
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-39

Typed Feature Formalisms
as a Common Basis for Linguistic

Specification

Hans-Ulrich Krieger

November 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszen-
trum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saar-
brücken is a non-profit organization which was founded in 1988. The shareholder
companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD,
IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-
Nixdorf. Research projects conducted at the DFKI are funded by the German
Ministry for Research and Technology, by the shareholder companies, or by
other industrial contracts.
The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal
is to construct systems with technical knowledge and common sense which -
by using AI methods - implement a problem solution for a selected application
area. Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops
for shareholders and other interested groups in order to inform about the current
state of research.
From its beginning, the DFKI has provided an attractive working environment for
AI researchers from Germany and from all over the world. The goal is to have a
staff of about 100 researchers at the end of the building-up phase.

Dr. Dr. D. Ruland
Director

Typed Feature Formalisms as a Common Basis for Linguis-
tic Specification.

Hans-Ulrich Krieger

DFKI-RR-94-39

To appear in: Machine Translation and the Lexicon,
Lecture Notes in Artificial Intelligence,
Springer, 1995.

This work has been supported by a grant from The Federal Ministry
for Research and Technology (FKZ ITWM-9002 0).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1995
This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit educa-
tional and research purposes provided that all such whole or partial copies include the fol-
lowing: a notice that such copying is by permission of the Deutsche Forschungszentrum
für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowl-
edgement of the authors and individual contributors to the work; all applicable portions
of this copyright notice. Copying, reproducing, or republishing for any other purpose shall
require a licence with payment of fee to Deutsches Forschungszentrum für Künstliche
Intelligenz.
ISSN 0946-008X

Typed Feature Formalisms as a Common Basis for

Linguistic Speci�cation�

Hans�Ulrich Krieger
krieger�dfki�uni�sb�de

German Research Center for Arti�cial Intelligence �DFKI�
Stuhlsatzenhausweg �

D����	� Saarbr
ucken� Germany

Abstract� Typed feature formalisms �TFF� play an increasingly impor�
tant role in CL and NLP� Many of these systems are inspired by Pollard
and Sag�s work on Head�Driven Phrase Structure Grammar �HPSG��
which has shown that a great deal of syntax and semantics can be neatly
encoded within TFF� However� syntax and semantics are not the only ar�
eas in which TFF can be bene�cially employed� In this paper� I will show
that TFF can also be used as a means to model �nite automata �FA�
and to perform certain types of logical inferencing� In particular� I will
�i� describe how FA can be de�ned and processed within TFF and �ii�
propose a conservative extension to HPSG� which allows for a restrict�
ed form of semantic processing within TFF� so that the construction of
syntax and semantics can be intertwined with the simpli�cation of the
logical form of an utterance� The approach which I propose provides a
uniform� HPSG�oriented framework for di	erent levels of linguistic pro�
cessing� including allomorphy and morphotactics� syntax� semantics� and
logical form simpli�cation�

Acknowledgements� This paper has bene�ted from numerous people at vari�
ous workshops where parts of it have been presented� in particular� at the Sprach�
wissenschaftliches Kolloquium �Univ� of T�ubingen�� the ��st Annual Meeting
of the ACL �Columbus� Ohio�� and the International Workshop on �Machine
Translation and the Lexicon� of the European Association for Machine Transla�
tion �Heidelberg��
I would like to thank Elizabeth Hinkelman for reading a draft of this paper� I	m
especially indebted to Petra Ste
ens for carefully reading the pre��nal version
and for making detailed suggestions�

Table of Contents

� Introduction �

� Finite Automata as Typed Feature Structures � � � �

��� Preliminaries �

��� Encoding Finite Automata Within Typed Feature

Formalisms �

��� Intersection� Union� and Complementation of FA � � �

��� Concatenation and Kleene Closure � � � � � � � � � � ��

� Logical Form Simpli�cation Within HPSG � � � � � ��

��� Encoding Logical Form Simpli	cation � � � � � � � � ��

��� An Improved Version � � � � � � � � � � � � � � � � � � �

� Summary and Conclusions � � � � � � � � � � � � � � � ��

�

� Introduction

Pollard�Sag	s seminal work on Head�Driven Phrase Structure Grammar has
shown that a great deal of syntax and semantics can be neatly encoded within
typed feature structures� thus leading for the �rst time to a highly lexicalized
theory of language ��� ���� Moreover� the formalisms underlying these structures
can be given a precise set�theoretical semantics along the lines of Smolka and
others�� However� there are certain areas within computational linguistics� for
which� until recently� no satisfactory formulation in a uniform� constraint�based
�or more speci�cally� HPSG�oriented� theory has been provided� Two of these
representation problems will be addressed in this paper� viz�� �nite automata
and logical form simpli�cation�

� Finite Automata as Typed Feature Structures

Finite automata �FA� and similar devices are heavily used in computational
linguistics and natural language processing as a descriptive means of stating
certain facts about natural language� They have been employed in the descrip�
tion of morphophonemics ��� �� and in the formulation of word order constraints
���� moreover� the use of FA allows for the integration of allomorphy and mor�
photactics ��� ����

While it is unsurprising that the languages accepted by FA may also be
encoded as typed feature descriptions� it is not clear how FA themselves can
be speci�ed as feature structures� how they can be processed� and� furthermore�
what closure properties they have within TFF� These questions and� of course�
their solutions will be addressed in this section�

��� Preliminaries

Assuming a familiarity with the basic inventory of automata theory and formal
languages ��� we shall� in the following� formally refer to a deterministic �nite
automaton �DFA� by a ��tuple hQ��� �� q�� F i� where Q is a �nite set of states � �
a �nite input alphabet � � � Q�� �� Q is the transition function� q� � Q the initial
state� and F � Q the set of �nal states � A nondeterministic �nite automaton
�NFA� di
ers from a deterministic one in that the transition function � maps to
elements of the power set of Q� i�e�� � � Q�� �� �Q �Q� �� q�� and F as before��

This is all we need to explain the encoding technique for FA within a typed
feature logic� For reasons of simplicity� we start with the simplest form of FA�
viz�� deterministic �nite automata without ��moves� which consume exactly one
input symbol at a time� Note that this is not a restriction w�r�t� the set of rec�
ognized words� given an arbitrary NFA� we can always construct a deterministic
one which recognizes the same language �however� in the worst case with expo�
nentially more states��

� In the following� we will assume a basic familiarity with uni�cation�based grammar
theories
��� �� and their logics
�� �� ����

�

Fortunately� our approach is also capable of directly representing and process�
ing non�deterministic FA with ��moves� and allows for edges which are multiple�
symbol consumers �see next section�� It is worth noting that edges may not only
be annotated with atomic symbols� They can also be labelled with complex ones�
i�e�� with possibly underspeci�ed feature structures� where uni�cation is a means
for testing equality �for instance� in case of ��level morphological descriptions�
see ��� for an example of a paradigm�based in�ectional morphology��

��� Encoding Finite Automata Within Typed Feature Formalisms

To specify an automaton as a typed feature structure� we introduce for every
state q � Q a possibly recursive feature type with the same name as q� We will
call such a type a con�guration� Exactly the attributes EDGE� NEXT� and INPUT

are appropriate for such a con�guration� where EDGE encodes the outgoing edges
of q� NEXT the successor states of q� and INPUT the symbols which remain on
the input list when reaching q�� A con�guration does thus not just model a
state of the automaton� but an entire description of the FA at a given point in
computation�� In order to formally de�ne a con�guration as a feature structure
type� we �rst introduce the notion of a proto con�guration that speci�es the
appropriate attributes and their values�

proto�con�guration �

�
�EDGE input�symbol � undef
NEXT con�guration � undef
INPUT list�input�symbol	

�
� ���

We now de�ne two natural subtypes of proto�con�guration� The �rst one
represents the non��nal states Q nF � Because we assume that exactly one input
symbol is consumed every time an edge is traversed� we separate the input list
into the �rst element and the rest list� structure�share the �rst element with
EDGE �the consumed input symbol�� and pass the rest of the list one level deeper
to the next state�

non��nal�con�guration �

�
���
proto�con�guration
EDGE �

NEXTjINPUT �

INPUT h � � � i

�
��� ���

The other subtype encodes the �nal states of F which possess no outgoing
edges� therefore no successor states �and vice versa�� or in our terminology� EDGE

� There might exist states in an FA with no outgoing edges and thus with no successor
states� To cope with this fact� we introduce a special subtype of the most general
type �� called undef � which is incompatible with every other type �except with itself
and ���

� Note the similarity between a con�guration and a closure in functional programming
or a machine state in operational semantics�all notions exhaustively describe the
corresponding computing device at a certain point in time�

�

and NEXT are unde�ned �are of type undef �� In addition� successfully reaching a
�nal state with no outgoing edge implies that the input list is empty �

�nal�con�guration �

�
���
proto�con�guration
EDGE undef
NEXT undef
INPUT h i

�
��� ���

Of course� there will also be �nal states with outgoing edges� but such states
are subtypes of the following disjunctive type speci�cation�

con�guration � non��nal�con�guration � �nal�con�guration ���

To make things more concrete� let us look at an example� viz�� the FA A�

which recognizes the language L�A�� � �a � b��c�

X Y
c

a�bA�

A� consists of the two states X and Y� therefore� we have to de�ne two types
X and Y � where Y �given in ���� is only an instantiation of a �nal con�guration�
Note that we make use of distributed disjunctions �� �depicted by the disjunction
name ��� in the de�nition of X to express the covariation between edges and
successor states� if a is processed� use type X �and vice versa�� if b is processed�
use again type X � but if c is chosen� choose type Y �

X �

�
�non��nal�con�gurationEDGE ���a � b � c�
NEXT ���X � X � Y �

�
�

Y � �nal�con�guration �

���

Whether a FA A accepts a given input string or not is thus equivalent to the
question of feature term consistency
satis�ability � if we want to know whether w
�a list of input symbols� will be recognized by A� we must expand the type which
is associated with the initial state q� of A and specify w as its INPUT� Speaking
in Carpenter	s terms ��� we thus require that

q� 	 INPUT w�

�

be totally well�typable� i�e�� that there is at least one model that satis�es the
input description��

The processing of FA within TFF is thus achieved by type expansion of pos�
sibly recursive feature types� However� type expansion not only tests for the
satis�ability of a description but also makes the idiosyncratic and inherited
constraints of a type explicit �see below�� In our case� type expansion always
terminates � either with a uni�cation failure �the FA does not accept w� or with
a fully expanded feature structure� representing a successful recognition�

Coming back to our example� let us ask whether abc belongs to the language
L�A�� accepted by A�� By expanding type X with INPUT ha�b�ci�� we can
decide this question� This will lead to the following consistent feature structure�
which represents the complete recognition history of abc� i�e�� all its �solutions�
in the FA �recall that because X is a subtype of non��nal�con�guration and
proto�con�guration� it will inherit all constraints of these types� similar for Y ���

���������������������

X
EDGE � a

NEXT

�
���������������

X
EDGE � b

NEXT

�
���������

X
EDGE � c

NEXT

�
���
Y
EDGE undef
NEXT undef
INPUT � h i

�
���

INPUT � h � � � i

�
���������

INPUT � h � � � i

�
���������������

INPUT h � � � i

�
���������������������

���

We now change our focus from DFA to arbitrary NFA� The �rst question
we have to ask is whether nondeterminism in general makes the whole encoding
method invalid� In fact� nondeterminism does not introduce any problems at all�
There is no di
erence in our framework between a DFA and a NFA� neither from
a descriptive nor from an expressive standpoint� because outgoing edges labelled
with the same symbol �the NFA criterion� can be easily captured by distributed
disjunctions� as is done in the DFA example above �cf� the description of type X
given by ��� in FA A����

In addition� changing from �� to ���consuming edges leads only to minor
modi�cations in the de�nition of non��nal�con�guration ���� Multiple�symbol

� Type expansion here is analogous to a top�down parsing method in syntactic analysis�
viz�� recursive descent parsing � Note that the satis�ability problem for recursive type
descriptions is in general undecidable� although this is not the case for our encoding

����

� From a processing standpoint� of course� a DFA di	ers from a NFA in our approach�
We will come back to this later�

�

consuming edges are modelled through lists of symbols instead of declaring single
symbols appropriate for EDGE� an ��transition ���� is encoded as the empty
list ���� a single input symbol ���� through a list over this symbol ���� two
input symbols ���� are represented using a list of two symbols ���� and so on�
Therefore� we substitute the de�nition of non��nal�con�guration by giving a
family of specialized de�nitions� where the number of de�nitions depends on the
length of the longest word associated with an edge in the FA�

non��nal�con�guration� �

�
���
proto�con�guration
EDGE h i
NEXTjINPUT �

INPUT �

�
��� ���

non��nal�con�guration� �

�
���
proto�con�guration
EDGE h � i
NEXTjINPUT �

INPUT h � � � i

�
��� ���

non��nal�con�guration� �

�
���
proto�con�guration
EDGE h � � � i
NEXTjINPUT �

INPUT h � � � � � i

�
��� ���

Under these circumstances� con�guration ��� must also be altered� since it
now consists of multiple alternatives�

con�guration � �nal�con�guration �
n�
i	�

non��nal�con�gurationi ����

It is worth to have a look at the complexity of our approach� We all know
that in the case of DFA� input can be recognized in O�n�� whereas the time
complexity for a NFA is O��n� in the worst case� where n is given by the length
of the input string� Because we employ disjunctions to describe the covariation
between edges and successor states� one might assume that the complexity of
our treatment is already exponential for the DFA case as a result of the fact
that the satis�ability problem for disjunctive formulae is NP�complete ��� thus
a uni�cation algorithm will have a non�polynomial complexity� assuming that
P
� NP � Recall that we are using uni�cation as a means for testing equality�

However� when modelling DFA in our approach� the disjunctions under EDGE
and NEXT will collapse into one element as a consequence of the fact that in a
DFA at most one arc can be traversed at a time �the one whose label matches the
input�� We therefore have to expand only one type under NEXT and uni�cation
only operates on conjunctive descriptions� But if this is the case� our treatment
has nearly the same complexity as in theory� there exist well�known quasi�linear
uni�cation algorithms for conjunctive formulae� for instance A� t�Kaci	s uni�ca�
tion algorithm employed in LOGIN ��� which is an extension of Huet	s method

�

for �xed�arity� �rst�order terms� By encoding general NFA in our framework�
we obtain the same theoretical result as is the case for a direct encoding� viz��
exponential time complexity�

��� Intersection� Union� and Complementation of FA

As a nice by�product of our encoding technique� we can show that uni�cation�
disjunction� and classical negation in the underlying feature logic directly cor�
respond to the intersection� union� and complementation of FA� The correspon�
dences can be easily shown when assuming a sorted set�theoretical semantics for
feature descriptions ����

Take� for instance� the intersection of two arbitrary FA� A� and A�� Intersect�
ing A� and A� means construction of an FA A which recognizes the intersection
of L�A�� and L�A��� But exactly this is achieved through uni�cation� construct�
ing A is equivalent to unifying the types associated with the start states of A�

and A�� q� and q��� the denotation of q� 	 q�� is then given by the intersection of
the objects denoted by q� and q��� The same argumentation holds for union and
complementation of FA�

To see how this is accomplished� consider A� �as before� and A�� which
recognizes the language L�A�� � a�b � c���

A�

U V
a

b�c

To model A� and A�� we refer to the types X and Y of ��� and to U and V �
which are de�ned in �����

U �

�
�non��nal�con�gurationEDGE a

NEXT V

�
�

V �

�
� con�gurationEDGE ���b � c � undef �
NEXT ���V �V � undef �

�
�

����

The intersection of A� and A� then corresponds to the uni�cation of X and
U � which leads to the following structure �assuming that our logic is based on
an open�world semantics ������

�XEDGE ���a � b � c�
NEXT ���X � X � Y �

�
� 	

�
�UEDGE a

NEXT V

�
� �

�
�X 	U
EDGE a

NEXT X 	 V

�
� ����

�

Testing whether a given string w belongs to L�A�� � L�A�� is equivalent to
testing for the satis�ability of q�	q��	 INPUT w�� Again� type expansion decides
the consistency of the given input description� see ����� Note that the uni�cation
of q� and q�� has the same e
ect as running A� and A� in �parallel� which is
equivalent to the intersection of A� and A�� exactly what we want to achieve�
Again� a similar argumentation holds for the union and complementation of FA�
see ���� and �����

w � L�A�� � L�A�� � q� 	 q
�
� 	 INPUT w�
� �� ����

w � L�A�� � L�A�� � �q� � q��� 	 INPUT w�
� � ����

w � L�A�� � �q� 	 con�guration 	 INPUT w�
� � ����

Because we are working in the domain of FA �although they are encoded via
feature structures�� complementing an FA means to complement the language
it accepts with respect to �� and not to complement the set of objects denoted
by q� with respect to the domain of feature descriptions� i�e�� the whole universe
�which represents a much larger set�� We� therefore� have to intersect!unify �q�
with con�guration in ���� in order to restrict ourselves to the domain of feature
structures which model FA�

To see how the proposed mechanism works� let us look at the FA A� and
A� again and let us ask whether abc � L�A�� � L�A��" Deciding this question
means to expand X 	 U 	 INPUT ha�b�ci� which results in �����

�
���������������������

X 	 U
EDGE � a

NEXT

�
���������������

X 	 V
EDGE � b

NEXT

�
���������

X 	 V
EDGE � c

NEXT

�
���
Y 	 V
EDGE undef
NEXT undef
INPUT � h i

�
���

INPUT � h � � � i

�
���������

INPUT � h � � � i

�
���������������

INPUT h � � � i

�
���������������������

����

It has to be noted that the intersection of FA via uni�cation does not work
in general for FA with ��moves� This problem is inherent and well�known but is
no restriction w�r�t� expressivity �see ��� for more details and related aspects��

�

��� Concatenation and Kleene Closure

Let us now focus on the concatenation and Kleene closure of regular expres�
sions!FA� It turns out that the feature logic on which our approach is based
together with a weak form of functional uncertainty �� allows for a charac�
terization of these operations ���� Let A� � hQ�� ��� ��� q�� F�i and A� �
hQ�� ��� ��� q

�
�� F�i be two arbitrary FA� The concatenation of A� and A� is

given by

A� � A� � q� 	 �NEXT�
�
q�� 	

�
i

fi� ����

where the fi must be subtypes of non��nal�con�guration� although on the FA
level� they belong to the set of �nal states� While A� � A� would usually be
constructed by introducing an ��move between A� and A� �� p� ���� we account
for concatenation by connecting every �nal state fi � F� with the start state
q�� of A�� thus� we have to write ��ifi� 	 q��� Connection here does not mean
introducing an ��move but to unify every fi with q��� which requires us to turn
the �nal states of A� into non��nal ones to allow for successful uni�cations� this
is why fi must be a subtype of non��nal�con�guration�

At this point� functional uncertainty comes into play because we do not know
for a concrete input w � w� � w� how many iterations of NEXT are necessary in
A� to successfully recognize w�� so that w� can be further processed by A�� Note
that the functional uncertainty constraint in ���� can be restated by using the
following recursive type de�nition#thus there is no need for a richer logic�

�NEXT�� �� � � � � � NEXT �� ����

The iteration or Kleene closure of A� is constructed in a similar way� the
�nal states fi � F� are uni�ed with the start state q� �to be more precise� with
the types associated with these states�� The construction of A�

� then looks as
follows�

A�
� � A� �A
 ����

where A� is an instantiation of �nal�con�guration �the empty string case� and
A
 � q�	

�
�NEXT�

� �i fi
	
� However� fi must be a subtype of the disjunctive type

con�guration ��� because the fi serve as �nal states as well as non��nal states
in this construction� which is in accordance with the de�nition of con�guration�

Although concatenation and Kleene closure are directly encodable in our
logic� we recommend against using the above technique for reasons of e$ciency�
In this regard� it is better to construct the composite automaton �rst by hand#
which is fairly straightforward#and then apply the encoding mechanism for
non�complex FA�

��

� Logical Form Simpli�cation Within HPSG

Typed feature formalisms in general� and HPSG in particular� serve as a basis
for many NLP!MT systems ��� ��� ���� Even though most of these systems
represent the semantic content of an utterance as a feature structure� they do
not use a parser �or generator� or a uniform deduction component to simplify
logical form or to draw domain�speci�c inferences within the calculus of HPSG
in order to derive legal� simpler expressions represented as a feature structure
again �cf� �� to get an impression of simplifying!resolving �quasi� logical form
within the core language engine of SRI��

Instead� all systems either translate the semantic representation directly into
an application language �e�g�� a database language�� which means that seman�
tic inferences are not seen as essential in the front�end� or transform feature
structures into a term of a semantic representation logic �for instance the lan�
guage NLL ����� on which a deduction component operates to yield anoth�
er� denotation�preserving expression� Given such an intermediate language� the
method of processing the semantics of a sentence is as follows�

�� incrementally construct a feature structure f representing the semantics of
a given sentence�

�� transform the content of f into a term t of the intermediate language�
�� apply simpli�cation schemata iteratively to t� yielding a simpler term t��
�� translate t� into an application language expression e�
�� interpret e with the inference machinery of the application language�

We will argue in this paper that semantic inferences can be carried out locally
as part of the parsing �generation� process so that step ���� and ���� are in fact
not needed and that f can be directly translated into e� Doing away with an
intermediate level of semantic representation has many advantages�

� Processing� semantic inferences can be carried out locally during the pars�
ing process �if needed�� since inconsistencies can thus be detected at an early
stage of analysis� processing e
orts can be reduced

� Architecture� semantic inferences are integrated into the parser#which
leads to a simpler architecture of the whole NLP system

� Efficiency� there is no need to transform a feature structure into an ex�
pression of the intermediate language#which saves time and space

� Uniformity� it is theoretically appealing to provide a coherent framework
in which all levels of linguistic description are represented and in which
arti�cial interface problems are thus avoided

Because HPSG in general allows for higher order expressivity through un�
restricted relations and recursive types� the notion of logical equivalence of de�
scriptions is undecidable� and moreover� not even recursively enumerable� Hence
the subject of this paper will not be a restricted decision procedure for test�
ing the equivalence of two descriptions� but� rather� a limited method of logical
form simpli�cation� This is achieved by enriching the feature logic underlying
HPSG#however� without sticking to external relational constraints�

��

��� Encoding Logical Form Simpli	cation

In the following� we refer to Pollard and Sag	s �rst volume of HPSG ���� Even
though the examples given throughout this section are simpli�ed in that the
structure of SEM is �at � i�e�� only consists of top level attributes like OP �operator��
SC �scope�� CONN �connective�� etc�� the idea developed here can be easily adapted
to more complex forms of HPSG and other constraint�based grammar formalisms
which have similar notions of what English �or any natural language� is ���
p� �����

English � P� 	 � � � 	 Pn
m 	 �L� � � � � � Lp � R� � � � � � Rq� ����

In the introductory section� we said that during parsing the primary reason
for using feature structures is the need for storing information obtained so far
�e�g�� semantic content�� A parser� however� will� for instance� not simplify nested
occurrences of an operator like a semantic not ��� There	s a notable exception
to what we said about the lack of semantic inferences in HPSG� most of the
e
ects of ��reduction� used by many semanticists growing out of the Montagovian
tradition� can be easily captured by uni�cation �see for instance �����

In this section� we intend to present the necessary inventory for logical form
simpli�cation within HPSG� What we need is

�� an immediate dominance �rule� schema Rproj formulated as �Project� in ����
to record semantic inferences� and

�� for each simpli�cation schema exactly one extralinguistic
metalogical prin�
ciple Pmetai �� � i � k� realized as �a special form of� an implication�

Therefore� we must rede�ne ���� by adding the rule schema and the princi�
ples� This results in the following de�nition of English�

P�	� � �	Pn
m	Pmeta� � � �	Pmetak 	 �L��� � ��Lp�R��� � ��Rq �Rproj� ����

The rule schema Rproj serves to represent both sides of an inference step
by projecting the simpli�ed semantics to the top level SEM and storing the non�
simpli�ed representation under DTRS� see ����� Note the similarity between Rproj

and an Ri� Ri serves as an instruction to build up phrase structure� However� the
number of branches in such a derivation tree is in general greater than one#this
is in contrast to the single daughter of Rproj� The idea now is to postulate a sim�
ilar structure which allows us to construct a proof tree� Topologically speaking�
such a proof tree corresponds to a linear chain� Because we are interested in the
value of the SEM attribute� we structure�share PHON and SYN on the top level with
the same attributes of the single daughter under the path DTRSjNON�SIMPL�DTR�
This is necessary for a parser to continue �syntactic parsing� properly�

� For example� an expression like
SEMjCONT
OP �� SC
OP �� SC ���� should be simpli�
�ed in many cases to
SEMjCONT ���

��

Project�

�
���������������

phrasal�sign
PHON �

SYN �

SEM �

DTRS

�
�����
non�simpl�dtr�struct

NON�SIMPL�DTR

�
���
sign
PHON �

SYN �

SEM �

�
���

�
�����

�
� �

�
���������������

����

Note that it is always possible to instantiate such a structure� if needed�
during the construction of syntax and semantics in order to simplify the value
of SEM �cf� the examples in Section ����� After a successful simpli�cation step�
we may then continue with syntactic analysis and possibly perform some more
simpli�cation steps again later�

To avoid interferences between linguistic principles and extralinguistic ones�
we assume DTRS to be of type non�simpl�dtr�struct � see ����� Thus� we exclude the
application of principles like the Head Feature Principle� the Semantics Principle�
or the Subcategorization Principle� Because those principles are of the form

DTRS headed�structure� � � � � � � ����

they cannot be applied to structures which are licensed by the projection rule
schema ����� The same argument also holds for the opposite case� structures
admitted by the four rule schemata of HPSG�I� cannot be constrained by our
extralinguistic principles� because the antecedents of such principles assume a
single daughter of type non�simpl�dtr�struct � which would cause the principles
to fail�

We now present two well�known simpli�cation schemata and show how to
represent them in terms of feature structure implications#actually� we only
represent one direction of the biconditional �otherwise we would have to state
two implications�� We start with the simpli�cation schema for double negation�
i�e��

��	
	

����

or as an implication

��

�Neg�

�
�����
phrasal�sign

DTRS

�
���
non�simpl�dtr�struct

NON�SIMPL�DTRjSEM

�
�op�sc�structOP �
SCjOP �

�
�
�
���

�
�����

�

�
�phrasal�signSEM �

DTRSjNON�SIMPL�DTRjSEMjSCjSC �

�
�

����

Note the special form of the left�hand side� ���� can only be applied to
structures which contain a single daughter of type non�simpl�dtr�struct � where
the daughter	s semantics represents a doubly negated formula� If this is the case�
the right�hand side of ���� percolates the matrix of this nested formula to the
top level�

It is worth noting that our feature structure implications can not be inter�
preted as rewrite rules in the sense of term rewriting systems� however� they
encode a rewrite rule through phrase structure trees� Real rewriting� instead�
would violate the main assumption of the uni�cation�based grammar paradigm�
viz�� monotonicity �

Our next example concerns one of De Morgans rules � i�e��

��
 	 	�

�
 � �	
����

which corresponds to the following implication�

DeMorgan�

�
�����
phrasal�sign

DTRS

�
���
non�simpl�dtr�struct

NON�SIMPL�DTRjSEM

�
�op�sc�structOP �
SCjCONN 	

�
�
�
���

�
�����

�

�
�����������������

phrasal�sign

SEM

�
�����������

conn�args�struct
CONN �

ARG�

�
�op�sc�structOP �
SC �

�
�

ARG�

�
�op�sc�structOP �
SC �

�
�

�
�����������

DTRSjNON�SIMPL�DTRjSEMjSC

ARG� �

ARG� �

�

�
�����������������

����

��

��� An Improved Version

The proposal presented so far has one signi�cant disadvantage� extralinguistic
principles can only be applied to top level forms which are licensed by the pro�
jection rule but can not be taken into consideration in the case of embedded
structures� unless deeper reaching principles have been provided� While from
a practical point of view� this may not be considered a severe drawback� it is
unacceptable from the viewpoint of expressiveness�

Let us illustrate this claim with an example� Consider� for instance� the fol�
lowing derivation tree�

� SEM ���	� 	 ���
��

DeMorgan�

� SEM ���	 � �
��

SEM �	 � �
�

DeMorgan�

 � � � � SEM ��	 	
��

This example shows that everything works �ne until De Morgan	s rule is
applied a second time� Given the structure of � ��

���������
SEM

�
���������

op�sc�struct
OP �

SC

�
�����
CONN �

ARG�

OP �
SC 	

�

ARG�

OP �
SC

�
�
�����

�
���������

�
���������

����

we can successfully apply ����� thus producing the following simpli�ed semantics
for � � �

�����������
SEM

�
�����������

conn�args�struct
CONN 	

ARG�

�
�OP �

SC

OP �
SC 	

���

ARG�

�
�OP �

SC

OP �
SC

���

�
�����������

�
�����������

����

The problem now is that the schema for double negation stated in ���� cannot
be applied to ���� because the structure under DTRSjNON�SIMPL�DTRjSEM would

��

be of type conn�args�struct after the application of �Project� but not of type
op�sc�struct � Although the arguments of the connective 	 ful�ll the antecedent
of ����� the metalogical principle cannot �re� Note that this problem is not
restricted to top level parts of the semantics of the immediate daughter but can
arise at an arbitrary depth�

To overcome this shortcoming� we need the ability to iterate certain at�
tributes!paths in the antecedent of an implication� The relevant attributes in
example ���� are the arguments of the connective� ARG� and ARG�� Here howev�
er� the iteration is only of depth �� If the feature logic allows us to specify regular
path expressions � we are able to restate the antecedent of the principle for dou�
ble negation in such a way that we can characterize doubly negated formulae
at deeper levels� see ����� There exists a mechanism used primarily in the LFG
community which ful�lls exactly our needs� functional uncertainty �� �note that
Section ��� also makes use of this device�� Functional uncertainty is a mechanism
for dealing elegantly with linguistic phenomena like long distance dependencies
or constituent coordination� With functional uncertainty� we can characterize
a nested doubly negated formula at an arbitrary depth by the antecedent of
����� Because such a formula might occur under ARG� as well as under ARG�� the
Kleene star � is applied to a disjunction � of these attributes� see �����

Advocates of rewrite systems may question whether functional uncertainty is
really called for here� They might propose simpli�cation rules that can be applied
anywhere within a feature structure as is known from rewrite systems� This�
however� would assume a di
erent semantics for feature structure implications#
in order to encode the universal applicability of rewrite rules in term rewriting
systems� functional uncertainty seems to be the only viable solution� The seeming
disadvantage of specifying exactly the path where a matching structure must be
located turns out to be a bene�t� in our case� the speci�ed path guides the search
of an inference engine that� for a given principle� tests for the applicability of its
antecedent� In the case of general rewrite systems� this search is not guided� i�e��
the rewrite system is �blind� or must rely on heuristics�

Unfortunately� functional uncertainty is not su$cient to cope with structures
embedded at deeper levels� This is because we must extract certain substructures
under DTRS� which� however� should not be percolated entirely� Moreover� these
structures might be speci�ed by a regular path� since we do not know how deep
they are located� Take� for instance� our example of double negation� What we
would like to state is that the �top level� value of SEM is identical to the value
under DTRSjNON�SIMPL�DTRjSEM with one important exception� the value under
DTRSjNON�SIMPL�DTRjSEMj�ARG��ARG��� �the doubly negated formula� has to
be substituted with DTRSjNON�SIMPL�DTRjSEMj�ARG��ARG���jSCjSC �the matrix
of the formula�� This requires a special form of monotonic substitution� Since
our notion of substitution is similar to the one used in the ��calculus� we write
XfY nZg meaning�

Substitute in a copy of X every Y � with Z� where Y � is subsumed by Y �

��

The notion of a copy is de�ned as follows� X is a copy of X � i
 X X � and
X � X � such that X
� X ��

Functional uncertainty together with monotonic substitution now allows us
to state an improved version of the principle for double negation� which subsumes
�����

�
���������

phrasal�sign

DTRS

�
�������

non�simpl�dtr�struct

NON�SIMPL�DTRjSEM �

�
�����
conn�args�struct

�ARG��ARG��
�

�

�
���
op�sc�struct
OP �

SC

OP �
SC �

�
�
���

�
�����

�
�������

�
���������

�

�
phrasal�sign
SEM �

� n �
�
�

����

Coming back to our example� we are now able to simplify the value of SEM
after the application of De Morgan	s rule by using the improved principle for
double negation� Note that ���� is applied to both arguments of the connective
	 in � � The derivation tree then looks as follows�

� SEM 	 	
�

� �
�Neg�

� SEM ���	� 	 ���
��

DeMorgan�

� SEM ���	 � �
��

SEM �	 � �
�

DeMorgan�

 � � � � SEM ��	 	
��

where

��

� �

�
�������������������������

phrasal�sign
PHON �

SYN �

SEM

�
�����������

conn�args�struct
CONN � 	

ARG�

�
�OP �

SC

OP �
SC � 	

���

ARG�

�
�OP �

SC

OP �
SC �

���

�
�����������

DTRSjNON�SIMPL�DTR �

�
���
PHON �

SYN �

SEMjSC

ARG� �

ARG� �

�
�
���

�
�������������������������

����

and

� �

�
�������������������

phrasal�sign
PHON �

SYN �

SEM

�
�CONN �

ARG� �

ARG� �

�
�

DTRSjNON�SIMPL�DTR �

�
�������

PHON �

SYN �

SEM

�
�CONN �

ARG�jSCjSC �

ARG�jSCjSC �

�
�

DTRSjNON�SIMPL�DTR �

�
�������

�
�������������������

����

If the principle of double negation should also be able to handle other cases of
embedded constructions �quanti�er within the scope of �� etc��� we must specify
this as is the case for rewrite schemata in term rewriting systems� This can
be achieved either by adding new principles for each case or� more generally�
by making the improved version of ��Neg� sensitive to these special situations
�cf� ��� for more details��

Our last extension concerns the introduction of set values � A truly robust�
HPSG�inspired approach to logical form simpli�cation must be able to unify the
following two structures��

���
conn�args�struct
CONN 	
ARG�

ARG� 	

�
���

�
���
conn�args�struct
CONN 	
ARG� 	

ARG�

�
��� ����

��

Although
 	 	 and 	 	
 are equal in a model�theoretic sense �that is� the
extensions are equal� i�e�� denote the same set of objects�� standard uni�cation
would fail� We� therefore� suggest to replace the keyword approach ARGn by a set�
valued treatment as shown in ����� Moreover� this has the advantage of allowing
more than two arguments for connectives like 	 or � �see ��� for a similar
proposal�� In addition� there is no longer a need for specifying commutativity via
a principle!schema� instead� commutativity is now handled internally through
set uni�cation� �

� conn�args�structCONN 	
ARGS f
� 	� � � �g

�
� ����

However� the question still remains which form of set values and set uni��
cation is really needed in our case �see for instance ����� And perhaps� more
important� what is the price we have to pay when using set�values� However� an
examination of these aspects would exceed the scope of this paper�

� Summary and Conclusions

In this paper� I have shown how FA can be neatly integrated and processed
within TFF� The encoding method assumes that the logic makes recursive type
de�nitions available� Some examples of German in�ectional morphology ��� have
been implemented in the typed feature formalism TDL ����

The second area addressed in this paper concerns a proposal for logical
form simpli�cation within TFF!HPSG� The approach makes strong assumptions
about the expressivity of the feature calculus �set values� functional uncertain�
ty!recursive types and monotonic substitution��

Both approaches extend the domain of �ordinary� constraint�based gram�
mars beyond the construction of syntax and semantics� thus avoiding arti�cial
interface problems between di
erent components in that everything is represent�
ed within the same formalism� This integration need not lead to a heavy decrease
of e$ciency as explained in Section � and �� so that the advantages of these pro�
posals prevail against non�integrated� multi�component oriented systems�

References

�� Hassan A��t�Kaci and Roger Nasr� LOGIN� A logic programming language with
built�in inheritance� Journal of Logic Programming� �������� �����

�� Hiyan Alshawi� editor� The Core Language Engine� ACL�MIT Press Series in
Natural Language Processing� MIT Press� �����

�� Steven Bird� Finite�state phonology in HPSG� In Proceedings of the ��th In�

ternational Conference on Computational Linguistics� COLING���� pages ������
�����

�� Bob Carpenter� The Logic of Typed Feature Structures� Tracts in Theoretical
Computer Science� Cambridge University Press� Cambridge� �����

��

� Jochen D�orre and Andreas Eisele� Determining consistency of feature terms with
distributed disjunctions� In Dieter Metzing� editor� Proceedings of ��th Ger�

man Workshop on Arti	cial Intelligence� GWAI�
�� pages �������� Berlin� �����
Springer�

�� John E� Hopcroft and Je	rey D� Ullman� Introduction to Automata Theory� Lan�

guages� and Computation� Addison�Wesley� Reading� MA� �����

�� Mark Johnson� Attribute Value Logic and the Theory of Grammar� CSLI Lecture
Notes� Number ��� Center for the Study of Language and Information� Stanford�
�����

�� Ronald M� Kaplan and John T� Maxwell III� An algorithm for functional un�
certainty� In Proceedings of the ��th International Conference on Computational

Linguistics� COLING�

� pages �������� �����

�� Robert T� Kasper and William C� Rounds� A logical semantics for feature struc�
tures� In Proceedings of the ��th Annual Meeting of the Association for Computa�

tional Linguistics� pages ������� �����

��� Martin Kay� Jean Mark Gawron� and Peter Norvig� Verbmobil� A Translation

System for Face�to�Face Dialog� CSLI Lecture Notes� Number ��� Center for the
Study of Language and Information� Stanford� �����

��� Kimmo Koskenniemi� Two�level model for morphological analysis� In Proceedings

of the
th International Joint Conference on Arti	cial Intelligence� pages �������
�����

��� Hans�Ulrich Krieger� Derivation without lexical rules� In C�J� Rupp� M�A� Ros�
ner� and R�L� Johnson� editors� Constraints� Language and Computation� pages
�������� Academic Press� ����� A version of this paper is available as DFKI Re�
search Report RR������� Also published in IDSIA Working Paper No� � Lugano�
November �����

��� Hans�Ulrich Krieger� Logical form simpli�cation within HPSG� Technical report�
Deutsches Forschungszentrum f�ur K�unstliche Intelligenz� Saarbr�ucken� Germany�
���� Forthcoming�

��� Hans�Ulrich Krieger� Representing and processing �nite automata within typed
feature formalisms� Technical report� Deutsches Forschungszentrum f�ur K�unstliche
Intelligenz� Saarbr�ucken� Germany� ���� Forthcoming�

�� Hans�Ulrich Krieger and John Nerbonne� Feature�based inheritance networks for
computational lexicons� In Ted Briscoe� Valeria de Paiva� and Ann Copestake� ed�
itors� Inheritance� Defaults� and the Lexicon� pages ������� Cambridge University
Press� New York� ����� A version of this paper is available as DFKI Research
Report RR������� Also published in Proceedings of the ACQUILEX Workshop
on Default Inheritance in the Lexicon� Technical Report No� ���� University of
Cambridge� Computer Laboratory� October �����

��� Hans�Ulrich Krieger� John Nerbonne� and Hannes Pirker� Feature�based allomor�
phy� In Proceedings of the ��st Annual Meeting of the Association for Compu�

tational Linguistics� pages �������� ����� A version of this paper is available as
DFKI Research Report RR�������

��� Hans�Ulrich Krieger and Ulrich Sch�afer� TDL�a type description language for
constraint�based grammars� In Proceedings of the ��th International Conference

on Computational Linguistics� COLING���� Kyoto� Japan� pages �������� �����
An extended version of this paper is available as DFKI Research Report RR�������

��� Joachim Laubsch and John Nerbonne� An overview of NLL� Technical report�
Hewlett�Packard� �����

��

��� John Nerbonne� A feature�based syntax�semantics interface� In Alexis Manaster�
Ramer and Wlodek Zadrozny� editors� Mathematics of Language� Vol �� Annals
of Arti�cial Intelligence and Mathematics� ����� Also available as DFKI Research
Report RR�������

��� Carl Pollard and Ivan A� Sag� Information�Based Syntax and Semantics Vol I�

Fundamentals� CSLI Lecture Notes� Number ��� Center for the Study of Language
and Information� Stanford� �����

��� Carl Pollard and Ivan A� Sag� Head�Driven Phrase Structure Grammar� Studies
in Contemporary Linguistics� University of Chicago Press� Chicago� �����

��� William C� Rounds� Set values for uni�cation�based grammar formalisms and logic
programming� Technical Report CSLI�������� Center for the Study of Language
and Information� �����

��� Stuart M� Shieber� An Introduction to Uni	cation�Based Approaches to Grammar�
CSLI Lecture Notes� Number �� Center for the Study of Language and Information�
Stanford� �����

��� Gert Smolka� A feature logic with subsorts� LILOG Report ��� WT LILOG�
IBM Germany� Stuttgart� May ����� Also in J� Wedekind and C� Rohrer �eds���
Uni�cation in Grammar� MIT Press� �����

�� Hans Uszkoreit� From feature bundles to abstract data types� New directions in the
representation and processing of linguistic knowledge� In A� Blaser� editor� Nat�
ural Language at the Computer�Contributions to Syntax and Semantics for Text

Processing and Man�Machine Translation� pages ������ Springer� Berlin� �����
��� Hans Uszkoreit� Linear precedence in head domains� Paper presented at the HPSG

in German workshop� �����
��� Hans Uszkoreit� Rolf Backofen� Stephan Busemann� Abdel Kader Diagne� Eliz�

abeth A� Hinkelman� Walter Kasper� Bernd Kiefer� Hans�Ulrich Krieger� Klaus
Netter� G�unter Neumann� Stephan Oepen� and Stephen P� Spackman� DISCO�
an HPSG�based NLP system and its application for appointment scheduling� In
Proceedings of COLING���� Kyoto� Japan� ����� A version of this paper is avail�
able as DFKI Research Report RR�������

��� R�emi Zajac� A transfer model using a typed feature structure rewriting system
with inheritance� In Proceedings of the ��th Annual Meeting of the Association for

Computational Linguistics� pages ���� �����

This article was processed using the LaTEX macro package with LLNCS style

��

