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Finding Regions for Local Repair in

Hierarchical Constraint Satisfaction

Harald Meyer auf�m Hofe

Abstract

Algorithms for solving constraint satisfaction problems �CSP� have been suc�
cessfully applied to several �elds including scheduling� design� and planning� Latest
extensions of the standard CSP to constraint optimization problems �COP� addi�
tionally provided new opportunities for solving several problems of combinatorial
optimization more e�ciently� Basically� two classes of algorithms have been used
for searching constraint satisfaction problems �CSP�� local search methods and sys�
tematic tree search extended by the classical constraint�processing techniques like
e�g� forward checking and backmarking� Both classes exhibit characteristic ad�
vantages and drawbacks� This report presents a novel approach for solving con�
straint optimization problems that combines the advantages of local search and tree
search algorithms which have been extended by constraint�processing techniques�
This method proved applicability in a commercial nurse scheduling system as well
as on randomly generated problems�

� Introduction

Algorithms for solving constraint satisfaction problems �CSP� have been successfully
applied to several �elds including scheduling� design� and planning� A CSP implies the
task of labeling each variable of a given variable set with a value of a certain domain�
Constraints state restrictions on combinations of some variables� labels� The solution
of a CSP is a labeling complying with all constraints�

Latest extensions of the standard CSP to constraint optimization problems �COP� �	

additionally provided new opportunities for solving several combinatorial optimization
problems more e�ciently� Yet� several notions of soft constraints have been investigated
more detailed� On the one hand� these notions provide distinguished facilities for
representing preference� assumption� and cost measures by so called soft constraints� On
the other hand� certain techniques of constraint processing are directly related to special
formalisms of soft constraints� This report puts a focus on soft and crisp constraints�
A soft constraint is preferred but not required to be satis�ed by a solution� Hence�
a problem comprising soft constraints is an optimization problem� where a solution
satis�es all hard or compulsory constraints and complies additionally with the soft
constraints in an optimal way� A crisp constraint is either satis�ed or violated� Crisp
constraints cannot be satis�ed partially by a solution like so called fuzzy constraints
��
�

Typically� soft and crisp constraints have special properties characterizing their rel
ative importance� The solution is required to satisfy as important soft constraints as
possible� A constraint�s priority ��
 is a formalism for representing importance which
is appropriate to state a categorical measure of preference respectively believe� A con
straint of larger priority is de�ned to be more important than all constraints of smaller
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priority together� In contrast� constraint weights ��
 state a gradual measure of im
portance� A labeling of all variables is told to be a solution i� the weight sum of
its constraint violations is as small as possible� Hence� violating many less important
constraints can be worse than violating a few very important constraint�
Hierarchical constraint satisfaction �HCSP� ���� ��
 is a formalism for integrating

both aspects of a constraint�s importance and is inspired by hierarchical constraint logic

programming �HCLP� ��
� Soft constraints are grouped into hierarchy levels which are
closely related to constraint priorities� Arbitrary formalisms can be used to de�ne the
relative importance of a constraint within one hierarchy level�

Basically two classes of algorithms have been applied to solve problems compris
ing soft constraints� local search methods ���� ��� ��
 and systematic branch�bound

search extended by several constraintprocessing techniques ��
� Both paradigms ex
hibit characteristic advantages and drawbacks� In theory� the branch� bound algorithm
is guaranteed to terminate with an optimal solution� However� tree search algorithms
retract early decisions only after searching large portions of the search space exhaus
tively� As a consequence� minor di�erences in CSPs can result into completely di�erent
run time behavior � especially if the number of variables is larger� In contrast� local
search procedures can return a result at any time� However� this result is of a ques
tionable quality� Especially� proving the optimality of a result is not possible by use of
these algorithms�

Contribution� This report presents a new approach for solving constraint optimiza
tion problems that combines the advantages of local search and tree search algorithms
which have been extended by constraint processing techniques� The �rst contribution
is the introduction of a scheme for repairbased search comprising three steps� After
computation of a �possibly randomly chosen� initial labeling of the variables according
to prospective processing results of hard and soft constraints conduct the following
steps iteratively�

�� Choose a region �a set of variables� in the problem and reset the variables in this
region� At this point� the method typically needs to be tailored to the current
application�

�� Propagate all constraints between reset variables and the persistent labels� Op
timize the labels in the reset region using an extended branch�bound�

	� Lock the exhaustively searched region by temporary constraints�

While this contribution may be considered as a speci�c instance of folklore in the �eld
of constraint processing� the second contribution certainly is a novel extension of this
scheme turning it into a generic and exhaustive search algorithm� In this generic family
of algorithms� step � enumerates all regions in the given problem whose labels may cause
a constraint violation� This enumeration is �ltered with respect to a generic control
strategy without any reference to application speci�c search control knowledge�

Several experiments have been conducted in order to prove the relevance of the con
tributions� Both� various extensions of the branch�bound algorithm and several local
search strategies� have been implemented e�ciently in the ConPlan C�� program li
brary� This library has been designed for solving combinatorial problems in applications
and supporting research on search algorithms� By use of this implementation� an in
stance of the proposed repairbased search proved its applicability in the commercial
nurse scheduling system SIEDAplan ���
� The proposed complete enumeration of re
gions for local repair ���
 has been assessed by empirical studies on randomly generated
problems�
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Structure� This report is structured as follows� Section � describes methods for
representing and solving constraint optimization problems including the contributed
scheme for repairbased search� Section 	 exempli�es contribution one presenting the
SIEDAplan system which treats nurse scheduling as a constraint optimization problem�
Section � explains the contributed complete method for enumerating regions of local
repair� Section � presents an empirical evaluation of this method� In conclusion� the
presented results are summarized �

� Constraint Optimization

Before explaining formalisms for specifying constraint optimization problems and dis
cussing previously proposed algorithms for solving these problems� some basic de�ni
tions are given here in order to clarify notation�

De�nition � A CSP is a tuple �V�D�C� where

� V is a set of variables�

� D is the domain of the variables� a set of values which can be assigned to the

variables� and

� C is a set of constraints� where each c � C is de�ned by	

� V �c� � V is a set of variables which are directly a�ected by c�

� The extension of c� ext�c�� is a set of labelings of all variables in V �c� with
values of D which comply with c�

Let l � fv� � d�� � � � � vn � dng be a labeling of all variables in V � � fv�� � � � � vng
and V �� � V � � V � Then� l �V �� � fvi � di j vi � V ��g denotes the selection

of labels which concern the variables in V ��� A labeling l complies with constraint c i


l �V �c� � ext�c�� �C�l� � fc � C j l �V �c� �� ext�c�g denotes the set of constraints

being violated by l� A labeling l of all variables in V is a solution of CSP � fV�C�Dg
i


l � ext�C� �� 	c � C � l �V �c�� ext�c�

�� �C�l� � fg

�� l ��c�C ext�c��

Hence� a solution of a CSP consists of labelings of all variables which comply with all
constraints�

��� Formalizations of Constraint Optimization Problems

In contrast to CSPs� solutions of constraint optimizations problems �COP� are only
required to comply with as important constraints as possible� Presupposing crisp con
straints� the most general representation of importance is a partial ordering 
 on
constraint sets where C � 
 C �� means intuitively� The constraints in C � are more

important than the constraints in C �� ���
� The following de�nition of COPs re�ects
this idea�

De�nition � A COP � �V� D� C� 
� extends a CSP � �V� D� C� by a preference

ordering 
 which is a partial ordering among subsets of C�

A labeling l of all variables in V is a solution of a COP i
 there is no labeling l� �� l

with �C�l� 
 �C�l���
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Several integrating views on soft constraints have been proposed ���� �� 	
 in order
to achieve a better understanding of constraint processing techniques� Contrarily� this
view aims at making the formalization of real world problems as COPs easier� The
meaning of preference orderings
 can be explained relatively easily even to nonexperts
in constraint processing� Additionally� this framework enables soft constraints to avoid
global scales of merit like weights or priorities� This ability is especially important to
represent optional requirements in scheduling� con�guration� and design� In these �elds�
preference among requirements on a con�guration or a design is typically given only
relative to the other requirements� Each requirement on a con�guration or a design is
typically represented by a constraint� Soft constraints are used to represent optional
requirements� Thus� for each pair of constraints c� and c�� it is only given� whether one
is more important than another �c� �c c�� or c�� �c c��� or they are not comparable
at all� A preference ordering 
c of the following kind re�ects this situation because it
is de�ned due to the semantics of the partial ordering �c�

De�nition � A problem of partially ordered constraints �V� D� C� �c� is equivalent
to a COPc � �V� D� C� 
c� with

C � 
c C
�� i
 �c� � C � n C �� � 	c�� � C �� n C � � c� �c c

�� and

	c�� � C �� n C � � �c� � C � n C �� � c� �c c
���

Roughly spoken� C � is more important than C �� if for each constraint in C �� there is a
more important one in C ��

In contrast� the common formalizations of COPs use numbers to de�ne the impor
tance of a constraint� For instance� the formalism of weighted constraints ��
 introduces
weights ��c� for each constraint c � C�

De�nition � A problem of weighted constraints �V� D� C� ��� where � maps a real

number to each constraint� is equivalent to a COP� � �V� D� C� 
�� with

C � 
� C �� ��
X
c��C�

��c�� �
X

c���C��

��c����

The sum of the weights determines which constraint set is preferred to be satis�ed�

In problems of prioritized constraints ��
� the most important violated constraint
determines the merit of a labeling�

De�nition � In problems of prioritized constraints �V� D� C� p�� each constraint c

has a priority p�c� � 
� � �
� �V� D� C� p� is equivalent to a COPp � �V� D� C� 
p�
with

C � 
p C
�� i
 maxfp�c�� j c� � C �g � maxfp�c��� j c�� � C ��g�

The HCLP scheme ��
 introduced lexical combinations of preference criteria� Several
preference criteria are treated one by one in a certain order due to their importance� The
most important criterion is considered �rst� If one of the two sets is preferred according
to this criterion� this set will also be preferred due to the whole list� Otherwise� the
next criterion is considered� This procedure is repeated until either the importance of
both sets can be distinguished or all criteria have been treated but failed� The idea of
constraint hierarchies is to associate each of these criteria with hierarchy levels� Lower
hierarchy levels will only be considered� if two constraints cannot be distinguished
according to more important criteria�
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De�nition 	 A hierarchical constraint satisfaction problem HCSP � �V� D� H� is
declared dividing the set of constraints C into a �nite number of hierarchy levels Ci

such that each constraint is in exactly one hierarchy level� C� is thought to comprise

compulsory constraints� Each hierarchy level Ci except C� is associated with a prefer�

ence ordering 
i on subsets of Ci� If C � � Ci 
i C �� � Ci holds true then C � is

said to be preferred to C �� with respect to hierarchy level i� A HCSP � �V� D� H� is
equivalent to a COPH � �V� D� C� 
�� with

C � 
i C �� i
 C � � Ci 
i C
�� � Ci

or ��C �� � Ci 
i C
� �Ci� and C � 
i�� C ����

The semantics of hierarchy levels is closely related to constraint priorities�

Property � Presupposing p�c� � �
i�� for each constraint c � Ci of level i in an

arbitrary hierarchy H then� obviously� the following holds true	

C � 
p C
�� �� C � 
H C ���

Hence� a constraint hierarchy can be considered as a system of prioritized constraints
with some additional preference relations�

A link between hierarchical constraints and weighted constraints can be established
using constraint weights as a preference ordering within each hierarchy level� This is the
kind of preference orderings that is currently supported by the introductory mentioned
ConPlan system� The following property shows a way to derive global constraint weights
from the weights which have been de�ned within a hierarchy�

Property � A HCSP � �V� D� H� with H � �fg� �C��
��� � � � � �Ch�
��� is
equivalent to a COP � �V� D�

Sh
i�� Ci� 
��� with

���c� � ��c� i
 c � Ch�

���c� � ���c� � ��
hX

j�i��

X
c��Cj

���c�� i
 c � Ci with i � h�

Hence� in this kind of constraint hierarchies the importance of constraint violations
can be represented by a scalar weight which is important for the diagrams given in
section ��

��� Solving Constraint Optimization Problems

This section gives a short introduction into the search algorithms which have been im
plemented in the C�� program library ConPlan at DFKI� The following three sections
brie�y describe possible extensions of the branch�bound algorithm for solving COPs�
well known algorithms of local search� and a new scheme for repairbased search�

�
�
� Extending Branch�Bound Search

The ConPlan library provides certain constraint processing extensions to the com
mon branch�bound algorithm that can be explained according to the structure of
branch�bound algorithms as given in �gure �� The task is to �nd a labeling

s � �v� � d�� � � � � vn � dn�
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branch�bound�s� l� b� �� COP � �V�D� C����

�� if jlj � jsj and b � � then

begin b �� �� s �� l� return s� end�

�� if jlj � jsj then

return s�

�� choose a variable v � V that is not labeled by l�

�� forall values d � D in the domain of variable v do begin

�a� �local � fc � Cjc is inconsistent with v � dg

�b� if �local � C� � � and � � �local �� b then

s� branch�bound�s� l � fv � dg� b� � � �local� COP ��

	� return s�

initial call


branch�bound��� �� C� �� COP �

Figure �� Branch�bound algorithms�

for the variables v�� � � � � vn � V with values d�� � � � � dn � D� such that s violates a
set of constraints b that is minimal according to 
� The algorithm completes a partial
labeling l step by step� For each variable all available values are considered �row �� as
labels� The algorithm checks for new constraint violations �row �a� and maintains the
set � that holds the constraints violated by labeling l� Then� the new branch in the
search tree is expanded �row �b� considering all complete labelings comprising l and
v � d� If all variables have been labeled by l and l violates less important constraints
than s� then l will be taken as new assumption for the solution �row ��� Thus� s always
holds the best labeling found so far� Hence� if all labelings have been searched s will
hold an optimal solution� To be more e�cient� the algorithm expands only a new
branch of the search tree if l extended by v � d satis�es all hard constraints and
violates less important constraints than stored in the bound b �row �b��

Figure � di�ers from common representations of the branch�bound ���� �
 only in
one point� A labeling�s merit is not stored as a real number but as a set of violated
constraints �distance � and bound b�� Two labelings are compared by the preference
ordering 
 instead of using the natural ordering of reals�

Certain extensions of the branch�bound have been proposed employing adoptions of
constraint processing techniques in order to increase e�ciency�

Pruning� In row �a the term �inconsistent with� can have several concrete meanings�
Naive implementations only check constraints between labeled variables� In contrast�
forward checking with domains of yet unlabeled variables is possible either with hard
and soft constraints ��
� On the one hand� these procedures prune domains of unlabeled
variables in advance� On the other hand� an optimistic estimate � � �local of the best
labelings merit in branch v � d is computed to reduce branching in row �b of the
algorithm� Additionally� arcconsistency with hard constraints ���
 can be maintained
after each assignment for the same purpose�

For prioritized constraints� an arcconsistency algorithm has been proposed which
labels each value in a domain with a compatibility index ��	
� The index i of value v

represents an optimistic estimate of the priority level that can be completely satis�ed
assigning v� i�e� the algorithm proves that not all constraints of priority p � i can be
satis�ed in the current branch� Such compatibility values can be used as an optimistic
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MRV

optimistic

pessimistic

AB CD E

A B C D E

Figure �� Two extensions of minimal remaining values for HCSPs�

estimate of the best labeling�s merit in the current branch to reduce branching in row �b�
Referring to property �� the algorithm for arcconsistency with prioritized constraints
is appropriate to improve searching constraint hierarchies� as well ���
�

Value ordering� As presented in the previous paragraph� prospective constraint pro
cessing of soft constraints results in an optimistic estimate of the solution quality that
can be achieved in branch v � d� This estimate can be exploited to consider the
values �rst in row � that probably are part of a su�cient solution� The values which
are known to cause more important constraint violations are tried later on�

Variable ordering� Several heuristics have been proposed to inform the choice of
variables in row 	� Maximal width �static� ���
 and minimum remaining values �dy
namic� are the mostly used strategies for variable reordering� The minimum remaining

values �MRV� heuristic is especially useful if prospective constraint processing is done
��
� When the treesearch algorithm determines which variable to label next� it chooses
the one with the minimal number of values compatible with the previous assignments�
The goal of the MRV heuristic is to label strongly interfering variables consecutively�
Searching for optimal solutions of constraint optimization problems� the MRV heuristic
is even more important because variables with smaller domains are labeled �rst� This
strategy decreases the number of nodes that have to be visited� because the larger
domains are explored deeper in the searchtree�

The strong relation between prospective constraint processing and the minimum re�

maining values heuristic suggests to exploit forward checking of soft constraints and
compatibility values� as well� When searching constraint hierarchies� not only the num
ber of values consistent with C� is considered but also the number of values consistent
with C� � C� �compatibility level at least ��� C� � C� � C� �compatibility level at
least 	� and so on� These domain sizes can of course be considered in di�erent orders�

MRV pessimistic� At �rst select all variables with the smallest number of values
consistent with compulsory constraints in C�� Break ties by the number of values
consistent with C� � C� and so on�

MRV optimistic� This heuristic considers the domain sizes in reverse order� From
the number of values consistent with the whole hierarchy to the number of values
consistent with C��

As the example in Figure � shows� the optimistic and the pessimistic way of variable
reordering can behave di�erently due to the satis�ability of each hierarchy level� Each
box represents a variable�s domain� The shadings indicate the di�erent compatibility
levels in the domains � the brighter the region the more hierarchy levels are consistent
with the values represented by this region�
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Part mincon�COP � �V�D�C���� minconwalk�p�COP � �V�D�C����

�� compute an initial labeling l of all variables in V � compute an initial labeling l of all variables in V �

set Vvisited �� fg�

�� choose an arbitrary �v � d� � l with v �� Vvisited� choose an arbitrary �v � d� � l�

set l� �� l n f�v � d�g set l� �� l n f�v � d�g�
Vvisited �� Vvisited � fvg�

�� �nd �v � d�� with minimal 	C�l� � f�v � d��g�� choose an arbitrary �v � d���
if 	C�l� � 	C�l� � f�v � d��g� if 	C�l� � 	C�l� � f�v � d��g� or with probability p

then begin l �� l� � f�v � d��g� Vvisited �� fg� end� do l �� l� � f�v � d��g�

�� if time exceeded or 	C�l� is small enough if time exceeded or 	C�l� is small enough

then return l� then return l�

	� if Vvisited � V then goto � else goto �� goto ��

Figure 	� The algorithms mincon and minconwalk

The optimistic procedure is equivalent to the MRV procedure in an underconstrain
ed system� where each constraint is hard� However� in overconstrained problems this
heuristic often misleads� because consistency with a possibly unsatis�able constraint set
is considered as a main criterion for variable ordering� Hence� optimistic MRV is used
only in conjunction with arcconsistent compatibility levels� i�e� the search procedure
looks deeply forward into the search space�

��� Local Search� mincon and minconwalk

Yet� two closely related approaches of local search have been applied to COPs� mini�

mizing con�icts �mincon� ���
 and minconwalk ���
� The latter is inspired by the GSAT
algorithm ���
 which is used for solving SAT problems� Figure 	 shows both algorithms
which rely on the same idea of successive improvement of a single labeling � in con
trast to tree search algorithms which conduct reasoning on branches of a search tree�
Consequently� local search algorithms exhibit the same structure which consists of �ve
parts�

�� Initialization� First� an initial labeling is computed�

�� Possible local modi�cations of the current labeling are considered�

	� Acceptance� This local modi�cation is either accepted or rejected depending on
certain conditions�

�� Termination� The algorithms cannot determine whether the current labeling is
really optimal or not� Hence� criteria for terminating search have to be given
externally e�g� by a time bound or a bound on constraint checks etc�

�� The algorithms return to step � in order to conduct the next improvement step�

Local search always has the problem of avoiding local minima� where none of the
possible local improvement steps in part � leads to an immediate improvement of the
current labeling but the current labeling is not optimal� mincon and minconwalk employ
di�erent strategies to cope with this problem�

mincon� If none of the local modi�cation steps leads to an improvement then a new
initial labeling is generated by �more or less� randomly chosen assignments of
labels to variables� Therefore� in Figure 	 a set of variables Vvisited is maintained
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0
0 50 100 150 200 250 300/sec.

5 hierarchy levels, 40 variables, 312 constraints, 10 values per domain

MinConWalk

MinCon

Figure �� Improvement of current labeling	 mincon and minconwalk�

which includes all the variables that have been visited after the last successful
improvement� If all variables have been visited in row � than the algorithm looks
for a new initial labeling�

minconwalk� This algorithm accepts with a probability of p that the current labeling
becomes worse than the best yet found labeling in order to escape from local
minima�

Figure � shows the di�erent behavior of both algorithms� A randomly generated HCSP
is searched by both algorithms� The curves report the weight of constraints which are
violated by the current labeling according to property �� The quality of the current
labeling maintained by the minconwalk algorithm goes constantly up and down because
worse labelings are accepted with a probability of ���� The curve of the mincon algo
rithm shows that the current labeling is improved continuously until a local minimum
is reached� Peaks in this performance curve indicate situations where a labeling is gen
erated from scratch because a local minimum has been detected� This new labeling is
of course mostly worse than the local minimum the algorithm tries to escape from�

In the ConPlan library� methods of constraint propagation and variable reordering
are used to improve the quality of the initial labeling� Violations of soft constraints�
which have been detected in advance� are used to label the variables with values which
are likely to be parts of good solutions� Labels implying the same degree of constraint
violation are distinguished randomly�

��� Iterative Improvement

Figure � presents a scheme for local search which may be considered as a generalization
of mincon� However� in contrast to the simple mincon method� this more general scheme
of iterative improvement steps over local minima by conducting more than one change
of the current labeling l within a single step of repair� Therefore� a procedure choose�
bad�region is used to determine a set of variables whose labels will be changed in the
following improvement step �row ��� The constraint graph of the problem� the domains
of the variables�� the current labeling� and the set of violated constraints are useful
parameters of this procedure� This improvement step is conducted by a variant of
the branch�bound in row �� Only improvements of l are acceptable �row ��� Hence�
it is possible to use the current set of constraints violated by l as initial bound and
employ several kinds of constraint propagation in order to improve performance of each

�Maybe as obtained from arc�consistency preprocessing that has been done before starting the
search�
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iterative�improvement�V� D� C� ��


� Compute an initial labeling l of all variables in V � store the violated constraints in ��

�� V � � choose�bad�region�V�C��� l� ���

� if V � � � then go to ��

�� unassign the variables in V �� propagate all constraints c with V � � V �c� �� fg �
V � � V �c� �� V �c� in order to detect incompatibilities with persistent labelings� and run
branch�bound on the variables in V � with � as initial bound b�

�� if � � b �the new bound b comprises less important constraints than ��� then � �� b

and assign the new labels to l�

�� add temporary hard constraint �
v�V nV �

v �� l �v

requiring all labelings visited from now on to di�er in at least one assignment from the
labelings visited by the last run of the branch�bound�

�� go to ��

�� remove temporary constraints� return l as result�

Figure �� Searching by iterative improvement�

improvement step� Branch�bound searches all possible labelings of V � exhaustively�
Consequently� further improvement steps have to consider a change in V n V � in order
to prevent the search algorithm from visiting labelings more than once� This condition
is enforced in row � by an additional temporary constraint�

This scheme for decomposing constraint problems demands constraint models where
usually a relatively small number of changes enables a global improvement of local
minima� Hence� local improvement is a structural method whose applicability depends
strongly on the structure of the problem�s constraint model� Moreover� the problem of
�nding out where to repair the current labeling remained untouched� yet� This report
introduces two solutions of this question�

�� A heuristic version of choose�bad�region is given in section 	 that controls search
in a commercial nurse scheduling system and� therefore� proves applicability of
this search control scheme�

�� An exhaustive algorithm for choose�bad�region is presented in section � in order
to turn local improvement into an exhaustive search method that enables �nding
an optimal solution and proving its optimality�

� Nurse Scheduling as Hierarchical Constraint Satisfac�

tion

The ConPlan project conducted at the German Research Center for Arti�cial Intel
ligence aimed at representing and solving nurse scheduling problems by generic tech
niques of partial constraint satisfaction� As a result a C�� library has been developed
providing implementations of various search algorithms and constraint propagation
techniques� This library is a part of the SIEDAplan nurse scheduling system that has
been implemented by the SIEDA software house in Kaiserslautern and is currently used
at the DRK hospital Neuwied� Working shifts are assigned to each nurse on each day
of a certain period of time� A typical problem comprises ��� to ��� assignments that
have to meet several requirements like
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� legal regulations�

� optimized personnel costs�

� �exibility with respect to the actual expenditure of work�

� consideration of special qualities�

� management of vacation and absence�

� consideration of employee�s requests�

� preference of working time models� that are common sequences of working shifts�

These requirements can be represented by constraints�

The problem has two characteristics�

�� It is hardly possible to ful�ll all the requirements on a nurse schedule simultane
ously� Con�icting requirements have to be distinguished due to their importance�
While compliance with legal regulations is required� the consideration of em
ployee�s requests is optional� Additionally� explicit optimization tasks are part of
the problem�

Consequently� a solution is not necessarily consistent with all requirements but
satis�es them as good as possible�

�� The satis�ability of requirements strongly depends on parameters like the con
tracts of the employees� the employees� working time balance� and the schedule of
approved vacation� Hospitals are especially interested in opportunities to �exibly
react on the current expenditure of work and to avoid expensive overtime work�

Consequently� it is impossible to determine the most important and satis�able
requirements in advance�

Hence� the opportunity is needed to represent constraints of distinguished importance
and to compute a solution complying with the set of most important constraints� Con
sequently� the nurse scheduling problem is represented as a hierarchical constraint sat�

isfaction problem �HCSP��

Common constraint logic programming approaches to nurse scheduling base on ex
haustive search� None of these approaches manages soft constraints in order to represent
optional requirements or optimization criteria�

��� Representation

To represent nurse scheduling as a HCSP one has at �rst to identify the constraint
variables and their domains comprising the values the variable can be labeled with�
In our representation� a constraint variable is generated for each nurse on each day
that is considered by the schedule� Each variable has to be labeled with the shift the
nurse has to serve at that particular day� At the moment� most hospitals still use a
threeshift model with only one earlymorningshift F�� one dayturn S�� and one night
shift N�� Personnel scheduling is typically done by hand� Due to cost pressure and the
de�ciency of quali�ed and experienced personnel it has been recently recognized that
working times must be much more �exible and e�cient� A reasonable and promising
solution seems to be the introduction of additional overlapping shifts �e�g� six or nine
shift model� with less working hours� Hence� the system is required to integrate new
types of shifts �exibly� These new shifts can be scheduled in a way� that the overlapping
hours occur during very workintensive periods� Additionally� some kinds of idle shifts
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Figure �� Schema of the requirements in nurse scheduling�

�� and �� as well as holidays UL have to be scheduled� Each of these particular shifts
di�er in start or end time� e�ect on the working time balance and costs� For a ward
with a crew of �� to �� nurses and a planning period of one month this representation
is a constraint problem of ��� to ��� variables each having a domain of around ��
or more shifts� About ��
�� schedules are a priori possible solutions of the problem�
Figure � gives an impression of the representation showing the cut of a schedule�

Constraints� These variables are connected by constraints representing demands on
the schedule� These constraints are also shown in �gure �� The variables in each row
of the schedule are connected by constraints concerning the number of nurses to be
present at the ward at a particular time� This number can vary over the time� and
both � a minimal and a preferred attendance of crew members at the ward � can be
speci�ed� The preferred size of a crew should not be exceeded� Contrarily� the variables
in each column are connected by constraints concerning a particular employee� The
most important constraints of this group involve the variables of a complete column
and enforce a balance between the working hours to be served due to the employment
contract and the scheduled working time� However� overtime work cannot always
be avoided completely� The less overtime work is needed to achieve an acceptable
crew attendance the better is the schedule� Additional constraints a�ect variables in a
column of a schedule and concern obligational and preferred breaks between consecutive
shifts and working time models � some preferred sequences of shifts de�ned for each
employee� Working time models are traditionally used by the personnel department to
control the deployment of particular employees� The schedule of each employee should
be as similar as possible to one of its working time models� Constraints of the form
�require the shift of employee person on day day to be equal to UL �abbreviated by
shiftOfAt� person� day � � UL�� represent approved holidays� Employee�s requests
are translated into constraints like shiftOfAt� person� day � is requested to end before
� PM��
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Preference� Compulsory and optional demands on a schedule have been distin
guished� Of course� the optional demands are of di�erent importance� As mentioned
above� two basic ways have been suggested to represent such di�erent degrees of pref
erence� Weights and priorities� The satisfaction of a constraint with a large weight can
be less preferred than the simultaneous satisfaction of many constraints with smaller
weights� whereas a constraint of high priority is always more important than all con
straints of lower priority together� Both e�ects are needed in the nurse scheduling
domain�

�� For instance cost reduction is always more important than respecting employee�s
requests� Thus� keeping the working time in balance has a higher priority than
employee�s requests�

�� In contrast� the schedule should respect as many requests of employees as possible�
Thus� requests have an additional weight�

This problem can be solved distinguishing the following hierarchies of preference�

hard� compliance with legal regulations� and hard working time restrictions�

�� guarantee minimal crew�

�� management of working time� e�g� reduction of overtime work�

�� deploy a crew of preferred standard size�

�� compatibility of consecutive shifts� working time models�

�� consideration of employee�s requests�

To re�ne this hierarchy each constraint c is mapped to a weight ��c� to determine its
preference in its hierarchy level� Two schedules are compared respecting the resulting
hierarchy due to the following procedure�

�� If a schedule violates compulsory conditions then it is unacceptable� Nothing has
to be compared�

�� In this hierarchy level� the weights are all ���� If one of the schedules ensures
the minimal crew at more days than the other schedule� then it is preferred�
Otherwise� the next hierarchy level will be considered�

�� In this level� the weight of each constraint is related to the distance between the
number of working hours an employee is required to serve and the number of
scheduled working hours� If the sum of these distances is equal in both schedules
the next level will be considered�

	� Each optional condition on sequences of shifts served by the same nurse is weighted
by ���� The more conditions are ful�lled� the better is the schedule� Requests of
employees will be considered if the number of violated conditions is equal in both
schedules�

�� Employees have the opportunity to state a certain number of heavier weighted
requests and an arbitrary number of requests with normal weights�

As the rating of schedules is now de�ned� the next section will deal with the problem
of how to construct good schedules to a given hierarchy of demands�
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��� The Search Procedure

Typically� branch�bound � arcconsistency processing� and numerous application spe
ci�c heuristics are coupled to achieve an acceptable latency of the system on most

problem instances� Latency possibly varies strongly between di�erent instances of the
problem because of tree search�s exponential complexity� Usually� the constraint repre
sentation of the scheduling problem has to be enriched by some heuristic constraints�
which prune symmetric branches in the search tree� and manually programmed value
selection strategies� Unfortunately� these heuristic control strategies interfere with the
original constraint model� As a consequence� the relation between the original problem
speci�cation and the implemented constraint problem becomes fuzzy�

In contrast� iterative improvement algorithms due to Figure � have the advantage of
being able to return a solution at any time � the result is of course not necessarily
of a reasonable quality� Nevertheless� it is known that spending more time on search
ing improves the merit of the returned solution with respect to the original problem�
Additionally� these algorithms are especially appropriate if some dialog with users is
desired e�g� to request some hints for solving the problem� Hence� SIEDAplan conducts
iterative improvement steps as presented in Figure ��

However� Figure � leaves the question of how to �nd bad regions in a schedule open�
The next paragraphs present a heuristic implementation for the procedure choose�bad�
region that achieves an acceptable performance in the SIEDAplan system�

�
�
� Finding Regions Where to Improve the Schedule

The problem of improving a schedule is reduced to the problem of searching for bad
regions in a given schedule� The constraint graph and the set of violated constraints
� can be used to guide this search� In the SIEDAplan system the violated constraints
are considered one by one for �nding a promising region� Candidate variables for the
set V � are computed according to the currently selected violated constraint and some
heuristics that are partially described by the example below� The algorithm tries at �rst
to repair the current schedule changing a single assignment in order to converge quickly
on a su�cient schedule� Thus� a single variable is taken from this set of candidates at
random as a unique element of V �� If the schedule has been improved by the following
optimization step �cf� Figure �� row ��� the next violated constraint will be chosen
to improve the schedule� But of course this �rst try often fails� Two reasons are
possible� On the one hand� changing the label of a single candidate may be possible
but the procedure has chosen a wrong one� On the other hand� the procedure may
have reached a local minimum that requires to change more than one label in order
to achieve an improvement� Hence� the algorithm now stores two randomly chosen
candidates in V � to improve the schedule in the next loop of the local search procedure�
In the �rst case� the probability of choosing the right labels to change is increased� In
the latter case� there is a chance to escape from the local minimum� If this try fails
again� three variables will be chosen and so on until V � is of cardinality �� Experience
showed that optimizing the labeling of � or more variables is not worth its e�ort due to
the current performance of the optimization library� Hence� if this bound is exceeded�
the next constraint is chosen to compute a new set of candidates� This method enables
the iterative improvement algorithm to repair easy de�ciencies with small e�ort without
getting stuck to local minima that could be improved by a human expert�

The best way to describe the nature of the applied heuristics more detailed is to
consider a small example� Figure � shows two cuts of a schedule� The upper one
represents the initial labeling of the variables by shifts� Forward checking of con
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Figure �� Initial and improved labeling of the days with shifts�

straints su�ces to compute a schedule of this kind� Bad regions of the schedule have
been shaded� Conspicuously many constraints concerning crew attendance are vio
lated� These constraints have been neglected computing the initial labeling because
the deployed heuristics of iterative improvement are especially appropriate to achieve
the satisfaction of these constraints� Dark shaded rows represent the violation of a
constraint demanding a minimal crew on the ward� light shadings denote a di�erence
from the preferred attendance� For example� on Sunday the ��th nobody is at the ward
during the earlymorning shift F�� On Sunday the ��th two nurses attend during the
daytime S� but nobody serves an earlymorning shift� On some days too many nurses
are working� e�g� on Friday �st� and Sunday 	rd� Note� that shifts on weekends have
to be compensated by an idle shift ��� as early as possible�

The labelings to be improved �V �� are chosen according to violated constraints� Some
of these failures can be repaired very easily like for instance the constraint on crew
attendance on Sunday ��th� As the improved schedule in the bottom of Figure �
shows� only the change of a single label in variable

shiftOfAt�Schmidt� ��th�

is necessary to satisfy this constraint� Hence� an optimization of the labels directly
a�ected by the violated constraints su�ce to repair this constraint violation�

In contrast� the preferred crew attendance on Sunday ��th requires a more elaborate
heuristic� On this day� too few employees are present at the ward� Hence� the algorithm
chooses the variable concerning an employee not working on this day �in this case
shiftOfAt�H�ubner� ��th�� together with a variable in the same row at a day� when too
many nurses are present �shiftOfAt�H�ubner� �th�� for V �� The branch�bound is called
with this input to �ll in better shifts�

These heuristics consider the available working time to be a more or less �xed re
source� A request for more working time on a certain day has to be compensated at
another day� By the way� this heuristic is very similar to the treatment of resources
in resourceoriented con�guration ��
� the only local optimization strategy used in the
�eld of knowledgebased con�guration systems�

The schedule in the bottom of Figure � is the �nally returned solution of the schedul
ing process� Even this small example of only �ve employees shows that generally not
all demands on the schedule can be ful�lled� On some days more employees work than
required because the available resources are typically not fully compatible with the
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Figure �� Constraints on promising regions for changing the partial solution S of a CSP�

expenditure of work� This fact has been the reason for representing nurse scheduling
as a constraint optimization problem�

�
�
� Experiences

The SIEDAplan system is able to compute a schedule for a ward of �� to �� nurses of
reasonable quality within � to �� Minutes on a PENTIUM ��� machine� These sched
ules comprise ��� to ��� constraint variables� However� the performance concerning
both� run time and solution quality� depends strongly on the adequacy of the employed
heuristics� The described application speci�c search method behaves signi�cantly bet
ter than the standard algorithms for local search� In most cases� it is not possible to
compute acceptable schedules by use of the branch�bound�

Mostly� compensation of large working time credits respectively debts is responsible
for worse performance� However� these situations are di�cult also for human experts
which need hours instead of minutes to generate a schedule�

Performance of the branch�bound optimization steps becomes perceptibly better
with growing quality of the improved schedule� Hence� it is a good strategy to reuse
the set of violated constraints as an initial bound for the local optimization steps�

In order to overcome with unsatisfying results caused by inadequate problem spec
i�cation or lack of adequate optimization heuristics� quali�ed personnel is allowed to
include or remove constraints manually� Typically� soft constraints are added which
prescribe a certain shift for a certain nurse on a certain day� If� for example� a nurse
becomes ill in the planning period� this opportunity is also used for replanning while
executing the schedule� The local search procedure can easily cope with removed or
added constraints� Each change in the schedule is justi�ed by increased quality� Hence�
the system provides a su�cient degree of stability for interactive improvement of a
schedule�
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� A Generic Method for Finding Bad Regions

