
T
h

e
O

z
P

ro
g

ra
m

m
in

g
M

o
d

el

G
er

t
S

m
o

lk
a

R
R

-9
5-

10
R

es
ea

rc
h

R
ep

or

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-95-10

The Oz Programming Model

Gert Smolka

July 1995

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organiza-
tion which was founded in 1988. The shareholder companies are Atlas Elektronik, Daimler-Benz,
Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and
Siemens-Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry
of Education, Science, Research and Technology, by the shareholder companies, or by other
industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and
other related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Dr. Dr. D. Ruland
Director

The Oz Programming Model

Gert Smolka

DFKI-RR-95-10

This paper will appear in: Computer Science Today, Jan van Leeuwen, editor,
Lecture Notes in Computer Science, Vol. 1000, Springer-Verlag, Berlin, 1995.

This work has been supported by the BMBF (contract ITW 9105), the Esprit Basic
Research Project ACCLAIM (contract EP 7195), and the Esprit Working Group
CCL (contract EP 6028).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-008X

The Oz Programming Model

Gert Smolka
Programming Systems Lab

German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �� ���	� Saarbr
ucken� Germany

email� smolka�dfki�uni�sb�de

July ��� ��

Abstract

The Oz Programming Model �OPM� is a concurrent programming model sub�
suming higher�order functional and object�oriented programming as facets of
a general model� This is particularly interesting for concurrent object�oriented
programming� for which no comprehensive formal model existed until now�
The model can be extended so that it can express encapsulated problem solvers
generalizing the problem solving capabilities of constraint logic programming�
OPM has been developed together with a concomitant programming language
Oz� which is designed for applications that require complex symbolic computa�
tions� organization into multiple agents� and soft real�time control� An e�cient�
robust� and interactive implementation of Oz is freely available�

This paper will appear in� Computer Science Today� Jan van Leeuwen� edi�

tor� Lecture Notes in Computer Science� Volume ����� Springer�Verlag� Berlin�

����	

Contents

� Introduction �

� Computation Spaces �

� Concurrency and Parallelism �

� Synchronization as Logic Entailment �

� Constraint Structures �

� A Simple Concurrent Constraint Language �

� First	class Procedures

� Cells ��

 Ports ��

�� Names ��

�� Agents ��

�� Objects ��

�� Distribution ��

�� Incremental Tell ��

�� Propagators ��

�� Threads ��

�� Time �

�� Encapsulated Search ��

�
 Summary ��

�

� Introduction

Computer systems are undergoing a revolution� Twenty years ago� they were centralized�
isolated� and expensive� Today� they are parallel� distributed� networked� and inexpensive�
However� advances in software construction have failed to keep pace with advances in
hardware� To a large extent� this is a consequence of the fact that current programming
languages were conceived for sequential and centralized programming�

A basic problem with existing programming languages is that they delegate the creation
and coordination of concurrent computational activities to the underlying operating system
and network protocols� This has the severe disadvantage that the data abstractions of the
programming language cannot be shared between communicating computational agents�
Thus the bene	ts of existing programming languages do not extend to the central concerns
of concurrent and distributed software systems�

Given this state of a
airs� the development of concurrent programming models is an impor�
tant research issue in Computer Science� A concurrent programming model must support
the creation and coordination of multiple computational activities� Simple concurrent pro�
gramming models can be obtained by accommodating concurrency in the basic control
structure of the model� This way concurrency appears as a generalization rather than an
additional feature�

The development of simple� practical� high�level� and well�founded concurrent programming
models turned out to be di�cult� The main problem was the lack of a methodology
and formal machinery for designing and de	ning such models� In the ����s� signi	cant
progress has been made on this issue� This includes the development of abstract syntax and
structural operational semantics ���� ���� functional and logic programming� two declarative
programming models building on the work of logicians �lambda calculus and predicate
logic�� CCS ���� and the ��calculus ����� two well�founded concurrent programming models
developed by Milner and others� and the concurrent constraint model ���� ��� a concurrent
programming model that originated from application�driven research in concurrent logic
programming ���� and constraint logic programming ����

This paper reports on the Oz Programming Model� OPM for short� which has been de�
veloped together with the concurrent high�level programming language Oz� OPM is an
extension of the basic concurrent constraint model� adding 	rst�class procedures and state�
ful data structures� OPM is a concurrent programming model that subsumes higher�order
functional and object�oriented programming as facets of a general model� This is particu�
larly interesting for concurrent object�oriented programming� for which no comprehensive
formal model existed until now� There is a conservative extension of OPM providing the
problem�solving capabilities of constraint logic programming� The resulting problem solv�
ers appear as concurrent agents encapsulating search and speculative computation with
constraints�

Oz and OPM have been developed at the DFKI since ����� Oz ���� ��� ��� is designed

�

as a concurrent high�level language that can replace sequential high�level languages such
as Lisp� Prolog and Smalltalk� There is no other concurrent language combining a rich
object system with advanced features for symbolic processing and problem solving� First
applications of Oz include simulations� multi�agent systems� natural language processing�
virtual reality� graphical user interfaces� scheduling� time tabling� placement problems� and
con	guration� The design and implementation of Oz took ideas from AKL ���� the 	rst
concurrent constraint language with encapsulated search�

An e�cient� robust� and interactive implementation of Oz� DFKI Oz� is freely available
for many Unix�based platforms �see remark at the end of this paper�� DFKI Oz features
a programming interface based on GNU Emacs� a concurrent browser� an object�oriented
interface to Tcl�Tk for building graphical user interfaces� powerful interoperability features�
an incremental compiler� and a run�time system with an emulator and a garbage collector�

DFKI Oz proves that an inherently concurrent language can be implemented e�ciently on
sequential hardware� Research on a portable parallel implementation for shared memory
machines has started� More ambitiously� we have also begun work towards a distributed
version of Oz supporting the construction of open systems�

This paper describes OPM in an informal manner� Calculi formalizing the major aspects
of OPM can be found in ���� ���� The Oz Primer ���� is an introduction to programming
in Oz� Basic implementation techniques for Oz are reported in �����

� Computation Spaces

Computation in OPM takes place in a computation space host�
ing a number of tasks connected to a shared store� Computa�
tion advances by reduction of tasks� The reduction of a task

Task � � � Task

Store

can manipulate the store and create new tasks� When a task is reduced it disappears�
Reduction of tasks is an atomic operation� and tasks are reduced one by one� Thus there
is no parallelism at the abstraction level of OPM�

Tasks can synchronize on the store in that they become reducible only once the store satis�
	es certain conditions� A key property of OPM is that task synchronization is monotonic�
that is� a reducible task stays reducible if other tasks are reduced before it�

Typically� many tasks are reducible in a given state of a computation space� To obtain
fairness� reactivity� and e�ciency� a reduction strategy is needed to select the reducible
tasks qualifying for the next reduction step� Fairness ensures that several groups of tasks
can advance simultaneously� Reactivity means that one can create computations that react
to outside events within foreseeable time bounds� The following is an example of a fair and
reactive reduction strategy�

All tasks are maintained in a queue� where the 	rst task of the queue is the one
to be considered next for reduction� If it is not reducible� it is moved to the

�

end of the queue� If it is reducible� it is reduced and the newly created tasks
are appended at the end of the queue�

We will see later that this strategy is ine�cient since its degree of fairness is too 	ne�grained
for OPM� A practical reduction strategy will be given in Section ���

� Concurrency and Parallelism

OPM is a concurrent and nonparallel programming model� Concurrency means that one
can create several simultaneously advancing computations� possibly synchronizing and com�
municating� Parallelism means that the execution of several hardware operations overlaps
in time� Concurrency can be obtained in a nonparallel setting by interleaving reduction
steps� This is typically the case in operating systems that advance several concurrent pro�
cesses on single processor machines� We can see concurrency as a programming abstraction
and parallelism as a physical phenomenon�

The fact that OPM is nonparallel does not exclude a parallel implementation� however�
The reason for making OPM concurrent but not parallel is the desire to make things as
simple as possible for programmers� In OPM� the semantics of programs does not depend
on whether they run on a sequential or parallel implementation� Thus the complexities of
parallelism need only concern the implementors of OPM� not the programmers�

� Synchronization as Logic Entailment

We will now see how OPM realizes monotonic task synchronization� The basic idea is
very simple� We assume that a set of logic formulas� called constraints� is given� The set
of constraints is closed under conjunction� and for constraints a logic entailment relation
��C implies D�� is de	ned� We also assume that the store of a computation space holds
a constraint in a special compartment� called the constraint store� The only way the
constraint store can be updated is by telling it a constraint C� which means that the
constraint store advances from S to the conjunction S � C� Finally� we assume that it
is possible to synchronize a task on a constraint� called its guard� A synchronized task
becomes reducible if its guard is entailed by the constraint store�

It is easy to see that this synchronization mechanism is monotonic� At any point in time�
the constraint store can be seen as a conjunction

true � C� � C� � � � � � Cn

where C�� � � � � Cn are the constraints told so far� The beauty of this arrangement is that the
information in the constraint store increases monotonically with every further constraint
told� and that the order in which constraints are told is insigni	cant as far as the information
in the store is concerned �conjunction is an associative and commutative operation��

�

We assume that the constraint store is always satis	able� Consequently� it is impossible to
tell a constraint store S a constraint C if the conjunction S � C is unsatis	able�

It su�ces to represent the constraint store modulo logic equivalence� This means that the
synchronization mechanism is completely declarative� It turns out that there are constraint
systems for which synchronization as entailment is both expressive and e�cient�

Synchronization on a constraint store appeared 	rst in Prolog II ��� in the primitive form
of the so�called freeze construct� The idea to synchronize on entailment of constraints is
due to Maher �����

� Constraint Structures

We now make precise the notions of constraint and entailment� We will also see that
the constraint store is the place where information about the values participating in a
computation is stored� An important property of the constraint store is the fact that it
can store partial �i�e�� incomplete� information about the values of variables�

A constraint structure is a structure of 	rst�order predicate logic� The elements of a con�
straint structure are called values� and the 	rst�order formulas over the signature of a
constraint structure are called constraints� We assume that constraints are built over a
	xed in	nite alphabet of variables� A constraint C entails a constraint D if the implication
C � D is valid in the constraint structure� A constraint C disentails a constraint D if C
entails �D� Two constraints C and D are equivalent if C entails D and D entails C�

The constraint structure must be chosen such that its elements are the values we want
to compute with� The values will typically include numbers� ordered pairs of values� and
additional primitive entities called names� Values can be thought of as stateless data
structures� Note that this set�up requires that values are de	ned as mathematical entities�
and that operations on values are described as mathematical functions and relations�

To ensure that checking entailment between the constraint store and guards is computa�
tionally inexpensive� one must carefully restrict the constraints that can be written in the
constraint store and that can be used as guards�

We now outline a concrete constraint structure INP� As values of INP we take the integers�
an in	nite set of primitive entities called names� and all ordered pairs that can be obtained
over integers and names� We write v�jv� for the ordered pair whose left component is
the value v� and whose right component is the value v�� Moreover� we assume that the
signature of INP provides the following primitive constraints�

� x � n says that the value of the variable x is the integer n�

� x � � says that the value of the variable x is the name ��

� x � yjz says that the value of the variable x is the pair having the value of the
variable y as left and the value of the variable z as right component�

�

� x � y says that the variables x and y have the same value�

An example of a constraint store over INP is

x � y � y � zju � z � ��

This constraint store asserts that the value of z is �� that the value of y is a pair whose
left component is �� and that x and y have the same value� While this constraint store has
total information about the value of the variable z� it has only partial information about
the values of the other variables� In fact� it has no information about any variable other
than x� y and z�

The constraint store above entails the constraint x � �ju and disentails the constraint
x � �� It neither entails nor disentails the constraint y � �j��

In practice� one uses more expressive constraint structures than INP� The constraint struc�
ture CFT ���� �� o
ers constraints over possibly in	nite records called feature trees� Oz
employs an extension of CFT�

� A Simple Concurrent Constraint Language

We now present a sublanguage OCC of OPM that is also a sublanguage of Saraswat�s
concurrent constraint model ���� OCC cannot yet express indeterministic choice� which
we will accommodate later �see Section ��

The store of an OCC computation space consists only of the constraint store� As constraint
structure we take INP to be concrete� As tasks we take expressions according to the abstract
syntax

E ��� C constraint

j E� �E� composition

j if C then E� else E� conditional

j local x in E declaration

where C ranges over a suitably restricted class of constraints� and where x ranges over the
variables used in constraints� A declaration local x in E binds the variable x with scope
E� Free and bound variables of expressions are de	ned accordingly�

An OCC computation space consists of tasks which are expressions as
de	ned above and a store which is a satis	able constraint� Tasks which
are constraints� compositions or declarations are unsynchronized� Con�

E � � � E

C

ditional tasks synchronize on the constraint store and become reducible only once their
guard is entailed or disentailed by the constraint store�

The reduction of a constraint task C tells the constraint store the constraint C� We say that
such a reduction performs a tell operation� If the conjunction S�C of the present constraint

�

store S and C is satis	able� the reduction of the task C will advance the constraint store
to S �C� If the conjunction S �C of the present constraint store S and C is unsatis	able�
the reduction of the task C will not change the constraint store and announce failure� A
concrete language has three possibilities to handle the announcement of failure� to ignore
it� to abort computation� or to handle it by an exception handling mechanism�

Reduction of a composition E��E� creates two tasksE� and E�� Reduction of a conditional
if C then E� else E� creates the task E� if C is entailed and the taskE� if C is disentailed
by the constraint store� Reduction of a declaration local x in E chooses a fresh variable
y and creates the task E�y�x� obtained from E by replacing all free occurrences of x with
y� A variable is fresh if it does not occur in the current state of the computation space�

The expressions of OCC provide basic operations for concurrent programming� Composi�
tions make it possible to obtain several concurrent tasks from a single task� Conditionals
make it possible to synchronize tasks on the constraint store� Telling constraints makes it
possible to 	re synchronized tasks� Declarations make it possible to obtain fresh variables�
This will become signi	cant as soon as we introduce procedures� For now observe that two
identical tasks local x in E will reduce to two di
erent tasks E�y�x� and E�z�x�� where y
and z are distinct fresh variables�

Telling constraints makes it possible to assert information about the values of variables
�e�g�� x � ��� The combination of conditionals and telling makes it possible to access the
constituents of nonprimitive values� The task

if �y�z�x � yjz� then x � ujv else E

will equate the variables u and v to the left and right component of x if x turns out to
be pair� and reduce to the task E otherwise� We call this construction a synchronized
decomposition� To have a convenient notation� we will write

if x� � � �xn in C then E� else E�

as an abbreviation for

if �x� � � � �xn C then local x� in � � � local xn in �C � E�� else E�

With that we can write the above task as

if y z in x � yjz then u � y � v � z else E

The reason for having the conditional synchronize symmetrically on entailment and dis�
entailment is that the incremental algorithms for checking entailment automatically also
check for disentailment ��� ���� These algorithms have in fact three outcomes� entailed�
disentailed� or neither� The symmetric form of the conditional also has the nice property
that it makes negated guards unnecessary since if �C then E� else E� is equivalent to
if C then E� else E��

Given a state of a computation space� we say that a variable x is bound to an integer n �a
name �� a pair� if the constraint store entails the constraint x � n �x � �� �y�z�x � yjz���

� First	class Procedures

Every programming language has procedures� Procedures are the basic mechanism for
expressing programming abstractions� If provided in full generality� procedures have spec�
tacular expressivity� As is well�known from the lambda calculus� creation and application
of nonrecursive functional procedures alone can express all computable functions�

A programming language provides �rst�class procedures if

� procedures can create new procedures�

� procedures can have lexically scoped global variables�

� procedures are referred to by 	rst�class values�

First�class procedures are available in functional programming languages such as Scheme�
SML or Haskell� They are typically not available in today�s concurrent programming
languages although they can provide crucial functionality for concurrent and distributed
programming �see the later sections of this paper and also �����

In OPM� a procedure is a triple
�� z�E

consisting of a name � �see Section ��� a formal argument z �a variable�� and a body E �an
expression�� A procedure binds its formal argument z with scope E� The free or global
variables of a procedure are de	ned accordingly� Procedures can actually have any number
of formal arguments� but for now we consider only one argument to ease our presentation�

Besides the constraint store� OPM�s store has a second compartment called the procedure
store� The procedure store contains 	nitely many procedures such that for one name there
is at most one procedure� Once a procedure has been entered into the procedure store� it
cannot be retracted� Information about the values of the global variables of a procedure
is kept in the constraint store� What we call a procedure is often called a closure in the
literature�

There are two new expressions for creating and applying procedures�

E ��� proc fx zg E de
nition

j fx yg application

A de	nition proc fx zg E binds its formal argument z �a variable� with scope E� De	�
nitions are always reducible� The reduction of a de	nition proc fx zg E chooses a fresh
name �� tells the constraint store the constraint x � �� and writes the new procedure �� z�E
into the procedure store�

An application fx yg must wait until the procedure store contains a procedure �� z�E such
that the constraint store entails x � �� If this is the case� the application task fx yg can

�

reduce to the taskE�y�z�� which is obtained from the body of the procedure by replacing all
free occurrences of the formal argument z with the actual argument y� avoiding capturing�

The sublanguage of OPM introduced so far can express both eager and lazy higher�order
functional programming ����� For instance� a higher�order function

MkMap� �Value � Value� � �List � List�

returning a list mapping function can be expressed as a binary procedure

proc �MkMap F Map�
proc �Map Xs Ys�

if X Xr in Xs�X�Xr then

local Y Yr in Ys�Y�Yr �F X Y� �Map Xr Yr� end

else Ys�Nil fi

end

end

We are now using concrete Oz syntax� where a composition E� �E� is written as a juxta�
position E� E�� A list v�� � � � � vn is represented as a nested pair �v�j�� � ��vnj��� � � ��� where
� is a name representing the empty list� We assume that the variable Nil is bound to ��
The procedure MkMap takes a binary procedure F as input and creates a binary procedure
Map mapping lists elementwise according to F�

Since our model employs logic variables� there is no static distinction between input and
output arguments� The functionality o
ered by a procedure �� z�E is simply the ability to
spawn any number of tasks E�y�z�� where the variable y replacing the formal argument z
can be chosen freely each time�

To ease our notation� we will suppress auxiliary variables by means of nesting� For instance�
we will write

��MkMap F� ����Nil X�

as an abbreviation for

local Map One Two A B in

�MkMap F Map� One�� Two�� A�One�B B�Two�Nil �Map A X�
end

The procedure MkMap actually implements a concurrent function� For instance� the task

��MkMap F� A�B�C X�

will tell the constraint X�U�V�W� where U� V� and W are fresh variables� It will also create
tasks that automatically synchronize on the variables F� A� B� and C and that will compute
the values of U� V� and W when the necessary information is available�

The representation of functional computation as concurrent computation has been stud�
ied carefully for calculi formalizing the relevant aspects of OPM ���� ��� ���� The main
results include the identi	cation of con�uent subcalculi� embeddings of the eager and the

��

lazy lambda calculus� and a correctness proof for the eager embedding� Lazy functional
programming can be embedded such that argument computations are shared� a crucial
feature of implementations that cannot be modeled with the lambda calculus ����

OPM combines higher�order programming with 	rst�order constraints� The idea to inter�
face variables and procedures through freshly chosen names appeared 	rst in Fresh �����

 Cells

Besides the constraint and the procedure store� OPM�s store has a third and 	nal compart�
ment called the cell store� A cell is a mutable binding of a name to a variable� Cells make
it possible to express stateful and concurrent data structures� which can serve as a com�
munication medium between concurrent agents� There is an exchange operation on cells
that combines reading and writing into a single atomic operation� thus providing mutual
exclusion and indeterminism as needed for many�to�one communication�

The cell store contains 	nitely many cells �� x representing mutable bindings of names to
variables� Similar to the procedure store� the cell store contains at most one cell per name�
Given a cell �� x in the cell store� we say that the cell � hosts the variable x� The task

�NewCell X Y�

chooses a fresh name �� tells the constraint store the constraint Y � �� and writes the new
cell �� X into the cell store� Once a cell has been entered into the cell store� it cannot be
retracted� The task

�Exchange X Y Z�

must wait until the cell store contains a cell �� u such that the constraint store entails X � ��
The task can then be reduced by updating the cell to host the variable Z and telling the
constraint store the constraint Y � u�

Cells introduce indeterminism into OPM since the order in which multiple exchange tasks
for the same cell are reduced is unspeci	ed�

Cells are di
erent from assignable variables in multi�threaded imperative languages� For
one thing� OPM ensures mutual exclusion for concurrent exchange tasks for the same
cell �since OPM is nonparallel and task reduction is an atomic operation�� Moreover� an
exchange task combines reading and writing of a cell into a single atomic operation� In the
presence of logic variables� this atomic combination turns out to be expressive since one
can write a new variable into a cell whose value will be computed only afterwards from
the value of the old variable in the cell� This cannot be obtained in an imperative setting
since it requires that consumers of a variable are automatically synchronized on the event
that the value of the variable becomes known�

��

� Ports

Building on cells� we can express complex concurrent data structures with state� The
internal structure of such data structures can be hidden by means of procedural abstraction
and lexical scoping of variables� We can thus obtain abstract concurrent data types with
state�

As a 	rst example we consider ports ��� which can serve as message queues for agents� A
port is a procedure connected to a stream� A stream is a variable S that is incrementally
constrained to a list by telling a constraint for every element of the list�

S�X��S�� S��X��S�� S��X��S�� S��X��S�� ���

It is assumed that nobody but the procedure P writes on the stream� An application �P X�

will tell a constraint Si�X�Si��� where Si is the current tail of the stream and Si�� is a new
variable serving as the new tail of the stream� A port has state because it must remember
the current tail of its stream� A port is a concurrent data structure since it allows several
concurrent computations to write consistently on a single stream�

The procedure

proc �NewPort Stream Port�
local Cell in

�NewCell Stream Cell�
proc �Port Message�

local Old New in

�Exchange Cell Old New� Old�Message�New
end

end

end

end

creates a new port Port connected to a stream Stream� The port holds the current tail
of its stream in a private cell Cell� Note how lexical scoping ensures that no one but the
port can see the cell� Also note that NewPort is a higher�order procedure in that it creates
and returns a new procedure Port�

How can we enter two messages A and B to a port such that A appears before B on the
associated stream� To make things more interesting� we are looking for a solution making
it possible that other concurrently sent messages can be received between A and B �it may
take a long time before B is sent��

One possible solution makes assumptions about the employed reduction strategy �see Sec�
tion ���� Here we will give a solution that will work for every reduction strategy� The basic
idea is to model a port as a binary procedure

�Port Message Continuation�

that will tell the constraint Continuation�Port after Message has been put on the
stream ��� Two messages A and B can then be sequentialized by writing

��

local Continuation Dummy in

�Port A Continuation� �Continuation B Dummy�
end

Such synchronizing ports can be created with

proc �NewSyncPort Stream Port�
local Cell in

�NewCell Port�Stream Cell�
proc �Port Message Continuation�

local New in

�Exchange Cell Continuation�Message�New Port�New�
end

end

end

end

�� Names

Names serve as dynamically created capabilities that cannot be faked� It is often useful to
be able to obtain reference to fresh names that do not designate procedures or cells� For
this purpose we introduce a primitive task

�NewName X�

which can be reduced by choosing a fresh name � and telling the constraint X��� Referring to
names by means of variables has the advantage of lexical scoping and also avoids the need for
a concrete syntax for names� Using names� lexical scoping� and procedures� sophisticated
access control schemes can be expressed�

�� Agents

An agent is a computational abstraction processing messages received through a port� It
maintains an internal state and may send messages to other agents� An example of an
agent is a queue that can handle concurrent enqueue and dequeue requests�

We assume that the functionality of an agent is given by a procedure

Serve� State � Message � NewState

describing how the agent serves a message and how it advances its state� The procedure

��

proc �NewAgent Serve Init Port�
local Stream Feed in

�NewPort Stream Port�
�Feed Stream Init�
proc �Feed Ms State�

if Message Mr NewState in Ms�Message�Mr then

�Serve State Message NewState� �Feed Mr NewState�
else true fi

end

end

end

creates a new agent that receives messages through Port and operates as speci	ed by the
procedure Serve and the initial state Init� Note that an agent hides the stream queueing
its messages�

A queue agent receiving messages through a port Q can be created with

local Xs in �NewAgent QueueServe Xs�Xs Q� end

where the procedure QueueServe is de	ned as follows�

�NewName Enqueue�
�NewName Dequeue�
proc �QueueServe State Message NewState�

if First Last in State�First�Last then

if X NewLast in Message�Enqueue�X then

Last�X�NewLast NewState�First�NewLast
else

if X NewFirst in Message�Dequeue�X then

First�X�NewFirst NewState�NewFirst�Last
else true fi

fi

else true fi

end

Messages are represented as pairs Enqueue�X and Dequeue�X� where the variables Enqueue
and Dequeue are bound to names identifying the corresponding operations� Using lexical
scoping� one can construct contexts in which none or only one of the two operations is
visible�

A message Enqueue�X will enqueue X� and a message Dequeue�X will dequeue an item
and bind it to X� In case the queue is empty� a dequeue request will wait in a queue of
unserved dequeue requests� which is served as soon as an item is entered into the queue�
The procedure QueueServe shows that this synchronization idea can be expressed elegantly
by means of logic variables�

��

�� Objects

Objects are a modular programming abstraction for concurrent data structures with state�
We model objects as procedures �Object Message� that are applied to messages� A mes�
sage is a pair MethodName�Argument� When an object is applied to a message� it invokes
the requested method with the given argument and advances to a new state� Similar to
agents� we assume that the functionality of an object is speci	ed by a procedure

Serve� State � Message � Self � NewState

describing how the agent serves a message and how it advances its state� The argument
Self is a reference to the object invoking Serve making it possible to have a self reference
within Serve and still share Serve between several objects� The procedure

proc �NewObject Serve Init Object�
local Cell in

�NewCell Init Cell�
proc �Object Message�

local State NewState in

�Exchange Cell State NewState�
�Serve State Message Object NewState�

end

end

end

end

creates a new object Object from a procedure Serve and an initial state Init�

It is straightforward to express classes de	ning serve procedures in a modular fashion by
means of named methods� Methods are modeled as procedures similar to serve procedures�
Objects can then be obtained as instances of classes� The states of objects are modeled
as 	nite mappings from attributes to variables� where attributes are modeled as names�
Methods can then construct new states from given states by �assigning� variables to at�
tributes� One can also provide for inheritance� that is� the ability to construct new classes
by inheriting methods and attributes from existing classes� All this is a matter of straight�
forward higher�order programming� Exploiting the power of lexical scoping and names� it
is straightforward to express private attributes and methods�

OPM is a simple and powerful base for expressing concurrent object�oriented programming
abstractions� It was in fact designed for this purpose� Concrete programming languages will
of course sweeten frequently used programming abstractions with a convenient notation�
For a concrete system of object�oriented abstractions and notations we refer the reader to
the Oz object system ��� ����

The reader will have noticed the similarity between agents and objects� We can see agents
as active objects� An object can easily be turned into an agent by interfacing it through a
port�

��

�� Distribution

OPM can be extended to serve as a model for distributed programming� Distribution
means that a program can spread computations over a network of computers� At the
abstraction level of OPM� this can be modeled by assigning a site to every task and by
assuming that the store is distributed transparently� Moreover� we assume that new tasks
inherit the site of the creating task�

We can now see a clear di
erence between agents and objects� When we send a message
to an agent� the message is served at the site where the agent was created �there is a task
waiting for the next message sent�� When we apply an object to a message� the message
is served at the site where the object is applied� In other words� agents are stationary and
objects are mobile�

Since OPM has 	rst�class procedures� it is straightforward to express compute servers�
Cardelli ��� gives an excellent exposition of distributed programming techniques available
in a lexically�scoped language with 	rst�class procedures and concurrent state�

The assumption of a transparently distributed store is not realistic for many applications�
It con�icts with the ability to model fault�tolerance� for instance� We have started work on
a less abstract model where the store appears as a directed graph whose nodes are situated
similar to tasks�

�� Incremental Tell

The tell operation of OCC �see Section �� is not suitable for a parallel implementation� The
reason is that a constraint must be told in a single reduction step� Since telling a constraint
�e�g�� x � y� may involve scanning the entire store� other tell tasks may be blocked for a
long time� The problem can be resolved by telling a constraint piecewise� The basic idea is
to reduce a constraint task T by keeping the task T as is and by advancing the constraint
store from S to a slightly stronger constraint store S� entailed by S � T � This amplifying
reduction step is repeated until the constraint store entails T � in which case the task T is
discarded� Since the constraint store must always be satis	able� the case where S � T is
unsatis	able needs special care�

To make the incremental tell operation precise� we introduce the notion of a constraint sys�
tem� A constraint system consists of a constraint structure� a set of constraints called basic
constraints� and� for every basic constraint T � a binary relation �T on basic constraints
such that�

�� The basic constraints are closed under conjunction and contain � �i�e�� false��

�� For every basic constraint T � the relation �T is well�founded� that is� there exists no
in	nite chain S� �T S� �T S� �T � � � �

��

�� If S �T S�� then �i� S� entails S� �ii� S � T entails S�� �iii� S is satis	able� and �iv�
S� is unsatis	able if and only if S� � ��

�� If T is not entailed by S and both are basic constraints� then there exists S� such
that S �T S ��

The tell reductions �T correspond to the visible simpli	cation steps of the incremental
algorithms implementing the necessary operations on constraint stores� Such algorithms
can be found� for instance� in ��� ���� Note that the tell reductions may be nondeterministic�
that is� for given S and T � there may be di
erent S� and S� such that S �T S� and
S �T S��

Let S be a satis	able basic constraint and T a basic constraint� Then the tell reduction
�T satis	es the following properties�

�� S entails T if and only if S is irreducible with respect to �T �

�� S disentails T if and only if every maximal chain S �T � � � ends with ��

�� Let S �T � � � �T S� be a chain such that S� is irreducible with respect to T � Then
�i� S � T is equivalent to S� and �ii� S � T is unsatis	able if and only if S� � ��

Given a constraint system� we assume that the constraints appearing in expressions and
the constraint store are all basic� where the constraints appearing in guards may be exis�
tentially quanti	ed� Given a constraint store S and a constraint task T � the incremental
tell operation is de	ned as follows� if S is irreducible with respect to �T � then the task T
is discarded� Otherwise� choose some basic constraint S� such that S �T S�� If S� � ��
then announce failure and discard the task T � if S� 	� �� then advance the constraint store
to S� and keep the task T �

The canonical constraint system for the constraint structure INP comes with the basic
constraints

C ��� � j
 j hprimitive constrainti j C� � C��

Primitive constraints were de	ned in Section ��

As long as failure does not occur� it is not important to know which tell reductions are used�
However� if S � T is unsatis	able and computation can continue after failure �e�g�� since
there is exception handling�� all chains S �T � � � �T S� should only add local information�
The notion of �local information� cannot be made precise in general� However� there
are straightforward de	nitions for INP and other practically relevant constraint systems�
Here we will just give an example for INP� Given S � �x � �j� � y � uj�� and T �
�x � y�� the tell reduction �T should only permit two maximal chains issuing from S�
S �T S � u � � �T � and S �T ��

��

�� Propagators

The algorithms for telling and checking entailment and disentailment of basic constraints
must be e�cient� The typical complexity should be constant time� and the worst�case
complexity should be quadratic or better in the size of the guard and the constraint store�
Consequently� expressive constraints such as x � y � z and x � y � z cannot be written
into the constraint store and hence cannot be accommodated as basic constraints� �For
nonlinear constraints over integers satis	ability is undecidable �Hilbert�s Tenth Problem���

Nonbasic constraints can be accommodated as tasks that wait until the constraint store
contains enough information so that they can be equivalently replaced with basic con�
straints� For instance� a task x � y � z may wait until there exist two integers n and m
such that the constraint store entails x � n � y � m� If this is the case� the task can be
reduced to the basic constraint z � k� where k is the sum of n and m� Nonbasic constraints
that are accommodated in this way are called propagators�

Another example of a propagator is a Boolean order test for integers�

less�x� y� z� � �x � y z � True� � �z � True� z � False��

True and False are variables bound to distinct names� This propagator can reduce to
z � True or z � False as soon as the constraint store contains su�cient information about
the values of x and y�

�� Threads

We now give an e�cient reduction strategy for OPM that is fair and reactive �see Section ���
An e�cient reduction strategy must make it possible to write programs that create only a
moderate amount of concurrency� which can be implemented e�ciently on both single and
multi�processor architectures�

The example of the Fibonacci function �we use a sugared notation suppressing auxiliary
variables�

proc �Fib N M�
local B X Y in

�Less � N B�
if B�True then �Fib N	� X� �Fib N	� Y� X
Y�M else M�� fi

end

end

�

shows that the naive reduction strategy in
Section � is impractical� it will traverse
the recursion tree of �Fib � M�� say� in
breadth�	rst manner� thus requiring expo�
nential space� On the other hand� sequential
execution will traverse the recursion tree in
depth�	rst manner from left to right and will

�

� �

� � � �

� �

thus only need linear space� This di
erence clearly matters�

The e�cient reduction strategy organizes tasks into threads�
where every thread is guaranteed to make progress� Thus
fairness is guaranteed at the level of threads� A thread is

Thread � � � Thread

Store

a nonempty stack of tasks� where only the topmost task of a thread can be reduced� If the
topmost task of a thread is reduced� it is replaced with the newly created tasks� if there
are any� If a composition E� � E� is reduced� the left expression E� goes on top of the
right expression E�� which means that E� is considered before E�� If the topmost task of
a thread is irreducible over the current store and the thread contains further tasks� the
topmost task is moved to a newly created thread� A thread disappears as soon as it has
no task left�

The outlined reduction strategy tries to be as sequential as possible and as concurrent as
necessary� It will execute the task �Fib � M� sequentially in a single thread� thus requiring
only linear space�

The concurrent execution of an expression E in a separate thread can be forced by writing

local Fire in if Fire�� then E else true fi Fire�� end

With threads it is straightforward to send messages sequentially through a port� If ports
are de	ned as in Section �� the simple composition

�Port A� �Port B�

will send A before B provided the store binds Port already to a port�

�� Time

It is straightforward to extend OPM such that tasks can be synchronized on time points�
Here we specify a timer primitive

�Sleep T X Y�

which equates two variables X and Y after the time span speci	ed by the variable T has
passed� The timer primitive 	rst waits until the store binds T to an integer n� It then stays
irreducible for further n milliseconds� after which it can be reduced to the constraint X�Y�

��

�
 Encapsulated Search

Since OPM has constraints and logic variables� it will subsume the problem solving ca�
pabilities of constraint logic programming when extended with a nondeterministic choice
combinator� However� a completely new idea is needed for encapsulating the resulting
problem solvers into concurrent agents�

A nondeterministic choice combinator can be provided as an expression

E� or E�

called a choice� Choice tasks can only be reduced if no other task is reducible� If this is
the case� a choice can be reduced by distributing the computation space into two spaces
obtained by replacing the choice with its left and right alternative� respectively� The
resulting search tree of computation spaces can be explored with a suitable strategy� If
a tell operation announces failure� computation in the corresponding computation space
is aborted� The leaves of the search tree are either failed or unfailed computation spaces�
Unfailed leaves will contain the solutions of the problem being solved as bindings to certain
variables�

While the outlined semantics for nondeterministic choice provides the expressivity of con�
straint logic programming� distributing the top level computation space is not compatible
with the idea of concurrent computation� What we would like to have are concurrent agents
to which we can present a search strategy and a problem to be solved and from which we
can request the solutions of the problem one by one� This means that the search agent
should encapsulate search� It turns out that such a search agent can be programmed with
a single further primitive� called a search combinator� The search combinator spawns a
subordinate computation space and reduces in case the subordinate space fails� becomes
irreducible� or is distributed� In the case of distribution� the two alternative local spaces
are frozen and returned as 	rst�class citizens represented as procedures� The details of this
elaborate construction are reported in ���� ��� ����

The resulting model is realized in Oz together with further concurrent constraint combi�
nators ���� ��� ���� Oz gets constraint logic programming out of its problem solving ghetto
and integrates it into a concurrent and lexically scoped language with 	rst�class proce�
dures and state� This integration eliminates the need for Prolog�s ad hoc constructs and
also increases the expressivity of the problem solving constructs�

�� Summary

We have presented a simple and expressive model OPM for high�level concurrent program�
ming� The model is lexically scoped and consists of the concurrent constraint kernel OCC�
	rst�class procedures� and cells providing for concurrent state� It computes with logic vari�
ables and constraints and monotonically synchronizes on a declarative constraint store�

��

The constraint store is the exclusive place where information about the values of variables
is stored� Dynamically created values called names interface the constraint store with the
procedure and the cell store� This way OPM realizes an orthogonal combination of 	rst�
order constraints with 	rst�class procedures and stateful cells� We have shown how OPM
can express higher�order functions� agents and objects� We have added an incremental
tell operation to improve the potential for parallelism� We have also added propagators�
threads� and a timer primitive as needed for a practical language� Finally� we have outlined
how the model can be extended so that it can express encapsulated problem solvers gen�
eralizing the problem solving capabilities of constraint logic programming� Oz translates
the presented ideas into an exciting new programming language�

Acknowledgements

The development of OPM and Oz would have been impossible without the combined con�
tributions of the members of the Programming Systems Lab at DFKI� Much inspiration
and technical knowledge came from the developers of AKL at SICS� the developers of LIFE
at Digital PRL� and the other partners of the Esprit basic research action ACCLAIM�

I�m grateful to Seif Haridi� Martin Henz� Michael Mehl� Joachim Niehren� Andreas Podel�
ski� and Christian Schulte who read and commented on drafts of this paper�

The research reported in this paper has been supported by the BMBF �contract ITW
������ the Esprit Basic Research Project ACCLAIM �contract EP ������ and the Esprit
Working Group CCL �contract EP �����

Remark

The DFKI Oz system and papers of authors from the Programming Systems Lab at DFKI
are available through theWeb at http�ps	www�dfki�uni	sb�de or through anonymous
ftp from ps	ftp�dfki�uni	sb�de�

References

��� H� A !t�Kaci� A� Podelski� and G� Smolka� A feature�based constraint system for logic
programming with entailment� Theoretical Computer Science� �����"������"��� �����

��� R� Backofen� A complete axiomatization of a theory with feature and arity constraints�
Journal of Logic Programming� ����� To appear�

��� L� Cardelli� Obliq� A Language with Distributed Scope� In Proc� ��nd Ann� ACM
Symposium on Principles of Programming Languages �POPL��	
� pages ��"����
�����

��

��� A� Colmerauer� H� Kanoui� and M� V� Caneghem� Prolog� theoretical principles and
current trends� Technology and Science of Informatics� ��������"���� ����

��� M� Henz� G� Smolka� and J� W urtz� Object�oriented concurrent constraint program�
ming in Oz� In V� Saraswat and P� V� Hentenryck� editors� Principles and Practice of
Constraint Programming� pages ��"�� The MIT Press� Cambridge� MA� �����

��� J� Ja
ar and M� J� Maher� Constraint logic programming� A survey� The Journal of
Logic Programming� ���������"��� �����

��� S� Janson and S� Haridi� Programming paradigms of the Andorra kernel language� In
V� Saraswat and K� Ueda� editors� Logic Programming� Proc� ���� Int� Symposium�
pages ���"��� The MIT Press� Cambridge� MA� �����

�� S� Janson� J� Montelius� and S� Haridi� Ports for objects� In Research Directions in
Concurrent Object�Oriented Programming� The MIT Press� Cambridge� MA� �����

��� J� Launchbury� A natural semantics for lazy evaluation� In Proc� �th Ann� ACM Sym�
posium on Principles of Programming Languages �POPL���
� pages ���"���� �����

���� M� J� Maher� Logic semantics for a class of committed�choice programs� In J��L�
Lassez� editor� Logic Programming� Proc� �th Int� Conference� pages �"��� The
MIT Press� Cambridge� MA� ����

���� M� Mehl� R� Scheidhauer� and C� Schulte� An abstract machine for Oz� In Proc� �th
Int� Symposium on Programming Languages� Implementations� Logics and Programs
�PLILP��	
� Lecture Notes in Computer Science� Springer�Verlag� Berlin� ����� To
appear�

���� R� Milner� A Calculus of Communicating Systems� Lecture Notes in Computer Science�
Vol� ��� Springer�Verlag� Berlin� ����

���� R� Milner� Functions as processes� Journal of Mathematical Structures in Computer
Science� ��������"���� �����

���� T� M uller� K� Popow� C� Schulte� and J� W urtz� Constraint programming in Oz� DFKI
Oz documentation series� DFKI� Saarbr ucken� Germany� �����

���� J� Niehren� Funktionale Berechnung in einem uniform nebenl�au�gen Kalk�ul mit lo�
gischen Variablen� Doctoral Dissertation� Universit at des Saarlandes� Saarbr ucken�
Germany� December ����� Submitted�

���� J� Niehren and G� Smolka� A con�uent relational calculus for higher�order program�
ming with constraints� In J��P� Jouannaud� editor� Proc� �st Int� Conference on Con�
straints in Computational Logics �CCL���
� pages �"���� Lecture Notes in Computer
Science� Vol� ��� Springer�Verlag� Berlin� �����

��

���� G� D� Plotkin� A structural approach to operational semantics� DAIMI FN���� Dept�
of Computer Science� Aarhus University� Denmark� ���� Reprinted �����

��� V� A� Saraswat� Concurrent Constraint Programming� The MIT Press� Cambridge�
MA� �����

���� C� Schulte and G� Smolka� Encapsulated search in higher�order concurrent constraint
programming� In M� Bruynooghe� editor� Logic Programming� Proc� ���� Int� Sym�
posium� pages ���"���� The MIT Press� Cambridge� MA� �����

���� C� Schulte� G� Smolka� and J� W urtz� Encapsulated search and constraint program�
ming in Oz� In A� Borning� editor� Proc� �nd Int� Workshop on Principles and Practice
of Constraint Programming �PPCP���
� pages ���"���� Lecture Notes in Computer
Science� Vol� ��� Springer�Verlag� Berlin� �����

���� E� Shapiro� The family of concurrent logic programming languages� ACM Computing
Surveys� ���������"���� ����

���� G� Smolka� The de	nition of Kernel Oz� In A� Podelski� editor� Constraints� Basics
and Trends� pages ���"���� Lecture Notes in Computer Science� Vol� ���� Springer�
Verlag� Berlin� �����

���� G� Smolka� A foundation for higher�order concurrent constraint programming� In J��P�
Jouannaud� editor� Proc� �st Int� Conference on Constraints in Computational Logics
�CCL���
� pages ��"��� Lecture Notes in Computer Science� Vol� ��� Springer�Verlag�
Berlin� �����

���� G� Smolka� Fresh� A higher�order language with uni	cation and multiple results� In
D� DeGroot and G� Lindstrom� editors� Logic Programming� Relations� Functions�
and Equations� pages ���"���� Prentice�Hall� Englewood Cli
s� NJ� ����

���� G� Smolka� An Oz primer� DFKI Oz documentation series� DFKI� Saarbr ucken�
Germany� �����

���� G� Smolka and R� Treinen� Records for logic programming� Journal of Logic Program�
ming� ��������"��� �����

���� G� Winskel� The Formal Semantics of Programming Languages� Foundations of Com�
puting� The MIT Press� Cambridge� MA� �����

��

