high�level languages such
as Lisp� Prolog and Smalltalk� There is no other concurrent language combining a rich
object system with advanced features for symbolic processing and problem solving� First
applications of Oz include simulations� multi�agent systems� natural language processing�
virtual reality� graphical user interfaces� scheduling� time tabling� placement problems� and
con	guration� The design and implementation of Oz took ideas from AKL ���� the 	rst
concurrent constraint language with encapsulated search�

An e�cient� robust� and interactive implementation of Oz� DFKI Oz� is freely available
for many Unix�based platforms �see remark at the end of this paper�� DFKI Oz features
a programming interface based on GNU Emacs� a concurrent browser� an object�oriented
interface to Tcl�Tk for building graphical user interfaces� powerful interoperability features�
an incremental compiler� and a run�time system with an emulator and a garbage collector�

DFKI Oz proves that an inherently concurrent language can be implemented e�ciently on
sequential hardware� Research on a portable parallel implementation for shared memory
machines has started� More ambitiously� we have also begun work towards a distributed
version of Oz supporting the construction of open systems�

This paper describes OPM in an informal manner� Calculi formalizing the major aspects
of OPM can be found in ���� ���� The Oz Primer ���� is an introduction to programming
in Oz� Basic implementation techniques for Oz are reported in �����

� Computation Spaces

Computation in OPM takes place in a computation space host�
ing a number of tasks connected to a shared store� Computa�
tion advances by reduction of tasks� The reduction of a task

Task � � � Task

Store

can manipulate the store and create new tasks� When a task is reduced it disappears�
Reduction of tasks is an atomic operation� and tasks are reduced one by one� Thus there
is no parallelism at the abstraction level of OPM�

Tasks can synchronize on the store in that they become reducible only once the store satis�
	es certain conditions� A key property of OPM is that task synchronization is monotonic�
that is� a reducible task stays reducible if other tasks are reduced before it�

Typically� many tasks are reducible in a given state of a computation space� To obtain
fairness� reactivity� and e�ciency� a reduction strategy is needed to select the reducible
tasks qualifying for the next reduction step� Fairness ensures that several groups of tasks
can advance simultaneously� Reactivity means that one can create computations that react
to outside events within foreseeable time bounds� The following is an example of a fair and
reactive reduction strategy�

All tasks are maintained in a queue� where the 	rst task of the queue is the one
to be considered next for reduction� If it is not reducible� it is moved to the
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end of the queue� If it is reducible� it is reduced and the newly created tasks
are appended at the end of the queue�

We will see later that this strategy is ine�cient since its degree of fairness is too 	ne�grained
for OPM� A practical reduction strategy will be given in Section ���

� Concurrency and Parallelism

OPM is a concurrent and nonparallel programming model� Concurrency means that one
can create several simultaneously advancing computations� possibly synchronizing and com�
municating� Parallelism means that the execution of several hardware operations overlaps
in time� Concurrency can be obtained in a nonparallel setting by interleaving reduction
steps� This is typically the case in operating systems that advance several concurrent pro�
cesses on single processor machines� We can see concurrency as a programming abstraction
and parallelism as a physical phenomenon�

The fact that OPM is nonparallel does not exclude a parallel implementation� however�
The reason for making OPM concurrent but not parallel is the desire to make things as
simple as possible for programmers� In OPM� the semantics of programs does not depend
on whether they run on a sequential or parallel implementation� Thus the complexities of
parallelism need only concern the implementors of OPM� not the programmers�

� Synchronization as Logic Entailment

We will now see how OPM realizes monotonic task synchronization� The basic idea is
very simple� We assume that a set of logic formulas� called constraints� is given� The set
of constraints is closed under conjunction� and for constraints a logic entailment relation
��C implies D�� is de	ned� We also assume that the store of a computation space holds
a constraint in a special compartment� called the constraint store� The only way the
constraint store can be updated is by telling it a constraint C� which means that the
constraint store advances from S to the conjunction S � C� Finally� we assume that it
is possible to synchronize a task on a constraint� called its guard� A synchronized task
becomes reducible if its guard is entailed by the constraint store�

