
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR 97-04

Parameterized Abstractions used for
Proof-Planning

Serge Autexier, Dieter Hutter

March 1997

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341





Parameterized Abstractions used for Proof-Planning

Serge Autexier, Dieter Hutter

DFKI-RR 97-04



This work has been supported by a grant from The Federal Ministry of Educa-
tion, Science, Research and Technology (FKZ ITWM-9600).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1997
This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.
ISSN 0946-008X



Parameterized Abstractions used for
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Serge Autexier� Dieter Hutter

fSerge�Autexier� Dieter�Hutterg�dfki�uni�sb�de

Abstract

In order to cope with large case studies arising from the application

of formal methods in an industrial setting� this paper presents new tech�

niques to support hierarchical proof planning� Following the paradigm of

di�erence reduction� proofs are obtained by removing syntactical di�er�

ences between parts of the formula to be proven step by step� To guide

this manipulation we introduce dynamic abstractions of terms� These ab�

stractions are parameterized by the individual goals of the manipulation

and are especially designed to ease the proof search based on heuristics�

The hierarchical approach and thus the decomposition of the original goal

into several subgoals enables the use of di�erent abstractions or di�erent

parameters of an abstraction within the proof search� In this paper we will

present one of these dynamic abstractions together with heuristics to guide

the proof search in the abstract space�
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� Introduction

The veri�cation of software components of realistic size results in proof obliga�

tions that due to their intrinsic technical size and complexity cannot be treated

completely automatically� but require human interaction and guidance� On the

other hand we are faced with a considerable number of these proof obligations�

many of which may lead to proofs of several thousand steps� Both aspects result

in the development of an appropriate proof planning approach in order to deal

with large sets of axioms and also to allow the user to interact on a strategic level�

Using proof planning allows one to construct proofs in a hierarchical manner by

decomposition of the given goals in a sequel of subgoals� In our setting the de�

composition is obtained by using abstractions� According to �Giunchiglia and

Walsh� ����	 abstractions are mappings of a representation of a problem� the

ground problem� into a new representation� the abstract problem� Solving the

abstract problem results in a proof sketch in the ground space which guides the

search� In the past a series of abstractions have been investigated and used for

proof planning with little success� Basically� these abstractions map formulas

into some simpli�ed structure 
e�g�� abstractions into sets of involved symbols

or abstractions ignoring the termlist of literals�� As a result these abstractions

either drop too much information and thus� planning in the abstract space is

rather unconstrained� or the proof search in the abstract space has more or less

the same complexity as on the ground space�

Following the paradigm of di�erence reduction we plan a proof by removing syn�

tactical di�erences between parts of the formula to be proven 
e�g� left� and

right�hand side of an equation� and use a rippling calculus to maintain the di�er�

ences between these parts� Within this rippling calculus we are able to annotate

speci�c information 
colors� to each occurrence of a symbol in the formula in�

dicating whether this occurrence belongs to the common part 
the skeleton� of

both formulas or whether it is part of their di�erences 
wave�fronts�� Any ma�

nipulation of the annotated formula within the calculus will automatically focus

on the di�erences and keep the skeleton parts unchanged�

Starting with an empty skeleton we have to manipulate both parts until they

share some common structure� Adding the obtained common parts to the skele�

ton will keep them from being manipulated and focus the attention of the prover

to the remaining di�erences� Iterating this process will step by step remove the

di�erences until both terms coincide� In order to equalize the di�erences we use
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the knowledge of a common skeleton to compute appropriate abstractions of the

problem� Thus� di�erent abstractions may be used in di�erent phases of the proof

since they are parameterized by the common skeleton� Once a solution is found

in the abstract space it has to be reformulated in the ground space�

In the following we restrict ourselves on equality problems and present an ab�

straction and heuristics on this abstraction that are tailored to this approach�

The abstraction of a formula is parameterized by the given skeleton and the at�

tention of the prover is focused to the sequel of function symbols governing the

occurrences of the skeleton�

� A Commented Example

To illustrate our ideas we will present a small example in the �eld of lattice�

ordered groups� In the following we inspect a proof of the theorem GRP����� of

the TPTP library 
cf� �Sutcli� and Suttner� ���	��

�x� y u
�� y� � y �

u
�� i
x�� 
y � x�� � i
x�� 
y � x�

��

Besides others� the following formulas are part of the axiomatization�

�X ��X � X 
��

�X i
X��X � � 
��

�X� Y� Z X � u
Y� Z� � u
X � Y�X � Z� 
��

�X� Y� Z u
X� Y �� Z � u
X � Z� Y � Z� 
��

Proving the given theorem results in proving the equality

u
�� i
x�� 
y � x�� � i
x�� 
y � x� 
�

assuming

u
�� y� � y 
��

Following the paradigm of di�erence reduction we �rst compare the function

symbols occurring on both sides of the equation 
�� Since u occurs on the left�

hand side but not on the right�hand side we have to get rid of the occurrence of u in


