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Hans�Ulrich Krieger
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ucken� Germany

Abstract� Typed feature formalisms �TFF� play an increasingly impor�
tant role in CL and NLP� Many of these systems are inspired by Pollard
and Sag�s work on Head�Driven Phrase Structure Grammar �HPSG��
which has shown that a great deal of syntax and semantics can be neatly
encoded within TFF� However� syntax and semantics are not the only ar�
eas in which TFF can be bene�cially employed� In this paper� I will show
that TFF can also be used as a means to model �nite automata �FA�
and to perform certain types of logical inferencing� In particular� I will
�i� describe how FA can be de�ned and processed within TFF and �ii�
propose a conservative extension to HPSG� which allows for a restrict�
ed form of semantic processing within TFF� so that the construction of
syntax and semantics can be intertwined with the simpli�cation of the
logical form of an utterance� The approach which I propose provides a
uniform� HPSG�oriented framework for di	erent levels of linguistic pro�
cessing� including allomorphy and morphotactics� syntax� semantics� and
logical form simpli�cation�
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� Introduction

Pollard�Sag	s seminal work on Head�Driven Phrase Structure Grammar has
shown that a great deal of syntax and semantics can be neatly encoded within
typed feature structures� thus leading for the �rst time to a highly lexicalized
theory of language ��� ���� Moreover� the formalisms underlying these structures
can be given a precise set�theoretical semantics along the lines of Smolka and
others�� However� there are certain areas within computational linguistics� for
which� until recently� no satisfactory formulation in a uniform� constraint�based
�or more speci�cally� HPSG�oriented� theory has been provided� Two of these
representation problems will be addressed in this paper� viz�� �nite automata
and logical form simpli�cation�

� Finite Automata as Typed Feature Structures

Finite automata �FA� and similar devices are heavily used in computational
linguistics and natural language processing as a descriptive means of stating
certain facts about natural language� They have been employed in the descrip�
tion of morphophonemics ��� �� and in the formulation of word order constraints
���� moreover� the use of FA allows for the integration of allomorphy and mor�
photactics ��� ����

While it is unsurprising that the languages accepted by FA may also be
encoded as typed feature descriptions� it is not clear how FA themselves can
be speci�ed as feature structures� how they can be processed� and� furthermore�
what closure properties they have within TFF� These questions and� of course�
their solutions will be addressed in this section�

��� Preliminaries

Assuming a familiarity with the basic inventory of automata theory and formal
languages ��� we shall� in the following� formally refer to a deterministic �nite
automaton �DFA� by a ��tuple hQ��� �� q�� F i� where Q is a �nite set of states � �
a �nite input alphabet � � � Q�� �� Q is the transition function� q� � Q the initial
state� and F � Q the set of �nal states � A nondeterministic �nite automaton
�NFA� di
ers from a deterministic one in that the transition function � maps to
elements of the power set of Q� i�e�� � � Q�� �� �Q �Q� �� q�� and F as before��

This is all we need to explain the encoding technique for FA within a typed
feature logic� For reasons of simplicity� we start with the simplest form of FA�
viz�� deterministic �nite automata without ��moves� which consume exactly one
input symbol at a time� Note that this is not a restriction w�r�t� the set of rec�
ognized words� given an arbitrary NFA� we can always construct a deterministic
one which recognizes the same language �however� in the worst case with expo�
nentially more states��

� In the following� we will assume a basic familiarity with uni�cation�based grammar
theories 
��� �� and their logics 
�� �� ����

�



Fortunately� our approach is also capable of directly representing and process�
ing non�deterministic FA with ��moves� and allows for edges which are multiple�
symbol consumers �see next section�� It is worth noting that edges may not only
be annotated with atomic symbols� They can also be labelled with complex ones�
i�e�� with possibly underspeci�ed feature structures� where uni�cation is a means
for testing equality �for instance� in case of ��level morphological descriptions�
see ��� for an example of a paradigm�based in�ectional morphology��

��� Encoding Finite Automata Within Typed Feature Formalisms

To specify an automaton as a typed feature structure� we introduce for every
state q � Q a possibly recursive feature type with the same name as q� We will
call such a type a con�guration� Exactly the attributes EDGE� NEXT� and INPUT

are appropriate for such a con�guration� where EDGE encodes the outgoing edges
of q� NEXT the successor states of q� and INPUT the symbols which remain on
the input list when reaching q�� A con�guration does thus not just model a
state of the automaton� but an entire description of the FA at a given point in
computation�� In order to formally de�ne a con�guration as a feature structure
type� we �rst introduce the notion of a proto con�guration that speci�es the
appropriate attributes and their values�

proto�con�guration �

�
�EDGE input�symbol � undef
NEXT con�guration � undef
INPUT list�input�symbol	

�
� ���

We now de�ne two natural subtypes of proto�con�guration� The �rst one
represents the non��nal states Q nF � Because we assume that exactly one input
symbol is consumed every time an edge is traversed� we separate the input list
into the �rst element and the rest list� structure�share the �rst element with
EDGE �the consumed input symbol�� and pass the rest of the list one level deeper
to the next state�

non��nal�con�guration �

�
���
proto�con�guration
EDGE �

NEXTjINPUT �

INPUT h � � � i

�
��� ���

The other subtype encodes the �nal states of F which possess no outgoing
edges� therefore no successor states �and vice versa�� or in our terminology� EDGE

� There might exist states in an FA with no outgoing edges and thus with no successor
states� To cope with this fact� we introduce a special subtype of the most general
type �� called undef � which is incompatible with every other type �except with itself
and ���

� Note the similarity between a con�guration and a closure in functional programming
or a machine state in operational semantics�all notions exhaustively describe the
corresponding computing device at a certain point in time�
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and NEXT are unde�ned �are of type undef �� In addition� successfully reaching a
�nal state with no outgoing edge implies that the input list is empty �

�nal�con�guration �

�
���
proto�con�guration
EDGE undef
NEXT undef
INPUT h i

�
��� ���

Of course� there will also be �nal states with outgoing edges� but such states
are subtypes of the following disjunctive type speci�cation�

con�guration � non��nal�con�guration � �nal�con�guration ���

To make things more concrete� let us look at an example� viz�� the FA A�

which recognizes the language L�A�� � �a � b��c�

X Y
c

a�bA�

A� consists of the two states X and Y� therefore� we have to de�ne two types
X and Y � where Y �given in ���� is only an instantiation of a �nal con�guration�
Note that we make use of distributed disjunctions �� �depicted by the disjunction
name ��� in the de�nition of X to express the covariation between edges and
successor states� if a is processed� use type X �and vice versa�� if b is processed�
use again type X � but if c is chosen� choose type Y �

X �

�
�non��nal�con�gurationEDGE ���a � b � c�
NEXT ���X � X � Y �

�
�

Y �  �nal�con�guration �

���

Whether a FA A accepts a given input string or not is thus equivalent to the
question of feature term consistency
satis�ability � if we want to know whether w
�a list of input symbols� will be recognized by A� we must expand the type which
is associated with the initial state q� of A and specify w as its INPUT� Speaking
in Carpenter	s terms ��� we thus require that

q� 	 INPUT w�
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be totally well�typable� i�e�� that there is at least one model that satis�es the
input description��

The processing of FA within TFF is thus achieved by type expansion of pos�
sibly recursive feature types� However� type expansion not only tests for the
satis�ability of a description but also makes the idiosyncratic and inherited
constraints of a type explicit �see below�� In our case� type expansion always
terminates � either with a uni�cation failure �the FA does not accept w� or with
a fully expanded feature structure� representing a successful recognition�

Coming back to our example� let us ask whether abc belongs to the language
L�A�� accepted by A�� By expanding type X with INPUT ha�b�ci�� we can
decide this question� This will lead to the following consistent feature structure�
which represents the complete recognition history of abc� i�e�� all its �solutions�
in the FA �recall that because X is a subtype of non��nal�con�guration and
proto�con�guration� it will inherit all constraints of these types� similar for Y ���

���������������������

X
EDGE � a

NEXT

�
���������������

X
EDGE � b

NEXT

�
���������

X
EDGE � c

NEXT

�
���
Y
EDGE undef
NEXT undef
INPUT � h i

�
���

INPUT � h � � � i

�
���������

INPUT � h � � � i

�
���������������

INPUT h � � � i

�
���������������������

���

We now change our focus from DFA to arbitrary NFA� The �rst question
we have to ask is whether nondeterminism in general makes the whole encoding
method invalid� In fact� nondeterminism does not introduce any problems at all�
There is no di
erence in our framework between a DFA and a NFA� neither from
a descriptive nor from an expressive standpoint� because outgoing edges labelled
with the same symbol �the NFA criterion� can be easily captured by distributed
disjunctions� as is done in the DFA example above �cf� the description of type X
given by ��� in FA A����

In addition� changing from �� to ���consuming edges leads only to minor
modi�cations in the de�nition of non��nal�con�guration ���� Multiple�symbol

� Type expansion here is analogous to a top�down parsing method in syntactic analysis�
viz�� recursive descent parsing � Note that the satis�ability problem for recursive type
descriptions is in general undecidable� although this is not the case for our encoding

����

� From a processing standpoint� of course� a DFA di	ers from a NFA in our approach�
We will come back to this later�
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consuming edges are modelled through lists of symbols instead of declaring single
symbols appropriate for EDGE� an ��transition ���� is encoded as the empty
list ���� a single input symbol ���� through a list over this symbol ���� two
input symbols ���� are represented using a list of two symbols ���� and so on�
Therefore� we substitute the de�nition of non��nal�con�guration by giving a
family of specialized de�nitions� where the number of de�nitions depends on the
length of the longest word associated with an edge in the FA�

non��nal�con�guration� �

�
���
proto�con�guration
EDGE h i
NEXTjINPUT �

INPUT �

�
��� ���

non��nal�con�guration� �

�
���
proto�con�guration
EDGE h � i
NEXTjINPUT �

INPUT h � � � i

�
��� ���

non��nal�con�guration� �

�
���
proto�con�guration
EDGE h � � � i
NEXTjINPUT �

INPUT h � � � � � i

�
��� ���

Under these circumstances� con�guration ��� must also be altered� since it
now consists of multiple alternatives�

con�guration � �nal�con�guration �
n�
i	�

non��nal�con�gurationi ����

It is worth to have a look at the complexity of our approach� We all know
that in the case of DFA� input can be recognized in O�n�� whereas the time
complexity for a NFA is O��n� in the worst case� where n is given by the length
of the input string� Because we employ disjunctions to describe the covariation
between edges and successor states� one might assume that the complexity of
our treatment is already exponential for the DFA case as a result of the fact
that the satis�ability problem for disjunctive formulae is NP�complete ��� thus
a uni�cation algorithm will have a non�polynomial complexity� assuming that
P 
� NP � Recall that we are using uni�cation as a means for testing equality�

However� when modelling DFA in our approach� the disjunctions under EDGE
and NEXT will collapse into one element as a consequence of the fact that in a
DFA at most one arc can be traversed at a time �the one whose label matches the
input�� We therefore have to expand only one type under NEXT and uni�cation
only operates on conjunctive descriptions� But if this is the case� our treatment
has nearly the same complexity as in theory� there exist well�known quasi�linear
uni�cation algorithms for conjunctive formulae� for instance A� t�Kaci	s uni�ca�
tion algorithm employed in LOGIN ��� which is an extension of Huet	s method
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for �xed�arity� �rst�order terms� By encoding general NFA in our framework�
we obtain the same theoretical result as is the case for a direct encoding� viz��
exponential time complexity�

��� Intersection� Union� and Complementation of FA

As a nice by�product of our encoding technique� we can show that uni�cation�
disjunction� and classical negation in the underlying feature logic directly cor�
respond to the intersection� union� and complementation of FA� The correspon�
dences can be easily shown when assuming a sorted set�theoretical semantics for
feature descriptions ����

Take� for instance� the intersection of two arbitrary FA� A� and A�� Intersect�
ing A� and A� means construction of an FA A which recognizes the intersection
of L�A�� and L�A��� But exactly this is achieved through uni�cation� construct�
ing A is equivalent to unifying the types associated with the start states of A�

and A�� q� and q��� the denotation of q� 	 q�� is then given by the intersection of
the objects denoted by q� and q��� The same argumentation holds for union and
complementation of FA�

To see how this is accomplished� consider A� �as before� and A�� which
recognizes the language L�A�� � a�b � c���

A�

U V
a

b�c

To model A� and A�� we refer to the types X and Y of ��� and to U and V �
which are de�ned in �����

U �

�
�non��nal�con�gurationEDGE a

NEXT V

�
�

V �

�
� con�gurationEDGE ���b � c � undef �
NEXT ���V �V � undef �

�
�

����

The intersection of A� and A� then corresponds to the uni�cation of X and
U � which leads to the following structure �assuming that our logic is based on
an open�world semantics ������

�XEDGE ���a � b � c�
NEXT ���X � X � Y �

�
� 	

�
�UEDGE a

NEXT V

�
� �

�
�X 	U
EDGE a

NEXT X 	 V

�
� ����

�



Testing whether a given string w belongs to L�A�� � L�A�� is equivalent to
testing for the satis�ability of q�	q��	 INPUT w�� Again� type expansion decides
the consistency of the given input description� see ����� Note that the uni�cation
of q� and q�� has the same e
ect as running A� and A� in �parallel� which is
equivalent to the intersection of A� and A�� exactly what we want to achieve�
Again� a similar argumentation holds for the union and complementation of FA�
see ���� and �����

w � L�A�� � L�A�� � q� 	 q
�
� 	 INPUT w� 
� �� ����

w � L�A�� � L�A�� � �q� � q��� 	 INPUT w� 
� � ����

w � L�A�� � �q� 	 con�guration 	 INPUT w� 
� � ����

Because we are working in the domain of FA �although they are encoded via
feature structures�� complementing an FA means to complement the language
it accepts with respect to �� and not to complement the set of objects denoted
by q� with respect to the domain of feature descriptions� i�e�� the whole universe
�which represents a much larger set�� We� therefore� have to intersect!unify �q�
with con�guration in ���� in order to restrict ourselves to the domain of feature
structures which model FA�

To see how the proposed mechanism works� let us look at the FA A� and
A� again and let us ask whether abc � L�A�� � L�A��" Deciding this question
means to expand X 	 U 	 INPUT ha�b�ci� which results in �����

�
���������������������

X 	 U
EDGE � a

NEXT

�
���������������

X 	 V
EDGE � b

NEXT

�
���������

X 	 V
EDGE � c

NEXT

�
���
Y 	 V
EDGE undef
NEXT undef
INPUT � h i

�
���

INPUT � h � � � i

�
���������

INPUT � h � � � i

�
���������������

INPUT h � � � i

�
���������������������

����

It has to be noted that the intersection of FA via uni�cation does not work
in general for FA with ��moves� This problem is inherent and well�known but is
no restriction w�r�t� expressivity �see ��� for more details and related aspects��
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��� Concatenation and Kleene Closure

Let us now focus on the concatenation and Kleene closure of regular expres�
sions!FA� It turns out that the feature logic on which our approach is based
together with a weak form of functional uncertainty �� allows for a charac�
terization of these operations ���� Let A� � hQ�� ��� ��� q�� F�i and A� �
hQ�� ��� ��� q

�
�� F�i be two arbitrary FA� The concatenation of A� and A� is

given by

A� � A� � q� 	 �NEXT�
�
q�� 	

�
i

fi� ����

where the fi must be subtypes of non��nal�con�guration� although on the FA
level� they belong to the set of �nal states� While A� � A� would usually be
constructed by introducing an ��move between A� and A� �� p� ���� we account
for concatenation by connecting every �nal state fi � F� with the start state
q�� of A�� thus� we have to write ��ifi� 	 q��� Connection here does not mean
introducing an ��move but to unify every fi with q��� which requires us to turn
the �nal states of A� into non��nal ones to allow for successful uni�cations� this
is why fi must be a subtype of non��nal�con�guration�

At this point� functional uncertainty comes into play because we do not know
for a concrete input w � w� � w� how many iterations of NEXT are necessary in
A� to successfully recognize w�� so that w� can be further processed by A�� Note
that the functional uncertainty constraint in ���� can be restated by using the
following recursive type de�nition#thus there is no need for a richer logic�

�NEXT�� �� � � � � � NEXT �� ����

The iteration or Kleene closure of A� is constructed in a similar way� the
�nal states fi � F� are uni�ed with the start state q� �to be more precise� with
the types associated with these states�� The construction of A�

� then looks as
follows�

A�
� � A� �A
 ����

where A� is an instantiation of �nal�con�guration �the empty string case� and
A
 � q�	

�
�NEXT�

� �i fi
	
� However� fi must be a subtype of the disjunctive type

con�guration ��� because the fi serve as �nal states as well as non��nal states
in this construction� which is in accordance with the de�nition of con�guration�

Although concatenation and Kleene closure are directly encodable in our
logic� we recommend against using the above technique for reasons of e$ciency�
In this regard� it is better to construct the composite automaton �rst by hand#
which is fairly straightforward#and then apply the encoding mechanism for
non�complex FA�
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� Logical Form Simpli�cation Within HPSG

Typed feature formalisms in general� and HPSG in particular� serve as a basis
for many NLP!MT systems ��� ��� ���� Even though most of these systems
represent the semantic content of an utterance as a feature structure� they do
not use a parser �or generator� or a uniform deduction component to simplify
logical form or to draw domain�speci�c inferences within the calculus of HPSG
in order to derive legal� simpler expressions represented as a feature structure
again �cf� �� to get an impression of simplifying!resolving �quasi� logical form
within the core language engine of SRI��

Instead� all systems either translate the semantic representation directly into
an application language �e�g�� a database language�� which means that seman�
tic inferences are not seen as essential in the front�end� or transform feature
structures into a term of a semantic representation logic �for instance the lan�
guage NLL ����� on which a deduction component operates to yield anoth�
er� denotation�preserving expression� Given such an intermediate language� the
method of processing the semantics of a sentence is as follows�

�� incrementally construct a feature structure f representing the semantics of
a given sentence�

�� transform the content of f into a term t of the intermediate language�
�� apply simpli�cation schemata iteratively to t� yielding a simpler term t��
�� translate t� into an application language expression e�
�� interpret e with the inference machinery of the application language�

We will argue in this paper that semantic inferences can be carried out locally
as part of the parsing �generation� process so that step ���� and ���� are in fact
not needed and that f can be directly translated into e� Doing away with an
intermediate level of semantic representation has many advantages�

� Processing� semantic inferences can be carried out locally during the pars�
ing process �if needed�� since inconsistencies can thus be detected at an early
stage of analysis� processing e
orts can be reduced

� Architecture� semantic inferences are integrated into the parser#which
leads to a simpler architecture of the whole NLP system

� Efficiency� there is no need to transform a feature structure into an ex�
pression of the intermediate language#which saves time and space

� Uniformity� it is theoretically appealing to provide a coherent framework
in which all levels of linguistic description are represented and in which
arti�cial interface problems are thus avoided

Because HPSG in general allows for higher order expressivity through un�
restricted relations and recursive types� the notion of logical equivalence of de�
scriptions is undecidable� and moreover� not even recursively enumerable� Hence
the subject of this paper will not be a restricted decision procedure for test�
ing the equivalence of two descriptions� but� rather� a limited method of logical
form simpli�cation� This is achieved by enriching the feature logic underlying
HPSG#however� without sticking to external relational constraints�
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��� Encoding Logical Form Simpli	cation

In the following� we refer to Pollard and Sag	s �rst volume of HPSG ���� Even
though the examples given throughout this section are simpli�ed in that the
structure of SEM is �at � i�e�� only consists of top level attributes like OP �operator��
SC �scope�� CONN �connective�� etc�� the idea developed here can be easily adapted
to more complex forms of HPSG and other constraint�based grammar formalisms
which have similar notions of what English �or any natural language� is ���
p� �����

English � P� 	 � � � 	 Pn
m 	 �L� � � � � � Lp � R� � � � � � Rq� ����

In the introductory section� we said that during parsing the primary reason
for using feature structures is the need for storing information obtained so far
�e�g�� semantic content�� A parser� however� will� for instance� not simplify nested
occurrences of an operator like a semantic not ��� There	s a notable exception
to what we said about the lack of semantic inferences in HPSG� most of the
e
ects of ��reduction� used by many semanticists growing out of the Montagovian
tradition� can be easily captured by uni�cation �see for instance �����

In this section� we intend to present the necessary inventory for logical form
simpli�cation within HPSG� What we need is

�� an immediate dominance �rule� schema Rproj formulated as �Project� in ����
to record semantic inferences� and

�� for each simpli�cation schema exactly one extralinguistic
metalogical prin�
ciple Pmetai �� � i � k� realized as �a special form of� an implication�

Therefore� we must rede�ne ���� by adding the rule schema and the princi�
ples� This results in the following de�nition of English�

P�	� � �	Pn
m	Pmeta� � � �	Pmetak 	 �L��� � ��Lp�R��� � ��Rq �Rproj� ����

The rule schema Rproj serves to represent both sides of an inference step
by projecting the simpli�ed semantics to the top level SEM and storing the non�
simpli�ed representation under DTRS� see ����� Note the similarity between Rproj

and an Ri� Ri serves as an instruction to build up phrase structure� However� the
number of branches in such a derivation tree is in general greater than one#this
is in contrast to the single daughter of Rproj� The idea now is to postulate a sim�
ilar structure which allows us to construct a proof tree� Topologically speaking�
such a proof tree corresponds to a linear chain� Because we are interested in the
value of the SEM attribute� we structure�share PHON and SYN on the top level with
the same attributes of the single daughter under the path DTRSjNON�SIMPL�DTR�
This is necessary for a parser to continue �syntactic parsing� properly�

� For example� an expression like 
SEMjCONT 
OP �� SC 
OP �� SC ���� should be simpli�
�ed in many cases to 
SEMjCONT ���

��




Project�

�
���������������

phrasal�sign
PHON �

SYN �

SEM �

DTRS

�
�����
non�simpl�dtr�struct

NON�SIMPL�DTR

�
���
sign
PHON �

SYN �

SEM �

�
���

�
�����

� 
� �

�
���������������

����

Note that it is always possible to instantiate such a structure� if needed�
during the construction of syntax and semantics in order to simplify the value
of SEM �cf� the examples in Section ����� After a successful simpli�cation step�
we may then continue with syntactic analysis and possibly perform some more
simpli�cation steps again later�

To avoid interferences between linguistic principles and extralinguistic ones�
we assume DTRS to be of type non�simpl�dtr�struct � see ����� Thus� we exclude the
application of principles like the Head Feature Principle� the Semantics Principle�
or the Subcategorization Principle� Because those principles are of the form

DTRS headed�structure� � �  � � � � ����

they cannot be applied to structures which are licensed by the projection rule
schema ����� The same argument also holds for the opposite case� structures
admitted by the four rule schemata of HPSG�I� cannot be constrained by our
extralinguistic principles� because the antecedents of such principles assume a
single daughter of type non�simpl�dtr�struct � which would cause the principles
to fail�

We now present two well�known simpli�cation schemata and show how to
represent them in terms of feature structure implications#actually� we only
represent one direction of the biconditional �otherwise we would have to state
two implications�� We start with the simpli�cation schema for double negation�
i�e��

��	
	

����

or as an implication

��




�Neg�

�
�����
phrasal�sign

DTRS

�
���
non�simpl�dtr�struct

NON�SIMPL�DTRjSEM

�
�op�sc�structOP �
SCjOP �

�
�
�
���

�
�����

�

�
�phrasal�signSEM �

DTRSjNON�SIMPL�DTRjSEMjSCjSC �

�
�

����

Note the special form of the left�hand side� ���� can only be applied to
structures which contain a single daughter of type non�simpl�dtr�struct � where
the daughter	s semantics represents a doubly negated formula� If this is the case�
the right�hand side of ���� percolates the matrix of this nested formula to the
top level�

It is worth noting that our feature structure implications can not be inter�
preted as rewrite rules in the sense of term rewriting systems� however� they
encode a rewrite rule through phrase structure trees� Real rewriting� instead�
would violate the main assumption of the uni�cation�based grammar paradigm�
viz�� monotonicity �

Our next example concerns one of De Morgans rules � i�e��

��
 	 	�

�
 � �	
����

which corresponds to the following implication�


DeMorgan�

�
�����
phrasal�sign

DTRS

�
���
non�simpl�dtr�struct

NON�SIMPL�DTRjSEM

�
�op�sc�structOP �
SCjCONN 	

�
�
�
���

�
�����

�

�
�����������������

phrasal�sign

SEM

�
�����������

conn�args�struct
CONN �

ARG�

�
�op�sc�structOP �
SC �

�
�

ARG�

�
�op�sc�structOP �
SC �

�
�

�
�����������

DTRSjNON�SIMPL�DTRjSEMjSC



ARG� �

ARG� �

�

�
�����������������

����

��



��� An Improved Version

The proposal presented so far has one signi�cant disadvantage� extralinguistic
principles can only be applied to top level forms which are licensed by the pro�
jection rule but can not be taken into consideration in the case of embedded
structures� unless deeper reaching principles have been provided� While from
a practical point of view� this may not be considered a severe drawback� it is
unacceptable from the viewpoint of expressiveness�

Let us illustrate this claim with an example� Consider� for instance� the fol�
lowing derivation tree�

� SEM ���	� 	 ���
��


DeMorgan�

� SEM ���	 � �
��

SEM �	 � �
�


DeMorgan�

 � � � � SEM ��	 	 
��

This example shows that everything works �ne until De Morgan	s rule is
applied a second time� Given the structure of � ��

���������
SEM

�
���������

op�sc�struct
OP �

SC

�
�����
CONN �

ARG�



OP �
SC 	

�

ARG�



OP �
SC 


�
�
�����

�
���������

�
���������

����

we can successfully apply ����� thus producing the following simpli�ed semantics
for � � �

�����������
SEM

�
�����������

conn�args�struct
CONN 	

ARG�

�
�OP �

SC



OP �
SC 	

���

ARG�

�
�OP �

SC



OP �
SC 


���

�
�����������

�
�����������

����

The problem now is that the schema for double negation stated in ���� cannot
be applied to ���� because the structure under DTRSjNON�SIMPL�DTRjSEM would

��



be of type conn�args�struct after the application of �Project� but not of type
op�sc�struct � Although the arguments of the connective 	 ful�ll the antecedent
of ����� the metalogical principle cannot �re� Note that this problem is not
restricted to top level parts of the semantics of the immediate daughter but can
arise at an arbitrary depth�

To overcome this shortcoming� we need the ability to iterate certain at�
tributes!paths in the antecedent of an implication� The relevant attributes in
example ���� are the arguments of the connective� ARG� and ARG�� Here howev�
er� the iteration is only of depth �� If the feature logic allows us to specify regular
path expressions � we are able to restate the antecedent of the principle for dou�
ble negation in such a way that we can characterize doubly negated formulae
at deeper levels� see ����� There exists a mechanism used primarily in the LFG
community which ful�lls exactly our needs� functional uncertainty �� �note that
Section ��� also makes use of this device�� Functional uncertainty is a mechanism
for dealing elegantly with linguistic phenomena like long distance dependencies
or constituent coordination� With functional uncertainty� we can characterize
a nested doubly negated formula at an arbitrary depth by the antecedent of
����� Because such a formula might occur under ARG� as well as under ARG�� the
Kleene star � is applied to a disjunction � of these attributes� see �����

Advocates of rewrite systems may question whether functional uncertainty is
really called for here� They might propose simpli�cation rules that can be applied
anywhere within a feature structure as is known from rewrite systems� This�
however� would assume a di
erent semantics for feature structure implications#
in order to encode the universal applicability of rewrite rules in term rewriting
systems� functional uncertainty seems to be the only viable solution� The seeming
disadvantage of specifying exactly the path where a matching structure must be
located turns out to be a bene�t� in our case� the speci�ed path guides the search
of an inference engine that� for a given principle� tests for the applicability of its
antecedent� In the case of general rewrite systems� this search is not guided� i�e��
the rewrite system is �blind� or must rely on heuristics�

Unfortunately� functional uncertainty is not su$cient to cope with structures
embedded at deeper levels� This is because we must extract certain substructures
under DTRS� which� however� should not be percolated entirely� Moreover� these
structures might be speci�ed by a regular path� since we do not know how deep
they are located� Take� for instance� our example of double negation� What we
would like to state is that the �top level� value of SEM is identical to the value
under DTRSjNON�SIMPL�DTRjSEM with one important exception� the value under
DTRSjNON�SIMPL�DTRjSEMj�ARG��ARG��� �the doubly negated formula� has to
be substituted with DTRSjNON�SIMPL�DTRjSEMj�ARG��ARG���jSCjSC �the matrix
of the formula�� This requires a special form of monotonic substitution� Since
our notion of substitution is similar to the one used in the ��calculus� we write
XfY nZg meaning�

Substitute in a copy of X every Y � with Z� where Y � is subsumed by Y �

��



The notion of a copy is de�ned as follows� X is a copy of X � i
 X  X � and
X �  X � such that X 
� X ��

Functional uncertainty together with monotonic substitution now allows us
to state an improved version of the principle for double negation� which subsumes
�����

�
���������

phrasal�sign

DTRS

�
�������

non�simpl�dtr�struct

NON�SIMPL�DTRjSEM �

�
�����
conn�args�struct

�ARG��ARG��
�

�

�
���
op�sc�struct
OP �

SC



OP �
SC �

�
�
���

�
�����

�
�������

�
���������

�

�
phrasal�sign
SEM � 

� n �
�
�

����

Coming back to our example� we are now able to simplify the value of SEM
after the application of De Morgan	s rule by using the improved principle for
double negation� Note that ���� is applied to both arguments of the connective
	 in � � The derivation tree then looks as follows�

� SEM 	 	 
�

� � 
�Neg�

� SEM ���	� 	 ���
��


DeMorgan�

� SEM ���	 � �
��

SEM �	 � �
�


DeMorgan�

 � � � � SEM ��	 	 
��

where
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PHON �

SYN �

SEM
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ARG�

�
�OP �

SC



OP �
SC � 	

���

ARG�

�
�OP �

SC



OP �
SC � 


���
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���
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SYN �
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and

� �

�
�������������������

phrasal�sign
PHON �

SYN �

SEM

�
�CONN �

ARG� �

ARG� �

�
�

DTRSjNON�SIMPL�DTR �

�
�������
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SYN �

SEM
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�CONN �
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ARG�jSCjSC �
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�

DTRSjNON�SIMPL�DTR �
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If the principle of double negation should also be able to handle other cases of
embedded constructions �quanti�er within the scope of �� etc��� we must specify
this as is the case for rewrite schemata in term rewriting systems� This can
be achieved either by adding new principles for each case or� more generally�
by making the improved version of ��Neg� sensitive to these special situations
�cf� ��� for more details��

Our last extension concerns the introduction of set values � A truly robust�
HPSG�inspired approach to logical form simpli�cation must be able to unify the
following two structures��

���
conn�args�struct
CONN 	
ARG� 


ARG� 	

�
���

�
���
conn�args�struct
CONN 	
ARG� 	

ARG� 


�
��� ����

��



Although 
 	 	 and 	 	 
 are equal in a model�theoretic sense �that is� the
extensions are equal� i�e�� denote the same set of objects�� standard uni�cation
would fail� We� therefore� suggest to replace the keyword approach ARGn by a set�
valued treatment as shown in ����� Moreover� this has the advantage of allowing
more than two arguments for connectives like 	 or � �see ��� for a similar
proposal�� In addition� there is no longer a need for specifying commutativity via
a principle!schema� instead� commutativity is now handled internally through
set uni�cation� �

� conn�args�structCONN 	
ARGS f
� 	� � � �g

�
� ����

However� the question still remains which form of set values and set uni��
cation is really needed in our case �see for instance ����� And perhaps� more
important� what is the price we have to pay when using set�values� However� an
examination of these aspects would exceed the scope of this paper�

� Summary and Conclusions

In this paper� I have shown how FA can be neatly integrated and processed
within TFF� The encoding method assumes that the logic makes recursive type
de�nitions available� Some examples of German in�ectional morphology ��� have
been implemented in the typed feature formalism TDL ����

The second area addressed in this paper concerns a proposal for logical
form simpli�cation within TFF!HPSG� The approach makes strong assumptions
about the expressivity of the feature calculus �set values� functional uncertain�
ty!recursive types and monotonic substitution��

Both approaches extend the domain of �ordinary� constraint�based gram�
mars beyond the construction of syntax and semantics� thus avoiding arti�cial
interface problems between di
erent components in that everything is represent�
ed within the same formalism� This integration need not lead to a heavy decrease
of e$ciency as explained in Section � and �� so that the advantages of these pro�
posals prevail against non�integrated� multi�component oriented systems�
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