It is easy to see that this synchronization mechanism is monotonic� At any point in time�
the constraint store can be seen as a conjunction

true � C� � C� � � � � � Cn

where C�� � � � � Cn are the constraints told so far� The beauty of this arrangement is that the
information in the constraint store increases monotonically with every further constraint
told� and that the order in which constraints are told is insigni	cant as far as the information
in the store is concerned �conjunction is an associative and commutative operation��

�



We assume that the constraint store is always satis	able� Consequently� it is impossible to
tell a constraint store S a constraint C if the conjunction S � C is unsatis	able�

It su�ces to represent the constraint store modulo logic equivalence� This means that the
synchronization mechanism is completely declarative� It turns out that there are constraint
systems for which synchronization as entailment is both expressive and e�cient�

Synchronization on a constraint store appeared 	rst in Prolog II ��� in the primitive form
of the so�called freeze construct� The idea to synchronize on entailment of constraints is
due to Maher �����

� Constraint Structures

We now make precise the notions of constraint and entailment� We will also see that
the constraint store is the place where information about the values participating in a
computation is stored� An important property of the constraint store is the fact that it
can store partial �i�e�� incomplete� information about the values of variables�

A constraint structure is a structure of 	rst�order predicate logic� The elements of a con�
straint structure are called values� and the 	rst�order formulas over the signature of a
constraint structure are called constraints� We assume that constraints are built over a
	xed in	nite alphabet of variables� A constraint C entails a constraint D if the implication
C � D is valid in the constraint structure� A constraint C disentails a constraint D if C
entails �D� Two constraints C and D are equivalent if C entails D and D entails C�

The constraint structure must be chosen such that its elements are the values we want
to compute with� The values will typically include numbers� ordered pairs of values� and
additional primitive entities called names� Values can be thought of as stateless data
structures� Note that this set�up requires that values are de	ned as mathematical entities�
and that operations on values are described as mathematical functions and relations�

To ensure that checking entailment between the constraint store and guards is computa�
tionally inexpensive� one must carefully restrict the constraints that can be written in the
constraint store and that can be used as guards�

We now outline a concrete constraint structure INP� As values of INP we take the integers�
an in	nite set of primitive entities called names� and all ordered pairs that can be obtained
over integers and names� We write v�jv� for the ordered pair whose left component is
the value v� and whose right component is the value v�� Moreover� we assume that the
signature of INP provides the following primitive constraints�

� x � n says that the value of the variable x is the integer n�

� x � � says that the value of the variable x is the name ��

� x � yjz says that the value of the variable x is the pair having the value of the
variable y as left and the value of the variable z as right component�
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� x � y says that the variables x and y have the same value�

An example of a constraint store over INP is

x � y � y � zju � z � ��

This constraint store asserts that the value of z is �� that the value of y is a pair whose
left component is �� and that x and y have the same value� While this constraint store has
total information about the value of the variable z� it has only partial information about
the values of the other variables� In fact� it has no information about any variable other
than x� y and z�

The constraint store above entails the constraint x � �ju and disentails the constraint
x � �� It neither entails nor disentails the constraint y � �j��

In practice� one uses more expressive constraint structures than INP� The constraint struc�
ture CFT ���� �� o
ers constraints over possibly in	nite records called feature trees� Oz
employs an extension of CFT�

� A Simple Concurrent Constraint Language

We now present a sublanguage OCC of OPM that is also a sublanguage of Saraswat�s
concurrent constraint model ���� OCC cannot yet express indeterministic choice� which
we will accommodate later �see Section ��

The store of an OCC computation space consists only of the constraint store� As constraint
structure we take INP to be concrete� As tasks we take expressions according to the abstract
syntax

E ��� C constraint

j E� �E� composition

j if C then E� else E� conditional

j local x in E declaration

where C ranges over a suitably restricted class of constraints� and where x ranges over the
variables used in constraints� A declaration local x in E binds the variable x with scope
E� Free and bound variables of expressions are de	ned accordingly�

An OCC computation space consists of tasks which are expressions as
de	ned above and a store which is a satis	able constraint� Tasks which
are constraints� compositions or declarations are unsynchronized� Con�

E � � � E

C

ditional tasks synchronize on the constraint store and become reducible only once their
guard is entailed or disentailed by the constraint store�

The reduction of a constraint task C tells the constraint store the constraint C� We say that
such a reduction performs a tell operation� If the conjunction S�C of the present constraint
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store S and C is satis	able� the reduction of the task C will advance the constraint store
to S �C� If the conjunction S �C of the present constraint store S and C is unsatis	able�
the reduction of the task C will not change the constraint store and announce failure� A
concrete language has three possibilities to handle the announcement of failure� to ignore
it� to abort computation� or to handle it by an exception handling mechanism�

Reduction of a composition E��E� creates two tasksE� and E�� Reduction of a conditional
if C then E� else E� creates the task E� if C is entailed and the taskE� if C is disentailed
by the constraint store� Reduction of a declaration local x in E chooses a fresh variable
y and creates the task E�y�x� obtained from E by replacing all free occurrences of x with
y� A variable is fresh if it does not occur in the current state of the computation space�

The expressions of OCC provide basic operations for concurrent programming� Composi�
tions make it possible to obtain several concurrent tasks from a single task� Conditionals
make it possible to synchronize tasks on the constraint store� Telling constraints makes it
possible to 	re synchronized tasks� Declarations make it possible to obtain fresh variables�
This will become signi	cant as soon as we introduce procedures� For now observe that two
identical tasks local x in E will reduce to two di
erent tasks E�y�x� and E�z�x�� where y
and z are distinct fresh variables�

Telling constraints makes it possible to assert information about the values of variables
�e�g�� x � ��� The combination of conditionals and telling makes it possible to access the
constituents of nonprimitive values� The task

if �y�z�x � yjz� then x � ujv else E

will equate the variables u and v to the left and right component of x if x turns out to
be pair� and reduce to the task E otherwise� We call this construction a synchronized
decomposition� To have a convenient notation� we will write

if x� � � �xn in C then E� else E�

as an abbreviation for

if �x� � � � �xn C then local x� in � � � local xn in �C � E�� else E�

With that we can write the above task as

if y z in x � yjz then u � y � v � z else E

The reason for having the conditional synchronize symmetrically on entailment and dis�
entailment is that the incremental algorithms for checking entailment automatically also
check for disentailment ��� ���� These algorithms have in fact three outcomes� entailed�
disentailed� or neither� The symmetric form of the conditional also has the nice property
that it makes negated guards unnecessary since if �C then E� else E� is equivalent to
if C then E� else E��

Given a state of a computation space� we say that a variable x is bound to an integer n �a
name �� a pair� if the constraint store entails the constraint x � n �x � �� �y�z�x � yjz���





� First	class Procedures

Every programming language has procedures� Procedures are the basic mechanism for
expressing programming abstractions� If provided in full generality� procedures have spec�
tacular expressivity� As is well�known from the lambda calculus� creation and application
of nonrecursive functional procedures alone can express all computable functions�

A programming language provides �rst�class procedures if

� procedures can create new procedures�

� procedures can have lexically scoped global variables�

� procedures are referred to by 	rst�class values�

First�class procedures are available in functional programming languages such as Scheme�
SML or Haskell� They are typically not available in today�s concurrent programming
languages although they can provide crucial functionality for concurrent and distributed
programming �see the later sections of this paper and also �����

In OPM� a procedure is a triple
�� z�E

consisting of a name � �see Section ��� a formal argument z �a variable�� and a body E �an
expression�� A procedure binds its formal argument z with scope E� The free or global
variables of a procedure are de	ned accordingly� Procedures can actually have any number
of formal arguments� but for now we consider only one argument to ease our presentation�

Besides the constraint store� OPM�s store has a second compartment called the procedure
store� The procedure store contains 	nitely many procedures such that for one name there
is at most one procedure� Once a procedure has been entered into the procedure store� it
cannot be retracted� Information about the values of the global variables of a procedure
is kept in the constraint store� What we call a procedure is often called a closure in the
literature�

There are two new expressions for creating and applying procedures�

E ��� proc fx zg E de
nition

j fx yg application

A de	nition proc fx zg E binds its formal argument z �a variable� with scope E� De	�
nitions are always reducible� The reduction of a de	nition proc fx zg E chooses a fresh
name �� tells the constraint store the constraint x � �� and writes the new procedure �� z�E
into the procedure store�

An application fx yg must wait until the procedure store contains a procedure �� z�E such
that the constraint store entails x � �� If this is the case� the application task fx yg can
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reduce to the taskE�y�z�� which is obtained from the body of the procedure by replacing all
free occurrences of the formal argument z with the actual argument y� avoiding capturing�

The sublanguage of OPM introduced so far can express both eager and lazy higher�order
functional programming ����� For instance� a higher�order function

MkMap� �Value � Value� � �List � List�

returning a list mapping function can be expressed as a binary procedure

proc �MkMap F Map�
proc �Map Xs Ys�

if X Xr in Xs�X�Xr then

local Y Yr in Ys�Y�Yr �F X Y� �Map Xr Yr� end

else Ys�Nil fi

end

end

We are now using concrete Oz syntax� where a composition E� �E� is written as a juxta�
position E� E�� A list v�� � � � � vn is represented as a nested pair �v�j�� � ��vnj��� � � ��� where
� is a name representing the empty list� We assume that the variable Nil is bound to ��
The procedure MkMap takes a binary procedure F as input and creates a binary procedure
Map mapping lists elementwise according to F�

Since our model employs logic variables� there is no static distinction between input and
output arguments� The functionality o
ered by a procedure �� z�E is simply the ability to
spawn any number of tasks E�y�z�� where the variable y replacing the formal argument z
can be chosen freely each time�

To ease our notation� we will suppress auxiliary variables by means of nesting� For instance�
we will write

��MkMap F� ����Nil X�

as an abbreviation for

local Map One Two A B in

�MkMap F Map� One�� Two�� A�One�B B�Two�Nil �Map A X�
end

The procedure MkMap actually implements a concurrent function� For instance� the task

��MkMap F� A�B�C X�

will tell the constraint X�U�V�W� where U� V� and W are fresh variables� It will also create
tasks that automatically synchronize on the variables F� A� B� and C and that will compute
the values of U� V� and W when the necessary information is available�

The representation of functional computation as concurrent computation has been stud�
ied carefully for calculi formalizing the relevant aspects of OPM ���� ��� ���� The main
results include the identi	cation of con�uent subcalculi� embeddings of the eager and the
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lazy lambda calculus� and a correctness proof for the eager embedding� Lazy functional
programming can be embedded such that argument computations are shared� a crucial
feature of implementations that cannot be modeled with the lambda calculus ����

OPM combines higher�order programming with 	rst�order constraints� The idea to inter�
face variables and procedures through freshly chosen names appeared 	rst in Fresh �����


 Cells

Besides the constraint and the procedure store� OPM�s store has a third and 	nal compart�
ment called the cell store� A cell is a mutable binding of a name to a variable� Cells make
it possible to express stateful and concurrent data structures� which can serve as a com�
munication medium between concurrent agents� There is an exchange operation on cells
that combines reading and writing into a single atomic operation� thus providing mutual
exclusion and indeterminism as needed for many�to�one communication�

The cell store contains 	nitely many cells �� x representing mutable bindings of names to
variables� Similar to the procedure store� the cell store contains at most one cell per name�
Given a cell �� x in the cell store� we say that the cell � hosts the variable x� The task

�NewCell X Y�

chooses a fresh name �� tells the constraint store the constraint Y � �� and writes the new
cell �� X into the cell store� Once a cell has been entered into the cell store� it cannot be
retracted� The task

�Exchange X Y Z�

must wait until the cell store contains a cell �� u such that the constraint store entails X � ��
The task can then be reduced by updating the cell to host the variable Z and telling the
constraint store the constraint Y � u�

Cells introduce indeterminism into OPM since the order in which multiple exchange tasks
for the same cell are reduced is unspeci	ed�

Cells are di
erent from assignable variables in multi�threaded imperative languages� For
one thing� OPM ensures mutual exclusion for concurrent exchange tasks for the same
cell �since OPM is nonparallel and task reduction is an atomic operation�� Moreover� an
exchange task combines reading and writing of a cell into a single atomic operation� In the
presence of logic variables� this atomic combination turns out to be expressive since one
can write a new variable into a cell whose value will be computed only afterwards from
the value of the old variable in the cell� This cannot be obtained in an imperative setting
since it requires that consumers of a variable are automatically synchronized on the event
that the value of the variable becomes known�
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� Ports