� which suggests the use of 
�� as a bridge lemma� Thus� we establish a subgoal

to enable the use of 
��� which results in a transformation of the left�hand side

of 
� into a term� where u
�� y� occurs as a subterm� During this transformation�

u occurring on the top level of the left�hand side of 
� has to be �moved inside�

toward the occurrence of y� Inspecting our database� the application of both�
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�� and 
�� 
applying from right to left� would move an occurrence of u inside

some argument of �� Thus� applying one of these equations twice would move

the occurrence of u close to y� Hence� our proof sketch consists of the successive

application of either 
�� or 
�� and the use of 
��� Unfortunately� neither 
�� nor


�� are immediately applicable� To enable the use of 
�� on the left�hand side of


� we have to modify the �rst argument of �� which is done with the help of

equation 
���

u

i
x�� x�� i
x�� 
y � x�� � i
x�� 
y � x� 
��

Now� equation 
�� is applicable and its use results in

i
x�� u
x� y � x� � i
x�� 
y � x� 
��

Again� the use of equations 
�� or 
�� which would move u towards y is blocked�

and we have to apply 
�� to enable the application of 
���

i
x�� u
�� x� y � x� � i
x�� 
y � x� 
���

Applying 
�� yields

i
x�� 
u
�� y�� x� � i
x�� 
y � x� 
���

which allows us to use the governing condition 
��

i
x�� 
y � x� � i
x�� 
y � x�� 
���

The central idea of the above proof was to move the occurrence of u towards

the occurrence of y in order to apply the condition 
��� Thus� the main steps of

the proof are the applications of 
�� and 
�� followed by the use of 
��� All the

other proof steps � e�g�� the use of 
�� and 
�� � are done to achieve subgoals

established by the intended application of the mentioned equations�

In order to automate such a proof we compute a proof sketch which abstracts from

these preparation steps� We focus on the main outline of the proof which is in

our example the move of u within the left�hand side of the theorem� Thus� we

are interested in the path from top level to the occurrence of y and how close u

is located to y� For example in 
� y occurs in position h�� �� �i and is governed

by a sequel of functions u���� while after the application of 
�� y still occurs at

h�� �� �i but is now governed by the sequel �� u���

� Abstraction

In the previous example we measured the progress of the proof by comparing the

paths from top level to the occurrence of y which denoted the invariant part or
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skeleton of our example� In this section we will formalize this idea into a notion

of S�terms that are speci�c abstractions of terms�

In a �rst step we enrich occurrences � of a term t by the function symbols occur�

ring along the denoted path from the top level to the denoted subterm tj�� Thus�

an enriched occurrence �� is a sequel of function symbols where each symbol is

indexed by an argument position� For instance� hu����i is an enriched occurrence

of u
X� Y ��Z corresponding to the standard occurrence h�� �i� Furthermore� we

de�ne that two enriched occurences are independent� if and only if one is not a

pre�x of the other�

Each enriched occurrence �� of some t denotes a subterm tj��� Thus�
��
��tj�� de�

scribes a speci�c subterm tj�� of t and the information about the path �� from top

level to its occurrence� A set T � f
�����tj���� � � � �

��n��tj��ng is called an S�term if

all ��i denote independent positions� An S�term abstracts from all parts of t which

are not on the path to one of the speci�ed subterms tj��i� The interpretation of

an S�term T � f
�����u�� � � � �

��n��ung is the set of terms t for which T is a legal

abstraction� i�e�� ��i are enriched occurrences of t and tj��i � ui� The empty set is

an S�term which denotes all terms while f
hi
��tg characterizes exactly t�

In order to manipulate S�terms we introduce S�equations

f
�����q�� � � � �

��n��qng � f
���

���r�� � � � �
���

m��rmg

which are pairs of S�terms such that fq�� � � � � qng � fr�� � � � � rmg holds� i�e� the

set of selected subterms 
of the terms to be abstracted� are identical on both sides�

For example is

f
h��i
��Xg � f

hu����i
�� X�

hu����i
�� Xg

an S�equation while

f
h��i
��X�

h���u�i
�� Y g � f

hu����i
�� X�

hu����i
�� Xg

is not� The interpretation of an S�equation Q � R is de�ned as the set of

equalities q � r where q is part of the interpretation of Q and r part of the

interpretation of R�

S�substitutions are �nite mappings from variables to S�terms� We extend the

scope of an S�substitution � to a S�term T by replacing each variable x of T in

the domain of � by �
x�� but we have to take care to obtain an S�term again�

�



To ease readability we present only the de�nition of S�substitutions which change

only one variable x� but the de�nition can be easily extended to the general

case� Given an S�substitution � � �x � f
���

���s�� ����
���

n��sng	 and an S�term

T � fT�� ���� Tmg with Ti �
��i��ti then �
T � �

S
��i�n �
Ti� where

� �

��
��x� � f

������

j
��sj j � � j � ng�

� �

��
��t� � f

��
��tg if x does not occur in t�

� �

��
��t� � f

��
��
t�x � s�	�g if � � �x � f

hi�s�
��g	 and

� otherwise unde�ned�

� is admissible for T if each �
Ti� is de�ned� An S�term Q �S�matches� an

S�term T if there is an admissible S�substitution � for Q such that �
Q� � T �

In order to de�ne the application of an S�equation� we call an enriched occurrence

�� admissible for an S�term T if there is a
���

��t � T and there is an enriched occur�

rence ���� such that ��	 ���� � ���� The subterm T j�� is de�ned by f
���

��t j
������

��t � T g�

Finally� we de�ne T ��� � S	 � f
���

��t j
���

��t � T and �� and ���are independentg


f
������

��s j
���

��s � Sg unless �� is admissible for T �

We complete our de�nitions by the application of an S�equation� An S�equation

Q � R is applicable to an S�term at an admissible enriched occurrence �� if and

only if there is an admissible S�substitution � for Q andR such that �
Q� � Sj���

S��� � �
R�	 is the result of the application�

We illustrate the usage of our S�logic by the introductory example of section ��

The S�equations are abstractions of the equations 
��� 
�� and 
��� where 
�� is

abstracted with respect to the occurrences of Z� 
�� with respect to the occur�

rences of Y and 
�� with respect to the occurrences of y�

f
h���u�i
�� Zg � f

hu����i
�� Zg 
���

f
h���u�i
�� Y g � f

hu����i
�� Y g 
���

f
hu�i
��yg � f

hi
��yg 
���

In Figure � on page � the �rst order proof of the theorem GRP ����� and its

corresponding abstract proof are presented� The arrow under the equation num�

ber in the abstract proof indicates in which direction the S�equation has been

applied�





Proof Abstract Proof

u
�� i
x�� 
y � x��

� i
x�� 
y � x�

f
hu�������i
�� yg

� f
h�����i
�� yg

u
i
x�� x� i
x�� 
y � x��

� i
x�� 
y � x�

f
hu�������i
�� yg

� f
h�����i
�� yg

i
x�� u
x� 
y � x��

� i
x�� 
y � x�

f
h���u����i
�� yg

� f
h�����i
�� yg

i
x�� u
�� x� y � x�

� i
x�� 
y � x�

f
h���u����i
�� yg

� f
h�����i
�� yg

i
x�� 
u
�� y�� x�

� i
x�� 
y � x�

f
h������u�i
�� yg

� f
h�����i
�� yg

i
x�� 
y � x�

� i
x�� 
y � x�

f
h�����i
�� yg

� f
h�����i
�� yg

���

���

���

���

�	�

����
�

����
�

����
�

Figure �� First order proof and abstract proof of theorem 
�

��� Re�nements

Given a deduction in the abstract space of the S�logic� we use it as a proof sketch

in the ground space� Each deduction step in the abstract space corresponds to

a sequel of deduction steps in the ground space� In order to obtain a �rst�order

proof� we have to re�ne each abstract deduction step S �Q
R T to a �rst order

deduction� s � � � � �q
r� � � � t where S is an S�term of s and T is an S�term

of t� In general� each applied S�equation Q � R of an abstract deduction step

corresponds to a set of possible �rst order equations� Hence� on the ground space

we have to choose one of these equations which may involve backtracking in case

we fail to enable the application of a chosen equation�

In our previous example some additional manipulations have to be performed on

the term s to make an equation applicable� Namely� parts of s which are �hid�

den� in the abstract space� have to be manipulated on the ground space as it

can be seen in Figure �� As a �rst abstract deduction step the S�equation 
��� is

applied� This step corresponds to two steps in the ground space� Here� the equa�
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tions 
�� and 
�� are applied successively� While the application of equation 
�� is

suggested 
since we used one of its abstractions in the abstract deduction step��

the application of equation 
�� is only performed as a subtask to enable the ap�

plication of 
��� This illustrates how the given proof sketch constrains the search

in the ground space� Deduction steps in the ground space are divided into steps

which immediately correspond to steps in the abstract space and preparation

steps which enable the use of the selected equations�

� Heuristics

Given appropriate abstractions for proof planning� we now de�ne heuristics to

guide the proof search in the abstract space� For this purpose consider our ab�

stract proof in Figure �� Inspecting all S�terms occurring during the abstract

deduction� we �nd a common structure h�����i in all of them� Since we are in�

terested to minimize the di�erences of terms in the ground space we also would like

to minimize the di�erences in the abstract space� In order to prevent the common

structure from being modi�ed� we adopt the notion of rippling 
cf� �Hutter� �����

Bundy et al�� ����	� to enriched occurrences� Thus� each element of an enriched

occurrence is annotated by a color�information specifying whether this element

belongs to the skeleton or to the wave�front� Considering an enriched occur�

rence as a list� we obtain its skeleton by removing all elements belonging to the

wave�front� Throughout our example we illustrate elements of the wave�front by

shading them�

Given an equality problem we compute an abstracted equality problem S � T

and search for a common skeleton for the enriched occurrences of S and T � For

example� h�����i is the common skeleton of h��� u����i and h�����i� u� is a

wave�front of the �rst enriched occurrence� Similarly to the �rst�order case� there

is no unique �maximal� skeleton of two enriched occurrences�

We illustrate the use of coloring of an enriched occurrence by the following exam�

ple� Consider the �rst abstract equality problem of Figure �� and there the two

enriched occurrences of y� Using h�����i as a common skeleton and shading the

wave�fronts results in the following colored abstract equality problem�

f
hu�� �����i
�� yg � f

h�����i
�� yg

Using this color annotation we are able to represent the di�erences of two S�terms

such that we are able to predict how the application of an S�equation changes the
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wave�fronts� In order to apply a colored S�equation Q � R on a colored S�term

S� the wave�fronts 
respectively the skeleton� of Q have to match with the wave�

fronts 
respectively the skeleton� of S� For example� consider the abstraction of

axiom 
��� The enriched occurrences of the subterm Z can be colored in the

following manner�

f
h���u� i
�� Zg � f

hu�� ��i
�� Zg 
��

If the above equation is applied from left to right on a colored S�term S� then we

can predict that the wave�front belonging to the enriched occurrence of Z will be

moved toward top level in S� and the skeletons will remain unchanged� Similarly�

an abstract equation

f
hu� i
��yg � f

hi
��yg 
���

will remove the wave�front u� in the enriched occurrence of y�

Thus� we classify the S�equations obtained by abstraction of the axioms accord�

ing to their behavior in case of application� We search for a �maximal� common

skeleton of the left� and right�hand sides� add the annotations to the S�equations�

and characterize them whether they will remove a wave�front� or move a wave�

front up or inside� For example the colored S�equation 
�� is classi�ed as a

�moving up� S�equation� if applied from left to right� The S�equation 
��� is

characterized as a �removing� S�equation�

Summing up� given an equality problem s � t we compute an abstract equality

problem S � T and annotate the enriched occurrences of both to obtain a com�

mon skeleton� Then appropriate colored abstract equations are applied which

will manipulate the wave�fronts until all di�erences are eliminated�

��� Introductory Example Revisited

We illustrate our technique with the help of our introductory example� The ab�

stractions 
���� 
��� and 
��� of the axioms 
��� 
�� and 
�� have already been

presented in the previous section�

They will be used for the abstract proof of theorem 
�� Annotating them with

colors results in the following colored abstract equations� The �rst colored S�

equation results from 
���

f
h���u� i
�� Zg � f

hu�� ��i
�� Zg� 
���
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and is characterized as moving a wave�front u� �inside� if applied from right to

left� The second S�equation

f
h���u� i
�� Y g � f

hu�� ��i
�� Y g� 
���

is obtained from 
��� and is also characterized as moving a wave�front u� �inside�

if applied from right to left� The last colored S�equation

f
hu� i
��yg � f

hi
��yg� 
���

is obtained from the condition 
��� of the theorem� This one removes a wave�front

u� if applied from left to right� The colored abstracted theorem is

f
hu�� �����i
�� yg � f

h�����i
�� yg 
���

According to the presented heuristics� the wave�front occurring in the enriched

occurrence of y on the left�hand side is moved inside by using the colored S�

equation 
��� from right to left�

f
h���u�� ��i
�� yg � f

h�����i
�� yg 
���

In a next step this wave�front is moved further inside by applying the colored

S�equation 
��� from right to left on the left�hand side of the theorem which

yields

f
h������u� i
�� yg � f

h�����i
�� yg 
���

Finally� the wave�front is removed using the colored S�equation 
��� which results