The success of the heuristic procedure in the SIEDAplan system suggests to look for
generic versions of this method� Methods of general applicability enable direct imple
mentation of constraint models without need of representing control knowledge which
is speci�c to the current problem�

A naive method for avoiding the application of search heuristics is the enumeration of
all possible regions by the choose�bad�region procedure called in iterative�improvement

�cf� Figure ��� When called by the overall search algorithm� this procedure �rst returns
all sets of only one variable� If all of these variable sets have been enumerated� then all
sets of two variables are returned and so on� Finally� after trying to improve V � � V �
one knows that a global solution has been computed� However� this method neglects
all information that can be retrieved from the constraint graph and the de�ciencies of
the current solution�

Our idea on a generic procedure for �nding bad regions in partial solutions of a CSP
now is to constrain this naive enumeration of regions for solution improvement by the
available information� In the following� promising regions for solution improvement
are called to form global revision sets� The problem of �nding global revisions is
formulated as a boolean CSP whose constraint graph is very similar to the original
problem �cf� Figure ��� If a solution of the boolean problem assigns a � to a variable� the
corresponding variable in the original problem is considered to be a part of a promising
region for improvement� Each of the constraints in this boolean problem represents a
necessary condition on promising regions that only depend on one constraint in the
original problem and a partial solution S� In the following� the regions complying with
the condition concerning a single constraint are called to de�ne a set of local revisions�
The constraints atmost and atleast are well known from scheduling systems and count
here the occurrences of � in the solution of the binary problem� These constraints can
be used to control the size of the regions� Hence� it is possible to return small revisions
�rst in order to conduct cheap optimization steps �rst�

��� Local Revision Sets

Firstly� the relation of the original problem to the abstract problem of �nding regions
for local repair according to Figure � needs to be de�ned� In the following� v� always
denotes the variable in the abstract boolean problem that corresponds to variable v in
the original problem� Analogously� c� represents the constraint in the abstract problem
referring to constraint c in the original problem� The whole set of variables in the
abstract problem is written as Vrev� the set of constraints as Crev�

De�nition � Let l� and l� be labelings of all variables in V � Then di��l�� l�� returns
a labeling of Vrev according to the following de�nition�

	v� � Vrev � di��l�� l�� �v��

�
� i
 l� �v� l� �v
� otherwise

The purpose of the di
�function is to deal with di�erences between labelings in boolean
constraint problems�

De�nition � Local revisions	 Let l be a labeling of the variables in V and c be a

constraint in the original problem� Then� the smallest local revision set of l respecting c

is de�ned as follows	

rev�c� l� ��
�

l��ext�c�

fdi��l �V �c�� l
��g�
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All extensions comprising rev�c� l� are called local revision sets of l respecting c�

Local revision sets cover all di�erences of a current labeling l to all labelings complying
with constraint c� Although de�ned extensionally here� intensional de�nitions for com
mon constraints� which are typically de�ned by propagation methods in a constraint
library� are possible�

Intensional de�nitions of local revisions will usually approximate the smallest local
revision set by supersets which can be propagated e�ciently� The basic idea is to forbid
as many tuples in the revision set as possible which represent futile steps of repair� As
an example� consider the constraint from the SIEDAplan application �cf� section 	�
that enforces the working time of an employee not to exceed an upper bound of max

minutes�

resourcef�max�x�� � � � � xn� � f�x�� � � � � xn� � max� x� � D�� � � � � xn � Dn�

As stated in section 	��� the variables x� to xn are labeled with shifts to be served by the
same employee on consecutive days� Function f returns the working time in minutes
corresponding to the currently assigned working shift �e�g� f�F�� � ���� f��� � � �� In
this example� the domains D� to Dn comprise the possible shifts �e�g� F�� S�� N�� UL�
�� and ��� The following procedure illustrates an approximative propagation method
for rev�resource� l� that is e�cient�

� generate a labeling lmin with f�lmin �xi� is minimal for all i � �� � � � � n�

� set ext �� f�� �gn�

� for each i � f�� � � � � ng do

� if labeling �lmin n flmin �xig� � fl �xig violates constraint resource then
remove all labelings from ext which label x�i with ��

� else for each j � f� � � � � i� �� i � �� � � � � ng do

� if labeling �lmin n flmin �xi � lmin �xjg� � fl �xi � l �xjg violates constraint
resource then remove all labelings from ext which label x�i and x�j with ��

� return ext as the extension of rev�resource� l��

For each pair of labels of two variables xi and xj � this procedure �nds out whether
the constraint can be satis�ed obtaining these labels�� If it is impossible to satisfy the
constraint then all repair steps with xi � � and xj � � are forbidden� What is
the e�ect of propagating this revision Assume for instance that too much working
time has been scheduled for a person p � constraint resource is violated� In this case�
rev�resource� l� will suggest only changes in a region where p works and less work is
possible� If otherwise a change is required on a day d when p serves an idle shift then
rev�resource� l� enforces supporting changes in order to compensate the additionally
required working time on day d� Consequently� this revision strategy implements the
main part of the heuristic procedure for �nding regions of repair in a nurse schedule
�cf� section 	������

The local revision set of a constraint depends in at least one point on the label
ing l� The revision set only comprises a �tuple if l satis�es c� Otherwise� at least one
assignment has to be changed�

�Of course	 an analogous procedure can be additionally conducted for any group of three and four
labels etc� This is simply a question of the e
ort one is allowed to spend on the propagation of the
revision�
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Property � Let

revanychange�c� l� �

�
f�� �gjV �c�j i
 l satis�es c

f�� �gjV �c�j n f��� � � � � ��g i
 l violates c

Then� revanychange is a local revision of c�

Proof� revanychange contains nearly the complete cartesian product f�� �gjV �c�j except
in one case� If c is violated then a change is required� Trivially� for any l� � ext�c�
property di��l �V �c�� l

�� �� ��� � � � � �� holds true� Consequently�

revanychange�c� l� �
�

l��ext�c�

fdi��l �V �c�� l
��g�

�

Note� Property 	 shows an easy way to construct default local revisions for any
constraint in a constraint library� However� this easy method will usually provide only
poor approximations of the smallest local revision�

��� Global Revision Sets

Global revisions consider sets of constraints instead of single constraints�

De�nition  The smallest revision set of a partial solution l respecting constraint

set C � is de�ned as

rev�C �� l� ��
�

l��ext�C��

fdi��l� l��g�

All extensions comprising rev�C �� l� are called revision sets of l respecting C �� Revision

sets respecting all constraints in C are called global revision sets�

Property �

�c�C� rev�c� l� � rev�C �� l��

Obviously� the join of local revisions above denotes exactly the set of all solutions to
the abstract problem in Figure �� Hence� the theorem claims that the solutions of
this abstract constraint problem form a global revision set of labeling l� However� this
global revision set is generally not minimal�

Proof� One can proof by a few equations that for any l� � ext�C �� the di�erence to
the current label di��l�� l� is in �c�C� rev�c� l� presupposing that all variables in l are
directly a�ected by a constraint in C �

�c�C� rev�c� l� � �c�C� �fdi��l� �V �c�� l �V �c��g � rev�c� l��

� fdi��l�� l�g� �c�C� rev�c� l��

The �rst equation follows from the de�nition of local revision sets� The second pre
supposes that all variables in V are directly a�ected by the constraints in C � and

di��l� �V �c�� l �V �c�� � rev�c� l��

�
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choose�bad�region�V� C� �� l� �� variant 	 fby size� by hierarchyg�


� if COPrev has no value �this function is called for the �rst time� or � has been improved
by the last optimization step in iterative�improvement then begin

�a� COPrev �� �Vrev � Crev � f	� 
g���� with Crev �
S

c�C rev�c� l� and

C� �� C� 
� fc j c� 	 C�g � fc j c� 	 C�g�

�b� n �� 
� level � 
�

�c� add the following constraint to COPrev	

atleast and atmost n occurrence of 


end�

�� if variant � by hierarchy

then begin

�a� �relevant �� � �
Slevel

i�� Ci�

�b� �rev ��
S

c��relevant
rev�c� l�

end

else �rev ��
S

c�� rev�c� l��

� call branch�bound �enhanced by forward checking etc�� with �rev as bound on COPrev

for the next partial solution better than �rev�

�� if a partial solution l has been found return V � � fv j l �v�� 
g�

�� if variant � by hierarchy and there is a hierarchy level Ci with i � level then begin

�a� level �� level � 
�

�b� goto row �

end�

�� if no partial solution is available and n � j V j then do begin

�a� n �� n� 
�

�b� reset COPrev and remove atleast and atmost constraints�

�c� add the following constraints to COPrev	 atleast and atmost n occurrence of 
�

�d� goto row 

end�

�� l is optimal� Hence� return V � � fg�

Figure �� Enumerating revisions of optimization problems�

Note� Property � also holds for the most important set of constraints which is sat
is�ed by an optimal solution in an optimization problem� Consequently� property � is
applicable to COPs� as well�

��� Searching with Global Revision Sets

The basic idea for applying these results is to search the original problem by algorithm
iterative�improvement according to Figure � controlled by an exhaustive search of the
abstract problem that enumerates global revisions� The resulting hybrid algorithm still
is an anytimealgorithm because partial solutions are available all the time� Addition
ally� proving optimality is possible due to the results of the previous section� If all
global revisions have been searched without improving the current partial solution l�
then l is optimal�
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no� den� sat� algo� time�s checks���� assignments����

� min� max � min� max � min� max

�� variables

� ��� �� egr�MACall ��� ��� ���� 
�� ���� ����� ��� ��
 ����
� ��� �� bb�FC ��
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��� ���� ���� 
���
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�
 
���
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 ���
 ��� ���� ���� �
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Figure ��� First empirical comparison of bb�FC and enumeration of global revisions

�egr�MACall�� All the problems consist of �� respectively � variables with a domain of 
�

values� Constraints have been grouped into � hierarchy level of nearly equal size�

Figure � describes the idea of two enumeration algorithms for constraint optimization
problems� by size and by hierarchy � At �rst� let us consider variant by size and neglect
all ifbranches concerning by hierarchy�

COPrev holds the constraint problem for �nding global revisions� As mentioned
above� atmost and atleast constraints are used to enumerate global revisions according
to their size in order to conduct cheap optimization steps �rst in algorithm iterative�

improvement� The variable n� occurring in the rows � and �� controls the number of
assignments to be retracted� In row �� COPrev is built up again after improving l

because the constraints in Crev typically depend on l� Variable �rev� which is set in
row �� serves as a bound in the following call of the branch�bound procedure� Only
revisions promising to improve l are returned by the enumeration in row �� If the
branch�bound fails to �nd a new partial solution of COPrev better than �rev then�
occasionally� larger revisions are required �row ��� If no larger revisions are available
then l is optimal� Search in iterative�improvement terminates because choose�bad�region
returns an empty variable set�

Variant by hierarchy works very similar although only applicable to constraint hi
erarchies� The only di�erence is that it tries to satisfy important hierarchy levels
before levels of minor importance� Therefore� variable level is maintained in the algo
rithm starting with a value of �� When computing the bound in row � for calling the
branch�bound on the revision problem� variant by hierarchy neglects all constraints of
the hierarchy levels below level� Hence� the next global revision is required to promise
an improvement within or above level � the currently violated constraints in more
important hierarchy levels will be satis�ed �rst�

� Experiences on Solving Randomly Generated Problems

As mentioned above� the enumeration of global revisions is a structural method that
performs best if it is possible to improve complete labelings by small changes� The major
drawback of this method is the overhead which is caused by the e�ort of searching the
abstract constraint problem�

Randomly generated problems exhibit no special structure� Thus� experiments on
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Figure ��� Improvement of solution quality �in weight of violated constraints� over time �in

seconds� � comparison between bb�FC �dotted curves� and egr�MACall �continous curves��

The 
� problems all comprise �� variables with a domain of 
� values� Density of the constraint

graph is 
��� The constraints of satis�ability ��� have been grouped into � hierarchy levels�

these problems are appropriate to answer the question�

Is the e
ort of searching for global revisions acceptable�

Two kinds of experiments prove that the answer to this question is yes�� Enumer
ation of global revisions and an enhanced branch�bound are compared in searching
exhaustively� Secondly� local search algorithms and branch�bound variants are rated
according to their performance on larger problems that are not searched exhaustively�

Usually� randomly generated binary HCSPs are generated with respect to the follow
ing properties

Number of variables� the main measure for the problem size�

domain size� all variables have the same domain�

density� the ratio of the number of generated constraints to the number of constraints
in a completely connected constraint graph�

satis�ability� the ratio of the number of tuples in the extension of the constraints to
the size of the cartesian product of two domains�

number of hierarchy levels� the constraints are grouped into a number of hierarchy
levels of nearly equal size� this property is of course speci�c to HCSPs�

Within each hierarchy level the constraints are rated according to a random weight�

��� Exhaustive Search

Figure �� presents results on experiments over �� randomly generated problems of ��
and 	� variables with a domain of �� values on a SUN ULTRA � machine� Both
procedures� branch�bound �bb�FC� search as well as enumeration of global revisions

�egr�MACall�� can occur in many variations di�ering in the employed constraint pro
cessing techniques �cf� section ������� The bb�FC algorithm in Figure �� uses e�g� the
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maximal width and maximal constraint number as criteria for a static variable ordering�
Additionally� variables are ordered dynamically by a pessimistic minimum remaining

value �MRVpess� heuristic that exploits the hierarchical structure of the constraint
problem� Forward checking and backmarking is done with hard and soft constraints�
This is a relatively well performing variant of the bb�FC algorithm� The same pro
cedure is used enumerating global revisions �egr�MACall� when searching the original
problem� Searching the abstract problem� arcconsistent compatibilities are maintained
in order to �nd more promising revisions early�

Figure �� presents run time� number of checks� and the number of assignments in
order to assess performance of the algorithms� Using the egr�MACall algorithm� checks
and assignments have been counted in the original as well as in the abstract problem�

Except the rows � and � egr�MACall performs worse on the smaller problems ac
cording to this data� The rows � and � concern problems of a density of ��� and a
constraint satis�ability of ��� where each of the generated instances has a solution sat
isfying all constraints� These problems are not overconstrained although represented
with soft constraints� In contrast to the other problems it has not been necessary to
prove optimality of a computed solution� Apparently� egr�MACall is superior in �nd
ing an optimal solution but inferior in proving optimality when working on problems
of this size�

A closer look at the results of the other experiments con�rms this assumption� Fig
ure �� displays the way how the quality of a solution has been improved over time in
the experiments referring to the rows � and � in Figure ��� Each continuous curve
refers to a run of the egr�MACall method� each dotted curve belongs to a run of the
bb�FC algorithm� A point �x� y� on the curve states that at time x �in seconds� the
best visited complete labeling violated constraints of weight y� Hierarchy levels have
been translated into global weights according to property �� On � of �� problem in
stances egr�MACall has been able to �nd �nearly� optimal solutions signi�cantly earlier
than the bb�FC algorithm� However� proving optimality took always more time using
egr�MACall � In the experiments referring to the rows � to � egr�MACall has always
been faster in �nding the optimal solution� In these experiments� proving optimality
of a solution took always much more time than �nding it�

The rows � to �� show that egr�MACall is superior to bb�FC when solving larger
problems� This e�ect is probably caused by egr�MACall�s more �exible systematics
in search� Obviously� the performance of pure tree search algorithms depends much
more on the order in which the variables are labeled� In contrast� egr�MACall is
able to change early assignments without searching large portions of the search space
exhaustively� Hence� nearly optimal solutions are found earlier and can be used to
prune the search space more e�ectively when proving optimality� The importance of
this point is likely to grow with the size of the search problem�

��� Convergence On Good Solutions

The previous section showed that quick convergence on good solution is a major perfor
mance criterion� This section reports results from about ��� experiments on randomly
generated problems of �� variables and ��� experiments on problems of size ���� On
problems of this size� exhaustive search for an optimal solution is usually not possible�
Hence� the experiments stopped searching after � respectively �� minutes�

The experiments cover all three groups of constraint algorithms that have been de
scribed above by the following instances�

�� Enumerating global revisions�
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� egr�FC uses the same strategies searching the original as well as the abstract
problem� forward checking of hard and soft constraints� maximal width and
maximal constraint number as static variable ordering heuristic� and MRV

pessimistic as dynamic variable ordering heuristic�

� egrh�FC uses the same search strategies as egr�FC but follows the by hier�
archy enumeration strategy� Hence� the performance of this variant shows
whether enumeration strategies can bene�t from the hierarchical structure
of a constraint problem�

� egr�MACall deploys the strategies mentioned above searching the original
problem� The abstract problem is searched maintaining compatibilities after
each assignment and usingMRV optimistic as dynamic variable ordering� On
the one hand� this procedure spends more e�ort on �nding global revisions�
On the other hand� the increased level of consistency processing searching
the abstract problem is another method for trying promising revisions �rst�

�� Branch!bound search�

� bb�FC deploys the same search techniques as egr�FC� Experience showed
that forward checking is the least amount of consistency processing to make
branch�bound tractable�

� In contrast� bb�MAXall computes consistent compatibilities after each as
signment and uses MRV optimistic as dynamic variable ordering heuristic�

	� Local search� After computing an initial labeling using forward checking of hard
and soft constraints� mincon and minconwalk are used as described above�

The Figures �� to �� show the results of the experiments� The x�coordinate rep
resents runtime in seconds whereas the y�coordinate reports the average sum of con
straint weights that are caused by constraint violations of the best labeling visited at
that time� Each curve represents an average of the same �� randomly generated exam
ple problems� Again� hierarchy levels have been translated into constraint weights by
property ��

On the performance of the branch�bound instances� The Figures �� to ��
show the performance of the used branch�bound instances in column �� Typically�
branch�bound search leads to a rapid improvement within the �rst few seconds which
is achieved by the �rst complete labeling of all variables� However� the algorithms are
mostly not able to improve this �rst labeling signi�cantly within the time bound because
the algorithm is only able to change the labels of the variables which are near the leaves
of the search tree� In this situation� the strategies of value assignment and variable
ordering become essential� bb�MACall does in many cases a pretty good job in this area
at the cost of additional costs for consistency processing � the �rst complete labeling
is found signi�cantly late� If the domains are not larger than �� values� consistent
compatibilities su�ce to assign promising values �rst� In several cases� variables are
ordered in such a way that signi�cant improvements are possible changing only a few
late assignments �cf� experiment � of Figure ���� However� as practical experience of
the SIEDAplan project shows� a su�cient number of equally sized hierarchy levels seems
to be a precondition of this good performance�
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The performance of local search� In the diagrams� results concerning the local
search algorithms are presented in column 	� Mincon and minconwalk are the methods
of choice when solving unstructured and larger problems� One can hardly determine
in advance which of these algorithms performs better on a given task� Note that local
search has been done on initial labelings which have been computed by use forward

checking with hard and soft constraints�

Comparison with instances of egr� The performance of the egr instances is pre
sented in row � of the Figures �� to ��� All instances of egr have been better than the
standard branch�bound instance which uses forward checking and pessimistic MRV�
Hence� the overhead of searching global revisions is acceptable even when solving un
structured problems� Generally� it seems not to be a good idea to use a too large degree
on prospective constraint processing in the abstract problem� On searching low density
problems �refer to Figure ���� computation of consistent compatibilities in algorithm
egr�MACall sometimes pays because apparently more important constraint revisions
are tried out earlier� However� in all the other cases� this variant performed worse than
the others�

On high density problems� egr�FC performed better than by hierarchy enumeration�
On these problems� egrh�FC apparently searches for revisions of high priority con
straints which cannot be satis�ed� However� on medium density problems� egrh�FC
performed better than all the other algorithms� This encouraging results give rise to
the assumption that this strategy of enumerating global revisions will have an impact
on practice in constraintbased search�

In all experiments� the behaviour of egr was somehow in between the behaviour of
pure tree search and local search� The egr algorithms inherit the ability of improving
a solution constantly by small steps from local search� From tree search they inherit
the guarantee of �nding an optimal solution�

Beside all the di�erences in the performance of the described algorithms� Figure ��
and �� show the following� Although following very di�erent principles� the algorithms
behave similar if density and tightness of the given constraint problem are su�ciently
high� i�e� if the problem speci�cation represents a lot of knowledge on the desired result�
Hence� more knowledge may usually not imply less search but makes the control of
search less important�

� Conclusion

In this report� the standard algorithms for solving constraint optimization problems

including hierarchical constraints have been compared to the scheme of iterative im�

provement� On the one hand� this framework makes use of latest progress in tree
search on constraint optimization problems because it deploys the branch�bound al
gorithm including constraint processing extensions� On the other hand� algorithms of
this framework exhibit a robust run time behaviour and they are able to cope with
dynamically changing problem speci�cations� A commercial scheduling application of
such an algorithm is presented in order to prove applicability of this scheme�

Additionally� the report presented generic algorithms for enumerating global revisions
exhaustively in order to overcome with the two basic drawbacks of iterative repair
algorithms�

�� Usually� problem speci�c control knowledge is required to �nd regions where the
branch�bound is called to repair the current solution�
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�� Heuristic algorithms for iterative repair are not able to search constraint problems
exhaustively�

Studies on randomly generated problems proved that the overhead� which is caused
for this enumeration procedure� does not a�ect applicability of this new generic search
paradigm� On larger problem sizes� enumerating global revisions outperforms branch�
bound algorithms with standard extensions for constraint processing� On most classes
of randomly generated problems� enumeration of global revisions can even compete
with local search methods concerning quick convergence on good solutions�

Enumerating global revisions is a structural approach� It performs best if even good
labelings of the variables can be improved by small changes� Forthcoming applications
to real world problems will have to prove whether this assumption holds on realistic
constraint models� However� the framework of enumerating global revisions complies
with a basic precondition for this purpose� Constraints implementing the additionally
required control knowledge � local revisions of the constraints in a constraint library�
can be provided as components of this library� Hence� this approach has a realistic
potential to improve the state of the art in constraint processing in practice�
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