Building on cells� we can express complex concurrent data structures with state� The
internal structure of such data structures can be hidden by means of procedural abstraction
and lexical scoping of variables� We can thus obtain abstract concurrent data types with
state�

As a 	rst example we consider ports ��� which can serve as message queues for agents� A
port is a procedure connected to a stream� A stream is a variable S that is incrementally
constrained to a list by telling a constraint for every element of the list�

S�X��S�� S��X��S�� S��X��S�� S��X��S�� ���

It is assumed that nobody but the procedure P writes on the stream� An application �P X�

will tell a constraint Si�X�Si��� where Si is the current tail of the stream and Si�� is a new
variable serving as the new tail of the stream� A port has state because it must remember
the current tail of its stream� A port is a concurrent data structure since it allows several
concurrent computations to write consistently on a single stream�

The procedure

proc �NewPort Stream Port�
local Cell in

�NewCell Stream Cell�
proc �Port Message�

local Old New in

�Exchange Cell Old New� Old�Message�New
end

end

end

end

creates a new port Port connected to a stream Stream� The port holds the current tail
of its stream in a private cell Cell� Note how lexical scoping ensures that no one but the
port can see the cell� Also note that NewPort is a higher�order procedure in that it creates
and returns a new procedure Port�

How can we enter two messages A and B to a port such that A appears before B on the
associated stream� To make things more interesting� we are looking for a solution making
it possible that other concurrently sent messages can be received between A and B �it may
take a long time before B is sent��

One possible solution makes assumptions about the employed reduction strategy �see Sec�
tion ���� Here we will give a solution that will work for every reduction strategy� The basic
idea is to model a port as a binary procedure

�Port Message Continuation�

that will tell the constraint Continuation�Port after Message has been put on the
stream ��� Two messages A and B can then be sequentialized by writing
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local Continuation Dummy in

�Port A Continuation� �Continuation B Dummy�
end

Such synchronizing ports can be created with

proc �NewSyncPort Stream Port�
local Cell in

�NewCell Port�Stream Cell�
proc �Port Message Continuation�

local New in

�Exchange Cell Continuation�Message�New Port�New�
end

end

end

end

�� Names

Names serve as dynamically created capabilities that cannot be faked� It is often useful to
be able to obtain reference to fresh names that do not designate procedures or cells� For
this purpose we introduce a primitive task

�NewName X�

which can be reduced by choosing a fresh name � and telling the constraint X��� Referring to
names by means of variables has the advantage of lexical scoping and also avoids the need for
a concrete syntax for names� Using names� lexical scoping� and procedures� sophisticated
access control schemes can be expressed�

�� Agents

An agent is a computational abstraction processing messages received through a port� It
maintains an internal state and may send messages to other agents� An example of an
agent is a queue that can handle concurrent enqueue and dequeue requests�

We assume that the functionality of an agent is given by a procedure

Serve� State � Message � NewState

describing how the agent serves a message and how it advances its state� The procedure
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proc �NewAgent Serve Init Port�
local Stream Feed in

�NewPort Stream Port�
�Feed Stream Init�
proc �Feed Ms State�

if Message Mr NewState in Ms�Message�Mr then

�Serve State Message NewState� �Feed Mr NewState�
else true fi

end

end

end

creates a new agent that receives messages through Port and operates as speci	ed by the
procedure Serve and the initial state Init� Note that an agent hides the stream queueing
its messages�

A queue agent receiving messages through a port Q can be created with

local Xs in �NewAgent QueueServe Xs�Xs Q� end

where the procedure QueueServe is de	ned as follows�

�NewName Enqueue�
�NewName Dequeue�
proc �QueueServe State Message NewState�

if First Last in State�First�Last then

if X NewLast in Message�Enqueue�X then

Last�X�NewLast NewState�First�NewLast
else

if X NewFirst in Message�Dequeue�X then

First�X�NewFirst NewState�NewFirst�Last
else true fi

fi

else true fi

end

Messages are represented as pairs Enqueue�X and Dequeue�X� where the variables Enqueue
and Dequeue are bound to names identifying the corresponding operations� Using lexical
scoping� one can construct contexts in which none or only one of the two operations is
visible�

A message Enqueue�X will enqueue X� and a message Dequeue�X will dequeue an item
and bind it to X� In case the queue is empty� a dequeue request will wait in a queue of
unserved dequeue requests� which is served as soon as an item is entered into the queue�
The procedure QueueServe shows that this synchronization idea can be expressed elegantly
by means of logic variables�
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�� Objects

Objects are a modular programming abstraction for concurrent data structures with state�
We model objects as procedures �Object Message� that are applied to messages� A mes�
sage is a pair MethodName�Argument� When an object is applied to a message� it invokes
the requested method with the given argument and advances to a new state� Similar to
agents� we assume that the functionality of an object is speci	ed by a procedure

Serve� State � Message � Self � NewState

describing how the agent serves a message and how it advances its state� The argument
Self is a reference to the object invoking Serve making it possible to have a self reference
within Serve and still share Serve between several objects� The procedure

proc �NewObject Serve Init Object�
local Cell in

�NewCell Init Cell�
proc �Object Message�

local State NewState in

�Exchange Cell State NewState�
�Serve State Message Object NewState�

end

end

end

end

creates a new object Object from a procedure Serve and an initial state Init�

It is straightforward to express classes de	ning serve procedures in a modular fashion by
means of named methods� Methods are modeled as procedures similar to serve procedures�
Objects can then be obtained as instances of classes� The states of objects are modeled
as 	nite mappings from attributes to variables� where attributes are modeled as names�
Methods can then construct new states from given states by �assigning� variables to at�
tributes� One can also provide for inheritance� that is� the ability to construct new classes
by inheriting methods and attributes from existing classes� All this is a matter of straight�
forward higher�order programming� Exploiting the power of lexical scoping and names� it
is straightforward to express private attributes and methods�

OPM is a simple and powerful base for expressing concurrent object�oriented programming
abstractions� It was in fact designed for this purpose� Concrete programming languages will
of course sweeten frequently used programming abstractions with a convenient notation�
For a concrete system of object�oriented abstractions and notations we refer the reader to
the Oz object system ��� ����

The reader will have noticed the similarity between agents and objects� We can see agents
as active objects� An object can easily be turned into an agent by interfacing it through a
port�
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�� Distribution

OPM can be extended to serve as a model for distributed programming� Distribution
means that a program can spread computations over a network of computers� At the
abstraction level of OPM� this can be modeled by assigning a site to every task and by
assuming that the store is distributed transparently� Moreover� we assume that new tasks
inherit the site of the creating task�

We can now see a clear di
erence between agents and objects� When we send a message
to an agent� the message is served at the site where the agent was created �there is a task
waiting for the next message sent�� When we apply an object to a message� the message
is served at the site where the object is applied� In other words� agents are stationary and
objects are mobile�

Since OPM has 	rst�class procedures� it is straightforward to express compute servers�
Cardelli ��� gives an excellent exposition of distributed programming techniques available
in a lexically�scoped language with 	rst�class procedures and concurrent state�

The assumption of a transparently distributed store is not realistic for many applications�
It con�icts with the ability to model fault�tolerance� for instance� We have started work on
a less abstract model where the store appears as a directed graph whose nodes are situated
similar to tasks�

�� Incremental Tell

The tell operation of OCC �see Section �� is not suitable for a parallel implementation� The
reason is that a constraint must be told in a single reduction step� Since telling a constraint
�e�g�� x � y� may involve scanning the entire store� other tell tasks may be blocked for a
long time� The problem can be resolved by telling a constraint piecewise� The basic idea is
to reduce a constraint task T by keeping the task T as is and by advancing the constraint
store from S to a slightly stronger constraint store S� entailed by S � T � This amplifying
reduction step is repeated until the constraint store entails T � in which case the task T is
discarded� Since the constraint store must always be satis	able� the case where S � T is
unsatis	able needs special care�

To make the incremental tell operation precise� we introduce the notion of a constraint sys�
tem� A constraint system consists of a constraint structure� a set of constraints called basic
constraints� and� for every basic constraint T � a binary relation �T on basic constraints
such that�

�� The basic constraints are closed under conjunction and contain � �i�e�� false��

�� For every basic constraint T � the relation �T is well�founded� that is� there exists no
in	nite chain S� �T S� �T S� �T � � � �
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�� If S �T S�� then �i� S� entails S� �ii� S � T entails S�� �iii� S is satis	able� and �iv�
S� is unsatis	able if and only if S� � ��

�� If T is not entailed by S and both are basic constraints� then there exists S� such
that S �T S ��

The tell reductions �T correspond to the visible simpli	cation steps of the incremental
algorithms implementing the necessary operations on constraint stores� Such algorithms
can be found� for instance� in ��� ���� Note that the tell reductions may be nondeterministic�
that is� for given S and T � there may be di
erent S� and S� such that S �T S� and
S �T S��

Let S be a satis	able basic constraint and T a basic constraint� Then the tell reduction
�T satis	es the following properties�

�� S entails T if and only if S is irreducible with respect to �T �

�� S disentails T if and only if every maximal chain S �T � � � ends with ��

�� Let S �T � � � �T S� be a chain such that S� is irreducible with respect to T � Then
�i� S � T is equivalent to S� and �ii� S � T is unsatis	able if and only if S� � ��

Given a constraint system� we assume that the constraints appearing in expressions and
the constraint store are all basic� where the constraints appearing in guards may be exis�
tentially quanti	ed� Given a constraint store S and a constraint task T � the incremental
tell operation is de	ned as follows� if S is irreducible with respect to �T � then the task T
is discarded� Otherwise� choose some basic constraint S� such that S �T S�� If S� � ��
then announce failure and discard the task T � if S� 	� �� then advance the constraint store
to S� and keep the task T �

The canonical constraint system for the constraint structure INP comes with the basic
constraints

C ��� � j 
 j hprimitive constrainti j C� � C��

Primitive constraints were de	ned in Section ��

As long as failure does not occur� it is not important to know which tell reductions are used�
However� if S � T is unsatis	able and computation can continue after failure �e�g�� since
there is exception handling�� all chains S �T � � � �T S� should only add local information�
The notion of �local information� cannot be made precise in general� However� there
are straightforward de	nitions for INP and other practically relevant constraint systems�
Here we will just give an example for INP� Given S � �x � �j� � y � uj�� and T �
�x � y�� the tell reduction �T should only permit two maximal chains issuing from S�
S �T S � u � � �T � and S �T ��
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�� Propagators

The algorithms for telling and checking entailment and disentailment of basic constraints
must be e�cient� The typical complexity should be constant time� and the worst�case
complexity should be quadratic or better in the size of the guard and the constraint store�
Consequently� expressive constraints such as x � y � z and x � y � z cannot be written
into the constraint store and hence cannot be accommodated as basic constraints� �For
nonlinear constraints over integers satis	ability is undecidable �Hilbert�s Tenth Problem���

Nonbasic constraints can be accommodated as tasks that wait until the constraint store
contains enough information so that they can be equivalently replaced with basic con�
straints� For instance� a task x � y � z may wait until there exist two integers n and m
such that the constraint store entails x � n � y � m� If this is the case� the task can be
reduced to the basic constraint z � k� where k is the sum of n and m� Nonbasic constraints
that are accommodated in this way are called propagators�

Another example of a propagator is a Boolean order test for integers�

less�x� y� z� � �x � y  z � True� � �z � True� z � False��

True and False are variables bound to distinct names� This propagator can reduce to
z � True or z � False as soon as the constraint store contains su�cient information about
the values of x and y�

�� Threads

We now give an e�cient reduction strategy for OPM that is fair and reactive �see Section ���
An e�cient reduction strategy must make it possible to write programs that create only a
moderate amount of concurrency� which can be implemented e�ciently on both single and
multi�processor architectures�

The example of the Fibonacci function �we use a sugared notation suppressing auxiliary
variables�

proc �Fib N M�
local B X Y in

�Less � N B�
if B�True then �Fib N	� X� �Fib N	� Y� X
Y�M else M�� fi

end

end

�



shows that the naive reduction strategy in
Section � is impractical� it will traverse
the recursion tree of �Fib � M�� say� in
breadth�	rst manner� thus requiring expo�
nential space� On the other hand� sequential
execution will traverse the recursion tree in
depth�	rst manner from left to right and will

�

� �

� � � �

� �

thus only need linear space� This di
erence clearly matters�

The e�cient reduction strategy organizes tasks into threads�
where every thread is guaranteed to make progress� Thus
fairness is guaranteed at the level of threads� A thread is