in the trivial problem

f
h�����i
�� yg � f

h�����i
�� yg� 
���

The abstract deduction solving the abstract equality problem 
� is just the one

we used in our informal approach in section �� which is what we were looking

for� However� note that there are some choice points in the abstract deduction

above� leading also to an abstract solution and thus to possible abstract plans�

Altogether there are �ve possible abstract deductions according to the heuristic

and the color restrictions� all solving the abstract equality problem� Thus� there

are �ve proof plans� but only one of this proof plans is executable� the one above�

� Implementation

The presented abstraction as well as the heuristics have been implemented in the

InKa�system 
cf� �Biundo et al�� ���� Hutter and Sengler� ���	�� For that� the
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S�terms� S�equations and the S�substitution de�ned in the S�logic have been im�

plemented� In each S�equation a list of the �rst order equations is stored of which

it is a legal abstraction� Then� this information is used to plan the re�nement

from the abstract space to the ground space� The plans are presently totally

ordered� but attempts are made in order to extend it to partially ordered plans�

A plan is simply represented as a list of directed S�equations and occurrences at

which they have been applied�

The presented abstraction and heuristic has been successfully tested on several

examples together with other abstractions and heuristics as it has been described

in the introduction� The examples were taken from several domains other than

group theory and performed very well 
cf� �Autexier� ����	 for various examples��

E�g�� in the example above both the planning and its re�nement took less than a

second on a SPARC ���

� Comparisons

In the history of AI research a wide variety of abstractions have been proposed�

Further� a theory of abstraction has been developed by Giunchiglia and Walsh


cf� �Giunchiglia and Walsh� ����	�� which led to the development of ABSFOL


cf� �Giunchiglia and Villa�orita� ���	�� However� our abstraction can not be

encoded in ABSFOL� since the language to describe abstractions is not powerful

enough� Indeed� it is not possible to de�ne parameterized abstractions� and our

abstraction is parameterized by occurrences of subterms�

Among all kinds of abstractions� there are especially two abstractions developed

for proof planning� namely gazing� and an extension of it to deal with functions�

The idea of Gazing 
cf� �Plummer� ����	� is roughly speaking to map �rst or�

der formulas onto propositional formulas and then to use propositional decision

procedures to �nd a plan� Therefore� gazing is not comparable to our technique�

since we are only dealing with equality problems� An extension of gazing is to

map literals into a set of its predicate and function symbols� This approach re�

sults in inconsistent abstraction spaces which prohibits a complete proof search

in the abstract space� Adding more information in the abstraction � as it is

done in the extended gazing � hampers a powerful proof planning� Therefore

our abstraction is more adequate for the purposes of equality proof planning�

especially because of its �exibility� However� this additional �exibility leads to a

larger branching factor in the plan search space� Thus� some powerful constraints�

like coloring� have been developed to compensate this e�ect� Nevertheless� the
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additional �exibility in the abstraction leads to planning techniques dealing much

better with equality problems than the extended gazing technique�

As mentioned above� our heuristics are strongly related to the rippling techniques

�Hutter� ����� Bundy et al�� ����	� Essentially we use a kind of rippling on strings

to guide the search process in the abstract space� but unlike the original rippling

approach we are able to abstract terms from unimportant argument positions�

� Conclusion

We presented parameterized abstractions of terms which are used to compute

proof sketches in the setting of hierarchical proof planning� Besides the heuristics

given in section � we developed other techniques to equalize enriched occurrences

with the help of S�equations� These heuristics make use of the fact that enriched

occurrences are basically strings and search algorithms based on strings can be

used 
cf� �Autexier� ����	��

Although S�deductions are only de�ned in an equational setting� the idea can be

lifted to general �rst�order formulas� Then our approach can be used to equalize

speci�c subformulas of a theorem in order to enable e�g� a resolution step�

Classical theorem provers may have a better performance on some problems� but

the main advantage of our planning approach is� that we can allow user interaction

on a strategic level 
i�e� on the level of the abstractions�� This is essential when

dealing with proof obligations occuring in the veri�cation of realistic software

components� Furthermore� the hierarchical proof planning procedure supports a

good proof presentation� which is rather di�cult with classical theorem provers�

Actually� the abstract planning steps provide a simple mechanism in order to

divide a proof into di�erent parts� which can be explained independently�
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