Thread � � � Thread

Store

a nonempty stack of tasks� where only the topmost task of a thread can be reduced� If the
topmost task of a thread is reduced� it is replaced with the newly created tasks� if there
are any� If a composition E� � E� is reduced� the left expression E� goes on top of the
right expression E�� which means that E� is considered before E�� If the topmost task of
a thread is irreducible over the current store and the thread contains further tasks� the
topmost task is moved to a newly created thread� A thread disappears as soon as it has
no task left�

The outlined reduction strategy tries to be as sequential as possible and as concurrent as
necessary� It will execute the task �Fib � M� sequentially in a single thread� thus requiring
only linear space�

The concurrent execution of an expression E in a separate thread can be forced by writing

local Fire in if Fire�� then E else true fi Fire�� end

With threads it is straightforward to send messages sequentially through a port� If ports
are de	ned as in Section �� the simple composition

�Port A� �Port B�

will send A before B provided the store binds Port already to a port�

�� Time

It is straightforward to extend OPM such that tasks can be synchronized on time points�
Here we specify a timer primitive

�Sleep T X Y�

which equates two variables X and Y after the time span speci	ed by the variable T has
passed� The timer primitive 	rst waits until the store binds T to an integer n� It then stays
irreducible for further n milliseconds� after which it can be reduced to the constraint X�Y�
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�
 Encapsulated Search

Since OPM has constraints and logic variables� it will subsume the problem solving ca�
pabilities of constraint logic programming when extended with a nondeterministic choice
combinator� However� a completely new idea is needed for encapsulating the resulting
problem solvers into concurrent agents�

A nondeterministic choice combinator can be provided as an expression

E� or E�

called a choice� Choice tasks can only be reduced if no other task is reducible� If this is
the case� a choice can be reduced by distributing the computation space into two spaces
obtained by replacing the choice with its left and right alternative� respectively� The
resulting search tree of computation spaces can be explored with a suitable strategy� If
a tell operation announces failure� computation in the corresponding computation space
is aborted� The leaves of the search tree are either failed or unfailed computation spaces�
Unfailed leaves will contain the solutions of the problem being solved as bindings to certain
variables�

While the outlined semantics for nondeterministic choice provides the expressivity of con�
straint logic programming� distributing the top level computation space is not compatible
with the idea of concurrent computation� What we would like to have are concurrent agents
to which we can present a search strategy and a problem to be solved and from which we
can request the solutions of the problem one by one� This means that the search agent
should encapsulate search� It turns out that such a search agent can be programmed with
a single further primitive� called a search combinator� The search combinator spawns a
subordinate computation space and reduces in case the subordinate space fails� becomes
irreducible� or is distributed� In the case of distribution� the two alternative local spaces
are frozen and returned as 	rst�class citizens represented as procedures� The details of this
elaborate construction are reported in ���� ��� ����

The resulting model is realized in Oz together with further concurrent constraint combi�
nators ���� ��� ���� Oz gets constraint logic programming out of its problem solving ghetto
and integrates it into a concurrent and lexically scoped language with 	rst�class proce�
dures and state� This integration eliminates the need for Prolog�s ad hoc constructs and
also increases the expressivity of the problem solving constructs�

�� Summary

We have presented a simple and expressive model OPM for high�level concurrent program�
ming� The model is lexically scoped and consists of the concurrent constraint kernel OCC�
	rst�class procedures� and cells providing for concurrent state� It computes with logic vari�
ables and constraints and monotonically synchronizes on a declarative constraint store�
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The constraint store is the exclusive place where information about the values of variables
is stored� Dynamically created values called names interface the constraint store with the
procedure and the cell store� This way OPM realizes an orthogonal combination of 	rst�
order constraints with 	rst�class procedures and stateful cells� We have shown how OPM
can express higher�order functions� agents and objects� We have added an incremental
tell operation to improve the potential for parallelism� We have also added propagators�
threads� and a timer primitive as needed for a practical language� Finally� we have outlined
how the model can be extended so that it can express encapsulated problem solvers gen�
eralizing the problem solving capabilities of constraint logic programming� Oz translates
the presented ideas into an exciting new programming language�
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